xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 7447ca0eb235974642312b9555caec00b57d8fc1)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *, struct iwn_rx_data *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
214 		    uint8_t);
215 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
216 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
217 static void	iwn_notif_intr(struct iwn_softc *);
218 static void	iwn_wakeup_intr(struct iwn_softc *);
219 static void	iwn_rftoggle_intr(struct iwn_softc *);
220 static void	iwn_fatal_intr(struct iwn_softc *);
221 static void	iwn_intr(void *);
222 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
223 		    uint16_t);
224 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
225 		    uint16_t);
226 #ifdef notyet
227 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
228 #endif
229 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
230 		    struct ieee80211_node *);
231 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
232 		    struct ieee80211_node *,
233 		    const struct ieee80211_bpf_params *params);
234 static void	iwn_xmit_task(void *arg0, int pending);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
238 static void	iwn_scan_timeout(void *);
239 static void	iwn_watchdog(void *);
240 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
241 static void	iwn_parent(struct ieee80211com *);
242 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
243 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
244 		    int);
245 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
246 		    int);
247 static int	iwn_set_link_quality(struct iwn_softc *,
248 		    struct ieee80211_node *);
249 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
250 static int	iwn_updateedca(struct ieee80211com *);
251 static void	iwn_update_mcast(struct ieee80211com *);
252 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
253 static int	iwn_set_critical_temp(struct iwn_softc *);
254 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
255 static void	iwn4965_power_calibration(struct iwn_softc *, int);
256 static int	iwn4965_set_txpower(struct iwn_softc *,
257 		    struct ieee80211_channel *, int);
258 static int	iwn5000_set_txpower(struct iwn_softc *,
259 		    struct ieee80211_channel *, int);
260 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
263 static int	iwn4965_get_temperature(struct iwn_softc *);
264 static int	iwn5000_get_temperature(struct iwn_softc *);
265 static int	iwn_init_sensitivity(struct iwn_softc *);
266 static void	iwn_collect_noise(struct iwn_softc *,
267 		    const struct iwn_rx_general_stats *);
268 static int	iwn4965_init_gains(struct iwn_softc *);
269 static int	iwn5000_init_gains(struct iwn_softc *);
270 static int	iwn4965_set_gains(struct iwn_softc *);
271 static int	iwn5000_set_gains(struct iwn_softc *);
272 static void	iwn_tune_sensitivity(struct iwn_softc *,
273 		    const struct iwn_rx_stats *);
274 static void	iwn_save_stats_counters(struct iwn_softc *,
275 		    const struct iwn_stats *);
276 static int	iwn_send_sensitivity(struct iwn_softc *);
277 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
278 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
279 static int	iwn_send_btcoex(struct iwn_softc *);
280 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
281 static int	iwn5000_runtime_calib(struct iwn_softc *);
282 static int	iwn_config(struct iwn_softc *);
283 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
284 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
285 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
286 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
288 		    struct ieee80211_rx_ampdu *, int, int, int);
289 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
290 		    struct ieee80211_rx_ampdu *);
291 static int	iwn_addba_request(struct ieee80211_node *,
292 		    struct ieee80211_tx_ampdu *, int, int, int);
293 static int	iwn_addba_response(struct ieee80211_node *,
294 		    struct ieee80211_tx_ampdu *, int, int, int);
295 static int	iwn_ampdu_tx_start(struct ieee80211com *,
296 		    struct ieee80211_node *, uint8_t);
297 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *);
299 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
300 		    struct ieee80211_node *, int, uint8_t, uint16_t);
301 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
302 		    uint8_t, uint16_t);
303 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static int	iwn5000_query_calibration(struct iwn_softc *);
308 static int	iwn5000_send_calibration(struct iwn_softc *);
309 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
310 static int	iwn5000_crystal_calib(struct iwn_softc *);
311 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
313 static int	iwn4965_post_alive(struct iwn_softc *);
314 static int	iwn5000_post_alive(struct iwn_softc *);
315 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
316 		    int);
317 static int	iwn4965_load_firmware(struct iwn_softc *);
318 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
319 		    const uint8_t *, int);
320 static int	iwn5000_load_firmware(struct iwn_softc *);
321 static int	iwn_read_firmware_leg(struct iwn_softc *,
322 		    struct iwn_fw_info *);
323 static int	iwn_read_firmware_tlv(struct iwn_softc *,
324 		    struct iwn_fw_info *, uint16_t);
325 static int	iwn_read_firmware(struct iwn_softc *);
326 static void	iwn_unload_firmware(struct iwn_softc *);
327 static int	iwn_clock_wait(struct iwn_softc *);
328 static int	iwn_apm_init(struct iwn_softc *);
329 static void	iwn_apm_stop_master(struct iwn_softc *);
330 static void	iwn_apm_stop(struct iwn_softc *);
331 static int	iwn4965_nic_config(struct iwn_softc *);
332 static int	iwn5000_nic_config(struct iwn_softc *);
333 static int	iwn_hw_prepare(struct iwn_softc *);
334 static int	iwn_hw_init(struct iwn_softc *);
335 static void	iwn_hw_stop(struct iwn_softc *);
336 static void	iwn_radio_on(void *, int);
337 static void	iwn_radio_off(void *, int);
338 static void	iwn_panicked(void *, int);
339 static void	iwn_init_locked(struct iwn_softc *);
340 static void	iwn_init(struct iwn_softc *);
341 static void	iwn_stop_locked(struct iwn_softc *);
342 static void	iwn_stop(struct iwn_softc *);
343 static void	iwn_scan_start(struct ieee80211com *);
344 static void	iwn_scan_end(struct ieee80211com *);
345 static void	iwn_set_channel(struct ieee80211com *);
346 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
347 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
348 #ifdef	IWN_DEBUG
349 static char	*iwn_get_csr_string(int);
350 static void	iwn_debug_register(struct iwn_softc *);
351 #endif
352 
353 static device_method_t iwn_methods[] = {
354 	/* Device interface */
355 	DEVMETHOD(device_probe,		iwn_probe),
356 	DEVMETHOD(device_attach,	iwn_attach),
357 	DEVMETHOD(device_detach,	iwn_detach),
358 	DEVMETHOD(device_shutdown,	iwn_shutdown),
359 	DEVMETHOD(device_suspend,	iwn_suspend),
360 	DEVMETHOD(device_resume,	iwn_resume),
361 
362 	DEVMETHOD_END
363 };
364 
365 static driver_t iwn_driver = {
366 	"iwn",
367 	iwn_methods,
368 	sizeof(struct iwn_softc)
369 };
370 static devclass_t iwn_devclass;
371 
372 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
373 
374 MODULE_VERSION(iwn, 1);
375 
376 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
377 MODULE_DEPEND(iwn, pci, 1, 1, 1);
378 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
379 
380 static d_ioctl_t iwn_cdev_ioctl;
381 static d_open_t iwn_cdev_open;
382 static d_close_t iwn_cdev_close;
383 
384 static struct cdevsw iwn_cdevsw = {
385 	.d_version = D_VERSION,
386 	.d_flags = 0,
387 	.d_open = iwn_cdev_open,
388 	.d_close = iwn_cdev_close,
389 	.d_ioctl = iwn_cdev_ioctl,
390 	.d_name = "iwn",
391 };
392 
393 static int
394 iwn_probe(device_t dev)
395 {
396 	const struct iwn_ident *ident;
397 
398 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
399 		if (pci_get_vendor(dev) == ident->vendor &&
400 		    pci_get_device(dev) == ident->device) {
401 			device_set_desc(dev, ident->name);
402 			return (BUS_PROBE_DEFAULT);
403 		}
404 	}
405 	return ENXIO;
406 }
407 
408 static int
409 iwn_is_3stream_device(struct iwn_softc *sc)
410 {
411 	/* XXX for now only 5300, until the 5350 can be tested */
412 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
413 		return (1);
414 	return (0);
415 }
416 
417 static int
418 iwn_attach(device_t dev)
419 {
420 	struct iwn_softc *sc = device_get_softc(dev);
421 	struct ieee80211com *ic;
422 	int i, error, rid;
423 
424 	sc->sc_dev = dev;
425 
426 #ifdef	IWN_DEBUG
427 	error = resource_int_value(device_get_name(sc->sc_dev),
428 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
429 	if (error != 0)
430 		sc->sc_debug = 0;
431 #else
432 	sc->sc_debug = 0;
433 #endif
434 
435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
436 
437 	/*
438 	 * Get the offset of the PCI Express Capability Structure in PCI
439 	 * Configuration Space.
440 	 */
441 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
442 	if (error != 0) {
443 		device_printf(dev, "PCIe capability structure not found!\n");
444 		return error;
445 	}
446 
447 	/* Clear device-specific "PCI retry timeout" register (41h). */
448 	pci_write_config(dev, 0x41, 0, 1);
449 
450 	/* Enable bus-mastering. */
451 	pci_enable_busmaster(dev);
452 
453 	rid = PCIR_BAR(0);
454 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
455 	    RF_ACTIVE);
456 	if (sc->mem == NULL) {
457 		device_printf(dev, "can't map mem space\n");
458 		error = ENOMEM;
459 		return error;
460 	}
461 	sc->sc_st = rman_get_bustag(sc->mem);
462 	sc->sc_sh = rman_get_bushandle(sc->mem);
463 
464 	i = 1;
465 	rid = 0;
466 	if (pci_alloc_msi(dev, &i) == 0)
467 		rid = 1;
468 	/* Install interrupt handler. */
469 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
470 	    (rid != 0 ? 0 : RF_SHAREABLE));
471 	if (sc->irq == NULL) {
472 		device_printf(dev, "can't map interrupt\n");
473 		error = ENOMEM;
474 		goto fail;
475 	}
476 
477 	IWN_LOCK_INIT(sc);
478 
479 	/* Read hardware revision and attach. */
480 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
481 	    & IWN_HW_REV_TYPE_MASK;
482 	sc->subdevice_id = pci_get_subdevice(dev);
483 
484 	/*
485 	 * 4965 versus 5000 and later have different methods.
486 	 * Let's set those up first.
487 	 */
488 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
489 		error = iwn4965_attach(sc, pci_get_device(dev));
490 	else
491 		error = iwn5000_attach(sc, pci_get_device(dev));
492 	if (error != 0) {
493 		device_printf(dev, "could not attach device, error %d\n",
494 		    error);
495 		goto fail;
496 	}
497 
498 	/*
499 	 * Next, let's setup the various parameters of each NIC.
500 	 */
501 	error = iwn_config_specific(sc, pci_get_device(dev));
502 	if (error != 0) {
503 		device_printf(dev, "could not attach device, error %d\n",
504 		    error);
505 		goto fail;
506 	}
507 
508 	if ((error = iwn_hw_prepare(sc)) != 0) {
509 		device_printf(dev, "hardware not ready, error %d\n", error);
510 		goto fail;
511 	}
512 
513 	/* Allocate DMA memory for firmware transfers. */
514 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
515 		device_printf(dev,
516 		    "could not allocate memory for firmware, error %d\n",
517 		    error);
518 		goto fail;
519 	}
520 
521 	/* Allocate "Keep Warm" page. */
522 	if ((error = iwn_alloc_kw(sc)) != 0) {
523 		device_printf(dev,
524 		    "could not allocate keep warm page, error %d\n", error);
525 		goto fail;
526 	}
527 
528 	/* Allocate ICT table for 5000 Series. */
529 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
530 	    (error = iwn_alloc_ict(sc)) != 0) {
531 		device_printf(dev, "could not allocate ICT table, error %d\n",
532 		    error);
533 		goto fail;
534 	}
535 
536 	/* Allocate TX scheduler "rings". */
537 	if ((error = iwn_alloc_sched(sc)) != 0) {
538 		device_printf(dev,
539 		    "could not allocate TX scheduler rings, error %d\n", error);
540 		goto fail;
541 	}
542 
543 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
544 	for (i = 0; i < sc->ntxqs; i++) {
545 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
546 			device_printf(dev,
547 			    "could not allocate TX ring %d, error %d\n", i,
548 			    error);
549 			goto fail;
550 		}
551 	}
552 
553 	/* Allocate RX ring. */
554 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
555 		device_printf(dev, "could not allocate RX ring, error %d\n",
556 		    error);
557 		goto fail;
558 	}
559 
560 	/* Clear pending interrupts. */
561 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
562 
563 	ic = &sc->sc_ic;
564 	ic->ic_softc = sc;
565 	ic->ic_name = device_get_nameunit(dev);
566 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
567 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
568 
569 	/* Set device capabilities. */
570 	ic->ic_caps =
571 		  IEEE80211_C_STA		/* station mode supported */
572 		| IEEE80211_C_MONITOR		/* monitor mode supported */
573 #if 0
574 		| IEEE80211_C_BGSCAN		/* background scanning */
575 #endif
576 		| IEEE80211_C_TXPMGT		/* tx power management */
577 		| IEEE80211_C_SHSLOT		/* short slot time supported */
578 		| IEEE80211_C_WPA
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 #if 0
581 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
582 #endif
583 		| IEEE80211_C_WME		/* WME */
584 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
585 		;
586 
587 	/* Read MAC address, channels, etc from EEPROM. */
588 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
589 		device_printf(dev, "could not read EEPROM, error %d\n",
590 		    error);
591 		goto fail;
592 	}
593 
594 	/* Count the number of available chains. */
595 	sc->ntxchains =
596 	    ((sc->txchainmask >> 2) & 1) +
597 	    ((sc->txchainmask >> 1) & 1) +
598 	    ((sc->txchainmask >> 0) & 1);
599 	sc->nrxchains =
600 	    ((sc->rxchainmask >> 2) & 1) +
601 	    ((sc->rxchainmask >> 1) & 1) +
602 	    ((sc->rxchainmask >> 0) & 1);
603 	if (bootverbose) {
604 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
605 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
606 		    ic->ic_macaddr, ":");
607 	}
608 
609 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
610 		ic->ic_rxstream = sc->nrxchains;
611 		ic->ic_txstream = sc->ntxchains;
612 
613 		/*
614 		 * Some of the 3 antenna devices (ie, the 4965) only supports
615 		 * 2x2 operation.  So correct the number of streams if
616 		 * it's not a 3-stream device.
617 		 */
618 		if (! iwn_is_3stream_device(sc)) {
619 			if (ic->ic_rxstream > 2)
620 				ic->ic_rxstream = 2;
621 			if (ic->ic_txstream > 2)
622 				ic->ic_txstream = 2;
623 		}
624 
625 		ic->ic_htcaps =
626 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
627 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
628 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
629 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
630 #ifdef notyet
631 			| IEEE80211_HTCAP_GREENFIELD
632 #if IWN_RBUF_SIZE == 8192
633 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
634 #else
635 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
636 #endif
637 #endif
638 			/* s/w capabilities */
639 			| IEEE80211_HTC_HT		/* HT operation */
640 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
641 #ifdef notyet
642 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
643 #endif
644 			;
645 	}
646 
647 	ieee80211_ifattach(ic);
648 	ic->ic_vap_create = iwn_vap_create;
649 	ic->ic_ioctl = iwn_ioctl;
650 	ic->ic_parent = iwn_parent;
651 	ic->ic_vap_delete = iwn_vap_delete;
652 	ic->ic_transmit = iwn_transmit;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
656 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
658 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
659 	sc->sc_addba_request = ic->ic_addba_request;
660 	ic->ic_addba_request = iwn_addba_request;
661 	sc->sc_addba_response = ic->ic_addba_response;
662 	ic->ic_addba_response = iwn_addba_response;
663 	sc->sc_addba_stop = ic->ic_addba_stop;
664 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
665 	ic->ic_newassoc = iwn_newassoc;
666 	ic->ic_wme.wme_update = iwn_updateedca;
667 	ic->ic_update_mcast = iwn_update_mcast;
668 	ic->ic_scan_start = iwn_scan_start;
669 	ic->ic_scan_end = iwn_scan_end;
670 	ic->ic_set_channel = iwn_set_channel;
671 	ic->ic_scan_curchan = iwn_scan_curchan;
672 	ic->ic_scan_mindwell = iwn_scan_mindwell;
673 	ic->ic_getradiocaps = iwn_getradiocaps;
674 	ic->ic_setregdomain = iwn_setregdomain;
675 
676 	iwn_radiotap_attach(sc);
677 
678 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
679 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
680 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
681 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
682 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
683 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
684 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
685 
686 	mbufq_init(&sc->sc_xmit_queue, 1024);
687 
688 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
689 	    taskqueue_thread_enqueue, &sc->sc_tq);
690 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
691 	if (error != 0) {
692 		device_printf(dev, "can't start threads, error %d\n", error);
693 		goto fail;
694 	}
695 
696 	iwn_sysctlattach(sc);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
702 	    NULL, iwn_intr, sc, &sc->sc_ih);
703 	if (error != 0) {
704 		device_printf(dev, "can't establish interrupt, error %d\n",
705 		    error);
706 		goto fail;
707 	}
708 
709 #if 0
710 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
711 	    __func__,
712 	    sizeof(struct iwn_stats),
713 	    sizeof(struct iwn_stats_bt));
714 #endif
715 
716 	if (bootverbose)
717 		ieee80211_announce(ic);
718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
719 
720 	/* Add debug ioctl right at the end */
721 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
722 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
723 	if (sc->sc_cdev == NULL) {
724 		device_printf(dev, "failed to create debug character device\n");
725 	} else {
726 		sc->sc_cdev->si_drv1 = sc;
727 	}
728 	return 0;
729 fail:
730 	iwn_detach(dev);
731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
732 	return error;
733 }
734 
735 /*
736  * Define specific configuration based on device id and subdevice id
737  * pid : PCI device id
738  */
739 static int
740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
741 {
742 
743 	switch (pid) {
744 /* 4965 series */
745 	case IWN_DID_4965_1:
746 	case IWN_DID_4965_2:
747 	case IWN_DID_4965_3:
748 	case IWN_DID_4965_4:
749 		sc->base_params = &iwn4965_base_params;
750 		sc->limits = &iwn4965_sensitivity_limits;
751 		sc->fwname = "iwn4965fw";
752 		/* Override chains masks, ROM is known to be broken. */
753 		sc->txchainmask = IWN_ANT_AB;
754 		sc->rxchainmask = IWN_ANT_ABC;
755 		/* Enable normal btcoex */
756 		sc->sc_flags |= IWN_FLAG_BTCOEX;
757 		break;
758 /* 1000 Series */
759 	case IWN_DID_1000_1:
760 	case IWN_DID_1000_2:
761 		switch(sc->subdevice_id) {
762 			case	IWN_SDID_1000_1:
763 			case	IWN_SDID_1000_2:
764 			case	IWN_SDID_1000_3:
765 			case	IWN_SDID_1000_4:
766 			case	IWN_SDID_1000_5:
767 			case	IWN_SDID_1000_6:
768 			case	IWN_SDID_1000_7:
769 			case	IWN_SDID_1000_8:
770 			case	IWN_SDID_1000_9:
771 			case	IWN_SDID_1000_10:
772 			case	IWN_SDID_1000_11:
773 			case	IWN_SDID_1000_12:
774 				sc->limits = &iwn1000_sensitivity_limits;
775 				sc->base_params = &iwn1000_base_params;
776 				sc->fwname = "iwn1000fw";
777 				break;
778 			default:
779 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
780 				    "0x%04x rev %d not supported (subdevice)\n", pid,
781 				    sc->subdevice_id,sc->hw_type);
782 				return ENOTSUP;
783 		}
784 		break;
785 /* 6x00 Series */
786 	case IWN_DID_6x00_2:
787 	case IWN_DID_6x00_4:
788 	case IWN_DID_6x00_1:
789 	case IWN_DID_6x00_3:
790 		sc->fwname = "iwn6000fw";
791 		sc->limits = &iwn6000_sensitivity_limits;
792 		switch(sc->subdevice_id) {
793 			case IWN_SDID_6x00_1:
794 			case IWN_SDID_6x00_2:
795 			case IWN_SDID_6x00_8:
796 				//iwl6000_3agn_cfg
797 				sc->base_params = &iwn_6000_base_params;
798 				break;
799 			case IWN_SDID_6x00_3:
800 			case IWN_SDID_6x00_6:
801 			case IWN_SDID_6x00_9:
802 				////iwl6000i_2agn
803 			case IWN_SDID_6x00_4:
804 			case IWN_SDID_6x00_7:
805 			case IWN_SDID_6x00_10:
806 				//iwl6000i_2abg_cfg
807 			case IWN_SDID_6x00_5:
808 				//iwl6000i_2bg_cfg
809 				sc->base_params = &iwn_6000i_base_params;
810 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
811 				sc->txchainmask = IWN_ANT_BC;
812 				sc->rxchainmask = IWN_ANT_BC;
813 				break;
814 			default:
815 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
816 				    "0x%04x rev %d not supported (subdevice)\n", pid,
817 				    sc->subdevice_id,sc->hw_type);
818 				return ENOTSUP;
819 		}
820 		break;
821 /* 6x05 Series */
822 	case IWN_DID_6x05_1:
823 	case IWN_DID_6x05_2:
824 		switch(sc->subdevice_id) {
825 			case IWN_SDID_6x05_1:
826 			case IWN_SDID_6x05_4:
827 			case IWN_SDID_6x05_6:
828 				//iwl6005_2agn_cfg
829 			case IWN_SDID_6x05_2:
830 			case IWN_SDID_6x05_5:
831 			case IWN_SDID_6x05_7:
832 				//iwl6005_2abg_cfg
833 			case IWN_SDID_6x05_3:
834 				//iwl6005_2bg_cfg
835 			case IWN_SDID_6x05_8:
836 			case IWN_SDID_6x05_9:
837 				//iwl6005_2agn_sff_cfg
838 			case IWN_SDID_6x05_10:
839 				//iwl6005_2agn_d_cfg
840 			case IWN_SDID_6x05_11:
841 				//iwl6005_2agn_mow1_cfg
842 			case IWN_SDID_6x05_12:
843 				//iwl6005_2agn_mow2_cfg
844 				sc->fwname = "iwn6000g2afw";
845 				sc->limits = &iwn6000_sensitivity_limits;
846 				sc->base_params = &iwn_6000g2_base_params;
847 				break;
848 			default:
849 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
850 				    "0x%04x rev %d not supported (subdevice)\n", pid,
851 				    sc->subdevice_id,sc->hw_type);
852 				return ENOTSUP;
853 		}
854 		break;
855 /* 6x35 Series */
856 	case IWN_DID_6035_1:
857 	case IWN_DID_6035_2:
858 		switch(sc->subdevice_id) {
859 			case IWN_SDID_6035_1:
860 			case IWN_SDID_6035_2:
861 			case IWN_SDID_6035_3:
862 			case IWN_SDID_6035_4:
863 				sc->fwname = "iwn6000g2bfw";
864 				sc->limits = &iwn6235_sensitivity_limits;
865 				sc->base_params = &iwn_6235_base_params;
866 				break;
867 			default:
868 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
869 				    "0x%04x rev %d not supported (subdevice)\n", pid,
870 				    sc->subdevice_id,sc->hw_type);
871 				return ENOTSUP;
872 		}
873 		break;
874 /* 6x50 WiFi/WiMax Series */
875 	case IWN_DID_6050_1:
876 	case IWN_DID_6050_2:
877 		switch(sc->subdevice_id) {
878 			case IWN_SDID_6050_1:
879 			case IWN_SDID_6050_3:
880 			case IWN_SDID_6050_5:
881 				//iwl6050_2agn_cfg
882 			case IWN_SDID_6050_2:
883 			case IWN_SDID_6050_4:
884 			case IWN_SDID_6050_6:
885 				//iwl6050_2abg_cfg
886 				sc->fwname = "iwn6050fw";
887 				sc->txchainmask = IWN_ANT_AB;
888 				sc->rxchainmask = IWN_ANT_AB;
889 				sc->limits = &iwn6000_sensitivity_limits;
890 				sc->base_params = &iwn_6050_base_params;
891 				break;
892 			default:
893 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
894 				    "0x%04x rev %d not supported (subdevice)\n", pid,
895 				    sc->subdevice_id,sc->hw_type);
896 				return ENOTSUP;
897 		}
898 		break;
899 /* 6150 WiFi/WiMax Series */
900 	case IWN_DID_6150_1:
901 	case IWN_DID_6150_2:
902 		switch(sc->subdevice_id) {
903 			case IWN_SDID_6150_1:
904 			case IWN_SDID_6150_3:
905 			case IWN_SDID_6150_5:
906 				// iwl6150_bgn_cfg
907 			case IWN_SDID_6150_2:
908 			case IWN_SDID_6150_4:
909 			case IWN_SDID_6150_6:
910 				//iwl6150_bg_cfg
911 				sc->fwname = "iwn6050fw";
912 				sc->limits = &iwn6000_sensitivity_limits;
913 				sc->base_params = &iwn_6150_base_params;
914 				break;
915 			default:
916 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
917 				    "0x%04x rev %d not supported (subdevice)\n", pid,
918 				    sc->subdevice_id,sc->hw_type);
919 				return ENOTSUP;
920 		}
921 		break;
922 /* 6030 Series and 1030 Series */
923 	case IWN_DID_x030_1:
924 	case IWN_DID_x030_2:
925 	case IWN_DID_x030_3:
926 	case IWN_DID_x030_4:
927 		switch(sc->subdevice_id) {
928 			case IWN_SDID_x030_1:
929 			case IWN_SDID_x030_3:
930 			case IWN_SDID_x030_5:
931 			// iwl1030_bgn_cfg
932 			case IWN_SDID_x030_2:
933 			case IWN_SDID_x030_4:
934 			case IWN_SDID_x030_6:
935 			//iwl1030_bg_cfg
936 			case IWN_SDID_x030_7:
937 			case IWN_SDID_x030_10:
938 			case IWN_SDID_x030_14:
939 			//iwl6030_2agn_cfg
940 			case IWN_SDID_x030_8:
941 			case IWN_SDID_x030_11:
942 			case IWN_SDID_x030_15:
943 			// iwl6030_2bgn_cfg
944 			case IWN_SDID_x030_9:
945 			case IWN_SDID_x030_12:
946 			case IWN_SDID_x030_16:
947 			// iwl6030_2abg_cfg
948 			case IWN_SDID_x030_13:
949 			//iwl6030_2bg_cfg
950 				sc->fwname = "iwn6000g2bfw";
951 				sc->limits = &iwn6000_sensitivity_limits;
952 				sc->base_params = &iwn_6000g2b_base_params;
953 				break;
954 			default:
955 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
956 				    "0x%04x rev %d not supported (subdevice)\n", pid,
957 				    sc->subdevice_id,sc->hw_type);
958 				return ENOTSUP;
959 		}
960 		break;
961 /* 130 Series WiFi */
962 /* XXX: This series will need adjustment for rate.
963  * see rx_with_siso_diversity in linux kernel
964  */
965 	case IWN_DID_130_1:
966 	case IWN_DID_130_2:
967 		switch(sc->subdevice_id) {
968 			case IWN_SDID_130_1:
969 			case IWN_SDID_130_3:
970 			case IWN_SDID_130_5:
971 			//iwl130_bgn_cfg
972 			case IWN_SDID_130_2:
973 			case IWN_SDID_130_4:
974 			case IWN_SDID_130_6:
975 			//iwl130_bg_cfg
976 				sc->fwname = "iwn6000g2bfw";
977 				sc->limits = &iwn6000_sensitivity_limits;
978 				sc->base_params = &iwn_6000g2b_base_params;
979 				break;
980 			default:
981 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
982 				    "0x%04x rev %d not supported (subdevice)\n", pid,
983 				    sc->subdevice_id,sc->hw_type);
984 				return ENOTSUP;
985 		}
986 		break;
987 /* 100 Series WiFi */
988 	case IWN_DID_100_1:
989 	case IWN_DID_100_2:
990 		switch(sc->subdevice_id) {
991 			case IWN_SDID_100_1:
992 			case IWN_SDID_100_2:
993 			case IWN_SDID_100_3:
994 			case IWN_SDID_100_4:
995 			case IWN_SDID_100_5:
996 			case IWN_SDID_100_6:
997 				sc->limits = &iwn1000_sensitivity_limits;
998 				sc->base_params = &iwn1000_base_params;
999 				sc->fwname = "iwn100fw";
1000 				break;
1001 			default:
1002 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1003 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1004 				    sc->subdevice_id,sc->hw_type);
1005 				return ENOTSUP;
1006 		}
1007 		break;
1008 
1009 /* 105 Series */
1010 /* XXX: This series will need adjustment for rate.
1011  * see rx_with_siso_diversity in linux kernel
1012  */
1013 	case IWN_DID_105_1:
1014 	case IWN_DID_105_2:
1015 		switch(sc->subdevice_id) {
1016 			case IWN_SDID_105_1:
1017 			case IWN_SDID_105_2:
1018 			case IWN_SDID_105_3:
1019 			//iwl105_bgn_cfg
1020 			case IWN_SDID_105_4:
1021 			//iwl105_bgn_d_cfg
1022 				sc->limits = &iwn2030_sensitivity_limits;
1023 				sc->base_params = &iwn2000_base_params;
1024 				sc->fwname = "iwn105fw";
1025 				break;
1026 			default:
1027 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1028 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1029 				    sc->subdevice_id,sc->hw_type);
1030 				return ENOTSUP;
1031 		}
1032 		break;
1033 
1034 /* 135 Series */
1035 /* XXX: This series will need adjustment for rate.
1036  * see rx_with_siso_diversity in linux kernel
1037  */
1038 	case IWN_DID_135_1:
1039 	case IWN_DID_135_2:
1040 		switch(sc->subdevice_id) {
1041 			case IWN_SDID_135_1:
1042 			case IWN_SDID_135_2:
1043 			case IWN_SDID_135_3:
1044 				sc->limits = &iwn2030_sensitivity_limits;
1045 				sc->base_params = &iwn2030_base_params;
1046 				sc->fwname = "iwn135fw";
1047 				break;
1048 			default:
1049 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1050 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1051 				    sc->subdevice_id,sc->hw_type);
1052 				return ENOTSUP;
1053 		}
1054 		break;
1055 
1056 /* 2x00 Series */
1057 	case IWN_DID_2x00_1:
1058 	case IWN_DID_2x00_2:
1059 		switch(sc->subdevice_id) {
1060 			case IWN_SDID_2x00_1:
1061 			case IWN_SDID_2x00_2:
1062 			case IWN_SDID_2x00_3:
1063 			//iwl2000_2bgn_cfg
1064 			case IWN_SDID_2x00_4:
1065 			//iwl2000_2bgn_d_cfg
1066 				sc->limits = &iwn2030_sensitivity_limits;
1067 				sc->base_params = &iwn2000_base_params;
1068 				sc->fwname = "iwn2000fw";
1069 				break;
1070 			default:
1071 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1072 				    "0x%04x rev %d not supported (subdevice) \n",
1073 				    pid, sc->subdevice_id, sc->hw_type);
1074 				return ENOTSUP;
1075 		}
1076 		break;
1077 /* 2x30 Series */
1078 	case IWN_DID_2x30_1:
1079 	case IWN_DID_2x30_2:
1080 		switch(sc->subdevice_id) {
1081 			case IWN_SDID_2x30_1:
1082 			case IWN_SDID_2x30_3:
1083 			case IWN_SDID_2x30_5:
1084 			//iwl100_bgn_cfg
1085 			case IWN_SDID_2x30_2:
1086 			case IWN_SDID_2x30_4:
1087 			case IWN_SDID_2x30_6:
1088 			//iwl100_bg_cfg
1089 				sc->limits = &iwn2030_sensitivity_limits;
1090 				sc->base_params = &iwn2030_base_params;
1091 				sc->fwname = "iwn2030fw";
1092 				break;
1093 			default:
1094 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1095 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1096 				    sc->subdevice_id,sc->hw_type);
1097 				return ENOTSUP;
1098 		}
1099 		break;
1100 /* 5x00 Series */
1101 	case IWN_DID_5x00_1:
1102 	case IWN_DID_5x00_2:
1103 	case IWN_DID_5x00_3:
1104 	case IWN_DID_5x00_4:
1105 		sc->limits = &iwn5000_sensitivity_limits;
1106 		sc->base_params = &iwn5000_base_params;
1107 		sc->fwname = "iwn5000fw";
1108 		switch(sc->subdevice_id) {
1109 			case IWN_SDID_5x00_1:
1110 			case IWN_SDID_5x00_2:
1111 			case IWN_SDID_5x00_3:
1112 			case IWN_SDID_5x00_4:
1113 			case IWN_SDID_5x00_9:
1114 			case IWN_SDID_5x00_10:
1115 			case IWN_SDID_5x00_11:
1116 			case IWN_SDID_5x00_12:
1117 			case IWN_SDID_5x00_17:
1118 			case IWN_SDID_5x00_18:
1119 			case IWN_SDID_5x00_19:
1120 			case IWN_SDID_5x00_20:
1121 			//iwl5100_agn_cfg
1122 				sc->txchainmask = IWN_ANT_B;
1123 				sc->rxchainmask = IWN_ANT_AB;
1124 				break;
1125 			case IWN_SDID_5x00_5:
1126 			case IWN_SDID_5x00_6:
1127 			case IWN_SDID_5x00_13:
1128 			case IWN_SDID_5x00_14:
1129 			case IWN_SDID_5x00_21:
1130 			case IWN_SDID_5x00_22:
1131 			//iwl5100_bgn_cfg
1132 				sc->txchainmask = IWN_ANT_B;
1133 				sc->rxchainmask = IWN_ANT_AB;
1134 				break;
1135 			case IWN_SDID_5x00_7:
1136 			case IWN_SDID_5x00_8:
1137 			case IWN_SDID_5x00_15:
1138 			case IWN_SDID_5x00_16:
1139 			case IWN_SDID_5x00_23:
1140 			case IWN_SDID_5x00_24:
1141 			//iwl5100_abg_cfg
1142 				sc->txchainmask = IWN_ANT_B;
1143 				sc->rxchainmask = IWN_ANT_AB;
1144 				break;
1145 			case IWN_SDID_5x00_25:
1146 			case IWN_SDID_5x00_26:
1147 			case IWN_SDID_5x00_27:
1148 			case IWN_SDID_5x00_28:
1149 			case IWN_SDID_5x00_29:
1150 			case IWN_SDID_5x00_30:
1151 			case IWN_SDID_5x00_31:
1152 			case IWN_SDID_5x00_32:
1153 			case IWN_SDID_5x00_33:
1154 			case IWN_SDID_5x00_34:
1155 			case IWN_SDID_5x00_35:
1156 			case IWN_SDID_5x00_36:
1157 			//iwl5300_agn_cfg
1158 				sc->txchainmask = IWN_ANT_ABC;
1159 				sc->rxchainmask = IWN_ANT_ABC;
1160 				break;
1161 			default:
1162 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1163 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1164 				    sc->subdevice_id,sc->hw_type);
1165 				return ENOTSUP;
1166 		}
1167 		break;
1168 /* 5x50 Series */
1169 	case IWN_DID_5x50_1:
1170 	case IWN_DID_5x50_2:
1171 	case IWN_DID_5x50_3:
1172 	case IWN_DID_5x50_4:
1173 		sc->limits = &iwn5000_sensitivity_limits;
1174 		sc->base_params = &iwn5000_base_params;
1175 		sc->fwname = "iwn5000fw";
1176 		switch(sc->subdevice_id) {
1177 			case IWN_SDID_5x50_1:
1178 			case IWN_SDID_5x50_2:
1179 			case IWN_SDID_5x50_3:
1180 			//iwl5350_agn_cfg
1181 				sc->limits = &iwn5000_sensitivity_limits;
1182 				sc->base_params = &iwn5000_base_params;
1183 				sc->fwname = "iwn5000fw";
1184 				break;
1185 			case IWN_SDID_5x50_4:
1186 			case IWN_SDID_5x50_5:
1187 			case IWN_SDID_5x50_8:
1188 			case IWN_SDID_5x50_9:
1189 			case IWN_SDID_5x50_10:
1190 			case IWN_SDID_5x50_11:
1191 			//iwl5150_agn_cfg
1192 			case IWN_SDID_5x50_6:
1193 			case IWN_SDID_5x50_7:
1194 			case IWN_SDID_5x50_12:
1195 			case IWN_SDID_5x50_13:
1196 			//iwl5150_abg_cfg
1197 				sc->limits = &iwn5000_sensitivity_limits;
1198 				sc->fwname = "iwn5150fw";
1199 				sc->base_params = &iwn_5x50_base_params;
1200 				break;
1201 			default:
1202 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1203 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1204 				    sc->subdevice_id,sc->hw_type);
1205 				return ENOTSUP;
1206 		}
1207 		break;
1208 	default:
1209 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1210 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1211 		     sc->hw_type);
1212 		return ENOTSUP;
1213 	}
1214 	return 0;
1215 }
1216 
1217 static int
1218 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1219 {
1220 	struct iwn_ops *ops = &sc->ops;
1221 
1222 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1223 	ops->load_firmware = iwn4965_load_firmware;
1224 	ops->read_eeprom = iwn4965_read_eeprom;
1225 	ops->post_alive = iwn4965_post_alive;
1226 	ops->nic_config = iwn4965_nic_config;
1227 	ops->update_sched = iwn4965_update_sched;
1228 	ops->get_temperature = iwn4965_get_temperature;
1229 	ops->get_rssi = iwn4965_get_rssi;
1230 	ops->set_txpower = iwn4965_set_txpower;
1231 	ops->init_gains = iwn4965_init_gains;
1232 	ops->set_gains = iwn4965_set_gains;
1233 	ops->add_node = iwn4965_add_node;
1234 	ops->tx_done = iwn4965_tx_done;
1235 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1236 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1237 	sc->ntxqs = IWN4965_NTXQUEUES;
1238 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1239 	sc->ndmachnls = IWN4965_NDMACHNLS;
1240 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1241 	sc->rxonsz = IWN4965_RXONSZ;
1242 	sc->schedsz = IWN4965_SCHEDSZ;
1243 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1244 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1245 	sc->fwsz = IWN4965_FWSZ;
1246 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1247 	sc->limits = &iwn4965_sensitivity_limits;
1248 	sc->fwname = "iwn4965fw";
1249 	/* Override chains masks, ROM is known to be broken. */
1250 	sc->txchainmask = IWN_ANT_AB;
1251 	sc->rxchainmask = IWN_ANT_ABC;
1252 	/* Enable normal btcoex */
1253 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1254 
1255 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1256 
1257 	return 0;
1258 }
1259 
1260 static int
1261 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1262 {
1263 	struct iwn_ops *ops = &sc->ops;
1264 
1265 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1266 
1267 	ops->load_firmware = iwn5000_load_firmware;
1268 	ops->read_eeprom = iwn5000_read_eeprom;
1269 	ops->post_alive = iwn5000_post_alive;
1270 	ops->nic_config = iwn5000_nic_config;
1271 	ops->update_sched = iwn5000_update_sched;
1272 	ops->get_temperature = iwn5000_get_temperature;
1273 	ops->get_rssi = iwn5000_get_rssi;
1274 	ops->set_txpower = iwn5000_set_txpower;
1275 	ops->init_gains = iwn5000_init_gains;
1276 	ops->set_gains = iwn5000_set_gains;
1277 	ops->add_node = iwn5000_add_node;
1278 	ops->tx_done = iwn5000_tx_done;
1279 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1280 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1281 	sc->ntxqs = IWN5000_NTXQUEUES;
1282 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1283 	sc->ndmachnls = IWN5000_NDMACHNLS;
1284 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1285 	sc->rxonsz = IWN5000_RXONSZ;
1286 	sc->schedsz = IWN5000_SCHEDSZ;
1287 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1288 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1289 	sc->fwsz = IWN5000_FWSZ;
1290 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1291 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1292 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Attach the interface to 802.11 radiotap.
1299  */
1300 static void
1301 iwn_radiotap_attach(struct iwn_softc *sc)
1302 {
1303 
1304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1305 	ieee80211_radiotap_attach(&sc->sc_ic,
1306 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1307 		IWN_TX_RADIOTAP_PRESENT,
1308 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1309 		IWN_RX_RADIOTAP_PRESENT);
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1311 }
1312 
1313 static void
1314 iwn_sysctlattach(struct iwn_softc *sc)
1315 {
1316 #ifdef	IWN_DEBUG
1317 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1318 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1319 
1320 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1321 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1322 		"control debugging printfs");
1323 #endif
1324 }
1325 
1326 static struct ieee80211vap *
1327 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1328     enum ieee80211_opmode opmode, int flags,
1329     const uint8_t bssid[IEEE80211_ADDR_LEN],
1330     const uint8_t mac[IEEE80211_ADDR_LEN])
1331 {
1332 	struct iwn_softc *sc = ic->ic_softc;
1333 	struct iwn_vap *ivp;
1334 	struct ieee80211vap *vap;
1335 
1336 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1337 		return NULL;
1338 
1339 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1340 	vap = &ivp->iv_vap;
1341 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1342 	ivp->ctx = IWN_RXON_BSS_CTX;
1343 	vap->iv_bmissthreshold = 10;		/* override default */
1344 	/* Override with driver methods. */
1345 	ivp->iv_newstate = vap->iv_newstate;
1346 	vap->iv_newstate = iwn_newstate;
1347 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1348 
1349 	ieee80211_ratectl_init(vap);
1350 	/* Complete setup. */
1351 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1352 	    mac);
1353 	ic->ic_opmode = opmode;
1354 	return vap;
1355 }
1356 
1357 static void
1358 iwn_vap_delete(struct ieee80211vap *vap)
1359 {
1360 	struct iwn_vap *ivp = IWN_VAP(vap);
1361 
1362 	ieee80211_ratectl_deinit(vap);
1363 	ieee80211_vap_detach(vap);
1364 	free(ivp, M_80211_VAP);
1365 }
1366 
1367 static void
1368 iwn_xmit_queue_drain(struct iwn_softc *sc)
1369 {
1370 	struct mbuf *m;
1371 	struct ieee80211_node *ni;
1372 
1373 	IWN_LOCK_ASSERT(sc);
1374 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1375 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1376 		ieee80211_free_node(ni);
1377 		m_freem(m);
1378 	}
1379 }
1380 
1381 static int
1382 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1383 {
1384 
1385 	IWN_LOCK_ASSERT(sc);
1386 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1387 }
1388 
1389 static int
1390 iwn_detach(device_t dev)
1391 {
1392 	struct iwn_softc *sc = device_get_softc(dev);
1393 	int qid;
1394 
1395 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1396 
1397 	if (sc->sc_ic.ic_softc != NULL) {
1398 		/* Free the mbuf queue and node references */
1399 		IWN_LOCK(sc);
1400 		iwn_xmit_queue_drain(sc);
1401 		IWN_UNLOCK(sc);
1402 
1403 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1404 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1405 		iwn_stop(sc);
1406 
1407 		taskqueue_drain_all(sc->sc_tq);
1408 		taskqueue_free(sc->sc_tq);
1409 
1410 		callout_drain(&sc->watchdog_to);
1411 		callout_drain(&sc->scan_timeout);
1412 		callout_drain(&sc->calib_to);
1413 		ieee80211_ifdetach(&sc->sc_ic);
1414 	}
1415 
1416 	/* Uninstall interrupt handler. */
1417 	if (sc->irq != NULL) {
1418 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1419 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1420 		    sc->irq);
1421 		pci_release_msi(dev);
1422 	}
1423 
1424 	/* Free DMA resources. */
1425 	iwn_free_rx_ring(sc, &sc->rxq);
1426 	for (qid = 0; qid < sc->ntxqs; qid++)
1427 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1428 	iwn_free_sched(sc);
1429 	iwn_free_kw(sc);
1430 	if (sc->ict != NULL)
1431 		iwn_free_ict(sc);
1432 	iwn_free_fwmem(sc);
1433 
1434 	if (sc->mem != NULL)
1435 		bus_release_resource(dev, SYS_RES_MEMORY,
1436 		    rman_get_rid(sc->mem), sc->mem);
1437 
1438 	if (sc->sc_cdev) {
1439 		destroy_dev(sc->sc_cdev);
1440 		sc->sc_cdev = NULL;
1441 	}
1442 
1443 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1444 	IWN_LOCK_DESTROY(sc);
1445 	return 0;
1446 }
1447 
1448 static int
1449 iwn_shutdown(device_t dev)
1450 {
1451 	struct iwn_softc *sc = device_get_softc(dev);
1452 
1453 	iwn_stop(sc);
1454 	return 0;
1455 }
1456 
1457 static int
1458 iwn_suspend(device_t dev)
1459 {
1460 	struct iwn_softc *sc = device_get_softc(dev);
1461 
1462 	ieee80211_suspend_all(&sc->sc_ic);
1463 	return 0;
1464 }
1465 
1466 static int
1467 iwn_resume(device_t dev)
1468 {
1469 	struct iwn_softc *sc = device_get_softc(dev);
1470 
1471 	/* Clear device-specific "PCI retry timeout" register (41h). */
1472 	pci_write_config(dev, 0x41, 0, 1);
1473 
1474 	ieee80211_resume_all(&sc->sc_ic);
1475 	return 0;
1476 }
1477 
1478 static int
1479 iwn_nic_lock(struct iwn_softc *sc)
1480 {
1481 	int ntries;
1482 
1483 	/* Request exclusive access to NIC. */
1484 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1485 
1486 	/* Spin until we actually get the lock. */
1487 	for (ntries = 0; ntries < 1000; ntries++) {
1488 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1489 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1490 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1491 			return 0;
1492 		DELAY(10);
1493 	}
1494 	return ETIMEDOUT;
1495 }
1496 
1497 static __inline void
1498 iwn_nic_unlock(struct iwn_softc *sc)
1499 {
1500 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1501 }
1502 
1503 static __inline uint32_t
1504 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1505 {
1506 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1507 	IWN_BARRIER_READ_WRITE(sc);
1508 	return IWN_READ(sc, IWN_PRPH_RDATA);
1509 }
1510 
1511 static __inline void
1512 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1513 {
1514 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1515 	IWN_BARRIER_WRITE(sc);
1516 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1517 }
1518 
1519 static __inline void
1520 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1521 {
1522 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1523 }
1524 
1525 static __inline void
1526 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1527 {
1528 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1529 }
1530 
1531 static __inline void
1532 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1533     const uint32_t *data, int count)
1534 {
1535 	for (; count > 0; count--, data++, addr += 4)
1536 		iwn_prph_write(sc, addr, *data);
1537 }
1538 
1539 static __inline uint32_t
1540 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1541 {
1542 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1543 	IWN_BARRIER_READ_WRITE(sc);
1544 	return IWN_READ(sc, IWN_MEM_RDATA);
1545 }
1546 
1547 static __inline void
1548 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1549 {
1550 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1551 	IWN_BARRIER_WRITE(sc);
1552 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1553 }
1554 
1555 static __inline void
1556 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1557 {
1558 	uint32_t tmp;
1559 
1560 	tmp = iwn_mem_read(sc, addr & ~3);
1561 	if (addr & 3)
1562 		tmp = (tmp & 0x0000ffff) | data << 16;
1563 	else
1564 		tmp = (tmp & 0xffff0000) | data;
1565 	iwn_mem_write(sc, addr & ~3, tmp);
1566 }
1567 
1568 static __inline void
1569 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1570     int count)
1571 {
1572 	for (; count > 0; count--, addr += 4)
1573 		*data++ = iwn_mem_read(sc, addr);
1574 }
1575 
1576 static __inline void
1577 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1578     int count)
1579 {
1580 	for (; count > 0; count--, addr += 4)
1581 		iwn_mem_write(sc, addr, val);
1582 }
1583 
1584 static int
1585 iwn_eeprom_lock(struct iwn_softc *sc)
1586 {
1587 	int i, ntries;
1588 
1589 	for (i = 0; i < 100; i++) {
1590 		/* Request exclusive access to EEPROM. */
1591 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1592 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1593 
1594 		/* Spin until we actually get the lock. */
1595 		for (ntries = 0; ntries < 100; ntries++) {
1596 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1597 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1598 				return 0;
1599 			DELAY(10);
1600 		}
1601 	}
1602 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1603 	return ETIMEDOUT;
1604 }
1605 
1606 static __inline void
1607 iwn_eeprom_unlock(struct iwn_softc *sc)
1608 {
1609 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1610 }
1611 
1612 /*
1613  * Initialize access by host to One Time Programmable ROM.
1614  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1615  */
1616 static int
1617 iwn_init_otprom(struct iwn_softc *sc)
1618 {
1619 	uint16_t prev, base, next;
1620 	int count, error;
1621 
1622 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1623 
1624 	/* Wait for clock stabilization before accessing prph. */
1625 	if ((error = iwn_clock_wait(sc)) != 0)
1626 		return error;
1627 
1628 	if ((error = iwn_nic_lock(sc)) != 0)
1629 		return error;
1630 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1631 	DELAY(5);
1632 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1633 	iwn_nic_unlock(sc);
1634 
1635 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1636 	if (sc->base_params->shadow_ram_support) {
1637 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1638 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1639 	}
1640 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1641 	/* Clear ECC status. */
1642 	IWN_SETBITS(sc, IWN_OTP_GP,
1643 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1644 
1645 	/*
1646 	 * Find the block before last block (contains the EEPROM image)
1647 	 * for HW without OTP shadow RAM.
1648 	 */
1649 	if (! sc->base_params->shadow_ram_support) {
1650 		/* Switch to absolute addressing mode. */
1651 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1652 		base = prev = 0;
1653 		for (count = 0; count < sc->base_params->max_ll_items;
1654 		    count++) {
1655 			error = iwn_read_prom_data(sc, base, &next, 2);
1656 			if (error != 0)
1657 				return error;
1658 			if (next == 0)	/* End of linked-list. */
1659 				break;
1660 			prev = base;
1661 			base = le16toh(next);
1662 		}
1663 		if (count == 0 || count == sc->base_params->max_ll_items)
1664 			return EIO;
1665 		/* Skip "next" word. */
1666 		sc->prom_base = prev + 1;
1667 	}
1668 
1669 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1670 
1671 	return 0;
1672 }
1673 
1674 static int
1675 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1676 {
1677 	uint8_t *out = data;
1678 	uint32_t val, tmp;
1679 	int ntries;
1680 
1681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1682 
1683 	addr += sc->prom_base;
1684 	for (; count > 0; count -= 2, addr++) {
1685 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1686 		for (ntries = 0; ntries < 10; ntries++) {
1687 			val = IWN_READ(sc, IWN_EEPROM);
1688 			if (val & IWN_EEPROM_READ_VALID)
1689 				break;
1690 			DELAY(5);
1691 		}
1692 		if (ntries == 10) {
1693 			device_printf(sc->sc_dev,
1694 			    "timeout reading ROM at 0x%x\n", addr);
1695 			return ETIMEDOUT;
1696 		}
1697 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1698 			/* OTPROM, check for ECC errors. */
1699 			tmp = IWN_READ(sc, IWN_OTP_GP);
1700 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1701 				device_printf(sc->sc_dev,
1702 				    "OTPROM ECC error at 0x%x\n", addr);
1703 				return EIO;
1704 			}
1705 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1706 				/* Correctable ECC error, clear bit. */
1707 				IWN_SETBITS(sc, IWN_OTP_GP,
1708 				    IWN_OTP_GP_ECC_CORR_STTS);
1709 			}
1710 		}
1711 		*out++ = val >> 16;
1712 		if (count > 1)
1713 			*out++ = val >> 24;
1714 	}
1715 
1716 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1717 
1718 	return 0;
1719 }
1720 
1721 static void
1722 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1723 {
1724 	if (error != 0)
1725 		return;
1726 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1727 	*(bus_addr_t *)arg = segs[0].ds_addr;
1728 }
1729 
1730 static int
1731 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1732     void **kvap, bus_size_t size, bus_size_t alignment)
1733 {
1734 	int error;
1735 
1736 	dma->tag = NULL;
1737 	dma->size = size;
1738 
1739 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1740 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1741 	    1, size, 0, NULL, NULL, &dma->tag);
1742 	if (error != 0)
1743 		goto fail;
1744 
1745 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1746 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1747 	if (error != 0)
1748 		goto fail;
1749 
1750 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1751 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1752 	if (error != 0)
1753 		goto fail;
1754 
1755 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1756 
1757 	if (kvap != NULL)
1758 		*kvap = dma->vaddr;
1759 
1760 	return 0;
1761 
1762 fail:	iwn_dma_contig_free(dma);
1763 	return error;
1764 }
1765 
1766 static void
1767 iwn_dma_contig_free(struct iwn_dma_info *dma)
1768 {
1769 	if (dma->vaddr != NULL) {
1770 		bus_dmamap_sync(dma->tag, dma->map,
1771 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1772 		bus_dmamap_unload(dma->tag, dma->map);
1773 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1774 		dma->vaddr = NULL;
1775 	}
1776 	if (dma->tag != NULL) {
1777 		bus_dma_tag_destroy(dma->tag);
1778 		dma->tag = NULL;
1779 	}
1780 }
1781 
1782 static int
1783 iwn_alloc_sched(struct iwn_softc *sc)
1784 {
1785 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1786 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1787 	    sc->schedsz, 1024);
1788 }
1789 
1790 static void
1791 iwn_free_sched(struct iwn_softc *sc)
1792 {
1793 	iwn_dma_contig_free(&sc->sched_dma);
1794 }
1795 
1796 static int
1797 iwn_alloc_kw(struct iwn_softc *sc)
1798 {
1799 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1800 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1801 }
1802 
1803 static void
1804 iwn_free_kw(struct iwn_softc *sc)
1805 {
1806 	iwn_dma_contig_free(&sc->kw_dma);
1807 }
1808 
1809 static int
1810 iwn_alloc_ict(struct iwn_softc *sc)
1811 {
1812 	/* ICT table must be aligned on a 4KB boundary. */
1813 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1814 	    IWN_ICT_SIZE, 4096);
1815 }
1816 
1817 static void
1818 iwn_free_ict(struct iwn_softc *sc)
1819 {
1820 	iwn_dma_contig_free(&sc->ict_dma);
1821 }
1822 
1823 static int
1824 iwn_alloc_fwmem(struct iwn_softc *sc)
1825 {
1826 	/* Must be aligned on a 16-byte boundary. */
1827 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1828 }
1829 
1830 static void
1831 iwn_free_fwmem(struct iwn_softc *sc)
1832 {
1833 	iwn_dma_contig_free(&sc->fw_dma);
1834 }
1835 
1836 static int
1837 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1838 {
1839 	bus_size_t size;
1840 	int i, error;
1841 
1842 	ring->cur = 0;
1843 
1844 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1845 
1846 	/* Allocate RX descriptors (256-byte aligned). */
1847 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1848 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1849 	    size, 256);
1850 	if (error != 0) {
1851 		device_printf(sc->sc_dev,
1852 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1853 		    __func__, error);
1854 		goto fail;
1855 	}
1856 
1857 	/* Allocate RX status area (16-byte aligned). */
1858 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1859 	    sizeof (struct iwn_rx_status), 16);
1860 	if (error != 0) {
1861 		device_printf(sc->sc_dev,
1862 		    "%s: could not allocate RX status DMA memory, error %d\n",
1863 		    __func__, error);
1864 		goto fail;
1865 	}
1866 
1867 	/* Create RX buffer DMA tag. */
1868 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1869 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1870 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1871 	if (error != 0) {
1872 		device_printf(sc->sc_dev,
1873 		    "%s: could not create RX buf DMA tag, error %d\n",
1874 		    __func__, error);
1875 		goto fail;
1876 	}
1877 
1878 	/*
1879 	 * Allocate and map RX buffers.
1880 	 */
1881 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1882 		struct iwn_rx_data *data = &ring->data[i];
1883 		bus_addr_t paddr;
1884 
1885 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1886 		if (error != 0) {
1887 			device_printf(sc->sc_dev,
1888 			    "%s: could not create RX buf DMA map, error %d\n",
1889 			    __func__, error);
1890 			goto fail;
1891 		}
1892 
1893 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1894 		    IWN_RBUF_SIZE);
1895 		if (data->m == NULL) {
1896 			device_printf(sc->sc_dev,
1897 			    "%s: could not allocate RX mbuf\n", __func__);
1898 			error = ENOBUFS;
1899 			goto fail;
1900 		}
1901 
1902 		error = bus_dmamap_load(ring->data_dmat, data->map,
1903 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1904 		    &paddr, BUS_DMA_NOWAIT);
1905 		if (error != 0 && error != EFBIG) {
1906 			device_printf(sc->sc_dev,
1907 			    "%s: can't map mbuf, error %d\n", __func__,
1908 			    error);
1909 			goto fail;
1910 		}
1911 
1912 		/* Set physical address of RX buffer (256-byte aligned). */
1913 		ring->desc[i] = htole32(paddr >> 8);
1914 	}
1915 
1916 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1917 	    BUS_DMASYNC_PREWRITE);
1918 
1919 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1920 
1921 	return 0;
1922 
1923 fail:	iwn_free_rx_ring(sc, ring);
1924 
1925 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1926 
1927 	return error;
1928 }
1929 
1930 static void
1931 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1932 {
1933 	int ntries;
1934 
1935 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1936 
1937 	if (iwn_nic_lock(sc) == 0) {
1938 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1939 		for (ntries = 0; ntries < 1000; ntries++) {
1940 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1941 			    IWN_FH_RX_STATUS_IDLE)
1942 				break;
1943 			DELAY(10);
1944 		}
1945 		iwn_nic_unlock(sc);
1946 	}
1947 	ring->cur = 0;
1948 	sc->last_rx_valid = 0;
1949 }
1950 
1951 static void
1952 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1953 {
1954 	int i;
1955 
1956 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1957 
1958 	iwn_dma_contig_free(&ring->desc_dma);
1959 	iwn_dma_contig_free(&ring->stat_dma);
1960 
1961 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1962 		struct iwn_rx_data *data = &ring->data[i];
1963 
1964 		if (data->m != NULL) {
1965 			bus_dmamap_sync(ring->data_dmat, data->map,
1966 			    BUS_DMASYNC_POSTREAD);
1967 			bus_dmamap_unload(ring->data_dmat, data->map);
1968 			m_freem(data->m);
1969 			data->m = NULL;
1970 		}
1971 		if (data->map != NULL)
1972 			bus_dmamap_destroy(ring->data_dmat, data->map);
1973 	}
1974 	if (ring->data_dmat != NULL) {
1975 		bus_dma_tag_destroy(ring->data_dmat);
1976 		ring->data_dmat = NULL;
1977 	}
1978 }
1979 
1980 static int
1981 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1982 {
1983 	bus_addr_t paddr;
1984 	bus_size_t size;
1985 	int i, error;
1986 
1987 	ring->qid = qid;
1988 	ring->queued = 0;
1989 	ring->cur = 0;
1990 
1991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1992 
1993 	/* Allocate TX descriptors (256-byte aligned). */
1994 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1995 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1996 	    size, 256);
1997 	if (error != 0) {
1998 		device_printf(sc->sc_dev,
1999 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2000 		    __func__, error);
2001 		goto fail;
2002 	}
2003 
2004 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2005 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2006 	    size, 4);
2007 	if (error != 0) {
2008 		device_printf(sc->sc_dev,
2009 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2010 		    __func__, error);
2011 		goto fail;
2012 	}
2013 
2014 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2015 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2016 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2017 	if (error != 0) {
2018 		device_printf(sc->sc_dev,
2019 		    "%s: could not create TX buf DMA tag, error %d\n",
2020 		    __func__, error);
2021 		goto fail;
2022 	}
2023 
2024 	paddr = ring->cmd_dma.paddr;
2025 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2026 		struct iwn_tx_data *data = &ring->data[i];
2027 
2028 		data->cmd_paddr = paddr;
2029 		data->scratch_paddr = paddr + 12;
2030 		paddr += sizeof (struct iwn_tx_cmd);
2031 
2032 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2033 		if (error != 0) {
2034 			device_printf(sc->sc_dev,
2035 			    "%s: could not create TX buf DMA map, error %d\n",
2036 			    __func__, error);
2037 			goto fail;
2038 		}
2039 	}
2040 
2041 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2042 
2043 	return 0;
2044 
2045 fail:	iwn_free_tx_ring(sc, ring);
2046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2047 	return error;
2048 }
2049 
2050 static void
2051 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2052 {
2053 	int i;
2054 
2055 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2056 
2057 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2058 		struct iwn_tx_data *data = &ring->data[i];
2059 
2060 		if (data->m != NULL) {
2061 			bus_dmamap_sync(ring->data_dmat, data->map,
2062 			    BUS_DMASYNC_POSTWRITE);
2063 			bus_dmamap_unload(ring->data_dmat, data->map);
2064 			m_freem(data->m);
2065 			data->m = NULL;
2066 		}
2067 		if (data->ni != NULL) {
2068 			ieee80211_free_node(data->ni);
2069 			data->ni = NULL;
2070 		}
2071 	}
2072 	/* Clear TX descriptors. */
2073 	memset(ring->desc, 0, ring->desc_dma.size);
2074 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2075 	    BUS_DMASYNC_PREWRITE);
2076 	sc->qfullmsk &= ~(1 << ring->qid);
2077 	ring->queued = 0;
2078 	ring->cur = 0;
2079 }
2080 
2081 static void
2082 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2083 {
2084 	int i;
2085 
2086 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2087 
2088 	iwn_dma_contig_free(&ring->desc_dma);
2089 	iwn_dma_contig_free(&ring->cmd_dma);
2090 
2091 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2092 		struct iwn_tx_data *data = &ring->data[i];
2093 
2094 		if (data->m != NULL) {
2095 			bus_dmamap_sync(ring->data_dmat, data->map,
2096 			    BUS_DMASYNC_POSTWRITE);
2097 			bus_dmamap_unload(ring->data_dmat, data->map);
2098 			m_freem(data->m);
2099 		}
2100 		if (data->map != NULL)
2101 			bus_dmamap_destroy(ring->data_dmat, data->map);
2102 	}
2103 	if (ring->data_dmat != NULL) {
2104 		bus_dma_tag_destroy(ring->data_dmat);
2105 		ring->data_dmat = NULL;
2106 	}
2107 }
2108 
2109 static void
2110 iwn5000_ict_reset(struct iwn_softc *sc)
2111 {
2112 	/* Disable interrupts. */
2113 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2114 
2115 	/* Reset ICT table. */
2116 	memset(sc->ict, 0, IWN_ICT_SIZE);
2117 	sc->ict_cur = 0;
2118 
2119 	/* Set physical address of ICT table (4KB aligned). */
2120 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2121 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2122 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2123 
2124 	/* Enable periodic RX interrupt. */
2125 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2126 	/* Switch to ICT interrupt mode in driver. */
2127 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2128 
2129 	/* Re-enable interrupts. */
2130 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2131 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2132 }
2133 
2134 static int
2135 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2136 {
2137 	struct iwn_ops *ops = &sc->ops;
2138 	uint16_t val;
2139 	int error;
2140 
2141 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2142 
2143 	/* Check whether adapter has an EEPROM or an OTPROM. */
2144 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2145 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2146 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2147 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2148 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2149 
2150 	/* Adapter has to be powered on for EEPROM access to work. */
2151 	if ((error = iwn_apm_init(sc)) != 0) {
2152 		device_printf(sc->sc_dev,
2153 		    "%s: could not power ON adapter, error %d\n", __func__,
2154 		    error);
2155 		return error;
2156 	}
2157 
2158 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2159 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2160 		return EIO;
2161 	}
2162 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2163 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2164 		    __func__, error);
2165 		return error;
2166 	}
2167 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2168 		if ((error = iwn_init_otprom(sc)) != 0) {
2169 			device_printf(sc->sc_dev,
2170 			    "%s: could not initialize OTPROM, error %d\n",
2171 			    __func__, error);
2172 			return error;
2173 		}
2174 	}
2175 
2176 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2177 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2178 	/* Check if HT support is bonded out. */
2179 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2180 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2181 
2182 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2183 	sc->rfcfg = le16toh(val);
2184 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2185 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2186 	if (sc->txchainmask == 0)
2187 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2188 	if (sc->rxchainmask == 0)
2189 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2190 
2191 	/* Read MAC address. */
2192 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2193 
2194 	/* Read adapter-specific information from EEPROM. */
2195 	ops->read_eeprom(sc);
2196 
2197 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2198 
2199 	iwn_eeprom_unlock(sc);
2200 
2201 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2202 
2203 	return 0;
2204 }
2205 
2206 static void
2207 iwn4965_read_eeprom(struct iwn_softc *sc)
2208 {
2209 	uint32_t addr;
2210 	uint16_t val;
2211 	int i;
2212 
2213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2214 
2215 	/* Read regulatory domain (4 ASCII characters). */
2216 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2217 
2218 	/* Read the list of authorized channels (20MHz & 40MHz). */
2219 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2220 		addr = iwn4965_regulatory_bands[i];
2221 		iwn_read_eeprom_channels(sc, i, addr);
2222 	}
2223 
2224 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2225 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2226 	sc->maxpwr2GHz = val & 0xff;
2227 	sc->maxpwr5GHz = val >> 8;
2228 	/* Check that EEPROM values are within valid range. */
2229 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2230 		sc->maxpwr5GHz = 38;
2231 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2232 		sc->maxpwr2GHz = 38;
2233 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2234 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2235 
2236 	/* Read samples for each TX power group. */
2237 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2238 	    sizeof sc->bands);
2239 
2240 	/* Read voltage at which samples were taken. */
2241 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2242 	sc->eeprom_voltage = (int16_t)le16toh(val);
2243 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2244 	    sc->eeprom_voltage);
2245 
2246 #ifdef IWN_DEBUG
2247 	/* Print samples. */
2248 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2249 		for (i = 0; i < IWN_NBANDS - 1; i++)
2250 			iwn4965_print_power_group(sc, i);
2251 	}
2252 #endif
2253 
2254 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2255 }
2256 
2257 #ifdef IWN_DEBUG
2258 static void
2259 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2260 {
2261 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2262 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2263 	int j, c;
2264 
2265 	printf("===band %d===\n", i);
2266 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2267 	printf("chan1 num=%d\n", chans[0].num);
2268 	for (c = 0; c < 2; c++) {
2269 		for (j = 0; j < IWN_NSAMPLES; j++) {
2270 			printf("chain %d, sample %d: temp=%d gain=%d "
2271 			    "power=%d pa_det=%d\n", c, j,
2272 			    chans[0].samples[c][j].temp,
2273 			    chans[0].samples[c][j].gain,
2274 			    chans[0].samples[c][j].power,
2275 			    chans[0].samples[c][j].pa_det);
2276 		}
2277 	}
2278 	printf("chan2 num=%d\n", chans[1].num);
2279 	for (c = 0; c < 2; c++) {
2280 		for (j = 0; j < IWN_NSAMPLES; j++) {
2281 			printf("chain %d, sample %d: temp=%d gain=%d "
2282 			    "power=%d pa_det=%d\n", c, j,
2283 			    chans[1].samples[c][j].temp,
2284 			    chans[1].samples[c][j].gain,
2285 			    chans[1].samples[c][j].power,
2286 			    chans[1].samples[c][j].pa_det);
2287 		}
2288 	}
2289 }
2290 #endif
2291 
2292 static void
2293 iwn5000_read_eeprom(struct iwn_softc *sc)
2294 {
2295 	struct iwn5000_eeprom_calib_hdr hdr;
2296 	int32_t volt;
2297 	uint32_t base, addr;
2298 	uint16_t val;
2299 	int i;
2300 
2301 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2302 
2303 	/* Read regulatory domain (4 ASCII characters). */
2304 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2305 	base = le16toh(val);
2306 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2307 	    sc->eeprom_domain, 4);
2308 
2309 	/* Read the list of authorized channels (20MHz & 40MHz). */
2310 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2311 		addr =  base + sc->base_params->regulatory_bands[i];
2312 		iwn_read_eeprom_channels(sc, i, addr);
2313 	}
2314 
2315 	/* Read enhanced TX power information for 6000 Series. */
2316 	if (sc->base_params->enhanced_TX_power)
2317 		iwn_read_eeprom_enhinfo(sc);
2318 
2319 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2320 	base = le16toh(val);
2321 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2322 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2323 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2324 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2325 	sc->calib_ver = hdr.version;
2326 
2327 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2328 		sc->eeprom_voltage = le16toh(hdr.volt);
2329 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2330 		sc->eeprom_temp_high=le16toh(val);
2331 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2332 		sc->eeprom_temp = le16toh(val);
2333 	}
2334 
2335 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2336 		/* Compute temperature offset. */
2337 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2338 		sc->eeprom_temp = le16toh(val);
2339 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2340 		volt = le16toh(val);
2341 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2342 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2343 		    sc->eeprom_temp, volt, sc->temp_off);
2344 	} else {
2345 		/* Read crystal calibration. */
2346 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2347 		    &sc->eeprom_crystal, sizeof (uint32_t));
2348 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2349 		    le32toh(sc->eeprom_crystal));
2350 	}
2351 
2352 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2353 
2354 }
2355 
2356 /*
2357  * Translate EEPROM flags to net80211.
2358  */
2359 static uint32_t
2360 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2361 {
2362 	uint32_t nflags;
2363 
2364 	nflags = 0;
2365 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2366 		nflags |= IEEE80211_CHAN_PASSIVE;
2367 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2368 		nflags |= IEEE80211_CHAN_NOADHOC;
2369 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2370 		nflags |= IEEE80211_CHAN_DFS;
2371 		/* XXX apparently IBSS may still be marked */
2372 		nflags |= IEEE80211_CHAN_NOADHOC;
2373 	}
2374 
2375 	return nflags;
2376 }
2377 
2378 static void
2379 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2380     struct ieee80211_channel chans[])
2381 {
2382 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2383 	const struct iwn_chan_band *band = &iwn_bands[n];
2384 	uint8_t bands[IEEE80211_MODE_BYTES];
2385 	uint8_t chan;
2386 	int i, error, nflags;
2387 
2388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2389 
2390 	memset(bands, 0, sizeof(bands));
2391 	if (n == 0) {
2392 		setbit(bands, IEEE80211_MODE_11B);
2393 		setbit(bands, IEEE80211_MODE_11G);
2394 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2395 			setbit(bands, IEEE80211_MODE_11NG);
2396 	} else {
2397 		setbit(bands, IEEE80211_MODE_11A);
2398 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2399 			setbit(bands, IEEE80211_MODE_11NA);
2400 	}
2401 
2402 	for (i = 0; i < band->nchan; i++) {
2403 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2404 			DPRINTF(sc, IWN_DEBUG_RESET,
2405 			    "skip chan %d flags 0x%x maxpwr %d\n",
2406 			    band->chan[i], channels[i].flags,
2407 			    channels[i].maxpwr);
2408 			continue;
2409 		}
2410 
2411 		chan = band->chan[i];
2412 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2413 		error = ieee80211_add_channel(chans, maxchans, nchans,
2414 		    chan, 0, channels[i].maxpwr, nflags, bands);
2415 		if (error != 0)
2416 			break;
2417 
2418 		/* Save maximum allowed TX power for this channel. */
2419 		/* XXX wrong */
2420 		sc->maxpwr[chan] = channels[i].maxpwr;
2421 
2422 		DPRINTF(sc, IWN_DEBUG_RESET,
2423 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2424 		    channels[i].flags, channels[i].maxpwr);
2425 	}
2426 
2427 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2428 
2429 }
2430 
2431 static void
2432 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2433     struct ieee80211_channel chans[])
2434 {
2435 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2436 	const struct iwn_chan_band *band = &iwn_bands[n];
2437 	uint8_t chan;
2438 	int i, error, nflags;
2439 
2440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2441 
2442 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2443 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2444 		return;
2445 	}
2446 
2447 	for (i = 0; i < band->nchan; i++) {
2448 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2449 			DPRINTF(sc, IWN_DEBUG_RESET,
2450 			    "skip chan %d flags 0x%x maxpwr %d\n",
2451 			    band->chan[i], channels[i].flags,
2452 			    channels[i].maxpwr);
2453 			continue;
2454 		}
2455 
2456 		chan = band->chan[i];
2457 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2458 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2459 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2460 		    chan, channels[i].maxpwr, nflags);
2461 		switch (error) {
2462 		case EINVAL:
2463 			device_printf(sc->sc_dev,
2464 			    "%s: no entry for channel %d\n", __func__, chan);
2465 			continue;
2466 		case ENOENT:
2467 			DPRINTF(sc, IWN_DEBUG_RESET,
2468 			    "%s: skip chan %d, extension channel not found\n",
2469 			    __func__, chan);
2470 			continue;
2471 		case ENOBUFS:
2472 			device_printf(sc->sc_dev,
2473 			    "%s: channel table is full!\n", __func__);
2474 			break;
2475 		case 0:
2476 			DPRINTF(sc, IWN_DEBUG_RESET,
2477 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2478 			    chan, channels[i].flags, channels[i].maxpwr);
2479 			/* FALLTHROUGH */
2480 		default:
2481 			break;
2482 		}
2483 	}
2484 
2485 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2486 
2487 }
2488 
2489 static void
2490 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2491 {
2492 	struct ieee80211com *ic = &sc->sc_ic;
2493 
2494 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2495 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2496 
2497 	if (n < 5) {
2498 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2499 		    ic->ic_channels);
2500 	} else {
2501 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2502 		    ic->ic_channels);
2503 	}
2504 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2505 }
2506 
2507 static struct iwn_eeprom_chan *
2508 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2509 {
2510 	int band, chan, i, j;
2511 
2512 	if (IEEE80211_IS_CHAN_HT40(c)) {
2513 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2514 		if (IEEE80211_IS_CHAN_HT40D(c))
2515 			chan = c->ic_extieee;
2516 		else
2517 			chan = c->ic_ieee;
2518 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2519 			if (iwn_bands[band].chan[i] == chan)
2520 				return &sc->eeprom_channels[band][i];
2521 		}
2522 	} else {
2523 		for (j = 0; j < 5; j++) {
2524 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2525 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2526 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2527 					return &sc->eeprom_channels[j][i];
2528 			}
2529 		}
2530 	}
2531 	return NULL;
2532 }
2533 
2534 static void
2535 iwn_getradiocaps(struct ieee80211com *ic,
2536     int maxchans, int *nchans, struct ieee80211_channel chans[])
2537 {
2538 	struct iwn_softc *sc = ic->ic_softc;
2539 	int i;
2540 
2541 	/* Parse the list of authorized channels. */
2542 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2543 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2544 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2545 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2546 }
2547 
2548 /*
2549  * Enforce flags read from EEPROM.
2550  */
2551 static int
2552 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2553     int nchan, struct ieee80211_channel chans[])
2554 {
2555 	struct iwn_softc *sc = ic->ic_softc;
2556 	int i;
2557 
2558 	for (i = 0; i < nchan; i++) {
2559 		struct ieee80211_channel *c = &chans[i];
2560 		struct iwn_eeprom_chan *channel;
2561 
2562 		channel = iwn_find_eeprom_channel(sc, c);
2563 		if (channel == NULL) {
2564 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2565 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2566 			return EINVAL;
2567 		}
2568 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static void
2575 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2576 {
2577 	struct iwn_eeprom_enhinfo enhinfo[35];
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 	struct ieee80211_channel *c;
2580 	uint16_t val, base;
2581 	int8_t maxpwr;
2582 	uint8_t flags;
2583 	int i, j;
2584 
2585 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2586 
2587 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2588 	base = le16toh(val);
2589 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2590 	    enhinfo, sizeof enhinfo);
2591 
2592 	for (i = 0; i < nitems(enhinfo); i++) {
2593 		flags = enhinfo[i].flags;
2594 		if (!(flags & IWN_ENHINFO_VALID))
2595 			continue;	/* Skip invalid entries. */
2596 
2597 		maxpwr = 0;
2598 		if (sc->txchainmask & IWN_ANT_A)
2599 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2600 		if (sc->txchainmask & IWN_ANT_B)
2601 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2602 		if (sc->txchainmask & IWN_ANT_C)
2603 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2604 		if (sc->ntxchains == 2)
2605 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2606 		else if (sc->ntxchains == 3)
2607 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2608 
2609 		for (j = 0; j < ic->ic_nchans; j++) {
2610 			c = &ic->ic_channels[j];
2611 			if ((flags & IWN_ENHINFO_5GHZ)) {
2612 				if (!IEEE80211_IS_CHAN_A(c))
2613 					continue;
2614 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2615 				if (!IEEE80211_IS_CHAN_G(c))
2616 					continue;
2617 			} else if (!IEEE80211_IS_CHAN_B(c))
2618 				continue;
2619 			if ((flags & IWN_ENHINFO_HT40)) {
2620 				if (!IEEE80211_IS_CHAN_HT40(c))
2621 					continue;
2622 			} else {
2623 				if (IEEE80211_IS_CHAN_HT40(c))
2624 					continue;
2625 			}
2626 			if (enhinfo[i].chan != 0 &&
2627 			    enhinfo[i].chan != c->ic_ieee)
2628 				continue;
2629 
2630 			DPRINTF(sc, IWN_DEBUG_RESET,
2631 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2632 			    c->ic_flags, maxpwr / 2);
2633 			c->ic_maxregpower = maxpwr / 2;
2634 			c->ic_maxpower = maxpwr;
2635 		}
2636 	}
2637 
2638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2639 
2640 }
2641 
2642 static struct ieee80211_node *
2643 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2644 {
2645 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2646 }
2647 
2648 static __inline int
2649 rate2plcp(int rate)
2650 {
2651 	switch (rate & 0xff) {
2652 	case 12:	return 0xd;
2653 	case 18:	return 0xf;
2654 	case 24:	return 0x5;
2655 	case 36:	return 0x7;
2656 	case 48:	return 0x9;
2657 	case 72:	return 0xb;
2658 	case 96:	return 0x1;
2659 	case 108:	return 0x3;
2660 	case 2:		return 10;
2661 	case 4:		return 20;
2662 	case 11:	return 55;
2663 	case 22:	return 110;
2664 	}
2665 	return 0;
2666 }
2667 
2668 static int
2669 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2670 {
2671 
2672 	return IWN_LSB(sc->txchainmask);
2673 }
2674 
2675 static int
2676 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2677 {
2678 	int tx;
2679 
2680 	/*
2681 	 * The '2 stream' setup is a bit .. odd.
2682 	 *
2683 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2684 	 * the firmware panics (eg Intel 5100.)
2685 	 *
2686 	 * For NICs that support two antennas, we use ANT_AB.
2687 	 *
2688 	 * For NICs that support three antennas, we use the two that
2689 	 * wasn't the default one.
2690 	 *
2691 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2692 	 * this to only one antenna.
2693 	 */
2694 
2695 	/* Default - transmit on the other antennas */
2696 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2697 
2698 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2699 	if (tx == 0)
2700 		tx = IWN_ANT_AB;
2701 
2702 	/*
2703 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2704 	 * the default chainmask
2705 	 */
2706 	else if (sc->ntxchains == 2)
2707 		tx = sc->txchainmask;
2708 
2709 	return (tx);
2710 }
2711 
2712 
2713 
2714 /*
2715  * Calculate the required PLCP value from the given rate,
2716  * to the given node.
2717  *
2718  * This will take the node configuration (eg 11n, rate table
2719  * setup, etc) into consideration.
2720  */
2721 static uint32_t
2722 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2723     uint8_t rate)
2724 {
2725 	struct ieee80211com *ic = ni->ni_ic;
2726 	uint32_t plcp = 0;
2727 	int ridx;
2728 
2729 	/*
2730 	 * If it's an MCS rate, let's set the plcp correctly
2731 	 * and set the relevant flags based on the node config.
2732 	 */
2733 	if (rate & IEEE80211_RATE_MCS) {
2734 		/*
2735 		 * Set the initial PLCP value to be between 0->31 for
2736 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2737 		 * flag.
2738 		 */
2739 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2740 
2741 		/*
2742 		 * XXX the following should only occur if both
2743 		 * the local configuration _and_ the remote node
2744 		 * advertise these capabilities.  Thus this code
2745 		 * may need fixing!
2746 		 */
2747 
2748 		/*
2749 		 * Set the channel width and guard interval.
2750 		 */
2751 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2752 			plcp |= IWN_RFLAG_HT40;
2753 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2754 				plcp |= IWN_RFLAG_SGI;
2755 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2756 			plcp |= IWN_RFLAG_SGI;
2757 		}
2758 
2759 		/*
2760 		 * Ensure the selected rate matches the link quality
2761 		 * table entries being used.
2762 		 */
2763 		if (rate > 0x8f)
2764 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2765 		else if (rate > 0x87)
2766 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2767 		else
2768 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2769 	} else {
2770 		/*
2771 		 * Set the initial PLCP - fine for both
2772 		 * OFDM and CCK rates.
2773 		 */
2774 		plcp = rate2plcp(rate);
2775 
2776 		/* Set CCK flag if it's CCK */
2777 
2778 		/* XXX It would be nice to have a method
2779 		 * to map the ridx -> phy table entry
2780 		 * so we could just query that, rather than
2781 		 * this hack to check against IWN_RIDX_OFDM6.
2782 		 */
2783 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2784 		    rate & IEEE80211_RATE_VAL);
2785 		if (ridx < IWN_RIDX_OFDM6 &&
2786 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2787 			plcp |= IWN_RFLAG_CCK;
2788 
2789 		/* Set antenna configuration */
2790 		/* XXX TODO: is this the right antenna to use for legacy? */
2791 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2792 	}
2793 
2794 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2795 	    __func__,
2796 	    rate,
2797 	    plcp);
2798 
2799 	return (htole32(plcp));
2800 }
2801 
2802 static void
2803 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2804 {
2805 	/* Doesn't do anything at the moment */
2806 }
2807 
2808 static int
2809 iwn_media_change(struct ifnet *ifp)
2810 {
2811 	int error;
2812 
2813 	error = ieee80211_media_change(ifp);
2814 	/* NB: only the fixed rate can change and that doesn't need a reset */
2815 	return (error == ENETRESET ? 0 : error);
2816 }
2817 
2818 static int
2819 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2820 {
2821 	struct iwn_vap *ivp = IWN_VAP(vap);
2822 	struct ieee80211com *ic = vap->iv_ic;
2823 	struct iwn_softc *sc = ic->ic_softc;
2824 	int error = 0;
2825 
2826 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2827 
2828 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2829 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2830 
2831 	IEEE80211_UNLOCK(ic);
2832 	IWN_LOCK(sc);
2833 	callout_stop(&sc->calib_to);
2834 
2835 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2836 
2837 	switch (nstate) {
2838 	case IEEE80211_S_ASSOC:
2839 		if (vap->iv_state != IEEE80211_S_RUN)
2840 			break;
2841 		/* FALLTHROUGH */
2842 	case IEEE80211_S_AUTH:
2843 		if (vap->iv_state == IEEE80211_S_AUTH)
2844 			break;
2845 
2846 		/*
2847 		 * !AUTH -> AUTH transition requires state reset to handle
2848 		 * reassociations correctly.
2849 		 */
2850 		sc->rxon->associd = 0;
2851 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2852 		sc->calib.state = IWN_CALIB_STATE_INIT;
2853 
2854 		/* Wait until we hear a beacon before we transmit */
2855 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2856 			sc->sc_beacon_wait = 1;
2857 
2858 		if ((error = iwn_auth(sc, vap)) != 0) {
2859 			device_printf(sc->sc_dev,
2860 			    "%s: could not move to auth state\n", __func__);
2861 		}
2862 		break;
2863 
2864 	case IEEE80211_S_RUN:
2865 		/*
2866 		 * RUN -> RUN transition; Just restart the timers.
2867 		 */
2868 		if (vap->iv_state == IEEE80211_S_RUN) {
2869 			sc->calib_cnt = 0;
2870 			break;
2871 		}
2872 
2873 		/* Wait until we hear a beacon before we transmit */
2874 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2875 			sc->sc_beacon_wait = 1;
2876 
2877 		/*
2878 		 * !RUN -> RUN requires setting the association id
2879 		 * which is done with a firmware cmd.  We also defer
2880 		 * starting the timers until that work is done.
2881 		 */
2882 		if ((error = iwn_run(sc, vap)) != 0) {
2883 			device_printf(sc->sc_dev,
2884 			    "%s: could not move to run state\n", __func__);
2885 		}
2886 		break;
2887 
2888 	case IEEE80211_S_INIT:
2889 		sc->calib.state = IWN_CALIB_STATE_INIT;
2890 		/*
2891 		 * Purge the xmit queue so we don't have old frames
2892 		 * during a new association attempt.
2893 		 */
2894 		sc->sc_beacon_wait = 0;
2895 		iwn_xmit_queue_drain(sc);
2896 		break;
2897 
2898 	default:
2899 		break;
2900 	}
2901 	IWN_UNLOCK(sc);
2902 	IEEE80211_LOCK(ic);
2903 	if (error != 0){
2904 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2905 		return error;
2906 	}
2907 
2908 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2909 
2910 	return ivp->iv_newstate(vap, nstate, arg);
2911 }
2912 
2913 static void
2914 iwn_calib_timeout(void *arg)
2915 {
2916 	struct iwn_softc *sc = arg;
2917 
2918 	IWN_LOCK_ASSERT(sc);
2919 
2920 	/* Force automatic TX power calibration every 60 secs. */
2921 	if (++sc->calib_cnt >= 120) {
2922 		uint32_t flags = 0;
2923 
2924 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2925 		    "sending request for statistics");
2926 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2927 		    sizeof flags, 1);
2928 		sc->calib_cnt = 0;
2929 	}
2930 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2931 	    sc);
2932 }
2933 
2934 /*
2935  * Process an RX_PHY firmware notification.  This is usually immediately
2936  * followed by an MPDU_RX_DONE notification.
2937  */
2938 static void
2939 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2940     struct iwn_rx_data *data)
2941 {
2942 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2943 
2944 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2945 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2946 
2947 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2948 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2949 	sc->last_rx_valid = 1;
2950 }
2951 
2952 /*
2953  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2954  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2955  */
2956 static void
2957 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2958     struct iwn_rx_data *data)
2959 {
2960 	struct iwn_ops *ops = &sc->ops;
2961 	struct ieee80211com *ic = &sc->sc_ic;
2962 	struct iwn_rx_ring *ring = &sc->rxq;
2963 	struct ieee80211_frame *wh;
2964 	struct ieee80211_node *ni;
2965 	struct mbuf *m, *m1;
2966 	struct iwn_rx_stat *stat;
2967 	caddr_t head;
2968 	bus_addr_t paddr;
2969 	uint32_t flags;
2970 	int error, len, rssi, nf;
2971 
2972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2973 
2974 	if (desc->type == IWN_MPDU_RX_DONE) {
2975 		/* Check for prior RX_PHY notification. */
2976 		if (!sc->last_rx_valid) {
2977 			DPRINTF(sc, IWN_DEBUG_ANY,
2978 			    "%s: missing RX_PHY\n", __func__);
2979 			return;
2980 		}
2981 		stat = &sc->last_rx_stat;
2982 	} else
2983 		stat = (struct iwn_rx_stat *)(desc + 1);
2984 
2985 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2986 
2987 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2988 		device_printf(sc->sc_dev,
2989 		    "%s: invalid RX statistic header, len %d\n", __func__,
2990 		    stat->cfg_phy_len);
2991 		return;
2992 	}
2993 	if (desc->type == IWN_MPDU_RX_DONE) {
2994 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2995 		head = (caddr_t)(mpdu + 1);
2996 		len = le16toh(mpdu->len);
2997 	} else {
2998 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2999 		len = le16toh(stat->len);
3000 	}
3001 
3002 	flags = le32toh(*(uint32_t *)(head + len));
3003 
3004 	/* Discard frames with a bad FCS early. */
3005 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3006 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3007 		    __func__, flags);
3008 		counter_u64_add(ic->ic_ierrors, 1);
3009 		return;
3010 	}
3011 	/* Discard frames that are too short. */
3012 	if (len < sizeof (struct ieee80211_frame_ack)) {
3013 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3014 		    __func__, len);
3015 		counter_u64_add(ic->ic_ierrors, 1);
3016 		return;
3017 	}
3018 
3019 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3020 	if (m1 == NULL) {
3021 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3022 		    __func__);
3023 		counter_u64_add(ic->ic_ierrors, 1);
3024 		return;
3025 	}
3026 	bus_dmamap_unload(ring->data_dmat, data->map);
3027 
3028 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3029 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3030 	if (error != 0 && error != EFBIG) {
3031 		device_printf(sc->sc_dev,
3032 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3033 		m_freem(m1);
3034 
3035 		/* Try to reload the old mbuf. */
3036 		error = bus_dmamap_load(ring->data_dmat, data->map,
3037 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3038 		    &paddr, BUS_DMA_NOWAIT);
3039 		if (error != 0 && error != EFBIG) {
3040 			panic("%s: could not load old RX mbuf", __func__);
3041 		}
3042 		/* Physical address may have changed. */
3043 		ring->desc[ring->cur] = htole32(paddr >> 8);
3044 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3045 		    BUS_DMASYNC_PREWRITE);
3046 		counter_u64_add(ic->ic_ierrors, 1);
3047 		return;
3048 	}
3049 
3050 	m = data->m;
3051 	data->m = m1;
3052 	/* Update RX descriptor. */
3053 	ring->desc[ring->cur] = htole32(paddr >> 8);
3054 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3055 	    BUS_DMASYNC_PREWRITE);
3056 
3057 	/* Finalize mbuf. */
3058 	m->m_data = head;
3059 	m->m_pkthdr.len = m->m_len = len;
3060 
3061 	/* Grab a reference to the source node. */
3062 	wh = mtod(m, struct ieee80211_frame *);
3063 	if (len >= sizeof(struct ieee80211_frame_min))
3064 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3065 	else
3066 		ni = NULL;
3067 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3068 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3069 
3070 	rssi = ops->get_rssi(sc, stat);
3071 
3072 	if (ieee80211_radiotap_active(ic)) {
3073 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3074 
3075 		tap->wr_flags = 0;
3076 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3077 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3078 		tap->wr_dbm_antsignal = (int8_t)rssi;
3079 		tap->wr_dbm_antnoise = (int8_t)nf;
3080 		tap->wr_tsft = stat->tstamp;
3081 		switch (stat->rate) {
3082 		/* CCK rates. */
3083 		case  10: tap->wr_rate =   2; break;
3084 		case  20: tap->wr_rate =   4; break;
3085 		case  55: tap->wr_rate =  11; break;
3086 		case 110: tap->wr_rate =  22; break;
3087 		/* OFDM rates. */
3088 		case 0xd: tap->wr_rate =  12; break;
3089 		case 0xf: tap->wr_rate =  18; break;
3090 		case 0x5: tap->wr_rate =  24; break;
3091 		case 0x7: tap->wr_rate =  36; break;
3092 		case 0x9: tap->wr_rate =  48; break;
3093 		case 0xb: tap->wr_rate =  72; break;
3094 		case 0x1: tap->wr_rate =  96; break;
3095 		case 0x3: tap->wr_rate = 108; break;
3096 		/* Unknown rate: should not happen. */
3097 		default:  tap->wr_rate =   0;
3098 		}
3099 	}
3100 
3101 	/*
3102 	 * If it's a beacon and we're waiting, then do the
3103 	 * wakeup.  This should unblock raw_xmit/start.
3104 	 */
3105 	if (sc->sc_beacon_wait) {
3106 		uint8_t type, subtype;
3107 		/* NB: Re-assign wh */
3108 		wh = mtod(m, struct ieee80211_frame *);
3109 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3110 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3111 		/*
3112 		 * This assumes at this point we've received our own
3113 		 * beacon.
3114 		 */
3115 		DPRINTF(sc, IWN_DEBUG_TRACE,
3116 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3117 		    __func__, type, subtype);
3118 		if (type == IEEE80211_FC0_TYPE_MGT &&
3119 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3120 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3121 			    "%s: waking things up\n", __func__);
3122 			/* queue taskqueue to transmit! */
3123 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3124 		}
3125 	}
3126 
3127 	IWN_UNLOCK(sc);
3128 
3129 	/* Send the frame to the 802.11 layer. */
3130 	if (ni != NULL) {
3131 		if (ni->ni_flags & IEEE80211_NODE_HT)
3132 			m->m_flags |= M_AMPDU;
3133 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3134 		/* Node is no longer needed. */
3135 		ieee80211_free_node(ni);
3136 	} else
3137 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3138 
3139 	IWN_LOCK(sc);
3140 
3141 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3142 
3143 }
3144 
3145 /* Process an incoming Compressed BlockAck. */
3146 static void
3147 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3148     struct iwn_rx_data *data)
3149 {
3150 	struct iwn_ops *ops = &sc->ops;
3151 	struct iwn_node *wn;
3152 	struct ieee80211_node *ni;
3153 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3154 	struct iwn_tx_ring *txq;
3155 	struct iwn_tx_data *txdata;
3156 	struct ieee80211_tx_ampdu *tap;
3157 	struct mbuf *m;
3158 	uint64_t bitmap;
3159 	uint16_t ssn;
3160 	uint8_t tid;
3161 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3162 	int tx_ok = 0, tx_err = 0;
3163 
3164 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3165 
3166 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3167 
3168 	qid = le16toh(ba->qid);
3169 	txq = &sc->txq[ba->qid];
3170 	tap = sc->qid2tap[ba->qid];
3171 	tid = tap->txa_tid;
3172 	wn = (void *)tap->txa_ni;
3173 
3174 	res = NULL;
3175 	ssn = 0;
3176 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3177 		res = tap->txa_private;
3178 		ssn = tap->txa_start & 0xfff;
3179 	}
3180 
3181 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3182 		txdata = &txq->data[txq->read];
3183 
3184 		/* Unmap and free mbuf. */
3185 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3186 		    BUS_DMASYNC_POSTWRITE);
3187 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3188 		m = txdata->m, txdata->m = NULL;
3189 		ni = txdata->ni, txdata->ni = NULL;
3190 
3191 		KASSERT(ni != NULL, ("no node"));
3192 		KASSERT(m != NULL, ("no mbuf"));
3193 
3194 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3195 		ieee80211_tx_complete(ni, m, 1);
3196 
3197 		txq->queued--;
3198 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3199 	}
3200 
3201 	if (txq->queued == 0 && res != NULL) {
3202 		iwn_nic_lock(sc);
3203 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3204 		iwn_nic_unlock(sc);
3205 		sc->qid2tap[qid] = NULL;
3206 		free(res, M_DEVBUF);
3207 		return;
3208 	}
3209 
3210 	if (wn->agg[tid].bitmap == 0)
3211 		return;
3212 
3213 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3214 	if (shift < 0)
3215 		shift += 0x100;
3216 
3217 	if (wn->agg[tid].nframes > (64 - shift))
3218 		return;
3219 
3220 	/*
3221 	 * Walk the bitmap and calculate how many successful and failed
3222 	 * attempts are made.
3223 	 *
3224 	 * Yes, the rate control code doesn't know these are A-MPDU
3225 	 * subframes and that it's okay to fail some of these.
3226 	 */
3227 	ni = tap->txa_ni;
3228 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3229 	for (i = 0; bitmap; i++) {
3230 		if ((bitmap & 1) == 0) {
3231 			tx_err ++;
3232 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3233 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3234 		} else {
3235 			tx_ok ++;
3236 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3237 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3238 		}
3239 		bitmap >>= 1;
3240 	}
3241 
3242 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3243 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3244 
3245 }
3246 
3247 /*
3248  * Process a CALIBRATION_RESULT notification sent by the initialization
3249  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3250  */
3251 static void
3252 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3253     struct iwn_rx_data *data)
3254 {
3255 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3256 	int len, idx = -1;
3257 
3258 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3259 
3260 	/* Runtime firmware should not send such a notification. */
3261 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3262 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3263 	    __func__);
3264 		return;
3265 	}
3266 	len = (le32toh(desc->len) & 0x3fff) - 4;
3267 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3268 
3269 	switch (calib->code) {
3270 	case IWN5000_PHY_CALIB_DC:
3271 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3272 			idx = 0;
3273 		break;
3274 	case IWN5000_PHY_CALIB_LO:
3275 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3276 			idx = 1;
3277 		break;
3278 	case IWN5000_PHY_CALIB_TX_IQ:
3279 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3280 			idx = 2;
3281 		break;
3282 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3283 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3284 			idx = 3;
3285 		break;
3286 	case IWN5000_PHY_CALIB_BASE_BAND:
3287 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3288 			idx = 4;
3289 		break;
3290 	}
3291 	if (idx == -1)	/* Ignore other results. */
3292 		return;
3293 
3294 	/* Save calibration result. */
3295 	if (sc->calibcmd[idx].buf != NULL)
3296 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3297 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3298 	if (sc->calibcmd[idx].buf == NULL) {
3299 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3300 		    "not enough memory for calibration result %d\n",
3301 		    calib->code);
3302 		return;
3303 	}
3304 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3305 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3306 	sc->calibcmd[idx].len = len;
3307 	memcpy(sc->calibcmd[idx].buf, calib, len);
3308 }
3309 
3310 static void
3311 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3312     struct iwn_stats *stats, int len)
3313 {
3314 	struct iwn_stats_bt *stats_bt;
3315 	struct iwn_stats *lstats;
3316 
3317 	/*
3318 	 * First - check whether the length is the bluetooth or normal.
3319 	 *
3320 	 * If it's normal - just copy it and bump out.
3321 	 * Otherwise we have to convert things.
3322 	 */
3323 
3324 	if (len == sizeof(struct iwn_stats) + 4) {
3325 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3326 		sc->last_stat_valid = 1;
3327 		return;
3328 	}
3329 
3330 	/*
3331 	 * If it's not the bluetooth size - log, then just copy.
3332 	 */
3333 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3334 		DPRINTF(sc, IWN_DEBUG_STATS,
3335 		    "%s: size of rx statistics (%d) not an expected size!\n",
3336 		    __func__,
3337 		    len);
3338 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3339 		sc->last_stat_valid = 1;
3340 		return;
3341 	}
3342 
3343 	/*
3344 	 * Ok. Time to copy.
3345 	 */
3346 	stats_bt = (struct iwn_stats_bt *) stats;
3347 	lstats = &sc->last_stat;
3348 
3349 	/* flags */
3350 	lstats->flags = stats_bt->flags;
3351 	/* rx_bt */
3352 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3353 	    sizeof(struct iwn_rx_phy_stats));
3354 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3355 	    sizeof(struct iwn_rx_phy_stats));
3356 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3357 	    sizeof(struct iwn_rx_general_stats));
3358 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3359 	    sizeof(struct iwn_rx_ht_phy_stats));
3360 	/* tx */
3361 	memcpy(&lstats->tx, &stats_bt->tx,
3362 	    sizeof(struct iwn_tx_stats));
3363 	/* general */
3364 	memcpy(&lstats->general, &stats_bt->general,
3365 	    sizeof(struct iwn_general_stats));
3366 
3367 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3368 	sc->last_stat_valid = 1;
3369 }
3370 
3371 /*
3372  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3373  * The latter is sent by the firmware after each received beacon.
3374  */
3375 static void
3376 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3377     struct iwn_rx_data *data)
3378 {
3379 	struct iwn_ops *ops = &sc->ops;
3380 	struct ieee80211com *ic = &sc->sc_ic;
3381 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3382 	struct iwn_calib_state *calib = &sc->calib;
3383 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3384 	struct iwn_stats *lstats;
3385 	int temp;
3386 
3387 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3388 
3389 	/* Ignore statistics received during a scan. */
3390 	if (vap->iv_state != IEEE80211_S_RUN ||
3391 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3392 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3393 	    __func__);
3394 		return;
3395 	}
3396 
3397 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3398 
3399 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3400 	    "%s: received statistics, cmd %d, len %d\n",
3401 	    __func__, desc->type, le16toh(desc->len));
3402 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3403 
3404 	/*
3405 	 * Collect/track general statistics for reporting.
3406 	 *
3407 	 * This takes care of ensuring that the bluetooth sized message
3408 	 * will be correctly converted to the legacy sized message.
3409 	 */
3410 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3411 
3412 	/*
3413 	 * And now, let's take a reference of it to use!
3414 	 */
3415 	lstats = &sc->last_stat;
3416 
3417 	/* Test if temperature has changed. */
3418 	if (lstats->general.temp != sc->rawtemp) {
3419 		/* Convert "raw" temperature to degC. */
3420 		sc->rawtemp = stats->general.temp;
3421 		temp = ops->get_temperature(sc);
3422 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3423 		    __func__, temp);
3424 
3425 		/* Update TX power if need be (4965AGN only). */
3426 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3427 			iwn4965_power_calibration(sc, temp);
3428 	}
3429 
3430 	if (desc->type != IWN_BEACON_STATISTICS)
3431 		return;	/* Reply to a statistics request. */
3432 
3433 	sc->noise = iwn_get_noise(&lstats->rx.general);
3434 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3435 
3436 	/* Test that RSSI and noise are present in stats report. */
3437 	if (le32toh(lstats->rx.general.flags) != 1) {
3438 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3439 		    "received statistics without RSSI");
3440 		return;
3441 	}
3442 
3443 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3444 		iwn_collect_noise(sc, &lstats->rx.general);
3445 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3446 		iwn_tune_sensitivity(sc, &lstats->rx);
3447 		/*
3448 		 * XXX TODO: Only run the RX recovery if we're associated!
3449 		 */
3450 		iwn_check_rx_recovery(sc, lstats);
3451 		iwn_save_stats_counters(sc, lstats);
3452 	}
3453 
3454 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3455 }
3456 
3457 /*
3458  * Save the relevant statistic counters for the next calibration
3459  * pass.
3460  */
3461 static void
3462 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3463 {
3464 	struct iwn_calib_state *calib = &sc->calib;
3465 
3466 	/* Save counters values for next call. */
3467 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3468 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3469 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3470 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3471 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3472 
3473 	/* Last time we received these tick values */
3474 	sc->last_calib_ticks = ticks;
3475 }
3476 
3477 /*
3478  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3479  * and 5000 adapters have different incompatible TX status formats.
3480  */
3481 static void
3482 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3483     struct iwn_rx_data *data)
3484 {
3485 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3486 	struct iwn_tx_ring *ring;
3487 	int qid;
3488 
3489 	qid = desc->qid & 0xf;
3490 	ring = &sc->txq[qid];
3491 
3492 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3493 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3494 	    __func__, desc->qid, desc->idx,
3495 	    stat->rtsfailcnt,
3496 	    stat->ackfailcnt,
3497 	    stat->btkillcnt,
3498 	    stat->rate, le16toh(stat->duration),
3499 	    le32toh(stat->status));
3500 
3501 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3502 	if (qid >= sc->firstaggqueue) {
3503 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3504 		    stat->ackfailcnt, &stat->status);
3505 	} else {
3506 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3507 		    le32toh(stat->status) & 0xff);
3508 	}
3509 }
3510 
3511 static void
3512 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3513     struct iwn_rx_data *data)
3514 {
3515 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3516 	struct iwn_tx_ring *ring;
3517 	int qid;
3518 
3519 	qid = desc->qid & 0xf;
3520 	ring = &sc->txq[qid];
3521 
3522 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3523 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3524 	    __func__, desc->qid, desc->idx,
3525 	    stat->rtsfailcnt,
3526 	    stat->ackfailcnt,
3527 	    stat->btkillcnt,
3528 	    stat->rate, le16toh(stat->duration),
3529 	    le32toh(stat->status));
3530 
3531 #ifdef notyet
3532 	/* Reset TX scheduler slot. */
3533 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3534 #endif
3535 
3536 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3537 	if (qid >= sc->firstaggqueue) {
3538 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3539 		    stat->ackfailcnt, &stat->status);
3540 	} else {
3541 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3542 		    le16toh(stat->status) & 0xff);
3543 	}
3544 }
3545 
3546 /*
3547  * Adapter-independent backend for TX_DONE firmware notifications.
3548  */
3549 static void
3550 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3551     uint8_t status)
3552 {
3553 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3554 	struct iwn_tx_data *data = &ring->data[desc->idx];
3555 	struct mbuf *m;
3556 	struct ieee80211_node *ni;
3557 	struct ieee80211vap *vap;
3558 
3559 	KASSERT(data->ni != NULL, ("no node"));
3560 
3561 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3562 
3563 	/* Unmap and free mbuf. */
3564 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3565 	bus_dmamap_unload(ring->data_dmat, data->map);
3566 	m = data->m, data->m = NULL;
3567 	ni = data->ni, data->ni = NULL;
3568 	vap = ni->ni_vap;
3569 
3570 	/*
3571 	 * Update rate control statistics for the node.
3572 	 */
3573 	if (status & IWN_TX_FAIL)
3574 		ieee80211_ratectl_tx_complete(vap, ni,
3575 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3576 	else
3577 		ieee80211_ratectl_tx_complete(vap, ni,
3578 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3579 
3580 	/*
3581 	 * Channels marked for "radar" require traffic to be received
3582 	 * to unlock before we can transmit.  Until traffic is seen
3583 	 * any attempt to transmit is returned immediately with status
3584 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3585 	 * happen on first authenticate after scanning.  To workaround
3586 	 * this we ignore a failure of this sort in AUTH state so the
3587 	 * 802.11 layer will fall back to using a timeout to wait for
3588 	 * the AUTH reply.  This allows the firmware time to see
3589 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3590 	 * unclear why the firmware does not maintain state for
3591 	 * channels recently visited as this would allow immediate
3592 	 * use of the channel after a scan (where we see traffic).
3593 	 */
3594 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3595 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3596 		ieee80211_tx_complete(ni, m, 0);
3597 	else
3598 		ieee80211_tx_complete(ni, m,
3599 		    (status & IWN_TX_FAIL) != 0);
3600 
3601 	sc->sc_tx_timer = 0;
3602 	if (--ring->queued < IWN_TX_RING_LOMARK)
3603 		sc->qfullmsk &= ~(1 << ring->qid);
3604 
3605 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3606 }
3607 
3608 /*
3609  * Process a "command done" firmware notification.  This is where we wakeup
3610  * processes waiting for a synchronous command completion.
3611  */
3612 static void
3613 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3614 {
3615 	struct iwn_tx_ring *ring;
3616 	struct iwn_tx_data *data;
3617 	int cmd_queue_num;
3618 
3619 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3620 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3621 	else
3622 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3623 
3624 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3625 		return;	/* Not a command ack. */
3626 
3627 	ring = &sc->txq[cmd_queue_num];
3628 	data = &ring->data[desc->idx];
3629 
3630 	/* If the command was mapped in an mbuf, free it. */
3631 	if (data->m != NULL) {
3632 		bus_dmamap_sync(ring->data_dmat, data->map,
3633 		    BUS_DMASYNC_POSTWRITE);
3634 		bus_dmamap_unload(ring->data_dmat, data->map);
3635 		m_freem(data->m);
3636 		data->m = NULL;
3637 	}
3638 	wakeup(&ring->desc[desc->idx]);
3639 }
3640 
3641 static void
3642 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3643     int ackfailcnt, void *stat)
3644 {
3645 	struct iwn_ops *ops = &sc->ops;
3646 	struct iwn_tx_ring *ring = &sc->txq[qid];
3647 	struct iwn_tx_data *data;
3648 	struct mbuf *m;
3649 	struct iwn_node *wn;
3650 	struct ieee80211_node *ni;
3651 	struct ieee80211_tx_ampdu *tap;
3652 	uint64_t bitmap;
3653 	uint32_t *status = stat;
3654 	uint16_t *aggstatus = stat;
3655 	uint16_t ssn;
3656 	uint8_t tid;
3657 	int bit, i, lastidx, *res, seqno, shift, start;
3658 
3659 	/* XXX TODO: status is le16 field! Grr */
3660 
3661 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3662 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3663 	    __func__,
3664 	    nframes,
3665 	    *status);
3666 
3667 	tap = sc->qid2tap[qid];
3668 	tid = tap->txa_tid;
3669 	wn = (void *)tap->txa_ni;
3670 	ni = tap->txa_ni;
3671 
3672 	/*
3673 	 * XXX TODO: ACK and RTS failures would be nice here!
3674 	 */
3675 
3676 	/*
3677 	 * A-MPDU single frame status - if we failed to transmit it
3678 	 * in A-MPDU, then it may be a permanent failure.
3679 	 *
3680 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3681 	 * there's some permanent and temporary failures that may be
3682 	 * handled differently.
3683 	 */
3684 	if (nframes == 1) {
3685 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3686 #ifdef	NOT_YET
3687 			printf("ieee80211_send_bar()\n");
3688 #endif
3689 			/*
3690 			 * If we completely fail a transmit, make sure a
3691 			 * notification is pushed up to the rate control
3692 			 * layer.
3693 			 */
3694 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3695 			    ni,
3696 			    IEEE80211_RATECTL_TX_FAILURE,
3697 			    &ackfailcnt,
3698 			    NULL);
3699 		} else {
3700 			/*
3701 			 * If nframes=1, then we won't be getting a BA for
3702 			 * this frame.  Ensure that we correctly update the
3703 			 * rate control code with how many retries were
3704 			 * needed to send it.
3705 			 */
3706 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3707 			    ni,
3708 			    IEEE80211_RATECTL_TX_SUCCESS,
3709 			    &ackfailcnt,
3710 			    NULL);
3711 		}
3712 	}
3713 
3714 	bitmap = 0;
3715 	start = idx;
3716 	for (i = 0; i < nframes; i++) {
3717 		if (le16toh(aggstatus[i * 2]) & 0xc)
3718 			continue;
3719 
3720 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3721 		bit = idx - start;
3722 		shift = 0;
3723 		if (bit >= 64) {
3724 			shift = 0x100 - idx + start;
3725 			bit = 0;
3726 			start = idx;
3727 		} else if (bit <= -64)
3728 			bit = 0x100 - start + idx;
3729 		else if (bit < 0) {
3730 			shift = start - idx;
3731 			start = idx;
3732 			bit = 0;
3733 		}
3734 		bitmap = bitmap << shift;
3735 		bitmap |= 1ULL << bit;
3736 	}
3737 	tap = sc->qid2tap[qid];
3738 	tid = tap->txa_tid;
3739 	wn = (void *)tap->txa_ni;
3740 	wn->agg[tid].bitmap = bitmap;
3741 	wn->agg[tid].startidx = start;
3742 	wn->agg[tid].nframes = nframes;
3743 
3744 	res = NULL;
3745 	ssn = 0;
3746 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3747 		res = tap->txa_private;
3748 		ssn = tap->txa_start & 0xfff;
3749 	}
3750 
3751 	/* This is going nframes DWORDS into the descriptor? */
3752 	seqno = le32toh(*(status + nframes)) & 0xfff;
3753 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3754 		data = &ring->data[ring->read];
3755 
3756 		/* Unmap and free mbuf. */
3757 		bus_dmamap_sync(ring->data_dmat, data->map,
3758 		    BUS_DMASYNC_POSTWRITE);
3759 		bus_dmamap_unload(ring->data_dmat, data->map);
3760 		m = data->m, data->m = NULL;
3761 		ni = data->ni, data->ni = NULL;
3762 
3763 		KASSERT(ni != NULL, ("no node"));
3764 		KASSERT(m != NULL, ("no mbuf"));
3765 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3766 		ieee80211_tx_complete(ni, m, 1);
3767 
3768 		ring->queued--;
3769 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3770 	}
3771 
3772 	if (ring->queued == 0 && res != NULL) {
3773 		iwn_nic_lock(sc);
3774 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3775 		iwn_nic_unlock(sc);
3776 		sc->qid2tap[qid] = NULL;
3777 		free(res, M_DEVBUF);
3778 		return;
3779 	}
3780 
3781 	sc->sc_tx_timer = 0;
3782 	if (ring->queued < IWN_TX_RING_LOMARK)
3783 		sc->qfullmsk &= ~(1 << ring->qid);
3784 
3785 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3786 }
3787 
3788 /*
3789  * Process an INT_FH_RX or INT_SW_RX interrupt.
3790  */
3791 static void
3792 iwn_notif_intr(struct iwn_softc *sc)
3793 {
3794 	struct iwn_ops *ops = &sc->ops;
3795 	struct ieee80211com *ic = &sc->sc_ic;
3796 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3797 	uint16_t hw;
3798 
3799 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3800 	    BUS_DMASYNC_POSTREAD);
3801 
3802 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3803 	while (sc->rxq.cur != hw) {
3804 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3805 		struct iwn_rx_desc *desc;
3806 
3807 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3808 		    BUS_DMASYNC_POSTREAD);
3809 		desc = mtod(data->m, struct iwn_rx_desc *);
3810 
3811 		DPRINTF(sc, IWN_DEBUG_RECV,
3812 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3813 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3814 		    desc->type, iwn_intr_str(desc->type),
3815 		    le16toh(desc->len));
3816 
3817 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3818 			iwn_cmd_done(sc, desc);
3819 
3820 		switch (desc->type) {
3821 		case IWN_RX_PHY:
3822 			iwn_rx_phy(sc, desc, data);
3823 			break;
3824 
3825 		case IWN_RX_DONE:		/* 4965AGN only. */
3826 		case IWN_MPDU_RX_DONE:
3827 			/* An 802.11 frame has been received. */
3828 			iwn_rx_done(sc, desc, data);
3829 			break;
3830 
3831 		case IWN_RX_COMPRESSED_BA:
3832 			/* A Compressed BlockAck has been received. */
3833 			iwn_rx_compressed_ba(sc, desc, data);
3834 			break;
3835 
3836 		case IWN_TX_DONE:
3837 			/* An 802.11 frame has been transmitted. */
3838 			ops->tx_done(sc, desc, data);
3839 			break;
3840 
3841 		case IWN_RX_STATISTICS:
3842 		case IWN_BEACON_STATISTICS:
3843 			iwn_rx_statistics(sc, desc, data);
3844 			break;
3845 
3846 		case IWN_BEACON_MISSED:
3847 		{
3848 			struct iwn_beacon_missed *miss =
3849 			    (struct iwn_beacon_missed *)(desc + 1);
3850 			int misses;
3851 
3852 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3853 			    BUS_DMASYNC_POSTREAD);
3854 			misses = le32toh(miss->consecutive);
3855 
3856 			DPRINTF(sc, IWN_DEBUG_STATE,
3857 			    "%s: beacons missed %d/%d\n", __func__,
3858 			    misses, le32toh(miss->total));
3859 			/*
3860 			 * If more than 5 consecutive beacons are missed,
3861 			 * reinitialize the sensitivity state machine.
3862 			 */
3863 			if (vap->iv_state == IEEE80211_S_RUN &&
3864 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3865 				if (misses > 5)
3866 					(void)iwn_init_sensitivity(sc);
3867 				if (misses >= vap->iv_bmissthreshold) {
3868 					IWN_UNLOCK(sc);
3869 					ieee80211_beacon_miss(ic);
3870 					IWN_LOCK(sc);
3871 				}
3872 			}
3873 			break;
3874 		}
3875 		case IWN_UC_READY:
3876 		{
3877 			struct iwn_ucode_info *uc =
3878 			    (struct iwn_ucode_info *)(desc + 1);
3879 
3880 			/* The microcontroller is ready. */
3881 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3882 			    BUS_DMASYNC_POSTREAD);
3883 			DPRINTF(sc, IWN_DEBUG_RESET,
3884 			    "microcode alive notification version=%d.%d "
3885 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3886 			    uc->subtype, le32toh(uc->valid));
3887 
3888 			if (le32toh(uc->valid) != 1) {
3889 				device_printf(sc->sc_dev,
3890 				    "microcontroller initialization failed");
3891 				break;
3892 			}
3893 			if (uc->subtype == IWN_UCODE_INIT) {
3894 				/* Save microcontroller report. */
3895 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3896 			}
3897 			/* Save the address of the error log in SRAM. */
3898 			sc->errptr = le32toh(uc->errptr);
3899 			break;
3900 		}
3901 		case IWN_STATE_CHANGED:
3902 		{
3903 			/*
3904 			 * State change allows hardware switch change to be
3905 			 * noted. However, we handle this in iwn_intr as we
3906 			 * get both the enable/disble intr.
3907 			 */
3908 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3909 			    BUS_DMASYNC_POSTREAD);
3910 #ifdef	IWN_DEBUG
3911 			uint32_t *status = (uint32_t *)(desc + 1);
3912 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3913 			    "state changed to %x\n",
3914 			    le32toh(*status));
3915 #endif
3916 			break;
3917 		}
3918 		case IWN_START_SCAN:
3919 		{
3920 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3921 			    BUS_DMASYNC_POSTREAD);
3922 #ifdef	IWN_DEBUG
3923 			struct iwn_start_scan *scan =
3924 			    (struct iwn_start_scan *)(desc + 1);
3925 			DPRINTF(sc, IWN_DEBUG_ANY,
3926 			    "%s: scanning channel %d status %x\n",
3927 			    __func__, scan->chan, le32toh(scan->status));
3928 #endif
3929 			break;
3930 		}
3931 		case IWN_STOP_SCAN:
3932 		{
3933 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3934 			    BUS_DMASYNC_POSTREAD);
3935 #ifdef	IWN_DEBUG
3936 			struct iwn_stop_scan *scan =
3937 			    (struct iwn_stop_scan *)(desc + 1);
3938 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3939 			    "scan finished nchan=%d status=%d chan=%d\n",
3940 			    scan->nchan, scan->status, scan->chan);
3941 #endif
3942 			sc->sc_is_scanning = 0;
3943 			callout_stop(&sc->scan_timeout);
3944 			IWN_UNLOCK(sc);
3945 			ieee80211_scan_next(vap);
3946 			IWN_LOCK(sc);
3947 			break;
3948 		}
3949 		case IWN5000_CALIBRATION_RESULT:
3950 			iwn5000_rx_calib_results(sc, desc, data);
3951 			break;
3952 
3953 		case IWN5000_CALIBRATION_DONE:
3954 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3955 			wakeup(sc);
3956 			break;
3957 		}
3958 
3959 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3960 	}
3961 
3962 	/* Tell the firmware what we have processed. */
3963 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3964 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3965 }
3966 
3967 /*
3968  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3969  * from power-down sleep mode.
3970  */
3971 static void
3972 iwn_wakeup_intr(struct iwn_softc *sc)
3973 {
3974 	int qid;
3975 
3976 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3977 	    __func__);
3978 
3979 	/* Wakeup RX and TX rings. */
3980 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3981 	for (qid = 0; qid < sc->ntxqs; qid++) {
3982 		struct iwn_tx_ring *ring = &sc->txq[qid];
3983 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3984 	}
3985 }
3986 
3987 static void
3988 iwn_rftoggle_intr(struct iwn_softc *sc)
3989 {
3990 	struct ieee80211com *ic = &sc->sc_ic;
3991 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3992 
3993 	IWN_LOCK_ASSERT(sc);
3994 
3995 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3996 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3997 	if (tmp & IWN_GP_CNTRL_RFKILL)
3998 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3999 	else
4000 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4001 }
4002 
4003 /*
4004  * Dump the error log of the firmware when a firmware panic occurs.  Although
4005  * we can't debug the firmware because it is neither open source nor free, it
4006  * can help us to identify certain classes of problems.
4007  */
4008 static void
4009 iwn_fatal_intr(struct iwn_softc *sc)
4010 {
4011 	struct iwn_fw_dump dump;
4012 	int i;
4013 
4014 	IWN_LOCK_ASSERT(sc);
4015 
4016 	/* Force a complete recalibration on next init. */
4017 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4018 
4019 	/* Check that the error log address is valid. */
4020 	if (sc->errptr < IWN_FW_DATA_BASE ||
4021 	    sc->errptr + sizeof (dump) >
4022 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4023 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4024 		    sc->errptr);
4025 		return;
4026 	}
4027 	if (iwn_nic_lock(sc) != 0) {
4028 		printf("%s: could not read firmware error log\n", __func__);
4029 		return;
4030 	}
4031 	/* Read firmware error log from SRAM. */
4032 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4033 	    sizeof (dump) / sizeof (uint32_t));
4034 	iwn_nic_unlock(sc);
4035 
4036 	if (dump.valid == 0) {
4037 		printf("%s: firmware error log is empty\n", __func__);
4038 		return;
4039 	}
4040 	printf("firmware error log:\n");
4041 	printf("  error type      = \"%s\" (0x%08X)\n",
4042 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4043 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4044 	    dump.id);
4045 	printf("  program counter = 0x%08X\n", dump.pc);
4046 	printf("  source line     = 0x%08X\n", dump.src_line);
4047 	printf("  error data      = 0x%08X%08X\n",
4048 	    dump.error_data[0], dump.error_data[1]);
4049 	printf("  branch link     = 0x%08X%08X\n",
4050 	    dump.branch_link[0], dump.branch_link[1]);
4051 	printf("  interrupt link  = 0x%08X%08X\n",
4052 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4053 	printf("  time            = %u\n", dump.time[0]);
4054 
4055 	/* Dump driver status (TX and RX rings) while we're here. */
4056 	printf("driver status:\n");
4057 	for (i = 0; i < sc->ntxqs; i++) {
4058 		struct iwn_tx_ring *ring = &sc->txq[i];
4059 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4060 		    i, ring->qid, ring->cur, ring->queued);
4061 	}
4062 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4063 }
4064 
4065 static void
4066 iwn_intr(void *arg)
4067 {
4068 	struct iwn_softc *sc = arg;
4069 	uint32_t r1, r2, tmp;
4070 
4071 	IWN_LOCK(sc);
4072 
4073 	/* Disable interrupts. */
4074 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4075 
4076 	/* Read interrupts from ICT (fast) or from registers (slow). */
4077 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4078 		tmp = 0;
4079 		while (sc->ict[sc->ict_cur] != 0) {
4080 			tmp |= sc->ict[sc->ict_cur];
4081 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4082 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4083 		}
4084 		tmp = le32toh(tmp);
4085 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4086 			tmp = 0;
4087 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4088 			tmp |= 0x8000;
4089 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4090 		r2 = 0;	/* Unused. */
4091 	} else {
4092 		r1 = IWN_READ(sc, IWN_INT);
4093 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4094 			IWN_UNLOCK(sc);
4095 			return;	/* Hardware gone! */
4096 		}
4097 		r2 = IWN_READ(sc, IWN_FH_INT);
4098 	}
4099 
4100 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4101     , r1, r2);
4102 
4103 	if (r1 == 0 && r2 == 0)
4104 		goto done;	/* Interrupt not for us. */
4105 
4106 	/* Acknowledge interrupts. */
4107 	IWN_WRITE(sc, IWN_INT, r1);
4108 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4109 		IWN_WRITE(sc, IWN_FH_INT, r2);
4110 
4111 	if (r1 & IWN_INT_RF_TOGGLED) {
4112 		iwn_rftoggle_intr(sc);
4113 		goto done;
4114 	}
4115 	if (r1 & IWN_INT_CT_REACHED) {
4116 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4117 		    __func__);
4118 	}
4119 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4120 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4121 		    __func__);
4122 #ifdef	IWN_DEBUG
4123 		iwn_debug_register(sc);
4124 #endif
4125 		/* Dump firmware error log and stop. */
4126 		iwn_fatal_intr(sc);
4127 
4128 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4129 		goto done;
4130 	}
4131 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4132 	    (r2 & IWN_FH_INT_RX)) {
4133 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4134 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4135 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4136 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4137 			    IWN_INT_PERIODIC_DIS);
4138 			iwn_notif_intr(sc);
4139 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4140 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4141 				    IWN_INT_PERIODIC_ENA);
4142 			}
4143 		} else
4144 			iwn_notif_intr(sc);
4145 	}
4146 
4147 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4148 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4149 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4150 		wakeup(sc);	/* FH DMA transfer completed. */
4151 	}
4152 
4153 	if (r1 & IWN_INT_ALIVE)
4154 		wakeup(sc);	/* Firmware is alive. */
4155 
4156 	if (r1 & IWN_INT_WAKEUP)
4157 		iwn_wakeup_intr(sc);
4158 
4159 done:
4160 	/* Re-enable interrupts. */
4161 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4162 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4163 
4164 	IWN_UNLOCK(sc);
4165 }
4166 
4167 /*
4168  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4169  * 5000 adapters use a slightly different format).
4170  */
4171 static void
4172 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4173     uint16_t len)
4174 {
4175 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4176 
4177 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4178 
4179 	*w = htole16(len + 8);
4180 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4181 	    BUS_DMASYNC_PREWRITE);
4182 	if (idx < IWN_SCHED_WINSZ) {
4183 		*(w + IWN_TX_RING_COUNT) = *w;
4184 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4185 		    BUS_DMASYNC_PREWRITE);
4186 	}
4187 }
4188 
4189 static void
4190 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4191     uint16_t len)
4192 {
4193 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4194 
4195 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4196 
4197 	*w = htole16(id << 12 | (len + 8));
4198 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4199 	    BUS_DMASYNC_PREWRITE);
4200 	if (idx < IWN_SCHED_WINSZ) {
4201 		*(w + IWN_TX_RING_COUNT) = *w;
4202 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4203 		    BUS_DMASYNC_PREWRITE);
4204 	}
4205 }
4206 
4207 #ifdef notyet
4208 static void
4209 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4210 {
4211 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4212 
4213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4214 
4215 	*w = (*w & htole16(0xf000)) | htole16(1);
4216 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4217 	    BUS_DMASYNC_PREWRITE);
4218 	if (idx < IWN_SCHED_WINSZ) {
4219 		*(w + IWN_TX_RING_COUNT) = *w;
4220 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4221 		    BUS_DMASYNC_PREWRITE);
4222 	}
4223 }
4224 #endif
4225 
4226 /*
4227  * Check whether OFDM 11g protection will be enabled for the given rate.
4228  *
4229  * The original driver code only enabled protection for OFDM rates.
4230  * It didn't check to see whether it was operating in 11a or 11bg mode.
4231  */
4232 static int
4233 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4234     struct ieee80211vap *vap, uint8_t rate)
4235 {
4236 	struct ieee80211com *ic = vap->iv_ic;
4237 
4238 	/*
4239 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4240 	 * 11bg protection.
4241 	 */
4242 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4243 		return (0);
4244 	}
4245 
4246 	/*
4247 	 * 11bg protection not enabled? Then don't use it.
4248 	 */
4249 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4250 		return (0);
4251 
4252 	/*
4253 	 * If it's an 11n rate - no protection.
4254 	 * We'll do it via a specific 11n check.
4255 	 */
4256 	if (rate & IEEE80211_RATE_MCS) {
4257 		return (0);
4258 	}
4259 
4260 	/*
4261 	 * Do a rate table lookup.  If the PHY is CCK,
4262 	 * don't do protection.
4263 	 */
4264 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4265 		return (0);
4266 
4267 	/*
4268 	 * Yup, enable protection.
4269 	 */
4270 	return (1);
4271 }
4272 
4273 /*
4274  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4275  * the link quality table that reflects this particular entry.
4276  */
4277 static int
4278 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4279     uint8_t rate)
4280 {
4281 	struct ieee80211_rateset *rs;
4282 	int is_11n;
4283 	int nr;
4284 	int i;
4285 	uint8_t cmp_rate;
4286 
4287 	/*
4288 	 * Figure out if we're using 11n or not here.
4289 	 */
4290 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4291 		is_11n = 1;
4292 	else
4293 		is_11n = 0;
4294 
4295 	/*
4296 	 * Use the correct rate table.
4297 	 */
4298 	if (is_11n) {
4299 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4300 		nr = ni->ni_htrates.rs_nrates;
4301 	} else {
4302 		rs = &ni->ni_rates;
4303 		nr = rs->rs_nrates;
4304 	}
4305 
4306 	/*
4307 	 * Find the relevant link quality entry in the table.
4308 	 */
4309 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4310 		/*
4311 		 * The link quality table index starts at 0 == highest
4312 		 * rate, so we walk the rate table backwards.
4313 		 */
4314 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4315 		if (rate & IEEE80211_RATE_MCS)
4316 			cmp_rate |= IEEE80211_RATE_MCS;
4317 
4318 #if 0
4319 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4320 		    __func__,
4321 		    i,
4322 		    nr,
4323 		    rate,
4324 		    cmp_rate);
4325 #endif
4326 
4327 		if (cmp_rate == rate)
4328 			return (i);
4329 	}
4330 
4331 	/* Failed? Start at the end */
4332 	return (IWN_MAX_TX_RETRIES - 1);
4333 }
4334 
4335 static int
4336 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4337 {
4338 	struct iwn_ops *ops = &sc->ops;
4339 	const struct ieee80211_txparam *tp;
4340 	struct ieee80211vap *vap = ni->ni_vap;
4341 	struct ieee80211com *ic = ni->ni_ic;
4342 	struct iwn_node *wn = (void *)ni;
4343 	struct iwn_tx_ring *ring;
4344 	struct iwn_tx_desc *desc;
4345 	struct iwn_tx_data *data;
4346 	struct iwn_tx_cmd *cmd;
4347 	struct iwn_cmd_data *tx;
4348 	struct ieee80211_frame *wh;
4349 	struct ieee80211_key *k = NULL;
4350 	struct mbuf *m1;
4351 	uint32_t flags;
4352 	uint16_t qos;
4353 	u_int hdrlen;
4354 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4355 	uint8_t tid, type;
4356 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4357 
4358 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4359 
4360 	IWN_LOCK_ASSERT(sc);
4361 
4362 	wh = mtod(m, struct ieee80211_frame *);
4363 	hdrlen = ieee80211_anyhdrsize(wh);
4364 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4365 
4366 	/* Select EDCA Access Category and TX ring for this frame. */
4367 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4368 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4369 		tid = qos & IEEE80211_QOS_TID;
4370 	} else {
4371 		qos = 0;
4372 		tid = 0;
4373 	}
4374 	ac = M_WME_GETAC(m);
4375 	if (m->m_flags & M_AMPDU_MPDU) {
4376 		uint16_t seqno;
4377 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4378 
4379 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4380 			return EINVAL;
4381 		}
4382 
4383 		/*
4384 		 * Queue this frame to the hardware ring that we've
4385 		 * negotiated AMPDU TX on.
4386 		 *
4387 		 * Note that the sequence number must match the TX slot
4388 		 * being used!
4389 		 */
4390 		ac = *(int *)tap->txa_private;
4391 		seqno = ni->ni_txseqs[tid];
4392 		*(uint16_t *)wh->i_seq =
4393 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4394 		ring = &sc->txq[ac];
4395 		if ((seqno % 256) != ring->cur) {
4396 			device_printf(sc->sc_dev,
4397 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4398 			    __func__,
4399 			    m,
4400 			    seqno,
4401 			    seqno % 256,
4402 			    ring->cur);
4403 		}
4404 		ni->ni_txseqs[tid]++;
4405 	}
4406 	ring = &sc->txq[ac];
4407 	desc = &ring->desc[ring->cur];
4408 	data = &ring->data[ring->cur];
4409 
4410 	/* Choose a TX rate index. */
4411 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4412 	if (type == IEEE80211_FC0_TYPE_MGT)
4413 		rate = tp->mgmtrate;
4414 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4415 		rate = tp->mcastrate;
4416 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4417 		rate = tp->ucastrate;
4418 	else if (m->m_flags & M_EAPOL)
4419 		rate = tp->mgmtrate;
4420 	else {
4421 		/* XXX pass pktlen */
4422 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4423 		rate = ni->ni_txrate;
4424 	}
4425 
4426 	/* Encrypt the frame if need be. */
4427 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4428 		/* Retrieve key for TX. */
4429 		k = ieee80211_crypto_encap(ni, m);
4430 		if (k == NULL) {
4431 			return ENOBUFS;
4432 		}
4433 		/* 802.11 header may have moved. */
4434 		wh = mtod(m, struct ieee80211_frame *);
4435 	}
4436 	totlen = m->m_pkthdr.len;
4437 
4438 	if (ieee80211_radiotap_active_vap(vap)) {
4439 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4440 
4441 		tap->wt_flags = 0;
4442 		tap->wt_rate = rate;
4443 		if (k != NULL)
4444 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4445 
4446 		ieee80211_radiotap_tx(vap, m);
4447 	}
4448 
4449 	/* Prepare TX firmware command. */
4450 	cmd = &ring->cmd[ring->cur];
4451 	cmd->code = IWN_CMD_TX_DATA;
4452 	cmd->flags = 0;
4453 	cmd->qid = ring->qid;
4454 	cmd->idx = ring->cur;
4455 
4456 	tx = (struct iwn_cmd_data *)cmd->data;
4457 	/* NB: No need to clear tx, all fields are reinitialized here. */
4458 	tx->scratch = 0;	/* clear "scratch" area */
4459 
4460 	flags = 0;
4461 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4462 		/* Unicast frame, check if an ACK is expected. */
4463 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4464 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4465 			flags |= IWN_TX_NEED_ACK;
4466 	}
4467 	if ((wh->i_fc[0] &
4468 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4469 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4470 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4471 
4472 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4473 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4474 
4475 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4476 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4477 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4478 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4479 			flags |= IWN_TX_NEED_RTS;
4480 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4481 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4482 				flags |= IWN_TX_NEED_CTS;
4483 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4484 				flags |= IWN_TX_NEED_RTS;
4485 		} else if ((rate & IEEE80211_RATE_MCS) &&
4486 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4487 			flags |= IWN_TX_NEED_RTS;
4488 		}
4489 
4490 		/* XXX HT protection? */
4491 
4492 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4493 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4494 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4495 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4496 				flags |= IWN_TX_NEED_PROTECTION;
4497 			} else
4498 				flags |= IWN_TX_FULL_TXOP;
4499 		}
4500 	}
4501 
4502 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4503 	    type != IEEE80211_FC0_TYPE_DATA)
4504 		tx->id = sc->broadcast_id;
4505 	else
4506 		tx->id = wn->id;
4507 
4508 	if (type == IEEE80211_FC0_TYPE_MGT) {
4509 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4510 
4511 		/* Tell HW to set timestamp in probe responses. */
4512 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4513 			flags |= IWN_TX_INSERT_TSTAMP;
4514 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4515 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4516 			tx->timeout = htole16(3);
4517 		else
4518 			tx->timeout = htole16(2);
4519 	} else
4520 		tx->timeout = htole16(0);
4521 
4522 	if (hdrlen & 3) {
4523 		/* First segment length must be a multiple of 4. */
4524 		flags |= IWN_TX_NEED_PADDING;
4525 		pad = 4 - (hdrlen & 3);
4526 	} else
4527 		pad = 0;
4528 
4529 	tx->len = htole16(totlen);
4530 	tx->tid = tid;
4531 	tx->rts_ntries = 60;
4532 	tx->data_ntries = 15;
4533 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4534 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4535 	if (tx->id == sc->broadcast_id) {
4536 		/* Group or management frame. */
4537 		tx->linkq = 0;
4538 	} else {
4539 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4540 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4541 	}
4542 
4543 	/* Set physical address of "scratch area". */
4544 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4545 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4546 
4547 	/* Copy 802.11 header in TX command. */
4548 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4549 
4550 	/* Trim 802.11 header. */
4551 	m_adj(m, hdrlen);
4552 	tx->security = 0;
4553 	tx->flags = htole32(flags);
4554 
4555 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4556 	    &nsegs, BUS_DMA_NOWAIT);
4557 	if (error != 0) {
4558 		if (error != EFBIG) {
4559 			device_printf(sc->sc_dev,
4560 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4561 			return error;
4562 		}
4563 		/* Too many DMA segments, linearize mbuf. */
4564 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4565 		if (m1 == NULL) {
4566 			device_printf(sc->sc_dev,
4567 			    "%s: could not defrag mbuf\n", __func__);
4568 			return ENOBUFS;
4569 		}
4570 		m = m1;
4571 
4572 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4573 		    segs, &nsegs, BUS_DMA_NOWAIT);
4574 		if (error != 0) {
4575 			device_printf(sc->sc_dev,
4576 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4577 			return error;
4578 		}
4579 	}
4580 
4581 	data->m = m;
4582 	data->ni = ni;
4583 
4584 	DPRINTF(sc, IWN_DEBUG_XMIT,
4585 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4586 	    __func__,
4587 	    ring->qid,
4588 	    ring->cur,
4589 	    m->m_pkthdr.len,
4590 	    nsegs,
4591 	    flags,
4592 	    rate,
4593 	    tx->rate);
4594 
4595 	/* Fill TX descriptor. */
4596 	desc->nsegs = 1;
4597 	if (m->m_len != 0)
4598 		desc->nsegs += nsegs;
4599 	/* First DMA segment is used by the TX command. */
4600 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4601 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4602 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4603 	/* Other DMA segments are for data payload. */
4604 	seg = &segs[0];
4605 	for (i = 1; i <= nsegs; i++) {
4606 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4607 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4608 		    seg->ds_len << 4);
4609 		seg++;
4610 	}
4611 
4612 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4613 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4614 	    BUS_DMASYNC_PREWRITE);
4615 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4616 	    BUS_DMASYNC_PREWRITE);
4617 
4618 	/* Update TX scheduler. */
4619 	if (ring->qid >= sc->firstaggqueue)
4620 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4621 
4622 	/* Kick TX ring. */
4623 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4624 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4625 
4626 	/* Mark TX ring as full if we reach a certain threshold. */
4627 	if (++ring->queued > IWN_TX_RING_HIMARK)
4628 		sc->qfullmsk |= 1 << ring->qid;
4629 
4630 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4631 
4632 	return 0;
4633 }
4634 
4635 static int
4636 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4637     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4638 {
4639 	struct iwn_ops *ops = &sc->ops;
4640 	struct ieee80211vap *vap = ni->ni_vap;
4641 	struct iwn_tx_cmd *cmd;
4642 	struct iwn_cmd_data *tx;
4643 	struct ieee80211_frame *wh;
4644 	struct iwn_tx_ring *ring;
4645 	struct iwn_tx_desc *desc;
4646 	struct iwn_tx_data *data;
4647 	struct mbuf *m1;
4648 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4649 	uint32_t flags;
4650 	u_int hdrlen;
4651 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4652 	uint8_t type;
4653 
4654 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4655 
4656 	IWN_LOCK_ASSERT(sc);
4657 
4658 	wh = mtod(m, struct ieee80211_frame *);
4659 	hdrlen = ieee80211_anyhdrsize(wh);
4660 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4661 
4662 	ac = params->ibp_pri & 3;
4663 
4664 	ring = &sc->txq[ac];
4665 	desc = &ring->desc[ring->cur];
4666 	data = &ring->data[ring->cur];
4667 
4668 	/* Choose a TX rate. */
4669 	rate = params->ibp_rate0;
4670 	totlen = m->m_pkthdr.len;
4671 
4672 	/* Prepare TX firmware command. */
4673 	cmd = &ring->cmd[ring->cur];
4674 	cmd->code = IWN_CMD_TX_DATA;
4675 	cmd->flags = 0;
4676 	cmd->qid = ring->qid;
4677 	cmd->idx = ring->cur;
4678 
4679 	tx = (struct iwn_cmd_data *)cmd->data;
4680 	/* NB: No need to clear tx, all fields are reinitialized here. */
4681 	tx->scratch = 0;	/* clear "scratch" area */
4682 
4683 	flags = 0;
4684 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4685 		flags |= IWN_TX_NEED_ACK;
4686 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4687 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4688 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4689 			flags &= ~IWN_TX_NEED_RTS;
4690 			flags |= IWN_TX_NEED_PROTECTION;
4691 		} else
4692 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4693 	}
4694 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4695 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4696 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4697 			flags &= ~IWN_TX_NEED_CTS;
4698 			flags |= IWN_TX_NEED_PROTECTION;
4699 		} else
4700 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4701 	}
4702 	if (type == IEEE80211_FC0_TYPE_MGT) {
4703 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4704 
4705 		/* Tell HW to set timestamp in probe responses. */
4706 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4707 			flags |= IWN_TX_INSERT_TSTAMP;
4708 
4709 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4710 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4711 			tx->timeout = htole16(3);
4712 		else
4713 			tx->timeout = htole16(2);
4714 	} else
4715 		tx->timeout = htole16(0);
4716 
4717 	if (hdrlen & 3) {
4718 		/* First segment length must be a multiple of 4. */
4719 		flags |= IWN_TX_NEED_PADDING;
4720 		pad = 4 - (hdrlen & 3);
4721 	} else
4722 		pad = 0;
4723 
4724 	if (ieee80211_radiotap_active_vap(vap)) {
4725 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4726 
4727 		tap->wt_flags = 0;
4728 		tap->wt_rate = rate;
4729 
4730 		ieee80211_radiotap_tx(vap, m);
4731 	}
4732 
4733 	tx->len = htole16(totlen);
4734 	tx->tid = 0;
4735 	tx->id = sc->broadcast_id;
4736 	tx->rts_ntries = params->ibp_try1;
4737 	tx->data_ntries = params->ibp_try0;
4738 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4739 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4740 
4741 	/* Group or management frame. */
4742 	tx->linkq = 0;
4743 
4744 	/* Set physical address of "scratch area". */
4745 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4746 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4747 
4748 	/* Copy 802.11 header in TX command. */
4749 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4750 
4751 	/* Trim 802.11 header. */
4752 	m_adj(m, hdrlen);
4753 	tx->security = 0;
4754 	tx->flags = htole32(flags);
4755 
4756 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4757 	    &nsegs, BUS_DMA_NOWAIT);
4758 	if (error != 0) {
4759 		if (error != EFBIG) {
4760 			device_printf(sc->sc_dev,
4761 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4762 			return error;
4763 		}
4764 		/* Too many DMA segments, linearize mbuf. */
4765 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4766 		if (m1 == NULL) {
4767 			device_printf(sc->sc_dev,
4768 			    "%s: could not defrag mbuf\n", __func__);
4769 			return ENOBUFS;
4770 		}
4771 		m = m1;
4772 
4773 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4774 		    segs, &nsegs, BUS_DMA_NOWAIT);
4775 		if (error != 0) {
4776 			device_printf(sc->sc_dev,
4777 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4778 			return error;
4779 		}
4780 	}
4781 
4782 	data->m = m;
4783 	data->ni = ni;
4784 
4785 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4786 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4787 
4788 	/* Fill TX descriptor. */
4789 	desc->nsegs = 1;
4790 	if (m->m_len != 0)
4791 		desc->nsegs += nsegs;
4792 	/* First DMA segment is used by the TX command. */
4793 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4794 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4795 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4796 	/* Other DMA segments are for data payload. */
4797 	seg = &segs[0];
4798 	for (i = 1; i <= nsegs; i++) {
4799 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4800 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4801 		    seg->ds_len << 4);
4802 		seg++;
4803 	}
4804 
4805 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4806 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4807 	    BUS_DMASYNC_PREWRITE);
4808 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4809 	    BUS_DMASYNC_PREWRITE);
4810 
4811 	/* Update TX scheduler. */
4812 	if (ring->qid >= sc->firstaggqueue)
4813 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4814 
4815 	/* Kick TX ring. */
4816 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4817 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4818 
4819 	/* Mark TX ring as full if we reach a certain threshold. */
4820 	if (++ring->queued > IWN_TX_RING_HIMARK)
4821 		sc->qfullmsk |= 1 << ring->qid;
4822 
4823 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4824 
4825 	return 0;
4826 }
4827 
4828 static void
4829 iwn_xmit_task(void *arg0, int pending)
4830 {
4831 	struct iwn_softc *sc = arg0;
4832 	struct ieee80211_node *ni;
4833 	struct mbuf *m;
4834 	int error;
4835 	struct ieee80211_bpf_params p;
4836 	int have_p;
4837 
4838 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4839 
4840 	IWN_LOCK(sc);
4841 	/*
4842 	 * Dequeue frames, attempt to transmit,
4843 	 * then disable beaconwait when we're done.
4844 	 */
4845 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4846 		have_p = 0;
4847 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4848 
4849 		/* Get xmit params if appropriate */
4850 		if (ieee80211_get_xmit_params(m, &p) == 0)
4851 			have_p = 1;
4852 
4853 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4854 		    __func__, m, have_p);
4855 
4856 		/* If we have xmit params, use them */
4857 		if (have_p)
4858 			error = iwn_tx_data_raw(sc, m, ni, &p);
4859 		else
4860 			error = iwn_tx_data(sc, m, ni);
4861 
4862 		if (error != 0) {
4863 			if_inc_counter(ni->ni_vap->iv_ifp,
4864 			    IFCOUNTER_OERRORS, 1);
4865 			ieee80211_free_node(ni);
4866 			m_freem(m);
4867 		}
4868 	}
4869 
4870 	sc->sc_beacon_wait = 0;
4871 	IWN_UNLOCK(sc);
4872 }
4873 
4874 /*
4875  * raw frame xmit - free node/reference if failed.
4876  */
4877 static int
4878 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4879     const struct ieee80211_bpf_params *params)
4880 {
4881 	struct ieee80211com *ic = ni->ni_ic;
4882 	struct iwn_softc *sc = ic->ic_softc;
4883 	int error = 0;
4884 
4885 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4886 
4887 	IWN_LOCK(sc);
4888 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4889 		m_freem(m);
4890 		IWN_UNLOCK(sc);
4891 		return (ENETDOWN);
4892 	}
4893 
4894 	/* queue frame if we have to */
4895 	if (sc->sc_beacon_wait) {
4896 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4897 			m_freem(m);
4898 			IWN_UNLOCK(sc);
4899 			return (ENOBUFS);
4900 		}
4901 		/* Queued, so just return OK */
4902 		IWN_UNLOCK(sc);
4903 		return (0);
4904 	}
4905 
4906 	if (params == NULL) {
4907 		/*
4908 		 * Legacy path; interpret frame contents to decide
4909 		 * precisely how to send the frame.
4910 		 */
4911 		error = iwn_tx_data(sc, m, ni);
4912 	} else {
4913 		/*
4914 		 * Caller supplied explicit parameters to use in
4915 		 * sending the frame.
4916 		 */
4917 		error = iwn_tx_data_raw(sc, m, ni, params);
4918 	}
4919 	if (error == 0)
4920 		sc->sc_tx_timer = 5;
4921 	else
4922 		m_freem(m);
4923 
4924 	IWN_UNLOCK(sc);
4925 
4926 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4927 
4928 	return (error);
4929 }
4930 
4931 /*
4932  * transmit - don't free mbuf if failed; don't free node ref if failed.
4933  */
4934 static int
4935 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4936 {
4937 	struct iwn_softc *sc = ic->ic_softc;
4938 	struct ieee80211_node *ni;
4939 	int error;
4940 
4941 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4942 
4943 	IWN_LOCK(sc);
4944 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4945 		IWN_UNLOCK(sc);
4946 		return (ENXIO);
4947 	}
4948 
4949 	if (sc->qfullmsk) {
4950 		IWN_UNLOCK(sc);
4951 		return (ENOBUFS);
4952 	}
4953 
4954 	error = iwn_tx_data(sc, m, ni);
4955 	if (!error)
4956 		sc->sc_tx_timer = 5;
4957 	IWN_UNLOCK(sc);
4958 	return (error);
4959 }
4960 
4961 static void
4962 iwn_scan_timeout(void *arg)
4963 {
4964 	struct iwn_softc *sc = arg;
4965 	struct ieee80211com *ic = &sc->sc_ic;
4966 
4967 	ic_printf(ic, "scan timeout\n");
4968 	ieee80211_restart_all(ic);
4969 }
4970 
4971 static void
4972 iwn_watchdog(void *arg)
4973 {
4974 	struct iwn_softc *sc = arg;
4975 	struct ieee80211com *ic = &sc->sc_ic;
4976 
4977 	IWN_LOCK_ASSERT(sc);
4978 
4979 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4980 
4981 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4982 
4983 	if (sc->sc_tx_timer > 0) {
4984 		if (--sc->sc_tx_timer == 0) {
4985 			ic_printf(ic, "device timeout\n");
4986 			ieee80211_restart_all(ic);
4987 			return;
4988 		}
4989 	}
4990 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4991 }
4992 
4993 static int
4994 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
4995 {
4996 
4997 	return (0);
4998 }
4999 
5000 static int
5001 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5002 {
5003 
5004 	return (0);
5005 }
5006 
5007 static int
5008 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5009     struct thread *td)
5010 {
5011 	int rc;
5012 	struct iwn_softc *sc = dev->si_drv1;
5013 	struct iwn_ioctl_data *d;
5014 
5015 	rc = priv_check(td, PRIV_DRIVER);
5016 	if (rc != 0)
5017 		return (0);
5018 
5019 	switch (cmd) {
5020 	case SIOCGIWNSTATS:
5021 		d = (struct iwn_ioctl_data *) data;
5022 		IWN_LOCK(sc);
5023 		/* XXX validate permissions/memory/etc? */
5024 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5025 		IWN_UNLOCK(sc);
5026 		break;
5027 	case SIOCZIWNSTATS:
5028 		IWN_LOCK(sc);
5029 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5030 		IWN_UNLOCK(sc);
5031 		break;
5032 	default:
5033 		rc = EINVAL;
5034 		break;
5035 	}
5036 	return (rc);
5037 }
5038 
5039 static int
5040 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5041 {
5042 
5043 	return (ENOTTY);
5044 }
5045 
5046 static void
5047 iwn_parent(struct ieee80211com *ic)
5048 {
5049 	struct iwn_softc *sc = ic->ic_softc;
5050 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5051 	int startall = 0, stop = 0;
5052 
5053 	IWN_LOCK(sc);
5054 	if (ic->ic_nrunning > 0) {
5055 		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5056 			iwn_init_locked(sc);
5057 			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5058 				startall = 1;
5059 			else
5060 				stop = 1;
5061 		}
5062 	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5063 		iwn_stop_locked(sc);
5064 	IWN_UNLOCK(sc);
5065 	if (startall)
5066 		ieee80211_start_all(ic);
5067 	else if (vap != NULL && stop)
5068 		ieee80211_stop(vap);
5069 }
5070 
5071 /*
5072  * Send a command to the firmware.
5073  */
5074 static int
5075 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5076 {
5077 	struct iwn_tx_ring *ring;
5078 	struct iwn_tx_desc *desc;
5079 	struct iwn_tx_data *data;
5080 	struct iwn_tx_cmd *cmd;
5081 	struct mbuf *m;
5082 	bus_addr_t paddr;
5083 	int totlen, error;
5084 	int cmd_queue_num;
5085 
5086 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5087 
5088 	if (async == 0)
5089 		IWN_LOCK_ASSERT(sc);
5090 
5091 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5092 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5093 	else
5094 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5095 
5096 	ring = &sc->txq[cmd_queue_num];
5097 	desc = &ring->desc[ring->cur];
5098 	data = &ring->data[ring->cur];
5099 	totlen = 4 + size;
5100 
5101 	if (size > sizeof cmd->data) {
5102 		/* Command is too large to fit in a descriptor. */
5103 		if (totlen > MCLBYTES)
5104 			return EINVAL;
5105 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5106 		if (m == NULL)
5107 			return ENOMEM;
5108 		cmd = mtod(m, struct iwn_tx_cmd *);
5109 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5110 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5111 		if (error != 0) {
5112 			m_freem(m);
5113 			return error;
5114 		}
5115 		data->m = m;
5116 	} else {
5117 		cmd = &ring->cmd[ring->cur];
5118 		paddr = data->cmd_paddr;
5119 	}
5120 
5121 	cmd->code = code;
5122 	cmd->flags = 0;
5123 	cmd->qid = ring->qid;
5124 	cmd->idx = ring->cur;
5125 	memcpy(cmd->data, buf, size);
5126 
5127 	desc->nsegs = 1;
5128 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5129 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5130 
5131 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5132 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5133 	    cmd->flags, cmd->qid, cmd->idx);
5134 
5135 	if (size > sizeof cmd->data) {
5136 		bus_dmamap_sync(ring->data_dmat, data->map,
5137 		    BUS_DMASYNC_PREWRITE);
5138 	} else {
5139 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5140 		    BUS_DMASYNC_PREWRITE);
5141 	}
5142 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5143 	    BUS_DMASYNC_PREWRITE);
5144 
5145 	/* Kick command ring. */
5146 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5147 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5148 
5149 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5150 
5151 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5152 }
5153 
5154 static int
5155 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5156 {
5157 	struct iwn4965_node_info hnode;
5158 	caddr_t src, dst;
5159 
5160 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5161 
5162 	/*
5163 	 * We use the node structure for 5000 Series internally (it is
5164 	 * a superset of the one for 4965AGN). We thus copy the common
5165 	 * fields before sending the command.
5166 	 */
5167 	src = (caddr_t)node;
5168 	dst = (caddr_t)&hnode;
5169 	memcpy(dst, src, 48);
5170 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5171 	memcpy(dst + 48, src + 72, 20);
5172 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5173 }
5174 
5175 static int
5176 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5177 {
5178 
5179 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5180 
5181 	/* Direct mapping. */
5182 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5183 }
5184 
5185 static int
5186 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5187 {
5188 	struct iwn_node *wn = (void *)ni;
5189 	struct ieee80211_rateset *rs;
5190 	struct iwn_cmd_link_quality linkq;
5191 	int i, rate, txrate;
5192 	int is_11n;
5193 
5194 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5195 
5196 	memset(&linkq, 0, sizeof linkq);
5197 	linkq.id = wn->id;
5198 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5199 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5200 
5201 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5202 	linkq.ampdu_threshold = 3;
5203 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5204 
5205 	DPRINTF(sc, IWN_DEBUG_XMIT,
5206 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5207 	    __func__,
5208 	    linkq.antmsk_1stream,
5209 	    linkq.antmsk_2stream,
5210 	    sc->ntxchains);
5211 
5212 	/*
5213 	 * Are we using 11n rates? Ensure the channel is
5214 	 * 11n _and_ we have some 11n rates, or don't
5215 	 * try.
5216 	 */
5217 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5218 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5219 		is_11n = 1;
5220 	} else {
5221 		rs = &ni->ni_rates;
5222 		is_11n = 0;
5223 	}
5224 
5225 	/* Start at highest available bit-rate. */
5226 	/*
5227 	 * XXX this is all very dirty!
5228 	 */
5229 	if (is_11n)
5230 		txrate = ni->ni_htrates.rs_nrates - 1;
5231 	else
5232 		txrate = rs->rs_nrates - 1;
5233 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5234 		uint32_t plcp;
5235 
5236 		/*
5237 		 * XXX TODO: ensure the last two slots are the two lowest
5238 		 * rate entries, just for now.
5239 		 */
5240 		if (i == 14 || i == 15)
5241 			txrate = 0;
5242 
5243 		if (is_11n)
5244 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5245 		else
5246 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5247 
5248 		/* Do rate -> PLCP config mapping */
5249 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5250 		linkq.retry[i] = plcp;
5251 		DPRINTF(sc, IWN_DEBUG_XMIT,
5252 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5253 		    __func__,
5254 		    i,
5255 		    txrate,
5256 		    rate,
5257 		    le32toh(plcp));
5258 
5259 		/*
5260 		 * The mimo field is an index into the table which
5261 		 * indicates the first index where it and subsequent entries
5262 		 * will not be using MIMO.
5263 		 *
5264 		 * Since we're filling linkq from 0..15 and we're filling
5265 		 * from the highest MCS rates to the lowest rates, if we
5266 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5267 		 * the next entry.)  That way if the next entry is a non-MIMO
5268 		 * entry, we're already pointing at it.
5269 		 */
5270 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5271 		    IEEE80211_RV(le32toh(plcp)) > 7)
5272 			linkq.mimo = i + 1;
5273 
5274 		/* Next retry at immediate lower bit-rate. */
5275 		if (txrate > 0)
5276 			txrate--;
5277 	}
5278 	/*
5279 	 * If we reached the end of the list and indeed we hit
5280 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5281 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5282 	 */
5283 	if (linkq.mimo > 15)
5284 		linkq.mimo = 15;
5285 
5286 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5287 
5288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5289 
5290 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5291 }
5292 
5293 /*
5294  * Broadcast node is used to send group-addressed and management frames.
5295  */
5296 static int
5297 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5298 {
5299 	struct iwn_ops *ops = &sc->ops;
5300 	struct ieee80211com *ic = &sc->sc_ic;
5301 	struct iwn_node_info node;
5302 	struct iwn_cmd_link_quality linkq;
5303 	uint8_t txant;
5304 	int i, error;
5305 
5306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5307 
5308 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5309 
5310 	memset(&node, 0, sizeof node);
5311 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5312 	node.id = sc->broadcast_id;
5313 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5314 	if ((error = ops->add_node(sc, &node, async)) != 0)
5315 		return error;
5316 
5317 	/* Use the first valid TX antenna. */
5318 	txant = IWN_LSB(sc->txchainmask);
5319 
5320 	memset(&linkq, 0, sizeof linkq);
5321 	linkq.id = sc->broadcast_id;
5322 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5323 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5324 	linkq.ampdu_max = 64;
5325 	linkq.ampdu_threshold = 3;
5326 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5327 
5328 	/* Use lowest mandatory bit-rate. */
5329 	/* XXX rate table lookup? */
5330 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5331 		linkq.retry[0] = htole32(0xd);
5332 	else
5333 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5334 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5335 	/* Use same bit-rate for all TX retries. */
5336 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5337 		linkq.retry[i] = linkq.retry[0];
5338 	}
5339 
5340 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5341 
5342 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5343 }
5344 
5345 static int
5346 iwn_updateedca(struct ieee80211com *ic)
5347 {
5348 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5349 	struct iwn_softc *sc = ic->ic_softc;
5350 	struct iwn_edca_params cmd;
5351 	int aci;
5352 
5353 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5354 
5355 	memset(&cmd, 0, sizeof cmd);
5356 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5357 
5358 	IEEE80211_LOCK(ic);
5359 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5360 		const struct wmeParams *ac =
5361 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5362 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5363 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5364 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5365 		cmd.ac[aci].txoplimit =
5366 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5367 	}
5368 	IEEE80211_UNLOCK(ic);
5369 
5370 	IWN_LOCK(sc);
5371 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5372 	IWN_UNLOCK(sc);
5373 
5374 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5375 
5376 	return 0;
5377 #undef IWN_EXP2
5378 }
5379 
5380 static void
5381 iwn_update_mcast(struct ieee80211com *ic)
5382 {
5383 	/* Ignore */
5384 }
5385 
5386 static void
5387 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5388 {
5389 	struct iwn_cmd_led led;
5390 
5391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5392 
5393 #if 0
5394 	/* XXX don't set LEDs during scan? */
5395 	if (sc->sc_is_scanning)
5396 		return;
5397 #endif
5398 
5399 	/* Clear microcode LED ownership. */
5400 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5401 
5402 	led.which = which;
5403 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5404 	led.off = off;
5405 	led.on = on;
5406 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5407 }
5408 
5409 /*
5410  * Set the critical temperature at which the firmware will stop the radio
5411  * and notify us.
5412  */
5413 static int
5414 iwn_set_critical_temp(struct iwn_softc *sc)
5415 {
5416 	struct iwn_critical_temp crit;
5417 	int32_t temp;
5418 
5419 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5420 
5421 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5422 
5423 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5424 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5425 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5426 		temp = IWN_CTOK(110);
5427 	else
5428 		temp = 110;
5429 	memset(&crit, 0, sizeof crit);
5430 	crit.tempR = htole32(temp);
5431 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5432 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5433 }
5434 
5435 static int
5436 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5437 {
5438 	struct iwn_cmd_timing cmd;
5439 	uint64_t val, mod;
5440 
5441 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5442 
5443 	memset(&cmd, 0, sizeof cmd);
5444 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5445 	cmd.bintval = htole16(ni->ni_intval);
5446 	cmd.lintval = htole16(10);
5447 
5448 	/* Compute remaining time until next beacon. */
5449 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5450 	mod = le64toh(cmd.tstamp) % val;
5451 	cmd.binitval = htole32((uint32_t)(val - mod));
5452 
5453 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5454 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5455 
5456 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5457 }
5458 
5459 static void
5460 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5461 {
5462 	struct ieee80211com *ic = &sc->sc_ic;
5463 
5464 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5465 
5466 	/* Adjust TX power if need be (delta >= 3 degC). */
5467 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5468 	    __func__, sc->temp, temp);
5469 	if (abs(temp - sc->temp) >= 3) {
5470 		/* Record temperature of last calibration. */
5471 		sc->temp = temp;
5472 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5473 	}
5474 }
5475 
5476 /*
5477  * Set TX power for current channel (each rate has its own power settings).
5478  * This function takes into account the regulatory information from EEPROM,
5479  * the current temperature and the current voltage.
5480  */
5481 static int
5482 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5483     int async)
5484 {
5485 /* Fixed-point arithmetic division using a n-bit fractional part. */
5486 #define fdivround(a, b, n)	\
5487 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5488 /* Linear interpolation. */
5489 #define interpolate(x, x1, y1, x2, y2, n)	\
5490 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5491 
5492 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5493 	struct iwn_ucode_info *uc = &sc->ucode_info;
5494 	struct iwn4965_cmd_txpower cmd;
5495 	struct iwn4965_eeprom_chan_samples *chans;
5496 	const uint8_t *rf_gain, *dsp_gain;
5497 	int32_t vdiff, tdiff;
5498 	int i, c, grp, maxpwr;
5499 	uint8_t chan;
5500 
5501 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5502 	/* Retrieve current channel from last RXON. */
5503 	chan = sc->rxon->chan;
5504 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5505 	    chan);
5506 
5507 	memset(&cmd, 0, sizeof cmd);
5508 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5509 	cmd.chan = chan;
5510 
5511 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5512 		maxpwr   = sc->maxpwr5GHz;
5513 		rf_gain  = iwn4965_rf_gain_5ghz;
5514 		dsp_gain = iwn4965_dsp_gain_5ghz;
5515 	} else {
5516 		maxpwr   = sc->maxpwr2GHz;
5517 		rf_gain  = iwn4965_rf_gain_2ghz;
5518 		dsp_gain = iwn4965_dsp_gain_2ghz;
5519 	}
5520 
5521 	/* Compute voltage compensation. */
5522 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5523 	if (vdiff > 0)
5524 		vdiff *= 2;
5525 	if (abs(vdiff) > 2)
5526 		vdiff = 0;
5527 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5528 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5529 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5530 
5531 	/* Get channel attenuation group. */
5532 	if (chan <= 20)		/* 1-20 */
5533 		grp = 4;
5534 	else if (chan <= 43)	/* 34-43 */
5535 		grp = 0;
5536 	else if (chan <= 70)	/* 44-70 */
5537 		grp = 1;
5538 	else if (chan <= 124)	/* 71-124 */
5539 		grp = 2;
5540 	else			/* 125-200 */
5541 		grp = 3;
5542 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5543 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5544 
5545 	/* Get channel sub-band. */
5546 	for (i = 0; i < IWN_NBANDS; i++)
5547 		if (sc->bands[i].lo != 0 &&
5548 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5549 			break;
5550 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5551 		return EINVAL;
5552 	chans = sc->bands[i].chans;
5553 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5554 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5555 
5556 	for (c = 0; c < 2; c++) {
5557 		uint8_t power, gain, temp;
5558 		int maxchpwr, pwr, ridx, idx;
5559 
5560 		power = interpolate(chan,
5561 		    chans[0].num, chans[0].samples[c][1].power,
5562 		    chans[1].num, chans[1].samples[c][1].power, 1);
5563 		gain  = interpolate(chan,
5564 		    chans[0].num, chans[0].samples[c][1].gain,
5565 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5566 		temp  = interpolate(chan,
5567 		    chans[0].num, chans[0].samples[c][1].temp,
5568 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5569 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5570 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5571 		    __func__, c, power, gain, temp);
5572 
5573 		/* Compute temperature compensation. */
5574 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5575 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5576 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5577 		    __func__, tdiff, sc->temp, temp);
5578 
5579 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5580 			/* Convert dBm to half-dBm. */
5581 			maxchpwr = sc->maxpwr[chan] * 2;
5582 			if ((ridx / 8) & 1)
5583 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5584 
5585 			pwr = maxpwr;
5586 
5587 			/* Adjust TX power based on rate. */
5588 			if ((ridx % 8) == 5)
5589 				pwr -= 15;	/* OFDM48: -7.5dB */
5590 			else if ((ridx % 8) == 6)
5591 				pwr -= 17;	/* OFDM54: -8.5dB */
5592 			else if ((ridx % 8) == 7)
5593 				pwr -= 20;	/* OFDM60: -10dB */
5594 			else
5595 				pwr -= 10;	/* Others: -5dB */
5596 
5597 			/* Do not exceed channel max TX power. */
5598 			if (pwr > maxchpwr)
5599 				pwr = maxchpwr;
5600 
5601 			idx = gain - (pwr - power) - tdiff - vdiff;
5602 			if ((ridx / 8) & 1)	/* MIMO */
5603 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5604 
5605 			if (cmd.band == 0)
5606 				idx += 9;	/* 5GHz */
5607 			if (ridx == IWN_RIDX_MAX)
5608 				idx += 5;	/* CCK */
5609 
5610 			/* Make sure idx stays in a valid range. */
5611 			if (idx < 0)
5612 				idx = 0;
5613 			else if (idx > IWN4965_MAX_PWR_INDEX)
5614 				idx = IWN4965_MAX_PWR_INDEX;
5615 
5616 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5617 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5618 			    __func__, c, ridx, idx);
5619 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5620 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5621 		}
5622 	}
5623 
5624 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5625 	    "%s: set tx power for chan %d\n", __func__, chan);
5626 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5627 
5628 #undef interpolate
5629 #undef fdivround
5630 }
5631 
5632 static int
5633 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5634     int async)
5635 {
5636 	struct iwn5000_cmd_txpower cmd;
5637 	int cmdid;
5638 
5639 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5640 
5641 	/*
5642 	 * TX power calibration is handled automatically by the firmware
5643 	 * for 5000 Series.
5644 	 */
5645 	memset(&cmd, 0, sizeof cmd);
5646 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5647 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5648 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5649 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5650 	    "%s: setting TX power; rev=%d\n",
5651 	    __func__,
5652 	    IWN_UCODE_API(sc->ucode_rev));
5653 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5654 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5655 	else
5656 		cmdid = IWN_CMD_TXPOWER_DBM;
5657 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5658 }
5659 
5660 /*
5661  * Retrieve the maximum RSSI (in dBm) among receivers.
5662  */
5663 static int
5664 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5665 {
5666 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5667 	uint8_t mask, agc;
5668 	int rssi;
5669 
5670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5671 
5672 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5673 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5674 
5675 	rssi = 0;
5676 	if (mask & IWN_ANT_A)
5677 		rssi = MAX(rssi, phy->rssi[0]);
5678 	if (mask & IWN_ANT_B)
5679 		rssi = MAX(rssi, phy->rssi[2]);
5680 	if (mask & IWN_ANT_C)
5681 		rssi = MAX(rssi, phy->rssi[4]);
5682 
5683 	DPRINTF(sc, IWN_DEBUG_RECV,
5684 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5685 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5686 	    rssi - agc - IWN_RSSI_TO_DBM);
5687 	return rssi - agc - IWN_RSSI_TO_DBM;
5688 }
5689 
5690 static int
5691 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5692 {
5693 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5694 	uint8_t agc;
5695 	int rssi;
5696 
5697 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5698 
5699 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5700 
5701 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5702 		   le16toh(phy->rssi[1]) & 0xff);
5703 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5704 
5705 	DPRINTF(sc, IWN_DEBUG_RECV,
5706 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5707 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5708 	    rssi - agc - IWN_RSSI_TO_DBM);
5709 	return rssi - agc - IWN_RSSI_TO_DBM;
5710 }
5711 
5712 /*
5713  * Retrieve the average noise (in dBm) among receivers.
5714  */
5715 static int
5716 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5717 {
5718 	int i, total, nbant, noise;
5719 
5720 	total = nbant = 0;
5721 	for (i = 0; i < 3; i++) {
5722 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5723 			continue;
5724 		total += noise;
5725 		nbant++;
5726 	}
5727 	/* There should be at least one antenna but check anyway. */
5728 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5729 }
5730 
5731 /*
5732  * Compute temperature (in degC) from last received statistics.
5733  */
5734 static int
5735 iwn4965_get_temperature(struct iwn_softc *sc)
5736 {
5737 	struct iwn_ucode_info *uc = &sc->ucode_info;
5738 	int32_t r1, r2, r3, r4, temp;
5739 
5740 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5741 
5742 	r1 = le32toh(uc->temp[0].chan20MHz);
5743 	r2 = le32toh(uc->temp[1].chan20MHz);
5744 	r3 = le32toh(uc->temp[2].chan20MHz);
5745 	r4 = le32toh(sc->rawtemp);
5746 
5747 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5748 		return 0;
5749 
5750 	/* Sign-extend 23-bit R4 value to 32-bit. */
5751 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5752 	/* Compute temperature in Kelvin. */
5753 	temp = (259 * (r4 - r2)) / (r3 - r1);
5754 	temp = (temp * 97) / 100 + 8;
5755 
5756 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5757 	    IWN_KTOC(temp));
5758 	return IWN_KTOC(temp);
5759 }
5760 
5761 static int
5762 iwn5000_get_temperature(struct iwn_softc *sc)
5763 {
5764 	int32_t temp;
5765 
5766 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5767 
5768 	/*
5769 	 * Temperature is not used by the driver for 5000 Series because
5770 	 * TX power calibration is handled by firmware.
5771 	 */
5772 	temp = le32toh(sc->rawtemp);
5773 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5774 		temp = (temp / -5) + sc->temp_off;
5775 		temp = IWN_KTOC(temp);
5776 	}
5777 	return temp;
5778 }
5779 
5780 /*
5781  * Initialize sensitivity calibration state machine.
5782  */
5783 static int
5784 iwn_init_sensitivity(struct iwn_softc *sc)
5785 {
5786 	struct iwn_ops *ops = &sc->ops;
5787 	struct iwn_calib_state *calib = &sc->calib;
5788 	uint32_t flags;
5789 	int error;
5790 
5791 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5792 
5793 	/* Reset calibration state machine. */
5794 	memset(calib, 0, sizeof (*calib));
5795 	calib->state = IWN_CALIB_STATE_INIT;
5796 	calib->cck_state = IWN_CCK_STATE_HIFA;
5797 	/* Set initial correlation values. */
5798 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5799 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5800 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5801 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5802 	calib->cck_x4      = 125;
5803 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5804 	calib->energy_cck  = sc->limits->energy_cck;
5805 
5806 	/* Write initial sensitivity. */
5807 	if ((error = iwn_send_sensitivity(sc)) != 0)
5808 		return error;
5809 
5810 	/* Write initial gains. */
5811 	if ((error = ops->init_gains(sc)) != 0)
5812 		return error;
5813 
5814 	/* Request statistics at each beacon interval. */
5815 	flags = 0;
5816 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5817 	    __func__);
5818 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5819 }
5820 
5821 /*
5822  * Collect noise and RSSI statistics for the first 20 beacons received
5823  * after association and use them to determine connected antennas and
5824  * to set differential gains.
5825  */
5826 static void
5827 iwn_collect_noise(struct iwn_softc *sc,
5828     const struct iwn_rx_general_stats *stats)
5829 {
5830 	struct iwn_ops *ops = &sc->ops;
5831 	struct iwn_calib_state *calib = &sc->calib;
5832 	struct ieee80211com *ic = &sc->sc_ic;
5833 	uint32_t val;
5834 	int i;
5835 
5836 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5837 
5838 	/* Accumulate RSSI and noise for all 3 antennas. */
5839 	for (i = 0; i < 3; i++) {
5840 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5841 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5842 	}
5843 	/* NB: We update differential gains only once after 20 beacons. */
5844 	if (++calib->nbeacons < 20)
5845 		return;
5846 
5847 	/* Determine highest average RSSI. */
5848 	val = MAX(calib->rssi[0], calib->rssi[1]);
5849 	val = MAX(calib->rssi[2], val);
5850 
5851 	/* Determine which antennas are connected. */
5852 	sc->chainmask = sc->rxchainmask;
5853 	for (i = 0; i < 3; i++)
5854 		if (val - calib->rssi[i] > 15 * 20)
5855 			sc->chainmask &= ~(1 << i);
5856 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5857 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5858 	    __func__, sc->rxchainmask, sc->chainmask);
5859 
5860 	/* If none of the TX antennas are connected, keep at least one. */
5861 	if ((sc->chainmask & sc->txchainmask) == 0)
5862 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5863 
5864 	(void)ops->set_gains(sc);
5865 	calib->state = IWN_CALIB_STATE_RUN;
5866 
5867 #ifdef notyet
5868 	/* XXX Disable RX chains with no antennas connected. */
5869 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5870 	if (sc->sc_is_scanning)
5871 		device_printf(sc->sc_dev,
5872 		    "%s: is_scanning set, before RXON\n",
5873 		    __func__);
5874 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5875 #endif
5876 
5877 	/* Enable power-saving mode if requested by user. */
5878 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5879 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5880 
5881 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5882 
5883 }
5884 
5885 static int
5886 iwn4965_init_gains(struct iwn_softc *sc)
5887 {
5888 	struct iwn_phy_calib_gain cmd;
5889 
5890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5891 
5892 	memset(&cmd, 0, sizeof cmd);
5893 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5894 	/* Differential gains initially set to 0 for all 3 antennas. */
5895 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5896 	    "%s: setting initial differential gains\n", __func__);
5897 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5898 }
5899 
5900 static int
5901 iwn5000_init_gains(struct iwn_softc *sc)
5902 {
5903 	struct iwn_phy_calib cmd;
5904 
5905 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5906 
5907 	memset(&cmd, 0, sizeof cmd);
5908 	cmd.code = sc->reset_noise_gain;
5909 	cmd.ngroups = 1;
5910 	cmd.isvalid = 1;
5911 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5912 	    "%s: setting initial differential gains\n", __func__);
5913 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5914 }
5915 
5916 static int
5917 iwn4965_set_gains(struct iwn_softc *sc)
5918 {
5919 	struct iwn_calib_state *calib = &sc->calib;
5920 	struct iwn_phy_calib_gain cmd;
5921 	int i, delta, noise;
5922 
5923 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5924 
5925 	/* Get minimal noise among connected antennas. */
5926 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5927 	for (i = 0; i < 3; i++)
5928 		if (sc->chainmask & (1 << i))
5929 			noise = MIN(calib->noise[i], noise);
5930 
5931 	memset(&cmd, 0, sizeof cmd);
5932 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5933 	/* Set differential gains for connected antennas. */
5934 	for (i = 0; i < 3; i++) {
5935 		if (sc->chainmask & (1 << i)) {
5936 			/* Compute attenuation (in unit of 1.5dB). */
5937 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5938 			/* NB: delta <= 0 */
5939 			/* Limit to [-4.5dB,0]. */
5940 			cmd.gain[i] = MIN(abs(delta), 3);
5941 			if (delta < 0)
5942 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5943 		}
5944 	}
5945 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5946 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5947 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5948 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5949 }
5950 
5951 static int
5952 iwn5000_set_gains(struct iwn_softc *sc)
5953 {
5954 	struct iwn_calib_state *calib = &sc->calib;
5955 	struct iwn_phy_calib_gain cmd;
5956 	int i, ant, div, delta;
5957 
5958 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5959 
5960 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5961 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5962 
5963 	memset(&cmd, 0, sizeof cmd);
5964 	cmd.code = sc->noise_gain;
5965 	cmd.ngroups = 1;
5966 	cmd.isvalid = 1;
5967 	/* Get first available RX antenna as referential. */
5968 	ant = IWN_LSB(sc->rxchainmask);
5969 	/* Set differential gains for other antennas. */
5970 	for (i = ant + 1; i < 3; i++) {
5971 		if (sc->chainmask & (1 << i)) {
5972 			/* The delta is relative to antenna "ant". */
5973 			delta = ((int32_t)calib->noise[ant] -
5974 			    (int32_t)calib->noise[i]) / div;
5975 			/* Limit to [-4.5dB,+4.5dB]. */
5976 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5977 			if (delta < 0)
5978 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5979 		}
5980 	}
5981 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5982 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5983 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5984 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5985 }
5986 
5987 /*
5988  * Tune RF RX sensitivity based on the number of false alarms detected
5989  * during the last beacon period.
5990  */
5991 static void
5992 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5993 {
5994 #define inc(val, inc, max)			\
5995 	if ((val) < (max)) {			\
5996 		if ((val) < (max) - (inc))	\
5997 			(val) += (inc);		\
5998 		else				\
5999 			(val) = (max);		\
6000 		needs_update = 1;		\
6001 	}
6002 #define dec(val, dec, min)			\
6003 	if ((val) > (min)) {			\
6004 		if ((val) > (min) + (dec))	\
6005 			(val) -= (dec);		\
6006 		else				\
6007 			(val) = (min);		\
6008 		needs_update = 1;		\
6009 	}
6010 
6011 	const struct iwn_sensitivity_limits *limits = sc->limits;
6012 	struct iwn_calib_state *calib = &sc->calib;
6013 	uint32_t val, rxena, fa;
6014 	uint32_t energy[3], energy_min;
6015 	uint8_t noise[3], noise_ref;
6016 	int i, needs_update = 0;
6017 
6018 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6019 
6020 	/* Check that we've been enabled long enough. */
6021 	if ((rxena = le32toh(stats->general.load)) == 0){
6022 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6023 		return;
6024 	}
6025 
6026 	/* Compute number of false alarms since last call for OFDM. */
6027 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6028 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6029 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6030 
6031 	if (fa > 50 * rxena) {
6032 		/* High false alarm count, decrease sensitivity. */
6033 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6034 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6035 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6036 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6037 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6038 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6039 
6040 	} else if (fa < 5 * rxena) {
6041 		/* Low false alarm count, increase sensitivity. */
6042 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6043 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6044 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6045 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6046 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6047 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6048 	}
6049 
6050 	/* Compute maximum noise among 3 receivers. */
6051 	for (i = 0; i < 3; i++)
6052 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6053 	val = MAX(noise[0], noise[1]);
6054 	val = MAX(noise[2], val);
6055 	/* Insert it into our samples table. */
6056 	calib->noise_samples[calib->cur_noise_sample] = val;
6057 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6058 
6059 	/* Compute maximum noise among last 20 samples. */
6060 	noise_ref = calib->noise_samples[0];
6061 	for (i = 1; i < 20; i++)
6062 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6063 
6064 	/* Compute maximum energy among 3 receivers. */
6065 	for (i = 0; i < 3; i++)
6066 		energy[i] = le32toh(stats->general.energy[i]);
6067 	val = MIN(energy[0], energy[1]);
6068 	val = MIN(energy[2], val);
6069 	/* Insert it into our samples table. */
6070 	calib->energy_samples[calib->cur_energy_sample] = val;
6071 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6072 
6073 	/* Compute minimum energy among last 10 samples. */
6074 	energy_min = calib->energy_samples[0];
6075 	for (i = 1; i < 10; i++)
6076 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6077 	energy_min += 6;
6078 
6079 	/* Compute number of false alarms since last call for CCK. */
6080 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6081 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6082 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6083 
6084 	if (fa > 50 * rxena) {
6085 		/* High false alarm count, decrease sensitivity. */
6086 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6087 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6088 		calib->cck_state = IWN_CCK_STATE_HIFA;
6089 		calib->low_fa = 0;
6090 
6091 		if (calib->cck_x4 > 160) {
6092 			calib->noise_ref = noise_ref;
6093 			if (calib->energy_cck > 2)
6094 				dec(calib->energy_cck, 2, energy_min);
6095 		}
6096 		if (calib->cck_x4 < 160) {
6097 			calib->cck_x4 = 161;
6098 			needs_update = 1;
6099 		} else
6100 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6101 
6102 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6103 
6104 	} else if (fa < 5 * rxena) {
6105 		/* Low false alarm count, increase sensitivity. */
6106 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6107 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6108 		calib->cck_state = IWN_CCK_STATE_LOFA;
6109 		calib->low_fa++;
6110 
6111 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6112 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6113 		     calib->low_fa > 100)) {
6114 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6115 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6116 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6117 		}
6118 	} else {
6119 		/* Not worth to increase or decrease sensitivity. */
6120 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6121 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6122 		calib->low_fa = 0;
6123 		calib->noise_ref = noise_ref;
6124 
6125 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6126 			/* Previous interval had many false alarms. */
6127 			dec(calib->energy_cck, 8, energy_min);
6128 		}
6129 		calib->cck_state = IWN_CCK_STATE_INIT;
6130 	}
6131 
6132 	if (needs_update)
6133 		(void)iwn_send_sensitivity(sc);
6134 
6135 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6136 
6137 #undef dec
6138 #undef inc
6139 }
6140 
6141 static int
6142 iwn_send_sensitivity(struct iwn_softc *sc)
6143 {
6144 	struct iwn_calib_state *calib = &sc->calib;
6145 	struct iwn_enhanced_sensitivity_cmd cmd;
6146 	int len;
6147 
6148 	memset(&cmd, 0, sizeof cmd);
6149 	len = sizeof (struct iwn_sensitivity_cmd);
6150 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6151 	/* OFDM modulation. */
6152 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6153 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6154 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6155 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6156 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6157 	cmd.energy_ofdm_th     = htole16(62);
6158 	/* CCK modulation. */
6159 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6160 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6161 	cmd.energy_cck         = htole16(calib->energy_cck);
6162 	/* Barker modulation: use default values. */
6163 	cmd.corr_barker        = htole16(190);
6164 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6165 
6166 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6167 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6168 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6169 	    calib->ofdm_mrc_x4, calib->cck_x4,
6170 	    calib->cck_mrc_x4, calib->energy_cck);
6171 
6172 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6173 		goto send;
6174 	/* Enhanced sensitivity settings. */
6175 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6176 	cmd.ofdm_det_slope_mrc = htole16(668);
6177 	cmd.ofdm_det_icept_mrc = htole16(4);
6178 	cmd.ofdm_det_slope     = htole16(486);
6179 	cmd.ofdm_det_icept     = htole16(37);
6180 	cmd.cck_det_slope_mrc  = htole16(853);
6181 	cmd.cck_det_icept_mrc  = htole16(4);
6182 	cmd.cck_det_slope      = htole16(476);
6183 	cmd.cck_det_icept      = htole16(99);
6184 send:
6185 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6186 }
6187 
6188 /*
6189  * Look at the increase of PLCP errors over time; if it exceeds
6190  * a programmed threshold then trigger an RF retune.
6191  */
6192 static void
6193 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6194 {
6195 	int32_t delta_ofdm, delta_ht, delta_cck;
6196 	struct iwn_calib_state *calib = &sc->calib;
6197 	int delta_ticks, cur_ticks;
6198 	int delta_msec;
6199 	int thresh;
6200 
6201 	/*
6202 	 * Calculate the difference between the current and
6203 	 * previous statistics.
6204 	 */
6205 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6206 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6207 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6208 
6209 	/*
6210 	 * Calculate the delta in time between successive statistics
6211 	 * messages.  Yes, it can roll over; so we make sure that
6212 	 * this doesn't happen.
6213 	 *
6214 	 * XXX go figure out what to do about rollover
6215 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6216 	 * XXX go stab signed integer overflow undefined-ness in the face.
6217 	 */
6218 	cur_ticks = ticks;
6219 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6220 
6221 	/*
6222 	 * If any are negative, then the firmware likely reset; so just
6223 	 * bail.  We'll pick this up next time.
6224 	 */
6225 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6226 		return;
6227 
6228 	/*
6229 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6230 	 * so we can do some useful math with it.
6231 	 */
6232 	delta_msec = ticks_to_msecs(delta_ticks);
6233 
6234 	/*
6235 	 * Calculate what our threshold is given the current delta_msec.
6236 	 */
6237 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6238 
6239 	DPRINTF(sc, IWN_DEBUG_STATE,
6240 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6241 	    __func__,
6242 	    delta_msec,
6243 	    delta_cck,
6244 	    delta_ofdm,
6245 	    delta_ht,
6246 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6247 	    thresh);
6248 
6249 	/*
6250 	 * If we need a retune, then schedule a single channel scan
6251 	 * to a channel that isn't the currently active one!
6252 	 *
6253 	 * The math from linux iwlwifi:
6254 	 *
6255 	 * if ((delta * 100 / msecs) > threshold)
6256 	 */
6257 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6258 		DPRINTF(sc, IWN_DEBUG_ANY,
6259 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6260 		    "over limit (%d); retune!\n",
6261 		    __func__,
6262 		    (delta_cck + delta_ofdm + delta_ht),
6263 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6264 		    thresh);
6265 	}
6266 }
6267 
6268 /*
6269  * Set STA mode power saving level (between 0 and 5).
6270  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6271  */
6272 static int
6273 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6274 {
6275 	struct iwn_pmgt_cmd cmd;
6276 	const struct iwn_pmgt *pmgt;
6277 	uint32_t max, skip_dtim;
6278 	uint32_t reg;
6279 	int i;
6280 
6281 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6282 	    "%s: dtim=%d, level=%d, async=%d\n",
6283 	    __func__,
6284 	    dtim,
6285 	    level,
6286 	    async);
6287 
6288 	/* Select which PS parameters to use. */
6289 	if (dtim <= 2)
6290 		pmgt = &iwn_pmgt[0][level];
6291 	else if (dtim <= 10)
6292 		pmgt = &iwn_pmgt[1][level];
6293 	else
6294 		pmgt = &iwn_pmgt[2][level];
6295 
6296 	memset(&cmd, 0, sizeof cmd);
6297 	if (level != 0)	/* not CAM */
6298 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6299 	if (level == 5)
6300 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6301 	/* Retrieve PCIe Active State Power Management (ASPM). */
6302 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6303 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6304 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6305 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6306 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6307 
6308 	if (dtim == 0) {
6309 		dtim = 1;
6310 		skip_dtim = 0;
6311 	} else
6312 		skip_dtim = pmgt->skip_dtim;
6313 	if (skip_dtim != 0) {
6314 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6315 		max = pmgt->intval[4];
6316 		if (max == (uint32_t)-1)
6317 			max = dtim * (skip_dtim + 1);
6318 		else if (max > dtim)
6319 			max = rounddown(max, dtim);
6320 	} else
6321 		max = dtim;
6322 	for (i = 0; i < 5; i++)
6323 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6324 
6325 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6326 	    level);
6327 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6328 }
6329 
6330 static int
6331 iwn_send_btcoex(struct iwn_softc *sc)
6332 {
6333 	struct iwn_bluetooth cmd;
6334 
6335 	memset(&cmd, 0, sizeof cmd);
6336 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6337 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6338 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6339 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6340 	    __func__);
6341 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6342 }
6343 
6344 static int
6345 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6346 {
6347 	static const uint32_t btcoex_3wire[12] = {
6348 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6349 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6350 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6351 	};
6352 	struct iwn6000_btcoex_config btconfig;
6353 	struct iwn2000_btcoex_config btconfig2k;
6354 	struct iwn_btcoex_priotable btprio;
6355 	struct iwn_btcoex_prot btprot;
6356 	int error, i;
6357 	uint8_t flags;
6358 
6359 	memset(&btconfig, 0, sizeof btconfig);
6360 	memset(&btconfig2k, 0, sizeof btconfig2k);
6361 
6362 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6363 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6364 
6365 	if (sc->base_params->bt_sco_disable)
6366 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6367 	else
6368 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6369 
6370 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6371 
6372 	/* Default flags result is 145 as old value */
6373 
6374 	/*
6375 	 * Flags value has to be review. Values must change if we
6376 	 * which to disable it
6377 	 */
6378 	if (sc->base_params->bt_session_2) {
6379 		btconfig2k.flags = flags;
6380 		btconfig2k.max_kill = 5;
6381 		btconfig2k.bt3_t7_timer = 1;
6382 		btconfig2k.kill_ack = htole32(0xffff0000);
6383 		btconfig2k.kill_cts = htole32(0xffff0000);
6384 		btconfig2k.sample_time = 2;
6385 		btconfig2k.bt3_t2_timer = 0xc;
6386 
6387 		for (i = 0; i < 12; i++)
6388 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6389 		btconfig2k.valid = htole16(0xff);
6390 		btconfig2k.prio_boost = htole32(0xf0);
6391 		DPRINTF(sc, IWN_DEBUG_RESET,
6392 		    "%s: configuring advanced bluetooth coexistence"
6393 		    " session 2, flags : 0x%x\n",
6394 		    __func__,
6395 		    flags);
6396 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6397 		    sizeof(btconfig2k), 1);
6398 	} else {
6399 		btconfig.flags = flags;
6400 		btconfig.max_kill = 5;
6401 		btconfig.bt3_t7_timer = 1;
6402 		btconfig.kill_ack = htole32(0xffff0000);
6403 		btconfig.kill_cts = htole32(0xffff0000);
6404 		btconfig.sample_time = 2;
6405 		btconfig.bt3_t2_timer = 0xc;
6406 
6407 		for (i = 0; i < 12; i++)
6408 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6409 		btconfig.valid = htole16(0xff);
6410 		btconfig.prio_boost = 0xf0;
6411 		DPRINTF(sc, IWN_DEBUG_RESET,
6412 		    "%s: configuring advanced bluetooth coexistence,"
6413 		    " flags : 0x%x\n",
6414 		    __func__,
6415 		    flags);
6416 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6417 		    sizeof(btconfig), 1);
6418 	}
6419 
6420 	if (error != 0)
6421 		return error;
6422 
6423 	memset(&btprio, 0, sizeof btprio);
6424 	btprio.calib_init1 = 0x6;
6425 	btprio.calib_init2 = 0x7;
6426 	btprio.calib_periodic_low1 = 0x2;
6427 	btprio.calib_periodic_low2 = 0x3;
6428 	btprio.calib_periodic_high1 = 0x4;
6429 	btprio.calib_periodic_high2 = 0x5;
6430 	btprio.dtim = 0x6;
6431 	btprio.scan52 = 0x8;
6432 	btprio.scan24 = 0xa;
6433 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6434 	    1);
6435 	if (error != 0)
6436 		return error;
6437 
6438 	/* Force BT state machine change. */
6439 	memset(&btprot, 0, sizeof btprot);
6440 	btprot.open = 1;
6441 	btprot.type = 1;
6442 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6443 	if (error != 0)
6444 		return error;
6445 	btprot.open = 0;
6446 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6447 }
6448 
6449 static int
6450 iwn5000_runtime_calib(struct iwn_softc *sc)
6451 {
6452 	struct iwn5000_calib_config cmd;
6453 
6454 	memset(&cmd, 0, sizeof cmd);
6455 	cmd.ucode.once.enable = 0xffffffff;
6456 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6457 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6458 	    "%s: configuring runtime calibration\n", __func__);
6459 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6460 }
6461 
6462 static uint32_t
6463 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6464 {
6465 	struct ieee80211com *ic = &sc->sc_ic;
6466 	uint32_t htflags = 0;
6467 
6468 	if (! IEEE80211_IS_CHAN_HT(c))
6469 		return (0);
6470 
6471 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6472 
6473 	if (IEEE80211_IS_CHAN_HT40(c)) {
6474 		switch (ic->ic_curhtprotmode) {
6475 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6476 			htflags |= IWN_RXON_HT_MODEPURE40;
6477 			break;
6478 		default:
6479 			htflags |= IWN_RXON_HT_MODEMIXED;
6480 			break;
6481 		}
6482 	}
6483 	if (IEEE80211_IS_CHAN_HT40D(c))
6484 		htflags |= IWN_RXON_HT_HT40MINUS;
6485 
6486 	return (htflags);
6487 }
6488 
6489 static int
6490 iwn_config(struct iwn_softc *sc)
6491 {
6492 	struct iwn_ops *ops = &sc->ops;
6493 	struct ieee80211com *ic = &sc->sc_ic;
6494 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6495 	const uint8_t *macaddr;
6496 	uint32_t txmask;
6497 	uint16_t rxchain;
6498 	int error;
6499 
6500 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6501 
6502 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6503 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6504 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6505 		    " exclusive each together. Review NIC config file. Conf"
6506 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6507 		    sc->base_params->calib_need,
6508 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6509 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6510 		return (EINVAL);
6511 	}
6512 
6513 	/* Compute temperature calib if needed. Will be send by send calib */
6514 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6515 		error = iwn5000_temp_offset_calib(sc);
6516 		if (error != 0) {
6517 			device_printf(sc->sc_dev,
6518 			    "%s: could not set temperature offset\n", __func__);
6519 			return (error);
6520 		}
6521 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6522 		error = iwn5000_temp_offset_calibv2(sc);
6523 		if (error != 0) {
6524 			device_printf(sc->sc_dev,
6525 			    "%s: could not compute temperature offset v2\n",
6526 			    __func__);
6527 			return (error);
6528 		}
6529 	}
6530 
6531 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6532 		/* Configure runtime DC calibration. */
6533 		error = iwn5000_runtime_calib(sc);
6534 		if (error != 0) {
6535 			device_printf(sc->sc_dev,
6536 			    "%s: could not configure runtime calibration\n",
6537 			    __func__);
6538 			return error;
6539 		}
6540 	}
6541 
6542 	/* Configure valid TX chains for >=5000 Series. */
6543 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6544 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6545 		txmask = htole32(sc->txchainmask);
6546 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6547 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6548 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6549 		    sizeof txmask, 0);
6550 		if (error != 0) {
6551 			device_printf(sc->sc_dev,
6552 			    "%s: could not configure valid TX chains, "
6553 			    "error %d\n", __func__, error);
6554 			return error;
6555 		}
6556 	}
6557 
6558 	/* Configure bluetooth coexistence. */
6559 	error = 0;
6560 
6561 	/* Configure bluetooth coexistence if needed. */
6562 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6563 		error = iwn_send_advanced_btcoex(sc);
6564 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6565 		error = iwn_send_btcoex(sc);
6566 
6567 	if (error != 0) {
6568 		device_printf(sc->sc_dev,
6569 		    "%s: could not configure bluetooth coexistence, error %d\n",
6570 		    __func__, error);
6571 		return error;
6572 	}
6573 
6574 	/* Set mode, channel, RX filter and enable RX. */
6575 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6576 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6577 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6578 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6579 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6580 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6581 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6582 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6583 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6584 	switch (ic->ic_opmode) {
6585 	case IEEE80211_M_STA:
6586 		sc->rxon->mode = IWN_MODE_STA;
6587 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6588 		break;
6589 	case IEEE80211_M_MONITOR:
6590 		sc->rxon->mode = IWN_MODE_MONITOR;
6591 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6592 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6593 		break;
6594 	default:
6595 		/* Should not get there. */
6596 		break;
6597 	}
6598 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6599 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6600 	sc->rxon->ht_single_mask = 0xff;
6601 	sc->rxon->ht_dual_mask = 0xff;
6602 	sc->rxon->ht_triple_mask = 0xff;
6603 	/*
6604 	 * In active association mode, ensure that
6605 	 * all the receive chains are enabled.
6606 	 *
6607 	 * Since we're not yet doing SMPS, don't allow the
6608 	 * number of idle RX chains to be less than the active
6609 	 * number.
6610 	 */
6611 	rxchain =
6612 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6613 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6614 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6615 	sc->rxon->rxchain = htole16(rxchain);
6616 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6617 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6618 	    __func__,
6619 	    sc->rxchainmask,
6620 	    sc->nrxchains);
6621 
6622 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6623 
6624 	DPRINTF(sc, IWN_DEBUG_RESET,
6625 	    "%s: setting configuration; flags=0x%08x\n",
6626 	    __func__, le32toh(sc->rxon->flags));
6627 	if (sc->sc_is_scanning)
6628 		device_printf(sc->sc_dev,
6629 		    "%s: is_scanning set, before RXON\n",
6630 		    __func__);
6631 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6632 	if (error != 0) {
6633 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6634 		    __func__);
6635 		return error;
6636 	}
6637 
6638 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6639 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6640 		    __func__);
6641 		return error;
6642 	}
6643 
6644 	/* Configuration has changed, set TX power accordingly. */
6645 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6646 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6647 		    __func__);
6648 		return error;
6649 	}
6650 
6651 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6652 		device_printf(sc->sc_dev,
6653 		    "%s: could not set critical temperature\n", __func__);
6654 		return error;
6655 	}
6656 
6657 	/* Set power saving level to CAM during initialization. */
6658 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6659 		device_printf(sc->sc_dev,
6660 		    "%s: could not set power saving level\n", __func__);
6661 		return error;
6662 	}
6663 
6664 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6665 
6666 	return 0;
6667 }
6668 
6669 static uint16_t
6670 iwn_get_active_dwell_time(struct iwn_softc *sc,
6671     struct ieee80211_channel *c, uint8_t n_probes)
6672 {
6673 	/* No channel? Default to 2GHz settings */
6674 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6675 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6676 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6677 	}
6678 
6679 	/* 5GHz dwell time */
6680 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6681 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6682 }
6683 
6684 /*
6685  * Limit the total dwell time to 85% of the beacon interval.
6686  *
6687  * Returns the dwell time in milliseconds.
6688  */
6689 static uint16_t
6690 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6691 {
6692 	struct ieee80211com *ic = &sc->sc_ic;
6693 	struct ieee80211vap *vap = NULL;
6694 	int bintval = 0;
6695 
6696 	/* bintval is in TU (1.024mS) */
6697 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6698 		vap = TAILQ_FIRST(&ic->ic_vaps);
6699 		bintval = vap->iv_bss->ni_intval;
6700 	}
6701 
6702 	/*
6703 	 * If it's non-zero, we should calculate the minimum of
6704 	 * it and the DWELL_BASE.
6705 	 *
6706 	 * XXX Yes, the math should take into account that bintval
6707 	 * is 1.024mS, not 1mS..
6708 	 */
6709 	if (bintval > 0) {
6710 		DPRINTF(sc, IWN_DEBUG_SCAN,
6711 		    "%s: bintval=%d\n",
6712 		    __func__,
6713 		    bintval);
6714 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6715 	}
6716 
6717 	/* No association context? Default */
6718 	return (IWN_PASSIVE_DWELL_BASE);
6719 }
6720 
6721 static uint16_t
6722 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6723 {
6724 	uint16_t passive;
6725 
6726 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6727 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6728 	} else {
6729 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6730 	}
6731 
6732 	/* Clamp to the beacon interval if we're associated */
6733 	return (iwn_limit_dwell(sc, passive));
6734 }
6735 
6736 static int
6737 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6738     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6739 {
6740 	struct ieee80211com *ic = &sc->sc_ic;
6741 	struct ieee80211_node *ni = vap->iv_bss;
6742 	struct iwn_scan_hdr *hdr;
6743 	struct iwn_cmd_data *tx;
6744 	struct iwn_scan_essid *essid;
6745 	struct iwn_scan_chan *chan;
6746 	struct ieee80211_frame *wh;
6747 	struct ieee80211_rateset *rs;
6748 	uint8_t *buf, *frm;
6749 	uint16_t rxchain;
6750 	uint8_t txant;
6751 	int buflen, error;
6752 	int is_active;
6753 	uint16_t dwell_active, dwell_passive;
6754 	uint32_t extra, scan_service_time;
6755 
6756 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6757 
6758 	/*
6759 	 * We are absolutely not allowed to send a scan command when another
6760 	 * scan command is pending.
6761 	 */
6762 	if (sc->sc_is_scanning) {
6763 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6764 		    __func__);
6765 		return (EAGAIN);
6766 	}
6767 
6768 	/* Assign the scan channel */
6769 	c = ic->ic_curchan;
6770 
6771 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6772 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6773 	if (buf == NULL) {
6774 		device_printf(sc->sc_dev,
6775 		    "%s: could not allocate buffer for scan command\n",
6776 		    __func__);
6777 		return ENOMEM;
6778 	}
6779 	hdr = (struct iwn_scan_hdr *)buf;
6780 	/*
6781 	 * Move to the next channel if no frames are received within 10ms
6782 	 * after sending the probe request.
6783 	 */
6784 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6785 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6786 	/*
6787 	 * Max needs to be greater than active and passive and quiet!
6788 	 * It's also in microseconds!
6789 	 */
6790 	hdr->max_svc = htole32(250 * 1024);
6791 
6792 	/*
6793 	 * Reset scan: interval=100
6794 	 * Normal scan: interval=becaon interval
6795 	 * suspend_time: 100 (TU)
6796 	 *
6797 	 */
6798 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6799 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6800 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6801 	hdr->pause_svc = htole32(scan_service_time);
6802 
6803 	/* Select antennas for scanning. */
6804 	rxchain =
6805 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6806 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6807 	    IWN_RXCHAIN_DRIVER_FORCE;
6808 	if (IEEE80211_IS_CHAN_A(c) &&
6809 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6810 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6811 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6812 	} else	/* Use all available RX antennas. */
6813 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6814 	hdr->rxchain = htole16(rxchain);
6815 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6816 
6817 	tx = (struct iwn_cmd_data *)(hdr + 1);
6818 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6819 	tx->id = sc->broadcast_id;
6820 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6821 
6822 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6823 		/* Send probe requests at 6Mbps. */
6824 		tx->rate = htole32(0xd);
6825 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6826 	} else {
6827 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6828 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6829 		    sc->rxon->associd && sc->rxon->chan > 14)
6830 			tx->rate = htole32(0xd);
6831 		else {
6832 			/* Send probe requests at 1Mbps. */
6833 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6834 		}
6835 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6836 	}
6837 	/* Use the first valid TX antenna. */
6838 	txant = IWN_LSB(sc->txchainmask);
6839 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6840 
6841 	/*
6842 	 * Only do active scanning if we're announcing a probe request
6843 	 * for a given SSID (or more, if we ever add it to the driver.)
6844 	 */
6845 	is_active = 0;
6846 
6847 	/*
6848 	 * If we're scanning for a specific SSID, add it to the command.
6849 	 *
6850 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6851 	 */
6852 	essid = (struct iwn_scan_essid *)(tx + 1);
6853 	if (ss != NULL) {
6854 		if (ss->ss_ssid[0].len != 0) {
6855 			essid[0].id = IEEE80211_ELEMID_SSID;
6856 			essid[0].len = ss->ss_ssid[0].len;
6857 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6858 		}
6859 
6860 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6861 		    __func__,
6862 		    ss->ss_ssid[0].len,
6863 		    ss->ss_ssid[0].len,
6864 		    ss->ss_ssid[0].ssid);
6865 
6866 		if (ss->ss_nssid > 0)
6867 			is_active = 1;
6868 	}
6869 
6870 	/*
6871 	 * Build a probe request frame.  Most of the following code is a
6872 	 * copy & paste of what is done in net80211.
6873 	 */
6874 	wh = (struct ieee80211_frame *)(essid + 20);
6875 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6876 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6877 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6878 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6879 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6880 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6881 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6882 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6883 
6884 	frm = (uint8_t *)(wh + 1);
6885 	frm = ieee80211_add_ssid(frm, NULL, 0);
6886 	frm = ieee80211_add_rates(frm, rs);
6887 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6888 		frm = ieee80211_add_xrates(frm, rs);
6889 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6890 		frm = ieee80211_add_htcap(frm, ni);
6891 
6892 	/* Set length of probe request. */
6893 	tx->len = htole16(frm - (uint8_t *)wh);
6894 
6895 	/*
6896 	 * If active scanning is requested but a certain channel is
6897 	 * marked passive, we can do active scanning if we detect
6898 	 * transmissions.
6899 	 *
6900 	 * There is an issue with some firmware versions that triggers
6901 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6902 	 * on a radar channel even though this means that we should NOT
6903 	 * send probes.
6904 	 *
6905 	 * The "good CRC threshold" is the number of frames that we
6906 	 * need to receive during our dwell time on a channel before
6907 	 * sending out probes -- setting this to a huge value will
6908 	 * mean we never reach it, but at the same time work around
6909 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6910 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6911 	 *
6912 	 * This was fixed in later versions along with some other
6913 	 * scan changes, and the threshold behaves as a flag in those
6914 	 * versions.
6915 	 */
6916 
6917 	/*
6918 	 * If we're doing active scanning, set the crc_threshold
6919 	 * to a suitable value.  This is different to active veruss
6920 	 * passive scanning depending upon the channel flags; the
6921 	 * firmware will obey that particular check for us.
6922 	 */
6923 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6924 		hdr->crc_threshold = is_active ?
6925 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6926 	else
6927 		hdr->crc_threshold = is_active ?
6928 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6929 
6930 	chan = (struct iwn_scan_chan *)frm;
6931 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6932 	chan->flags = 0;
6933 	if (ss->ss_nssid > 0)
6934 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6935 	chan->dsp_gain = 0x6e;
6936 
6937 	/*
6938 	 * Set the passive/active flag depending upon the channel mode.
6939 	 * XXX TODO: take the is_active flag into account as well?
6940 	 */
6941 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6942 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6943 	else
6944 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6945 
6946 	/*
6947 	 * Calculate the active/passive dwell times.
6948 	 */
6949 
6950 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6951 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6952 
6953 	/* Make sure they're valid */
6954 	if (dwell_passive <= dwell_active)
6955 		dwell_passive = dwell_active + 1;
6956 
6957 	chan->active = htole16(dwell_active);
6958 	chan->passive = htole16(dwell_passive);
6959 
6960 	if (IEEE80211_IS_CHAN_5GHZ(c))
6961 		chan->rf_gain = 0x3b;
6962 	else
6963 		chan->rf_gain = 0x28;
6964 
6965 	DPRINTF(sc, IWN_DEBUG_STATE,
6966 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6967 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6968 	    "isactive=%d numssid=%d\n", __func__,
6969 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6970 	    dwell_active, dwell_passive, scan_service_time,
6971 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6972 
6973 	hdr->nchan++;
6974 	chan++;
6975 	buflen = (uint8_t *)chan - buf;
6976 	hdr->len = htole16(buflen);
6977 
6978 	if (sc->sc_is_scanning) {
6979 		device_printf(sc->sc_dev,
6980 		    "%s: called with is_scanning set!\n",
6981 		    __func__);
6982 	}
6983 	sc->sc_is_scanning = 1;
6984 
6985 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6986 	    hdr->nchan);
6987 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6988 	free(buf, M_DEVBUF);
6989 	if (error == 0)
6990 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
6991 
6992 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6993 
6994 	return error;
6995 }
6996 
6997 static int
6998 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6999 {
7000 	struct iwn_ops *ops = &sc->ops;
7001 	struct ieee80211com *ic = &sc->sc_ic;
7002 	struct ieee80211_node *ni = vap->iv_bss;
7003 	int error;
7004 
7005 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7006 
7007 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7008 	/* Update adapter configuration. */
7009 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7010 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7011 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7012 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7013 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7014 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7015 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7016 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7017 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7018 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7019 		sc->rxon->cck_mask  = 0;
7020 		sc->rxon->ofdm_mask = 0x15;
7021 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7022 		sc->rxon->cck_mask  = 0x03;
7023 		sc->rxon->ofdm_mask = 0;
7024 	} else {
7025 		/* Assume 802.11b/g. */
7026 		sc->rxon->cck_mask  = 0x03;
7027 		sc->rxon->ofdm_mask = 0x15;
7028 	}
7029 
7030 	/* try HT */
7031 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7032 
7033 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7034 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7035 	    sc->rxon->ofdm_mask);
7036 	if (sc->sc_is_scanning)
7037 		device_printf(sc->sc_dev,
7038 		    "%s: is_scanning set, before RXON\n",
7039 		    __func__);
7040 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7041 	if (error != 0) {
7042 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7043 		    __func__, error);
7044 		return error;
7045 	}
7046 
7047 	/* Configuration has changed, set TX power accordingly. */
7048 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7049 		device_printf(sc->sc_dev,
7050 		    "%s: could not set TX power, error %d\n", __func__, error);
7051 		return error;
7052 	}
7053 	/*
7054 	 * Reconfiguring RXON clears the firmware nodes table so we must
7055 	 * add the broadcast node again.
7056 	 */
7057 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7058 		device_printf(sc->sc_dev,
7059 		    "%s: could not add broadcast node, error %d\n", __func__,
7060 		    error);
7061 		return error;
7062 	}
7063 
7064 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7065 
7066 	return 0;
7067 }
7068 
7069 static int
7070 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7071 {
7072 	struct iwn_ops *ops = &sc->ops;
7073 	struct ieee80211com *ic = &sc->sc_ic;
7074 	struct ieee80211_node *ni = vap->iv_bss;
7075 	struct iwn_node_info node;
7076 	int error;
7077 
7078 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7079 
7080 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7081 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7082 		/* Link LED blinks while monitoring. */
7083 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7084 		return 0;
7085 	}
7086 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7087 		device_printf(sc->sc_dev,
7088 		    "%s: could not set timing, error %d\n", __func__, error);
7089 		return error;
7090 	}
7091 
7092 	/* Update adapter configuration. */
7093 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7094 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7095 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7096 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7097 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7098 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7099 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7100 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7101 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7102 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7103 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7104 		sc->rxon->cck_mask  = 0;
7105 		sc->rxon->ofdm_mask = 0x15;
7106 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7107 		sc->rxon->cck_mask  = 0x03;
7108 		sc->rxon->ofdm_mask = 0;
7109 	} else {
7110 		/* Assume 802.11b/g. */
7111 		sc->rxon->cck_mask  = 0x0f;
7112 		sc->rxon->ofdm_mask = 0x15;
7113 	}
7114 	/* try HT */
7115 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7116 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7117 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7118 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7119 	if (sc->sc_is_scanning)
7120 		device_printf(sc->sc_dev,
7121 		    "%s: is_scanning set, before RXON\n",
7122 		    __func__);
7123 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7124 	if (error != 0) {
7125 		device_printf(sc->sc_dev,
7126 		    "%s: could not update configuration, error %d\n", __func__,
7127 		    error);
7128 		return error;
7129 	}
7130 
7131 	/* Configuration has changed, set TX power accordingly. */
7132 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7133 		device_printf(sc->sc_dev,
7134 		    "%s: could not set TX power, error %d\n", __func__, error);
7135 		return error;
7136 	}
7137 
7138 	/* Fake a join to initialize the TX rate. */
7139 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7140 	iwn_newassoc(ni, 1);
7141 
7142 	/* Add BSS node. */
7143 	memset(&node, 0, sizeof node);
7144 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7145 	node.id = IWN_ID_BSS;
7146 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7147 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7148 		case IEEE80211_HTCAP_SMPS_ENA:
7149 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7150 			break;
7151 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7152 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7153 			break;
7154 		}
7155 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7156 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7157 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7158 			node.htflags |= htole32(IWN_NODE_HT40);
7159 	}
7160 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7161 	error = ops->add_node(sc, &node, 1);
7162 	if (error != 0) {
7163 		device_printf(sc->sc_dev,
7164 		    "%s: could not add BSS node, error %d\n", __func__, error);
7165 		return error;
7166 	}
7167 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7168 	    __func__, node.id);
7169 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7170 		device_printf(sc->sc_dev,
7171 		    "%s: could not setup link quality for node %d, error %d\n",
7172 		    __func__, node.id, error);
7173 		return error;
7174 	}
7175 
7176 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7177 		device_printf(sc->sc_dev,
7178 		    "%s: could not set sensitivity, error %d\n", __func__,
7179 		    error);
7180 		return error;
7181 	}
7182 	/* Start periodic calibration timer. */
7183 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7184 	sc->calib_cnt = 0;
7185 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7186 	    sc);
7187 
7188 	/* Link LED always on while associated. */
7189 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7190 
7191 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7192 
7193 	return 0;
7194 }
7195 
7196 /*
7197  * This function is called by upper layer when an ADDBA request is received
7198  * from another STA and before the ADDBA response is sent.
7199  */
7200 static int
7201 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7202     int baparamset, int batimeout, int baseqctl)
7203 {
7204 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7205 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7206 	struct iwn_ops *ops = &sc->ops;
7207 	struct iwn_node *wn = (void *)ni;
7208 	struct iwn_node_info node;
7209 	uint16_t ssn;
7210 	uint8_t tid;
7211 	int error;
7212 
7213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7214 
7215 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7216 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7217 
7218 	memset(&node, 0, sizeof node);
7219 	node.id = wn->id;
7220 	node.control = IWN_NODE_UPDATE;
7221 	node.flags = IWN_FLAG_SET_ADDBA;
7222 	node.addba_tid = tid;
7223 	node.addba_ssn = htole16(ssn);
7224 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7225 	    wn->id, tid, ssn);
7226 	error = ops->add_node(sc, &node, 1);
7227 	if (error != 0)
7228 		return error;
7229 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7230 #undef MS
7231 }
7232 
7233 /*
7234  * This function is called by upper layer on teardown of an HT-immediate
7235  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7236  */
7237 static void
7238 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7239 {
7240 	struct ieee80211com *ic = ni->ni_ic;
7241 	struct iwn_softc *sc = ic->ic_softc;
7242 	struct iwn_ops *ops = &sc->ops;
7243 	struct iwn_node *wn = (void *)ni;
7244 	struct iwn_node_info node;
7245 	uint8_t tid;
7246 
7247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7248 
7249 	/* XXX: tid as an argument */
7250 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7251 		if (&ni->ni_rx_ampdu[tid] == rap)
7252 			break;
7253 	}
7254 
7255 	memset(&node, 0, sizeof node);
7256 	node.id = wn->id;
7257 	node.control = IWN_NODE_UPDATE;
7258 	node.flags = IWN_FLAG_SET_DELBA;
7259 	node.delba_tid = tid;
7260 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7261 	(void)ops->add_node(sc, &node, 1);
7262 	sc->sc_ampdu_rx_stop(ni, rap);
7263 }
7264 
7265 static int
7266 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7267     int dialogtoken, int baparamset, int batimeout)
7268 {
7269 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7270 	int qid;
7271 
7272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7273 
7274 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7275 		if (sc->qid2tap[qid] == NULL)
7276 			break;
7277 	}
7278 	if (qid == sc->ntxqs) {
7279 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7280 		    __func__);
7281 		return 0;
7282 	}
7283 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7284 	if (tap->txa_private == NULL) {
7285 		device_printf(sc->sc_dev,
7286 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7287 		return 0;
7288 	}
7289 	sc->qid2tap[qid] = tap;
7290 	*(int *)tap->txa_private = qid;
7291 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7292 	    batimeout);
7293 }
7294 
7295 static int
7296 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7297     int code, int baparamset, int batimeout)
7298 {
7299 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7300 	int qid = *(int *)tap->txa_private;
7301 	uint8_t tid = tap->txa_tid;
7302 	int ret;
7303 
7304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7305 
7306 	if (code == IEEE80211_STATUS_SUCCESS) {
7307 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7308 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7309 		if (ret != 1)
7310 			return ret;
7311 	} else {
7312 		sc->qid2tap[qid] = NULL;
7313 		free(tap->txa_private, M_DEVBUF);
7314 		tap->txa_private = NULL;
7315 	}
7316 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7317 }
7318 
7319 /*
7320  * This function is called by upper layer when an ADDBA response is received
7321  * from another STA.
7322  */
7323 static int
7324 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7325     uint8_t tid)
7326 {
7327 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7328 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7329 	struct iwn_ops *ops = &sc->ops;
7330 	struct iwn_node *wn = (void *)ni;
7331 	struct iwn_node_info node;
7332 	int error, qid;
7333 
7334 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7335 
7336 	/* Enable TX for the specified RA/TID. */
7337 	wn->disable_tid &= ~(1 << tid);
7338 	memset(&node, 0, sizeof node);
7339 	node.id = wn->id;
7340 	node.control = IWN_NODE_UPDATE;
7341 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7342 	node.disable_tid = htole16(wn->disable_tid);
7343 	error = ops->add_node(sc, &node, 1);
7344 	if (error != 0)
7345 		return 0;
7346 
7347 	if ((error = iwn_nic_lock(sc)) != 0)
7348 		return 0;
7349 	qid = *(int *)tap->txa_private;
7350 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7351 	    __func__, wn->id, tid, tap->txa_start, qid);
7352 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7353 	iwn_nic_unlock(sc);
7354 
7355 	iwn_set_link_quality(sc, ni);
7356 	return 1;
7357 }
7358 
7359 static void
7360 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7361 {
7362 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7363 	struct iwn_ops *ops = &sc->ops;
7364 	uint8_t tid = tap->txa_tid;
7365 	int qid;
7366 
7367 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7368 
7369 	sc->sc_addba_stop(ni, tap);
7370 
7371 	if (tap->txa_private == NULL)
7372 		return;
7373 
7374 	qid = *(int *)tap->txa_private;
7375 	if (sc->txq[qid].queued != 0)
7376 		return;
7377 	if (iwn_nic_lock(sc) != 0)
7378 		return;
7379 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7380 	iwn_nic_unlock(sc);
7381 	sc->qid2tap[qid] = NULL;
7382 	free(tap->txa_private, M_DEVBUF);
7383 	tap->txa_private = NULL;
7384 }
7385 
7386 static void
7387 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7388     int qid, uint8_t tid, uint16_t ssn)
7389 {
7390 	struct iwn_node *wn = (void *)ni;
7391 
7392 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7393 
7394 	/* Stop TX scheduler while we're changing its configuration. */
7395 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7396 	    IWN4965_TXQ_STATUS_CHGACT);
7397 
7398 	/* Assign RA/TID translation to the queue. */
7399 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7400 	    wn->id << 4 | tid);
7401 
7402 	/* Enable chain-building mode for the queue. */
7403 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7404 
7405 	/* Set starting sequence number from the ADDBA request. */
7406 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7407 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7408 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7409 
7410 	/* Set scheduler window size. */
7411 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7412 	    IWN_SCHED_WINSZ);
7413 	/* Set scheduler frame limit. */
7414 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7415 	    IWN_SCHED_LIMIT << 16);
7416 
7417 	/* Enable interrupts for the queue. */
7418 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7419 
7420 	/* Mark the queue as active. */
7421 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7422 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7423 	    iwn_tid2fifo[tid] << 1);
7424 }
7425 
7426 static void
7427 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7428 {
7429 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7430 
7431 	/* Stop TX scheduler while we're changing its configuration. */
7432 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7433 	    IWN4965_TXQ_STATUS_CHGACT);
7434 
7435 	/* Set starting sequence number from the ADDBA request. */
7436 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7437 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7438 
7439 	/* Disable interrupts for the queue. */
7440 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7441 
7442 	/* Mark the queue as inactive. */
7443 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7444 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7445 }
7446 
7447 static void
7448 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7449     int qid, uint8_t tid, uint16_t ssn)
7450 {
7451 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7452 
7453 	struct iwn_node *wn = (void *)ni;
7454 
7455 	/* Stop TX scheduler while we're changing its configuration. */
7456 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7457 	    IWN5000_TXQ_STATUS_CHGACT);
7458 
7459 	/* Assign RA/TID translation to the queue. */
7460 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7461 	    wn->id << 4 | tid);
7462 
7463 	/* Enable chain-building mode for the queue. */
7464 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7465 
7466 	/* Enable aggregation for the queue. */
7467 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7468 
7469 	/* Set starting sequence number from the ADDBA request. */
7470 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7471 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7472 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7473 
7474 	/* Set scheduler window size and frame limit. */
7475 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7476 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7477 
7478 	/* Enable interrupts for the queue. */
7479 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7480 
7481 	/* Mark the queue as active. */
7482 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7483 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7484 }
7485 
7486 static void
7487 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7488 {
7489 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7490 
7491 	/* Stop TX scheduler while we're changing its configuration. */
7492 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7493 	    IWN5000_TXQ_STATUS_CHGACT);
7494 
7495 	/* Disable aggregation for the queue. */
7496 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7497 
7498 	/* Set starting sequence number from the ADDBA request. */
7499 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7500 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7501 
7502 	/* Disable interrupts for the queue. */
7503 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7504 
7505 	/* Mark the queue as inactive. */
7506 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7507 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7508 }
7509 
7510 /*
7511  * Query calibration tables from the initialization firmware.  We do this
7512  * only once at first boot.  Called from a process context.
7513  */
7514 static int
7515 iwn5000_query_calibration(struct iwn_softc *sc)
7516 {
7517 	struct iwn5000_calib_config cmd;
7518 	int error;
7519 
7520 	memset(&cmd, 0, sizeof cmd);
7521 	cmd.ucode.once.enable = htole32(0xffffffff);
7522 	cmd.ucode.once.start  = htole32(0xffffffff);
7523 	cmd.ucode.once.send   = htole32(0xffffffff);
7524 	cmd.ucode.flags       = htole32(0xffffffff);
7525 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7526 	    __func__);
7527 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7528 	if (error != 0)
7529 		return error;
7530 
7531 	/* Wait at most two seconds for calibration to complete. */
7532 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7533 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7534 	return error;
7535 }
7536 
7537 /*
7538  * Send calibration results to the runtime firmware.  These results were
7539  * obtained on first boot from the initialization firmware.
7540  */
7541 static int
7542 iwn5000_send_calibration(struct iwn_softc *sc)
7543 {
7544 	int idx, error;
7545 
7546 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7547 		if (!(sc->base_params->calib_need & (1<<idx))) {
7548 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7549 			    "No need of calib %d\n",
7550 			    idx);
7551 			continue; /* no need for this calib */
7552 		}
7553 		if (sc->calibcmd[idx].buf == NULL) {
7554 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7555 			    "Need calib idx : %d but no available data\n",
7556 			    idx);
7557 			continue;
7558 		}
7559 
7560 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7561 		    "send calibration result idx=%d len=%d\n", idx,
7562 		    sc->calibcmd[idx].len);
7563 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7564 		    sc->calibcmd[idx].len, 0);
7565 		if (error != 0) {
7566 			device_printf(sc->sc_dev,
7567 			    "%s: could not send calibration result, error %d\n",
7568 			    __func__, error);
7569 			return error;
7570 		}
7571 	}
7572 	return 0;
7573 }
7574 
7575 static int
7576 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7577 {
7578 	struct iwn5000_wimax_coex wimax;
7579 
7580 #if 0
7581 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7582 		/* Enable WiMAX coexistence for combo adapters. */
7583 		wimax.flags =
7584 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7585 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7586 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7587 		    IWN_WIMAX_COEX_ENABLE;
7588 		memcpy(wimax.events, iwn6050_wimax_events,
7589 		    sizeof iwn6050_wimax_events);
7590 	} else
7591 #endif
7592 	{
7593 		/* Disable WiMAX coexistence. */
7594 		wimax.flags = 0;
7595 		memset(wimax.events, 0, sizeof wimax.events);
7596 	}
7597 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7598 	    __func__);
7599 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7600 }
7601 
7602 static int
7603 iwn5000_crystal_calib(struct iwn_softc *sc)
7604 {
7605 	struct iwn5000_phy_calib_crystal cmd;
7606 
7607 	memset(&cmd, 0, sizeof cmd);
7608 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7609 	cmd.ngroups = 1;
7610 	cmd.isvalid = 1;
7611 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7612 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7613 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7614 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7615 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7616 }
7617 
7618 static int
7619 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7620 {
7621 	struct iwn5000_phy_calib_temp_offset cmd;
7622 
7623 	memset(&cmd, 0, sizeof cmd);
7624 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7625 	cmd.ngroups = 1;
7626 	cmd.isvalid = 1;
7627 	if (sc->eeprom_temp != 0)
7628 		cmd.offset = htole16(sc->eeprom_temp);
7629 	else
7630 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7631 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7632 	    le16toh(cmd.offset));
7633 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7634 }
7635 
7636 static int
7637 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7638 {
7639 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7640 
7641 	memset(&cmd, 0, sizeof cmd);
7642 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7643 	cmd.ngroups = 1;
7644 	cmd.isvalid = 1;
7645 	if (sc->eeprom_temp != 0) {
7646 		cmd.offset_low = htole16(sc->eeprom_temp);
7647 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7648 	} else {
7649 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7650 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7651 	}
7652 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7653 
7654 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7655 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7656 	    le16toh(cmd.offset_low),
7657 	    le16toh(cmd.offset_high),
7658 	    le16toh(cmd.burnt_voltage_ref));
7659 
7660 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7661 }
7662 
7663 /*
7664  * This function is called after the runtime firmware notifies us of its
7665  * readiness (called in a process context).
7666  */
7667 static int
7668 iwn4965_post_alive(struct iwn_softc *sc)
7669 {
7670 	int error, qid;
7671 
7672 	if ((error = iwn_nic_lock(sc)) != 0)
7673 		return error;
7674 
7675 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7676 
7677 	/* Clear TX scheduler state in SRAM. */
7678 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7679 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7680 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7681 
7682 	/* Set physical address of TX scheduler rings (1KB aligned). */
7683 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7684 
7685 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7686 
7687 	/* Disable chain mode for all our 16 queues. */
7688 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7689 
7690 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7691 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7692 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7693 
7694 		/* Set scheduler window size. */
7695 		iwn_mem_write(sc, sc->sched_base +
7696 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7697 		/* Set scheduler frame limit. */
7698 		iwn_mem_write(sc, sc->sched_base +
7699 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7700 		    IWN_SCHED_LIMIT << 16);
7701 	}
7702 
7703 	/* Enable interrupts for all our 16 queues. */
7704 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7705 	/* Identify TX FIFO rings (0-7). */
7706 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7707 
7708 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7709 	for (qid = 0; qid < 7; qid++) {
7710 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7711 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7712 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7713 	}
7714 	iwn_nic_unlock(sc);
7715 	return 0;
7716 }
7717 
7718 /*
7719  * This function is called after the initialization or runtime firmware
7720  * notifies us of its readiness (called in a process context).
7721  */
7722 static int
7723 iwn5000_post_alive(struct iwn_softc *sc)
7724 {
7725 	int error, qid;
7726 
7727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7728 
7729 	/* Switch to using ICT interrupt mode. */
7730 	iwn5000_ict_reset(sc);
7731 
7732 	if ((error = iwn_nic_lock(sc)) != 0){
7733 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7734 		return error;
7735 	}
7736 
7737 	/* Clear TX scheduler state in SRAM. */
7738 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7739 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7740 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7741 
7742 	/* Set physical address of TX scheduler rings (1KB aligned). */
7743 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7744 
7745 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7746 
7747 	/* Enable chain mode for all queues, except command queue. */
7748 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7749 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7750 	else
7751 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7752 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7753 
7754 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7755 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7756 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7757 
7758 		iwn_mem_write(sc, sc->sched_base +
7759 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7760 		/* Set scheduler window size and frame limit. */
7761 		iwn_mem_write(sc, sc->sched_base +
7762 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7763 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7764 	}
7765 
7766 	/* Enable interrupts for all our 20 queues. */
7767 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7768 	/* Identify TX FIFO rings (0-7). */
7769 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7770 
7771 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7772 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7773 		/* Mark TX rings as active. */
7774 		for (qid = 0; qid < 11; qid++) {
7775 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7776 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7777 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7778 		}
7779 	} else {
7780 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7781 		for (qid = 0; qid < 7; qid++) {
7782 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7783 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7784 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7785 		}
7786 	}
7787 	iwn_nic_unlock(sc);
7788 
7789 	/* Configure WiMAX coexistence for combo adapters. */
7790 	error = iwn5000_send_wimax_coex(sc);
7791 	if (error != 0) {
7792 		device_printf(sc->sc_dev,
7793 		    "%s: could not configure WiMAX coexistence, error %d\n",
7794 		    __func__, error);
7795 		return error;
7796 	}
7797 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7798 		/* Perform crystal calibration. */
7799 		error = iwn5000_crystal_calib(sc);
7800 		if (error != 0) {
7801 			device_printf(sc->sc_dev,
7802 			    "%s: crystal calibration failed, error %d\n",
7803 			    __func__, error);
7804 			return error;
7805 		}
7806 	}
7807 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7808 		/* Query calibration from the initialization firmware. */
7809 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7810 			device_printf(sc->sc_dev,
7811 			    "%s: could not query calibration, error %d\n",
7812 			    __func__, error);
7813 			return error;
7814 		}
7815 		/*
7816 		 * We have the calibration results now, reboot with the
7817 		 * runtime firmware (call ourselves recursively!)
7818 		 */
7819 		iwn_hw_stop(sc);
7820 		error = iwn_hw_init(sc);
7821 	} else {
7822 		/* Send calibration results to runtime firmware. */
7823 		error = iwn5000_send_calibration(sc);
7824 	}
7825 
7826 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7827 
7828 	return error;
7829 }
7830 
7831 /*
7832  * The firmware boot code is small and is intended to be copied directly into
7833  * the NIC internal memory (no DMA transfer).
7834  */
7835 static int
7836 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7837 {
7838 	int error, ntries;
7839 
7840 	size /= sizeof (uint32_t);
7841 
7842 	if ((error = iwn_nic_lock(sc)) != 0)
7843 		return error;
7844 
7845 	/* Copy microcode image into NIC memory. */
7846 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7847 	    (const uint32_t *)ucode, size);
7848 
7849 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7850 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7851 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7852 
7853 	/* Start boot load now. */
7854 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7855 
7856 	/* Wait for transfer to complete. */
7857 	for (ntries = 0; ntries < 1000; ntries++) {
7858 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7859 		    IWN_BSM_WR_CTRL_START))
7860 			break;
7861 		DELAY(10);
7862 	}
7863 	if (ntries == 1000) {
7864 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7865 		    __func__);
7866 		iwn_nic_unlock(sc);
7867 		return ETIMEDOUT;
7868 	}
7869 
7870 	/* Enable boot after power up. */
7871 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7872 
7873 	iwn_nic_unlock(sc);
7874 	return 0;
7875 }
7876 
7877 static int
7878 iwn4965_load_firmware(struct iwn_softc *sc)
7879 {
7880 	struct iwn_fw_info *fw = &sc->fw;
7881 	struct iwn_dma_info *dma = &sc->fw_dma;
7882 	int error;
7883 
7884 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7885 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7886 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7887 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7888 	    fw->init.text, fw->init.textsz);
7889 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7890 
7891 	/* Tell adapter where to find initialization sections. */
7892 	if ((error = iwn_nic_lock(sc)) != 0)
7893 		return error;
7894 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7895 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7896 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7897 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7898 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7899 	iwn_nic_unlock(sc);
7900 
7901 	/* Load firmware boot code. */
7902 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7903 	if (error != 0) {
7904 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7905 		    __func__);
7906 		return error;
7907 	}
7908 	/* Now press "execute". */
7909 	IWN_WRITE(sc, IWN_RESET, 0);
7910 
7911 	/* Wait at most one second for first alive notification. */
7912 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7913 		device_printf(sc->sc_dev,
7914 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7915 		    __func__, error);
7916 		return error;
7917 	}
7918 
7919 	/* Retrieve current temperature for initial TX power calibration. */
7920 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7921 	sc->temp = iwn4965_get_temperature(sc);
7922 
7923 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7924 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7925 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7926 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7927 	    fw->main.text, fw->main.textsz);
7928 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7929 
7930 	/* Tell adapter where to find runtime sections. */
7931 	if ((error = iwn_nic_lock(sc)) != 0)
7932 		return error;
7933 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7934 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7935 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7936 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7937 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7938 	    IWN_FW_UPDATED | fw->main.textsz);
7939 	iwn_nic_unlock(sc);
7940 
7941 	return 0;
7942 }
7943 
7944 static int
7945 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7946     const uint8_t *section, int size)
7947 {
7948 	struct iwn_dma_info *dma = &sc->fw_dma;
7949 	int error;
7950 
7951 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7952 
7953 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7954 	memcpy(dma->vaddr, section, size);
7955 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7956 
7957 	if ((error = iwn_nic_lock(sc)) != 0)
7958 		return error;
7959 
7960 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7961 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7962 
7963 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7964 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7965 	    IWN_LOADDR(dma->paddr));
7966 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7967 	    IWN_HIADDR(dma->paddr) << 28 | size);
7968 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7969 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7970 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7971 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7972 
7973 	/* Kick Flow Handler to start DMA transfer. */
7974 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7975 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7976 
7977 	iwn_nic_unlock(sc);
7978 
7979 	/* Wait at most five seconds for FH DMA transfer to complete. */
7980 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7981 }
7982 
7983 static int
7984 iwn5000_load_firmware(struct iwn_softc *sc)
7985 {
7986 	struct iwn_fw_part *fw;
7987 	int error;
7988 
7989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7990 
7991 	/* Load the initialization firmware on first boot only. */
7992 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7993 	    &sc->fw.main : &sc->fw.init;
7994 
7995 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7996 	    fw->text, fw->textsz);
7997 	if (error != 0) {
7998 		device_printf(sc->sc_dev,
7999 		    "%s: could not load firmware %s section, error %d\n",
8000 		    __func__, ".text", error);
8001 		return error;
8002 	}
8003 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8004 	    fw->data, fw->datasz);
8005 	if (error != 0) {
8006 		device_printf(sc->sc_dev,
8007 		    "%s: could not load firmware %s section, error %d\n",
8008 		    __func__, ".data", error);
8009 		return error;
8010 	}
8011 
8012 	/* Now press "execute". */
8013 	IWN_WRITE(sc, IWN_RESET, 0);
8014 	return 0;
8015 }
8016 
8017 /*
8018  * Extract text and data sections from a legacy firmware image.
8019  */
8020 static int
8021 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8022 {
8023 	const uint32_t *ptr;
8024 	size_t hdrlen = 24;
8025 	uint32_t rev;
8026 
8027 	ptr = (const uint32_t *)fw->data;
8028 	rev = le32toh(*ptr++);
8029 
8030 	sc->ucode_rev = rev;
8031 
8032 	/* Check firmware API version. */
8033 	if (IWN_FW_API(rev) <= 1) {
8034 		device_printf(sc->sc_dev,
8035 		    "%s: bad firmware, need API version >=2\n", __func__);
8036 		return EINVAL;
8037 	}
8038 	if (IWN_FW_API(rev) >= 3) {
8039 		/* Skip build number (version 2 header). */
8040 		hdrlen += 4;
8041 		ptr++;
8042 	}
8043 	if (fw->size < hdrlen) {
8044 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8045 		    __func__, fw->size);
8046 		return EINVAL;
8047 	}
8048 	fw->main.textsz = le32toh(*ptr++);
8049 	fw->main.datasz = le32toh(*ptr++);
8050 	fw->init.textsz = le32toh(*ptr++);
8051 	fw->init.datasz = le32toh(*ptr++);
8052 	fw->boot.textsz = le32toh(*ptr++);
8053 
8054 	/* Check that all firmware sections fit. */
8055 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8056 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8057 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8058 		    __func__, fw->size);
8059 		return EINVAL;
8060 	}
8061 
8062 	/* Get pointers to firmware sections. */
8063 	fw->main.text = (const uint8_t *)ptr;
8064 	fw->main.data = fw->main.text + fw->main.textsz;
8065 	fw->init.text = fw->main.data + fw->main.datasz;
8066 	fw->init.data = fw->init.text + fw->init.textsz;
8067 	fw->boot.text = fw->init.data + fw->init.datasz;
8068 	return 0;
8069 }
8070 
8071 /*
8072  * Extract text and data sections from a TLV firmware image.
8073  */
8074 static int
8075 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8076     uint16_t alt)
8077 {
8078 	const struct iwn_fw_tlv_hdr *hdr;
8079 	const struct iwn_fw_tlv *tlv;
8080 	const uint8_t *ptr, *end;
8081 	uint64_t altmask;
8082 	uint32_t len, tmp;
8083 
8084 	if (fw->size < sizeof (*hdr)) {
8085 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8086 		    __func__, fw->size);
8087 		return EINVAL;
8088 	}
8089 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8090 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8091 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8092 		    __func__, le32toh(hdr->signature));
8093 		return EINVAL;
8094 	}
8095 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8096 	    le32toh(hdr->build));
8097 	sc->ucode_rev = le32toh(hdr->rev);
8098 
8099 	/*
8100 	 * Select the closest supported alternative that is less than
8101 	 * or equal to the specified one.
8102 	 */
8103 	altmask = le64toh(hdr->altmask);
8104 	while (alt > 0 && !(altmask & (1ULL << alt)))
8105 		alt--;	/* Downgrade. */
8106 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8107 
8108 	ptr = (const uint8_t *)(hdr + 1);
8109 	end = (const uint8_t *)(fw->data + fw->size);
8110 
8111 	/* Parse type-length-value fields. */
8112 	while (ptr + sizeof (*tlv) <= end) {
8113 		tlv = (const struct iwn_fw_tlv *)ptr;
8114 		len = le32toh(tlv->len);
8115 
8116 		ptr += sizeof (*tlv);
8117 		if (ptr + len > end) {
8118 			device_printf(sc->sc_dev,
8119 			    "%s: firmware too short: %zu bytes\n", __func__,
8120 			    fw->size);
8121 			return EINVAL;
8122 		}
8123 		/* Skip other alternatives. */
8124 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8125 			goto next;
8126 
8127 		switch (le16toh(tlv->type)) {
8128 		case IWN_FW_TLV_MAIN_TEXT:
8129 			fw->main.text = ptr;
8130 			fw->main.textsz = len;
8131 			break;
8132 		case IWN_FW_TLV_MAIN_DATA:
8133 			fw->main.data = ptr;
8134 			fw->main.datasz = len;
8135 			break;
8136 		case IWN_FW_TLV_INIT_TEXT:
8137 			fw->init.text = ptr;
8138 			fw->init.textsz = len;
8139 			break;
8140 		case IWN_FW_TLV_INIT_DATA:
8141 			fw->init.data = ptr;
8142 			fw->init.datasz = len;
8143 			break;
8144 		case IWN_FW_TLV_BOOT_TEXT:
8145 			fw->boot.text = ptr;
8146 			fw->boot.textsz = len;
8147 			break;
8148 		case IWN_FW_TLV_ENH_SENS:
8149 			if (!len)
8150 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8151 			break;
8152 		case IWN_FW_TLV_PHY_CALIB:
8153 			tmp = le32toh(*ptr);
8154 			if (tmp < 253) {
8155 				sc->reset_noise_gain = tmp;
8156 				sc->noise_gain = tmp + 1;
8157 			}
8158 			break;
8159 		case IWN_FW_TLV_PAN:
8160 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8161 			DPRINTF(sc, IWN_DEBUG_RESET,
8162 			    "PAN Support found: %d\n", 1);
8163 			break;
8164 		case IWN_FW_TLV_FLAGS:
8165 			if (len < sizeof(uint32_t))
8166 				break;
8167 			if (len % sizeof(uint32_t))
8168 				break;
8169 			sc->tlv_feature_flags = le32toh(*ptr);
8170 			DPRINTF(sc, IWN_DEBUG_RESET,
8171 			    "%s: feature: 0x%08x\n",
8172 			    __func__,
8173 			    sc->tlv_feature_flags);
8174 			break;
8175 		case IWN_FW_TLV_PBREQ_MAXLEN:
8176 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8177 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8178 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8179 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8180 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8181 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8182 		case IWN_FW_TLV_WOWLAN_INST:
8183 		case IWN_FW_TLV_WOWLAN_DATA:
8184 			DPRINTF(sc, IWN_DEBUG_RESET,
8185 			    "TLV type %d recognized but not handled\n",
8186 			    le16toh(tlv->type));
8187 			break;
8188 		default:
8189 			DPRINTF(sc, IWN_DEBUG_RESET,
8190 			    "TLV type %d not handled\n", le16toh(tlv->type));
8191 			break;
8192 		}
8193  next:		/* TLV fields are 32-bit aligned. */
8194 		ptr += (len + 3) & ~3;
8195 	}
8196 	return 0;
8197 }
8198 
8199 static int
8200 iwn_read_firmware(struct iwn_softc *sc)
8201 {
8202 	struct iwn_fw_info *fw = &sc->fw;
8203 	int error;
8204 
8205 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8206 
8207 	IWN_UNLOCK(sc);
8208 
8209 	memset(fw, 0, sizeof (*fw));
8210 
8211 	/* Read firmware image from filesystem. */
8212 	sc->fw_fp = firmware_get(sc->fwname);
8213 	if (sc->fw_fp == NULL) {
8214 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8215 		    __func__, sc->fwname);
8216 		IWN_LOCK(sc);
8217 		return EINVAL;
8218 	}
8219 	IWN_LOCK(sc);
8220 
8221 	fw->size = sc->fw_fp->datasize;
8222 	fw->data = (const uint8_t *)sc->fw_fp->data;
8223 	if (fw->size < sizeof (uint32_t)) {
8224 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8225 		    __func__, fw->size);
8226 		error = EINVAL;
8227 		goto fail;
8228 	}
8229 
8230 	/* Retrieve text and data sections. */
8231 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8232 		error = iwn_read_firmware_leg(sc, fw);
8233 	else
8234 		error = iwn_read_firmware_tlv(sc, fw, 1);
8235 	if (error != 0) {
8236 		device_printf(sc->sc_dev,
8237 		    "%s: could not read firmware sections, error %d\n",
8238 		    __func__, error);
8239 		goto fail;
8240 	}
8241 
8242 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8243 
8244 	/* Make sure text and data sections fit in hardware memory. */
8245 	if (fw->main.textsz > sc->fw_text_maxsz ||
8246 	    fw->main.datasz > sc->fw_data_maxsz ||
8247 	    fw->init.textsz > sc->fw_text_maxsz ||
8248 	    fw->init.datasz > sc->fw_data_maxsz ||
8249 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8250 	    (fw->boot.textsz & 3) != 0) {
8251 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8252 		    __func__);
8253 		error = EINVAL;
8254 		goto fail;
8255 	}
8256 
8257 	/* We can proceed with loading the firmware. */
8258 	return 0;
8259 
8260 fail:	iwn_unload_firmware(sc);
8261 	return error;
8262 }
8263 
8264 static void
8265 iwn_unload_firmware(struct iwn_softc *sc)
8266 {
8267 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8268 	sc->fw_fp = NULL;
8269 }
8270 
8271 static int
8272 iwn_clock_wait(struct iwn_softc *sc)
8273 {
8274 	int ntries;
8275 
8276 	/* Set "initialization complete" bit. */
8277 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8278 
8279 	/* Wait for clock stabilization. */
8280 	for (ntries = 0; ntries < 2500; ntries++) {
8281 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8282 			return 0;
8283 		DELAY(10);
8284 	}
8285 	device_printf(sc->sc_dev,
8286 	    "%s: timeout waiting for clock stabilization\n", __func__);
8287 	return ETIMEDOUT;
8288 }
8289 
8290 static int
8291 iwn_apm_init(struct iwn_softc *sc)
8292 {
8293 	uint32_t reg;
8294 	int error;
8295 
8296 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8297 
8298 	/* Disable L0s exit timer (NMI bug workaround). */
8299 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8300 	/* Don't wait for ICH L0s (ICH bug workaround). */
8301 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8302 
8303 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8304 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8305 
8306 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8307 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8308 
8309 	/* Retrieve PCIe Active State Power Management (ASPM). */
8310 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8311 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8312 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8313 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8314 	else
8315 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8316 
8317 	if (sc->base_params->pll_cfg_val)
8318 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8319 
8320 	/* Wait for clock stabilization before accessing prph. */
8321 	if ((error = iwn_clock_wait(sc)) != 0)
8322 		return error;
8323 
8324 	if ((error = iwn_nic_lock(sc)) != 0)
8325 		return error;
8326 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8327 		/* Enable DMA and BSM (Bootstrap State Machine). */
8328 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8329 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8330 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8331 	} else {
8332 		/* Enable DMA. */
8333 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8334 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8335 	}
8336 	DELAY(20);
8337 	/* Disable L1-Active. */
8338 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8339 	iwn_nic_unlock(sc);
8340 
8341 	return 0;
8342 }
8343 
8344 static void
8345 iwn_apm_stop_master(struct iwn_softc *sc)
8346 {
8347 	int ntries;
8348 
8349 	/* Stop busmaster DMA activity. */
8350 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8351 	for (ntries = 0; ntries < 100; ntries++) {
8352 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8353 			return;
8354 		DELAY(10);
8355 	}
8356 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8357 }
8358 
8359 static void
8360 iwn_apm_stop(struct iwn_softc *sc)
8361 {
8362 	iwn_apm_stop_master(sc);
8363 
8364 	/* Reset the entire device. */
8365 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8366 	DELAY(10);
8367 	/* Clear "initialization complete" bit. */
8368 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8369 }
8370 
8371 static int
8372 iwn4965_nic_config(struct iwn_softc *sc)
8373 {
8374 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8375 
8376 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8377 		/*
8378 		 * I don't believe this to be correct but this is what the
8379 		 * vendor driver is doing. Probably the bits should not be
8380 		 * shifted in IWN_RFCFG_*.
8381 		 */
8382 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8383 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8384 		    IWN_RFCFG_STEP(sc->rfcfg) |
8385 		    IWN_RFCFG_DASH(sc->rfcfg));
8386 	}
8387 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8388 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8389 	return 0;
8390 }
8391 
8392 static int
8393 iwn5000_nic_config(struct iwn_softc *sc)
8394 {
8395 	uint32_t tmp;
8396 	int error;
8397 
8398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8399 
8400 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8401 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8402 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8403 		    IWN_RFCFG_STEP(sc->rfcfg) |
8404 		    IWN_RFCFG_DASH(sc->rfcfg));
8405 	}
8406 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8407 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8408 
8409 	if ((error = iwn_nic_lock(sc)) != 0)
8410 		return error;
8411 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8412 
8413 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8414 		/*
8415 		 * Select first Switching Voltage Regulator (1.32V) to
8416 		 * solve a stability issue related to noisy DC2DC line
8417 		 * in the silicon of 1000 Series.
8418 		 */
8419 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8420 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8421 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8422 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8423 	}
8424 	iwn_nic_unlock(sc);
8425 
8426 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8427 		/* Use internal power amplifier only. */
8428 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8429 	}
8430 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8431 		/* Indicate that ROM calibration version is >=6. */
8432 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8433 	}
8434 	if (sc->base_params->additional_gp_drv_bit)
8435 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8436 		    sc->base_params->additional_gp_drv_bit);
8437 	return 0;
8438 }
8439 
8440 /*
8441  * Take NIC ownership over Intel Active Management Technology (AMT).
8442  */
8443 static int
8444 iwn_hw_prepare(struct iwn_softc *sc)
8445 {
8446 	int ntries;
8447 
8448 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8449 
8450 	/* Check if hardware is ready. */
8451 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8452 	for (ntries = 0; ntries < 5; ntries++) {
8453 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8454 		    IWN_HW_IF_CONFIG_NIC_READY)
8455 			return 0;
8456 		DELAY(10);
8457 	}
8458 
8459 	/* Hardware not ready, force into ready state. */
8460 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8461 	for (ntries = 0; ntries < 15000; ntries++) {
8462 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8463 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8464 			break;
8465 		DELAY(10);
8466 	}
8467 	if (ntries == 15000)
8468 		return ETIMEDOUT;
8469 
8470 	/* Hardware should be ready now. */
8471 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8472 	for (ntries = 0; ntries < 5; ntries++) {
8473 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8474 		    IWN_HW_IF_CONFIG_NIC_READY)
8475 			return 0;
8476 		DELAY(10);
8477 	}
8478 	return ETIMEDOUT;
8479 }
8480 
8481 static int
8482 iwn_hw_init(struct iwn_softc *sc)
8483 {
8484 	struct iwn_ops *ops = &sc->ops;
8485 	int error, chnl, qid;
8486 
8487 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8488 
8489 	/* Clear pending interrupts. */
8490 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8491 
8492 	if ((error = iwn_apm_init(sc)) != 0) {
8493 		device_printf(sc->sc_dev,
8494 		    "%s: could not power ON adapter, error %d\n", __func__,
8495 		    error);
8496 		return error;
8497 	}
8498 
8499 	/* Select VMAIN power source. */
8500 	if ((error = iwn_nic_lock(sc)) != 0)
8501 		return error;
8502 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8503 	iwn_nic_unlock(sc);
8504 
8505 	/* Perform adapter-specific initialization. */
8506 	if ((error = ops->nic_config(sc)) != 0)
8507 		return error;
8508 
8509 	/* Initialize RX ring. */
8510 	if ((error = iwn_nic_lock(sc)) != 0)
8511 		return error;
8512 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8513 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8514 	/* Set physical address of RX ring (256-byte aligned). */
8515 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8516 	/* Set physical address of RX status (16-byte aligned). */
8517 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8518 	/* Enable RX. */
8519 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8520 	    IWN_FH_RX_CONFIG_ENA           |
8521 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8522 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8523 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8524 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8525 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8526 	iwn_nic_unlock(sc);
8527 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8528 
8529 	if ((error = iwn_nic_lock(sc)) != 0)
8530 		return error;
8531 
8532 	/* Initialize TX scheduler. */
8533 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8534 
8535 	/* Set physical address of "keep warm" page (16-byte aligned). */
8536 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8537 
8538 	/* Initialize TX rings. */
8539 	for (qid = 0; qid < sc->ntxqs; qid++) {
8540 		struct iwn_tx_ring *txq = &sc->txq[qid];
8541 
8542 		/* Set physical address of TX ring (256-byte aligned). */
8543 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8544 		    txq->desc_dma.paddr >> 8);
8545 	}
8546 	iwn_nic_unlock(sc);
8547 
8548 	/* Enable DMA channels. */
8549 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8550 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8551 		    IWN_FH_TX_CONFIG_DMA_ENA |
8552 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8553 	}
8554 
8555 	/* Clear "radio off" and "commands blocked" bits. */
8556 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8557 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8558 
8559 	/* Clear pending interrupts. */
8560 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8561 	/* Enable interrupt coalescing. */
8562 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8563 	/* Enable interrupts. */
8564 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8565 
8566 	/* _Really_ make sure "radio off" bit is cleared! */
8567 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8568 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8569 
8570 	/* Enable shadow registers. */
8571 	if (sc->base_params->shadow_reg_enable)
8572 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8573 
8574 	if ((error = ops->load_firmware(sc)) != 0) {
8575 		device_printf(sc->sc_dev,
8576 		    "%s: could not load firmware, error %d\n", __func__,
8577 		    error);
8578 		return error;
8579 	}
8580 	/* Wait at most one second for firmware alive notification. */
8581 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8582 		device_printf(sc->sc_dev,
8583 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8584 		    __func__, error);
8585 		return error;
8586 	}
8587 	/* Do post-firmware initialization. */
8588 
8589 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8590 
8591 	return ops->post_alive(sc);
8592 }
8593 
8594 static void
8595 iwn_hw_stop(struct iwn_softc *sc)
8596 {
8597 	int chnl, qid, ntries;
8598 
8599 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8600 
8601 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8602 
8603 	/* Disable interrupts. */
8604 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8605 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8606 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8607 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8608 
8609 	/* Make sure we no longer hold the NIC lock. */
8610 	iwn_nic_unlock(sc);
8611 
8612 	/* Stop TX scheduler. */
8613 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8614 
8615 	/* Stop all DMA channels. */
8616 	if (iwn_nic_lock(sc) == 0) {
8617 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8618 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8619 			for (ntries = 0; ntries < 200; ntries++) {
8620 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8621 				    IWN_FH_TX_STATUS_IDLE(chnl))
8622 					break;
8623 				DELAY(10);
8624 			}
8625 		}
8626 		iwn_nic_unlock(sc);
8627 	}
8628 
8629 	/* Stop RX ring. */
8630 	iwn_reset_rx_ring(sc, &sc->rxq);
8631 
8632 	/* Reset all TX rings. */
8633 	for (qid = 0; qid < sc->ntxqs; qid++)
8634 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8635 
8636 	if (iwn_nic_lock(sc) == 0) {
8637 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8638 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8639 		iwn_nic_unlock(sc);
8640 	}
8641 	DELAY(5);
8642 	/* Power OFF adapter. */
8643 	iwn_apm_stop(sc);
8644 }
8645 
8646 static void
8647 iwn_radio_on(void *arg0, int pending)
8648 {
8649 	struct iwn_softc *sc = arg0;
8650 	struct ieee80211com *ic = &sc->sc_ic;
8651 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8652 
8653 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8654 
8655 	if (vap != NULL) {
8656 		iwn_init(sc);
8657 		ieee80211_init(vap);
8658 	}
8659 }
8660 
8661 static void
8662 iwn_radio_off(void *arg0, int pending)
8663 {
8664 	struct iwn_softc *sc = arg0;
8665 	struct ieee80211com *ic = &sc->sc_ic;
8666 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8667 
8668 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8669 
8670 	iwn_stop(sc);
8671 	if (vap != NULL)
8672 		ieee80211_stop(vap);
8673 
8674 	/* Enable interrupts to get RF toggle notification. */
8675 	IWN_LOCK(sc);
8676 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8677 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8678 	IWN_UNLOCK(sc);
8679 }
8680 
8681 static void
8682 iwn_panicked(void *arg0, int pending)
8683 {
8684 	struct iwn_softc *sc = arg0;
8685 	struct ieee80211com *ic = &sc->sc_ic;
8686 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8687 #if 0
8688 	int error;
8689 #endif
8690 
8691 	if (vap == NULL) {
8692 		printf("%s: null vap\n", __func__);
8693 		return;
8694 	}
8695 
8696 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8697 	    "restarting\n", __func__, vap->iv_state);
8698 
8699 	/*
8700 	 * This is not enough work. We need to also reinitialise
8701 	 * the correct transmit state for aggregation enabled queues,
8702 	 * which has a very specific requirement of
8703 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8704 	 * we definitely don't!) then the firmware will just panic again.
8705 	 */
8706 #if 1
8707 	ieee80211_restart_all(ic);
8708 #else
8709 	IWN_LOCK(sc);
8710 
8711 	iwn_stop_locked(sc);
8712 	iwn_init_locked(sc);
8713 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8714 	    (error = iwn_auth(sc, vap)) != 0) {
8715 		device_printf(sc->sc_dev,
8716 		    "%s: could not move to auth state\n", __func__);
8717 	}
8718 	if (vap->iv_state >= IEEE80211_S_RUN &&
8719 	    (error = iwn_run(sc, vap)) != 0) {
8720 		device_printf(sc->sc_dev,
8721 		    "%s: could not move to run state\n", __func__);
8722 	}
8723 
8724 	IWN_UNLOCK(sc);
8725 #endif
8726 }
8727 
8728 static void
8729 iwn_init_locked(struct iwn_softc *sc)
8730 {
8731 	int error;
8732 
8733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8734 
8735 	IWN_LOCK_ASSERT(sc);
8736 
8737 	sc->sc_flags |= IWN_FLAG_RUNNING;
8738 
8739 	if ((error = iwn_hw_prepare(sc)) != 0) {
8740 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8741 		    __func__, error);
8742 		goto fail;
8743 	}
8744 
8745 	/* Initialize interrupt mask to default value. */
8746 	sc->int_mask = IWN_INT_MASK_DEF;
8747 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8748 
8749 	/* Check that the radio is not disabled by hardware switch. */
8750 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8751 		device_printf(sc->sc_dev,
8752 		    "radio is disabled by hardware switch\n");
8753 		/* Enable interrupts to get RF toggle notifications. */
8754 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8755 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8756 		return;
8757 	}
8758 
8759 	/* Read firmware images from the filesystem. */
8760 	if ((error = iwn_read_firmware(sc)) != 0) {
8761 		device_printf(sc->sc_dev,
8762 		    "%s: could not read firmware, error %d\n", __func__,
8763 		    error);
8764 		goto fail;
8765 	}
8766 
8767 	/* Initialize hardware and upload firmware. */
8768 	error = iwn_hw_init(sc);
8769 	iwn_unload_firmware(sc);
8770 	if (error != 0) {
8771 		device_printf(sc->sc_dev,
8772 		    "%s: could not initialize hardware, error %d\n", __func__,
8773 		    error);
8774 		goto fail;
8775 	}
8776 
8777 	/* Configure adapter now that it is ready. */
8778 	if ((error = iwn_config(sc)) != 0) {
8779 		device_printf(sc->sc_dev,
8780 		    "%s: could not configure device, error %d\n", __func__,
8781 		    error);
8782 		goto fail;
8783 	}
8784 
8785 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8786 
8787 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8788 
8789 	return;
8790 
8791 fail:
8792 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8793 	iwn_stop_locked(sc);
8794 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8795 }
8796 
8797 static void
8798 iwn_init(struct iwn_softc *sc)
8799 {
8800 
8801 	IWN_LOCK(sc);
8802 	iwn_init_locked(sc);
8803 	IWN_UNLOCK(sc);
8804 
8805 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8806 		ieee80211_start_all(&sc->sc_ic);
8807 }
8808 
8809 static void
8810 iwn_stop_locked(struct iwn_softc *sc)
8811 {
8812 
8813 	IWN_LOCK_ASSERT(sc);
8814 
8815 	sc->sc_is_scanning = 0;
8816 	sc->sc_tx_timer = 0;
8817 	callout_stop(&sc->watchdog_to);
8818 	callout_stop(&sc->calib_to);
8819 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8820 
8821 	/* Power OFF hardware. */
8822 	iwn_hw_stop(sc);
8823 }
8824 
8825 static void
8826 iwn_stop(struct iwn_softc *sc)
8827 {
8828 	IWN_LOCK(sc);
8829 	iwn_stop_locked(sc);
8830 	IWN_UNLOCK(sc);
8831 }
8832 
8833 /*
8834  * Callback from net80211 to start a scan.
8835  */
8836 static void
8837 iwn_scan_start(struct ieee80211com *ic)
8838 {
8839 	struct iwn_softc *sc = ic->ic_softc;
8840 
8841 	IWN_LOCK(sc);
8842 	/* make the link LED blink while we're scanning */
8843 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8844 	IWN_UNLOCK(sc);
8845 }
8846 
8847 /*
8848  * Callback from net80211 to terminate a scan.
8849  */
8850 static void
8851 iwn_scan_end(struct ieee80211com *ic)
8852 {
8853 	struct iwn_softc *sc = ic->ic_softc;
8854 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8855 
8856 	IWN_LOCK(sc);
8857 	if (vap->iv_state == IEEE80211_S_RUN) {
8858 		/* Set link LED to ON status if we are associated */
8859 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8860 	}
8861 	IWN_UNLOCK(sc);
8862 }
8863 
8864 /*
8865  * Callback from net80211 to force a channel change.
8866  */
8867 static void
8868 iwn_set_channel(struct ieee80211com *ic)
8869 {
8870 	const struct ieee80211_channel *c = ic->ic_curchan;
8871 	struct iwn_softc *sc = ic->ic_softc;
8872 	int error;
8873 
8874 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8875 
8876 	IWN_LOCK(sc);
8877 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8878 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8879 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8880 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8881 
8882 	/*
8883 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8884 	 * are already taken care of by their respective firmware commands.
8885 	 */
8886 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8887 		error = iwn_config(sc);
8888 		if (error != 0)
8889 		device_printf(sc->sc_dev,
8890 		    "%s: error %d settting channel\n", __func__, error);
8891 	}
8892 	IWN_UNLOCK(sc);
8893 }
8894 
8895 /*
8896  * Callback from net80211 to start scanning of the current channel.
8897  */
8898 static void
8899 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8900 {
8901 	struct ieee80211vap *vap = ss->ss_vap;
8902 	struct ieee80211com *ic = vap->iv_ic;
8903 	struct iwn_softc *sc = ic->ic_softc;
8904 	int error;
8905 
8906 	IWN_LOCK(sc);
8907 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8908 	IWN_UNLOCK(sc);
8909 	if (error != 0)
8910 		ieee80211_cancel_scan(vap);
8911 }
8912 
8913 /*
8914  * Callback from net80211 to handle the minimum dwell time being met.
8915  * The intent is to terminate the scan but we just let the firmware
8916  * notify us when it's finished as we have no safe way to abort it.
8917  */
8918 static void
8919 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8920 {
8921 	/* NB: don't try to abort scan; wait for firmware to finish */
8922 }
8923 #ifdef	IWN_DEBUG
8924 #define	IWN_DESC(x) case x:	return #x
8925 
8926 /*
8927  * Translate CSR code to string
8928  */
8929 static char *iwn_get_csr_string(int csr)
8930 {
8931 	switch (csr) {
8932 		IWN_DESC(IWN_HW_IF_CONFIG);
8933 		IWN_DESC(IWN_INT_COALESCING);
8934 		IWN_DESC(IWN_INT);
8935 		IWN_DESC(IWN_INT_MASK);
8936 		IWN_DESC(IWN_FH_INT);
8937 		IWN_DESC(IWN_GPIO_IN);
8938 		IWN_DESC(IWN_RESET);
8939 		IWN_DESC(IWN_GP_CNTRL);
8940 		IWN_DESC(IWN_HW_REV);
8941 		IWN_DESC(IWN_EEPROM);
8942 		IWN_DESC(IWN_EEPROM_GP);
8943 		IWN_DESC(IWN_OTP_GP);
8944 		IWN_DESC(IWN_GIO);
8945 		IWN_DESC(IWN_GP_UCODE);
8946 		IWN_DESC(IWN_GP_DRIVER);
8947 		IWN_DESC(IWN_UCODE_GP1);
8948 		IWN_DESC(IWN_UCODE_GP2);
8949 		IWN_DESC(IWN_LED);
8950 		IWN_DESC(IWN_DRAM_INT_TBL);
8951 		IWN_DESC(IWN_GIO_CHICKEN);
8952 		IWN_DESC(IWN_ANA_PLL);
8953 		IWN_DESC(IWN_HW_REV_WA);
8954 		IWN_DESC(IWN_DBG_HPET_MEM);
8955 	default:
8956 		return "UNKNOWN CSR";
8957 	}
8958 }
8959 
8960 /*
8961  * This function print firmware register
8962  */
8963 static void
8964 iwn_debug_register(struct iwn_softc *sc)
8965 {
8966 	int i;
8967 	static const uint32_t csr_tbl[] = {
8968 		IWN_HW_IF_CONFIG,
8969 		IWN_INT_COALESCING,
8970 		IWN_INT,
8971 		IWN_INT_MASK,
8972 		IWN_FH_INT,
8973 		IWN_GPIO_IN,
8974 		IWN_RESET,
8975 		IWN_GP_CNTRL,
8976 		IWN_HW_REV,
8977 		IWN_EEPROM,
8978 		IWN_EEPROM_GP,
8979 		IWN_OTP_GP,
8980 		IWN_GIO,
8981 		IWN_GP_UCODE,
8982 		IWN_GP_DRIVER,
8983 		IWN_UCODE_GP1,
8984 		IWN_UCODE_GP2,
8985 		IWN_LED,
8986 		IWN_DRAM_INT_TBL,
8987 		IWN_GIO_CHICKEN,
8988 		IWN_ANA_PLL,
8989 		IWN_HW_REV_WA,
8990 		IWN_DBG_HPET_MEM,
8991 	};
8992 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8993 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8994 	    "\n");
8995 	for (i = 0; i <  nitems(csr_tbl); i++){
8996 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8997 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8998 		if ((i+1) % 3 == 0)
8999 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9000 	}
9001 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9002 }
9003 #endif
9004 
9005 
9006