1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_wlan.h" 31 #include "opt_iwn.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/priv.h> 49 #include <sys/queue.h> 50 #include <sys/taskqueue.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <machine/clock.h> 55 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 #include <dev/iwn/if_iwn_devid.h> 75 #include <dev/iwn/if_iwn_chip_cfg.h> 76 #include <dev/iwn/if_iwn_debug.h> 77 #include <dev/iwn/if_iwn_ioctl.h> 78 79 struct iwn_ident { 80 uint16_t vendor; 81 uint16_t device; 82 const char *name; 83 }; 84 85 static const struct iwn_ident iwn_ident_table[] = { 86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 129 { 0, 0, NULL } 130 }; 131 132 static int iwn_probe(device_t); 133 static int iwn_attach(device_t); 134 static int iwn4965_attach(struct iwn_softc *, uint16_t); 135 static int iwn5000_attach(struct iwn_softc *, uint16_t); 136 static int iwn_config_specific(struct iwn_softc *, uint16_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static void iwn_sysctlattach(struct iwn_softc *); 139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 141 const uint8_t [IEEE80211_ADDR_LEN], 142 const uint8_t [IEEE80211_ADDR_LEN]); 143 static void iwn_vap_delete(struct ieee80211vap *); 144 static int iwn_detach(device_t); 145 static int iwn_shutdown(device_t); 146 static int iwn_suspend(device_t); 147 static int iwn_resume(device_t); 148 static int iwn_nic_lock(struct iwn_softc *); 149 static int iwn_eeprom_lock(struct iwn_softc *); 150 static int iwn_init_otprom(struct iwn_softc *); 151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 154 void **, bus_size_t, bus_size_t); 155 static void iwn_dma_contig_free(struct iwn_dma_info *); 156 static int iwn_alloc_sched(struct iwn_softc *); 157 static void iwn_free_sched(struct iwn_softc *); 158 static int iwn_alloc_kw(struct iwn_softc *); 159 static void iwn_free_kw(struct iwn_softc *); 160 static int iwn_alloc_ict(struct iwn_softc *); 161 static void iwn_free_ict(struct iwn_softc *); 162 static int iwn_alloc_fwmem(struct iwn_softc *); 163 static void iwn_free_fwmem(struct iwn_softc *); 164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 168 int); 169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 171 static void iwn5000_ict_reset(struct iwn_softc *); 172 static int iwn_read_eeprom(struct iwn_softc *, 173 uint8_t macaddr[IEEE80211_ADDR_LEN]); 174 static void iwn4965_read_eeprom(struct iwn_softc *); 175 #ifdef IWN_DEBUG 176 static void iwn4965_print_power_group(struct iwn_softc *, int); 177 #endif 178 static void iwn5000_read_eeprom(struct iwn_softc *); 179 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 180 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, 181 struct ieee80211_channel[]); 182 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, 183 struct ieee80211_channel[]); 184 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 186 struct ieee80211_channel *); 187 static void iwn_getradiocaps(struct ieee80211com *, int, int *, 188 struct ieee80211_channel[]); 189 static int iwn_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel[]); 192 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 194 const uint8_t mac[IEEE80211_ADDR_LEN]); 195 static void iwn_newassoc(struct ieee80211_node *, int); 196 static int iwn_media_change(struct ifnet *); 197 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void iwn_calib_timeout(void *); 199 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 200 struct iwn_rx_data *); 201 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 202 struct iwn_rx_data *); 203 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 204 struct iwn_rx_data *); 205 static void iwn5000_rx_calib_results(struct iwn_softc *, 206 struct iwn_rx_desc *, struct iwn_rx_data *); 207 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 208 struct iwn_rx_data *); 209 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 210 struct iwn_rx_data *); 211 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 212 struct iwn_rx_data *); 213 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 214 uint8_t); 215 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *); 216 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 217 static void iwn_notif_intr(struct iwn_softc *); 218 static void iwn_wakeup_intr(struct iwn_softc *); 219 static void iwn_rftoggle_intr(struct iwn_softc *); 220 static void iwn_fatal_intr(struct iwn_softc *); 221 static void iwn_intr(void *); 222 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 223 uint16_t); 224 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 225 uint16_t); 226 #ifdef notyet 227 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 228 #endif 229 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 230 struct ieee80211_node *); 231 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 232 struct ieee80211_node *, 233 const struct ieee80211_bpf_params *params); 234 static void iwn_xmit_task(void *arg0, int pending); 235 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 236 const struct ieee80211_bpf_params *); 237 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 238 static void iwn_scan_timeout(void *); 239 static void iwn_watchdog(void *); 240 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 241 static void iwn_parent(struct ieee80211com *); 242 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 243 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 244 int); 245 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 246 int); 247 static int iwn_set_link_quality(struct iwn_softc *, 248 struct ieee80211_node *); 249 static int iwn_add_broadcast_node(struct iwn_softc *, int); 250 static int iwn_updateedca(struct ieee80211com *); 251 static void iwn_update_mcast(struct ieee80211com *); 252 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 253 static int iwn_set_critical_temp(struct iwn_softc *); 254 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 255 static void iwn4965_power_calibration(struct iwn_softc *, int); 256 static int iwn4965_set_txpower(struct iwn_softc *, 257 struct ieee80211_channel *, int); 258 static int iwn5000_set_txpower(struct iwn_softc *, 259 struct ieee80211_channel *, int); 260 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 261 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 262 static int iwn_get_noise(const struct iwn_rx_general_stats *); 263 static int iwn4965_get_temperature(struct iwn_softc *); 264 static int iwn5000_get_temperature(struct iwn_softc *); 265 static int iwn_init_sensitivity(struct iwn_softc *); 266 static void iwn_collect_noise(struct iwn_softc *, 267 const struct iwn_rx_general_stats *); 268 static int iwn4965_init_gains(struct iwn_softc *); 269 static int iwn5000_init_gains(struct iwn_softc *); 270 static int iwn4965_set_gains(struct iwn_softc *); 271 static int iwn5000_set_gains(struct iwn_softc *); 272 static void iwn_tune_sensitivity(struct iwn_softc *, 273 const struct iwn_rx_stats *); 274 static void iwn_save_stats_counters(struct iwn_softc *, 275 const struct iwn_stats *); 276 static int iwn_send_sensitivity(struct iwn_softc *); 277 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 278 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 279 static int iwn_send_btcoex(struct iwn_softc *); 280 static int iwn_send_advanced_btcoex(struct iwn_softc *); 281 static int iwn5000_runtime_calib(struct iwn_softc *); 282 static int iwn_config(struct iwn_softc *); 283 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 284 struct ieee80211_scan_state *, struct ieee80211_channel *); 285 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 286 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 287 static int iwn_ampdu_rx_start(struct ieee80211_node *, 288 struct ieee80211_rx_ampdu *, int, int, int); 289 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 290 struct ieee80211_rx_ampdu *); 291 static int iwn_addba_request(struct ieee80211_node *, 292 struct ieee80211_tx_ampdu *, int, int, int); 293 static int iwn_addba_response(struct ieee80211_node *, 294 struct ieee80211_tx_ampdu *, int, int, int); 295 static int iwn_ampdu_tx_start(struct ieee80211com *, 296 struct ieee80211_node *, uint8_t); 297 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 298 struct ieee80211_tx_ampdu *); 299 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 300 struct ieee80211_node *, int, uint8_t, uint16_t); 301 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 302 uint8_t, uint16_t); 303 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 304 struct ieee80211_node *, int, uint8_t, uint16_t); 305 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 306 uint8_t, uint16_t); 307 static int iwn5000_query_calibration(struct iwn_softc *); 308 static int iwn5000_send_calibration(struct iwn_softc *); 309 static int iwn5000_send_wimax_coex(struct iwn_softc *); 310 static int iwn5000_crystal_calib(struct iwn_softc *); 311 static int iwn5000_temp_offset_calib(struct iwn_softc *); 312 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 313 static int iwn4965_post_alive(struct iwn_softc *); 314 static int iwn5000_post_alive(struct iwn_softc *); 315 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 316 int); 317 static int iwn4965_load_firmware(struct iwn_softc *); 318 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 319 const uint8_t *, int); 320 static int iwn5000_load_firmware(struct iwn_softc *); 321 static int iwn_read_firmware_leg(struct iwn_softc *, 322 struct iwn_fw_info *); 323 static int iwn_read_firmware_tlv(struct iwn_softc *, 324 struct iwn_fw_info *, uint16_t); 325 static int iwn_read_firmware(struct iwn_softc *); 326 static void iwn_unload_firmware(struct iwn_softc *); 327 static int iwn_clock_wait(struct iwn_softc *); 328 static int iwn_apm_init(struct iwn_softc *); 329 static void iwn_apm_stop_master(struct iwn_softc *); 330 static void iwn_apm_stop(struct iwn_softc *); 331 static int iwn4965_nic_config(struct iwn_softc *); 332 static int iwn5000_nic_config(struct iwn_softc *); 333 static int iwn_hw_prepare(struct iwn_softc *); 334 static int iwn_hw_init(struct iwn_softc *); 335 static void iwn_hw_stop(struct iwn_softc *); 336 static void iwn_radio_on(void *, int); 337 static void iwn_radio_off(void *, int); 338 static void iwn_panicked(void *, int); 339 static void iwn_init_locked(struct iwn_softc *); 340 static void iwn_init(struct iwn_softc *); 341 static void iwn_stop_locked(struct iwn_softc *); 342 static void iwn_stop(struct iwn_softc *); 343 static void iwn_scan_start(struct ieee80211com *); 344 static void iwn_scan_end(struct ieee80211com *); 345 static void iwn_set_channel(struct ieee80211com *); 346 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 347 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 348 #ifdef IWN_DEBUG 349 static char *iwn_get_csr_string(int); 350 static void iwn_debug_register(struct iwn_softc *); 351 #endif 352 353 static device_method_t iwn_methods[] = { 354 /* Device interface */ 355 DEVMETHOD(device_probe, iwn_probe), 356 DEVMETHOD(device_attach, iwn_attach), 357 DEVMETHOD(device_detach, iwn_detach), 358 DEVMETHOD(device_shutdown, iwn_shutdown), 359 DEVMETHOD(device_suspend, iwn_suspend), 360 DEVMETHOD(device_resume, iwn_resume), 361 362 DEVMETHOD_END 363 }; 364 365 static driver_t iwn_driver = { 366 "iwn", 367 iwn_methods, 368 sizeof(struct iwn_softc) 369 }; 370 static devclass_t iwn_devclass; 371 372 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); 373 374 MODULE_VERSION(iwn, 1); 375 376 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 377 MODULE_DEPEND(iwn, pci, 1, 1, 1); 378 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 379 380 static d_ioctl_t iwn_cdev_ioctl; 381 static d_open_t iwn_cdev_open; 382 static d_close_t iwn_cdev_close; 383 384 static struct cdevsw iwn_cdevsw = { 385 .d_version = D_VERSION, 386 .d_flags = 0, 387 .d_open = iwn_cdev_open, 388 .d_close = iwn_cdev_close, 389 .d_ioctl = iwn_cdev_ioctl, 390 .d_name = "iwn", 391 }; 392 393 static int 394 iwn_probe(device_t dev) 395 { 396 const struct iwn_ident *ident; 397 398 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 399 if (pci_get_vendor(dev) == ident->vendor && 400 pci_get_device(dev) == ident->device) { 401 device_set_desc(dev, ident->name); 402 return (BUS_PROBE_DEFAULT); 403 } 404 } 405 return ENXIO; 406 } 407 408 static int 409 iwn_is_3stream_device(struct iwn_softc *sc) 410 { 411 /* XXX for now only 5300, until the 5350 can be tested */ 412 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 413 return (1); 414 return (0); 415 } 416 417 static int 418 iwn_attach(device_t dev) 419 { 420 struct iwn_softc *sc = device_get_softc(dev); 421 struct ieee80211com *ic; 422 int i, error, rid; 423 424 sc->sc_dev = dev; 425 426 #ifdef IWN_DEBUG 427 error = resource_int_value(device_get_name(sc->sc_dev), 428 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 429 if (error != 0) 430 sc->sc_debug = 0; 431 #else 432 sc->sc_debug = 0; 433 #endif 434 435 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 436 437 /* 438 * Get the offset of the PCI Express Capability Structure in PCI 439 * Configuration Space. 440 */ 441 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 442 if (error != 0) { 443 device_printf(dev, "PCIe capability structure not found!\n"); 444 return error; 445 } 446 447 /* Clear device-specific "PCI retry timeout" register (41h). */ 448 pci_write_config(dev, 0x41, 0, 1); 449 450 /* Enable bus-mastering. */ 451 pci_enable_busmaster(dev); 452 453 rid = PCIR_BAR(0); 454 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 455 RF_ACTIVE); 456 if (sc->mem == NULL) { 457 device_printf(dev, "can't map mem space\n"); 458 error = ENOMEM; 459 return error; 460 } 461 sc->sc_st = rman_get_bustag(sc->mem); 462 sc->sc_sh = rman_get_bushandle(sc->mem); 463 464 i = 1; 465 rid = 0; 466 if (pci_alloc_msi(dev, &i) == 0) 467 rid = 1; 468 /* Install interrupt handler. */ 469 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 470 (rid != 0 ? 0 : RF_SHAREABLE)); 471 if (sc->irq == NULL) { 472 device_printf(dev, "can't map interrupt\n"); 473 error = ENOMEM; 474 goto fail; 475 } 476 477 IWN_LOCK_INIT(sc); 478 479 /* Read hardware revision and attach. */ 480 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 481 & IWN_HW_REV_TYPE_MASK; 482 sc->subdevice_id = pci_get_subdevice(dev); 483 484 /* 485 * 4965 versus 5000 and later have different methods. 486 * Let's set those up first. 487 */ 488 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 489 error = iwn4965_attach(sc, pci_get_device(dev)); 490 else 491 error = iwn5000_attach(sc, pci_get_device(dev)); 492 if (error != 0) { 493 device_printf(dev, "could not attach device, error %d\n", 494 error); 495 goto fail; 496 } 497 498 /* 499 * Next, let's setup the various parameters of each NIC. 500 */ 501 error = iwn_config_specific(sc, pci_get_device(dev)); 502 if (error != 0) { 503 device_printf(dev, "could not attach device, error %d\n", 504 error); 505 goto fail; 506 } 507 508 if ((error = iwn_hw_prepare(sc)) != 0) { 509 device_printf(dev, "hardware not ready, error %d\n", error); 510 goto fail; 511 } 512 513 /* Allocate DMA memory for firmware transfers. */ 514 if ((error = iwn_alloc_fwmem(sc)) != 0) { 515 device_printf(dev, 516 "could not allocate memory for firmware, error %d\n", 517 error); 518 goto fail; 519 } 520 521 /* Allocate "Keep Warm" page. */ 522 if ((error = iwn_alloc_kw(sc)) != 0) { 523 device_printf(dev, 524 "could not allocate keep warm page, error %d\n", error); 525 goto fail; 526 } 527 528 /* Allocate ICT table for 5000 Series. */ 529 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 530 (error = iwn_alloc_ict(sc)) != 0) { 531 device_printf(dev, "could not allocate ICT table, error %d\n", 532 error); 533 goto fail; 534 } 535 536 /* Allocate TX scheduler "rings". */ 537 if ((error = iwn_alloc_sched(sc)) != 0) { 538 device_printf(dev, 539 "could not allocate TX scheduler rings, error %d\n", error); 540 goto fail; 541 } 542 543 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 544 for (i = 0; i < sc->ntxqs; i++) { 545 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 546 device_printf(dev, 547 "could not allocate TX ring %d, error %d\n", i, 548 error); 549 goto fail; 550 } 551 } 552 553 /* Allocate RX ring. */ 554 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 555 device_printf(dev, "could not allocate RX ring, error %d\n", 556 error); 557 goto fail; 558 } 559 560 /* Clear pending interrupts. */ 561 IWN_WRITE(sc, IWN_INT, 0xffffffff); 562 563 ic = &sc->sc_ic; 564 ic->ic_softc = sc; 565 ic->ic_name = device_get_nameunit(dev); 566 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 567 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 568 569 /* Set device capabilities. */ 570 ic->ic_caps = 571 IEEE80211_C_STA /* station mode supported */ 572 | IEEE80211_C_MONITOR /* monitor mode supported */ 573 #if 0 574 | IEEE80211_C_BGSCAN /* background scanning */ 575 #endif 576 | IEEE80211_C_TXPMGT /* tx power management */ 577 | IEEE80211_C_SHSLOT /* short slot time supported */ 578 | IEEE80211_C_WPA 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 #if 0 581 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 582 #endif 583 | IEEE80211_C_WME /* WME */ 584 | IEEE80211_C_PMGT /* Station-side power mgmt */ 585 ; 586 587 /* Read MAC address, channels, etc from EEPROM. */ 588 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 589 device_printf(dev, "could not read EEPROM, error %d\n", 590 error); 591 goto fail; 592 } 593 594 /* Count the number of available chains. */ 595 sc->ntxchains = 596 ((sc->txchainmask >> 2) & 1) + 597 ((sc->txchainmask >> 1) & 1) + 598 ((sc->txchainmask >> 0) & 1); 599 sc->nrxchains = 600 ((sc->rxchainmask >> 2) & 1) + 601 ((sc->rxchainmask >> 1) & 1) + 602 ((sc->rxchainmask >> 0) & 1); 603 if (bootverbose) { 604 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 605 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 606 ic->ic_macaddr, ":"); 607 } 608 609 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 610 ic->ic_rxstream = sc->nrxchains; 611 ic->ic_txstream = sc->ntxchains; 612 613 /* 614 * Some of the 3 antenna devices (ie, the 4965) only supports 615 * 2x2 operation. So correct the number of streams if 616 * it's not a 3-stream device. 617 */ 618 if (! iwn_is_3stream_device(sc)) { 619 if (ic->ic_rxstream > 2) 620 ic->ic_rxstream = 2; 621 if (ic->ic_txstream > 2) 622 ic->ic_txstream = 2; 623 } 624 625 ic->ic_htcaps = 626 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 627 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 628 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 629 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 630 #ifdef notyet 631 | IEEE80211_HTCAP_GREENFIELD 632 #if IWN_RBUF_SIZE == 8192 633 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 634 #else 635 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 636 #endif 637 #endif 638 /* s/w capabilities */ 639 | IEEE80211_HTC_HT /* HT operation */ 640 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 641 #ifdef notyet 642 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 643 #endif 644 ; 645 } 646 647 ieee80211_ifattach(ic); 648 ic->ic_vap_create = iwn_vap_create; 649 ic->ic_ioctl = iwn_ioctl; 650 ic->ic_parent = iwn_parent; 651 ic->ic_vap_delete = iwn_vap_delete; 652 ic->ic_transmit = iwn_transmit; 653 ic->ic_raw_xmit = iwn_raw_xmit; 654 ic->ic_node_alloc = iwn_node_alloc; 655 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 656 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 657 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 658 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 659 sc->sc_addba_request = ic->ic_addba_request; 660 ic->ic_addba_request = iwn_addba_request; 661 sc->sc_addba_response = ic->ic_addba_response; 662 ic->ic_addba_response = iwn_addba_response; 663 sc->sc_addba_stop = ic->ic_addba_stop; 664 ic->ic_addba_stop = iwn_ampdu_tx_stop; 665 ic->ic_newassoc = iwn_newassoc; 666 ic->ic_wme.wme_update = iwn_updateedca; 667 ic->ic_update_mcast = iwn_update_mcast; 668 ic->ic_scan_start = iwn_scan_start; 669 ic->ic_scan_end = iwn_scan_end; 670 ic->ic_set_channel = iwn_set_channel; 671 ic->ic_scan_curchan = iwn_scan_curchan; 672 ic->ic_scan_mindwell = iwn_scan_mindwell; 673 ic->ic_getradiocaps = iwn_getradiocaps; 674 ic->ic_setregdomain = iwn_setregdomain; 675 676 iwn_radiotap_attach(sc); 677 678 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 679 callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0); 680 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 681 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); 682 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); 683 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 684 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 685 686 mbufq_init(&sc->sc_xmit_queue, 1024); 687 688 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 689 taskqueue_thread_enqueue, &sc->sc_tq); 690 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 691 if (error != 0) { 692 device_printf(dev, "can't start threads, error %d\n", error); 693 goto fail; 694 } 695 696 iwn_sysctlattach(sc); 697 698 /* 699 * Hook our interrupt after all initialization is complete. 700 */ 701 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 702 NULL, iwn_intr, sc, &sc->sc_ih); 703 if (error != 0) { 704 device_printf(dev, "can't establish interrupt, error %d\n", 705 error); 706 goto fail; 707 } 708 709 #if 0 710 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 711 __func__, 712 sizeof(struct iwn_stats), 713 sizeof(struct iwn_stats_bt)); 714 #endif 715 716 if (bootverbose) 717 ieee80211_announce(ic); 718 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 719 720 /* Add debug ioctl right at the end */ 721 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 722 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 723 if (sc->sc_cdev == NULL) { 724 device_printf(dev, "failed to create debug character device\n"); 725 } else { 726 sc->sc_cdev->si_drv1 = sc; 727 } 728 return 0; 729 fail: 730 iwn_detach(dev); 731 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 732 return error; 733 } 734 735 /* 736 * Define specific configuration based on device id and subdevice id 737 * pid : PCI device id 738 */ 739 static int 740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 741 { 742 743 switch (pid) { 744 /* 4965 series */ 745 case IWN_DID_4965_1: 746 case IWN_DID_4965_2: 747 case IWN_DID_4965_3: 748 case IWN_DID_4965_4: 749 sc->base_params = &iwn4965_base_params; 750 sc->limits = &iwn4965_sensitivity_limits; 751 sc->fwname = "iwn4965fw"; 752 /* Override chains masks, ROM is known to be broken. */ 753 sc->txchainmask = IWN_ANT_AB; 754 sc->rxchainmask = IWN_ANT_ABC; 755 /* Enable normal btcoex */ 756 sc->sc_flags |= IWN_FLAG_BTCOEX; 757 break; 758 /* 1000 Series */ 759 case IWN_DID_1000_1: 760 case IWN_DID_1000_2: 761 switch(sc->subdevice_id) { 762 case IWN_SDID_1000_1: 763 case IWN_SDID_1000_2: 764 case IWN_SDID_1000_3: 765 case IWN_SDID_1000_4: 766 case IWN_SDID_1000_5: 767 case IWN_SDID_1000_6: 768 case IWN_SDID_1000_7: 769 case IWN_SDID_1000_8: 770 case IWN_SDID_1000_9: 771 case IWN_SDID_1000_10: 772 case IWN_SDID_1000_11: 773 case IWN_SDID_1000_12: 774 sc->limits = &iwn1000_sensitivity_limits; 775 sc->base_params = &iwn1000_base_params; 776 sc->fwname = "iwn1000fw"; 777 break; 778 default: 779 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 780 "0x%04x rev %d not supported (subdevice)\n", pid, 781 sc->subdevice_id,sc->hw_type); 782 return ENOTSUP; 783 } 784 break; 785 /* 6x00 Series */ 786 case IWN_DID_6x00_2: 787 case IWN_DID_6x00_4: 788 case IWN_DID_6x00_1: 789 case IWN_DID_6x00_3: 790 sc->fwname = "iwn6000fw"; 791 sc->limits = &iwn6000_sensitivity_limits; 792 switch(sc->subdevice_id) { 793 case IWN_SDID_6x00_1: 794 case IWN_SDID_6x00_2: 795 case IWN_SDID_6x00_8: 796 //iwl6000_3agn_cfg 797 sc->base_params = &iwn_6000_base_params; 798 break; 799 case IWN_SDID_6x00_3: 800 case IWN_SDID_6x00_6: 801 case IWN_SDID_6x00_9: 802 ////iwl6000i_2agn 803 case IWN_SDID_6x00_4: 804 case IWN_SDID_6x00_7: 805 case IWN_SDID_6x00_10: 806 //iwl6000i_2abg_cfg 807 case IWN_SDID_6x00_5: 808 //iwl6000i_2bg_cfg 809 sc->base_params = &iwn_6000i_base_params; 810 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 811 sc->txchainmask = IWN_ANT_BC; 812 sc->rxchainmask = IWN_ANT_BC; 813 break; 814 default: 815 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 816 "0x%04x rev %d not supported (subdevice)\n", pid, 817 sc->subdevice_id,sc->hw_type); 818 return ENOTSUP; 819 } 820 break; 821 /* 6x05 Series */ 822 case IWN_DID_6x05_1: 823 case IWN_DID_6x05_2: 824 switch(sc->subdevice_id) { 825 case IWN_SDID_6x05_1: 826 case IWN_SDID_6x05_4: 827 case IWN_SDID_6x05_6: 828 //iwl6005_2agn_cfg 829 case IWN_SDID_6x05_2: 830 case IWN_SDID_6x05_5: 831 case IWN_SDID_6x05_7: 832 //iwl6005_2abg_cfg 833 case IWN_SDID_6x05_3: 834 //iwl6005_2bg_cfg 835 case IWN_SDID_6x05_8: 836 case IWN_SDID_6x05_9: 837 //iwl6005_2agn_sff_cfg 838 case IWN_SDID_6x05_10: 839 //iwl6005_2agn_d_cfg 840 case IWN_SDID_6x05_11: 841 //iwl6005_2agn_mow1_cfg 842 case IWN_SDID_6x05_12: 843 //iwl6005_2agn_mow2_cfg 844 sc->fwname = "iwn6000g2afw"; 845 sc->limits = &iwn6000_sensitivity_limits; 846 sc->base_params = &iwn_6000g2_base_params; 847 break; 848 default: 849 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 850 "0x%04x rev %d not supported (subdevice)\n", pid, 851 sc->subdevice_id,sc->hw_type); 852 return ENOTSUP; 853 } 854 break; 855 /* 6x35 Series */ 856 case IWN_DID_6035_1: 857 case IWN_DID_6035_2: 858 switch(sc->subdevice_id) { 859 case IWN_SDID_6035_1: 860 case IWN_SDID_6035_2: 861 case IWN_SDID_6035_3: 862 case IWN_SDID_6035_4: 863 sc->fwname = "iwn6000g2bfw"; 864 sc->limits = &iwn6235_sensitivity_limits; 865 sc->base_params = &iwn_6235_base_params; 866 break; 867 default: 868 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 869 "0x%04x rev %d not supported (subdevice)\n", pid, 870 sc->subdevice_id,sc->hw_type); 871 return ENOTSUP; 872 } 873 break; 874 /* 6x50 WiFi/WiMax Series */ 875 case IWN_DID_6050_1: 876 case IWN_DID_6050_2: 877 switch(sc->subdevice_id) { 878 case IWN_SDID_6050_1: 879 case IWN_SDID_6050_3: 880 case IWN_SDID_6050_5: 881 //iwl6050_2agn_cfg 882 case IWN_SDID_6050_2: 883 case IWN_SDID_6050_4: 884 case IWN_SDID_6050_6: 885 //iwl6050_2abg_cfg 886 sc->fwname = "iwn6050fw"; 887 sc->txchainmask = IWN_ANT_AB; 888 sc->rxchainmask = IWN_ANT_AB; 889 sc->limits = &iwn6000_sensitivity_limits; 890 sc->base_params = &iwn_6050_base_params; 891 break; 892 default: 893 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 894 "0x%04x rev %d not supported (subdevice)\n", pid, 895 sc->subdevice_id,sc->hw_type); 896 return ENOTSUP; 897 } 898 break; 899 /* 6150 WiFi/WiMax Series */ 900 case IWN_DID_6150_1: 901 case IWN_DID_6150_2: 902 switch(sc->subdevice_id) { 903 case IWN_SDID_6150_1: 904 case IWN_SDID_6150_3: 905 case IWN_SDID_6150_5: 906 // iwl6150_bgn_cfg 907 case IWN_SDID_6150_2: 908 case IWN_SDID_6150_4: 909 case IWN_SDID_6150_6: 910 //iwl6150_bg_cfg 911 sc->fwname = "iwn6050fw"; 912 sc->limits = &iwn6000_sensitivity_limits; 913 sc->base_params = &iwn_6150_base_params; 914 break; 915 default: 916 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 917 "0x%04x rev %d not supported (subdevice)\n", pid, 918 sc->subdevice_id,sc->hw_type); 919 return ENOTSUP; 920 } 921 break; 922 /* 6030 Series and 1030 Series */ 923 case IWN_DID_x030_1: 924 case IWN_DID_x030_2: 925 case IWN_DID_x030_3: 926 case IWN_DID_x030_4: 927 switch(sc->subdevice_id) { 928 case IWN_SDID_x030_1: 929 case IWN_SDID_x030_3: 930 case IWN_SDID_x030_5: 931 // iwl1030_bgn_cfg 932 case IWN_SDID_x030_2: 933 case IWN_SDID_x030_4: 934 case IWN_SDID_x030_6: 935 //iwl1030_bg_cfg 936 case IWN_SDID_x030_7: 937 case IWN_SDID_x030_10: 938 case IWN_SDID_x030_14: 939 //iwl6030_2agn_cfg 940 case IWN_SDID_x030_8: 941 case IWN_SDID_x030_11: 942 case IWN_SDID_x030_15: 943 // iwl6030_2bgn_cfg 944 case IWN_SDID_x030_9: 945 case IWN_SDID_x030_12: 946 case IWN_SDID_x030_16: 947 // iwl6030_2abg_cfg 948 case IWN_SDID_x030_13: 949 //iwl6030_2bg_cfg 950 sc->fwname = "iwn6000g2bfw"; 951 sc->limits = &iwn6000_sensitivity_limits; 952 sc->base_params = &iwn_6000g2b_base_params; 953 break; 954 default: 955 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 956 "0x%04x rev %d not supported (subdevice)\n", pid, 957 sc->subdevice_id,sc->hw_type); 958 return ENOTSUP; 959 } 960 break; 961 /* 130 Series WiFi */ 962 /* XXX: This series will need adjustment for rate. 963 * see rx_with_siso_diversity in linux kernel 964 */ 965 case IWN_DID_130_1: 966 case IWN_DID_130_2: 967 switch(sc->subdevice_id) { 968 case IWN_SDID_130_1: 969 case IWN_SDID_130_3: 970 case IWN_SDID_130_5: 971 //iwl130_bgn_cfg 972 case IWN_SDID_130_2: 973 case IWN_SDID_130_4: 974 case IWN_SDID_130_6: 975 //iwl130_bg_cfg 976 sc->fwname = "iwn6000g2bfw"; 977 sc->limits = &iwn6000_sensitivity_limits; 978 sc->base_params = &iwn_6000g2b_base_params; 979 break; 980 default: 981 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 982 "0x%04x rev %d not supported (subdevice)\n", pid, 983 sc->subdevice_id,sc->hw_type); 984 return ENOTSUP; 985 } 986 break; 987 /* 100 Series WiFi */ 988 case IWN_DID_100_1: 989 case IWN_DID_100_2: 990 switch(sc->subdevice_id) { 991 case IWN_SDID_100_1: 992 case IWN_SDID_100_2: 993 case IWN_SDID_100_3: 994 case IWN_SDID_100_4: 995 case IWN_SDID_100_5: 996 case IWN_SDID_100_6: 997 sc->limits = &iwn1000_sensitivity_limits; 998 sc->base_params = &iwn1000_base_params; 999 sc->fwname = "iwn100fw"; 1000 break; 1001 default: 1002 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1003 "0x%04x rev %d not supported (subdevice)\n", pid, 1004 sc->subdevice_id,sc->hw_type); 1005 return ENOTSUP; 1006 } 1007 break; 1008 1009 /* 105 Series */ 1010 /* XXX: This series will need adjustment for rate. 1011 * see rx_with_siso_diversity in linux kernel 1012 */ 1013 case IWN_DID_105_1: 1014 case IWN_DID_105_2: 1015 switch(sc->subdevice_id) { 1016 case IWN_SDID_105_1: 1017 case IWN_SDID_105_2: 1018 case IWN_SDID_105_3: 1019 //iwl105_bgn_cfg 1020 case IWN_SDID_105_4: 1021 //iwl105_bgn_d_cfg 1022 sc->limits = &iwn2030_sensitivity_limits; 1023 sc->base_params = &iwn2000_base_params; 1024 sc->fwname = "iwn105fw"; 1025 break; 1026 default: 1027 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1028 "0x%04x rev %d not supported (subdevice)\n", pid, 1029 sc->subdevice_id,sc->hw_type); 1030 return ENOTSUP; 1031 } 1032 break; 1033 1034 /* 135 Series */ 1035 /* XXX: This series will need adjustment for rate. 1036 * see rx_with_siso_diversity in linux kernel 1037 */ 1038 case IWN_DID_135_1: 1039 case IWN_DID_135_2: 1040 switch(sc->subdevice_id) { 1041 case IWN_SDID_135_1: 1042 case IWN_SDID_135_2: 1043 case IWN_SDID_135_3: 1044 sc->limits = &iwn2030_sensitivity_limits; 1045 sc->base_params = &iwn2030_base_params; 1046 sc->fwname = "iwn135fw"; 1047 break; 1048 default: 1049 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1050 "0x%04x rev %d not supported (subdevice)\n", pid, 1051 sc->subdevice_id,sc->hw_type); 1052 return ENOTSUP; 1053 } 1054 break; 1055 1056 /* 2x00 Series */ 1057 case IWN_DID_2x00_1: 1058 case IWN_DID_2x00_2: 1059 switch(sc->subdevice_id) { 1060 case IWN_SDID_2x00_1: 1061 case IWN_SDID_2x00_2: 1062 case IWN_SDID_2x00_3: 1063 //iwl2000_2bgn_cfg 1064 case IWN_SDID_2x00_4: 1065 //iwl2000_2bgn_d_cfg 1066 sc->limits = &iwn2030_sensitivity_limits; 1067 sc->base_params = &iwn2000_base_params; 1068 sc->fwname = "iwn2000fw"; 1069 break; 1070 default: 1071 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1072 "0x%04x rev %d not supported (subdevice) \n", 1073 pid, sc->subdevice_id, sc->hw_type); 1074 return ENOTSUP; 1075 } 1076 break; 1077 /* 2x30 Series */ 1078 case IWN_DID_2x30_1: 1079 case IWN_DID_2x30_2: 1080 switch(sc->subdevice_id) { 1081 case IWN_SDID_2x30_1: 1082 case IWN_SDID_2x30_3: 1083 case IWN_SDID_2x30_5: 1084 //iwl100_bgn_cfg 1085 case IWN_SDID_2x30_2: 1086 case IWN_SDID_2x30_4: 1087 case IWN_SDID_2x30_6: 1088 //iwl100_bg_cfg 1089 sc->limits = &iwn2030_sensitivity_limits; 1090 sc->base_params = &iwn2030_base_params; 1091 sc->fwname = "iwn2030fw"; 1092 break; 1093 default: 1094 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1095 "0x%04x rev %d not supported (subdevice)\n", pid, 1096 sc->subdevice_id,sc->hw_type); 1097 return ENOTSUP; 1098 } 1099 break; 1100 /* 5x00 Series */ 1101 case IWN_DID_5x00_1: 1102 case IWN_DID_5x00_2: 1103 case IWN_DID_5x00_3: 1104 case IWN_DID_5x00_4: 1105 sc->limits = &iwn5000_sensitivity_limits; 1106 sc->base_params = &iwn5000_base_params; 1107 sc->fwname = "iwn5000fw"; 1108 switch(sc->subdevice_id) { 1109 case IWN_SDID_5x00_1: 1110 case IWN_SDID_5x00_2: 1111 case IWN_SDID_5x00_3: 1112 case IWN_SDID_5x00_4: 1113 case IWN_SDID_5x00_9: 1114 case IWN_SDID_5x00_10: 1115 case IWN_SDID_5x00_11: 1116 case IWN_SDID_5x00_12: 1117 case IWN_SDID_5x00_17: 1118 case IWN_SDID_5x00_18: 1119 case IWN_SDID_5x00_19: 1120 case IWN_SDID_5x00_20: 1121 //iwl5100_agn_cfg 1122 sc->txchainmask = IWN_ANT_B; 1123 sc->rxchainmask = IWN_ANT_AB; 1124 break; 1125 case IWN_SDID_5x00_5: 1126 case IWN_SDID_5x00_6: 1127 case IWN_SDID_5x00_13: 1128 case IWN_SDID_5x00_14: 1129 case IWN_SDID_5x00_21: 1130 case IWN_SDID_5x00_22: 1131 //iwl5100_bgn_cfg 1132 sc->txchainmask = IWN_ANT_B; 1133 sc->rxchainmask = IWN_ANT_AB; 1134 break; 1135 case IWN_SDID_5x00_7: 1136 case IWN_SDID_5x00_8: 1137 case IWN_SDID_5x00_15: 1138 case IWN_SDID_5x00_16: 1139 case IWN_SDID_5x00_23: 1140 case IWN_SDID_5x00_24: 1141 //iwl5100_abg_cfg 1142 sc->txchainmask = IWN_ANT_B; 1143 sc->rxchainmask = IWN_ANT_AB; 1144 break; 1145 case IWN_SDID_5x00_25: 1146 case IWN_SDID_5x00_26: 1147 case IWN_SDID_5x00_27: 1148 case IWN_SDID_5x00_28: 1149 case IWN_SDID_5x00_29: 1150 case IWN_SDID_5x00_30: 1151 case IWN_SDID_5x00_31: 1152 case IWN_SDID_5x00_32: 1153 case IWN_SDID_5x00_33: 1154 case IWN_SDID_5x00_34: 1155 case IWN_SDID_5x00_35: 1156 case IWN_SDID_5x00_36: 1157 //iwl5300_agn_cfg 1158 sc->txchainmask = IWN_ANT_ABC; 1159 sc->rxchainmask = IWN_ANT_ABC; 1160 break; 1161 default: 1162 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1163 "0x%04x rev %d not supported (subdevice)\n", pid, 1164 sc->subdevice_id,sc->hw_type); 1165 return ENOTSUP; 1166 } 1167 break; 1168 /* 5x50 Series */ 1169 case IWN_DID_5x50_1: 1170 case IWN_DID_5x50_2: 1171 case IWN_DID_5x50_3: 1172 case IWN_DID_5x50_4: 1173 sc->limits = &iwn5000_sensitivity_limits; 1174 sc->base_params = &iwn5000_base_params; 1175 sc->fwname = "iwn5000fw"; 1176 switch(sc->subdevice_id) { 1177 case IWN_SDID_5x50_1: 1178 case IWN_SDID_5x50_2: 1179 case IWN_SDID_5x50_3: 1180 //iwl5350_agn_cfg 1181 sc->limits = &iwn5000_sensitivity_limits; 1182 sc->base_params = &iwn5000_base_params; 1183 sc->fwname = "iwn5000fw"; 1184 break; 1185 case IWN_SDID_5x50_4: 1186 case IWN_SDID_5x50_5: 1187 case IWN_SDID_5x50_8: 1188 case IWN_SDID_5x50_9: 1189 case IWN_SDID_5x50_10: 1190 case IWN_SDID_5x50_11: 1191 //iwl5150_agn_cfg 1192 case IWN_SDID_5x50_6: 1193 case IWN_SDID_5x50_7: 1194 case IWN_SDID_5x50_12: 1195 case IWN_SDID_5x50_13: 1196 //iwl5150_abg_cfg 1197 sc->limits = &iwn5000_sensitivity_limits; 1198 sc->fwname = "iwn5150fw"; 1199 sc->base_params = &iwn_5x50_base_params; 1200 break; 1201 default: 1202 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1203 "0x%04x rev %d not supported (subdevice)\n", pid, 1204 sc->subdevice_id,sc->hw_type); 1205 return ENOTSUP; 1206 } 1207 break; 1208 default: 1209 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1210 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1211 sc->hw_type); 1212 return ENOTSUP; 1213 } 1214 return 0; 1215 } 1216 1217 static int 1218 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1219 { 1220 struct iwn_ops *ops = &sc->ops; 1221 1222 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1223 ops->load_firmware = iwn4965_load_firmware; 1224 ops->read_eeprom = iwn4965_read_eeprom; 1225 ops->post_alive = iwn4965_post_alive; 1226 ops->nic_config = iwn4965_nic_config; 1227 ops->update_sched = iwn4965_update_sched; 1228 ops->get_temperature = iwn4965_get_temperature; 1229 ops->get_rssi = iwn4965_get_rssi; 1230 ops->set_txpower = iwn4965_set_txpower; 1231 ops->init_gains = iwn4965_init_gains; 1232 ops->set_gains = iwn4965_set_gains; 1233 ops->add_node = iwn4965_add_node; 1234 ops->tx_done = iwn4965_tx_done; 1235 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1236 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1237 sc->ntxqs = IWN4965_NTXQUEUES; 1238 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1239 sc->ndmachnls = IWN4965_NDMACHNLS; 1240 sc->broadcast_id = IWN4965_ID_BROADCAST; 1241 sc->rxonsz = IWN4965_RXONSZ; 1242 sc->schedsz = IWN4965_SCHEDSZ; 1243 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1244 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1245 sc->fwsz = IWN4965_FWSZ; 1246 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1247 sc->limits = &iwn4965_sensitivity_limits; 1248 sc->fwname = "iwn4965fw"; 1249 /* Override chains masks, ROM is known to be broken. */ 1250 sc->txchainmask = IWN_ANT_AB; 1251 sc->rxchainmask = IWN_ANT_ABC; 1252 /* Enable normal btcoex */ 1253 sc->sc_flags |= IWN_FLAG_BTCOEX; 1254 1255 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1256 1257 return 0; 1258 } 1259 1260 static int 1261 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1262 { 1263 struct iwn_ops *ops = &sc->ops; 1264 1265 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1266 1267 ops->load_firmware = iwn5000_load_firmware; 1268 ops->read_eeprom = iwn5000_read_eeprom; 1269 ops->post_alive = iwn5000_post_alive; 1270 ops->nic_config = iwn5000_nic_config; 1271 ops->update_sched = iwn5000_update_sched; 1272 ops->get_temperature = iwn5000_get_temperature; 1273 ops->get_rssi = iwn5000_get_rssi; 1274 ops->set_txpower = iwn5000_set_txpower; 1275 ops->init_gains = iwn5000_init_gains; 1276 ops->set_gains = iwn5000_set_gains; 1277 ops->add_node = iwn5000_add_node; 1278 ops->tx_done = iwn5000_tx_done; 1279 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1280 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1281 sc->ntxqs = IWN5000_NTXQUEUES; 1282 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1283 sc->ndmachnls = IWN5000_NDMACHNLS; 1284 sc->broadcast_id = IWN5000_ID_BROADCAST; 1285 sc->rxonsz = IWN5000_RXONSZ; 1286 sc->schedsz = IWN5000_SCHEDSZ; 1287 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1288 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1289 sc->fwsz = IWN5000_FWSZ; 1290 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1291 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1292 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Attach the interface to 802.11 radiotap. 1299 */ 1300 static void 1301 iwn_radiotap_attach(struct iwn_softc *sc) 1302 { 1303 1304 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1305 ieee80211_radiotap_attach(&sc->sc_ic, 1306 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1307 IWN_TX_RADIOTAP_PRESENT, 1308 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1309 IWN_RX_RADIOTAP_PRESENT); 1310 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1311 } 1312 1313 static void 1314 iwn_sysctlattach(struct iwn_softc *sc) 1315 { 1316 #ifdef IWN_DEBUG 1317 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1318 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1319 1320 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1321 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1322 "control debugging printfs"); 1323 #endif 1324 } 1325 1326 static struct ieee80211vap * 1327 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1328 enum ieee80211_opmode opmode, int flags, 1329 const uint8_t bssid[IEEE80211_ADDR_LEN], 1330 const uint8_t mac[IEEE80211_ADDR_LEN]) 1331 { 1332 struct iwn_softc *sc = ic->ic_softc; 1333 struct iwn_vap *ivp; 1334 struct ieee80211vap *vap; 1335 1336 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1337 return NULL; 1338 1339 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1340 vap = &ivp->iv_vap; 1341 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1342 ivp->ctx = IWN_RXON_BSS_CTX; 1343 vap->iv_bmissthreshold = 10; /* override default */ 1344 /* Override with driver methods. */ 1345 ivp->iv_newstate = vap->iv_newstate; 1346 vap->iv_newstate = iwn_newstate; 1347 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1348 1349 ieee80211_ratectl_init(vap); 1350 /* Complete setup. */ 1351 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status, 1352 mac); 1353 ic->ic_opmode = opmode; 1354 return vap; 1355 } 1356 1357 static void 1358 iwn_vap_delete(struct ieee80211vap *vap) 1359 { 1360 struct iwn_vap *ivp = IWN_VAP(vap); 1361 1362 ieee80211_ratectl_deinit(vap); 1363 ieee80211_vap_detach(vap); 1364 free(ivp, M_80211_VAP); 1365 } 1366 1367 static void 1368 iwn_xmit_queue_drain(struct iwn_softc *sc) 1369 { 1370 struct mbuf *m; 1371 struct ieee80211_node *ni; 1372 1373 IWN_LOCK_ASSERT(sc); 1374 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1375 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1376 ieee80211_free_node(ni); 1377 m_freem(m); 1378 } 1379 } 1380 1381 static int 1382 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1383 { 1384 1385 IWN_LOCK_ASSERT(sc); 1386 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1387 } 1388 1389 static int 1390 iwn_detach(device_t dev) 1391 { 1392 struct iwn_softc *sc = device_get_softc(dev); 1393 int qid; 1394 1395 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1396 1397 if (sc->sc_ic.ic_softc != NULL) { 1398 /* Free the mbuf queue and node references */ 1399 IWN_LOCK(sc); 1400 iwn_xmit_queue_drain(sc); 1401 IWN_UNLOCK(sc); 1402 1403 ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task); 1404 ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task); 1405 iwn_stop(sc); 1406 1407 taskqueue_drain_all(sc->sc_tq); 1408 taskqueue_free(sc->sc_tq); 1409 1410 callout_drain(&sc->watchdog_to); 1411 callout_drain(&sc->scan_timeout); 1412 callout_drain(&sc->calib_to); 1413 ieee80211_ifdetach(&sc->sc_ic); 1414 } 1415 1416 /* Uninstall interrupt handler. */ 1417 if (sc->irq != NULL) { 1418 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1419 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1420 sc->irq); 1421 pci_release_msi(dev); 1422 } 1423 1424 /* Free DMA resources. */ 1425 iwn_free_rx_ring(sc, &sc->rxq); 1426 for (qid = 0; qid < sc->ntxqs; qid++) 1427 iwn_free_tx_ring(sc, &sc->txq[qid]); 1428 iwn_free_sched(sc); 1429 iwn_free_kw(sc); 1430 if (sc->ict != NULL) 1431 iwn_free_ict(sc); 1432 iwn_free_fwmem(sc); 1433 1434 if (sc->mem != NULL) 1435 bus_release_resource(dev, SYS_RES_MEMORY, 1436 rman_get_rid(sc->mem), sc->mem); 1437 1438 if (sc->sc_cdev) { 1439 destroy_dev(sc->sc_cdev); 1440 sc->sc_cdev = NULL; 1441 } 1442 1443 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1444 IWN_LOCK_DESTROY(sc); 1445 return 0; 1446 } 1447 1448 static int 1449 iwn_shutdown(device_t dev) 1450 { 1451 struct iwn_softc *sc = device_get_softc(dev); 1452 1453 iwn_stop(sc); 1454 return 0; 1455 } 1456 1457 static int 1458 iwn_suspend(device_t dev) 1459 { 1460 struct iwn_softc *sc = device_get_softc(dev); 1461 1462 ieee80211_suspend_all(&sc->sc_ic); 1463 return 0; 1464 } 1465 1466 static int 1467 iwn_resume(device_t dev) 1468 { 1469 struct iwn_softc *sc = device_get_softc(dev); 1470 1471 /* Clear device-specific "PCI retry timeout" register (41h). */ 1472 pci_write_config(dev, 0x41, 0, 1); 1473 1474 ieee80211_resume_all(&sc->sc_ic); 1475 return 0; 1476 } 1477 1478 static int 1479 iwn_nic_lock(struct iwn_softc *sc) 1480 { 1481 int ntries; 1482 1483 /* Request exclusive access to NIC. */ 1484 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1485 1486 /* Spin until we actually get the lock. */ 1487 for (ntries = 0; ntries < 1000; ntries++) { 1488 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1489 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1490 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1491 return 0; 1492 DELAY(10); 1493 } 1494 return ETIMEDOUT; 1495 } 1496 1497 static __inline void 1498 iwn_nic_unlock(struct iwn_softc *sc) 1499 { 1500 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1501 } 1502 1503 static __inline uint32_t 1504 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1505 { 1506 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1507 IWN_BARRIER_READ_WRITE(sc); 1508 return IWN_READ(sc, IWN_PRPH_RDATA); 1509 } 1510 1511 static __inline void 1512 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1513 { 1514 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1515 IWN_BARRIER_WRITE(sc); 1516 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1517 } 1518 1519 static __inline void 1520 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1521 { 1522 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1523 } 1524 1525 static __inline void 1526 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1527 { 1528 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1529 } 1530 1531 static __inline void 1532 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1533 const uint32_t *data, int count) 1534 { 1535 for (; count > 0; count--, data++, addr += 4) 1536 iwn_prph_write(sc, addr, *data); 1537 } 1538 1539 static __inline uint32_t 1540 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1541 { 1542 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1543 IWN_BARRIER_READ_WRITE(sc); 1544 return IWN_READ(sc, IWN_MEM_RDATA); 1545 } 1546 1547 static __inline void 1548 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1549 { 1550 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1551 IWN_BARRIER_WRITE(sc); 1552 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1553 } 1554 1555 static __inline void 1556 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1557 { 1558 uint32_t tmp; 1559 1560 tmp = iwn_mem_read(sc, addr & ~3); 1561 if (addr & 3) 1562 tmp = (tmp & 0x0000ffff) | data << 16; 1563 else 1564 tmp = (tmp & 0xffff0000) | data; 1565 iwn_mem_write(sc, addr & ~3, tmp); 1566 } 1567 1568 static __inline void 1569 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1570 int count) 1571 { 1572 for (; count > 0; count--, addr += 4) 1573 *data++ = iwn_mem_read(sc, addr); 1574 } 1575 1576 static __inline void 1577 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1578 int count) 1579 { 1580 for (; count > 0; count--, addr += 4) 1581 iwn_mem_write(sc, addr, val); 1582 } 1583 1584 static int 1585 iwn_eeprom_lock(struct iwn_softc *sc) 1586 { 1587 int i, ntries; 1588 1589 for (i = 0; i < 100; i++) { 1590 /* Request exclusive access to EEPROM. */ 1591 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1592 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1593 1594 /* Spin until we actually get the lock. */ 1595 for (ntries = 0; ntries < 100; ntries++) { 1596 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1597 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1598 return 0; 1599 DELAY(10); 1600 } 1601 } 1602 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1603 return ETIMEDOUT; 1604 } 1605 1606 static __inline void 1607 iwn_eeprom_unlock(struct iwn_softc *sc) 1608 { 1609 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1610 } 1611 1612 /* 1613 * Initialize access by host to One Time Programmable ROM. 1614 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1615 */ 1616 static int 1617 iwn_init_otprom(struct iwn_softc *sc) 1618 { 1619 uint16_t prev, base, next; 1620 int count, error; 1621 1622 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1623 1624 /* Wait for clock stabilization before accessing prph. */ 1625 if ((error = iwn_clock_wait(sc)) != 0) 1626 return error; 1627 1628 if ((error = iwn_nic_lock(sc)) != 0) 1629 return error; 1630 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1631 DELAY(5); 1632 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1633 iwn_nic_unlock(sc); 1634 1635 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1636 if (sc->base_params->shadow_ram_support) { 1637 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1638 IWN_RESET_LINK_PWR_MGMT_DIS); 1639 } 1640 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1641 /* Clear ECC status. */ 1642 IWN_SETBITS(sc, IWN_OTP_GP, 1643 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1644 1645 /* 1646 * Find the block before last block (contains the EEPROM image) 1647 * for HW without OTP shadow RAM. 1648 */ 1649 if (! sc->base_params->shadow_ram_support) { 1650 /* Switch to absolute addressing mode. */ 1651 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1652 base = prev = 0; 1653 for (count = 0; count < sc->base_params->max_ll_items; 1654 count++) { 1655 error = iwn_read_prom_data(sc, base, &next, 2); 1656 if (error != 0) 1657 return error; 1658 if (next == 0) /* End of linked-list. */ 1659 break; 1660 prev = base; 1661 base = le16toh(next); 1662 } 1663 if (count == 0 || count == sc->base_params->max_ll_items) 1664 return EIO; 1665 /* Skip "next" word. */ 1666 sc->prom_base = prev + 1; 1667 } 1668 1669 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1670 1671 return 0; 1672 } 1673 1674 static int 1675 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1676 { 1677 uint8_t *out = data; 1678 uint32_t val, tmp; 1679 int ntries; 1680 1681 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1682 1683 addr += sc->prom_base; 1684 for (; count > 0; count -= 2, addr++) { 1685 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1686 for (ntries = 0; ntries < 10; ntries++) { 1687 val = IWN_READ(sc, IWN_EEPROM); 1688 if (val & IWN_EEPROM_READ_VALID) 1689 break; 1690 DELAY(5); 1691 } 1692 if (ntries == 10) { 1693 device_printf(sc->sc_dev, 1694 "timeout reading ROM at 0x%x\n", addr); 1695 return ETIMEDOUT; 1696 } 1697 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1698 /* OTPROM, check for ECC errors. */ 1699 tmp = IWN_READ(sc, IWN_OTP_GP); 1700 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1701 device_printf(sc->sc_dev, 1702 "OTPROM ECC error at 0x%x\n", addr); 1703 return EIO; 1704 } 1705 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1706 /* Correctable ECC error, clear bit. */ 1707 IWN_SETBITS(sc, IWN_OTP_GP, 1708 IWN_OTP_GP_ECC_CORR_STTS); 1709 } 1710 } 1711 *out++ = val >> 16; 1712 if (count > 1) 1713 *out++ = val >> 24; 1714 } 1715 1716 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1717 1718 return 0; 1719 } 1720 1721 static void 1722 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1723 { 1724 if (error != 0) 1725 return; 1726 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1727 *(bus_addr_t *)arg = segs[0].ds_addr; 1728 } 1729 1730 static int 1731 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1732 void **kvap, bus_size_t size, bus_size_t alignment) 1733 { 1734 int error; 1735 1736 dma->tag = NULL; 1737 dma->size = size; 1738 1739 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1740 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1741 1, size, 0, NULL, NULL, &dma->tag); 1742 if (error != 0) 1743 goto fail; 1744 1745 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1746 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1747 if (error != 0) 1748 goto fail; 1749 1750 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1751 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1752 if (error != 0) 1753 goto fail; 1754 1755 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1756 1757 if (kvap != NULL) 1758 *kvap = dma->vaddr; 1759 1760 return 0; 1761 1762 fail: iwn_dma_contig_free(dma); 1763 return error; 1764 } 1765 1766 static void 1767 iwn_dma_contig_free(struct iwn_dma_info *dma) 1768 { 1769 if (dma->vaddr != NULL) { 1770 bus_dmamap_sync(dma->tag, dma->map, 1771 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1772 bus_dmamap_unload(dma->tag, dma->map); 1773 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1774 dma->vaddr = NULL; 1775 } 1776 if (dma->tag != NULL) { 1777 bus_dma_tag_destroy(dma->tag); 1778 dma->tag = NULL; 1779 } 1780 } 1781 1782 static int 1783 iwn_alloc_sched(struct iwn_softc *sc) 1784 { 1785 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1786 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1787 sc->schedsz, 1024); 1788 } 1789 1790 static void 1791 iwn_free_sched(struct iwn_softc *sc) 1792 { 1793 iwn_dma_contig_free(&sc->sched_dma); 1794 } 1795 1796 static int 1797 iwn_alloc_kw(struct iwn_softc *sc) 1798 { 1799 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1800 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1801 } 1802 1803 static void 1804 iwn_free_kw(struct iwn_softc *sc) 1805 { 1806 iwn_dma_contig_free(&sc->kw_dma); 1807 } 1808 1809 static int 1810 iwn_alloc_ict(struct iwn_softc *sc) 1811 { 1812 /* ICT table must be aligned on a 4KB boundary. */ 1813 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1814 IWN_ICT_SIZE, 4096); 1815 } 1816 1817 static void 1818 iwn_free_ict(struct iwn_softc *sc) 1819 { 1820 iwn_dma_contig_free(&sc->ict_dma); 1821 } 1822 1823 static int 1824 iwn_alloc_fwmem(struct iwn_softc *sc) 1825 { 1826 /* Must be aligned on a 16-byte boundary. */ 1827 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1828 } 1829 1830 static void 1831 iwn_free_fwmem(struct iwn_softc *sc) 1832 { 1833 iwn_dma_contig_free(&sc->fw_dma); 1834 } 1835 1836 static int 1837 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1838 { 1839 bus_size_t size; 1840 int i, error; 1841 1842 ring->cur = 0; 1843 1844 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1845 1846 /* Allocate RX descriptors (256-byte aligned). */ 1847 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1848 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1849 size, 256); 1850 if (error != 0) { 1851 device_printf(sc->sc_dev, 1852 "%s: could not allocate RX ring DMA memory, error %d\n", 1853 __func__, error); 1854 goto fail; 1855 } 1856 1857 /* Allocate RX status area (16-byte aligned). */ 1858 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1859 sizeof (struct iwn_rx_status), 16); 1860 if (error != 0) { 1861 device_printf(sc->sc_dev, 1862 "%s: could not allocate RX status DMA memory, error %d\n", 1863 __func__, error); 1864 goto fail; 1865 } 1866 1867 /* Create RX buffer DMA tag. */ 1868 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1869 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1870 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1871 if (error != 0) { 1872 device_printf(sc->sc_dev, 1873 "%s: could not create RX buf DMA tag, error %d\n", 1874 __func__, error); 1875 goto fail; 1876 } 1877 1878 /* 1879 * Allocate and map RX buffers. 1880 */ 1881 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1882 struct iwn_rx_data *data = &ring->data[i]; 1883 bus_addr_t paddr; 1884 1885 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1886 if (error != 0) { 1887 device_printf(sc->sc_dev, 1888 "%s: could not create RX buf DMA map, error %d\n", 1889 __func__, error); 1890 goto fail; 1891 } 1892 1893 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1894 IWN_RBUF_SIZE); 1895 if (data->m == NULL) { 1896 device_printf(sc->sc_dev, 1897 "%s: could not allocate RX mbuf\n", __func__); 1898 error = ENOBUFS; 1899 goto fail; 1900 } 1901 1902 error = bus_dmamap_load(ring->data_dmat, data->map, 1903 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1904 &paddr, BUS_DMA_NOWAIT); 1905 if (error != 0 && error != EFBIG) { 1906 device_printf(sc->sc_dev, 1907 "%s: can't map mbuf, error %d\n", __func__, 1908 error); 1909 goto fail; 1910 } 1911 1912 /* Set physical address of RX buffer (256-byte aligned). */ 1913 ring->desc[i] = htole32(paddr >> 8); 1914 } 1915 1916 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1917 BUS_DMASYNC_PREWRITE); 1918 1919 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1920 1921 return 0; 1922 1923 fail: iwn_free_rx_ring(sc, ring); 1924 1925 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1926 1927 return error; 1928 } 1929 1930 static void 1931 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1932 { 1933 int ntries; 1934 1935 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1936 1937 if (iwn_nic_lock(sc) == 0) { 1938 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1939 for (ntries = 0; ntries < 1000; ntries++) { 1940 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1941 IWN_FH_RX_STATUS_IDLE) 1942 break; 1943 DELAY(10); 1944 } 1945 iwn_nic_unlock(sc); 1946 } 1947 ring->cur = 0; 1948 sc->last_rx_valid = 0; 1949 } 1950 1951 static void 1952 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1953 { 1954 int i; 1955 1956 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1957 1958 iwn_dma_contig_free(&ring->desc_dma); 1959 iwn_dma_contig_free(&ring->stat_dma); 1960 1961 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1962 struct iwn_rx_data *data = &ring->data[i]; 1963 1964 if (data->m != NULL) { 1965 bus_dmamap_sync(ring->data_dmat, data->map, 1966 BUS_DMASYNC_POSTREAD); 1967 bus_dmamap_unload(ring->data_dmat, data->map); 1968 m_freem(data->m); 1969 data->m = NULL; 1970 } 1971 if (data->map != NULL) 1972 bus_dmamap_destroy(ring->data_dmat, data->map); 1973 } 1974 if (ring->data_dmat != NULL) { 1975 bus_dma_tag_destroy(ring->data_dmat); 1976 ring->data_dmat = NULL; 1977 } 1978 } 1979 1980 static int 1981 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1982 { 1983 bus_addr_t paddr; 1984 bus_size_t size; 1985 int i, error; 1986 1987 ring->qid = qid; 1988 ring->queued = 0; 1989 ring->cur = 0; 1990 1991 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1992 1993 /* Allocate TX descriptors (256-byte aligned). */ 1994 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1995 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1996 size, 256); 1997 if (error != 0) { 1998 device_printf(sc->sc_dev, 1999 "%s: could not allocate TX ring DMA memory, error %d\n", 2000 __func__, error); 2001 goto fail; 2002 } 2003 2004 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2005 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2006 size, 4); 2007 if (error != 0) { 2008 device_printf(sc->sc_dev, 2009 "%s: could not allocate TX cmd DMA memory, error %d\n", 2010 __func__, error); 2011 goto fail; 2012 } 2013 2014 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2015 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2016 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2017 if (error != 0) { 2018 device_printf(sc->sc_dev, 2019 "%s: could not create TX buf DMA tag, error %d\n", 2020 __func__, error); 2021 goto fail; 2022 } 2023 2024 paddr = ring->cmd_dma.paddr; 2025 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2026 struct iwn_tx_data *data = &ring->data[i]; 2027 2028 data->cmd_paddr = paddr; 2029 data->scratch_paddr = paddr + 12; 2030 paddr += sizeof (struct iwn_tx_cmd); 2031 2032 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2033 if (error != 0) { 2034 device_printf(sc->sc_dev, 2035 "%s: could not create TX buf DMA map, error %d\n", 2036 __func__, error); 2037 goto fail; 2038 } 2039 } 2040 2041 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2042 2043 return 0; 2044 2045 fail: iwn_free_tx_ring(sc, ring); 2046 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2047 return error; 2048 } 2049 2050 static void 2051 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2052 { 2053 int i; 2054 2055 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2056 2057 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2058 struct iwn_tx_data *data = &ring->data[i]; 2059 2060 if (data->m != NULL) { 2061 bus_dmamap_sync(ring->data_dmat, data->map, 2062 BUS_DMASYNC_POSTWRITE); 2063 bus_dmamap_unload(ring->data_dmat, data->map); 2064 m_freem(data->m); 2065 data->m = NULL; 2066 } 2067 if (data->ni != NULL) { 2068 ieee80211_free_node(data->ni); 2069 data->ni = NULL; 2070 } 2071 } 2072 /* Clear TX descriptors. */ 2073 memset(ring->desc, 0, ring->desc_dma.size); 2074 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2075 BUS_DMASYNC_PREWRITE); 2076 sc->qfullmsk &= ~(1 << ring->qid); 2077 ring->queued = 0; 2078 ring->cur = 0; 2079 } 2080 2081 static void 2082 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2083 { 2084 int i; 2085 2086 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2087 2088 iwn_dma_contig_free(&ring->desc_dma); 2089 iwn_dma_contig_free(&ring->cmd_dma); 2090 2091 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2092 struct iwn_tx_data *data = &ring->data[i]; 2093 2094 if (data->m != NULL) { 2095 bus_dmamap_sync(ring->data_dmat, data->map, 2096 BUS_DMASYNC_POSTWRITE); 2097 bus_dmamap_unload(ring->data_dmat, data->map); 2098 m_freem(data->m); 2099 } 2100 if (data->map != NULL) 2101 bus_dmamap_destroy(ring->data_dmat, data->map); 2102 } 2103 if (ring->data_dmat != NULL) { 2104 bus_dma_tag_destroy(ring->data_dmat); 2105 ring->data_dmat = NULL; 2106 } 2107 } 2108 2109 static void 2110 iwn5000_ict_reset(struct iwn_softc *sc) 2111 { 2112 /* Disable interrupts. */ 2113 IWN_WRITE(sc, IWN_INT_MASK, 0); 2114 2115 /* Reset ICT table. */ 2116 memset(sc->ict, 0, IWN_ICT_SIZE); 2117 sc->ict_cur = 0; 2118 2119 /* Set physical address of ICT table (4KB aligned). */ 2120 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2121 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2122 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2123 2124 /* Enable periodic RX interrupt. */ 2125 sc->int_mask |= IWN_INT_RX_PERIODIC; 2126 /* Switch to ICT interrupt mode in driver. */ 2127 sc->sc_flags |= IWN_FLAG_USE_ICT; 2128 2129 /* Re-enable interrupts. */ 2130 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2131 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2132 } 2133 2134 static int 2135 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2136 { 2137 struct iwn_ops *ops = &sc->ops; 2138 uint16_t val; 2139 int error; 2140 2141 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2142 2143 /* Check whether adapter has an EEPROM or an OTPROM. */ 2144 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2145 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2146 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2147 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2148 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2149 2150 /* Adapter has to be powered on for EEPROM access to work. */ 2151 if ((error = iwn_apm_init(sc)) != 0) { 2152 device_printf(sc->sc_dev, 2153 "%s: could not power ON adapter, error %d\n", __func__, 2154 error); 2155 return error; 2156 } 2157 2158 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2159 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2160 return EIO; 2161 } 2162 if ((error = iwn_eeprom_lock(sc)) != 0) { 2163 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2164 __func__, error); 2165 return error; 2166 } 2167 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2168 if ((error = iwn_init_otprom(sc)) != 0) { 2169 device_printf(sc->sc_dev, 2170 "%s: could not initialize OTPROM, error %d\n", 2171 __func__, error); 2172 return error; 2173 } 2174 } 2175 2176 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2177 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2178 /* Check if HT support is bonded out. */ 2179 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2180 sc->sc_flags |= IWN_FLAG_HAS_11N; 2181 2182 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2183 sc->rfcfg = le16toh(val); 2184 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2185 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2186 if (sc->txchainmask == 0) 2187 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2188 if (sc->rxchainmask == 0) 2189 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2190 2191 /* Read MAC address. */ 2192 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2193 2194 /* Read adapter-specific information from EEPROM. */ 2195 ops->read_eeprom(sc); 2196 2197 iwn_apm_stop(sc); /* Power OFF adapter. */ 2198 2199 iwn_eeprom_unlock(sc); 2200 2201 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2202 2203 return 0; 2204 } 2205 2206 static void 2207 iwn4965_read_eeprom(struct iwn_softc *sc) 2208 { 2209 uint32_t addr; 2210 uint16_t val; 2211 int i; 2212 2213 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2214 2215 /* Read regulatory domain (4 ASCII characters). */ 2216 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2217 2218 /* Read the list of authorized channels (20MHz & 40MHz). */ 2219 for (i = 0; i < IWN_NBANDS - 1; i++) { 2220 addr = iwn4965_regulatory_bands[i]; 2221 iwn_read_eeprom_channels(sc, i, addr); 2222 } 2223 2224 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2225 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2226 sc->maxpwr2GHz = val & 0xff; 2227 sc->maxpwr5GHz = val >> 8; 2228 /* Check that EEPROM values are within valid range. */ 2229 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2230 sc->maxpwr5GHz = 38; 2231 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2232 sc->maxpwr2GHz = 38; 2233 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2234 sc->maxpwr2GHz, sc->maxpwr5GHz); 2235 2236 /* Read samples for each TX power group. */ 2237 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2238 sizeof sc->bands); 2239 2240 /* Read voltage at which samples were taken. */ 2241 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2242 sc->eeprom_voltage = (int16_t)le16toh(val); 2243 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2244 sc->eeprom_voltage); 2245 2246 #ifdef IWN_DEBUG 2247 /* Print samples. */ 2248 if (sc->sc_debug & IWN_DEBUG_ANY) { 2249 for (i = 0; i < IWN_NBANDS - 1; i++) 2250 iwn4965_print_power_group(sc, i); 2251 } 2252 #endif 2253 2254 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2255 } 2256 2257 #ifdef IWN_DEBUG 2258 static void 2259 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2260 { 2261 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2262 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2263 int j, c; 2264 2265 printf("===band %d===\n", i); 2266 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2267 printf("chan1 num=%d\n", chans[0].num); 2268 for (c = 0; c < 2; c++) { 2269 for (j = 0; j < IWN_NSAMPLES; j++) { 2270 printf("chain %d, sample %d: temp=%d gain=%d " 2271 "power=%d pa_det=%d\n", c, j, 2272 chans[0].samples[c][j].temp, 2273 chans[0].samples[c][j].gain, 2274 chans[0].samples[c][j].power, 2275 chans[0].samples[c][j].pa_det); 2276 } 2277 } 2278 printf("chan2 num=%d\n", chans[1].num); 2279 for (c = 0; c < 2; c++) { 2280 for (j = 0; j < IWN_NSAMPLES; j++) { 2281 printf("chain %d, sample %d: temp=%d gain=%d " 2282 "power=%d pa_det=%d\n", c, j, 2283 chans[1].samples[c][j].temp, 2284 chans[1].samples[c][j].gain, 2285 chans[1].samples[c][j].power, 2286 chans[1].samples[c][j].pa_det); 2287 } 2288 } 2289 } 2290 #endif 2291 2292 static void 2293 iwn5000_read_eeprom(struct iwn_softc *sc) 2294 { 2295 struct iwn5000_eeprom_calib_hdr hdr; 2296 int32_t volt; 2297 uint32_t base, addr; 2298 uint16_t val; 2299 int i; 2300 2301 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2302 2303 /* Read regulatory domain (4 ASCII characters). */ 2304 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2305 base = le16toh(val); 2306 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2307 sc->eeprom_domain, 4); 2308 2309 /* Read the list of authorized channels (20MHz & 40MHz). */ 2310 for (i = 0; i < IWN_NBANDS - 1; i++) { 2311 addr = base + sc->base_params->regulatory_bands[i]; 2312 iwn_read_eeprom_channels(sc, i, addr); 2313 } 2314 2315 /* Read enhanced TX power information for 6000 Series. */ 2316 if (sc->base_params->enhanced_TX_power) 2317 iwn_read_eeprom_enhinfo(sc); 2318 2319 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2320 base = le16toh(val); 2321 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2322 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2323 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2324 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2325 sc->calib_ver = hdr.version; 2326 2327 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2328 sc->eeprom_voltage = le16toh(hdr.volt); 2329 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2330 sc->eeprom_temp_high=le16toh(val); 2331 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2332 sc->eeprom_temp = le16toh(val); 2333 } 2334 2335 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2336 /* Compute temperature offset. */ 2337 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2338 sc->eeprom_temp = le16toh(val); 2339 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2340 volt = le16toh(val); 2341 sc->temp_off = sc->eeprom_temp - (volt / -5); 2342 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2343 sc->eeprom_temp, volt, sc->temp_off); 2344 } else { 2345 /* Read crystal calibration. */ 2346 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2347 &sc->eeprom_crystal, sizeof (uint32_t)); 2348 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2349 le32toh(sc->eeprom_crystal)); 2350 } 2351 2352 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2353 2354 } 2355 2356 /* 2357 * Translate EEPROM flags to net80211. 2358 */ 2359 static uint32_t 2360 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2361 { 2362 uint32_t nflags; 2363 2364 nflags = 0; 2365 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2366 nflags |= IEEE80211_CHAN_PASSIVE; 2367 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2368 nflags |= IEEE80211_CHAN_NOADHOC; 2369 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2370 nflags |= IEEE80211_CHAN_DFS; 2371 /* XXX apparently IBSS may still be marked */ 2372 nflags |= IEEE80211_CHAN_NOADHOC; 2373 } 2374 2375 return nflags; 2376 } 2377 2378 static void 2379 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2380 struct ieee80211_channel chans[]) 2381 { 2382 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2383 const struct iwn_chan_band *band = &iwn_bands[n]; 2384 uint8_t bands[IEEE80211_MODE_BYTES]; 2385 uint8_t chan; 2386 int i, error, nflags; 2387 2388 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2389 2390 memset(bands, 0, sizeof(bands)); 2391 if (n == 0) { 2392 setbit(bands, IEEE80211_MODE_11B); 2393 setbit(bands, IEEE80211_MODE_11G); 2394 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2395 setbit(bands, IEEE80211_MODE_11NG); 2396 } else { 2397 setbit(bands, IEEE80211_MODE_11A); 2398 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2399 setbit(bands, IEEE80211_MODE_11NA); 2400 } 2401 2402 for (i = 0; i < band->nchan; i++) { 2403 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2404 DPRINTF(sc, IWN_DEBUG_RESET, 2405 "skip chan %d flags 0x%x maxpwr %d\n", 2406 band->chan[i], channels[i].flags, 2407 channels[i].maxpwr); 2408 continue; 2409 } 2410 2411 chan = band->chan[i]; 2412 nflags = iwn_eeprom_channel_flags(&channels[i]); 2413 error = ieee80211_add_channel(chans, maxchans, nchans, 2414 chan, 0, channels[i].maxpwr, nflags, bands); 2415 if (error != 0) 2416 break; 2417 2418 /* Save maximum allowed TX power for this channel. */ 2419 /* XXX wrong */ 2420 sc->maxpwr[chan] = channels[i].maxpwr; 2421 2422 DPRINTF(sc, IWN_DEBUG_RESET, 2423 "add chan %d flags 0x%x maxpwr %d\n", chan, 2424 channels[i].flags, channels[i].maxpwr); 2425 } 2426 2427 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2428 2429 } 2430 2431 static void 2432 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2433 struct ieee80211_channel chans[]) 2434 { 2435 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2436 const struct iwn_chan_band *band = &iwn_bands[n]; 2437 uint8_t chan; 2438 int i, error, nflags; 2439 2440 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2441 2442 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2443 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2444 return; 2445 } 2446 2447 for (i = 0; i < band->nchan; i++) { 2448 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2449 DPRINTF(sc, IWN_DEBUG_RESET, 2450 "skip chan %d flags 0x%x maxpwr %d\n", 2451 band->chan[i], channels[i].flags, 2452 channels[i].maxpwr); 2453 continue; 2454 } 2455 2456 chan = band->chan[i]; 2457 nflags = iwn_eeprom_channel_flags(&channels[i]); 2458 nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A); 2459 error = ieee80211_add_channel_ht40(chans, maxchans, nchans, 2460 chan, channels[i].maxpwr, nflags); 2461 switch (error) { 2462 case EINVAL: 2463 device_printf(sc->sc_dev, 2464 "%s: no entry for channel %d\n", __func__, chan); 2465 continue; 2466 case ENOENT: 2467 DPRINTF(sc, IWN_DEBUG_RESET, 2468 "%s: skip chan %d, extension channel not found\n", 2469 __func__, chan); 2470 continue; 2471 case ENOBUFS: 2472 device_printf(sc->sc_dev, 2473 "%s: channel table is full!\n", __func__); 2474 break; 2475 case 0: 2476 DPRINTF(sc, IWN_DEBUG_RESET, 2477 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2478 chan, channels[i].flags, channels[i].maxpwr); 2479 /* FALLTHROUGH */ 2480 default: 2481 break; 2482 } 2483 } 2484 2485 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2486 2487 } 2488 2489 static void 2490 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2491 { 2492 struct ieee80211com *ic = &sc->sc_ic; 2493 2494 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2495 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2496 2497 if (n < 5) { 2498 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2499 ic->ic_channels); 2500 } else { 2501 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2502 ic->ic_channels); 2503 } 2504 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2505 } 2506 2507 static struct iwn_eeprom_chan * 2508 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2509 { 2510 int band, chan, i, j; 2511 2512 if (IEEE80211_IS_CHAN_HT40(c)) { 2513 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2514 if (IEEE80211_IS_CHAN_HT40D(c)) 2515 chan = c->ic_extieee; 2516 else 2517 chan = c->ic_ieee; 2518 for (i = 0; i < iwn_bands[band].nchan; i++) { 2519 if (iwn_bands[band].chan[i] == chan) 2520 return &sc->eeprom_channels[band][i]; 2521 } 2522 } else { 2523 for (j = 0; j < 5; j++) { 2524 for (i = 0; i < iwn_bands[j].nchan; i++) { 2525 if (iwn_bands[j].chan[i] == c->ic_ieee && 2526 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 2527 return &sc->eeprom_channels[j][i]; 2528 } 2529 } 2530 } 2531 return NULL; 2532 } 2533 2534 static void 2535 iwn_getradiocaps(struct ieee80211com *ic, 2536 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2537 { 2538 struct iwn_softc *sc = ic->ic_softc; 2539 int i; 2540 2541 /* Parse the list of authorized channels. */ 2542 for (i = 0; i < 5 && *nchans < maxchans; i++) 2543 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); 2544 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) 2545 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); 2546 } 2547 2548 /* 2549 * Enforce flags read from EEPROM. 2550 */ 2551 static int 2552 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2553 int nchan, struct ieee80211_channel chans[]) 2554 { 2555 struct iwn_softc *sc = ic->ic_softc; 2556 int i; 2557 2558 for (i = 0; i < nchan; i++) { 2559 struct ieee80211_channel *c = &chans[i]; 2560 struct iwn_eeprom_chan *channel; 2561 2562 channel = iwn_find_eeprom_channel(sc, c); 2563 if (channel == NULL) { 2564 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2565 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2566 return EINVAL; 2567 } 2568 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2569 } 2570 2571 return 0; 2572 } 2573 2574 static void 2575 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2576 { 2577 struct iwn_eeprom_enhinfo enhinfo[35]; 2578 struct ieee80211com *ic = &sc->sc_ic; 2579 struct ieee80211_channel *c; 2580 uint16_t val, base; 2581 int8_t maxpwr; 2582 uint8_t flags; 2583 int i, j; 2584 2585 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2586 2587 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2588 base = le16toh(val); 2589 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2590 enhinfo, sizeof enhinfo); 2591 2592 for (i = 0; i < nitems(enhinfo); i++) { 2593 flags = enhinfo[i].flags; 2594 if (!(flags & IWN_ENHINFO_VALID)) 2595 continue; /* Skip invalid entries. */ 2596 2597 maxpwr = 0; 2598 if (sc->txchainmask & IWN_ANT_A) 2599 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2600 if (sc->txchainmask & IWN_ANT_B) 2601 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2602 if (sc->txchainmask & IWN_ANT_C) 2603 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2604 if (sc->ntxchains == 2) 2605 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2606 else if (sc->ntxchains == 3) 2607 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2608 2609 for (j = 0; j < ic->ic_nchans; j++) { 2610 c = &ic->ic_channels[j]; 2611 if ((flags & IWN_ENHINFO_5GHZ)) { 2612 if (!IEEE80211_IS_CHAN_A(c)) 2613 continue; 2614 } else if ((flags & IWN_ENHINFO_OFDM)) { 2615 if (!IEEE80211_IS_CHAN_G(c)) 2616 continue; 2617 } else if (!IEEE80211_IS_CHAN_B(c)) 2618 continue; 2619 if ((flags & IWN_ENHINFO_HT40)) { 2620 if (!IEEE80211_IS_CHAN_HT40(c)) 2621 continue; 2622 } else { 2623 if (IEEE80211_IS_CHAN_HT40(c)) 2624 continue; 2625 } 2626 if (enhinfo[i].chan != 0 && 2627 enhinfo[i].chan != c->ic_ieee) 2628 continue; 2629 2630 DPRINTF(sc, IWN_DEBUG_RESET, 2631 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2632 c->ic_flags, maxpwr / 2); 2633 c->ic_maxregpower = maxpwr / 2; 2634 c->ic_maxpower = maxpwr; 2635 } 2636 } 2637 2638 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2639 2640 } 2641 2642 static struct ieee80211_node * 2643 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2644 { 2645 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2646 } 2647 2648 static __inline int 2649 rate2plcp(int rate) 2650 { 2651 switch (rate & 0xff) { 2652 case 12: return 0xd; 2653 case 18: return 0xf; 2654 case 24: return 0x5; 2655 case 36: return 0x7; 2656 case 48: return 0x9; 2657 case 72: return 0xb; 2658 case 96: return 0x1; 2659 case 108: return 0x3; 2660 case 2: return 10; 2661 case 4: return 20; 2662 case 11: return 55; 2663 case 22: return 110; 2664 } 2665 return 0; 2666 } 2667 2668 static int 2669 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2670 { 2671 2672 return IWN_LSB(sc->txchainmask); 2673 } 2674 2675 static int 2676 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2677 { 2678 int tx; 2679 2680 /* 2681 * The '2 stream' setup is a bit .. odd. 2682 * 2683 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2684 * the firmware panics (eg Intel 5100.) 2685 * 2686 * For NICs that support two antennas, we use ANT_AB. 2687 * 2688 * For NICs that support three antennas, we use the two that 2689 * wasn't the default one. 2690 * 2691 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2692 * this to only one antenna. 2693 */ 2694 2695 /* Default - transmit on the other antennas */ 2696 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2697 2698 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2699 if (tx == 0) 2700 tx = IWN_ANT_AB; 2701 2702 /* 2703 * If the NIC is a two-stream TX NIC, configure the TX mask to 2704 * the default chainmask 2705 */ 2706 else if (sc->ntxchains == 2) 2707 tx = sc->txchainmask; 2708 2709 return (tx); 2710 } 2711 2712 2713 2714 /* 2715 * Calculate the required PLCP value from the given rate, 2716 * to the given node. 2717 * 2718 * This will take the node configuration (eg 11n, rate table 2719 * setup, etc) into consideration. 2720 */ 2721 static uint32_t 2722 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2723 uint8_t rate) 2724 { 2725 struct ieee80211com *ic = ni->ni_ic; 2726 uint32_t plcp = 0; 2727 int ridx; 2728 2729 /* 2730 * If it's an MCS rate, let's set the plcp correctly 2731 * and set the relevant flags based on the node config. 2732 */ 2733 if (rate & IEEE80211_RATE_MCS) { 2734 /* 2735 * Set the initial PLCP value to be between 0->31 for 2736 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2737 * flag. 2738 */ 2739 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2740 2741 /* 2742 * XXX the following should only occur if both 2743 * the local configuration _and_ the remote node 2744 * advertise these capabilities. Thus this code 2745 * may need fixing! 2746 */ 2747 2748 /* 2749 * Set the channel width and guard interval. 2750 */ 2751 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2752 plcp |= IWN_RFLAG_HT40; 2753 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2754 plcp |= IWN_RFLAG_SGI; 2755 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2756 plcp |= IWN_RFLAG_SGI; 2757 } 2758 2759 /* 2760 * Ensure the selected rate matches the link quality 2761 * table entries being used. 2762 */ 2763 if (rate > 0x8f) 2764 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2765 else if (rate > 0x87) 2766 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2767 else 2768 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2769 } else { 2770 /* 2771 * Set the initial PLCP - fine for both 2772 * OFDM and CCK rates. 2773 */ 2774 plcp = rate2plcp(rate); 2775 2776 /* Set CCK flag if it's CCK */ 2777 2778 /* XXX It would be nice to have a method 2779 * to map the ridx -> phy table entry 2780 * so we could just query that, rather than 2781 * this hack to check against IWN_RIDX_OFDM6. 2782 */ 2783 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2784 rate & IEEE80211_RATE_VAL); 2785 if (ridx < IWN_RIDX_OFDM6 && 2786 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2787 plcp |= IWN_RFLAG_CCK; 2788 2789 /* Set antenna configuration */ 2790 /* XXX TODO: is this the right antenna to use for legacy? */ 2791 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2792 } 2793 2794 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2795 __func__, 2796 rate, 2797 plcp); 2798 2799 return (htole32(plcp)); 2800 } 2801 2802 static void 2803 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2804 { 2805 /* Doesn't do anything at the moment */ 2806 } 2807 2808 static int 2809 iwn_media_change(struct ifnet *ifp) 2810 { 2811 int error; 2812 2813 error = ieee80211_media_change(ifp); 2814 /* NB: only the fixed rate can change and that doesn't need a reset */ 2815 return (error == ENETRESET ? 0 : error); 2816 } 2817 2818 static int 2819 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2820 { 2821 struct iwn_vap *ivp = IWN_VAP(vap); 2822 struct ieee80211com *ic = vap->iv_ic; 2823 struct iwn_softc *sc = ic->ic_softc; 2824 int error = 0; 2825 2826 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2827 2828 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2829 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2830 2831 IEEE80211_UNLOCK(ic); 2832 IWN_LOCK(sc); 2833 callout_stop(&sc->calib_to); 2834 2835 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2836 2837 switch (nstate) { 2838 case IEEE80211_S_ASSOC: 2839 if (vap->iv_state != IEEE80211_S_RUN) 2840 break; 2841 /* FALLTHROUGH */ 2842 case IEEE80211_S_AUTH: 2843 if (vap->iv_state == IEEE80211_S_AUTH) 2844 break; 2845 2846 /* 2847 * !AUTH -> AUTH transition requires state reset to handle 2848 * reassociations correctly. 2849 */ 2850 sc->rxon->associd = 0; 2851 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2852 sc->calib.state = IWN_CALIB_STATE_INIT; 2853 2854 /* Wait until we hear a beacon before we transmit */ 2855 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2856 sc->sc_beacon_wait = 1; 2857 2858 if ((error = iwn_auth(sc, vap)) != 0) { 2859 device_printf(sc->sc_dev, 2860 "%s: could not move to auth state\n", __func__); 2861 } 2862 break; 2863 2864 case IEEE80211_S_RUN: 2865 /* 2866 * RUN -> RUN transition; Just restart the timers. 2867 */ 2868 if (vap->iv_state == IEEE80211_S_RUN) { 2869 sc->calib_cnt = 0; 2870 break; 2871 } 2872 2873 /* Wait until we hear a beacon before we transmit */ 2874 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2875 sc->sc_beacon_wait = 1; 2876 2877 /* 2878 * !RUN -> RUN requires setting the association id 2879 * which is done with a firmware cmd. We also defer 2880 * starting the timers until that work is done. 2881 */ 2882 if ((error = iwn_run(sc, vap)) != 0) { 2883 device_printf(sc->sc_dev, 2884 "%s: could not move to run state\n", __func__); 2885 } 2886 break; 2887 2888 case IEEE80211_S_INIT: 2889 sc->calib.state = IWN_CALIB_STATE_INIT; 2890 /* 2891 * Purge the xmit queue so we don't have old frames 2892 * during a new association attempt. 2893 */ 2894 sc->sc_beacon_wait = 0; 2895 iwn_xmit_queue_drain(sc); 2896 break; 2897 2898 default: 2899 break; 2900 } 2901 IWN_UNLOCK(sc); 2902 IEEE80211_LOCK(ic); 2903 if (error != 0){ 2904 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2905 return error; 2906 } 2907 2908 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2909 2910 return ivp->iv_newstate(vap, nstate, arg); 2911 } 2912 2913 static void 2914 iwn_calib_timeout(void *arg) 2915 { 2916 struct iwn_softc *sc = arg; 2917 2918 IWN_LOCK_ASSERT(sc); 2919 2920 /* Force automatic TX power calibration every 60 secs. */ 2921 if (++sc->calib_cnt >= 120) { 2922 uint32_t flags = 0; 2923 2924 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2925 "sending request for statistics"); 2926 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2927 sizeof flags, 1); 2928 sc->calib_cnt = 0; 2929 } 2930 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2931 sc); 2932 } 2933 2934 /* 2935 * Process an RX_PHY firmware notification. This is usually immediately 2936 * followed by an MPDU_RX_DONE notification. 2937 */ 2938 static void 2939 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2940 struct iwn_rx_data *data) 2941 { 2942 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2943 2944 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2945 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2946 2947 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2948 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2949 sc->last_rx_valid = 1; 2950 } 2951 2952 /* 2953 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2954 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2955 */ 2956 static void 2957 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2958 struct iwn_rx_data *data) 2959 { 2960 struct iwn_ops *ops = &sc->ops; 2961 struct ieee80211com *ic = &sc->sc_ic; 2962 struct iwn_rx_ring *ring = &sc->rxq; 2963 struct ieee80211_frame *wh; 2964 struct ieee80211_node *ni; 2965 struct mbuf *m, *m1; 2966 struct iwn_rx_stat *stat; 2967 caddr_t head; 2968 bus_addr_t paddr; 2969 uint32_t flags; 2970 int error, len, rssi, nf; 2971 2972 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2973 2974 if (desc->type == IWN_MPDU_RX_DONE) { 2975 /* Check for prior RX_PHY notification. */ 2976 if (!sc->last_rx_valid) { 2977 DPRINTF(sc, IWN_DEBUG_ANY, 2978 "%s: missing RX_PHY\n", __func__); 2979 return; 2980 } 2981 stat = &sc->last_rx_stat; 2982 } else 2983 stat = (struct iwn_rx_stat *)(desc + 1); 2984 2985 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2986 2987 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2988 device_printf(sc->sc_dev, 2989 "%s: invalid RX statistic header, len %d\n", __func__, 2990 stat->cfg_phy_len); 2991 return; 2992 } 2993 if (desc->type == IWN_MPDU_RX_DONE) { 2994 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2995 head = (caddr_t)(mpdu + 1); 2996 len = le16toh(mpdu->len); 2997 } else { 2998 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2999 len = le16toh(stat->len); 3000 } 3001 3002 flags = le32toh(*(uint32_t *)(head + len)); 3003 3004 /* Discard frames with a bad FCS early. */ 3005 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 3006 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 3007 __func__, flags); 3008 counter_u64_add(ic->ic_ierrors, 1); 3009 return; 3010 } 3011 /* Discard frames that are too short. */ 3012 if (len < sizeof (struct ieee80211_frame_ack)) { 3013 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3014 __func__, len); 3015 counter_u64_add(ic->ic_ierrors, 1); 3016 return; 3017 } 3018 3019 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3020 if (m1 == NULL) { 3021 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3022 __func__); 3023 counter_u64_add(ic->ic_ierrors, 1); 3024 return; 3025 } 3026 bus_dmamap_unload(ring->data_dmat, data->map); 3027 3028 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3029 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3030 if (error != 0 && error != EFBIG) { 3031 device_printf(sc->sc_dev, 3032 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3033 m_freem(m1); 3034 3035 /* Try to reload the old mbuf. */ 3036 error = bus_dmamap_load(ring->data_dmat, data->map, 3037 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3038 &paddr, BUS_DMA_NOWAIT); 3039 if (error != 0 && error != EFBIG) { 3040 panic("%s: could not load old RX mbuf", __func__); 3041 } 3042 /* Physical address may have changed. */ 3043 ring->desc[ring->cur] = htole32(paddr >> 8); 3044 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 3045 BUS_DMASYNC_PREWRITE); 3046 counter_u64_add(ic->ic_ierrors, 1); 3047 return; 3048 } 3049 3050 m = data->m; 3051 data->m = m1; 3052 /* Update RX descriptor. */ 3053 ring->desc[ring->cur] = htole32(paddr >> 8); 3054 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3055 BUS_DMASYNC_PREWRITE); 3056 3057 /* Finalize mbuf. */ 3058 m->m_data = head; 3059 m->m_pkthdr.len = m->m_len = len; 3060 3061 /* Grab a reference to the source node. */ 3062 wh = mtod(m, struct ieee80211_frame *); 3063 if (len >= sizeof(struct ieee80211_frame_min)) 3064 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3065 else 3066 ni = NULL; 3067 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3068 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3069 3070 rssi = ops->get_rssi(sc, stat); 3071 3072 if (ieee80211_radiotap_active(ic)) { 3073 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3074 3075 tap->wr_flags = 0; 3076 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3077 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3078 tap->wr_dbm_antsignal = (int8_t)rssi; 3079 tap->wr_dbm_antnoise = (int8_t)nf; 3080 tap->wr_tsft = stat->tstamp; 3081 switch (stat->rate) { 3082 /* CCK rates. */ 3083 case 10: tap->wr_rate = 2; break; 3084 case 20: tap->wr_rate = 4; break; 3085 case 55: tap->wr_rate = 11; break; 3086 case 110: tap->wr_rate = 22; break; 3087 /* OFDM rates. */ 3088 case 0xd: tap->wr_rate = 12; break; 3089 case 0xf: tap->wr_rate = 18; break; 3090 case 0x5: tap->wr_rate = 24; break; 3091 case 0x7: tap->wr_rate = 36; break; 3092 case 0x9: tap->wr_rate = 48; break; 3093 case 0xb: tap->wr_rate = 72; break; 3094 case 0x1: tap->wr_rate = 96; break; 3095 case 0x3: tap->wr_rate = 108; break; 3096 /* Unknown rate: should not happen. */ 3097 default: tap->wr_rate = 0; 3098 } 3099 } 3100 3101 /* 3102 * If it's a beacon and we're waiting, then do the 3103 * wakeup. This should unblock raw_xmit/start. 3104 */ 3105 if (sc->sc_beacon_wait) { 3106 uint8_t type, subtype; 3107 /* NB: Re-assign wh */ 3108 wh = mtod(m, struct ieee80211_frame *); 3109 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3110 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3111 /* 3112 * This assumes at this point we've received our own 3113 * beacon. 3114 */ 3115 DPRINTF(sc, IWN_DEBUG_TRACE, 3116 "%s: beacon_wait, type=%d, subtype=%d\n", 3117 __func__, type, subtype); 3118 if (type == IEEE80211_FC0_TYPE_MGT && 3119 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3120 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3121 "%s: waking things up\n", __func__); 3122 /* queue taskqueue to transmit! */ 3123 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3124 } 3125 } 3126 3127 IWN_UNLOCK(sc); 3128 3129 /* Send the frame to the 802.11 layer. */ 3130 if (ni != NULL) { 3131 if (ni->ni_flags & IEEE80211_NODE_HT) 3132 m->m_flags |= M_AMPDU; 3133 (void)ieee80211_input(ni, m, rssi - nf, nf); 3134 /* Node is no longer needed. */ 3135 ieee80211_free_node(ni); 3136 } else 3137 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3138 3139 IWN_LOCK(sc); 3140 3141 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3142 3143 } 3144 3145 /* Process an incoming Compressed BlockAck. */ 3146 static void 3147 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3148 struct iwn_rx_data *data) 3149 { 3150 struct iwn_ops *ops = &sc->ops; 3151 struct iwn_node *wn; 3152 struct ieee80211_node *ni; 3153 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3154 struct iwn_tx_ring *txq; 3155 struct iwn_tx_data *txdata; 3156 struct ieee80211_tx_ampdu *tap; 3157 struct mbuf *m; 3158 uint64_t bitmap; 3159 uint16_t ssn; 3160 uint8_t tid; 3161 int ackfailcnt = 0, i, lastidx, qid, *res, shift; 3162 int tx_ok = 0, tx_err = 0; 3163 3164 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__); 3165 3166 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3167 3168 qid = le16toh(ba->qid); 3169 txq = &sc->txq[ba->qid]; 3170 tap = sc->qid2tap[ba->qid]; 3171 tid = tap->txa_tid; 3172 wn = (void *)tap->txa_ni; 3173 3174 res = NULL; 3175 ssn = 0; 3176 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3177 res = tap->txa_private; 3178 ssn = tap->txa_start & 0xfff; 3179 } 3180 3181 for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) { 3182 txdata = &txq->data[txq->read]; 3183 3184 /* Unmap and free mbuf. */ 3185 bus_dmamap_sync(txq->data_dmat, txdata->map, 3186 BUS_DMASYNC_POSTWRITE); 3187 bus_dmamap_unload(txq->data_dmat, txdata->map); 3188 m = txdata->m, txdata->m = NULL; 3189 ni = txdata->ni, txdata->ni = NULL; 3190 3191 KASSERT(ni != NULL, ("no node")); 3192 KASSERT(m != NULL, ("no mbuf")); 3193 3194 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3195 ieee80211_tx_complete(ni, m, 1); 3196 3197 txq->queued--; 3198 txq->read = (txq->read + 1) % IWN_TX_RING_COUNT; 3199 } 3200 3201 if (txq->queued == 0 && res != NULL) { 3202 iwn_nic_lock(sc); 3203 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3204 iwn_nic_unlock(sc); 3205 sc->qid2tap[qid] = NULL; 3206 free(res, M_DEVBUF); 3207 return; 3208 } 3209 3210 if (wn->agg[tid].bitmap == 0) 3211 return; 3212 3213 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3214 if (shift < 0) 3215 shift += 0x100; 3216 3217 if (wn->agg[tid].nframes > (64 - shift)) 3218 return; 3219 3220 /* 3221 * Walk the bitmap and calculate how many successful and failed 3222 * attempts are made. 3223 * 3224 * Yes, the rate control code doesn't know these are A-MPDU 3225 * subframes and that it's okay to fail some of these. 3226 */ 3227 ni = tap->txa_ni; 3228 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 3229 for (i = 0; bitmap; i++) { 3230 if ((bitmap & 1) == 0) { 3231 tx_err ++; 3232 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3233 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3234 } else { 3235 tx_ok ++; 3236 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3237 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3238 } 3239 bitmap >>= 1; 3240 } 3241 3242 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3243 "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err); 3244 3245 } 3246 3247 /* 3248 * Process a CALIBRATION_RESULT notification sent by the initialization 3249 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3250 */ 3251 static void 3252 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3253 struct iwn_rx_data *data) 3254 { 3255 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3256 int len, idx = -1; 3257 3258 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3259 3260 /* Runtime firmware should not send such a notification. */ 3261 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3262 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n", 3263 __func__); 3264 return; 3265 } 3266 len = (le32toh(desc->len) & 0x3fff) - 4; 3267 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3268 3269 switch (calib->code) { 3270 case IWN5000_PHY_CALIB_DC: 3271 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3272 idx = 0; 3273 break; 3274 case IWN5000_PHY_CALIB_LO: 3275 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3276 idx = 1; 3277 break; 3278 case IWN5000_PHY_CALIB_TX_IQ: 3279 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3280 idx = 2; 3281 break; 3282 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3283 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3284 idx = 3; 3285 break; 3286 case IWN5000_PHY_CALIB_BASE_BAND: 3287 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3288 idx = 4; 3289 break; 3290 } 3291 if (idx == -1) /* Ignore other results. */ 3292 return; 3293 3294 /* Save calibration result. */ 3295 if (sc->calibcmd[idx].buf != NULL) 3296 free(sc->calibcmd[idx].buf, M_DEVBUF); 3297 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3298 if (sc->calibcmd[idx].buf == NULL) { 3299 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3300 "not enough memory for calibration result %d\n", 3301 calib->code); 3302 return; 3303 } 3304 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3305 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3306 sc->calibcmd[idx].len = len; 3307 memcpy(sc->calibcmd[idx].buf, calib, len); 3308 } 3309 3310 static void 3311 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3312 struct iwn_stats *stats, int len) 3313 { 3314 struct iwn_stats_bt *stats_bt; 3315 struct iwn_stats *lstats; 3316 3317 /* 3318 * First - check whether the length is the bluetooth or normal. 3319 * 3320 * If it's normal - just copy it and bump out. 3321 * Otherwise we have to convert things. 3322 */ 3323 3324 if (len == sizeof(struct iwn_stats) + 4) { 3325 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3326 sc->last_stat_valid = 1; 3327 return; 3328 } 3329 3330 /* 3331 * If it's not the bluetooth size - log, then just copy. 3332 */ 3333 if (len != sizeof(struct iwn_stats_bt) + 4) { 3334 DPRINTF(sc, IWN_DEBUG_STATS, 3335 "%s: size of rx statistics (%d) not an expected size!\n", 3336 __func__, 3337 len); 3338 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3339 sc->last_stat_valid = 1; 3340 return; 3341 } 3342 3343 /* 3344 * Ok. Time to copy. 3345 */ 3346 stats_bt = (struct iwn_stats_bt *) stats; 3347 lstats = &sc->last_stat; 3348 3349 /* flags */ 3350 lstats->flags = stats_bt->flags; 3351 /* rx_bt */ 3352 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3353 sizeof(struct iwn_rx_phy_stats)); 3354 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3355 sizeof(struct iwn_rx_phy_stats)); 3356 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3357 sizeof(struct iwn_rx_general_stats)); 3358 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3359 sizeof(struct iwn_rx_ht_phy_stats)); 3360 /* tx */ 3361 memcpy(&lstats->tx, &stats_bt->tx, 3362 sizeof(struct iwn_tx_stats)); 3363 /* general */ 3364 memcpy(&lstats->general, &stats_bt->general, 3365 sizeof(struct iwn_general_stats)); 3366 3367 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3368 sc->last_stat_valid = 1; 3369 } 3370 3371 /* 3372 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3373 * The latter is sent by the firmware after each received beacon. 3374 */ 3375 static void 3376 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3377 struct iwn_rx_data *data) 3378 { 3379 struct iwn_ops *ops = &sc->ops; 3380 struct ieee80211com *ic = &sc->sc_ic; 3381 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3382 struct iwn_calib_state *calib = &sc->calib; 3383 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3384 struct iwn_stats *lstats; 3385 int temp; 3386 3387 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3388 3389 /* Ignore statistics received during a scan. */ 3390 if (vap->iv_state != IEEE80211_S_RUN || 3391 (ic->ic_flags & IEEE80211_F_SCAN)){ 3392 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3393 __func__); 3394 return; 3395 } 3396 3397 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3398 3399 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3400 "%s: received statistics, cmd %d, len %d\n", 3401 __func__, desc->type, le16toh(desc->len)); 3402 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3403 3404 /* 3405 * Collect/track general statistics for reporting. 3406 * 3407 * This takes care of ensuring that the bluetooth sized message 3408 * will be correctly converted to the legacy sized message. 3409 */ 3410 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3411 3412 /* 3413 * And now, let's take a reference of it to use! 3414 */ 3415 lstats = &sc->last_stat; 3416 3417 /* Test if temperature has changed. */ 3418 if (lstats->general.temp != sc->rawtemp) { 3419 /* Convert "raw" temperature to degC. */ 3420 sc->rawtemp = stats->general.temp; 3421 temp = ops->get_temperature(sc); 3422 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3423 __func__, temp); 3424 3425 /* Update TX power if need be (4965AGN only). */ 3426 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3427 iwn4965_power_calibration(sc, temp); 3428 } 3429 3430 if (desc->type != IWN_BEACON_STATISTICS) 3431 return; /* Reply to a statistics request. */ 3432 3433 sc->noise = iwn_get_noise(&lstats->rx.general); 3434 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3435 3436 /* Test that RSSI and noise are present in stats report. */ 3437 if (le32toh(lstats->rx.general.flags) != 1) { 3438 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3439 "received statistics without RSSI"); 3440 return; 3441 } 3442 3443 if (calib->state == IWN_CALIB_STATE_ASSOC) 3444 iwn_collect_noise(sc, &lstats->rx.general); 3445 else if (calib->state == IWN_CALIB_STATE_RUN) { 3446 iwn_tune_sensitivity(sc, &lstats->rx); 3447 /* 3448 * XXX TODO: Only run the RX recovery if we're associated! 3449 */ 3450 iwn_check_rx_recovery(sc, lstats); 3451 iwn_save_stats_counters(sc, lstats); 3452 } 3453 3454 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3455 } 3456 3457 /* 3458 * Save the relevant statistic counters for the next calibration 3459 * pass. 3460 */ 3461 static void 3462 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3463 { 3464 struct iwn_calib_state *calib = &sc->calib; 3465 3466 /* Save counters values for next call. */ 3467 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3468 calib->fa_cck = le32toh(rs->rx.cck.fa); 3469 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3470 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3471 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3472 3473 /* Last time we received these tick values */ 3474 sc->last_calib_ticks = ticks; 3475 } 3476 3477 /* 3478 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3479 * and 5000 adapters have different incompatible TX status formats. 3480 */ 3481 static void 3482 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3483 struct iwn_rx_data *data) 3484 { 3485 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3486 struct iwn_tx_ring *ring; 3487 int qid; 3488 3489 qid = desc->qid & 0xf; 3490 ring = &sc->txq[qid]; 3491 3492 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3493 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3494 __func__, desc->qid, desc->idx, 3495 stat->rtsfailcnt, 3496 stat->ackfailcnt, 3497 stat->btkillcnt, 3498 stat->rate, le16toh(stat->duration), 3499 le32toh(stat->status)); 3500 3501 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3502 if (qid >= sc->firstaggqueue) { 3503 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3504 stat->ackfailcnt, &stat->status); 3505 } else { 3506 iwn_tx_done(sc, desc, stat->ackfailcnt, 3507 le32toh(stat->status) & 0xff); 3508 } 3509 } 3510 3511 static void 3512 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3513 struct iwn_rx_data *data) 3514 { 3515 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3516 struct iwn_tx_ring *ring; 3517 int qid; 3518 3519 qid = desc->qid & 0xf; 3520 ring = &sc->txq[qid]; 3521 3522 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3523 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3524 __func__, desc->qid, desc->idx, 3525 stat->rtsfailcnt, 3526 stat->ackfailcnt, 3527 stat->btkillcnt, 3528 stat->rate, le16toh(stat->duration), 3529 le32toh(stat->status)); 3530 3531 #ifdef notyet 3532 /* Reset TX scheduler slot. */ 3533 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 3534 #endif 3535 3536 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3537 if (qid >= sc->firstaggqueue) { 3538 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3539 stat->ackfailcnt, &stat->status); 3540 } else { 3541 iwn_tx_done(sc, desc, stat->ackfailcnt, 3542 le16toh(stat->status) & 0xff); 3543 } 3544 } 3545 3546 /* 3547 * Adapter-independent backend for TX_DONE firmware notifications. 3548 */ 3549 static void 3550 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 3551 uint8_t status) 3552 { 3553 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 3554 struct iwn_tx_data *data = &ring->data[desc->idx]; 3555 struct mbuf *m; 3556 struct ieee80211_node *ni; 3557 struct ieee80211vap *vap; 3558 3559 KASSERT(data->ni != NULL, ("no node")); 3560 3561 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3562 3563 /* Unmap and free mbuf. */ 3564 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3565 bus_dmamap_unload(ring->data_dmat, data->map); 3566 m = data->m, data->m = NULL; 3567 ni = data->ni, data->ni = NULL; 3568 vap = ni->ni_vap; 3569 3570 /* 3571 * Update rate control statistics for the node. 3572 */ 3573 if (status & IWN_TX_FAIL) 3574 ieee80211_ratectl_tx_complete(vap, ni, 3575 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3576 else 3577 ieee80211_ratectl_tx_complete(vap, ni, 3578 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3579 3580 /* 3581 * Channels marked for "radar" require traffic to be received 3582 * to unlock before we can transmit. Until traffic is seen 3583 * any attempt to transmit is returned immediately with status 3584 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3585 * happen on first authenticate after scanning. To workaround 3586 * this we ignore a failure of this sort in AUTH state so the 3587 * 802.11 layer will fall back to using a timeout to wait for 3588 * the AUTH reply. This allows the firmware time to see 3589 * traffic so a subsequent retry of AUTH succeeds. It's 3590 * unclear why the firmware does not maintain state for 3591 * channels recently visited as this would allow immediate 3592 * use of the channel after a scan (where we see traffic). 3593 */ 3594 if (status == IWN_TX_FAIL_TX_LOCKED && 3595 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3596 ieee80211_tx_complete(ni, m, 0); 3597 else 3598 ieee80211_tx_complete(ni, m, 3599 (status & IWN_TX_FAIL) != 0); 3600 3601 sc->sc_tx_timer = 0; 3602 if (--ring->queued < IWN_TX_RING_LOMARK) 3603 sc->qfullmsk &= ~(1 << ring->qid); 3604 3605 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3606 } 3607 3608 /* 3609 * Process a "command done" firmware notification. This is where we wakeup 3610 * processes waiting for a synchronous command completion. 3611 */ 3612 static void 3613 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3614 { 3615 struct iwn_tx_ring *ring; 3616 struct iwn_tx_data *data; 3617 int cmd_queue_num; 3618 3619 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3620 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3621 else 3622 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3623 3624 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3625 return; /* Not a command ack. */ 3626 3627 ring = &sc->txq[cmd_queue_num]; 3628 data = &ring->data[desc->idx]; 3629 3630 /* If the command was mapped in an mbuf, free it. */ 3631 if (data->m != NULL) { 3632 bus_dmamap_sync(ring->data_dmat, data->map, 3633 BUS_DMASYNC_POSTWRITE); 3634 bus_dmamap_unload(ring->data_dmat, data->map); 3635 m_freem(data->m); 3636 data->m = NULL; 3637 } 3638 wakeup(&ring->desc[desc->idx]); 3639 } 3640 3641 static void 3642 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 3643 int ackfailcnt, void *stat) 3644 { 3645 struct iwn_ops *ops = &sc->ops; 3646 struct iwn_tx_ring *ring = &sc->txq[qid]; 3647 struct iwn_tx_data *data; 3648 struct mbuf *m; 3649 struct iwn_node *wn; 3650 struct ieee80211_node *ni; 3651 struct ieee80211_tx_ampdu *tap; 3652 uint64_t bitmap; 3653 uint32_t *status = stat; 3654 uint16_t *aggstatus = stat; 3655 uint16_t ssn; 3656 uint8_t tid; 3657 int bit, i, lastidx, *res, seqno, shift, start; 3658 3659 /* XXX TODO: status is le16 field! Grr */ 3660 3661 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3662 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n", 3663 __func__, 3664 nframes, 3665 *status); 3666 3667 tap = sc->qid2tap[qid]; 3668 tid = tap->txa_tid; 3669 wn = (void *)tap->txa_ni; 3670 ni = tap->txa_ni; 3671 3672 /* 3673 * XXX TODO: ACK and RTS failures would be nice here! 3674 */ 3675 3676 /* 3677 * A-MPDU single frame status - if we failed to transmit it 3678 * in A-MPDU, then it may be a permanent failure. 3679 * 3680 * XXX TODO: check what the Linux iwlwifi driver does here; 3681 * there's some permanent and temporary failures that may be 3682 * handled differently. 3683 */ 3684 if (nframes == 1) { 3685 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) { 3686 #ifdef NOT_YET 3687 printf("ieee80211_send_bar()\n"); 3688 #endif 3689 /* 3690 * If we completely fail a transmit, make sure a 3691 * notification is pushed up to the rate control 3692 * layer. 3693 */ 3694 ieee80211_ratectl_tx_complete(ni->ni_vap, 3695 ni, 3696 IEEE80211_RATECTL_TX_FAILURE, 3697 &ackfailcnt, 3698 NULL); 3699 } else { 3700 /* 3701 * If nframes=1, then we won't be getting a BA for 3702 * this frame. Ensure that we correctly update the 3703 * rate control code with how many retries were 3704 * needed to send it. 3705 */ 3706 ieee80211_ratectl_tx_complete(ni->ni_vap, 3707 ni, 3708 IEEE80211_RATECTL_TX_SUCCESS, 3709 &ackfailcnt, 3710 NULL); 3711 } 3712 } 3713 3714 bitmap = 0; 3715 start = idx; 3716 for (i = 0; i < nframes; i++) { 3717 if (le16toh(aggstatus[i * 2]) & 0xc) 3718 continue; 3719 3720 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 3721 bit = idx - start; 3722 shift = 0; 3723 if (bit >= 64) { 3724 shift = 0x100 - idx + start; 3725 bit = 0; 3726 start = idx; 3727 } else if (bit <= -64) 3728 bit = 0x100 - start + idx; 3729 else if (bit < 0) { 3730 shift = start - idx; 3731 start = idx; 3732 bit = 0; 3733 } 3734 bitmap = bitmap << shift; 3735 bitmap |= 1ULL << bit; 3736 } 3737 tap = sc->qid2tap[qid]; 3738 tid = tap->txa_tid; 3739 wn = (void *)tap->txa_ni; 3740 wn->agg[tid].bitmap = bitmap; 3741 wn->agg[tid].startidx = start; 3742 wn->agg[tid].nframes = nframes; 3743 3744 res = NULL; 3745 ssn = 0; 3746 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3747 res = tap->txa_private; 3748 ssn = tap->txa_start & 0xfff; 3749 } 3750 3751 /* This is going nframes DWORDS into the descriptor? */ 3752 seqno = le32toh(*(status + nframes)) & 0xfff; 3753 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 3754 data = &ring->data[ring->read]; 3755 3756 /* Unmap and free mbuf. */ 3757 bus_dmamap_sync(ring->data_dmat, data->map, 3758 BUS_DMASYNC_POSTWRITE); 3759 bus_dmamap_unload(ring->data_dmat, data->map); 3760 m = data->m, data->m = NULL; 3761 ni = data->ni, data->ni = NULL; 3762 3763 KASSERT(ni != NULL, ("no node")); 3764 KASSERT(m != NULL, ("no mbuf")); 3765 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3766 ieee80211_tx_complete(ni, m, 1); 3767 3768 ring->queued--; 3769 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 3770 } 3771 3772 if (ring->queued == 0 && res != NULL) { 3773 iwn_nic_lock(sc); 3774 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3775 iwn_nic_unlock(sc); 3776 sc->qid2tap[qid] = NULL; 3777 free(res, M_DEVBUF); 3778 return; 3779 } 3780 3781 sc->sc_tx_timer = 0; 3782 if (ring->queued < IWN_TX_RING_LOMARK) 3783 sc->qfullmsk &= ~(1 << ring->qid); 3784 3785 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3786 } 3787 3788 /* 3789 * Process an INT_FH_RX or INT_SW_RX interrupt. 3790 */ 3791 static void 3792 iwn_notif_intr(struct iwn_softc *sc) 3793 { 3794 struct iwn_ops *ops = &sc->ops; 3795 struct ieee80211com *ic = &sc->sc_ic; 3796 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3797 uint16_t hw; 3798 3799 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3800 BUS_DMASYNC_POSTREAD); 3801 3802 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3803 while (sc->rxq.cur != hw) { 3804 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3805 struct iwn_rx_desc *desc; 3806 3807 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3808 BUS_DMASYNC_POSTREAD); 3809 desc = mtod(data->m, struct iwn_rx_desc *); 3810 3811 DPRINTF(sc, IWN_DEBUG_RECV, 3812 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 3813 __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags, 3814 desc->type, iwn_intr_str(desc->type), 3815 le16toh(desc->len)); 3816 3817 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 3818 iwn_cmd_done(sc, desc); 3819 3820 switch (desc->type) { 3821 case IWN_RX_PHY: 3822 iwn_rx_phy(sc, desc, data); 3823 break; 3824 3825 case IWN_RX_DONE: /* 4965AGN only. */ 3826 case IWN_MPDU_RX_DONE: 3827 /* An 802.11 frame has been received. */ 3828 iwn_rx_done(sc, desc, data); 3829 break; 3830 3831 case IWN_RX_COMPRESSED_BA: 3832 /* A Compressed BlockAck has been received. */ 3833 iwn_rx_compressed_ba(sc, desc, data); 3834 break; 3835 3836 case IWN_TX_DONE: 3837 /* An 802.11 frame has been transmitted. */ 3838 ops->tx_done(sc, desc, data); 3839 break; 3840 3841 case IWN_RX_STATISTICS: 3842 case IWN_BEACON_STATISTICS: 3843 iwn_rx_statistics(sc, desc, data); 3844 break; 3845 3846 case IWN_BEACON_MISSED: 3847 { 3848 struct iwn_beacon_missed *miss = 3849 (struct iwn_beacon_missed *)(desc + 1); 3850 int misses; 3851 3852 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3853 BUS_DMASYNC_POSTREAD); 3854 misses = le32toh(miss->consecutive); 3855 3856 DPRINTF(sc, IWN_DEBUG_STATE, 3857 "%s: beacons missed %d/%d\n", __func__, 3858 misses, le32toh(miss->total)); 3859 /* 3860 * If more than 5 consecutive beacons are missed, 3861 * reinitialize the sensitivity state machine. 3862 */ 3863 if (vap->iv_state == IEEE80211_S_RUN && 3864 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3865 if (misses > 5) 3866 (void)iwn_init_sensitivity(sc); 3867 if (misses >= vap->iv_bmissthreshold) { 3868 IWN_UNLOCK(sc); 3869 ieee80211_beacon_miss(ic); 3870 IWN_LOCK(sc); 3871 } 3872 } 3873 break; 3874 } 3875 case IWN_UC_READY: 3876 { 3877 struct iwn_ucode_info *uc = 3878 (struct iwn_ucode_info *)(desc + 1); 3879 3880 /* The microcontroller is ready. */ 3881 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3882 BUS_DMASYNC_POSTREAD); 3883 DPRINTF(sc, IWN_DEBUG_RESET, 3884 "microcode alive notification version=%d.%d " 3885 "subtype=%x alive=%x\n", uc->major, uc->minor, 3886 uc->subtype, le32toh(uc->valid)); 3887 3888 if (le32toh(uc->valid) != 1) { 3889 device_printf(sc->sc_dev, 3890 "microcontroller initialization failed"); 3891 break; 3892 } 3893 if (uc->subtype == IWN_UCODE_INIT) { 3894 /* Save microcontroller report. */ 3895 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3896 } 3897 /* Save the address of the error log in SRAM. */ 3898 sc->errptr = le32toh(uc->errptr); 3899 break; 3900 } 3901 case IWN_STATE_CHANGED: 3902 { 3903 /* 3904 * State change allows hardware switch change to be 3905 * noted. However, we handle this in iwn_intr as we 3906 * get both the enable/disble intr. 3907 */ 3908 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3909 BUS_DMASYNC_POSTREAD); 3910 #ifdef IWN_DEBUG 3911 uint32_t *status = (uint32_t *)(desc + 1); 3912 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 3913 "state changed to %x\n", 3914 le32toh(*status)); 3915 #endif 3916 break; 3917 } 3918 case IWN_START_SCAN: 3919 { 3920 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3921 BUS_DMASYNC_POSTREAD); 3922 #ifdef IWN_DEBUG 3923 struct iwn_start_scan *scan = 3924 (struct iwn_start_scan *)(desc + 1); 3925 DPRINTF(sc, IWN_DEBUG_ANY, 3926 "%s: scanning channel %d status %x\n", 3927 __func__, scan->chan, le32toh(scan->status)); 3928 #endif 3929 break; 3930 } 3931 case IWN_STOP_SCAN: 3932 { 3933 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3934 BUS_DMASYNC_POSTREAD); 3935 #ifdef IWN_DEBUG 3936 struct iwn_stop_scan *scan = 3937 (struct iwn_stop_scan *)(desc + 1); 3938 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 3939 "scan finished nchan=%d status=%d chan=%d\n", 3940 scan->nchan, scan->status, scan->chan); 3941 #endif 3942 sc->sc_is_scanning = 0; 3943 callout_stop(&sc->scan_timeout); 3944 IWN_UNLOCK(sc); 3945 ieee80211_scan_next(vap); 3946 IWN_LOCK(sc); 3947 break; 3948 } 3949 case IWN5000_CALIBRATION_RESULT: 3950 iwn5000_rx_calib_results(sc, desc, data); 3951 break; 3952 3953 case IWN5000_CALIBRATION_DONE: 3954 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3955 wakeup(sc); 3956 break; 3957 } 3958 3959 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3960 } 3961 3962 /* Tell the firmware what we have processed. */ 3963 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3964 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3965 } 3966 3967 /* 3968 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3969 * from power-down sleep mode. 3970 */ 3971 static void 3972 iwn_wakeup_intr(struct iwn_softc *sc) 3973 { 3974 int qid; 3975 3976 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 3977 __func__); 3978 3979 /* Wakeup RX and TX rings. */ 3980 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3981 for (qid = 0; qid < sc->ntxqs; qid++) { 3982 struct iwn_tx_ring *ring = &sc->txq[qid]; 3983 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3984 } 3985 } 3986 3987 static void 3988 iwn_rftoggle_intr(struct iwn_softc *sc) 3989 { 3990 struct ieee80211com *ic = &sc->sc_ic; 3991 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 3992 3993 IWN_LOCK_ASSERT(sc); 3994 3995 device_printf(sc->sc_dev, "RF switch: radio %s\n", 3996 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3997 if (tmp & IWN_GP_CNTRL_RFKILL) 3998 ieee80211_runtask(ic, &sc->sc_radioon_task); 3999 else 4000 ieee80211_runtask(ic, &sc->sc_radiooff_task); 4001 } 4002 4003 /* 4004 * Dump the error log of the firmware when a firmware panic occurs. Although 4005 * we can't debug the firmware because it is neither open source nor free, it 4006 * can help us to identify certain classes of problems. 4007 */ 4008 static void 4009 iwn_fatal_intr(struct iwn_softc *sc) 4010 { 4011 struct iwn_fw_dump dump; 4012 int i; 4013 4014 IWN_LOCK_ASSERT(sc); 4015 4016 /* Force a complete recalibration on next init. */ 4017 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4018 4019 /* Check that the error log address is valid. */ 4020 if (sc->errptr < IWN_FW_DATA_BASE || 4021 sc->errptr + sizeof (dump) > 4022 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4023 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4024 sc->errptr); 4025 return; 4026 } 4027 if (iwn_nic_lock(sc) != 0) { 4028 printf("%s: could not read firmware error log\n", __func__); 4029 return; 4030 } 4031 /* Read firmware error log from SRAM. */ 4032 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4033 sizeof (dump) / sizeof (uint32_t)); 4034 iwn_nic_unlock(sc); 4035 4036 if (dump.valid == 0) { 4037 printf("%s: firmware error log is empty\n", __func__); 4038 return; 4039 } 4040 printf("firmware error log:\n"); 4041 printf(" error type = \"%s\" (0x%08X)\n", 4042 (dump.id < nitems(iwn_fw_errmsg)) ? 4043 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4044 dump.id); 4045 printf(" program counter = 0x%08X\n", dump.pc); 4046 printf(" source line = 0x%08X\n", dump.src_line); 4047 printf(" error data = 0x%08X%08X\n", 4048 dump.error_data[0], dump.error_data[1]); 4049 printf(" branch link = 0x%08X%08X\n", 4050 dump.branch_link[0], dump.branch_link[1]); 4051 printf(" interrupt link = 0x%08X%08X\n", 4052 dump.interrupt_link[0], dump.interrupt_link[1]); 4053 printf(" time = %u\n", dump.time[0]); 4054 4055 /* Dump driver status (TX and RX rings) while we're here. */ 4056 printf("driver status:\n"); 4057 for (i = 0; i < sc->ntxqs; i++) { 4058 struct iwn_tx_ring *ring = &sc->txq[i]; 4059 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4060 i, ring->qid, ring->cur, ring->queued); 4061 } 4062 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4063 } 4064 4065 static void 4066 iwn_intr(void *arg) 4067 { 4068 struct iwn_softc *sc = arg; 4069 uint32_t r1, r2, tmp; 4070 4071 IWN_LOCK(sc); 4072 4073 /* Disable interrupts. */ 4074 IWN_WRITE(sc, IWN_INT_MASK, 0); 4075 4076 /* Read interrupts from ICT (fast) or from registers (slow). */ 4077 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4078 tmp = 0; 4079 while (sc->ict[sc->ict_cur] != 0) { 4080 tmp |= sc->ict[sc->ict_cur]; 4081 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4082 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4083 } 4084 tmp = le32toh(tmp); 4085 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4086 tmp = 0; 4087 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4088 tmp |= 0x8000; 4089 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4090 r2 = 0; /* Unused. */ 4091 } else { 4092 r1 = IWN_READ(sc, IWN_INT); 4093 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4094 IWN_UNLOCK(sc); 4095 return; /* Hardware gone! */ 4096 } 4097 r2 = IWN_READ(sc, IWN_FH_INT); 4098 } 4099 4100 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4101 , r1, r2); 4102 4103 if (r1 == 0 && r2 == 0) 4104 goto done; /* Interrupt not for us. */ 4105 4106 /* Acknowledge interrupts. */ 4107 IWN_WRITE(sc, IWN_INT, r1); 4108 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4109 IWN_WRITE(sc, IWN_FH_INT, r2); 4110 4111 if (r1 & IWN_INT_RF_TOGGLED) { 4112 iwn_rftoggle_intr(sc); 4113 goto done; 4114 } 4115 if (r1 & IWN_INT_CT_REACHED) { 4116 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4117 __func__); 4118 } 4119 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4120 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4121 __func__); 4122 #ifdef IWN_DEBUG 4123 iwn_debug_register(sc); 4124 #endif 4125 /* Dump firmware error log and stop. */ 4126 iwn_fatal_intr(sc); 4127 4128 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4129 goto done; 4130 } 4131 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4132 (r2 & IWN_FH_INT_RX)) { 4133 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4134 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4135 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4136 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4137 IWN_INT_PERIODIC_DIS); 4138 iwn_notif_intr(sc); 4139 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4140 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4141 IWN_INT_PERIODIC_ENA); 4142 } 4143 } else 4144 iwn_notif_intr(sc); 4145 } 4146 4147 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4148 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4149 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4150 wakeup(sc); /* FH DMA transfer completed. */ 4151 } 4152 4153 if (r1 & IWN_INT_ALIVE) 4154 wakeup(sc); /* Firmware is alive. */ 4155 4156 if (r1 & IWN_INT_WAKEUP) 4157 iwn_wakeup_intr(sc); 4158 4159 done: 4160 /* Re-enable interrupts. */ 4161 if (sc->sc_flags & IWN_FLAG_RUNNING) 4162 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4163 4164 IWN_UNLOCK(sc); 4165 } 4166 4167 /* 4168 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4169 * 5000 adapters use a slightly different format). 4170 */ 4171 static void 4172 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4173 uint16_t len) 4174 { 4175 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4176 4177 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4178 4179 *w = htole16(len + 8); 4180 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4181 BUS_DMASYNC_PREWRITE); 4182 if (idx < IWN_SCHED_WINSZ) { 4183 *(w + IWN_TX_RING_COUNT) = *w; 4184 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4185 BUS_DMASYNC_PREWRITE); 4186 } 4187 } 4188 4189 static void 4190 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4191 uint16_t len) 4192 { 4193 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4194 4195 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4196 4197 *w = htole16(id << 12 | (len + 8)); 4198 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4199 BUS_DMASYNC_PREWRITE); 4200 if (idx < IWN_SCHED_WINSZ) { 4201 *(w + IWN_TX_RING_COUNT) = *w; 4202 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4203 BUS_DMASYNC_PREWRITE); 4204 } 4205 } 4206 4207 #ifdef notyet 4208 static void 4209 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4210 { 4211 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4212 4213 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4214 4215 *w = (*w & htole16(0xf000)) | htole16(1); 4216 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4217 BUS_DMASYNC_PREWRITE); 4218 if (idx < IWN_SCHED_WINSZ) { 4219 *(w + IWN_TX_RING_COUNT) = *w; 4220 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4221 BUS_DMASYNC_PREWRITE); 4222 } 4223 } 4224 #endif 4225 4226 /* 4227 * Check whether OFDM 11g protection will be enabled for the given rate. 4228 * 4229 * The original driver code only enabled protection for OFDM rates. 4230 * It didn't check to see whether it was operating in 11a or 11bg mode. 4231 */ 4232 static int 4233 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4234 struct ieee80211vap *vap, uint8_t rate) 4235 { 4236 struct ieee80211com *ic = vap->iv_ic; 4237 4238 /* 4239 * Not in 2GHz mode? Then there's no need to enable OFDM 4240 * 11bg protection. 4241 */ 4242 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4243 return (0); 4244 } 4245 4246 /* 4247 * 11bg protection not enabled? Then don't use it. 4248 */ 4249 if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) 4250 return (0); 4251 4252 /* 4253 * If it's an 11n rate - no protection. 4254 * We'll do it via a specific 11n check. 4255 */ 4256 if (rate & IEEE80211_RATE_MCS) { 4257 return (0); 4258 } 4259 4260 /* 4261 * Do a rate table lookup. If the PHY is CCK, 4262 * don't do protection. 4263 */ 4264 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4265 return (0); 4266 4267 /* 4268 * Yup, enable protection. 4269 */ 4270 return (1); 4271 } 4272 4273 /* 4274 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4275 * the link quality table that reflects this particular entry. 4276 */ 4277 static int 4278 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4279 uint8_t rate) 4280 { 4281 struct ieee80211_rateset *rs; 4282 int is_11n; 4283 int nr; 4284 int i; 4285 uint8_t cmp_rate; 4286 4287 /* 4288 * Figure out if we're using 11n or not here. 4289 */ 4290 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4291 is_11n = 1; 4292 else 4293 is_11n = 0; 4294 4295 /* 4296 * Use the correct rate table. 4297 */ 4298 if (is_11n) { 4299 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4300 nr = ni->ni_htrates.rs_nrates; 4301 } else { 4302 rs = &ni->ni_rates; 4303 nr = rs->rs_nrates; 4304 } 4305 4306 /* 4307 * Find the relevant link quality entry in the table. 4308 */ 4309 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4310 /* 4311 * The link quality table index starts at 0 == highest 4312 * rate, so we walk the rate table backwards. 4313 */ 4314 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4315 if (rate & IEEE80211_RATE_MCS) 4316 cmp_rate |= IEEE80211_RATE_MCS; 4317 4318 #if 0 4319 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4320 __func__, 4321 i, 4322 nr, 4323 rate, 4324 cmp_rate); 4325 #endif 4326 4327 if (cmp_rate == rate) 4328 return (i); 4329 } 4330 4331 /* Failed? Start at the end */ 4332 return (IWN_MAX_TX_RETRIES - 1); 4333 } 4334 4335 static int 4336 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4337 { 4338 struct iwn_ops *ops = &sc->ops; 4339 const struct ieee80211_txparam *tp; 4340 struct ieee80211vap *vap = ni->ni_vap; 4341 struct ieee80211com *ic = ni->ni_ic; 4342 struct iwn_node *wn = (void *)ni; 4343 struct iwn_tx_ring *ring; 4344 struct iwn_tx_desc *desc; 4345 struct iwn_tx_data *data; 4346 struct iwn_tx_cmd *cmd; 4347 struct iwn_cmd_data *tx; 4348 struct ieee80211_frame *wh; 4349 struct ieee80211_key *k = NULL; 4350 struct mbuf *m1; 4351 uint32_t flags; 4352 uint16_t qos; 4353 u_int hdrlen; 4354 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4355 uint8_t tid, type; 4356 int ac, i, totlen, error, pad, nsegs = 0, rate; 4357 4358 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4359 4360 IWN_LOCK_ASSERT(sc); 4361 4362 wh = mtod(m, struct ieee80211_frame *); 4363 hdrlen = ieee80211_anyhdrsize(wh); 4364 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4365 4366 /* Select EDCA Access Category and TX ring for this frame. */ 4367 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4368 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4369 tid = qos & IEEE80211_QOS_TID; 4370 } else { 4371 qos = 0; 4372 tid = 0; 4373 } 4374 ac = M_WME_GETAC(m); 4375 if (m->m_flags & M_AMPDU_MPDU) { 4376 uint16_t seqno; 4377 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4378 4379 if (!IEEE80211_AMPDU_RUNNING(tap)) { 4380 return EINVAL; 4381 } 4382 4383 /* 4384 * Queue this frame to the hardware ring that we've 4385 * negotiated AMPDU TX on. 4386 * 4387 * Note that the sequence number must match the TX slot 4388 * being used! 4389 */ 4390 ac = *(int *)tap->txa_private; 4391 seqno = ni->ni_txseqs[tid]; 4392 *(uint16_t *)wh->i_seq = 4393 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4394 ring = &sc->txq[ac]; 4395 if ((seqno % 256) != ring->cur) { 4396 device_printf(sc->sc_dev, 4397 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4398 __func__, 4399 m, 4400 seqno, 4401 seqno % 256, 4402 ring->cur); 4403 } 4404 ni->ni_txseqs[tid]++; 4405 } 4406 ring = &sc->txq[ac]; 4407 desc = &ring->desc[ring->cur]; 4408 data = &ring->data[ring->cur]; 4409 4410 /* Choose a TX rate index. */ 4411 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 4412 if (type == IEEE80211_FC0_TYPE_MGT) 4413 rate = tp->mgmtrate; 4414 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4415 rate = tp->mcastrate; 4416 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4417 rate = tp->ucastrate; 4418 else if (m->m_flags & M_EAPOL) 4419 rate = tp->mgmtrate; 4420 else { 4421 /* XXX pass pktlen */ 4422 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4423 rate = ni->ni_txrate; 4424 } 4425 4426 /* Encrypt the frame if need be. */ 4427 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4428 /* Retrieve key for TX. */ 4429 k = ieee80211_crypto_encap(ni, m); 4430 if (k == NULL) { 4431 return ENOBUFS; 4432 } 4433 /* 802.11 header may have moved. */ 4434 wh = mtod(m, struct ieee80211_frame *); 4435 } 4436 totlen = m->m_pkthdr.len; 4437 4438 if (ieee80211_radiotap_active_vap(vap)) { 4439 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4440 4441 tap->wt_flags = 0; 4442 tap->wt_rate = rate; 4443 if (k != NULL) 4444 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4445 4446 ieee80211_radiotap_tx(vap, m); 4447 } 4448 4449 /* Prepare TX firmware command. */ 4450 cmd = &ring->cmd[ring->cur]; 4451 cmd->code = IWN_CMD_TX_DATA; 4452 cmd->flags = 0; 4453 cmd->qid = ring->qid; 4454 cmd->idx = ring->cur; 4455 4456 tx = (struct iwn_cmd_data *)cmd->data; 4457 /* NB: No need to clear tx, all fields are reinitialized here. */ 4458 tx->scratch = 0; /* clear "scratch" area */ 4459 4460 flags = 0; 4461 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4462 /* Unicast frame, check if an ACK is expected. */ 4463 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4464 IEEE80211_QOS_ACKPOLICY_NOACK) 4465 flags |= IWN_TX_NEED_ACK; 4466 } 4467 if ((wh->i_fc[0] & 4468 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4469 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4470 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4471 4472 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4473 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4474 4475 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4476 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4477 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4478 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4479 flags |= IWN_TX_NEED_RTS; 4480 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4481 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4482 flags |= IWN_TX_NEED_CTS; 4483 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4484 flags |= IWN_TX_NEED_RTS; 4485 } else if ((rate & IEEE80211_RATE_MCS) && 4486 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4487 flags |= IWN_TX_NEED_RTS; 4488 } 4489 4490 /* XXX HT protection? */ 4491 4492 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4493 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4494 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4495 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4496 flags |= IWN_TX_NEED_PROTECTION; 4497 } else 4498 flags |= IWN_TX_FULL_TXOP; 4499 } 4500 } 4501 4502 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4503 type != IEEE80211_FC0_TYPE_DATA) 4504 tx->id = sc->broadcast_id; 4505 else 4506 tx->id = wn->id; 4507 4508 if (type == IEEE80211_FC0_TYPE_MGT) { 4509 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4510 4511 /* Tell HW to set timestamp in probe responses. */ 4512 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4513 flags |= IWN_TX_INSERT_TSTAMP; 4514 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4515 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4516 tx->timeout = htole16(3); 4517 else 4518 tx->timeout = htole16(2); 4519 } else 4520 tx->timeout = htole16(0); 4521 4522 if (hdrlen & 3) { 4523 /* First segment length must be a multiple of 4. */ 4524 flags |= IWN_TX_NEED_PADDING; 4525 pad = 4 - (hdrlen & 3); 4526 } else 4527 pad = 0; 4528 4529 tx->len = htole16(totlen); 4530 tx->tid = tid; 4531 tx->rts_ntries = 60; 4532 tx->data_ntries = 15; 4533 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4534 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4535 if (tx->id == sc->broadcast_id) { 4536 /* Group or management frame. */ 4537 tx->linkq = 0; 4538 } else { 4539 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4540 flags |= IWN_TX_LINKQ; /* enable MRR */ 4541 } 4542 4543 /* Set physical address of "scratch area". */ 4544 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4545 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4546 4547 /* Copy 802.11 header in TX command. */ 4548 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4549 4550 /* Trim 802.11 header. */ 4551 m_adj(m, hdrlen); 4552 tx->security = 0; 4553 tx->flags = htole32(flags); 4554 4555 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4556 &nsegs, BUS_DMA_NOWAIT); 4557 if (error != 0) { 4558 if (error != EFBIG) { 4559 device_printf(sc->sc_dev, 4560 "%s: can't map mbuf (error %d)\n", __func__, error); 4561 return error; 4562 } 4563 /* Too many DMA segments, linearize mbuf. */ 4564 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4565 if (m1 == NULL) { 4566 device_printf(sc->sc_dev, 4567 "%s: could not defrag mbuf\n", __func__); 4568 return ENOBUFS; 4569 } 4570 m = m1; 4571 4572 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4573 segs, &nsegs, BUS_DMA_NOWAIT); 4574 if (error != 0) { 4575 device_printf(sc->sc_dev, 4576 "%s: can't map mbuf (error %d)\n", __func__, error); 4577 return error; 4578 } 4579 } 4580 4581 data->m = m; 4582 data->ni = ni; 4583 4584 DPRINTF(sc, IWN_DEBUG_XMIT, 4585 "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n", 4586 __func__, 4587 ring->qid, 4588 ring->cur, 4589 m->m_pkthdr.len, 4590 nsegs, 4591 flags, 4592 rate, 4593 tx->rate); 4594 4595 /* Fill TX descriptor. */ 4596 desc->nsegs = 1; 4597 if (m->m_len != 0) 4598 desc->nsegs += nsegs; 4599 /* First DMA segment is used by the TX command. */ 4600 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4601 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4602 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4603 /* Other DMA segments are for data payload. */ 4604 seg = &segs[0]; 4605 for (i = 1; i <= nsegs; i++) { 4606 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4607 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4608 seg->ds_len << 4); 4609 seg++; 4610 } 4611 4612 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4613 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4614 BUS_DMASYNC_PREWRITE); 4615 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4616 BUS_DMASYNC_PREWRITE); 4617 4618 /* Update TX scheduler. */ 4619 if (ring->qid >= sc->firstaggqueue) 4620 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4621 4622 /* Kick TX ring. */ 4623 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4624 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4625 4626 /* Mark TX ring as full if we reach a certain threshold. */ 4627 if (++ring->queued > IWN_TX_RING_HIMARK) 4628 sc->qfullmsk |= 1 << ring->qid; 4629 4630 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4631 4632 return 0; 4633 } 4634 4635 static int 4636 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4637 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4638 { 4639 struct iwn_ops *ops = &sc->ops; 4640 struct ieee80211vap *vap = ni->ni_vap; 4641 struct iwn_tx_cmd *cmd; 4642 struct iwn_cmd_data *tx; 4643 struct ieee80211_frame *wh; 4644 struct iwn_tx_ring *ring; 4645 struct iwn_tx_desc *desc; 4646 struct iwn_tx_data *data; 4647 struct mbuf *m1; 4648 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4649 uint32_t flags; 4650 u_int hdrlen; 4651 int ac, totlen, error, pad, nsegs = 0, i, rate; 4652 uint8_t type; 4653 4654 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4655 4656 IWN_LOCK_ASSERT(sc); 4657 4658 wh = mtod(m, struct ieee80211_frame *); 4659 hdrlen = ieee80211_anyhdrsize(wh); 4660 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4661 4662 ac = params->ibp_pri & 3; 4663 4664 ring = &sc->txq[ac]; 4665 desc = &ring->desc[ring->cur]; 4666 data = &ring->data[ring->cur]; 4667 4668 /* Choose a TX rate. */ 4669 rate = params->ibp_rate0; 4670 totlen = m->m_pkthdr.len; 4671 4672 /* Prepare TX firmware command. */ 4673 cmd = &ring->cmd[ring->cur]; 4674 cmd->code = IWN_CMD_TX_DATA; 4675 cmd->flags = 0; 4676 cmd->qid = ring->qid; 4677 cmd->idx = ring->cur; 4678 4679 tx = (struct iwn_cmd_data *)cmd->data; 4680 /* NB: No need to clear tx, all fields are reinitialized here. */ 4681 tx->scratch = 0; /* clear "scratch" area */ 4682 4683 flags = 0; 4684 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4685 flags |= IWN_TX_NEED_ACK; 4686 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4687 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4688 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4689 flags &= ~IWN_TX_NEED_RTS; 4690 flags |= IWN_TX_NEED_PROTECTION; 4691 } else 4692 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4693 } 4694 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4695 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4696 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4697 flags &= ~IWN_TX_NEED_CTS; 4698 flags |= IWN_TX_NEED_PROTECTION; 4699 } else 4700 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4701 } 4702 if (type == IEEE80211_FC0_TYPE_MGT) { 4703 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4704 4705 /* Tell HW to set timestamp in probe responses. */ 4706 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4707 flags |= IWN_TX_INSERT_TSTAMP; 4708 4709 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4710 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4711 tx->timeout = htole16(3); 4712 else 4713 tx->timeout = htole16(2); 4714 } else 4715 tx->timeout = htole16(0); 4716 4717 if (hdrlen & 3) { 4718 /* First segment length must be a multiple of 4. */ 4719 flags |= IWN_TX_NEED_PADDING; 4720 pad = 4 - (hdrlen & 3); 4721 } else 4722 pad = 0; 4723 4724 if (ieee80211_radiotap_active_vap(vap)) { 4725 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4726 4727 tap->wt_flags = 0; 4728 tap->wt_rate = rate; 4729 4730 ieee80211_radiotap_tx(vap, m); 4731 } 4732 4733 tx->len = htole16(totlen); 4734 tx->tid = 0; 4735 tx->id = sc->broadcast_id; 4736 tx->rts_ntries = params->ibp_try1; 4737 tx->data_ntries = params->ibp_try0; 4738 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4739 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4740 4741 /* Group or management frame. */ 4742 tx->linkq = 0; 4743 4744 /* Set physical address of "scratch area". */ 4745 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4746 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4747 4748 /* Copy 802.11 header in TX command. */ 4749 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4750 4751 /* Trim 802.11 header. */ 4752 m_adj(m, hdrlen); 4753 tx->security = 0; 4754 tx->flags = htole32(flags); 4755 4756 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4757 &nsegs, BUS_DMA_NOWAIT); 4758 if (error != 0) { 4759 if (error != EFBIG) { 4760 device_printf(sc->sc_dev, 4761 "%s: can't map mbuf (error %d)\n", __func__, error); 4762 return error; 4763 } 4764 /* Too many DMA segments, linearize mbuf. */ 4765 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4766 if (m1 == NULL) { 4767 device_printf(sc->sc_dev, 4768 "%s: could not defrag mbuf\n", __func__); 4769 return ENOBUFS; 4770 } 4771 m = m1; 4772 4773 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4774 segs, &nsegs, BUS_DMA_NOWAIT); 4775 if (error != 0) { 4776 device_printf(sc->sc_dev, 4777 "%s: can't map mbuf (error %d)\n", __func__, error); 4778 return error; 4779 } 4780 } 4781 4782 data->m = m; 4783 data->ni = ni; 4784 4785 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 4786 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 4787 4788 /* Fill TX descriptor. */ 4789 desc->nsegs = 1; 4790 if (m->m_len != 0) 4791 desc->nsegs += nsegs; 4792 /* First DMA segment is used by the TX command. */ 4793 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4794 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4795 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4796 /* Other DMA segments are for data payload. */ 4797 seg = &segs[0]; 4798 for (i = 1; i <= nsegs; i++) { 4799 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4800 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4801 seg->ds_len << 4); 4802 seg++; 4803 } 4804 4805 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4806 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4807 BUS_DMASYNC_PREWRITE); 4808 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4809 BUS_DMASYNC_PREWRITE); 4810 4811 /* Update TX scheduler. */ 4812 if (ring->qid >= sc->firstaggqueue) 4813 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4814 4815 /* Kick TX ring. */ 4816 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4817 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4818 4819 /* Mark TX ring as full if we reach a certain threshold. */ 4820 if (++ring->queued > IWN_TX_RING_HIMARK) 4821 sc->qfullmsk |= 1 << ring->qid; 4822 4823 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4824 4825 return 0; 4826 } 4827 4828 static void 4829 iwn_xmit_task(void *arg0, int pending) 4830 { 4831 struct iwn_softc *sc = arg0; 4832 struct ieee80211_node *ni; 4833 struct mbuf *m; 4834 int error; 4835 struct ieee80211_bpf_params p; 4836 int have_p; 4837 4838 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4839 4840 IWN_LOCK(sc); 4841 /* 4842 * Dequeue frames, attempt to transmit, 4843 * then disable beaconwait when we're done. 4844 */ 4845 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 4846 have_p = 0; 4847 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4848 4849 /* Get xmit params if appropriate */ 4850 if (ieee80211_get_xmit_params(m, &p) == 0) 4851 have_p = 1; 4852 4853 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 4854 __func__, m, have_p); 4855 4856 /* If we have xmit params, use them */ 4857 if (have_p) 4858 error = iwn_tx_data_raw(sc, m, ni, &p); 4859 else 4860 error = iwn_tx_data(sc, m, ni); 4861 4862 if (error != 0) { 4863 if_inc_counter(ni->ni_vap->iv_ifp, 4864 IFCOUNTER_OERRORS, 1); 4865 ieee80211_free_node(ni); 4866 m_freem(m); 4867 } 4868 } 4869 4870 sc->sc_beacon_wait = 0; 4871 IWN_UNLOCK(sc); 4872 } 4873 4874 /* 4875 * raw frame xmit - free node/reference if failed. 4876 */ 4877 static int 4878 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4879 const struct ieee80211_bpf_params *params) 4880 { 4881 struct ieee80211com *ic = ni->ni_ic; 4882 struct iwn_softc *sc = ic->ic_softc; 4883 int error = 0; 4884 4885 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4886 4887 IWN_LOCK(sc); 4888 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 4889 m_freem(m); 4890 IWN_UNLOCK(sc); 4891 return (ENETDOWN); 4892 } 4893 4894 /* queue frame if we have to */ 4895 if (sc->sc_beacon_wait) { 4896 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 4897 m_freem(m); 4898 IWN_UNLOCK(sc); 4899 return (ENOBUFS); 4900 } 4901 /* Queued, so just return OK */ 4902 IWN_UNLOCK(sc); 4903 return (0); 4904 } 4905 4906 if (params == NULL) { 4907 /* 4908 * Legacy path; interpret frame contents to decide 4909 * precisely how to send the frame. 4910 */ 4911 error = iwn_tx_data(sc, m, ni); 4912 } else { 4913 /* 4914 * Caller supplied explicit parameters to use in 4915 * sending the frame. 4916 */ 4917 error = iwn_tx_data_raw(sc, m, ni, params); 4918 } 4919 if (error == 0) 4920 sc->sc_tx_timer = 5; 4921 else 4922 m_freem(m); 4923 4924 IWN_UNLOCK(sc); 4925 4926 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 4927 4928 return (error); 4929 } 4930 4931 /* 4932 * transmit - don't free mbuf if failed; don't free node ref if failed. 4933 */ 4934 static int 4935 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 4936 { 4937 struct iwn_softc *sc = ic->ic_softc; 4938 struct ieee80211_node *ni; 4939 int error; 4940 4941 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4942 4943 IWN_LOCK(sc); 4944 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 4945 IWN_UNLOCK(sc); 4946 return (ENXIO); 4947 } 4948 4949 if (sc->qfullmsk) { 4950 IWN_UNLOCK(sc); 4951 return (ENOBUFS); 4952 } 4953 4954 error = iwn_tx_data(sc, m, ni); 4955 if (!error) 4956 sc->sc_tx_timer = 5; 4957 IWN_UNLOCK(sc); 4958 return (error); 4959 } 4960 4961 static void 4962 iwn_scan_timeout(void *arg) 4963 { 4964 struct iwn_softc *sc = arg; 4965 struct ieee80211com *ic = &sc->sc_ic; 4966 4967 ic_printf(ic, "scan timeout\n"); 4968 ieee80211_restart_all(ic); 4969 } 4970 4971 static void 4972 iwn_watchdog(void *arg) 4973 { 4974 struct iwn_softc *sc = arg; 4975 struct ieee80211com *ic = &sc->sc_ic; 4976 4977 IWN_LOCK_ASSERT(sc); 4978 4979 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 4980 4981 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4982 4983 if (sc->sc_tx_timer > 0) { 4984 if (--sc->sc_tx_timer == 0) { 4985 ic_printf(ic, "device timeout\n"); 4986 ieee80211_restart_all(ic); 4987 return; 4988 } 4989 } 4990 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 4991 } 4992 4993 static int 4994 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 4995 { 4996 4997 return (0); 4998 } 4999 5000 static int 5001 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 5002 { 5003 5004 return (0); 5005 } 5006 5007 static int 5008 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 5009 struct thread *td) 5010 { 5011 int rc; 5012 struct iwn_softc *sc = dev->si_drv1; 5013 struct iwn_ioctl_data *d; 5014 5015 rc = priv_check(td, PRIV_DRIVER); 5016 if (rc != 0) 5017 return (0); 5018 5019 switch (cmd) { 5020 case SIOCGIWNSTATS: 5021 d = (struct iwn_ioctl_data *) data; 5022 IWN_LOCK(sc); 5023 /* XXX validate permissions/memory/etc? */ 5024 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5025 IWN_UNLOCK(sc); 5026 break; 5027 case SIOCZIWNSTATS: 5028 IWN_LOCK(sc); 5029 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5030 IWN_UNLOCK(sc); 5031 break; 5032 default: 5033 rc = EINVAL; 5034 break; 5035 } 5036 return (rc); 5037 } 5038 5039 static int 5040 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5041 { 5042 5043 return (ENOTTY); 5044 } 5045 5046 static void 5047 iwn_parent(struct ieee80211com *ic) 5048 { 5049 struct iwn_softc *sc = ic->ic_softc; 5050 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5051 int startall = 0, stop = 0; 5052 5053 IWN_LOCK(sc); 5054 if (ic->ic_nrunning > 0) { 5055 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5056 iwn_init_locked(sc); 5057 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 5058 startall = 1; 5059 else 5060 stop = 1; 5061 } 5062 } else if (sc->sc_flags & IWN_FLAG_RUNNING) 5063 iwn_stop_locked(sc); 5064 IWN_UNLOCK(sc); 5065 if (startall) 5066 ieee80211_start_all(ic); 5067 else if (vap != NULL && stop) 5068 ieee80211_stop(vap); 5069 } 5070 5071 /* 5072 * Send a command to the firmware. 5073 */ 5074 static int 5075 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5076 { 5077 struct iwn_tx_ring *ring; 5078 struct iwn_tx_desc *desc; 5079 struct iwn_tx_data *data; 5080 struct iwn_tx_cmd *cmd; 5081 struct mbuf *m; 5082 bus_addr_t paddr; 5083 int totlen, error; 5084 int cmd_queue_num; 5085 5086 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5087 5088 if (async == 0) 5089 IWN_LOCK_ASSERT(sc); 5090 5091 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5092 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5093 else 5094 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5095 5096 ring = &sc->txq[cmd_queue_num]; 5097 desc = &ring->desc[ring->cur]; 5098 data = &ring->data[ring->cur]; 5099 totlen = 4 + size; 5100 5101 if (size > sizeof cmd->data) { 5102 /* Command is too large to fit in a descriptor. */ 5103 if (totlen > MCLBYTES) 5104 return EINVAL; 5105 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5106 if (m == NULL) 5107 return ENOMEM; 5108 cmd = mtod(m, struct iwn_tx_cmd *); 5109 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5110 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5111 if (error != 0) { 5112 m_freem(m); 5113 return error; 5114 } 5115 data->m = m; 5116 } else { 5117 cmd = &ring->cmd[ring->cur]; 5118 paddr = data->cmd_paddr; 5119 } 5120 5121 cmd->code = code; 5122 cmd->flags = 0; 5123 cmd->qid = ring->qid; 5124 cmd->idx = ring->cur; 5125 memcpy(cmd->data, buf, size); 5126 5127 desc->nsegs = 1; 5128 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5129 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5130 5131 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5132 __func__, iwn_intr_str(cmd->code), cmd->code, 5133 cmd->flags, cmd->qid, cmd->idx); 5134 5135 if (size > sizeof cmd->data) { 5136 bus_dmamap_sync(ring->data_dmat, data->map, 5137 BUS_DMASYNC_PREWRITE); 5138 } else { 5139 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 5140 BUS_DMASYNC_PREWRITE); 5141 } 5142 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5143 BUS_DMASYNC_PREWRITE); 5144 5145 /* Kick command ring. */ 5146 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5147 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5148 5149 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5150 5151 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5152 } 5153 5154 static int 5155 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5156 { 5157 struct iwn4965_node_info hnode; 5158 caddr_t src, dst; 5159 5160 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5161 5162 /* 5163 * We use the node structure for 5000 Series internally (it is 5164 * a superset of the one for 4965AGN). We thus copy the common 5165 * fields before sending the command. 5166 */ 5167 src = (caddr_t)node; 5168 dst = (caddr_t)&hnode; 5169 memcpy(dst, src, 48); 5170 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5171 memcpy(dst + 48, src + 72, 20); 5172 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5173 } 5174 5175 static int 5176 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5177 { 5178 5179 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5180 5181 /* Direct mapping. */ 5182 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5183 } 5184 5185 static int 5186 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5187 { 5188 struct iwn_node *wn = (void *)ni; 5189 struct ieee80211_rateset *rs; 5190 struct iwn_cmd_link_quality linkq; 5191 int i, rate, txrate; 5192 int is_11n; 5193 5194 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5195 5196 memset(&linkq, 0, sizeof linkq); 5197 linkq.id = wn->id; 5198 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5199 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5200 5201 linkq.ampdu_max = 32; /* XXX negotiated? */ 5202 linkq.ampdu_threshold = 3; 5203 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5204 5205 DPRINTF(sc, IWN_DEBUG_XMIT, 5206 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5207 __func__, 5208 linkq.antmsk_1stream, 5209 linkq.antmsk_2stream, 5210 sc->ntxchains); 5211 5212 /* 5213 * Are we using 11n rates? Ensure the channel is 5214 * 11n _and_ we have some 11n rates, or don't 5215 * try. 5216 */ 5217 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5218 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5219 is_11n = 1; 5220 } else { 5221 rs = &ni->ni_rates; 5222 is_11n = 0; 5223 } 5224 5225 /* Start at highest available bit-rate. */ 5226 /* 5227 * XXX this is all very dirty! 5228 */ 5229 if (is_11n) 5230 txrate = ni->ni_htrates.rs_nrates - 1; 5231 else 5232 txrate = rs->rs_nrates - 1; 5233 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5234 uint32_t plcp; 5235 5236 /* 5237 * XXX TODO: ensure the last two slots are the two lowest 5238 * rate entries, just for now. 5239 */ 5240 if (i == 14 || i == 15) 5241 txrate = 0; 5242 5243 if (is_11n) 5244 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5245 else 5246 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5247 5248 /* Do rate -> PLCP config mapping */ 5249 plcp = iwn_rate_to_plcp(sc, ni, rate); 5250 linkq.retry[i] = plcp; 5251 DPRINTF(sc, IWN_DEBUG_XMIT, 5252 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5253 __func__, 5254 i, 5255 txrate, 5256 rate, 5257 le32toh(plcp)); 5258 5259 /* 5260 * The mimo field is an index into the table which 5261 * indicates the first index where it and subsequent entries 5262 * will not be using MIMO. 5263 * 5264 * Since we're filling linkq from 0..15 and we're filling 5265 * from the highest MCS rates to the lowest rates, if we 5266 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5267 * the next entry.) That way if the next entry is a non-MIMO 5268 * entry, we're already pointing at it. 5269 */ 5270 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5271 IEEE80211_RV(le32toh(plcp)) > 7) 5272 linkq.mimo = i + 1; 5273 5274 /* Next retry at immediate lower bit-rate. */ 5275 if (txrate > 0) 5276 txrate--; 5277 } 5278 /* 5279 * If we reached the end of the list and indeed we hit 5280 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5281 * set mimo to 15. Setting it to 16 panics the firmware. 5282 */ 5283 if (linkq.mimo > 15) 5284 linkq.mimo = 15; 5285 5286 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5287 5288 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5289 5290 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5291 } 5292 5293 /* 5294 * Broadcast node is used to send group-addressed and management frames. 5295 */ 5296 static int 5297 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5298 { 5299 struct iwn_ops *ops = &sc->ops; 5300 struct ieee80211com *ic = &sc->sc_ic; 5301 struct iwn_node_info node; 5302 struct iwn_cmd_link_quality linkq; 5303 uint8_t txant; 5304 int i, error; 5305 5306 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5307 5308 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5309 5310 memset(&node, 0, sizeof node); 5311 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5312 node.id = sc->broadcast_id; 5313 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5314 if ((error = ops->add_node(sc, &node, async)) != 0) 5315 return error; 5316 5317 /* Use the first valid TX antenna. */ 5318 txant = IWN_LSB(sc->txchainmask); 5319 5320 memset(&linkq, 0, sizeof linkq); 5321 linkq.id = sc->broadcast_id; 5322 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5323 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5324 linkq.ampdu_max = 64; 5325 linkq.ampdu_threshold = 3; 5326 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5327 5328 /* Use lowest mandatory bit-rate. */ 5329 /* XXX rate table lookup? */ 5330 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5331 linkq.retry[0] = htole32(0xd); 5332 else 5333 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5334 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5335 /* Use same bit-rate for all TX retries. */ 5336 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5337 linkq.retry[i] = linkq.retry[0]; 5338 } 5339 5340 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5341 5342 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5343 } 5344 5345 static int 5346 iwn_updateedca(struct ieee80211com *ic) 5347 { 5348 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5349 struct iwn_softc *sc = ic->ic_softc; 5350 struct iwn_edca_params cmd; 5351 int aci; 5352 5353 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5354 5355 memset(&cmd, 0, sizeof cmd); 5356 cmd.flags = htole32(IWN_EDCA_UPDATE); 5357 5358 IEEE80211_LOCK(ic); 5359 for (aci = 0; aci < WME_NUM_AC; aci++) { 5360 const struct wmeParams *ac = 5361 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 5362 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5363 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5364 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5365 cmd.ac[aci].txoplimit = 5366 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5367 } 5368 IEEE80211_UNLOCK(ic); 5369 5370 IWN_LOCK(sc); 5371 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5372 IWN_UNLOCK(sc); 5373 5374 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5375 5376 return 0; 5377 #undef IWN_EXP2 5378 } 5379 5380 static void 5381 iwn_update_mcast(struct ieee80211com *ic) 5382 { 5383 /* Ignore */ 5384 } 5385 5386 static void 5387 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5388 { 5389 struct iwn_cmd_led led; 5390 5391 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5392 5393 #if 0 5394 /* XXX don't set LEDs during scan? */ 5395 if (sc->sc_is_scanning) 5396 return; 5397 #endif 5398 5399 /* Clear microcode LED ownership. */ 5400 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5401 5402 led.which = which; 5403 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5404 led.off = off; 5405 led.on = on; 5406 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5407 } 5408 5409 /* 5410 * Set the critical temperature at which the firmware will stop the radio 5411 * and notify us. 5412 */ 5413 static int 5414 iwn_set_critical_temp(struct iwn_softc *sc) 5415 { 5416 struct iwn_critical_temp crit; 5417 int32_t temp; 5418 5419 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5420 5421 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5422 5423 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5424 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5425 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5426 temp = IWN_CTOK(110); 5427 else 5428 temp = 110; 5429 memset(&crit, 0, sizeof crit); 5430 crit.tempR = htole32(temp); 5431 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5432 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5433 } 5434 5435 static int 5436 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5437 { 5438 struct iwn_cmd_timing cmd; 5439 uint64_t val, mod; 5440 5441 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5442 5443 memset(&cmd, 0, sizeof cmd); 5444 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5445 cmd.bintval = htole16(ni->ni_intval); 5446 cmd.lintval = htole16(10); 5447 5448 /* Compute remaining time until next beacon. */ 5449 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5450 mod = le64toh(cmd.tstamp) % val; 5451 cmd.binitval = htole32((uint32_t)(val - mod)); 5452 5453 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5454 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5455 5456 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5457 } 5458 5459 static void 5460 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5461 { 5462 struct ieee80211com *ic = &sc->sc_ic; 5463 5464 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5465 5466 /* Adjust TX power if need be (delta >= 3 degC). */ 5467 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5468 __func__, sc->temp, temp); 5469 if (abs(temp - sc->temp) >= 3) { 5470 /* Record temperature of last calibration. */ 5471 sc->temp = temp; 5472 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 5473 } 5474 } 5475 5476 /* 5477 * Set TX power for current channel (each rate has its own power settings). 5478 * This function takes into account the regulatory information from EEPROM, 5479 * the current temperature and the current voltage. 5480 */ 5481 static int 5482 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5483 int async) 5484 { 5485 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5486 #define fdivround(a, b, n) \ 5487 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5488 /* Linear interpolation. */ 5489 #define interpolate(x, x1, y1, x2, y2, n) \ 5490 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5491 5492 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5493 struct iwn_ucode_info *uc = &sc->ucode_info; 5494 struct iwn4965_cmd_txpower cmd; 5495 struct iwn4965_eeprom_chan_samples *chans; 5496 const uint8_t *rf_gain, *dsp_gain; 5497 int32_t vdiff, tdiff; 5498 int i, c, grp, maxpwr; 5499 uint8_t chan; 5500 5501 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5502 /* Retrieve current channel from last RXON. */ 5503 chan = sc->rxon->chan; 5504 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5505 chan); 5506 5507 memset(&cmd, 0, sizeof cmd); 5508 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 5509 cmd.chan = chan; 5510 5511 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 5512 maxpwr = sc->maxpwr5GHz; 5513 rf_gain = iwn4965_rf_gain_5ghz; 5514 dsp_gain = iwn4965_dsp_gain_5ghz; 5515 } else { 5516 maxpwr = sc->maxpwr2GHz; 5517 rf_gain = iwn4965_rf_gain_2ghz; 5518 dsp_gain = iwn4965_dsp_gain_2ghz; 5519 } 5520 5521 /* Compute voltage compensation. */ 5522 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5523 if (vdiff > 0) 5524 vdiff *= 2; 5525 if (abs(vdiff) > 2) 5526 vdiff = 0; 5527 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5528 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5529 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5530 5531 /* Get channel attenuation group. */ 5532 if (chan <= 20) /* 1-20 */ 5533 grp = 4; 5534 else if (chan <= 43) /* 34-43 */ 5535 grp = 0; 5536 else if (chan <= 70) /* 44-70 */ 5537 grp = 1; 5538 else if (chan <= 124) /* 71-124 */ 5539 grp = 2; 5540 else /* 125-200 */ 5541 grp = 3; 5542 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5543 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5544 5545 /* Get channel sub-band. */ 5546 for (i = 0; i < IWN_NBANDS; i++) 5547 if (sc->bands[i].lo != 0 && 5548 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5549 break; 5550 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5551 return EINVAL; 5552 chans = sc->bands[i].chans; 5553 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5554 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5555 5556 for (c = 0; c < 2; c++) { 5557 uint8_t power, gain, temp; 5558 int maxchpwr, pwr, ridx, idx; 5559 5560 power = interpolate(chan, 5561 chans[0].num, chans[0].samples[c][1].power, 5562 chans[1].num, chans[1].samples[c][1].power, 1); 5563 gain = interpolate(chan, 5564 chans[0].num, chans[0].samples[c][1].gain, 5565 chans[1].num, chans[1].samples[c][1].gain, 1); 5566 temp = interpolate(chan, 5567 chans[0].num, chans[0].samples[c][1].temp, 5568 chans[1].num, chans[1].samples[c][1].temp, 1); 5569 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5570 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5571 __func__, c, power, gain, temp); 5572 5573 /* Compute temperature compensation. */ 5574 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5575 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5576 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5577 __func__, tdiff, sc->temp, temp); 5578 5579 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5580 /* Convert dBm to half-dBm. */ 5581 maxchpwr = sc->maxpwr[chan] * 2; 5582 if ((ridx / 8) & 1) 5583 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5584 5585 pwr = maxpwr; 5586 5587 /* Adjust TX power based on rate. */ 5588 if ((ridx % 8) == 5) 5589 pwr -= 15; /* OFDM48: -7.5dB */ 5590 else if ((ridx % 8) == 6) 5591 pwr -= 17; /* OFDM54: -8.5dB */ 5592 else if ((ridx % 8) == 7) 5593 pwr -= 20; /* OFDM60: -10dB */ 5594 else 5595 pwr -= 10; /* Others: -5dB */ 5596 5597 /* Do not exceed channel max TX power. */ 5598 if (pwr > maxchpwr) 5599 pwr = maxchpwr; 5600 5601 idx = gain - (pwr - power) - tdiff - vdiff; 5602 if ((ridx / 8) & 1) /* MIMO */ 5603 idx += (int32_t)le32toh(uc->atten[grp][c]); 5604 5605 if (cmd.band == 0) 5606 idx += 9; /* 5GHz */ 5607 if (ridx == IWN_RIDX_MAX) 5608 idx += 5; /* CCK */ 5609 5610 /* Make sure idx stays in a valid range. */ 5611 if (idx < 0) 5612 idx = 0; 5613 else if (idx > IWN4965_MAX_PWR_INDEX) 5614 idx = IWN4965_MAX_PWR_INDEX; 5615 5616 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5617 "%s: Tx chain %d, rate idx %d: power=%d\n", 5618 __func__, c, ridx, idx); 5619 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5620 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5621 } 5622 } 5623 5624 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5625 "%s: set tx power for chan %d\n", __func__, chan); 5626 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5627 5628 #undef interpolate 5629 #undef fdivround 5630 } 5631 5632 static int 5633 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5634 int async) 5635 { 5636 struct iwn5000_cmd_txpower cmd; 5637 int cmdid; 5638 5639 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5640 5641 /* 5642 * TX power calibration is handled automatically by the firmware 5643 * for 5000 Series. 5644 */ 5645 memset(&cmd, 0, sizeof cmd); 5646 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5647 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5648 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5649 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5650 "%s: setting TX power; rev=%d\n", 5651 __func__, 5652 IWN_UCODE_API(sc->ucode_rev)); 5653 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5654 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5655 else 5656 cmdid = IWN_CMD_TXPOWER_DBM; 5657 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5658 } 5659 5660 /* 5661 * Retrieve the maximum RSSI (in dBm) among receivers. 5662 */ 5663 static int 5664 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5665 { 5666 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5667 uint8_t mask, agc; 5668 int rssi; 5669 5670 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5671 5672 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5673 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5674 5675 rssi = 0; 5676 if (mask & IWN_ANT_A) 5677 rssi = MAX(rssi, phy->rssi[0]); 5678 if (mask & IWN_ANT_B) 5679 rssi = MAX(rssi, phy->rssi[2]); 5680 if (mask & IWN_ANT_C) 5681 rssi = MAX(rssi, phy->rssi[4]); 5682 5683 DPRINTF(sc, IWN_DEBUG_RECV, 5684 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5685 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5686 rssi - agc - IWN_RSSI_TO_DBM); 5687 return rssi - agc - IWN_RSSI_TO_DBM; 5688 } 5689 5690 static int 5691 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5692 { 5693 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5694 uint8_t agc; 5695 int rssi; 5696 5697 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5698 5699 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5700 5701 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5702 le16toh(phy->rssi[1]) & 0xff); 5703 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5704 5705 DPRINTF(sc, IWN_DEBUG_RECV, 5706 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5707 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5708 rssi - agc - IWN_RSSI_TO_DBM); 5709 return rssi - agc - IWN_RSSI_TO_DBM; 5710 } 5711 5712 /* 5713 * Retrieve the average noise (in dBm) among receivers. 5714 */ 5715 static int 5716 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5717 { 5718 int i, total, nbant, noise; 5719 5720 total = nbant = 0; 5721 for (i = 0; i < 3; i++) { 5722 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5723 continue; 5724 total += noise; 5725 nbant++; 5726 } 5727 /* There should be at least one antenna but check anyway. */ 5728 return (nbant == 0) ? -127 : (total / nbant) - 107; 5729 } 5730 5731 /* 5732 * Compute temperature (in degC) from last received statistics. 5733 */ 5734 static int 5735 iwn4965_get_temperature(struct iwn_softc *sc) 5736 { 5737 struct iwn_ucode_info *uc = &sc->ucode_info; 5738 int32_t r1, r2, r3, r4, temp; 5739 5740 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5741 5742 r1 = le32toh(uc->temp[0].chan20MHz); 5743 r2 = le32toh(uc->temp[1].chan20MHz); 5744 r3 = le32toh(uc->temp[2].chan20MHz); 5745 r4 = le32toh(sc->rawtemp); 5746 5747 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5748 return 0; 5749 5750 /* Sign-extend 23-bit R4 value to 32-bit. */ 5751 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5752 /* Compute temperature in Kelvin. */ 5753 temp = (259 * (r4 - r2)) / (r3 - r1); 5754 temp = (temp * 97) / 100 + 8; 5755 5756 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5757 IWN_KTOC(temp)); 5758 return IWN_KTOC(temp); 5759 } 5760 5761 static int 5762 iwn5000_get_temperature(struct iwn_softc *sc) 5763 { 5764 int32_t temp; 5765 5766 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5767 5768 /* 5769 * Temperature is not used by the driver for 5000 Series because 5770 * TX power calibration is handled by firmware. 5771 */ 5772 temp = le32toh(sc->rawtemp); 5773 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5774 temp = (temp / -5) + sc->temp_off; 5775 temp = IWN_KTOC(temp); 5776 } 5777 return temp; 5778 } 5779 5780 /* 5781 * Initialize sensitivity calibration state machine. 5782 */ 5783 static int 5784 iwn_init_sensitivity(struct iwn_softc *sc) 5785 { 5786 struct iwn_ops *ops = &sc->ops; 5787 struct iwn_calib_state *calib = &sc->calib; 5788 uint32_t flags; 5789 int error; 5790 5791 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5792 5793 /* Reset calibration state machine. */ 5794 memset(calib, 0, sizeof (*calib)); 5795 calib->state = IWN_CALIB_STATE_INIT; 5796 calib->cck_state = IWN_CCK_STATE_HIFA; 5797 /* Set initial correlation values. */ 5798 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5799 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5800 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5801 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5802 calib->cck_x4 = 125; 5803 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5804 calib->energy_cck = sc->limits->energy_cck; 5805 5806 /* Write initial sensitivity. */ 5807 if ((error = iwn_send_sensitivity(sc)) != 0) 5808 return error; 5809 5810 /* Write initial gains. */ 5811 if ((error = ops->init_gains(sc)) != 0) 5812 return error; 5813 5814 /* Request statistics at each beacon interval. */ 5815 flags = 0; 5816 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 5817 __func__); 5818 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 5819 } 5820 5821 /* 5822 * Collect noise and RSSI statistics for the first 20 beacons received 5823 * after association and use them to determine connected antennas and 5824 * to set differential gains. 5825 */ 5826 static void 5827 iwn_collect_noise(struct iwn_softc *sc, 5828 const struct iwn_rx_general_stats *stats) 5829 { 5830 struct iwn_ops *ops = &sc->ops; 5831 struct iwn_calib_state *calib = &sc->calib; 5832 struct ieee80211com *ic = &sc->sc_ic; 5833 uint32_t val; 5834 int i; 5835 5836 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5837 5838 /* Accumulate RSSI and noise for all 3 antennas. */ 5839 for (i = 0; i < 3; i++) { 5840 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 5841 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 5842 } 5843 /* NB: We update differential gains only once after 20 beacons. */ 5844 if (++calib->nbeacons < 20) 5845 return; 5846 5847 /* Determine highest average RSSI. */ 5848 val = MAX(calib->rssi[0], calib->rssi[1]); 5849 val = MAX(calib->rssi[2], val); 5850 5851 /* Determine which antennas are connected. */ 5852 sc->chainmask = sc->rxchainmask; 5853 for (i = 0; i < 3; i++) 5854 if (val - calib->rssi[i] > 15 * 20) 5855 sc->chainmask &= ~(1 << i); 5856 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5857 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 5858 __func__, sc->rxchainmask, sc->chainmask); 5859 5860 /* If none of the TX antennas are connected, keep at least one. */ 5861 if ((sc->chainmask & sc->txchainmask) == 0) 5862 sc->chainmask |= IWN_LSB(sc->txchainmask); 5863 5864 (void)ops->set_gains(sc); 5865 calib->state = IWN_CALIB_STATE_RUN; 5866 5867 #ifdef notyet 5868 /* XXX Disable RX chains with no antennas connected. */ 5869 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5870 if (sc->sc_is_scanning) 5871 device_printf(sc->sc_dev, 5872 "%s: is_scanning set, before RXON\n", 5873 __func__); 5874 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5875 #endif 5876 5877 /* Enable power-saving mode if requested by user. */ 5878 if (ic->ic_flags & IEEE80211_F_PMGTON) 5879 (void)iwn_set_pslevel(sc, 0, 3, 1); 5880 5881 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5882 5883 } 5884 5885 static int 5886 iwn4965_init_gains(struct iwn_softc *sc) 5887 { 5888 struct iwn_phy_calib_gain cmd; 5889 5890 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5891 5892 memset(&cmd, 0, sizeof cmd); 5893 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5894 /* Differential gains initially set to 0 for all 3 antennas. */ 5895 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5896 "%s: setting initial differential gains\n", __func__); 5897 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5898 } 5899 5900 static int 5901 iwn5000_init_gains(struct iwn_softc *sc) 5902 { 5903 struct iwn_phy_calib cmd; 5904 5905 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5906 5907 memset(&cmd, 0, sizeof cmd); 5908 cmd.code = sc->reset_noise_gain; 5909 cmd.ngroups = 1; 5910 cmd.isvalid = 1; 5911 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5912 "%s: setting initial differential gains\n", __func__); 5913 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5914 } 5915 5916 static int 5917 iwn4965_set_gains(struct iwn_softc *sc) 5918 { 5919 struct iwn_calib_state *calib = &sc->calib; 5920 struct iwn_phy_calib_gain cmd; 5921 int i, delta, noise; 5922 5923 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5924 5925 /* Get minimal noise among connected antennas. */ 5926 noise = INT_MAX; /* NB: There's at least one antenna. */ 5927 for (i = 0; i < 3; i++) 5928 if (sc->chainmask & (1 << i)) 5929 noise = MIN(calib->noise[i], noise); 5930 5931 memset(&cmd, 0, sizeof cmd); 5932 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5933 /* Set differential gains for connected antennas. */ 5934 for (i = 0; i < 3; i++) { 5935 if (sc->chainmask & (1 << i)) { 5936 /* Compute attenuation (in unit of 1.5dB). */ 5937 delta = (noise - (int32_t)calib->noise[i]) / 30; 5938 /* NB: delta <= 0 */ 5939 /* Limit to [-4.5dB,0]. */ 5940 cmd.gain[i] = MIN(abs(delta), 3); 5941 if (delta < 0) 5942 cmd.gain[i] |= 1 << 2; /* sign bit */ 5943 } 5944 } 5945 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5946 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 5947 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 5948 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5949 } 5950 5951 static int 5952 iwn5000_set_gains(struct iwn_softc *sc) 5953 { 5954 struct iwn_calib_state *calib = &sc->calib; 5955 struct iwn_phy_calib_gain cmd; 5956 int i, ant, div, delta; 5957 5958 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5959 5960 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5961 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5962 5963 memset(&cmd, 0, sizeof cmd); 5964 cmd.code = sc->noise_gain; 5965 cmd.ngroups = 1; 5966 cmd.isvalid = 1; 5967 /* Get first available RX antenna as referential. */ 5968 ant = IWN_LSB(sc->rxchainmask); 5969 /* Set differential gains for other antennas. */ 5970 for (i = ant + 1; i < 3; i++) { 5971 if (sc->chainmask & (1 << i)) { 5972 /* The delta is relative to antenna "ant". */ 5973 delta = ((int32_t)calib->noise[ant] - 5974 (int32_t)calib->noise[i]) / div; 5975 /* Limit to [-4.5dB,+4.5dB]. */ 5976 cmd.gain[i - 1] = MIN(abs(delta), 3); 5977 if (delta < 0) 5978 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5979 } 5980 } 5981 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5982 "setting differential gains Ant B/C: %x/%x (%x)\n", 5983 cmd.gain[0], cmd.gain[1], sc->chainmask); 5984 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5985 } 5986 5987 /* 5988 * Tune RF RX sensitivity based on the number of false alarms detected 5989 * during the last beacon period. 5990 */ 5991 static void 5992 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 5993 { 5994 #define inc(val, inc, max) \ 5995 if ((val) < (max)) { \ 5996 if ((val) < (max) - (inc)) \ 5997 (val) += (inc); \ 5998 else \ 5999 (val) = (max); \ 6000 needs_update = 1; \ 6001 } 6002 #define dec(val, dec, min) \ 6003 if ((val) > (min)) { \ 6004 if ((val) > (min) + (dec)) \ 6005 (val) -= (dec); \ 6006 else \ 6007 (val) = (min); \ 6008 needs_update = 1; \ 6009 } 6010 6011 const struct iwn_sensitivity_limits *limits = sc->limits; 6012 struct iwn_calib_state *calib = &sc->calib; 6013 uint32_t val, rxena, fa; 6014 uint32_t energy[3], energy_min; 6015 uint8_t noise[3], noise_ref; 6016 int i, needs_update = 0; 6017 6018 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6019 6020 /* Check that we've been enabled long enough. */ 6021 if ((rxena = le32toh(stats->general.load)) == 0){ 6022 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6023 return; 6024 } 6025 6026 /* Compute number of false alarms since last call for OFDM. */ 6027 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6028 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6029 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6030 6031 if (fa > 50 * rxena) { 6032 /* High false alarm count, decrease sensitivity. */ 6033 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6034 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6035 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6036 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6037 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6038 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6039 6040 } else if (fa < 5 * rxena) { 6041 /* Low false alarm count, increase sensitivity. */ 6042 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6043 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6044 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6045 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6046 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6047 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6048 } 6049 6050 /* Compute maximum noise among 3 receivers. */ 6051 for (i = 0; i < 3; i++) 6052 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6053 val = MAX(noise[0], noise[1]); 6054 val = MAX(noise[2], val); 6055 /* Insert it into our samples table. */ 6056 calib->noise_samples[calib->cur_noise_sample] = val; 6057 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6058 6059 /* Compute maximum noise among last 20 samples. */ 6060 noise_ref = calib->noise_samples[0]; 6061 for (i = 1; i < 20; i++) 6062 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6063 6064 /* Compute maximum energy among 3 receivers. */ 6065 for (i = 0; i < 3; i++) 6066 energy[i] = le32toh(stats->general.energy[i]); 6067 val = MIN(energy[0], energy[1]); 6068 val = MIN(energy[2], val); 6069 /* Insert it into our samples table. */ 6070 calib->energy_samples[calib->cur_energy_sample] = val; 6071 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6072 6073 /* Compute minimum energy among last 10 samples. */ 6074 energy_min = calib->energy_samples[0]; 6075 for (i = 1; i < 10; i++) 6076 energy_min = MAX(energy_min, calib->energy_samples[i]); 6077 energy_min += 6; 6078 6079 /* Compute number of false alarms since last call for CCK. */ 6080 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6081 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6082 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6083 6084 if (fa > 50 * rxena) { 6085 /* High false alarm count, decrease sensitivity. */ 6086 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6087 "%s: CCK high false alarm count: %u\n", __func__, fa); 6088 calib->cck_state = IWN_CCK_STATE_HIFA; 6089 calib->low_fa = 0; 6090 6091 if (calib->cck_x4 > 160) { 6092 calib->noise_ref = noise_ref; 6093 if (calib->energy_cck > 2) 6094 dec(calib->energy_cck, 2, energy_min); 6095 } 6096 if (calib->cck_x4 < 160) { 6097 calib->cck_x4 = 161; 6098 needs_update = 1; 6099 } else 6100 inc(calib->cck_x4, 3, limits->max_cck_x4); 6101 6102 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6103 6104 } else if (fa < 5 * rxena) { 6105 /* Low false alarm count, increase sensitivity. */ 6106 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6107 "%s: CCK low false alarm count: %u\n", __func__, fa); 6108 calib->cck_state = IWN_CCK_STATE_LOFA; 6109 calib->low_fa++; 6110 6111 if (calib->cck_state != IWN_CCK_STATE_INIT && 6112 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6113 calib->low_fa > 100)) { 6114 inc(calib->energy_cck, 2, limits->min_energy_cck); 6115 dec(calib->cck_x4, 3, limits->min_cck_x4); 6116 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6117 } 6118 } else { 6119 /* Not worth to increase or decrease sensitivity. */ 6120 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6121 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6122 calib->low_fa = 0; 6123 calib->noise_ref = noise_ref; 6124 6125 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6126 /* Previous interval had many false alarms. */ 6127 dec(calib->energy_cck, 8, energy_min); 6128 } 6129 calib->cck_state = IWN_CCK_STATE_INIT; 6130 } 6131 6132 if (needs_update) 6133 (void)iwn_send_sensitivity(sc); 6134 6135 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6136 6137 #undef dec 6138 #undef inc 6139 } 6140 6141 static int 6142 iwn_send_sensitivity(struct iwn_softc *sc) 6143 { 6144 struct iwn_calib_state *calib = &sc->calib; 6145 struct iwn_enhanced_sensitivity_cmd cmd; 6146 int len; 6147 6148 memset(&cmd, 0, sizeof cmd); 6149 len = sizeof (struct iwn_sensitivity_cmd); 6150 cmd.which = IWN_SENSITIVITY_WORKTBL; 6151 /* OFDM modulation. */ 6152 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6153 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6154 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6155 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6156 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6157 cmd.energy_ofdm_th = htole16(62); 6158 /* CCK modulation. */ 6159 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6160 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6161 cmd.energy_cck = htole16(calib->energy_cck); 6162 /* Barker modulation: use default values. */ 6163 cmd.corr_barker = htole16(190); 6164 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6165 6166 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6167 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6168 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6169 calib->ofdm_mrc_x4, calib->cck_x4, 6170 calib->cck_mrc_x4, calib->energy_cck); 6171 6172 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6173 goto send; 6174 /* Enhanced sensitivity settings. */ 6175 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6176 cmd.ofdm_det_slope_mrc = htole16(668); 6177 cmd.ofdm_det_icept_mrc = htole16(4); 6178 cmd.ofdm_det_slope = htole16(486); 6179 cmd.ofdm_det_icept = htole16(37); 6180 cmd.cck_det_slope_mrc = htole16(853); 6181 cmd.cck_det_icept_mrc = htole16(4); 6182 cmd.cck_det_slope = htole16(476); 6183 cmd.cck_det_icept = htole16(99); 6184 send: 6185 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6186 } 6187 6188 /* 6189 * Look at the increase of PLCP errors over time; if it exceeds 6190 * a programmed threshold then trigger an RF retune. 6191 */ 6192 static void 6193 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6194 { 6195 int32_t delta_ofdm, delta_ht, delta_cck; 6196 struct iwn_calib_state *calib = &sc->calib; 6197 int delta_ticks, cur_ticks; 6198 int delta_msec; 6199 int thresh; 6200 6201 /* 6202 * Calculate the difference between the current and 6203 * previous statistics. 6204 */ 6205 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6206 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6207 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6208 6209 /* 6210 * Calculate the delta in time between successive statistics 6211 * messages. Yes, it can roll over; so we make sure that 6212 * this doesn't happen. 6213 * 6214 * XXX go figure out what to do about rollover 6215 * XXX go figure out what to do if ticks rolls over to -ve instead! 6216 * XXX go stab signed integer overflow undefined-ness in the face. 6217 */ 6218 cur_ticks = ticks; 6219 delta_ticks = cur_ticks - sc->last_calib_ticks; 6220 6221 /* 6222 * If any are negative, then the firmware likely reset; so just 6223 * bail. We'll pick this up next time. 6224 */ 6225 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6226 return; 6227 6228 /* 6229 * delta_ticks is in ticks; we need to convert it up to milliseconds 6230 * so we can do some useful math with it. 6231 */ 6232 delta_msec = ticks_to_msecs(delta_ticks); 6233 6234 /* 6235 * Calculate what our threshold is given the current delta_msec. 6236 */ 6237 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6238 6239 DPRINTF(sc, IWN_DEBUG_STATE, 6240 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6241 __func__, 6242 delta_msec, 6243 delta_cck, 6244 delta_ofdm, 6245 delta_ht, 6246 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6247 thresh); 6248 6249 /* 6250 * If we need a retune, then schedule a single channel scan 6251 * to a channel that isn't the currently active one! 6252 * 6253 * The math from linux iwlwifi: 6254 * 6255 * if ((delta * 100 / msecs) > threshold) 6256 */ 6257 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6258 DPRINTF(sc, IWN_DEBUG_ANY, 6259 "%s: PLCP error threshold raw (%d) comparison (%d) " 6260 "over limit (%d); retune!\n", 6261 __func__, 6262 (delta_cck + delta_ofdm + delta_ht), 6263 (delta_cck + delta_ofdm + delta_ht) * 100, 6264 thresh); 6265 } 6266 } 6267 6268 /* 6269 * Set STA mode power saving level (between 0 and 5). 6270 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6271 */ 6272 static int 6273 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6274 { 6275 struct iwn_pmgt_cmd cmd; 6276 const struct iwn_pmgt *pmgt; 6277 uint32_t max, skip_dtim; 6278 uint32_t reg; 6279 int i; 6280 6281 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6282 "%s: dtim=%d, level=%d, async=%d\n", 6283 __func__, 6284 dtim, 6285 level, 6286 async); 6287 6288 /* Select which PS parameters to use. */ 6289 if (dtim <= 2) 6290 pmgt = &iwn_pmgt[0][level]; 6291 else if (dtim <= 10) 6292 pmgt = &iwn_pmgt[1][level]; 6293 else 6294 pmgt = &iwn_pmgt[2][level]; 6295 6296 memset(&cmd, 0, sizeof cmd); 6297 if (level != 0) /* not CAM */ 6298 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6299 if (level == 5) 6300 cmd.flags |= htole16(IWN_PS_FAST_PD); 6301 /* Retrieve PCIe Active State Power Management (ASPM). */ 6302 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6303 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6304 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6305 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6306 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6307 6308 if (dtim == 0) { 6309 dtim = 1; 6310 skip_dtim = 0; 6311 } else 6312 skip_dtim = pmgt->skip_dtim; 6313 if (skip_dtim != 0) { 6314 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6315 max = pmgt->intval[4]; 6316 if (max == (uint32_t)-1) 6317 max = dtim * (skip_dtim + 1); 6318 else if (max > dtim) 6319 max = rounddown(max, dtim); 6320 } else 6321 max = dtim; 6322 for (i = 0; i < 5; i++) 6323 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6324 6325 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6326 level); 6327 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6328 } 6329 6330 static int 6331 iwn_send_btcoex(struct iwn_softc *sc) 6332 { 6333 struct iwn_bluetooth cmd; 6334 6335 memset(&cmd, 0, sizeof cmd); 6336 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6337 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6338 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6339 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6340 __func__); 6341 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6342 } 6343 6344 static int 6345 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6346 { 6347 static const uint32_t btcoex_3wire[12] = { 6348 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6349 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6350 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6351 }; 6352 struct iwn6000_btcoex_config btconfig; 6353 struct iwn2000_btcoex_config btconfig2k; 6354 struct iwn_btcoex_priotable btprio; 6355 struct iwn_btcoex_prot btprot; 6356 int error, i; 6357 uint8_t flags; 6358 6359 memset(&btconfig, 0, sizeof btconfig); 6360 memset(&btconfig2k, 0, sizeof btconfig2k); 6361 6362 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6363 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6364 6365 if (sc->base_params->bt_sco_disable) 6366 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6367 else 6368 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6369 6370 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6371 6372 /* Default flags result is 145 as old value */ 6373 6374 /* 6375 * Flags value has to be review. Values must change if we 6376 * which to disable it 6377 */ 6378 if (sc->base_params->bt_session_2) { 6379 btconfig2k.flags = flags; 6380 btconfig2k.max_kill = 5; 6381 btconfig2k.bt3_t7_timer = 1; 6382 btconfig2k.kill_ack = htole32(0xffff0000); 6383 btconfig2k.kill_cts = htole32(0xffff0000); 6384 btconfig2k.sample_time = 2; 6385 btconfig2k.bt3_t2_timer = 0xc; 6386 6387 for (i = 0; i < 12; i++) 6388 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6389 btconfig2k.valid = htole16(0xff); 6390 btconfig2k.prio_boost = htole32(0xf0); 6391 DPRINTF(sc, IWN_DEBUG_RESET, 6392 "%s: configuring advanced bluetooth coexistence" 6393 " session 2, flags : 0x%x\n", 6394 __func__, 6395 flags); 6396 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6397 sizeof(btconfig2k), 1); 6398 } else { 6399 btconfig.flags = flags; 6400 btconfig.max_kill = 5; 6401 btconfig.bt3_t7_timer = 1; 6402 btconfig.kill_ack = htole32(0xffff0000); 6403 btconfig.kill_cts = htole32(0xffff0000); 6404 btconfig.sample_time = 2; 6405 btconfig.bt3_t2_timer = 0xc; 6406 6407 for (i = 0; i < 12; i++) 6408 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6409 btconfig.valid = htole16(0xff); 6410 btconfig.prio_boost = 0xf0; 6411 DPRINTF(sc, IWN_DEBUG_RESET, 6412 "%s: configuring advanced bluetooth coexistence," 6413 " flags : 0x%x\n", 6414 __func__, 6415 flags); 6416 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6417 sizeof(btconfig), 1); 6418 } 6419 6420 if (error != 0) 6421 return error; 6422 6423 memset(&btprio, 0, sizeof btprio); 6424 btprio.calib_init1 = 0x6; 6425 btprio.calib_init2 = 0x7; 6426 btprio.calib_periodic_low1 = 0x2; 6427 btprio.calib_periodic_low2 = 0x3; 6428 btprio.calib_periodic_high1 = 0x4; 6429 btprio.calib_periodic_high2 = 0x5; 6430 btprio.dtim = 0x6; 6431 btprio.scan52 = 0x8; 6432 btprio.scan24 = 0xa; 6433 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6434 1); 6435 if (error != 0) 6436 return error; 6437 6438 /* Force BT state machine change. */ 6439 memset(&btprot, 0, sizeof btprot); 6440 btprot.open = 1; 6441 btprot.type = 1; 6442 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6443 if (error != 0) 6444 return error; 6445 btprot.open = 0; 6446 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6447 } 6448 6449 static int 6450 iwn5000_runtime_calib(struct iwn_softc *sc) 6451 { 6452 struct iwn5000_calib_config cmd; 6453 6454 memset(&cmd, 0, sizeof cmd); 6455 cmd.ucode.once.enable = 0xffffffff; 6456 cmd.ucode.once.start = IWN5000_CALIB_DC; 6457 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6458 "%s: configuring runtime calibration\n", __func__); 6459 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6460 } 6461 6462 static uint32_t 6463 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) 6464 { 6465 struct ieee80211com *ic = &sc->sc_ic; 6466 uint32_t htflags = 0; 6467 6468 if (! IEEE80211_IS_CHAN_HT(c)) 6469 return (0); 6470 6471 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 6472 6473 if (IEEE80211_IS_CHAN_HT40(c)) { 6474 switch (ic->ic_curhtprotmode) { 6475 case IEEE80211_HTINFO_OPMODE_HT20PR: 6476 htflags |= IWN_RXON_HT_MODEPURE40; 6477 break; 6478 default: 6479 htflags |= IWN_RXON_HT_MODEMIXED; 6480 break; 6481 } 6482 } 6483 if (IEEE80211_IS_CHAN_HT40D(c)) 6484 htflags |= IWN_RXON_HT_HT40MINUS; 6485 6486 return (htflags); 6487 } 6488 6489 static int 6490 iwn_config(struct iwn_softc *sc) 6491 { 6492 struct iwn_ops *ops = &sc->ops; 6493 struct ieee80211com *ic = &sc->sc_ic; 6494 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6495 const uint8_t *macaddr; 6496 uint32_t txmask; 6497 uint16_t rxchain; 6498 int error; 6499 6500 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6501 6502 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6503 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6504 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6505 " exclusive each together. Review NIC config file. Conf" 6506 " : 0x%08x Flags : 0x%08x \n", __func__, 6507 sc->base_params->calib_need, 6508 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6509 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6510 return (EINVAL); 6511 } 6512 6513 /* Compute temperature calib if needed. Will be send by send calib */ 6514 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6515 error = iwn5000_temp_offset_calib(sc); 6516 if (error != 0) { 6517 device_printf(sc->sc_dev, 6518 "%s: could not set temperature offset\n", __func__); 6519 return (error); 6520 } 6521 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6522 error = iwn5000_temp_offset_calibv2(sc); 6523 if (error != 0) { 6524 device_printf(sc->sc_dev, 6525 "%s: could not compute temperature offset v2\n", 6526 __func__); 6527 return (error); 6528 } 6529 } 6530 6531 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6532 /* Configure runtime DC calibration. */ 6533 error = iwn5000_runtime_calib(sc); 6534 if (error != 0) { 6535 device_printf(sc->sc_dev, 6536 "%s: could not configure runtime calibration\n", 6537 __func__); 6538 return error; 6539 } 6540 } 6541 6542 /* Configure valid TX chains for >=5000 Series. */ 6543 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6544 IWN_UCODE_API(sc->ucode_rev) > 1) { 6545 txmask = htole32(sc->txchainmask); 6546 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6547 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6548 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6549 sizeof txmask, 0); 6550 if (error != 0) { 6551 device_printf(sc->sc_dev, 6552 "%s: could not configure valid TX chains, " 6553 "error %d\n", __func__, error); 6554 return error; 6555 } 6556 } 6557 6558 /* Configure bluetooth coexistence. */ 6559 error = 0; 6560 6561 /* Configure bluetooth coexistence if needed. */ 6562 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6563 error = iwn_send_advanced_btcoex(sc); 6564 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6565 error = iwn_send_btcoex(sc); 6566 6567 if (error != 0) { 6568 device_printf(sc->sc_dev, 6569 "%s: could not configure bluetooth coexistence, error %d\n", 6570 __func__, error); 6571 return error; 6572 } 6573 6574 /* Set mode, channel, RX filter and enable RX. */ 6575 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6576 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6577 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6578 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6579 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6580 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6581 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6582 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6583 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6584 switch (ic->ic_opmode) { 6585 case IEEE80211_M_STA: 6586 sc->rxon->mode = IWN_MODE_STA; 6587 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6588 break; 6589 case IEEE80211_M_MONITOR: 6590 sc->rxon->mode = IWN_MODE_MONITOR; 6591 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST | 6592 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 6593 break; 6594 default: 6595 /* Should not get there. */ 6596 break; 6597 } 6598 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6599 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6600 sc->rxon->ht_single_mask = 0xff; 6601 sc->rxon->ht_dual_mask = 0xff; 6602 sc->rxon->ht_triple_mask = 0xff; 6603 /* 6604 * In active association mode, ensure that 6605 * all the receive chains are enabled. 6606 * 6607 * Since we're not yet doing SMPS, don't allow the 6608 * number of idle RX chains to be less than the active 6609 * number. 6610 */ 6611 rxchain = 6612 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6613 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6614 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6615 sc->rxon->rxchain = htole16(rxchain); 6616 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6617 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6618 __func__, 6619 sc->rxchainmask, 6620 sc->nrxchains); 6621 6622 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 6623 6624 DPRINTF(sc, IWN_DEBUG_RESET, 6625 "%s: setting configuration; flags=0x%08x\n", 6626 __func__, le32toh(sc->rxon->flags)); 6627 if (sc->sc_is_scanning) 6628 device_printf(sc->sc_dev, 6629 "%s: is_scanning set, before RXON\n", 6630 __func__); 6631 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0); 6632 if (error != 0) { 6633 device_printf(sc->sc_dev, "%s: RXON command failed\n", 6634 __func__); 6635 return error; 6636 } 6637 6638 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 6639 device_printf(sc->sc_dev, "%s: could not add broadcast node\n", 6640 __func__); 6641 return error; 6642 } 6643 6644 /* Configuration has changed, set TX power accordingly. */ 6645 if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { 6646 device_printf(sc->sc_dev, "%s: could not set TX power\n", 6647 __func__); 6648 return error; 6649 } 6650 6651 if ((error = iwn_set_critical_temp(sc)) != 0) { 6652 device_printf(sc->sc_dev, 6653 "%s: could not set critical temperature\n", __func__); 6654 return error; 6655 } 6656 6657 /* Set power saving level to CAM during initialization. */ 6658 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6659 device_printf(sc->sc_dev, 6660 "%s: could not set power saving level\n", __func__); 6661 return error; 6662 } 6663 6664 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6665 6666 return 0; 6667 } 6668 6669 static uint16_t 6670 iwn_get_active_dwell_time(struct iwn_softc *sc, 6671 struct ieee80211_channel *c, uint8_t n_probes) 6672 { 6673 /* No channel? Default to 2GHz settings */ 6674 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6675 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6676 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6677 } 6678 6679 /* 5GHz dwell time */ 6680 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6681 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6682 } 6683 6684 /* 6685 * Limit the total dwell time to 85% of the beacon interval. 6686 * 6687 * Returns the dwell time in milliseconds. 6688 */ 6689 static uint16_t 6690 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6691 { 6692 struct ieee80211com *ic = &sc->sc_ic; 6693 struct ieee80211vap *vap = NULL; 6694 int bintval = 0; 6695 6696 /* bintval is in TU (1.024mS) */ 6697 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6698 vap = TAILQ_FIRST(&ic->ic_vaps); 6699 bintval = vap->iv_bss->ni_intval; 6700 } 6701 6702 /* 6703 * If it's non-zero, we should calculate the minimum of 6704 * it and the DWELL_BASE. 6705 * 6706 * XXX Yes, the math should take into account that bintval 6707 * is 1.024mS, not 1mS.. 6708 */ 6709 if (bintval > 0) { 6710 DPRINTF(sc, IWN_DEBUG_SCAN, 6711 "%s: bintval=%d\n", 6712 __func__, 6713 bintval); 6714 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6715 } 6716 6717 /* No association context? Default */ 6718 return (IWN_PASSIVE_DWELL_BASE); 6719 } 6720 6721 static uint16_t 6722 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6723 { 6724 uint16_t passive; 6725 6726 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6727 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 6728 } else { 6729 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 6730 } 6731 6732 /* Clamp to the beacon interval if we're associated */ 6733 return (iwn_limit_dwell(sc, passive)); 6734 } 6735 6736 static int 6737 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 6738 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 6739 { 6740 struct ieee80211com *ic = &sc->sc_ic; 6741 struct ieee80211_node *ni = vap->iv_bss; 6742 struct iwn_scan_hdr *hdr; 6743 struct iwn_cmd_data *tx; 6744 struct iwn_scan_essid *essid; 6745 struct iwn_scan_chan *chan; 6746 struct ieee80211_frame *wh; 6747 struct ieee80211_rateset *rs; 6748 uint8_t *buf, *frm; 6749 uint16_t rxchain; 6750 uint8_t txant; 6751 int buflen, error; 6752 int is_active; 6753 uint16_t dwell_active, dwell_passive; 6754 uint32_t extra, scan_service_time; 6755 6756 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6757 6758 /* 6759 * We are absolutely not allowed to send a scan command when another 6760 * scan command is pending. 6761 */ 6762 if (sc->sc_is_scanning) { 6763 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 6764 __func__); 6765 return (EAGAIN); 6766 } 6767 6768 /* Assign the scan channel */ 6769 c = ic->ic_curchan; 6770 6771 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6772 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 6773 if (buf == NULL) { 6774 device_printf(sc->sc_dev, 6775 "%s: could not allocate buffer for scan command\n", 6776 __func__); 6777 return ENOMEM; 6778 } 6779 hdr = (struct iwn_scan_hdr *)buf; 6780 /* 6781 * Move to the next channel if no frames are received within 10ms 6782 * after sending the probe request. 6783 */ 6784 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 6785 hdr->quiet_threshold = htole16(1); /* min # of packets */ 6786 /* 6787 * Max needs to be greater than active and passive and quiet! 6788 * It's also in microseconds! 6789 */ 6790 hdr->max_svc = htole32(250 * 1024); 6791 6792 /* 6793 * Reset scan: interval=100 6794 * Normal scan: interval=becaon interval 6795 * suspend_time: 100 (TU) 6796 * 6797 */ 6798 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 6799 //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 6800 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 6801 hdr->pause_svc = htole32(scan_service_time); 6802 6803 /* Select antennas for scanning. */ 6804 rxchain = 6805 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6806 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 6807 IWN_RXCHAIN_DRIVER_FORCE; 6808 if (IEEE80211_IS_CHAN_A(c) && 6809 sc->hw_type == IWN_HW_REV_TYPE_4965) { 6810 /* Ant A must be avoided in 5GHz because of an HW bug. */ 6811 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 6812 } else /* Use all available RX antennas. */ 6813 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 6814 hdr->rxchain = htole16(rxchain); 6815 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 6816 6817 tx = (struct iwn_cmd_data *)(hdr + 1); 6818 tx->flags = htole32(IWN_TX_AUTO_SEQ); 6819 tx->id = sc->broadcast_id; 6820 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 6821 6822 if (IEEE80211_IS_CHAN_5GHZ(c)) { 6823 /* Send probe requests at 6Mbps. */ 6824 tx->rate = htole32(0xd); 6825 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 6826 } else { 6827 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 6828 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 6829 sc->rxon->associd && sc->rxon->chan > 14) 6830 tx->rate = htole32(0xd); 6831 else { 6832 /* Send probe requests at 1Mbps. */ 6833 tx->rate = htole32(10 | IWN_RFLAG_CCK); 6834 } 6835 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 6836 } 6837 /* Use the first valid TX antenna. */ 6838 txant = IWN_LSB(sc->txchainmask); 6839 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 6840 6841 /* 6842 * Only do active scanning if we're announcing a probe request 6843 * for a given SSID (or more, if we ever add it to the driver.) 6844 */ 6845 is_active = 0; 6846 6847 /* 6848 * If we're scanning for a specific SSID, add it to the command. 6849 * 6850 * XXX maybe look at adding support for scanning multiple SSIDs? 6851 */ 6852 essid = (struct iwn_scan_essid *)(tx + 1); 6853 if (ss != NULL) { 6854 if (ss->ss_ssid[0].len != 0) { 6855 essid[0].id = IEEE80211_ELEMID_SSID; 6856 essid[0].len = ss->ss_ssid[0].len; 6857 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 6858 } 6859 6860 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 6861 __func__, 6862 ss->ss_ssid[0].len, 6863 ss->ss_ssid[0].len, 6864 ss->ss_ssid[0].ssid); 6865 6866 if (ss->ss_nssid > 0) 6867 is_active = 1; 6868 } 6869 6870 /* 6871 * Build a probe request frame. Most of the following code is a 6872 * copy & paste of what is done in net80211. 6873 */ 6874 wh = (struct ieee80211_frame *)(essid + 20); 6875 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 6876 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 6877 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 6878 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); 6879 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); 6880 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); 6881 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 6882 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 6883 6884 frm = (uint8_t *)(wh + 1); 6885 frm = ieee80211_add_ssid(frm, NULL, 0); 6886 frm = ieee80211_add_rates(frm, rs); 6887 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 6888 frm = ieee80211_add_xrates(frm, rs); 6889 if (ic->ic_htcaps & IEEE80211_HTC_HT) 6890 frm = ieee80211_add_htcap(frm, ni); 6891 6892 /* Set length of probe request. */ 6893 tx->len = htole16(frm - (uint8_t *)wh); 6894 6895 /* 6896 * If active scanning is requested but a certain channel is 6897 * marked passive, we can do active scanning if we detect 6898 * transmissions. 6899 * 6900 * There is an issue with some firmware versions that triggers 6901 * a sysassert on a "good CRC threshold" of zero (== disabled), 6902 * on a radar channel even though this means that we should NOT 6903 * send probes. 6904 * 6905 * The "good CRC threshold" is the number of frames that we 6906 * need to receive during our dwell time on a channel before 6907 * sending out probes -- setting this to a huge value will 6908 * mean we never reach it, but at the same time work around 6909 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 6910 * here instead of IWL_GOOD_CRC_TH_DISABLED. 6911 * 6912 * This was fixed in later versions along with some other 6913 * scan changes, and the threshold behaves as a flag in those 6914 * versions. 6915 */ 6916 6917 /* 6918 * If we're doing active scanning, set the crc_threshold 6919 * to a suitable value. This is different to active veruss 6920 * passive scanning depending upon the channel flags; the 6921 * firmware will obey that particular check for us. 6922 */ 6923 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 6924 hdr->crc_threshold = is_active ? 6925 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 6926 else 6927 hdr->crc_threshold = is_active ? 6928 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 6929 6930 chan = (struct iwn_scan_chan *)frm; 6931 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 6932 chan->flags = 0; 6933 if (ss->ss_nssid > 0) 6934 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 6935 chan->dsp_gain = 0x6e; 6936 6937 /* 6938 * Set the passive/active flag depending upon the channel mode. 6939 * XXX TODO: take the is_active flag into account as well? 6940 */ 6941 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 6942 chan->flags |= htole32(IWN_CHAN_PASSIVE); 6943 else 6944 chan->flags |= htole32(IWN_CHAN_ACTIVE); 6945 6946 /* 6947 * Calculate the active/passive dwell times. 6948 */ 6949 6950 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 6951 dwell_passive = iwn_get_passive_dwell_time(sc, c); 6952 6953 /* Make sure they're valid */ 6954 if (dwell_passive <= dwell_active) 6955 dwell_passive = dwell_active + 1; 6956 6957 chan->active = htole16(dwell_active); 6958 chan->passive = htole16(dwell_passive); 6959 6960 if (IEEE80211_IS_CHAN_5GHZ(c)) 6961 chan->rf_gain = 0x3b; 6962 else 6963 chan->rf_gain = 0x28; 6964 6965 DPRINTF(sc, IWN_DEBUG_STATE, 6966 "%s: chan %u flags 0x%x rf_gain 0x%x " 6967 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 6968 "isactive=%d numssid=%d\n", __func__, 6969 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 6970 dwell_active, dwell_passive, scan_service_time, 6971 hdr->crc_threshold, is_active, ss->ss_nssid); 6972 6973 hdr->nchan++; 6974 chan++; 6975 buflen = (uint8_t *)chan - buf; 6976 hdr->len = htole16(buflen); 6977 6978 if (sc->sc_is_scanning) { 6979 device_printf(sc->sc_dev, 6980 "%s: called with is_scanning set!\n", 6981 __func__); 6982 } 6983 sc->sc_is_scanning = 1; 6984 6985 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 6986 hdr->nchan); 6987 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 6988 free(buf, M_DEVBUF); 6989 if (error == 0) 6990 callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc); 6991 6992 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6993 6994 return error; 6995 } 6996 6997 static int 6998 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 6999 { 7000 struct iwn_ops *ops = &sc->ops; 7001 struct ieee80211com *ic = &sc->sc_ic; 7002 struct ieee80211_node *ni = vap->iv_bss; 7003 int error; 7004 7005 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7006 7007 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7008 /* Update adapter configuration. */ 7009 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7010 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7011 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7012 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7013 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7014 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7015 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7016 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7017 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7018 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7019 sc->rxon->cck_mask = 0; 7020 sc->rxon->ofdm_mask = 0x15; 7021 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7022 sc->rxon->cck_mask = 0x03; 7023 sc->rxon->ofdm_mask = 0; 7024 } else { 7025 /* Assume 802.11b/g. */ 7026 sc->rxon->cck_mask = 0x03; 7027 sc->rxon->ofdm_mask = 0x15; 7028 } 7029 7030 /* try HT */ 7031 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 7032 7033 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7034 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7035 sc->rxon->ofdm_mask); 7036 if (sc->sc_is_scanning) 7037 device_printf(sc->sc_dev, 7038 "%s: is_scanning set, before RXON\n", 7039 __func__); 7040 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7041 if (error != 0) { 7042 device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", 7043 __func__, error); 7044 return error; 7045 } 7046 7047 /* Configuration has changed, set TX power accordingly. */ 7048 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7049 device_printf(sc->sc_dev, 7050 "%s: could not set TX power, error %d\n", __func__, error); 7051 return error; 7052 } 7053 /* 7054 * Reconfiguring RXON clears the firmware nodes table so we must 7055 * add the broadcast node again. 7056 */ 7057 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 7058 device_printf(sc->sc_dev, 7059 "%s: could not add broadcast node, error %d\n", __func__, 7060 error); 7061 return error; 7062 } 7063 7064 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7065 7066 return 0; 7067 } 7068 7069 static int 7070 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7071 { 7072 struct iwn_ops *ops = &sc->ops; 7073 struct ieee80211com *ic = &sc->sc_ic; 7074 struct ieee80211_node *ni = vap->iv_bss; 7075 struct iwn_node_info node; 7076 int error; 7077 7078 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7079 7080 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7081 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7082 /* Link LED blinks while monitoring. */ 7083 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7084 return 0; 7085 } 7086 if ((error = iwn_set_timing(sc, ni)) != 0) { 7087 device_printf(sc->sc_dev, 7088 "%s: could not set timing, error %d\n", __func__, error); 7089 return error; 7090 } 7091 7092 /* Update adapter configuration. */ 7093 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7094 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7095 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7096 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7097 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7098 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7099 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7100 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7101 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7102 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7103 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7104 sc->rxon->cck_mask = 0; 7105 sc->rxon->ofdm_mask = 0x15; 7106 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7107 sc->rxon->cck_mask = 0x03; 7108 sc->rxon->ofdm_mask = 0; 7109 } else { 7110 /* Assume 802.11b/g. */ 7111 sc->rxon->cck_mask = 0x0f; 7112 sc->rxon->ofdm_mask = 0x15; 7113 } 7114 /* try HT */ 7115 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); 7116 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7117 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7118 sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); 7119 if (sc->sc_is_scanning) 7120 device_printf(sc->sc_dev, 7121 "%s: is_scanning set, before RXON\n", 7122 __func__); 7123 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7124 if (error != 0) { 7125 device_printf(sc->sc_dev, 7126 "%s: could not update configuration, error %d\n", __func__, 7127 error); 7128 return error; 7129 } 7130 7131 /* Configuration has changed, set TX power accordingly. */ 7132 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7133 device_printf(sc->sc_dev, 7134 "%s: could not set TX power, error %d\n", __func__, error); 7135 return error; 7136 } 7137 7138 /* Fake a join to initialize the TX rate. */ 7139 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7140 iwn_newassoc(ni, 1); 7141 7142 /* Add BSS node. */ 7143 memset(&node, 0, sizeof node); 7144 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7145 node.id = IWN_ID_BSS; 7146 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7147 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7148 case IEEE80211_HTCAP_SMPS_ENA: 7149 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7150 break; 7151 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7152 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7153 break; 7154 } 7155 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7156 IWN_AMDPU_DENSITY(5)); /* 4us */ 7157 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7158 node.htflags |= htole32(IWN_NODE_HT40); 7159 } 7160 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7161 error = ops->add_node(sc, &node, 1); 7162 if (error != 0) { 7163 device_printf(sc->sc_dev, 7164 "%s: could not add BSS node, error %d\n", __func__, error); 7165 return error; 7166 } 7167 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7168 __func__, node.id); 7169 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7170 device_printf(sc->sc_dev, 7171 "%s: could not setup link quality for node %d, error %d\n", 7172 __func__, node.id, error); 7173 return error; 7174 } 7175 7176 if ((error = iwn_init_sensitivity(sc)) != 0) { 7177 device_printf(sc->sc_dev, 7178 "%s: could not set sensitivity, error %d\n", __func__, 7179 error); 7180 return error; 7181 } 7182 /* Start periodic calibration timer. */ 7183 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7184 sc->calib_cnt = 0; 7185 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7186 sc); 7187 7188 /* Link LED always on while associated. */ 7189 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7190 7191 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7192 7193 return 0; 7194 } 7195 7196 /* 7197 * This function is called by upper layer when an ADDBA request is received 7198 * from another STA and before the ADDBA response is sent. 7199 */ 7200 static int 7201 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7202 int baparamset, int batimeout, int baseqctl) 7203 { 7204 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 7205 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7206 struct iwn_ops *ops = &sc->ops; 7207 struct iwn_node *wn = (void *)ni; 7208 struct iwn_node_info node; 7209 uint16_t ssn; 7210 uint8_t tid; 7211 int error; 7212 7213 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7214 7215 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 7216 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 7217 7218 memset(&node, 0, sizeof node); 7219 node.id = wn->id; 7220 node.control = IWN_NODE_UPDATE; 7221 node.flags = IWN_FLAG_SET_ADDBA; 7222 node.addba_tid = tid; 7223 node.addba_ssn = htole16(ssn); 7224 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7225 wn->id, tid, ssn); 7226 error = ops->add_node(sc, &node, 1); 7227 if (error != 0) 7228 return error; 7229 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7230 #undef MS 7231 } 7232 7233 /* 7234 * This function is called by upper layer on teardown of an HT-immediate 7235 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7236 */ 7237 static void 7238 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7239 { 7240 struct ieee80211com *ic = ni->ni_ic; 7241 struct iwn_softc *sc = ic->ic_softc; 7242 struct iwn_ops *ops = &sc->ops; 7243 struct iwn_node *wn = (void *)ni; 7244 struct iwn_node_info node; 7245 uint8_t tid; 7246 7247 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7248 7249 /* XXX: tid as an argument */ 7250 for (tid = 0; tid < WME_NUM_TID; tid++) { 7251 if (&ni->ni_rx_ampdu[tid] == rap) 7252 break; 7253 } 7254 7255 memset(&node, 0, sizeof node); 7256 node.id = wn->id; 7257 node.control = IWN_NODE_UPDATE; 7258 node.flags = IWN_FLAG_SET_DELBA; 7259 node.delba_tid = tid; 7260 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7261 (void)ops->add_node(sc, &node, 1); 7262 sc->sc_ampdu_rx_stop(ni, rap); 7263 } 7264 7265 static int 7266 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7267 int dialogtoken, int baparamset, int batimeout) 7268 { 7269 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7270 int qid; 7271 7272 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7273 7274 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7275 if (sc->qid2tap[qid] == NULL) 7276 break; 7277 } 7278 if (qid == sc->ntxqs) { 7279 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 7280 __func__); 7281 return 0; 7282 } 7283 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7284 if (tap->txa_private == NULL) { 7285 device_printf(sc->sc_dev, 7286 "%s: failed to alloc TX aggregation structure\n", __func__); 7287 return 0; 7288 } 7289 sc->qid2tap[qid] = tap; 7290 *(int *)tap->txa_private = qid; 7291 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7292 batimeout); 7293 } 7294 7295 static int 7296 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7297 int code, int baparamset, int batimeout) 7298 { 7299 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7300 int qid = *(int *)tap->txa_private; 7301 uint8_t tid = tap->txa_tid; 7302 int ret; 7303 7304 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7305 7306 if (code == IEEE80211_STATUS_SUCCESS) { 7307 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7308 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7309 if (ret != 1) 7310 return ret; 7311 } else { 7312 sc->qid2tap[qid] = NULL; 7313 free(tap->txa_private, M_DEVBUF); 7314 tap->txa_private = NULL; 7315 } 7316 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7317 } 7318 7319 /* 7320 * This function is called by upper layer when an ADDBA response is received 7321 * from another STA. 7322 */ 7323 static int 7324 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7325 uint8_t tid) 7326 { 7327 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7328 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7329 struct iwn_ops *ops = &sc->ops; 7330 struct iwn_node *wn = (void *)ni; 7331 struct iwn_node_info node; 7332 int error, qid; 7333 7334 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7335 7336 /* Enable TX for the specified RA/TID. */ 7337 wn->disable_tid &= ~(1 << tid); 7338 memset(&node, 0, sizeof node); 7339 node.id = wn->id; 7340 node.control = IWN_NODE_UPDATE; 7341 node.flags = IWN_FLAG_SET_DISABLE_TID; 7342 node.disable_tid = htole16(wn->disable_tid); 7343 error = ops->add_node(sc, &node, 1); 7344 if (error != 0) 7345 return 0; 7346 7347 if ((error = iwn_nic_lock(sc)) != 0) 7348 return 0; 7349 qid = *(int *)tap->txa_private; 7350 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7351 __func__, wn->id, tid, tap->txa_start, qid); 7352 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7353 iwn_nic_unlock(sc); 7354 7355 iwn_set_link_quality(sc, ni); 7356 return 1; 7357 } 7358 7359 static void 7360 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7361 { 7362 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7363 struct iwn_ops *ops = &sc->ops; 7364 uint8_t tid = tap->txa_tid; 7365 int qid; 7366 7367 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7368 7369 sc->sc_addba_stop(ni, tap); 7370 7371 if (tap->txa_private == NULL) 7372 return; 7373 7374 qid = *(int *)tap->txa_private; 7375 if (sc->txq[qid].queued != 0) 7376 return; 7377 if (iwn_nic_lock(sc) != 0) 7378 return; 7379 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7380 iwn_nic_unlock(sc); 7381 sc->qid2tap[qid] = NULL; 7382 free(tap->txa_private, M_DEVBUF); 7383 tap->txa_private = NULL; 7384 } 7385 7386 static void 7387 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7388 int qid, uint8_t tid, uint16_t ssn) 7389 { 7390 struct iwn_node *wn = (void *)ni; 7391 7392 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7393 7394 /* Stop TX scheduler while we're changing its configuration. */ 7395 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7396 IWN4965_TXQ_STATUS_CHGACT); 7397 7398 /* Assign RA/TID translation to the queue. */ 7399 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7400 wn->id << 4 | tid); 7401 7402 /* Enable chain-building mode for the queue. */ 7403 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7404 7405 /* Set starting sequence number from the ADDBA request. */ 7406 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7407 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7408 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7409 7410 /* Set scheduler window size. */ 7411 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7412 IWN_SCHED_WINSZ); 7413 /* Set scheduler frame limit. */ 7414 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7415 IWN_SCHED_LIMIT << 16); 7416 7417 /* Enable interrupts for the queue. */ 7418 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7419 7420 /* Mark the queue as active. */ 7421 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7422 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7423 iwn_tid2fifo[tid] << 1); 7424 } 7425 7426 static void 7427 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7428 { 7429 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7430 7431 /* Stop TX scheduler while we're changing its configuration. */ 7432 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7433 IWN4965_TXQ_STATUS_CHGACT); 7434 7435 /* Set starting sequence number from the ADDBA request. */ 7436 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7437 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7438 7439 /* Disable interrupts for the queue. */ 7440 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7441 7442 /* Mark the queue as inactive. */ 7443 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7444 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7445 } 7446 7447 static void 7448 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7449 int qid, uint8_t tid, uint16_t ssn) 7450 { 7451 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7452 7453 struct iwn_node *wn = (void *)ni; 7454 7455 /* Stop TX scheduler while we're changing its configuration. */ 7456 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7457 IWN5000_TXQ_STATUS_CHGACT); 7458 7459 /* Assign RA/TID translation to the queue. */ 7460 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7461 wn->id << 4 | tid); 7462 7463 /* Enable chain-building mode for the queue. */ 7464 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7465 7466 /* Enable aggregation for the queue. */ 7467 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7468 7469 /* Set starting sequence number from the ADDBA request. */ 7470 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7471 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7472 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7473 7474 /* Set scheduler window size and frame limit. */ 7475 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7476 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7477 7478 /* Enable interrupts for the queue. */ 7479 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7480 7481 /* Mark the queue as active. */ 7482 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7483 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7484 } 7485 7486 static void 7487 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7488 { 7489 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7490 7491 /* Stop TX scheduler while we're changing its configuration. */ 7492 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7493 IWN5000_TXQ_STATUS_CHGACT); 7494 7495 /* Disable aggregation for the queue. */ 7496 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7497 7498 /* Set starting sequence number from the ADDBA request. */ 7499 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7500 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7501 7502 /* Disable interrupts for the queue. */ 7503 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7504 7505 /* Mark the queue as inactive. */ 7506 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7507 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7508 } 7509 7510 /* 7511 * Query calibration tables from the initialization firmware. We do this 7512 * only once at first boot. Called from a process context. 7513 */ 7514 static int 7515 iwn5000_query_calibration(struct iwn_softc *sc) 7516 { 7517 struct iwn5000_calib_config cmd; 7518 int error; 7519 7520 memset(&cmd, 0, sizeof cmd); 7521 cmd.ucode.once.enable = htole32(0xffffffff); 7522 cmd.ucode.once.start = htole32(0xffffffff); 7523 cmd.ucode.once.send = htole32(0xffffffff); 7524 cmd.ucode.flags = htole32(0xffffffff); 7525 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7526 __func__); 7527 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7528 if (error != 0) 7529 return error; 7530 7531 /* Wait at most two seconds for calibration to complete. */ 7532 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7533 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7534 return error; 7535 } 7536 7537 /* 7538 * Send calibration results to the runtime firmware. These results were 7539 * obtained on first boot from the initialization firmware. 7540 */ 7541 static int 7542 iwn5000_send_calibration(struct iwn_softc *sc) 7543 { 7544 int idx, error; 7545 7546 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7547 if (!(sc->base_params->calib_need & (1<<idx))) { 7548 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7549 "No need of calib %d\n", 7550 idx); 7551 continue; /* no need for this calib */ 7552 } 7553 if (sc->calibcmd[idx].buf == NULL) { 7554 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7555 "Need calib idx : %d but no available data\n", 7556 idx); 7557 continue; 7558 } 7559 7560 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7561 "send calibration result idx=%d len=%d\n", idx, 7562 sc->calibcmd[idx].len); 7563 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7564 sc->calibcmd[idx].len, 0); 7565 if (error != 0) { 7566 device_printf(sc->sc_dev, 7567 "%s: could not send calibration result, error %d\n", 7568 __func__, error); 7569 return error; 7570 } 7571 } 7572 return 0; 7573 } 7574 7575 static int 7576 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7577 { 7578 struct iwn5000_wimax_coex wimax; 7579 7580 #if 0 7581 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7582 /* Enable WiMAX coexistence for combo adapters. */ 7583 wimax.flags = 7584 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7585 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7586 IWN_WIMAX_COEX_STA_TABLE_VALID | 7587 IWN_WIMAX_COEX_ENABLE; 7588 memcpy(wimax.events, iwn6050_wimax_events, 7589 sizeof iwn6050_wimax_events); 7590 } else 7591 #endif 7592 { 7593 /* Disable WiMAX coexistence. */ 7594 wimax.flags = 0; 7595 memset(wimax.events, 0, sizeof wimax.events); 7596 } 7597 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7598 __func__); 7599 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7600 } 7601 7602 static int 7603 iwn5000_crystal_calib(struct iwn_softc *sc) 7604 { 7605 struct iwn5000_phy_calib_crystal cmd; 7606 7607 memset(&cmd, 0, sizeof cmd); 7608 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7609 cmd.ngroups = 1; 7610 cmd.isvalid = 1; 7611 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7612 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7613 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7614 cmd.cap_pin[0], cmd.cap_pin[1]); 7615 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7616 } 7617 7618 static int 7619 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7620 { 7621 struct iwn5000_phy_calib_temp_offset cmd; 7622 7623 memset(&cmd, 0, sizeof cmd); 7624 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7625 cmd.ngroups = 1; 7626 cmd.isvalid = 1; 7627 if (sc->eeprom_temp != 0) 7628 cmd.offset = htole16(sc->eeprom_temp); 7629 else 7630 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7631 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7632 le16toh(cmd.offset)); 7633 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7634 } 7635 7636 static int 7637 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7638 { 7639 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7640 7641 memset(&cmd, 0, sizeof cmd); 7642 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7643 cmd.ngroups = 1; 7644 cmd.isvalid = 1; 7645 if (sc->eeprom_temp != 0) { 7646 cmd.offset_low = htole16(sc->eeprom_temp); 7647 cmd.offset_high = htole16(sc->eeprom_temp_high); 7648 } else { 7649 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7650 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7651 } 7652 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7653 7654 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7655 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7656 le16toh(cmd.offset_low), 7657 le16toh(cmd.offset_high), 7658 le16toh(cmd.burnt_voltage_ref)); 7659 7660 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7661 } 7662 7663 /* 7664 * This function is called after the runtime firmware notifies us of its 7665 * readiness (called in a process context). 7666 */ 7667 static int 7668 iwn4965_post_alive(struct iwn_softc *sc) 7669 { 7670 int error, qid; 7671 7672 if ((error = iwn_nic_lock(sc)) != 0) 7673 return error; 7674 7675 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7676 7677 /* Clear TX scheduler state in SRAM. */ 7678 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7679 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7680 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7681 7682 /* Set physical address of TX scheduler rings (1KB aligned). */ 7683 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7684 7685 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7686 7687 /* Disable chain mode for all our 16 queues. */ 7688 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7689 7690 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7691 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7692 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7693 7694 /* Set scheduler window size. */ 7695 iwn_mem_write(sc, sc->sched_base + 7696 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7697 /* Set scheduler frame limit. */ 7698 iwn_mem_write(sc, sc->sched_base + 7699 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7700 IWN_SCHED_LIMIT << 16); 7701 } 7702 7703 /* Enable interrupts for all our 16 queues. */ 7704 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7705 /* Identify TX FIFO rings (0-7). */ 7706 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7707 7708 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7709 for (qid = 0; qid < 7; qid++) { 7710 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7711 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7712 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7713 } 7714 iwn_nic_unlock(sc); 7715 return 0; 7716 } 7717 7718 /* 7719 * This function is called after the initialization or runtime firmware 7720 * notifies us of its readiness (called in a process context). 7721 */ 7722 static int 7723 iwn5000_post_alive(struct iwn_softc *sc) 7724 { 7725 int error, qid; 7726 7727 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7728 7729 /* Switch to using ICT interrupt mode. */ 7730 iwn5000_ict_reset(sc); 7731 7732 if ((error = iwn_nic_lock(sc)) != 0){ 7733 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7734 return error; 7735 } 7736 7737 /* Clear TX scheduler state in SRAM. */ 7738 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7739 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7740 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 7741 7742 /* Set physical address of TX scheduler rings (1KB aligned). */ 7743 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7744 7745 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7746 7747 /* Enable chain mode for all queues, except command queue. */ 7748 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 7749 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 7750 else 7751 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 7752 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 7753 7754 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 7755 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 7756 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7757 7758 iwn_mem_write(sc, sc->sched_base + 7759 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 7760 /* Set scheduler window size and frame limit. */ 7761 iwn_mem_write(sc, sc->sched_base + 7762 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7763 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7764 } 7765 7766 /* Enable interrupts for all our 20 queues. */ 7767 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 7768 /* Identify TX FIFO rings (0-7). */ 7769 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 7770 7771 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7772 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 7773 /* Mark TX rings as active. */ 7774 for (qid = 0; qid < 11; qid++) { 7775 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 7776 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7777 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7778 } 7779 } else { 7780 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7781 for (qid = 0; qid < 7; qid++) { 7782 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 7783 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7784 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7785 } 7786 } 7787 iwn_nic_unlock(sc); 7788 7789 /* Configure WiMAX coexistence for combo adapters. */ 7790 error = iwn5000_send_wimax_coex(sc); 7791 if (error != 0) { 7792 device_printf(sc->sc_dev, 7793 "%s: could not configure WiMAX coexistence, error %d\n", 7794 __func__, error); 7795 return error; 7796 } 7797 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 7798 /* Perform crystal calibration. */ 7799 error = iwn5000_crystal_calib(sc); 7800 if (error != 0) { 7801 device_printf(sc->sc_dev, 7802 "%s: crystal calibration failed, error %d\n", 7803 __func__, error); 7804 return error; 7805 } 7806 } 7807 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 7808 /* Query calibration from the initialization firmware. */ 7809 if ((error = iwn5000_query_calibration(sc)) != 0) { 7810 device_printf(sc->sc_dev, 7811 "%s: could not query calibration, error %d\n", 7812 __func__, error); 7813 return error; 7814 } 7815 /* 7816 * We have the calibration results now, reboot with the 7817 * runtime firmware (call ourselves recursively!) 7818 */ 7819 iwn_hw_stop(sc); 7820 error = iwn_hw_init(sc); 7821 } else { 7822 /* Send calibration results to runtime firmware. */ 7823 error = iwn5000_send_calibration(sc); 7824 } 7825 7826 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7827 7828 return error; 7829 } 7830 7831 /* 7832 * The firmware boot code is small and is intended to be copied directly into 7833 * the NIC internal memory (no DMA transfer). 7834 */ 7835 static int 7836 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 7837 { 7838 int error, ntries; 7839 7840 size /= sizeof (uint32_t); 7841 7842 if ((error = iwn_nic_lock(sc)) != 0) 7843 return error; 7844 7845 /* Copy microcode image into NIC memory. */ 7846 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 7847 (const uint32_t *)ucode, size); 7848 7849 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 7850 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 7851 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 7852 7853 /* Start boot load now. */ 7854 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 7855 7856 /* Wait for transfer to complete. */ 7857 for (ntries = 0; ntries < 1000; ntries++) { 7858 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 7859 IWN_BSM_WR_CTRL_START)) 7860 break; 7861 DELAY(10); 7862 } 7863 if (ntries == 1000) { 7864 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7865 __func__); 7866 iwn_nic_unlock(sc); 7867 return ETIMEDOUT; 7868 } 7869 7870 /* Enable boot after power up. */ 7871 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 7872 7873 iwn_nic_unlock(sc); 7874 return 0; 7875 } 7876 7877 static int 7878 iwn4965_load_firmware(struct iwn_softc *sc) 7879 { 7880 struct iwn_fw_info *fw = &sc->fw; 7881 struct iwn_dma_info *dma = &sc->fw_dma; 7882 int error; 7883 7884 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 7885 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 7886 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7887 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7888 fw->init.text, fw->init.textsz); 7889 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7890 7891 /* Tell adapter where to find initialization sections. */ 7892 if ((error = iwn_nic_lock(sc)) != 0) 7893 return error; 7894 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7895 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 7896 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7897 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7898 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 7899 iwn_nic_unlock(sc); 7900 7901 /* Load firmware boot code. */ 7902 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 7903 if (error != 0) { 7904 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7905 __func__); 7906 return error; 7907 } 7908 /* Now press "execute". */ 7909 IWN_WRITE(sc, IWN_RESET, 0); 7910 7911 /* Wait at most one second for first alive notification. */ 7912 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 7913 device_printf(sc->sc_dev, 7914 "%s: timeout waiting for adapter to initialize, error %d\n", 7915 __func__, error); 7916 return error; 7917 } 7918 7919 /* Retrieve current temperature for initial TX power calibration. */ 7920 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 7921 sc->temp = iwn4965_get_temperature(sc); 7922 7923 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 7924 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 7925 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7926 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7927 fw->main.text, fw->main.textsz); 7928 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7929 7930 /* Tell adapter where to find runtime sections. */ 7931 if ((error = iwn_nic_lock(sc)) != 0) 7932 return error; 7933 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7934 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 7935 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7936 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7937 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 7938 IWN_FW_UPDATED | fw->main.textsz); 7939 iwn_nic_unlock(sc); 7940 7941 return 0; 7942 } 7943 7944 static int 7945 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 7946 const uint8_t *section, int size) 7947 { 7948 struct iwn_dma_info *dma = &sc->fw_dma; 7949 int error; 7950 7951 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7952 7953 /* Copy firmware section into pre-allocated DMA-safe memory. */ 7954 memcpy(dma->vaddr, section, size); 7955 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7956 7957 if ((error = iwn_nic_lock(sc)) != 0) 7958 return error; 7959 7960 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7961 IWN_FH_TX_CONFIG_DMA_PAUSE); 7962 7963 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 7964 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 7965 IWN_LOADDR(dma->paddr)); 7966 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 7967 IWN_HIADDR(dma->paddr) << 28 | size); 7968 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 7969 IWN_FH_TXBUF_STATUS_TBNUM(1) | 7970 IWN_FH_TXBUF_STATUS_TBIDX(1) | 7971 IWN_FH_TXBUF_STATUS_TFBD_VALID); 7972 7973 /* Kick Flow Handler to start DMA transfer. */ 7974 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7975 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 7976 7977 iwn_nic_unlock(sc); 7978 7979 /* Wait at most five seconds for FH DMA transfer to complete. */ 7980 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 7981 } 7982 7983 static int 7984 iwn5000_load_firmware(struct iwn_softc *sc) 7985 { 7986 struct iwn_fw_part *fw; 7987 int error; 7988 7989 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7990 7991 /* Load the initialization firmware on first boot only. */ 7992 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 7993 &sc->fw.main : &sc->fw.init; 7994 7995 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 7996 fw->text, fw->textsz); 7997 if (error != 0) { 7998 device_printf(sc->sc_dev, 7999 "%s: could not load firmware %s section, error %d\n", 8000 __func__, ".text", error); 8001 return error; 8002 } 8003 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 8004 fw->data, fw->datasz); 8005 if (error != 0) { 8006 device_printf(sc->sc_dev, 8007 "%s: could not load firmware %s section, error %d\n", 8008 __func__, ".data", error); 8009 return error; 8010 } 8011 8012 /* Now press "execute". */ 8013 IWN_WRITE(sc, IWN_RESET, 0); 8014 return 0; 8015 } 8016 8017 /* 8018 * Extract text and data sections from a legacy firmware image. 8019 */ 8020 static int 8021 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8022 { 8023 const uint32_t *ptr; 8024 size_t hdrlen = 24; 8025 uint32_t rev; 8026 8027 ptr = (const uint32_t *)fw->data; 8028 rev = le32toh(*ptr++); 8029 8030 sc->ucode_rev = rev; 8031 8032 /* Check firmware API version. */ 8033 if (IWN_FW_API(rev) <= 1) { 8034 device_printf(sc->sc_dev, 8035 "%s: bad firmware, need API version >=2\n", __func__); 8036 return EINVAL; 8037 } 8038 if (IWN_FW_API(rev) >= 3) { 8039 /* Skip build number (version 2 header). */ 8040 hdrlen += 4; 8041 ptr++; 8042 } 8043 if (fw->size < hdrlen) { 8044 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8045 __func__, fw->size); 8046 return EINVAL; 8047 } 8048 fw->main.textsz = le32toh(*ptr++); 8049 fw->main.datasz = le32toh(*ptr++); 8050 fw->init.textsz = le32toh(*ptr++); 8051 fw->init.datasz = le32toh(*ptr++); 8052 fw->boot.textsz = le32toh(*ptr++); 8053 8054 /* Check that all firmware sections fit. */ 8055 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8056 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8057 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8058 __func__, fw->size); 8059 return EINVAL; 8060 } 8061 8062 /* Get pointers to firmware sections. */ 8063 fw->main.text = (const uint8_t *)ptr; 8064 fw->main.data = fw->main.text + fw->main.textsz; 8065 fw->init.text = fw->main.data + fw->main.datasz; 8066 fw->init.data = fw->init.text + fw->init.textsz; 8067 fw->boot.text = fw->init.data + fw->init.datasz; 8068 return 0; 8069 } 8070 8071 /* 8072 * Extract text and data sections from a TLV firmware image. 8073 */ 8074 static int 8075 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8076 uint16_t alt) 8077 { 8078 const struct iwn_fw_tlv_hdr *hdr; 8079 const struct iwn_fw_tlv *tlv; 8080 const uint8_t *ptr, *end; 8081 uint64_t altmask; 8082 uint32_t len, tmp; 8083 8084 if (fw->size < sizeof (*hdr)) { 8085 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8086 __func__, fw->size); 8087 return EINVAL; 8088 } 8089 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8090 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8091 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8092 __func__, le32toh(hdr->signature)); 8093 return EINVAL; 8094 } 8095 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8096 le32toh(hdr->build)); 8097 sc->ucode_rev = le32toh(hdr->rev); 8098 8099 /* 8100 * Select the closest supported alternative that is less than 8101 * or equal to the specified one. 8102 */ 8103 altmask = le64toh(hdr->altmask); 8104 while (alt > 0 && !(altmask & (1ULL << alt))) 8105 alt--; /* Downgrade. */ 8106 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8107 8108 ptr = (const uint8_t *)(hdr + 1); 8109 end = (const uint8_t *)(fw->data + fw->size); 8110 8111 /* Parse type-length-value fields. */ 8112 while (ptr + sizeof (*tlv) <= end) { 8113 tlv = (const struct iwn_fw_tlv *)ptr; 8114 len = le32toh(tlv->len); 8115 8116 ptr += sizeof (*tlv); 8117 if (ptr + len > end) { 8118 device_printf(sc->sc_dev, 8119 "%s: firmware too short: %zu bytes\n", __func__, 8120 fw->size); 8121 return EINVAL; 8122 } 8123 /* Skip other alternatives. */ 8124 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8125 goto next; 8126 8127 switch (le16toh(tlv->type)) { 8128 case IWN_FW_TLV_MAIN_TEXT: 8129 fw->main.text = ptr; 8130 fw->main.textsz = len; 8131 break; 8132 case IWN_FW_TLV_MAIN_DATA: 8133 fw->main.data = ptr; 8134 fw->main.datasz = len; 8135 break; 8136 case IWN_FW_TLV_INIT_TEXT: 8137 fw->init.text = ptr; 8138 fw->init.textsz = len; 8139 break; 8140 case IWN_FW_TLV_INIT_DATA: 8141 fw->init.data = ptr; 8142 fw->init.datasz = len; 8143 break; 8144 case IWN_FW_TLV_BOOT_TEXT: 8145 fw->boot.text = ptr; 8146 fw->boot.textsz = len; 8147 break; 8148 case IWN_FW_TLV_ENH_SENS: 8149 if (!len) 8150 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8151 break; 8152 case IWN_FW_TLV_PHY_CALIB: 8153 tmp = le32toh(*ptr); 8154 if (tmp < 253) { 8155 sc->reset_noise_gain = tmp; 8156 sc->noise_gain = tmp + 1; 8157 } 8158 break; 8159 case IWN_FW_TLV_PAN: 8160 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8161 DPRINTF(sc, IWN_DEBUG_RESET, 8162 "PAN Support found: %d\n", 1); 8163 break; 8164 case IWN_FW_TLV_FLAGS: 8165 if (len < sizeof(uint32_t)) 8166 break; 8167 if (len % sizeof(uint32_t)) 8168 break; 8169 sc->tlv_feature_flags = le32toh(*ptr); 8170 DPRINTF(sc, IWN_DEBUG_RESET, 8171 "%s: feature: 0x%08x\n", 8172 __func__, 8173 sc->tlv_feature_flags); 8174 break; 8175 case IWN_FW_TLV_PBREQ_MAXLEN: 8176 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8177 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8178 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8179 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8180 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8181 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8182 case IWN_FW_TLV_WOWLAN_INST: 8183 case IWN_FW_TLV_WOWLAN_DATA: 8184 DPRINTF(sc, IWN_DEBUG_RESET, 8185 "TLV type %d recognized but not handled\n", 8186 le16toh(tlv->type)); 8187 break; 8188 default: 8189 DPRINTF(sc, IWN_DEBUG_RESET, 8190 "TLV type %d not handled\n", le16toh(tlv->type)); 8191 break; 8192 } 8193 next: /* TLV fields are 32-bit aligned. */ 8194 ptr += (len + 3) & ~3; 8195 } 8196 return 0; 8197 } 8198 8199 static int 8200 iwn_read_firmware(struct iwn_softc *sc) 8201 { 8202 struct iwn_fw_info *fw = &sc->fw; 8203 int error; 8204 8205 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8206 8207 IWN_UNLOCK(sc); 8208 8209 memset(fw, 0, sizeof (*fw)); 8210 8211 /* Read firmware image from filesystem. */ 8212 sc->fw_fp = firmware_get(sc->fwname); 8213 if (sc->fw_fp == NULL) { 8214 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8215 __func__, sc->fwname); 8216 IWN_LOCK(sc); 8217 return EINVAL; 8218 } 8219 IWN_LOCK(sc); 8220 8221 fw->size = sc->fw_fp->datasize; 8222 fw->data = (const uint8_t *)sc->fw_fp->data; 8223 if (fw->size < sizeof (uint32_t)) { 8224 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8225 __func__, fw->size); 8226 error = EINVAL; 8227 goto fail; 8228 } 8229 8230 /* Retrieve text and data sections. */ 8231 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8232 error = iwn_read_firmware_leg(sc, fw); 8233 else 8234 error = iwn_read_firmware_tlv(sc, fw, 1); 8235 if (error != 0) { 8236 device_printf(sc->sc_dev, 8237 "%s: could not read firmware sections, error %d\n", 8238 __func__, error); 8239 goto fail; 8240 } 8241 8242 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8243 8244 /* Make sure text and data sections fit in hardware memory. */ 8245 if (fw->main.textsz > sc->fw_text_maxsz || 8246 fw->main.datasz > sc->fw_data_maxsz || 8247 fw->init.textsz > sc->fw_text_maxsz || 8248 fw->init.datasz > sc->fw_data_maxsz || 8249 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8250 (fw->boot.textsz & 3) != 0) { 8251 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8252 __func__); 8253 error = EINVAL; 8254 goto fail; 8255 } 8256 8257 /* We can proceed with loading the firmware. */ 8258 return 0; 8259 8260 fail: iwn_unload_firmware(sc); 8261 return error; 8262 } 8263 8264 static void 8265 iwn_unload_firmware(struct iwn_softc *sc) 8266 { 8267 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8268 sc->fw_fp = NULL; 8269 } 8270 8271 static int 8272 iwn_clock_wait(struct iwn_softc *sc) 8273 { 8274 int ntries; 8275 8276 /* Set "initialization complete" bit. */ 8277 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8278 8279 /* Wait for clock stabilization. */ 8280 for (ntries = 0; ntries < 2500; ntries++) { 8281 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8282 return 0; 8283 DELAY(10); 8284 } 8285 device_printf(sc->sc_dev, 8286 "%s: timeout waiting for clock stabilization\n", __func__); 8287 return ETIMEDOUT; 8288 } 8289 8290 static int 8291 iwn_apm_init(struct iwn_softc *sc) 8292 { 8293 uint32_t reg; 8294 int error; 8295 8296 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8297 8298 /* Disable L0s exit timer (NMI bug workaround). */ 8299 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8300 /* Don't wait for ICH L0s (ICH bug workaround). */ 8301 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8302 8303 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8304 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8305 8306 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8307 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8308 8309 /* Retrieve PCIe Active State Power Management (ASPM). */ 8310 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8311 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8312 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8313 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8314 else 8315 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8316 8317 if (sc->base_params->pll_cfg_val) 8318 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8319 8320 /* Wait for clock stabilization before accessing prph. */ 8321 if ((error = iwn_clock_wait(sc)) != 0) 8322 return error; 8323 8324 if ((error = iwn_nic_lock(sc)) != 0) 8325 return error; 8326 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8327 /* Enable DMA and BSM (Bootstrap State Machine). */ 8328 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8329 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8330 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8331 } else { 8332 /* Enable DMA. */ 8333 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8334 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8335 } 8336 DELAY(20); 8337 /* Disable L1-Active. */ 8338 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8339 iwn_nic_unlock(sc); 8340 8341 return 0; 8342 } 8343 8344 static void 8345 iwn_apm_stop_master(struct iwn_softc *sc) 8346 { 8347 int ntries; 8348 8349 /* Stop busmaster DMA activity. */ 8350 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8351 for (ntries = 0; ntries < 100; ntries++) { 8352 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8353 return; 8354 DELAY(10); 8355 } 8356 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8357 } 8358 8359 static void 8360 iwn_apm_stop(struct iwn_softc *sc) 8361 { 8362 iwn_apm_stop_master(sc); 8363 8364 /* Reset the entire device. */ 8365 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8366 DELAY(10); 8367 /* Clear "initialization complete" bit. */ 8368 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8369 } 8370 8371 static int 8372 iwn4965_nic_config(struct iwn_softc *sc) 8373 { 8374 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8375 8376 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8377 /* 8378 * I don't believe this to be correct but this is what the 8379 * vendor driver is doing. Probably the bits should not be 8380 * shifted in IWN_RFCFG_*. 8381 */ 8382 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8383 IWN_RFCFG_TYPE(sc->rfcfg) | 8384 IWN_RFCFG_STEP(sc->rfcfg) | 8385 IWN_RFCFG_DASH(sc->rfcfg)); 8386 } 8387 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8388 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8389 return 0; 8390 } 8391 8392 static int 8393 iwn5000_nic_config(struct iwn_softc *sc) 8394 { 8395 uint32_t tmp; 8396 int error; 8397 8398 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8399 8400 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8401 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8402 IWN_RFCFG_TYPE(sc->rfcfg) | 8403 IWN_RFCFG_STEP(sc->rfcfg) | 8404 IWN_RFCFG_DASH(sc->rfcfg)); 8405 } 8406 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8407 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8408 8409 if ((error = iwn_nic_lock(sc)) != 0) 8410 return error; 8411 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8412 8413 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8414 /* 8415 * Select first Switching Voltage Regulator (1.32V) to 8416 * solve a stability issue related to noisy DC2DC line 8417 * in the silicon of 1000 Series. 8418 */ 8419 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8420 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8421 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8422 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8423 } 8424 iwn_nic_unlock(sc); 8425 8426 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8427 /* Use internal power amplifier only. */ 8428 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8429 } 8430 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8431 /* Indicate that ROM calibration version is >=6. */ 8432 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8433 } 8434 if (sc->base_params->additional_gp_drv_bit) 8435 IWN_SETBITS(sc, IWN_GP_DRIVER, 8436 sc->base_params->additional_gp_drv_bit); 8437 return 0; 8438 } 8439 8440 /* 8441 * Take NIC ownership over Intel Active Management Technology (AMT). 8442 */ 8443 static int 8444 iwn_hw_prepare(struct iwn_softc *sc) 8445 { 8446 int ntries; 8447 8448 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8449 8450 /* Check if hardware is ready. */ 8451 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8452 for (ntries = 0; ntries < 5; ntries++) { 8453 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8454 IWN_HW_IF_CONFIG_NIC_READY) 8455 return 0; 8456 DELAY(10); 8457 } 8458 8459 /* Hardware not ready, force into ready state. */ 8460 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8461 for (ntries = 0; ntries < 15000; ntries++) { 8462 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8463 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8464 break; 8465 DELAY(10); 8466 } 8467 if (ntries == 15000) 8468 return ETIMEDOUT; 8469 8470 /* Hardware should be ready now. */ 8471 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8472 for (ntries = 0; ntries < 5; ntries++) { 8473 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8474 IWN_HW_IF_CONFIG_NIC_READY) 8475 return 0; 8476 DELAY(10); 8477 } 8478 return ETIMEDOUT; 8479 } 8480 8481 static int 8482 iwn_hw_init(struct iwn_softc *sc) 8483 { 8484 struct iwn_ops *ops = &sc->ops; 8485 int error, chnl, qid; 8486 8487 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8488 8489 /* Clear pending interrupts. */ 8490 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8491 8492 if ((error = iwn_apm_init(sc)) != 0) { 8493 device_printf(sc->sc_dev, 8494 "%s: could not power ON adapter, error %d\n", __func__, 8495 error); 8496 return error; 8497 } 8498 8499 /* Select VMAIN power source. */ 8500 if ((error = iwn_nic_lock(sc)) != 0) 8501 return error; 8502 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8503 iwn_nic_unlock(sc); 8504 8505 /* Perform adapter-specific initialization. */ 8506 if ((error = ops->nic_config(sc)) != 0) 8507 return error; 8508 8509 /* Initialize RX ring. */ 8510 if ((error = iwn_nic_lock(sc)) != 0) 8511 return error; 8512 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8513 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8514 /* Set physical address of RX ring (256-byte aligned). */ 8515 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8516 /* Set physical address of RX status (16-byte aligned). */ 8517 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8518 /* Enable RX. */ 8519 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8520 IWN_FH_RX_CONFIG_ENA | 8521 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8522 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8523 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8524 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8525 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8526 iwn_nic_unlock(sc); 8527 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8528 8529 if ((error = iwn_nic_lock(sc)) != 0) 8530 return error; 8531 8532 /* Initialize TX scheduler. */ 8533 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8534 8535 /* Set physical address of "keep warm" page (16-byte aligned). */ 8536 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8537 8538 /* Initialize TX rings. */ 8539 for (qid = 0; qid < sc->ntxqs; qid++) { 8540 struct iwn_tx_ring *txq = &sc->txq[qid]; 8541 8542 /* Set physical address of TX ring (256-byte aligned). */ 8543 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8544 txq->desc_dma.paddr >> 8); 8545 } 8546 iwn_nic_unlock(sc); 8547 8548 /* Enable DMA channels. */ 8549 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8550 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8551 IWN_FH_TX_CONFIG_DMA_ENA | 8552 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8553 } 8554 8555 /* Clear "radio off" and "commands blocked" bits. */ 8556 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8557 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8558 8559 /* Clear pending interrupts. */ 8560 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8561 /* Enable interrupt coalescing. */ 8562 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8563 /* Enable interrupts. */ 8564 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8565 8566 /* _Really_ make sure "radio off" bit is cleared! */ 8567 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8568 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8569 8570 /* Enable shadow registers. */ 8571 if (sc->base_params->shadow_reg_enable) 8572 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8573 8574 if ((error = ops->load_firmware(sc)) != 0) { 8575 device_printf(sc->sc_dev, 8576 "%s: could not load firmware, error %d\n", __func__, 8577 error); 8578 return error; 8579 } 8580 /* Wait at most one second for firmware alive notification. */ 8581 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8582 device_printf(sc->sc_dev, 8583 "%s: timeout waiting for adapter to initialize, error %d\n", 8584 __func__, error); 8585 return error; 8586 } 8587 /* Do post-firmware initialization. */ 8588 8589 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8590 8591 return ops->post_alive(sc); 8592 } 8593 8594 static void 8595 iwn_hw_stop(struct iwn_softc *sc) 8596 { 8597 int chnl, qid, ntries; 8598 8599 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8600 8601 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8602 8603 /* Disable interrupts. */ 8604 IWN_WRITE(sc, IWN_INT_MASK, 0); 8605 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8606 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8607 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8608 8609 /* Make sure we no longer hold the NIC lock. */ 8610 iwn_nic_unlock(sc); 8611 8612 /* Stop TX scheduler. */ 8613 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8614 8615 /* Stop all DMA channels. */ 8616 if (iwn_nic_lock(sc) == 0) { 8617 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8618 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8619 for (ntries = 0; ntries < 200; ntries++) { 8620 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8621 IWN_FH_TX_STATUS_IDLE(chnl)) 8622 break; 8623 DELAY(10); 8624 } 8625 } 8626 iwn_nic_unlock(sc); 8627 } 8628 8629 /* Stop RX ring. */ 8630 iwn_reset_rx_ring(sc, &sc->rxq); 8631 8632 /* Reset all TX rings. */ 8633 for (qid = 0; qid < sc->ntxqs; qid++) 8634 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8635 8636 if (iwn_nic_lock(sc) == 0) { 8637 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8638 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8639 iwn_nic_unlock(sc); 8640 } 8641 DELAY(5); 8642 /* Power OFF adapter. */ 8643 iwn_apm_stop(sc); 8644 } 8645 8646 static void 8647 iwn_radio_on(void *arg0, int pending) 8648 { 8649 struct iwn_softc *sc = arg0; 8650 struct ieee80211com *ic = &sc->sc_ic; 8651 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8652 8653 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8654 8655 if (vap != NULL) { 8656 iwn_init(sc); 8657 ieee80211_init(vap); 8658 } 8659 } 8660 8661 static void 8662 iwn_radio_off(void *arg0, int pending) 8663 { 8664 struct iwn_softc *sc = arg0; 8665 struct ieee80211com *ic = &sc->sc_ic; 8666 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8667 8668 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8669 8670 iwn_stop(sc); 8671 if (vap != NULL) 8672 ieee80211_stop(vap); 8673 8674 /* Enable interrupts to get RF toggle notification. */ 8675 IWN_LOCK(sc); 8676 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8677 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8678 IWN_UNLOCK(sc); 8679 } 8680 8681 static void 8682 iwn_panicked(void *arg0, int pending) 8683 { 8684 struct iwn_softc *sc = arg0; 8685 struct ieee80211com *ic = &sc->sc_ic; 8686 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8687 #if 0 8688 int error; 8689 #endif 8690 8691 if (vap == NULL) { 8692 printf("%s: null vap\n", __func__); 8693 return; 8694 } 8695 8696 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8697 "restarting\n", __func__, vap->iv_state); 8698 8699 /* 8700 * This is not enough work. We need to also reinitialise 8701 * the correct transmit state for aggregation enabled queues, 8702 * which has a very specific requirement of 8703 * ring index = 802.11 seqno % 256. If we don't do this (which 8704 * we definitely don't!) then the firmware will just panic again. 8705 */ 8706 #if 1 8707 ieee80211_restart_all(ic); 8708 #else 8709 IWN_LOCK(sc); 8710 8711 iwn_stop_locked(sc); 8712 iwn_init_locked(sc); 8713 if (vap->iv_state >= IEEE80211_S_AUTH && 8714 (error = iwn_auth(sc, vap)) != 0) { 8715 device_printf(sc->sc_dev, 8716 "%s: could not move to auth state\n", __func__); 8717 } 8718 if (vap->iv_state >= IEEE80211_S_RUN && 8719 (error = iwn_run(sc, vap)) != 0) { 8720 device_printf(sc->sc_dev, 8721 "%s: could not move to run state\n", __func__); 8722 } 8723 8724 IWN_UNLOCK(sc); 8725 #endif 8726 } 8727 8728 static void 8729 iwn_init_locked(struct iwn_softc *sc) 8730 { 8731 int error; 8732 8733 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8734 8735 IWN_LOCK_ASSERT(sc); 8736 8737 sc->sc_flags |= IWN_FLAG_RUNNING; 8738 8739 if ((error = iwn_hw_prepare(sc)) != 0) { 8740 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8741 __func__, error); 8742 goto fail; 8743 } 8744 8745 /* Initialize interrupt mask to default value. */ 8746 sc->int_mask = IWN_INT_MASK_DEF; 8747 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8748 8749 /* Check that the radio is not disabled by hardware switch. */ 8750 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8751 device_printf(sc->sc_dev, 8752 "radio is disabled by hardware switch\n"); 8753 /* Enable interrupts to get RF toggle notifications. */ 8754 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8755 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8756 return; 8757 } 8758 8759 /* Read firmware images from the filesystem. */ 8760 if ((error = iwn_read_firmware(sc)) != 0) { 8761 device_printf(sc->sc_dev, 8762 "%s: could not read firmware, error %d\n", __func__, 8763 error); 8764 goto fail; 8765 } 8766 8767 /* Initialize hardware and upload firmware. */ 8768 error = iwn_hw_init(sc); 8769 iwn_unload_firmware(sc); 8770 if (error != 0) { 8771 device_printf(sc->sc_dev, 8772 "%s: could not initialize hardware, error %d\n", __func__, 8773 error); 8774 goto fail; 8775 } 8776 8777 /* Configure adapter now that it is ready. */ 8778 if ((error = iwn_config(sc)) != 0) { 8779 device_printf(sc->sc_dev, 8780 "%s: could not configure device, error %d\n", __func__, 8781 error); 8782 goto fail; 8783 } 8784 8785 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 8786 8787 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8788 8789 return; 8790 8791 fail: 8792 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8793 iwn_stop_locked(sc); 8794 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 8795 } 8796 8797 static void 8798 iwn_init(struct iwn_softc *sc) 8799 { 8800 8801 IWN_LOCK(sc); 8802 iwn_init_locked(sc); 8803 IWN_UNLOCK(sc); 8804 8805 if (sc->sc_flags & IWN_FLAG_RUNNING) 8806 ieee80211_start_all(&sc->sc_ic); 8807 } 8808 8809 static void 8810 iwn_stop_locked(struct iwn_softc *sc) 8811 { 8812 8813 IWN_LOCK_ASSERT(sc); 8814 8815 sc->sc_is_scanning = 0; 8816 sc->sc_tx_timer = 0; 8817 callout_stop(&sc->watchdog_to); 8818 callout_stop(&sc->calib_to); 8819 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8820 8821 /* Power OFF hardware. */ 8822 iwn_hw_stop(sc); 8823 } 8824 8825 static void 8826 iwn_stop(struct iwn_softc *sc) 8827 { 8828 IWN_LOCK(sc); 8829 iwn_stop_locked(sc); 8830 IWN_UNLOCK(sc); 8831 } 8832 8833 /* 8834 * Callback from net80211 to start a scan. 8835 */ 8836 static void 8837 iwn_scan_start(struct ieee80211com *ic) 8838 { 8839 struct iwn_softc *sc = ic->ic_softc; 8840 8841 IWN_LOCK(sc); 8842 /* make the link LED blink while we're scanning */ 8843 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 8844 IWN_UNLOCK(sc); 8845 } 8846 8847 /* 8848 * Callback from net80211 to terminate a scan. 8849 */ 8850 static void 8851 iwn_scan_end(struct ieee80211com *ic) 8852 { 8853 struct iwn_softc *sc = ic->ic_softc; 8854 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8855 8856 IWN_LOCK(sc); 8857 if (vap->iv_state == IEEE80211_S_RUN) { 8858 /* Set link LED to ON status if we are associated */ 8859 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 8860 } 8861 IWN_UNLOCK(sc); 8862 } 8863 8864 /* 8865 * Callback from net80211 to force a channel change. 8866 */ 8867 static void 8868 iwn_set_channel(struct ieee80211com *ic) 8869 { 8870 const struct ieee80211_channel *c = ic->ic_curchan; 8871 struct iwn_softc *sc = ic->ic_softc; 8872 int error; 8873 8874 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8875 8876 IWN_LOCK(sc); 8877 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 8878 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 8879 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 8880 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 8881 8882 /* 8883 * Only need to set the channel in Monitor mode. AP scanning and auth 8884 * are already taken care of by their respective firmware commands. 8885 */ 8886 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 8887 error = iwn_config(sc); 8888 if (error != 0) 8889 device_printf(sc->sc_dev, 8890 "%s: error %d settting channel\n", __func__, error); 8891 } 8892 IWN_UNLOCK(sc); 8893 } 8894 8895 /* 8896 * Callback from net80211 to start scanning of the current channel. 8897 */ 8898 static void 8899 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 8900 { 8901 struct ieee80211vap *vap = ss->ss_vap; 8902 struct ieee80211com *ic = vap->iv_ic; 8903 struct iwn_softc *sc = ic->ic_softc; 8904 int error; 8905 8906 IWN_LOCK(sc); 8907 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 8908 IWN_UNLOCK(sc); 8909 if (error != 0) 8910 ieee80211_cancel_scan(vap); 8911 } 8912 8913 /* 8914 * Callback from net80211 to handle the minimum dwell time being met. 8915 * The intent is to terminate the scan but we just let the firmware 8916 * notify us when it's finished as we have no safe way to abort it. 8917 */ 8918 static void 8919 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 8920 { 8921 /* NB: don't try to abort scan; wait for firmware to finish */ 8922 } 8923 #ifdef IWN_DEBUG 8924 #define IWN_DESC(x) case x: return #x 8925 8926 /* 8927 * Translate CSR code to string 8928 */ 8929 static char *iwn_get_csr_string(int csr) 8930 { 8931 switch (csr) { 8932 IWN_DESC(IWN_HW_IF_CONFIG); 8933 IWN_DESC(IWN_INT_COALESCING); 8934 IWN_DESC(IWN_INT); 8935 IWN_DESC(IWN_INT_MASK); 8936 IWN_DESC(IWN_FH_INT); 8937 IWN_DESC(IWN_GPIO_IN); 8938 IWN_DESC(IWN_RESET); 8939 IWN_DESC(IWN_GP_CNTRL); 8940 IWN_DESC(IWN_HW_REV); 8941 IWN_DESC(IWN_EEPROM); 8942 IWN_DESC(IWN_EEPROM_GP); 8943 IWN_DESC(IWN_OTP_GP); 8944 IWN_DESC(IWN_GIO); 8945 IWN_DESC(IWN_GP_UCODE); 8946 IWN_DESC(IWN_GP_DRIVER); 8947 IWN_DESC(IWN_UCODE_GP1); 8948 IWN_DESC(IWN_UCODE_GP2); 8949 IWN_DESC(IWN_LED); 8950 IWN_DESC(IWN_DRAM_INT_TBL); 8951 IWN_DESC(IWN_GIO_CHICKEN); 8952 IWN_DESC(IWN_ANA_PLL); 8953 IWN_DESC(IWN_HW_REV_WA); 8954 IWN_DESC(IWN_DBG_HPET_MEM); 8955 default: 8956 return "UNKNOWN CSR"; 8957 } 8958 } 8959 8960 /* 8961 * This function print firmware register 8962 */ 8963 static void 8964 iwn_debug_register(struct iwn_softc *sc) 8965 { 8966 int i; 8967 static const uint32_t csr_tbl[] = { 8968 IWN_HW_IF_CONFIG, 8969 IWN_INT_COALESCING, 8970 IWN_INT, 8971 IWN_INT_MASK, 8972 IWN_FH_INT, 8973 IWN_GPIO_IN, 8974 IWN_RESET, 8975 IWN_GP_CNTRL, 8976 IWN_HW_REV, 8977 IWN_EEPROM, 8978 IWN_EEPROM_GP, 8979 IWN_OTP_GP, 8980 IWN_GIO, 8981 IWN_GP_UCODE, 8982 IWN_GP_DRIVER, 8983 IWN_UCODE_GP1, 8984 IWN_UCODE_GP2, 8985 IWN_LED, 8986 IWN_DRAM_INT_TBL, 8987 IWN_GIO_CHICKEN, 8988 IWN_ANA_PLL, 8989 IWN_HW_REV_WA, 8990 IWN_DBG_HPET_MEM, 8991 }; 8992 DPRINTF(sc, IWN_DEBUG_REGISTER, 8993 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 8994 "\n"); 8995 for (i = 0; i < nitems(csr_tbl); i++){ 8996 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 8997 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 8998 if ((i+1) % 3 == 0) 8999 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9000 } 9001 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9002 } 9003 #endif 9004 9005 9006