xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 774f94f14c92bf94afc21d8c8d7a1e8f2fdf5a48)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 static int	iwn_probe(device_t);
76 static int	iwn_attach(device_t);
77 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
78 static void	iwn_radiotap_attach(struct iwn_softc *);
79 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
80 		    const char name[IFNAMSIZ], int unit, int opmode,
81 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
82 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
83 static void	iwn_vap_delete(struct ieee80211vap *);
84 static int	iwn_cleanup(device_t);
85 static int	iwn_detach(device_t);
86 static int	iwn_nic_lock(struct iwn_softc *);
87 static int	iwn_eeprom_lock(struct iwn_softc *);
88 static int	iwn_init_otprom(struct iwn_softc *);
89 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
90 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
91 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
92 		    void **, bus_size_t, bus_size_t, int);
93 static void	iwn_dma_contig_free(struct iwn_dma_info *);
94 static int	iwn_alloc_sched(struct iwn_softc *);
95 static void	iwn_free_sched(struct iwn_softc *);
96 static int	iwn_alloc_kw(struct iwn_softc *);
97 static void	iwn_free_kw(struct iwn_softc *);
98 static int	iwn_alloc_ict(struct iwn_softc *);
99 static void	iwn_free_ict(struct iwn_softc *);
100 static int	iwn_alloc_fwmem(struct iwn_softc *);
101 static void	iwn_free_fwmem(struct iwn_softc *);
102 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
103 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
106 		    int);
107 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
108 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn5000_ict_reset(struct iwn_softc *);
110 static int	iwn_read_eeprom(struct iwn_softc *,
111 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
112 static void	iwn4965_read_eeprom(struct iwn_softc *);
113 static void	iwn4965_print_power_group(struct iwn_softc *, int);
114 static void	iwn5000_read_eeprom(struct iwn_softc *);
115 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
116 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
117 #if 0	/* HT */
118 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
119 #endif
120 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
121 		    uint32_t);
122 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
123 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
124 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125 static void	iwn_newassoc(struct ieee80211_node *, int);
126 static int	iwn_media_change(struct ifnet *);
127 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
128 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
129 		    struct iwn_rx_data *);
130 static void	iwn_timer_timeout(void *);
131 static void	iwn_calib_reset(struct iwn_softc *);
132 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
133 		    struct iwn_rx_data *);
134 #if 0	/* HT */
135 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
136 		    struct iwn_rx_data *);
137 #endif
138 static void	iwn5000_rx_calib_results(struct iwn_softc *,
139 		    struct iwn_rx_desc *, struct iwn_rx_data *);
140 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
141 		    struct iwn_rx_data *);
142 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
143 		    struct iwn_rx_data *);
144 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
145 		    struct iwn_rx_data *);
146 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
147 		    uint8_t);
148 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
149 static void	iwn_notif_intr(struct iwn_softc *);
150 static void	iwn_wakeup_intr(struct iwn_softc *);
151 static void	iwn_rftoggle_intr(struct iwn_softc *);
152 static void	iwn_fatal_intr(struct iwn_softc *);
153 static void	iwn_intr(void *);
154 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
155 		    uint16_t);
156 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
157 		    uint16_t);
158 #ifdef notyet
159 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
160 #endif
161 static uint8_t	iwn_plcp_signal(int);
162 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
163 		    struct ieee80211_node *, struct iwn_tx_ring *);
164 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
165 		    const struct ieee80211_bpf_params *);
166 static void	iwn_start(struct ifnet *);
167 static void	iwn_start_locked(struct ifnet *);
168 static void	iwn_watchdog(struct iwn_softc *sc);
169 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
170 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
171 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
172 		    int);
173 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
174 		    int);
175 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
176 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
177 static int	iwn_wme_update(struct ieee80211com *);
178 static void	iwn_update_mcast(struct ifnet *);
179 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
180 static int	iwn_set_critical_temp(struct iwn_softc *);
181 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
182 static void	iwn4965_power_calibration(struct iwn_softc *, int);
183 static int	iwn4965_set_txpower(struct iwn_softc *,
184 		    struct ieee80211_channel *, int);
185 static int	iwn5000_set_txpower(struct iwn_softc *,
186 		    struct ieee80211_channel *, int);
187 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
188 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
190 static int	iwn4965_get_temperature(struct iwn_softc *);
191 static int	iwn5000_get_temperature(struct iwn_softc *);
192 static int	iwn_init_sensitivity(struct iwn_softc *);
193 static void	iwn_collect_noise(struct iwn_softc *,
194 		    const struct iwn_rx_general_stats *);
195 static int	iwn4965_init_gains(struct iwn_softc *);
196 static int	iwn5000_init_gains(struct iwn_softc *);
197 static int	iwn4965_set_gains(struct iwn_softc *);
198 static int	iwn5000_set_gains(struct iwn_softc *);
199 static void	iwn_tune_sensitivity(struct iwn_softc *,
200 		    const struct iwn_rx_stats *);
201 static int	iwn_send_sensitivity(struct iwn_softc *);
202 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
203 static int	iwn_config(struct iwn_softc *);
204 static int	iwn_scan(struct iwn_softc *);
205 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
206 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
207 #if 0	/* HT */
208 static int	iwn_ampdu_rx_start(struct ieee80211com *,
209 		    struct ieee80211_node *, uint8_t);
210 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
211 		    struct ieee80211_node *, uint8_t);
212 static int	iwn_ampdu_tx_start(struct ieee80211com *,
213 		    struct ieee80211_node *, uint8_t);
214 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
215 		    struct ieee80211_node *, uint8_t);
216 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
217 		    struct ieee80211_node *, uint8_t, uint16_t);
218 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
219 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
220 		    struct ieee80211_node *, uint8_t, uint16_t);
221 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
222 #endif
223 static int	iwn5000_query_calibration(struct iwn_softc *);
224 static int	iwn5000_send_calibration(struct iwn_softc *);
225 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
226 static int	iwn4965_post_alive(struct iwn_softc *);
227 static int	iwn5000_post_alive(struct iwn_softc *);
228 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
229 		    int);
230 static int	iwn4965_load_firmware(struct iwn_softc *);
231 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
232 		    const uint8_t *, int);
233 static int	iwn5000_load_firmware(struct iwn_softc *);
234 static int	iwn_read_firmware_leg(struct iwn_softc *,
235 		    struct iwn_fw_info *);
236 static int	iwn_read_firmware_tlv(struct iwn_softc *,
237 		    struct iwn_fw_info *, uint16_t);
238 static int	iwn_read_firmware(struct iwn_softc *);
239 static int	iwn_clock_wait(struct iwn_softc *);
240 static int	iwn_apm_init(struct iwn_softc *);
241 static void	iwn_apm_stop_master(struct iwn_softc *);
242 static void	iwn_apm_stop(struct iwn_softc *);
243 static int	iwn4965_nic_config(struct iwn_softc *);
244 static int	iwn5000_nic_config(struct iwn_softc *);
245 static int	iwn_hw_prepare(struct iwn_softc *);
246 static int	iwn_hw_init(struct iwn_softc *);
247 static void	iwn_hw_stop(struct iwn_softc *);
248 static void	iwn_init_locked(struct iwn_softc *);
249 static void	iwn_init(void *);
250 static void	iwn_stop_locked(struct iwn_softc *);
251 static void	iwn_stop(struct iwn_softc *);
252 static void 	iwn_scan_start(struct ieee80211com *);
253 static void 	iwn_scan_end(struct ieee80211com *);
254 static void 	iwn_set_channel(struct ieee80211com *);
255 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
256 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
257 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
258 		    struct ieee80211_channel *);
259 static int	iwn_setregdomain(struct ieee80211com *,
260 		    struct ieee80211_regdomain *, int,
261 		    struct ieee80211_channel []);
262 static void	iwn_hw_reset(void *, int);
263 static void	iwn_radio_on(void *, int);
264 static void	iwn_radio_off(void *, int);
265 static void	iwn_sysctlattach(struct iwn_softc *);
266 static int	iwn_shutdown(device_t);
267 static int	iwn_suspend(device_t);
268 static int	iwn_resume(device_t);
269 
270 #define IWN_DEBUG
271 #ifdef IWN_DEBUG
272 enum {
273 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
274 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
275 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
276 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
277 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
278 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
279 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
280 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
281 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
282 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
283 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
284 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
285 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
286 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
287 	IWN_DEBUG_ANY		= 0xffffffff
288 };
289 
290 #define DPRINTF(sc, m, fmt, ...) do {			\
291 	if (sc->sc_debug & (m))				\
292 		printf(fmt, __VA_ARGS__);		\
293 } while (0)
294 
295 static const char *iwn_intr_str(uint8_t);
296 #else
297 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
298 #endif
299 
300 struct iwn_ident {
301 	uint16_t	vendor;
302 	uint16_t	device;
303 	const char	*name;
304 };
305 
306 static const struct iwn_ident iwn_ident_table [] = {
307 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
309 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
310 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
311 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
312 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
313 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
314 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
315 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
316 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
317 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
318 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
319 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
320 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
321 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
325 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
326 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
327 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6250" },
328 	{ 0x8086, 0x0089, "Intel(R) PRO/Wireless 6250" },
329 	{ 0x8086, 0x0082, "Intel(R) PRO/Wireless 6205a" },
330 	{ 0x8086, 0x0085, "Intel(R) PRO/Wireless 6205a" },
331 #ifdef notyet
332 	{ 0x8086, 0x008a, "Intel(R) PRO/Wireless 6205b" },
333 	{ 0x8086, 0x008b, "Intel(R) PRO/Wireless 6205b" },
334 	{ 0x8086, 0x008f, "Intel(R) PRO/Wireless 6205b" },
335 	{ 0x8086, 0x0090, "Intel(R) PRO/Wireless 6205b" },
336 	{ 0x8086, 0x0091, "Intel(R) PRO/Wireless 6205b" },
337 #endif
338 	{ 0, 0, NULL }
339 };
340 
341 static const struct iwn_hal iwn4965_hal = {
342 	iwn4965_load_firmware,
343 	iwn4965_read_eeprom,
344 	iwn4965_post_alive,
345 	iwn4965_nic_config,
346 	iwn4965_update_sched,
347 	iwn4965_get_temperature,
348 	iwn4965_get_rssi,
349 	iwn4965_set_txpower,
350 	iwn4965_init_gains,
351 	iwn4965_set_gains,
352 	iwn4965_add_node,
353 	iwn4965_tx_done,
354 #if 0	/* HT */
355 	iwn4965_ampdu_tx_start,
356 	iwn4965_ampdu_tx_stop,
357 #endif
358 	IWN4965_NTXQUEUES,
359 	IWN4965_NDMACHNLS,
360 	IWN4965_ID_BROADCAST,
361 	IWN4965_RXONSZ,
362 	IWN4965_SCHEDSZ,
363 	IWN4965_FW_TEXT_MAXSZ,
364 	IWN4965_FW_DATA_MAXSZ,
365 	IWN4965_FWSZ,
366 	IWN4965_SCHED_TXFACT
367 };
368 
369 static const struct iwn_hal iwn5000_hal = {
370 	iwn5000_load_firmware,
371 	iwn5000_read_eeprom,
372 	iwn5000_post_alive,
373 	iwn5000_nic_config,
374 	iwn5000_update_sched,
375 	iwn5000_get_temperature,
376 	iwn5000_get_rssi,
377 	iwn5000_set_txpower,
378 	iwn5000_init_gains,
379 	iwn5000_set_gains,
380 	iwn5000_add_node,
381 	iwn5000_tx_done,
382 #if 0	/* HT */
383 	iwn5000_ampdu_tx_start,
384 	iwn5000_ampdu_tx_stop,
385 #endif
386 	IWN5000_NTXQUEUES,
387 	IWN5000_NDMACHNLS,
388 	IWN5000_ID_BROADCAST,
389 	IWN5000_RXONSZ,
390 	IWN5000_SCHEDSZ,
391 	IWN5000_FW_TEXT_MAXSZ,
392 	IWN5000_FW_DATA_MAXSZ,
393 	IWN5000_FWSZ,
394 	IWN5000_SCHED_TXFACT
395 };
396 
397 static int
398 iwn_probe(device_t dev)
399 {
400 	const struct iwn_ident *ident;
401 
402 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
403 		if (pci_get_vendor(dev) == ident->vendor &&
404 		    pci_get_device(dev) == ident->device) {
405 			device_set_desc(dev, ident->name);
406 			return 0;
407 		}
408 	}
409 	return ENXIO;
410 }
411 
412 static int
413 iwn_attach(device_t dev)
414 {
415 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
416 	struct ieee80211com *ic;
417 	struct ifnet *ifp;
418 	const struct iwn_hal *hal;
419 	uint32_t tmp;
420 	int i, error, result;
421 	uint8_t macaddr[IEEE80211_ADDR_LEN];
422 
423 	sc->sc_dev = dev;
424 
425 	/*
426 	 * Get the offset of the PCI Express Capability Structure in PCI
427 	 * Configuration Space.
428 	 */
429 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
430 	if (error != 0) {
431 		device_printf(dev, "PCIe capability structure not found!\n");
432 		return error;
433 	}
434 
435 	/* Clear device-specific "PCI retry timeout" register (41h). */
436 	pci_write_config(dev, 0x41, 0, 1);
437 
438 	/* Hardware bug workaround. */
439 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
440 	if (tmp & PCIM_CMD_INTxDIS) {
441 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
442 		    __func__);
443 		tmp &= ~PCIM_CMD_INTxDIS;
444 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
445 	}
446 
447 	/* Enable bus-mastering. */
448 	pci_enable_busmaster(dev);
449 
450 	sc->mem_rid = PCIR_BAR(0);
451 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
452 	    RF_ACTIVE);
453 	if (sc->mem == NULL ) {
454 		device_printf(dev, "could not allocate memory resources\n");
455 		error = ENOMEM;
456 		return error;
457 	}
458 
459 	sc->sc_st = rman_get_bustag(sc->mem);
460 	sc->sc_sh = rman_get_bushandle(sc->mem);
461 	sc->irq_rid = 0;
462 	if ((result = pci_msi_count(dev)) == 1 &&
463 	    pci_alloc_msi(dev, &result) == 0)
464 		sc->irq_rid = 1;
465 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
466 	    RF_ACTIVE | RF_SHAREABLE);
467 	if (sc->irq == NULL) {
468 		device_printf(dev, "could not allocate interrupt resource\n");
469 		error = ENOMEM;
470 		goto fail;
471 	}
472 
473 	IWN_LOCK_INIT(sc);
474 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
475 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
476 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
477 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
478 
479 	/* Attach Hardware Abstraction Layer. */
480 	hal = iwn_hal_attach(sc);
481 	if (hal == NULL) {
482 		error = ENXIO;	/* XXX: Wrong error code? */
483 		goto fail;
484 	}
485 
486 	error = iwn_hw_prepare(sc);
487 	if (error != 0) {
488 		device_printf(dev, "hardware not ready, error %d\n", error);
489 		goto fail;
490 	}
491 
492 	/* Allocate DMA memory for firmware transfers. */
493 	error = iwn_alloc_fwmem(sc);
494 	if (error != 0) {
495 		device_printf(dev,
496 		    "could not allocate memory for firmware, error %d\n",
497 		    error);
498 		goto fail;
499 	}
500 
501 	/* Allocate "Keep Warm" page. */
502 	error = iwn_alloc_kw(sc);
503 	if (error != 0) {
504 		device_printf(dev,
505 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
506 		goto fail;
507 	}
508 
509 	/* Allocate ICT table for 5000 Series. */
510 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
511 	    (error = iwn_alloc_ict(sc)) != 0) {
512 		device_printf(dev,
513 		    "%s: could not allocate ICT table, error %d\n",
514 		    __func__, error);
515 		goto fail;
516 	}
517 
518 	/* Allocate TX scheduler "rings". */
519 	error = iwn_alloc_sched(sc);
520 	if (error != 0) {
521 		device_printf(dev,
522 		    "could not allocate TX scheduler rings, error %d\n",
523 		    error);
524 		goto fail;
525 	}
526 
527 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
528 	for (i = 0; i < hal->ntxqs; i++) {
529 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
530 		if (error != 0) {
531 			device_printf(dev,
532 			    "could not allocate Tx ring %d, error %d\n",
533 			    i, error);
534 			goto fail;
535 		}
536 	}
537 
538 	/* Allocate RX ring. */
539 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
540 	if (error != 0 ){
541 		device_printf(dev,
542 		    "could not allocate Rx ring, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Clear pending interrupts. */
547 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
548 
549 	/* Count the number of available chains. */
550 	sc->ntxchains =
551 	    ((sc->txchainmask >> 2) & 1) +
552 	    ((sc->txchainmask >> 1) & 1) +
553 	    ((sc->txchainmask >> 0) & 1);
554 	sc->nrxchains =
555 	    ((sc->rxchainmask >> 2) & 1) +
556 	    ((sc->rxchainmask >> 1) & 1) +
557 	    ((sc->rxchainmask >> 0) & 1);
558 
559 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
560 	if (ifp == NULL) {
561 		device_printf(dev, "can not allocate ifnet structure\n");
562 		goto fail;
563 	}
564 	ic = ifp->if_l2com;
565 
566 	ic->ic_ifp = ifp;
567 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
568 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
569 
570 	/* Set device capabilities. */
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode supported */
573 		| IEEE80211_C_MONITOR		/* monitor mode supported */
574 		| IEEE80211_C_TXPMGT		/* tx power management */
575 		| IEEE80211_C_SHSLOT		/* short slot time supported */
576 		| IEEE80211_C_WPA
577 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
578 		| IEEE80211_C_BGSCAN		/* background scanning */
579 #if 0
580 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
581 #endif
582 		| IEEE80211_C_WME		/* WME */
583 		;
584 #if 0	/* HT */
585 	/* XXX disable until HT channel setup works */
586 	ic->ic_htcaps =
587 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
588 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
589 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
590 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
591 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
592 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
593 		/* s/w capabilities */
594 		| IEEE80211_HTC_HT		/* HT operation */
595 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
596 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
597 		;
598 
599 	/* Set HT capabilities. */
600 	ic->ic_htcaps =
601 #if IWN_RBUF_SIZE == 8192
602 	    IEEE80211_HTCAP_AMSDU7935 |
603 #endif
604 	    IEEE80211_HTCAP_CBW20_40 |
605 	    IEEE80211_HTCAP_SGI20 |
606 	    IEEE80211_HTCAP_SGI40;
607 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
608 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
609 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
610 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
611 	else
612 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
613 #endif
614 
615 	/* Read MAC address, channels, etc from EEPROM. */
616 	error = iwn_read_eeprom(sc, macaddr);
617 	if (error != 0) {
618 		device_printf(dev, "could not read EEPROM, error %d\n",
619 		    error);
620 		goto fail;
621 	}
622 
623 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
624 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
625 	    macaddr, ":");
626 
627 #if 0	/* HT */
628 	/* Set supported HT rates. */
629 	ic->ic_sup_mcs[0] = 0xff;
630 	if (sc->nrxchains > 1)
631 		ic->ic_sup_mcs[1] = 0xff;
632 	if (sc->nrxchains > 2)
633 		ic->ic_sup_mcs[2] = 0xff;
634 #endif
635 
636 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
637 	ifp->if_softc = sc;
638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
639 	ifp->if_init = iwn_init;
640 	ifp->if_ioctl = iwn_ioctl;
641 	ifp->if_start = iwn_start;
642 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
643 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
644 	IFQ_SET_READY(&ifp->if_snd);
645 
646 	ieee80211_ifattach(ic, macaddr);
647 	ic->ic_vap_create = iwn_vap_create;
648 	ic->ic_vap_delete = iwn_vap_delete;
649 	ic->ic_raw_xmit = iwn_raw_xmit;
650 	ic->ic_node_alloc = iwn_node_alloc;
651 	ic->ic_newassoc = iwn_newassoc;
652 	ic->ic_wme.wme_update = iwn_wme_update;
653 	ic->ic_update_mcast = iwn_update_mcast;
654 	ic->ic_scan_start = iwn_scan_start;
655 	ic->ic_scan_end = iwn_scan_end;
656 	ic->ic_set_channel = iwn_set_channel;
657 	ic->ic_scan_curchan = iwn_scan_curchan;
658 	ic->ic_scan_mindwell = iwn_scan_mindwell;
659 	ic->ic_setregdomain = iwn_setregdomain;
660 #if 0	/* HT */
661 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
662 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
663 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
664 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
665 #endif
666 
667 	iwn_radiotap_attach(sc);
668 	iwn_sysctlattach(sc);
669 
670 	/*
671 	 * Hook our interrupt after all initialization is complete.
672 	 */
673 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
674 	    NULL, iwn_intr, sc, &sc->sc_ih);
675 	if (error != 0) {
676 		device_printf(dev, "could not set up interrupt, error %d\n",
677 		    error);
678 		goto fail;
679 	}
680 
681 	ieee80211_announce(ic);
682 	return 0;
683 fail:
684 	iwn_cleanup(dev);
685 	return error;
686 }
687 
688 static const struct iwn_hal *
689 iwn_hal_attach(struct iwn_softc *sc)
690 {
691 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
692 
693 	switch (sc->hw_type) {
694 	case IWN_HW_REV_TYPE_4965:
695 		sc->sc_hal = &iwn4965_hal;
696 		sc->limits = &iwn4965_sensitivity_limits;
697 		sc->fwname = "iwn4965fw";
698 		sc->txchainmask = IWN_ANT_AB;
699 		sc->rxchainmask = IWN_ANT_ABC;
700 		break;
701 	case IWN_HW_REV_TYPE_5100:
702 		sc->sc_hal = &iwn5000_hal;
703 		sc->limits = &iwn5000_sensitivity_limits;
704 		sc->fwname = "iwn5000fw";
705 		sc->txchainmask = IWN_ANT_B;
706 		sc->rxchainmask = IWN_ANT_AB;
707 		break;
708 	case IWN_HW_REV_TYPE_5150:
709 		sc->sc_hal = &iwn5000_hal;
710 		sc->limits = &iwn5150_sensitivity_limits;
711 		sc->fwname = "iwn5150fw";
712 		sc->txchainmask = IWN_ANT_A;
713 		sc->rxchainmask = IWN_ANT_AB;
714 		break;
715 	case IWN_HW_REV_TYPE_5300:
716 	case IWN_HW_REV_TYPE_5350:
717 		sc->sc_hal = &iwn5000_hal;
718 		sc->limits = &iwn5000_sensitivity_limits;
719 		sc->fwname = "iwn5000fw";
720 		sc->txchainmask = IWN_ANT_ABC;
721 		sc->rxchainmask = IWN_ANT_ABC;
722 		break;
723 	case IWN_HW_REV_TYPE_1000:
724 		sc->sc_hal = &iwn5000_hal;
725 		sc->limits = &iwn1000_sensitivity_limits;
726 		sc->fwname = "iwn1000fw";
727 		sc->txchainmask = IWN_ANT_A;
728 		sc->rxchainmask = IWN_ANT_AB;
729 		break;
730 	case IWN_HW_REV_TYPE_6000:
731 		sc->sc_hal = &iwn5000_hal;
732 		sc->limits = &iwn6000_sensitivity_limits;
733 		sc->fwname = "iwn6000fw";
734 		switch (pci_get_device(sc->sc_dev)) {
735 		case 0x422C:
736 		case 0x4239:
737 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
738 			sc->txchainmask = IWN_ANT_BC;
739 			sc->rxchainmask = IWN_ANT_BC;
740 			break;
741 		default:
742 			sc->txchainmask = IWN_ANT_ABC;
743 			sc->rxchainmask = IWN_ANT_ABC;
744 			break;
745 		}
746 		break;
747 	case IWN_HW_REV_TYPE_6050:
748 		sc->sc_hal = &iwn5000_hal;
749 		sc->limits = &iwn6000_sensitivity_limits;
750 		sc->fwname = "iwn6050fw";
751 		sc->txchainmask = IWN_ANT_AB;
752 		sc->rxchainmask = IWN_ANT_AB;
753 		break;
754 	case IWN_HW_REV_TYPE_6005:
755 		sc->sc_hal = &iwn5000_hal;
756 		sc->limits = &iwn6000_sensitivity_limits;
757 		sc->fwname = "iwn6005fw";
758 		sc->txchainmask = IWN_ANT_AB;
759 		sc->rxchainmask = IWN_ANT_AB;
760 		break;
761 	default:
762 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
763 		    sc->hw_type);
764 		return NULL;
765 	}
766 	return sc->sc_hal;
767 }
768 
769 /*
770  * Attach the interface to 802.11 radiotap.
771  */
772 static void
773 iwn_radiotap_attach(struct iwn_softc *sc)
774 {
775 	struct ifnet *ifp = sc->sc_ifp;
776 	struct ieee80211com *ic = ifp->if_l2com;
777 
778 	ieee80211_radiotap_attach(ic,
779 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
780 		IWN_TX_RADIOTAP_PRESENT,
781 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
782 		IWN_RX_RADIOTAP_PRESENT);
783 }
784 
785 static struct ieee80211vap *
786 iwn_vap_create(struct ieee80211com *ic,
787 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
788 	const uint8_t bssid[IEEE80211_ADDR_LEN],
789 	const uint8_t mac[IEEE80211_ADDR_LEN])
790 {
791 	struct iwn_vap *ivp;
792 	struct ieee80211vap *vap;
793 
794 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
795 		return NULL;
796 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
797 	    M_80211_VAP, M_NOWAIT | M_ZERO);
798 	if (ivp == NULL)
799 		return NULL;
800 	vap = &ivp->iv_vap;
801 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
802 	vap->iv_bmissthreshold = 10;		/* override default */
803 	/* Override with driver methods. */
804 	ivp->iv_newstate = vap->iv_newstate;
805 	vap->iv_newstate = iwn_newstate;
806 
807 	ieee80211_ratectl_init(vap);
808 	/* Complete setup. */
809 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
810 	ic->ic_opmode = opmode;
811 	return vap;
812 }
813 
814 static void
815 iwn_vap_delete(struct ieee80211vap *vap)
816 {
817 	struct iwn_vap *ivp = IWN_VAP(vap);
818 
819 	ieee80211_ratectl_deinit(vap);
820 	ieee80211_vap_detach(vap);
821 	free(ivp, M_80211_VAP);
822 }
823 
824 static int
825 iwn_cleanup(device_t dev)
826 {
827 	struct iwn_softc *sc = device_get_softc(dev);
828 	struct ifnet *ifp = sc->sc_ifp;
829 	struct ieee80211com *ic;
830 	int i;
831 
832 	if (ifp != NULL) {
833 		ic = ifp->if_l2com;
834 
835 		ieee80211_draintask(ic, &sc->sc_reinit_task);
836 		ieee80211_draintask(ic, &sc->sc_radioon_task);
837 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
838 
839 		iwn_stop(sc);
840 		callout_drain(&sc->sc_timer_to);
841 		ieee80211_ifdetach(ic);
842 	}
843 
844 	/* Free DMA resources. */
845 	iwn_free_rx_ring(sc, &sc->rxq);
846 	if (sc->sc_hal != NULL)
847 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
848 			iwn_free_tx_ring(sc, &sc->txq[i]);
849 	iwn_free_sched(sc);
850 	iwn_free_kw(sc);
851 	if (sc->ict != NULL)
852 		iwn_free_ict(sc);
853 	iwn_free_fwmem(sc);
854 
855 	if (sc->irq != NULL) {
856 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
857 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
858 		if (sc->irq_rid == 1)
859 			pci_release_msi(dev);
860 	}
861 
862 	if (sc->mem != NULL)
863 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
864 
865 	if (ifp != NULL)
866 		if_free(ifp);
867 
868 	IWN_LOCK_DESTROY(sc);
869 	return 0;
870 }
871 
872 static int
873 iwn_detach(device_t dev)
874 {
875 	iwn_cleanup(dev);
876 	return 0;
877 }
878 
879 static int
880 iwn_nic_lock(struct iwn_softc *sc)
881 {
882 	int ntries;
883 
884 	/* Request exclusive access to NIC. */
885 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
886 
887 	/* Spin until we actually get the lock. */
888 	for (ntries = 0; ntries < 1000; ntries++) {
889 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
890 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
891 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
892 			return 0;
893 		DELAY(10);
894 	}
895 	return ETIMEDOUT;
896 }
897 
898 static __inline void
899 iwn_nic_unlock(struct iwn_softc *sc)
900 {
901 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
902 }
903 
904 static __inline uint32_t
905 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
906 {
907 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
908 	IWN_BARRIER_READ_WRITE(sc);
909 	return IWN_READ(sc, IWN_PRPH_RDATA);
910 }
911 
912 static __inline void
913 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
914 {
915 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
916 	IWN_BARRIER_WRITE(sc);
917 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
918 }
919 
920 static __inline void
921 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
922 {
923 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
924 }
925 
926 static __inline void
927 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
928 {
929 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
930 }
931 
932 static __inline void
933 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
934     const uint32_t *data, int count)
935 {
936 	for (; count > 0; count--, data++, addr += 4)
937 		iwn_prph_write(sc, addr, *data);
938 }
939 
940 static __inline uint32_t
941 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
942 {
943 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
944 	IWN_BARRIER_READ_WRITE(sc);
945 	return IWN_READ(sc, IWN_MEM_RDATA);
946 }
947 
948 static __inline void
949 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
950 {
951 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
952 	IWN_BARRIER_WRITE(sc);
953 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
954 }
955 
956 static __inline void
957 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
958 {
959 	uint32_t tmp;
960 
961 	tmp = iwn_mem_read(sc, addr & ~3);
962 	if (addr & 3)
963 		tmp = (tmp & 0x0000ffff) | data << 16;
964 	else
965 		tmp = (tmp & 0xffff0000) | data;
966 	iwn_mem_write(sc, addr & ~3, tmp);
967 }
968 
969 static __inline void
970 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
971     int count)
972 {
973 	for (; count > 0; count--, addr += 4)
974 		*data++ = iwn_mem_read(sc, addr);
975 }
976 
977 static __inline void
978 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
979     int count)
980 {
981 	for (; count > 0; count--, addr += 4)
982 		iwn_mem_write(sc, addr, val);
983 }
984 
985 static int
986 iwn_eeprom_lock(struct iwn_softc *sc)
987 {
988 	int i, ntries;
989 
990 	for (i = 0; i < 100; i++) {
991 		/* Request exclusive access to EEPROM. */
992 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
993 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
994 
995 		/* Spin until we actually get the lock. */
996 		for (ntries = 0; ntries < 100; ntries++) {
997 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
998 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
999 				return 0;
1000 			DELAY(10);
1001 		}
1002 	}
1003 	return ETIMEDOUT;
1004 }
1005 
1006 static __inline void
1007 iwn_eeprom_unlock(struct iwn_softc *sc)
1008 {
1009 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1010 }
1011 
1012 /*
1013  * Initialize access by host to One Time Programmable ROM.
1014  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1015  */
1016 static int
1017 iwn_init_otprom(struct iwn_softc *sc)
1018 {
1019 	uint16_t prev, base, next;
1020 	int count, error;
1021 
1022 	/* Wait for clock stabilization before accessing prph. */
1023 	error = iwn_clock_wait(sc);
1024 	if (error != 0)
1025 		return error;
1026 
1027 	error = iwn_nic_lock(sc);
1028 	if (error != 0)
1029 		return error;
1030 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1031 	DELAY(5);
1032 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1033 	iwn_nic_unlock(sc);
1034 
1035 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1036 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1037 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1038 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1039 	}
1040 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1041 	/* Clear ECC status. */
1042 	IWN_SETBITS(sc, IWN_OTP_GP,
1043 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1044 
1045 	/*
1046 	 * Find the block before last block (contains the EEPROM image)
1047 	 * for HW without OTP shadow RAM.
1048 	 */
1049 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1050 		/* Switch to absolute addressing mode. */
1051 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1052 		base = prev = 0;
1053 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1054 			error = iwn_read_prom_data(sc, base, &next, 2);
1055 			if (error != 0)
1056 				return error;
1057 			if (next == 0)	/* End of linked-list. */
1058 				break;
1059 			prev = base;
1060 			base = le16toh(next);
1061 		}
1062 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1063 			return EIO;
1064 		/* Skip "next" word. */
1065 		sc->prom_base = prev + 1;
1066 	}
1067 	return 0;
1068 }
1069 
1070 static int
1071 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1072 {
1073 	uint32_t val, tmp;
1074 	int ntries;
1075 	uint8_t *out = data;
1076 
1077 	addr += sc->prom_base;
1078 	for (; count > 0; count -= 2, addr++) {
1079 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1080 		for (ntries = 0; ntries < 10; ntries++) {
1081 			val = IWN_READ(sc, IWN_EEPROM);
1082 			if (val & IWN_EEPROM_READ_VALID)
1083 				break;
1084 			DELAY(5);
1085 		}
1086 		if (ntries == 10) {
1087 			device_printf(sc->sc_dev,
1088 			    "timeout reading ROM at 0x%x\n", addr);
1089 			return ETIMEDOUT;
1090 		}
1091 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1092 			/* OTPROM, check for ECC errors. */
1093 			tmp = IWN_READ(sc, IWN_OTP_GP);
1094 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1095 				device_printf(sc->sc_dev,
1096 				    "OTPROM ECC error at 0x%x\n", addr);
1097 				return EIO;
1098 			}
1099 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1100 				/* Correctable ECC error, clear bit. */
1101 				IWN_SETBITS(sc, IWN_OTP_GP,
1102 				    IWN_OTP_GP_ECC_CORR_STTS);
1103 			}
1104 		}
1105 		*out++ = val >> 16;
1106 		if (count > 1)
1107 			*out++ = val >> 24;
1108 	}
1109 	return 0;
1110 }
1111 
1112 static void
1113 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1114 {
1115 	if (error != 0)
1116 		return;
1117 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1118 	*(bus_addr_t *)arg = segs[0].ds_addr;
1119 }
1120 
1121 static int
1122 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1123 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1124 {
1125 	int error;
1126 
1127 	dma->size = size;
1128 	dma->tag = NULL;
1129 
1130 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1131 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1132 	    1, size, flags, NULL, NULL, &dma->tag);
1133 	if (error != 0) {
1134 		device_printf(sc->sc_dev,
1135 		    "%s: bus_dma_tag_create failed, error %d\n",
1136 		    __func__, error);
1137 		goto fail;
1138 	}
1139 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1140 	    flags | BUS_DMA_ZERO, &dma->map);
1141 	if (error != 0) {
1142 		device_printf(sc->sc_dev,
1143 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1144 		goto fail;
1145 	}
1146 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1147 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1148 	if (error != 0) {
1149 		device_printf(sc->sc_dev,
1150 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1151 		goto fail;
1152 	}
1153 
1154 	if (kvap != NULL)
1155 		*kvap = dma->vaddr;
1156 	return 0;
1157 fail:
1158 	iwn_dma_contig_free(dma);
1159 	return error;
1160 }
1161 
1162 static void
1163 iwn_dma_contig_free(struct iwn_dma_info *dma)
1164 {
1165 	if (dma->tag != NULL) {
1166 		if (dma->map != NULL) {
1167 			if (dma->paddr == 0) {
1168 				bus_dmamap_sync(dma->tag, dma->map,
1169 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1170 				bus_dmamap_unload(dma->tag, dma->map);
1171 			}
1172 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1173 		}
1174 		bus_dma_tag_destroy(dma->tag);
1175 	}
1176 }
1177 
1178 static int
1179 iwn_alloc_sched(struct iwn_softc *sc)
1180 {
1181 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1182 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1183 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1184 }
1185 
1186 static void
1187 iwn_free_sched(struct iwn_softc *sc)
1188 {
1189 	iwn_dma_contig_free(&sc->sched_dma);
1190 }
1191 
1192 static int
1193 iwn_alloc_kw(struct iwn_softc *sc)
1194 {
1195 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1196 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1197 	    BUS_DMA_NOWAIT);
1198 }
1199 
1200 static void
1201 iwn_free_kw(struct iwn_softc *sc)
1202 {
1203 	iwn_dma_contig_free(&sc->kw_dma);
1204 }
1205 
1206 static int
1207 iwn_alloc_ict(struct iwn_softc *sc)
1208 {
1209 	/* ICT table must be aligned on a 4KB boundary. */
1210 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1211 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1212 }
1213 
1214 static void
1215 iwn_free_ict(struct iwn_softc *sc)
1216 {
1217 	iwn_dma_contig_free(&sc->ict_dma);
1218 }
1219 
1220 static int
1221 iwn_alloc_fwmem(struct iwn_softc *sc)
1222 {
1223 	/* Must be aligned on a 16-byte boundary. */
1224 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1225 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1226 }
1227 
1228 static void
1229 iwn_free_fwmem(struct iwn_softc *sc)
1230 {
1231 	iwn_dma_contig_free(&sc->fw_dma);
1232 }
1233 
1234 static int
1235 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1236 {
1237 	bus_size_t size;
1238 	int i, error;
1239 
1240 	ring->cur = 0;
1241 
1242 	/* Allocate RX descriptors (256-byte aligned). */
1243 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1244 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1245 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1246 	if (error != 0) {
1247 		device_printf(sc->sc_dev,
1248 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1249 		    __func__, error);
1250 		goto fail;
1251 	}
1252 
1253 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1254 	    BUS_SPACE_MAXADDR_32BIT,
1255 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1256 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1257 	if (error != 0) {
1258 		device_printf(sc->sc_dev,
1259 		    "%s: bus_dma_tag_create_failed, error %d\n",
1260 		    __func__, error);
1261 		goto fail;
1262 	}
1263 
1264 	/* Allocate RX status area (16-byte aligned). */
1265 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1266 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1267 	    16, BUS_DMA_NOWAIT);
1268 	if (error != 0) {
1269 		device_printf(sc->sc_dev,
1270 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1271 		    __func__, error);
1272 		goto fail;
1273 	}
1274 
1275 	/*
1276 	 * Allocate and map RX buffers.
1277 	 */
1278 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1279 		struct iwn_rx_data *data = &ring->data[i];
1280 		bus_addr_t paddr;
1281 
1282 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1283 		if (error != 0) {
1284 			device_printf(sc->sc_dev,
1285 			    "%s: bus_dmamap_create failed, error %d\n",
1286 			    __func__, error);
1287 			goto fail;
1288 		}
1289 
1290 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1291 		if (data->m == NULL) {
1292 			device_printf(sc->sc_dev,
1293 			    "%s: could not allocate rx mbuf\n", __func__);
1294 			error = ENOMEM;
1295 			goto fail;
1296 		}
1297 
1298 		/* Map page. */
1299 		error = bus_dmamap_load(ring->data_dmat, data->map,
1300 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1301 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1302 		if (error != 0 && error != EFBIG) {
1303 			device_printf(sc->sc_dev,
1304 			    "%s: bus_dmamap_load failed, error %d\n",
1305 			    __func__, error);
1306 			m_freem(data->m);
1307 			error = ENOMEM;	/* XXX unique code */
1308 			goto fail;
1309 		}
1310 		bus_dmamap_sync(ring->data_dmat, data->map,
1311 		    BUS_DMASYNC_PREWRITE);
1312 
1313 		/* Set physical address of RX buffer (256-byte aligned). */
1314 		ring->desc[i] = htole32(paddr >> 8);
1315 	}
1316 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1317 	    BUS_DMASYNC_PREWRITE);
1318 	return 0;
1319 fail:
1320 	iwn_free_rx_ring(sc, ring);
1321 	return error;
1322 }
1323 
1324 static void
1325 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1326 {
1327 	int ntries;
1328 
1329 	if (iwn_nic_lock(sc) == 0) {
1330 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1331 		for (ntries = 0; ntries < 1000; ntries++) {
1332 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1333 			    IWN_FH_RX_STATUS_IDLE)
1334 				break;
1335 			DELAY(10);
1336 		}
1337 		iwn_nic_unlock(sc);
1338 #ifdef IWN_DEBUG
1339 		if (ntries == 1000)
1340 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1341 			    "timeout resetting Rx ring");
1342 #endif
1343 	}
1344 	ring->cur = 0;
1345 	sc->last_rx_valid = 0;
1346 }
1347 
1348 static void
1349 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1350 {
1351 	int i;
1352 
1353 	iwn_dma_contig_free(&ring->desc_dma);
1354 	iwn_dma_contig_free(&ring->stat_dma);
1355 
1356 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1357 		struct iwn_rx_data *data = &ring->data[i];
1358 
1359 		if (data->m != NULL) {
1360 			bus_dmamap_sync(ring->data_dmat, data->map,
1361 			    BUS_DMASYNC_POSTREAD);
1362 			bus_dmamap_unload(ring->data_dmat, data->map);
1363 			m_freem(data->m);
1364 		}
1365 		if (data->map != NULL)
1366 			bus_dmamap_destroy(ring->data_dmat, data->map);
1367 	}
1368 }
1369 
1370 static int
1371 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1372 {
1373 	bus_size_t size;
1374 	bus_addr_t paddr;
1375 	int i, error;
1376 
1377 	ring->qid = qid;
1378 	ring->queued = 0;
1379 	ring->cur = 0;
1380 
1381 	/* Allocate TX descriptors (256-byte aligned.) */
1382 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1383 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1384 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1385 	if (error != 0) {
1386 		device_printf(sc->sc_dev,
1387 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1388 		    __func__, error);
1389 		goto fail;
1390 	}
1391 
1392 	/*
1393 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1394 	 * to allocate commands space for other rings.
1395 	 */
1396 	if (qid > 4)
1397 		return 0;
1398 
1399 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1400 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1401 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1402 	if (error != 0) {
1403 		device_printf(sc->sc_dev,
1404 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1405 		    __func__, error);
1406 		goto fail;
1407 	}
1408 
1409 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1410 	    BUS_SPACE_MAXADDR_32BIT,
1411 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1412 	    MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1413 	if (error != 0) {
1414 		device_printf(sc->sc_dev,
1415 		    "%s: bus_dma_tag_create_failed, error %d\n",
1416 		    __func__, error);
1417 		goto fail;
1418 	}
1419 
1420 	paddr = ring->cmd_dma.paddr;
1421 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1422 		struct iwn_tx_data *data = &ring->data[i];
1423 
1424 		data->cmd_paddr = paddr;
1425 		data->scratch_paddr = paddr + 12;
1426 		paddr += sizeof (struct iwn_tx_cmd);
1427 
1428 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1429 		if (error != 0) {
1430 			device_printf(sc->sc_dev,
1431 			    "%s: bus_dmamap_create failed, error %d\n",
1432 			    __func__, error);
1433 			goto fail;
1434 		}
1435 		bus_dmamap_sync(ring->data_dmat, data->map,
1436 		    BUS_DMASYNC_PREWRITE);
1437 	}
1438 	return 0;
1439 fail:
1440 	iwn_free_tx_ring(sc, ring);
1441 	return error;
1442 }
1443 
1444 static void
1445 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1446 {
1447 	int i;
1448 
1449 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1450 		struct iwn_tx_data *data = &ring->data[i];
1451 
1452 		if (data->m != NULL) {
1453 			bus_dmamap_unload(ring->data_dmat, data->map);
1454 			m_freem(data->m);
1455 			data->m = NULL;
1456 		}
1457 	}
1458 	/* Clear TX descriptors. */
1459 	memset(ring->desc, 0, ring->desc_dma.size);
1460 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1461 	    BUS_DMASYNC_PREWRITE);
1462 	sc->qfullmsk &= ~(1 << ring->qid);
1463 	ring->queued = 0;
1464 	ring->cur = 0;
1465 }
1466 
1467 static void
1468 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1469 {
1470 	int i;
1471 
1472 	iwn_dma_contig_free(&ring->desc_dma);
1473 	iwn_dma_contig_free(&ring->cmd_dma);
1474 
1475 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1476 		struct iwn_tx_data *data = &ring->data[i];
1477 
1478 		if (data->m != NULL) {
1479 			bus_dmamap_sync(ring->data_dmat, data->map,
1480 			    BUS_DMASYNC_POSTWRITE);
1481 			bus_dmamap_unload(ring->data_dmat, data->map);
1482 			m_freem(data->m);
1483 		}
1484 		if (data->map != NULL)
1485 			bus_dmamap_destroy(ring->data_dmat, data->map);
1486 	}
1487 }
1488 
1489 static void
1490 iwn5000_ict_reset(struct iwn_softc *sc)
1491 {
1492 	/* Disable interrupts. */
1493 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1494 
1495 	/* Reset ICT table. */
1496 	memset(sc->ict, 0, IWN_ICT_SIZE);
1497 	sc->ict_cur = 0;
1498 
1499 	/* Set physical address of ICT table (4KB aligned.) */
1500 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1501 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1502 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1503 
1504 	/* Enable periodic RX interrupt. */
1505 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1506 	/* Switch to ICT interrupt mode in driver. */
1507 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1508 
1509 	/* Re-enable interrupts. */
1510 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1511 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1512 }
1513 
1514 static int
1515 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1516 {
1517 	const struct iwn_hal *hal = sc->sc_hal;
1518 	int error;
1519 	uint16_t val;
1520 
1521 	/* Check whether adapter has an EEPROM or an OTPROM. */
1522 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1523 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1524 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1525 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1526 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1527 
1528 	/* Adapter has to be powered on for EEPROM access to work. */
1529 	error = iwn_apm_init(sc);
1530 	if (error != 0) {
1531 		device_printf(sc->sc_dev,
1532 		    "%s: could not power ON adapter, error %d\n",
1533 		    __func__, error);
1534 		return error;
1535 	}
1536 
1537 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1538 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1539 		return EIO;
1540 	}
1541 	error = iwn_eeprom_lock(sc);
1542 	if (error != 0) {
1543 		device_printf(sc->sc_dev,
1544 		    "%s: could not lock ROM, error %d\n",
1545 		    __func__, error);
1546 		return error;
1547 	}
1548 
1549 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1550 		error = iwn_init_otprom(sc);
1551 		if (error != 0) {
1552 			device_printf(sc->sc_dev,
1553 			    "%s: could not initialize OTPROM, error %d\n",
1554 			    __func__, error);
1555 			return error;
1556 		}
1557 	}
1558 
1559 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1560 	sc->rfcfg = le16toh(val);
1561 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1562 
1563 	/* Read MAC address. */
1564 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1565 
1566 	/* Read adapter-specific information from EEPROM. */
1567 	hal->read_eeprom(sc);
1568 
1569 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1570 
1571 	iwn_eeprom_unlock(sc);
1572 	return 0;
1573 }
1574 
1575 static void
1576 iwn4965_read_eeprom(struct iwn_softc *sc)
1577 {
1578 	uint32_t addr;
1579 	int i;
1580 	uint16_t val;
1581 
1582 	/* Read regulatory domain (4 ASCII characters.) */
1583 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1584 
1585 	/* Read the list of authorized channels (20MHz ones only.) */
1586 	for (i = 0; i < 5; i++) {
1587 		addr = iwn4965_regulatory_bands[i];
1588 		iwn_read_eeprom_channels(sc, i, addr);
1589 	}
1590 
1591 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1592 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1593 	sc->maxpwr2GHz = val & 0xff;
1594 	sc->maxpwr5GHz = val >> 8;
1595 	/* Check that EEPROM values are within valid range. */
1596 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1597 		sc->maxpwr5GHz = 38;
1598 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1599 		sc->maxpwr2GHz = 38;
1600 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1601 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1602 
1603 	/* Read samples for each TX power group. */
1604 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1605 	    sizeof sc->bands);
1606 
1607 	/* Read voltage at which samples were taken. */
1608 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1609 	sc->eeprom_voltage = (int16_t)le16toh(val);
1610 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1611 	    sc->eeprom_voltage);
1612 
1613 #ifdef IWN_DEBUG
1614 	/* Print samples. */
1615 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1616 		for (i = 0; i < IWN_NBANDS; i++)
1617 			iwn4965_print_power_group(sc, i);
1618 	}
1619 #endif
1620 }
1621 
1622 #ifdef IWN_DEBUG
1623 static void
1624 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1625 {
1626 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1627 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1628 	int j, c;
1629 
1630 	printf("===band %d===\n", i);
1631 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1632 	printf("chan1 num=%d\n", chans[0].num);
1633 	for (c = 0; c < 2; c++) {
1634 		for (j = 0; j < IWN_NSAMPLES; j++) {
1635 			printf("chain %d, sample %d: temp=%d gain=%d "
1636 			    "power=%d pa_det=%d\n", c, j,
1637 			    chans[0].samples[c][j].temp,
1638 			    chans[0].samples[c][j].gain,
1639 			    chans[0].samples[c][j].power,
1640 			    chans[0].samples[c][j].pa_det);
1641 		}
1642 	}
1643 	printf("chan2 num=%d\n", chans[1].num);
1644 	for (c = 0; c < 2; c++) {
1645 		for (j = 0; j < IWN_NSAMPLES; j++) {
1646 			printf("chain %d, sample %d: temp=%d gain=%d "
1647 			    "power=%d pa_det=%d\n", c, j,
1648 			    chans[1].samples[c][j].temp,
1649 			    chans[1].samples[c][j].gain,
1650 			    chans[1].samples[c][j].power,
1651 			    chans[1].samples[c][j].pa_det);
1652 		}
1653 	}
1654 }
1655 #endif
1656 
1657 static void
1658 iwn5000_read_eeprom(struct iwn_softc *sc)
1659 {
1660 	struct iwn5000_eeprom_calib_hdr hdr;
1661 	int32_t temp, volt;
1662 	uint32_t addr, base;
1663 	int i;
1664 	uint16_t val;
1665 
1666 	/* Read regulatory domain (4 ASCII characters.) */
1667 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1668 	base = le16toh(val);
1669 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1670 	    sc->eeprom_domain, 4);
1671 
1672 	/* Read the list of authorized channels (20MHz ones only.) */
1673 	for (i = 0; i < 5; i++) {
1674 		addr = base + iwn5000_regulatory_bands[i];
1675 		iwn_read_eeprom_channels(sc, i, addr);
1676 	}
1677 
1678 	/* Read enhanced TX power information for 6000 Series. */
1679 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1680 		iwn_read_eeprom_enhinfo(sc);
1681 
1682 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1683 	base = le16toh(val);
1684 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1685 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1686 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1687 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1688 	sc->calib_ver = hdr.version;
1689 
1690 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1691 		/* Compute temperature offset. */
1692 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1693 		temp = le16toh(val);
1694 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1695 		volt = le16toh(val);
1696 		sc->temp_off = temp - (volt / -5);
1697 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1698 		    temp, volt, sc->temp_off);
1699 	} else {
1700 		/* Read crystal calibration. */
1701 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1702 		    &sc->eeprom_crystal, sizeof (uint32_t));
1703 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1704 		le32toh(sc->eeprom_crystal));
1705 	}
1706 }
1707 
1708 /*
1709  * Translate EEPROM flags to net80211.
1710  */
1711 static uint32_t
1712 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1713 {
1714 	uint32_t nflags;
1715 
1716 	nflags = 0;
1717 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1718 		nflags |= IEEE80211_CHAN_PASSIVE;
1719 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1720 		nflags |= IEEE80211_CHAN_NOADHOC;
1721 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1722 		nflags |= IEEE80211_CHAN_DFS;
1723 		/* XXX apparently IBSS may still be marked */
1724 		nflags |= IEEE80211_CHAN_NOADHOC;
1725 	}
1726 
1727 	return nflags;
1728 }
1729 
1730 static void
1731 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1732 {
1733 	struct ifnet *ifp = sc->sc_ifp;
1734 	struct ieee80211com *ic = ifp->if_l2com;
1735 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1736 	const struct iwn_chan_band *band = &iwn_bands[n];
1737 	struct ieee80211_channel *c;
1738 	int i, chan, nflags;
1739 
1740 	for (i = 0; i < band->nchan; i++) {
1741 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1742 			DPRINTF(sc, IWN_DEBUG_RESET,
1743 			    "skip chan %d flags 0x%x maxpwr %d\n",
1744 			    band->chan[i], channels[i].flags,
1745 			    channels[i].maxpwr);
1746 			continue;
1747 		}
1748 		chan = band->chan[i];
1749 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1750 
1751 		DPRINTF(sc, IWN_DEBUG_RESET,
1752 		    "add chan %d flags 0x%x maxpwr %d\n",
1753 		    chan, channels[i].flags, channels[i].maxpwr);
1754 
1755 		c = &ic->ic_channels[ic->ic_nchans++];
1756 		c->ic_ieee = chan;
1757 		c->ic_maxregpower = channels[i].maxpwr;
1758 		c->ic_maxpower = 2*c->ic_maxregpower;
1759 
1760 		/* Save maximum allowed TX power for this channel. */
1761 		sc->maxpwr[chan] = channels[i].maxpwr;
1762 
1763 		if (n == 0) {	/* 2GHz band */
1764 			c->ic_freq = ieee80211_ieee2mhz(chan,
1765 			    IEEE80211_CHAN_G);
1766 
1767 			/* G =>'s B is supported */
1768 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1769 
1770 			c = &ic->ic_channels[ic->ic_nchans++];
1771 			c[0] = c[-1];
1772 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1773 		} else {	/* 5GHz band */
1774 			c->ic_freq = ieee80211_ieee2mhz(chan,
1775 			    IEEE80211_CHAN_A);
1776 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1777 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1778 		}
1779 #if 0	/* HT */
1780 		/* XXX no constraints on using HT20 */
1781 		/* add HT20, HT40 added separately */
1782 		c = &ic->ic_channels[ic->ic_nchans++];
1783 		c[0] = c[-1];
1784 		c->ic_flags |= IEEE80211_CHAN_HT20;
1785 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1786 #endif
1787 	}
1788 }
1789 
1790 #if 0	/* HT */
1791 static void
1792 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1793 {
1794 	struct ifnet *ifp = sc->sc_ifp;
1795 	struct ieee80211com *ic = ifp->if_l2com;
1796 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1797 	const struct iwn_chan_band *band = &iwn_bands[n];
1798 	struct ieee80211_channel *c, *cent, *extc;
1799 	int i;
1800 
1801 	for (i = 0; i < band->nchan; i++) {
1802 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1803 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1804 			DPRINTF(sc, IWN_DEBUG_RESET,
1805 			    "skip chan %d flags 0x%x maxpwr %d\n",
1806 			    band->chan[i], channels[i].flags,
1807 			    channels[i].maxpwr);
1808 			continue;
1809 		}
1810 		/*
1811 		 * Each entry defines an HT40 channel pair; find the
1812 		 * center channel, then the extension channel above.
1813 		 */
1814 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1815 		    band->flags & ~IEEE80211_CHAN_HT);
1816 		if (cent == NULL) {	/* XXX shouldn't happen */
1817 			device_printf(sc->sc_dev,
1818 			    "%s: no entry for channel %d\n",
1819 			    __func__, band->chan[i]);
1820 			continue;
1821 		}
1822 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1823 		    band->flags & ~IEEE80211_CHAN_HT);
1824 		if (extc == NULL) {
1825 			DPRINTF(sc, IWN_DEBUG_RESET,
1826 			    "skip chan %d, extension channel not found\n",
1827 			    band->chan[i]);
1828 			continue;
1829 		}
1830 
1831 		DPRINTF(sc, IWN_DEBUG_RESET,
1832 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1833 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1834 
1835 		c = &ic->ic_channels[ic->ic_nchans++];
1836 		c[0] = cent[0];
1837 		c->ic_extieee = extc->ic_ieee;
1838 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1839 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1840 		c = &ic->ic_channels[ic->ic_nchans++];
1841 		c[0] = extc[0];
1842 		c->ic_extieee = cent->ic_ieee;
1843 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1844 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1845 	}
1846 }
1847 #endif
1848 
1849 static void
1850 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1851 {
1852 	struct ifnet *ifp = sc->sc_ifp;
1853 	struct ieee80211com *ic = ifp->if_l2com;
1854 
1855 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1856 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1857 
1858 	if (n < 5)
1859 		iwn_read_eeprom_band(sc, n);
1860 #if 0	/* HT */
1861 	else
1862 		iwn_read_eeprom_ht40(sc, n);
1863 #endif
1864 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1865 }
1866 
1867 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1868 
1869 static void
1870 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1871 {
1872 	struct iwn_eeprom_enhinfo enhinfo[35];
1873 	uint16_t val, base;
1874 	int8_t maxpwr;
1875 	int i;
1876 
1877 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1878 	base = le16toh(val);
1879 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1880 	    enhinfo, sizeof enhinfo);
1881 
1882 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1883 	for (i = 0; i < nitems(enhinfo); i++) {
1884 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1885 			continue;	/* Skip invalid entries. */
1886 
1887 		maxpwr = 0;
1888 		if (sc->txchainmask & IWN_ANT_A)
1889 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1890 		if (sc->txchainmask & IWN_ANT_B)
1891 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1892 		if (sc->txchainmask & IWN_ANT_C)
1893 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1894 		if (sc->ntxchains == 2)
1895 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1896 		else if (sc->ntxchains == 3)
1897 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1898 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1899 
1900 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1901 		    maxpwr);
1902 		sc->enh_maxpwr[i] = maxpwr;
1903 	}
1904 }
1905 
1906 static struct ieee80211_node *
1907 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1908 {
1909 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
1910 }
1911 
1912 static void
1913 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1914 {
1915 	/* XXX move */
1916 	ieee80211_ratectl_node_init(ni);
1917 }
1918 
1919 static int
1920 iwn_media_change(struct ifnet *ifp)
1921 {
1922 	int error = ieee80211_media_change(ifp);
1923 	/* NB: only the fixed rate can change and that doesn't need a reset */
1924 	return (error == ENETRESET ? 0 : error);
1925 }
1926 
1927 static int
1928 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1929 {
1930 	struct iwn_vap *ivp = IWN_VAP(vap);
1931 	struct ieee80211com *ic = vap->iv_ic;
1932 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1933 	int error;
1934 
1935 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1936 		ieee80211_state_name[vap->iv_state],
1937 		ieee80211_state_name[nstate]);
1938 
1939 	IEEE80211_UNLOCK(ic);
1940 	IWN_LOCK(sc);
1941 	callout_stop(&sc->sc_timer_to);
1942 
1943 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1944 		/* !AUTH -> AUTH requires adapter config */
1945 		/* Reset state to handle reassociations correctly. */
1946 		sc->rxon.associd = 0;
1947 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1948 		iwn_calib_reset(sc);
1949 		error = iwn_auth(sc, vap);
1950 	}
1951 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1952 		/*
1953 		 * !RUN -> RUN requires setting the association id
1954 		 * which is done with a firmware cmd.  We also defer
1955 		 * starting the timers until that work is done.
1956 		 */
1957 		error = iwn_run(sc, vap);
1958 	}
1959 	if (nstate == IEEE80211_S_RUN) {
1960 		/*
1961 		 * RUN -> RUN transition; just restart the timers.
1962 		 */
1963 		iwn_calib_reset(sc);
1964 	}
1965 	IWN_UNLOCK(sc);
1966 	IEEE80211_LOCK(ic);
1967 	return ivp->iv_newstate(vap, nstate, arg);
1968 }
1969 
1970 /*
1971  * Process an RX_PHY firmware notification.  This is usually immediately
1972  * followed by an MPDU_RX_DONE notification.
1973  */
1974 static void
1975 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1976     struct iwn_rx_data *data)
1977 {
1978 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1979 
1980 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
1981 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1982 
1983 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1984 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1985 	sc->last_rx_valid = 1;
1986 }
1987 
1988 static void
1989 iwn_timer_timeout(void *arg)
1990 {
1991 	struct iwn_softc *sc = arg;
1992 	uint32_t flags = 0;
1993 
1994 	IWN_LOCK_ASSERT(sc);
1995 
1996 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1997 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1998 		    "send statistics request");
1999 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2000 		    sizeof flags, 1);
2001 		sc->calib_cnt = 60;	/* do calibration every 60s */
2002 	}
2003 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2004 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2005 }
2006 
2007 static void
2008 iwn_calib_reset(struct iwn_softc *sc)
2009 {
2010 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2011 	sc->calib_cnt = 60;		/* do calibration every 60s */
2012 }
2013 
2014 /*
2015  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2016  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2017  */
2018 static void
2019 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2020     struct iwn_rx_data *data)
2021 {
2022 	const struct iwn_hal *hal = sc->sc_hal;
2023 	struct ifnet *ifp = sc->sc_ifp;
2024 	struct ieee80211com *ic = ifp->if_l2com;
2025 	struct iwn_rx_ring *ring = &sc->rxq;
2026 	struct ieee80211_frame *wh;
2027 	struct ieee80211_node *ni;
2028 	struct mbuf *m, *m1;
2029 	struct iwn_rx_stat *stat;
2030 	caddr_t head;
2031 	bus_addr_t paddr;
2032 	uint32_t flags;
2033 	int error, len, rssi, nf;
2034 
2035 	if (desc->type == IWN_MPDU_RX_DONE) {
2036 		/* Check for prior RX_PHY notification. */
2037 		if (!sc->last_rx_valid) {
2038 			DPRINTF(sc, IWN_DEBUG_ANY,
2039 			    "%s: missing RX_PHY\n", __func__);
2040 			ifp->if_ierrors++;
2041 			return;
2042 		}
2043 		sc->last_rx_valid = 0;
2044 		stat = &sc->last_rx_stat;
2045 	} else
2046 		stat = (struct iwn_rx_stat *)(desc + 1);
2047 
2048 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2049 
2050 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2051 		device_printf(sc->sc_dev,
2052 		    "%s: invalid rx statistic header, len %d\n",
2053 		    __func__, stat->cfg_phy_len);
2054 		ifp->if_ierrors++;
2055 		return;
2056 	}
2057 	if (desc->type == IWN_MPDU_RX_DONE) {
2058 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2059 		head = (caddr_t)(mpdu + 1);
2060 		len = le16toh(mpdu->len);
2061 	} else {
2062 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2063 		len = le16toh(stat->len);
2064 	}
2065 
2066 	flags = le32toh(*(uint32_t *)(head + len));
2067 
2068 	/* Discard frames with a bad FCS early. */
2069 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2070 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2071 		    __func__, flags);
2072 		ifp->if_ierrors++;
2073 		return;
2074 	}
2075 	/* Discard frames that are too short. */
2076 	if (len < sizeof (*wh)) {
2077 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2078 		    __func__, len);
2079 		ifp->if_ierrors++;
2080 		return;
2081 	}
2082 
2083 	/* XXX don't need mbuf, just dma buffer */
2084 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2085 	if (m1 == NULL) {
2086 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2087 		    __func__);
2088 		ifp->if_ierrors++;
2089 		return;
2090 	}
2091 	bus_dmamap_unload(ring->data_dmat, data->map);
2092 
2093 	error = bus_dmamap_load(ring->data_dmat, data->map,
2094 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2095 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2096 	if (error != 0 && error != EFBIG) {
2097 		device_printf(sc->sc_dev,
2098 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2099 		m_freem(m1);
2100 		ifp->if_ierrors++;
2101 		return;
2102 	}
2103 
2104 	m = data->m;
2105 	data->m = m1;
2106 	/* Update RX descriptor. */
2107 	ring->desc[ring->cur] = htole32(paddr >> 8);
2108 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2109 	    BUS_DMASYNC_PREWRITE);
2110 
2111 	/* Finalize mbuf. */
2112 	m->m_pkthdr.rcvif = ifp;
2113 	m->m_data = head;
2114 	m->m_pkthdr.len = m->m_len = len;
2115 
2116 	rssi = hal->get_rssi(sc, stat);
2117 
2118 	/* Grab a reference to the source node. */
2119 	wh = mtod(m, struct ieee80211_frame *);
2120 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2121 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2122 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2123 
2124 	if (ieee80211_radiotap_active(ic)) {
2125 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2126 
2127 		tap->wr_tsft = htole64(stat->tstamp);
2128 		tap->wr_flags = 0;
2129 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2130 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2131 		switch (stat->rate) {
2132 		/* CCK rates. */
2133 		case  10: tap->wr_rate =   2; break;
2134 		case  20: tap->wr_rate =   4; break;
2135 		case  55: tap->wr_rate =  11; break;
2136 		case 110: tap->wr_rate =  22; break;
2137 		/* OFDM rates. */
2138 		case 0xd: tap->wr_rate =  12; break;
2139 		case 0xf: tap->wr_rate =  18; break;
2140 		case 0x5: tap->wr_rate =  24; break;
2141 		case 0x7: tap->wr_rate =  36; break;
2142 		case 0x9: tap->wr_rate =  48; break;
2143 		case 0xb: tap->wr_rate =  72; break;
2144 		case 0x1: tap->wr_rate =  96; break;
2145 		case 0x3: tap->wr_rate = 108; break;
2146 		/* Unknown rate: should not happen. */
2147 		default:  tap->wr_rate =   0;
2148 		}
2149 		tap->wr_dbm_antsignal = rssi;
2150 		tap->wr_dbm_antnoise = nf;
2151 	}
2152 
2153 	IWN_UNLOCK(sc);
2154 
2155 	/* Send the frame to the 802.11 layer. */
2156 	if (ni != NULL) {
2157 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2158 		/* Node is no longer needed. */
2159 		ieee80211_free_node(ni);
2160 	} else
2161 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2162 
2163 	IWN_LOCK(sc);
2164 }
2165 
2166 #if 0	/* HT */
2167 /* Process an incoming Compressed BlockAck. */
2168 static void
2169 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2170     struct iwn_rx_data *data)
2171 {
2172 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2173 	struct iwn_tx_ring *txq;
2174 
2175 	txq = &sc->txq[letoh16(ba->qid)];
2176 	/* XXX TBD */
2177 }
2178 #endif
2179 
2180 /*
2181  * Process a CALIBRATION_RESULT notification sent by the initialization
2182  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2183  */
2184 static void
2185 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2186     struct iwn_rx_data *data)
2187 {
2188 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2189 	int len, idx = -1;
2190 
2191 	/* Runtime firmware should not send such a notification. */
2192 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2193 		return;
2194 
2195 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2196 	len = (le32toh(desc->len) & 0x3fff) - 4;
2197 
2198 	switch (calib->code) {
2199 	case IWN5000_PHY_CALIB_DC:
2200 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2201 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2202 			idx = 0;
2203 		break;
2204 	case IWN5000_PHY_CALIB_LO:
2205 		idx = 1;
2206 		break;
2207 	case IWN5000_PHY_CALIB_TX_IQ:
2208 		idx = 2;
2209 		break;
2210 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2211 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2212 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2213 			idx = 3;
2214 		break;
2215 	case IWN5000_PHY_CALIB_BASE_BAND:
2216 		idx = 4;
2217 		break;
2218 	}
2219 	if (idx == -1)	/* Ignore other results. */
2220 		return;
2221 
2222 	/* Save calibration result. */
2223 	if (sc->calibcmd[idx].buf != NULL)
2224 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2225 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2226 	if (sc->calibcmd[idx].buf == NULL) {
2227 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2228 		    "not enough memory for calibration result %d\n",
2229 		    calib->code);
2230 		return;
2231 	}
2232 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2233 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2234 	sc->calibcmd[idx].len = len;
2235 	memcpy(sc->calibcmd[idx].buf, calib, len);
2236 }
2237 
2238 /*
2239  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2240  * The latter is sent by the firmware after each received beacon.
2241  */
2242 static void
2243 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2244     struct iwn_rx_data *data)
2245 {
2246 	const struct iwn_hal *hal = sc->sc_hal;
2247 	struct ifnet *ifp = sc->sc_ifp;
2248 	struct ieee80211com *ic = ifp->if_l2com;
2249 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2250 	struct iwn_calib_state *calib = &sc->calib;
2251 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2252 	int temp;
2253 
2254 	/* Beacon stats are meaningful only when associated and not scanning. */
2255 	if (vap->iv_state != IEEE80211_S_RUN ||
2256 	    (ic->ic_flags & IEEE80211_F_SCAN))
2257 		return;
2258 
2259 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2260 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2261 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2262 
2263 	/* Test if temperature has changed. */
2264 	if (stats->general.temp != sc->rawtemp) {
2265 		/* Convert "raw" temperature to degC. */
2266 		sc->rawtemp = stats->general.temp;
2267 		temp = hal->get_temperature(sc);
2268 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2269 		    __func__, temp);
2270 
2271 		/* Update TX power if need be (4965AGN only.) */
2272 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2273 			iwn4965_power_calibration(sc, temp);
2274 	}
2275 
2276 	if (desc->type != IWN_BEACON_STATISTICS)
2277 		return;	/* Reply to a statistics request. */
2278 
2279 	sc->noise = iwn_get_noise(&stats->rx.general);
2280 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2281 
2282 	/* Test that RSSI and noise are present in stats report. */
2283 	if (le32toh(stats->rx.general.flags) != 1) {
2284 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2285 		    "received statistics without RSSI");
2286 		return;
2287 	}
2288 
2289 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2290 		iwn_collect_noise(sc, &stats->rx.general);
2291 	else if (calib->state == IWN_CALIB_STATE_RUN)
2292 		iwn_tune_sensitivity(sc, &stats->rx);
2293 }
2294 
2295 /*
2296  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2297  * and 5000 adapters have different incompatible TX status formats.
2298  */
2299 static void
2300 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2301     struct iwn_rx_data *data)
2302 {
2303 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2304 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2305 
2306 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2307 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2308 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2309 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2310 	    le32toh(stat->status));
2311 
2312 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2313 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2314 }
2315 
2316 static void
2317 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2318     struct iwn_rx_data *data)
2319 {
2320 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2321 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2322 
2323 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2324 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2325 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2326 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2327 	    le32toh(stat->status));
2328 
2329 #ifdef notyet
2330 	/* Reset TX scheduler slot. */
2331 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2332 #endif
2333 
2334 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2335 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2336 }
2337 
2338 /*
2339  * Adapter-independent backend for TX_DONE firmware notifications.
2340  */
2341 static void
2342 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2343     uint8_t status)
2344 {
2345 	struct ifnet *ifp = sc->sc_ifp;
2346 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2347 	struct iwn_tx_data *data = &ring->data[desc->idx];
2348 	struct mbuf *m;
2349 	struct ieee80211_node *ni;
2350 	struct ieee80211vap *vap;
2351 
2352 	KASSERT(data->ni != NULL, ("no node"));
2353 
2354 	/* Unmap and free mbuf. */
2355 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2356 	bus_dmamap_unload(ring->data_dmat, data->map);
2357 	m = data->m, data->m = NULL;
2358 	ni = data->ni, data->ni = NULL;
2359 	vap = ni->ni_vap;
2360 
2361 	if (m->m_flags & M_TXCB) {
2362 		/*
2363 		 * Channels marked for "radar" require traffic to be received
2364 		 * to unlock before we can transmit.  Until traffic is seen
2365 		 * any attempt to transmit is returned immediately with status
2366 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2367 		 * happen on first authenticate after scanning.  To workaround
2368 		 * this we ignore a failure of this sort in AUTH state so the
2369 		 * 802.11 layer will fall back to using a timeout to wait for
2370 		 * the AUTH reply.  This allows the firmware time to see
2371 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2372 		 * unclear why the firmware does not maintain state for
2373 		 * channels recently visited as this would allow immediate
2374 		 * use of the channel after a scan (where we see traffic).
2375 		 */
2376 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2377 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2378 			ieee80211_process_callback(ni, m, 0);
2379 		else
2380 			ieee80211_process_callback(ni, m,
2381 			    (status & IWN_TX_FAIL) != 0);
2382 	}
2383 
2384 	/*
2385 	 * Update rate control statistics for the node.
2386 	 */
2387 	if (status & 0x80) {
2388 		ifp->if_oerrors++;
2389 		ieee80211_ratectl_tx_complete(vap, ni,
2390 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2391 	} else {
2392 		ieee80211_ratectl_tx_complete(vap, ni,
2393 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2394 	}
2395 	m_freem(m);
2396 	ieee80211_free_node(ni);
2397 
2398 	sc->sc_tx_timer = 0;
2399 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2400 		sc->qfullmsk &= ~(1 << ring->qid);
2401 		if (sc->qfullmsk == 0 &&
2402 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2403 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2404 			iwn_start_locked(ifp);
2405 		}
2406 	}
2407 }
2408 
2409 /*
2410  * Process a "command done" firmware notification.  This is where we wakeup
2411  * processes waiting for a synchronous command completion.
2412  */
2413 static void
2414 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2415 {
2416 	struct iwn_tx_ring *ring = &sc->txq[4];
2417 	struct iwn_tx_data *data;
2418 
2419 	if ((desc->qid & 0xf) != 4)
2420 		return;	/* Not a command ack. */
2421 
2422 	data = &ring->data[desc->idx];
2423 
2424 	/* If the command was mapped in an mbuf, free it. */
2425 	if (data->m != NULL) {
2426 		bus_dmamap_unload(ring->data_dmat, data->map);
2427 		m_freem(data->m);
2428 		data->m = NULL;
2429 	}
2430 	wakeup(&ring->desc[desc->idx]);
2431 }
2432 
2433 /*
2434  * Process an INT_FH_RX or INT_SW_RX interrupt.
2435  */
2436 static void
2437 iwn_notif_intr(struct iwn_softc *sc)
2438 {
2439 	struct ifnet *ifp = sc->sc_ifp;
2440 	struct ieee80211com *ic = ifp->if_l2com;
2441 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2442 	uint16_t hw;
2443 
2444 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2445 	    BUS_DMASYNC_POSTREAD);
2446 
2447 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2448 	while (sc->rxq.cur != hw) {
2449 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2450 		struct iwn_rx_desc *desc;
2451 
2452 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2453 		    BUS_DMASYNC_POSTREAD);
2454 		desc = mtod(data->m, struct iwn_rx_desc *);
2455 
2456 		DPRINTF(sc, IWN_DEBUG_RECV,
2457 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2458 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2459 		    desc->type, iwn_intr_str(desc->type),
2460 		    le16toh(desc->len));
2461 
2462 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2463 			iwn_cmd_done(sc, desc);
2464 
2465 		switch (desc->type) {
2466 		case IWN_RX_PHY:
2467 			iwn_rx_phy(sc, desc, data);
2468 			break;
2469 
2470 		case IWN_RX_DONE:		/* 4965AGN only. */
2471 		case IWN_MPDU_RX_DONE:
2472 			/* An 802.11 frame has been received. */
2473 			iwn_rx_done(sc, desc, data);
2474 			break;
2475 
2476 #if 0	/* HT */
2477 		case IWN_RX_COMPRESSED_BA:
2478 			/* A Compressed BlockAck has been received. */
2479 			iwn_rx_compressed_ba(sc, desc, data);
2480 			break;
2481 #endif
2482 
2483 		case IWN_TX_DONE:
2484 			/* An 802.11 frame has been transmitted. */
2485 			sc->sc_hal->tx_done(sc, desc, data);
2486 			break;
2487 
2488 		case IWN_RX_STATISTICS:
2489 		case IWN_BEACON_STATISTICS:
2490 			iwn_rx_statistics(sc, desc, data);
2491 			break;
2492 
2493 		case IWN_BEACON_MISSED:
2494 		{
2495 			struct iwn_beacon_missed *miss =
2496 			    (struct iwn_beacon_missed *)(desc + 1);
2497 			int misses;
2498 
2499 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2500 			    BUS_DMASYNC_POSTREAD);
2501 			misses = le32toh(miss->consecutive);
2502 
2503 			/* XXX not sure why we're notified w/ zero */
2504 			if (misses == 0)
2505 				break;
2506 			DPRINTF(sc, IWN_DEBUG_STATE,
2507 			    "%s: beacons missed %d/%d\n", __func__,
2508 			    misses, le32toh(miss->total));
2509 
2510 			/*
2511 			 * If more than 5 consecutive beacons are missed,
2512 			 * reinitialize the sensitivity state machine.
2513 			 */
2514 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2515 				(void) iwn_init_sensitivity(sc);
2516 			if (misses >= vap->iv_bmissthreshold) {
2517 				IWN_UNLOCK(sc);
2518 				ieee80211_beacon_miss(ic);
2519 				IWN_LOCK(sc);
2520 			}
2521 			break;
2522 		}
2523 		case IWN_UC_READY:
2524 		{
2525 			struct iwn_ucode_info *uc =
2526 			    (struct iwn_ucode_info *)(desc + 1);
2527 
2528 			/* The microcontroller is ready. */
2529 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2530 			    BUS_DMASYNC_POSTREAD);
2531 			DPRINTF(sc, IWN_DEBUG_RESET,
2532 			    "microcode alive notification version=%d.%d "
2533 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2534 			    uc->subtype, le32toh(uc->valid));
2535 
2536 			if (le32toh(uc->valid) != 1) {
2537 				device_printf(sc->sc_dev,
2538 				    "microcontroller initialization failed");
2539 				break;
2540 			}
2541 			if (uc->subtype == IWN_UCODE_INIT) {
2542 				/* Save microcontroller report. */
2543 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2544 			}
2545 			/* Save the address of the error log in SRAM. */
2546 			sc->errptr = le32toh(uc->errptr);
2547 			break;
2548 		}
2549 		case IWN_STATE_CHANGED:
2550 		{
2551 			uint32_t *status = (uint32_t *)(desc + 1);
2552 
2553 			/*
2554 			 * State change allows hardware switch change to be
2555 			 * noted. However, we handle this in iwn_intr as we
2556 			 * get both the enable/disble intr.
2557 			 */
2558 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2559 			    BUS_DMASYNC_POSTREAD);
2560 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2561 			    le32toh(*status));
2562 			break;
2563 		}
2564 		case IWN_START_SCAN:
2565 		{
2566 			struct iwn_start_scan *scan =
2567 			    (struct iwn_start_scan *)(desc + 1);
2568 
2569 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2570 			    BUS_DMASYNC_POSTREAD);
2571 			DPRINTF(sc, IWN_DEBUG_ANY,
2572 			    "%s: scanning channel %d status %x\n",
2573 			    __func__, scan->chan, le32toh(scan->status));
2574 			break;
2575 		}
2576 		case IWN_STOP_SCAN:
2577 		{
2578 			struct iwn_stop_scan *scan =
2579 			    (struct iwn_stop_scan *)(desc + 1);
2580 
2581 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2582 			    BUS_DMASYNC_POSTREAD);
2583 			DPRINTF(sc, IWN_DEBUG_STATE,
2584 			    "scan finished nchan=%d status=%d chan=%d\n",
2585 			    scan->nchan, scan->status, scan->chan);
2586 
2587 			IWN_UNLOCK(sc);
2588 			ieee80211_scan_next(vap);
2589 			IWN_LOCK(sc);
2590 			break;
2591 		}
2592 		case IWN5000_CALIBRATION_RESULT:
2593 			iwn5000_rx_calib_results(sc, desc, data);
2594 			break;
2595 
2596 		case IWN5000_CALIBRATION_DONE:
2597 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2598 			wakeup(sc);
2599 			break;
2600 		}
2601 
2602 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2603 	}
2604 
2605 	/* Tell the firmware what we have processed. */
2606 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2607 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2608 }
2609 
2610 /*
2611  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2612  * from power-down sleep mode.
2613  */
2614 static void
2615 iwn_wakeup_intr(struct iwn_softc *sc)
2616 {
2617 	int qid;
2618 
2619 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2620 	    __func__);
2621 
2622 	/* Wakeup RX and TX rings. */
2623 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2624 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2625 		struct iwn_tx_ring *ring = &sc->txq[qid];
2626 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2627 	}
2628 }
2629 
2630 static void
2631 iwn_rftoggle_intr(struct iwn_softc *sc)
2632 {
2633 	struct ifnet *ifp = sc->sc_ifp;
2634 	struct ieee80211com *ic = ifp->if_l2com;
2635 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2636 
2637 	IWN_LOCK_ASSERT(sc);
2638 
2639 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2640 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2641 	if (tmp & IWN_GP_CNTRL_RFKILL)
2642 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2643 	else
2644 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2645 }
2646 
2647 /*
2648  * Dump the error log of the firmware when a firmware panic occurs.  Although
2649  * we can't debug the firmware because it is neither open source nor free, it
2650  * can help us to identify certain classes of problems.
2651  */
2652 static void
2653 iwn_fatal_intr(struct iwn_softc *sc)
2654 {
2655 	const struct iwn_hal *hal = sc->sc_hal;
2656 	struct iwn_fw_dump dump;
2657 	int i;
2658 
2659 	IWN_LOCK_ASSERT(sc);
2660 
2661 	/* Force a complete recalibration on next init. */
2662 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2663 
2664 	/* Check that the error log address is valid. */
2665 	if (sc->errptr < IWN_FW_DATA_BASE ||
2666 	    sc->errptr + sizeof (dump) >
2667 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2668 		printf("%s: bad firmware error log address 0x%08x\n",
2669 		    __func__, sc->errptr);
2670 		return;
2671 	}
2672 	if (iwn_nic_lock(sc) != 0) {
2673 		printf("%s: could not read firmware error log\n",
2674 		    __func__);
2675 		return;
2676 	}
2677 	/* Read firmware error log from SRAM. */
2678 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2679 	    sizeof (dump) / sizeof (uint32_t));
2680 	iwn_nic_unlock(sc);
2681 
2682 	if (dump.valid == 0) {
2683 		printf("%s: firmware error log is empty\n",
2684 		    __func__);
2685 		return;
2686 	}
2687 	printf("firmware error log:\n");
2688 	printf("  error type      = \"%s\" (0x%08X)\n",
2689 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2690 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2691 	    dump.id);
2692 	printf("  program counter = 0x%08X\n", dump.pc);
2693 	printf("  source line     = 0x%08X\n", dump.src_line);
2694 	printf("  error data      = 0x%08X%08X\n",
2695 	    dump.error_data[0], dump.error_data[1]);
2696 	printf("  branch link     = 0x%08X%08X\n",
2697 	    dump.branch_link[0], dump.branch_link[1]);
2698 	printf("  interrupt link  = 0x%08X%08X\n",
2699 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2700 	printf("  time            = %u\n", dump.time[0]);
2701 
2702 	/* Dump driver status (TX and RX rings) while we're here. */
2703 	printf("driver status:\n");
2704 	for (i = 0; i < hal->ntxqs; i++) {
2705 		struct iwn_tx_ring *ring = &sc->txq[i];
2706 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2707 		    i, ring->qid, ring->cur, ring->queued);
2708 	}
2709 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2710 }
2711 
2712 static void
2713 iwn_intr(void *arg)
2714 {
2715 	struct iwn_softc *sc = arg;
2716 	struct ifnet *ifp = sc->sc_ifp;
2717 	uint32_t r1, r2, tmp;
2718 
2719 	IWN_LOCK(sc);
2720 
2721 	/* Disable interrupts. */
2722 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2723 
2724 	/* Read interrupts from ICT (fast) or from registers (slow). */
2725 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2726 		tmp = 0;
2727 		while (sc->ict[sc->ict_cur] != 0) {
2728 			tmp |= sc->ict[sc->ict_cur];
2729 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2730 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2731 		}
2732 		tmp = le32toh(tmp);
2733 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2734 			tmp = 0;
2735 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2736 			tmp |= 0x8000;
2737 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2738 		r2 = 0;	/* Unused. */
2739 	} else {
2740 		r1 = IWN_READ(sc, IWN_INT);
2741 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2742 			return;	/* Hardware gone! */
2743 		r2 = IWN_READ(sc, IWN_FH_INT);
2744 	}
2745 
2746 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2747 
2748 	if (r1 == 0 && r2 == 0)
2749 		goto done;	/* Interrupt not for us. */
2750 
2751 	/* Acknowledge interrupts. */
2752 	IWN_WRITE(sc, IWN_INT, r1);
2753 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2754 		IWN_WRITE(sc, IWN_FH_INT, r2);
2755 
2756 	if (r1 & IWN_INT_RF_TOGGLED) {
2757 		iwn_rftoggle_intr(sc);
2758 		goto done;
2759 	}
2760 	if (r1 & IWN_INT_CT_REACHED) {
2761 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2762 		    __func__);
2763 	}
2764 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2765 		iwn_fatal_intr(sc);
2766 		ifp->if_flags &= ~IFF_UP;
2767 		iwn_stop_locked(sc);
2768 		goto done;
2769 	}
2770 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2771 	    (r2 & IWN_FH_INT_RX)) {
2772 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2773 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2774 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2775 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2776 			    IWN_INT_PERIODIC_DIS);
2777 			iwn_notif_intr(sc);
2778 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2779 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2780 				    IWN_INT_PERIODIC_ENA);
2781 			}
2782 		} else
2783 			iwn_notif_intr(sc);
2784 	}
2785 
2786 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2787 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2788 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2789 		wakeup(sc);	/* FH DMA transfer completed. */
2790 	}
2791 
2792 	if (r1 & IWN_INT_ALIVE)
2793 		wakeup(sc);	/* Firmware is alive. */
2794 
2795 	if (r1 & IWN_INT_WAKEUP)
2796 		iwn_wakeup_intr(sc);
2797 
2798 done:
2799 	/* Re-enable interrupts. */
2800 	if (ifp->if_flags & IFF_UP)
2801 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2802 
2803 	IWN_UNLOCK(sc);
2804 }
2805 
2806 /*
2807  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2808  * 5000 adapters use a slightly different format.)
2809  */
2810 static void
2811 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2812     uint16_t len)
2813 {
2814 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2815 
2816 	*w = htole16(len + 8);
2817 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2818 	    BUS_DMASYNC_PREWRITE);
2819 	if (idx < IWN_SCHED_WINSZ) {
2820 		*(w + IWN_TX_RING_COUNT) = *w;
2821 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2822 		    BUS_DMASYNC_PREWRITE);
2823 	}
2824 }
2825 
2826 static void
2827 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2828     uint16_t len)
2829 {
2830 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2831 
2832 	*w = htole16(id << 12 | (len + 8));
2833 
2834 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2835 	    BUS_DMASYNC_PREWRITE);
2836 	if (idx < IWN_SCHED_WINSZ) {
2837 		*(w + IWN_TX_RING_COUNT) = *w;
2838 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2839 		    BUS_DMASYNC_PREWRITE);
2840 	}
2841 }
2842 
2843 #ifdef notyet
2844 static void
2845 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2846 {
2847 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2848 
2849 	*w = (*w & htole16(0xf000)) | htole16(1);
2850 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2851 	    BUS_DMASYNC_PREWRITE);
2852 	if (idx < IWN_SCHED_WINSZ) {
2853 		*(w + IWN_TX_RING_COUNT) = *w;
2854 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2855 		    BUS_DMASYNC_PREWRITE);
2856 	}
2857 }
2858 #endif
2859 
2860 static uint8_t
2861 iwn_plcp_signal(int rate) {
2862 	int i;
2863 
2864 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2865 		if (rate == iwn_rates[i].rate)
2866 			return i;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static int
2873 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2874     struct iwn_tx_ring *ring)
2875 {
2876 	const struct iwn_hal *hal = sc->sc_hal;
2877 	const struct ieee80211_txparam *tp;
2878 	const struct iwn_rate *rinfo;
2879 	struct ieee80211vap *vap = ni->ni_vap;
2880 	struct ieee80211com *ic = ni->ni_ic;
2881 	struct iwn_node *wn = (void *)ni;
2882 	struct iwn_tx_desc *desc;
2883 	struct iwn_tx_data *data;
2884 	struct iwn_tx_cmd *cmd;
2885 	struct iwn_cmd_data *tx;
2886 	struct ieee80211_frame *wh;
2887 	struct ieee80211_key *k = NULL;
2888 	struct mbuf *mnew;
2889 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2890 	uint32_t flags;
2891 	u_int hdrlen;
2892 	int totlen, error, pad, nsegs = 0, i, rate;
2893 	uint8_t ridx, type, txant;
2894 
2895 	IWN_LOCK_ASSERT(sc);
2896 
2897 	wh = mtod(m, struct ieee80211_frame *);
2898 	hdrlen = ieee80211_anyhdrsize(wh);
2899 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2900 
2901 	desc = &ring->desc[ring->cur];
2902 	data = &ring->data[ring->cur];
2903 
2904 	/* Choose a TX rate index. */
2905 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2906 	if (type == IEEE80211_FC0_TYPE_MGT)
2907 		rate = tp->mgmtrate;
2908 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2909 		rate = tp->mcastrate;
2910 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2911 		rate = tp->ucastrate;
2912 	else {
2913 		/* XXX pass pktlen */
2914 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2915 		rate = ni->ni_txrate;
2916 	}
2917 	ridx = iwn_plcp_signal(rate);
2918 	rinfo = &iwn_rates[ridx];
2919 
2920 	/* Encrypt the frame if need be. */
2921 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2922 		k = ieee80211_crypto_encap(ni, m);
2923 		if (k == NULL) {
2924 			m_freem(m);
2925 			return ENOBUFS;
2926 		}
2927 		/* Packet header may have moved, reset our local pointer. */
2928 		wh = mtod(m, struct ieee80211_frame *);
2929 	}
2930 	totlen = m->m_pkthdr.len;
2931 
2932 	if (ieee80211_radiotap_active_vap(vap)) {
2933 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2934 
2935 		tap->wt_flags = 0;
2936 		tap->wt_rate = rinfo->rate;
2937 		if (k != NULL)
2938 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2939 
2940 		ieee80211_radiotap_tx(vap, m);
2941 	}
2942 
2943 	/* Prepare TX firmware command. */
2944 	cmd = &ring->cmd[ring->cur];
2945 	cmd->code = IWN_CMD_TX_DATA;
2946 	cmd->flags = 0;
2947 	cmd->qid = ring->qid;
2948 	cmd->idx = ring->cur;
2949 
2950 	tx = (struct iwn_cmd_data *)cmd->data;
2951 	/* NB: No need to clear tx, all fields are reinitialized here. */
2952 	tx->scratch = 0;	/* clear "scratch" area */
2953 
2954 	flags = 0;
2955 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2956 		flags |= IWN_TX_NEED_ACK;
2957 	if ((wh->i_fc[0] &
2958 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2959 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2960 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2961 
2962 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2963 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2964 
2965 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2966 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2967 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2968 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2969 			flags |= IWN_TX_NEED_RTS;
2970 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2971 		    ridx >= IWN_RIDX_OFDM6) {
2972 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2973 				flags |= IWN_TX_NEED_CTS;
2974 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2975 				flags |= IWN_TX_NEED_RTS;
2976 		}
2977 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2978 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2979 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2980 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2981 				flags |= IWN_TX_NEED_PROTECTION;
2982 			} else
2983 				flags |= IWN_TX_FULL_TXOP;
2984 		}
2985 	}
2986 
2987 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2988 	    type != IEEE80211_FC0_TYPE_DATA)
2989 		tx->id = hal->broadcast_id;
2990 	else
2991 		tx->id = wn->id;
2992 
2993 	if (type == IEEE80211_FC0_TYPE_MGT) {
2994 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2995 
2996 		/* Tell HW to set timestamp in probe responses. */
2997 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2998 			flags |= IWN_TX_INSERT_TSTAMP;
2999 
3000 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3001 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3002 			tx->timeout = htole16(3);
3003 		else
3004 			tx->timeout = htole16(2);
3005 	} else
3006 		tx->timeout = htole16(0);
3007 
3008 	if (hdrlen & 3) {
3009 		/* First segment length must be a multiple of 4. */
3010 		flags |= IWN_TX_NEED_PADDING;
3011 		pad = 4 - (hdrlen & 3);
3012 	} else
3013 		pad = 0;
3014 
3015 	tx->len = htole16(totlen);
3016 	tx->tid = 0;
3017 	tx->rts_ntries = 60;
3018 	tx->data_ntries = 15;
3019 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3020 	tx->plcp = rinfo->plcp;
3021 	tx->rflags = rinfo->flags;
3022 	if (tx->id == hal->broadcast_id) {
3023 		/* Group or management frame. */
3024 		tx->linkq = 0;
3025 		/* XXX Alternate between antenna A and B? */
3026 		txant = IWN_LSB(sc->txchainmask);
3027 		tx->rflags |= IWN_RFLAG_ANT(txant);
3028 	} else {
3029 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3030 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3031 	}
3032 
3033 	/* Set physical address of "scratch area". */
3034 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3035 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3036 
3037 	/* Copy 802.11 header in TX command. */
3038 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3039 
3040 	/* Trim 802.11 header. */
3041 	m_adj(m, hdrlen);
3042 	tx->security = 0;
3043 	tx->flags = htole32(flags);
3044 
3045 	if (m->m_len > 0) {
3046 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3047 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3048 		if (error == EFBIG) {
3049 			/* too many fragments, linearize */
3050 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3051 			if (mnew == NULL) {
3052 				device_printf(sc->sc_dev,
3053 				    "%s: could not defrag mbuf\n", __func__);
3054 				m_freem(m);
3055 				return ENOBUFS;
3056 			}
3057 			m = mnew;
3058 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3059 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3060 		}
3061 		if (error != 0) {
3062 			device_printf(sc->sc_dev,
3063 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3064 			    __func__, error);
3065 			m_freem(m);
3066 			return error;
3067 		}
3068 	}
3069 
3070 	data->m = m;
3071 	data->ni = ni;
3072 
3073 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3074 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3075 
3076 	/* Fill TX descriptor. */
3077 	desc->nsegs = 1 + nsegs;
3078 	/* First DMA segment is used by the TX command. */
3079 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3080 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3081 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3082 	/* Other DMA segments are for data payload. */
3083 	for (i = 1; i <= nsegs; i++) {
3084 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3085 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3086 		    segs[i - 1].ds_len << 4);
3087 	}
3088 
3089 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3090 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3091 	    BUS_DMASYNC_PREWRITE);
3092 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3093 	    BUS_DMASYNC_PREWRITE);
3094 
3095 #ifdef notyet
3096 	/* Update TX scheduler. */
3097 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3098 #endif
3099 
3100 	/* Kick TX ring. */
3101 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3102 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3103 
3104 	/* Mark TX ring as full if we reach a certain threshold. */
3105 	if (++ring->queued > IWN_TX_RING_HIMARK)
3106 		sc->qfullmsk |= 1 << ring->qid;
3107 
3108 	return 0;
3109 }
3110 
3111 static int
3112 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3113     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3114     const struct ieee80211_bpf_params *params)
3115 {
3116 	const struct iwn_hal *hal = sc->sc_hal;
3117 	const struct iwn_rate *rinfo;
3118 	struct ifnet *ifp = sc->sc_ifp;
3119 	struct ieee80211vap *vap = ni->ni_vap;
3120 	struct ieee80211com *ic = ifp->if_l2com;
3121 	struct iwn_tx_cmd *cmd;
3122 	struct iwn_cmd_data *tx;
3123 	struct ieee80211_frame *wh;
3124 	struct iwn_tx_desc *desc;
3125 	struct iwn_tx_data *data;
3126 	struct mbuf *mnew;
3127 	bus_addr_t paddr;
3128 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3129 	uint32_t flags;
3130 	u_int hdrlen;
3131 	int totlen, error, pad, nsegs = 0, i, rate;
3132 	uint8_t ridx, type, txant;
3133 
3134 	IWN_LOCK_ASSERT(sc);
3135 
3136 	wh = mtod(m, struct ieee80211_frame *);
3137 	hdrlen = ieee80211_anyhdrsize(wh);
3138 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3139 
3140 	desc = &ring->desc[ring->cur];
3141 	data = &ring->data[ring->cur];
3142 
3143 	/* Choose a TX rate index. */
3144 	rate = params->ibp_rate0;
3145 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3146 		/* XXX fall back to mcast/mgmt rate? */
3147 		m_freem(m);
3148 		return EINVAL;
3149 	}
3150 	ridx = iwn_plcp_signal(rate);
3151 	rinfo = &iwn_rates[ridx];
3152 
3153 	totlen = m->m_pkthdr.len;
3154 
3155 	/* Prepare TX firmware command. */
3156 	cmd = &ring->cmd[ring->cur];
3157 	cmd->code = IWN_CMD_TX_DATA;
3158 	cmd->flags = 0;
3159 	cmd->qid = ring->qid;
3160 	cmd->idx = ring->cur;
3161 
3162 	tx = (struct iwn_cmd_data *)cmd->data;
3163 	/* NB: No need to clear tx, all fields are reinitialized here. */
3164 	tx->scratch = 0;	/* clear "scratch" area */
3165 
3166 	flags = 0;
3167 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3168 		flags |= IWN_TX_NEED_ACK;
3169 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3170 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3171 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3172 			flags &= ~IWN_TX_NEED_RTS;
3173 			flags |= IWN_TX_NEED_PROTECTION;
3174 		} else
3175 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3176 	}
3177 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3178 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3179 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3180 			flags &= ~IWN_TX_NEED_CTS;
3181 			flags |= IWN_TX_NEED_PROTECTION;
3182 		} else
3183 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3184 	}
3185 	if (type == IEEE80211_FC0_TYPE_MGT) {
3186 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3187 
3188 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3189 			flags |= IWN_TX_INSERT_TSTAMP;
3190 
3191 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3192 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3193 			tx->timeout = htole16(3);
3194 		else
3195 			tx->timeout = htole16(2);
3196 	} else
3197 		tx->timeout = htole16(0);
3198 
3199 	if (hdrlen & 3) {
3200 		/* First segment length must be a multiple of 4. */
3201 		flags |= IWN_TX_NEED_PADDING;
3202 		pad = 4 - (hdrlen & 3);
3203 	} else
3204 		pad = 0;
3205 
3206 	if (ieee80211_radiotap_active_vap(vap)) {
3207 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3208 
3209 		tap->wt_flags = 0;
3210 		tap->wt_rate = rate;
3211 
3212 		ieee80211_radiotap_tx(vap, m);
3213 	}
3214 
3215 	tx->len = htole16(totlen);
3216 	tx->tid = 0;
3217 	tx->id = hal->broadcast_id;
3218 	tx->rts_ntries = params->ibp_try1;
3219 	tx->data_ntries = params->ibp_try0;
3220 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3221 	tx->plcp = rinfo->plcp;
3222 	tx->rflags = rinfo->flags;
3223 	/* Group or management frame. */
3224 	tx->linkq = 0;
3225 	txant = IWN_LSB(sc->txchainmask);
3226 	tx->rflags |= IWN_RFLAG_ANT(txant);
3227 	/* Set physical address of "scratch area". */
3228 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3229 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3230 	tx->hiaddr = IWN_HIADDR(paddr);
3231 
3232 	/* Copy 802.11 header in TX command. */
3233 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3234 
3235 	/* Trim 802.11 header. */
3236 	m_adj(m, hdrlen);
3237 	tx->security = 0;
3238 	tx->flags = htole32(flags);
3239 
3240 	if (m->m_len > 0) {
3241 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3242 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3243 		if (error == EFBIG) {
3244 			/* Too many fragments, linearize. */
3245 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3246 			if (mnew == NULL) {
3247 				device_printf(sc->sc_dev,
3248 				    "%s: could not defrag mbuf\n", __func__);
3249 				m_freem(m);
3250 				return ENOBUFS;
3251 			}
3252 			m = mnew;
3253 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3254 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3255 		}
3256 		if (error != 0) {
3257 			device_printf(sc->sc_dev,
3258 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3259 			    __func__, error);
3260 			m_freem(m);
3261 			return error;
3262 		}
3263 	}
3264 
3265 	data->m = m;
3266 	data->ni = ni;
3267 
3268 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3269 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3270 
3271 	/* Fill TX descriptor. */
3272 	desc->nsegs = 1 + nsegs;
3273 	/* First DMA segment is used by the TX command. */
3274 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3275 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3276 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3277 	/* Other DMA segments are for data payload. */
3278 	for (i = 1; i <= nsegs; i++) {
3279 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3280 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3281 		    segs[i - 1].ds_len << 4);
3282 	}
3283 
3284 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3285 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3286 	    BUS_DMASYNC_PREWRITE);
3287 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3288 	    BUS_DMASYNC_PREWRITE);
3289 
3290 #ifdef notyet
3291 	/* Update TX scheduler. */
3292 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3293 #endif
3294 
3295 	/* Kick TX ring. */
3296 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3297 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3298 
3299 	/* Mark TX ring as full if we reach a certain threshold. */
3300 	if (++ring->queued > IWN_TX_RING_HIMARK)
3301 		sc->qfullmsk |= 1 << ring->qid;
3302 
3303 	return 0;
3304 }
3305 
3306 static int
3307 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3308 	const struct ieee80211_bpf_params *params)
3309 {
3310 	struct ieee80211com *ic = ni->ni_ic;
3311 	struct ifnet *ifp = ic->ic_ifp;
3312 	struct iwn_softc *sc = ifp->if_softc;
3313 	struct iwn_tx_ring *txq;
3314 	int error = 0;
3315 
3316 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3317 		ieee80211_free_node(ni);
3318 		m_freem(m);
3319 		return ENETDOWN;
3320 	}
3321 
3322 	IWN_LOCK(sc);
3323 	if (params == NULL)
3324 		txq = &sc->txq[M_WME_GETAC(m)];
3325 	else
3326 		txq = &sc->txq[params->ibp_pri & 3];
3327 
3328 	if (params == NULL) {
3329 		/*
3330 		 * Legacy path; interpret frame contents to decide
3331 		 * precisely how to send the frame.
3332 		 */
3333 		error = iwn_tx_data(sc, m, ni, txq);
3334 	} else {
3335 		/*
3336 		 * Caller supplied explicit parameters to use in
3337 		 * sending the frame.
3338 		 */
3339 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3340 	}
3341 	if (error != 0) {
3342 		/* NB: m is reclaimed on tx failure */
3343 		ieee80211_free_node(ni);
3344 		ifp->if_oerrors++;
3345 	}
3346 	IWN_UNLOCK(sc);
3347 	return error;
3348 }
3349 
3350 static void
3351 iwn_start(struct ifnet *ifp)
3352 {
3353 	struct iwn_softc *sc = ifp->if_softc;
3354 
3355 	IWN_LOCK(sc);
3356 	iwn_start_locked(ifp);
3357 	IWN_UNLOCK(sc);
3358 }
3359 
3360 static void
3361 iwn_start_locked(struct ifnet *ifp)
3362 {
3363 	struct iwn_softc *sc = ifp->if_softc;
3364 	struct ieee80211_node *ni;
3365 	struct iwn_tx_ring *txq;
3366 	struct mbuf *m;
3367 	int pri;
3368 
3369 	IWN_LOCK_ASSERT(sc);
3370 
3371 	for (;;) {
3372 		if (sc->qfullmsk != 0) {
3373 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3374 			break;
3375 		}
3376 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3377 		if (m == NULL)
3378 			break;
3379 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3380 		pri = M_WME_GETAC(m);
3381 		txq = &sc->txq[pri];
3382 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3383 			ifp->if_oerrors++;
3384 			ieee80211_free_node(ni);
3385 			break;
3386 		}
3387 		sc->sc_tx_timer = 5;
3388 	}
3389 }
3390 
3391 static void
3392 iwn_watchdog(struct iwn_softc *sc)
3393 {
3394 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3395 		struct ifnet *ifp = sc->sc_ifp;
3396 		struct ieee80211com *ic = ifp->if_l2com;
3397 
3398 		if_printf(ifp, "device timeout\n");
3399 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3400 	}
3401 }
3402 
3403 static int
3404 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3405 {
3406 	struct iwn_softc *sc = ifp->if_softc;
3407 	struct ieee80211com *ic = ifp->if_l2com;
3408 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3409 	struct ifreq *ifr = (struct ifreq *) data;
3410 	int error = 0, startall = 0, stop = 0;
3411 
3412 	switch (cmd) {
3413 	case SIOCSIFFLAGS:
3414 		IWN_LOCK(sc);
3415 		if (ifp->if_flags & IFF_UP) {
3416 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3417 				iwn_init_locked(sc);
3418 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3419 					startall = 1;
3420 				else
3421 					stop = 1;
3422 			}
3423 		} else {
3424 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3425 				iwn_stop_locked(sc);
3426 		}
3427 		IWN_UNLOCK(sc);
3428 		if (startall)
3429 			ieee80211_start_all(ic);
3430 		else if (vap != NULL && stop)
3431 			ieee80211_stop(vap);
3432 		break;
3433 	case SIOCGIFMEDIA:
3434 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3435 		break;
3436 	case SIOCGIFADDR:
3437 		error = ether_ioctl(ifp, cmd, data);
3438 		break;
3439 	default:
3440 		error = EINVAL;
3441 		break;
3442 	}
3443 	return error;
3444 }
3445 
3446 /*
3447  * Send a command to the firmware.
3448  */
3449 static int
3450 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3451 {
3452 	struct iwn_tx_ring *ring = &sc->txq[4];
3453 	struct iwn_tx_desc *desc;
3454 	struct iwn_tx_data *data;
3455 	struct iwn_tx_cmd *cmd;
3456 	struct mbuf *m;
3457 	bus_addr_t paddr;
3458 	int totlen, error;
3459 
3460 	IWN_LOCK_ASSERT(sc);
3461 
3462 	desc = &ring->desc[ring->cur];
3463 	data = &ring->data[ring->cur];
3464 	totlen = 4 + size;
3465 
3466 	if (size > sizeof cmd->data) {
3467 		/* Command is too large to fit in a descriptor. */
3468 		if (totlen > MCLBYTES)
3469 			return EINVAL;
3470 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3471 		if (m == NULL)
3472 			return ENOMEM;
3473 		cmd = mtod(m, struct iwn_tx_cmd *);
3474 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3475 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3476 		if (error != 0) {
3477 			m_freem(m);
3478 			return error;
3479 		}
3480 		data->m = m;
3481 	} else {
3482 		cmd = &ring->cmd[ring->cur];
3483 		paddr = data->cmd_paddr;
3484 	}
3485 
3486 	cmd->code = code;
3487 	cmd->flags = 0;
3488 	cmd->qid = ring->qid;
3489 	cmd->idx = ring->cur;
3490 	memcpy(cmd->data, buf, size);
3491 
3492 	desc->nsegs = 1;
3493 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3494 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3495 
3496 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3497 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3498 	    cmd->flags, cmd->qid, cmd->idx);
3499 
3500 	if (size > sizeof cmd->data) {
3501 		bus_dmamap_sync(ring->data_dmat, data->map,
3502 		    BUS_DMASYNC_PREWRITE);
3503 	} else {
3504 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3505 		    BUS_DMASYNC_PREWRITE);
3506 	}
3507 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3508 	    BUS_DMASYNC_PREWRITE);
3509 
3510 #ifdef notyet
3511 	/* Update TX scheduler. */
3512 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3513 #endif
3514 
3515 	/* Kick command ring. */
3516 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3517 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3518 
3519 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3520 }
3521 
3522 static int
3523 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3524 {
3525 	struct iwn4965_node_info hnode;
3526 	caddr_t src, dst;
3527 
3528 	/*
3529 	 * We use the node structure for 5000 Series internally (it is
3530 	 * a superset of the one for 4965AGN). We thus copy the common
3531 	 * fields before sending the command.
3532 	 */
3533 	src = (caddr_t)node;
3534 	dst = (caddr_t)&hnode;
3535 	memcpy(dst, src, 48);
3536 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3537 	memcpy(dst + 48, src + 72, 20);
3538 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3539 }
3540 
3541 static int
3542 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3543 {
3544 	/* Direct mapping. */
3545 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3546 }
3547 
3548 #if 0	/* HT */
3549 static const uint8_t iwn_ridx_to_plcp[] = {
3550 	10, 20, 55, 110, /* CCK */
3551 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3552 };
3553 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3554 	0, 0, 0, 0, 			/* CCK */
3555 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3556 };
3557 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3558 	0, 0, 0, 0, 			/* CCK */
3559 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3560 };
3561 #endif
3562 static const uint8_t iwn_prev_ridx[] = {
3563 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3564 	0, 0, 1, 5,			/* CCK */
3565 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3566 };
3567 
3568 /*
3569  * Configure hardware link parameters for the specified
3570  * node operating on the specified channel.
3571  */
3572 static int
3573 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3574 {
3575 	struct ifnet *ifp = sc->sc_ifp;
3576 	struct ieee80211com *ic = ifp->if_l2com;
3577 	struct iwn_cmd_link_quality linkq;
3578 	const struct iwn_rate *rinfo;
3579 	int i;
3580 	uint8_t txant, ridx;
3581 
3582 	/* Use the first valid TX antenna. */
3583 	txant = IWN_LSB(sc->txchainmask);
3584 
3585 	memset(&linkq, 0, sizeof linkq);
3586 	linkq.id = id;
3587 	linkq.antmsk_1stream = txant;
3588 	linkq.antmsk_2stream = IWN_ANT_AB;
3589 	linkq.ampdu_max = 31;
3590 	linkq.ampdu_threshold = 3;
3591 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3592 
3593 #if 0	/* HT */
3594 	if (IEEE80211_IS_CHAN_HT(c))
3595 		linkq.mimo = 1;
3596 #endif
3597 
3598 	if (id == IWN_ID_BSS)
3599 		ridx = IWN_RIDX_OFDM54;
3600 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3601 		ridx = IWN_RIDX_OFDM6;
3602 	else
3603 		ridx = IWN_RIDX_CCK1;
3604 
3605 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3606 		rinfo = &iwn_rates[ridx];
3607 #if 0	/* HT */
3608 		if (IEEE80211_IS_CHAN_HT40(c)) {
3609 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3610 					 | IWN_RIDX_MCS;
3611 			linkq.retry[i].rflags = IWN_RFLAG_HT
3612 					 | IWN_RFLAG_HT40;
3613 			/* XXX shortGI */
3614 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3615 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3616 					 | IWN_RIDX_MCS;
3617 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3618 			/* XXX shortGI */
3619 		} else
3620 #endif
3621 		{
3622 			linkq.retry[i].plcp = rinfo->plcp;
3623 			linkq.retry[i].rflags = rinfo->flags;
3624 		}
3625 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3626 		ridx = iwn_prev_ridx[ridx];
3627 	}
3628 #ifdef IWN_DEBUG
3629 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3630 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3631 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3632 		printf("%s:", __func__);
3633 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3634 			printf(" %d:%x", linkq.retry[i].plcp,
3635 			    linkq.retry[i].rflags);
3636 		printf("\n");
3637 	}
3638 #endif
3639 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3640 }
3641 
3642 /*
3643  * Broadcast node is used to send group-addressed and management frames.
3644  */
3645 static int
3646 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3647 {
3648 	const struct iwn_hal *hal = sc->sc_hal;
3649 	struct ifnet *ifp = sc->sc_ifp;
3650 	struct iwn_node_info node;
3651 	int error;
3652 
3653 	memset(&node, 0, sizeof node);
3654 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3655 	node.id = hal->broadcast_id;
3656 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3657 	error = hal->add_node(sc, &node, async);
3658 	if (error != 0)
3659 		return error;
3660 
3661 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3662 	return error;
3663 }
3664 
3665 static int
3666 iwn_wme_update(struct ieee80211com *ic)
3667 {
3668 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3669 #define	IWN_TXOP_TO_US(v)		(v<<5)
3670 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3671 	struct iwn_edca_params cmd;
3672 	int i;
3673 
3674 	memset(&cmd, 0, sizeof cmd);
3675 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3676 	for (i = 0; i < WME_NUM_AC; i++) {
3677 		const struct wmeParams *wmep =
3678 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3679 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3680 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3681 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3682 		cmd.ac[i].txoplimit =
3683 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3684 	}
3685 	IEEE80211_UNLOCK(ic);
3686 	IWN_LOCK(sc);
3687 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3688 	IWN_UNLOCK(sc);
3689 	IEEE80211_LOCK(ic);
3690 	return 0;
3691 #undef IWN_TXOP_TO_US
3692 #undef IWN_EXP2
3693 }
3694 
3695 static void
3696 iwn_update_mcast(struct ifnet *ifp)
3697 {
3698 	/* Ignore */
3699 }
3700 
3701 static void
3702 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3703 {
3704 	struct iwn_cmd_led led;
3705 
3706 	/* Clear microcode LED ownership. */
3707 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3708 
3709 	led.which = which;
3710 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3711 	led.off = off;
3712 	led.on = on;
3713 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3714 }
3715 
3716 /*
3717  * Set the critical temperature at which the firmware will stop the radio
3718  * and notify us.
3719  */
3720 static int
3721 iwn_set_critical_temp(struct iwn_softc *sc)
3722 {
3723 	struct iwn_critical_temp crit;
3724 	int32_t temp;
3725 
3726 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3727 
3728 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3729 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3730 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3731 		temp = IWN_CTOK(110);
3732 	else
3733 		temp = 110;
3734 	memset(&crit, 0, sizeof crit);
3735 	crit.tempR = htole32(temp);
3736 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3737 	    temp);
3738 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3739 }
3740 
3741 static int
3742 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3743 {
3744 	struct iwn_cmd_timing cmd;
3745 	uint64_t val, mod;
3746 
3747 	memset(&cmd, 0, sizeof cmd);
3748 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3749 	cmd.bintval = htole16(ni->ni_intval);
3750 	cmd.lintval = htole16(10);
3751 
3752 	/* Compute remaining time until next beacon. */
3753 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3754 	mod = le64toh(cmd.tstamp) % val;
3755 	cmd.binitval = htole32((uint32_t)(val - mod));
3756 
3757 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3758 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3759 
3760 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3761 }
3762 
3763 static void
3764 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3765 {
3766 	struct ifnet *ifp = sc->sc_ifp;
3767 	struct ieee80211com *ic = ifp->if_l2com;
3768 
3769 	/* Adjust TX power if need be (delta >= 3 degC.) */
3770 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3771 	    __func__, sc->temp, temp);
3772 	if (abs(temp - sc->temp) >= 3) {
3773 		/* Record temperature of last calibration. */
3774 		sc->temp = temp;
3775 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3776 	}
3777 }
3778 
3779 /*
3780  * Set TX power for current channel (each rate has its own power settings).
3781  * This function takes into account the regulatory information from EEPROM,
3782  * the current temperature and the current voltage.
3783  */
3784 static int
3785 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3786     int async)
3787 {
3788 /* Fixed-point arithmetic division using a n-bit fractional part. */
3789 #define fdivround(a, b, n)	\
3790 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3791 /* Linear interpolation. */
3792 #define interpolate(x, x1, y1, x2, y2, n)	\
3793 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3794 
3795 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3796 	struct ifnet *ifp = sc->sc_ifp;
3797 	struct ieee80211com *ic = ifp->if_l2com;
3798 	struct iwn_ucode_info *uc = &sc->ucode_info;
3799 	struct iwn4965_cmd_txpower cmd;
3800 	struct iwn4965_eeprom_chan_samples *chans;
3801 	int32_t vdiff, tdiff;
3802 	int i, c, grp, maxpwr;
3803 	const uint8_t *rf_gain, *dsp_gain;
3804 	uint8_t chan;
3805 
3806 	/* Retrieve channel number. */
3807 	chan = ieee80211_chan2ieee(ic, ch);
3808 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3809 	    chan);
3810 
3811 	memset(&cmd, 0, sizeof cmd);
3812 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3813 	cmd.chan = chan;
3814 
3815 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3816 		maxpwr   = sc->maxpwr5GHz;
3817 		rf_gain  = iwn4965_rf_gain_5ghz;
3818 		dsp_gain = iwn4965_dsp_gain_5ghz;
3819 	} else {
3820 		maxpwr   = sc->maxpwr2GHz;
3821 		rf_gain  = iwn4965_rf_gain_2ghz;
3822 		dsp_gain = iwn4965_dsp_gain_2ghz;
3823 	}
3824 
3825 	/* Compute voltage compensation. */
3826 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3827 	if (vdiff > 0)
3828 		vdiff *= 2;
3829 	if (abs(vdiff) > 2)
3830 		vdiff = 0;
3831 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3832 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3833 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3834 
3835 	/* Get channel attenuation group. */
3836 	if (chan <= 20)		/* 1-20 */
3837 		grp = 4;
3838 	else if (chan <= 43)	/* 34-43 */
3839 		grp = 0;
3840 	else if (chan <= 70)	/* 44-70 */
3841 		grp = 1;
3842 	else if (chan <= 124)	/* 71-124 */
3843 		grp = 2;
3844 	else			/* 125-200 */
3845 		grp = 3;
3846 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3847 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3848 
3849 	/* Get channel sub-band. */
3850 	for (i = 0; i < IWN_NBANDS; i++)
3851 		if (sc->bands[i].lo != 0 &&
3852 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3853 			break;
3854 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3855 		return EINVAL;
3856 	chans = sc->bands[i].chans;
3857 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3858 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3859 
3860 	for (c = 0; c < 2; c++) {
3861 		uint8_t power, gain, temp;
3862 		int maxchpwr, pwr, ridx, idx;
3863 
3864 		power = interpolate(chan,
3865 		    chans[0].num, chans[0].samples[c][1].power,
3866 		    chans[1].num, chans[1].samples[c][1].power, 1);
3867 		gain  = interpolate(chan,
3868 		    chans[0].num, chans[0].samples[c][1].gain,
3869 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3870 		temp  = interpolate(chan,
3871 		    chans[0].num, chans[0].samples[c][1].temp,
3872 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3873 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3874 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3875 		    __func__, c, power, gain, temp);
3876 
3877 		/* Compute temperature compensation. */
3878 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3879 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3880 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3881 		    __func__, tdiff, sc->temp, temp);
3882 
3883 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3884 			/* Convert dBm to half-dBm. */
3885 			maxchpwr = sc->maxpwr[chan] * 2;
3886 			if ((ridx / 8) & 1)
3887 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3888 
3889 			pwr = maxpwr;
3890 
3891 			/* Adjust TX power based on rate. */
3892 			if ((ridx % 8) == 5)
3893 				pwr -= 15;	/* OFDM48: -7.5dB */
3894 			else if ((ridx % 8) == 6)
3895 				pwr -= 17;	/* OFDM54: -8.5dB */
3896 			else if ((ridx % 8) == 7)
3897 				pwr -= 20;	/* OFDM60: -10dB */
3898 			else
3899 				pwr -= 10;	/* Others: -5dB */
3900 
3901 			/* Do not exceed channel max TX power. */
3902 			if (pwr > maxchpwr)
3903 				pwr = maxchpwr;
3904 
3905 			idx = gain - (pwr - power) - tdiff - vdiff;
3906 			if ((ridx / 8) & 1)	/* MIMO */
3907 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3908 
3909 			if (cmd.band == 0)
3910 				idx += 9;	/* 5GHz */
3911 			if (ridx == IWN_RIDX_MAX)
3912 				idx += 5;	/* CCK */
3913 
3914 			/* Make sure idx stays in a valid range. */
3915 			if (idx < 0)
3916 				idx = 0;
3917 			else if (idx > IWN4965_MAX_PWR_INDEX)
3918 				idx = IWN4965_MAX_PWR_INDEX;
3919 
3920 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3921 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3922 			    __func__, c, ridx, idx);
3923 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3924 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3925 		}
3926 	}
3927 
3928 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3929 	    "%s: set tx power for chan %d\n", __func__, chan);
3930 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3931 
3932 #undef interpolate
3933 #undef fdivround
3934 }
3935 
3936 static int
3937 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3938     int async)
3939 {
3940 	struct iwn5000_cmd_txpower cmd;
3941 
3942 	/*
3943 	 * TX power calibration is handled automatically by the firmware
3944 	 * for 5000 Series.
3945 	 */
3946 	memset(&cmd, 0, sizeof cmd);
3947 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3948 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3949 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3950 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3951 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3952 }
3953 
3954 /*
3955  * Retrieve the maximum RSSI (in dBm) among receivers.
3956  */
3957 static int
3958 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3959 {
3960 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3961 	uint8_t mask, agc;
3962 	int rssi;
3963 
3964 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3965 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3966 
3967 	rssi = 0;
3968 #if 0
3969 	if (mask & IWN_ANT_A)	/* Ant A */
3970 		rssi = max(rssi, phy->rssi[0]);
3971 	if (mask & IWN_ATH_B)	/* Ant B */
3972 		rssi = max(rssi, phy->rssi[2]);
3973 	if (mask & IWN_ANT_C)	/* Ant C */
3974 		rssi = max(rssi, phy->rssi[4]);
3975 #else
3976 	rssi = max(rssi, phy->rssi[0]);
3977 	rssi = max(rssi, phy->rssi[2]);
3978 	rssi = max(rssi, phy->rssi[4]);
3979 #endif
3980 
3981 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3982 	    "result %d\n", __func__, agc, mask,
3983 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3984 	    rssi - agc - IWN_RSSI_TO_DBM);
3985 	return rssi - agc - IWN_RSSI_TO_DBM;
3986 }
3987 
3988 static int
3989 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3990 {
3991 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3992 	int rssi;
3993 	uint8_t agc;
3994 
3995 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3996 
3997 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3998 		   le16toh(phy->rssi[1]) & 0xff);
3999 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4000 
4001 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4002 	    "result %d\n", __func__, agc,
4003 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4004 	    rssi - agc - IWN_RSSI_TO_DBM);
4005 	return rssi - agc - IWN_RSSI_TO_DBM;
4006 }
4007 
4008 /*
4009  * Retrieve the average noise (in dBm) among receivers.
4010  */
4011 static int
4012 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4013 {
4014 	int i, total, nbant, noise;
4015 
4016 	total = nbant = 0;
4017 	for (i = 0; i < 3; i++) {
4018 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4019 			continue;
4020 		total += noise;
4021 		nbant++;
4022 	}
4023 	/* There should be at least one antenna but check anyway. */
4024 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4025 }
4026 
4027 /*
4028  * Compute temperature (in degC) from last received statistics.
4029  */
4030 static int
4031 iwn4965_get_temperature(struct iwn_softc *sc)
4032 {
4033 	struct iwn_ucode_info *uc = &sc->ucode_info;
4034 	int32_t r1, r2, r3, r4, temp;
4035 
4036 	r1 = le32toh(uc->temp[0].chan20MHz);
4037 	r2 = le32toh(uc->temp[1].chan20MHz);
4038 	r3 = le32toh(uc->temp[2].chan20MHz);
4039 	r4 = le32toh(sc->rawtemp);
4040 
4041 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4042 		return 0;
4043 
4044 	/* Sign-extend 23-bit R4 value to 32-bit. */
4045 	r4 = (r4 << 8) >> 8;
4046 	/* Compute temperature in Kelvin. */
4047 	temp = (259 * (r4 - r2)) / (r3 - r1);
4048 	temp = (temp * 97) / 100 + 8;
4049 
4050 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4051 	    IWN_KTOC(temp));
4052 	return IWN_KTOC(temp);
4053 }
4054 
4055 static int
4056 iwn5000_get_temperature(struct iwn_softc *sc)
4057 {
4058 	int32_t temp;
4059 
4060 	/*
4061 	 * Temperature is not used by the driver for 5000 Series because
4062 	 * TX power calibration is handled by firmware.  We export it to
4063 	 * users through the sensor framework though.
4064 	 */
4065 	temp = le32toh(sc->rawtemp);
4066 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4067 		temp = (temp / -5) + sc->temp_off;
4068 		temp = IWN_KTOC(temp);
4069 	}
4070 	return temp;
4071 }
4072 
4073 /*
4074  * Initialize sensitivity calibration state machine.
4075  */
4076 static int
4077 iwn_init_sensitivity(struct iwn_softc *sc)
4078 {
4079 	const struct iwn_hal *hal = sc->sc_hal;
4080 	struct iwn_calib_state *calib = &sc->calib;
4081 	uint32_t flags;
4082 	int error;
4083 
4084 	/* Reset calibration state machine. */
4085 	memset(calib, 0, sizeof (*calib));
4086 	calib->state = IWN_CALIB_STATE_INIT;
4087 	calib->cck_state = IWN_CCK_STATE_HIFA;
4088 	/* Set initial correlation values. */
4089 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4090 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4091 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4092 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4093 	calib->cck_x4      = 125;
4094 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4095 	calib->energy_cck  = sc->limits->energy_cck;
4096 
4097 	/* Write initial sensitivity. */
4098 	error = iwn_send_sensitivity(sc);
4099 	if (error != 0)
4100 		return error;
4101 
4102 	/* Write initial gains. */
4103 	error = hal->init_gains(sc);
4104 	if (error != 0)
4105 		return error;
4106 
4107 	/* Request statistics at each beacon interval. */
4108 	flags = 0;
4109 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4110 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4111 }
4112 
4113 /*
4114  * Collect noise and RSSI statistics for the first 20 beacons received
4115  * after association and use them to determine connected antennas and
4116  * to set differential gains.
4117  */
4118 static void
4119 iwn_collect_noise(struct iwn_softc *sc,
4120     const struct iwn_rx_general_stats *stats)
4121 {
4122 	const struct iwn_hal *hal = sc->sc_hal;
4123 	struct iwn_calib_state *calib = &sc->calib;
4124 	uint32_t val;
4125 	int i;
4126 
4127 	/* Accumulate RSSI and noise for all 3 antennas. */
4128 	for (i = 0; i < 3; i++) {
4129 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4130 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4131 	}
4132 	/* NB: We update differential gains only once after 20 beacons. */
4133 	if (++calib->nbeacons < 20)
4134 		return;
4135 
4136 	/* Determine highest average RSSI. */
4137 	val = MAX(calib->rssi[0], calib->rssi[1]);
4138 	val = MAX(calib->rssi[2], val);
4139 
4140 	/* Determine which antennas are connected. */
4141 	sc->chainmask = sc->rxchainmask;
4142 	for (i = 0; i < 3; i++)
4143 		if (val - calib->rssi[i] > 15 * 20)
4144 			sc->chainmask &= ~(1 << i);
4145 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4146 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4147 	    __func__, sc->rxchainmask, sc->chainmask);
4148 
4149 	/* If none of the TX antennas are connected, keep at least one. */
4150 	if ((sc->chainmask & sc->txchainmask) == 0)
4151 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4152 
4153 	(void)hal->set_gains(sc);
4154 	calib->state = IWN_CALIB_STATE_RUN;
4155 
4156 #ifdef notyet
4157 	/* XXX Disable RX chains with no antennas connected. */
4158 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4159 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4160 #endif
4161 
4162 #if 0
4163 	/* XXX: not yet */
4164 	/* Enable power-saving mode if requested by user. */
4165 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4166 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4167 #endif
4168 }
4169 
4170 static int
4171 iwn4965_init_gains(struct iwn_softc *sc)
4172 {
4173 	struct iwn_phy_calib_gain cmd;
4174 
4175 	memset(&cmd, 0, sizeof cmd);
4176 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4177 	/* Differential gains initially set to 0 for all 3 antennas. */
4178 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4179 	    "%s: setting initial differential gains\n", __func__);
4180 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4181 }
4182 
4183 static int
4184 iwn5000_init_gains(struct iwn_softc *sc)
4185 {
4186 	struct iwn_phy_calib cmd;
4187 
4188 	memset(&cmd, 0, sizeof cmd);
4189 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4190 	cmd.ngroups = 1;
4191 	cmd.isvalid = 1;
4192 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4193 	    "%s: setting initial differential gains\n", __func__);
4194 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4195 }
4196 
4197 static int
4198 iwn4965_set_gains(struct iwn_softc *sc)
4199 {
4200 	struct iwn_calib_state *calib = &sc->calib;
4201 	struct iwn_phy_calib_gain cmd;
4202 	int i, delta, noise;
4203 
4204 	/* Get minimal noise among connected antennas. */
4205 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4206 	for (i = 0; i < 3; i++)
4207 		if (sc->chainmask & (1 << i))
4208 			noise = MIN(calib->noise[i], noise);
4209 
4210 	memset(&cmd, 0, sizeof cmd);
4211 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4212 	/* Set differential gains for connected antennas. */
4213 	for (i = 0; i < 3; i++) {
4214 		if (sc->chainmask & (1 << i)) {
4215 			/* Compute attenuation (in unit of 1.5dB). */
4216 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4217 			/* NB: delta <= 0 */
4218 			/* Limit to [-4.5dB,0]. */
4219 			cmd.gain[i] = MIN(abs(delta), 3);
4220 			if (delta < 0)
4221 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4222 		}
4223 	}
4224 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4225 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4226 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4227 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4228 }
4229 
4230 static int
4231 iwn5000_set_gains(struct iwn_softc *sc)
4232 {
4233 	struct iwn_calib_state *calib = &sc->calib;
4234 	struct iwn_phy_calib_gain cmd;
4235 	int i, ant, delta, div;
4236 
4237 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4238 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4239 
4240 	memset(&cmd, 0, sizeof cmd);
4241 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4242 	cmd.ngroups = 1;
4243 	cmd.isvalid = 1;
4244 	/* Get first available RX antenna as referential. */
4245 	ant = IWN_LSB(sc->rxchainmask);
4246 	/* Set differential gains for other antennas. */
4247 	for (i = ant + 1; i < 3; i++) {
4248 		if (sc->chainmask & (1 << i)) {
4249 			/* The delta is relative to antenna "ant". */
4250 			delta = ((int32_t)calib->noise[ant] -
4251 			    (int32_t)calib->noise[i]) / div;
4252 			/* Limit to [-4.5dB,+4.5dB]. */
4253 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4254 			if (delta < 0)
4255 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4256 		}
4257 	}
4258 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4259 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4260 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4261 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4262 }
4263 
4264 /*
4265  * Tune RF RX sensitivity based on the number of false alarms detected
4266  * during the last beacon period.
4267  */
4268 static void
4269 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4270 {
4271 #define inc(val, inc, max)			\
4272 	if ((val) < (max)) {			\
4273 		if ((val) < (max) - (inc))	\
4274 			(val) += (inc);		\
4275 		else				\
4276 			(val) = (max);		\
4277 		needs_update = 1;		\
4278 	}
4279 #define dec(val, dec, min)			\
4280 	if ((val) > (min)) {			\
4281 		if ((val) > (min) + (dec))	\
4282 			(val) -= (dec);		\
4283 		else				\
4284 			(val) = (min);		\
4285 		needs_update = 1;		\
4286 	}
4287 
4288 	const struct iwn_sensitivity_limits *limits = sc->limits;
4289 	struct iwn_calib_state *calib = &sc->calib;
4290 	uint32_t val, rxena, fa;
4291 	uint32_t energy[3], energy_min;
4292 	uint8_t noise[3], noise_ref;
4293 	int i, needs_update = 0;
4294 
4295 	/* Check that we've been enabled long enough. */
4296 	rxena = le32toh(stats->general.load);
4297 	if (rxena == 0)
4298 		return;
4299 
4300 	/* Compute number of false alarms since last call for OFDM. */
4301 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4302 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4303 	fa *= 200 * 1024;	/* 200TU */
4304 
4305 	/* Save counters values for next call. */
4306 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4307 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4308 
4309 	if (fa > 50 * rxena) {
4310 		/* High false alarm count, decrease sensitivity. */
4311 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4312 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4313 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4314 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4315 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4316 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4317 
4318 	} else if (fa < 5 * rxena) {
4319 		/* Low false alarm count, increase sensitivity. */
4320 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4321 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4322 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4323 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4324 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4325 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4326 	}
4327 
4328 	/* Compute maximum noise among 3 receivers. */
4329 	for (i = 0; i < 3; i++)
4330 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4331 	val = MAX(noise[0], noise[1]);
4332 	val = MAX(noise[2], val);
4333 	/* Insert it into our samples table. */
4334 	calib->noise_samples[calib->cur_noise_sample] = val;
4335 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4336 
4337 	/* Compute maximum noise among last 20 samples. */
4338 	noise_ref = calib->noise_samples[0];
4339 	for (i = 1; i < 20; i++)
4340 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4341 
4342 	/* Compute maximum energy among 3 receivers. */
4343 	for (i = 0; i < 3; i++)
4344 		energy[i] = le32toh(stats->general.energy[i]);
4345 	val = MIN(energy[0], energy[1]);
4346 	val = MIN(energy[2], val);
4347 	/* Insert it into our samples table. */
4348 	calib->energy_samples[calib->cur_energy_sample] = val;
4349 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4350 
4351 	/* Compute minimum energy among last 10 samples. */
4352 	energy_min = calib->energy_samples[0];
4353 	for (i = 1; i < 10; i++)
4354 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4355 	energy_min += 6;
4356 
4357 	/* Compute number of false alarms since last call for CCK. */
4358 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4359 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4360 	fa *= 200 * 1024;	/* 200TU */
4361 
4362 	/* Save counters values for next call. */
4363 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4364 	calib->fa_cck = le32toh(stats->cck.fa);
4365 
4366 	if (fa > 50 * rxena) {
4367 		/* High false alarm count, decrease sensitivity. */
4368 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4369 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4370 		calib->cck_state = IWN_CCK_STATE_HIFA;
4371 		calib->low_fa = 0;
4372 
4373 		if (calib->cck_x4 > 160) {
4374 			calib->noise_ref = noise_ref;
4375 			if (calib->energy_cck > 2)
4376 				dec(calib->energy_cck, 2, energy_min);
4377 		}
4378 		if (calib->cck_x4 < 160) {
4379 			calib->cck_x4 = 161;
4380 			needs_update = 1;
4381 		} else
4382 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4383 
4384 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4385 
4386 	} else if (fa < 5 * rxena) {
4387 		/* Low false alarm count, increase sensitivity. */
4388 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4389 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4390 		calib->cck_state = IWN_CCK_STATE_LOFA;
4391 		calib->low_fa++;
4392 
4393 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4394 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4395 		    calib->low_fa > 100)) {
4396 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4397 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4398 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4399 		}
4400 	} else {
4401 		/* Not worth to increase or decrease sensitivity. */
4402 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4403 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4404 		calib->low_fa = 0;
4405 		calib->noise_ref = noise_ref;
4406 
4407 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4408 			/* Previous interval had many false alarms. */
4409 			dec(calib->energy_cck, 8, energy_min);
4410 		}
4411 		calib->cck_state = IWN_CCK_STATE_INIT;
4412 	}
4413 
4414 	if (needs_update)
4415 		(void)iwn_send_sensitivity(sc);
4416 #undef dec
4417 #undef inc
4418 }
4419 
4420 static int
4421 iwn_send_sensitivity(struct iwn_softc *sc)
4422 {
4423 	struct iwn_calib_state *calib = &sc->calib;
4424 	struct iwn_sensitivity_cmd cmd;
4425 
4426 	memset(&cmd, 0, sizeof cmd);
4427 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4428 	/* OFDM modulation. */
4429 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4430 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4431 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4432 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4433 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4434 	cmd.energy_ofdm_th   = htole16(62);
4435 	/* CCK modulation. */
4436 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4437 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4438 	cmd.energy_cck       = htole16(calib->energy_cck);
4439 	/* Barker modulation: use default values. */
4440 	cmd.corr_barker      = htole16(190);
4441 	cmd.corr_barker_mrc  = htole16(390);
4442 
4443 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4444 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4445 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4446 	    calib->ofdm_mrc_x4, calib->cck_x4,
4447 	    calib->cck_mrc_x4, calib->energy_cck);
4448 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4449 }
4450 
4451 /*
4452  * Set STA mode power saving level (between 0 and 5).
4453  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4454  */
4455 static int
4456 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4457 {
4458 	const struct iwn_pmgt *pmgt;
4459 	struct iwn_pmgt_cmd cmd;
4460 	uint32_t max, skip_dtim;
4461 	uint32_t tmp;
4462 	int i;
4463 
4464 	/* Select which PS parameters to use. */
4465 	if (dtim <= 2)
4466 		pmgt = &iwn_pmgt[0][level];
4467 	else if (dtim <= 10)
4468 		pmgt = &iwn_pmgt[1][level];
4469 	else
4470 		pmgt = &iwn_pmgt[2][level];
4471 
4472 	memset(&cmd, 0, sizeof cmd);
4473 	if (level != 0)	/* not CAM */
4474 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4475 	if (level == 5)
4476 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4477 	/* Retrieve PCIe Active State Power Management (ASPM). */
4478 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4479 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4480 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4481 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4482 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4483 
4484 	if (dtim == 0) {
4485 		dtim = 1;
4486 		skip_dtim = 0;
4487 	} else
4488 		skip_dtim = pmgt->skip_dtim;
4489 	if (skip_dtim != 0) {
4490 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4491 		max = pmgt->intval[4];
4492 		if (max == (uint32_t)-1)
4493 			max = dtim * (skip_dtim + 1);
4494 		else if (max > dtim)
4495 			max = (max / dtim) * dtim;
4496 	} else
4497 		max = dtim;
4498 	for (i = 0; i < 5; i++)
4499 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4500 
4501 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4502 	    level);
4503 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4504 }
4505 
4506 static int
4507 iwn_config(struct iwn_softc *sc)
4508 {
4509 	const struct iwn_hal *hal = sc->sc_hal;
4510 	struct ifnet *ifp = sc->sc_ifp;
4511 	struct ieee80211com *ic = ifp->if_l2com;
4512 	struct iwn_bluetooth bluetooth;
4513 	uint32_t txmask;
4514 	int error;
4515 	uint16_t rxchain;
4516 
4517 	/* Configure valid TX chains for 5000 Series. */
4518 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4519 		txmask = htole32(sc->txchainmask);
4520 		DPRINTF(sc, IWN_DEBUG_RESET,
4521 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4522 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4523 		    sizeof txmask, 0);
4524 		if (error != 0) {
4525 			device_printf(sc->sc_dev,
4526 			    "%s: could not configure valid TX chains, "
4527 			    "error %d\n", __func__, error);
4528 			return error;
4529 		}
4530 	}
4531 
4532 	/* Configure bluetooth coexistence. */
4533 	memset(&bluetooth, 0, sizeof bluetooth);
4534 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4535 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4536 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4537 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4538 	    __func__);
4539 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4540 	if (error != 0) {
4541 		device_printf(sc->sc_dev,
4542 		    "%s: could not configure bluetooth coexistence, error %d\n",
4543 		    __func__, error);
4544 		return error;
4545 	}
4546 
4547 	/* Set mode, channel, RX filter and enable RX. */
4548 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4549 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4550 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4551 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4552 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4553 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4554 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4555 	switch (ic->ic_opmode) {
4556 	case IEEE80211_M_STA:
4557 		sc->rxon.mode = IWN_MODE_STA;
4558 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4559 		break;
4560 	case IEEE80211_M_MONITOR:
4561 		sc->rxon.mode = IWN_MODE_MONITOR;
4562 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4563 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4564 		break;
4565 	default:
4566 		/* Should not get there. */
4567 		break;
4568 	}
4569 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4570 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4571 	sc->rxon.ht_single_mask = 0xff;
4572 	sc->rxon.ht_dual_mask = 0xff;
4573 	sc->rxon.ht_triple_mask = 0xff;
4574 	rxchain =
4575 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4576 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4577 	    IWN_RXCHAIN_IDLE_COUNT(2);
4578 	sc->rxon.rxchain = htole16(rxchain);
4579 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4580 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4581 	if (error != 0) {
4582 		device_printf(sc->sc_dev,
4583 		    "%s: RXON command failed\n", __func__);
4584 		return error;
4585 	}
4586 
4587 	error = iwn_add_broadcast_node(sc, 0);
4588 	if (error != 0) {
4589 		device_printf(sc->sc_dev,
4590 		    "%s: could not add broadcast node\n", __func__);
4591 		return error;
4592 	}
4593 
4594 	/* Configuration has changed, set TX power accordingly. */
4595 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4596 	if (error != 0) {
4597 		device_printf(sc->sc_dev,
4598 		    "%s: could not set TX power\n", __func__);
4599 		return error;
4600 	}
4601 
4602 	error = iwn_set_critical_temp(sc);
4603 	if (error != 0) {
4604 		device_printf(sc->sc_dev,
4605 		    "%s: ccould not set critical temperature\n", __func__);
4606 		return error;
4607 	}
4608 
4609 	/* Set power saving level to CAM during initialization. */
4610 	error = iwn_set_pslevel(sc, 0, 0, 0);
4611 	if (error != 0) {
4612 		device_printf(sc->sc_dev,
4613 		    "%s: could not set power saving level\n", __func__);
4614 		return error;
4615 	}
4616 	return 0;
4617 }
4618 
4619 static int
4620 iwn_scan(struct iwn_softc *sc)
4621 {
4622 	struct ifnet *ifp = sc->sc_ifp;
4623 	struct ieee80211com *ic = ifp->if_l2com;
4624 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4625 	struct iwn_scan_hdr *hdr;
4626 	struct iwn_cmd_data *tx;
4627 	struct iwn_scan_essid *essid;
4628 	struct iwn_scan_chan *chan;
4629 	struct ieee80211_frame *wh;
4630 	struct ieee80211_rateset *rs;
4631 	struct ieee80211_channel *c;
4632 	int buflen, error, nrates;
4633 	uint16_t rxchain;
4634 	uint8_t *buf, *frm, txant;
4635 
4636 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4637 	if (buf == NULL) {
4638 		device_printf(sc->sc_dev,
4639 		    "%s: could not allocate buffer for scan command\n",
4640 		    __func__);
4641 		return ENOMEM;
4642 	}
4643 	hdr = (struct iwn_scan_hdr *)buf;
4644 
4645 	/*
4646 	 * Move to the next channel if no frames are received within 10ms
4647 	 * after sending the probe request.
4648 	 */
4649 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4650 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4651 
4652 	/* Select antennas for scanning. */
4653 	rxchain =
4654 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4655 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4656 	    IWN_RXCHAIN_DRIVER_FORCE;
4657 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4658 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4659 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4660 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4661 	} else	/* Use all available RX antennas. */
4662 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4663 	hdr->rxchain = htole16(rxchain);
4664 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4665 
4666 	tx = (struct iwn_cmd_data *)(hdr + 1);
4667 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4668 	tx->id = sc->sc_hal->broadcast_id;
4669 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4670 
4671 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4672 		/* Send probe requests at 6Mbps. */
4673 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4674 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4675 	} else {
4676 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4677 		/* Send probe requests at 1Mbps. */
4678 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4679 		tx->rflags = IWN_RFLAG_CCK;
4680 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4681 	}
4682 	/* Use the first valid TX antenna. */
4683 	txant = IWN_LSB(sc->txchainmask);
4684 	tx->rflags |= IWN_RFLAG_ANT(txant);
4685 
4686 	essid = (struct iwn_scan_essid *)(tx + 1);
4687 	if (ss->ss_ssid[0].len != 0) {
4688 		essid[0].id = IEEE80211_ELEMID_SSID;
4689 		essid[0].len = ss->ss_ssid[0].len;
4690 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4691 	}
4692 
4693 	/*
4694 	 * Build a probe request frame.  Most of the following code is a
4695 	 * copy & paste of what is done in net80211.
4696 	 */
4697 	wh = (struct ieee80211_frame *)(essid + 20);
4698 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4699 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4700 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4701 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4702 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4703 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4704 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4705 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4706 
4707 	frm = (uint8_t *)(wh + 1);
4708 
4709 	/* Add SSID IE. */
4710 	*frm++ = IEEE80211_ELEMID_SSID;
4711 	*frm++ = ss->ss_ssid[0].len;
4712 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4713 	frm += ss->ss_ssid[0].len;
4714 
4715 	/* Add supported rates IE. */
4716 	*frm++ = IEEE80211_ELEMID_RATES;
4717 	nrates = rs->rs_nrates;
4718 	if (nrates > IEEE80211_RATE_SIZE)
4719 		nrates = IEEE80211_RATE_SIZE;
4720 	*frm++ = nrates;
4721 	memcpy(frm, rs->rs_rates, nrates);
4722 	frm += nrates;
4723 
4724 	/* Add supported xrates IE. */
4725 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4726 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4727 		*frm++ = IEEE80211_ELEMID_XRATES;
4728 		*frm++ = (uint8_t)nrates;
4729 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4730 		frm += nrates;
4731 	}
4732 
4733 	/* Set length of probe request. */
4734 	tx->len = htole16(frm - (uint8_t *)wh);
4735 
4736 	c = ic->ic_curchan;
4737 	chan = (struct iwn_scan_chan *)frm;
4738 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4739 	chan->flags = 0;
4740 	if (ss->ss_nssid > 0)
4741 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4742 	chan->dsp_gain = 0x6e;
4743 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4744 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4745 		chan->rf_gain = 0x3b;
4746 		chan->active  = htole16(24);
4747 		chan->passive = htole16(110);
4748 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4749 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4750 		chan->rf_gain = 0x3b;
4751 		chan->active  = htole16(24);
4752 		if (sc->rxon.associd)
4753 			chan->passive = htole16(78);
4754 		else
4755 			chan->passive = htole16(110);
4756 		hdr->crc_threshold = 0xffff;
4757 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4758 		chan->rf_gain = 0x28;
4759 		chan->active  = htole16(36);
4760 		chan->passive = htole16(120);
4761 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4762 	} else {
4763 		chan->rf_gain = 0x28;
4764 		chan->active  = htole16(36);
4765 		if (sc->rxon.associd)
4766 			chan->passive = htole16(88);
4767 		else
4768 			chan->passive = htole16(120);
4769 		hdr->crc_threshold = 0xffff;
4770 	}
4771 
4772 	DPRINTF(sc, IWN_DEBUG_STATE,
4773 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4774 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4775 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4776 	    chan->active, chan->passive);
4777 
4778 	hdr->nchan++;
4779 	chan++;
4780 	buflen = (uint8_t *)chan - buf;
4781 	hdr->len = htole16(buflen);
4782 
4783 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4784 	    hdr->nchan);
4785 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4786 	free(buf, M_DEVBUF);
4787 	return error;
4788 }
4789 
4790 static int
4791 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4792 {
4793 	const struct iwn_hal *hal = sc->sc_hal;
4794 	struct ifnet *ifp = sc->sc_ifp;
4795 	struct ieee80211com *ic = ifp->if_l2com;
4796 	struct ieee80211_node *ni = vap->iv_bss;
4797 	int error;
4798 
4799 	sc->calib.state = IWN_CALIB_STATE_INIT;
4800 
4801 	/* Update adapter configuration. */
4802 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4803 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4804 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4805 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4806 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4807 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4808 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4809 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4810 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4811 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4812 		sc->rxon.cck_mask  = 0;
4813 		sc->rxon.ofdm_mask = 0x15;
4814 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4815 		sc->rxon.cck_mask  = 0x03;
4816 		sc->rxon.ofdm_mask = 0;
4817 	} else {
4818 		/* XXX assume 802.11b/g */
4819 		sc->rxon.cck_mask  = 0x0f;
4820 		sc->rxon.ofdm_mask = 0x15;
4821 	}
4822 	DPRINTF(sc, IWN_DEBUG_STATE,
4823 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4824 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4825 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4826 	    __func__,
4827 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4828 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4829 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4830 	    le16toh(sc->rxon.rxchain),
4831 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4832 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4833 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4834 	if (error != 0) {
4835 		device_printf(sc->sc_dev,
4836 		    "%s: RXON command failed, error %d\n", __func__, error);
4837 		return error;
4838 	}
4839 
4840 	/* Configuration has changed, set TX power accordingly. */
4841 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4842 	if (error != 0) {
4843 		device_printf(sc->sc_dev,
4844 		    "%s: could not set Tx power, error %d\n", __func__, error);
4845 		return error;
4846 	}
4847 	/*
4848 	 * Reconfiguring RXON clears the firmware nodes table so we must
4849 	 * add the broadcast node again.
4850 	 */
4851 	error = iwn_add_broadcast_node(sc, 1);
4852 	if (error != 0) {
4853 		device_printf(sc->sc_dev,
4854 		    "%s: could not add broadcast node, error %d\n",
4855 		    __func__, error);
4856 		return error;
4857 	}
4858 	return 0;
4859 }
4860 
4861 /*
4862  * Configure the adapter for associated state.
4863  */
4864 static int
4865 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4866 {
4867 #define	MS(v,x)	(((v) & x) >> x##_S)
4868 	const struct iwn_hal *hal = sc->sc_hal;
4869 	struct ifnet *ifp = sc->sc_ifp;
4870 	struct ieee80211com *ic = ifp->if_l2com;
4871 	struct ieee80211_node *ni = vap->iv_bss;
4872 	struct iwn_node_info node;
4873 	int error;
4874 
4875 	sc->calib.state = IWN_CALIB_STATE_INIT;
4876 
4877 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4878 		/* Link LED blinks while monitoring. */
4879 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4880 		return 0;
4881 	}
4882 	error = iwn_set_timing(sc, ni);
4883 	if (error != 0) {
4884 		device_printf(sc->sc_dev,
4885 		    "%s: could not set timing, error %d\n", __func__, error);
4886 		return error;
4887 	}
4888 
4889 	/* Update adapter configuration. */
4890 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4891 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4892 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4893 	/* Short preamble and slot time are negotiated when associating. */
4894 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4895 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4896 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4897 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4898 	else
4899 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4900 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4901 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4902 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4903 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4904 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4905 		sc->rxon.cck_mask  = 0;
4906 		sc->rxon.ofdm_mask = 0x15;
4907 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4908 		sc->rxon.cck_mask  = 0x03;
4909 		sc->rxon.ofdm_mask = 0;
4910 	} else {
4911 		/* XXX assume 802.11b/g */
4912 		sc->rxon.cck_mask  = 0x0f;
4913 		sc->rxon.ofdm_mask = 0x15;
4914 	}
4915 #if 0	/* HT */
4916 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4917 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4918 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4919 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4920 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4921 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4922 		else
4923 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4924 		sc->rxon.rxchain = htole16(
4925 			  IWN_RXCHAIN_VALID(3)
4926 			| IWN_RXCHAIN_MIMO_COUNT(3)
4927 			| IWN_RXCHAIN_IDLE_COUNT(1)
4928 			| IWN_RXCHAIN_MIMO_FORCE);
4929 
4930 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4931 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4932 	} else
4933 		maxrxampdu = ampdudensity = 0;
4934 #endif
4935 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4936 
4937 	DPRINTF(sc, IWN_DEBUG_STATE,
4938 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4939 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4940 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4941 	    __func__,
4942 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4943 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4944 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4945 	    le16toh(sc->rxon.rxchain),
4946 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4947 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4948 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4949 	if (error != 0) {
4950 		device_printf(sc->sc_dev,
4951 		    "%s: could not update configuration, error %d\n",
4952 		    __func__, error);
4953 		return error;
4954 	}
4955 
4956 	/* Configuration has changed, set TX power accordingly. */
4957 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4958 	if (error != 0) {
4959 		device_printf(sc->sc_dev,
4960 		    "%s: could not set Tx power, error %d\n", __func__, error);
4961 		return error;
4962 	}
4963 
4964 	/* Add BSS node. */
4965 	memset(&node, 0, sizeof node);
4966 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4967 	node.id = IWN_ID_BSS;
4968 #ifdef notyet
4969 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4970 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4971 #endif
4972 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4973 	    __func__, node.id, le32toh(node.htflags));
4974 	error = hal->add_node(sc, &node, 1);
4975 	if (error != 0) {
4976 		device_printf(sc->sc_dev, "could not add BSS node\n");
4977 		return error;
4978 	}
4979 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4980 	    node.id);
4981 	error = iwn_set_link_quality(sc, node.id, 1);
4982 	if (error != 0) {
4983 		device_printf(sc->sc_dev,
4984 		    "%s: could not setup MRR for node %d, error %d\n",
4985 		    __func__, node.id, error);
4986 		return error;
4987 	}
4988 
4989 	error = iwn_init_sensitivity(sc);
4990 	if (error != 0) {
4991 		device_printf(sc->sc_dev,
4992 		    "%s: could not set sensitivity, error %d\n",
4993 		    __func__, error);
4994 		return error;
4995 	}
4996 
4997 	/* Start periodic calibration timer. */
4998 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4999 	iwn_calib_reset(sc);
5000 
5001 	/* Link LED always on while associated. */
5002 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5003 
5004 	return 0;
5005 #undef MS
5006 }
5007 
5008 #if 0	/* HT */
5009 /*
5010  * This function is called by upper layer when an ADDBA request is received
5011  * from another STA and before the ADDBA response is sent.
5012  */
5013 static int
5014 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5015     uint8_t tid)
5016 {
5017 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5018 	struct iwn_softc *sc = ic->ic_softc;
5019 	struct iwn_node *wn = (void *)ni;
5020 	struct iwn_node_info node;
5021 
5022 	memset(&node, 0, sizeof node);
5023 	node.id = wn->id;
5024 	node.control = IWN_NODE_UPDATE;
5025 	node.flags = IWN_FLAG_SET_ADDBA;
5026 	node.addba_tid = tid;
5027 	node.addba_ssn = htole16(ba->ba_winstart);
5028 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5029 	    wn->id, tid, ba->ba_winstart));
5030 	return sc->sc_hal->add_node(sc, &node, 1);
5031 }
5032 
5033 /*
5034  * This function is called by upper layer on teardown of an HT-immediate
5035  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5036  */
5037 static void
5038 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5039     uint8_t tid)
5040 {
5041 	struct iwn_softc *sc = ic->ic_softc;
5042 	struct iwn_node *wn = (void *)ni;
5043 	struct iwn_node_info node;
5044 
5045 	memset(&node, 0, sizeof node);
5046 	node.id = wn->id;
5047 	node.control = IWN_NODE_UPDATE;
5048 	node.flags = IWN_FLAG_SET_DELBA;
5049 	node.delba_tid = tid;
5050 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5051 	(void)sc->sc_hal->add_node(sc, &node, 1);
5052 }
5053 
5054 /*
5055  * This function is called by upper layer when an ADDBA response is received
5056  * from another STA.
5057  */
5058 static int
5059 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5060     uint8_t tid)
5061 {
5062 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5063 	struct iwn_softc *sc = ic->ic_softc;
5064 	const struct iwn_hal *hal = sc->sc_hal;
5065 	struct iwn_node *wn = (void *)ni;
5066 	struct iwn_node_info node;
5067 	int error;
5068 
5069 	/* Enable TX for the specified RA/TID. */
5070 	wn->disable_tid &= ~(1 << tid);
5071 	memset(&node, 0, sizeof node);
5072 	node.id = wn->id;
5073 	node.control = IWN_NODE_UPDATE;
5074 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5075 	node.disable_tid = htole16(wn->disable_tid);
5076 	error = hal->add_node(sc, &node, 1);
5077 	if (error != 0)
5078 		return error;
5079 
5080 	if ((error = iwn_nic_lock(sc)) != 0)
5081 		return error;
5082 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5083 	iwn_nic_unlock(sc);
5084 	return 0;
5085 }
5086 
5087 static void
5088 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5089     uint8_t tid)
5090 {
5091 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5092 	struct iwn_softc *sc = ic->ic_softc;
5093 	int error;
5094 
5095 	error = iwn_nic_lock(sc);
5096 	if (error != 0)
5097 		return;
5098 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5099 	iwn_nic_unlock(sc);
5100 }
5101 
5102 static void
5103 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5104     uint8_t tid, uint16_t ssn)
5105 {
5106 	struct iwn_node *wn = (void *)ni;
5107 	int qid = 7 + tid;
5108 
5109 	/* Stop TX scheduler while we're changing its configuration. */
5110 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5111 	    IWN4965_TXQ_STATUS_CHGACT);
5112 
5113 	/* Assign RA/TID translation to the queue. */
5114 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5115 	    wn->id << 4 | tid);
5116 
5117 	/* Enable chain-building mode for the queue. */
5118 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5119 
5120 	/* Set starting sequence number from the ADDBA request. */
5121 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5122 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5123 
5124 	/* Set scheduler window size. */
5125 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5126 	    IWN_SCHED_WINSZ);
5127 	/* Set scheduler frame limit. */
5128 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5129 	    IWN_SCHED_LIMIT << 16);
5130 
5131 	/* Enable interrupts for the queue. */
5132 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5133 
5134 	/* Mark the queue as active. */
5135 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5136 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5137 	    iwn_tid2fifo[tid] << 1);
5138 }
5139 
5140 static void
5141 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5142 {
5143 	int qid = 7 + tid;
5144 
5145 	/* Stop TX scheduler while we're changing its configuration. */
5146 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5147 	    IWN4965_TXQ_STATUS_CHGACT);
5148 
5149 	/* Set starting sequence number from the ADDBA request. */
5150 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5151 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5152 
5153 	/* Disable interrupts for the queue. */
5154 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5155 
5156 	/* Mark the queue as inactive. */
5157 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5158 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5159 }
5160 
5161 static void
5162 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5163     uint8_t tid, uint16_t ssn)
5164 {
5165 	struct iwn_node *wn = (void *)ni;
5166 	int qid = 10 + tid;
5167 
5168 	/* Stop TX scheduler while we're changing its configuration. */
5169 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5170 	    IWN5000_TXQ_STATUS_CHGACT);
5171 
5172 	/* Assign RA/TID translation to the queue. */
5173 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5174 	    wn->id << 4 | tid);
5175 
5176 	/* Enable chain-building mode for the queue. */
5177 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5178 
5179 	/* Enable aggregation for the queue. */
5180 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5181 
5182 	/* Set starting sequence number from the ADDBA request. */
5183 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5184 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5185 
5186 	/* Set scheduler window size and frame limit. */
5187 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5188 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5189 
5190 	/* Enable interrupts for the queue. */
5191 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5192 
5193 	/* Mark the queue as active. */
5194 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5195 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5196 }
5197 
5198 static void
5199 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5200 {
5201 	int qid = 10 + tid;
5202 
5203 	/* Stop TX scheduler while we're changing its configuration. */
5204 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5205 	    IWN5000_TXQ_STATUS_CHGACT);
5206 
5207 	/* Disable aggregation for the queue. */
5208 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5209 
5210 	/* Set starting sequence number from the ADDBA request. */
5211 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5212 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5213 
5214 	/* Disable interrupts for the queue. */
5215 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5216 
5217 	/* Mark the queue as inactive. */
5218 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5219 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5220 }
5221 #endif
5222 
5223 /*
5224  * Query calibration tables from the initialization firmware.  We do this
5225  * only once at first boot.  Called from a process context.
5226  */
5227 static int
5228 iwn5000_query_calibration(struct iwn_softc *sc)
5229 {
5230 	struct iwn5000_calib_config cmd;
5231 	int error;
5232 
5233 	memset(&cmd, 0, sizeof cmd);
5234 	cmd.ucode.once.enable = 0xffffffff;
5235 	cmd.ucode.once.start  = 0xffffffff;
5236 	cmd.ucode.once.send   = 0xffffffff;
5237 	cmd.ucode.flags       = 0xffffffff;
5238 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5239 	    __func__);
5240 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5241 	if (error != 0)
5242 		return error;
5243 
5244 	/* Wait at most two seconds for calibration to complete. */
5245 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5246 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz);
5247 	return error;
5248 }
5249 
5250 /*
5251  * Send calibration results to the runtime firmware.  These results were
5252  * obtained on first boot from the initialization firmware.
5253  */
5254 static int
5255 iwn5000_send_calibration(struct iwn_softc *sc)
5256 {
5257 	int idx, error;
5258 
5259 	for (idx = 0; idx < 5; idx++) {
5260 		if (sc->calibcmd[idx].buf == NULL)
5261 			continue;	/* No results available. */
5262 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5263 		    "send calibration result idx=%d len=%d\n",
5264 		    idx, sc->calibcmd[idx].len);
5265 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5266 		    sc->calibcmd[idx].len, 0);
5267 		if (error != 0) {
5268 			device_printf(sc->sc_dev,
5269 			    "%s: could not send calibration result, error %d\n",
5270 			    __func__, error);
5271 			return error;
5272 		}
5273 	}
5274 	return 0;
5275 }
5276 
5277 static int
5278 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5279 {
5280 	struct iwn5000_wimax_coex wimax;
5281 
5282 #ifdef notyet
5283 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5284 		/* Enable WiMAX coexistence for combo adapters. */
5285 		wimax.flags =
5286 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5287 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5288 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5289 		    IWN_WIMAX_COEX_ENABLE;
5290 		memcpy(wimax.events, iwn6050_wimax_events,
5291 		    sizeof iwn6050_wimax_events);
5292 	} else
5293 #endif
5294 	{
5295 		/* Disable WiMAX coexistence. */
5296 		wimax.flags = 0;
5297 		memset(wimax.events, 0, sizeof wimax.events);
5298 	}
5299 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5300 	    __func__);
5301 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5302 }
5303 
5304 /*
5305  * This function is called after the runtime firmware notifies us of its
5306  * readiness (called in a process context.)
5307  */
5308 static int
5309 iwn4965_post_alive(struct iwn_softc *sc)
5310 {
5311 	int error, qid;
5312 
5313 	if ((error = iwn_nic_lock(sc)) != 0)
5314 		return error;
5315 
5316 	/* Clear TX scheduler state in SRAM. */
5317 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5318 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5319 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5320 
5321 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5322 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5323 
5324 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5325 
5326 	/* Disable chain mode for all our 16 queues. */
5327 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5328 
5329 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5330 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5331 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5332 
5333 		/* Set scheduler window size. */
5334 		iwn_mem_write(sc, sc->sched_base +
5335 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5336 		/* Set scheduler frame limit. */
5337 		iwn_mem_write(sc, sc->sched_base +
5338 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5339 		    IWN_SCHED_LIMIT << 16);
5340 	}
5341 
5342 	/* Enable interrupts for all our 16 queues. */
5343 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5344 	/* Identify TX FIFO rings (0-7). */
5345 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5346 
5347 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5348 	for (qid = 0; qid < 7; qid++) {
5349 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5350 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5351 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5352 	}
5353 	iwn_nic_unlock(sc);
5354 	return 0;
5355 }
5356 
5357 /*
5358  * This function is called after the initialization or runtime firmware
5359  * notifies us of its readiness (called in a process context.)
5360  */
5361 static int
5362 iwn5000_post_alive(struct iwn_softc *sc)
5363 {
5364 	int error, qid;
5365 
5366 	/* Switch to using ICT interrupt mode. */
5367 	iwn5000_ict_reset(sc);
5368 
5369 	error = iwn_nic_lock(sc);
5370 	if (error != 0)
5371 		return error;
5372 
5373 	/* Clear TX scheduler state in SRAM. */
5374 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5375 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5376 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5377 
5378 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5379 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5380 
5381 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5382 
5383 	/* Enable chain mode for all queues, except command queue. */
5384 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5385 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5386 
5387 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5388 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5389 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5390 
5391 		iwn_mem_write(sc, sc->sched_base +
5392 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5393 		/* Set scheduler window size and frame limit. */
5394 		iwn_mem_write(sc, sc->sched_base +
5395 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5396 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5397 	}
5398 
5399 	/* Enable interrupts for all our 20 queues. */
5400 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5401 	/* Identify TX FIFO rings (0-7). */
5402 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5403 
5404 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5405 	for (qid = 0; qid < 7; qid++) {
5406 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5407 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5408 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5409 	}
5410 	iwn_nic_unlock(sc);
5411 
5412 	/* Configure WiMAX coexistence for combo adapters. */
5413 	error = iwn5000_send_wimax_coex(sc);
5414 	if (error != 0) {
5415 		device_printf(sc->sc_dev,
5416 		    "%s: could not configure WiMAX coexistence, error %d\n",
5417 		    __func__, error);
5418 		return error;
5419 	}
5420 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5421 		struct iwn5000_phy_calib_crystal cmd;
5422 
5423 		/* Perform crystal calibration. */
5424 		memset(&cmd, 0, sizeof cmd);
5425 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5426 		cmd.ngroups = 1;
5427 		cmd.isvalid = 1;
5428 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5429 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5430 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5431 		    "sending crystal calibration %d, %d\n",
5432 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5433 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5434 		if (error != 0) {
5435 			device_printf(sc->sc_dev,
5436 			    "%s: crystal calibration failed, error %d\n",
5437 			    __func__, error);
5438 			return error;
5439 		}
5440 	}
5441 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5442 		/* Query calibration from the initialization firmware. */
5443 		error = iwn5000_query_calibration(sc);
5444 		if (error != 0) {
5445 			device_printf(sc->sc_dev,
5446 			    "%s: could not query calibration, error %d\n",
5447 			    __func__, error);
5448 			return error;
5449 		}
5450 		/*
5451 		 * We have the calibration results now, reboot with the
5452 		 * runtime firmware (call ourselves recursively!)
5453 		 */
5454 		iwn_hw_stop(sc);
5455 		error = iwn_hw_init(sc);
5456 	} else {
5457 		/* Send calibration results to runtime firmware. */
5458 		error = iwn5000_send_calibration(sc);
5459 	}
5460 	return error;
5461 }
5462 
5463 /*
5464  * The firmware boot code is small and is intended to be copied directly into
5465  * the NIC internal memory (no DMA transfer.)
5466  */
5467 static int
5468 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5469 {
5470 	int error, ntries;
5471 
5472 	size /= sizeof (uint32_t);
5473 
5474 	error = iwn_nic_lock(sc);
5475 	if (error != 0)
5476 		return error;
5477 
5478 	/* Copy microcode image into NIC memory. */
5479 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5480 	    (const uint32_t *)ucode, size);
5481 
5482 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5483 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5484 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5485 
5486 	/* Start boot load now. */
5487 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5488 
5489 	/* Wait for transfer to complete. */
5490 	for (ntries = 0; ntries < 1000; ntries++) {
5491 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5492 		    IWN_BSM_WR_CTRL_START))
5493 			break;
5494 		DELAY(10);
5495 	}
5496 	if (ntries == 1000) {
5497 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5498 		    __func__);
5499 		iwn_nic_unlock(sc);
5500 		return ETIMEDOUT;
5501 	}
5502 
5503 	/* Enable boot after power up. */
5504 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5505 
5506 	iwn_nic_unlock(sc);
5507 	return 0;
5508 }
5509 
5510 static int
5511 iwn4965_load_firmware(struct iwn_softc *sc)
5512 {
5513 	struct iwn_fw_info *fw = &sc->fw;
5514 	struct iwn_dma_info *dma = &sc->fw_dma;
5515 	int error;
5516 
5517 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5518 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5519 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5520 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5521 	    fw->init.text, fw->init.textsz);
5522 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5523 
5524 	/* Tell adapter where to find initialization sections. */
5525 	error = iwn_nic_lock(sc);
5526 	if (error != 0)
5527 		return error;
5528 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5529 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5530 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5531 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5532 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5533 	iwn_nic_unlock(sc);
5534 
5535 	/* Load firmware boot code. */
5536 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5537 	if (error != 0) {
5538 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5539 		    __func__);
5540 		return error;
5541 	}
5542 	/* Now press "execute". */
5543 	IWN_WRITE(sc, IWN_RESET, 0);
5544 
5545 	/* Wait at most one second for first alive notification. */
5546 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5547 	if (error) {
5548 		device_printf(sc->sc_dev,
5549 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5550 		    __func__, error);
5551 		return error;
5552 	}
5553 
5554 	/* Retrieve current temperature for initial TX power calibration. */
5555 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5556 	sc->temp = iwn4965_get_temperature(sc);
5557 
5558 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5559 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5560 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5561 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5562 	    fw->main.text, fw->main.textsz);
5563 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5564 
5565 	/* Tell adapter where to find runtime sections. */
5566 	error = iwn_nic_lock(sc);
5567 	if (error != 0)
5568 		return error;
5569 
5570 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5571 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5572 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5573 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5574 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5575 	    IWN_FW_UPDATED | fw->main.textsz);
5576 	iwn_nic_unlock(sc);
5577 
5578 	return 0;
5579 }
5580 
5581 static int
5582 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5583     const uint8_t *section, int size)
5584 {
5585 	struct iwn_dma_info *dma = &sc->fw_dma;
5586 	int error;
5587 
5588 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5589 	memcpy(dma->vaddr, section, size);
5590 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5591 
5592 	error = iwn_nic_lock(sc);
5593 	if (error != 0)
5594 		return error;
5595 
5596 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5597 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5598 
5599 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5600 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5601 	    IWN_LOADDR(dma->paddr));
5602 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5603 	    IWN_HIADDR(dma->paddr) << 28 | size);
5604 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5605 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5606 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5607 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5608 
5609 	/* Kick Flow Handler to start DMA transfer. */
5610 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5611 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5612 
5613 	iwn_nic_unlock(sc);
5614 
5615 	/* Wait at most five seconds for FH DMA transfer to complete. */
5616 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5617 }
5618 
5619 static int
5620 iwn5000_load_firmware(struct iwn_softc *sc)
5621 {
5622 	struct iwn_fw_part *fw;
5623 	int error;
5624 
5625 	/* Load the initialization firmware on first boot only. */
5626 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5627 	    &sc->fw.main : &sc->fw.init;
5628 
5629 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5630 	    fw->text, fw->textsz);
5631 	if (error != 0) {
5632 		device_printf(sc->sc_dev,
5633 		    "%s: could not load firmware %s section, error %d\n",
5634 		    __func__, ".text", error);
5635 		return error;
5636 	}
5637 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5638 	    fw->data, fw->datasz);
5639 	if (error != 0) {
5640 		device_printf(sc->sc_dev,
5641 		    "%s: could not load firmware %s section, error %d\n",
5642 		    __func__, ".data", error);
5643 		return error;
5644 	}
5645 
5646 	/* Now press "execute". */
5647 	IWN_WRITE(sc, IWN_RESET, 0);
5648 	return 0;
5649 }
5650 
5651 /*
5652  * Extract text and data sections from a legacy firmware image.
5653  */
5654 static int
5655 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5656 {
5657 	const uint32_t *ptr;
5658 	size_t hdrlen = 24;
5659 	uint32_t rev;
5660 
5661 	ptr = (const uint32_t *)sc->fw_fp->data;
5662 	rev = le32toh(*ptr++);
5663 
5664 	/* Check firmware API version. */
5665 	if (IWN_FW_API(rev) <= 1) {
5666 		device_printf(sc->sc_dev,
5667 		    "%s: bad firmware, need API version >=2\n", __func__);
5668 		return EINVAL;
5669 	}
5670 	if (IWN_FW_API(rev) >= 3) {
5671 		/* Skip build number (version 2 header). */
5672 		hdrlen += 4;
5673 		ptr++;
5674 	}
5675 	if (fw->size < hdrlen) {
5676 		device_printf(sc->sc_dev,
5677 		    "%s: firmware file too short: %zu bytes\n",
5678 		    __func__, fw->size);
5679 		return EINVAL;
5680 	}
5681 	fw->main.textsz = le32toh(*ptr++);
5682 	fw->main.datasz = le32toh(*ptr++);
5683 	fw->init.textsz = le32toh(*ptr++);
5684 	fw->init.datasz = le32toh(*ptr++);
5685 	fw->boot.textsz = le32toh(*ptr++);
5686 
5687 	/* Check that all firmware sections fit. */
5688 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5689 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5690 		device_printf(sc->sc_dev,
5691 		    "%s: firmware file too short: %zu bytes\n",
5692 		    __func__, fw->size);
5693 		return EINVAL;
5694 	}
5695 
5696 	/* Get pointers to firmware sections. */
5697 	fw->main.text = (const uint8_t *)ptr;
5698 	fw->main.data = fw->main.text + fw->main.textsz;
5699 	fw->init.text = fw->main.data + fw->main.datasz;
5700 	fw->init.data = fw->init.text + fw->init.textsz;
5701 	fw->boot.text = fw->init.data + fw->init.datasz;
5702 
5703 	return 0;
5704 }
5705 
5706 /*
5707  * Extract text and data sections from a TLV firmware image.
5708  */
5709 int
5710 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5711     uint16_t alt)
5712 {
5713 	const struct iwn_fw_tlv_hdr *hdr;
5714 	const struct iwn_fw_tlv *tlv;
5715 	const uint8_t *ptr, *end;
5716 	uint64_t altmask;
5717 	uint32_t len;
5718 
5719 	if (fw->size < sizeof (*hdr)) {
5720 		device_printf(sc->sc_dev,
5721 		    "%s: firmware file too short: %zu bytes\n",
5722 		    __func__, fw->size);
5723 		return EINVAL;
5724 	}
5725 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5726 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5727 		device_printf(sc->sc_dev,
5728 		    "%s: bad firmware file signature 0x%08x\n",
5729 		    __func__, le32toh(hdr->signature));
5730 		return EINVAL;
5731 	}
5732 
5733 	/*
5734 	 * Select the closest supported alternative that is less than
5735 	 * or equal to the specified one.
5736 	 */
5737 	altmask = le64toh(hdr->altmask);
5738 	while (alt > 0 && !(altmask & (1ULL << alt)))
5739 		alt--;	/* Downgrade. */
5740 
5741 	ptr = (const uint8_t *)(hdr + 1);
5742 	end = (const uint8_t *)(fw->data + fw->size);
5743 
5744 	/* Parse type-length-value fields. */
5745 	while (ptr + sizeof (*tlv) <= end) {
5746 		tlv = (const struct iwn_fw_tlv *)ptr;
5747 		len = le32toh(tlv->len);
5748 
5749 		ptr += sizeof (*tlv);
5750 		if (ptr + len > end) {
5751 			device_printf(sc->sc_dev,
5752 			    "%s: firmware file too short: %zu bytes\n",
5753 			    __func__, fw->size);
5754 			return EINVAL;
5755 		}
5756 		/* Skip other alternatives. */
5757 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5758 			goto next;
5759 
5760 		switch (le16toh(tlv->type)) {
5761 		case IWN_FW_TLV_MAIN_TEXT:
5762 			fw->main.text = ptr;
5763 			fw->main.textsz = len;
5764 			break;
5765 		case IWN_FW_TLV_MAIN_DATA:
5766 			fw->main.data = ptr;
5767 			fw->main.datasz = len;
5768 			break;
5769 		case IWN_FW_TLV_INIT_TEXT:
5770 			fw->init.text = ptr;
5771 			fw->init.textsz = len;
5772 			break;
5773 		case IWN_FW_TLV_INIT_DATA:
5774 			fw->init.data = ptr;
5775 			fw->init.datasz = len;
5776 			break;
5777 		case IWN_FW_TLV_BOOT_TEXT:
5778 			fw->boot.text = ptr;
5779 			fw->boot.textsz = len;
5780 			break;
5781 		default:
5782 			DPRINTF(sc, IWN_DEBUG_RESET,
5783 			    "%s: TLV type %d not handled\n",
5784 			    __func__, le16toh(tlv->type));
5785 			break;
5786 		}
5787 next:		/* TLV fields are 32-bit aligned. */
5788 		ptr += (len + 3) & ~3;
5789 	}
5790 	return 0;
5791 }
5792 
5793 static int
5794 iwn_read_firmware(struct iwn_softc *sc)
5795 {
5796 	const struct iwn_hal *hal = sc->sc_hal;
5797 	struct iwn_fw_info *fw = &sc->fw;
5798 	int error;
5799 
5800 	IWN_UNLOCK(sc);
5801 
5802 	memset(fw, 0, sizeof (*fw));
5803 
5804 	/* Read firmware image from filesystem. */
5805 	sc->fw_fp = firmware_get(sc->fwname);
5806 	if (sc->fw_fp == NULL) {
5807 		device_printf(sc->sc_dev,
5808 		    "%s: could not load firmare image \"%s\"\n", __func__,
5809 		    sc->fwname);
5810 		IWN_LOCK(sc);
5811 		return EINVAL;
5812 	}
5813 	IWN_LOCK(sc);
5814 
5815 	fw->size = sc->fw_fp->datasize;
5816 	fw->data = (const uint8_t *)sc->fw_fp->data;
5817 	if (fw->size < sizeof (uint32_t)) {
5818 		device_printf(sc->sc_dev,
5819 		    "%s: firmware file too short: %zu bytes\n",
5820 		    __func__, fw->size);
5821 		return EINVAL;
5822 	}
5823 
5824 	/* Retrieve text and data sections. */
5825 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5826 		error = iwn_read_firmware_leg(sc, fw);
5827 	else
5828 		error = iwn_read_firmware_tlv(sc, fw, 1);
5829 	if (error != 0) {
5830 		device_printf(sc->sc_dev,
5831 		    "%s: could not read firmware sections\n", __func__);
5832 		return error;
5833 	}
5834 
5835 	/* Make sure text and data sections fit in hardware memory. */
5836 	if (fw->main.textsz > hal->fw_text_maxsz ||
5837 	    fw->main.datasz > hal->fw_data_maxsz ||
5838 	    fw->init.textsz > hal->fw_text_maxsz ||
5839 	    fw->init.datasz > hal->fw_data_maxsz ||
5840 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5841 	    (fw->boot.textsz & 3) != 0) {
5842 		device_printf(sc->sc_dev,
5843 		    "%s: firmware sections too large\n", __func__);
5844 		return EINVAL;
5845 	}
5846 
5847 	/* We can proceed with loading the firmware. */
5848 	return 0;
5849 }
5850 
5851 static int
5852 iwn_clock_wait(struct iwn_softc *sc)
5853 {
5854 	int ntries;
5855 
5856 	/* Set "initialization complete" bit. */
5857 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5858 
5859 	/* Wait for clock stabilization. */
5860 	for (ntries = 0; ntries < 2500; ntries++) {
5861 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5862 			return 0;
5863 		DELAY(10);
5864 	}
5865 	device_printf(sc->sc_dev,
5866 	    "%s: timeout waiting for clock stabilization\n", __func__);
5867 	return ETIMEDOUT;
5868 }
5869 
5870 static int
5871 iwn_apm_init(struct iwn_softc *sc)
5872 {
5873 	uint32_t tmp;
5874 	int error;
5875 
5876 	/* Disable L0s exit timer (NMI bug workaround.) */
5877 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5878 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5879 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5880 
5881 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5882 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5883 
5884 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5885 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5886 
5887 	/* Retrieve PCIe Active State Power Management (ASPM). */
5888 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5889 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5890 	if (tmp & 0x02)	/* L1 Entry enabled. */
5891 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5892 	else
5893 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5894 
5895 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5896 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
5897 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5898 
5899 	/* Wait for clock stabilization before accessing prph. */
5900 	error = iwn_clock_wait(sc);
5901 	if (error != 0)
5902 		return error;
5903 
5904 	error = iwn_nic_lock(sc);
5905 	if (error != 0)
5906 		return error;
5907 
5908 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5909 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5910 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5911 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5912 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5913 	} else {
5914 		/* Enable DMA. */
5915 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5916 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5917 	}
5918 	DELAY(20);
5919 
5920 	/* Disable L1-Active. */
5921 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5922 	iwn_nic_unlock(sc);
5923 
5924 	return 0;
5925 }
5926 
5927 static void
5928 iwn_apm_stop_master(struct iwn_softc *sc)
5929 {
5930 	int ntries;
5931 
5932 	/* Stop busmaster DMA activity. */
5933 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5934 	for (ntries = 0; ntries < 100; ntries++) {
5935 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5936 			return;
5937 		DELAY(10);
5938 	}
5939 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5940 	    __func__);
5941 }
5942 
5943 static void
5944 iwn_apm_stop(struct iwn_softc *sc)
5945 {
5946 	iwn_apm_stop_master(sc);
5947 
5948 	/* Reset the entire device. */
5949 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5950 	DELAY(10);
5951 	/* Clear "initialization complete" bit. */
5952 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5953 }
5954 
5955 static int
5956 iwn4965_nic_config(struct iwn_softc *sc)
5957 {
5958 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5959 		/*
5960 		 * I don't believe this to be correct but this is what the
5961 		 * vendor driver is doing. Probably the bits should not be
5962 		 * shifted in IWN_RFCFG_*.
5963 		 */
5964 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5965 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5966 		    IWN_RFCFG_STEP(sc->rfcfg) |
5967 		    IWN_RFCFG_DASH(sc->rfcfg));
5968 	}
5969 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5970 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5971 	return 0;
5972 }
5973 
5974 static int
5975 iwn5000_nic_config(struct iwn_softc *sc)
5976 {
5977 	uint32_t tmp;
5978 	int error;
5979 
5980 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5981 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5982 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5983 		    IWN_RFCFG_STEP(sc->rfcfg) |
5984 		    IWN_RFCFG_DASH(sc->rfcfg));
5985 	}
5986 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5987 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5988 
5989 	error = iwn_nic_lock(sc);
5990 	if (error != 0)
5991 		return error;
5992 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5993 
5994 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5995 		/*
5996 		 * Select first Switching Voltage Regulator (1.32V) to
5997 		 * solve a stability issue related to noisy DC2DC line
5998 		 * in the silicon of 1000 Series.
5999 		 */
6000 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6001 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6002 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6003 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6004 	}
6005 	iwn_nic_unlock(sc);
6006 
6007 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6008 		/* Use internal power amplifier only. */
6009 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6010 	}
6011 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
6012 		/* Indicate that ROM calibration version is >=6. */
6013 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6014 	}
6015 	return 0;
6016 }
6017 
6018 /*
6019  * Take NIC ownership over Intel Active Management Technology (AMT).
6020  */
6021 static int
6022 iwn_hw_prepare(struct iwn_softc *sc)
6023 {
6024 	int ntries;
6025 
6026 	/* Check if hardware is ready. */
6027 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6028 	for (ntries = 0; ntries < 5; ntries++) {
6029 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6030 		    IWN_HW_IF_CONFIG_NIC_READY)
6031 			return 0;
6032 		DELAY(10);
6033 	}
6034 
6035 	/* Hardware not ready, force into ready state. */
6036 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6037 	for (ntries = 0; ntries < 15000; ntries++) {
6038 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6039 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6040 			break;
6041 		DELAY(10);
6042 	}
6043 	if (ntries == 15000)
6044 		return ETIMEDOUT;
6045 
6046 	/* Hardware should be ready now. */
6047 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6048 	for (ntries = 0; ntries < 5; ntries++) {
6049 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6050 		    IWN_HW_IF_CONFIG_NIC_READY)
6051 			return 0;
6052 		DELAY(10);
6053 	}
6054 	return ETIMEDOUT;
6055 }
6056 
6057 static int
6058 iwn_hw_init(struct iwn_softc *sc)
6059 {
6060 	const struct iwn_hal *hal = sc->sc_hal;
6061 	int error, chnl, qid;
6062 
6063 	/* Clear pending interrupts. */
6064 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6065 
6066 	error = iwn_apm_init(sc);
6067 	if (error != 0) {
6068 		device_printf(sc->sc_dev,
6069 		    "%s: could not power ON adapter, error %d\n",
6070 		    __func__, error);
6071 		return error;
6072 	}
6073 
6074 	/* Select VMAIN power source. */
6075 	error = iwn_nic_lock(sc);
6076 	if (error != 0)
6077 		return error;
6078 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6079 	iwn_nic_unlock(sc);
6080 
6081 	/* Perform adapter-specific initialization. */
6082 	error = hal->nic_config(sc);
6083 	if (error != 0)
6084 		return error;
6085 
6086 	/* Initialize RX ring. */
6087 	error = iwn_nic_lock(sc);
6088 	if (error != 0)
6089 		return error;
6090 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6091 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6092 	/* Set physical address of RX ring (256-byte aligned.) */
6093 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6094 	/* Set physical address of RX status (16-byte aligned.) */
6095 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6096 	/* Enable RX. */
6097 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6098 	    IWN_FH_RX_CONFIG_ENA           |
6099 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6100 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6101 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6102 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6103 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6104 	iwn_nic_unlock(sc);
6105 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6106 
6107 	error = iwn_nic_lock(sc);
6108 	if (error != 0)
6109 		return error;
6110 
6111 	/* Initialize TX scheduler. */
6112 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6113 
6114 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6115 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6116 
6117 	/* Initialize TX rings. */
6118 	for (qid = 0; qid < hal->ntxqs; qid++) {
6119 		struct iwn_tx_ring *txq = &sc->txq[qid];
6120 
6121 		/* Set physical address of TX ring (256-byte aligned.) */
6122 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6123 		    txq->desc_dma.paddr >> 8);
6124 	}
6125 	iwn_nic_unlock(sc);
6126 
6127 	/* Enable DMA channels. */
6128 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6129 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6130 		    IWN_FH_TX_CONFIG_DMA_ENA |
6131 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6132 	}
6133 
6134 	/* Clear "radio off" and "commands blocked" bits. */
6135 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6136 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6137 
6138 	/* Clear pending interrupts. */
6139 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6140 	/* Enable interrupt coalescing. */
6141 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6142 	/* Enable interrupts. */
6143 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6144 
6145 	/* _Really_ make sure "radio off" bit is cleared! */
6146 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6147 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6148 
6149 	error = hal->load_firmware(sc);
6150 	if (error != 0) {
6151 		device_printf(sc->sc_dev,
6152 		    "%s: could not load firmware, error %d\n",
6153 		    __func__, error);
6154 		return error;
6155 	}
6156 	/* Wait at most one second for firmware alive notification. */
6157 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
6158 	if (error != 0) {
6159 		device_printf(sc->sc_dev,
6160 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6161 		    __func__, error);
6162 		return error;
6163 	}
6164 	/* Do post-firmware initialization. */
6165 	return hal->post_alive(sc);
6166 }
6167 
6168 static void
6169 iwn_hw_stop(struct iwn_softc *sc)
6170 {
6171 	const struct iwn_hal *hal = sc->sc_hal;
6172 	uint32_t tmp;
6173 	int chnl, qid, ntries;
6174 
6175 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6176 
6177 	/* Disable interrupts. */
6178 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6179 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6180 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6181 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6182 
6183 	/* Make sure we no longer hold the NIC lock. */
6184 	iwn_nic_unlock(sc);
6185 
6186 	/* Stop TX scheduler. */
6187 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6188 
6189 	/* Stop all DMA channels. */
6190 	if (iwn_nic_lock(sc) == 0) {
6191 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6192 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6193 			for (ntries = 0; ntries < 200; ntries++) {
6194 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6195 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6196 				    IWN_FH_TX_STATUS_IDLE(chnl))
6197 					break;
6198 				DELAY(10);
6199 			}
6200 		}
6201 		iwn_nic_unlock(sc);
6202 	}
6203 
6204 	/* Stop RX ring. */
6205 	iwn_reset_rx_ring(sc, &sc->rxq);
6206 
6207 	/* Reset all TX rings. */
6208 	for (qid = 0; qid < hal->ntxqs; qid++)
6209 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6210 
6211 	if (iwn_nic_lock(sc) == 0) {
6212 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6213 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6214 		iwn_nic_unlock(sc);
6215 	}
6216 	DELAY(5);
6217 
6218 	/* Power OFF adapter. */
6219 	iwn_apm_stop(sc);
6220 }
6221 
6222 static void
6223 iwn_init_locked(struct iwn_softc *sc)
6224 {
6225 	struct ifnet *ifp = sc->sc_ifp;
6226 	int error;
6227 
6228 	IWN_LOCK_ASSERT(sc);
6229 
6230 	error = iwn_hw_prepare(sc);
6231 	if (error != 0) {
6232 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6233 		    __func__, error);
6234 		goto fail;
6235 	}
6236 
6237 	/* Initialize interrupt mask to default value. */
6238 	sc->int_mask = IWN_INT_MASK_DEF;
6239 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6240 
6241 	/* Check that the radio is not disabled by hardware switch. */
6242 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6243 		device_printf(sc->sc_dev,
6244 		    "radio is disabled by hardware switch\n");
6245 
6246 		/* Enable interrupts to get RF toggle notifications. */
6247 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6248 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6249 		return;
6250 	}
6251 
6252 	/* Read firmware images from the filesystem. */
6253 	error = iwn_read_firmware(sc);
6254 	if (error != 0) {
6255 		device_printf(sc->sc_dev,
6256 		    "%s: could not read firmware, error %d\n",
6257 		    __func__, error);
6258 		goto fail;
6259 	}
6260 
6261 	/* Initialize hardware and upload firmware. */
6262 	error = iwn_hw_init(sc);
6263 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6264 	sc->fw_fp = NULL;
6265 	if (error != 0) {
6266 		device_printf(sc->sc_dev,
6267 		    "%s: could not initialize hardware, error %d\n",
6268 		    __func__, error);
6269 		goto fail;
6270 	}
6271 
6272 	/* Configure adapter now that it is ready. */
6273 	error = iwn_config(sc);
6274 	if (error != 0) {
6275 		device_printf(sc->sc_dev,
6276 		    "%s: could not configure device, error %d\n",
6277 		    __func__, error);
6278 		goto fail;
6279 	}
6280 
6281 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6282 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6283 
6284 	return;
6285 
6286 fail:
6287 	iwn_stop_locked(sc);
6288 }
6289 
6290 static void
6291 iwn_init(void *arg)
6292 {
6293 	struct iwn_softc *sc = arg;
6294 	struct ifnet *ifp = sc->sc_ifp;
6295 	struct ieee80211com *ic = ifp->if_l2com;
6296 
6297 	IWN_LOCK(sc);
6298 	iwn_init_locked(sc);
6299 	IWN_UNLOCK(sc);
6300 
6301 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6302 		ieee80211_start_all(ic);
6303 }
6304 
6305 static void
6306 iwn_stop_locked(struct iwn_softc *sc)
6307 {
6308 	struct ifnet *ifp = sc->sc_ifp;
6309 
6310 	IWN_LOCK_ASSERT(sc);
6311 
6312 	sc->sc_tx_timer = 0;
6313 	callout_stop(&sc->sc_timer_to);
6314 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6315 
6316 	/* Power OFF hardware. */
6317 	iwn_hw_stop(sc);
6318 }
6319 
6320 static void
6321 iwn_stop(struct iwn_softc *sc)
6322 {
6323 	IWN_LOCK(sc);
6324 	iwn_stop_locked(sc);
6325 	IWN_UNLOCK(sc);
6326 }
6327 
6328 /*
6329  * Callback from net80211 to start a scan.
6330  */
6331 static void
6332 iwn_scan_start(struct ieee80211com *ic)
6333 {
6334 	struct ifnet *ifp = ic->ic_ifp;
6335 	struct iwn_softc *sc = ifp->if_softc;
6336 
6337 	IWN_LOCK(sc);
6338 	/* make the link LED blink while we're scanning */
6339 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6340 	IWN_UNLOCK(sc);
6341 }
6342 
6343 /*
6344  * Callback from net80211 to terminate a scan.
6345  */
6346 static void
6347 iwn_scan_end(struct ieee80211com *ic)
6348 {
6349 	struct ifnet *ifp = ic->ic_ifp;
6350 	struct iwn_softc *sc = ifp->if_softc;
6351 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6352 
6353 	IWN_LOCK(sc);
6354 	if (vap->iv_state == IEEE80211_S_RUN) {
6355 		/* Set link LED to ON status if we are associated */
6356 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6357 	}
6358 	IWN_UNLOCK(sc);
6359 }
6360 
6361 /*
6362  * Callback from net80211 to force a channel change.
6363  */
6364 static void
6365 iwn_set_channel(struct ieee80211com *ic)
6366 {
6367 	const struct ieee80211_channel *c = ic->ic_curchan;
6368 	struct ifnet *ifp = ic->ic_ifp;
6369 	struct iwn_softc *sc = ifp->if_softc;
6370 
6371 	IWN_LOCK(sc);
6372 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6373 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6374 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6375 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6376 	IWN_UNLOCK(sc);
6377 }
6378 
6379 /*
6380  * Callback from net80211 to start scanning of the current channel.
6381  */
6382 static void
6383 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6384 {
6385 	struct ieee80211vap *vap = ss->ss_vap;
6386 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6387 	int error;
6388 
6389 	IWN_LOCK(sc);
6390 	error = iwn_scan(sc);
6391 	IWN_UNLOCK(sc);
6392 	if (error != 0)
6393 		ieee80211_cancel_scan(vap);
6394 }
6395 
6396 /*
6397  * Callback from net80211 to handle the minimum dwell time being met.
6398  * The intent is to terminate the scan but we just let the firmware
6399  * notify us when it's finished as we have no safe way to abort it.
6400  */
6401 static void
6402 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6403 {
6404 	/* NB: don't try to abort scan; wait for firmware to finish */
6405 }
6406 
6407 static struct iwn_eeprom_chan *
6408 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6409 {
6410 	int i, j;
6411 
6412 	for (j = 0; j < 7; j++) {
6413 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6414 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6415 				return &sc->eeprom_channels[j][i];
6416 		}
6417 	}
6418 
6419 	return NULL;
6420 }
6421 
6422 /*
6423  * Enforce flags read from EEPROM.
6424  */
6425 static int
6426 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6427     int nchan, struct ieee80211_channel chans[])
6428 {
6429 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6430 	int i;
6431 
6432 	for (i = 0; i < nchan; i++) {
6433 		struct ieee80211_channel *c = &chans[i];
6434 		struct iwn_eeprom_chan *channel;
6435 
6436 		channel = iwn_find_eeprom_channel(sc, c);
6437 		if (channel == NULL) {
6438 			if_printf(ic->ic_ifp,
6439 			    "%s: invalid channel %u freq %u/0x%x\n",
6440 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6441 			return EINVAL;
6442 		}
6443 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6444 	}
6445 
6446 	return 0;
6447 }
6448 
6449 static void
6450 iwn_hw_reset(void *arg0, int pending)
6451 {
6452 	struct iwn_softc *sc = arg0;
6453 	struct ifnet *ifp = sc->sc_ifp;
6454 	struct ieee80211com *ic = ifp->if_l2com;
6455 
6456 	iwn_stop(sc);
6457 	iwn_init(sc);
6458 	ieee80211_notify_radio(ic, 1);
6459 }
6460 
6461 static void
6462 iwn_radio_on(void *arg0, int pending)
6463 {
6464 	struct iwn_softc *sc = arg0;
6465 	struct ifnet *ifp = sc->sc_ifp;
6466 	struct ieee80211com *ic = ifp->if_l2com;
6467 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6468 
6469 	if (vap != NULL) {
6470 		iwn_init(sc);
6471 		ieee80211_init(vap);
6472 	}
6473 }
6474 
6475 static void
6476 iwn_radio_off(void *arg0, int pending)
6477 {
6478 	struct iwn_softc *sc = arg0;
6479 	struct ifnet *ifp = sc->sc_ifp;
6480 	struct ieee80211com *ic = ifp->if_l2com;
6481 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6482 
6483 	iwn_stop(sc);
6484 	if (vap != NULL)
6485 		ieee80211_stop(vap);
6486 
6487 	/* Enable interrupts to get RF toggle notification. */
6488 	IWN_LOCK(sc);
6489 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6490 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6491 	IWN_UNLOCK(sc);
6492 }
6493 
6494 static void
6495 iwn_sysctlattach(struct iwn_softc *sc)
6496 {
6497 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6498 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6499 
6500 #ifdef IWN_DEBUG
6501 	sc->sc_debug = 0;
6502 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6503 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6504 #endif
6505 }
6506 
6507 static int
6508 iwn_shutdown(device_t dev)
6509 {
6510 	struct iwn_softc *sc = device_get_softc(dev);
6511 
6512 	iwn_stop(sc);
6513 	return 0;
6514 }
6515 
6516 static int
6517 iwn_suspend(device_t dev)
6518 {
6519 	struct iwn_softc *sc = device_get_softc(dev);
6520 	struct ifnet *ifp = sc->sc_ifp;
6521 	struct ieee80211com *ic = ifp->if_l2com;
6522 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6523 
6524 	iwn_stop(sc);
6525 	if (vap != NULL)
6526 		ieee80211_stop(vap);
6527 	return 0;
6528 }
6529 
6530 static int
6531 iwn_resume(device_t dev)
6532 {
6533 	struct iwn_softc *sc = device_get_softc(dev);
6534 	struct ifnet *ifp = sc->sc_ifp;
6535 	struct ieee80211com *ic = ifp->if_l2com;
6536 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6537 
6538 	/* Clear device-specific "PCI retry timeout" register (41h). */
6539 	pci_write_config(dev, 0x41, 0, 1);
6540 
6541 	if (ifp->if_flags & IFF_UP) {
6542 		iwn_init(sc);
6543 		if (vap != NULL)
6544 			ieee80211_init(vap);
6545 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6546 			iwn_start(ifp);
6547 	}
6548 	return 0;
6549 }
6550 
6551 #ifdef IWN_DEBUG
6552 static const char *
6553 iwn_intr_str(uint8_t cmd)
6554 {
6555 	switch (cmd) {
6556 	/* Notifications */
6557 	case IWN_UC_READY:		return "UC_READY";
6558 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6559 	case IWN_TX_DONE:		return "TX_DONE";
6560 	case IWN_START_SCAN:		return "START_SCAN";
6561 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6562 	case IWN_RX_STATISTICS:		return "RX_STATS";
6563 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6564 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6565 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6566 	case IWN_RX_PHY:		return "RX_PHY";
6567 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6568 	case IWN_RX_DONE:		return "RX_DONE";
6569 
6570 	/* Command Notifications */
6571 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6572 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6573 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6574 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6575 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6576 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6577 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6578 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6579 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6580 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6581 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6582 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6583 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6584 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6585 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6586 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6587 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6588 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6589 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6590 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6591 	}
6592 	return "UNKNOWN INTR NOTIF/CMD";
6593 }
6594 #endif /* IWN_DEBUG */
6595 
6596 static device_method_t iwn_methods[] = {
6597 	/* Device interface */
6598 	DEVMETHOD(device_probe,		iwn_probe),
6599 	DEVMETHOD(device_attach,	iwn_attach),
6600 	DEVMETHOD(device_detach,	iwn_detach),
6601 	DEVMETHOD(device_shutdown,	iwn_shutdown),
6602 	DEVMETHOD(device_suspend,	iwn_suspend),
6603 	DEVMETHOD(device_resume,	iwn_resume),
6604 	{ 0, 0 }
6605 };
6606 
6607 static driver_t iwn_driver = {
6608 	"iwn",
6609 	iwn_methods,
6610 	sizeof (struct iwn_softc)
6611 };
6612 static devclass_t iwn_devclass;
6613 
6614 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6615 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6616 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6617 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6618