xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_wlan.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/bus.h>
40 #include <sys/rman.h>
41 #include <sys/endian.h>
42 #include <sys/firmware.h>
43 #include <sys/limits.h>
44 #include <sys/module.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 
48 #include <machine/bus.h>
49 #include <machine/resource.h>
50 #include <machine/clock.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 
55 #include <net/bpf.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 #include <net80211/ieee80211_regdomain.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <dev/iwn/if_iwnreg.h>
75 #include <dev/iwn/if_iwnvar.h>
76 
77 struct iwn_ident {
78 	uint16_t	vendor;
79 	uint16_t	device;
80 	const char	*name;
81 };
82 
83 static const struct iwn_ident iwn_ident_table[] = {
84 	{ 0x8086, 0x0082, "Intel Centrino Advanced-N 6205"		},
85 	{ 0x8086, 0x0083, "Intel Centrino Wireless-N 1000"		},
86 	{ 0x8086, 0x0084, "Intel Centrino Wireless-N 1000"		},
87 	{ 0x8086, 0x0085, "Intel Centrino Advanced-N 6205"		},
88 	{ 0x8086, 0x0087, "Intel Centrino Advanced-N + WiMAX 6250"	},
89 	{ 0x8086, 0x0089, "Intel Centrino Advanced-N + WiMAX 6250"	},
90 	{ 0x8086, 0x008a, "Intel Centrino Wireless-N 1030"		},
91 	{ 0x8086, 0x008b, "Intel Centrino Wireless-N 1030"		},
92 	{ 0x8086, 0x0090, "Intel Centrino Advanced-N 6230"		},
93 	{ 0x8086, 0x0091, "Intel Centrino Advanced-N 6230"		},
94 	{ 0x8086, 0x0885, "Intel Centrino Wireless-N + WiMAX 6150"	},
95 	{ 0x8086, 0x0886, "Intel Centrino Wireless-N + WiMAX 6150"	},
96 	{ 0x8086, 0x0887, "Intel Centrino Wireless-N 2230"		},
97 	{ 0x8086, 0x0888, "Intel Centrino Wireless-N 2230"		},
98 	{ 0x8086, 0x0896, "Intel Centrino Wireless-N 130"		},
99 	{ 0x8086, 0x0897, "Intel Centrino Wireless-N 130"		},
100 	{ 0x8086, 0x08ae, "Intel Centrino Wireless-N 100"		},
101 	{ 0x8086, 0x08af, "Intel Centrino Wireless-N 100"		},
102 	{ 0x8086, 0x4229, "Intel Wireless WiFi Link 4965"		},
103 	{ 0x8086, 0x422b, "Intel Centrino Ultimate-N 6300"		},
104 	{ 0x8086, 0x422c, "Intel Centrino Advanced-N 6200"		},
105 	{ 0x8086, 0x422d, "Intel Wireless WiFi Link 4965"		},
106 	{ 0x8086, 0x4230, "Intel Wireless WiFi Link 4965"		},
107 	{ 0x8086, 0x4232, "Intel WiFi Link 5100"			},
108 	{ 0x8086, 0x4233, "Intel Wireless WiFi Link 4965"		},
109 	{ 0x8086, 0x4235, "Intel Ultimate N WiFi Link 5300"		},
110 	{ 0x8086, 0x4236, "Intel Ultimate N WiFi Link 5300"		},
111 	{ 0x8086, 0x4237, "Intel WiFi Link 5100"			},
112 	{ 0x8086, 0x4238, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, 0x4239, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, 0x423a, "Intel WiMAX/WiFi Link 5350"			},
115 	{ 0x8086, 0x423b, "Intel WiMAX/WiFi Link 5350"			},
116 	{ 0x8086, 0x423c, "Intel WiMAX/WiFi Link 5150"			},
117 	{ 0x8086, 0x423d, "Intel WiMAX/WiFi Link 5150"			},
118 	{ 0, 0, NULL }
119 };
120 
121 static int	iwn_probe(device_t);
122 static int	iwn_attach(device_t);
123 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
124 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
125 static void	iwn_radiotap_attach(struct iwn_softc *);
126 static void	iwn_sysctlattach(struct iwn_softc *);
127 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
128 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
129 		    const uint8_t [IEEE80211_ADDR_LEN],
130 		    const uint8_t [IEEE80211_ADDR_LEN]);
131 static void	iwn_vap_delete(struct ieee80211vap *);
132 static int	iwn_detach(device_t);
133 static int	iwn_shutdown(device_t);
134 static int	iwn_suspend(device_t);
135 static int	iwn_resume(device_t);
136 static int	iwn_nic_lock(struct iwn_softc *);
137 static int	iwn_eeprom_lock(struct iwn_softc *);
138 static int	iwn_init_otprom(struct iwn_softc *);
139 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
140 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
141 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
142 		    void **, bus_size_t, bus_size_t);
143 static void	iwn_dma_contig_free(struct iwn_dma_info *);
144 static int	iwn_alloc_sched(struct iwn_softc *);
145 static void	iwn_free_sched(struct iwn_softc *);
146 static int	iwn_alloc_kw(struct iwn_softc *);
147 static void	iwn_free_kw(struct iwn_softc *);
148 static int	iwn_alloc_ict(struct iwn_softc *);
149 static void	iwn_free_ict(struct iwn_softc *);
150 static int	iwn_alloc_fwmem(struct iwn_softc *);
151 static void	iwn_free_fwmem(struct iwn_softc *);
152 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
153 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
154 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
155 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
156 		    int);
157 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
158 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
159 static void	iwn5000_ict_reset(struct iwn_softc *);
160 static int	iwn_read_eeprom(struct iwn_softc *,
161 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
162 static void	iwn4965_read_eeprom(struct iwn_softc *);
163 static void	iwn4965_print_power_group(struct iwn_softc *, int);
164 static void	iwn5000_read_eeprom(struct iwn_softc *);
165 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
166 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
167 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
168 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
169 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
170 		    struct ieee80211_channel *);
171 static int	iwn_setregdomain(struct ieee80211com *,
172 		    struct ieee80211_regdomain *, int,
173 		    struct ieee80211_channel[]);
174 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
175 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
176 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177 static void	iwn_newassoc(struct ieee80211_node *, int);
178 static int	iwn_media_change(struct ifnet *);
179 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180 static void	iwn_calib_timeout(void *);
181 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
186 		    struct iwn_rx_data *);
187 static void	iwn5000_rx_calib_results(struct iwn_softc *,
188 		    struct iwn_rx_desc *, struct iwn_rx_data *);
189 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
194 		    struct iwn_rx_data *);
195 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
196 		    uint8_t);
197 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
198 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
199 static void	iwn_notif_intr(struct iwn_softc *);
200 static void	iwn_wakeup_intr(struct iwn_softc *);
201 static void	iwn_rftoggle_intr(struct iwn_softc *);
202 static void	iwn_fatal_intr(struct iwn_softc *);
203 static void	iwn_intr(void *);
204 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
205 		    uint16_t);
206 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
207 		    uint16_t);
208 #ifdef notyet
209 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
210 #endif
211 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
212 		    struct ieee80211_node *);
213 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
214 		    struct ieee80211_node *,
215 		    const struct ieee80211_bpf_params *params);
216 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
217 		    const struct ieee80211_bpf_params *);
218 static void	iwn_start(struct ifnet *);
219 static void	iwn_start_locked(struct ifnet *);
220 static void	iwn_watchdog(void *);
221 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
222 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
223 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
224 		    int);
225 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
226 		    int);
227 static int	iwn_set_link_quality(struct iwn_softc *,
228 		    struct ieee80211_node *);
229 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
230 static int	iwn_updateedca(struct ieee80211com *);
231 static void	iwn_update_mcast(struct ifnet *);
232 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
233 static int	iwn_set_critical_temp(struct iwn_softc *);
234 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
235 static void	iwn4965_power_calibration(struct iwn_softc *, int);
236 static int	iwn4965_set_txpower(struct iwn_softc *,
237 		    struct ieee80211_channel *, int);
238 static int	iwn5000_set_txpower(struct iwn_softc *,
239 		    struct ieee80211_channel *, int);
240 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
241 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
242 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
243 static int	iwn4965_get_temperature(struct iwn_softc *);
244 static int	iwn5000_get_temperature(struct iwn_softc *);
245 static int	iwn_init_sensitivity(struct iwn_softc *);
246 static void	iwn_collect_noise(struct iwn_softc *,
247 		    const struct iwn_rx_general_stats *);
248 static int	iwn4965_init_gains(struct iwn_softc *);
249 static int	iwn5000_init_gains(struct iwn_softc *);
250 static int	iwn4965_set_gains(struct iwn_softc *);
251 static int	iwn5000_set_gains(struct iwn_softc *);
252 static void	iwn_tune_sensitivity(struct iwn_softc *,
253 		    const struct iwn_rx_stats *);
254 static int	iwn_send_sensitivity(struct iwn_softc *);
255 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
256 static int	iwn_send_btcoex(struct iwn_softc *);
257 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
258 static int	iwn5000_runtime_calib(struct iwn_softc *);
259 static int	iwn_config(struct iwn_softc *);
260 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
261 static int	iwn_scan(struct iwn_softc *);
262 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
263 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
264 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
265 		    struct ieee80211_rx_ampdu *, int, int, int);
266 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
267 		    struct ieee80211_rx_ampdu *);
268 static int	iwn_addba_request(struct ieee80211_node *,
269 		    struct ieee80211_tx_ampdu *, int, int, int);
270 static int	iwn_addba_response(struct ieee80211_node *,
271 		    struct ieee80211_tx_ampdu *, int, int, int);
272 static int	iwn_ampdu_tx_start(struct ieee80211com *,
273 		    struct ieee80211_node *, uint8_t);
274 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
275 		    struct ieee80211_tx_ampdu *);
276 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
277 		    struct ieee80211_node *, int, uint8_t, uint16_t);
278 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
279 		    uint8_t, uint16_t);
280 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
281 		    struct ieee80211_node *, int, uint8_t, uint16_t);
282 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
283 		    uint8_t, uint16_t);
284 static int	iwn5000_query_calibration(struct iwn_softc *);
285 static int	iwn5000_send_calibration(struct iwn_softc *);
286 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
287 static int	iwn5000_crystal_calib(struct iwn_softc *);
288 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
289 static int	iwn4965_post_alive(struct iwn_softc *);
290 static int	iwn5000_post_alive(struct iwn_softc *);
291 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
292 		    int);
293 static int	iwn4965_load_firmware(struct iwn_softc *);
294 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
295 		    const uint8_t *, int);
296 static int	iwn5000_load_firmware(struct iwn_softc *);
297 static int	iwn_read_firmware_leg(struct iwn_softc *,
298 		    struct iwn_fw_info *);
299 static int	iwn_read_firmware_tlv(struct iwn_softc *,
300 		    struct iwn_fw_info *, uint16_t);
301 static int	iwn_read_firmware(struct iwn_softc *);
302 static int	iwn_clock_wait(struct iwn_softc *);
303 static int	iwn_apm_init(struct iwn_softc *);
304 static void	iwn_apm_stop_master(struct iwn_softc *);
305 static void	iwn_apm_stop(struct iwn_softc *);
306 static int	iwn4965_nic_config(struct iwn_softc *);
307 static int	iwn5000_nic_config(struct iwn_softc *);
308 static int	iwn_hw_prepare(struct iwn_softc *);
309 static int	iwn_hw_init(struct iwn_softc *);
310 static void	iwn_hw_stop(struct iwn_softc *);
311 static void	iwn_radio_on(void *, int);
312 static void	iwn_radio_off(void *, int);
313 static void	iwn_init_locked(struct iwn_softc *);
314 static void	iwn_init(void *);
315 static void	iwn_stop_locked(struct iwn_softc *);
316 static void	iwn_stop(struct iwn_softc *);
317 static void	iwn_scan_start(struct ieee80211com *);
318 static void	iwn_scan_end(struct ieee80211com *);
319 static void	iwn_set_channel(struct ieee80211com *);
320 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
321 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
322 static void	iwn_hw_reset(void *, int);
323 
324 #define IWN_DEBUG
325 #ifdef IWN_DEBUG
326 enum {
327 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
328 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
329 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
330 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
331 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
332 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
333 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
334 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
335 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
336 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
337 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
338 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
339 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
340 	IWN_DEBUG_TXRATE	= 0x00002000,	/* TX rate debugging */
341 	IWN_DEBUG_PWRSAVE	= 0x00004000,	/* Power save operations */
342 	IWN_DEBUG_TRACE		= 0x40000000,	/* Print begin and start driver function */
343 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
344 	IWN_DEBUG_ANY		= 0xffffffff
345 };
346 
347 #define DPRINTF(sc, m, fmt, ...) do {			\
348 	if (sc->sc_debug & (m))				\
349 		printf(fmt, __VA_ARGS__);		\
350 } while (0)
351 
352 static const char *
353 iwn_intr_str(uint8_t cmd)
354 {
355 	switch (cmd) {
356 	/* Notifications */
357 	case IWN_UC_READY:		return "UC_READY";
358 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
359 	case IWN_TX_DONE:		return "TX_DONE";
360 	case IWN_START_SCAN:		return "START_SCAN";
361 	case IWN_STOP_SCAN:		return "STOP_SCAN";
362 	case IWN_RX_STATISTICS:		return "RX_STATS";
363 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
364 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
365 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
366 	case IWN_RX_PHY:		return "RX_PHY";
367 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
368 	case IWN_RX_DONE:		return "RX_DONE";
369 
370 	/* Command Notifications */
371 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
372 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
373 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
374 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
375 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
376 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
377 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
378 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
379 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
380 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
381 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
382 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
383 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
384 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
385 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
386 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
387 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
388 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
389 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
390 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
391 	}
392 	return "UNKNOWN INTR NOTIF/CMD";
393 }
394 #else
395 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
396 #endif
397 
398 static device_method_t iwn_methods[] = {
399 	/* Device interface */
400 	DEVMETHOD(device_probe,		iwn_probe),
401 	DEVMETHOD(device_attach,	iwn_attach),
402 	DEVMETHOD(device_detach,	iwn_detach),
403 	DEVMETHOD(device_shutdown,	iwn_shutdown),
404 	DEVMETHOD(device_suspend,	iwn_suspend),
405 	DEVMETHOD(device_resume,	iwn_resume),
406 	{ 0, 0 }
407 };
408 
409 static driver_t iwn_driver = {
410 	"iwn",
411 	iwn_methods,
412 	sizeof(struct iwn_softc)
413 };
414 static devclass_t iwn_devclass;
415 
416 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
417 
418 MODULE_VERSION(iwn, 1);
419 
420 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
421 MODULE_DEPEND(iwn, pci, 1, 1, 1);
422 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
423 
424 static int
425 iwn_probe(device_t dev)
426 {
427 	const struct iwn_ident *ident;
428 
429 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
430 		if (pci_get_vendor(dev) == ident->vendor &&
431 		    pci_get_device(dev) == ident->device) {
432 			device_set_desc(dev, ident->name);
433 			return 0;
434 		}
435 	}
436 	return ENXIO;
437 }
438 
439 static int
440 iwn_attach(device_t dev)
441 {
442 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
443 	struct ieee80211com *ic;
444 	struct ifnet *ifp;
445 	uint32_t reg;
446 	int i, error, result;
447 	uint8_t macaddr[IEEE80211_ADDR_LEN];
448 
449 	sc->sc_dev = dev;
450 
451 #ifdef	IWN_DEBUG
452 	error = resource_int_value(device_get_name(sc->sc_dev),
453 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
454 	if (error != 0)
455 		sc->sc_debug = 0;
456 #else
457 	sc->sc_debug = 0;
458 #endif
459 
460 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
461 
462 	/*
463 	 * Get the offset of the PCI Express Capability Structure in PCI
464 	 * Configuration Space.
465 	 */
466 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
467 	if (error != 0) {
468 		device_printf(dev, "PCIe capability structure not found!\n");
469 		return error;
470 	}
471 
472 	/* Clear device-specific "PCI retry timeout" register (41h). */
473 	pci_write_config(dev, 0x41, 0, 1);
474 
475 	/* Hardware bug workaround. */
476 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
477 	if (reg & PCIM_CMD_INTxDIS) {
478 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
479 		    __func__);
480 		reg &= ~PCIM_CMD_INTxDIS;
481 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
482 	}
483 
484 	/* Enable bus-mastering. */
485 	pci_enable_busmaster(dev);
486 
487 	sc->mem_rid = PCIR_BAR(0);
488 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
489 	    RF_ACTIVE);
490 	if (sc->mem == NULL) {
491 		device_printf(dev, "can't map mem space\n");
492 		error = ENOMEM;
493 		return error;
494 	}
495 	sc->sc_st = rman_get_bustag(sc->mem);
496 	sc->sc_sh = rman_get_bushandle(sc->mem);
497 
498 	sc->irq_rid = 0;
499 	if ((result = pci_msi_count(dev)) == 1 &&
500 	    pci_alloc_msi(dev, &result) == 0)
501 		sc->irq_rid = 1;
502 	/* Install interrupt handler. */
503 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
504 	    RF_ACTIVE | RF_SHAREABLE);
505 	if (sc->irq == NULL) {
506 		device_printf(dev, "can't map interrupt\n");
507 		error = ENOMEM;
508 		goto fail;
509 	}
510 
511 	IWN_LOCK_INIT(sc);
512 
513 	/* Read hardware revision and attach. */
514 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
515 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
516 		error = iwn4965_attach(sc, pci_get_device(dev));
517 	else
518 		error = iwn5000_attach(sc, pci_get_device(dev));
519 	if (error != 0) {
520 		device_printf(dev, "could not attach device, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	if ((error = iwn_hw_prepare(sc)) != 0) {
526 		device_printf(dev, "hardware not ready, error %d\n", error);
527 		goto fail;
528 	}
529 
530 	/* Allocate DMA memory for firmware transfers. */
531 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
532 		device_printf(dev,
533 		    "could not allocate memory for firmware, error %d\n",
534 		    error);
535 		goto fail;
536 	}
537 
538 	/* Allocate "Keep Warm" page. */
539 	if ((error = iwn_alloc_kw(sc)) != 0) {
540 		device_printf(dev,
541 		    "could not allocate keep warm page, error %d\n", error);
542 		goto fail;
543 	}
544 
545 	/* Allocate ICT table for 5000 Series. */
546 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
547 	    (error = iwn_alloc_ict(sc)) != 0) {
548 		device_printf(dev, "could not allocate ICT table, error %d\n",
549 		    error);
550 		goto fail;
551 	}
552 
553 	/* Allocate TX scheduler "rings". */
554 	if ((error = iwn_alloc_sched(sc)) != 0) {
555 		device_printf(dev,
556 		    "could not allocate TX scheduler rings, error %d\n", error);
557 		goto fail;
558 	}
559 
560 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
561 	for (i = 0; i < sc->ntxqs; i++) {
562 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
563 			device_printf(dev,
564 			    "could not allocate TX ring %d, error %d\n", i,
565 			    error);
566 			goto fail;
567 		}
568 	}
569 
570 	/* Allocate RX ring. */
571 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
572 		device_printf(dev, "could not allocate RX ring, error %d\n",
573 		    error);
574 		goto fail;
575 	}
576 
577 	/* Clear pending interrupts. */
578 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
579 
580 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
581 	if (ifp == NULL) {
582 		device_printf(dev, "can not allocate ifnet structure\n");
583 		goto fail;
584 	}
585 
586 	ic = ifp->if_l2com;
587 	ic->ic_ifp = ifp;
588 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
589 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
590 
591 	/* Set device capabilities. */
592 	ic->ic_caps =
593 		  IEEE80211_C_STA		/* station mode supported */
594 		| IEEE80211_C_MONITOR		/* monitor mode supported */
595 		| IEEE80211_C_BGSCAN		/* background scanning */
596 		| IEEE80211_C_TXPMGT		/* tx power management */
597 		| IEEE80211_C_SHSLOT		/* short slot time supported */
598 		| IEEE80211_C_WPA
599 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
600 #if 0
601 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
602 #endif
603 		| IEEE80211_C_WME		/* WME */
604 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
605 		;
606 
607 	/* Read MAC address, channels, etc from EEPROM. */
608 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
609 		device_printf(dev, "could not read EEPROM, error %d\n",
610 		    error);
611 		goto fail;
612 	}
613 
614 	/* Count the number of available chains. */
615 	sc->ntxchains =
616 	    ((sc->txchainmask >> 2) & 1) +
617 	    ((sc->txchainmask >> 1) & 1) +
618 	    ((sc->txchainmask >> 0) & 1);
619 	sc->nrxchains =
620 	    ((sc->rxchainmask >> 2) & 1) +
621 	    ((sc->rxchainmask >> 1) & 1) +
622 	    ((sc->rxchainmask >> 0) & 1);
623 	if (bootverbose) {
624 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
625 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
626 		    macaddr, ":");
627 	}
628 
629 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
630 		ic->ic_rxstream = sc->nrxchains;
631 		ic->ic_txstream = sc->ntxchains;
632 		ic->ic_htcaps =
633 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
634 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
635 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
636 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
637 #ifdef notyet
638 			| IEEE80211_HTCAP_GREENFIELD
639 #if IWN_RBUF_SIZE == 8192
640 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
641 #else
642 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
643 #endif
644 #endif
645 			/* s/w capabilities */
646 			| IEEE80211_HTC_HT		/* HT operation */
647 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
648 #ifdef notyet
649 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
650 #endif
651 			;
652 	}
653 
654 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655 	ifp->if_softc = sc;
656 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657 	ifp->if_init = iwn_init;
658 	ifp->if_ioctl = iwn_ioctl;
659 	ifp->if_start = iwn_start;
660 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
661 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
662 	IFQ_SET_READY(&ifp->if_snd);
663 
664 	ieee80211_ifattach(ic, macaddr);
665 	ic->ic_vap_create = iwn_vap_create;
666 	ic->ic_vap_delete = iwn_vap_delete;
667 	ic->ic_raw_xmit = iwn_raw_xmit;
668 	ic->ic_node_alloc = iwn_node_alloc;
669 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
670 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
671 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
672 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
673 	sc->sc_addba_request = ic->ic_addba_request;
674 	ic->ic_addba_request = iwn_addba_request;
675 	sc->sc_addba_response = ic->ic_addba_response;
676 	ic->ic_addba_response = iwn_addba_response;
677 	sc->sc_addba_stop = ic->ic_addba_stop;
678 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
679 	ic->ic_newassoc = iwn_newassoc;
680 	ic->ic_wme.wme_update = iwn_updateedca;
681 	ic->ic_update_mcast = iwn_update_mcast;
682 	ic->ic_scan_start = iwn_scan_start;
683 	ic->ic_scan_end = iwn_scan_end;
684 	ic->ic_set_channel = iwn_set_channel;
685 	ic->ic_scan_curchan = iwn_scan_curchan;
686 	ic->ic_scan_mindwell = iwn_scan_mindwell;
687 	ic->ic_setregdomain = iwn_setregdomain;
688 
689 	iwn_radiotap_attach(sc);
690 
691 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
692 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
693 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
694 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
695 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
696 
697 	iwn_sysctlattach(sc);
698 
699 	/*
700 	 * Hook our interrupt after all initialization is complete.
701 	 */
702 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
703 	    NULL, iwn_intr, sc, &sc->sc_ih);
704 	if (error != 0) {
705 		device_printf(dev, "can't establish interrupt, error %d\n",
706 		    error);
707 		goto fail;
708 	}
709 
710 	if (bootverbose)
711 		ieee80211_announce(ic);
712 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
713 	return 0;
714 fail:
715 	iwn_detach(dev);
716 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
717 	return error;
718 }
719 
720 static int
721 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
722 {
723 	struct iwn_ops *ops = &sc->ops;
724 
725 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
726 	ops->load_firmware = iwn4965_load_firmware;
727 	ops->read_eeprom = iwn4965_read_eeprom;
728 	ops->post_alive = iwn4965_post_alive;
729 	ops->nic_config = iwn4965_nic_config;
730 	ops->update_sched = iwn4965_update_sched;
731 	ops->get_temperature = iwn4965_get_temperature;
732 	ops->get_rssi = iwn4965_get_rssi;
733 	ops->set_txpower = iwn4965_set_txpower;
734 	ops->init_gains = iwn4965_init_gains;
735 	ops->set_gains = iwn4965_set_gains;
736 	ops->add_node = iwn4965_add_node;
737 	ops->tx_done = iwn4965_tx_done;
738 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
739 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
740 	sc->ntxqs = IWN4965_NTXQUEUES;
741 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
742 	sc->ndmachnls = IWN4965_NDMACHNLS;
743 	sc->broadcast_id = IWN4965_ID_BROADCAST;
744 	sc->rxonsz = IWN4965_RXONSZ;
745 	sc->schedsz = IWN4965_SCHEDSZ;
746 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
747 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
748 	sc->fwsz = IWN4965_FWSZ;
749 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
750 	sc->limits = &iwn4965_sensitivity_limits;
751 	sc->fwname = "iwn4965fw";
752 	/* Override chains masks, ROM is known to be broken. */
753 	sc->txchainmask = IWN_ANT_AB;
754 	sc->rxchainmask = IWN_ANT_ABC;
755 
756 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
757 
758 	return 0;
759 }
760 
761 static int
762 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
763 {
764 	struct iwn_ops *ops = &sc->ops;
765 
766 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
767 
768 	ops->load_firmware = iwn5000_load_firmware;
769 	ops->read_eeprom = iwn5000_read_eeprom;
770 	ops->post_alive = iwn5000_post_alive;
771 	ops->nic_config = iwn5000_nic_config;
772 	ops->update_sched = iwn5000_update_sched;
773 	ops->get_temperature = iwn5000_get_temperature;
774 	ops->get_rssi = iwn5000_get_rssi;
775 	ops->set_txpower = iwn5000_set_txpower;
776 	ops->init_gains = iwn5000_init_gains;
777 	ops->set_gains = iwn5000_set_gains;
778 	ops->add_node = iwn5000_add_node;
779 	ops->tx_done = iwn5000_tx_done;
780 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
781 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
782 	sc->ntxqs = IWN5000_NTXQUEUES;
783 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
784 	sc->ndmachnls = IWN5000_NDMACHNLS;
785 	sc->broadcast_id = IWN5000_ID_BROADCAST;
786 	sc->rxonsz = IWN5000_RXONSZ;
787 	sc->schedsz = IWN5000_SCHEDSZ;
788 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
789 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
790 	sc->fwsz = IWN5000_FWSZ;
791 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
792 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
793 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
794 
795 	switch (sc->hw_type) {
796 	case IWN_HW_REV_TYPE_5100:
797 		sc->limits = &iwn5000_sensitivity_limits;
798 		sc->fwname = "iwn5000fw";
799 		/* Override chains masks, ROM is known to be broken. */
800 		sc->txchainmask = IWN_ANT_B;
801 		sc->rxchainmask = IWN_ANT_AB;
802 		break;
803 	case IWN_HW_REV_TYPE_5150:
804 		sc->limits = &iwn5150_sensitivity_limits;
805 		sc->fwname = "iwn5150fw";
806 		break;
807 	case IWN_HW_REV_TYPE_5300:
808 	case IWN_HW_REV_TYPE_5350:
809 		sc->limits = &iwn5000_sensitivity_limits;
810 		sc->fwname = "iwn5000fw";
811 		break;
812 	case IWN_HW_REV_TYPE_1000:
813 		sc->limits = &iwn1000_sensitivity_limits;
814 		sc->fwname = "iwn1000fw";
815 		break;
816 	case IWN_HW_REV_TYPE_6000:
817 		sc->limits = &iwn6000_sensitivity_limits;
818 		sc->fwname = "iwn6000fw";
819 		if (pid == 0x422c || pid == 0x4239) {
820 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
821 			/* Override chains masks, ROM is known to be broken. */
822 			sc->txchainmask = IWN_ANT_BC;
823 			sc->rxchainmask = IWN_ANT_BC;
824 		}
825 		break;
826 	case IWN_HW_REV_TYPE_6050:
827 		sc->limits = &iwn6000_sensitivity_limits;
828 		sc->fwname = "iwn6050fw";
829 		/* Override chains masks, ROM is known to be broken. */
830 		sc->txchainmask = IWN_ANT_AB;
831 		sc->rxchainmask = IWN_ANT_AB;
832 		break;
833 	case IWN_HW_REV_TYPE_6005:
834 		sc->limits = &iwn6000_sensitivity_limits;
835 		if (pid != 0x0082 && pid != 0x0085) {
836 			sc->fwname = "iwn6000g2bfw";
837 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
838 		} else
839 			sc->fwname = "iwn6000g2afw";
840 		break;
841 	default:
842 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
843 		    sc->hw_type);
844 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
845 		return ENOTSUP;
846 	}
847 	return 0;
848 }
849 
850 /*
851  * Attach the interface to 802.11 radiotap.
852  */
853 static void
854 iwn_radiotap_attach(struct iwn_softc *sc)
855 {
856 	struct ifnet *ifp = sc->sc_ifp;
857 	struct ieee80211com *ic = ifp->if_l2com;
858 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
859 	ieee80211_radiotap_attach(ic,
860 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
861 		IWN_TX_RADIOTAP_PRESENT,
862 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
863 		IWN_RX_RADIOTAP_PRESENT);
864 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
865 }
866 
867 static void
868 iwn_sysctlattach(struct iwn_softc *sc)
869 {
870 #ifdef	IWN_DEBUG
871 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
872 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
873 
874 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
875 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
876 		"control debugging printfs");
877 #endif
878 }
879 
880 static struct ieee80211vap *
881 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
882     enum ieee80211_opmode opmode, int flags,
883     const uint8_t bssid[IEEE80211_ADDR_LEN],
884     const uint8_t mac[IEEE80211_ADDR_LEN])
885 {
886 	struct iwn_vap *ivp;
887 	struct ieee80211vap *vap;
888 
889 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
890 		return NULL;
891 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
892 	    M_80211_VAP, M_NOWAIT | M_ZERO);
893 	if (ivp == NULL)
894 		return NULL;
895 	vap = &ivp->iv_vap;
896 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
897 	vap->iv_bmissthreshold = 10;		/* override default */
898 	/* Override with driver methods. */
899 	ivp->iv_newstate = vap->iv_newstate;
900 	vap->iv_newstate = iwn_newstate;
901 
902 	ieee80211_ratectl_init(vap);
903 	/* Complete setup. */
904 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
905 	ic->ic_opmode = opmode;
906 	return vap;
907 }
908 
909 static void
910 iwn_vap_delete(struct ieee80211vap *vap)
911 {
912 	struct iwn_vap *ivp = IWN_VAP(vap);
913 
914 	ieee80211_ratectl_deinit(vap);
915 	ieee80211_vap_detach(vap);
916 	free(ivp, M_80211_VAP);
917 }
918 
919 static int
920 iwn_detach(device_t dev)
921 {
922 	struct iwn_softc *sc = device_get_softc(dev);
923 	struct ifnet *ifp = sc->sc_ifp;
924 	struct ieee80211com *ic;
925 	int qid;
926 
927 	if (ifp != NULL) {
928 		ic = ifp->if_l2com;
929 
930 		ieee80211_draintask(ic, &sc->sc_reinit_task);
931 		ieee80211_draintask(ic, &sc->sc_radioon_task);
932 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
933 
934 		iwn_stop(sc);
935 		callout_drain(&sc->watchdog_to);
936 		callout_drain(&sc->calib_to);
937 		ieee80211_ifdetach(ic);
938 	}
939 
940 	/* Uninstall interrupt handler. */
941 	if (sc->irq != NULL) {
942 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
943 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
944 		if (sc->irq_rid == 1)
945 			pci_release_msi(dev);
946 	}
947 
948 	/* Free DMA resources. */
949 	iwn_free_rx_ring(sc, &sc->rxq);
950 	for (qid = 0; qid < sc->ntxqs; qid++)
951 		iwn_free_tx_ring(sc, &sc->txq[qid]);
952 	iwn_free_sched(sc);
953 	iwn_free_kw(sc);
954 	if (sc->ict != NULL)
955 		iwn_free_ict(sc);
956 	iwn_free_fwmem(sc);
957 
958 	if (sc->mem != NULL)
959 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
960 
961 	if (ifp != NULL)
962 		if_free(ifp);
963 
964 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s done\n", __func__);
965 	IWN_LOCK_DESTROY(sc);
966 	return 0;
967 }
968 
969 static int
970 iwn_shutdown(device_t dev)
971 {
972 	struct iwn_softc *sc = device_get_softc(dev);
973 
974 	iwn_stop(sc);
975 	return 0;
976 }
977 
978 static int
979 iwn_suspend(device_t dev)
980 {
981 	struct iwn_softc *sc = device_get_softc(dev);
982 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
983 
984 	ieee80211_suspend_all(ic);
985 	return 0;
986 }
987 
988 static int
989 iwn_resume(device_t dev)
990 {
991 	struct iwn_softc *sc = device_get_softc(dev);
992 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
993 
994 	/* Clear device-specific "PCI retry timeout" register (41h). */
995 	pci_write_config(dev, 0x41, 0, 1);
996 
997 	ieee80211_resume_all(ic);
998 	return 0;
999 }
1000 
1001 static int
1002 iwn_nic_lock(struct iwn_softc *sc)
1003 {
1004 	int ntries;
1005 
1006 	/* Request exclusive access to NIC. */
1007 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1008 
1009 	/* Spin until we actually get the lock. */
1010 	for (ntries = 0; ntries < 1000; ntries++) {
1011 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1012 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1013 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1014 			return 0;
1015 		DELAY(10);
1016 	}
1017 	return ETIMEDOUT;
1018 }
1019 
1020 static __inline void
1021 iwn_nic_unlock(struct iwn_softc *sc)
1022 {
1023 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1024 }
1025 
1026 static __inline uint32_t
1027 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1028 {
1029 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1030 	IWN_BARRIER_READ_WRITE(sc);
1031 	return IWN_READ(sc, IWN_PRPH_RDATA);
1032 }
1033 
1034 static __inline void
1035 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1036 {
1037 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1038 	IWN_BARRIER_WRITE(sc);
1039 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1040 }
1041 
1042 static __inline void
1043 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1044 {
1045 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1046 }
1047 
1048 static __inline void
1049 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1050 {
1051 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1052 }
1053 
1054 static __inline void
1055 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1056     const uint32_t *data, int count)
1057 {
1058 	for (; count > 0; count--, data++, addr += 4)
1059 		iwn_prph_write(sc, addr, *data);
1060 }
1061 
1062 static __inline uint32_t
1063 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1064 {
1065 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1066 	IWN_BARRIER_READ_WRITE(sc);
1067 	return IWN_READ(sc, IWN_MEM_RDATA);
1068 }
1069 
1070 static __inline void
1071 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1072 {
1073 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1074 	IWN_BARRIER_WRITE(sc);
1075 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1076 }
1077 
1078 static __inline void
1079 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1080 {
1081 	uint32_t tmp;
1082 
1083 	tmp = iwn_mem_read(sc, addr & ~3);
1084 	if (addr & 3)
1085 		tmp = (tmp & 0x0000ffff) | data << 16;
1086 	else
1087 		tmp = (tmp & 0xffff0000) | data;
1088 	iwn_mem_write(sc, addr & ~3, tmp);
1089 }
1090 
1091 static __inline void
1092 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1093     int count)
1094 {
1095 	for (; count > 0; count--, addr += 4)
1096 		*data++ = iwn_mem_read(sc, addr);
1097 }
1098 
1099 static __inline void
1100 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1101     int count)
1102 {
1103 	for (; count > 0; count--, addr += 4)
1104 		iwn_mem_write(sc, addr, val);
1105 }
1106 
1107 static int
1108 iwn_eeprom_lock(struct iwn_softc *sc)
1109 {
1110 	int i, ntries;
1111 
1112 	for (i = 0; i < 100; i++) {
1113 		/* Request exclusive access to EEPROM. */
1114 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1115 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1116 
1117 		/* Spin until we actually get the lock. */
1118 		for (ntries = 0; ntries < 100; ntries++) {
1119 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1120 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1121 				return 0;
1122 			DELAY(10);
1123 		}
1124 	}
1125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1126 	return ETIMEDOUT;
1127 }
1128 
1129 static __inline void
1130 iwn_eeprom_unlock(struct iwn_softc *sc)
1131 {
1132 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1133 }
1134 
1135 /*
1136  * Initialize access by host to One Time Programmable ROM.
1137  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1138  */
1139 static int
1140 iwn_init_otprom(struct iwn_softc *sc)
1141 {
1142 	uint16_t prev, base, next;
1143 	int count, error;
1144 
1145 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1146 
1147 	/* Wait for clock stabilization before accessing prph. */
1148 	if ((error = iwn_clock_wait(sc)) != 0)
1149 		return error;
1150 
1151 	if ((error = iwn_nic_lock(sc)) != 0)
1152 		return error;
1153 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1154 	DELAY(5);
1155 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1156 	iwn_nic_unlock(sc);
1157 
1158 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1159 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1160 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1161 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1162 	}
1163 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1164 	/* Clear ECC status. */
1165 	IWN_SETBITS(sc, IWN_OTP_GP,
1166 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1167 
1168 	/*
1169 	 * Find the block before last block (contains the EEPROM image)
1170 	 * for HW without OTP shadow RAM.
1171 	 */
1172 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1173 		/* Switch to absolute addressing mode. */
1174 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1175 		base = prev = 0;
1176 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1177 			error = iwn_read_prom_data(sc, base, &next, 2);
1178 			if (error != 0)
1179 				return error;
1180 			if (next == 0)	/* End of linked-list. */
1181 				break;
1182 			prev = base;
1183 			base = le16toh(next);
1184 		}
1185 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1186 			return EIO;
1187 		/* Skip "next" word. */
1188 		sc->prom_base = prev + 1;
1189 	}
1190 
1191 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1198 {
1199 	uint8_t *out = data;
1200 	uint32_t val, tmp;
1201 	int ntries;
1202 
1203 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1204 
1205 	addr += sc->prom_base;
1206 	for (; count > 0; count -= 2, addr++) {
1207 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1208 		for (ntries = 0; ntries < 10; ntries++) {
1209 			val = IWN_READ(sc, IWN_EEPROM);
1210 			if (val & IWN_EEPROM_READ_VALID)
1211 				break;
1212 			DELAY(5);
1213 		}
1214 		if (ntries == 10) {
1215 			device_printf(sc->sc_dev,
1216 			    "timeout reading ROM at 0x%x\n", addr);
1217 			return ETIMEDOUT;
1218 		}
1219 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1220 			/* OTPROM, check for ECC errors. */
1221 			tmp = IWN_READ(sc, IWN_OTP_GP);
1222 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1223 				device_printf(sc->sc_dev,
1224 				    "OTPROM ECC error at 0x%x\n", addr);
1225 				return EIO;
1226 			}
1227 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1228 				/* Correctable ECC error, clear bit. */
1229 				IWN_SETBITS(sc, IWN_OTP_GP,
1230 				    IWN_OTP_GP_ECC_CORR_STTS);
1231 			}
1232 		}
1233 		*out++ = val >> 16;
1234 		if (count > 1)
1235 			*out++ = val >> 24;
1236 	}
1237 
1238 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1239 
1240 	return 0;
1241 }
1242 
1243 static void
1244 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1245 {
1246 	if (error != 0)
1247 		return;
1248 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1249 	*(bus_addr_t *)arg = segs[0].ds_addr;
1250 }
1251 
1252 static int
1253 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1254     void **kvap, bus_size_t size, bus_size_t alignment)
1255 {
1256 	int error;
1257 
1258 	dma->tag = NULL;
1259 	dma->size = size;
1260 
1261 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1262 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1263 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1264 	if (error != 0)
1265 		goto fail;
1266 
1267 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1268 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1269 	if (error != 0)
1270 		goto fail;
1271 
1272 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1273 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1274 	if (error != 0)
1275 		goto fail;
1276 
1277 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1278 
1279 	if (kvap != NULL)
1280 		*kvap = dma->vaddr;
1281 
1282 	return 0;
1283 
1284 fail:	iwn_dma_contig_free(dma);
1285 	return error;
1286 }
1287 
1288 static void
1289 iwn_dma_contig_free(struct iwn_dma_info *dma)
1290 {
1291 	if (dma->map != NULL) {
1292 		if (dma->vaddr != NULL) {
1293 			bus_dmamap_sync(dma->tag, dma->map,
1294 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1295 			bus_dmamap_unload(dma->tag, dma->map);
1296 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1297 			dma->vaddr = NULL;
1298 		}
1299 		bus_dmamap_destroy(dma->tag, dma->map);
1300 		dma->map = NULL;
1301 	}
1302 	if (dma->tag != NULL) {
1303 		bus_dma_tag_destroy(dma->tag);
1304 		dma->tag = NULL;
1305 	}
1306 }
1307 
1308 static int
1309 iwn_alloc_sched(struct iwn_softc *sc)
1310 {
1311 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1312 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1313 	    sc->schedsz, 1024);
1314 }
1315 
1316 static void
1317 iwn_free_sched(struct iwn_softc *sc)
1318 {
1319 	iwn_dma_contig_free(&sc->sched_dma);
1320 }
1321 
1322 static int
1323 iwn_alloc_kw(struct iwn_softc *sc)
1324 {
1325 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1326 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1327 }
1328 
1329 static void
1330 iwn_free_kw(struct iwn_softc *sc)
1331 {
1332 	iwn_dma_contig_free(&sc->kw_dma);
1333 }
1334 
1335 static int
1336 iwn_alloc_ict(struct iwn_softc *sc)
1337 {
1338 	/* ICT table must be aligned on a 4KB boundary. */
1339 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1340 	    IWN_ICT_SIZE, 4096);
1341 }
1342 
1343 static void
1344 iwn_free_ict(struct iwn_softc *sc)
1345 {
1346 	iwn_dma_contig_free(&sc->ict_dma);
1347 }
1348 
1349 static int
1350 iwn_alloc_fwmem(struct iwn_softc *sc)
1351 {
1352 	/* Must be aligned on a 16-byte boundary. */
1353 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1354 }
1355 
1356 static void
1357 iwn_free_fwmem(struct iwn_softc *sc)
1358 {
1359 	iwn_dma_contig_free(&sc->fw_dma);
1360 }
1361 
1362 static int
1363 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1364 {
1365 	bus_size_t size;
1366 	int i, error;
1367 
1368 	ring->cur = 0;
1369 
1370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1371 
1372 	/* Allocate RX descriptors (256-byte aligned). */
1373 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1374 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1375 	    size, 256);
1376 	if (error != 0) {
1377 		device_printf(sc->sc_dev,
1378 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1379 		    __func__, error);
1380 		goto fail;
1381 	}
1382 
1383 	/* Allocate RX status area (16-byte aligned). */
1384 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1385 	    sizeof (struct iwn_rx_status), 16);
1386 	if (error != 0) {
1387 		device_printf(sc->sc_dev,
1388 		    "%s: could not allocate RX status DMA memory, error %d\n",
1389 		    __func__, error);
1390 		goto fail;
1391 	}
1392 
1393 	/* Create RX buffer DMA tag. */
1394 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1395 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1396 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1397 	    &ring->data_dmat);
1398 	if (error != 0) {
1399 		device_printf(sc->sc_dev,
1400 		    "%s: could not create RX buf DMA tag, error %d\n",
1401 		    __func__, error);
1402 		goto fail;
1403 	}
1404 
1405 	/*
1406 	 * Allocate and map RX buffers.
1407 	 */
1408 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1409 		struct iwn_rx_data *data = &ring->data[i];
1410 		bus_addr_t paddr;
1411 
1412 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1413 		if (error != 0) {
1414 			device_printf(sc->sc_dev,
1415 			    "%s: could not create RX buf DMA map, error %d\n",
1416 			    __func__, error);
1417 			goto fail;
1418 		}
1419 
1420 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1421 		    IWN_RBUF_SIZE);
1422 		if (data->m == NULL) {
1423 			device_printf(sc->sc_dev,
1424 			    "%s: could not allocate RX mbuf\n", __func__);
1425 			error = ENOBUFS;
1426 			goto fail;
1427 		}
1428 
1429 		error = bus_dmamap_load(ring->data_dmat, data->map,
1430 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1431 		    &paddr, BUS_DMA_NOWAIT);
1432 		if (error != 0 && error != EFBIG) {
1433 			device_printf(sc->sc_dev,
1434 			    "%s: can't not map mbuf, error %d\n", __func__,
1435 			    error);
1436 			goto fail;
1437 		}
1438 
1439 		/* Set physical address of RX buffer (256-byte aligned). */
1440 		ring->desc[i] = htole32(paddr >> 8);
1441 	}
1442 
1443 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1444 	    BUS_DMASYNC_PREWRITE);
1445 
1446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1447 
1448 	return 0;
1449 
1450 fail:	iwn_free_rx_ring(sc, ring);
1451 
1452 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1453 
1454 	return error;
1455 }
1456 
1457 static void
1458 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1459 {
1460 	int ntries;
1461 
1462 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1463 
1464 	if (iwn_nic_lock(sc) == 0) {
1465 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1466 		for (ntries = 0; ntries < 1000; ntries++) {
1467 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1468 			    IWN_FH_RX_STATUS_IDLE)
1469 				break;
1470 			DELAY(10);
1471 		}
1472 		iwn_nic_unlock(sc);
1473 	}
1474 	ring->cur = 0;
1475 	sc->last_rx_valid = 0;
1476 }
1477 
1478 static void
1479 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1480 {
1481 	int i;
1482 
1483 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1484 
1485 	iwn_dma_contig_free(&ring->desc_dma);
1486 	iwn_dma_contig_free(&ring->stat_dma);
1487 
1488 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1489 		struct iwn_rx_data *data = &ring->data[i];
1490 
1491 		if (data->m != NULL) {
1492 			bus_dmamap_sync(ring->data_dmat, data->map,
1493 			    BUS_DMASYNC_POSTREAD);
1494 			bus_dmamap_unload(ring->data_dmat, data->map);
1495 			m_freem(data->m);
1496 			data->m = NULL;
1497 		}
1498 		if (data->map != NULL)
1499 			bus_dmamap_destroy(ring->data_dmat, data->map);
1500 	}
1501 	if (ring->data_dmat != NULL) {
1502 		bus_dma_tag_destroy(ring->data_dmat);
1503 		ring->data_dmat = NULL;
1504 	}
1505 }
1506 
1507 static int
1508 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1509 {
1510 	bus_addr_t paddr;
1511 	bus_size_t size;
1512 	int i, error;
1513 
1514 	ring->qid = qid;
1515 	ring->queued = 0;
1516 	ring->cur = 0;
1517 
1518 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1519 
1520 	/* Allocate TX descriptors (256-byte aligned). */
1521 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1522 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1523 	    size, 256);
1524 	if (error != 0) {
1525 		device_printf(sc->sc_dev,
1526 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1527 		    __func__, error);
1528 		goto fail;
1529 	}
1530 
1531 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1532 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1533 	    size, 4);
1534 	if (error != 0) {
1535 		device_printf(sc->sc_dev,
1536 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1537 		    __func__, error);
1538 		goto fail;
1539 	}
1540 
1541 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1542 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1543 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1544 	    &ring->data_dmat);
1545 	if (error != 0) {
1546 		device_printf(sc->sc_dev,
1547 		    "%s: could not create TX buf DMA tag, error %d\n",
1548 		    __func__, error);
1549 		goto fail;
1550 	}
1551 
1552 	paddr = ring->cmd_dma.paddr;
1553 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1554 		struct iwn_tx_data *data = &ring->data[i];
1555 
1556 		data->cmd_paddr = paddr;
1557 		data->scratch_paddr = paddr + 12;
1558 		paddr += sizeof (struct iwn_tx_cmd);
1559 
1560 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1561 		if (error != 0) {
1562 			device_printf(sc->sc_dev,
1563 			    "%s: could not create TX buf DMA map, error %d\n",
1564 			    __func__, error);
1565 			goto fail;
1566 		}
1567 	}
1568 
1569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1570 
1571 	return 0;
1572 
1573 fail:	iwn_free_tx_ring(sc, ring);
1574 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
1575 	return error;
1576 }
1577 
1578 static void
1579 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1580 {
1581 	int i;
1582 
1583 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
1584 
1585 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1586 		struct iwn_tx_data *data = &ring->data[i];
1587 
1588 		if (data->m != NULL) {
1589 			bus_dmamap_sync(ring->data_dmat, data->map,
1590 			    BUS_DMASYNC_POSTWRITE);
1591 			bus_dmamap_unload(ring->data_dmat, data->map);
1592 			m_freem(data->m);
1593 			data->m = NULL;
1594 		}
1595 	}
1596 	/* Clear TX descriptors. */
1597 	memset(ring->desc, 0, ring->desc_dma.size);
1598 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1599 	    BUS_DMASYNC_PREWRITE);
1600 	sc->qfullmsk &= ~(1 << ring->qid);
1601 	ring->queued = 0;
1602 	ring->cur = 0;
1603 }
1604 
1605 static void
1606 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1607 {
1608 	int i;
1609 
1610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1611 
1612 	iwn_dma_contig_free(&ring->desc_dma);
1613 	iwn_dma_contig_free(&ring->cmd_dma);
1614 
1615 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1616 		struct iwn_tx_data *data = &ring->data[i];
1617 
1618 		if (data->m != NULL) {
1619 			bus_dmamap_sync(ring->data_dmat, data->map,
1620 			    BUS_DMASYNC_POSTWRITE);
1621 			bus_dmamap_unload(ring->data_dmat, data->map);
1622 			m_freem(data->m);
1623 		}
1624 		if (data->map != NULL)
1625 			bus_dmamap_destroy(ring->data_dmat, data->map);
1626 	}
1627 	if (ring->data_dmat != NULL) {
1628 		bus_dma_tag_destroy(ring->data_dmat);
1629 		ring->data_dmat = NULL;
1630 	}
1631 }
1632 
1633 static void
1634 iwn5000_ict_reset(struct iwn_softc *sc)
1635 {
1636 	/* Disable interrupts. */
1637 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1638 
1639 	/* Reset ICT table. */
1640 	memset(sc->ict, 0, IWN_ICT_SIZE);
1641 	sc->ict_cur = 0;
1642 
1643 	/* Set physical address of ICT table (4KB aligned). */
1644 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1645 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1646 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1647 
1648 	/* Enable periodic RX interrupt. */
1649 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1650 	/* Switch to ICT interrupt mode in driver. */
1651 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1652 
1653 	/* Re-enable interrupts. */
1654 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1655 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1656 }
1657 
1658 static int
1659 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1660 {
1661 	struct iwn_ops *ops = &sc->ops;
1662 	uint16_t val;
1663 	int error;
1664 
1665 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1666 
1667 	/* Check whether adapter has an EEPROM or an OTPROM. */
1668 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1669 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1670 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1671 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1672 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1673 
1674 	/* Adapter has to be powered on for EEPROM access to work. */
1675 	if ((error = iwn_apm_init(sc)) != 0) {
1676 		device_printf(sc->sc_dev,
1677 		    "%s: could not power ON adapter, error %d\n", __func__,
1678 		    error);
1679 		return error;
1680 	}
1681 
1682 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1683 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1684 		return EIO;
1685 	}
1686 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1687 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1688 		    __func__, error);
1689 		return error;
1690 	}
1691 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1692 		if ((error = iwn_init_otprom(sc)) != 0) {
1693 			device_printf(sc->sc_dev,
1694 			    "%s: could not initialize OTPROM, error %d\n",
1695 			    __func__, error);
1696 			return error;
1697 		}
1698 	}
1699 
1700 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1701 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1702 	/* Check if HT support is bonded out. */
1703 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1704 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1705 
1706 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1707 	sc->rfcfg = le16toh(val);
1708 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1709 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1710 	if (sc->txchainmask == 0)
1711 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1712 	if (sc->rxchainmask == 0)
1713 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1714 
1715 	/* Read MAC address. */
1716 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1717 
1718 	/* Read adapter-specific information from EEPROM. */
1719 	ops->read_eeprom(sc);
1720 
1721 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1722 
1723 	iwn_eeprom_unlock(sc);
1724 
1725 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1726 
1727 	return 0;
1728 }
1729 
1730 static void
1731 iwn4965_read_eeprom(struct iwn_softc *sc)
1732 {
1733 	uint32_t addr;
1734 	uint16_t val;
1735 	int i;
1736 
1737 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1738 
1739 	/* Read regulatory domain (4 ASCII characters). */
1740 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1741 
1742 	/* Read the list of authorized channels (20MHz ones only). */
1743 	for (i = 0; i < 7; i++) {
1744 		addr = iwn4965_regulatory_bands[i];
1745 		iwn_read_eeprom_channels(sc, i, addr);
1746 	}
1747 
1748 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1749 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1750 	sc->maxpwr2GHz = val & 0xff;
1751 	sc->maxpwr5GHz = val >> 8;
1752 	/* Check that EEPROM values are within valid range. */
1753 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1754 		sc->maxpwr5GHz = 38;
1755 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1756 		sc->maxpwr2GHz = 38;
1757 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1758 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1759 
1760 	/* Read samples for each TX power group. */
1761 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1762 	    sizeof sc->bands);
1763 
1764 	/* Read voltage at which samples were taken. */
1765 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1766 	sc->eeprom_voltage = (int16_t)le16toh(val);
1767 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1768 	    sc->eeprom_voltage);
1769 
1770 #ifdef IWN_DEBUG
1771 	/* Print samples. */
1772 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1773 		for (i = 0; i < IWN_NBANDS; i++)
1774 			iwn4965_print_power_group(sc, i);
1775 	}
1776 #endif
1777 
1778 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1779 }
1780 
1781 #ifdef IWN_DEBUG
1782 static void
1783 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1784 {
1785 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1786 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1787 	int j, c;
1788 
1789 	printf("===band %d===\n", i);
1790 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1791 	printf("chan1 num=%d\n", chans[0].num);
1792 	for (c = 0; c < 2; c++) {
1793 		for (j = 0; j < IWN_NSAMPLES; j++) {
1794 			printf("chain %d, sample %d: temp=%d gain=%d "
1795 			    "power=%d pa_det=%d\n", c, j,
1796 			    chans[0].samples[c][j].temp,
1797 			    chans[0].samples[c][j].gain,
1798 			    chans[0].samples[c][j].power,
1799 			    chans[0].samples[c][j].pa_det);
1800 		}
1801 	}
1802 	printf("chan2 num=%d\n", chans[1].num);
1803 	for (c = 0; c < 2; c++) {
1804 		for (j = 0; j < IWN_NSAMPLES; j++) {
1805 			printf("chain %d, sample %d: temp=%d gain=%d "
1806 			    "power=%d pa_det=%d\n", c, j,
1807 			    chans[1].samples[c][j].temp,
1808 			    chans[1].samples[c][j].gain,
1809 			    chans[1].samples[c][j].power,
1810 			    chans[1].samples[c][j].pa_det);
1811 		}
1812 	}
1813 }
1814 #endif
1815 
1816 static void
1817 iwn5000_read_eeprom(struct iwn_softc *sc)
1818 {
1819 	struct iwn5000_eeprom_calib_hdr hdr;
1820 	int32_t volt;
1821 	uint32_t base, addr;
1822 	uint16_t val;
1823 	int i;
1824 
1825 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1826 
1827 	/* Read regulatory domain (4 ASCII characters). */
1828 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1829 	base = le16toh(val);
1830 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1831 	    sc->eeprom_domain, 4);
1832 
1833 	/* Read the list of authorized channels (20MHz ones only). */
1834 	for (i = 0; i < 7; i++) {
1835 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1836 			addr = base + iwn6000_regulatory_bands[i];
1837 		else
1838 			addr = base + iwn5000_regulatory_bands[i];
1839 		iwn_read_eeprom_channels(sc, i, addr);
1840 	}
1841 
1842 	/* Read enhanced TX power information for 6000 Series. */
1843 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1844 		iwn_read_eeprom_enhinfo(sc);
1845 
1846 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1847 	base = le16toh(val);
1848 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1849 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1850 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1851 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1852 	sc->calib_ver = hdr.version;
1853 
1854 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1855 		/* Compute temperature offset. */
1856 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1857 		sc->eeprom_temp = le16toh(val);
1858 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1859 		volt = le16toh(val);
1860 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1861 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1862 		    sc->eeprom_temp, volt, sc->temp_off);
1863 	} else {
1864 		/* Read crystal calibration. */
1865 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1866 		    &sc->eeprom_crystal, sizeof (uint32_t));
1867 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1868 		    le32toh(sc->eeprom_crystal));
1869 	}
1870 
1871 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1872 
1873 }
1874 
1875 /*
1876  * Translate EEPROM flags to net80211.
1877  */
1878 static uint32_t
1879 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1880 {
1881 	uint32_t nflags;
1882 
1883 	nflags = 0;
1884 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1885 		nflags |= IEEE80211_CHAN_PASSIVE;
1886 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1887 		nflags |= IEEE80211_CHAN_NOADHOC;
1888 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1889 		nflags |= IEEE80211_CHAN_DFS;
1890 		/* XXX apparently IBSS may still be marked */
1891 		nflags |= IEEE80211_CHAN_NOADHOC;
1892 	}
1893 
1894 	return nflags;
1895 }
1896 
1897 static void
1898 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1899 {
1900 	struct ifnet *ifp = sc->sc_ifp;
1901 	struct ieee80211com *ic = ifp->if_l2com;
1902 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1903 	const struct iwn_chan_band *band = &iwn_bands[n];
1904 	struct ieee80211_channel *c;
1905 	uint8_t chan;
1906 	int i, nflags;
1907 
1908 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1909 
1910 	for (i = 0; i < band->nchan; i++) {
1911 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1912 			DPRINTF(sc, IWN_DEBUG_RESET,
1913 			    "skip chan %d flags 0x%x maxpwr %d\n",
1914 			    band->chan[i], channels[i].flags,
1915 			    channels[i].maxpwr);
1916 			continue;
1917 		}
1918 		chan = band->chan[i];
1919 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1920 
1921 		c = &ic->ic_channels[ic->ic_nchans++];
1922 		c->ic_ieee = chan;
1923 		c->ic_maxregpower = channels[i].maxpwr;
1924 		c->ic_maxpower = 2*c->ic_maxregpower;
1925 
1926 		if (n == 0) {	/* 2GHz band */
1927 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1928 			/* G =>'s B is supported */
1929 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1930 			c = &ic->ic_channels[ic->ic_nchans++];
1931 			c[0] = c[-1];
1932 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1933 		} else {	/* 5GHz band */
1934 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1935 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1936 		}
1937 
1938 		/* Save maximum allowed TX power for this channel. */
1939 		sc->maxpwr[chan] = channels[i].maxpwr;
1940 
1941 		DPRINTF(sc, IWN_DEBUG_RESET,
1942 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1943 		    channels[i].flags, channels[i].maxpwr);
1944 
1945 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1946 			/* add HT20, HT40 added separately */
1947 			c = &ic->ic_channels[ic->ic_nchans++];
1948 			c[0] = c[-1];
1949 			c->ic_flags |= IEEE80211_CHAN_HT20;
1950 		}
1951 	}
1952 
1953 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1954 
1955 }
1956 
1957 static void
1958 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1959 {
1960 	struct ifnet *ifp = sc->sc_ifp;
1961 	struct ieee80211com *ic = ifp->if_l2com;
1962 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1963 	const struct iwn_chan_band *band = &iwn_bands[n];
1964 	struct ieee80211_channel *c, *cent, *extc;
1965 	uint8_t chan;
1966 	int i, nflags;
1967 
1968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
1969 
1970 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
1971 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
1972 		return;
1973 	}
1974 
1975 	for (i = 0; i < band->nchan; i++) {
1976 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1977 			DPRINTF(sc, IWN_DEBUG_RESET,
1978 			    "skip chan %d flags 0x%x maxpwr %d\n",
1979 			    band->chan[i], channels[i].flags,
1980 			    channels[i].maxpwr);
1981 			continue;
1982 		}
1983 		chan = band->chan[i];
1984 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1985 
1986 		/*
1987 		 * Each entry defines an HT40 channel pair; find the
1988 		 * center channel, then the extension channel above.
1989 		 */
1990 		cent = ieee80211_find_channel_byieee(ic, chan,
1991 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1992 		if (cent == NULL) {	/* XXX shouldn't happen */
1993 			device_printf(sc->sc_dev,
1994 			    "%s: no entry for channel %d\n", __func__, chan);
1995 			continue;
1996 		}
1997 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1998 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1999 		if (extc == NULL) {
2000 			DPRINTF(sc, IWN_DEBUG_RESET,
2001 			    "%s: skip chan %d, extension channel not found\n",
2002 			    __func__, chan);
2003 			continue;
2004 		}
2005 
2006 		DPRINTF(sc, IWN_DEBUG_RESET,
2007 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2008 		    chan, channels[i].flags, channels[i].maxpwr);
2009 
2010 		c = &ic->ic_channels[ic->ic_nchans++];
2011 		c[0] = cent[0];
2012 		c->ic_extieee = extc->ic_ieee;
2013 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2014 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2015 		c = &ic->ic_channels[ic->ic_nchans++];
2016 		c[0] = extc[0];
2017 		c->ic_extieee = cent->ic_ieee;
2018 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2019 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2020 	}
2021 
2022 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2023 
2024 }
2025 
2026 static void
2027 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2028 {
2029 	struct ifnet *ifp = sc->sc_ifp;
2030 	struct ieee80211com *ic = ifp->if_l2com;
2031 
2032 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2033 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2034 
2035 	if (n < 5)
2036 		iwn_read_eeprom_band(sc, n);
2037 	else
2038 		iwn_read_eeprom_ht40(sc, n);
2039 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2040 }
2041 
2042 static struct iwn_eeprom_chan *
2043 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2044 {
2045 	int band, chan, i, j;
2046 
2047 	if (IEEE80211_IS_CHAN_HT40(c)) {
2048 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2049 		if (IEEE80211_IS_CHAN_HT40D(c))
2050 			chan = c->ic_extieee;
2051 		else
2052 			chan = c->ic_ieee;
2053 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2054 			if (iwn_bands[band].chan[i] == chan)
2055 				return &sc->eeprom_channels[band][i];
2056 		}
2057 	} else {
2058 		for (j = 0; j < 5; j++) {
2059 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2060 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2061 					return &sc->eeprom_channels[j][i];
2062 			}
2063 		}
2064 	}
2065 	return NULL;
2066 }
2067 
2068 /*
2069  * Enforce flags read from EEPROM.
2070  */
2071 static int
2072 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2073     int nchan, struct ieee80211_channel chans[])
2074 {
2075 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2076 	int i;
2077 
2078 	for (i = 0; i < nchan; i++) {
2079 		struct ieee80211_channel *c = &chans[i];
2080 		struct iwn_eeprom_chan *channel;
2081 
2082 		channel = iwn_find_eeprom_channel(sc, c);
2083 		if (channel == NULL) {
2084 			if_printf(ic->ic_ifp,
2085 			    "%s: invalid channel %u freq %u/0x%x\n",
2086 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2087 			return EINVAL;
2088 		}
2089 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static void
2096 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2097 {
2098 	struct iwn_eeprom_enhinfo enhinfo[35];
2099 	struct ifnet *ifp = sc->sc_ifp;
2100 	struct ieee80211com *ic = ifp->if_l2com;
2101 	struct ieee80211_channel *c;
2102 	uint16_t val, base;
2103 	int8_t maxpwr;
2104 	uint8_t flags;
2105 	int i, j;
2106 
2107 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2108 
2109 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2110 	base = le16toh(val);
2111 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2112 	    enhinfo, sizeof enhinfo);
2113 
2114 	for (i = 0; i < nitems(enhinfo); i++) {
2115 		flags = enhinfo[i].flags;
2116 		if (!(flags & IWN_ENHINFO_VALID))
2117 			continue;	/* Skip invalid entries. */
2118 
2119 		maxpwr = 0;
2120 		if (sc->txchainmask & IWN_ANT_A)
2121 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2122 		if (sc->txchainmask & IWN_ANT_B)
2123 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2124 		if (sc->txchainmask & IWN_ANT_C)
2125 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2126 		if (sc->ntxchains == 2)
2127 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2128 		else if (sc->ntxchains == 3)
2129 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2130 
2131 		for (j = 0; j < ic->ic_nchans; j++) {
2132 			c = &ic->ic_channels[j];
2133 			if ((flags & IWN_ENHINFO_5GHZ)) {
2134 				if (!IEEE80211_IS_CHAN_A(c))
2135 					continue;
2136 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2137 				if (!IEEE80211_IS_CHAN_G(c))
2138 					continue;
2139 			} else if (!IEEE80211_IS_CHAN_B(c))
2140 				continue;
2141 			if ((flags & IWN_ENHINFO_HT40)) {
2142 				if (!IEEE80211_IS_CHAN_HT40(c))
2143 					continue;
2144 			} else {
2145 				if (IEEE80211_IS_CHAN_HT40(c))
2146 					continue;
2147 			}
2148 			if (enhinfo[i].chan != 0 &&
2149 			    enhinfo[i].chan != c->ic_ieee)
2150 				continue;
2151 
2152 			DPRINTF(sc, IWN_DEBUG_RESET,
2153 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2154 			    c->ic_flags, maxpwr / 2);
2155 			c->ic_maxregpower = maxpwr / 2;
2156 			c->ic_maxpower = maxpwr;
2157 		}
2158 	}
2159 
2160 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2161 
2162 }
2163 
2164 static struct ieee80211_node *
2165 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2166 {
2167 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2168 }
2169 
2170 static __inline int
2171 rate2plcp(int rate)
2172 {
2173 	switch (rate & 0xff) {
2174 	case 12:	return 0xd;
2175 	case 18:	return 0xf;
2176 	case 24:	return 0x5;
2177 	case 36:	return 0x7;
2178 	case 48:	return 0x9;
2179 	case 72:	return 0xb;
2180 	case 96:	return 0x1;
2181 	case 108:	return 0x3;
2182 	case 2:		return 10;
2183 	case 4:		return 20;
2184 	case 11:	return 55;
2185 	case 22:	return 110;
2186 	}
2187 	return 0;
2188 }
2189 
2190 /*
2191  * Calculate the required PLCP value from the given rate,
2192  * to the given node.
2193  *
2194  * This will take the node configuration (eg 11n, rate table
2195  * setup, etc) into consideration.
2196  */
2197 static uint32_t
2198 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2199     uint8_t rate)
2200 {
2201 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2202 	struct ieee80211com *ic = ni->ni_ic;
2203 	uint8_t txant1, txant2;
2204 	uint32_t plcp = 0;
2205 	int ridx;
2206 
2207 	/* Use the first valid TX antenna. */
2208 	txant1 = IWN_LSB(sc->txchainmask);
2209 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2210 
2211 	/*
2212 	 * If it's an MCS rate, let's set the plcp correctly
2213 	 * and set the relevant flags based on the node config.
2214 	 */
2215 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2216 		/*
2217 		 * Set the initial PLCP value to be between 0->31 for
2218 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2219 		 * flag.
2220 		 */
2221 		plcp = RV(rate) | IWN_RFLAG_MCS;
2222 
2223 		/*
2224 		 * XXX the following should only occur if both
2225 		 * the local configuration _and_ the remote node
2226 		 * advertise these capabilities.  Thus this code
2227 		 * may need fixing!
2228 		 */
2229 
2230 		/*
2231 		 * Set the channel width and guard interval.
2232 		 */
2233 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2234 			plcp |= IWN_RFLAG_HT40;
2235 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2236 				plcp |= IWN_RFLAG_SGI;
2237 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2238 			plcp |= IWN_RFLAG_SGI;
2239 		}
2240 
2241 		/*
2242 		 * If it's a two stream rate, enable TX on both
2243 		 * antennas.
2244 		 *
2245 		 * XXX three stream rates?
2246 		 */
2247 		if (rate > 0x87)
2248 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2249 		else
2250 			plcp |= IWN_RFLAG_ANT(txant1);
2251 	} else {
2252 		/*
2253 		 * Set the initial PLCP - fine for both
2254 		 * OFDM and CCK rates.
2255 		 */
2256 		plcp = rate2plcp(rate);
2257 
2258 		/* Set CCK flag if it's CCK */
2259 
2260 		/* XXX It would be nice to have a method
2261 		 * to map the ridx -> phy table entry
2262 		 * so we could just query that, rather than
2263 		 * this hack to check against IWN_RIDX_OFDM6.
2264 		 */
2265 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2266 		    rate & IEEE80211_RATE_VAL);
2267 		if (ridx < IWN_RIDX_OFDM6 &&
2268 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2269 			plcp |= IWN_RFLAG_CCK;
2270 
2271 		/* Set antenna configuration */
2272 		plcp |= IWN_RFLAG_ANT(txant1);
2273 	}
2274 
2275 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2276 	    __func__,
2277 	    rate,
2278 	    plcp);
2279 
2280 	return (htole32(plcp));
2281 #undef	RV
2282 }
2283 
2284 static void
2285 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2286 {
2287 	/* Doesn't do anything at the moment */
2288 }
2289 
2290 static int
2291 iwn_media_change(struct ifnet *ifp)
2292 {
2293 	int error;
2294 
2295 	error = ieee80211_media_change(ifp);
2296 	/* NB: only the fixed rate can change and that doesn't need a reset */
2297 	return (error == ENETRESET ? 0 : error);
2298 }
2299 
2300 static int
2301 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2302 {
2303 	struct iwn_vap *ivp = IWN_VAP(vap);
2304 	struct ieee80211com *ic = vap->iv_ic;
2305 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2306 	int error = 0;
2307 
2308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2309 
2310 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2311 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2312 
2313 	IEEE80211_UNLOCK(ic);
2314 	IWN_LOCK(sc);
2315 	callout_stop(&sc->calib_to);
2316 
2317 	switch (nstate) {
2318 	case IEEE80211_S_ASSOC:
2319 		if (vap->iv_state != IEEE80211_S_RUN)
2320 			break;
2321 		/* FALLTHROUGH */
2322 	case IEEE80211_S_AUTH:
2323 		if (vap->iv_state == IEEE80211_S_AUTH)
2324 			break;
2325 
2326 		/*
2327 		 * !AUTH -> AUTH transition requires state reset to handle
2328 		 * reassociations correctly.
2329 		 */
2330 		sc->rxon.associd = 0;
2331 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2332 		sc->calib.state = IWN_CALIB_STATE_INIT;
2333 
2334 		if ((error = iwn_auth(sc, vap)) != 0) {
2335 			device_printf(sc->sc_dev,
2336 			    "%s: could not move to auth state\n", __func__);
2337 		}
2338 		break;
2339 
2340 	case IEEE80211_S_RUN:
2341 		/*
2342 		 * RUN -> RUN transition; Just restart the timers.
2343 		 */
2344 		if (vap->iv_state == IEEE80211_S_RUN) {
2345 			sc->calib_cnt = 0;
2346 			break;
2347 		}
2348 
2349 		/*
2350 		 * !RUN -> RUN requires setting the association id
2351 		 * which is done with a firmware cmd.  We also defer
2352 		 * starting the timers until that work is done.
2353 		 */
2354 		if ((error = iwn_run(sc, vap)) != 0) {
2355 			device_printf(sc->sc_dev,
2356 			    "%s: could not move to run state\n", __func__);
2357 		}
2358 		break;
2359 
2360 	case IEEE80211_S_INIT:
2361 		sc->calib.state = IWN_CALIB_STATE_INIT;
2362 		break;
2363 
2364 	default:
2365 		break;
2366 	}
2367 	IWN_UNLOCK(sc);
2368 	IEEE80211_LOCK(ic);
2369 	if (error != 0){
2370 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2371 		return error;
2372 	}
2373 
2374 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2375 
2376 	return ivp->iv_newstate(vap, nstate, arg);
2377 }
2378 
2379 static void
2380 iwn_calib_timeout(void *arg)
2381 {
2382 	struct iwn_softc *sc = arg;
2383 
2384 	IWN_LOCK_ASSERT(sc);
2385 
2386 	/* Force automatic TX power calibration every 60 secs. */
2387 	if (++sc->calib_cnt >= 120) {
2388 		uint32_t flags = 0;
2389 
2390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2391 		    "sending request for statistics");
2392 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2393 		    sizeof flags, 1);
2394 		sc->calib_cnt = 0;
2395 	}
2396 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2397 	    sc);
2398 }
2399 
2400 /*
2401  * Process an RX_PHY firmware notification.  This is usually immediately
2402  * followed by an MPDU_RX_DONE notification.
2403  */
2404 static void
2405 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2406     struct iwn_rx_data *data)
2407 {
2408 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2409 
2410 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2411 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2412 
2413 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2414 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2415 	sc->last_rx_valid = 1;
2416 }
2417 
2418 /*
2419  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2420  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2421  */
2422 static void
2423 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2424     struct iwn_rx_data *data)
2425 {
2426 	struct iwn_ops *ops = &sc->ops;
2427 	struct ifnet *ifp = sc->sc_ifp;
2428 	struct ieee80211com *ic = ifp->if_l2com;
2429 	struct iwn_rx_ring *ring = &sc->rxq;
2430 	struct ieee80211_frame *wh;
2431 	struct ieee80211_node *ni;
2432 	struct mbuf *m, *m1;
2433 	struct iwn_rx_stat *stat;
2434 	caddr_t head;
2435 	bus_addr_t paddr;
2436 	uint32_t flags;
2437 	int error, len, rssi, nf;
2438 
2439 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2440 
2441 	if (desc->type == IWN_MPDU_RX_DONE) {
2442 		/* Check for prior RX_PHY notification. */
2443 		if (!sc->last_rx_valid) {
2444 			DPRINTF(sc, IWN_DEBUG_ANY,
2445 			    "%s: missing RX_PHY\n", __func__);
2446 			return;
2447 		}
2448 		stat = &sc->last_rx_stat;
2449 	} else
2450 		stat = (struct iwn_rx_stat *)(desc + 1);
2451 
2452 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2453 
2454 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2455 		device_printf(sc->sc_dev,
2456 		    "%s: invalid RX statistic header, len %d\n", __func__,
2457 		    stat->cfg_phy_len);
2458 		return;
2459 	}
2460 	if (desc->type == IWN_MPDU_RX_DONE) {
2461 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2462 		head = (caddr_t)(mpdu + 1);
2463 		len = le16toh(mpdu->len);
2464 	} else {
2465 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2466 		len = le16toh(stat->len);
2467 	}
2468 
2469 	flags = le32toh(*(uint32_t *)(head + len));
2470 
2471 	/* Discard frames with a bad FCS early. */
2472 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2473 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2474 		    __func__, flags);
2475 		ifp->if_ierrors++;
2476 		return;
2477 	}
2478 	/* Discard frames that are too short. */
2479 	if (len < sizeof (*wh)) {
2480 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2481 		    __func__, len);
2482 		ifp->if_ierrors++;
2483 		return;
2484 	}
2485 
2486 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2487 	if (m1 == NULL) {
2488 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2489 		    __func__);
2490 		ifp->if_ierrors++;
2491 		return;
2492 	}
2493 	bus_dmamap_unload(ring->data_dmat, data->map);
2494 
2495 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2496 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2497 	if (error != 0 && error != EFBIG) {
2498 		device_printf(sc->sc_dev,
2499 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2500 		m_freem(m1);
2501 
2502 		/* Try to reload the old mbuf. */
2503 		error = bus_dmamap_load(ring->data_dmat, data->map,
2504 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2505 		    &paddr, BUS_DMA_NOWAIT);
2506 		if (error != 0 && error != EFBIG) {
2507 			panic("%s: could not load old RX mbuf", __func__);
2508 		}
2509 		/* Physical address may have changed. */
2510 		ring->desc[ring->cur] = htole32(paddr >> 8);
2511 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2512 		    BUS_DMASYNC_PREWRITE);
2513 		ifp->if_ierrors++;
2514 		return;
2515 	}
2516 
2517 	m = data->m;
2518 	data->m = m1;
2519 	/* Update RX descriptor. */
2520 	ring->desc[ring->cur] = htole32(paddr >> 8);
2521 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2522 	    BUS_DMASYNC_PREWRITE);
2523 
2524 	/* Finalize mbuf. */
2525 	m->m_pkthdr.rcvif = ifp;
2526 	m->m_data = head;
2527 	m->m_pkthdr.len = m->m_len = len;
2528 
2529 	/* Grab a reference to the source node. */
2530 	wh = mtod(m, struct ieee80211_frame *);
2531 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2532 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2533 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2534 
2535 	rssi = ops->get_rssi(sc, stat);
2536 
2537 	if (ieee80211_radiotap_active(ic)) {
2538 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2539 
2540 		tap->wr_flags = 0;
2541 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2542 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2543 		tap->wr_dbm_antsignal = (int8_t)rssi;
2544 		tap->wr_dbm_antnoise = (int8_t)nf;
2545 		tap->wr_tsft = stat->tstamp;
2546 		switch (stat->rate) {
2547 		/* CCK rates. */
2548 		case  10: tap->wr_rate =   2; break;
2549 		case  20: tap->wr_rate =   4; break;
2550 		case  55: tap->wr_rate =  11; break;
2551 		case 110: tap->wr_rate =  22; break;
2552 		/* OFDM rates. */
2553 		case 0xd: tap->wr_rate =  12; break;
2554 		case 0xf: tap->wr_rate =  18; break;
2555 		case 0x5: tap->wr_rate =  24; break;
2556 		case 0x7: tap->wr_rate =  36; break;
2557 		case 0x9: tap->wr_rate =  48; break;
2558 		case 0xb: tap->wr_rate =  72; break;
2559 		case 0x1: tap->wr_rate =  96; break;
2560 		case 0x3: tap->wr_rate = 108; break;
2561 		/* Unknown rate: should not happen. */
2562 		default:  tap->wr_rate =   0;
2563 		}
2564 	}
2565 
2566 	IWN_UNLOCK(sc);
2567 
2568 	/* Send the frame to the 802.11 layer. */
2569 	if (ni != NULL) {
2570 		if (ni->ni_flags & IEEE80211_NODE_HT)
2571 			m->m_flags |= M_AMPDU;
2572 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2573 		/* Node is no longer needed. */
2574 		ieee80211_free_node(ni);
2575 	} else
2576 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2577 
2578 	IWN_LOCK(sc);
2579 
2580 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2581 
2582 }
2583 
2584 /* Process an incoming Compressed BlockAck. */
2585 static void
2586 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2587     struct iwn_rx_data *data)
2588 {
2589 	struct iwn_ops *ops = &sc->ops;
2590 	struct ifnet *ifp = sc->sc_ifp;
2591 	struct iwn_node *wn;
2592 	struct ieee80211_node *ni;
2593 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2594 	struct iwn_tx_ring *txq;
2595 	struct iwn_tx_data *txdata;
2596 	struct ieee80211_tx_ampdu *tap;
2597 	struct mbuf *m;
2598 	uint64_t bitmap;
2599 	uint16_t ssn;
2600 	uint8_t tid;
2601 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
2602 
2603 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2604 
2605 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2606 
2607 	qid = le16toh(ba->qid);
2608 	txq = &sc->txq[ba->qid];
2609 	tap = sc->qid2tap[ba->qid];
2610 	tid = tap->txa_tid;
2611 	wn = (void *)tap->txa_ni;
2612 
2613 	res = NULL;
2614 	ssn = 0;
2615 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2616 		res = tap->txa_private;
2617 		ssn = tap->txa_start & 0xfff;
2618 	}
2619 
2620 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
2621 		txdata = &txq->data[txq->read];
2622 
2623 		/* Unmap and free mbuf. */
2624 		bus_dmamap_sync(txq->data_dmat, txdata->map,
2625 		    BUS_DMASYNC_POSTWRITE);
2626 		bus_dmamap_unload(txq->data_dmat, txdata->map);
2627 		m = txdata->m, txdata->m = NULL;
2628 		ni = txdata->ni, txdata->ni = NULL;
2629 
2630 		KASSERT(ni != NULL, ("no node"));
2631 		KASSERT(m != NULL, ("no mbuf"));
2632 
2633 		if (m->m_flags & M_TXCB)
2634 			ieee80211_process_callback(ni, m, 1);
2635 
2636 		m_freem(m);
2637 		ieee80211_free_node(ni);
2638 
2639 		txq->queued--;
2640 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2641 	}
2642 
2643 	if (txq->queued == 0 && res != NULL) {
2644 		iwn_nic_lock(sc);
2645 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2646 		iwn_nic_unlock(sc);
2647 		sc->qid2tap[qid] = NULL;
2648 		free(res, M_DEVBUF);
2649 		return;
2650 	}
2651 
2652 	if (wn->agg[tid].bitmap == 0)
2653 		return;
2654 
2655 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2656 	if (shift < 0)
2657 		shift += 0x100;
2658 
2659 	if (wn->agg[tid].nframes > (64 - shift))
2660 		return;
2661 
2662 	ni = tap->txa_ni;
2663 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2664 	for (i = 0; bitmap; i++) {
2665 		if ((bitmap & 1) == 0) {
2666 			ifp->if_oerrors++;
2667 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2668 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2669 		} else {
2670 			ifp->if_opackets++;
2671 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2672 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2673 		}
2674 		bitmap >>= 1;
2675 	}
2676 
2677 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2678 
2679 }
2680 
2681 /*
2682  * Process a CALIBRATION_RESULT notification sent by the initialization
2683  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2684  */
2685 static void
2686 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2687     struct iwn_rx_data *data)
2688 {
2689 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2690 	int len, idx = -1;
2691 
2692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2693 
2694 	/* Runtime firmware should not send such a notification. */
2695 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
2696 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
2697 	    __func__);
2698 		return;
2699 	}
2700 	len = (le32toh(desc->len) & 0x3fff) - 4;
2701 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2702 
2703 	switch (calib->code) {
2704 	case IWN5000_PHY_CALIB_DC:
2705 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2706 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2707 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2708 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2709 			idx = 0;
2710 		break;
2711 	case IWN5000_PHY_CALIB_LO:
2712 		idx = 1;
2713 		break;
2714 	case IWN5000_PHY_CALIB_TX_IQ:
2715 		idx = 2;
2716 		break;
2717 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2718 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2719 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2720 			idx = 3;
2721 		break;
2722 	case IWN5000_PHY_CALIB_BASE_BAND:
2723 		idx = 4;
2724 		break;
2725 	}
2726 	if (idx == -1)	/* Ignore other results. */
2727 		return;
2728 
2729 	/* Save calibration result. */
2730 	if (sc->calibcmd[idx].buf != NULL)
2731 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2732 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2733 	if (sc->calibcmd[idx].buf == NULL) {
2734 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2735 		    "not enough memory for calibration result %d\n",
2736 		    calib->code);
2737 		return;
2738 	}
2739 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2740 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2741 	sc->calibcmd[idx].len = len;
2742 	memcpy(sc->calibcmd[idx].buf, calib, len);
2743 }
2744 
2745 /*
2746  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2747  * The latter is sent by the firmware after each received beacon.
2748  */
2749 static void
2750 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2751     struct iwn_rx_data *data)
2752 {
2753 	struct iwn_ops *ops = &sc->ops;
2754 	struct ifnet *ifp = sc->sc_ifp;
2755 	struct ieee80211com *ic = ifp->if_l2com;
2756 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2757 	struct iwn_calib_state *calib = &sc->calib;
2758 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2759 	int temp;
2760 
2761 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2762 
2763 	/* Ignore statistics received during a scan. */
2764 	if (vap->iv_state != IEEE80211_S_RUN ||
2765 	    (ic->ic_flags & IEEE80211_F_SCAN)){
2766 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
2767 	    __func__);
2768 		return;
2769 	}
2770 
2771 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2772 
2773 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2774 	    __func__, desc->type);
2775 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2776 
2777 	/* Test if temperature has changed. */
2778 	if (stats->general.temp != sc->rawtemp) {
2779 		/* Convert "raw" temperature to degC. */
2780 		sc->rawtemp = stats->general.temp;
2781 		temp = ops->get_temperature(sc);
2782 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2783 		    __func__, temp);
2784 
2785 		/* Update TX power if need be (4965AGN only). */
2786 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2787 			iwn4965_power_calibration(sc, temp);
2788 	}
2789 
2790 	if (desc->type != IWN_BEACON_STATISTICS)
2791 		return;	/* Reply to a statistics request. */
2792 
2793 	sc->noise = iwn_get_noise(&stats->rx.general);
2794 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2795 
2796 	/* Test that RSSI and noise are present in stats report. */
2797 	if (le32toh(stats->rx.general.flags) != 1) {
2798 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2799 		    "received statistics without RSSI");
2800 		return;
2801 	}
2802 
2803 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2804 		iwn_collect_noise(sc, &stats->rx.general);
2805 	else if (calib->state == IWN_CALIB_STATE_RUN)
2806 		iwn_tune_sensitivity(sc, &stats->rx);
2807 
2808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2809 }
2810 
2811 /*
2812  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2813  * and 5000 adapters have different incompatible TX status formats.
2814  */
2815 static void
2816 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2817     struct iwn_rx_data *data)
2818 {
2819 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2820 	struct iwn_tx_ring *ring;
2821 	int qid;
2822 
2823 	qid = desc->qid & 0xf;
2824 	ring = &sc->txq[qid];
2825 
2826 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2827 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2828 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2829 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2830 	    le32toh(stat->status));
2831 
2832 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2833 	if (qid >= sc->firstaggqueue) {
2834 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2835 		    &stat->status);
2836 	} else {
2837 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2838 		    le32toh(stat->status) & 0xff);
2839 	}
2840 }
2841 
2842 static void
2843 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2844     struct iwn_rx_data *data)
2845 {
2846 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2847 	struct iwn_tx_ring *ring;
2848 	int qid;
2849 
2850 	qid = desc->qid & 0xf;
2851 	ring = &sc->txq[qid];
2852 
2853 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2854 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2855 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2856 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2857 	    le32toh(stat->status));
2858 
2859 #ifdef notyet
2860 	/* Reset TX scheduler slot. */
2861 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2862 #endif
2863 
2864 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2865 	if (qid >= sc->firstaggqueue) {
2866 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2867 		    &stat->status);
2868 	} else {
2869 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2870 		    le16toh(stat->status) & 0xff);
2871 	}
2872 }
2873 
2874 /*
2875  * Adapter-independent backend for TX_DONE firmware notifications.
2876  */
2877 static void
2878 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2879     uint8_t status)
2880 {
2881 	struct ifnet *ifp = sc->sc_ifp;
2882 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2883 	struct iwn_tx_data *data = &ring->data[desc->idx];
2884 	struct mbuf *m;
2885 	struct ieee80211_node *ni;
2886 	struct ieee80211vap *vap;
2887 
2888 	KASSERT(data->ni != NULL, ("no node"));
2889 
2890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2891 
2892 	/* Unmap and free mbuf. */
2893 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2894 	bus_dmamap_unload(ring->data_dmat, data->map);
2895 	m = data->m, data->m = NULL;
2896 	ni = data->ni, data->ni = NULL;
2897 	vap = ni->ni_vap;
2898 
2899 	if (m->m_flags & M_TXCB) {
2900 		/*
2901 		 * Channels marked for "radar" require traffic to be received
2902 		 * to unlock before we can transmit.  Until traffic is seen
2903 		 * any attempt to transmit is returned immediately with status
2904 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2905 		 * happen on first authenticate after scanning.  To workaround
2906 		 * this we ignore a failure of this sort in AUTH state so the
2907 		 * 802.11 layer will fall back to using a timeout to wait for
2908 		 * the AUTH reply.  This allows the firmware time to see
2909 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2910 		 * unclear why the firmware does not maintain state for
2911 		 * channels recently visited as this would allow immediate
2912 		 * use of the channel after a scan (where we see traffic).
2913 		 */
2914 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2915 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2916 			ieee80211_process_callback(ni, m, 0);
2917 		else
2918 			ieee80211_process_callback(ni, m,
2919 			    (status & IWN_TX_FAIL) != 0);
2920 	}
2921 
2922 	/*
2923 	 * Update rate control statistics for the node.
2924 	 */
2925 	if (status & IWN_TX_FAIL) {
2926 		ifp->if_oerrors++;
2927 		ieee80211_ratectl_tx_complete(vap, ni,
2928 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2929 	} else {
2930 		ifp->if_opackets++;
2931 		ieee80211_ratectl_tx_complete(vap, ni,
2932 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2933 	}
2934 	m_freem(m);
2935 	ieee80211_free_node(ni);
2936 
2937 	sc->sc_tx_timer = 0;
2938 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2939 		sc->qfullmsk &= ~(1 << ring->qid);
2940 		if (sc->qfullmsk == 0 &&
2941 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2942 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2943 			iwn_start_locked(ifp);
2944 		}
2945 	}
2946 
2947 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2948 
2949 }
2950 
2951 /*
2952  * Process a "command done" firmware notification.  This is where we wakeup
2953  * processes waiting for a synchronous command completion.
2954  */
2955 static void
2956 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2957 {
2958 	struct iwn_tx_ring *ring = &sc->txq[4];
2959 	struct iwn_tx_data *data;
2960 
2961 	if ((desc->qid & 0xf) != 4)
2962 		return;	/* Not a command ack. */
2963 
2964 	data = &ring->data[desc->idx];
2965 
2966 	/* If the command was mapped in an mbuf, free it. */
2967 	if (data->m != NULL) {
2968 		bus_dmamap_sync(ring->data_dmat, data->map,
2969 		    BUS_DMASYNC_POSTWRITE);
2970 		bus_dmamap_unload(ring->data_dmat, data->map);
2971 		m_freem(data->m);
2972 		data->m = NULL;
2973 	}
2974 	wakeup(&ring->desc[desc->idx]);
2975 }
2976 
2977 static void
2978 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2979     void *stat)
2980 {
2981 	struct iwn_ops *ops = &sc->ops;
2982 	struct ifnet *ifp = sc->sc_ifp;
2983 	struct iwn_tx_ring *ring = &sc->txq[qid];
2984 	struct iwn_tx_data *data;
2985 	struct mbuf *m;
2986 	struct iwn_node *wn;
2987 	struct ieee80211_node *ni;
2988 	struct ieee80211_tx_ampdu *tap;
2989 	uint64_t bitmap;
2990 	uint32_t *status = stat;
2991 	uint16_t *aggstatus = stat;
2992 	uint16_t ssn;
2993 	uint8_t tid;
2994 	int bit, i, lastidx, *res, seqno, shift, start;
2995 
2996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2997 
2998 #ifdef NOT_YET
2999 	if (nframes == 1) {
3000 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
3001 			printf("ieee80211_send_bar()\n");
3002 	}
3003 #endif
3004 
3005 	bitmap = 0;
3006 	start = idx;
3007 	for (i = 0; i < nframes; i++) {
3008 		if (le16toh(aggstatus[i * 2]) & 0xc)
3009 			continue;
3010 
3011 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3012 		bit = idx - start;
3013 		shift = 0;
3014 		if (bit >= 64) {
3015 			shift = 0x100 - idx + start;
3016 			bit = 0;
3017 			start = idx;
3018 		} else if (bit <= -64)
3019 			bit = 0x100 - start + idx;
3020 		else if (bit < 0) {
3021 			shift = start - idx;
3022 			start = idx;
3023 			bit = 0;
3024 		}
3025 		bitmap = bitmap << shift;
3026 		bitmap |= 1ULL << bit;
3027 	}
3028 	tap = sc->qid2tap[qid];
3029 	tid = tap->txa_tid;
3030 	wn = (void *)tap->txa_ni;
3031 	wn->agg[tid].bitmap = bitmap;
3032 	wn->agg[tid].startidx = start;
3033 	wn->agg[tid].nframes = nframes;
3034 
3035 	res = NULL;
3036 	ssn = 0;
3037 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3038 		res = tap->txa_private;
3039 		ssn = tap->txa_start & 0xfff;
3040 	}
3041 
3042 	seqno = le32toh(*(status + nframes)) & 0xfff;
3043 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3044 		data = &ring->data[ring->read];
3045 
3046 		/* Unmap and free mbuf. */
3047 		bus_dmamap_sync(ring->data_dmat, data->map,
3048 		    BUS_DMASYNC_POSTWRITE);
3049 		bus_dmamap_unload(ring->data_dmat, data->map);
3050 		m = data->m, data->m = NULL;
3051 		ni = data->ni, data->ni = NULL;
3052 
3053 		KASSERT(ni != NULL, ("no node"));
3054 		KASSERT(m != NULL, ("no mbuf"));
3055 
3056 		if (m->m_flags & M_TXCB)
3057 			ieee80211_process_callback(ni, m, 1);
3058 
3059 		m_freem(m);
3060 		ieee80211_free_node(ni);
3061 
3062 		ring->queued--;
3063 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3064 	}
3065 
3066 	if (ring->queued == 0 && res != NULL) {
3067 		iwn_nic_lock(sc);
3068 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3069 		iwn_nic_unlock(sc);
3070 		sc->qid2tap[qid] = NULL;
3071 		free(res, M_DEVBUF);
3072 		return;
3073 	}
3074 
3075 	sc->sc_tx_timer = 0;
3076 	if (ring->queued < IWN_TX_RING_LOMARK) {
3077 		sc->qfullmsk &= ~(1 << ring->qid);
3078 		if (sc->qfullmsk == 0 &&
3079 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3080 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3081 			iwn_start_locked(ifp);
3082 		}
3083 	}
3084 
3085 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3086 
3087 }
3088 
3089 /*
3090  * Process an INT_FH_RX or INT_SW_RX interrupt.
3091  */
3092 static void
3093 iwn_notif_intr(struct iwn_softc *sc)
3094 {
3095 	struct iwn_ops *ops = &sc->ops;
3096 	struct ifnet *ifp = sc->sc_ifp;
3097 	struct ieee80211com *ic = ifp->if_l2com;
3098 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3099 	uint16_t hw;
3100 
3101 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3102 	    BUS_DMASYNC_POSTREAD);
3103 
3104 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3105 	while (sc->rxq.cur != hw) {
3106 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3107 		struct iwn_rx_desc *desc;
3108 
3109 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3110 		    BUS_DMASYNC_POSTREAD);
3111 		desc = mtod(data->m, struct iwn_rx_desc *);
3112 
3113 		DPRINTF(sc, IWN_DEBUG_RECV,
3114 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
3115 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
3116 		    desc->type, iwn_intr_str(desc->type),
3117 		    le16toh(desc->len));
3118 
3119 		if (!(desc->qid & 0x80))	/* Reply to a command. */
3120 			iwn_cmd_done(sc, desc);
3121 
3122 		switch (desc->type) {
3123 		case IWN_RX_PHY:
3124 			iwn_rx_phy(sc, desc, data);
3125 			break;
3126 
3127 		case IWN_RX_DONE:		/* 4965AGN only. */
3128 		case IWN_MPDU_RX_DONE:
3129 			/* An 802.11 frame has been received. */
3130 			iwn_rx_done(sc, desc, data);
3131 			break;
3132 
3133 		case IWN_RX_COMPRESSED_BA:
3134 			/* A Compressed BlockAck has been received. */
3135 			iwn_rx_compressed_ba(sc, desc, data);
3136 			break;
3137 
3138 		case IWN_TX_DONE:
3139 			/* An 802.11 frame has been transmitted. */
3140 			ops->tx_done(sc, desc, data);
3141 			break;
3142 
3143 		case IWN_RX_STATISTICS:
3144 		case IWN_BEACON_STATISTICS:
3145 			iwn_rx_statistics(sc, desc, data);
3146 			break;
3147 
3148 		case IWN_BEACON_MISSED:
3149 		{
3150 			struct iwn_beacon_missed *miss =
3151 			    (struct iwn_beacon_missed *)(desc + 1);
3152 			int misses;
3153 
3154 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3155 			    BUS_DMASYNC_POSTREAD);
3156 			misses = le32toh(miss->consecutive);
3157 
3158 			DPRINTF(sc, IWN_DEBUG_STATE,
3159 			    "%s: beacons missed %d/%d\n", __func__,
3160 			    misses, le32toh(miss->total));
3161 			/*
3162 			 * If more than 5 consecutive beacons are missed,
3163 			 * reinitialize the sensitivity state machine.
3164 			 */
3165 			if (vap->iv_state == IEEE80211_S_RUN &&
3166 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3167 				if (misses > 5)
3168 					(void)iwn_init_sensitivity(sc);
3169 				if (misses >= vap->iv_bmissthreshold) {
3170 					IWN_UNLOCK(sc);
3171 					ieee80211_beacon_miss(ic);
3172 					IWN_LOCK(sc);
3173 				}
3174 			}
3175 			break;
3176 		}
3177 		case IWN_UC_READY:
3178 		{
3179 			struct iwn_ucode_info *uc =
3180 			    (struct iwn_ucode_info *)(desc + 1);
3181 
3182 			/* The microcontroller is ready. */
3183 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3184 			    BUS_DMASYNC_POSTREAD);
3185 			DPRINTF(sc, IWN_DEBUG_RESET,
3186 			    "microcode alive notification version=%d.%d "
3187 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3188 			    uc->subtype, le32toh(uc->valid));
3189 
3190 			if (le32toh(uc->valid) != 1) {
3191 				device_printf(sc->sc_dev,
3192 				    "microcontroller initialization failed");
3193 				break;
3194 			}
3195 			if (uc->subtype == IWN_UCODE_INIT) {
3196 				/* Save microcontroller report. */
3197 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3198 			}
3199 			/* Save the address of the error log in SRAM. */
3200 			sc->errptr = le32toh(uc->errptr);
3201 			break;
3202 		}
3203 		case IWN_STATE_CHANGED:
3204 		{
3205 			uint32_t *status = (uint32_t *)(desc + 1);
3206 
3207 			/*
3208 			 * State change allows hardware switch change to be
3209 			 * noted. However, we handle this in iwn_intr as we
3210 			 * get both the enable/disble intr.
3211 			 */
3212 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3213 			    BUS_DMASYNC_POSTREAD);
3214 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
3215 			    le32toh(*status));
3216 			break;
3217 		}
3218 		case IWN_START_SCAN:
3219 		{
3220 			struct iwn_start_scan *scan =
3221 			    (struct iwn_start_scan *)(desc + 1);
3222 
3223 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3224 			    BUS_DMASYNC_POSTREAD);
3225 			DPRINTF(sc, IWN_DEBUG_ANY,
3226 			    "%s: scanning channel %d status %x\n",
3227 			    __func__, scan->chan, le32toh(scan->status));
3228 			break;
3229 		}
3230 		case IWN_STOP_SCAN:
3231 		{
3232 			struct iwn_stop_scan *scan =
3233 			    (struct iwn_stop_scan *)(desc + 1);
3234 
3235 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3236 			    BUS_DMASYNC_POSTREAD);
3237 			DPRINTF(sc, IWN_DEBUG_STATE,
3238 			    "scan finished nchan=%d status=%d chan=%d\n",
3239 			    scan->nchan, scan->status, scan->chan);
3240 
3241 			IWN_UNLOCK(sc);
3242 			ieee80211_scan_next(vap);
3243 			IWN_LOCK(sc);
3244 			break;
3245 		}
3246 		case IWN5000_CALIBRATION_RESULT:
3247 			iwn5000_rx_calib_results(sc, desc, data);
3248 			break;
3249 
3250 		case IWN5000_CALIBRATION_DONE:
3251 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3252 			wakeup(sc);
3253 			break;
3254 		}
3255 
3256 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3257 	}
3258 
3259 	/* Tell the firmware what we have processed. */
3260 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3261 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3262 }
3263 
3264 /*
3265  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3266  * from power-down sleep mode.
3267  */
3268 static void
3269 iwn_wakeup_intr(struct iwn_softc *sc)
3270 {
3271 	int qid;
3272 
3273 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3274 	    __func__);
3275 
3276 	/* Wakeup RX and TX rings. */
3277 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3278 	for (qid = 0; qid < sc->ntxqs; qid++) {
3279 		struct iwn_tx_ring *ring = &sc->txq[qid];
3280 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3281 	}
3282 }
3283 
3284 static void
3285 iwn_rftoggle_intr(struct iwn_softc *sc)
3286 {
3287 	struct ifnet *ifp = sc->sc_ifp;
3288 	struct ieee80211com *ic = ifp->if_l2com;
3289 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3290 
3291 	IWN_LOCK_ASSERT(sc);
3292 
3293 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3294 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3295 	if (tmp & IWN_GP_CNTRL_RFKILL)
3296 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3297 	else
3298 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3299 }
3300 
3301 /*
3302  * Dump the error log of the firmware when a firmware panic occurs.  Although
3303  * we can't debug the firmware because it is neither open source nor free, it
3304  * can help us to identify certain classes of problems.
3305  */
3306 static void
3307 iwn_fatal_intr(struct iwn_softc *sc)
3308 {
3309 	struct iwn_fw_dump dump;
3310 	int i;
3311 
3312 	IWN_LOCK_ASSERT(sc);
3313 
3314 	/* Force a complete recalibration on next init. */
3315 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3316 
3317 	/* Check that the error log address is valid. */
3318 	if (sc->errptr < IWN_FW_DATA_BASE ||
3319 	    sc->errptr + sizeof (dump) >
3320 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3321 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3322 		    sc->errptr);
3323 		return;
3324 	}
3325 	if (iwn_nic_lock(sc) != 0) {
3326 		printf("%s: could not read firmware error log\n", __func__);
3327 		return;
3328 	}
3329 	/* Read firmware error log from SRAM. */
3330 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3331 	    sizeof (dump) / sizeof (uint32_t));
3332 	iwn_nic_unlock(sc);
3333 
3334 	if (dump.valid == 0) {
3335 		printf("%s: firmware error log is empty\n", __func__);
3336 		return;
3337 	}
3338 	printf("firmware error log:\n");
3339 	printf("  error type      = \"%s\" (0x%08X)\n",
3340 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3341 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3342 	    dump.id);
3343 	printf("  program counter = 0x%08X\n", dump.pc);
3344 	printf("  source line     = 0x%08X\n", dump.src_line);
3345 	printf("  error data      = 0x%08X%08X\n",
3346 	    dump.error_data[0], dump.error_data[1]);
3347 	printf("  branch link     = 0x%08X%08X\n",
3348 	    dump.branch_link[0], dump.branch_link[1]);
3349 	printf("  interrupt link  = 0x%08X%08X\n",
3350 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3351 	printf("  time            = %u\n", dump.time[0]);
3352 
3353 	/* Dump driver status (TX and RX rings) while we're here. */
3354 	printf("driver status:\n");
3355 	for (i = 0; i < sc->ntxqs; i++) {
3356 		struct iwn_tx_ring *ring = &sc->txq[i];
3357 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3358 		    i, ring->qid, ring->cur, ring->queued);
3359 	}
3360 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3361 }
3362 
3363 static void
3364 iwn_intr(void *arg)
3365 {
3366 	struct iwn_softc *sc = arg;
3367 	struct ifnet *ifp = sc->sc_ifp;
3368 	uint32_t r1, r2, tmp;
3369 
3370 	IWN_LOCK(sc);
3371 
3372 	/* Disable interrupts. */
3373 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3374 
3375 	/* Read interrupts from ICT (fast) or from registers (slow). */
3376 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3377 		tmp = 0;
3378 		while (sc->ict[sc->ict_cur] != 0) {
3379 			tmp |= sc->ict[sc->ict_cur];
3380 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3381 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3382 		}
3383 		tmp = le32toh(tmp);
3384 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3385 			tmp = 0;
3386 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3387 			tmp |= 0x8000;
3388 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3389 		r2 = 0;	/* Unused. */
3390 	} else {
3391 		r1 = IWN_READ(sc, IWN_INT);
3392 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3393 			return;	/* Hardware gone! */
3394 		r2 = IWN_READ(sc, IWN_FH_INT);
3395 	}
3396 
3397 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3398     , r1, r2);
3399 
3400 	if (r1 == 0 && r2 == 0)
3401 		goto done;	/* Interrupt not for us. */
3402 
3403 	/* Acknowledge interrupts. */
3404 	IWN_WRITE(sc, IWN_INT, r1);
3405 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3406 		IWN_WRITE(sc, IWN_FH_INT, r2);
3407 
3408 	if (r1 & IWN_INT_RF_TOGGLED) {
3409 		iwn_rftoggle_intr(sc);
3410 		goto done;
3411 	}
3412 	if (r1 & IWN_INT_CT_REACHED) {
3413 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3414 		    __func__);
3415 	}
3416 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3417 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3418 		    __func__);
3419 		/* Dump firmware error log and stop. */
3420 		iwn_fatal_intr(sc);
3421 		ifp->if_flags &= ~IFF_UP;
3422 		iwn_stop_locked(sc);
3423 		goto done;
3424 	}
3425 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3426 	    (r2 & IWN_FH_INT_RX)) {
3427 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3428 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3429 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3430 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3431 			    IWN_INT_PERIODIC_DIS);
3432 			iwn_notif_intr(sc);
3433 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3434 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3435 				    IWN_INT_PERIODIC_ENA);
3436 			}
3437 		} else
3438 			iwn_notif_intr(sc);
3439 	}
3440 
3441 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3442 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3443 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3444 		wakeup(sc);	/* FH DMA transfer completed. */
3445 	}
3446 
3447 	if (r1 & IWN_INT_ALIVE)
3448 		wakeup(sc);	/* Firmware is alive. */
3449 
3450 	if (r1 & IWN_INT_WAKEUP)
3451 		iwn_wakeup_intr(sc);
3452 
3453 done:
3454 	/* Re-enable interrupts. */
3455 	if (ifp->if_flags & IFF_UP)
3456 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3457 
3458 	IWN_UNLOCK(sc);
3459 }
3460 
3461 /*
3462  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3463  * 5000 adapters use a slightly different format).
3464  */
3465 static void
3466 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3467     uint16_t len)
3468 {
3469 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3470 
3471 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3472 
3473 	*w = htole16(len + 8);
3474 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3475 	    BUS_DMASYNC_PREWRITE);
3476 	if (idx < IWN_SCHED_WINSZ) {
3477 		*(w + IWN_TX_RING_COUNT) = *w;
3478 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3479 		    BUS_DMASYNC_PREWRITE);
3480 	}
3481 }
3482 
3483 static void
3484 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3485     uint16_t len)
3486 {
3487 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3488 
3489 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3490 
3491 	*w = htole16(id << 12 | (len + 8));
3492 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3493 	    BUS_DMASYNC_PREWRITE);
3494 	if (idx < IWN_SCHED_WINSZ) {
3495 		*(w + IWN_TX_RING_COUNT) = *w;
3496 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3497 		    BUS_DMASYNC_PREWRITE);
3498 	}
3499 }
3500 
3501 #ifdef notyet
3502 static void
3503 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3504 {
3505 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3506 
3507 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3508 
3509 	*w = (*w & htole16(0xf000)) | htole16(1);
3510 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3511 	    BUS_DMASYNC_PREWRITE);
3512 	if (idx < IWN_SCHED_WINSZ) {
3513 		*(w + IWN_TX_RING_COUNT) = *w;
3514 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3515 		    BUS_DMASYNC_PREWRITE);
3516 	}
3517 }
3518 #endif
3519 
3520 static int
3521 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3522 {
3523 	struct iwn_ops *ops = &sc->ops;
3524 	const struct ieee80211_txparam *tp;
3525 	struct ieee80211vap *vap = ni->ni_vap;
3526 	struct ieee80211com *ic = ni->ni_ic;
3527 	struct iwn_node *wn = (void *)ni;
3528 	struct iwn_tx_ring *ring;
3529 	struct iwn_tx_desc *desc;
3530 	struct iwn_tx_data *data;
3531 	struct iwn_tx_cmd *cmd;
3532 	struct iwn_cmd_data *tx;
3533 	struct ieee80211_frame *wh;
3534 	struct ieee80211_key *k = NULL;
3535 	struct mbuf *m1;
3536 	uint32_t flags;
3537 	uint16_t qos;
3538 	u_int hdrlen;
3539 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3540 	uint8_t tid, ridx, txant, type;
3541 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3542 
3543 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3544 
3545 	IWN_LOCK_ASSERT(sc);
3546 
3547 	wh = mtod(m, struct ieee80211_frame *);
3548 	hdrlen = ieee80211_anyhdrsize(wh);
3549 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3550 
3551 	/* Select EDCA Access Category and TX ring for this frame. */
3552 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3553 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3554 		tid = qos & IEEE80211_QOS_TID;
3555 	} else {
3556 		qos = 0;
3557 		tid = 0;
3558 	}
3559 	ac = M_WME_GETAC(m);
3560 	if (m->m_flags & M_AMPDU_MPDU) {
3561 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3562 
3563 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
3564 			m_freem(m);
3565 			return EINVAL;
3566 		}
3567 
3568 		ac = *(int *)tap->txa_private;
3569 		*(uint16_t *)wh->i_seq =
3570 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3571 		ni->ni_txseqs[tid]++;
3572 	}
3573 	ring = &sc->txq[ac];
3574 	desc = &ring->desc[ring->cur];
3575 	data = &ring->data[ring->cur];
3576 
3577 	/* Choose a TX rate index. */
3578 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3579 	if (type == IEEE80211_FC0_TYPE_MGT)
3580 		rate = tp->mgmtrate;
3581 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3582 		rate = tp->mcastrate;
3583 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3584 		rate = tp->ucastrate;
3585 	else {
3586 		/* XXX pass pktlen */
3587 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3588 		rate = ni->ni_txrate;
3589 	}
3590 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3591 	    rate & IEEE80211_RATE_VAL);
3592 
3593 	/* Encrypt the frame if need be. */
3594 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3595 		/* Retrieve key for TX. */
3596 		k = ieee80211_crypto_encap(ni, m);
3597 		if (k == NULL) {
3598 			m_freem(m);
3599 			return ENOBUFS;
3600 		}
3601 		/* 802.11 header may have moved. */
3602 		wh = mtod(m, struct ieee80211_frame *);
3603 	}
3604 	totlen = m->m_pkthdr.len;
3605 
3606 	if (ieee80211_radiotap_active_vap(vap)) {
3607 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3608 
3609 		tap->wt_flags = 0;
3610 		tap->wt_rate = rate;
3611 		if (k != NULL)
3612 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3613 
3614 		ieee80211_radiotap_tx(vap, m);
3615 	}
3616 
3617 	/* Prepare TX firmware command. */
3618 	cmd = &ring->cmd[ring->cur];
3619 	cmd->code = IWN_CMD_TX_DATA;
3620 	cmd->flags = 0;
3621 	cmd->qid = ring->qid;
3622 	cmd->idx = ring->cur;
3623 
3624 	tx = (struct iwn_cmd_data *)cmd->data;
3625 	/* NB: No need to clear tx, all fields are reinitialized here. */
3626 	tx->scratch = 0;	/* clear "scratch" area */
3627 
3628 	flags = 0;
3629 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3630 		/* Unicast frame, check if an ACK is expected. */
3631 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3632 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3633 			flags |= IWN_TX_NEED_ACK;
3634 	}
3635 	if ((wh->i_fc[0] &
3636 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3637 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3638 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3639 
3640 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3641 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3642 
3643 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3644 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3645 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3646 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3647 			flags |= IWN_TX_NEED_RTS;
3648 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3649 		    ridx >= IWN_RIDX_OFDM6) {
3650 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3651 				flags |= IWN_TX_NEED_CTS;
3652 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3653 				flags |= IWN_TX_NEED_RTS;
3654 		}
3655 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3656 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3657 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3658 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3659 				flags |= IWN_TX_NEED_PROTECTION;
3660 			} else
3661 				flags |= IWN_TX_FULL_TXOP;
3662 		}
3663 	}
3664 
3665 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3666 	    type != IEEE80211_FC0_TYPE_DATA)
3667 		tx->id = sc->broadcast_id;
3668 	else
3669 		tx->id = wn->id;
3670 
3671 	if (type == IEEE80211_FC0_TYPE_MGT) {
3672 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3673 
3674 		/* Tell HW to set timestamp in probe responses. */
3675 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3676 			flags |= IWN_TX_INSERT_TSTAMP;
3677 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3678 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3679 			tx->timeout = htole16(3);
3680 		else
3681 			tx->timeout = htole16(2);
3682 	} else
3683 		tx->timeout = htole16(0);
3684 
3685 	if (hdrlen & 3) {
3686 		/* First segment length must be a multiple of 4. */
3687 		flags |= IWN_TX_NEED_PADDING;
3688 		pad = 4 - (hdrlen & 3);
3689 	} else
3690 		pad = 0;
3691 
3692 	tx->len = htole16(totlen);
3693 	tx->tid = tid;
3694 	tx->rts_ntries = 60;
3695 	tx->data_ntries = 15;
3696 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3697 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
3698 	if (tx->id == sc->broadcast_id) {
3699 		/* Group or management frame. */
3700 		tx->linkq = 0;
3701 		/* XXX Alternate between antenna A and B? */
3702 		txant = IWN_LSB(sc->txchainmask);
3703 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3704 	} else {
3705 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3706 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3707 	}
3708 	/* Set physical address of "scratch area". */
3709 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3710 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3711 
3712 	/* Copy 802.11 header in TX command. */
3713 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3714 
3715 	/* Trim 802.11 header. */
3716 	m_adj(m, hdrlen);
3717 	tx->security = 0;
3718 	tx->flags = htole32(flags);
3719 
3720 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3721 	    &nsegs, BUS_DMA_NOWAIT);
3722 	if (error != 0) {
3723 		if (error != EFBIG) {
3724 			device_printf(sc->sc_dev,
3725 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3726 			m_freem(m);
3727 			return error;
3728 		}
3729 		/* Too many DMA segments, linearize mbuf. */
3730 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3731 		if (m1 == NULL) {
3732 			device_printf(sc->sc_dev,
3733 			    "%s: could not defrag mbuf\n", __func__);
3734 			m_freem(m);
3735 			return ENOBUFS;
3736 		}
3737 		m = m1;
3738 
3739 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3740 		    segs, &nsegs, BUS_DMA_NOWAIT);
3741 		if (error != 0) {
3742 			device_printf(sc->sc_dev,
3743 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3744 			m_freem(m);
3745 			return error;
3746 		}
3747 	}
3748 
3749 	data->m = m;
3750 	data->ni = ni;
3751 
3752 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3753 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3754 
3755 	/* Fill TX descriptor. */
3756 	desc->nsegs = 1;
3757 	if (m->m_len != 0)
3758 		desc->nsegs += nsegs;
3759 	/* First DMA segment is used by the TX command. */
3760 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3761 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3762 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3763 	/* Other DMA segments are for data payload. */
3764 	seg = &segs[0];
3765 	for (i = 1; i <= nsegs; i++) {
3766 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3767 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3768 		    seg->ds_len << 4);
3769 		seg++;
3770 	}
3771 
3772 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3773 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3774 	    BUS_DMASYNC_PREWRITE);
3775 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3776 	    BUS_DMASYNC_PREWRITE);
3777 
3778 	/* Update TX scheduler. */
3779 	if (ring->qid >= sc->firstaggqueue)
3780 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3781 
3782 	/* Kick TX ring. */
3783 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3784 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3785 
3786 	/* Mark TX ring as full if we reach a certain threshold. */
3787 	if (++ring->queued > IWN_TX_RING_HIMARK)
3788 		sc->qfullmsk |= 1 << ring->qid;
3789 
3790 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3791 
3792 	return 0;
3793 }
3794 
3795 static int
3796 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3797     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3798 {
3799 	struct iwn_ops *ops = &sc->ops;
3800 	struct ifnet *ifp = sc->sc_ifp;
3801 	struct ieee80211vap *vap = ni->ni_vap;
3802 	struct ieee80211com *ic = ifp->if_l2com;
3803 	struct iwn_tx_cmd *cmd;
3804 	struct iwn_cmd_data *tx;
3805 	struct ieee80211_frame *wh;
3806 	struct iwn_tx_ring *ring;
3807 	struct iwn_tx_desc *desc;
3808 	struct iwn_tx_data *data;
3809 	struct mbuf *m1;
3810 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3811 	uint32_t flags;
3812 	u_int hdrlen;
3813 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3814 	uint8_t ridx, type, txant;
3815 
3816 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3817 
3818 	IWN_LOCK_ASSERT(sc);
3819 
3820 	wh = mtod(m, struct ieee80211_frame *);
3821 	hdrlen = ieee80211_anyhdrsize(wh);
3822 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3823 
3824 	ac = params->ibp_pri & 3;
3825 
3826 	ring = &sc->txq[ac];
3827 	desc = &ring->desc[ring->cur];
3828 	data = &ring->data[ring->cur];
3829 
3830 	/* Choose a TX rate index. */
3831 	rate = params->ibp_rate0;
3832 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3833 	    rate & IEEE80211_RATE_VAL);
3834 	if (ridx == (uint8_t)-1) {
3835 		/* XXX fall back to mcast/mgmt rate? */
3836 		m_freem(m);
3837 		return EINVAL;
3838 	}
3839 
3840 	totlen = m->m_pkthdr.len;
3841 
3842 	/* Prepare TX firmware command. */
3843 	cmd = &ring->cmd[ring->cur];
3844 	cmd->code = IWN_CMD_TX_DATA;
3845 	cmd->flags = 0;
3846 	cmd->qid = ring->qid;
3847 	cmd->idx = ring->cur;
3848 
3849 	tx = (struct iwn_cmd_data *)cmd->data;
3850 	/* NB: No need to clear tx, all fields are reinitialized here. */
3851 	tx->scratch = 0;	/* clear "scratch" area */
3852 
3853 	flags = 0;
3854 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3855 		flags |= IWN_TX_NEED_ACK;
3856 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3857 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3858 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3859 			flags &= ~IWN_TX_NEED_RTS;
3860 			flags |= IWN_TX_NEED_PROTECTION;
3861 		} else
3862 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3863 	}
3864 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3865 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3866 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3867 			flags &= ~IWN_TX_NEED_CTS;
3868 			flags |= IWN_TX_NEED_PROTECTION;
3869 		} else
3870 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3871 	}
3872 	if (type == IEEE80211_FC0_TYPE_MGT) {
3873 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3874 
3875 		/* Tell HW to set timestamp in probe responses. */
3876 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3877 			flags |= IWN_TX_INSERT_TSTAMP;
3878 
3879 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3880 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3881 			tx->timeout = htole16(3);
3882 		else
3883 			tx->timeout = htole16(2);
3884 	} else
3885 		tx->timeout = htole16(0);
3886 
3887 	if (hdrlen & 3) {
3888 		/* First segment length must be a multiple of 4. */
3889 		flags |= IWN_TX_NEED_PADDING;
3890 		pad = 4 - (hdrlen & 3);
3891 	} else
3892 		pad = 0;
3893 
3894 	if (ieee80211_radiotap_active_vap(vap)) {
3895 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3896 
3897 		tap->wt_flags = 0;
3898 		tap->wt_rate = rate;
3899 
3900 		ieee80211_radiotap_tx(vap, m);
3901 	}
3902 
3903 	tx->len = htole16(totlen);
3904 	tx->tid = 0;
3905 	tx->id = sc->broadcast_id;
3906 	tx->rts_ntries = params->ibp_try1;
3907 	tx->data_ntries = params->ibp_try0;
3908 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3909 
3910 	/* XXX should just use  iwn_rate_to_plcp() */
3911 	tx->rate = htole32(rate2plcp(rate));
3912 	if (ridx < IWN_RIDX_OFDM6 &&
3913 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3914 		tx->rate |= htole32(IWN_RFLAG_CCK);
3915 
3916 	/* Group or management frame. */
3917 	tx->linkq = 0;
3918 	txant = IWN_LSB(sc->txchainmask);
3919 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3920 
3921 	/* Set physical address of "scratch area". */
3922 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3923 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3924 
3925 	/* Copy 802.11 header in TX command. */
3926 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3927 
3928 	/* Trim 802.11 header. */
3929 	m_adj(m, hdrlen);
3930 	tx->security = 0;
3931 	tx->flags = htole32(flags);
3932 
3933 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3934 	    &nsegs, BUS_DMA_NOWAIT);
3935 	if (error != 0) {
3936 		if (error != EFBIG) {
3937 			device_printf(sc->sc_dev,
3938 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3939 			m_freem(m);
3940 			return error;
3941 		}
3942 		/* Too many DMA segments, linearize mbuf. */
3943 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3944 		if (m1 == NULL) {
3945 			device_printf(sc->sc_dev,
3946 			    "%s: could not defrag mbuf\n", __func__);
3947 			m_freem(m);
3948 			return ENOBUFS;
3949 		}
3950 		m = m1;
3951 
3952 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3953 		    segs, &nsegs, BUS_DMA_NOWAIT);
3954 		if (error != 0) {
3955 			device_printf(sc->sc_dev,
3956 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3957 			m_freem(m);
3958 			return error;
3959 		}
3960 	}
3961 
3962 	data->m = m;
3963 	data->ni = ni;
3964 
3965 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3966 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3967 
3968 	/* Fill TX descriptor. */
3969 	desc->nsegs = 1;
3970 	if (m->m_len != 0)
3971 		desc->nsegs += nsegs;
3972 	/* First DMA segment is used by the TX command. */
3973 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3974 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3975 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3976 	/* Other DMA segments are for data payload. */
3977 	seg = &segs[0];
3978 	for (i = 1; i <= nsegs; i++) {
3979 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3980 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3981 		    seg->ds_len << 4);
3982 		seg++;
3983 	}
3984 
3985 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3986 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3987 	    BUS_DMASYNC_PREWRITE);
3988 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3989 	    BUS_DMASYNC_PREWRITE);
3990 
3991 	/* Update TX scheduler. */
3992 	if (ring->qid >= sc->firstaggqueue)
3993 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3994 
3995 	/* Kick TX ring. */
3996 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3997 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3998 
3999 	/* Mark TX ring as full if we reach a certain threshold. */
4000 	if (++ring->queued > IWN_TX_RING_HIMARK)
4001 		sc->qfullmsk |= 1 << ring->qid;
4002 
4003 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4004 
4005 	return 0;
4006 }
4007 
4008 static int
4009 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4010     const struct ieee80211_bpf_params *params)
4011 {
4012 	struct ieee80211com *ic = ni->ni_ic;
4013 	struct ifnet *ifp = ic->ic_ifp;
4014 	struct iwn_softc *sc = ifp->if_softc;
4015 	int error = 0;
4016 
4017 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4018 
4019 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4020 		ieee80211_free_node(ni);
4021 		m_freem(m);
4022 		return ENETDOWN;
4023 	}
4024 
4025 	IWN_LOCK(sc);
4026 	if (params == NULL) {
4027 		/*
4028 		 * Legacy path; interpret frame contents to decide
4029 		 * precisely how to send the frame.
4030 		 */
4031 		error = iwn_tx_data(sc, m, ni);
4032 	} else {
4033 		/*
4034 		 * Caller supplied explicit parameters to use in
4035 		 * sending the frame.
4036 		 */
4037 		error = iwn_tx_data_raw(sc, m, ni, params);
4038 	}
4039 	if (error != 0) {
4040 		/* NB: m is reclaimed on tx failure */
4041 		ieee80211_free_node(ni);
4042 		ifp->if_oerrors++;
4043 	}
4044 	sc->sc_tx_timer = 5;
4045 
4046 	IWN_UNLOCK(sc);
4047 
4048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4049 
4050 	return error;
4051 }
4052 
4053 static void
4054 iwn_start(struct ifnet *ifp)
4055 {
4056 	struct iwn_softc *sc = ifp->if_softc;
4057 
4058 	IWN_LOCK(sc);
4059 	iwn_start_locked(ifp);
4060 	IWN_UNLOCK(sc);
4061 }
4062 
4063 static void
4064 iwn_start_locked(struct ifnet *ifp)
4065 {
4066 	struct iwn_softc *sc = ifp->if_softc;
4067 	struct ieee80211_node *ni;
4068 	struct mbuf *m;
4069 
4070 	IWN_LOCK_ASSERT(sc);
4071 
4072 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
4073 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
4074 		return;
4075 
4076 	for (;;) {
4077 		if (sc->qfullmsk != 0) {
4078 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4079 			break;
4080 		}
4081 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4082 		if (m == NULL)
4083 			break;
4084 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4085 		if (iwn_tx_data(sc, m, ni) != 0) {
4086 			ieee80211_free_node(ni);
4087 			ifp->if_oerrors++;
4088 			continue;
4089 		}
4090 		sc->sc_tx_timer = 5;
4091 	}
4092 }
4093 
4094 static void
4095 iwn_watchdog(void *arg)
4096 {
4097 	struct iwn_softc *sc = arg;
4098 	struct ifnet *ifp = sc->sc_ifp;
4099 	struct ieee80211com *ic = ifp->if_l2com;
4100 
4101 	IWN_LOCK_ASSERT(sc);
4102 
4103 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
4104 
4105 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4106 
4107 	if (sc->sc_tx_timer > 0) {
4108 		if (--sc->sc_tx_timer == 0) {
4109 			if_printf(ifp, "device timeout\n");
4110 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4111 			return;
4112 		}
4113 	}
4114 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4115 }
4116 
4117 static int
4118 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4119 {
4120 	struct iwn_softc *sc = ifp->if_softc;
4121 	struct ieee80211com *ic = ifp->if_l2com;
4122 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4123 	struct ifreq *ifr = (struct ifreq *) data;
4124 	int error = 0, startall = 0, stop = 0;
4125 
4126 	switch (cmd) {
4127 	case SIOCGIFADDR:
4128 		error = ether_ioctl(ifp, cmd, data);
4129 		break;
4130 	case SIOCSIFFLAGS:
4131 		IWN_LOCK(sc);
4132 		if (ifp->if_flags & IFF_UP) {
4133 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4134 				iwn_init_locked(sc);
4135 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4136 					startall = 1;
4137 				else
4138 					stop = 1;
4139 			}
4140 		} else {
4141 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4142 				iwn_stop_locked(sc);
4143 		}
4144 		IWN_UNLOCK(sc);
4145 		if (startall)
4146 			ieee80211_start_all(ic);
4147 		else if (vap != NULL && stop)
4148 			ieee80211_stop(vap);
4149 		break;
4150 	case SIOCGIFMEDIA:
4151 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4152 		break;
4153 	default:
4154 		error = EINVAL;
4155 		break;
4156 	}
4157 	return error;
4158 }
4159 
4160 /*
4161  * Send a command to the firmware.
4162  */
4163 static int
4164 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4165 {
4166 	struct iwn_tx_ring *ring = &sc->txq[4];
4167 	struct iwn_tx_desc *desc;
4168 	struct iwn_tx_data *data;
4169 	struct iwn_tx_cmd *cmd;
4170 	struct mbuf *m;
4171 	bus_addr_t paddr;
4172 	int totlen, error;
4173 
4174 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4175 
4176 	if (async == 0)
4177 		IWN_LOCK_ASSERT(sc);
4178 
4179 	desc = &ring->desc[ring->cur];
4180 	data = &ring->data[ring->cur];
4181 	totlen = 4 + size;
4182 
4183 	if (size > sizeof cmd->data) {
4184 		/* Command is too large to fit in a descriptor. */
4185 		if (totlen > MCLBYTES)
4186 			return EINVAL;
4187 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4188 		if (m == NULL)
4189 			return ENOMEM;
4190 		cmd = mtod(m, struct iwn_tx_cmd *);
4191 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4192 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4193 		if (error != 0) {
4194 			m_freem(m);
4195 			return error;
4196 		}
4197 		data->m = m;
4198 	} else {
4199 		cmd = &ring->cmd[ring->cur];
4200 		paddr = data->cmd_paddr;
4201 	}
4202 
4203 	cmd->code = code;
4204 	cmd->flags = 0;
4205 	cmd->qid = ring->qid;
4206 	cmd->idx = ring->cur;
4207 	memcpy(cmd->data, buf, size);
4208 
4209 	desc->nsegs = 1;
4210 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4211 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4212 
4213 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4214 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4215 	    cmd->flags, cmd->qid, cmd->idx);
4216 
4217 	if (size > sizeof cmd->data) {
4218 		bus_dmamap_sync(ring->data_dmat, data->map,
4219 		    BUS_DMASYNC_PREWRITE);
4220 	} else {
4221 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4222 		    BUS_DMASYNC_PREWRITE);
4223 	}
4224 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4225 	    BUS_DMASYNC_PREWRITE);
4226 
4227 	/* Kick command ring. */
4228 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4229 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4230 
4231 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4232 
4233 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4234 }
4235 
4236 static int
4237 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4238 {
4239 	struct iwn4965_node_info hnode;
4240 	caddr_t src, dst;
4241 
4242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4243 
4244 	/*
4245 	 * We use the node structure for 5000 Series internally (it is
4246 	 * a superset of the one for 4965AGN). We thus copy the common
4247 	 * fields before sending the command.
4248 	 */
4249 	src = (caddr_t)node;
4250 	dst = (caddr_t)&hnode;
4251 	memcpy(dst, src, 48);
4252 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4253 	memcpy(dst + 48, src + 72, 20);
4254 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4255 }
4256 
4257 static int
4258 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4259 {
4260 
4261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4262 
4263 	/* Direct mapping. */
4264 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4265 }
4266 
4267 static int
4268 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4269 {
4270 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4271 	struct iwn_node *wn = (void *)ni;
4272 	struct ieee80211_rateset *rs = &ni->ni_rates;
4273 	struct iwn_cmd_link_quality linkq;
4274 	uint8_t txant;
4275 	int i, rate, txrate;
4276 
4277 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4278 
4279 	/* Use the first valid TX antenna. */
4280 	txant = IWN_LSB(sc->txchainmask);
4281 
4282 	memset(&linkq, 0, sizeof linkq);
4283 	linkq.id = wn->id;
4284 	linkq.antmsk_1stream = txant;
4285 	linkq.antmsk_2stream = IWN_ANT_AB;
4286 	linkq.ampdu_max = 64;
4287 	linkq.ampdu_threshold = 3;
4288 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4289 
4290 	/* Start at highest available bit-rate. */
4291 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4292 		txrate = ni->ni_htrates.rs_nrates - 1;
4293 	else
4294 		txrate = rs->rs_nrates - 1;
4295 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4296 		uint32_t plcp;
4297 
4298 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4299 			rate = IEEE80211_RATE_MCS | txrate;
4300 		else
4301 			rate = RV(rs->rs_rates[txrate]);
4302 
4303 		/* Do rate -> PLCP config mapping */
4304 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4305 		linkq.retry[i] = plcp;
4306 
4307 		/* Special case for dual-stream rates? */
4308 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4309 		    RV(le32toh(plcp)) > 7)
4310 			linkq.mimo = i + 1;
4311 
4312 		/* Next retry at immediate lower bit-rate. */
4313 		if (txrate > 0)
4314 			txrate--;
4315 	}
4316 
4317 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4318 
4319 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4320 #undef	RV
4321 }
4322 
4323 /*
4324  * Broadcast node is used to send group-addressed and management frames.
4325  */
4326 static int
4327 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4328 {
4329 	struct iwn_ops *ops = &sc->ops;
4330 	struct ifnet *ifp = sc->sc_ifp;
4331 	struct ieee80211com *ic = ifp->if_l2com;
4332 	struct iwn_node_info node;
4333 	struct iwn_cmd_link_quality linkq;
4334 	uint8_t txant;
4335 	int i, error;
4336 
4337 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4338 
4339 	memset(&node, 0, sizeof node);
4340 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4341 	node.id = sc->broadcast_id;
4342 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4343 	if ((error = ops->add_node(sc, &node, async)) != 0)
4344 		return error;
4345 
4346 	/* Use the first valid TX antenna. */
4347 	txant = IWN_LSB(sc->txchainmask);
4348 
4349 	memset(&linkq, 0, sizeof linkq);
4350 	linkq.id = sc->broadcast_id;
4351 	linkq.antmsk_1stream = txant;
4352 	linkq.antmsk_2stream = IWN_ANT_AB;
4353 	linkq.ampdu_max = 64;
4354 	linkq.ampdu_threshold = 3;
4355 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4356 
4357 	/* Use lowest mandatory bit-rate. */
4358 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4359 		linkq.retry[0] = htole32(0xd);
4360 	else
4361 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4362 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4363 	/* Use same bit-rate for all TX retries. */
4364 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4365 		linkq.retry[i] = linkq.retry[0];
4366 	}
4367 
4368 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4369 
4370 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4371 }
4372 
4373 static int
4374 iwn_updateedca(struct ieee80211com *ic)
4375 {
4376 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4377 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4378 	struct iwn_edca_params cmd;
4379 	int aci;
4380 
4381 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4382 
4383 	memset(&cmd, 0, sizeof cmd);
4384 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4385 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4386 		const struct wmeParams *ac =
4387 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4388 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4389 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4390 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4391 		cmd.ac[aci].txoplimit =
4392 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4393 	}
4394 	IEEE80211_UNLOCK(ic);
4395 	IWN_LOCK(sc);
4396 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4397 	IWN_UNLOCK(sc);
4398 	IEEE80211_LOCK(ic);
4399 
4400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4401 
4402 	return 0;
4403 #undef IWN_EXP2
4404 }
4405 
4406 static void
4407 iwn_update_mcast(struct ifnet *ifp)
4408 {
4409 	/* Ignore */
4410 }
4411 
4412 static void
4413 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4414 {
4415 	struct iwn_cmd_led led;
4416 
4417 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4418 
4419 	/* Clear microcode LED ownership. */
4420 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4421 
4422 	led.which = which;
4423 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4424 	led.off = off;
4425 	led.on = on;
4426 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4427 }
4428 
4429 /*
4430  * Set the critical temperature at which the firmware will stop the radio
4431  * and notify us.
4432  */
4433 static int
4434 iwn_set_critical_temp(struct iwn_softc *sc)
4435 {
4436 	struct iwn_critical_temp crit;
4437 	int32_t temp;
4438 
4439 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4440 
4441 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4442 
4443 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4444 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4445 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4446 		temp = IWN_CTOK(110);
4447 	else
4448 		temp = 110;
4449 	memset(&crit, 0, sizeof crit);
4450 	crit.tempR = htole32(temp);
4451 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4452 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4453 }
4454 
4455 static int
4456 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4457 {
4458 	struct iwn_cmd_timing cmd;
4459 	uint64_t val, mod;
4460 
4461 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4462 
4463 	memset(&cmd, 0, sizeof cmd);
4464 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4465 	cmd.bintval = htole16(ni->ni_intval);
4466 	cmd.lintval = htole16(10);
4467 
4468 	/* Compute remaining time until next beacon. */
4469 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4470 	mod = le64toh(cmd.tstamp) % val;
4471 	cmd.binitval = htole32((uint32_t)(val - mod));
4472 
4473 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4474 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4475 
4476 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4477 }
4478 
4479 static void
4480 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4481 {
4482 	struct ifnet *ifp = sc->sc_ifp;
4483 	struct ieee80211com *ic = ifp->if_l2com;
4484 
4485 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4486 
4487 	/* Adjust TX power if need be (delta >= 3 degC). */
4488 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4489 	    __func__, sc->temp, temp);
4490 	if (abs(temp - sc->temp) >= 3) {
4491 		/* Record temperature of last calibration. */
4492 		sc->temp = temp;
4493 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4494 	}
4495 }
4496 
4497 /*
4498  * Set TX power for current channel (each rate has its own power settings).
4499  * This function takes into account the regulatory information from EEPROM,
4500  * the current temperature and the current voltage.
4501  */
4502 static int
4503 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4504     int async)
4505 {
4506 /* Fixed-point arithmetic division using a n-bit fractional part. */
4507 #define fdivround(a, b, n)	\
4508 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4509 /* Linear interpolation. */
4510 #define interpolate(x, x1, y1, x2, y2, n)	\
4511 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4512 
4513 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4514 	struct iwn_ucode_info *uc = &sc->ucode_info;
4515 	struct iwn4965_cmd_txpower cmd;
4516 	struct iwn4965_eeprom_chan_samples *chans;
4517 	const uint8_t *rf_gain, *dsp_gain;
4518 	int32_t vdiff, tdiff;
4519 	int i, c, grp, maxpwr;
4520 	uint8_t chan;
4521 
4522 	/* Retrieve current channel from last RXON. */
4523 	chan = sc->rxon.chan;
4524 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4525 	    chan);
4526 
4527 	memset(&cmd, 0, sizeof cmd);
4528 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4529 	cmd.chan = chan;
4530 
4531 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4532 		maxpwr   = sc->maxpwr5GHz;
4533 		rf_gain  = iwn4965_rf_gain_5ghz;
4534 		dsp_gain = iwn4965_dsp_gain_5ghz;
4535 	} else {
4536 		maxpwr   = sc->maxpwr2GHz;
4537 		rf_gain  = iwn4965_rf_gain_2ghz;
4538 		dsp_gain = iwn4965_dsp_gain_2ghz;
4539 	}
4540 
4541 	/* Compute voltage compensation. */
4542 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4543 	if (vdiff > 0)
4544 		vdiff *= 2;
4545 	if (abs(vdiff) > 2)
4546 		vdiff = 0;
4547 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4548 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4549 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4550 
4551 	/* Get channel attenuation group. */
4552 	if (chan <= 20)		/* 1-20 */
4553 		grp = 4;
4554 	else if (chan <= 43)	/* 34-43 */
4555 		grp = 0;
4556 	else if (chan <= 70)	/* 44-70 */
4557 		grp = 1;
4558 	else if (chan <= 124)	/* 71-124 */
4559 		grp = 2;
4560 	else			/* 125-200 */
4561 		grp = 3;
4562 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4563 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4564 
4565 	/* Get channel sub-band. */
4566 	for (i = 0; i < IWN_NBANDS; i++)
4567 		if (sc->bands[i].lo != 0 &&
4568 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4569 			break;
4570 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4571 		return EINVAL;
4572 	chans = sc->bands[i].chans;
4573 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4574 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4575 
4576 	for (c = 0; c < 2; c++) {
4577 		uint8_t power, gain, temp;
4578 		int maxchpwr, pwr, ridx, idx;
4579 
4580 		power = interpolate(chan,
4581 		    chans[0].num, chans[0].samples[c][1].power,
4582 		    chans[1].num, chans[1].samples[c][1].power, 1);
4583 		gain  = interpolate(chan,
4584 		    chans[0].num, chans[0].samples[c][1].gain,
4585 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4586 		temp  = interpolate(chan,
4587 		    chans[0].num, chans[0].samples[c][1].temp,
4588 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4589 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4590 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4591 		    __func__, c, power, gain, temp);
4592 
4593 		/* Compute temperature compensation. */
4594 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4595 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4596 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4597 		    __func__, tdiff, sc->temp, temp);
4598 
4599 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4600 			/* Convert dBm to half-dBm. */
4601 			maxchpwr = sc->maxpwr[chan] * 2;
4602 			if ((ridx / 8) & 1)
4603 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4604 
4605 			pwr = maxpwr;
4606 
4607 			/* Adjust TX power based on rate. */
4608 			if ((ridx % 8) == 5)
4609 				pwr -= 15;	/* OFDM48: -7.5dB */
4610 			else if ((ridx % 8) == 6)
4611 				pwr -= 17;	/* OFDM54: -8.5dB */
4612 			else if ((ridx % 8) == 7)
4613 				pwr -= 20;	/* OFDM60: -10dB */
4614 			else
4615 				pwr -= 10;	/* Others: -5dB */
4616 
4617 			/* Do not exceed channel max TX power. */
4618 			if (pwr > maxchpwr)
4619 				pwr = maxchpwr;
4620 
4621 			idx = gain - (pwr - power) - tdiff - vdiff;
4622 			if ((ridx / 8) & 1)	/* MIMO */
4623 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4624 
4625 			if (cmd.band == 0)
4626 				idx += 9;	/* 5GHz */
4627 			if (ridx == IWN_RIDX_MAX)
4628 				idx += 5;	/* CCK */
4629 
4630 			/* Make sure idx stays in a valid range. */
4631 			if (idx < 0)
4632 				idx = 0;
4633 			else if (idx > IWN4965_MAX_PWR_INDEX)
4634 				idx = IWN4965_MAX_PWR_INDEX;
4635 
4636 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4637 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4638 			    __func__, c, ridx, idx);
4639 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4640 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4641 		}
4642 	}
4643 
4644 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4645 	    "%s: set tx power for chan %d\n", __func__, chan);
4646 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4647 
4648 #undef interpolate
4649 #undef fdivround
4650 }
4651 
4652 static int
4653 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4654     int async)
4655 {
4656 	struct iwn5000_cmd_txpower cmd;
4657 
4658 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4659 
4660 	/*
4661 	 * TX power calibration is handled automatically by the firmware
4662 	 * for 5000 Series.
4663 	 */
4664 	memset(&cmd, 0, sizeof cmd);
4665 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4666 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4667 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4668 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4669 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4670 }
4671 
4672 /*
4673  * Retrieve the maximum RSSI (in dBm) among receivers.
4674  */
4675 static int
4676 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4677 {
4678 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4679 	uint8_t mask, agc;
4680 	int rssi;
4681 
4682 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4683 
4684 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4685 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4686 
4687 	rssi = 0;
4688 	if (mask & IWN_ANT_A)
4689 		rssi = MAX(rssi, phy->rssi[0]);
4690 	if (mask & IWN_ANT_B)
4691 		rssi = MAX(rssi, phy->rssi[2]);
4692 	if (mask & IWN_ANT_C)
4693 		rssi = MAX(rssi, phy->rssi[4]);
4694 
4695 	DPRINTF(sc, IWN_DEBUG_RECV,
4696 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4697 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4698 	    rssi - agc - IWN_RSSI_TO_DBM);
4699 	return rssi - agc - IWN_RSSI_TO_DBM;
4700 }
4701 
4702 static int
4703 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4704 {
4705 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4706 	uint8_t agc;
4707 	int rssi;
4708 
4709 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4710 
4711 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4712 
4713 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4714 		   le16toh(phy->rssi[1]) & 0xff);
4715 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4716 
4717 	DPRINTF(sc, IWN_DEBUG_RECV,
4718 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4719 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4720 	    rssi - agc - IWN_RSSI_TO_DBM);
4721 	return rssi - agc - IWN_RSSI_TO_DBM;
4722 }
4723 
4724 /*
4725  * Retrieve the average noise (in dBm) among receivers.
4726  */
4727 static int
4728 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4729 {
4730 	int i, total, nbant, noise;
4731 
4732 	total = nbant = 0;
4733 	for (i = 0; i < 3; i++) {
4734 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4735 			continue;
4736 		total += noise;
4737 		nbant++;
4738 	}
4739 	/* There should be at least one antenna but check anyway. */
4740 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4741 }
4742 
4743 /*
4744  * Compute temperature (in degC) from last received statistics.
4745  */
4746 static int
4747 iwn4965_get_temperature(struct iwn_softc *sc)
4748 {
4749 	struct iwn_ucode_info *uc = &sc->ucode_info;
4750 	int32_t r1, r2, r3, r4, temp;
4751 
4752 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4753 
4754 	r1 = le32toh(uc->temp[0].chan20MHz);
4755 	r2 = le32toh(uc->temp[1].chan20MHz);
4756 	r3 = le32toh(uc->temp[2].chan20MHz);
4757 	r4 = le32toh(sc->rawtemp);
4758 
4759 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4760 		return 0;
4761 
4762 	/* Sign-extend 23-bit R4 value to 32-bit. */
4763 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4764 	/* Compute temperature in Kelvin. */
4765 	temp = (259 * (r4 - r2)) / (r3 - r1);
4766 	temp = (temp * 97) / 100 + 8;
4767 
4768 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4769 	    IWN_KTOC(temp));
4770 	return IWN_KTOC(temp);
4771 }
4772 
4773 static int
4774 iwn5000_get_temperature(struct iwn_softc *sc)
4775 {
4776 	int32_t temp;
4777 
4778 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4779 
4780 	/*
4781 	 * Temperature is not used by the driver for 5000 Series because
4782 	 * TX power calibration is handled by firmware.
4783 	 */
4784 	temp = le32toh(sc->rawtemp);
4785 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4786 		temp = (temp / -5) + sc->temp_off;
4787 		temp = IWN_KTOC(temp);
4788 	}
4789 	return temp;
4790 }
4791 
4792 /*
4793  * Initialize sensitivity calibration state machine.
4794  */
4795 static int
4796 iwn_init_sensitivity(struct iwn_softc *sc)
4797 {
4798 	struct iwn_ops *ops = &sc->ops;
4799 	struct iwn_calib_state *calib = &sc->calib;
4800 	uint32_t flags;
4801 	int error;
4802 
4803 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4804 
4805 	/* Reset calibration state machine. */
4806 	memset(calib, 0, sizeof (*calib));
4807 	calib->state = IWN_CALIB_STATE_INIT;
4808 	calib->cck_state = IWN_CCK_STATE_HIFA;
4809 	/* Set initial correlation values. */
4810 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4811 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4812 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4813 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4814 	calib->cck_x4      = 125;
4815 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4816 	calib->energy_cck  = sc->limits->energy_cck;
4817 
4818 	/* Write initial sensitivity. */
4819 	if ((error = iwn_send_sensitivity(sc)) != 0)
4820 		return error;
4821 
4822 	/* Write initial gains. */
4823 	if ((error = ops->init_gains(sc)) != 0)
4824 		return error;
4825 
4826 	/* Request statistics at each beacon interval. */
4827 	flags = 0;
4828 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4829 	    __func__);
4830 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4831 }
4832 
4833 /*
4834  * Collect noise and RSSI statistics for the first 20 beacons received
4835  * after association and use them to determine connected antennas and
4836  * to set differential gains.
4837  */
4838 static void
4839 iwn_collect_noise(struct iwn_softc *sc,
4840     const struct iwn_rx_general_stats *stats)
4841 {
4842 	struct iwn_ops *ops = &sc->ops;
4843 	struct iwn_calib_state *calib = &sc->calib;
4844 	struct ifnet *ifp = sc->sc_ifp;
4845 	struct ieee80211com *ic = ifp->if_l2com;
4846 	uint32_t val;
4847 	int i;
4848 
4849 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4850 
4851 	/* Accumulate RSSI and noise for all 3 antennas. */
4852 	for (i = 0; i < 3; i++) {
4853 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4854 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4855 	}
4856 	/* NB: We update differential gains only once after 20 beacons. */
4857 	if (++calib->nbeacons < 20)
4858 		return;
4859 
4860 	/* Determine highest average RSSI. */
4861 	val = MAX(calib->rssi[0], calib->rssi[1]);
4862 	val = MAX(calib->rssi[2], val);
4863 
4864 	/* Determine which antennas are connected. */
4865 	sc->chainmask = sc->rxchainmask;
4866 	for (i = 0; i < 3; i++)
4867 		if (val - calib->rssi[i] > 15 * 20)
4868 			sc->chainmask &= ~(1 << i);
4869 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4870 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4871 	    __func__, sc->rxchainmask, sc->chainmask);
4872 
4873 	/* If none of the TX antennas are connected, keep at least one. */
4874 	if ((sc->chainmask & sc->txchainmask) == 0)
4875 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4876 
4877 	(void)ops->set_gains(sc);
4878 	calib->state = IWN_CALIB_STATE_RUN;
4879 
4880 #ifdef notyet
4881 	/* XXX Disable RX chains with no antennas connected. */
4882 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4883 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4884 #endif
4885 
4886 	/* Enable power-saving mode if requested by user. */
4887 	if (ic->ic_flags & IEEE80211_F_PMGTON)
4888 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4889 
4890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4891 
4892 }
4893 
4894 static int
4895 iwn4965_init_gains(struct iwn_softc *sc)
4896 {
4897 	struct iwn_phy_calib_gain cmd;
4898 
4899 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4900 
4901 	memset(&cmd, 0, sizeof cmd);
4902 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4903 	/* Differential gains initially set to 0 for all 3 antennas. */
4904 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4905 	    "%s: setting initial differential gains\n", __func__);
4906 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4907 }
4908 
4909 static int
4910 iwn5000_init_gains(struct iwn_softc *sc)
4911 {
4912 	struct iwn_phy_calib cmd;
4913 
4914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4915 
4916 	memset(&cmd, 0, sizeof cmd);
4917 	cmd.code = sc->reset_noise_gain;
4918 	cmd.ngroups = 1;
4919 	cmd.isvalid = 1;
4920 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4921 	    "%s: setting initial differential gains\n", __func__);
4922 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4923 }
4924 
4925 static int
4926 iwn4965_set_gains(struct iwn_softc *sc)
4927 {
4928 	struct iwn_calib_state *calib = &sc->calib;
4929 	struct iwn_phy_calib_gain cmd;
4930 	int i, delta, noise;
4931 
4932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4933 
4934 	/* Get minimal noise among connected antennas. */
4935 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4936 	for (i = 0; i < 3; i++)
4937 		if (sc->chainmask & (1 << i))
4938 			noise = MIN(calib->noise[i], noise);
4939 
4940 	memset(&cmd, 0, sizeof cmd);
4941 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4942 	/* Set differential gains for connected antennas. */
4943 	for (i = 0; i < 3; i++) {
4944 		if (sc->chainmask & (1 << i)) {
4945 			/* Compute attenuation (in unit of 1.5dB). */
4946 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4947 			/* NB: delta <= 0 */
4948 			/* Limit to [-4.5dB,0]. */
4949 			cmd.gain[i] = MIN(abs(delta), 3);
4950 			if (delta < 0)
4951 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4952 		}
4953 	}
4954 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4955 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4956 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4957 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4958 }
4959 
4960 static int
4961 iwn5000_set_gains(struct iwn_softc *sc)
4962 {
4963 	struct iwn_calib_state *calib = &sc->calib;
4964 	struct iwn_phy_calib_gain cmd;
4965 	int i, ant, div, delta;
4966 
4967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4968 
4969 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4970 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4971 
4972 	memset(&cmd, 0, sizeof cmd);
4973 	cmd.code = sc->noise_gain;
4974 	cmd.ngroups = 1;
4975 	cmd.isvalid = 1;
4976 	/* Get first available RX antenna as referential. */
4977 	ant = IWN_LSB(sc->rxchainmask);
4978 	/* Set differential gains for other antennas. */
4979 	for (i = ant + 1; i < 3; i++) {
4980 		if (sc->chainmask & (1 << i)) {
4981 			/* The delta is relative to antenna "ant". */
4982 			delta = ((int32_t)calib->noise[ant] -
4983 			    (int32_t)calib->noise[i]) / div;
4984 			/* Limit to [-4.5dB,+4.5dB]. */
4985 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4986 			if (delta < 0)
4987 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4988 		}
4989 	}
4990 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4991 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4992 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4993 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4994 }
4995 
4996 /*
4997  * Tune RF RX sensitivity based on the number of false alarms detected
4998  * during the last beacon period.
4999  */
5000 static void
5001 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5002 {
5003 #define inc(val, inc, max)			\
5004 	if ((val) < (max)) {			\
5005 		if ((val) < (max) - (inc))	\
5006 			(val) += (inc);		\
5007 		else				\
5008 			(val) = (max);		\
5009 		needs_update = 1;		\
5010 	}
5011 #define dec(val, dec, min)			\
5012 	if ((val) > (min)) {			\
5013 		if ((val) > (min) + (dec))	\
5014 			(val) -= (dec);		\
5015 		else				\
5016 			(val) = (min);		\
5017 		needs_update = 1;		\
5018 	}
5019 
5020 	const struct iwn_sensitivity_limits *limits = sc->limits;
5021 	struct iwn_calib_state *calib = &sc->calib;
5022 	uint32_t val, rxena, fa;
5023 	uint32_t energy[3], energy_min;
5024 	uint8_t noise[3], noise_ref;
5025 	int i, needs_update = 0;
5026 
5027 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5028 
5029 	/* Check that we've been enabled long enough. */
5030 	if ((rxena = le32toh(stats->general.load)) == 0){
5031 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5032 		return;
5033 	}
5034 
5035 	/* Compute number of false alarms since last call for OFDM. */
5036 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5037 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5038 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5039 
5040 	/* Save counters values for next call. */
5041 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
5042 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
5043 
5044 	if (fa > 50 * rxena) {
5045 		/* High false alarm count, decrease sensitivity. */
5046 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5047 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5048 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5049 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5050 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5051 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5052 
5053 	} else if (fa < 5 * rxena) {
5054 		/* Low false alarm count, increase sensitivity. */
5055 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5056 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5057 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5058 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5059 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5060 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5061 	}
5062 
5063 	/* Compute maximum noise among 3 receivers. */
5064 	for (i = 0; i < 3; i++)
5065 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5066 	val = MAX(noise[0], noise[1]);
5067 	val = MAX(noise[2], val);
5068 	/* Insert it into our samples table. */
5069 	calib->noise_samples[calib->cur_noise_sample] = val;
5070 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5071 
5072 	/* Compute maximum noise among last 20 samples. */
5073 	noise_ref = calib->noise_samples[0];
5074 	for (i = 1; i < 20; i++)
5075 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5076 
5077 	/* Compute maximum energy among 3 receivers. */
5078 	for (i = 0; i < 3; i++)
5079 		energy[i] = le32toh(stats->general.energy[i]);
5080 	val = MIN(energy[0], energy[1]);
5081 	val = MIN(energy[2], val);
5082 	/* Insert it into our samples table. */
5083 	calib->energy_samples[calib->cur_energy_sample] = val;
5084 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5085 
5086 	/* Compute minimum energy among last 10 samples. */
5087 	energy_min = calib->energy_samples[0];
5088 	for (i = 1; i < 10; i++)
5089 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5090 	energy_min += 6;
5091 
5092 	/* Compute number of false alarms since last call for CCK. */
5093 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5094 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5095 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5096 
5097 	/* Save counters values for next call. */
5098 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
5099 	calib->fa_cck = le32toh(stats->cck.fa);
5100 
5101 	if (fa > 50 * rxena) {
5102 		/* High false alarm count, decrease sensitivity. */
5103 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5104 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5105 		calib->cck_state = IWN_CCK_STATE_HIFA;
5106 		calib->low_fa = 0;
5107 
5108 		if (calib->cck_x4 > 160) {
5109 			calib->noise_ref = noise_ref;
5110 			if (calib->energy_cck > 2)
5111 				dec(calib->energy_cck, 2, energy_min);
5112 		}
5113 		if (calib->cck_x4 < 160) {
5114 			calib->cck_x4 = 161;
5115 			needs_update = 1;
5116 		} else
5117 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5118 
5119 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5120 
5121 	} else if (fa < 5 * rxena) {
5122 		/* Low false alarm count, increase sensitivity. */
5123 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5124 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5125 		calib->cck_state = IWN_CCK_STATE_LOFA;
5126 		calib->low_fa++;
5127 
5128 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5129 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5130 		     calib->low_fa > 100)) {
5131 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5132 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5133 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5134 		}
5135 	} else {
5136 		/* Not worth to increase or decrease sensitivity. */
5137 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5138 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5139 		calib->low_fa = 0;
5140 		calib->noise_ref = noise_ref;
5141 
5142 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5143 			/* Previous interval had many false alarms. */
5144 			dec(calib->energy_cck, 8, energy_min);
5145 		}
5146 		calib->cck_state = IWN_CCK_STATE_INIT;
5147 	}
5148 
5149 	if (needs_update)
5150 		(void)iwn_send_sensitivity(sc);
5151 
5152 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5153 
5154 #undef dec
5155 #undef inc
5156 }
5157 
5158 static int
5159 iwn_send_sensitivity(struct iwn_softc *sc)
5160 {
5161 	struct iwn_calib_state *calib = &sc->calib;
5162 	struct iwn_enhanced_sensitivity_cmd cmd;
5163 	int len;
5164 
5165 	memset(&cmd, 0, sizeof cmd);
5166 	len = sizeof (struct iwn_sensitivity_cmd);
5167 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5168 	/* OFDM modulation. */
5169 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5170 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5171 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5172 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5173 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5174 	cmd.energy_ofdm_th     = htole16(62);
5175 	/* CCK modulation. */
5176 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5177 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5178 	cmd.energy_cck         = htole16(calib->energy_cck);
5179 	/* Barker modulation: use default values. */
5180 	cmd.corr_barker        = htole16(190);
5181 	cmd.corr_barker_mrc    = htole16(390);
5182 
5183 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5184 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5185 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5186 	    calib->ofdm_mrc_x4, calib->cck_x4,
5187 	    calib->cck_mrc_x4, calib->energy_cck);
5188 
5189 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5190 		goto send;
5191 	/* Enhanced sensitivity settings. */
5192 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5193 	cmd.ofdm_det_slope_mrc = htole16(668);
5194 	cmd.ofdm_det_icept_mrc = htole16(4);
5195 	cmd.ofdm_det_slope     = htole16(486);
5196 	cmd.ofdm_det_icept     = htole16(37);
5197 	cmd.cck_det_slope_mrc  = htole16(853);
5198 	cmd.cck_det_icept_mrc  = htole16(4);
5199 	cmd.cck_det_slope      = htole16(476);
5200 	cmd.cck_det_icept      = htole16(99);
5201 send:
5202 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5203 }
5204 
5205 /*
5206  * Set STA mode power saving level (between 0 and 5).
5207  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5208  */
5209 static int
5210 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5211 {
5212 	struct iwn_pmgt_cmd cmd;
5213 	const struct iwn_pmgt *pmgt;
5214 	uint32_t max, skip_dtim;
5215 	uint32_t reg;
5216 	int i;
5217 
5218 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5219 	    "%s: dtim=%d, level=%d, async=%d\n",
5220 	    __func__,
5221 	    dtim,
5222 	    level,
5223 	    async);
5224 
5225 	/* Select which PS parameters to use. */
5226 	if (dtim <= 2)
5227 		pmgt = &iwn_pmgt[0][level];
5228 	else if (dtim <= 10)
5229 		pmgt = &iwn_pmgt[1][level];
5230 	else
5231 		pmgt = &iwn_pmgt[2][level];
5232 
5233 	memset(&cmd, 0, sizeof cmd);
5234 	if (level != 0)	/* not CAM */
5235 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5236 	if (level == 5)
5237 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5238 	/* Retrieve PCIe Active State Power Management (ASPM). */
5239 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5240 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5241 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5242 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5243 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5244 
5245 	if (dtim == 0) {
5246 		dtim = 1;
5247 		skip_dtim = 0;
5248 	} else
5249 		skip_dtim = pmgt->skip_dtim;
5250 	if (skip_dtim != 0) {
5251 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5252 		max = pmgt->intval[4];
5253 		if (max == (uint32_t)-1)
5254 			max = dtim * (skip_dtim + 1);
5255 		else if (max > dtim)
5256 			max = (max / dtim) * dtim;
5257 	} else
5258 		max = dtim;
5259 	for (i = 0; i < 5; i++)
5260 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5261 
5262 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5263 	    level);
5264 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5265 }
5266 
5267 static int
5268 iwn_send_btcoex(struct iwn_softc *sc)
5269 {
5270 	struct iwn_bluetooth cmd;
5271 
5272 	memset(&cmd, 0, sizeof cmd);
5273 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
5274 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
5275 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
5276 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
5277 	    __func__);
5278 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5279 }
5280 
5281 static int
5282 iwn_send_advanced_btcoex(struct iwn_softc *sc)
5283 {
5284 	static const uint32_t btcoex_3wire[12] = {
5285 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5286 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5287 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5288 	};
5289 	struct iwn6000_btcoex_config btconfig;
5290 	struct iwn_btcoex_priotable btprio;
5291 	struct iwn_btcoex_prot btprot;
5292 	int error, i;
5293 
5294 	memset(&btconfig, 0, sizeof btconfig);
5295 	btconfig.flags = 145;
5296 	btconfig.max_kill = 5;
5297 	btconfig.bt3_t7_timer = 1;
5298 	btconfig.kill_ack = htole32(0xffff0000);
5299 	btconfig.kill_cts = htole32(0xffff0000);
5300 	btconfig.sample_time = 2;
5301 	btconfig.bt3_t2_timer = 0xc;
5302 	for (i = 0; i < 12; i++)
5303 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5304 	btconfig.valid = htole16(0xff);
5305 	btconfig.prio_boost = 0xf0;
5306 	DPRINTF(sc, IWN_DEBUG_RESET,
5307 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
5308 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
5309 	if (error != 0)
5310 		return error;
5311 
5312 	memset(&btprio, 0, sizeof btprio);
5313 	btprio.calib_init1 = 0x6;
5314 	btprio.calib_init2 = 0x7;
5315 	btprio.calib_periodic_low1 = 0x2;
5316 	btprio.calib_periodic_low2 = 0x3;
5317 	btprio.calib_periodic_high1 = 0x4;
5318 	btprio.calib_periodic_high2 = 0x5;
5319 	btprio.dtim = 0x6;
5320 	btprio.scan52 = 0x8;
5321 	btprio.scan24 = 0xa;
5322 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
5323 	    1);
5324 	if (error != 0)
5325 		return error;
5326 
5327 	/* Force BT state machine change. */
5328 	memset(&btprot, 0, sizeof btprio);
5329 	btprot.open = 1;
5330 	btprot.type = 1;
5331 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5332 	if (error != 0)
5333 		return error;
5334 	btprot.open = 0;
5335 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5336 }
5337 
5338 static int
5339 iwn5000_runtime_calib(struct iwn_softc *sc)
5340 {
5341 	struct iwn5000_calib_config cmd;
5342 
5343 	memset(&cmd, 0, sizeof cmd);
5344 	cmd.ucode.once.enable = 0xffffffff;
5345 	cmd.ucode.once.start = IWN5000_CALIB_DC;
5346 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5347 	    "%s: configuring runtime calibration\n", __func__);
5348 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5349 }
5350 
5351 static int
5352 iwn_config(struct iwn_softc *sc)
5353 {
5354 	struct iwn_ops *ops = &sc->ops;
5355 	struct ifnet *ifp = sc->sc_ifp;
5356 	struct ieee80211com *ic = ifp->if_l2com;
5357 	uint32_t txmask;
5358 	uint16_t rxchain;
5359 	int error;
5360 
5361 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5362 
5363 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5364 		/* Set radio temperature sensor offset. */
5365 		error = iwn5000_temp_offset_calib(sc);
5366 		if (error != 0) {
5367 			device_printf(sc->sc_dev,
5368 			    "%s: could not set temperature offset\n", __func__);
5369 			return error;
5370 		}
5371 	}
5372 
5373 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5374 		/* Configure runtime DC calibration. */
5375 		error = iwn5000_runtime_calib(sc);
5376 		if (error != 0) {
5377 			device_printf(sc->sc_dev,
5378 			    "%s: could not configure runtime calibration\n",
5379 			    __func__);
5380 			return error;
5381 		}
5382 	}
5383 
5384 	/* Configure valid TX chains for >=5000 Series. */
5385 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5386 		txmask = htole32(sc->txchainmask);
5387 		DPRINTF(sc, IWN_DEBUG_RESET,
5388 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5389 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5390 		    sizeof txmask, 0);
5391 		if (error != 0) {
5392 			device_printf(sc->sc_dev,
5393 			    "%s: could not configure valid TX chains, "
5394 			    "error %d\n", __func__, error);
5395 			return error;
5396 		}
5397 	}
5398 
5399 	/* Configure bluetooth coexistence. */
5400 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5401 		error = iwn_send_advanced_btcoex(sc);
5402 	else
5403 		error = iwn_send_btcoex(sc);
5404 	if (error != 0) {
5405 		device_printf(sc->sc_dev,
5406 		    "%s: could not configure bluetooth coexistence, error %d\n",
5407 		    __func__, error);
5408 		return error;
5409 	}
5410 
5411 	/* Set mode, channel, RX filter and enable RX. */
5412 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5413 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5414 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5415 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5416 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5417 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5418 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5419 	switch (ic->ic_opmode) {
5420 	case IEEE80211_M_STA:
5421 		sc->rxon.mode = IWN_MODE_STA;
5422 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5423 		break;
5424 	case IEEE80211_M_MONITOR:
5425 		sc->rxon.mode = IWN_MODE_MONITOR;
5426 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5427 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5428 		break;
5429 	default:
5430 		/* Should not get there. */
5431 		break;
5432 	}
5433 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5434 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5435 	sc->rxon.ht_single_mask = 0xff;
5436 	sc->rxon.ht_dual_mask = 0xff;
5437 	sc->rxon.ht_triple_mask = 0xff;
5438 	rxchain =
5439 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5440 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5441 	    IWN_RXCHAIN_IDLE_COUNT(2);
5442 	sc->rxon.rxchain = htole16(rxchain);
5443 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5444 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5445 	if (error != 0) {
5446 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5447 		    __func__);
5448 		return error;
5449 	}
5450 
5451 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5452 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5453 		    __func__);
5454 		return error;
5455 	}
5456 
5457 	/* Configuration has changed, set TX power accordingly. */
5458 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5459 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5460 		    __func__);
5461 		return error;
5462 	}
5463 
5464 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5465 		device_printf(sc->sc_dev,
5466 		    "%s: could not set critical temperature\n", __func__);
5467 		return error;
5468 	}
5469 
5470 	/* Set power saving level to CAM during initialization. */
5471 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5472 		device_printf(sc->sc_dev,
5473 		    "%s: could not set power saving level\n", __func__);
5474 		return error;
5475 	}
5476 
5477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5478 
5479 	return 0;
5480 }
5481 
5482 /*
5483  * Add an ssid element to a frame.
5484  */
5485 static uint8_t *
5486 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5487 {
5488 	*frm++ = IEEE80211_ELEMID_SSID;
5489 	*frm++ = len;
5490 	memcpy(frm, ssid, len);
5491 	return frm + len;
5492 }
5493 
5494 static int
5495 iwn_scan(struct iwn_softc *sc)
5496 {
5497 	struct ifnet *ifp = sc->sc_ifp;
5498 	struct ieee80211com *ic = ifp->if_l2com;
5499 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5500 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5501 	struct iwn_scan_hdr *hdr;
5502 	struct iwn_cmd_data *tx;
5503 	struct iwn_scan_essid *essid;
5504 	struct iwn_scan_chan *chan;
5505 	struct ieee80211_frame *wh;
5506 	struct ieee80211_rateset *rs;
5507 	struct ieee80211_channel *c;
5508 	uint8_t *buf, *frm;
5509 	uint16_t rxchain;
5510 	uint8_t txant;
5511 	int buflen, error;
5512 
5513 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5514 
5515 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5516 	if (buf == NULL) {
5517 		device_printf(sc->sc_dev,
5518 		    "%s: could not allocate buffer for scan command\n",
5519 		    __func__);
5520 		return ENOMEM;
5521 	}
5522 	hdr = (struct iwn_scan_hdr *)buf;
5523 	/*
5524 	 * Move to the next channel if no frames are received within 10ms
5525 	 * after sending the probe request.
5526 	 */
5527 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5528 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5529 
5530 	/* Select antennas for scanning. */
5531 	rxchain =
5532 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5533 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5534 	    IWN_RXCHAIN_DRIVER_FORCE;
5535 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5536 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5537 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5538 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5539 	} else	/* Use all available RX antennas. */
5540 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5541 	hdr->rxchain = htole16(rxchain);
5542 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5543 
5544 	tx = (struct iwn_cmd_data *)(hdr + 1);
5545 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5546 	tx->id = sc->broadcast_id;
5547 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5548 
5549 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5550 		/* Send probe requests at 6Mbps. */
5551 		tx->rate = htole32(0xd);
5552 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5553 	} else {
5554 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5555 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5556 		    sc->rxon.associd && sc->rxon.chan > 14)
5557 			tx->rate = htole32(0xd);
5558 		else {
5559 			/* Send probe requests at 1Mbps. */
5560 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5561 		}
5562 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5563 	}
5564 	/* Use the first valid TX antenna. */
5565 	txant = IWN_LSB(sc->txchainmask);
5566 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5567 
5568 	essid = (struct iwn_scan_essid *)(tx + 1);
5569 	if (ss->ss_ssid[0].len != 0) {
5570 		essid[0].id = IEEE80211_ELEMID_SSID;
5571 		essid[0].len = ss->ss_ssid[0].len;
5572 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5573 	}
5574 	/*
5575 	 * Build a probe request frame.  Most of the following code is a
5576 	 * copy & paste of what is done in net80211.
5577 	 */
5578 	wh = (struct ieee80211_frame *)(essid + 20);
5579 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5580 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5581 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5582 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5583 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5584 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5585 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5586 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5587 
5588 	frm = (uint8_t *)(wh + 1);
5589 	frm = ieee80211_add_ssid(frm, NULL, 0);
5590 	frm = ieee80211_add_rates(frm, rs);
5591 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5592 		frm = ieee80211_add_xrates(frm, rs);
5593 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5594 		frm = ieee80211_add_htcap(frm, ni);
5595 
5596 	/* Set length of probe request. */
5597 	tx->len = htole16(frm - (uint8_t *)wh);
5598 
5599 	c = ic->ic_curchan;
5600 	chan = (struct iwn_scan_chan *)frm;
5601 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5602 	chan->flags = 0;
5603 	if (ss->ss_nssid > 0)
5604 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5605 	chan->dsp_gain = 0x6e;
5606 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5607 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5608 		chan->rf_gain = 0x3b;
5609 		chan->active  = htole16(24);
5610 		chan->passive = htole16(110);
5611 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5612 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5613 		chan->rf_gain = 0x3b;
5614 		chan->active  = htole16(24);
5615 		if (sc->rxon.associd)
5616 			chan->passive = htole16(78);
5617 		else
5618 			chan->passive = htole16(110);
5619 		hdr->crc_threshold = 0xffff;
5620 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5621 		chan->rf_gain = 0x28;
5622 		chan->active  = htole16(36);
5623 		chan->passive = htole16(120);
5624 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5625 	} else {
5626 		chan->rf_gain = 0x28;
5627 		chan->active  = htole16(36);
5628 		if (sc->rxon.associd)
5629 			chan->passive = htole16(88);
5630 		else
5631 			chan->passive = htole16(120);
5632 		hdr->crc_threshold = 0xffff;
5633 	}
5634 
5635 	DPRINTF(sc, IWN_DEBUG_STATE,
5636 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5637 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5638 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5639 	    chan->active, chan->passive);
5640 
5641 	hdr->nchan++;
5642 	chan++;
5643 	buflen = (uint8_t *)chan - buf;
5644 	hdr->len = htole16(buflen);
5645 
5646 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5647 	    hdr->nchan);
5648 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5649 	free(buf, M_DEVBUF);
5650 
5651 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5652 
5653 	return error;
5654 }
5655 
5656 static int
5657 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5658 {
5659 	struct iwn_ops *ops = &sc->ops;
5660 	struct ifnet *ifp = sc->sc_ifp;
5661 	struct ieee80211com *ic = ifp->if_l2com;
5662 	struct ieee80211_node *ni = vap->iv_bss;
5663 	int error;
5664 
5665 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5666 
5667 	/* Update adapter configuration. */
5668 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5669 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5670 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5671 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5672 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5673 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5674 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5675 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5676 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5677 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5678 		sc->rxon.cck_mask  = 0;
5679 		sc->rxon.ofdm_mask = 0x15;
5680 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5681 		sc->rxon.cck_mask  = 0x03;
5682 		sc->rxon.ofdm_mask = 0;
5683 	} else {
5684 		/* Assume 802.11b/g. */
5685 		sc->rxon.cck_mask  = 0x0f;
5686 		sc->rxon.ofdm_mask = 0x15;
5687 	}
5688 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5689 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5690 	    sc->rxon.ofdm_mask);
5691 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5692 	if (error != 0) {
5693 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5694 		    __func__, error);
5695 		return error;
5696 	}
5697 
5698 	/* Configuration has changed, set TX power accordingly. */
5699 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5700 		device_printf(sc->sc_dev,
5701 		    "%s: could not set TX power, error %d\n", __func__, error);
5702 		return error;
5703 	}
5704 	/*
5705 	 * Reconfiguring RXON clears the firmware nodes table so we must
5706 	 * add the broadcast node again.
5707 	 */
5708 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5709 		device_printf(sc->sc_dev,
5710 		    "%s: could not add broadcast node, error %d\n", __func__,
5711 		    error);
5712 		return error;
5713 	}
5714 
5715 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5716 
5717 	return 0;
5718 }
5719 
5720 static int
5721 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5722 {
5723 	struct iwn_ops *ops = &sc->ops;
5724 	struct ifnet *ifp = sc->sc_ifp;
5725 	struct ieee80211com *ic = ifp->if_l2com;
5726 	struct ieee80211_node *ni = vap->iv_bss;
5727 	struct iwn_node_info node;
5728 	uint32_t htflags = 0;
5729 	int error;
5730 
5731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5732 
5733 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5734 		/* Link LED blinks while monitoring. */
5735 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5736 		return 0;
5737 	}
5738 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5739 		device_printf(sc->sc_dev,
5740 		    "%s: could not set timing, error %d\n", __func__, error);
5741 		return error;
5742 	}
5743 
5744 	/* Update adapter configuration. */
5745 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5746 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5747 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5748 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5749 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5750 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5751 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5752 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5753 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5754 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5755 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5756 		sc->rxon.cck_mask  = 0;
5757 		sc->rxon.ofdm_mask = 0x15;
5758 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5759 		sc->rxon.cck_mask  = 0x03;
5760 		sc->rxon.ofdm_mask = 0;
5761 	} else {
5762 		/* Assume 802.11b/g. */
5763 		sc->rxon.cck_mask  = 0x0f;
5764 		sc->rxon.ofdm_mask = 0x15;
5765 	}
5766 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5767 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5768 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5769 			switch (ic->ic_curhtprotmode) {
5770 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5771 				htflags |= IWN_RXON_HT_MODEPURE40;
5772 				break;
5773 			default:
5774 				htflags |= IWN_RXON_HT_MODEMIXED;
5775 				break;
5776 			}
5777 		}
5778 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5779 			htflags |= IWN_RXON_HT_HT40MINUS;
5780 	}
5781 	sc->rxon.flags |= htole32(htflags);
5782 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5783 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5784 	    sc->rxon.chan, sc->rxon.flags);
5785 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5786 	if (error != 0) {
5787 		device_printf(sc->sc_dev,
5788 		    "%s: could not update configuration, error %d\n", __func__,
5789 		    error);
5790 		return error;
5791 	}
5792 
5793 	/* Configuration has changed, set TX power accordingly. */
5794 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5795 		device_printf(sc->sc_dev,
5796 		    "%s: could not set TX power, error %d\n", __func__, error);
5797 		return error;
5798 	}
5799 
5800 	/* Fake a join to initialize the TX rate. */
5801 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5802 	iwn_newassoc(ni, 1);
5803 
5804 	/* Add BSS node. */
5805 	memset(&node, 0, sizeof node);
5806 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5807 	node.id = IWN_ID_BSS;
5808 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5809 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5810 		case IEEE80211_HTCAP_SMPS_ENA:
5811 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5812 			break;
5813 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5814 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5815 			break;
5816 		}
5817 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5818 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5819 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5820 			node.htflags |= htole32(IWN_NODE_HT40);
5821 	}
5822 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5823 	error = ops->add_node(sc, &node, 1);
5824 	if (error != 0) {
5825 		device_printf(sc->sc_dev,
5826 		    "%s: could not add BSS node, error %d\n", __func__, error);
5827 		return error;
5828 	}
5829 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5830 	    __func__, node.id);
5831 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5832 		device_printf(sc->sc_dev,
5833 		    "%s: could not setup link quality for node %d, error %d\n",
5834 		    __func__, node.id, error);
5835 		return error;
5836 	}
5837 
5838 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5839 		device_printf(sc->sc_dev,
5840 		    "%s: could not set sensitivity, error %d\n", __func__,
5841 		    error);
5842 		return error;
5843 	}
5844 	/* Start periodic calibration timer. */
5845 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5846 	sc->calib_cnt = 0;
5847 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5848 	    sc);
5849 
5850 	/* Link LED always on while associated. */
5851 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5852 
5853 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5854 
5855 	return 0;
5856 }
5857 
5858 /*
5859  * This function is called by upper layer when an ADDBA request is received
5860  * from another STA and before the ADDBA response is sent.
5861  */
5862 static int
5863 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5864     int baparamset, int batimeout, int baseqctl)
5865 {
5866 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5867 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5868 	struct iwn_ops *ops = &sc->ops;
5869 	struct iwn_node *wn = (void *)ni;
5870 	struct iwn_node_info node;
5871 	uint16_t ssn;
5872 	uint8_t tid;
5873 	int error;
5874 
5875 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5876 
5877 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5878 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5879 
5880 	memset(&node, 0, sizeof node);
5881 	node.id = wn->id;
5882 	node.control = IWN_NODE_UPDATE;
5883 	node.flags = IWN_FLAG_SET_ADDBA;
5884 	node.addba_tid = tid;
5885 	node.addba_ssn = htole16(ssn);
5886 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5887 	    wn->id, tid, ssn);
5888 	error = ops->add_node(sc, &node, 1);
5889 	if (error != 0)
5890 		return error;
5891 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5892 #undef MS
5893 }
5894 
5895 /*
5896  * This function is called by upper layer on teardown of an HT-immediate
5897  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5898  */
5899 static void
5900 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5901 {
5902 	struct ieee80211com *ic = ni->ni_ic;
5903 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5904 	struct iwn_ops *ops = &sc->ops;
5905 	struct iwn_node *wn = (void *)ni;
5906 	struct iwn_node_info node;
5907 	uint8_t tid;
5908 
5909 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5910 
5911 	/* XXX: tid as an argument */
5912 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5913 		if (&ni->ni_rx_ampdu[tid] == rap)
5914 			break;
5915 	}
5916 
5917 	memset(&node, 0, sizeof node);
5918 	node.id = wn->id;
5919 	node.control = IWN_NODE_UPDATE;
5920 	node.flags = IWN_FLAG_SET_DELBA;
5921 	node.delba_tid = tid;
5922 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5923 	(void)ops->add_node(sc, &node, 1);
5924 	sc->sc_ampdu_rx_stop(ni, rap);
5925 }
5926 
5927 static int
5928 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5929     int dialogtoken, int baparamset, int batimeout)
5930 {
5931 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5932 	int qid;
5933 
5934 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5935 
5936 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5937 		if (sc->qid2tap[qid] == NULL)
5938 			break;
5939 	}
5940 	if (qid == sc->ntxqs) {
5941 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5942 		    __func__);
5943 		return 0;
5944 	}
5945 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5946 	if (tap->txa_private == NULL) {
5947 		device_printf(sc->sc_dev,
5948 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5949 		return 0;
5950 	}
5951 	sc->qid2tap[qid] = tap;
5952 	*(int *)tap->txa_private = qid;
5953 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5954 	    batimeout);
5955 }
5956 
5957 static int
5958 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5959     int code, int baparamset, int batimeout)
5960 {
5961 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5962 	int qid = *(int *)tap->txa_private;
5963 	uint8_t tid = tap->txa_tid;
5964 	int ret;
5965 
5966 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5967 
5968 	if (code == IEEE80211_STATUS_SUCCESS) {
5969 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5970 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5971 		if (ret != 1)
5972 			return ret;
5973 	} else {
5974 		sc->qid2tap[qid] = NULL;
5975 		free(tap->txa_private, M_DEVBUF);
5976 		tap->txa_private = NULL;
5977 	}
5978 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5979 }
5980 
5981 /*
5982  * This function is called by upper layer when an ADDBA response is received
5983  * from another STA.
5984  */
5985 static int
5986 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5987     uint8_t tid)
5988 {
5989 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
5990 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5991 	struct iwn_ops *ops = &sc->ops;
5992 	struct iwn_node *wn = (void *)ni;
5993 	struct iwn_node_info node;
5994 	int error, qid;
5995 
5996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5997 
5998 	/* Enable TX for the specified RA/TID. */
5999 	wn->disable_tid &= ~(1 << tid);
6000 	memset(&node, 0, sizeof node);
6001 	node.id = wn->id;
6002 	node.control = IWN_NODE_UPDATE;
6003 	node.flags = IWN_FLAG_SET_DISABLE_TID;
6004 	node.disable_tid = htole16(wn->disable_tid);
6005 	error = ops->add_node(sc, &node, 1);
6006 	if (error != 0)
6007 		return 0;
6008 
6009 	if ((error = iwn_nic_lock(sc)) != 0)
6010 		return 0;
6011 	qid = *(int *)tap->txa_private;
6012 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
6013 	    __func__, wn->id, tid, tap->txa_start, qid);
6014 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
6015 	iwn_nic_unlock(sc);
6016 
6017 	iwn_set_link_quality(sc, ni);
6018 	return 1;
6019 }
6020 
6021 static void
6022 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6023 {
6024 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6025 	struct iwn_ops *ops = &sc->ops;
6026 	uint8_t tid = tap->txa_tid;
6027 	int qid;
6028 
6029 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6030 
6031 	sc->sc_addba_stop(ni, tap);
6032 
6033 	if (tap->txa_private == NULL)
6034 		return;
6035 
6036 	qid = *(int *)tap->txa_private;
6037 	if (sc->txq[qid].queued != 0)
6038 		return;
6039 	if (iwn_nic_lock(sc) != 0)
6040 		return;
6041 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
6042 	iwn_nic_unlock(sc);
6043 	sc->qid2tap[qid] = NULL;
6044 	free(tap->txa_private, M_DEVBUF);
6045 	tap->txa_private = NULL;
6046 }
6047 
6048 static void
6049 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6050     int qid, uint8_t tid, uint16_t ssn)
6051 {
6052 	struct iwn_node *wn = (void *)ni;
6053 
6054 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6055 
6056 	/* Stop TX scheduler while we're changing its configuration. */
6057 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6058 	    IWN4965_TXQ_STATUS_CHGACT);
6059 
6060 	/* Assign RA/TID translation to the queue. */
6061 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
6062 	    wn->id << 4 | tid);
6063 
6064 	/* Enable chain-building mode for the queue. */
6065 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
6066 
6067 	/* Set starting sequence number from the ADDBA request. */
6068 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6069 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6070 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6071 
6072 	/* Set scheduler window size. */
6073 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6074 	    IWN_SCHED_WINSZ);
6075 	/* Set scheduler frame limit. */
6076 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6077 	    IWN_SCHED_LIMIT << 16);
6078 
6079 	/* Enable interrupts for the queue. */
6080 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6081 
6082 	/* Mark the queue as active. */
6083 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6084 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6085 	    iwn_tid2fifo[tid] << 1);
6086 }
6087 
6088 static void
6089 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6090 {
6091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6092 
6093 	/* Stop TX scheduler while we're changing its configuration. */
6094 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6095 	    IWN4965_TXQ_STATUS_CHGACT);
6096 
6097 	/* Set starting sequence number from the ADDBA request. */
6098 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6099 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6100 
6101 	/* Disable interrupts for the queue. */
6102 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6103 
6104 	/* Mark the queue as inactive. */
6105 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6106 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6107 }
6108 
6109 static void
6110 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6111     int qid, uint8_t tid, uint16_t ssn)
6112 {
6113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6114 
6115 	struct iwn_node *wn = (void *)ni;
6116 
6117 	/* Stop TX scheduler while we're changing its configuration. */
6118 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6119 	    IWN5000_TXQ_STATUS_CHGACT);
6120 
6121 	/* Assign RA/TID translation to the queue. */
6122 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
6123 	    wn->id << 4 | tid);
6124 
6125 	/* Enable chain-building mode for the queue. */
6126 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
6127 
6128 	/* Enable aggregation for the queue. */
6129 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6130 
6131 	/* Set starting sequence number from the ADDBA request. */
6132 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6133 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6134 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6135 
6136 	/* Set scheduler window size and frame limit. */
6137 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6138 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6139 
6140 	/* Enable interrupts for the queue. */
6141 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6142 
6143 	/* Mark the queue as active. */
6144 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6145 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
6146 }
6147 
6148 static void
6149 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6150 {
6151 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6152 
6153 	/* Stop TX scheduler while we're changing its configuration. */
6154 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6155 	    IWN5000_TXQ_STATUS_CHGACT);
6156 
6157 	/* Disable aggregation for the queue. */
6158 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6159 
6160 	/* Set starting sequence number from the ADDBA request. */
6161 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6162 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6163 
6164 	/* Disable interrupts for the queue. */
6165 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6166 
6167 	/* Mark the queue as inactive. */
6168 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6169 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
6170 }
6171 
6172 /*
6173  * Query calibration tables from the initialization firmware.  We do this
6174  * only once at first boot.  Called from a process context.
6175  */
6176 static int
6177 iwn5000_query_calibration(struct iwn_softc *sc)
6178 {
6179 	struct iwn5000_calib_config cmd;
6180 	int error;
6181 
6182 	memset(&cmd, 0, sizeof cmd);
6183 	cmd.ucode.once.enable = 0xffffffff;
6184 	cmd.ucode.once.start  = 0xffffffff;
6185 	cmd.ucode.once.send   = 0xffffffff;
6186 	cmd.ucode.flags       = 0xffffffff;
6187 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
6188 	    __func__);
6189 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
6190 	if (error != 0)
6191 		return error;
6192 
6193 	/* Wait at most two seconds for calibration to complete. */
6194 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
6195 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
6196 	return error;
6197 }
6198 
6199 /*
6200  * Send calibration results to the runtime firmware.  These results were
6201  * obtained on first boot from the initialization firmware.
6202  */
6203 static int
6204 iwn5000_send_calibration(struct iwn_softc *sc)
6205 {
6206 	int idx, error;
6207 
6208 	for (idx = 0; idx < 5; idx++) {
6209 		if (sc->calibcmd[idx].buf == NULL)
6210 			continue;	/* No results available. */
6211 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6212 		    "send calibration result idx=%d len=%d\n", idx,
6213 		    sc->calibcmd[idx].len);
6214 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
6215 		    sc->calibcmd[idx].len, 0);
6216 		if (error != 0) {
6217 			device_printf(sc->sc_dev,
6218 			    "%s: could not send calibration result, error %d\n",
6219 			    __func__, error);
6220 			return error;
6221 		}
6222 	}
6223 	return 0;
6224 }
6225 
6226 static int
6227 iwn5000_send_wimax_coex(struct iwn_softc *sc)
6228 {
6229 	struct iwn5000_wimax_coex wimax;
6230 
6231 #ifdef notyet
6232 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6233 		/* Enable WiMAX coexistence for combo adapters. */
6234 		wimax.flags =
6235 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
6236 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
6237 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
6238 		    IWN_WIMAX_COEX_ENABLE;
6239 		memcpy(wimax.events, iwn6050_wimax_events,
6240 		    sizeof iwn6050_wimax_events);
6241 	} else
6242 #endif
6243 	{
6244 		/* Disable WiMAX coexistence. */
6245 		wimax.flags = 0;
6246 		memset(wimax.events, 0, sizeof wimax.events);
6247 	}
6248 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
6249 	    __func__);
6250 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6251 }
6252 
6253 static int
6254 iwn5000_crystal_calib(struct iwn_softc *sc)
6255 {
6256 	struct iwn5000_phy_calib_crystal cmd;
6257 
6258 	memset(&cmd, 0, sizeof cmd);
6259 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6260 	cmd.ngroups = 1;
6261 	cmd.isvalid = 1;
6262 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
6263 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
6264 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
6265 	    cmd.cap_pin[0], cmd.cap_pin[1]);
6266 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6267 }
6268 
6269 static int
6270 iwn5000_temp_offset_calib(struct iwn_softc *sc)
6271 {
6272 	struct iwn5000_phy_calib_temp_offset cmd;
6273 
6274 	memset(&cmd, 0, sizeof cmd);
6275 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
6276 	cmd.ngroups = 1;
6277 	cmd.isvalid = 1;
6278 	if (sc->eeprom_temp != 0)
6279 		cmd.offset = htole16(sc->eeprom_temp);
6280 	else
6281 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6282 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
6283 	    le16toh(cmd.offset));
6284 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6285 }
6286 
6287 /*
6288  * This function is called after the runtime firmware notifies us of its
6289  * readiness (called in a process context).
6290  */
6291 static int
6292 iwn4965_post_alive(struct iwn_softc *sc)
6293 {
6294 	int error, qid;
6295 
6296 	if ((error = iwn_nic_lock(sc)) != 0)
6297 		return error;
6298 
6299 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6300 
6301 	/* Clear TX scheduler state in SRAM. */
6302 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6303 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6304 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6305 
6306 	/* Set physical address of TX scheduler rings (1KB aligned). */
6307 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6308 
6309 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6310 
6311 	/* Disable chain mode for all our 16 queues. */
6312 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6313 
6314 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6315 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6316 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6317 
6318 		/* Set scheduler window size. */
6319 		iwn_mem_write(sc, sc->sched_base +
6320 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6321 		/* Set scheduler frame limit. */
6322 		iwn_mem_write(sc, sc->sched_base +
6323 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6324 		    IWN_SCHED_LIMIT << 16);
6325 	}
6326 
6327 	/* Enable interrupts for all our 16 queues. */
6328 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6329 	/* Identify TX FIFO rings (0-7). */
6330 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6331 
6332 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6333 	for (qid = 0; qid < 7; qid++) {
6334 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6335 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6336 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6337 	}
6338 	iwn_nic_unlock(sc);
6339 	return 0;
6340 }
6341 
6342 /*
6343  * This function is called after the initialization or runtime firmware
6344  * notifies us of its readiness (called in a process context).
6345  */
6346 static int
6347 iwn5000_post_alive(struct iwn_softc *sc)
6348 {
6349 	int error, qid;
6350 
6351 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6352 
6353 	/* Switch to using ICT interrupt mode. */
6354 	iwn5000_ict_reset(sc);
6355 
6356 	if ((error = iwn_nic_lock(sc)) != 0){
6357 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
6358 		return error;
6359 	}
6360 
6361 	/* Clear TX scheduler state in SRAM. */
6362 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6363 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6364 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6365 
6366 	/* Set physical address of TX scheduler rings (1KB aligned). */
6367 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6368 
6369 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6370 
6371 	/* Enable chain mode for all queues, except command queue. */
6372 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6373 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6374 
6375 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6376 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6377 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6378 
6379 		iwn_mem_write(sc, sc->sched_base +
6380 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6381 		/* Set scheduler window size and frame limit. */
6382 		iwn_mem_write(sc, sc->sched_base +
6383 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6384 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6385 	}
6386 
6387 	/* Enable interrupts for all our 20 queues. */
6388 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6389 	/* Identify TX FIFO rings (0-7). */
6390 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6391 
6392 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6393 	for (qid = 0; qid < 7; qid++) {
6394 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6395 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6396 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6397 	}
6398 	iwn_nic_unlock(sc);
6399 
6400 	/* Configure WiMAX coexistence for combo adapters. */
6401 	error = iwn5000_send_wimax_coex(sc);
6402 	if (error != 0) {
6403 		device_printf(sc->sc_dev,
6404 		    "%s: could not configure WiMAX coexistence, error %d\n",
6405 		    __func__, error);
6406 		return error;
6407 	}
6408 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6409 		/* Perform crystal calibration. */
6410 		error = iwn5000_crystal_calib(sc);
6411 		if (error != 0) {
6412 			device_printf(sc->sc_dev,
6413 			    "%s: crystal calibration failed, error %d\n",
6414 			    __func__, error);
6415 			return error;
6416 		}
6417 	}
6418 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6419 		/* Query calibration from the initialization firmware. */
6420 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6421 			device_printf(sc->sc_dev,
6422 			    "%s: could not query calibration, error %d\n",
6423 			    __func__, error);
6424 			return error;
6425 		}
6426 		/*
6427 		 * We have the calibration results now, reboot with the
6428 		 * runtime firmware (call ourselves recursively!)
6429 		 */
6430 		iwn_hw_stop(sc);
6431 		error = iwn_hw_init(sc);
6432 	} else {
6433 		/* Send calibration results to runtime firmware. */
6434 		error = iwn5000_send_calibration(sc);
6435 	}
6436 
6437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6438 
6439 	return error;
6440 }
6441 
6442 /*
6443  * The firmware boot code is small and is intended to be copied directly into
6444  * the NIC internal memory (no DMA transfer).
6445  */
6446 static int
6447 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6448 {
6449 	int error, ntries;
6450 
6451 	size /= sizeof (uint32_t);
6452 
6453 	if ((error = iwn_nic_lock(sc)) != 0)
6454 		return error;
6455 
6456 	/* Copy microcode image into NIC memory. */
6457 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6458 	    (const uint32_t *)ucode, size);
6459 
6460 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6461 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6462 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6463 
6464 	/* Start boot load now. */
6465 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6466 
6467 	/* Wait for transfer to complete. */
6468 	for (ntries = 0; ntries < 1000; ntries++) {
6469 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6470 		    IWN_BSM_WR_CTRL_START))
6471 			break;
6472 		DELAY(10);
6473 	}
6474 	if (ntries == 1000) {
6475 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6476 		    __func__);
6477 		iwn_nic_unlock(sc);
6478 		return ETIMEDOUT;
6479 	}
6480 
6481 	/* Enable boot after power up. */
6482 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6483 
6484 	iwn_nic_unlock(sc);
6485 	return 0;
6486 }
6487 
6488 static int
6489 iwn4965_load_firmware(struct iwn_softc *sc)
6490 {
6491 	struct iwn_fw_info *fw = &sc->fw;
6492 	struct iwn_dma_info *dma = &sc->fw_dma;
6493 	int error;
6494 
6495 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6496 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6497 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6498 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6499 	    fw->init.text, fw->init.textsz);
6500 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6501 
6502 	/* Tell adapter where to find initialization sections. */
6503 	if ((error = iwn_nic_lock(sc)) != 0)
6504 		return error;
6505 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6506 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6507 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6508 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6509 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6510 	iwn_nic_unlock(sc);
6511 
6512 	/* Load firmware boot code. */
6513 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6514 	if (error != 0) {
6515 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6516 		    __func__);
6517 		return error;
6518 	}
6519 	/* Now press "execute". */
6520 	IWN_WRITE(sc, IWN_RESET, 0);
6521 
6522 	/* Wait at most one second for first alive notification. */
6523 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6524 		device_printf(sc->sc_dev,
6525 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6526 		    __func__, error);
6527 		return error;
6528 	}
6529 
6530 	/* Retrieve current temperature for initial TX power calibration. */
6531 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6532 	sc->temp = iwn4965_get_temperature(sc);
6533 
6534 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6535 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6536 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6537 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6538 	    fw->main.text, fw->main.textsz);
6539 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6540 
6541 	/* Tell adapter where to find runtime sections. */
6542 	if ((error = iwn_nic_lock(sc)) != 0)
6543 		return error;
6544 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6545 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6546 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6547 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6548 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6549 	    IWN_FW_UPDATED | fw->main.textsz);
6550 	iwn_nic_unlock(sc);
6551 
6552 	return 0;
6553 }
6554 
6555 static int
6556 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6557     const uint8_t *section, int size)
6558 {
6559 	struct iwn_dma_info *dma = &sc->fw_dma;
6560 	int error;
6561 
6562 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6563 
6564 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6565 	memcpy(dma->vaddr, section, size);
6566 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6567 
6568 	if ((error = iwn_nic_lock(sc)) != 0)
6569 		return error;
6570 
6571 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6572 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6573 
6574 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6575 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6576 	    IWN_LOADDR(dma->paddr));
6577 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6578 	    IWN_HIADDR(dma->paddr) << 28 | size);
6579 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6580 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6581 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6582 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6583 
6584 	/* Kick Flow Handler to start DMA transfer. */
6585 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6586 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6587 
6588 	iwn_nic_unlock(sc);
6589 
6590 	/* Wait at most five seconds for FH DMA transfer to complete. */
6591 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6592 }
6593 
6594 static int
6595 iwn5000_load_firmware(struct iwn_softc *sc)
6596 {
6597 	struct iwn_fw_part *fw;
6598 	int error;
6599 
6600 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6601 
6602 	/* Load the initialization firmware on first boot only. */
6603 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6604 	    &sc->fw.main : &sc->fw.init;
6605 
6606 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6607 	    fw->text, fw->textsz);
6608 	if (error != 0) {
6609 		device_printf(sc->sc_dev,
6610 		    "%s: could not load firmware %s section, error %d\n",
6611 		    __func__, ".text", error);
6612 		return error;
6613 	}
6614 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6615 	    fw->data, fw->datasz);
6616 	if (error != 0) {
6617 		device_printf(sc->sc_dev,
6618 		    "%s: could not load firmware %s section, error %d\n",
6619 		    __func__, ".data", error);
6620 		return error;
6621 	}
6622 
6623 	/* Now press "execute". */
6624 	IWN_WRITE(sc, IWN_RESET, 0);
6625 	return 0;
6626 }
6627 
6628 /*
6629  * Extract text and data sections from a legacy firmware image.
6630  */
6631 static int
6632 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6633 {
6634 	const uint32_t *ptr;
6635 	size_t hdrlen = 24;
6636 	uint32_t rev;
6637 
6638 	ptr = (const uint32_t *)fw->data;
6639 	rev = le32toh(*ptr++);
6640 
6641 	/* Check firmware API version. */
6642 	if (IWN_FW_API(rev) <= 1) {
6643 		device_printf(sc->sc_dev,
6644 		    "%s: bad firmware, need API version >=2\n", __func__);
6645 		return EINVAL;
6646 	}
6647 	if (IWN_FW_API(rev) >= 3) {
6648 		/* Skip build number (version 2 header). */
6649 		hdrlen += 4;
6650 		ptr++;
6651 	}
6652 	if (fw->size < hdrlen) {
6653 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6654 		    __func__, fw->size);
6655 		return EINVAL;
6656 	}
6657 	fw->main.textsz = le32toh(*ptr++);
6658 	fw->main.datasz = le32toh(*ptr++);
6659 	fw->init.textsz = le32toh(*ptr++);
6660 	fw->init.datasz = le32toh(*ptr++);
6661 	fw->boot.textsz = le32toh(*ptr++);
6662 
6663 	/* Check that all firmware sections fit. */
6664 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6665 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6666 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6667 		    __func__, fw->size);
6668 		return EINVAL;
6669 	}
6670 
6671 	/* Get pointers to firmware sections. */
6672 	fw->main.text = (const uint8_t *)ptr;
6673 	fw->main.data = fw->main.text + fw->main.textsz;
6674 	fw->init.text = fw->main.data + fw->main.datasz;
6675 	fw->init.data = fw->init.text + fw->init.textsz;
6676 	fw->boot.text = fw->init.data + fw->init.datasz;
6677 	return 0;
6678 }
6679 
6680 /*
6681  * Extract text and data sections from a TLV firmware image.
6682  */
6683 static int
6684 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6685     uint16_t alt)
6686 {
6687 	const struct iwn_fw_tlv_hdr *hdr;
6688 	const struct iwn_fw_tlv *tlv;
6689 	const uint8_t *ptr, *end;
6690 	uint64_t altmask;
6691 	uint32_t len, tmp;
6692 
6693 	if (fw->size < sizeof (*hdr)) {
6694 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6695 		    __func__, fw->size);
6696 		return EINVAL;
6697 	}
6698 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6699 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6700 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6701 		    __func__, le32toh(hdr->signature));
6702 		return EINVAL;
6703 	}
6704 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6705 	    le32toh(hdr->build));
6706 
6707 	/*
6708 	 * Select the closest supported alternative that is less than
6709 	 * or equal to the specified one.
6710 	 */
6711 	altmask = le64toh(hdr->altmask);
6712 	while (alt > 0 && !(altmask & (1ULL << alt)))
6713 		alt--;	/* Downgrade. */
6714 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6715 
6716 	ptr = (const uint8_t *)(hdr + 1);
6717 	end = (const uint8_t *)(fw->data + fw->size);
6718 
6719 	/* Parse type-length-value fields. */
6720 	while (ptr + sizeof (*tlv) <= end) {
6721 		tlv = (const struct iwn_fw_tlv *)ptr;
6722 		len = le32toh(tlv->len);
6723 
6724 		ptr += sizeof (*tlv);
6725 		if (ptr + len > end) {
6726 			device_printf(sc->sc_dev,
6727 			    "%s: firmware too short: %zu bytes\n", __func__,
6728 			    fw->size);
6729 			return EINVAL;
6730 		}
6731 		/* Skip other alternatives. */
6732 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6733 			goto next;
6734 
6735 		switch (le16toh(tlv->type)) {
6736 		case IWN_FW_TLV_MAIN_TEXT:
6737 			fw->main.text = ptr;
6738 			fw->main.textsz = len;
6739 			break;
6740 		case IWN_FW_TLV_MAIN_DATA:
6741 			fw->main.data = ptr;
6742 			fw->main.datasz = len;
6743 			break;
6744 		case IWN_FW_TLV_INIT_TEXT:
6745 			fw->init.text = ptr;
6746 			fw->init.textsz = len;
6747 			break;
6748 		case IWN_FW_TLV_INIT_DATA:
6749 			fw->init.data = ptr;
6750 			fw->init.datasz = len;
6751 			break;
6752 		case IWN_FW_TLV_BOOT_TEXT:
6753 			fw->boot.text = ptr;
6754 			fw->boot.textsz = len;
6755 			break;
6756 		case IWN_FW_TLV_ENH_SENS:
6757 			if (!len)
6758 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6759 			break;
6760 		case IWN_FW_TLV_PHY_CALIB:
6761 			tmp = htole32(*ptr);
6762 			if (tmp < 253) {
6763 				sc->reset_noise_gain = tmp;
6764 				sc->noise_gain = tmp + 1;
6765 			}
6766 			break;
6767 		default:
6768 			DPRINTF(sc, IWN_DEBUG_RESET,
6769 			    "TLV type %d not handled\n", le16toh(tlv->type));
6770 			break;
6771 		}
6772  next:		/* TLV fields are 32-bit aligned. */
6773 		ptr += (len + 3) & ~3;
6774 	}
6775 	return 0;
6776 }
6777 
6778 static int
6779 iwn_read_firmware(struct iwn_softc *sc)
6780 {
6781 	struct iwn_fw_info *fw = &sc->fw;
6782 	int error;
6783 
6784 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6785 
6786 	IWN_UNLOCK(sc);
6787 
6788 	memset(fw, 0, sizeof (*fw));
6789 
6790 	/* Read firmware image from filesystem. */
6791 	sc->fw_fp = firmware_get(sc->fwname);
6792 	if (sc->fw_fp == NULL) {
6793 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6794 		    __func__, sc->fwname);
6795 		IWN_LOCK(sc);
6796 		return EINVAL;
6797 	}
6798 	IWN_LOCK(sc);
6799 
6800 	fw->size = sc->fw_fp->datasize;
6801 	fw->data = (const uint8_t *)sc->fw_fp->data;
6802 	if (fw->size < sizeof (uint32_t)) {
6803 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6804 		    __func__, fw->size);
6805 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6806 		sc->fw_fp = NULL;
6807 		return EINVAL;
6808 	}
6809 
6810 	/* Retrieve text and data sections. */
6811 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6812 		error = iwn_read_firmware_leg(sc, fw);
6813 	else
6814 		error = iwn_read_firmware_tlv(sc, fw, 1);
6815 	if (error != 0) {
6816 		device_printf(sc->sc_dev,
6817 		    "%s: could not read firmware sections, error %d\n",
6818 		    __func__, error);
6819 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6820 		sc->fw_fp = NULL;
6821 		return error;
6822 	}
6823 
6824 	/* Make sure text and data sections fit in hardware memory. */
6825 	if (fw->main.textsz > sc->fw_text_maxsz ||
6826 	    fw->main.datasz > sc->fw_data_maxsz ||
6827 	    fw->init.textsz > sc->fw_text_maxsz ||
6828 	    fw->init.datasz > sc->fw_data_maxsz ||
6829 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6830 	    (fw->boot.textsz & 3) != 0) {
6831 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6832 		    __func__);
6833 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6834 		sc->fw_fp = NULL;
6835 		return EINVAL;
6836 	}
6837 
6838 	/* We can proceed with loading the firmware. */
6839 	return 0;
6840 }
6841 
6842 static int
6843 iwn_clock_wait(struct iwn_softc *sc)
6844 {
6845 	int ntries;
6846 
6847 	/* Set "initialization complete" bit. */
6848 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6849 
6850 	/* Wait for clock stabilization. */
6851 	for (ntries = 0; ntries < 2500; ntries++) {
6852 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6853 			return 0;
6854 		DELAY(10);
6855 	}
6856 	device_printf(sc->sc_dev,
6857 	    "%s: timeout waiting for clock stabilization\n", __func__);
6858 	return ETIMEDOUT;
6859 }
6860 
6861 static int
6862 iwn_apm_init(struct iwn_softc *sc)
6863 {
6864 	uint32_t reg;
6865 	int error;
6866 
6867 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6868 
6869 	/* Disable L0s exit timer (NMI bug workaround). */
6870 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6871 	/* Don't wait for ICH L0s (ICH bug workaround). */
6872 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6873 
6874 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6875 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6876 
6877 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6878 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6879 
6880 	/* Retrieve PCIe Active State Power Management (ASPM). */
6881 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6882 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6883 	if (reg & 0x02)	/* L1 Entry enabled. */
6884 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6885 	else
6886 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6887 
6888 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6889 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6890 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6891 
6892 	/* Wait for clock stabilization before accessing prph. */
6893 	if ((error = iwn_clock_wait(sc)) != 0)
6894 		return error;
6895 
6896 	if ((error = iwn_nic_lock(sc)) != 0)
6897 		return error;
6898 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6899 		/* Enable DMA and BSM (Bootstrap State Machine). */
6900 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6901 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6902 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6903 	} else {
6904 		/* Enable DMA. */
6905 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6906 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6907 	}
6908 	DELAY(20);
6909 	/* Disable L1-Active. */
6910 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6911 	iwn_nic_unlock(sc);
6912 
6913 	return 0;
6914 }
6915 
6916 static void
6917 iwn_apm_stop_master(struct iwn_softc *sc)
6918 {
6919 	int ntries;
6920 
6921 	/* Stop busmaster DMA activity. */
6922 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6923 	for (ntries = 0; ntries < 100; ntries++) {
6924 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6925 			return;
6926 		DELAY(10);
6927 	}
6928 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6929 }
6930 
6931 static void
6932 iwn_apm_stop(struct iwn_softc *sc)
6933 {
6934 	iwn_apm_stop_master(sc);
6935 
6936 	/* Reset the entire device. */
6937 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6938 	DELAY(10);
6939 	/* Clear "initialization complete" bit. */
6940 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6941 }
6942 
6943 static int
6944 iwn4965_nic_config(struct iwn_softc *sc)
6945 {
6946 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6947 
6948 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6949 		/*
6950 		 * I don't believe this to be correct but this is what the
6951 		 * vendor driver is doing. Probably the bits should not be
6952 		 * shifted in IWN_RFCFG_*.
6953 		 */
6954 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6955 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6956 		    IWN_RFCFG_STEP(sc->rfcfg) |
6957 		    IWN_RFCFG_DASH(sc->rfcfg));
6958 	}
6959 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6960 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6961 	return 0;
6962 }
6963 
6964 static int
6965 iwn5000_nic_config(struct iwn_softc *sc)
6966 {
6967 	uint32_t tmp;
6968 	int error;
6969 
6970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6971 
6972 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6973 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6974 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6975 		    IWN_RFCFG_STEP(sc->rfcfg) |
6976 		    IWN_RFCFG_DASH(sc->rfcfg));
6977 	}
6978 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6979 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6980 
6981 	if ((error = iwn_nic_lock(sc)) != 0)
6982 		return error;
6983 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6984 
6985 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6986 		/*
6987 		 * Select first Switching Voltage Regulator (1.32V) to
6988 		 * solve a stability issue related to noisy DC2DC line
6989 		 * in the silicon of 1000 Series.
6990 		 */
6991 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6992 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6993 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6994 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6995 	}
6996 	iwn_nic_unlock(sc);
6997 
6998 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6999 		/* Use internal power amplifier only. */
7000 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
7001 	}
7002 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
7003 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
7004 		/* Indicate that ROM calibration version is >=6. */
7005 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
7006 	}
7007 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
7008 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
7009 	return 0;
7010 }
7011 
7012 /*
7013  * Take NIC ownership over Intel Active Management Technology (AMT).
7014  */
7015 static int
7016 iwn_hw_prepare(struct iwn_softc *sc)
7017 {
7018 	int ntries;
7019 
7020 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7021 
7022 	/* Check if hardware is ready. */
7023 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7024 	for (ntries = 0; ntries < 5; ntries++) {
7025 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7026 		    IWN_HW_IF_CONFIG_NIC_READY)
7027 			return 0;
7028 		DELAY(10);
7029 	}
7030 
7031 	/* Hardware not ready, force into ready state. */
7032 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
7033 	for (ntries = 0; ntries < 15000; ntries++) {
7034 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
7035 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
7036 			break;
7037 		DELAY(10);
7038 	}
7039 	if (ntries == 15000)
7040 		return ETIMEDOUT;
7041 
7042 	/* Hardware should be ready now. */
7043 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7044 	for (ntries = 0; ntries < 5; ntries++) {
7045 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7046 		    IWN_HW_IF_CONFIG_NIC_READY)
7047 			return 0;
7048 		DELAY(10);
7049 	}
7050 	return ETIMEDOUT;
7051 }
7052 
7053 static int
7054 iwn_hw_init(struct iwn_softc *sc)
7055 {
7056 	struct iwn_ops *ops = &sc->ops;
7057 	int error, chnl, qid;
7058 
7059 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7060 
7061 	/* Clear pending interrupts. */
7062 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7063 
7064 	if ((error = iwn_apm_init(sc)) != 0) {
7065 		device_printf(sc->sc_dev,
7066 		    "%s: could not power ON adapter, error %d\n", __func__,
7067 		    error);
7068 		return error;
7069 	}
7070 
7071 	/* Select VMAIN power source. */
7072 	if ((error = iwn_nic_lock(sc)) != 0)
7073 		return error;
7074 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
7075 	iwn_nic_unlock(sc);
7076 
7077 	/* Perform adapter-specific initialization. */
7078 	if ((error = ops->nic_config(sc)) != 0)
7079 		return error;
7080 
7081 	/* Initialize RX ring. */
7082 	if ((error = iwn_nic_lock(sc)) != 0)
7083 		return error;
7084 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
7085 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
7086 	/* Set physical address of RX ring (256-byte aligned). */
7087 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
7088 	/* Set physical address of RX status (16-byte aligned). */
7089 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
7090 	/* Enable RX. */
7091 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
7092 	    IWN_FH_RX_CONFIG_ENA           |
7093 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
7094 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
7095 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
7096 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
7097 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
7098 	iwn_nic_unlock(sc);
7099 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
7100 
7101 	if ((error = iwn_nic_lock(sc)) != 0)
7102 		return error;
7103 
7104 	/* Initialize TX scheduler. */
7105 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7106 
7107 	/* Set physical address of "keep warm" page (16-byte aligned). */
7108 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
7109 
7110 	/* Initialize TX rings. */
7111 	for (qid = 0; qid < sc->ntxqs; qid++) {
7112 		struct iwn_tx_ring *txq = &sc->txq[qid];
7113 
7114 		/* Set physical address of TX ring (256-byte aligned). */
7115 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
7116 		    txq->desc_dma.paddr >> 8);
7117 	}
7118 	iwn_nic_unlock(sc);
7119 
7120 	/* Enable DMA channels. */
7121 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7122 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
7123 		    IWN_FH_TX_CONFIG_DMA_ENA |
7124 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
7125 	}
7126 
7127 	/* Clear "radio off" and "commands blocked" bits. */
7128 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7129 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
7130 
7131 	/* Clear pending interrupts. */
7132 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7133 	/* Enable interrupt coalescing. */
7134 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
7135 	/* Enable interrupts. */
7136 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7137 
7138 	/* _Really_ make sure "radio off" bit is cleared! */
7139 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7140 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7141 
7142 	/* Enable shadow registers. */
7143 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
7144 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
7145 
7146 	if ((error = ops->load_firmware(sc)) != 0) {
7147 		device_printf(sc->sc_dev,
7148 		    "%s: could not load firmware, error %d\n", __func__,
7149 		    error);
7150 		return error;
7151 	}
7152 	/* Wait at most one second for firmware alive notification. */
7153 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7154 		device_printf(sc->sc_dev,
7155 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7156 		    __func__, error);
7157 		return error;
7158 	}
7159 	/* Do post-firmware initialization. */
7160 
7161 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7162 
7163 	return ops->post_alive(sc);
7164 }
7165 
7166 static void
7167 iwn_hw_stop(struct iwn_softc *sc)
7168 {
7169 	int chnl, qid, ntries;
7170 
7171 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7172 
7173 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
7174 
7175 	/* Disable interrupts. */
7176 	IWN_WRITE(sc, IWN_INT_MASK, 0);
7177 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7178 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
7179 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7180 
7181 	/* Make sure we no longer hold the NIC lock. */
7182 	iwn_nic_unlock(sc);
7183 
7184 	/* Stop TX scheduler. */
7185 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7186 
7187 	/* Stop all DMA channels. */
7188 	if (iwn_nic_lock(sc) == 0) {
7189 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7190 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
7191 			for (ntries = 0; ntries < 200; ntries++) {
7192 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
7193 				    IWN_FH_TX_STATUS_IDLE(chnl))
7194 					break;
7195 				DELAY(10);
7196 			}
7197 		}
7198 		iwn_nic_unlock(sc);
7199 	}
7200 
7201 	/* Stop RX ring. */
7202 	iwn_reset_rx_ring(sc, &sc->rxq);
7203 
7204 	/* Reset all TX rings. */
7205 	for (qid = 0; qid < sc->ntxqs; qid++)
7206 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
7207 
7208 	if (iwn_nic_lock(sc) == 0) {
7209 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
7210 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7211 		iwn_nic_unlock(sc);
7212 	}
7213 	DELAY(5);
7214 	/* Power OFF adapter. */
7215 	iwn_apm_stop(sc);
7216 }
7217 
7218 static void
7219 iwn_radio_on(void *arg0, int pending)
7220 {
7221 	struct iwn_softc *sc = arg0;
7222 	struct ifnet *ifp = sc->sc_ifp;
7223 	struct ieee80211com *ic = ifp->if_l2com;
7224 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7225 
7226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7227 
7228 	if (vap != NULL) {
7229 		iwn_init(sc);
7230 		ieee80211_init(vap);
7231 	}
7232 }
7233 
7234 static void
7235 iwn_radio_off(void *arg0, int pending)
7236 {
7237 	struct iwn_softc *sc = arg0;
7238 	struct ifnet *ifp = sc->sc_ifp;
7239 	struct ieee80211com *ic = ifp->if_l2com;
7240 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7241 
7242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7243 
7244 	iwn_stop(sc);
7245 	if (vap != NULL)
7246 		ieee80211_stop(vap);
7247 
7248 	/* Enable interrupts to get RF toggle notification. */
7249 	IWN_LOCK(sc);
7250 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7251 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7252 	IWN_UNLOCK(sc);
7253 }
7254 
7255 static void
7256 iwn_init_locked(struct iwn_softc *sc)
7257 {
7258 	struct ifnet *ifp = sc->sc_ifp;
7259 	int error;
7260 
7261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7262 
7263 	IWN_LOCK_ASSERT(sc);
7264 
7265 	if ((error = iwn_hw_prepare(sc)) != 0) {
7266 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
7267 		    __func__, error);
7268 		goto fail;
7269 	}
7270 
7271 	/* Initialize interrupt mask to default value. */
7272 	sc->int_mask = IWN_INT_MASK_DEF;
7273 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7274 
7275 	/* Check that the radio is not disabled by hardware switch. */
7276 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7277 		device_printf(sc->sc_dev,
7278 		    "radio is disabled by hardware switch\n");
7279 		/* Enable interrupts to get RF toggle notifications. */
7280 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
7281 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7282 		return;
7283 	}
7284 
7285 	/* Read firmware images from the filesystem. */
7286 	if ((error = iwn_read_firmware(sc)) != 0) {
7287 		device_printf(sc->sc_dev,
7288 		    "%s: could not read firmware, error %d\n", __func__,
7289 		    error);
7290 		goto fail;
7291 	}
7292 
7293 	/* Initialize hardware and upload firmware. */
7294 	error = iwn_hw_init(sc);
7295 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7296 	sc->fw_fp = NULL;
7297 	if (error != 0) {
7298 		device_printf(sc->sc_dev,
7299 		    "%s: could not initialize hardware, error %d\n", __func__,
7300 		    error);
7301 		goto fail;
7302 	}
7303 
7304 	/* Configure adapter now that it is ready. */
7305 	if ((error = iwn_config(sc)) != 0) {
7306 		device_printf(sc->sc_dev,
7307 		    "%s: could not configure device, error %d\n", __func__,
7308 		    error);
7309 		goto fail;
7310 	}
7311 
7312 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7313 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7314 
7315 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
7316 
7317 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7318 
7319 	return;
7320 
7321 fail:	iwn_stop_locked(sc);
7322 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
7323 }
7324 
7325 static void
7326 iwn_init(void *arg)
7327 {
7328 	struct iwn_softc *sc = arg;
7329 	struct ifnet *ifp = sc->sc_ifp;
7330 	struct ieee80211com *ic = ifp->if_l2com;
7331 
7332 	IWN_LOCK(sc);
7333 	iwn_init_locked(sc);
7334 	IWN_UNLOCK(sc);
7335 
7336 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7337 		ieee80211_start_all(ic);
7338 }
7339 
7340 static void
7341 iwn_stop_locked(struct iwn_softc *sc)
7342 {
7343 	struct ifnet *ifp = sc->sc_ifp;
7344 
7345 	IWN_LOCK_ASSERT(sc);
7346 
7347 	sc->sc_tx_timer = 0;
7348 	callout_stop(&sc->watchdog_to);
7349 	callout_stop(&sc->calib_to);
7350 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
7351 
7352 	/* Power OFF hardware. */
7353 	iwn_hw_stop(sc);
7354 }
7355 
7356 static void
7357 iwn_stop(struct iwn_softc *sc)
7358 {
7359 	IWN_LOCK(sc);
7360 	iwn_stop_locked(sc);
7361 	IWN_UNLOCK(sc);
7362 }
7363 
7364 /*
7365  * Callback from net80211 to start a scan.
7366  */
7367 static void
7368 iwn_scan_start(struct ieee80211com *ic)
7369 {
7370 	struct ifnet *ifp = ic->ic_ifp;
7371 	struct iwn_softc *sc = ifp->if_softc;
7372 
7373 	IWN_LOCK(sc);
7374 	/* make the link LED blink while we're scanning */
7375 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
7376 	IWN_UNLOCK(sc);
7377 }
7378 
7379 /*
7380  * Callback from net80211 to terminate a scan.
7381  */
7382 static void
7383 iwn_scan_end(struct ieee80211com *ic)
7384 {
7385 	struct ifnet *ifp = ic->ic_ifp;
7386 	struct iwn_softc *sc = ifp->if_softc;
7387 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7388 
7389 	IWN_LOCK(sc);
7390 	if (vap->iv_state == IEEE80211_S_RUN) {
7391 		/* Set link LED to ON status if we are associated */
7392 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7393 	}
7394 	IWN_UNLOCK(sc);
7395 }
7396 
7397 /*
7398  * Callback from net80211 to force a channel change.
7399  */
7400 static void
7401 iwn_set_channel(struct ieee80211com *ic)
7402 {
7403 	const struct ieee80211_channel *c = ic->ic_curchan;
7404 	struct ifnet *ifp = ic->ic_ifp;
7405 	struct iwn_softc *sc = ifp->if_softc;
7406 	int error;
7407 
7408 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7409 
7410 	IWN_LOCK(sc);
7411 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
7412 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
7413 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
7414 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
7415 
7416 	/*
7417 	 * Only need to set the channel in Monitor mode. AP scanning and auth
7418 	 * are already taken care of by their respective firmware commands.
7419 	 */
7420 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7421 		error = iwn_config(sc);
7422 		if (error != 0)
7423 		device_printf(sc->sc_dev,
7424 		    "%s: error %d settting channel\n", __func__, error);
7425 	}
7426 	IWN_UNLOCK(sc);
7427 }
7428 
7429 /*
7430  * Callback from net80211 to start scanning of the current channel.
7431  */
7432 static void
7433 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7434 {
7435 	struct ieee80211vap *vap = ss->ss_vap;
7436 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7437 	int error;
7438 
7439 	IWN_LOCK(sc);
7440 	error = iwn_scan(sc);
7441 	IWN_UNLOCK(sc);
7442 	if (error != 0)
7443 		ieee80211_cancel_scan(vap);
7444 }
7445 
7446 /*
7447  * Callback from net80211 to handle the minimum dwell time being met.
7448  * The intent is to terminate the scan but we just let the firmware
7449  * notify us when it's finished as we have no safe way to abort it.
7450  */
7451 static void
7452 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7453 {
7454 	/* NB: don't try to abort scan; wait for firmware to finish */
7455 }
7456 
7457 static void
7458 iwn_hw_reset(void *arg0, int pending)
7459 {
7460 	struct iwn_softc *sc = arg0;
7461 	struct ifnet *ifp = sc->sc_ifp;
7462 	struct ieee80211com *ic = ifp->if_l2com;
7463 
7464 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7465 
7466 	iwn_stop(sc);
7467 	iwn_init(sc);
7468 	ieee80211_notify_radio(ic, 1);
7469 }
7470