xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 6d732c66bca5da4d261577aad2c8ea84519b0bea)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/clock.h>
53 
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_radiotap.h>
74 #include <net80211/ieee80211_regdomain.h>
75 #include <net80211/ieee80211_ratectl.h>
76 
77 #include <dev/iwn/if_iwnreg.h>
78 #include <dev/iwn/if_iwnvar.h>
79 #include <dev/iwn/if_iwn_devid.h>
80 #include <dev/iwn/if_iwn_chip_cfg.h>
81 #include <dev/iwn/if_iwn_debug.h>
82 
83 struct iwn_ident {
84 	uint16_t	vendor;
85 	uint16_t	device;
86 	const char	*name;
87 };
88 
89 static const struct iwn_ident iwn_ident_table[] = {
90 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
91 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
92 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
93 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
94 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
95 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
96 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
97 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
98 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
99 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
100 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
101 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
102 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
103 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
104 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
105 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
106 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
107 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
108 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
109 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
110 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
111 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
112 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
113 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
114 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
115 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
116 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
117 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
119 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
120 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
121 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
122 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
123 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
124 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
125 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
126 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
127 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
128 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
129 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
130 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
131 	{ 0, 0, NULL }
132 };
133 
134 static int	iwn_probe(device_t);
135 static int	iwn_attach(device_t);
136 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
137 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
138 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
139 static void	iwn_radiotap_attach(struct iwn_softc *);
140 static void	iwn_sysctlattach(struct iwn_softc *);
141 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
142 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
143 		    const uint8_t [IEEE80211_ADDR_LEN],
144 		    const uint8_t [IEEE80211_ADDR_LEN]);
145 static void	iwn_vap_delete(struct ieee80211vap *);
146 static int	iwn_detach(device_t);
147 static int	iwn_shutdown(device_t);
148 static int	iwn_suspend(device_t);
149 static int	iwn_resume(device_t);
150 static int	iwn_nic_lock(struct iwn_softc *);
151 static int	iwn_eeprom_lock(struct iwn_softc *);
152 static int	iwn_init_otprom(struct iwn_softc *);
153 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
154 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
155 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
156 		    void **, bus_size_t, bus_size_t);
157 static void	iwn_dma_contig_free(struct iwn_dma_info *);
158 static int	iwn_alloc_sched(struct iwn_softc *);
159 static void	iwn_free_sched(struct iwn_softc *);
160 static int	iwn_alloc_kw(struct iwn_softc *);
161 static void	iwn_free_kw(struct iwn_softc *);
162 static int	iwn_alloc_ict(struct iwn_softc *);
163 static void	iwn_free_ict(struct iwn_softc *);
164 static int	iwn_alloc_fwmem(struct iwn_softc *);
165 static void	iwn_free_fwmem(struct iwn_softc *);
166 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
168 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
169 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
170 		    int);
171 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
172 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
173 static void	iwn5000_ict_reset(struct iwn_softc *);
174 static int	iwn_read_eeprom(struct iwn_softc *,
175 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
176 static void	iwn4965_read_eeprom(struct iwn_softc *);
177 #ifdef	IWN_DEBUG
178 static void	iwn4965_print_power_group(struct iwn_softc *, int);
179 #endif
180 static void	iwn5000_read_eeprom(struct iwn_softc *);
181 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
182 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
183 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static int	iwn_setregdomain(struct ieee80211com *,
188 		    struct ieee80211_regdomain *, int,
189 		    struct ieee80211_channel[]);
190 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
191 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
192 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
193 static void	iwn_newassoc(struct ieee80211_node *, int);
194 static int	iwn_media_change(struct ifnet *);
195 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
196 static void	iwn_calib_timeout(void *);
197 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
198 		    struct iwn_rx_data *);
199 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *, struct iwn_rx_data *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
206 		    struct iwn_rx_data *);
207 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
212 		    uint8_t);
213 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
214 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
215 static void	iwn_notif_intr(struct iwn_softc *);
216 static void	iwn_wakeup_intr(struct iwn_softc *);
217 static void	iwn_rftoggle_intr(struct iwn_softc *);
218 static void	iwn_fatal_intr(struct iwn_softc *);
219 static void	iwn_intr(void *);
220 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
221 		    uint16_t);
222 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
223 		    uint16_t);
224 #ifdef notyet
225 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
226 #endif
227 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
230 		    struct ieee80211_node *,
231 		    const struct ieee80211_bpf_params *params);
232 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
233 		    const struct ieee80211_bpf_params *);
234 static void	iwn_start(struct ifnet *);
235 static void	iwn_start_locked(struct ifnet *);
236 static void	iwn_watchdog(void *);
237 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
238 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
239 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
240 		    int);
241 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
242 		    int);
243 static int	iwn_set_link_quality(struct iwn_softc *,
244 		    struct ieee80211_node *);
245 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
246 static int	iwn_updateedca(struct ieee80211com *);
247 static void	iwn_update_mcast(struct ifnet *);
248 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
249 static int	iwn_set_critical_temp(struct iwn_softc *);
250 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
251 static void	iwn4965_power_calibration(struct iwn_softc *, int);
252 static int	iwn4965_set_txpower(struct iwn_softc *,
253 		    struct ieee80211_channel *, int);
254 static int	iwn5000_set_txpower(struct iwn_softc *,
255 		    struct ieee80211_channel *, int);
256 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
257 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
258 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
259 static int	iwn4965_get_temperature(struct iwn_softc *);
260 static int	iwn5000_get_temperature(struct iwn_softc *);
261 static int	iwn_init_sensitivity(struct iwn_softc *);
262 static void	iwn_collect_noise(struct iwn_softc *,
263 		    const struct iwn_rx_general_stats *);
264 static int	iwn4965_init_gains(struct iwn_softc *);
265 static int	iwn5000_init_gains(struct iwn_softc *);
266 static int	iwn4965_set_gains(struct iwn_softc *);
267 static int	iwn5000_set_gains(struct iwn_softc *);
268 static void	iwn_tune_sensitivity(struct iwn_softc *,
269 		    const struct iwn_rx_stats *);
270 static void	iwn_save_stats_counters(struct iwn_softc *,
271 		    const struct iwn_stats *);
272 static int	iwn_send_sensitivity(struct iwn_softc *);
273 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
274 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
275 static int	iwn_send_btcoex(struct iwn_softc *);
276 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
277 static int	iwn5000_runtime_calib(struct iwn_softc *);
278 static int	iwn_config(struct iwn_softc *);
279 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
280 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
281 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
282 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
283 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
284 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
285 		    struct ieee80211_rx_ampdu *, int, int, int);
286 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
287 		    struct ieee80211_rx_ampdu *);
288 static int	iwn_addba_request(struct ieee80211_node *,
289 		    struct ieee80211_tx_ampdu *, int, int, int);
290 static int	iwn_addba_response(struct ieee80211_node *,
291 		    struct ieee80211_tx_ampdu *, int, int, int);
292 static int	iwn_ampdu_tx_start(struct ieee80211com *,
293 		    struct ieee80211_node *, uint8_t);
294 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
295 		    struct ieee80211_tx_ampdu *);
296 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
297 		    struct ieee80211_node *, int, uint8_t, uint16_t);
298 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
299 		    uint8_t, uint16_t);
300 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
301 		    struct ieee80211_node *, int, uint8_t, uint16_t);
302 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
303 		    uint8_t, uint16_t);
304 static int	iwn5000_query_calibration(struct iwn_softc *);
305 static int	iwn5000_send_calibration(struct iwn_softc *);
306 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
307 static int	iwn5000_crystal_calib(struct iwn_softc *);
308 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
309 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
310 static int	iwn4965_post_alive(struct iwn_softc *);
311 static int	iwn5000_post_alive(struct iwn_softc *);
312 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
313 		    int);
314 static int	iwn4965_load_firmware(struct iwn_softc *);
315 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
316 		    const uint8_t *, int);
317 static int	iwn5000_load_firmware(struct iwn_softc *);
318 static int	iwn_read_firmware_leg(struct iwn_softc *,
319 		    struct iwn_fw_info *);
320 static int	iwn_read_firmware_tlv(struct iwn_softc *,
321 		    struct iwn_fw_info *, uint16_t);
322 static int	iwn_read_firmware(struct iwn_softc *);
323 static int	iwn_clock_wait(struct iwn_softc *);
324 static int	iwn_apm_init(struct iwn_softc *);
325 static void	iwn_apm_stop_master(struct iwn_softc *);
326 static void	iwn_apm_stop(struct iwn_softc *);
327 static int	iwn4965_nic_config(struct iwn_softc *);
328 static int	iwn5000_nic_config(struct iwn_softc *);
329 static int	iwn_hw_prepare(struct iwn_softc *);
330 static int	iwn_hw_init(struct iwn_softc *);
331 static void	iwn_hw_stop(struct iwn_softc *);
332 static void	iwn_radio_on(void *, int);
333 static void	iwn_radio_off(void *, int);
334 static void	iwn_init_locked(struct iwn_softc *);
335 static void	iwn_init(void *);
336 static void	iwn_stop_locked(struct iwn_softc *);
337 static void	iwn_stop(struct iwn_softc *);
338 static void	iwn_scan_start(struct ieee80211com *);
339 static void	iwn_scan_end(struct ieee80211com *);
340 static void	iwn_set_channel(struct ieee80211com *);
341 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
342 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
343 static void	iwn_hw_reset(void *, int);
344 #ifdef	IWN_DEBUG
345 static char	*iwn_get_csr_string(int);
346 static void	iwn_debug_register(struct iwn_softc *);
347 #endif
348 
349 static device_method_t iwn_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		iwn_probe),
352 	DEVMETHOD(device_attach,	iwn_attach),
353 	DEVMETHOD(device_detach,	iwn_detach),
354 	DEVMETHOD(device_shutdown,	iwn_shutdown),
355 	DEVMETHOD(device_suspend,	iwn_suspend),
356 	DEVMETHOD(device_resume,	iwn_resume),
357 
358 	DEVMETHOD_END
359 };
360 
361 static driver_t iwn_driver = {
362 	"iwn",
363 	iwn_methods,
364 	sizeof(struct iwn_softc)
365 };
366 static devclass_t iwn_devclass;
367 
368 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
369 
370 MODULE_VERSION(iwn, 1);
371 
372 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
373 MODULE_DEPEND(iwn, pci, 1, 1, 1);
374 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
375 
376 static int
377 iwn_probe(device_t dev)
378 {
379 	const struct iwn_ident *ident;
380 
381 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
382 		if (pci_get_vendor(dev) == ident->vendor &&
383 		    pci_get_device(dev) == ident->device) {
384 			device_set_desc(dev, ident->name);
385 			return (BUS_PROBE_DEFAULT);
386 		}
387 	}
388 	return ENXIO;
389 }
390 
391 static int
392 iwn_attach(device_t dev)
393 {
394 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
395 	struct ieee80211com *ic;
396 	struct ifnet *ifp;
397 	int i, error, rid;
398 	uint8_t macaddr[IEEE80211_ADDR_LEN];
399 
400 	sc->sc_dev = dev;
401 
402 #ifdef	IWN_DEBUG
403 	error = resource_int_value(device_get_name(sc->sc_dev),
404 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
405 	if (error != 0)
406 		sc->sc_debug = 0;
407 #else
408 	sc->sc_debug = 0;
409 #endif
410 
411 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
412 
413 	/*
414 	 * Get the offset of the PCI Express Capability Structure in PCI
415 	 * Configuration Space.
416 	 */
417 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
418 	if (error != 0) {
419 		device_printf(dev, "PCIe capability structure not found!\n");
420 		return error;
421 	}
422 
423 	/* Clear device-specific "PCI retry timeout" register (41h). */
424 	pci_write_config(dev, 0x41, 0, 1);
425 
426 	/* Enable bus-mastering. */
427 	pci_enable_busmaster(dev);
428 
429 	rid = PCIR_BAR(0);
430 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
431 	    RF_ACTIVE);
432 	if (sc->mem == NULL) {
433 		device_printf(dev, "can't map mem space\n");
434 		error = ENOMEM;
435 		return error;
436 	}
437 	sc->sc_st = rman_get_bustag(sc->mem);
438 	sc->sc_sh = rman_get_bushandle(sc->mem);
439 
440 	i = 1;
441 	rid = 0;
442 	if (pci_alloc_msi(dev, &i) == 0)
443 		rid = 1;
444 	/* Install interrupt handler. */
445 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
446 	    (rid != 0 ? 0 : RF_SHAREABLE));
447 	if (sc->irq == NULL) {
448 		device_printf(dev, "can't map interrupt\n");
449 		error = ENOMEM;
450 		goto fail;
451 	}
452 
453 	IWN_LOCK_INIT(sc);
454 
455 	/* Read hardware revision and attach. */
456 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
457 	    & IWN_HW_REV_TYPE_MASK;
458 	sc->subdevice_id = pci_get_subdevice(dev);
459 
460 	/*
461 	 * 4965 versus 5000 and later have different methods.
462 	 * Let's set those up first.
463 	 */
464 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
465 		error = iwn4965_attach(sc, pci_get_device(dev));
466 	else
467 		error = iwn5000_attach(sc, pci_get_device(dev));
468 	if (error != 0) {
469 		device_printf(dev, "could not attach device, error %d\n",
470 		    error);
471 		goto fail;
472 	}
473 
474 	/*
475 	 * Next, let's setup the various parameters of each NIC.
476 	 */
477 	error = iwn_config_specific(sc, pci_get_device(dev));
478 	if (error != 0) {
479 		device_printf(dev, "could not attach device, error %d\n",
480 		    error);
481 		goto fail;
482 	}
483 
484 	if ((error = iwn_hw_prepare(sc)) != 0) {
485 		device_printf(dev, "hardware not ready, error %d\n", error);
486 		goto fail;
487 	}
488 
489 	/* Allocate DMA memory for firmware transfers. */
490 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
491 		device_printf(dev,
492 		    "could not allocate memory for firmware, error %d\n",
493 		    error);
494 		goto fail;
495 	}
496 
497 	/* Allocate "Keep Warm" page. */
498 	if ((error = iwn_alloc_kw(sc)) != 0) {
499 		device_printf(dev,
500 		    "could not allocate keep warm page, error %d\n", error);
501 		goto fail;
502 	}
503 
504 	/* Allocate ICT table for 5000 Series. */
505 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
506 	    (error = iwn_alloc_ict(sc)) != 0) {
507 		device_printf(dev, "could not allocate ICT table, error %d\n",
508 		    error);
509 		goto fail;
510 	}
511 
512 	/* Allocate TX scheduler "rings". */
513 	if ((error = iwn_alloc_sched(sc)) != 0) {
514 		device_printf(dev,
515 		    "could not allocate TX scheduler rings, error %d\n", error);
516 		goto fail;
517 	}
518 
519 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
520 	for (i = 0; i < sc->ntxqs; i++) {
521 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
522 			device_printf(dev,
523 			    "could not allocate TX ring %d, error %d\n", i,
524 			    error);
525 			goto fail;
526 		}
527 	}
528 
529 	/* Allocate RX ring. */
530 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
531 		device_printf(dev, "could not allocate RX ring, error %d\n",
532 		    error);
533 		goto fail;
534 	}
535 
536 	/* Clear pending interrupts. */
537 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
538 
539 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
540 	if (ifp == NULL) {
541 		device_printf(dev, "can not allocate ifnet structure\n");
542 		goto fail;
543 	}
544 
545 	ic = ifp->if_l2com;
546 	ic->ic_ifp = ifp;
547 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
548 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
549 
550 	/* Set device capabilities. */
551 	ic->ic_caps =
552 		  IEEE80211_C_STA		/* station mode supported */
553 		| IEEE80211_C_MONITOR		/* monitor mode supported */
554 		| IEEE80211_C_BGSCAN		/* background scanning */
555 		| IEEE80211_C_TXPMGT		/* tx power management */
556 		| IEEE80211_C_SHSLOT		/* short slot time supported */
557 		| IEEE80211_C_WPA
558 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
559 #if 0
560 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
561 #endif
562 		| IEEE80211_C_WME		/* WME */
563 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
564 		;
565 
566 	/* Read MAC address, channels, etc from EEPROM. */
567 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
568 		device_printf(dev, "could not read EEPROM, error %d\n",
569 		    error);
570 		goto fail;
571 	}
572 
573 	/* Count the number of available chains. */
574 	sc->ntxchains =
575 	    ((sc->txchainmask >> 2) & 1) +
576 	    ((sc->txchainmask >> 1) & 1) +
577 	    ((sc->txchainmask >> 0) & 1);
578 	sc->nrxchains =
579 	    ((sc->rxchainmask >> 2) & 1) +
580 	    ((sc->rxchainmask >> 1) & 1) +
581 	    ((sc->rxchainmask >> 0) & 1);
582 	if (bootverbose) {
583 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
584 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
585 		    macaddr, ":");
586 	}
587 
588 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
589 		ic->ic_rxstream = sc->nrxchains;
590 		ic->ic_txstream = sc->ntxchains;
591 
592 		/*
593 		 * The NICs we currently support cap out at 2x2 support
594 		 * separate from the chains being used.
595 		 *
596 		 * This is a total hack to work around that until some
597 		 * per-device method is implemented to return the
598 		 * actual stream support.
599 		 *
600 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
601 		 * cap this!  But, anything that touches rates in the
602 		 * driver needs to be audited first before 3x3 is enabled.
603 		 */
604 		if (ic->ic_rxstream > 2)
605 			ic->ic_rxstream = 2;
606 		if (ic->ic_txstream > 2)
607 			ic->ic_txstream = 2;
608 
609 		ic->ic_htcaps =
610 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
611 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
612 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
613 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
614 #ifdef notyet
615 			| IEEE80211_HTCAP_GREENFIELD
616 #if IWN_RBUF_SIZE == 8192
617 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
618 #else
619 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
620 #endif
621 #endif
622 			/* s/w capabilities */
623 			| IEEE80211_HTC_HT		/* HT operation */
624 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
625 #ifdef notyet
626 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
627 #endif
628 			;
629 	}
630 
631 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
632 	ifp->if_softc = sc;
633 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
634 	ifp->if_init = iwn_init;
635 	ifp->if_ioctl = iwn_ioctl;
636 	ifp->if_start = iwn_start;
637 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
638 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
639 	IFQ_SET_READY(&ifp->if_snd);
640 
641 	ieee80211_ifattach(ic, macaddr);
642 	ic->ic_vap_create = iwn_vap_create;
643 	ic->ic_vap_delete = iwn_vap_delete;
644 	ic->ic_raw_xmit = iwn_raw_xmit;
645 	ic->ic_node_alloc = iwn_node_alloc;
646 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
647 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
648 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
649 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
650 	sc->sc_addba_request = ic->ic_addba_request;
651 	ic->ic_addba_request = iwn_addba_request;
652 	sc->sc_addba_response = ic->ic_addba_response;
653 	ic->ic_addba_response = iwn_addba_response;
654 	sc->sc_addba_stop = ic->ic_addba_stop;
655 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
656 	ic->ic_newassoc = iwn_newassoc;
657 	ic->ic_wme.wme_update = iwn_updateedca;
658 	ic->ic_update_mcast = iwn_update_mcast;
659 	ic->ic_scan_start = iwn_scan_start;
660 	ic->ic_scan_end = iwn_scan_end;
661 	ic->ic_set_channel = iwn_set_channel;
662 	ic->ic_scan_curchan = iwn_scan_curchan;
663 	ic->ic_scan_mindwell = iwn_scan_mindwell;
664 	ic->ic_setregdomain = iwn_setregdomain;
665 
666 	iwn_radiotap_attach(sc);
667 
668 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
669 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
670 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
671 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
672 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
673 
674 	iwn_sysctlattach(sc);
675 
676 	/*
677 	 * Hook our interrupt after all initialization is complete.
678 	 */
679 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
680 	    NULL, iwn_intr, sc, &sc->sc_ih);
681 	if (error != 0) {
682 		device_printf(dev, "can't establish interrupt, error %d\n",
683 		    error);
684 		goto fail;
685 	}
686 
687 	if (bootverbose)
688 		ieee80211_announce(ic);
689 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
690 	return 0;
691 fail:
692 	iwn_detach(dev);
693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
694 	return error;
695 }
696 
697 /*
698  * Define specific configuration based on device id and subdevice id
699  * pid : PCI device id
700  */
701 static int
702 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
703 {
704 
705 	switch (pid) {
706 /* 4965 series */
707 	case IWN_DID_4965_1:
708 	case IWN_DID_4965_2:
709 	case IWN_DID_4965_3:
710 	case IWN_DID_4965_4:
711 		sc->base_params = &iwn4965_base_params;
712 		sc->limits = &iwn4965_sensitivity_limits;
713 		sc->fwname = "iwn4965fw";
714 		/* Override chains masks, ROM is known to be broken. */
715 		sc->txchainmask = IWN_ANT_AB;
716 		sc->rxchainmask = IWN_ANT_ABC;
717 		/* Enable normal btcoex */
718 		sc->sc_flags |= IWN_FLAG_BTCOEX;
719 		break;
720 /* 1000 Series */
721 	case IWN_DID_1000_1:
722 	case IWN_DID_1000_2:
723 		switch(sc->subdevice_id) {
724 			case	IWN_SDID_1000_1:
725 			case	IWN_SDID_1000_2:
726 			case	IWN_SDID_1000_3:
727 			case	IWN_SDID_1000_4:
728 			case	IWN_SDID_1000_5:
729 			case	IWN_SDID_1000_6:
730 			case	IWN_SDID_1000_7:
731 			case	IWN_SDID_1000_8:
732 			case	IWN_SDID_1000_9:
733 			case	IWN_SDID_1000_10:
734 			case	IWN_SDID_1000_11:
735 			case	IWN_SDID_1000_12:
736 				sc->limits = &iwn1000_sensitivity_limits;
737 				sc->base_params = &iwn1000_base_params;
738 				sc->fwname = "iwn1000fw";
739 				break;
740 			default:
741 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
742 				    "0x%04x rev %d not supported (subdevice)\n", pid,
743 				    sc->subdevice_id,sc->hw_type);
744 				return ENOTSUP;
745 		}
746 		break;
747 /* 6x00 Series */
748 	case IWN_DID_6x00_2:
749 	case IWN_DID_6x00_4:
750 	case IWN_DID_6x00_1:
751 	case IWN_DID_6x00_3:
752 		sc->fwname = "iwn6000fw";
753 		sc->limits = &iwn6000_sensitivity_limits;
754 		switch(sc->subdevice_id) {
755 			case IWN_SDID_6x00_1:
756 			case IWN_SDID_6x00_2:
757 			case IWN_SDID_6x00_8:
758 				//iwl6000_3agn_cfg
759 				sc->base_params = &iwn_6000_base_params;
760 				break;
761 			case IWN_SDID_6x00_3:
762 			case IWN_SDID_6x00_6:
763 			case IWN_SDID_6x00_9:
764 				////iwl6000i_2agn
765 			case IWN_SDID_6x00_4:
766 			case IWN_SDID_6x00_7:
767 			case IWN_SDID_6x00_10:
768 				//iwl6000i_2abg_cfg
769 			case IWN_SDID_6x00_5:
770 				//iwl6000i_2bg_cfg
771 				sc->base_params = &iwn_6000i_base_params;
772 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
773 				sc->txchainmask = IWN_ANT_BC;
774 				sc->rxchainmask = IWN_ANT_BC;
775 				break;
776 			default:
777 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
778 				    "0x%04x rev %d not supported (subdevice)\n", pid,
779 				    sc->subdevice_id,sc->hw_type);
780 				return ENOTSUP;
781 		}
782 		break;
783 /* 6x05 Series */
784 	case IWN_DID_6x05_1:
785 	case IWN_DID_6x05_2:
786 		switch(sc->subdevice_id) {
787 			case IWN_SDID_6x05_1:
788 			case IWN_SDID_6x05_4:
789 			case IWN_SDID_6x05_6:
790 				//iwl6005_2agn_cfg
791 			case IWN_SDID_6x05_2:
792 			case IWN_SDID_6x05_5:
793 			case IWN_SDID_6x05_7:
794 				//iwl6005_2abg_cfg
795 			case IWN_SDID_6x05_3:
796 				//iwl6005_2bg_cfg
797 			case IWN_SDID_6x05_8:
798 			case IWN_SDID_6x05_9:
799 				//iwl6005_2agn_sff_cfg
800 			case IWN_SDID_6x05_10:
801 				//iwl6005_2agn_d_cfg
802 			case IWN_SDID_6x05_11:
803 				//iwl6005_2agn_mow1_cfg
804 			case IWN_SDID_6x05_12:
805 				//iwl6005_2agn_mow2_cfg
806 				sc->fwname = "iwn6000g2afw";
807 				sc->limits = &iwn6000_sensitivity_limits;
808 				sc->base_params = &iwn_6000g2_base_params;
809 				break;
810 			default:
811 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
812 				    "0x%04x rev %d not supported (subdevice)\n", pid,
813 				    sc->subdevice_id,sc->hw_type);
814 				return ENOTSUP;
815 		}
816 		break;
817 /* 6x35 Series */
818 	case IWN_DID_6035_1:
819 	case IWN_DID_6035_2:
820 		switch(sc->subdevice_id) {
821 			case IWN_SDID_6035_1:
822 			case IWN_SDID_6035_2:
823 			case IWN_SDID_6035_3:
824 			case IWN_SDID_6035_4:
825 				sc->fwname = "iwn6000g2bfw";
826 				sc->limits = &iwn6235_sensitivity_limits;
827 				sc->base_params = &iwn_6235_base_params;
828 				break;
829 			default:
830 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
831 				    "0x%04x rev %d not supported (subdevice)\n", pid,
832 				    sc->subdevice_id,sc->hw_type);
833 				return ENOTSUP;
834 		}
835 		break;
836 /* 6x50 WiFi/WiMax Series */
837 	case IWN_DID_6050_1:
838 	case IWN_DID_6050_2:
839 		switch(sc->subdevice_id) {
840 			case IWN_SDID_6050_1:
841 			case IWN_SDID_6050_3:
842 			case IWN_SDID_6050_5:
843 				//iwl6050_2agn_cfg
844 			case IWN_SDID_6050_2:
845 			case IWN_SDID_6050_4:
846 			case IWN_SDID_6050_6:
847 				//iwl6050_2abg_cfg
848 				sc->fwname = "iwn6050fw";
849 				sc->txchainmask = IWN_ANT_AB;
850 				sc->rxchainmask = IWN_ANT_AB;
851 				sc->limits = &iwn6000_sensitivity_limits;
852 				sc->base_params = &iwn_6050_base_params;
853 				break;
854 			default:
855 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
856 				    "0x%04x rev %d not supported (subdevice)\n", pid,
857 				    sc->subdevice_id,sc->hw_type);
858 				return ENOTSUP;
859 		}
860 		break;
861 /* 6150 WiFi/WiMax Series */
862 	case IWN_DID_6150_1:
863 	case IWN_DID_6150_2:
864 		switch(sc->subdevice_id) {
865 			case IWN_SDID_6150_1:
866 			case IWN_SDID_6150_3:
867 			case IWN_SDID_6150_5:
868 				// iwl6150_bgn_cfg
869 			case IWN_SDID_6150_2:
870 			case IWN_SDID_6150_4:
871 			case IWN_SDID_6150_6:
872 				//iwl6150_bg_cfg
873 				sc->fwname = "iwn6050fw";
874 				sc->limits = &iwn6000_sensitivity_limits;
875 				sc->base_params = &iwn_6150_base_params;
876 				break;
877 			default:
878 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
879 				    "0x%04x rev %d not supported (subdevice)\n", pid,
880 				    sc->subdevice_id,sc->hw_type);
881 				return ENOTSUP;
882 		}
883 		break;
884 /* 6030 Series and 1030 Series */
885 	case IWN_DID_x030_1:
886 	case IWN_DID_x030_2:
887 	case IWN_DID_x030_3:
888 	case IWN_DID_x030_4:
889 		switch(sc->subdevice_id) {
890 			case IWN_SDID_x030_1:
891 			case IWN_SDID_x030_3:
892 			case IWN_SDID_x030_5:
893 			// iwl1030_bgn_cfg
894 			case IWN_SDID_x030_2:
895 			case IWN_SDID_x030_4:
896 			case IWN_SDID_x030_6:
897 			//iwl1030_bg_cfg
898 			case IWN_SDID_x030_7:
899 			case IWN_SDID_x030_10:
900 			case IWN_SDID_x030_14:
901 			//iwl6030_2agn_cfg
902 			case IWN_SDID_x030_8:
903 			case IWN_SDID_x030_11:
904 			case IWN_SDID_x030_15:
905 			// iwl6030_2bgn_cfg
906 			case IWN_SDID_x030_9:
907 			case IWN_SDID_x030_12:
908 			case IWN_SDID_x030_16:
909 			// iwl6030_2abg_cfg
910 			case IWN_SDID_x030_13:
911 			//iwl6030_2bg_cfg
912 				sc->fwname = "iwn6000g2bfw";
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6000g2b_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 130 Series WiFi */
924 /* XXX: This series will need adjustment for rate.
925  * see rx_with_siso_diversity in linux kernel
926  */
927 	case IWN_DID_130_1:
928 	case IWN_DID_130_2:
929 		switch(sc->subdevice_id) {
930 			case IWN_SDID_130_1:
931 			case IWN_SDID_130_3:
932 			case IWN_SDID_130_5:
933 			//iwl130_bgn_cfg
934 			case IWN_SDID_130_2:
935 			case IWN_SDID_130_4:
936 			case IWN_SDID_130_6:
937 			//iwl130_bg_cfg
938 				sc->fwname = "iwn6000g2bfw";
939 				sc->limits = &iwn6000_sensitivity_limits;
940 				sc->base_params = &iwn_6000g2b_base_params;
941 				break;
942 			default:
943 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
944 				    "0x%04x rev %d not supported (subdevice)\n", pid,
945 				    sc->subdevice_id,sc->hw_type);
946 				return ENOTSUP;
947 		}
948 		break;
949 /* 100 Series WiFi */
950 	case IWN_DID_100_1:
951 	case IWN_DID_100_2:
952 		switch(sc->subdevice_id) {
953 			case IWN_SDID_100_1:
954 			case IWN_SDID_100_2:
955 			case IWN_SDID_100_3:
956 			case IWN_SDID_100_4:
957 			case IWN_SDID_100_5:
958 			case IWN_SDID_100_6:
959 				sc->limits = &iwn1000_sensitivity_limits;
960 				sc->base_params = &iwn1000_base_params;
961 				sc->fwname = "iwn100fw";
962 				break;
963 			default:
964 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
965 				    "0x%04x rev %d not supported (subdevice)\n", pid,
966 				    sc->subdevice_id,sc->hw_type);
967 				return ENOTSUP;
968 		}
969 		break;
970 
971 /* 135 Series */
972 /* XXX: This series will need adjustment for rate.
973  * see rx_with_siso_diversity in linux kernel
974  */
975 	case IWN_DID_135_1:
976 	case IWN_DID_135_2:
977 		switch(sc->subdevice_id) {
978 			case IWN_SDID_135_1:
979 			case IWN_SDID_135_2:
980 			case IWN_SDID_135_3:
981 				sc->limits = &iwn2030_sensitivity_limits;
982 				sc->base_params = &iwn2030_base_params;
983 				sc->fwname = "iwn135fw";
984 				break;
985 			default:
986 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
987 				    "0x%04x rev %d not supported (subdevice)\n", pid,
988 				    sc->subdevice_id,sc->hw_type);
989 				return ENOTSUP;
990 		}
991 		break;
992 
993 /* 2x00 Series */
994 	case IWN_DID_2x00_1:
995 	case IWN_DID_2x00_2:
996 		switch(sc->subdevice_id) {
997 			case IWN_SDID_2x00_1:
998 			case IWN_SDID_2x00_2:
999 			case IWN_SDID_2x00_3:
1000 			//iwl2000_2bgn_cfg
1001 			case IWN_SDID_2x00_4:
1002 			//iwl2000_2bgn_d_cfg
1003 				sc->limits = &iwn2030_sensitivity_limits;
1004 				sc->base_params = &iwn2000_base_params;
1005 				sc->fwname = "iwn2000fw";
1006 				break;
1007 			default:
1008 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1009 				    "0x%04x rev %d not supported (subdevice) \n",
1010 				    pid, sc->subdevice_id, sc->hw_type);
1011 				return ENOTSUP;
1012 		}
1013 		break;
1014 /* 2x30 Series */
1015 	case IWN_DID_2x30_1:
1016 	case IWN_DID_2x30_2:
1017 		switch(sc->subdevice_id) {
1018 			case IWN_SDID_2x30_1:
1019 			case IWN_SDID_2x30_3:
1020 			case IWN_SDID_2x30_5:
1021 			//iwl100_bgn_cfg
1022 			case IWN_SDID_2x30_2:
1023 			case IWN_SDID_2x30_4:
1024 			case IWN_SDID_2x30_6:
1025 			//iwl100_bg_cfg
1026 				sc->limits = &iwn2030_sensitivity_limits;
1027 				sc->base_params = &iwn2030_base_params;
1028 				sc->fwname = "iwn2030fw";
1029 				break;
1030 			default:
1031 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1032 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1033 				    sc->subdevice_id,sc->hw_type);
1034 				return ENOTSUP;
1035 		}
1036 		break;
1037 /* 5x00 Series */
1038 	case IWN_DID_5x00_1:
1039 	case IWN_DID_5x00_2:
1040 	case IWN_DID_5x00_3:
1041 	case IWN_DID_5x00_4:
1042 		sc->limits = &iwn5000_sensitivity_limits;
1043 		sc->base_params = &iwn5000_base_params;
1044 		sc->fwname = "iwn5000fw";
1045 		switch(sc->subdevice_id) {
1046 			case IWN_SDID_5x00_1:
1047 			case IWN_SDID_5x00_2:
1048 			case IWN_SDID_5x00_3:
1049 			case IWN_SDID_5x00_4:
1050 			case IWN_SDID_5x00_9:
1051 			case IWN_SDID_5x00_10:
1052 			case IWN_SDID_5x00_11:
1053 			case IWN_SDID_5x00_12:
1054 			case IWN_SDID_5x00_17:
1055 			case IWN_SDID_5x00_18:
1056 			case IWN_SDID_5x00_19:
1057 			case IWN_SDID_5x00_20:
1058 			//iwl5100_agn_cfg
1059 				sc->txchainmask = IWN_ANT_B;
1060 				sc->rxchainmask = IWN_ANT_AB;
1061 				break;
1062 			case IWN_SDID_5x00_5:
1063 			case IWN_SDID_5x00_6:
1064 			case IWN_SDID_5x00_13:
1065 			case IWN_SDID_5x00_14:
1066 			case IWN_SDID_5x00_21:
1067 			case IWN_SDID_5x00_22:
1068 			//iwl5100_bgn_cfg
1069 				sc->txchainmask = IWN_ANT_B;
1070 				sc->rxchainmask = IWN_ANT_AB;
1071 				break;
1072 			case IWN_SDID_5x00_7:
1073 			case IWN_SDID_5x00_8:
1074 			case IWN_SDID_5x00_15:
1075 			case IWN_SDID_5x00_16:
1076 			case IWN_SDID_5x00_23:
1077 			case IWN_SDID_5x00_24:
1078 			//iwl5100_abg_cfg
1079 				sc->txchainmask = IWN_ANT_B;
1080 				sc->rxchainmask = IWN_ANT_AB;
1081 				break;
1082 			case IWN_SDID_5x00_25:
1083 			case IWN_SDID_5x00_26:
1084 			case IWN_SDID_5x00_27:
1085 			case IWN_SDID_5x00_28:
1086 			case IWN_SDID_5x00_29:
1087 			case IWN_SDID_5x00_30:
1088 			case IWN_SDID_5x00_31:
1089 			case IWN_SDID_5x00_32:
1090 			case IWN_SDID_5x00_33:
1091 			case IWN_SDID_5x00_34:
1092 			case IWN_SDID_5x00_35:
1093 			case IWN_SDID_5x00_36:
1094 			//iwl5300_agn_cfg
1095 				sc->txchainmask = IWN_ANT_ABC;
1096 				sc->rxchainmask = IWN_ANT_ABC;
1097 				break;
1098 			default:
1099 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1100 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1101 				    sc->subdevice_id,sc->hw_type);
1102 				return ENOTSUP;
1103 		}
1104 		break;
1105 /* 5x50 Series */
1106 	case IWN_DID_5x50_1:
1107 	case IWN_DID_5x50_2:
1108 	case IWN_DID_5x50_3:
1109 	case IWN_DID_5x50_4:
1110 		sc->limits = &iwn5000_sensitivity_limits;
1111 		sc->base_params = &iwn5000_base_params;
1112 		sc->fwname = "iwn5000fw";
1113 		switch(sc->subdevice_id) {
1114 			case IWN_SDID_5x50_1:
1115 			case IWN_SDID_5x50_2:
1116 			case IWN_SDID_5x50_3:
1117 			//iwl5350_agn_cfg
1118 				sc->limits = &iwn5000_sensitivity_limits;
1119 				sc->base_params = &iwn5000_base_params;
1120 				sc->fwname = "iwn5000fw";
1121 				break;
1122 			case IWN_SDID_5x50_4:
1123 			case IWN_SDID_5x50_5:
1124 			case IWN_SDID_5x50_8:
1125 			case IWN_SDID_5x50_9:
1126 			case IWN_SDID_5x50_10:
1127 			case IWN_SDID_5x50_11:
1128 			//iwl5150_agn_cfg
1129 			case IWN_SDID_5x50_6:
1130 			case IWN_SDID_5x50_7:
1131 			case IWN_SDID_5x50_12:
1132 			case IWN_SDID_5x50_13:
1133 			//iwl5150_abg_cfg
1134 				sc->limits = &iwn5000_sensitivity_limits;
1135 				sc->fwname = "iwn5150fw";
1136 				sc->base_params = &iwn_5x50_base_params;
1137 				break;
1138 			default:
1139 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1140 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1141 				    sc->subdevice_id,sc->hw_type);
1142 				return ENOTSUP;
1143 		}
1144 		break;
1145 	default:
1146 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1147 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1148 		     sc->hw_type);
1149 		return ENOTSUP;
1150 	}
1151 	return 0;
1152 }
1153 
1154 static int
1155 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1156 {
1157 	struct iwn_ops *ops = &sc->ops;
1158 
1159 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1160 	ops->load_firmware = iwn4965_load_firmware;
1161 	ops->read_eeprom = iwn4965_read_eeprom;
1162 	ops->post_alive = iwn4965_post_alive;
1163 	ops->nic_config = iwn4965_nic_config;
1164 	ops->update_sched = iwn4965_update_sched;
1165 	ops->get_temperature = iwn4965_get_temperature;
1166 	ops->get_rssi = iwn4965_get_rssi;
1167 	ops->set_txpower = iwn4965_set_txpower;
1168 	ops->init_gains = iwn4965_init_gains;
1169 	ops->set_gains = iwn4965_set_gains;
1170 	ops->add_node = iwn4965_add_node;
1171 	ops->tx_done = iwn4965_tx_done;
1172 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1173 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1174 	sc->ntxqs = IWN4965_NTXQUEUES;
1175 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1176 	sc->ndmachnls = IWN4965_NDMACHNLS;
1177 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1178 	sc->rxonsz = IWN4965_RXONSZ;
1179 	sc->schedsz = IWN4965_SCHEDSZ;
1180 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1181 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1182 	sc->fwsz = IWN4965_FWSZ;
1183 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1184 	sc->limits = &iwn4965_sensitivity_limits;
1185 	sc->fwname = "iwn4965fw";
1186 	/* Override chains masks, ROM is known to be broken. */
1187 	sc->txchainmask = IWN_ANT_AB;
1188 	sc->rxchainmask = IWN_ANT_ABC;
1189 	/* Enable normal btcoex */
1190 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1191 
1192 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1193 
1194 	return 0;
1195 }
1196 
1197 static int
1198 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1199 {
1200 	struct iwn_ops *ops = &sc->ops;
1201 
1202 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1203 
1204 	ops->load_firmware = iwn5000_load_firmware;
1205 	ops->read_eeprom = iwn5000_read_eeprom;
1206 	ops->post_alive = iwn5000_post_alive;
1207 	ops->nic_config = iwn5000_nic_config;
1208 	ops->update_sched = iwn5000_update_sched;
1209 	ops->get_temperature = iwn5000_get_temperature;
1210 	ops->get_rssi = iwn5000_get_rssi;
1211 	ops->set_txpower = iwn5000_set_txpower;
1212 	ops->init_gains = iwn5000_init_gains;
1213 	ops->set_gains = iwn5000_set_gains;
1214 	ops->add_node = iwn5000_add_node;
1215 	ops->tx_done = iwn5000_tx_done;
1216 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1217 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1218 	sc->ntxqs = IWN5000_NTXQUEUES;
1219 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1220 	sc->ndmachnls = IWN5000_NDMACHNLS;
1221 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1222 	sc->rxonsz = IWN5000_RXONSZ;
1223 	sc->schedsz = IWN5000_SCHEDSZ;
1224 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1225 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1226 	sc->fwsz = IWN5000_FWSZ;
1227 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1228 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1229 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Attach the interface to 802.11 radiotap.
1236  */
1237 static void
1238 iwn_radiotap_attach(struct iwn_softc *sc)
1239 {
1240 	struct ifnet *ifp = sc->sc_ifp;
1241 	struct ieee80211com *ic = ifp->if_l2com;
1242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1243 	ieee80211_radiotap_attach(ic,
1244 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1245 		IWN_TX_RADIOTAP_PRESENT,
1246 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1247 		IWN_RX_RADIOTAP_PRESENT);
1248 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1249 }
1250 
1251 static void
1252 iwn_sysctlattach(struct iwn_softc *sc)
1253 {
1254 #ifdef	IWN_DEBUG
1255 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1256 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1257 
1258 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1259 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1260 		"control debugging printfs");
1261 #endif
1262 }
1263 
1264 static struct ieee80211vap *
1265 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1266     enum ieee80211_opmode opmode, int flags,
1267     const uint8_t bssid[IEEE80211_ADDR_LEN],
1268     const uint8_t mac[IEEE80211_ADDR_LEN])
1269 {
1270 	struct iwn_vap *ivp;
1271 	struct ieee80211vap *vap;
1272 	uint8_t mac1[IEEE80211_ADDR_LEN];
1273 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1274 
1275 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1276 		return NULL;
1277 
1278 	IEEE80211_ADDR_COPY(mac1, mac);
1279 
1280 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
1281 	    M_80211_VAP, M_NOWAIT | M_ZERO);
1282 	if (ivp == NULL)
1283 		return NULL;
1284 	vap = &ivp->iv_vap;
1285 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1286 	ivp->ctx = IWN_RXON_BSS_CTX;
1287 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1288 	vap->iv_bmissthreshold = 10;		/* override default */
1289 	/* Override with driver methods. */
1290 	ivp->iv_newstate = vap->iv_newstate;
1291 	vap->iv_newstate = iwn_newstate;
1292 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1293 
1294 	ieee80211_ratectl_init(vap);
1295 	/* Complete setup. */
1296 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1297 	ic->ic_opmode = opmode;
1298 	return vap;
1299 }
1300 
1301 static void
1302 iwn_vap_delete(struct ieee80211vap *vap)
1303 {
1304 	struct iwn_vap *ivp = IWN_VAP(vap);
1305 
1306 	ieee80211_ratectl_deinit(vap);
1307 	ieee80211_vap_detach(vap);
1308 	free(ivp, M_80211_VAP);
1309 }
1310 
1311 static int
1312 iwn_detach(device_t dev)
1313 {
1314 	struct iwn_softc *sc = device_get_softc(dev);
1315 	struct ifnet *ifp = sc->sc_ifp;
1316 	struct ieee80211com *ic;
1317 	int qid;
1318 
1319 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1320 
1321 	if (ifp != NULL) {
1322 		ic = ifp->if_l2com;
1323 
1324 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1325 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1326 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1327 
1328 		iwn_stop(sc);
1329 		callout_drain(&sc->watchdog_to);
1330 		callout_drain(&sc->calib_to);
1331 		ieee80211_ifdetach(ic);
1332 	}
1333 
1334 	/* Uninstall interrupt handler. */
1335 	if (sc->irq != NULL) {
1336 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1337 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1338 		    sc->irq);
1339 		pci_release_msi(dev);
1340 	}
1341 
1342 	/* Free DMA resources. */
1343 	iwn_free_rx_ring(sc, &sc->rxq);
1344 	for (qid = 0; qid < sc->ntxqs; qid++)
1345 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1346 	iwn_free_sched(sc);
1347 	iwn_free_kw(sc);
1348 	if (sc->ict != NULL)
1349 		iwn_free_ict(sc);
1350 	iwn_free_fwmem(sc);
1351 
1352 	if (sc->mem != NULL)
1353 		bus_release_resource(dev, SYS_RES_MEMORY,
1354 		    rman_get_rid(sc->mem), sc->mem);
1355 
1356 	if (ifp != NULL)
1357 		if_free(ifp);
1358 
1359 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1360 	IWN_LOCK_DESTROY(sc);
1361 	return 0;
1362 }
1363 
1364 static int
1365 iwn_shutdown(device_t dev)
1366 {
1367 	struct iwn_softc *sc = device_get_softc(dev);
1368 
1369 	iwn_stop(sc);
1370 	return 0;
1371 }
1372 
1373 static int
1374 iwn_suspend(device_t dev)
1375 {
1376 	struct iwn_softc *sc = device_get_softc(dev);
1377 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1378 
1379 	ieee80211_suspend_all(ic);
1380 	return 0;
1381 }
1382 
1383 static int
1384 iwn_resume(device_t dev)
1385 {
1386 	struct iwn_softc *sc = device_get_softc(dev);
1387 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1388 
1389 	/* Clear device-specific "PCI retry timeout" register (41h). */
1390 	pci_write_config(dev, 0x41, 0, 1);
1391 
1392 	ieee80211_resume_all(ic);
1393 	return 0;
1394 }
1395 
1396 static int
1397 iwn_nic_lock(struct iwn_softc *sc)
1398 {
1399 	int ntries;
1400 
1401 	/* Request exclusive access to NIC. */
1402 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1403 
1404 	/* Spin until we actually get the lock. */
1405 	for (ntries = 0; ntries < 1000; ntries++) {
1406 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1407 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1408 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1409 			return 0;
1410 		DELAY(10);
1411 	}
1412 	return ETIMEDOUT;
1413 }
1414 
1415 static __inline void
1416 iwn_nic_unlock(struct iwn_softc *sc)
1417 {
1418 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1419 }
1420 
1421 static __inline uint32_t
1422 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1423 {
1424 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1425 	IWN_BARRIER_READ_WRITE(sc);
1426 	return IWN_READ(sc, IWN_PRPH_RDATA);
1427 }
1428 
1429 static __inline void
1430 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1431 {
1432 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1433 	IWN_BARRIER_WRITE(sc);
1434 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1435 }
1436 
1437 static __inline void
1438 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1439 {
1440 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1441 }
1442 
1443 static __inline void
1444 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1445 {
1446 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1447 }
1448 
1449 static __inline void
1450 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1451     const uint32_t *data, int count)
1452 {
1453 	for (; count > 0; count--, data++, addr += 4)
1454 		iwn_prph_write(sc, addr, *data);
1455 }
1456 
1457 static __inline uint32_t
1458 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1459 {
1460 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1461 	IWN_BARRIER_READ_WRITE(sc);
1462 	return IWN_READ(sc, IWN_MEM_RDATA);
1463 }
1464 
1465 static __inline void
1466 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1467 {
1468 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1469 	IWN_BARRIER_WRITE(sc);
1470 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1471 }
1472 
1473 static __inline void
1474 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1475 {
1476 	uint32_t tmp;
1477 
1478 	tmp = iwn_mem_read(sc, addr & ~3);
1479 	if (addr & 3)
1480 		tmp = (tmp & 0x0000ffff) | data << 16;
1481 	else
1482 		tmp = (tmp & 0xffff0000) | data;
1483 	iwn_mem_write(sc, addr & ~3, tmp);
1484 }
1485 
1486 static __inline void
1487 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1488     int count)
1489 {
1490 	for (; count > 0; count--, addr += 4)
1491 		*data++ = iwn_mem_read(sc, addr);
1492 }
1493 
1494 static __inline void
1495 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1496     int count)
1497 {
1498 	for (; count > 0; count--, addr += 4)
1499 		iwn_mem_write(sc, addr, val);
1500 }
1501 
1502 static int
1503 iwn_eeprom_lock(struct iwn_softc *sc)
1504 {
1505 	int i, ntries;
1506 
1507 	for (i = 0; i < 100; i++) {
1508 		/* Request exclusive access to EEPROM. */
1509 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1510 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1511 
1512 		/* Spin until we actually get the lock. */
1513 		for (ntries = 0; ntries < 100; ntries++) {
1514 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1515 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1516 				return 0;
1517 			DELAY(10);
1518 		}
1519 	}
1520 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1521 	return ETIMEDOUT;
1522 }
1523 
1524 static __inline void
1525 iwn_eeprom_unlock(struct iwn_softc *sc)
1526 {
1527 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1528 }
1529 
1530 /*
1531  * Initialize access by host to One Time Programmable ROM.
1532  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1533  */
1534 static int
1535 iwn_init_otprom(struct iwn_softc *sc)
1536 {
1537 	uint16_t prev, base, next;
1538 	int count, error;
1539 
1540 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1541 
1542 	/* Wait for clock stabilization before accessing prph. */
1543 	if ((error = iwn_clock_wait(sc)) != 0)
1544 		return error;
1545 
1546 	if ((error = iwn_nic_lock(sc)) != 0)
1547 		return error;
1548 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1549 	DELAY(5);
1550 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1551 	iwn_nic_unlock(sc);
1552 
1553 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1554 	if (sc->base_params->shadow_ram_support) {
1555 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1556 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1557 	}
1558 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1559 	/* Clear ECC status. */
1560 	IWN_SETBITS(sc, IWN_OTP_GP,
1561 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1562 
1563 	/*
1564 	 * Find the block before last block (contains the EEPROM image)
1565 	 * for HW without OTP shadow RAM.
1566 	 */
1567 	if (! sc->base_params->shadow_ram_support) {
1568 		/* Switch to absolute addressing mode. */
1569 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1570 		base = prev = 0;
1571 		for (count = 0; count < sc->base_params->max_ll_items;
1572 		    count++) {
1573 			error = iwn_read_prom_data(sc, base, &next, 2);
1574 			if (error != 0)
1575 				return error;
1576 			if (next == 0)	/* End of linked-list. */
1577 				break;
1578 			prev = base;
1579 			base = le16toh(next);
1580 		}
1581 		if (count == 0 || count == sc->base_params->max_ll_items)
1582 			return EIO;
1583 		/* Skip "next" word. */
1584 		sc->prom_base = prev + 1;
1585 	}
1586 
1587 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1588 
1589 	return 0;
1590 }
1591 
1592 static int
1593 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1594 {
1595 	uint8_t *out = data;
1596 	uint32_t val, tmp;
1597 	int ntries;
1598 
1599 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1600 
1601 	addr += sc->prom_base;
1602 	for (; count > 0; count -= 2, addr++) {
1603 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1604 		for (ntries = 0; ntries < 10; ntries++) {
1605 			val = IWN_READ(sc, IWN_EEPROM);
1606 			if (val & IWN_EEPROM_READ_VALID)
1607 				break;
1608 			DELAY(5);
1609 		}
1610 		if (ntries == 10) {
1611 			device_printf(sc->sc_dev,
1612 			    "timeout reading ROM at 0x%x\n", addr);
1613 			return ETIMEDOUT;
1614 		}
1615 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1616 			/* OTPROM, check for ECC errors. */
1617 			tmp = IWN_READ(sc, IWN_OTP_GP);
1618 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1619 				device_printf(sc->sc_dev,
1620 				    "OTPROM ECC error at 0x%x\n", addr);
1621 				return EIO;
1622 			}
1623 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1624 				/* Correctable ECC error, clear bit. */
1625 				IWN_SETBITS(sc, IWN_OTP_GP,
1626 				    IWN_OTP_GP_ECC_CORR_STTS);
1627 			}
1628 		}
1629 		*out++ = val >> 16;
1630 		if (count > 1)
1631 			*out++ = val >> 24;
1632 	}
1633 
1634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1635 
1636 	return 0;
1637 }
1638 
1639 static void
1640 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1641 {
1642 	if (error != 0)
1643 		return;
1644 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1645 	*(bus_addr_t *)arg = segs[0].ds_addr;
1646 }
1647 
1648 static int
1649 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1650     void **kvap, bus_size_t size, bus_size_t alignment)
1651 {
1652 	int error;
1653 
1654 	dma->tag = NULL;
1655 	dma->size = size;
1656 
1657 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1658 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1659 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1660 	if (error != 0)
1661 		goto fail;
1662 
1663 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1664 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1665 	if (error != 0)
1666 		goto fail;
1667 
1668 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1669 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1670 	if (error != 0)
1671 		goto fail;
1672 
1673 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1674 
1675 	if (kvap != NULL)
1676 		*kvap = dma->vaddr;
1677 
1678 	return 0;
1679 
1680 fail:	iwn_dma_contig_free(dma);
1681 	return error;
1682 }
1683 
1684 static void
1685 iwn_dma_contig_free(struct iwn_dma_info *dma)
1686 {
1687 	if (dma->map != NULL) {
1688 		if (dma->vaddr != NULL) {
1689 			bus_dmamap_sync(dma->tag, dma->map,
1690 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1691 			bus_dmamap_unload(dma->tag, dma->map);
1692 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1693 			dma->vaddr = NULL;
1694 		}
1695 		bus_dmamap_destroy(dma->tag, dma->map);
1696 		dma->map = NULL;
1697 	}
1698 	if (dma->tag != NULL) {
1699 		bus_dma_tag_destroy(dma->tag);
1700 		dma->tag = NULL;
1701 	}
1702 }
1703 
1704 static int
1705 iwn_alloc_sched(struct iwn_softc *sc)
1706 {
1707 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1708 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1709 	    sc->schedsz, 1024);
1710 }
1711 
1712 static void
1713 iwn_free_sched(struct iwn_softc *sc)
1714 {
1715 	iwn_dma_contig_free(&sc->sched_dma);
1716 }
1717 
1718 static int
1719 iwn_alloc_kw(struct iwn_softc *sc)
1720 {
1721 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1722 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1723 }
1724 
1725 static void
1726 iwn_free_kw(struct iwn_softc *sc)
1727 {
1728 	iwn_dma_contig_free(&sc->kw_dma);
1729 }
1730 
1731 static int
1732 iwn_alloc_ict(struct iwn_softc *sc)
1733 {
1734 	/* ICT table must be aligned on a 4KB boundary. */
1735 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1736 	    IWN_ICT_SIZE, 4096);
1737 }
1738 
1739 static void
1740 iwn_free_ict(struct iwn_softc *sc)
1741 {
1742 	iwn_dma_contig_free(&sc->ict_dma);
1743 }
1744 
1745 static int
1746 iwn_alloc_fwmem(struct iwn_softc *sc)
1747 {
1748 	/* Must be aligned on a 16-byte boundary. */
1749 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1750 }
1751 
1752 static void
1753 iwn_free_fwmem(struct iwn_softc *sc)
1754 {
1755 	iwn_dma_contig_free(&sc->fw_dma);
1756 }
1757 
1758 static int
1759 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1760 {
1761 	bus_size_t size;
1762 	int i, error;
1763 
1764 	ring->cur = 0;
1765 
1766 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1767 
1768 	/* Allocate RX descriptors (256-byte aligned). */
1769 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1770 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1771 	    size, 256);
1772 	if (error != 0) {
1773 		device_printf(sc->sc_dev,
1774 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1775 		    __func__, error);
1776 		goto fail;
1777 	}
1778 
1779 	/* Allocate RX status area (16-byte aligned). */
1780 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1781 	    sizeof (struct iwn_rx_status), 16);
1782 	if (error != 0) {
1783 		device_printf(sc->sc_dev,
1784 		    "%s: could not allocate RX status DMA memory, error %d\n",
1785 		    __func__, error);
1786 		goto fail;
1787 	}
1788 
1789 	/* Create RX buffer DMA tag. */
1790 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1791 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1792 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1793 	    &ring->data_dmat);
1794 	if (error != 0) {
1795 		device_printf(sc->sc_dev,
1796 		    "%s: could not create RX buf DMA tag, error %d\n",
1797 		    __func__, error);
1798 		goto fail;
1799 	}
1800 
1801 	/*
1802 	 * Allocate and map RX buffers.
1803 	 */
1804 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1805 		struct iwn_rx_data *data = &ring->data[i];
1806 		bus_addr_t paddr;
1807 
1808 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1809 		if (error != 0) {
1810 			device_printf(sc->sc_dev,
1811 			    "%s: could not create RX buf DMA map, error %d\n",
1812 			    __func__, error);
1813 			goto fail;
1814 		}
1815 
1816 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1817 		    IWN_RBUF_SIZE);
1818 		if (data->m == NULL) {
1819 			device_printf(sc->sc_dev,
1820 			    "%s: could not allocate RX mbuf\n", __func__);
1821 			error = ENOBUFS;
1822 			goto fail;
1823 		}
1824 
1825 		error = bus_dmamap_load(ring->data_dmat, data->map,
1826 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1827 		    &paddr, BUS_DMA_NOWAIT);
1828 		if (error != 0 && error != EFBIG) {
1829 			device_printf(sc->sc_dev,
1830 			    "%s: can't not map mbuf, error %d\n", __func__,
1831 			    error);
1832 			goto fail;
1833 		}
1834 
1835 		/* Set physical address of RX buffer (256-byte aligned). */
1836 		ring->desc[i] = htole32(paddr >> 8);
1837 	}
1838 
1839 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1840 	    BUS_DMASYNC_PREWRITE);
1841 
1842 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1843 
1844 	return 0;
1845 
1846 fail:	iwn_free_rx_ring(sc, ring);
1847 
1848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1849 
1850 	return error;
1851 }
1852 
1853 static void
1854 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1855 {
1856 	int ntries;
1857 
1858 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1859 
1860 	if (iwn_nic_lock(sc) == 0) {
1861 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1862 		for (ntries = 0; ntries < 1000; ntries++) {
1863 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1864 			    IWN_FH_RX_STATUS_IDLE)
1865 				break;
1866 			DELAY(10);
1867 		}
1868 		iwn_nic_unlock(sc);
1869 	}
1870 	ring->cur = 0;
1871 	sc->last_rx_valid = 0;
1872 }
1873 
1874 static void
1875 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1876 {
1877 	int i;
1878 
1879 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1880 
1881 	iwn_dma_contig_free(&ring->desc_dma);
1882 	iwn_dma_contig_free(&ring->stat_dma);
1883 
1884 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1885 		struct iwn_rx_data *data = &ring->data[i];
1886 
1887 		if (data->m != NULL) {
1888 			bus_dmamap_sync(ring->data_dmat, data->map,
1889 			    BUS_DMASYNC_POSTREAD);
1890 			bus_dmamap_unload(ring->data_dmat, data->map);
1891 			m_freem(data->m);
1892 			data->m = NULL;
1893 		}
1894 		if (data->map != NULL)
1895 			bus_dmamap_destroy(ring->data_dmat, data->map);
1896 	}
1897 	if (ring->data_dmat != NULL) {
1898 		bus_dma_tag_destroy(ring->data_dmat);
1899 		ring->data_dmat = NULL;
1900 	}
1901 }
1902 
1903 static int
1904 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1905 {
1906 	bus_addr_t paddr;
1907 	bus_size_t size;
1908 	int i, error;
1909 
1910 	ring->qid = qid;
1911 	ring->queued = 0;
1912 	ring->cur = 0;
1913 
1914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1915 
1916 	/* Allocate TX descriptors (256-byte aligned). */
1917 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1918 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1919 	    size, 256);
1920 	if (error != 0) {
1921 		device_printf(sc->sc_dev,
1922 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1923 		    __func__, error);
1924 		goto fail;
1925 	}
1926 
1927 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1928 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1929 	    size, 4);
1930 	if (error != 0) {
1931 		device_printf(sc->sc_dev,
1932 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1933 		    __func__, error);
1934 		goto fail;
1935 	}
1936 
1937 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1938 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1939 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1940 	    &ring->data_dmat);
1941 	if (error != 0) {
1942 		device_printf(sc->sc_dev,
1943 		    "%s: could not create TX buf DMA tag, error %d\n",
1944 		    __func__, error);
1945 		goto fail;
1946 	}
1947 
1948 	paddr = ring->cmd_dma.paddr;
1949 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1950 		struct iwn_tx_data *data = &ring->data[i];
1951 
1952 		data->cmd_paddr = paddr;
1953 		data->scratch_paddr = paddr + 12;
1954 		paddr += sizeof (struct iwn_tx_cmd);
1955 
1956 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1957 		if (error != 0) {
1958 			device_printf(sc->sc_dev,
1959 			    "%s: could not create TX buf DMA map, error %d\n",
1960 			    __func__, error);
1961 			goto fail;
1962 		}
1963 	}
1964 
1965 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1966 
1967 	return 0;
1968 
1969 fail:	iwn_free_tx_ring(sc, ring);
1970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
1971 	return error;
1972 }
1973 
1974 static void
1975 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1976 {
1977 	int i;
1978 
1979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
1980 
1981 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1982 		struct iwn_tx_data *data = &ring->data[i];
1983 
1984 		if (data->m != NULL) {
1985 			bus_dmamap_sync(ring->data_dmat, data->map,
1986 			    BUS_DMASYNC_POSTWRITE);
1987 			bus_dmamap_unload(ring->data_dmat, data->map);
1988 			m_freem(data->m);
1989 			data->m = NULL;
1990 		}
1991 	}
1992 	/* Clear TX descriptors. */
1993 	memset(ring->desc, 0, ring->desc_dma.size);
1994 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1995 	    BUS_DMASYNC_PREWRITE);
1996 	sc->qfullmsk &= ~(1 << ring->qid);
1997 	ring->queued = 0;
1998 	ring->cur = 0;
1999 }
2000 
2001 static void
2002 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2003 {
2004 	int i;
2005 
2006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2007 
2008 	iwn_dma_contig_free(&ring->desc_dma);
2009 	iwn_dma_contig_free(&ring->cmd_dma);
2010 
2011 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2012 		struct iwn_tx_data *data = &ring->data[i];
2013 
2014 		if (data->m != NULL) {
2015 			bus_dmamap_sync(ring->data_dmat, data->map,
2016 			    BUS_DMASYNC_POSTWRITE);
2017 			bus_dmamap_unload(ring->data_dmat, data->map);
2018 			m_freem(data->m);
2019 		}
2020 		if (data->map != NULL)
2021 			bus_dmamap_destroy(ring->data_dmat, data->map);
2022 	}
2023 	if (ring->data_dmat != NULL) {
2024 		bus_dma_tag_destroy(ring->data_dmat);
2025 		ring->data_dmat = NULL;
2026 	}
2027 }
2028 
2029 static void
2030 iwn5000_ict_reset(struct iwn_softc *sc)
2031 {
2032 	/* Disable interrupts. */
2033 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2034 
2035 	/* Reset ICT table. */
2036 	memset(sc->ict, 0, IWN_ICT_SIZE);
2037 	sc->ict_cur = 0;
2038 
2039 	/* Set physical address of ICT table (4KB aligned). */
2040 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2041 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2042 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2043 
2044 	/* Enable periodic RX interrupt. */
2045 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2046 	/* Switch to ICT interrupt mode in driver. */
2047 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2048 
2049 	/* Re-enable interrupts. */
2050 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2051 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2052 }
2053 
2054 static int
2055 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2056 {
2057 	struct iwn_ops *ops = &sc->ops;
2058 	uint16_t val;
2059 	int error;
2060 
2061 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2062 
2063 	/* Check whether adapter has an EEPROM or an OTPROM. */
2064 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2065 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2066 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2067 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2068 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2069 
2070 	/* Adapter has to be powered on for EEPROM access to work. */
2071 	if ((error = iwn_apm_init(sc)) != 0) {
2072 		device_printf(sc->sc_dev,
2073 		    "%s: could not power ON adapter, error %d\n", __func__,
2074 		    error);
2075 		return error;
2076 	}
2077 
2078 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2079 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2080 		return EIO;
2081 	}
2082 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2083 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2084 		    __func__, error);
2085 		return error;
2086 	}
2087 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2088 		if ((error = iwn_init_otprom(sc)) != 0) {
2089 			device_printf(sc->sc_dev,
2090 			    "%s: could not initialize OTPROM, error %d\n",
2091 			    __func__, error);
2092 			return error;
2093 		}
2094 	}
2095 
2096 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2097 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2098 	/* Check if HT support is bonded out. */
2099 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2100 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2101 
2102 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2103 	sc->rfcfg = le16toh(val);
2104 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2105 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2106 	if (sc->txchainmask == 0)
2107 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2108 	if (sc->rxchainmask == 0)
2109 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2110 
2111 	/* Read MAC address. */
2112 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2113 
2114 	/* Read adapter-specific information from EEPROM. */
2115 	ops->read_eeprom(sc);
2116 
2117 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2118 
2119 	iwn_eeprom_unlock(sc);
2120 
2121 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2122 
2123 	return 0;
2124 }
2125 
2126 static void
2127 iwn4965_read_eeprom(struct iwn_softc *sc)
2128 {
2129 	uint32_t addr;
2130 	uint16_t val;
2131 	int i;
2132 
2133 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2134 
2135 	/* Read regulatory domain (4 ASCII characters). */
2136 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2137 
2138 	/* Read the list of authorized channels (20MHz ones only). */
2139 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2140 		addr = iwn4965_regulatory_bands[i];
2141 		iwn_read_eeprom_channels(sc, i, addr);
2142 	}
2143 
2144 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2145 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2146 	sc->maxpwr2GHz = val & 0xff;
2147 	sc->maxpwr5GHz = val >> 8;
2148 	/* Check that EEPROM values are within valid range. */
2149 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2150 		sc->maxpwr5GHz = 38;
2151 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2152 		sc->maxpwr2GHz = 38;
2153 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2154 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2155 
2156 	/* Read samples for each TX power group. */
2157 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2158 	    sizeof sc->bands);
2159 
2160 	/* Read voltage at which samples were taken. */
2161 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2162 	sc->eeprom_voltage = (int16_t)le16toh(val);
2163 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2164 	    sc->eeprom_voltage);
2165 
2166 #ifdef IWN_DEBUG
2167 	/* Print samples. */
2168 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2169 		for (i = 0; i < IWN_NBANDS - 1; i++)
2170 			iwn4965_print_power_group(sc, i);
2171 	}
2172 #endif
2173 
2174 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2175 }
2176 
2177 #ifdef IWN_DEBUG
2178 static void
2179 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2180 {
2181 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2182 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2183 	int j, c;
2184 
2185 	printf("===band %d===\n", i);
2186 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2187 	printf("chan1 num=%d\n", chans[0].num);
2188 	for (c = 0; c < 2; c++) {
2189 		for (j = 0; j < IWN_NSAMPLES; j++) {
2190 			printf("chain %d, sample %d: temp=%d gain=%d "
2191 			    "power=%d pa_det=%d\n", c, j,
2192 			    chans[0].samples[c][j].temp,
2193 			    chans[0].samples[c][j].gain,
2194 			    chans[0].samples[c][j].power,
2195 			    chans[0].samples[c][j].pa_det);
2196 		}
2197 	}
2198 	printf("chan2 num=%d\n", chans[1].num);
2199 	for (c = 0; c < 2; c++) {
2200 		for (j = 0; j < IWN_NSAMPLES; j++) {
2201 			printf("chain %d, sample %d: temp=%d gain=%d "
2202 			    "power=%d pa_det=%d\n", c, j,
2203 			    chans[1].samples[c][j].temp,
2204 			    chans[1].samples[c][j].gain,
2205 			    chans[1].samples[c][j].power,
2206 			    chans[1].samples[c][j].pa_det);
2207 		}
2208 	}
2209 }
2210 #endif
2211 
2212 static void
2213 iwn5000_read_eeprom(struct iwn_softc *sc)
2214 {
2215 	struct iwn5000_eeprom_calib_hdr hdr;
2216 	int32_t volt;
2217 	uint32_t base, addr;
2218 	uint16_t val;
2219 	int i;
2220 
2221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2222 
2223 	/* Read regulatory domain (4 ASCII characters). */
2224 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2225 	base = le16toh(val);
2226 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2227 	    sc->eeprom_domain, 4);
2228 
2229 	/* Read the list of authorized channels (20MHz ones only). */
2230 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2231 		addr =  base + sc->base_params->regulatory_bands[i];
2232 		iwn_read_eeprom_channels(sc, i, addr);
2233 	}
2234 
2235 	/* Read enhanced TX power information for 6000 Series. */
2236 	if (sc->base_params->enhanced_TX_power)
2237 		iwn_read_eeprom_enhinfo(sc);
2238 
2239 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2240 	base = le16toh(val);
2241 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2242 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2243 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2244 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2245 	sc->calib_ver = hdr.version;
2246 
2247 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2248 		sc->eeprom_voltage = le16toh(hdr.volt);
2249 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2250 		sc->eeprom_temp_high=le16toh(val);
2251 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2252 		sc->eeprom_temp = le16toh(val);
2253 	}
2254 
2255 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2256 		/* Compute temperature offset. */
2257 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2258 		sc->eeprom_temp = le16toh(val);
2259 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2260 		volt = le16toh(val);
2261 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2262 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2263 		    sc->eeprom_temp, volt, sc->temp_off);
2264 	} else {
2265 		/* Read crystal calibration. */
2266 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2267 		    &sc->eeprom_crystal, sizeof (uint32_t));
2268 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2269 		    le32toh(sc->eeprom_crystal));
2270 	}
2271 
2272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2273 
2274 }
2275 
2276 /*
2277  * Translate EEPROM flags to net80211.
2278  */
2279 static uint32_t
2280 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2281 {
2282 	uint32_t nflags;
2283 
2284 	nflags = 0;
2285 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2286 		nflags |= IEEE80211_CHAN_PASSIVE;
2287 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2288 		nflags |= IEEE80211_CHAN_NOADHOC;
2289 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2290 		nflags |= IEEE80211_CHAN_DFS;
2291 		/* XXX apparently IBSS may still be marked */
2292 		nflags |= IEEE80211_CHAN_NOADHOC;
2293 	}
2294 
2295 	return nflags;
2296 }
2297 
2298 static void
2299 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2300 {
2301 	struct ifnet *ifp = sc->sc_ifp;
2302 	struct ieee80211com *ic = ifp->if_l2com;
2303 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2304 	const struct iwn_chan_band *band = &iwn_bands[n];
2305 	struct ieee80211_channel *c;
2306 	uint8_t chan;
2307 	int i, nflags;
2308 
2309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2310 
2311 	for (i = 0; i < band->nchan; i++) {
2312 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2313 			DPRINTF(sc, IWN_DEBUG_RESET,
2314 			    "skip chan %d flags 0x%x maxpwr %d\n",
2315 			    band->chan[i], channels[i].flags,
2316 			    channels[i].maxpwr);
2317 			continue;
2318 		}
2319 		chan = band->chan[i];
2320 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2321 
2322 		c = &ic->ic_channels[ic->ic_nchans++];
2323 		c->ic_ieee = chan;
2324 		c->ic_maxregpower = channels[i].maxpwr;
2325 		c->ic_maxpower = 2*c->ic_maxregpower;
2326 
2327 		if (n == 0) {	/* 2GHz band */
2328 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2329 			/* G =>'s B is supported */
2330 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2331 			c = &ic->ic_channels[ic->ic_nchans++];
2332 			c[0] = c[-1];
2333 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2334 		} else {	/* 5GHz band */
2335 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2336 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2337 		}
2338 
2339 		/* Save maximum allowed TX power for this channel. */
2340 		sc->maxpwr[chan] = channels[i].maxpwr;
2341 
2342 		DPRINTF(sc, IWN_DEBUG_RESET,
2343 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2344 		    channels[i].flags, channels[i].maxpwr);
2345 
2346 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2347 			/* add HT20, HT40 added separately */
2348 			c = &ic->ic_channels[ic->ic_nchans++];
2349 			c[0] = c[-1];
2350 			c->ic_flags |= IEEE80211_CHAN_HT20;
2351 		}
2352 	}
2353 
2354 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2355 
2356 }
2357 
2358 static void
2359 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2360 {
2361 	struct ifnet *ifp = sc->sc_ifp;
2362 	struct ieee80211com *ic = ifp->if_l2com;
2363 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2364 	const struct iwn_chan_band *band = &iwn_bands[n];
2365 	struct ieee80211_channel *c, *cent, *extc;
2366 	uint8_t chan;
2367 	int i, nflags;
2368 
2369 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2370 
2371 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2372 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2373 		return;
2374 	}
2375 
2376 	for (i = 0; i < band->nchan; i++) {
2377 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2378 			DPRINTF(sc, IWN_DEBUG_RESET,
2379 			    "skip chan %d flags 0x%x maxpwr %d\n",
2380 			    band->chan[i], channels[i].flags,
2381 			    channels[i].maxpwr);
2382 			continue;
2383 		}
2384 		chan = band->chan[i];
2385 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2386 
2387 		/*
2388 		 * Each entry defines an HT40 channel pair; find the
2389 		 * center channel, then the extension channel above.
2390 		 */
2391 		cent = ieee80211_find_channel_byieee(ic, chan,
2392 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2393 		if (cent == NULL) {	/* XXX shouldn't happen */
2394 			device_printf(sc->sc_dev,
2395 			    "%s: no entry for channel %d\n", __func__, chan);
2396 			continue;
2397 		}
2398 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2399 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2400 		if (extc == NULL) {
2401 			DPRINTF(sc, IWN_DEBUG_RESET,
2402 			    "%s: skip chan %d, extension channel not found\n",
2403 			    __func__, chan);
2404 			continue;
2405 		}
2406 
2407 		DPRINTF(sc, IWN_DEBUG_RESET,
2408 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2409 		    chan, channels[i].flags, channels[i].maxpwr);
2410 
2411 		c = &ic->ic_channels[ic->ic_nchans++];
2412 		c[0] = cent[0];
2413 		c->ic_extieee = extc->ic_ieee;
2414 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2415 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2416 		c = &ic->ic_channels[ic->ic_nchans++];
2417 		c[0] = extc[0];
2418 		c->ic_extieee = cent->ic_ieee;
2419 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2420 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2421 	}
2422 
2423 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2424 
2425 }
2426 
2427 static void
2428 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2429 {
2430 	struct ifnet *ifp = sc->sc_ifp;
2431 	struct ieee80211com *ic = ifp->if_l2com;
2432 
2433 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2434 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2435 
2436 	if (n < 5)
2437 		iwn_read_eeprom_band(sc, n);
2438 	else
2439 		iwn_read_eeprom_ht40(sc, n);
2440 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2441 }
2442 
2443 static struct iwn_eeprom_chan *
2444 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2445 {
2446 	int band, chan, i, j;
2447 
2448 	if (IEEE80211_IS_CHAN_HT40(c)) {
2449 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2450 		if (IEEE80211_IS_CHAN_HT40D(c))
2451 			chan = c->ic_extieee;
2452 		else
2453 			chan = c->ic_ieee;
2454 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2455 			if (iwn_bands[band].chan[i] == chan)
2456 				return &sc->eeprom_channels[band][i];
2457 		}
2458 	} else {
2459 		for (j = 0; j < 5; j++) {
2460 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2461 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2462 					return &sc->eeprom_channels[j][i];
2463 			}
2464 		}
2465 	}
2466 	return NULL;
2467 }
2468 
2469 /*
2470  * Enforce flags read from EEPROM.
2471  */
2472 static int
2473 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2474     int nchan, struct ieee80211_channel chans[])
2475 {
2476 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2477 	int i;
2478 
2479 	for (i = 0; i < nchan; i++) {
2480 		struct ieee80211_channel *c = &chans[i];
2481 		struct iwn_eeprom_chan *channel;
2482 
2483 		channel = iwn_find_eeprom_channel(sc, c);
2484 		if (channel == NULL) {
2485 			if_printf(ic->ic_ifp,
2486 			    "%s: invalid channel %u freq %u/0x%x\n",
2487 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2488 			return EINVAL;
2489 		}
2490 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static void
2497 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2498 {
2499 	struct iwn_eeprom_enhinfo enhinfo[35];
2500 	struct ifnet *ifp = sc->sc_ifp;
2501 	struct ieee80211com *ic = ifp->if_l2com;
2502 	struct ieee80211_channel *c;
2503 	uint16_t val, base;
2504 	int8_t maxpwr;
2505 	uint8_t flags;
2506 	int i, j;
2507 
2508 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2509 
2510 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2511 	base = le16toh(val);
2512 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2513 	    enhinfo, sizeof enhinfo);
2514 
2515 	for (i = 0; i < nitems(enhinfo); i++) {
2516 		flags = enhinfo[i].flags;
2517 		if (!(flags & IWN_ENHINFO_VALID))
2518 			continue;	/* Skip invalid entries. */
2519 
2520 		maxpwr = 0;
2521 		if (sc->txchainmask & IWN_ANT_A)
2522 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2523 		if (sc->txchainmask & IWN_ANT_B)
2524 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2525 		if (sc->txchainmask & IWN_ANT_C)
2526 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2527 		if (sc->ntxchains == 2)
2528 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2529 		else if (sc->ntxchains == 3)
2530 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2531 
2532 		for (j = 0; j < ic->ic_nchans; j++) {
2533 			c = &ic->ic_channels[j];
2534 			if ((flags & IWN_ENHINFO_5GHZ)) {
2535 				if (!IEEE80211_IS_CHAN_A(c))
2536 					continue;
2537 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2538 				if (!IEEE80211_IS_CHAN_G(c))
2539 					continue;
2540 			} else if (!IEEE80211_IS_CHAN_B(c))
2541 				continue;
2542 			if ((flags & IWN_ENHINFO_HT40)) {
2543 				if (!IEEE80211_IS_CHAN_HT40(c))
2544 					continue;
2545 			} else {
2546 				if (IEEE80211_IS_CHAN_HT40(c))
2547 					continue;
2548 			}
2549 			if (enhinfo[i].chan != 0 &&
2550 			    enhinfo[i].chan != c->ic_ieee)
2551 				continue;
2552 
2553 			DPRINTF(sc, IWN_DEBUG_RESET,
2554 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2555 			    c->ic_flags, maxpwr / 2);
2556 			c->ic_maxregpower = maxpwr / 2;
2557 			c->ic_maxpower = maxpwr;
2558 		}
2559 	}
2560 
2561 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2562 
2563 }
2564 
2565 static struct ieee80211_node *
2566 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2567 {
2568 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2569 }
2570 
2571 static __inline int
2572 rate2plcp(int rate)
2573 {
2574 	switch (rate & 0xff) {
2575 	case 12:	return 0xd;
2576 	case 18:	return 0xf;
2577 	case 24:	return 0x5;
2578 	case 36:	return 0x7;
2579 	case 48:	return 0x9;
2580 	case 72:	return 0xb;
2581 	case 96:	return 0x1;
2582 	case 108:	return 0x3;
2583 	case 2:		return 10;
2584 	case 4:		return 20;
2585 	case 11:	return 55;
2586 	case 22:	return 110;
2587 	}
2588 	return 0;
2589 }
2590 
2591 /*
2592  * Calculate the required PLCP value from the given rate,
2593  * to the given node.
2594  *
2595  * This will take the node configuration (eg 11n, rate table
2596  * setup, etc) into consideration.
2597  */
2598 static uint32_t
2599 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2600     uint8_t rate)
2601 {
2602 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2603 	struct ieee80211com *ic = ni->ni_ic;
2604 	uint8_t txant1, txant2;
2605 	uint32_t plcp = 0;
2606 	int ridx;
2607 
2608 	/* Use the first valid TX antenna. */
2609 	txant1 = IWN_LSB(sc->txchainmask);
2610 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2611 
2612 	/*
2613 	 * If it's an MCS rate, let's set the plcp correctly
2614 	 * and set the relevant flags based on the node config.
2615 	 */
2616 	if (rate & IEEE80211_RATE_MCS) {
2617 		/*
2618 		 * Set the initial PLCP value to be between 0->31 for
2619 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2620 		 * flag.
2621 		 */
2622 		plcp = RV(rate) | IWN_RFLAG_MCS;
2623 
2624 		/*
2625 		 * XXX the following should only occur if both
2626 		 * the local configuration _and_ the remote node
2627 		 * advertise these capabilities.  Thus this code
2628 		 * may need fixing!
2629 		 */
2630 
2631 		/*
2632 		 * Set the channel width and guard interval.
2633 		 */
2634 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2635 			plcp |= IWN_RFLAG_HT40;
2636 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2637 				plcp |= IWN_RFLAG_SGI;
2638 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2639 			plcp |= IWN_RFLAG_SGI;
2640 		}
2641 
2642 		/*
2643 		 * If it's a two stream rate, enable TX on both
2644 		 * antennas.
2645 		 *
2646 		 * XXX three stream rates?
2647 		 */
2648 		if (rate > 0x87)
2649 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2650 		else
2651 			plcp |= IWN_RFLAG_ANT(txant1);
2652 	} else {
2653 		/*
2654 		 * Set the initial PLCP - fine for both
2655 		 * OFDM and CCK rates.
2656 		 */
2657 		plcp = rate2plcp(rate);
2658 
2659 		/* Set CCK flag if it's CCK */
2660 
2661 		/* XXX It would be nice to have a method
2662 		 * to map the ridx -> phy table entry
2663 		 * so we could just query that, rather than
2664 		 * this hack to check against IWN_RIDX_OFDM6.
2665 		 */
2666 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2667 		    rate & IEEE80211_RATE_VAL);
2668 		if (ridx < IWN_RIDX_OFDM6 &&
2669 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2670 			plcp |= IWN_RFLAG_CCK;
2671 
2672 		/* Set antenna configuration */
2673 		plcp |= IWN_RFLAG_ANT(txant1);
2674 	}
2675 
2676 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2677 	    __func__,
2678 	    rate,
2679 	    plcp);
2680 
2681 	return (htole32(plcp));
2682 #undef	RV
2683 }
2684 
2685 static void
2686 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2687 {
2688 	/* Doesn't do anything at the moment */
2689 }
2690 
2691 static int
2692 iwn_media_change(struct ifnet *ifp)
2693 {
2694 	int error;
2695 
2696 	error = ieee80211_media_change(ifp);
2697 	/* NB: only the fixed rate can change and that doesn't need a reset */
2698 	return (error == ENETRESET ? 0 : error);
2699 }
2700 
2701 static int
2702 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2703 {
2704 	struct iwn_vap *ivp = IWN_VAP(vap);
2705 	struct ieee80211com *ic = vap->iv_ic;
2706 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2707 	int error = 0;
2708 
2709 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2710 
2711 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2712 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2713 
2714 	IEEE80211_UNLOCK(ic);
2715 	IWN_LOCK(sc);
2716 	callout_stop(&sc->calib_to);
2717 
2718 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2719 
2720 	switch (nstate) {
2721 	case IEEE80211_S_ASSOC:
2722 		if (vap->iv_state != IEEE80211_S_RUN)
2723 			break;
2724 		/* FALLTHROUGH */
2725 	case IEEE80211_S_AUTH:
2726 		if (vap->iv_state == IEEE80211_S_AUTH)
2727 			break;
2728 
2729 		/*
2730 		 * !AUTH -> AUTH transition requires state reset to handle
2731 		 * reassociations correctly.
2732 		 */
2733 		sc->rxon->associd = 0;
2734 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2735 		sc->calib.state = IWN_CALIB_STATE_INIT;
2736 
2737 		if ((error = iwn_auth(sc, vap)) != 0) {
2738 			device_printf(sc->sc_dev,
2739 			    "%s: could not move to auth state\n", __func__);
2740 		}
2741 		break;
2742 
2743 	case IEEE80211_S_RUN:
2744 		/*
2745 		 * RUN -> RUN transition; Just restart the timers.
2746 		 */
2747 		if (vap->iv_state == IEEE80211_S_RUN) {
2748 			sc->calib_cnt = 0;
2749 			break;
2750 		}
2751 
2752 		/*
2753 		 * !RUN -> RUN requires setting the association id
2754 		 * which is done with a firmware cmd.  We also defer
2755 		 * starting the timers until that work is done.
2756 		 */
2757 		if ((error = iwn_run(sc, vap)) != 0) {
2758 			device_printf(sc->sc_dev,
2759 			    "%s: could not move to run state\n", __func__);
2760 		}
2761 		break;
2762 
2763 	case IEEE80211_S_INIT:
2764 		sc->calib.state = IWN_CALIB_STATE_INIT;
2765 		break;
2766 
2767 	default:
2768 		break;
2769 	}
2770 	IWN_UNLOCK(sc);
2771 	IEEE80211_LOCK(ic);
2772 	if (error != 0){
2773 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2774 		return error;
2775 	}
2776 
2777 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2778 
2779 	return ivp->iv_newstate(vap, nstate, arg);
2780 }
2781 
2782 static void
2783 iwn_calib_timeout(void *arg)
2784 {
2785 	struct iwn_softc *sc = arg;
2786 
2787 	IWN_LOCK_ASSERT(sc);
2788 
2789 	/* Force automatic TX power calibration every 60 secs. */
2790 	if (++sc->calib_cnt >= 120) {
2791 		uint32_t flags = 0;
2792 
2793 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2794 		    "sending request for statistics");
2795 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2796 		    sizeof flags, 1);
2797 		sc->calib_cnt = 0;
2798 	}
2799 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2800 	    sc);
2801 }
2802 
2803 /*
2804  * Process an RX_PHY firmware notification.  This is usually immediately
2805  * followed by an MPDU_RX_DONE notification.
2806  */
2807 static void
2808 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2809     struct iwn_rx_data *data)
2810 {
2811 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2812 
2813 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2814 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2815 
2816 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2817 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2818 	sc->last_rx_valid = 1;
2819 }
2820 
2821 /*
2822  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2823  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2824  */
2825 static void
2826 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2827     struct iwn_rx_data *data)
2828 {
2829 	struct iwn_ops *ops = &sc->ops;
2830 	struct ifnet *ifp = sc->sc_ifp;
2831 	struct ieee80211com *ic = ifp->if_l2com;
2832 	struct iwn_rx_ring *ring = &sc->rxq;
2833 	struct ieee80211_frame *wh;
2834 	struct ieee80211_node *ni;
2835 	struct mbuf *m, *m1;
2836 	struct iwn_rx_stat *stat;
2837 	caddr_t head;
2838 	bus_addr_t paddr;
2839 	uint32_t flags;
2840 	int error, len, rssi, nf;
2841 
2842 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2843 
2844 	if (desc->type == IWN_MPDU_RX_DONE) {
2845 		/* Check for prior RX_PHY notification. */
2846 		if (!sc->last_rx_valid) {
2847 			DPRINTF(sc, IWN_DEBUG_ANY,
2848 			    "%s: missing RX_PHY\n", __func__);
2849 			return;
2850 		}
2851 		stat = &sc->last_rx_stat;
2852 	} else
2853 		stat = (struct iwn_rx_stat *)(desc + 1);
2854 
2855 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2856 
2857 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2858 		device_printf(sc->sc_dev,
2859 		    "%s: invalid RX statistic header, len %d\n", __func__,
2860 		    stat->cfg_phy_len);
2861 		return;
2862 	}
2863 	if (desc->type == IWN_MPDU_RX_DONE) {
2864 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2865 		head = (caddr_t)(mpdu + 1);
2866 		len = le16toh(mpdu->len);
2867 	} else {
2868 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2869 		len = le16toh(stat->len);
2870 	}
2871 
2872 	flags = le32toh(*(uint32_t *)(head + len));
2873 
2874 	/* Discard frames with a bad FCS early. */
2875 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2876 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2877 		    __func__, flags);
2878 		ifp->if_ierrors++;
2879 		return;
2880 	}
2881 	/* Discard frames that are too short. */
2882 	if (len < sizeof (*wh)) {
2883 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2884 		    __func__, len);
2885 		ifp->if_ierrors++;
2886 		return;
2887 	}
2888 
2889 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2890 	if (m1 == NULL) {
2891 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2892 		    __func__);
2893 		ifp->if_ierrors++;
2894 		return;
2895 	}
2896 	bus_dmamap_unload(ring->data_dmat, data->map);
2897 
2898 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2899 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2900 	if (error != 0 && error != EFBIG) {
2901 		device_printf(sc->sc_dev,
2902 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2903 		m_freem(m1);
2904 
2905 		/* Try to reload the old mbuf. */
2906 		error = bus_dmamap_load(ring->data_dmat, data->map,
2907 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2908 		    &paddr, BUS_DMA_NOWAIT);
2909 		if (error != 0 && error != EFBIG) {
2910 			panic("%s: could not load old RX mbuf", __func__);
2911 		}
2912 		/* Physical address may have changed. */
2913 		ring->desc[ring->cur] = htole32(paddr >> 8);
2914 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2915 		    BUS_DMASYNC_PREWRITE);
2916 		ifp->if_ierrors++;
2917 		return;
2918 	}
2919 
2920 	m = data->m;
2921 	data->m = m1;
2922 	/* Update RX descriptor. */
2923 	ring->desc[ring->cur] = htole32(paddr >> 8);
2924 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2925 	    BUS_DMASYNC_PREWRITE);
2926 
2927 	/* Finalize mbuf. */
2928 	m->m_pkthdr.rcvif = ifp;
2929 	m->m_data = head;
2930 	m->m_pkthdr.len = m->m_len = len;
2931 
2932 	/* Grab a reference to the source node. */
2933 	wh = mtod(m, struct ieee80211_frame *);
2934 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2935 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2936 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2937 
2938 	rssi = ops->get_rssi(sc, stat);
2939 
2940 	if (ieee80211_radiotap_active(ic)) {
2941 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2942 
2943 		tap->wr_flags = 0;
2944 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2945 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2946 		tap->wr_dbm_antsignal = (int8_t)rssi;
2947 		tap->wr_dbm_antnoise = (int8_t)nf;
2948 		tap->wr_tsft = stat->tstamp;
2949 		switch (stat->rate) {
2950 		/* CCK rates. */
2951 		case  10: tap->wr_rate =   2; break;
2952 		case  20: tap->wr_rate =   4; break;
2953 		case  55: tap->wr_rate =  11; break;
2954 		case 110: tap->wr_rate =  22; break;
2955 		/* OFDM rates. */
2956 		case 0xd: tap->wr_rate =  12; break;
2957 		case 0xf: tap->wr_rate =  18; break;
2958 		case 0x5: tap->wr_rate =  24; break;
2959 		case 0x7: tap->wr_rate =  36; break;
2960 		case 0x9: tap->wr_rate =  48; break;
2961 		case 0xb: tap->wr_rate =  72; break;
2962 		case 0x1: tap->wr_rate =  96; break;
2963 		case 0x3: tap->wr_rate = 108; break;
2964 		/* Unknown rate: should not happen. */
2965 		default:  tap->wr_rate =   0;
2966 		}
2967 	}
2968 
2969 	IWN_UNLOCK(sc);
2970 
2971 	/* Send the frame to the 802.11 layer. */
2972 	if (ni != NULL) {
2973 		if (ni->ni_flags & IEEE80211_NODE_HT)
2974 			m->m_flags |= M_AMPDU;
2975 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2976 		/* Node is no longer needed. */
2977 		ieee80211_free_node(ni);
2978 	} else
2979 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2980 
2981 	IWN_LOCK(sc);
2982 
2983 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2984 
2985 }
2986 
2987 /* Process an incoming Compressed BlockAck. */
2988 static void
2989 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2990     struct iwn_rx_data *data)
2991 {
2992 	struct iwn_ops *ops = &sc->ops;
2993 	struct ifnet *ifp = sc->sc_ifp;
2994 	struct iwn_node *wn;
2995 	struct ieee80211_node *ni;
2996 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2997 	struct iwn_tx_ring *txq;
2998 	struct iwn_tx_data *txdata;
2999 	struct ieee80211_tx_ampdu *tap;
3000 	struct mbuf *m;
3001 	uint64_t bitmap;
3002 	uint16_t ssn;
3003 	uint8_t tid;
3004 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3005 
3006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3007 
3008 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3009 
3010 	qid = le16toh(ba->qid);
3011 	txq = &sc->txq[ba->qid];
3012 	tap = sc->qid2tap[ba->qid];
3013 	tid = tap->txa_tid;
3014 	wn = (void *)tap->txa_ni;
3015 
3016 	res = NULL;
3017 	ssn = 0;
3018 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3019 		res = tap->txa_private;
3020 		ssn = tap->txa_start & 0xfff;
3021 	}
3022 
3023 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3024 		txdata = &txq->data[txq->read];
3025 
3026 		/* Unmap and free mbuf. */
3027 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3028 		    BUS_DMASYNC_POSTWRITE);
3029 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3030 		m = txdata->m, txdata->m = NULL;
3031 		ni = txdata->ni, txdata->ni = NULL;
3032 
3033 		KASSERT(ni != NULL, ("no node"));
3034 		KASSERT(m != NULL, ("no mbuf"));
3035 
3036 		ieee80211_tx_complete(ni, m, 1);
3037 
3038 		txq->queued--;
3039 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3040 	}
3041 
3042 	if (txq->queued == 0 && res != NULL) {
3043 		iwn_nic_lock(sc);
3044 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3045 		iwn_nic_unlock(sc);
3046 		sc->qid2tap[qid] = NULL;
3047 		free(res, M_DEVBUF);
3048 		return;
3049 	}
3050 
3051 	if (wn->agg[tid].bitmap == 0)
3052 		return;
3053 
3054 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3055 	if (shift < 0)
3056 		shift += 0x100;
3057 
3058 	if (wn->agg[tid].nframes > (64 - shift))
3059 		return;
3060 
3061 	ni = tap->txa_ni;
3062 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3063 	for (i = 0; bitmap; i++) {
3064 		if ((bitmap & 1) == 0) {
3065 			ifp->if_oerrors++;
3066 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3067 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3068 		} else {
3069 			ifp->if_opackets++;
3070 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3071 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3072 		}
3073 		bitmap >>= 1;
3074 	}
3075 
3076 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3077 
3078 }
3079 
3080 /*
3081  * Process a CALIBRATION_RESULT notification sent by the initialization
3082  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3083  */
3084 static void
3085 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3086     struct iwn_rx_data *data)
3087 {
3088 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3089 	int len, idx = -1;
3090 
3091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3092 
3093 	/* Runtime firmware should not send such a notification. */
3094 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3095 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3096 	    __func__);
3097 		return;
3098 	}
3099 	len = (le32toh(desc->len) & 0x3fff) - 4;
3100 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3101 
3102 	switch (calib->code) {
3103 	case IWN5000_PHY_CALIB_DC:
3104 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3105 			idx = 0;
3106 		break;
3107 	case IWN5000_PHY_CALIB_LO:
3108 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3109 			idx = 1;
3110 		break;
3111 	case IWN5000_PHY_CALIB_TX_IQ:
3112 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3113 			idx = 2;
3114 		break;
3115 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3116 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3117 			idx = 3;
3118 		break;
3119 	case IWN5000_PHY_CALIB_BASE_BAND:
3120 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3121 			idx = 4;
3122 		break;
3123 	}
3124 	if (idx == -1)	/* Ignore other results. */
3125 		return;
3126 
3127 	/* Save calibration result. */
3128 	if (sc->calibcmd[idx].buf != NULL)
3129 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3130 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3131 	if (sc->calibcmd[idx].buf == NULL) {
3132 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3133 		    "not enough memory for calibration result %d\n",
3134 		    calib->code);
3135 		return;
3136 	}
3137 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3138 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3139 	sc->calibcmd[idx].len = len;
3140 	memcpy(sc->calibcmd[idx].buf, calib, len);
3141 }
3142 
3143 /*
3144  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3145  * The latter is sent by the firmware after each received beacon.
3146  */
3147 static void
3148 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3149     struct iwn_rx_data *data)
3150 {
3151 	struct iwn_ops *ops = &sc->ops;
3152 	struct ifnet *ifp = sc->sc_ifp;
3153 	struct ieee80211com *ic = ifp->if_l2com;
3154 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3155 	struct iwn_calib_state *calib = &sc->calib;
3156 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3157 	int temp;
3158 
3159 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3160 
3161 	/* Ignore statistics received during a scan. */
3162 	if (vap->iv_state != IEEE80211_S_RUN ||
3163 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3164 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3165 	    __func__);
3166 		return;
3167 	}
3168 
3169 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3170 
3171 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
3172 	    __func__, desc->type);
3173 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3174 
3175 	/* Test if temperature has changed. */
3176 	if (stats->general.temp != sc->rawtemp) {
3177 		/* Convert "raw" temperature to degC. */
3178 		sc->rawtemp = stats->general.temp;
3179 		temp = ops->get_temperature(sc);
3180 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3181 		    __func__, temp);
3182 
3183 		/* Update TX power if need be (4965AGN only). */
3184 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3185 			iwn4965_power_calibration(sc, temp);
3186 	}
3187 
3188 	if (desc->type != IWN_BEACON_STATISTICS)
3189 		return;	/* Reply to a statistics request. */
3190 
3191 	sc->noise = iwn_get_noise(&stats->rx.general);
3192 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3193 
3194 	/* Test that RSSI and noise are present in stats report. */
3195 	if (le32toh(stats->rx.general.flags) != 1) {
3196 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3197 		    "received statistics without RSSI");
3198 		return;
3199 	}
3200 
3201 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3202 		iwn_collect_noise(sc, &stats->rx.general);
3203 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3204 		iwn_tune_sensitivity(sc, &stats->rx);
3205 		/*
3206 		 * XXX TODO: Only run the RX recovery if we're associated!
3207 		 */
3208 		iwn_check_rx_recovery(sc, stats);
3209 		iwn_save_stats_counters(sc, stats);
3210 	}
3211 
3212 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3213 }
3214 
3215 /*
3216  * Save the relevant statistic counters for the next calibration
3217  * pass.
3218  */
3219 static void
3220 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3221 {
3222 	struct iwn_calib_state *calib = &sc->calib;
3223 
3224 	/* Save counters values for next call. */
3225 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3226 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3227 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3228 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3229 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3230 
3231 	/* Last time we received these tick values */
3232 	sc->last_calib_ticks = ticks;
3233 }
3234 
3235 /*
3236  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3237  * and 5000 adapters have different incompatible TX status formats.
3238  */
3239 static void
3240 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3241     struct iwn_rx_data *data)
3242 {
3243 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3244 	struct iwn_tx_ring *ring;
3245 	int qid;
3246 
3247 	qid = desc->qid & 0xf;
3248 	ring = &sc->txq[qid];
3249 
3250 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3251 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3252 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3253 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3254 	    le32toh(stat->status));
3255 
3256 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3257 	if (qid >= sc->firstaggqueue) {
3258 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3259 		    &stat->status);
3260 	} else {
3261 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3262 		    le32toh(stat->status) & 0xff);
3263 	}
3264 }
3265 
3266 static void
3267 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3268     struct iwn_rx_data *data)
3269 {
3270 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3271 	struct iwn_tx_ring *ring;
3272 	int qid;
3273 
3274 	qid = desc->qid & 0xf;
3275 	ring = &sc->txq[qid];
3276 
3277 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3278 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3279 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3280 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3281 	    le32toh(stat->status));
3282 
3283 #ifdef notyet
3284 	/* Reset TX scheduler slot. */
3285 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3286 #endif
3287 
3288 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3289 	if (qid >= sc->firstaggqueue) {
3290 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3291 		    &stat->status);
3292 	} else {
3293 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3294 		    le16toh(stat->status) & 0xff);
3295 	}
3296 }
3297 
3298 /*
3299  * Adapter-independent backend for TX_DONE firmware notifications.
3300  */
3301 static void
3302 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3303     uint8_t status)
3304 {
3305 	struct ifnet *ifp = sc->sc_ifp;
3306 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3307 	struct iwn_tx_data *data = &ring->data[desc->idx];
3308 	struct mbuf *m;
3309 	struct ieee80211_node *ni;
3310 	struct ieee80211vap *vap;
3311 
3312 	KASSERT(data->ni != NULL, ("no node"));
3313 
3314 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3315 
3316 	/* Unmap and free mbuf. */
3317 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3318 	bus_dmamap_unload(ring->data_dmat, data->map);
3319 	m = data->m, data->m = NULL;
3320 	ni = data->ni, data->ni = NULL;
3321 	vap = ni->ni_vap;
3322 
3323 	/*
3324 	 * Update rate control statistics for the node.
3325 	 */
3326 	if (status & IWN_TX_FAIL) {
3327 		ifp->if_oerrors++;
3328 		ieee80211_ratectl_tx_complete(vap, ni,
3329 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3330 	} else {
3331 		ifp->if_opackets++;
3332 		ieee80211_ratectl_tx_complete(vap, ni,
3333 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3334 	}
3335 
3336 	/*
3337 	 * Channels marked for "radar" require traffic to be received
3338 	 * to unlock before we can transmit.  Until traffic is seen
3339 	 * any attempt to transmit is returned immediately with status
3340 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3341 	 * happen on first authenticate after scanning.  To workaround
3342 	 * this we ignore a failure of this sort in AUTH state so the
3343 	 * 802.11 layer will fall back to using a timeout to wait for
3344 	 * the AUTH reply.  This allows the firmware time to see
3345 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3346 	 * unclear why the firmware does not maintain state for
3347 	 * channels recently visited as this would allow immediate
3348 	 * use of the channel after a scan (where we see traffic).
3349 	 */
3350 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3351 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3352 		ieee80211_tx_complete(ni, m, 0);
3353 	else
3354 		ieee80211_tx_complete(ni, m,
3355 		    (status & IWN_TX_FAIL) != 0);
3356 
3357 	sc->sc_tx_timer = 0;
3358 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3359 		sc->qfullmsk &= ~(1 << ring->qid);
3360 		if (sc->qfullmsk == 0 &&
3361 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3362 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3363 			iwn_start_locked(ifp);
3364 		}
3365 	}
3366 
3367 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3368 
3369 }
3370 
3371 /*
3372  * Process a "command done" firmware notification.  This is where we wakeup
3373  * processes waiting for a synchronous command completion.
3374  */
3375 static void
3376 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3377 {
3378 	struct iwn_tx_ring *ring;
3379 	struct iwn_tx_data *data;
3380 	int cmd_queue_num;
3381 
3382 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3383 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3384 	else
3385 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3386 
3387 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3388 		return;	/* Not a command ack. */
3389 
3390 	ring = &sc->txq[cmd_queue_num];
3391 	data = &ring->data[desc->idx];
3392 
3393 	/* If the command was mapped in an mbuf, free it. */
3394 	if (data->m != NULL) {
3395 		bus_dmamap_sync(ring->data_dmat, data->map,
3396 		    BUS_DMASYNC_POSTWRITE);
3397 		bus_dmamap_unload(ring->data_dmat, data->map);
3398 		m_freem(data->m);
3399 		data->m = NULL;
3400 	}
3401 	wakeup(&ring->desc[desc->idx]);
3402 }
3403 
3404 static void
3405 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3406     void *stat)
3407 {
3408 	struct iwn_ops *ops = &sc->ops;
3409 	struct ifnet *ifp = sc->sc_ifp;
3410 	struct iwn_tx_ring *ring = &sc->txq[qid];
3411 	struct iwn_tx_data *data;
3412 	struct mbuf *m;
3413 	struct iwn_node *wn;
3414 	struct ieee80211_node *ni;
3415 	struct ieee80211_tx_ampdu *tap;
3416 	uint64_t bitmap;
3417 	uint32_t *status = stat;
3418 	uint16_t *aggstatus = stat;
3419 	uint16_t ssn;
3420 	uint8_t tid;
3421 	int bit, i, lastidx, *res, seqno, shift, start;
3422 
3423 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3424 
3425 	if (nframes == 1) {
3426 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3427 #ifdef	NOT_YET
3428 			printf("ieee80211_send_bar()\n");
3429 #endif
3430 			/*
3431 			 * If we completely fail a transmit, make sure a
3432 			 * notification is pushed up to the rate control
3433 			 * layer.
3434 			 */
3435 			tap = sc->qid2tap[qid];
3436 			tid = tap->txa_tid;
3437 			wn = (void *)tap->txa_ni;
3438 			ni = tap->txa_ni;
3439 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3440 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3441 		}
3442 	}
3443 
3444 	bitmap = 0;
3445 	start = idx;
3446 	for (i = 0; i < nframes; i++) {
3447 		if (le16toh(aggstatus[i * 2]) & 0xc)
3448 			continue;
3449 
3450 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3451 		bit = idx - start;
3452 		shift = 0;
3453 		if (bit >= 64) {
3454 			shift = 0x100 - idx + start;
3455 			bit = 0;
3456 			start = idx;
3457 		} else if (bit <= -64)
3458 			bit = 0x100 - start + idx;
3459 		else if (bit < 0) {
3460 			shift = start - idx;
3461 			start = idx;
3462 			bit = 0;
3463 		}
3464 		bitmap = bitmap << shift;
3465 		bitmap |= 1ULL << bit;
3466 	}
3467 	tap = sc->qid2tap[qid];
3468 	tid = tap->txa_tid;
3469 	wn = (void *)tap->txa_ni;
3470 	wn->agg[tid].bitmap = bitmap;
3471 	wn->agg[tid].startidx = start;
3472 	wn->agg[tid].nframes = nframes;
3473 
3474 	res = NULL;
3475 	ssn = 0;
3476 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3477 		res = tap->txa_private;
3478 		ssn = tap->txa_start & 0xfff;
3479 	}
3480 
3481 	seqno = le32toh(*(status + nframes)) & 0xfff;
3482 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3483 		data = &ring->data[ring->read];
3484 
3485 		/* Unmap and free mbuf. */
3486 		bus_dmamap_sync(ring->data_dmat, data->map,
3487 		    BUS_DMASYNC_POSTWRITE);
3488 		bus_dmamap_unload(ring->data_dmat, data->map);
3489 		m = data->m, data->m = NULL;
3490 		ni = data->ni, data->ni = NULL;
3491 
3492 		KASSERT(ni != NULL, ("no node"));
3493 		KASSERT(m != NULL, ("no mbuf"));
3494 
3495 		ieee80211_tx_complete(ni, m, 1);
3496 
3497 		ring->queued--;
3498 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3499 	}
3500 
3501 	if (ring->queued == 0 && res != NULL) {
3502 		iwn_nic_lock(sc);
3503 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3504 		iwn_nic_unlock(sc);
3505 		sc->qid2tap[qid] = NULL;
3506 		free(res, M_DEVBUF);
3507 		return;
3508 	}
3509 
3510 	sc->sc_tx_timer = 0;
3511 	if (ring->queued < IWN_TX_RING_LOMARK) {
3512 		sc->qfullmsk &= ~(1 << ring->qid);
3513 		if (sc->qfullmsk == 0 &&
3514 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3515 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3516 			iwn_start_locked(ifp);
3517 		}
3518 	}
3519 
3520 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3521 
3522 }
3523 
3524 /*
3525  * Process an INT_FH_RX or INT_SW_RX interrupt.
3526  */
3527 static void
3528 iwn_notif_intr(struct iwn_softc *sc)
3529 {
3530 	struct iwn_ops *ops = &sc->ops;
3531 	struct ifnet *ifp = sc->sc_ifp;
3532 	struct ieee80211com *ic = ifp->if_l2com;
3533 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3534 	uint16_t hw;
3535 
3536 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3537 	    BUS_DMASYNC_POSTREAD);
3538 
3539 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3540 	while (sc->rxq.cur != hw) {
3541 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3542 		struct iwn_rx_desc *desc;
3543 
3544 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3545 		    BUS_DMASYNC_POSTREAD);
3546 		desc = mtod(data->m, struct iwn_rx_desc *);
3547 
3548 		DPRINTF(sc, IWN_DEBUG_RECV,
3549 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3550 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3551 		    desc->type, iwn_intr_str(desc->type),
3552 		    le16toh(desc->len));
3553 
3554 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3555 			iwn_cmd_done(sc, desc);
3556 
3557 		switch (desc->type) {
3558 		case IWN_RX_PHY:
3559 			iwn_rx_phy(sc, desc, data);
3560 			break;
3561 
3562 		case IWN_RX_DONE:		/* 4965AGN only. */
3563 		case IWN_MPDU_RX_DONE:
3564 			/* An 802.11 frame has been received. */
3565 			iwn_rx_done(sc, desc, data);
3566 			break;
3567 
3568 		case IWN_RX_COMPRESSED_BA:
3569 			/* A Compressed BlockAck has been received. */
3570 			iwn_rx_compressed_ba(sc, desc, data);
3571 			break;
3572 
3573 		case IWN_TX_DONE:
3574 			/* An 802.11 frame has been transmitted. */
3575 			ops->tx_done(sc, desc, data);
3576 			break;
3577 
3578 		case IWN_RX_STATISTICS:
3579 		case IWN_BEACON_STATISTICS:
3580 			iwn_rx_statistics(sc, desc, data);
3581 			break;
3582 
3583 		case IWN_BEACON_MISSED:
3584 		{
3585 			struct iwn_beacon_missed *miss =
3586 			    (struct iwn_beacon_missed *)(desc + 1);
3587 			int misses;
3588 
3589 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3590 			    BUS_DMASYNC_POSTREAD);
3591 			misses = le32toh(miss->consecutive);
3592 
3593 			DPRINTF(sc, IWN_DEBUG_STATE,
3594 			    "%s: beacons missed %d/%d\n", __func__,
3595 			    misses, le32toh(miss->total));
3596 			/*
3597 			 * If more than 5 consecutive beacons are missed,
3598 			 * reinitialize the sensitivity state machine.
3599 			 */
3600 			if (vap->iv_state == IEEE80211_S_RUN &&
3601 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3602 				if (misses > 5)
3603 					(void)iwn_init_sensitivity(sc);
3604 				if (misses >= vap->iv_bmissthreshold) {
3605 					IWN_UNLOCK(sc);
3606 					ieee80211_beacon_miss(ic);
3607 					IWN_LOCK(sc);
3608 				}
3609 			}
3610 			break;
3611 		}
3612 		case IWN_UC_READY:
3613 		{
3614 			struct iwn_ucode_info *uc =
3615 			    (struct iwn_ucode_info *)(desc + 1);
3616 
3617 			/* The microcontroller is ready. */
3618 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3619 			    BUS_DMASYNC_POSTREAD);
3620 			DPRINTF(sc, IWN_DEBUG_RESET,
3621 			    "microcode alive notification version=%d.%d "
3622 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3623 			    uc->subtype, le32toh(uc->valid));
3624 
3625 			if (le32toh(uc->valid) != 1) {
3626 				device_printf(sc->sc_dev,
3627 				    "microcontroller initialization failed");
3628 				break;
3629 			}
3630 			if (uc->subtype == IWN_UCODE_INIT) {
3631 				/* Save microcontroller report. */
3632 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3633 			}
3634 			/* Save the address of the error log in SRAM. */
3635 			sc->errptr = le32toh(uc->errptr);
3636 			break;
3637 		}
3638 		case IWN_STATE_CHANGED:
3639 		{
3640 			/*
3641 			 * State change allows hardware switch change to be
3642 			 * noted. However, we handle this in iwn_intr as we
3643 			 * get both the enable/disble intr.
3644 			 */
3645 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3646 			    BUS_DMASYNC_POSTREAD);
3647 #ifdef	IWN_DEBUG
3648 			uint32_t *status = (uint32_t *)(desc + 1);
3649 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3650 			    "state changed to %x\n",
3651 			    le32toh(*status));
3652 #endif
3653 			break;
3654 		}
3655 		case IWN_START_SCAN:
3656 		{
3657 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3658 			    BUS_DMASYNC_POSTREAD);
3659 #ifdef	IWN_DEBUG
3660 			struct iwn_start_scan *scan =
3661 			    (struct iwn_start_scan *)(desc + 1);
3662 			DPRINTF(sc, IWN_DEBUG_ANY,
3663 			    "%s: scanning channel %d status %x\n",
3664 			    __func__, scan->chan, le32toh(scan->status));
3665 #endif
3666 			break;
3667 		}
3668 		case IWN_STOP_SCAN:
3669 		{
3670 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3671 			    BUS_DMASYNC_POSTREAD);
3672 #ifdef	IWN_DEBUG
3673 			struct iwn_stop_scan *scan =
3674 			    (struct iwn_stop_scan *)(desc + 1);
3675 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3676 			    "scan finished nchan=%d status=%d chan=%d\n",
3677 			    scan->nchan, scan->status, scan->chan);
3678 #endif
3679 			sc->sc_is_scanning = 0;
3680 			IWN_UNLOCK(sc);
3681 			ieee80211_scan_next(vap);
3682 			IWN_LOCK(sc);
3683 			break;
3684 		}
3685 		case IWN5000_CALIBRATION_RESULT:
3686 			iwn5000_rx_calib_results(sc, desc, data);
3687 			break;
3688 
3689 		case IWN5000_CALIBRATION_DONE:
3690 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3691 			wakeup(sc);
3692 			break;
3693 		}
3694 
3695 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3696 	}
3697 
3698 	/* Tell the firmware what we have processed. */
3699 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3700 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3701 }
3702 
3703 /*
3704  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3705  * from power-down sleep mode.
3706  */
3707 static void
3708 iwn_wakeup_intr(struct iwn_softc *sc)
3709 {
3710 	int qid;
3711 
3712 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3713 	    __func__);
3714 
3715 	/* Wakeup RX and TX rings. */
3716 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3717 	for (qid = 0; qid < sc->ntxqs; qid++) {
3718 		struct iwn_tx_ring *ring = &sc->txq[qid];
3719 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3720 	}
3721 }
3722 
3723 static void
3724 iwn_rftoggle_intr(struct iwn_softc *sc)
3725 {
3726 	struct ifnet *ifp = sc->sc_ifp;
3727 	struct ieee80211com *ic = ifp->if_l2com;
3728 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3729 
3730 	IWN_LOCK_ASSERT(sc);
3731 
3732 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3733 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3734 	if (tmp & IWN_GP_CNTRL_RFKILL)
3735 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3736 	else
3737 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3738 }
3739 
3740 /*
3741  * Dump the error log of the firmware when a firmware panic occurs.  Although
3742  * we can't debug the firmware because it is neither open source nor free, it
3743  * can help us to identify certain classes of problems.
3744  */
3745 static void
3746 iwn_fatal_intr(struct iwn_softc *sc)
3747 {
3748 	struct iwn_fw_dump dump;
3749 	int i;
3750 
3751 	IWN_LOCK_ASSERT(sc);
3752 
3753 	/* Force a complete recalibration on next init. */
3754 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3755 
3756 	/* Check that the error log address is valid. */
3757 	if (sc->errptr < IWN_FW_DATA_BASE ||
3758 	    sc->errptr + sizeof (dump) >
3759 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3760 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3761 		    sc->errptr);
3762 		return;
3763 	}
3764 	if (iwn_nic_lock(sc) != 0) {
3765 		printf("%s: could not read firmware error log\n", __func__);
3766 		return;
3767 	}
3768 	/* Read firmware error log from SRAM. */
3769 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3770 	    sizeof (dump) / sizeof (uint32_t));
3771 	iwn_nic_unlock(sc);
3772 
3773 	if (dump.valid == 0) {
3774 		printf("%s: firmware error log is empty\n", __func__);
3775 		return;
3776 	}
3777 	printf("firmware error log:\n");
3778 	printf("  error type      = \"%s\" (0x%08X)\n",
3779 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3780 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3781 	    dump.id);
3782 	printf("  program counter = 0x%08X\n", dump.pc);
3783 	printf("  source line     = 0x%08X\n", dump.src_line);
3784 	printf("  error data      = 0x%08X%08X\n",
3785 	    dump.error_data[0], dump.error_data[1]);
3786 	printf("  branch link     = 0x%08X%08X\n",
3787 	    dump.branch_link[0], dump.branch_link[1]);
3788 	printf("  interrupt link  = 0x%08X%08X\n",
3789 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3790 	printf("  time            = %u\n", dump.time[0]);
3791 
3792 	/* Dump driver status (TX and RX rings) while we're here. */
3793 	printf("driver status:\n");
3794 	for (i = 0; i < sc->ntxqs; i++) {
3795 		struct iwn_tx_ring *ring = &sc->txq[i];
3796 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3797 		    i, ring->qid, ring->cur, ring->queued);
3798 	}
3799 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3800 }
3801 
3802 static void
3803 iwn_intr(void *arg)
3804 {
3805 	struct iwn_softc *sc = arg;
3806 	struct ifnet *ifp = sc->sc_ifp;
3807 	uint32_t r1, r2, tmp;
3808 
3809 	IWN_LOCK(sc);
3810 
3811 	/* Disable interrupts. */
3812 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3813 
3814 	/* Read interrupts from ICT (fast) or from registers (slow). */
3815 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3816 		tmp = 0;
3817 		while (sc->ict[sc->ict_cur] != 0) {
3818 			tmp |= sc->ict[sc->ict_cur];
3819 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3820 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3821 		}
3822 		tmp = le32toh(tmp);
3823 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3824 			tmp = 0;
3825 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3826 			tmp |= 0x8000;
3827 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3828 		r2 = 0;	/* Unused. */
3829 	} else {
3830 		r1 = IWN_READ(sc, IWN_INT);
3831 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3832 			return;	/* Hardware gone! */
3833 		r2 = IWN_READ(sc, IWN_FH_INT);
3834 	}
3835 
3836 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3837     , r1, r2);
3838 
3839 	if (r1 == 0 && r2 == 0)
3840 		goto done;	/* Interrupt not for us. */
3841 
3842 	/* Acknowledge interrupts. */
3843 	IWN_WRITE(sc, IWN_INT, r1);
3844 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3845 		IWN_WRITE(sc, IWN_FH_INT, r2);
3846 
3847 	if (r1 & IWN_INT_RF_TOGGLED) {
3848 		iwn_rftoggle_intr(sc);
3849 		goto done;
3850 	}
3851 	if (r1 & IWN_INT_CT_REACHED) {
3852 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3853 		    __func__);
3854 	}
3855 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3856 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3857 		    __func__);
3858 #ifdef	IWN_DEBUG
3859 		iwn_debug_register(sc);
3860 #endif
3861 		/* Dump firmware error log and stop. */
3862 		iwn_fatal_intr(sc);
3863 		ifp->if_flags &= ~IFF_UP;
3864 		iwn_stop_locked(sc);
3865 		goto done;
3866 	}
3867 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3868 	    (r2 & IWN_FH_INT_RX)) {
3869 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3870 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3871 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3872 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3873 			    IWN_INT_PERIODIC_DIS);
3874 			iwn_notif_intr(sc);
3875 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3876 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3877 				    IWN_INT_PERIODIC_ENA);
3878 			}
3879 		} else
3880 			iwn_notif_intr(sc);
3881 	}
3882 
3883 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3884 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3885 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3886 		wakeup(sc);	/* FH DMA transfer completed. */
3887 	}
3888 
3889 	if (r1 & IWN_INT_ALIVE)
3890 		wakeup(sc);	/* Firmware is alive. */
3891 
3892 	if (r1 & IWN_INT_WAKEUP)
3893 		iwn_wakeup_intr(sc);
3894 
3895 done:
3896 	/* Re-enable interrupts. */
3897 	if (ifp->if_flags & IFF_UP)
3898 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3899 
3900 	IWN_UNLOCK(sc);
3901 }
3902 
3903 /*
3904  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3905  * 5000 adapters use a slightly different format).
3906  */
3907 static void
3908 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3909     uint16_t len)
3910 {
3911 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3912 
3913 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3914 
3915 	*w = htole16(len + 8);
3916 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3917 	    BUS_DMASYNC_PREWRITE);
3918 	if (idx < IWN_SCHED_WINSZ) {
3919 		*(w + IWN_TX_RING_COUNT) = *w;
3920 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3921 		    BUS_DMASYNC_PREWRITE);
3922 	}
3923 }
3924 
3925 static void
3926 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3927     uint16_t len)
3928 {
3929 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3930 
3931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3932 
3933 	*w = htole16(id << 12 | (len + 8));
3934 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3935 	    BUS_DMASYNC_PREWRITE);
3936 	if (idx < IWN_SCHED_WINSZ) {
3937 		*(w + IWN_TX_RING_COUNT) = *w;
3938 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3939 		    BUS_DMASYNC_PREWRITE);
3940 	}
3941 }
3942 
3943 #ifdef notyet
3944 static void
3945 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3946 {
3947 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3948 
3949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3950 
3951 	*w = (*w & htole16(0xf000)) | htole16(1);
3952 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3953 	    BUS_DMASYNC_PREWRITE);
3954 	if (idx < IWN_SCHED_WINSZ) {
3955 		*(w + IWN_TX_RING_COUNT) = *w;
3956 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3957 		    BUS_DMASYNC_PREWRITE);
3958 	}
3959 }
3960 #endif
3961 
3962 /*
3963  * Check whether OFDM 11g protection will be enabled for the given rate.
3964  *
3965  * The original driver code only enabled protection for OFDM rates.
3966  * It didn't check to see whether it was operating in 11a or 11bg mode.
3967  */
3968 static int
3969 iwn_check_rate_needs_protection(struct iwn_softc *sc,
3970     struct ieee80211vap *vap, uint8_t rate)
3971 {
3972 	struct ieee80211com *ic = vap->iv_ic;
3973 
3974 	/*
3975 	 * Not in 2GHz mode? Then there's no need to enable OFDM
3976 	 * 11bg protection.
3977 	 */
3978 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3979 		return (0);
3980 	}
3981 
3982 	/*
3983 	 * 11bg protection not enabled? Then don't use it.
3984 	 */
3985 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
3986 		return (0);
3987 
3988 	/*
3989 	 * If it's an 11n rate, then for now we enable
3990 	 * protection.
3991 	 */
3992 	if (rate & IEEE80211_RATE_MCS) {
3993 		return (1);
3994 	}
3995 
3996 	/*
3997 	 * Do a rate table lookup.  If the PHY is CCK,
3998 	 * don't do protection.
3999 	 */
4000 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4001 		return (0);
4002 
4003 	/*
4004 	 * Yup, enable protection.
4005 	 */
4006 	return (1);
4007 }
4008 
4009 /*
4010  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4011  * the link quality table that reflects this particular entry.
4012  */
4013 static int
4014 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4015     uint8_t rate)
4016 {
4017 	struct ieee80211_rateset *rs;
4018 	int is_11n;
4019 	int nr;
4020 	int i;
4021 	uint8_t cmp_rate;
4022 
4023 	/*
4024 	 * Figure out if we're using 11n or not here.
4025 	 */
4026 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4027 		is_11n = 1;
4028 	else
4029 		is_11n = 0;
4030 
4031 	/*
4032 	 * Use the correct rate table.
4033 	 */
4034 	if (is_11n) {
4035 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4036 		nr = ni->ni_htrates.rs_nrates;
4037 	} else {
4038 		rs = &ni->ni_rates;
4039 		nr = rs->rs_nrates;
4040 	}
4041 
4042 	/*
4043 	 * Find the relevant link quality entry in the table.
4044 	 */
4045 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4046 		/*
4047 		 * The link quality table index starts at 0 == highest
4048 		 * rate, so we walk the rate table backwards.
4049 		 */
4050 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4051 		if (rate & IEEE80211_RATE_MCS)
4052 			cmp_rate |= IEEE80211_RATE_MCS;
4053 
4054 #if 0
4055 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4056 		    __func__,
4057 		    i,
4058 		    nr,
4059 		    rate,
4060 		    cmp_rate);
4061 #endif
4062 
4063 		if (cmp_rate == rate)
4064 			return (i);
4065 	}
4066 
4067 	/* Failed? Start at the end */
4068 	return (IWN_MAX_TX_RETRIES - 1);
4069 }
4070 
4071 static int
4072 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4073 {
4074 	struct iwn_ops *ops = &sc->ops;
4075 	const struct ieee80211_txparam *tp;
4076 	struct ieee80211vap *vap = ni->ni_vap;
4077 	struct ieee80211com *ic = ni->ni_ic;
4078 	struct iwn_node *wn = (void *)ni;
4079 	struct iwn_tx_ring *ring;
4080 	struct iwn_tx_desc *desc;
4081 	struct iwn_tx_data *data;
4082 	struct iwn_tx_cmd *cmd;
4083 	struct iwn_cmd_data *tx;
4084 	struct ieee80211_frame *wh;
4085 	struct ieee80211_key *k = NULL;
4086 	struct mbuf *m1;
4087 	uint32_t flags;
4088 	uint16_t qos;
4089 	u_int hdrlen;
4090 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4091 	uint8_t tid, type;
4092 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4093 
4094 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4095 
4096 	IWN_LOCK_ASSERT(sc);
4097 
4098 	wh = mtod(m, struct ieee80211_frame *);
4099 	hdrlen = ieee80211_anyhdrsize(wh);
4100 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4101 
4102 	/* Select EDCA Access Category and TX ring for this frame. */
4103 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4104 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4105 		tid = qos & IEEE80211_QOS_TID;
4106 	} else {
4107 		qos = 0;
4108 		tid = 0;
4109 	}
4110 	ac = M_WME_GETAC(m);
4111 	if (m->m_flags & M_AMPDU_MPDU) {
4112 		uint16_t seqno;
4113 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4114 
4115 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4116 			m_freem(m);
4117 			return EINVAL;
4118 		}
4119 
4120 		/*
4121 		 * Queue this frame to the hardware ring that we've
4122 		 * negotiated AMPDU TX on.
4123 		 *
4124 		 * Note that the sequence number must match the TX slot
4125 		 * being used!
4126 		 */
4127 		ac = *(int *)tap->txa_private;
4128 		seqno = ni->ni_txseqs[tid];
4129 		*(uint16_t *)wh->i_seq =
4130 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4131 		ring = &sc->txq[ac];
4132 		if ((seqno % 256) != ring->cur) {
4133 			device_printf(sc->sc_dev,
4134 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4135 			    __func__,
4136 			    m,
4137 			    seqno,
4138 			    seqno % 256,
4139 			    ring->cur);
4140 		}
4141 		ni->ni_txseqs[tid]++;
4142 	}
4143 	ring = &sc->txq[ac];
4144 	desc = &ring->desc[ring->cur];
4145 	data = &ring->data[ring->cur];
4146 
4147 	/* Choose a TX rate index. */
4148 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4149 	if (type == IEEE80211_FC0_TYPE_MGT)
4150 		rate = tp->mgmtrate;
4151 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4152 		rate = tp->mcastrate;
4153 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4154 		rate = tp->ucastrate;
4155 	else if (m->m_flags & M_EAPOL)
4156 		rate = tp->mgmtrate;
4157 	else {
4158 		/* XXX pass pktlen */
4159 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4160 		rate = ni->ni_txrate;
4161 	}
4162 
4163 	/* Encrypt the frame if need be. */
4164 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4165 		/* Retrieve key for TX. */
4166 		k = ieee80211_crypto_encap(ni, m);
4167 		if (k == NULL) {
4168 			m_freem(m);
4169 			return ENOBUFS;
4170 		}
4171 		/* 802.11 header may have moved. */
4172 		wh = mtod(m, struct ieee80211_frame *);
4173 	}
4174 	totlen = m->m_pkthdr.len;
4175 
4176 	if (ieee80211_radiotap_active_vap(vap)) {
4177 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4178 
4179 		tap->wt_flags = 0;
4180 		tap->wt_rate = rate;
4181 		if (k != NULL)
4182 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4183 
4184 		ieee80211_radiotap_tx(vap, m);
4185 	}
4186 
4187 	/* Prepare TX firmware command. */
4188 	cmd = &ring->cmd[ring->cur];
4189 	cmd->code = IWN_CMD_TX_DATA;
4190 	cmd->flags = 0;
4191 	cmd->qid = ring->qid;
4192 	cmd->idx = ring->cur;
4193 
4194 	tx = (struct iwn_cmd_data *)cmd->data;
4195 	/* NB: No need to clear tx, all fields are reinitialized here. */
4196 	tx->scratch = 0;	/* clear "scratch" area */
4197 
4198 	flags = 0;
4199 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4200 		/* Unicast frame, check if an ACK is expected. */
4201 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4202 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4203 			flags |= IWN_TX_NEED_ACK;
4204 	}
4205 	if ((wh->i_fc[0] &
4206 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4207 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4208 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4209 
4210 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4211 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4212 
4213 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4214 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4215 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4216 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4217 			flags |= IWN_TX_NEED_RTS;
4218 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4219 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4220 				flags |= IWN_TX_NEED_CTS;
4221 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4222 				flags |= IWN_TX_NEED_RTS;
4223 		}
4224 
4225 		/* XXX HT protection? */
4226 
4227 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4228 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4229 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4230 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4231 				flags |= IWN_TX_NEED_PROTECTION;
4232 			} else
4233 				flags |= IWN_TX_FULL_TXOP;
4234 		}
4235 	}
4236 
4237 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4238 	    type != IEEE80211_FC0_TYPE_DATA)
4239 		tx->id = sc->broadcast_id;
4240 	else
4241 		tx->id = wn->id;
4242 
4243 	if (type == IEEE80211_FC0_TYPE_MGT) {
4244 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4245 
4246 		/* Tell HW to set timestamp in probe responses. */
4247 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4248 			flags |= IWN_TX_INSERT_TSTAMP;
4249 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4250 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4251 			tx->timeout = htole16(3);
4252 		else
4253 			tx->timeout = htole16(2);
4254 	} else
4255 		tx->timeout = htole16(0);
4256 
4257 	if (hdrlen & 3) {
4258 		/* First segment length must be a multiple of 4. */
4259 		flags |= IWN_TX_NEED_PADDING;
4260 		pad = 4 - (hdrlen & 3);
4261 	} else
4262 		pad = 0;
4263 
4264 	tx->len = htole16(totlen);
4265 	tx->tid = tid;
4266 	tx->rts_ntries = 60;
4267 	tx->data_ntries = 15;
4268 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4269 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4270 	if (tx->id == sc->broadcast_id) {
4271 		/* Group or management frame. */
4272 		tx->linkq = 0;
4273 	} else {
4274 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4275 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4276 	}
4277 
4278 	/* Set physical address of "scratch area". */
4279 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4280 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4281 
4282 	/* Copy 802.11 header in TX command. */
4283 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4284 
4285 	/* Trim 802.11 header. */
4286 	m_adj(m, hdrlen);
4287 	tx->security = 0;
4288 	tx->flags = htole32(flags);
4289 
4290 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4291 	    &nsegs, BUS_DMA_NOWAIT);
4292 	if (error != 0) {
4293 		if (error != EFBIG) {
4294 			device_printf(sc->sc_dev,
4295 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4296 			m_freem(m);
4297 			return error;
4298 		}
4299 		/* Too many DMA segments, linearize mbuf. */
4300 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4301 		if (m1 == NULL) {
4302 			device_printf(sc->sc_dev,
4303 			    "%s: could not defrag mbuf\n", __func__);
4304 			m_freem(m);
4305 			return ENOBUFS;
4306 		}
4307 		m = m1;
4308 
4309 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4310 		    segs, &nsegs, BUS_DMA_NOWAIT);
4311 		if (error != 0) {
4312 			device_printf(sc->sc_dev,
4313 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4314 			m_freem(m);
4315 			return error;
4316 		}
4317 	}
4318 
4319 	data->m = m;
4320 	data->ni = ni;
4321 
4322 	DPRINTF(sc, IWN_DEBUG_XMIT,
4323 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4324 	    __func__,
4325 	    ring->qid,
4326 	    ring->cur,
4327 	    m->m_pkthdr.len,
4328 	    nsegs,
4329 	    rate,
4330 	    tx->rate);
4331 
4332 	/* Fill TX descriptor. */
4333 	desc->nsegs = 1;
4334 	if (m->m_len != 0)
4335 		desc->nsegs += nsegs;
4336 	/* First DMA segment is used by the TX command. */
4337 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4338 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4339 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4340 	/* Other DMA segments are for data payload. */
4341 	seg = &segs[0];
4342 	for (i = 1; i <= nsegs; i++) {
4343 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4344 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4345 		    seg->ds_len << 4);
4346 		seg++;
4347 	}
4348 
4349 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4350 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4351 	    BUS_DMASYNC_PREWRITE);
4352 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4353 	    BUS_DMASYNC_PREWRITE);
4354 
4355 	/* Update TX scheduler. */
4356 	if (ring->qid >= sc->firstaggqueue)
4357 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4358 
4359 	/* Kick TX ring. */
4360 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4361 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4362 
4363 	/* Mark TX ring as full if we reach a certain threshold. */
4364 	if (++ring->queued > IWN_TX_RING_HIMARK)
4365 		sc->qfullmsk |= 1 << ring->qid;
4366 
4367 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4368 
4369 	return 0;
4370 }
4371 
4372 static int
4373 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4374     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4375 {
4376 	struct iwn_ops *ops = &sc->ops;
4377 //	struct ifnet *ifp = sc->sc_ifp;
4378 	struct ieee80211vap *vap = ni->ni_vap;
4379 //	struct ieee80211com *ic = ifp->if_l2com;
4380 	struct iwn_tx_cmd *cmd;
4381 	struct iwn_cmd_data *tx;
4382 	struct ieee80211_frame *wh;
4383 	struct iwn_tx_ring *ring;
4384 	struct iwn_tx_desc *desc;
4385 	struct iwn_tx_data *data;
4386 	struct mbuf *m1;
4387 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4388 	uint32_t flags;
4389 	u_int hdrlen;
4390 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4391 	uint8_t type;
4392 
4393 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4394 
4395 	IWN_LOCK_ASSERT(sc);
4396 
4397 	wh = mtod(m, struct ieee80211_frame *);
4398 	hdrlen = ieee80211_anyhdrsize(wh);
4399 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4400 
4401 	ac = params->ibp_pri & 3;
4402 
4403 	ring = &sc->txq[ac];
4404 	desc = &ring->desc[ring->cur];
4405 	data = &ring->data[ring->cur];
4406 
4407 	/* Choose a TX rate. */
4408 	rate = params->ibp_rate0;
4409 	totlen = m->m_pkthdr.len;
4410 
4411 	/* Prepare TX firmware command. */
4412 	cmd = &ring->cmd[ring->cur];
4413 	cmd->code = IWN_CMD_TX_DATA;
4414 	cmd->flags = 0;
4415 	cmd->qid = ring->qid;
4416 	cmd->idx = ring->cur;
4417 
4418 	tx = (struct iwn_cmd_data *)cmd->data;
4419 	/* NB: No need to clear tx, all fields are reinitialized here. */
4420 	tx->scratch = 0;	/* clear "scratch" area */
4421 
4422 	flags = 0;
4423 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4424 		flags |= IWN_TX_NEED_ACK;
4425 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4426 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4427 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4428 			flags &= ~IWN_TX_NEED_RTS;
4429 			flags |= IWN_TX_NEED_PROTECTION;
4430 		} else
4431 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4432 	}
4433 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4434 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4435 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4436 			flags &= ~IWN_TX_NEED_CTS;
4437 			flags |= IWN_TX_NEED_PROTECTION;
4438 		} else
4439 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4440 	}
4441 	if (type == IEEE80211_FC0_TYPE_MGT) {
4442 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4443 
4444 		/* Tell HW to set timestamp in probe responses. */
4445 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4446 			flags |= IWN_TX_INSERT_TSTAMP;
4447 
4448 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4449 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4450 			tx->timeout = htole16(3);
4451 		else
4452 			tx->timeout = htole16(2);
4453 	} else
4454 		tx->timeout = htole16(0);
4455 
4456 	if (hdrlen & 3) {
4457 		/* First segment length must be a multiple of 4. */
4458 		flags |= IWN_TX_NEED_PADDING;
4459 		pad = 4 - (hdrlen & 3);
4460 	} else
4461 		pad = 0;
4462 
4463 	if (ieee80211_radiotap_active_vap(vap)) {
4464 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4465 
4466 		tap->wt_flags = 0;
4467 		tap->wt_rate = rate;
4468 
4469 		ieee80211_radiotap_tx(vap, m);
4470 	}
4471 
4472 	tx->len = htole16(totlen);
4473 	tx->tid = 0;
4474 	tx->id = sc->broadcast_id;
4475 	tx->rts_ntries = params->ibp_try1;
4476 	tx->data_ntries = params->ibp_try0;
4477 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4478 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4479 
4480 	/* Group or management frame. */
4481 	tx->linkq = 0;
4482 
4483 	/* Set physical address of "scratch area". */
4484 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4485 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4486 
4487 	/* Copy 802.11 header in TX command. */
4488 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4489 
4490 	/* Trim 802.11 header. */
4491 	m_adj(m, hdrlen);
4492 	tx->security = 0;
4493 	tx->flags = htole32(flags);
4494 
4495 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4496 	    &nsegs, BUS_DMA_NOWAIT);
4497 	if (error != 0) {
4498 		if (error != EFBIG) {
4499 			device_printf(sc->sc_dev,
4500 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4501 			m_freem(m);
4502 			return error;
4503 		}
4504 		/* Too many DMA segments, linearize mbuf. */
4505 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4506 		if (m1 == NULL) {
4507 			device_printf(sc->sc_dev,
4508 			    "%s: could not defrag mbuf\n", __func__);
4509 			m_freem(m);
4510 			return ENOBUFS;
4511 		}
4512 		m = m1;
4513 
4514 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4515 		    segs, &nsegs, BUS_DMA_NOWAIT);
4516 		if (error != 0) {
4517 			device_printf(sc->sc_dev,
4518 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4519 			m_freem(m);
4520 			return error;
4521 		}
4522 	}
4523 
4524 	data->m = m;
4525 	data->ni = ni;
4526 
4527 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4528 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4529 
4530 	/* Fill TX descriptor. */
4531 	desc->nsegs = 1;
4532 	if (m->m_len != 0)
4533 		desc->nsegs += nsegs;
4534 	/* First DMA segment is used by the TX command. */
4535 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4536 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4537 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4538 	/* Other DMA segments are for data payload. */
4539 	seg = &segs[0];
4540 	for (i = 1; i <= nsegs; i++) {
4541 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4542 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4543 		    seg->ds_len << 4);
4544 		seg++;
4545 	}
4546 
4547 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4548 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4549 	    BUS_DMASYNC_PREWRITE);
4550 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4551 	    BUS_DMASYNC_PREWRITE);
4552 
4553 	/* Update TX scheduler. */
4554 	if (ring->qid >= sc->firstaggqueue)
4555 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4556 
4557 	/* Kick TX ring. */
4558 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4559 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4560 
4561 	/* Mark TX ring as full if we reach a certain threshold. */
4562 	if (++ring->queued > IWN_TX_RING_HIMARK)
4563 		sc->qfullmsk |= 1 << ring->qid;
4564 
4565 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4566 
4567 	return 0;
4568 }
4569 
4570 static int
4571 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4572     const struct ieee80211_bpf_params *params)
4573 {
4574 	struct ieee80211com *ic = ni->ni_ic;
4575 	struct ifnet *ifp = ic->ic_ifp;
4576 	struct iwn_softc *sc = ifp->if_softc;
4577 	int error = 0;
4578 
4579 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4580 
4581 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4582 		ieee80211_free_node(ni);
4583 		m_freem(m);
4584 		return ENETDOWN;
4585 	}
4586 
4587 	IWN_LOCK(sc);
4588 	if (params == NULL) {
4589 		/*
4590 		 * Legacy path; interpret frame contents to decide
4591 		 * precisely how to send the frame.
4592 		 */
4593 		error = iwn_tx_data(sc, m, ni);
4594 	} else {
4595 		/*
4596 		 * Caller supplied explicit parameters to use in
4597 		 * sending the frame.
4598 		 */
4599 		error = iwn_tx_data_raw(sc, m, ni, params);
4600 	}
4601 	if (error != 0) {
4602 		/* NB: m is reclaimed on tx failure */
4603 		ieee80211_free_node(ni);
4604 		ifp->if_oerrors++;
4605 	}
4606 	sc->sc_tx_timer = 5;
4607 
4608 	IWN_UNLOCK(sc);
4609 
4610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4611 
4612 	return error;
4613 }
4614 
4615 static void
4616 iwn_start(struct ifnet *ifp)
4617 {
4618 	struct iwn_softc *sc = ifp->if_softc;
4619 
4620 	IWN_LOCK(sc);
4621 	iwn_start_locked(ifp);
4622 	IWN_UNLOCK(sc);
4623 }
4624 
4625 static void
4626 iwn_start_locked(struct ifnet *ifp)
4627 {
4628 	struct iwn_softc *sc = ifp->if_softc;
4629 	struct ieee80211_node *ni;
4630 	struct mbuf *m;
4631 
4632 	IWN_LOCK_ASSERT(sc);
4633 
4634 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
4635 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
4636 		return;
4637 
4638 	for (;;) {
4639 		if (sc->qfullmsk != 0) {
4640 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4641 			break;
4642 		}
4643 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4644 		if (m == NULL)
4645 			break;
4646 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4647 		if (iwn_tx_data(sc, m, ni) != 0) {
4648 			ieee80211_free_node(ni);
4649 			ifp->if_oerrors++;
4650 			continue;
4651 		}
4652 		sc->sc_tx_timer = 5;
4653 	}
4654 }
4655 
4656 static void
4657 iwn_watchdog(void *arg)
4658 {
4659 	struct iwn_softc *sc = arg;
4660 	struct ifnet *ifp = sc->sc_ifp;
4661 	struct ieee80211com *ic = ifp->if_l2com;
4662 
4663 	IWN_LOCK_ASSERT(sc);
4664 
4665 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
4666 
4667 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4668 
4669 	if (sc->sc_tx_timer > 0) {
4670 		if (--sc->sc_tx_timer == 0) {
4671 			if_printf(ifp, "device timeout\n");
4672 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4673 			return;
4674 		}
4675 	}
4676 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4677 }
4678 
4679 static int
4680 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4681 {
4682 	struct iwn_softc *sc = ifp->if_softc;
4683 	struct ieee80211com *ic = ifp->if_l2com;
4684 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4685 	struct ifreq *ifr = (struct ifreq *) data;
4686 	int error = 0, startall = 0, stop = 0;
4687 
4688 	switch (cmd) {
4689 	case SIOCGIFADDR:
4690 		error = ether_ioctl(ifp, cmd, data);
4691 		break;
4692 	case SIOCSIFFLAGS:
4693 		IWN_LOCK(sc);
4694 		if (ifp->if_flags & IFF_UP) {
4695 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4696 				iwn_init_locked(sc);
4697 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4698 					startall = 1;
4699 				else
4700 					stop = 1;
4701 			}
4702 		} else {
4703 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4704 				iwn_stop_locked(sc);
4705 		}
4706 		IWN_UNLOCK(sc);
4707 		if (startall)
4708 			ieee80211_start_all(ic);
4709 		else if (vap != NULL && stop)
4710 			ieee80211_stop(vap);
4711 		break;
4712 	case SIOCGIFMEDIA:
4713 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4714 		break;
4715 	default:
4716 		error = EINVAL;
4717 		break;
4718 	}
4719 	return error;
4720 }
4721 
4722 /*
4723  * Send a command to the firmware.
4724  */
4725 static int
4726 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4727 {
4728 	struct iwn_tx_ring *ring;
4729 	struct iwn_tx_desc *desc;
4730 	struct iwn_tx_data *data;
4731 	struct iwn_tx_cmd *cmd;
4732 	struct mbuf *m;
4733 	bus_addr_t paddr;
4734 	int totlen, error;
4735 	int cmd_queue_num;
4736 
4737 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4738 
4739 	if (async == 0)
4740 		IWN_LOCK_ASSERT(sc);
4741 
4742 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4743 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4744 	else
4745 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4746 
4747 	ring = &sc->txq[cmd_queue_num];
4748 	desc = &ring->desc[ring->cur];
4749 	data = &ring->data[ring->cur];
4750 	totlen = 4 + size;
4751 
4752 	if (size > sizeof cmd->data) {
4753 		/* Command is too large to fit in a descriptor. */
4754 		if (totlen > MCLBYTES)
4755 			return EINVAL;
4756 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4757 		if (m == NULL)
4758 			return ENOMEM;
4759 		cmd = mtod(m, struct iwn_tx_cmd *);
4760 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4761 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4762 		if (error != 0) {
4763 			m_freem(m);
4764 			return error;
4765 		}
4766 		data->m = m;
4767 	} else {
4768 		cmd = &ring->cmd[ring->cur];
4769 		paddr = data->cmd_paddr;
4770 	}
4771 
4772 	cmd->code = code;
4773 	cmd->flags = 0;
4774 	cmd->qid = ring->qid;
4775 	cmd->idx = ring->cur;
4776 	memcpy(cmd->data, buf, size);
4777 
4778 	desc->nsegs = 1;
4779 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4780 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4781 
4782 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4783 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4784 	    cmd->flags, cmd->qid, cmd->idx);
4785 
4786 	if (size > sizeof cmd->data) {
4787 		bus_dmamap_sync(ring->data_dmat, data->map,
4788 		    BUS_DMASYNC_PREWRITE);
4789 	} else {
4790 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4791 		    BUS_DMASYNC_PREWRITE);
4792 	}
4793 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4794 	    BUS_DMASYNC_PREWRITE);
4795 
4796 	/* Kick command ring. */
4797 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4798 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4799 
4800 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4801 
4802 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4803 }
4804 
4805 static int
4806 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4807 {
4808 	struct iwn4965_node_info hnode;
4809 	caddr_t src, dst;
4810 
4811 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4812 
4813 	/*
4814 	 * We use the node structure for 5000 Series internally (it is
4815 	 * a superset of the one for 4965AGN). We thus copy the common
4816 	 * fields before sending the command.
4817 	 */
4818 	src = (caddr_t)node;
4819 	dst = (caddr_t)&hnode;
4820 	memcpy(dst, src, 48);
4821 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4822 	memcpy(dst + 48, src + 72, 20);
4823 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4824 }
4825 
4826 static int
4827 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4828 {
4829 
4830 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4831 
4832 	/* Direct mapping. */
4833 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4834 }
4835 
4836 static int
4837 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4838 {
4839 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4840 	struct iwn_node *wn = (void *)ni;
4841 	struct ieee80211_rateset *rs;
4842 	struct iwn_cmd_link_quality linkq;
4843 	uint8_t txant;
4844 	int i, rate, txrate;
4845 	int is_11n;
4846 
4847 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4848 
4849 	/* Use the first valid TX antenna. */
4850 	txant = IWN_LSB(sc->txchainmask);
4851 
4852 	memset(&linkq, 0, sizeof linkq);
4853 	linkq.id = wn->id;
4854 	linkq.antmsk_1stream = txant;
4855 
4856 	/*
4857 	 * The '2 stream' setup is a bit .. odd.
4858 	 *
4859 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
4860 	 * the firmware panics (eg Intel 5100.)
4861 	 *
4862 	 * For NICs that support two antennas, we use ANT_AB.
4863 	 *
4864 	 * For NICs that support three antennas, we use the two that
4865 	 * wasn't the default one.
4866 	 *
4867 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
4868 	 * this to only one antenna.
4869 	 */
4870 
4871 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
4872 
4873 	/* Default - transmit on the other antennas */
4874 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
4875 
4876 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
4877 	if (linkq.antmsk_2stream == 0)
4878 		linkq.antmsk_2stream = IWN_ANT_AB;
4879 
4880 	/*
4881 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
4882 	 * the default chainmask
4883 	 */
4884 	else if (sc->ntxchains == 2)
4885 		linkq.antmsk_2stream = sc->txchainmask;
4886 
4887 	linkq.ampdu_max = 32;		/* XXX negotiated? */
4888 	linkq.ampdu_threshold = 3;
4889 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4890 
4891 	DPRINTF(sc, IWN_DEBUG_XMIT,
4892 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
4893 	    __func__,
4894 	    linkq.antmsk_1stream,
4895 	    linkq.antmsk_2stream,
4896 	    sc->ntxchains);
4897 
4898 	/*
4899 	 * Are we using 11n rates? Ensure the channel is
4900 	 * 11n _and_ we have some 11n rates, or don't
4901 	 * try.
4902 	 */
4903 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
4904 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4905 		is_11n = 1;
4906 	} else {
4907 		rs = &ni->ni_rates;
4908 		is_11n = 0;
4909 	}
4910 
4911 	/* Start at highest available bit-rate. */
4912 	/*
4913 	 * XXX this is all very dirty!
4914 	 */
4915 	if (is_11n)
4916 		txrate = ni->ni_htrates.rs_nrates - 1;
4917 	else
4918 		txrate = rs->rs_nrates - 1;
4919 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4920 		uint32_t plcp;
4921 
4922 		if (is_11n)
4923 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
4924 		else
4925 			rate = RV(rs->rs_rates[txrate]);
4926 
4927 		DPRINTF(sc, IWN_DEBUG_XMIT,
4928 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
4929 		    __func__,
4930 		    i,
4931 		    txrate,
4932 		    rate);
4933 
4934 		/* Do rate -> PLCP config mapping */
4935 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4936 		linkq.retry[i] = plcp;
4937 
4938 		/*
4939 		 * The mimo field is an index into the table which
4940 		 * indicates the first index where it and subsequent entries
4941 		 * will not be using MIMO.
4942 		 *
4943 		 * Since we're filling linkq from 0..15 and we're filling
4944 		 * from the higest MCS rates to the lowest rates, if we
4945 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
4946 		 * the next entry.)  That way if the next entry is a non-MIMO
4947 		 * entry, we're already pointing at it.
4948 		 */
4949 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4950 		    RV(le32toh(plcp)) > 7)
4951 			linkq.mimo = i + 1;
4952 
4953 		/* Next retry at immediate lower bit-rate. */
4954 		if (txrate > 0)
4955 			txrate--;
4956 	}
4957 
4958 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4959 
4960 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4961 #undef	RV
4962 }
4963 
4964 /*
4965  * Broadcast node is used to send group-addressed and management frames.
4966  */
4967 static int
4968 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4969 {
4970 	struct iwn_ops *ops = &sc->ops;
4971 	struct ifnet *ifp = sc->sc_ifp;
4972 	struct ieee80211com *ic = ifp->if_l2com;
4973 	struct iwn_node_info node;
4974 	struct iwn_cmd_link_quality linkq;
4975 	uint8_t txant;
4976 	int i, error;
4977 
4978 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4979 
4980 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
4981 
4982 	memset(&node, 0, sizeof node);
4983 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4984 	node.id = sc->broadcast_id;
4985 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4986 	if ((error = ops->add_node(sc, &node, async)) != 0)
4987 		return error;
4988 
4989 	/* Use the first valid TX antenna. */
4990 	txant = IWN_LSB(sc->txchainmask);
4991 
4992 	memset(&linkq, 0, sizeof linkq);
4993 	linkq.id = sc->broadcast_id;
4994 	linkq.antmsk_1stream = txant;
4995 	linkq.antmsk_2stream = IWN_ANT_AB;
4996 	linkq.ampdu_max = 64;
4997 	linkq.ampdu_threshold = 3;
4998 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4999 
5000 	/* Use lowest mandatory bit-rate. */
5001 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5002 		linkq.retry[0] = htole32(0xd);
5003 	else
5004 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5005 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5006 	/* Use same bit-rate for all TX retries. */
5007 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5008 		linkq.retry[i] = linkq.retry[0];
5009 	}
5010 
5011 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5012 
5013 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5014 }
5015 
5016 static int
5017 iwn_updateedca(struct ieee80211com *ic)
5018 {
5019 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5020 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5021 	struct iwn_edca_params cmd;
5022 	int aci;
5023 
5024 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5025 
5026 	memset(&cmd, 0, sizeof cmd);
5027 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5028 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5029 		const struct wmeParams *ac =
5030 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5031 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5032 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5033 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5034 		cmd.ac[aci].txoplimit =
5035 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5036 	}
5037 	IEEE80211_UNLOCK(ic);
5038 	IWN_LOCK(sc);
5039 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5040 	IWN_UNLOCK(sc);
5041 	IEEE80211_LOCK(ic);
5042 
5043 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5044 
5045 	return 0;
5046 #undef IWN_EXP2
5047 }
5048 
5049 static void
5050 iwn_update_mcast(struct ifnet *ifp)
5051 {
5052 	/* Ignore */
5053 }
5054 
5055 static void
5056 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5057 {
5058 	struct iwn_cmd_led led;
5059 
5060 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5061 
5062 #if 0
5063 	/* XXX don't set LEDs during scan? */
5064 	if (sc->sc_is_scanning)
5065 		return;
5066 #endif
5067 
5068 	/* Clear microcode LED ownership. */
5069 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5070 
5071 	led.which = which;
5072 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5073 	led.off = off;
5074 	led.on = on;
5075 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5076 }
5077 
5078 /*
5079  * Set the critical temperature at which the firmware will stop the radio
5080  * and notify us.
5081  */
5082 static int
5083 iwn_set_critical_temp(struct iwn_softc *sc)
5084 {
5085 	struct iwn_critical_temp crit;
5086 	int32_t temp;
5087 
5088 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5089 
5090 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5091 
5092 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5093 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5094 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5095 		temp = IWN_CTOK(110);
5096 	else
5097 		temp = 110;
5098 	memset(&crit, 0, sizeof crit);
5099 	crit.tempR = htole32(temp);
5100 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5101 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5102 }
5103 
5104 static int
5105 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5106 {
5107 	struct iwn_cmd_timing cmd;
5108 	uint64_t val, mod;
5109 
5110 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5111 
5112 	memset(&cmd, 0, sizeof cmd);
5113 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5114 	cmd.bintval = htole16(ni->ni_intval);
5115 	cmd.lintval = htole16(10);
5116 
5117 	/* Compute remaining time until next beacon. */
5118 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5119 	mod = le64toh(cmd.tstamp) % val;
5120 	cmd.binitval = htole32((uint32_t)(val - mod));
5121 
5122 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5123 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5124 
5125 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5126 }
5127 
5128 static void
5129 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5130 {
5131 	struct ifnet *ifp = sc->sc_ifp;
5132 	struct ieee80211com *ic = ifp->if_l2com;
5133 
5134 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5135 
5136 	/* Adjust TX power if need be (delta >= 3 degC). */
5137 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5138 	    __func__, sc->temp, temp);
5139 	if (abs(temp - sc->temp) >= 3) {
5140 		/* Record temperature of last calibration. */
5141 		sc->temp = temp;
5142 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5143 	}
5144 }
5145 
5146 /*
5147  * Set TX power for current channel (each rate has its own power settings).
5148  * This function takes into account the regulatory information from EEPROM,
5149  * the current temperature and the current voltage.
5150  */
5151 static int
5152 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5153     int async)
5154 {
5155 /* Fixed-point arithmetic division using a n-bit fractional part. */
5156 #define fdivround(a, b, n)	\
5157 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5158 /* Linear interpolation. */
5159 #define interpolate(x, x1, y1, x2, y2, n)	\
5160 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5161 
5162 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5163 	struct iwn_ucode_info *uc = &sc->ucode_info;
5164 	struct iwn4965_cmd_txpower cmd;
5165 	struct iwn4965_eeprom_chan_samples *chans;
5166 	const uint8_t *rf_gain, *dsp_gain;
5167 	int32_t vdiff, tdiff;
5168 	int i, c, grp, maxpwr;
5169 	uint8_t chan;
5170 
5171 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5172 	/* Retrieve current channel from last RXON. */
5173 	chan = sc->rxon->chan;
5174 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5175 	    chan);
5176 
5177 	memset(&cmd, 0, sizeof cmd);
5178 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5179 	cmd.chan = chan;
5180 
5181 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5182 		maxpwr   = sc->maxpwr5GHz;
5183 		rf_gain  = iwn4965_rf_gain_5ghz;
5184 		dsp_gain = iwn4965_dsp_gain_5ghz;
5185 	} else {
5186 		maxpwr   = sc->maxpwr2GHz;
5187 		rf_gain  = iwn4965_rf_gain_2ghz;
5188 		dsp_gain = iwn4965_dsp_gain_2ghz;
5189 	}
5190 
5191 	/* Compute voltage compensation. */
5192 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5193 	if (vdiff > 0)
5194 		vdiff *= 2;
5195 	if (abs(vdiff) > 2)
5196 		vdiff = 0;
5197 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5198 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5199 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5200 
5201 	/* Get channel attenuation group. */
5202 	if (chan <= 20)		/* 1-20 */
5203 		grp = 4;
5204 	else if (chan <= 43)	/* 34-43 */
5205 		grp = 0;
5206 	else if (chan <= 70)	/* 44-70 */
5207 		grp = 1;
5208 	else if (chan <= 124)	/* 71-124 */
5209 		grp = 2;
5210 	else			/* 125-200 */
5211 		grp = 3;
5212 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5213 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5214 
5215 	/* Get channel sub-band. */
5216 	for (i = 0; i < IWN_NBANDS; i++)
5217 		if (sc->bands[i].lo != 0 &&
5218 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5219 			break;
5220 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5221 		return EINVAL;
5222 	chans = sc->bands[i].chans;
5223 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5224 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5225 
5226 	for (c = 0; c < 2; c++) {
5227 		uint8_t power, gain, temp;
5228 		int maxchpwr, pwr, ridx, idx;
5229 
5230 		power = interpolate(chan,
5231 		    chans[0].num, chans[0].samples[c][1].power,
5232 		    chans[1].num, chans[1].samples[c][1].power, 1);
5233 		gain  = interpolate(chan,
5234 		    chans[0].num, chans[0].samples[c][1].gain,
5235 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5236 		temp  = interpolate(chan,
5237 		    chans[0].num, chans[0].samples[c][1].temp,
5238 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5239 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5240 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5241 		    __func__, c, power, gain, temp);
5242 
5243 		/* Compute temperature compensation. */
5244 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5245 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5246 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5247 		    __func__, tdiff, sc->temp, temp);
5248 
5249 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5250 			/* Convert dBm to half-dBm. */
5251 			maxchpwr = sc->maxpwr[chan] * 2;
5252 			if ((ridx / 8) & 1)
5253 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5254 
5255 			pwr = maxpwr;
5256 
5257 			/* Adjust TX power based on rate. */
5258 			if ((ridx % 8) == 5)
5259 				pwr -= 15;	/* OFDM48: -7.5dB */
5260 			else if ((ridx % 8) == 6)
5261 				pwr -= 17;	/* OFDM54: -8.5dB */
5262 			else if ((ridx % 8) == 7)
5263 				pwr -= 20;	/* OFDM60: -10dB */
5264 			else
5265 				pwr -= 10;	/* Others: -5dB */
5266 
5267 			/* Do not exceed channel max TX power. */
5268 			if (pwr > maxchpwr)
5269 				pwr = maxchpwr;
5270 
5271 			idx = gain - (pwr - power) - tdiff - vdiff;
5272 			if ((ridx / 8) & 1)	/* MIMO */
5273 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5274 
5275 			if (cmd.band == 0)
5276 				idx += 9;	/* 5GHz */
5277 			if (ridx == IWN_RIDX_MAX)
5278 				idx += 5;	/* CCK */
5279 
5280 			/* Make sure idx stays in a valid range. */
5281 			if (idx < 0)
5282 				idx = 0;
5283 			else if (idx > IWN4965_MAX_PWR_INDEX)
5284 				idx = IWN4965_MAX_PWR_INDEX;
5285 
5286 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5287 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5288 			    __func__, c, ridx, idx);
5289 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5290 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5291 		}
5292 	}
5293 
5294 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5295 	    "%s: set tx power for chan %d\n", __func__, chan);
5296 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5297 
5298 #undef interpolate
5299 #undef fdivround
5300 }
5301 
5302 static int
5303 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5304     int async)
5305 {
5306 	struct iwn5000_cmd_txpower cmd;
5307 
5308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5309 
5310 	/*
5311 	 * TX power calibration is handled automatically by the firmware
5312 	 * for 5000 Series.
5313 	 */
5314 	memset(&cmd, 0, sizeof cmd);
5315 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5316 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5317 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5318 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5319 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5320 }
5321 
5322 /*
5323  * Retrieve the maximum RSSI (in dBm) among receivers.
5324  */
5325 static int
5326 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5327 {
5328 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5329 	uint8_t mask, agc;
5330 	int rssi;
5331 
5332 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5333 
5334 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5335 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5336 
5337 	rssi = 0;
5338 	if (mask & IWN_ANT_A)
5339 		rssi = MAX(rssi, phy->rssi[0]);
5340 	if (mask & IWN_ANT_B)
5341 		rssi = MAX(rssi, phy->rssi[2]);
5342 	if (mask & IWN_ANT_C)
5343 		rssi = MAX(rssi, phy->rssi[4]);
5344 
5345 	DPRINTF(sc, IWN_DEBUG_RECV,
5346 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5347 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5348 	    rssi - agc - IWN_RSSI_TO_DBM);
5349 	return rssi - agc - IWN_RSSI_TO_DBM;
5350 }
5351 
5352 static int
5353 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5354 {
5355 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5356 	uint8_t agc;
5357 	int rssi;
5358 
5359 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5360 
5361 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5362 
5363 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5364 		   le16toh(phy->rssi[1]) & 0xff);
5365 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5366 
5367 	DPRINTF(sc, IWN_DEBUG_RECV,
5368 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5369 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5370 	    rssi - agc - IWN_RSSI_TO_DBM);
5371 	return rssi - agc - IWN_RSSI_TO_DBM;
5372 }
5373 
5374 /*
5375  * Retrieve the average noise (in dBm) among receivers.
5376  */
5377 static int
5378 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5379 {
5380 	int i, total, nbant, noise;
5381 
5382 	total = nbant = 0;
5383 	for (i = 0; i < 3; i++) {
5384 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5385 			continue;
5386 		total += noise;
5387 		nbant++;
5388 	}
5389 	/* There should be at least one antenna but check anyway. */
5390 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5391 }
5392 
5393 /*
5394  * Compute temperature (in degC) from last received statistics.
5395  */
5396 static int
5397 iwn4965_get_temperature(struct iwn_softc *sc)
5398 {
5399 	struct iwn_ucode_info *uc = &sc->ucode_info;
5400 	int32_t r1, r2, r3, r4, temp;
5401 
5402 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5403 
5404 	r1 = le32toh(uc->temp[0].chan20MHz);
5405 	r2 = le32toh(uc->temp[1].chan20MHz);
5406 	r3 = le32toh(uc->temp[2].chan20MHz);
5407 	r4 = le32toh(sc->rawtemp);
5408 
5409 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5410 		return 0;
5411 
5412 	/* Sign-extend 23-bit R4 value to 32-bit. */
5413 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5414 	/* Compute temperature in Kelvin. */
5415 	temp = (259 * (r4 - r2)) / (r3 - r1);
5416 	temp = (temp * 97) / 100 + 8;
5417 
5418 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5419 	    IWN_KTOC(temp));
5420 	return IWN_KTOC(temp);
5421 }
5422 
5423 static int
5424 iwn5000_get_temperature(struct iwn_softc *sc)
5425 {
5426 	int32_t temp;
5427 
5428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5429 
5430 	/*
5431 	 * Temperature is not used by the driver for 5000 Series because
5432 	 * TX power calibration is handled by firmware.
5433 	 */
5434 	temp = le32toh(sc->rawtemp);
5435 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5436 		temp = (temp / -5) + sc->temp_off;
5437 		temp = IWN_KTOC(temp);
5438 	}
5439 	return temp;
5440 }
5441 
5442 /*
5443  * Initialize sensitivity calibration state machine.
5444  */
5445 static int
5446 iwn_init_sensitivity(struct iwn_softc *sc)
5447 {
5448 	struct iwn_ops *ops = &sc->ops;
5449 	struct iwn_calib_state *calib = &sc->calib;
5450 	uint32_t flags;
5451 	int error;
5452 
5453 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5454 
5455 	/* Reset calibration state machine. */
5456 	memset(calib, 0, sizeof (*calib));
5457 	calib->state = IWN_CALIB_STATE_INIT;
5458 	calib->cck_state = IWN_CCK_STATE_HIFA;
5459 	/* Set initial correlation values. */
5460 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5461 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5462 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5463 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5464 	calib->cck_x4      = 125;
5465 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5466 	calib->energy_cck  = sc->limits->energy_cck;
5467 
5468 	/* Write initial sensitivity. */
5469 	if ((error = iwn_send_sensitivity(sc)) != 0)
5470 		return error;
5471 
5472 	/* Write initial gains. */
5473 	if ((error = ops->init_gains(sc)) != 0)
5474 		return error;
5475 
5476 	/* Request statistics at each beacon interval. */
5477 	flags = 0;
5478 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5479 	    __func__);
5480 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5481 }
5482 
5483 /*
5484  * Collect noise and RSSI statistics for the first 20 beacons received
5485  * after association and use them to determine connected antennas and
5486  * to set differential gains.
5487  */
5488 static void
5489 iwn_collect_noise(struct iwn_softc *sc,
5490     const struct iwn_rx_general_stats *stats)
5491 {
5492 	struct iwn_ops *ops = &sc->ops;
5493 	struct iwn_calib_state *calib = &sc->calib;
5494 	struct ifnet *ifp = sc->sc_ifp;
5495 	struct ieee80211com *ic = ifp->if_l2com;
5496 	uint32_t val;
5497 	int i;
5498 
5499 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5500 
5501 	/* Accumulate RSSI and noise for all 3 antennas. */
5502 	for (i = 0; i < 3; i++) {
5503 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5504 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5505 	}
5506 	/* NB: We update differential gains only once after 20 beacons. */
5507 	if (++calib->nbeacons < 20)
5508 		return;
5509 
5510 	/* Determine highest average RSSI. */
5511 	val = MAX(calib->rssi[0], calib->rssi[1]);
5512 	val = MAX(calib->rssi[2], val);
5513 
5514 	/* Determine which antennas are connected. */
5515 	sc->chainmask = sc->rxchainmask;
5516 	for (i = 0; i < 3; i++)
5517 		if (val - calib->rssi[i] > 15 * 20)
5518 			sc->chainmask &= ~(1 << i);
5519 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5520 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5521 	    __func__, sc->rxchainmask, sc->chainmask);
5522 
5523 	/* If none of the TX antennas are connected, keep at least one. */
5524 	if ((sc->chainmask & sc->txchainmask) == 0)
5525 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5526 
5527 	(void)ops->set_gains(sc);
5528 	calib->state = IWN_CALIB_STATE_RUN;
5529 
5530 #ifdef notyet
5531 	/* XXX Disable RX chains with no antennas connected. */
5532 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5533 	if (sc->sc_is_scanning)
5534 		device_printf(sc->sc_dev,
5535 		    "%s: is_scanning set, before RXON\n",
5536 		    __func__);
5537 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5538 #endif
5539 
5540 	/* Enable power-saving mode if requested by user. */
5541 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5542 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5543 
5544 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5545 
5546 }
5547 
5548 static int
5549 iwn4965_init_gains(struct iwn_softc *sc)
5550 {
5551 	struct iwn_phy_calib_gain cmd;
5552 
5553 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5554 
5555 	memset(&cmd, 0, sizeof cmd);
5556 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5557 	/* Differential gains initially set to 0 for all 3 antennas. */
5558 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5559 	    "%s: setting initial differential gains\n", __func__);
5560 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5561 }
5562 
5563 static int
5564 iwn5000_init_gains(struct iwn_softc *sc)
5565 {
5566 	struct iwn_phy_calib cmd;
5567 
5568 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5569 
5570 	memset(&cmd, 0, sizeof cmd);
5571 	cmd.code = sc->reset_noise_gain;
5572 	cmd.ngroups = 1;
5573 	cmd.isvalid = 1;
5574 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5575 	    "%s: setting initial differential gains\n", __func__);
5576 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5577 }
5578 
5579 static int
5580 iwn4965_set_gains(struct iwn_softc *sc)
5581 {
5582 	struct iwn_calib_state *calib = &sc->calib;
5583 	struct iwn_phy_calib_gain cmd;
5584 	int i, delta, noise;
5585 
5586 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5587 
5588 	/* Get minimal noise among connected antennas. */
5589 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5590 	for (i = 0; i < 3; i++)
5591 		if (sc->chainmask & (1 << i))
5592 			noise = MIN(calib->noise[i], noise);
5593 
5594 	memset(&cmd, 0, sizeof cmd);
5595 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5596 	/* Set differential gains for connected antennas. */
5597 	for (i = 0; i < 3; i++) {
5598 		if (sc->chainmask & (1 << i)) {
5599 			/* Compute attenuation (in unit of 1.5dB). */
5600 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5601 			/* NB: delta <= 0 */
5602 			/* Limit to [-4.5dB,0]. */
5603 			cmd.gain[i] = MIN(abs(delta), 3);
5604 			if (delta < 0)
5605 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5606 		}
5607 	}
5608 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5609 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5610 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5611 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5612 }
5613 
5614 static int
5615 iwn5000_set_gains(struct iwn_softc *sc)
5616 {
5617 	struct iwn_calib_state *calib = &sc->calib;
5618 	struct iwn_phy_calib_gain cmd;
5619 	int i, ant, div, delta;
5620 
5621 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5622 
5623 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5624 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5625 
5626 	memset(&cmd, 0, sizeof cmd);
5627 	cmd.code = sc->noise_gain;
5628 	cmd.ngroups = 1;
5629 	cmd.isvalid = 1;
5630 	/* Get first available RX antenna as referential. */
5631 	ant = IWN_LSB(sc->rxchainmask);
5632 	/* Set differential gains for other antennas. */
5633 	for (i = ant + 1; i < 3; i++) {
5634 		if (sc->chainmask & (1 << i)) {
5635 			/* The delta is relative to antenna "ant". */
5636 			delta = ((int32_t)calib->noise[ant] -
5637 			    (int32_t)calib->noise[i]) / div;
5638 			/* Limit to [-4.5dB,+4.5dB]. */
5639 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5640 			if (delta < 0)
5641 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5642 		}
5643 	}
5644 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5645 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5646 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5647 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5648 }
5649 
5650 /*
5651  * Tune RF RX sensitivity based on the number of false alarms detected
5652  * during the last beacon period.
5653  */
5654 static void
5655 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5656 {
5657 #define inc(val, inc, max)			\
5658 	if ((val) < (max)) {			\
5659 		if ((val) < (max) - (inc))	\
5660 			(val) += (inc);		\
5661 		else				\
5662 			(val) = (max);		\
5663 		needs_update = 1;		\
5664 	}
5665 #define dec(val, dec, min)			\
5666 	if ((val) > (min)) {			\
5667 		if ((val) > (min) + (dec))	\
5668 			(val) -= (dec);		\
5669 		else				\
5670 			(val) = (min);		\
5671 		needs_update = 1;		\
5672 	}
5673 
5674 	const struct iwn_sensitivity_limits *limits = sc->limits;
5675 	struct iwn_calib_state *calib = &sc->calib;
5676 	uint32_t val, rxena, fa;
5677 	uint32_t energy[3], energy_min;
5678 	uint8_t noise[3], noise_ref;
5679 	int i, needs_update = 0;
5680 
5681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5682 
5683 	/* Check that we've been enabled long enough. */
5684 	if ((rxena = le32toh(stats->general.load)) == 0){
5685 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5686 		return;
5687 	}
5688 
5689 	/* Compute number of false alarms since last call for OFDM. */
5690 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5691 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5692 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5693 
5694 	if (fa > 50 * rxena) {
5695 		/* High false alarm count, decrease sensitivity. */
5696 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5697 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5698 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5699 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5700 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5701 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5702 
5703 	} else if (fa < 5 * rxena) {
5704 		/* Low false alarm count, increase sensitivity. */
5705 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5706 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5707 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5708 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5709 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5710 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5711 	}
5712 
5713 	/* Compute maximum noise among 3 receivers. */
5714 	for (i = 0; i < 3; i++)
5715 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5716 	val = MAX(noise[0], noise[1]);
5717 	val = MAX(noise[2], val);
5718 	/* Insert it into our samples table. */
5719 	calib->noise_samples[calib->cur_noise_sample] = val;
5720 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5721 
5722 	/* Compute maximum noise among last 20 samples. */
5723 	noise_ref = calib->noise_samples[0];
5724 	for (i = 1; i < 20; i++)
5725 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5726 
5727 	/* Compute maximum energy among 3 receivers. */
5728 	for (i = 0; i < 3; i++)
5729 		energy[i] = le32toh(stats->general.energy[i]);
5730 	val = MIN(energy[0], energy[1]);
5731 	val = MIN(energy[2], val);
5732 	/* Insert it into our samples table. */
5733 	calib->energy_samples[calib->cur_energy_sample] = val;
5734 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5735 
5736 	/* Compute minimum energy among last 10 samples. */
5737 	energy_min = calib->energy_samples[0];
5738 	for (i = 1; i < 10; i++)
5739 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5740 	energy_min += 6;
5741 
5742 	/* Compute number of false alarms since last call for CCK. */
5743 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5744 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5745 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5746 
5747 	if (fa > 50 * rxena) {
5748 		/* High false alarm count, decrease sensitivity. */
5749 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5750 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5751 		calib->cck_state = IWN_CCK_STATE_HIFA;
5752 		calib->low_fa = 0;
5753 
5754 		if (calib->cck_x4 > 160) {
5755 			calib->noise_ref = noise_ref;
5756 			if (calib->energy_cck > 2)
5757 				dec(calib->energy_cck, 2, energy_min);
5758 		}
5759 		if (calib->cck_x4 < 160) {
5760 			calib->cck_x4 = 161;
5761 			needs_update = 1;
5762 		} else
5763 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5764 
5765 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5766 
5767 	} else if (fa < 5 * rxena) {
5768 		/* Low false alarm count, increase sensitivity. */
5769 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5770 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5771 		calib->cck_state = IWN_CCK_STATE_LOFA;
5772 		calib->low_fa++;
5773 
5774 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5775 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5776 		     calib->low_fa > 100)) {
5777 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5778 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5779 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5780 		}
5781 	} else {
5782 		/* Not worth to increase or decrease sensitivity. */
5783 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5784 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5785 		calib->low_fa = 0;
5786 		calib->noise_ref = noise_ref;
5787 
5788 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5789 			/* Previous interval had many false alarms. */
5790 			dec(calib->energy_cck, 8, energy_min);
5791 		}
5792 		calib->cck_state = IWN_CCK_STATE_INIT;
5793 	}
5794 
5795 	if (needs_update)
5796 		(void)iwn_send_sensitivity(sc);
5797 
5798 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5799 
5800 #undef dec
5801 #undef inc
5802 }
5803 
5804 static int
5805 iwn_send_sensitivity(struct iwn_softc *sc)
5806 {
5807 	struct iwn_calib_state *calib = &sc->calib;
5808 	struct iwn_enhanced_sensitivity_cmd cmd;
5809 	int len;
5810 
5811 	memset(&cmd, 0, sizeof cmd);
5812 	len = sizeof (struct iwn_sensitivity_cmd);
5813 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5814 	/* OFDM modulation. */
5815 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5816 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5817 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5818 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5819 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5820 	cmd.energy_ofdm_th     = htole16(62);
5821 	/* CCK modulation. */
5822 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5823 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5824 	cmd.energy_cck         = htole16(calib->energy_cck);
5825 	/* Barker modulation: use default values. */
5826 	cmd.corr_barker        = htole16(190);
5827 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
5828 
5829 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5830 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5831 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5832 	    calib->ofdm_mrc_x4, calib->cck_x4,
5833 	    calib->cck_mrc_x4, calib->energy_cck);
5834 
5835 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5836 		goto send;
5837 	/* Enhanced sensitivity settings. */
5838 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5839 	cmd.ofdm_det_slope_mrc = htole16(668);
5840 	cmd.ofdm_det_icept_mrc = htole16(4);
5841 	cmd.ofdm_det_slope     = htole16(486);
5842 	cmd.ofdm_det_icept     = htole16(37);
5843 	cmd.cck_det_slope_mrc  = htole16(853);
5844 	cmd.cck_det_icept_mrc  = htole16(4);
5845 	cmd.cck_det_slope      = htole16(476);
5846 	cmd.cck_det_icept      = htole16(99);
5847 send:
5848 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5849 }
5850 
5851 /*
5852  * Look at the increase of PLCP errors over time; if it exceeds
5853  * a programmed threshold then trigger an RF retune.
5854  */
5855 static void
5856 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
5857 {
5858 	int32_t delta_ofdm, delta_ht, delta_cck;
5859 	struct iwn_calib_state *calib = &sc->calib;
5860 	int delta_ticks, cur_ticks;
5861 	int delta_msec;
5862 	int thresh;
5863 
5864 	/*
5865 	 * Calculate the difference between the current and
5866 	 * previous statistics.
5867 	 */
5868 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
5869 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5870 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
5871 
5872 	/*
5873 	 * Calculate the delta in time between successive statistics
5874 	 * messages.  Yes, it can roll over; so we make sure that
5875 	 * this doesn't happen.
5876 	 *
5877 	 * XXX go figure out what to do about rollover
5878 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
5879 	 * XXX go stab signed integer overflow undefined-ness in the face.
5880 	 */
5881 	cur_ticks = ticks;
5882 	delta_ticks = cur_ticks - sc->last_calib_ticks;
5883 
5884 	/*
5885 	 * If any are negative, then the firmware likely reset; so just
5886 	 * bail.  We'll pick this up next time.
5887 	 */
5888 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
5889 		return;
5890 
5891 	/*
5892 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
5893 	 * so we can do some useful math with it.
5894 	 */
5895 	delta_msec = ticks_to_msecs(delta_ticks);
5896 
5897 	/*
5898 	 * Calculate what our threshold is given the current delta_msec.
5899 	 */
5900 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
5901 
5902 	DPRINTF(sc, IWN_DEBUG_STATE,
5903 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
5904 	    __func__,
5905 	    delta_msec,
5906 	    delta_cck,
5907 	    delta_ofdm,
5908 	    delta_ht,
5909 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
5910 	    thresh);
5911 
5912 	/*
5913 	 * If we need a retune, then schedule a single channel scan
5914 	 * to a channel that isn't the currently active one!
5915 	 *
5916 	 * The math from linux iwlwifi:
5917 	 *
5918 	 * if ((delta * 100 / msecs) > threshold)
5919 	 */
5920 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
5921 		DPRINTF(sc, IWN_DEBUG_ANY,
5922 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
5923 		    "over limit (%d); retune!\n",
5924 		    __func__,
5925 		    (delta_cck + delta_ofdm + delta_ht),
5926 		    (delta_cck + delta_ofdm + delta_ht) * 100,
5927 		    thresh);
5928 	}
5929 }
5930 
5931 /*
5932  * Set STA mode power saving level (between 0 and 5).
5933  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5934  */
5935 static int
5936 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5937 {
5938 	struct iwn_pmgt_cmd cmd;
5939 	const struct iwn_pmgt *pmgt;
5940 	uint32_t max, skip_dtim;
5941 	uint32_t reg;
5942 	int i;
5943 
5944 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5945 	    "%s: dtim=%d, level=%d, async=%d\n",
5946 	    __func__,
5947 	    dtim,
5948 	    level,
5949 	    async);
5950 
5951 	/* Select which PS parameters to use. */
5952 	if (dtim <= 2)
5953 		pmgt = &iwn_pmgt[0][level];
5954 	else if (dtim <= 10)
5955 		pmgt = &iwn_pmgt[1][level];
5956 	else
5957 		pmgt = &iwn_pmgt[2][level];
5958 
5959 	memset(&cmd, 0, sizeof cmd);
5960 	if (level != 0)	/* not CAM */
5961 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5962 	if (level == 5)
5963 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5964 	/* Retrieve PCIe Active State Power Management (ASPM). */
5965 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5966 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5967 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5968 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5969 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5970 
5971 	if (dtim == 0) {
5972 		dtim = 1;
5973 		skip_dtim = 0;
5974 	} else
5975 		skip_dtim = pmgt->skip_dtim;
5976 	if (skip_dtim != 0) {
5977 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5978 		max = pmgt->intval[4];
5979 		if (max == (uint32_t)-1)
5980 			max = dtim * (skip_dtim + 1);
5981 		else if (max > dtim)
5982 			max = (max / dtim) * dtim;
5983 	} else
5984 		max = dtim;
5985 	for (i = 0; i < 5; i++)
5986 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5987 
5988 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5989 	    level);
5990 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5991 }
5992 
5993 static int
5994 iwn_send_btcoex(struct iwn_softc *sc)
5995 {
5996 	struct iwn_bluetooth cmd;
5997 
5998 	memset(&cmd, 0, sizeof cmd);
5999 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6000 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6001 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6002 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6003 	    __func__);
6004 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6005 }
6006 
6007 static int
6008 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6009 {
6010 	static const uint32_t btcoex_3wire[12] = {
6011 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6012 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6013 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6014 	};
6015 	struct iwn6000_btcoex_config btconfig;
6016 	struct iwn2000_btcoex_config btconfig2k;
6017 	struct iwn_btcoex_priotable btprio;
6018 	struct iwn_btcoex_prot btprot;
6019 	int error, i;
6020 	uint8_t flags;
6021 
6022 	memset(&btconfig, 0, sizeof btconfig);
6023 	memset(&btconfig2k, 0, sizeof btconfig2k);
6024 
6025 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6026 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6027 
6028 	if (sc->base_params->bt_sco_disable)
6029 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6030 	else
6031 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6032 
6033 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6034 
6035 	/* Default flags result is 145 as old value */
6036 
6037 	/*
6038 	 * Flags value has to be review. Values must change if we
6039 	 * which to disable it
6040 	 */
6041 	if (sc->base_params->bt_session_2) {
6042 		btconfig2k.flags = flags;
6043 		btconfig2k.max_kill = 5;
6044 		btconfig2k.bt3_t7_timer = 1;
6045 		btconfig2k.kill_ack = htole32(0xffff0000);
6046 		btconfig2k.kill_cts = htole32(0xffff0000);
6047 		btconfig2k.sample_time = 2;
6048 		btconfig2k.bt3_t2_timer = 0xc;
6049 
6050 		for (i = 0; i < 12; i++)
6051 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6052 		btconfig2k.valid = htole16(0xff);
6053 		btconfig2k.prio_boost = htole32(0xf0);
6054 		DPRINTF(sc, IWN_DEBUG_RESET,
6055 		    "%s: configuring advanced bluetooth coexistence"
6056 		    " session 2, flags : 0x%x\n",
6057 		    __func__,
6058 		    flags);
6059 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6060 		    sizeof(btconfig2k), 1);
6061 	} else {
6062 		btconfig.flags = flags;
6063 		btconfig.max_kill = 5;
6064 		btconfig.bt3_t7_timer = 1;
6065 		btconfig.kill_ack = htole32(0xffff0000);
6066 		btconfig.kill_cts = htole32(0xffff0000);
6067 		btconfig.sample_time = 2;
6068 		btconfig.bt3_t2_timer = 0xc;
6069 
6070 		for (i = 0; i < 12; i++)
6071 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6072 		btconfig.valid = htole16(0xff);
6073 		btconfig.prio_boost = 0xf0;
6074 		DPRINTF(sc, IWN_DEBUG_RESET,
6075 		    "%s: configuring advanced bluetooth coexistence,"
6076 		    " flags : 0x%x\n",
6077 		    __func__,
6078 		    flags);
6079 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6080 		    sizeof(btconfig), 1);
6081 	}
6082 
6083 	if (error != 0)
6084 		return error;
6085 
6086 	memset(&btprio, 0, sizeof btprio);
6087 	btprio.calib_init1 = 0x6;
6088 	btprio.calib_init2 = 0x7;
6089 	btprio.calib_periodic_low1 = 0x2;
6090 	btprio.calib_periodic_low2 = 0x3;
6091 	btprio.calib_periodic_high1 = 0x4;
6092 	btprio.calib_periodic_high2 = 0x5;
6093 	btprio.dtim = 0x6;
6094 	btprio.scan52 = 0x8;
6095 	btprio.scan24 = 0xa;
6096 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6097 	    1);
6098 	if (error != 0)
6099 		return error;
6100 
6101 	/* Force BT state machine change. */
6102 	memset(&btprot, 0, sizeof btprot);
6103 	btprot.open = 1;
6104 	btprot.type = 1;
6105 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6106 	if (error != 0)
6107 		return error;
6108 	btprot.open = 0;
6109 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6110 }
6111 
6112 static int
6113 iwn5000_runtime_calib(struct iwn_softc *sc)
6114 {
6115 	struct iwn5000_calib_config cmd;
6116 
6117 	memset(&cmd, 0, sizeof cmd);
6118 	cmd.ucode.once.enable = 0xffffffff;
6119 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6120 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6121 	    "%s: configuring runtime calibration\n", __func__);
6122 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6123 }
6124 
6125 static int
6126 iwn_config(struct iwn_softc *sc)
6127 {
6128 	struct iwn_ops *ops = &sc->ops;
6129 	struct ifnet *ifp = sc->sc_ifp;
6130 	struct ieee80211com *ic = ifp->if_l2com;
6131 	uint32_t txmask;
6132 	uint16_t rxchain;
6133 	int error;
6134 
6135 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6136 
6137 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6138 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6139 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6140 		    " exclusive each together. Review NIC config file. Conf"
6141 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6142 		    sc->base_params->calib_need,
6143 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6144 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6145 		return (EINVAL);
6146 	}
6147 
6148 	/* Compute temperature calib if needed. Will be send by send calib */
6149 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6150 		error = iwn5000_temp_offset_calib(sc);
6151 		if (error != 0) {
6152 			device_printf(sc->sc_dev,
6153 			    "%s: could not set temperature offset\n", __func__);
6154 			return (error);
6155 		}
6156 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6157 		error = iwn5000_temp_offset_calibv2(sc);
6158 		if (error != 0) {
6159 			device_printf(sc->sc_dev,
6160 			    "%s: could not compute temperature offset v2\n",
6161 			    __func__);
6162 			return (error);
6163 		}
6164 	}
6165 
6166 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6167 		/* Configure runtime DC calibration. */
6168 		error = iwn5000_runtime_calib(sc);
6169 		if (error != 0) {
6170 			device_printf(sc->sc_dev,
6171 			    "%s: could not configure runtime calibration\n",
6172 			    __func__);
6173 			return error;
6174 		}
6175 	}
6176 
6177 	/* Configure valid TX chains for >=5000 Series. */
6178 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6179 		txmask = htole32(sc->txchainmask);
6180 		DPRINTF(sc, IWN_DEBUG_RESET,
6181 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6182 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6183 		    sizeof txmask, 0);
6184 		if (error != 0) {
6185 			device_printf(sc->sc_dev,
6186 			    "%s: could not configure valid TX chains, "
6187 			    "error %d\n", __func__, error);
6188 			return error;
6189 		}
6190 	}
6191 
6192 	/* Configure bluetooth coexistence. */
6193 	error = 0;
6194 
6195 	/* Configure bluetooth coexistence if needed. */
6196 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6197 		error = iwn_send_advanced_btcoex(sc);
6198 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6199 		error = iwn_send_btcoex(sc);
6200 
6201 	if (error != 0) {
6202 		device_printf(sc->sc_dev,
6203 		    "%s: could not configure bluetooth coexistence, error %d\n",
6204 		    __func__, error);
6205 		return error;
6206 	}
6207 
6208 	/* Set mode, channel, RX filter and enable RX. */
6209 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6210 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6211 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6212 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6213 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6214 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6215 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6216 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6217 	switch (ic->ic_opmode) {
6218 	case IEEE80211_M_STA:
6219 		sc->rxon->mode = IWN_MODE_STA;
6220 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6221 		break;
6222 	case IEEE80211_M_MONITOR:
6223 		sc->rxon->mode = IWN_MODE_MONITOR;
6224 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6225 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6226 		break;
6227 	default:
6228 		/* Should not get there. */
6229 		break;
6230 	}
6231 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6232 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6233 	sc->rxon->ht_single_mask = 0xff;
6234 	sc->rxon->ht_dual_mask = 0xff;
6235 	sc->rxon->ht_triple_mask = 0xff;
6236 	rxchain =
6237 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6238 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6239 	    IWN_RXCHAIN_IDLE_COUNT(2);
6240 	sc->rxon->rxchain = htole16(rxchain);
6241 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6242 	if (sc->sc_is_scanning)
6243 		device_printf(sc->sc_dev,
6244 		    "%s: is_scanning set, before RXON\n",
6245 		    __func__);
6246 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6247 	if (error != 0) {
6248 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6249 		    __func__);
6250 		return error;
6251 	}
6252 
6253 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6254 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6255 		    __func__);
6256 		return error;
6257 	}
6258 
6259 	/* Configuration has changed, set TX power accordingly. */
6260 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6261 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6262 		    __func__);
6263 		return error;
6264 	}
6265 
6266 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6267 		device_printf(sc->sc_dev,
6268 		    "%s: could not set critical temperature\n", __func__);
6269 		return error;
6270 	}
6271 
6272 	/* Set power saving level to CAM during initialization. */
6273 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6274 		device_printf(sc->sc_dev,
6275 		    "%s: could not set power saving level\n", __func__);
6276 		return error;
6277 	}
6278 
6279 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6280 
6281 	return 0;
6282 }
6283 
6284 /*
6285  * Add an ssid element to a frame.
6286  */
6287 static uint8_t *
6288 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6289 {
6290 	*frm++ = IEEE80211_ELEMID_SSID;
6291 	*frm++ = len;
6292 	memcpy(frm, ssid, len);
6293 	return frm + len;
6294 }
6295 
6296 static uint16_t
6297 iwn_get_active_dwell_time(struct iwn_softc *sc,
6298     struct ieee80211_channel *c, uint8_t n_probes)
6299 {
6300 	/* No channel? Default to 2GHz settings */
6301 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6302 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6303 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6304 	}
6305 
6306 	/* 5GHz dwell time */
6307 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6308 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6309 }
6310 
6311 /*
6312  * Limit the total dwell time to 85% of the beacon interval.
6313  *
6314  * Returns the dwell time in milliseconds.
6315  */
6316 static uint16_t
6317 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6318 {
6319 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6320 	struct ieee80211vap *vap = NULL;
6321 	int bintval = 0;
6322 
6323 	/* bintval is in TU (1.024mS) */
6324 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6325 		vap = TAILQ_FIRST(&ic->ic_vaps);
6326 		bintval = vap->iv_bss->ni_intval;
6327 	}
6328 
6329 	/*
6330 	 * If it's non-zero, we should calculate the minimum of
6331 	 * it and the DWELL_BASE.
6332 	 *
6333 	 * XXX Yes, the math should take into account that bintval
6334 	 * is 1.024mS, not 1mS..
6335 	 */
6336 	if (bintval > 0) {
6337 		DPRINTF(sc, IWN_DEBUG_SCAN,
6338 		    "%s: bintval=%d\n",
6339 		    __func__,
6340 		    bintval);
6341 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6342 	}
6343 
6344 	/* No association context? Default */
6345 	return (IWN_PASSIVE_DWELL_BASE);
6346 }
6347 
6348 static uint16_t
6349 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6350 {
6351 	uint16_t passive;
6352 
6353 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6354 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6355 	} else {
6356 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6357 	}
6358 
6359 	/* Clamp to the beacon interval if we're associated */
6360 	return (iwn_limit_dwell(sc, passive));
6361 }
6362 
6363 static int
6364 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6365     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6366 {
6367 	struct ifnet *ifp = sc->sc_ifp;
6368 	struct ieee80211com *ic = ifp->if_l2com;
6369 	struct ieee80211_node *ni = vap->iv_bss;
6370 	struct iwn_scan_hdr *hdr;
6371 	struct iwn_cmd_data *tx;
6372 	struct iwn_scan_essid *essid;
6373 	struct iwn_scan_chan *chan;
6374 	struct ieee80211_frame *wh;
6375 	struct ieee80211_rateset *rs;
6376 	uint8_t *buf, *frm;
6377 	uint16_t rxchain;
6378 	uint8_t txant;
6379 	int buflen, error;
6380 	int is_active;
6381 	uint16_t dwell_active, dwell_passive;
6382 	uint32_t extra, scan_service_time;
6383 
6384 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6385 
6386 	/*
6387 	 * We are absolutely not allowed to send a scan command when another
6388 	 * scan command is pending.
6389 	 */
6390 	if (sc->sc_is_scanning) {
6391 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6392 		    __func__);
6393 		return (EAGAIN);
6394 	}
6395 
6396 	/* Assign the scan channel */
6397 	c = ic->ic_curchan;
6398 
6399 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6400 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6401 	if (buf == NULL) {
6402 		device_printf(sc->sc_dev,
6403 		    "%s: could not allocate buffer for scan command\n",
6404 		    __func__);
6405 		return ENOMEM;
6406 	}
6407 	hdr = (struct iwn_scan_hdr *)buf;
6408 	/*
6409 	 * Move to the next channel if no frames are received within 10ms
6410 	 * after sending the probe request.
6411 	 */
6412 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6413 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6414 	/*
6415 	 * Max needs to be greater than active and passive and quiet!
6416 	 * It's also in microseconds!
6417 	 */
6418 	hdr->max_svc = htole32(250 * 1024);
6419 
6420 	/*
6421 	 * Reset scan: interval=100
6422 	 * Normal scan: interval=becaon interval
6423 	 * suspend_time: 100 (TU)
6424 	 *
6425 	 */
6426 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6427 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6428 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6429 	hdr->pause_svc = htole32(scan_service_time);
6430 
6431 	/* Select antennas for scanning. */
6432 	rxchain =
6433 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6434 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6435 	    IWN_RXCHAIN_DRIVER_FORCE;
6436 	if (IEEE80211_IS_CHAN_A(c) &&
6437 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6438 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6439 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6440 	} else	/* Use all available RX antennas. */
6441 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6442 	hdr->rxchain = htole16(rxchain);
6443 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6444 
6445 	tx = (struct iwn_cmd_data *)(hdr + 1);
6446 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6447 	tx->id = sc->broadcast_id;
6448 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6449 
6450 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6451 		/* Send probe requests at 6Mbps. */
6452 		tx->rate = htole32(0xd);
6453 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6454 	} else {
6455 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6456 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6457 		    sc->rxon->associd && sc->rxon->chan > 14)
6458 			tx->rate = htole32(0xd);
6459 		else {
6460 			/* Send probe requests at 1Mbps. */
6461 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6462 		}
6463 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6464 	}
6465 	/* Use the first valid TX antenna. */
6466 	txant = IWN_LSB(sc->txchainmask);
6467 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6468 
6469 	/*
6470 	 * Only do active scanning if we're announcing a probe request
6471 	 * for a given SSID (or more, if we ever add it to the driver.)
6472 	 */
6473 	is_active = 0;
6474 
6475 	/*
6476 	 * If we're scanning for a specific SSID, add it to the command.
6477 	 *
6478 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6479 	 */
6480 	essid = (struct iwn_scan_essid *)(tx + 1);
6481 	if (ss != NULL) {
6482 		if (ss->ss_ssid[0].len != 0) {
6483 			essid[0].id = IEEE80211_ELEMID_SSID;
6484 			essid[0].len = ss->ss_ssid[0].len;
6485 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6486 		}
6487 
6488 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6489 		    __func__,
6490 		    ss->ss_ssid[0].len,
6491 		    ss->ss_ssid[0].len,
6492 		    ss->ss_ssid[0].ssid);
6493 
6494 		if (ss->ss_nssid > 0)
6495 			is_active = 1;
6496 	}
6497 
6498 	/*
6499 	 * Build a probe request frame.  Most of the following code is a
6500 	 * copy & paste of what is done in net80211.
6501 	 */
6502 	wh = (struct ieee80211_frame *)(essid + 20);
6503 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6504 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6505 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6506 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6507 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6508 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6509 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6510 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6511 
6512 	frm = (uint8_t *)(wh + 1);
6513 	frm = ieee80211_add_ssid(frm, NULL, 0);
6514 	frm = ieee80211_add_rates(frm, rs);
6515 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6516 		frm = ieee80211_add_xrates(frm, rs);
6517 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6518 		frm = ieee80211_add_htcap(frm, ni);
6519 
6520 	/* Set length of probe request. */
6521 	tx->len = htole16(frm - (uint8_t *)wh);
6522 
6523 	/*
6524 	 * If active scanning is requested but a certain channel is
6525 	 * marked passive, we can do active scanning if we detect
6526 	 * transmissions.
6527 	 *
6528 	 * There is an issue with some firmware versions that triggers
6529 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6530 	 * on a radar channel even though this means that we should NOT
6531 	 * send probes.
6532 	 *
6533 	 * The "good CRC threshold" is the number of frames that we
6534 	 * need to receive during our dwell time on a channel before
6535 	 * sending out probes -- setting this to a huge value will
6536 	 * mean we never reach it, but at the same time work around
6537 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6538 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6539 	 *
6540 	 * This was fixed in later versions along with some other
6541 	 * scan changes, and the threshold behaves as a flag in those
6542 	 * versions.
6543 	 */
6544 
6545 	/*
6546 	 * If we're doing active scanning, set the crc_threshold
6547 	 * to a suitable value.  This is different to active veruss
6548 	 * passive scanning depending upon the channel flags; the
6549 	 * firmware will obey that particular check for us.
6550 	 */
6551 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6552 		hdr->crc_threshold = is_active ?
6553 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6554 	else
6555 		hdr->crc_threshold = is_active ?
6556 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6557 
6558 	chan = (struct iwn_scan_chan *)frm;
6559 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6560 	chan->flags = 0;
6561 	if (ss->ss_nssid > 0)
6562 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6563 	chan->dsp_gain = 0x6e;
6564 
6565 	/*
6566 	 * Set the passive/active flag depending upon the channel mode.
6567 	 * XXX TODO: take the is_active flag into account as well?
6568 	 */
6569 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6570 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6571 	else
6572 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6573 
6574 	/*
6575 	 * Calculate the active/passive dwell times.
6576 	 */
6577 
6578 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6579 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6580 
6581 	/* Make sure they're valid */
6582 	if (dwell_passive <= dwell_active)
6583 		dwell_passive = dwell_active + 1;
6584 
6585 	chan->active = htole16(dwell_active);
6586 	chan->passive = htole16(dwell_passive);
6587 
6588 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6589 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6590 		chan->rf_gain = 0x3b;
6591 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6592 		chan->rf_gain = 0x3b;
6593 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6594 		chan->rf_gain = 0x28;
6595 	} else {
6596 		chan->rf_gain = 0x28;
6597 	}
6598 
6599 	DPRINTF(sc, IWN_DEBUG_STATE,
6600 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6601 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6602 	    "isactive=%d numssid=%d\n", __func__,
6603 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6604 	    dwell_active, dwell_passive, scan_service_time,
6605 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6606 
6607 	hdr->nchan++;
6608 	chan++;
6609 	buflen = (uint8_t *)chan - buf;
6610 	hdr->len = htole16(buflen);
6611 
6612 	if (sc->sc_is_scanning) {
6613 		device_printf(sc->sc_dev,
6614 		    "%s: called with is_scanning set!\n",
6615 		    __func__);
6616 	}
6617 	sc->sc_is_scanning = 1;
6618 
6619 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6620 	    hdr->nchan);
6621 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6622 	free(buf, M_DEVBUF);
6623 
6624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6625 
6626 	return error;
6627 }
6628 
6629 static int
6630 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6631 {
6632 	struct iwn_ops *ops = &sc->ops;
6633 	struct ifnet *ifp = sc->sc_ifp;
6634 	struct ieee80211com *ic = ifp->if_l2com;
6635 	struct ieee80211_node *ni = vap->iv_bss;
6636 	int error;
6637 
6638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6639 
6640 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6641 	/* Update adapter configuration. */
6642 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6643 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6644 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6645 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6646 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6647 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6648 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6649 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6650 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6651 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6652 		sc->rxon->cck_mask  = 0;
6653 		sc->rxon->ofdm_mask = 0x15;
6654 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6655 		sc->rxon->cck_mask  = 0x03;
6656 		sc->rxon->ofdm_mask = 0;
6657 	} else {
6658 		/* Assume 802.11b/g. */
6659 		sc->rxon->cck_mask  = 0x03;
6660 		sc->rxon->ofdm_mask = 0x15;
6661 	}
6662 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6663 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6664 	    sc->rxon->ofdm_mask);
6665 	if (sc->sc_is_scanning)
6666 		device_printf(sc->sc_dev,
6667 		    "%s: is_scanning set, before RXON\n",
6668 		    __func__);
6669 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6670 	if (error != 0) {
6671 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6672 		    __func__, error);
6673 		return error;
6674 	}
6675 
6676 	/* Configuration has changed, set TX power accordingly. */
6677 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6678 		device_printf(sc->sc_dev,
6679 		    "%s: could not set TX power, error %d\n", __func__, error);
6680 		return error;
6681 	}
6682 	/*
6683 	 * Reconfiguring RXON clears the firmware nodes table so we must
6684 	 * add the broadcast node again.
6685 	 */
6686 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6687 		device_printf(sc->sc_dev,
6688 		    "%s: could not add broadcast node, error %d\n", __func__,
6689 		    error);
6690 		return error;
6691 	}
6692 
6693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6694 
6695 	return 0;
6696 }
6697 
6698 static int
6699 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6700 {
6701 	struct iwn_ops *ops = &sc->ops;
6702 	struct ifnet *ifp = sc->sc_ifp;
6703 	struct ieee80211com *ic = ifp->if_l2com;
6704 	struct ieee80211_node *ni = vap->iv_bss;
6705 	struct iwn_node_info node;
6706 	uint32_t htflags = 0;
6707 	int error;
6708 
6709 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6710 
6711 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6712 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6713 		/* Link LED blinks while monitoring. */
6714 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6715 		return 0;
6716 	}
6717 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6718 		device_printf(sc->sc_dev,
6719 		    "%s: could not set timing, error %d\n", __func__, error);
6720 		return error;
6721 	}
6722 
6723 	/* Update adapter configuration. */
6724 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6725 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6726 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6727 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6728 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6729 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6730 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6731 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6732 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6733 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6734 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6735 		sc->rxon->cck_mask  = 0;
6736 		sc->rxon->ofdm_mask = 0x15;
6737 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6738 		sc->rxon->cck_mask  = 0x03;
6739 		sc->rxon->ofdm_mask = 0;
6740 	} else {
6741 		/* Assume 802.11b/g. */
6742 		sc->rxon->cck_mask  = 0x0f;
6743 		sc->rxon->ofdm_mask = 0x15;
6744 	}
6745 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6746 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6747 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6748 			switch (ic->ic_curhtprotmode) {
6749 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6750 				htflags |= IWN_RXON_HT_MODEPURE40;
6751 				break;
6752 			default:
6753 				htflags |= IWN_RXON_HT_MODEMIXED;
6754 				break;
6755 			}
6756 		}
6757 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6758 			htflags |= IWN_RXON_HT_HT40MINUS;
6759 	}
6760 	sc->rxon->flags |= htole32(htflags);
6761 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6762 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6763 	    sc->rxon->chan, sc->rxon->flags);
6764 	if (sc->sc_is_scanning)
6765 		device_printf(sc->sc_dev,
6766 		    "%s: is_scanning set, before RXON\n",
6767 		    __func__);
6768 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6769 	if (error != 0) {
6770 		device_printf(sc->sc_dev,
6771 		    "%s: could not update configuration, error %d\n", __func__,
6772 		    error);
6773 		return error;
6774 	}
6775 
6776 	/* Configuration has changed, set TX power accordingly. */
6777 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6778 		device_printf(sc->sc_dev,
6779 		    "%s: could not set TX power, error %d\n", __func__, error);
6780 		return error;
6781 	}
6782 
6783 	/* Fake a join to initialize the TX rate. */
6784 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6785 	iwn_newassoc(ni, 1);
6786 
6787 	/* Add BSS node. */
6788 	memset(&node, 0, sizeof node);
6789 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6790 	node.id = IWN_ID_BSS;
6791 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6792 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6793 		case IEEE80211_HTCAP_SMPS_ENA:
6794 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6795 			break;
6796 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6797 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6798 			break;
6799 		}
6800 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6801 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6802 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6803 			node.htflags |= htole32(IWN_NODE_HT40);
6804 	}
6805 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6806 	error = ops->add_node(sc, &node, 1);
6807 	if (error != 0) {
6808 		device_printf(sc->sc_dev,
6809 		    "%s: could not add BSS node, error %d\n", __func__, error);
6810 		return error;
6811 	}
6812 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6813 	    __func__, node.id);
6814 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6815 		device_printf(sc->sc_dev,
6816 		    "%s: could not setup link quality for node %d, error %d\n",
6817 		    __func__, node.id, error);
6818 		return error;
6819 	}
6820 
6821 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6822 		device_printf(sc->sc_dev,
6823 		    "%s: could not set sensitivity, error %d\n", __func__,
6824 		    error);
6825 		return error;
6826 	}
6827 	/* Start periodic calibration timer. */
6828 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6829 	sc->calib_cnt = 0;
6830 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6831 	    sc);
6832 
6833 	/* Link LED always on while associated. */
6834 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6835 
6836 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6837 
6838 	return 0;
6839 }
6840 
6841 /*
6842  * This function is called by upper layer when an ADDBA request is received
6843  * from another STA and before the ADDBA response is sent.
6844  */
6845 static int
6846 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
6847     int baparamset, int batimeout, int baseqctl)
6848 {
6849 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
6850 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6851 	struct iwn_ops *ops = &sc->ops;
6852 	struct iwn_node *wn = (void *)ni;
6853 	struct iwn_node_info node;
6854 	uint16_t ssn;
6855 	uint8_t tid;
6856 	int error;
6857 
6858 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6859 
6860 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
6861 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
6862 
6863 	memset(&node, 0, sizeof node);
6864 	node.id = wn->id;
6865 	node.control = IWN_NODE_UPDATE;
6866 	node.flags = IWN_FLAG_SET_ADDBA;
6867 	node.addba_tid = tid;
6868 	node.addba_ssn = htole16(ssn);
6869 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
6870 	    wn->id, tid, ssn);
6871 	error = ops->add_node(sc, &node, 1);
6872 	if (error != 0)
6873 		return error;
6874 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
6875 #undef MS
6876 }
6877 
6878 /*
6879  * This function is called by upper layer on teardown of an HT-immediate
6880  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
6881  */
6882 static void
6883 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
6884 {
6885 	struct ieee80211com *ic = ni->ni_ic;
6886 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6887 	struct iwn_ops *ops = &sc->ops;
6888 	struct iwn_node *wn = (void *)ni;
6889 	struct iwn_node_info node;
6890 	uint8_t tid;
6891 
6892 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6893 
6894 	/* XXX: tid as an argument */
6895 	for (tid = 0; tid < WME_NUM_TID; tid++) {
6896 		if (&ni->ni_rx_ampdu[tid] == rap)
6897 			break;
6898 	}
6899 
6900 	memset(&node, 0, sizeof node);
6901 	node.id = wn->id;
6902 	node.control = IWN_NODE_UPDATE;
6903 	node.flags = IWN_FLAG_SET_DELBA;
6904 	node.delba_tid = tid;
6905 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
6906 	(void)ops->add_node(sc, &node, 1);
6907 	sc->sc_ampdu_rx_stop(ni, rap);
6908 }
6909 
6910 static int
6911 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6912     int dialogtoken, int baparamset, int batimeout)
6913 {
6914 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6915 	int qid;
6916 
6917 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6918 
6919 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
6920 		if (sc->qid2tap[qid] == NULL)
6921 			break;
6922 	}
6923 	if (qid == sc->ntxqs) {
6924 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
6925 		    __func__);
6926 		return 0;
6927 	}
6928 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
6929 	if (tap->txa_private == NULL) {
6930 		device_printf(sc->sc_dev,
6931 		    "%s: failed to alloc TX aggregation structure\n", __func__);
6932 		return 0;
6933 	}
6934 	sc->qid2tap[qid] = tap;
6935 	*(int *)tap->txa_private = qid;
6936 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
6937 	    batimeout);
6938 }
6939 
6940 static int
6941 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6942     int code, int baparamset, int batimeout)
6943 {
6944 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6945 	int qid = *(int *)tap->txa_private;
6946 	uint8_t tid = tap->txa_tid;
6947 	int ret;
6948 
6949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6950 
6951 	if (code == IEEE80211_STATUS_SUCCESS) {
6952 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
6953 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
6954 		if (ret != 1)
6955 			return ret;
6956 	} else {
6957 		sc->qid2tap[qid] = NULL;
6958 		free(tap->txa_private, M_DEVBUF);
6959 		tap->txa_private = NULL;
6960 	}
6961 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
6962 }
6963 
6964 /*
6965  * This function is called by upper layer when an ADDBA response is received
6966  * from another STA.
6967  */
6968 static int
6969 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6970     uint8_t tid)
6971 {
6972 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
6973 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6974 	struct iwn_ops *ops = &sc->ops;
6975 	struct iwn_node *wn = (void *)ni;
6976 	struct iwn_node_info node;
6977 	int error, qid;
6978 
6979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6980 
6981 	/* Enable TX for the specified RA/TID. */
6982 	wn->disable_tid &= ~(1 << tid);
6983 	memset(&node, 0, sizeof node);
6984 	node.id = wn->id;
6985 	node.control = IWN_NODE_UPDATE;
6986 	node.flags = IWN_FLAG_SET_DISABLE_TID;
6987 	node.disable_tid = htole16(wn->disable_tid);
6988 	error = ops->add_node(sc, &node, 1);
6989 	if (error != 0)
6990 		return 0;
6991 
6992 	if ((error = iwn_nic_lock(sc)) != 0)
6993 		return 0;
6994 	qid = *(int *)tap->txa_private;
6995 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
6996 	    __func__, wn->id, tid, tap->txa_start, qid);
6997 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
6998 	iwn_nic_unlock(sc);
6999 
7000 	iwn_set_link_quality(sc, ni);
7001 	return 1;
7002 }
7003 
7004 static void
7005 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7006 {
7007 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7008 	struct iwn_ops *ops = &sc->ops;
7009 	uint8_t tid = tap->txa_tid;
7010 	int qid;
7011 
7012 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7013 
7014 	sc->sc_addba_stop(ni, tap);
7015 
7016 	if (tap->txa_private == NULL)
7017 		return;
7018 
7019 	qid = *(int *)tap->txa_private;
7020 	if (sc->txq[qid].queued != 0)
7021 		return;
7022 	if (iwn_nic_lock(sc) != 0)
7023 		return;
7024 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7025 	iwn_nic_unlock(sc);
7026 	sc->qid2tap[qid] = NULL;
7027 	free(tap->txa_private, M_DEVBUF);
7028 	tap->txa_private = NULL;
7029 }
7030 
7031 static void
7032 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7033     int qid, uint8_t tid, uint16_t ssn)
7034 {
7035 	struct iwn_node *wn = (void *)ni;
7036 
7037 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7038 
7039 	/* Stop TX scheduler while we're changing its configuration. */
7040 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7041 	    IWN4965_TXQ_STATUS_CHGACT);
7042 
7043 	/* Assign RA/TID translation to the queue. */
7044 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7045 	    wn->id << 4 | tid);
7046 
7047 	/* Enable chain-building mode for the queue. */
7048 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7049 
7050 	/* Set starting sequence number from the ADDBA request. */
7051 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7052 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7053 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7054 
7055 	/* Set scheduler window size. */
7056 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7057 	    IWN_SCHED_WINSZ);
7058 	/* Set scheduler frame limit. */
7059 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7060 	    IWN_SCHED_LIMIT << 16);
7061 
7062 	/* Enable interrupts for the queue. */
7063 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7064 
7065 	/* Mark the queue as active. */
7066 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7067 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7068 	    iwn_tid2fifo[tid] << 1);
7069 }
7070 
7071 static void
7072 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7073 {
7074 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7075 
7076 	/* Stop TX scheduler while we're changing its configuration. */
7077 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7078 	    IWN4965_TXQ_STATUS_CHGACT);
7079 
7080 	/* Set starting sequence number from the ADDBA request. */
7081 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7082 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7083 
7084 	/* Disable interrupts for the queue. */
7085 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7086 
7087 	/* Mark the queue as inactive. */
7088 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7089 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7090 }
7091 
7092 static void
7093 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7094     int qid, uint8_t tid, uint16_t ssn)
7095 {
7096 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7097 
7098 	struct iwn_node *wn = (void *)ni;
7099 
7100 	/* Stop TX scheduler while we're changing its configuration. */
7101 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7102 	    IWN5000_TXQ_STATUS_CHGACT);
7103 
7104 	/* Assign RA/TID translation to the queue. */
7105 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7106 	    wn->id << 4 | tid);
7107 
7108 	/* Enable chain-building mode for the queue. */
7109 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7110 
7111 	/* Enable aggregation for the queue. */
7112 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7113 
7114 	/* Set starting sequence number from the ADDBA request. */
7115 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7116 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7117 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7118 
7119 	/* Set scheduler window size and frame limit. */
7120 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7121 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7122 
7123 	/* Enable interrupts for the queue. */
7124 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7125 
7126 	/* Mark the queue as active. */
7127 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7128 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7129 }
7130 
7131 static void
7132 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7133 {
7134 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7135 
7136 	/* Stop TX scheduler while we're changing its configuration. */
7137 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7138 	    IWN5000_TXQ_STATUS_CHGACT);
7139 
7140 	/* Disable aggregation for the queue. */
7141 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7142 
7143 	/* Set starting sequence number from the ADDBA request. */
7144 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7145 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7146 
7147 	/* Disable interrupts for the queue. */
7148 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7149 
7150 	/* Mark the queue as inactive. */
7151 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7152 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7153 }
7154 
7155 /*
7156  * Query calibration tables from the initialization firmware.  We do this
7157  * only once at first boot.  Called from a process context.
7158  */
7159 static int
7160 iwn5000_query_calibration(struct iwn_softc *sc)
7161 {
7162 	struct iwn5000_calib_config cmd;
7163 	int error;
7164 
7165 	memset(&cmd, 0, sizeof cmd);
7166 	cmd.ucode.once.enable = htole32(0xffffffff);
7167 	cmd.ucode.once.start  = htole32(0xffffffff);
7168 	cmd.ucode.once.send   = htole32(0xffffffff);
7169 	cmd.ucode.flags       = htole32(0xffffffff);
7170 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7171 	    __func__);
7172 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7173 	if (error != 0)
7174 		return error;
7175 
7176 	/* Wait at most two seconds for calibration to complete. */
7177 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7178 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7179 	return error;
7180 }
7181 
7182 /*
7183  * Send calibration results to the runtime firmware.  These results were
7184  * obtained on first boot from the initialization firmware.
7185  */
7186 static int
7187 iwn5000_send_calibration(struct iwn_softc *sc)
7188 {
7189 	int idx, error;
7190 
7191 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7192 		if (!(sc->base_params->calib_need & (1<<idx))) {
7193 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7194 			    "No need of calib %d\n",
7195 			    idx);
7196 			continue; /* no need for this calib */
7197 		}
7198 		if (sc->calibcmd[idx].buf == NULL) {
7199 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7200 			    "Need calib idx : %d but no available data\n",
7201 			    idx);
7202 			continue;
7203 		}
7204 
7205 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7206 		    "send calibration result idx=%d len=%d\n", idx,
7207 		    sc->calibcmd[idx].len);
7208 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7209 		    sc->calibcmd[idx].len, 0);
7210 		if (error != 0) {
7211 			device_printf(sc->sc_dev,
7212 			    "%s: could not send calibration result, error %d\n",
7213 			    __func__, error);
7214 			return error;
7215 		}
7216 	}
7217 	return 0;
7218 }
7219 
7220 static int
7221 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7222 {
7223 	struct iwn5000_wimax_coex wimax;
7224 
7225 #if 0
7226 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7227 		/* Enable WiMAX coexistence for combo adapters. */
7228 		wimax.flags =
7229 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7230 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7231 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7232 		    IWN_WIMAX_COEX_ENABLE;
7233 		memcpy(wimax.events, iwn6050_wimax_events,
7234 		    sizeof iwn6050_wimax_events);
7235 	} else
7236 #endif
7237 	{
7238 		/* Disable WiMAX coexistence. */
7239 		wimax.flags = 0;
7240 		memset(wimax.events, 0, sizeof wimax.events);
7241 	}
7242 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7243 	    __func__);
7244 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7245 }
7246 
7247 static int
7248 iwn5000_crystal_calib(struct iwn_softc *sc)
7249 {
7250 	struct iwn5000_phy_calib_crystal cmd;
7251 
7252 	memset(&cmd, 0, sizeof cmd);
7253 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7254 	cmd.ngroups = 1;
7255 	cmd.isvalid = 1;
7256 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7257 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7258 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7259 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7260 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7261 }
7262 
7263 static int
7264 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7265 {
7266 	struct iwn5000_phy_calib_temp_offset cmd;
7267 
7268 	memset(&cmd, 0, sizeof cmd);
7269 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7270 	cmd.ngroups = 1;
7271 	cmd.isvalid = 1;
7272 	if (sc->eeprom_temp != 0)
7273 		cmd.offset = htole16(sc->eeprom_temp);
7274 	else
7275 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7276 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7277 	    le16toh(cmd.offset));
7278 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7279 }
7280 
7281 static int
7282 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7283 {
7284 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7285 
7286 	memset(&cmd, 0, sizeof cmd);
7287 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7288 	cmd.ngroups = 1;
7289 	cmd.isvalid = 1;
7290 	if (sc->eeprom_temp != 0) {
7291 		cmd.offset_low = htole16(sc->eeprom_temp);
7292 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7293 	} else {
7294 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7295 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7296 	}
7297 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7298 
7299 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7300 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7301 	    le16toh(cmd.offset_low),
7302 	    le16toh(cmd.offset_high),
7303 	    le16toh(cmd.burnt_voltage_ref));
7304 
7305 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7306 }
7307 
7308 /*
7309  * This function is called after the runtime firmware notifies us of its
7310  * readiness (called in a process context).
7311  */
7312 static int
7313 iwn4965_post_alive(struct iwn_softc *sc)
7314 {
7315 	int error, qid;
7316 
7317 	if ((error = iwn_nic_lock(sc)) != 0)
7318 		return error;
7319 
7320 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7321 
7322 	/* Clear TX scheduler state in SRAM. */
7323 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7324 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7325 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7326 
7327 	/* Set physical address of TX scheduler rings (1KB aligned). */
7328 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7329 
7330 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7331 
7332 	/* Disable chain mode for all our 16 queues. */
7333 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7334 
7335 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7336 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7337 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7338 
7339 		/* Set scheduler window size. */
7340 		iwn_mem_write(sc, sc->sched_base +
7341 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7342 		/* Set scheduler frame limit. */
7343 		iwn_mem_write(sc, sc->sched_base +
7344 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7345 		    IWN_SCHED_LIMIT << 16);
7346 	}
7347 
7348 	/* Enable interrupts for all our 16 queues. */
7349 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7350 	/* Identify TX FIFO rings (0-7). */
7351 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7352 
7353 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7354 	for (qid = 0; qid < 7; qid++) {
7355 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7356 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7357 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7358 	}
7359 	iwn_nic_unlock(sc);
7360 	return 0;
7361 }
7362 
7363 /*
7364  * This function is called after the initialization or runtime firmware
7365  * notifies us of its readiness (called in a process context).
7366  */
7367 static int
7368 iwn5000_post_alive(struct iwn_softc *sc)
7369 {
7370 	int error, qid;
7371 
7372 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7373 
7374 	/* Switch to using ICT interrupt mode. */
7375 	iwn5000_ict_reset(sc);
7376 
7377 	if ((error = iwn_nic_lock(sc)) != 0){
7378 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7379 		return error;
7380 	}
7381 
7382 	/* Clear TX scheduler state in SRAM. */
7383 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7384 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7385 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7386 
7387 	/* Set physical address of TX scheduler rings (1KB aligned). */
7388 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7389 
7390 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7391 
7392 	/* Enable chain mode for all queues, except command queue. */
7393 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7394 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7395 	else
7396 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7397 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7398 
7399 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7400 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7401 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7402 
7403 		iwn_mem_write(sc, sc->sched_base +
7404 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7405 		/* Set scheduler window size and frame limit. */
7406 		iwn_mem_write(sc, sc->sched_base +
7407 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7408 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7409 	}
7410 
7411 	/* Enable interrupts for all our 20 queues. */
7412 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7413 	/* Identify TX FIFO rings (0-7). */
7414 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7415 
7416 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7417 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7418 		/* Mark TX rings as active. */
7419 		for (qid = 0; qid < 11; qid++) {
7420 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7421 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7422 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7423 		}
7424 	} else {
7425 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7426 		for (qid = 0; qid < 7; qid++) {
7427 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7428 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7429 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7430 		}
7431 	}
7432 	iwn_nic_unlock(sc);
7433 
7434 	/* Configure WiMAX coexistence for combo adapters. */
7435 	error = iwn5000_send_wimax_coex(sc);
7436 	if (error != 0) {
7437 		device_printf(sc->sc_dev,
7438 		    "%s: could not configure WiMAX coexistence, error %d\n",
7439 		    __func__, error);
7440 		return error;
7441 	}
7442 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7443 		/* Perform crystal calibration. */
7444 		error = iwn5000_crystal_calib(sc);
7445 		if (error != 0) {
7446 			device_printf(sc->sc_dev,
7447 			    "%s: crystal calibration failed, error %d\n",
7448 			    __func__, error);
7449 			return error;
7450 		}
7451 	}
7452 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7453 		/* Query calibration from the initialization firmware. */
7454 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7455 			device_printf(sc->sc_dev,
7456 			    "%s: could not query calibration, error %d\n",
7457 			    __func__, error);
7458 			return error;
7459 		}
7460 		/*
7461 		 * We have the calibration results now, reboot with the
7462 		 * runtime firmware (call ourselves recursively!)
7463 		 */
7464 		iwn_hw_stop(sc);
7465 		error = iwn_hw_init(sc);
7466 	} else {
7467 		/* Send calibration results to runtime firmware. */
7468 		error = iwn5000_send_calibration(sc);
7469 	}
7470 
7471 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7472 
7473 	return error;
7474 }
7475 
7476 /*
7477  * The firmware boot code is small and is intended to be copied directly into
7478  * the NIC internal memory (no DMA transfer).
7479  */
7480 static int
7481 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7482 {
7483 	int error, ntries;
7484 
7485 	size /= sizeof (uint32_t);
7486 
7487 	if ((error = iwn_nic_lock(sc)) != 0)
7488 		return error;
7489 
7490 	/* Copy microcode image into NIC memory. */
7491 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7492 	    (const uint32_t *)ucode, size);
7493 
7494 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7495 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7496 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7497 
7498 	/* Start boot load now. */
7499 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7500 
7501 	/* Wait for transfer to complete. */
7502 	for (ntries = 0; ntries < 1000; ntries++) {
7503 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7504 		    IWN_BSM_WR_CTRL_START))
7505 			break;
7506 		DELAY(10);
7507 	}
7508 	if (ntries == 1000) {
7509 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7510 		    __func__);
7511 		iwn_nic_unlock(sc);
7512 		return ETIMEDOUT;
7513 	}
7514 
7515 	/* Enable boot after power up. */
7516 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7517 
7518 	iwn_nic_unlock(sc);
7519 	return 0;
7520 }
7521 
7522 static int
7523 iwn4965_load_firmware(struct iwn_softc *sc)
7524 {
7525 	struct iwn_fw_info *fw = &sc->fw;
7526 	struct iwn_dma_info *dma = &sc->fw_dma;
7527 	int error;
7528 
7529 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7530 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7531 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7532 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7533 	    fw->init.text, fw->init.textsz);
7534 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7535 
7536 	/* Tell adapter where to find initialization sections. */
7537 	if ((error = iwn_nic_lock(sc)) != 0)
7538 		return error;
7539 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7540 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7541 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7542 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7543 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7544 	iwn_nic_unlock(sc);
7545 
7546 	/* Load firmware boot code. */
7547 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7548 	if (error != 0) {
7549 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7550 		    __func__);
7551 		return error;
7552 	}
7553 	/* Now press "execute". */
7554 	IWN_WRITE(sc, IWN_RESET, 0);
7555 
7556 	/* Wait at most one second for first alive notification. */
7557 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7558 		device_printf(sc->sc_dev,
7559 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7560 		    __func__, error);
7561 		return error;
7562 	}
7563 
7564 	/* Retrieve current temperature for initial TX power calibration. */
7565 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7566 	sc->temp = iwn4965_get_temperature(sc);
7567 
7568 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7569 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7570 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7571 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7572 	    fw->main.text, fw->main.textsz);
7573 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7574 
7575 	/* Tell adapter where to find runtime sections. */
7576 	if ((error = iwn_nic_lock(sc)) != 0)
7577 		return error;
7578 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7579 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7580 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7581 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7582 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7583 	    IWN_FW_UPDATED | fw->main.textsz);
7584 	iwn_nic_unlock(sc);
7585 
7586 	return 0;
7587 }
7588 
7589 static int
7590 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7591     const uint8_t *section, int size)
7592 {
7593 	struct iwn_dma_info *dma = &sc->fw_dma;
7594 	int error;
7595 
7596 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7597 
7598 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7599 	memcpy(dma->vaddr, section, size);
7600 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7601 
7602 	if ((error = iwn_nic_lock(sc)) != 0)
7603 		return error;
7604 
7605 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7606 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7607 
7608 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7609 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7610 	    IWN_LOADDR(dma->paddr));
7611 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7612 	    IWN_HIADDR(dma->paddr) << 28 | size);
7613 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7614 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7615 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7616 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7617 
7618 	/* Kick Flow Handler to start DMA transfer. */
7619 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7620 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7621 
7622 	iwn_nic_unlock(sc);
7623 
7624 	/* Wait at most five seconds for FH DMA transfer to complete. */
7625 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7626 }
7627 
7628 static int
7629 iwn5000_load_firmware(struct iwn_softc *sc)
7630 {
7631 	struct iwn_fw_part *fw;
7632 	int error;
7633 
7634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7635 
7636 	/* Load the initialization firmware on first boot only. */
7637 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7638 	    &sc->fw.main : &sc->fw.init;
7639 
7640 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7641 	    fw->text, fw->textsz);
7642 	if (error != 0) {
7643 		device_printf(sc->sc_dev,
7644 		    "%s: could not load firmware %s section, error %d\n",
7645 		    __func__, ".text", error);
7646 		return error;
7647 	}
7648 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7649 	    fw->data, fw->datasz);
7650 	if (error != 0) {
7651 		device_printf(sc->sc_dev,
7652 		    "%s: could not load firmware %s section, error %d\n",
7653 		    __func__, ".data", error);
7654 		return error;
7655 	}
7656 
7657 	/* Now press "execute". */
7658 	IWN_WRITE(sc, IWN_RESET, 0);
7659 	return 0;
7660 }
7661 
7662 /*
7663  * Extract text and data sections from a legacy firmware image.
7664  */
7665 static int
7666 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7667 {
7668 	const uint32_t *ptr;
7669 	size_t hdrlen = 24;
7670 	uint32_t rev;
7671 
7672 	ptr = (const uint32_t *)fw->data;
7673 	rev = le32toh(*ptr++);
7674 
7675 	/* Check firmware API version. */
7676 	if (IWN_FW_API(rev) <= 1) {
7677 		device_printf(sc->sc_dev,
7678 		    "%s: bad firmware, need API version >=2\n", __func__);
7679 		return EINVAL;
7680 	}
7681 	if (IWN_FW_API(rev) >= 3) {
7682 		/* Skip build number (version 2 header). */
7683 		hdrlen += 4;
7684 		ptr++;
7685 	}
7686 	if (fw->size < hdrlen) {
7687 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7688 		    __func__, fw->size);
7689 		return EINVAL;
7690 	}
7691 	fw->main.textsz = le32toh(*ptr++);
7692 	fw->main.datasz = le32toh(*ptr++);
7693 	fw->init.textsz = le32toh(*ptr++);
7694 	fw->init.datasz = le32toh(*ptr++);
7695 	fw->boot.textsz = le32toh(*ptr++);
7696 
7697 	/* Check that all firmware sections fit. */
7698 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7699 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7700 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7701 		    __func__, fw->size);
7702 		return EINVAL;
7703 	}
7704 
7705 	/* Get pointers to firmware sections. */
7706 	fw->main.text = (const uint8_t *)ptr;
7707 	fw->main.data = fw->main.text + fw->main.textsz;
7708 	fw->init.text = fw->main.data + fw->main.datasz;
7709 	fw->init.data = fw->init.text + fw->init.textsz;
7710 	fw->boot.text = fw->init.data + fw->init.datasz;
7711 	return 0;
7712 }
7713 
7714 /*
7715  * Extract text and data sections from a TLV firmware image.
7716  */
7717 static int
7718 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7719     uint16_t alt)
7720 {
7721 	const struct iwn_fw_tlv_hdr *hdr;
7722 	const struct iwn_fw_tlv *tlv;
7723 	const uint8_t *ptr, *end;
7724 	uint64_t altmask;
7725 	uint32_t len, tmp;
7726 
7727 	if (fw->size < sizeof (*hdr)) {
7728 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7729 		    __func__, fw->size);
7730 		return EINVAL;
7731 	}
7732 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7733 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7734 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7735 		    __func__, le32toh(hdr->signature));
7736 		return EINVAL;
7737 	}
7738 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7739 	    le32toh(hdr->build));
7740 
7741 	/*
7742 	 * Select the closest supported alternative that is less than
7743 	 * or equal to the specified one.
7744 	 */
7745 	altmask = le64toh(hdr->altmask);
7746 	while (alt > 0 && !(altmask & (1ULL << alt)))
7747 		alt--;	/* Downgrade. */
7748 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7749 
7750 	ptr = (const uint8_t *)(hdr + 1);
7751 	end = (const uint8_t *)(fw->data + fw->size);
7752 
7753 	/* Parse type-length-value fields. */
7754 	while (ptr + sizeof (*tlv) <= end) {
7755 		tlv = (const struct iwn_fw_tlv *)ptr;
7756 		len = le32toh(tlv->len);
7757 
7758 		ptr += sizeof (*tlv);
7759 		if (ptr + len > end) {
7760 			device_printf(sc->sc_dev,
7761 			    "%s: firmware too short: %zu bytes\n", __func__,
7762 			    fw->size);
7763 			return EINVAL;
7764 		}
7765 		/* Skip other alternatives. */
7766 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7767 			goto next;
7768 
7769 		switch (le16toh(tlv->type)) {
7770 		case IWN_FW_TLV_MAIN_TEXT:
7771 			fw->main.text = ptr;
7772 			fw->main.textsz = len;
7773 			break;
7774 		case IWN_FW_TLV_MAIN_DATA:
7775 			fw->main.data = ptr;
7776 			fw->main.datasz = len;
7777 			break;
7778 		case IWN_FW_TLV_INIT_TEXT:
7779 			fw->init.text = ptr;
7780 			fw->init.textsz = len;
7781 			break;
7782 		case IWN_FW_TLV_INIT_DATA:
7783 			fw->init.data = ptr;
7784 			fw->init.datasz = len;
7785 			break;
7786 		case IWN_FW_TLV_BOOT_TEXT:
7787 			fw->boot.text = ptr;
7788 			fw->boot.textsz = len;
7789 			break;
7790 		case IWN_FW_TLV_ENH_SENS:
7791 			if (!len)
7792 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7793 			break;
7794 		case IWN_FW_TLV_PHY_CALIB:
7795 			tmp = le32toh(*ptr);
7796 			if (tmp < 253) {
7797 				sc->reset_noise_gain = tmp;
7798 				sc->noise_gain = tmp + 1;
7799 			}
7800 			break;
7801 		case IWN_FW_TLV_PAN:
7802 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7803 			DPRINTF(sc, IWN_DEBUG_RESET,
7804 			    "PAN Support found: %d\n", 1);
7805 			break;
7806 		case IWN_FW_TLV_FLAGS:
7807 			if (len < sizeof(uint32_t))
7808 				break;
7809 			if (len % sizeof(uint32_t))
7810 				break;
7811 			sc->tlv_feature_flags = le32toh(*ptr);
7812 			DPRINTF(sc, IWN_DEBUG_RESET,
7813 			    "%s: feature: 0x%08x\n",
7814 			    __func__,
7815 			    sc->tlv_feature_flags);
7816 			break;
7817 		case IWN_FW_TLV_PBREQ_MAXLEN:
7818 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7819 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7820 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7821 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7822 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7823 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7824 		case IWN_FW_TLV_WOWLAN_INST:
7825 		case IWN_FW_TLV_WOWLAN_DATA:
7826 			DPRINTF(sc, IWN_DEBUG_RESET,
7827 			    "TLV type %d reconized but not handled\n",
7828 			    le16toh(tlv->type));
7829 			break;
7830 		default:
7831 			DPRINTF(sc, IWN_DEBUG_RESET,
7832 			    "TLV type %d not handled\n", le16toh(tlv->type));
7833 			break;
7834 		}
7835  next:		/* TLV fields are 32-bit aligned. */
7836 		ptr += (len + 3) & ~3;
7837 	}
7838 	return 0;
7839 }
7840 
7841 static int
7842 iwn_read_firmware(struct iwn_softc *sc)
7843 {
7844 	struct iwn_fw_info *fw = &sc->fw;
7845 	int error;
7846 
7847 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7848 
7849 	IWN_UNLOCK(sc);
7850 
7851 	memset(fw, 0, sizeof (*fw));
7852 
7853 	/* Read firmware image from filesystem. */
7854 	sc->fw_fp = firmware_get(sc->fwname);
7855 	if (sc->fw_fp == NULL) {
7856 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
7857 		    __func__, sc->fwname);
7858 		IWN_LOCK(sc);
7859 		return EINVAL;
7860 	}
7861 	IWN_LOCK(sc);
7862 
7863 	fw->size = sc->fw_fp->datasize;
7864 	fw->data = (const uint8_t *)sc->fw_fp->data;
7865 	if (fw->size < sizeof (uint32_t)) {
7866 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7867 		    __func__, fw->size);
7868 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7869 		sc->fw_fp = NULL;
7870 		return EINVAL;
7871 	}
7872 
7873 	/* Retrieve text and data sections. */
7874 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
7875 		error = iwn_read_firmware_leg(sc, fw);
7876 	else
7877 		error = iwn_read_firmware_tlv(sc, fw, 1);
7878 	if (error != 0) {
7879 		device_printf(sc->sc_dev,
7880 		    "%s: could not read firmware sections, error %d\n",
7881 		    __func__, error);
7882 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7883 		sc->fw_fp = NULL;
7884 		return error;
7885 	}
7886 
7887 	/* Make sure text and data sections fit in hardware memory. */
7888 	if (fw->main.textsz > sc->fw_text_maxsz ||
7889 	    fw->main.datasz > sc->fw_data_maxsz ||
7890 	    fw->init.textsz > sc->fw_text_maxsz ||
7891 	    fw->init.datasz > sc->fw_data_maxsz ||
7892 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
7893 	    (fw->boot.textsz & 3) != 0) {
7894 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
7895 		    __func__);
7896 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7897 		sc->fw_fp = NULL;
7898 		return EINVAL;
7899 	}
7900 
7901 	/* We can proceed with loading the firmware. */
7902 	return 0;
7903 }
7904 
7905 static int
7906 iwn_clock_wait(struct iwn_softc *sc)
7907 {
7908 	int ntries;
7909 
7910 	/* Set "initialization complete" bit. */
7911 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7912 
7913 	/* Wait for clock stabilization. */
7914 	for (ntries = 0; ntries < 2500; ntries++) {
7915 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
7916 			return 0;
7917 		DELAY(10);
7918 	}
7919 	device_printf(sc->sc_dev,
7920 	    "%s: timeout waiting for clock stabilization\n", __func__);
7921 	return ETIMEDOUT;
7922 }
7923 
7924 static int
7925 iwn_apm_init(struct iwn_softc *sc)
7926 {
7927 	uint32_t reg;
7928 	int error;
7929 
7930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7931 
7932 	/* Disable L0s exit timer (NMI bug workaround). */
7933 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
7934 	/* Don't wait for ICH L0s (ICH bug workaround). */
7935 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
7936 
7937 	/* Set FH wait threshold to max (HW bug under stress workaround). */
7938 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
7939 
7940 	/* Enable HAP INTA to move adapter from L1a to L0s. */
7941 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
7942 
7943 	/* Retrieve PCIe Active State Power Management (ASPM). */
7944 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
7945 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
7946 	if (reg & 0x02)	/* L1 Entry enabled. */
7947 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7948 	else
7949 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7950 
7951 	if (sc->base_params->pll_cfg_val)
7952 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
7953 
7954 	/* Wait for clock stabilization before accessing prph. */
7955 	if ((error = iwn_clock_wait(sc)) != 0)
7956 		return error;
7957 
7958 	if ((error = iwn_nic_lock(sc)) != 0)
7959 		return error;
7960 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
7961 		/* Enable DMA and BSM (Bootstrap State Machine). */
7962 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7963 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
7964 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
7965 	} else {
7966 		/* Enable DMA. */
7967 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7968 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7969 	}
7970 	DELAY(20);
7971 	/* Disable L1-Active. */
7972 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
7973 	iwn_nic_unlock(sc);
7974 
7975 	return 0;
7976 }
7977 
7978 static void
7979 iwn_apm_stop_master(struct iwn_softc *sc)
7980 {
7981 	int ntries;
7982 
7983 	/* Stop busmaster DMA activity. */
7984 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
7985 	for (ntries = 0; ntries < 100; ntries++) {
7986 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
7987 			return;
7988 		DELAY(10);
7989 	}
7990 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
7991 }
7992 
7993 static void
7994 iwn_apm_stop(struct iwn_softc *sc)
7995 {
7996 	iwn_apm_stop_master(sc);
7997 
7998 	/* Reset the entire device. */
7999 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8000 	DELAY(10);
8001 	/* Clear "initialization complete" bit. */
8002 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8003 }
8004 
8005 static int
8006 iwn4965_nic_config(struct iwn_softc *sc)
8007 {
8008 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8009 
8010 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8011 		/*
8012 		 * I don't believe this to be correct but this is what the
8013 		 * vendor driver is doing. Probably the bits should not be
8014 		 * shifted in IWN_RFCFG_*.
8015 		 */
8016 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8017 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8018 		    IWN_RFCFG_STEP(sc->rfcfg) |
8019 		    IWN_RFCFG_DASH(sc->rfcfg));
8020 	}
8021 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8022 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8023 	return 0;
8024 }
8025 
8026 static int
8027 iwn5000_nic_config(struct iwn_softc *sc)
8028 {
8029 	uint32_t tmp;
8030 	int error;
8031 
8032 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8033 
8034 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8035 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8036 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8037 		    IWN_RFCFG_STEP(sc->rfcfg) |
8038 		    IWN_RFCFG_DASH(sc->rfcfg));
8039 	}
8040 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8041 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8042 
8043 	if ((error = iwn_nic_lock(sc)) != 0)
8044 		return error;
8045 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8046 
8047 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8048 		/*
8049 		 * Select first Switching Voltage Regulator (1.32V) to
8050 		 * solve a stability issue related to noisy DC2DC line
8051 		 * in the silicon of 1000 Series.
8052 		 */
8053 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8054 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8055 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8056 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8057 	}
8058 	iwn_nic_unlock(sc);
8059 
8060 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8061 		/* Use internal power amplifier only. */
8062 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8063 	}
8064 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8065 		/* Indicate that ROM calibration version is >=6. */
8066 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8067 	}
8068 	if (sc->base_params->additional_gp_drv_bit)
8069 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8070 		    sc->base_params->additional_gp_drv_bit);
8071 	return 0;
8072 }
8073 
8074 /*
8075  * Take NIC ownership over Intel Active Management Technology (AMT).
8076  */
8077 static int
8078 iwn_hw_prepare(struct iwn_softc *sc)
8079 {
8080 	int ntries;
8081 
8082 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8083 
8084 	/* Check if hardware is ready. */
8085 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8086 	for (ntries = 0; ntries < 5; ntries++) {
8087 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8088 		    IWN_HW_IF_CONFIG_NIC_READY)
8089 			return 0;
8090 		DELAY(10);
8091 	}
8092 
8093 	/* Hardware not ready, force into ready state. */
8094 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8095 	for (ntries = 0; ntries < 15000; ntries++) {
8096 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8097 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8098 			break;
8099 		DELAY(10);
8100 	}
8101 	if (ntries == 15000)
8102 		return ETIMEDOUT;
8103 
8104 	/* Hardware should be ready now. */
8105 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8106 	for (ntries = 0; ntries < 5; ntries++) {
8107 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8108 		    IWN_HW_IF_CONFIG_NIC_READY)
8109 			return 0;
8110 		DELAY(10);
8111 	}
8112 	return ETIMEDOUT;
8113 }
8114 
8115 static int
8116 iwn_hw_init(struct iwn_softc *sc)
8117 {
8118 	struct iwn_ops *ops = &sc->ops;
8119 	int error, chnl, qid;
8120 
8121 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8122 
8123 	/* Clear pending interrupts. */
8124 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8125 
8126 	if ((error = iwn_apm_init(sc)) != 0) {
8127 		device_printf(sc->sc_dev,
8128 		    "%s: could not power ON adapter, error %d\n", __func__,
8129 		    error);
8130 		return error;
8131 	}
8132 
8133 	/* Select VMAIN power source. */
8134 	if ((error = iwn_nic_lock(sc)) != 0)
8135 		return error;
8136 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8137 	iwn_nic_unlock(sc);
8138 
8139 	/* Perform adapter-specific initialization. */
8140 	if ((error = ops->nic_config(sc)) != 0)
8141 		return error;
8142 
8143 	/* Initialize RX ring. */
8144 	if ((error = iwn_nic_lock(sc)) != 0)
8145 		return error;
8146 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8147 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8148 	/* Set physical address of RX ring (256-byte aligned). */
8149 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8150 	/* Set physical address of RX status (16-byte aligned). */
8151 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8152 	/* Enable RX. */
8153 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8154 	    IWN_FH_RX_CONFIG_ENA           |
8155 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8156 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8157 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8158 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8159 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8160 	iwn_nic_unlock(sc);
8161 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8162 
8163 	if ((error = iwn_nic_lock(sc)) != 0)
8164 		return error;
8165 
8166 	/* Initialize TX scheduler. */
8167 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8168 
8169 	/* Set physical address of "keep warm" page (16-byte aligned). */
8170 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8171 
8172 	/* Initialize TX rings. */
8173 	for (qid = 0; qid < sc->ntxqs; qid++) {
8174 		struct iwn_tx_ring *txq = &sc->txq[qid];
8175 
8176 		/* Set physical address of TX ring (256-byte aligned). */
8177 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8178 		    txq->desc_dma.paddr >> 8);
8179 	}
8180 	iwn_nic_unlock(sc);
8181 
8182 	/* Enable DMA channels. */
8183 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8184 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8185 		    IWN_FH_TX_CONFIG_DMA_ENA |
8186 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8187 	}
8188 
8189 	/* Clear "radio off" and "commands blocked" bits. */
8190 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8191 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8192 
8193 	/* Clear pending interrupts. */
8194 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8195 	/* Enable interrupt coalescing. */
8196 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8197 	/* Enable interrupts. */
8198 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8199 
8200 	/* _Really_ make sure "radio off" bit is cleared! */
8201 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8202 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8203 
8204 	/* Enable shadow registers. */
8205 	if (sc->base_params->shadow_reg_enable)
8206 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8207 
8208 	if ((error = ops->load_firmware(sc)) != 0) {
8209 		device_printf(sc->sc_dev,
8210 		    "%s: could not load firmware, error %d\n", __func__,
8211 		    error);
8212 		return error;
8213 	}
8214 	/* Wait at most one second for firmware alive notification. */
8215 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8216 		device_printf(sc->sc_dev,
8217 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8218 		    __func__, error);
8219 		return error;
8220 	}
8221 	/* Do post-firmware initialization. */
8222 
8223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8224 
8225 	return ops->post_alive(sc);
8226 }
8227 
8228 static void
8229 iwn_hw_stop(struct iwn_softc *sc)
8230 {
8231 	int chnl, qid, ntries;
8232 
8233 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8234 
8235 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8236 
8237 	/* Disable interrupts. */
8238 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8239 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8240 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8241 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8242 
8243 	/* Make sure we no longer hold the NIC lock. */
8244 	iwn_nic_unlock(sc);
8245 
8246 	/* Stop TX scheduler. */
8247 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8248 
8249 	/* Stop all DMA channels. */
8250 	if (iwn_nic_lock(sc) == 0) {
8251 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8252 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8253 			for (ntries = 0; ntries < 200; ntries++) {
8254 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8255 				    IWN_FH_TX_STATUS_IDLE(chnl))
8256 					break;
8257 				DELAY(10);
8258 			}
8259 		}
8260 		iwn_nic_unlock(sc);
8261 	}
8262 
8263 	/* Stop RX ring. */
8264 	iwn_reset_rx_ring(sc, &sc->rxq);
8265 
8266 	/* Reset all TX rings. */
8267 	for (qid = 0; qid < sc->ntxqs; qid++)
8268 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8269 
8270 	if (iwn_nic_lock(sc) == 0) {
8271 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8272 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8273 		iwn_nic_unlock(sc);
8274 	}
8275 	DELAY(5);
8276 	/* Power OFF adapter. */
8277 	iwn_apm_stop(sc);
8278 }
8279 
8280 static void
8281 iwn_radio_on(void *arg0, int pending)
8282 {
8283 	struct iwn_softc *sc = arg0;
8284 	struct ifnet *ifp = sc->sc_ifp;
8285 	struct ieee80211com *ic = ifp->if_l2com;
8286 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8287 
8288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8289 
8290 	if (vap != NULL) {
8291 		iwn_init(sc);
8292 		ieee80211_init(vap);
8293 	}
8294 }
8295 
8296 static void
8297 iwn_radio_off(void *arg0, int pending)
8298 {
8299 	struct iwn_softc *sc = arg0;
8300 	struct ifnet *ifp = sc->sc_ifp;
8301 	struct ieee80211com *ic = ifp->if_l2com;
8302 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8303 
8304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8305 
8306 	iwn_stop(sc);
8307 	if (vap != NULL)
8308 		ieee80211_stop(vap);
8309 
8310 	/* Enable interrupts to get RF toggle notification. */
8311 	IWN_LOCK(sc);
8312 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8313 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8314 	IWN_UNLOCK(sc);
8315 }
8316 
8317 static void
8318 iwn_init_locked(struct iwn_softc *sc)
8319 {
8320 	struct ifnet *ifp = sc->sc_ifp;
8321 	int error;
8322 
8323 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8324 
8325 	IWN_LOCK_ASSERT(sc);
8326 
8327 	if ((error = iwn_hw_prepare(sc)) != 0) {
8328 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8329 		    __func__, error);
8330 		goto fail;
8331 	}
8332 
8333 	/* Initialize interrupt mask to default value. */
8334 	sc->int_mask = IWN_INT_MASK_DEF;
8335 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8336 
8337 	/* Check that the radio is not disabled by hardware switch. */
8338 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8339 		device_printf(sc->sc_dev,
8340 		    "radio is disabled by hardware switch\n");
8341 		/* Enable interrupts to get RF toggle notifications. */
8342 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8343 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8344 		return;
8345 	}
8346 
8347 	/* Read firmware images from the filesystem. */
8348 	if ((error = iwn_read_firmware(sc)) != 0) {
8349 		device_printf(sc->sc_dev,
8350 		    "%s: could not read firmware, error %d\n", __func__,
8351 		    error);
8352 		goto fail;
8353 	}
8354 
8355 	/* Initialize hardware and upload firmware. */
8356 	error = iwn_hw_init(sc);
8357 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8358 	sc->fw_fp = NULL;
8359 	if (error != 0) {
8360 		device_printf(sc->sc_dev,
8361 		    "%s: could not initialize hardware, error %d\n", __func__,
8362 		    error);
8363 		goto fail;
8364 	}
8365 
8366 	/* Configure adapter now that it is ready. */
8367 	if ((error = iwn_config(sc)) != 0) {
8368 		device_printf(sc->sc_dev,
8369 		    "%s: could not configure device, error %d\n", __func__,
8370 		    error);
8371 		goto fail;
8372 	}
8373 
8374 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
8375 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
8376 
8377 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8378 
8379 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8380 
8381 	return;
8382 
8383 fail:	iwn_stop_locked(sc);
8384 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8385 }
8386 
8387 static void
8388 iwn_init(void *arg)
8389 {
8390 	struct iwn_softc *sc = arg;
8391 	struct ifnet *ifp = sc->sc_ifp;
8392 	struct ieee80211com *ic = ifp->if_l2com;
8393 
8394 	IWN_LOCK(sc);
8395 	iwn_init_locked(sc);
8396 	IWN_UNLOCK(sc);
8397 
8398 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
8399 		ieee80211_start_all(ic);
8400 }
8401 
8402 static void
8403 iwn_stop_locked(struct iwn_softc *sc)
8404 {
8405 	struct ifnet *ifp = sc->sc_ifp;
8406 
8407 	IWN_LOCK_ASSERT(sc);
8408 
8409 	sc->sc_is_scanning = 0;
8410 	sc->sc_tx_timer = 0;
8411 	callout_stop(&sc->watchdog_to);
8412 	callout_stop(&sc->calib_to);
8413 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
8414 
8415 	/* Power OFF hardware. */
8416 	iwn_hw_stop(sc);
8417 }
8418 
8419 static void
8420 iwn_stop(struct iwn_softc *sc)
8421 {
8422 	IWN_LOCK(sc);
8423 	iwn_stop_locked(sc);
8424 	IWN_UNLOCK(sc);
8425 }
8426 
8427 /*
8428  * Callback from net80211 to start a scan.
8429  */
8430 static void
8431 iwn_scan_start(struct ieee80211com *ic)
8432 {
8433 	struct ifnet *ifp = ic->ic_ifp;
8434 	struct iwn_softc *sc = ifp->if_softc;
8435 
8436 	IWN_LOCK(sc);
8437 	/* make the link LED blink while we're scanning */
8438 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8439 	IWN_UNLOCK(sc);
8440 }
8441 
8442 /*
8443  * Callback from net80211 to terminate a scan.
8444  */
8445 static void
8446 iwn_scan_end(struct ieee80211com *ic)
8447 {
8448 	struct ifnet *ifp = ic->ic_ifp;
8449 	struct iwn_softc *sc = ifp->if_softc;
8450 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8451 
8452 	IWN_LOCK(sc);
8453 	if (vap->iv_state == IEEE80211_S_RUN) {
8454 		/* Set link LED to ON status if we are associated */
8455 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8456 	}
8457 	IWN_UNLOCK(sc);
8458 }
8459 
8460 /*
8461  * Callback from net80211 to force a channel change.
8462  */
8463 static void
8464 iwn_set_channel(struct ieee80211com *ic)
8465 {
8466 	const struct ieee80211_channel *c = ic->ic_curchan;
8467 	struct ifnet *ifp = ic->ic_ifp;
8468 	struct iwn_softc *sc = ifp->if_softc;
8469 	int error;
8470 
8471 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8472 
8473 	IWN_LOCK(sc);
8474 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8475 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8476 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8477 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8478 
8479 	/*
8480 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8481 	 * are already taken care of by their respective firmware commands.
8482 	 */
8483 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8484 		error = iwn_config(sc);
8485 		if (error != 0)
8486 		device_printf(sc->sc_dev,
8487 		    "%s: error %d settting channel\n", __func__, error);
8488 	}
8489 	IWN_UNLOCK(sc);
8490 }
8491 
8492 /*
8493  * Callback from net80211 to start scanning of the current channel.
8494  */
8495 static void
8496 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8497 {
8498 	struct ieee80211vap *vap = ss->ss_vap;
8499 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8500 	struct ieee80211com *ic = vap->iv_ic;
8501 	int error;
8502 
8503 	IWN_LOCK(sc);
8504 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8505 	IWN_UNLOCK(sc);
8506 	if (error != 0)
8507 		ieee80211_cancel_scan(vap);
8508 }
8509 
8510 /*
8511  * Callback from net80211 to handle the minimum dwell time being met.
8512  * The intent is to terminate the scan but we just let the firmware
8513  * notify us when it's finished as we have no safe way to abort it.
8514  */
8515 static void
8516 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8517 {
8518 	/* NB: don't try to abort scan; wait for firmware to finish */
8519 }
8520 
8521 static void
8522 iwn_hw_reset(void *arg0, int pending)
8523 {
8524 	struct iwn_softc *sc = arg0;
8525 	struct ifnet *ifp = sc->sc_ifp;
8526 	struct ieee80211com *ic = ifp->if_l2com;
8527 
8528 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8529 
8530 	iwn_stop(sc);
8531 	iwn_init(sc);
8532 	ieee80211_notify_radio(ic, 1);
8533 }
8534 #ifdef	IWN_DEBUG
8535 #define	IWN_DESC(x) case x:	return #x
8536 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8537 
8538 /*
8539  * Translate CSR code to string
8540  */
8541 static char *iwn_get_csr_string(int csr)
8542 {
8543 	switch (csr) {
8544 		IWN_DESC(IWN_HW_IF_CONFIG);
8545 		IWN_DESC(IWN_INT_COALESCING);
8546 		IWN_DESC(IWN_INT);
8547 		IWN_DESC(IWN_INT_MASK);
8548 		IWN_DESC(IWN_FH_INT);
8549 		IWN_DESC(IWN_GPIO_IN);
8550 		IWN_DESC(IWN_RESET);
8551 		IWN_DESC(IWN_GP_CNTRL);
8552 		IWN_DESC(IWN_HW_REV);
8553 		IWN_DESC(IWN_EEPROM);
8554 		IWN_DESC(IWN_EEPROM_GP);
8555 		IWN_DESC(IWN_OTP_GP);
8556 		IWN_DESC(IWN_GIO);
8557 		IWN_DESC(IWN_GP_UCODE);
8558 		IWN_DESC(IWN_GP_DRIVER);
8559 		IWN_DESC(IWN_UCODE_GP1);
8560 		IWN_DESC(IWN_UCODE_GP2);
8561 		IWN_DESC(IWN_LED);
8562 		IWN_DESC(IWN_DRAM_INT_TBL);
8563 		IWN_DESC(IWN_GIO_CHICKEN);
8564 		IWN_DESC(IWN_ANA_PLL);
8565 		IWN_DESC(IWN_HW_REV_WA);
8566 		IWN_DESC(IWN_DBG_HPET_MEM);
8567 	default:
8568 		return "UNKNOWN CSR";
8569 	}
8570 }
8571 
8572 /*
8573  * This function print firmware register
8574  */
8575 static void
8576 iwn_debug_register(struct iwn_softc *sc)
8577 {
8578 	int i;
8579 	static const uint32_t csr_tbl[] = {
8580 		IWN_HW_IF_CONFIG,
8581 		IWN_INT_COALESCING,
8582 		IWN_INT,
8583 		IWN_INT_MASK,
8584 		IWN_FH_INT,
8585 		IWN_GPIO_IN,
8586 		IWN_RESET,
8587 		IWN_GP_CNTRL,
8588 		IWN_HW_REV,
8589 		IWN_EEPROM,
8590 		IWN_EEPROM_GP,
8591 		IWN_OTP_GP,
8592 		IWN_GIO,
8593 		IWN_GP_UCODE,
8594 		IWN_GP_DRIVER,
8595 		IWN_UCODE_GP1,
8596 		IWN_UCODE_GP2,
8597 		IWN_LED,
8598 		IWN_DRAM_INT_TBL,
8599 		IWN_GIO_CHICKEN,
8600 		IWN_ANA_PLL,
8601 		IWN_HW_REV_WA,
8602 		IWN_DBG_HPET_MEM,
8603 	};
8604 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8605 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8606 	    "\n");
8607 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8608 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8609 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8610 		if ((i+1) % 3 == 0)
8611 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8612 	}
8613 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8614 }
8615 #endif
8616