xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 struct iwn_ident {
76 	uint16_t	vendor;
77 	uint16_t	device;
78 	const char	*name;
79 };
80 
81 static const struct iwn_ident iwn_ident_table[] = {
82 	{ 0x8086, 0x0082, "Intel Centrino Advanced-N 6205"		},
83 	{ 0x8086, 0x0083, "Intel Centrino Wireless-N 1000"		},
84 	{ 0x8086, 0x0084, "Intel Centrino Wireless-N 1000"		},
85 	{ 0x8086, 0x0085, "Intel Centrino Advanced-N 6205"		},
86 	{ 0x8086, 0x0087, "Intel Centrino Advanced-N + WiMAX 6250"	},
87 	{ 0x8086, 0x0089, "Intel Centrino Advanced-N + WiMAX 6250"	},
88 	{ 0x8086, 0x008a, "Intel Centrino Wireless-N 1030"		},
89 	{ 0x8086, 0x008b, "Intel Centrino Wireless-N 1030"		},
90 	{ 0x8086, 0x0090, "Intel Centrino Advanced-N 6230"		},
91 	{ 0x8086, 0x0091, "Intel Centrino Advanced-N 6230"		},
92 	{ 0x8086, 0x0885, "Intel Centrino Wireless-N + WiMAX 6150"	},
93 	{ 0x8086, 0x0886, "Intel Centrino Wireless-N + WiMAX 6150"	},
94 	{ 0x8086, 0x0896, "Intel Centrino Wireless-N 130"		},
95 	{ 0x8086, 0x4229, "Intel Wireless WiFi Link 4965"		},
96 	{ 0x8086, 0x422b, "Intel Centrino Ultimate-N 6300"		},
97 	{ 0x8086, 0x422c, "Intel Centrino Advanced-N 6200"		},
98 	{ 0x8086, 0x422d, "Intel Wireless WiFi Link 4965"		},
99 	{ 0x8086, 0x4230, "Intel Wireless WiFi Link 4965"		},
100 	{ 0x8086, 0x4232, "Intel WiFi Link 5100"			},
101 	{ 0x8086, 0x4233, "Intel Wireless WiFi Link 4965"		},
102 	{ 0x8086, 0x4235, "Intel Ultimate N WiFi Link 5300"		},
103 	{ 0x8086, 0x4236, "Intel Ultimate N WiFi Link 5300"		},
104 	{ 0x8086, 0x4237, "Intel WiFi Link 5100"			},
105 	{ 0x8086, 0x4238, "Intel Centrino Ultimate-N 6300"		},
106 	{ 0x8086, 0x4239, "Intel Centrino Advanced-N 6200"		},
107 	{ 0x8086, 0x423a, "Intel WiMAX/WiFi Link 5350"			},
108 	{ 0x8086, 0x423b, "Intel WiMAX/WiFi Link 5350"			},
109 	{ 0x8086, 0x423c, "Intel WiMAX/WiFi Link 5150"			},
110 	{ 0x8086, 0x423d, "Intel WiMAX/WiFi Link 5150"			},
111 	{ 0, 0, NULL }
112 };
113 
114 static int	iwn_probe(device_t);
115 static int	iwn_attach(device_t);
116 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
117 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
118 static void	iwn_radiotap_attach(struct iwn_softc *);
119 static void	iwn_sysctlattach(struct iwn_softc *);
120 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
121 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
122 		    const uint8_t [IEEE80211_ADDR_LEN],
123 		    const uint8_t [IEEE80211_ADDR_LEN]);
124 static void	iwn_vap_delete(struct ieee80211vap *);
125 static int	iwn_detach(device_t);
126 static int	iwn_shutdown(device_t);
127 static int	iwn_suspend(device_t);
128 static int	iwn_resume(device_t);
129 static int	iwn_nic_lock(struct iwn_softc *);
130 static int	iwn_eeprom_lock(struct iwn_softc *);
131 static int	iwn_init_otprom(struct iwn_softc *);
132 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
133 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
134 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
135 		    void **, bus_size_t, bus_size_t);
136 static void	iwn_dma_contig_free(struct iwn_dma_info *);
137 static int	iwn_alloc_sched(struct iwn_softc *);
138 static void	iwn_free_sched(struct iwn_softc *);
139 static int	iwn_alloc_kw(struct iwn_softc *);
140 static void	iwn_free_kw(struct iwn_softc *);
141 static int	iwn_alloc_ict(struct iwn_softc *);
142 static void	iwn_free_ict(struct iwn_softc *);
143 static int	iwn_alloc_fwmem(struct iwn_softc *);
144 static void	iwn_free_fwmem(struct iwn_softc *);
145 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
147 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
148 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
149 		    int);
150 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
151 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
152 static void	iwn5000_ict_reset(struct iwn_softc *);
153 static int	iwn_read_eeprom(struct iwn_softc *,
154 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
155 static void	iwn4965_read_eeprom(struct iwn_softc *);
156 static void	iwn4965_print_power_group(struct iwn_softc *, int);
157 static void	iwn5000_read_eeprom(struct iwn_softc *);
158 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
159 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
160 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
161 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
162 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
163 		    struct ieee80211_channel *);
164 static int	iwn_setregdomain(struct ieee80211com *,
165 		    struct ieee80211_regdomain *, int,
166 		    struct ieee80211_channel[]);
167 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
168 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
169 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
170 static void	iwn_newassoc(struct ieee80211_node *, int);
171 static int	iwn_media_change(struct ifnet *);
172 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
173 static void	iwn_calib_timeout(void *);
174 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
179 		    struct iwn_rx_data *);
180 static void	iwn5000_rx_calib_results(struct iwn_softc *,
181 		    struct iwn_rx_desc *, struct iwn_rx_data *);
182 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
183 		    struct iwn_rx_data *);
184 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
185 		    struct iwn_rx_data *);
186 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
187 		    struct iwn_rx_data *);
188 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
189 		    uint8_t);
190 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
191 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
192 static void	iwn_notif_intr(struct iwn_softc *);
193 static void	iwn_wakeup_intr(struct iwn_softc *);
194 static void	iwn_rftoggle_intr(struct iwn_softc *);
195 static void	iwn_fatal_intr(struct iwn_softc *);
196 static void	iwn_intr(void *);
197 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
198 		    uint16_t);
199 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
200 		    uint16_t);
201 #ifdef notyet
202 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
203 #endif
204 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
205 		    struct ieee80211_node *);
206 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
207 		    struct ieee80211_node *,
208 		    const struct ieee80211_bpf_params *params);
209 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
210 		    const struct ieee80211_bpf_params *);
211 static void	iwn_start(struct ifnet *);
212 static void	iwn_start_locked(struct ifnet *);
213 static void	iwn_watchdog(void *);
214 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
215 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
216 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
217 		    int);
218 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
219 		    int);
220 static int	iwn_set_link_quality(struct iwn_softc *,
221 		    struct ieee80211_node *);
222 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
223 static int	iwn_updateedca(struct ieee80211com *);
224 static void	iwn_update_mcast(struct ifnet *);
225 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
226 static int	iwn_set_critical_temp(struct iwn_softc *);
227 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
228 static void	iwn4965_power_calibration(struct iwn_softc *, int);
229 static int	iwn4965_set_txpower(struct iwn_softc *,
230 		    struct ieee80211_channel *, int);
231 static int	iwn5000_set_txpower(struct iwn_softc *,
232 		    struct ieee80211_channel *, int);
233 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
234 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
235 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
236 static int	iwn4965_get_temperature(struct iwn_softc *);
237 static int	iwn5000_get_temperature(struct iwn_softc *);
238 static int	iwn_init_sensitivity(struct iwn_softc *);
239 static void	iwn_collect_noise(struct iwn_softc *,
240 		    const struct iwn_rx_general_stats *);
241 static int	iwn4965_init_gains(struct iwn_softc *);
242 static int	iwn5000_init_gains(struct iwn_softc *);
243 static int	iwn4965_set_gains(struct iwn_softc *);
244 static int	iwn5000_set_gains(struct iwn_softc *);
245 static void	iwn_tune_sensitivity(struct iwn_softc *,
246 		    const struct iwn_rx_stats *);
247 static int	iwn_send_sensitivity(struct iwn_softc *);
248 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
249 static int	iwn_send_btcoex(struct iwn_softc *);
250 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
251 static int	iwn5000_runtime_calib(struct iwn_softc *);
252 static int	iwn_config(struct iwn_softc *);
253 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
254 static int	iwn_scan(struct iwn_softc *);
255 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
256 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
257 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
258 		    struct ieee80211_rx_ampdu *, int, int, int);
259 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
260 		    struct ieee80211_rx_ampdu *);
261 static int	iwn_addba_request(struct ieee80211_node *,
262 		    struct ieee80211_tx_ampdu *, int, int, int);
263 static int	iwn_addba_response(struct ieee80211_node *,
264 		    struct ieee80211_tx_ampdu *, int, int, int);
265 static int	iwn_ampdu_tx_start(struct ieee80211com *,
266 		    struct ieee80211_node *, uint8_t);
267 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
268 		    struct ieee80211_tx_ampdu *);
269 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
270 		    struct ieee80211_node *, int, uint8_t, uint16_t);
271 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
272 		    uint8_t, uint16_t);
273 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
274 		    struct ieee80211_node *, int, uint8_t, uint16_t);
275 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
276 		    uint8_t, uint16_t);
277 static int	iwn5000_query_calibration(struct iwn_softc *);
278 static int	iwn5000_send_calibration(struct iwn_softc *);
279 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
280 static int	iwn5000_crystal_calib(struct iwn_softc *);
281 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
282 static int	iwn4965_post_alive(struct iwn_softc *);
283 static int	iwn5000_post_alive(struct iwn_softc *);
284 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
285 		    int);
286 static int	iwn4965_load_firmware(struct iwn_softc *);
287 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
288 		    const uint8_t *, int);
289 static int	iwn5000_load_firmware(struct iwn_softc *);
290 static int	iwn_read_firmware_leg(struct iwn_softc *,
291 		    struct iwn_fw_info *);
292 static int	iwn_read_firmware_tlv(struct iwn_softc *,
293 		    struct iwn_fw_info *, uint16_t);
294 static int	iwn_read_firmware(struct iwn_softc *);
295 static int	iwn_clock_wait(struct iwn_softc *);
296 static int	iwn_apm_init(struct iwn_softc *);
297 static void	iwn_apm_stop_master(struct iwn_softc *);
298 static void	iwn_apm_stop(struct iwn_softc *);
299 static int	iwn4965_nic_config(struct iwn_softc *);
300 static int	iwn5000_nic_config(struct iwn_softc *);
301 static int	iwn_hw_prepare(struct iwn_softc *);
302 static int	iwn_hw_init(struct iwn_softc *);
303 static void	iwn_hw_stop(struct iwn_softc *);
304 static void	iwn_radio_on(void *, int);
305 static void	iwn_radio_off(void *, int);
306 static void	iwn_init_locked(struct iwn_softc *);
307 static void	iwn_init(void *);
308 static void	iwn_stop_locked(struct iwn_softc *);
309 static void	iwn_stop(struct iwn_softc *);
310 static void	iwn_scan_start(struct ieee80211com *);
311 static void	iwn_scan_end(struct ieee80211com *);
312 static void	iwn_set_channel(struct ieee80211com *);
313 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
314 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
315 static void	iwn_hw_reset(void *, int);
316 
317 #define IWN_DEBUG
318 #ifdef IWN_DEBUG
319 enum {
320 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
321 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
322 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
323 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
324 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
325 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
326 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
327 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
328 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
329 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
330 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
331 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
332 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
333 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
334 	IWN_DEBUG_ANY		= 0xffffffff
335 };
336 
337 #define DPRINTF(sc, m, fmt, ...) do {			\
338 	if (sc->sc_debug & (m))				\
339 		printf(fmt, __VA_ARGS__);		\
340 } while (0)
341 
342 static const char *
343 iwn_intr_str(uint8_t cmd)
344 {
345 	switch (cmd) {
346 	/* Notifications */
347 	case IWN_UC_READY:		return "UC_READY";
348 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
349 	case IWN_TX_DONE:		return "TX_DONE";
350 	case IWN_START_SCAN:		return "START_SCAN";
351 	case IWN_STOP_SCAN:		return "STOP_SCAN";
352 	case IWN_RX_STATISTICS:		return "RX_STATS";
353 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
354 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
355 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
356 	case IWN_RX_PHY:		return "RX_PHY";
357 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
358 	case IWN_RX_DONE:		return "RX_DONE";
359 
360 	/* Command Notifications */
361 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
362 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
363 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
364 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
365 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
366 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
367 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
368 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
369 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
370 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
371 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
372 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
373 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
374 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
375 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
376 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
377 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
378 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
379 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
380 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
381 	}
382 	return "UNKNOWN INTR NOTIF/CMD";
383 }
384 #else
385 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
386 #endif
387 
388 static device_method_t iwn_methods[] = {
389 	/* Device interface */
390 	DEVMETHOD(device_probe,		iwn_probe),
391 	DEVMETHOD(device_attach,	iwn_attach),
392 	DEVMETHOD(device_detach,	iwn_detach),
393 	DEVMETHOD(device_shutdown,	iwn_shutdown),
394 	DEVMETHOD(device_suspend,	iwn_suspend),
395 	DEVMETHOD(device_resume,	iwn_resume),
396 	{ 0, 0 }
397 };
398 
399 static driver_t iwn_driver = {
400 	"iwn",
401 	iwn_methods,
402 	sizeof(struct iwn_softc)
403 };
404 static devclass_t iwn_devclass;
405 
406 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
407 
408 MODULE_VERSION(iwn, 1);
409 
410 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
411 MODULE_DEPEND(iwn, pci, 1, 1, 1);
412 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
413 
414 static int
415 iwn_probe(device_t dev)
416 {
417 	const struct iwn_ident *ident;
418 
419 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
420 		if (pci_get_vendor(dev) == ident->vendor &&
421 		    pci_get_device(dev) == ident->device) {
422 			device_set_desc(dev, ident->name);
423 			return 0;
424 		}
425 	}
426 	return ENXIO;
427 }
428 
429 static int
430 iwn_attach(device_t dev)
431 {
432 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
433 	struct ieee80211com *ic;
434 	struct ifnet *ifp;
435 	uint32_t reg;
436 	int i, error, result;
437 	uint8_t macaddr[IEEE80211_ADDR_LEN];
438 
439 	sc->sc_dev = dev;
440 
441 	/*
442 	 * Get the offset of the PCI Express Capability Structure in PCI
443 	 * Configuration Space.
444 	 */
445 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
446 	if (error != 0) {
447 		device_printf(dev, "PCIe capability structure not found!\n");
448 		return error;
449 	}
450 
451 	/* Clear device-specific "PCI retry timeout" register (41h). */
452 	pci_write_config(dev, 0x41, 0, 1);
453 
454 	/* Hardware bug workaround. */
455 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
456 	if (reg & PCIM_CMD_INTxDIS) {
457 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
458 		    __func__);
459 		reg &= ~PCIM_CMD_INTxDIS;
460 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
461 	}
462 
463 	/* Enable bus-mastering. */
464 	pci_enable_busmaster(dev);
465 
466 	sc->mem_rid = PCIR_BAR(0);
467 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
468 	    RF_ACTIVE);
469 	if (sc->mem == NULL) {
470 		device_printf(dev, "can't map mem space\n");
471 		error = ENOMEM;
472 		return error;
473 	}
474 	sc->sc_st = rman_get_bustag(sc->mem);
475 	sc->sc_sh = rman_get_bushandle(sc->mem);
476 
477 	sc->irq_rid = 0;
478 	if ((result = pci_msi_count(dev)) == 1 &&
479 	    pci_alloc_msi(dev, &result) == 0)
480 		sc->irq_rid = 1;
481 	/* Install interrupt handler. */
482 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
483 	    RF_ACTIVE | RF_SHAREABLE);
484 	if (sc->irq == NULL) {
485 		device_printf(dev, "can't map interrupt\n");
486 		error = ENOMEM;
487 		goto fail;
488 	}
489 
490 	IWN_LOCK_INIT(sc);
491 
492 	/* Read hardware revision and attach. */
493 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
494 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
495 		error = iwn4965_attach(sc, pci_get_device(dev));
496 	else
497 		error = iwn5000_attach(sc, pci_get_device(dev));
498 	if (error != 0) {
499 		device_printf(dev, "could not attach device, error %d\n",
500 		    error);
501 		goto fail;
502 	}
503 
504 	if ((error = iwn_hw_prepare(sc)) != 0) {
505 		device_printf(dev, "hardware not ready, error %d\n", error);
506 		goto fail;
507 	}
508 
509 	/* Allocate DMA memory for firmware transfers. */
510 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
511 		device_printf(dev,
512 		    "could not allocate memory for firmware, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	/* Allocate "Keep Warm" page. */
518 	if ((error = iwn_alloc_kw(sc)) != 0) {
519 		device_printf(dev,
520 		    "could not allocate keep warm page, error %d\n", error);
521 		goto fail;
522 	}
523 
524 	/* Allocate ICT table for 5000 Series. */
525 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
526 	    (error = iwn_alloc_ict(sc)) != 0) {
527 		device_printf(dev, "could not allocate ICT table, error %d\n",
528 		    error);
529 		goto fail;
530 	}
531 
532 	/* Allocate TX scheduler "rings". */
533 	if ((error = iwn_alloc_sched(sc)) != 0) {
534 		device_printf(dev,
535 		    "could not allocate TX scheduler rings, error %d\n", error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
540 	for (i = 0; i < sc->ntxqs; i++) {
541 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
542 			device_printf(dev,
543 			    "could not allocate TX ring %d, error %d\n", i,
544 			    error);
545 			goto fail;
546 		}
547 	}
548 
549 	/* Allocate RX ring. */
550 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
551 		device_printf(dev, "could not allocate RX ring, error %d\n",
552 		    error);
553 		goto fail;
554 	}
555 
556 	/* Clear pending interrupts. */
557 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
558 
559 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
560 	if (ifp == NULL) {
561 		device_printf(dev, "can not allocate ifnet structure\n");
562 		goto fail;
563 	}
564 
565 	ic = ifp->if_l2com;
566 	ic->ic_ifp = ifp;
567 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
568 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
569 
570 	/* Set device capabilities. */
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode supported */
573 		| IEEE80211_C_MONITOR		/* monitor mode supported */
574 		| IEEE80211_C_BGSCAN		/* background scanning */
575 		| IEEE80211_C_TXPMGT		/* tx power management */
576 		| IEEE80211_C_SHSLOT		/* short slot time supported */
577 		| IEEE80211_C_WPA
578 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
579 #if 0
580 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
581 #endif
582 		| IEEE80211_C_WME		/* WME */
583 		;
584 
585 	/* Read MAC address, channels, etc from EEPROM. */
586 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
587 		device_printf(dev, "could not read EEPROM, error %d\n",
588 		    error);
589 		goto fail;
590 	}
591 
592 	/* Count the number of available chains. */
593 	sc->ntxchains =
594 	    ((sc->txchainmask >> 2) & 1) +
595 	    ((sc->txchainmask >> 1) & 1) +
596 	    ((sc->txchainmask >> 0) & 1);
597 	sc->nrxchains =
598 	    ((sc->rxchainmask >> 2) & 1) +
599 	    ((sc->rxchainmask >> 1) & 1) +
600 	    ((sc->rxchainmask >> 0) & 1);
601 	if (bootverbose) {
602 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
603 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
604 		    macaddr, ":");
605 	}
606 
607 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
608 		ic->ic_rxstream = sc->nrxchains;
609 		ic->ic_txstream = sc->ntxchains;
610 		ic->ic_htcaps =
611 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
612 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
613 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
614 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
615 #ifdef notyet
616 			| IEEE80211_HTCAP_GREENFIELD
617 #if IWN_RBUF_SIZE == 8192
618 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
619 #else
620 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
621 #endif
622 #endif
623 			/* s/w capabilities */
624 			| IEEE80211_HTC_HT		/* HT operation */
625 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
626 #ifdef notyet
627 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
628 #endif
629 			;
630 	}
631 
632 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
633 	ifp->if_softc = sc;
634 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
635 	ifp->if_init = iwn_init;
636 	ifp->if_ioctl = iwn_ioctl;
637 	ifp->if_start = iwn_start;
638 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
639 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
640 	IFQ_SET_READY(&ifp->if_snd);
641 
642 	ieee80211_ifattach(ic, macaddr);
643 	ic->ic_vap_create = iwn_vap_create;
644 	ic->ic_vap_delete = iwn_vap_delete;
645 	ic->ic_raw_xmit = iwn_raw_xmit;
646 	ic->ic_node_alloc = iwn_node_alloc;
647 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
648 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
649 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
650 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
651 	sc->sc_addba_request = ic->ic_addba_request;
652 	ic->ic_addba_request = iwn_addba_request;
653 	sc->sc_addba_response = ic->ic_addba_response;
654 	ic->ic_addba_response = iwn_addba_response;
655 	sc->sc_addba_stop = ic->ic_addba_stop;
656 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
657 	ic->ic_newassoc = iwn_newassoc;
658 	ic->ic_wme.wme_update = iwn_updateedca;
659 	ic->ic_update_mcast = iwn_update_mcast;
660 	ic->ic_scan_start = iwn_scan_start;
661 	ic->ic_scan_end = iwn_scan_end;
662 	ic->ic_set_channel = iwn_set_channel;
663 	ic->ic_scan_curchan = iwn_scan_curchan;
664 	ic->ic_scan_mindwell = iwn_scan_mindwell;
665 	ic->ic_setregdomain = iwn_setregdomain;
666 
667 	iwn_radiotap_attach(sc);
668 
669 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
670 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
671 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
672 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
673 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
674 
675 	iwn_sysctlattach(sc);
676 
677 	/*
678 	 * Hook our interrupt after all initialization is complete.
679 	 */
680 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
681 	    NULL, iwn_intr, sc, &sc->sc_ih);
682 	if (error != 0) {
683 		device_printf(dev, "can't establish interrupt, error %d\n",
684 		    error);
685 		goto fail;
686 	}
687 
688 	if (bootverbose)
689 		ieee80211_announce(ic);
690 	return 0;
691 fail:
692 	iwn_detach(dev);
693 	return error;
694 }
695 
696 static int
697 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
698 {
699 	struct iwn_ops *ops = &sc->ops;
700 
701 	ops->load_firmware = iwn4965_load_firmware;
702 	ops->read_eeprom = iwn4965_read_eeprom;
703 	ops->post_alive = iwn4965_post_alive;
704 	ops->nic_config = iwn4965_nic_config;
705 	ops->update_sched = iwn4965_update_sched;
706 	ops->get_temperature = iwn4965_get_temperature;
707 	ops->get_rssi = iwn4965_get_rssi;
708 	ops->set_txpower = iwn4965_set_txpower;
709 	ops->init_gains = iwn4965_init_gains;
710 	ops->set_gains = iwn4965_set_gains;
711 	ops->add_node = iwn4965_add_node;
712 	ops->tx_done = iwn4965_tx_done;
713 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
714 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
715 	sc->ntxqs = IWN4965_NTXQUEUES;
716 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
717 	sc->ndmachnls = IWN4965_NDMACHNLS;
718 	sc->broadcast_id = IWN4965_ID_BROADCAST;
719 	sc->rxonsz = IWN4965_RXONSZ;
720 	sc->schedsz = IWN4965_SCHEDSZ;
721 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
722 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
723 	sc->fwsz = IWN4965_FWSZ;
724 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
725 	sc->limits = &iwn4965_sensitivity_limits;
726 	sc->fwname = "iwn4965fw";
727 	/* Override chains masks, ROM is known to be broken. */
728 	sc->txchainmask = IWN_ANT_AB;
729 	sc->rxchainmask = IWN_ANT_ABC;
730 
731 	return 0;
732 }
733 
734 static int
735 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
736 {
737 	struct iwn_ops *ops = &sc->ops;
738 
739 	ops->load_firmware = iwn5000_load_firmware;
740 	ops->read_eeprom = iwn5000_read_eeprom;
741 	ops->post_alive = iwn5000_post_alive;
742 	ops->nic_config = iwn5000_nic_config;
743 	ops->update_sched = iwn5000_update_sched;
744 	ops->get_temperature = iwn5000_get_temperature;
745 	ops->get_rssi = iwn5000_get_rssi;
746 	ops->set_txpower = iwn5000_set_txpower;
747 	ops->init_gains = iwn5000_init_gains;
748 	ops->set_gains = iwn5000_set_gains;
749 	ops->add_node = iwn5000_add_node;
750 	ops->tx_done = iwn5000_tx_done;
751 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
752 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
753 	sc->ntxqs = IWN5000_NTXQUEUES;
754 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
755 	sc->ndmachnls = IWN5000_NDMACHNLS;
756 	sc->broadcast_id = IWN5000_ID_BROADCAST;
757 	sc->rxonsz = IWN5000_RXONSZ;
758 	sc->schedsz = IWN5000_SCHEDSZ;
759 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
760 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
761 	sc->fwsz = IWN5000_FWSZ;
762 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
763 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
764 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
765 
766 	switch (sc->hw_type) {
767 	case IWN_HW_REV_TYPE_5100:
768 		sc->limits = &iwn5000_sensitivity_limits;
769 		sc->fwname = "iwn5000fw";
770 		/* Override chains masks, ROM is known to be broken. */
771 		sc->txchainmask = IWN_ANT_B;
772 		sc->rxchainmask = IWN_ANT_AB;
773 		break;
774 	case IWN_HW_REV_TYPE_5150:
775 		sc->limits = &iwn5150_sensitivity_limits;
776 		sc->fwname = "iwn5150fw";
777 		break;
778 	case IWN_HW_REV_TYPE_5300:
779 	case IWN_HW_REV_TYPE_5350:
780 		sc->limits = &iwn5000_sensitivity_limits;
781 		sc->fwname = "iwn5000fw";
782 		break;
783 	case IWN_HW_REV_TYPE_1000:
784 		sc->limits = &iwn1000_sensitivity_limits;
785 		sc->fwname = "iwn1000fw";
786 		break;
787 	case IWN_HW_REV_TYPE_6000:
788 		sc->limits = &iwn6000_sensitivity_limits;
789 		sc->fwname = "iwn6000fw";
790 		if (pid == 0x422c || pid == 0x4239) {
791 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
792 			/* Override chains masks, ROM is known to be broken. */
793 			sc->txchainmask = IWN_ANT_BC;
794 			sc->rxchainmask = IWN_ANT_BC;
795 		}
796 		break;
797 	case IWN_HW_REV_TYPE_6050:
798 		sc->limits = &iwn6000_sensitivity_limits;
799 		sc->fwname = "iwn6050fw";
800 		/* Override chains masks, ROM is known to be broken. */
801 		sc->txchainmask = IWN_ANT_AB;
802 		sc->rxchainmask = IWN_ANT_AB;
803 		break;
804 	case IWN_HW_REV_TYPE_6005:
805 		sc->limits = &iwn6000_sensitivity_limits;
806 		if (pid != 0x0082 && pid != 0x0085) {
807 			sc->fwname = "iwn6000g2bfw";
808 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
809 		} else
810 			sc->fwname = "iwn6000g2afw";
811 		break;
812 	default:
813 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
814 		    sc->hw_type);
815 		return ENOTSUP;
816 	}
817 	return 0;
818 }
819 
820 /*
821  * Attach the interface to 802.11 radiotap.
822  */
823 static void
824 iwn_radiotap_attach(struct iwn_softc *sc)
825 {
826 	struct ifnet *ifp = sc->sc_ifp;
827 	struct ieee80211com *ic = ifp->if_l2com;
828 
829 	ieee80211_radiotap_attach(ic,
830 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
831 		IWN_TX_RADIOTAP_PRESENT,
832 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
833 		IWN_RX_RADIOTAP_PRESENT);
834 }
835 
836 static void
837 iwn_sysctlattach(struct iwn_softc *sc)
838 {
839 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
840 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
841 
842 #ifdef IWN_DEBUG
843 	sc->sc_debug = 0;
844 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
845 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
846 #endif
847 }
848 
849 static struct ieee80211vap *
850 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
851     enum ieee80211_opmode opmode, int flags,
852     const uint8_t bssid[IEEE80211_ADDR_LEN],
853     const uint8_t mac[IEEE80211_ADDR_LEN])
854 {
855 	struct iwn_vap *ivp;
856 	struct ieee80211vap *vap;
857 
858 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
859 		return NULL;
860 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
861 	    M_80211_VAP, M_NOWAIT | M_ZERO);
862 	if (ivp == NULL)
863 		return NULL;
864 	vap = &ivp->iv_vap;
865 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
866 	vap->iv_bmissthreshold = 10;		/* override default */
867 	/* Override with driver methods. */
868 	ivp->iv_newstate = vap->iv_newstate;
869 	vap->iv_newstate = iwn_newstate;
870 
871 	ieee80211_ratectl_init(vap);
872 	/* Complete setup. */
873 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
874 	ic->ic_opmode = opmode;
875 	return vap;
876 }
877 
878 static void
879 iwn_vap_delete(struct ieee80211vap *vap)
880 {
881 	struct iwn_vap *ivp = IWN_VAP(vap);
882 
883 	ieee80211_ratectl_deinit(vap);
884 	ieee80211_vap_detach(vap);
885 	free(ivp, M_80211_VAP);
886 }
887 
888 static int
889 iwn_detach(device_t dev)
890 {
891 	struct iwn_softc *sc = device_get_softc(dev);
892 	struct ifnet *ifp = sc->sc_ifp;
893 	struct ieee80211com *ic;
894 	int qid;
895 
896 	if (ifp != NULL) {
897 		ic = ifp->if_l2com;
898 
899 		ieee80211_draintask(ic, &sc->sc_reinit_task);
900 		ieee80211_draintask(ic, &sc->sc_radioon_task);
901 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
902 
903 		iwn_stop(sc);
904 		callout_drain(&sc->watchdog_to);
905 		callout_drain(&sc->calib_to);
906 		ieee80211_ifdetach(ic);
907 	}
908 
909 	/* Uninstall interrupt handler. */
910 	if (sc->irq != NULL) {
911 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
912 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
913 		if (sc->irq_rid == 1)
914 			pci_release_msi(dev);
915 	}
916 
917 	/* Free DMA resources. */
918 	iwn_free_rx_ring(sc, &sc->rxq);
919 	for (qid = 0; qid < sc->ntxqs; qid++)
920 		iwn_free_tx_ring(sc, &sc->txq[qid]);
921 	iwn_free_sched(sc);
922 	iwn_free_kw(sc);
923 	if (sc->ict != NULL)
924 		iwn_free_ict(sc);
925 	iwn_free_fwmem(sc);
926 
927 	if (sc->mem != NULL)
928 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
929 
930 	if (ifp != NULL)
931 		if_free(ifp);
932 
933 	IWN_LOCK_DESTROY(sc);
934 	return 0;
935 }
936 
937 static int
938 iwn_shutdown(device_t dev)
939 {
940 	struct iwn_softc *sc = device_get_softc(dev);
941 
942 	iwn_stop(sc);
943 	return 0;
944 }
945 
946 static int
947 iwn_suspend(device_t dev)
948 {
949 	struct iwn_softc *sc = device_get_softc(dev);
950 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
951 
952 	ieee80211_suspend_all(ic);
953 	return 0;
954 }
955 
956 static int
957 iwn_resume(device_t dev)
958 {
959 	struct iwn_softc *sc = device_get_softc(dev);
960 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
961 
962 	/* Clear device-specific "PCI retry timeout" register (41h). */
963 	pci_write_config(dev, 0x41, 0, 1);
964 
965 	ieee80211_resume_all(ic);
966 	return 0;
967 }
968 
969 static int
970 iwn_nic_lock(struct iwn_softc *sc)
971 {
972 	int ntries;
973 
974 	/* Request exclusive access to NIC. */
975 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
976 
977 	/* Spin until we actually get the lock. */
978 	for (ntries = 0; ntries < 1000; ntries++) {
979 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
980 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
981 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
982 			return 0;
983 		DELAY(10);
984 	}
985 	return ETIMEDOUT;
986 }
987 
988 static __inline void
989 iwn_nic_unlock(struct iwn_softc *sc)
990 {
991 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
992 }
993 
994 static __inline uint32_t
995 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
996 {
997 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
998 	IWN_BARRIER_READ_WRITE(sc);
999 	return IWN_READ(sc, IWN_PRPH_RDATA);
1000 }
1001 
1002 static __inline void
1003 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1004 {
1005 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1006 	IWN_BARRIER_WRITE(sc);
1007 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1008 }
1009 
1010 static __inline void
1011 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1012 {
1013 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1014 }
1015 
1016 static __inline void
1017 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1018 {
1019 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1020 }
1021 
1022 static __inline void
1023 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1024     const uint32_t *data, int count)
1025 {
1026 	for (; count > 0; count--, data++, addr += 4)
1027 		iwn_prph_write(sc, addr, *data);
1028 }
1029 
1030 static __inline uint32_t
1031 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1032 {
1033 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1034 	IWN_BARRIER_READ_WRITE(sc);
1035 	return IWN_READ(sc, IWN_MEM_RDATA);
1036 }
1037 
1038 static __inline void
1039 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1040 {
1041 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1042 	IWN_BARRIER_WRITE(sc);
1043 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1044 }
1045 
1046 static __inline void
1047 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1048 {
1049 	uint32_t tmp;
1050 
1051 	tmp = iwn_mem_read(sc, addr & ~3);
1052 	if (addr & 3)
1053 		tmp = (tmp & 0x0000ffff) | data << 16;
1054 	else
1055 		tmp = (tmp & 0xffff0000) | data;
1056 	iwn_mem_write(sc, addr & ~3, tmp);
1057 }
1058 
1059 static __inline void
1060 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1061     int count)
1062 {
1063 	for (; count > 0; count--, addr += 4)
1064 		*data++ = iwn_mem_read(sc, addr);
1065 }
1066 
1067 static __inline void
1068 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1069     int count)
1070 {
1071 	for (; count > 0; count--, addr += 4)
1072 		iwn_mem_write(sc, addr, val);
1073 }
1074 
1075 static int
1076 iwn_eeprom_lock(struct iwn_softc *sc)
1077 {
1078 	int i, ntries;
1079 
1080 	for (i = 0; i < 100; i++) {
1081 		/* Request exclusive access to EEPROM. */
1082 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1083 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1084 
1085 		/* Spin until we actually get the lock. */
1086 		for (ntries = 0; ntries < 100; ntries++) {
1087 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1088 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1089 				return 0;
1090 			DELAY(10);
1091 		}
1092 	}
1093 	return ETIMEDOUT;
1094 }
1095 
1096 static __inline void
1097 iwn_eeprom_unlock(struct iwn_softc *sc)
1098 {
1099 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1100 }
1101 
1102 /*
1103  * Initialize access by host to One Time Programmable ROM.
1104  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1105  */
1106 static int
1107 iwn_init_otprom(struct iwn_softc *sc)
1108 {
1109 	uint16_t prev, base, next;
1110 	int count, error;
1111 
1112 	/* Wait for clock stabilization before accessing prph. */
1113 	if ((error = iwn_clock_wait(sc)) != 0)
1114 		return error;
1115 
1116 	if ((error = iwn_nic_lock(sc)) != 0)
1117 		return error;
1118 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1119 	DELAY(5);
1120 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1121 	iwn_nic_unlock(sc);
1122 
1123 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1124 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1125 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1126 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1127 	}
1128 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1129 	/* Clear ECC status. */
1130 	IWN_SETBITS(sc, IWN_OTP_GP,
1131 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1132 
1133 	/*
1134 	 * Find the block before last block (contains the EEPROM image)
1135 	 * for HW without OTP shadow RAM.
1136 	 */
1137 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1138 		/* Switch to absolute addressing mode. */
1139 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1140 		base = prev = 0;
1141 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1142 			error = iwn_read_prom_data(sc, base, &next, 2);
1143 			if (error != 0)
1144 				return error;
1145 			if (next == 0)	/* End of linked-list. */
1146 				break;
1147 			prev = base;
1148 			base = le16toh(next);
1149 		}
1150 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1151 			return EIO;
1152 		/* Skip "next" word. */
1153 		sc->prom_base = prev + 1;
1154 	}
1155 	return 0;
1156 }
1157 
1158 static int
1159 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1160 {
1161 	uint8_t *out = data;
1162 	uint32_t val, tmp;
1163 	int ntries;
1164 
1165 	addr += sc->prom_base;
1166 	for (; count > 0; count -= 2, addr++) {
1167 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1168 		for (ntries = 0; ntries < 10; ntries++) {
1169 			val = IWN_READ(sc, IWN_EEPROM);
1170 			if (val & IWN_EEPROM_READ_VALID)
1171 				break;
1172 			DELAY(5);
1173 		}
1174 		if (ntries == 10) {
1175 			device_printf(sc->sc_dev,
1176 			    "timeout reading ROM at 0x%x\n", addr);
1177 			return ETIMEDOUT;
1178 		}
1179 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1180 			/* OTPROM, check for ECC errors. */
1181 			tmp = IWN_READ(sc, IWN_OTP_GP);
1182 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1183 				device_printf(sc->sc_dev,
1184 				    "OTPROM ECC error at 0x%x\n", addr);
1185 				return EIO;
1186 			}
1187 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1188 				/* Correctable ECC error, clear bit. */
1189 				IWN_SETBITS(sc, IWN_OTP_GP,
1190 				    IWN_OTP_GP_ECC_CORR_STTS);
1191 			}
1192 		}
1193 		*out++ = val >> 16;
1194 		if (count > 1)
1195 			*out++ = val >> 24;
1196 	}
1197 	return 0;
1198 }
1199 
1200 static void
1201 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1202 {
1203 	if (error != 0)
1204 		return;
1205 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1206 	*(bus_addr_t *)arg = segs[0].ds_addr;
1207 }
1208 
1209 static int
1210 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1211     void **kvap, bus_size_t size, bus_size_t alignment)
1212 {
1213 	int error;
1214 
1215 	dma->tag = NULL;
1216 	dma->size = size;
1217 
1218 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1219 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1220 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1221 	if (error != 0)
1222 		goto fail;
1223 
1224 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1225 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1226 	if (error != 0)
1227 		goto fail;
1228 
1229 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1230 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1231 	if (error != 0)
1232 		goto fail;
1233 
1234 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1235 
1236 	if (kvap != NULL)
1237 		*kvap = dma->vaddr;
1238 
1239 	return 0;
1240 
1241 fail:	iwn_dma_contig_free(dma);
1242 	return error;
1243 }
1244 
1245 static void
1246 iwn_dma_contig_free(struct iwn_dma_info *dma)
1247 {
1248 	if (dma->map != NULL) {
1249 		if (dma->vaddr != NULL) {
1250 			bus_dmamap_sync(dma->tag, dma->map,
1251 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1252 			bus_dmamap_unload(dma->tag, dma->map);
1253 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1254 			dma->vaddr = NULL;
1255 		}
1256 		bus_dmamap_destroy(dma->tag, dma->map);
1257 		dma->map = NULL;
1258 	}
1259 	if (dma->tag != NULL) {
1260 		bus_dma_tag_destroy(dma->tag);
1261 		dma->tag = NULL;
1262 	}
1263 }
1264 
1265 static int
1266 iwn_alloc_sched(struct iwn_softc *sc)
1267 {
1268 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1269 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1270 	    sc->schedsz, 1024);
1271 }
1272 
1273 static void
1274 iwn_free_sched(struct iwn_softc *sc)
1275 {
1276 	iwn_dma_contig_free(&sc->sched_dma);
1277 }
1278 
1279 static int
1280 iwn_alloc_kw(struct iwn_softc *sc)
1281 {
1282 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1283 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1284 }
1285 
1286 static void
1287 iwn_free_kw(struct iwn_softc *sc)
1288 {
1289 	iwn_dma_contig_free(&sc->kw_dma);
1290 }
1291 
1292 static int
1293 iwn_alloc_ict(struct iwn_softc *sc)
1294 {
1295 	/* ICT table must be aligned on a 4KB boundary. */
1296 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1297 	    IWN_ICT_SIZE, 4096);
1298 }
1299 
1300 static void
1301 iwn_free_ict(struct iwn_softc *sc)
1302 {
1303 	iwn_dma_contig_free(&sc->ict_dma);
1304 }
1305 
1306 static int
1307 iwn_alloc_fwmem(struct iwn_softc *sc)
1308 {
1309 	/* Must be aligned on a 16-byte boundary. */
1310 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1311 }
1312 
1313 static void
1314 iwn_free_fwmem(struct iwn_softc *sc)
1315 {
1316 	iwn_dma_contig_free(&sc->fw_dma);
1317 }
1318 
1319 static int
1320 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1321 {
1322 	bus_size_t size;
1323 	int i, error;
1324 
1325 	ring->cur = 0;
1326 
1327 	/* Allocate RX descriptors (256-byte aligned). */
1328 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1329 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1330 	    size, 256);
1331 	if (error != 0) {
1332 		device_printf(sc->sc_dev,
1333 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1334 		    __func__, error);
1335 		goto fail;
1336 	}
1337 
1338 	/* Allocate RX status area (16-byte aligned). */
1339 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1340 	    sizeof (struct iwn_rx_status), 16);
1341 	if (error != 0) {
1342 		device_printf(sc->sc_dev,
1343 		    "%s: could not allocate RX status DMA memory, error %d\n",
1344 		    __func__, error);
1345 		goto fail;
1346 	}
1347 
1348 	/* Create RX buffer DMA tag. */
1349 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1350 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1351 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1352 	    &ring->data_dmat);
1353 	if (error != 0) {
1354 		device_printf(sc->sc_dev,
1355 		    "%s: could not create RX buf DMA tag, error %d\n",
1356 		    __func__, error);
1357 		goto fail;
1358 	}
1359 
1360 	/*
1361 	 * Allocate and map RX buffers.
1362 	 */
1363 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1364 		struct iwn_rx_data *data = &ring->data[i];
1365 		bus_addr_t paddr;
1366 
1367 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1368 		if (error != 0) {
1369 			device_printf(sc->sc_dev,
1370 			    "%s: could not create RX buf DMA map, error %d\n",
1371 			    __func__, error);
1372 			goto fail;
1373 		}
1374 
1375 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
1376 		    IWN_RBUF_SIZE);
1377 		if (data->m == NULL) {
1378 			device_printf(sc->sc_dev,
1379 			    "%s: could not allocate RX mbuf\n", __func__);
1380 			error = ENOBUFS;
1381 			goto fail;
1382 		}
1383 
1384 		error = bus_dmamap_load(ring->data_dmat, data->map,
1385 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1386 		    &paddr, BUS_DMA_NOWAIT);
1387 		if (error != 0 && error != EFBIG) {
1388 			device_printf(sc->sc_dev,
1389 			    "%s: can't not map mbuf, error %d\n", __func__,
1390 			    error);
1391 			goto fail;
1392 		}
1393 
1394 		/* Set physical address of RX buffer (256-byte aligned). */
1395 		ring->desc[i] = htole32(paddr >> 8);
1396 	}
1397 
1398 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1399 	    BUS_DMASYNC_PREWRITE);
1400 
1401 	return 0;
1402 
1403 fail:	iwn_free_rx_ring(sc, ring);
1404 	return error;
1405 }
1406 
1407 static void
1408 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1409 {
1410 	int ntries;
1411 
1412 	if (iwn_nic_lock(sc) == 0) {
1413 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1414 		for (ntries = 0; ntries < 1000; ntries++) {
1415 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1416 			    IWN_FH_RX_STATUS_IDLE)
1417 				break;
1418 			DELAY(10);
1419 		}
1420 		iwn_nic_unlock(sc);
1421 	}
1422 	ring->cur = 0;
1423 	sc->last_rx_valid = 0;
1424 }
1425 
1426 static void
1427 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1428 {
1429 	int i;
1430 
1431 	iwn_dma_contig_free(&ring->desc_dma);
1432 	iwn_dma_contig_free(&ring->stat_dma);
1433 
1434 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1435 		struct iwn_rx_data *data = &ring->data[i];
1436 
1437 		if (data->m != NULL) {
1438 			bus_dmamap_sync(ring->data_dmat, data->map,
1439 			    BUS_DMASYNC_POSTREAD);
1440 			bus_dmamap_unload(ring->data_dmat, data->map);
1441 			m_freem(data->m);
1442 			data->m = NULL;
1443 		}
1444 		if (data->map != NULL)
1445 			bus_dmamap_destroy(ring->data_dmat, data->map);
1446 	}
1447 	if (ring->data_dmat != NULL) {
1448 		bus_dma_tag_destroy(ring->data_dmat);
1449 		ring->data_dmat = NULL;
1450 	}
1451 }
1452 
1453 static int
1454 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1455 {
1456 	bus_addr_t paddr;
1457 	bus_size_t size;
1458 	int i, error;
1459 
1460 	ring->qid = qid;
1461 	ring->queued = 0;
1462 	ring->cur = 0;
1463 
1464 	/* Allocate TX descriptors (256-byte aligned). */
1465 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1466 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1467 	    size, 256);
1468 	if (error != 0) {
1469 		device_printf(sc->sc_dev,
1470 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1471 		    __func__, error);
1472 		goto fail;
1473 	}
1474 
1475 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1476 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1477 	    size, 4);
1478 	if (error != 0) {
1479 		device_printf(sc->sc_dev,
1480 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1481 		    __func__, error);
1482 		goto fail;
1483 	}
1484 
1485 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1486 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1487 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1488 	    &ring->data_dmat);
1489 	if (error != 0) {
1490 		device_printf(sc->sc_dev,
1491 		    "%s: could not create TX buf DMA tag, error %d\n",
1492 		    __func__, error);
1493 		goto fail;
1494 	}
1495 
1496 	paddr = ring->cmd_dma.paddr;
1497 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1498 		struct iwn_tx_data *data = &ring->data[i];
1499 
1500 		data->cmd_paddr = paddr;
1501 		data->scratch_paddr = paddr + 12;
1502 		paddr += sizeof (struct iwn_tx_cmd);
1503 
1504 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1505 		if (error != 0) {
1506 			device_printf(sc->sc_dev,
1507 			    "%s: could not create TX buf DMA map, error %d\n",
1508 			    __func__, error);
1509 			goto fail;
1510 		}
1511 	}
1512 	return 0;
1513 
1514 fail:	iwn_free_tx_ring(sc, ring);
1515 	return error;
1516 }
1517 
1518 static void
1519 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1520 {
1521 	int i;
1522 
1523 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1524 		struct iwn_tx_data *data = &ring->data[i];
1525 
1526 		if (data->m != NULL) {
1527 			bus_dmamap_sync(ring->data_dmat, data->map,
1528 			    BUS_DMASYNC_POSTWRITE);
1529 			bus_dmamap_unload(ring->data_dmat, data->map);
1530 			m_freem(data->m);
1531 			data->m = NULL;
1532 		}
1533 	}
1534 	/* Clear TX descriptors. */
1535 	memset(ring->desc, 0, ring->desc_dma.size);
1536 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1537 	    BUS_DMASYNC_PREWRITE);
1538 	sc->qfullmsk &= ~(1 << ring->qid);
1539 	ring->queued = 0;
1540 	ring->cur = 0;
1541 }
1542 
1543 static void
1544 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1545 {
1546 	int i;
1547 
1548 	iwn_dma_contig_free(&ring->desc_dma);
1549 	iwn_dma_contig_free(&ring->cmd_dma);
1550 
1551 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1552 		struct iwn_tx_data *data = &ring->data[i];
1553 
1554 		if (data->m != NULL) {
1555 			bus_dmamap_sync(ring->data_dmat, data->map,
1556 			    BUS_DMASYNC_POSTWRITE);
1557 			bus_dmamap_unload(ring->data_dmat, data->map);
1558 			m_freem(data->m);
1559 		}
1560 		if (data->map != NULL)
1561 			bus_dmamap_destroy(ring->data_dmat, data->map);
1562 	}
1563 	if (ring->data_dmat != NULL) {
1564 		bus_dma_tag_destroy(ring->data_dmat);
1565 		ring->data_dmat = NULL;
1566 	}
1567 }
1568 
1569 static void
1570 iwn5000_ict_reset(struct iwn_softc *sc)
1571 {
1572 	/* Disable interrupts. */
1573 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1574 
1575 	/* Reset ICT table. */
1576 	memset(sc->ict, 0, IWN_ICT_SIZE);
1577 	sc->ict_cur = 0;
1578 
1579 	/* Set physical address of ICT table (4KB aligned). */
1580 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1581 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1582 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1583 
1584 	/* Enable periodic RX interrupt. */
1585 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1586 	/* Switch to ICT interrupt mode in driver. */
1587 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1588 
1589 	/* Re-enable interrupts. */
1590 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1591 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1592 }
1593 
1594 static int
1595 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1596 {
1597 	struct iwn_ops *ops = &sc->ops;
1598 	uint16_t val;
1599 	int error;
1600 
1601 	/* Check whether adapter has an EEPROM or an OTPROM. */
1602 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1603 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1604 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1605 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1606 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1607 
1608 	/* Adapter has to be powered on for EEPROM access to work. */
1609 	if ((error = iwn_apm_init(sc)) != 0) {
1610 		device_printf(sc->sc_dev,
1611 		    "%s: could not power ON adapter, error %d\n", __func__,
1612 		    error);
1613 		return error;
1614 	}
1615 
1616 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1617 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1618 		return EIO;
1619 	}
1620 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1621 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1622 		    __func__, error);
1623 		return error;
1624 	}
1625 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1626 		if ((error = iwn_init_otprom(sc)) != 0) {
1627 			device_printf(sc->sc_dev,
1628 			    "%s: could not initialize OTPROM, error %d\n",
1629 			    __func__, error);
1630 			return error;
1631 		}
1632 	}
1633 
1634 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1635 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1636 	/* Check if HT support is bonded out. */
1637 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1638 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1639 
1640 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1641 	sc->rfcfg = le16toh(val);
1642 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1643 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1644 	if (sc->txchainmask == 0)
1645 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1646 	if (sc->rxchainmask == 0)
1647 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1648 
1649 	/* Read MAC address. */
1650 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1651 
1652 	/* Read adapter-specific information from EEPROM. */
1653 	ops->read_eeprom(sc);
1654 
1655 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1656 
1657 	iwn_eeprom_unlock(sc);
1658 	return 0;
1659 }
1660 
1661 static void
1662 iwn4965_read_eeprom(struct iwn_softc *sc)
1663 {
1664 	uint32_t addr;
1665 	uint16_t val;
1666 	int i;
1667 
1668 	/* Read regulatory domain (4 ASCII characters). */
1669 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1670 
1671 	/* Read the list of authorized channels (20MHz ones only). */
1672 	for (i = 0; i < 7; i++) {
1673 		addr = iwn4965_regulatory_bands[i];
1674 		iwn_read_eeprom_channels(sc, i, addr);
1675 	}
1676 
1677 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1678 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1679 	sc->maxpwr2GHz = val & 0xff;
1680 	sc->maxpwr5GHz = val >> 8;
1681 	/* Check that EEPROM values are within valid range. */
1682 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1683 		sc->maxpwr5GHz = 38;
1684 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1685 		sc->maxpwr2GHz = 38;
1686 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1687 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1688 
1689 	/* Read samples for each TX power group. */
1690 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1691 	    sizeof sc->bands);
1692 
1693 	/* Read voltage at which samples were taken. */
1694 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1695 	sc->eeprom_voltage = (int16_t)le16toh(val);
1696 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1697 	    sc->eeprom_voltage);
1698 
1699 #ifdef IWN_DEBUG
1700 	/* Print samples. */
1701 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1702 		for (i = 0; i < IWN_NBANDS; i++)
1703 			iwn4965_print_power_group(sc, i);
1704 	}
1705 #endif
1706 }
1707 
1708 #ifdef IWN_DEBUG
1709 static void
1710 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1711 {
1712 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1713 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1714 	int j, c;
1715 
1716 	printf("===band %d===\n", i);
1717 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1718 	printf("chan1 num=%d\n", chans[0].num);
1719 	for (c = 0; c < 2; c++) {
1720 		for (j = 0; j < IWN_NSAMPLES; j++) {
1721 			printf("chain %d, sample %d: temp=%d gain=%d "
1722 			    "power=%d pa_det=%d\n", c, j,
1723 			    chans[0].samples[c][j].temp,
1724 			    chans[0].samples[c][j].gain,
1725 			    chans[0].samples[c][j].power,
1726 			    chans[0].samples[c][j].pa_det);
1727 		}
1728 	}
1729 	printf("chan2 num=%d\n", chans[1].num);
1730 	for (c = 0; c < 2; c++) {
1731 		for (j = 0; j < IWN_NSAMPLES; j++) {
1732 			printf("chain %d, sample %d: temp=%d gain=%d "
1733 			    "power=%d pa_det=%d\n", c, j,
1734 			    chans[1].samples[c][j].temp,
1735 			    chans[1].samples[c][j].gain,
1736 			    chans[1].samples[c][j].power,
1737 			    chans[1].samples[c][j].pa_det);
1738 		}
1739 	}
1740 }
1741 #endif
1742 
1743 static void
1744 iwn5000_read_eeprom(struct iwn_softc *sc)
1745 {
1746 	struct iwn5000_eeprom_calib_hdr hdr;
1747 	int32_t volt;
1748 	uint32_t base, addr;
1749 	uint16_t val;
1750 	int i;
1751 
1752 	/* Read regulatory domain (4 ASCII characters). */
1753 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1754 	base = le16toh(val);
1755 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1756 	    sc->eeprom_domain, 4);
1757 
1758 	/* Read the list of authorized channels (20MHz ones only). */
1759 	for (i = 0; i < 7; i++) {
1760 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1761 			addr = base + iwn6000_regulatory_bands[i];
1762 		else
1763 			addr = base + iwn5000_regulatory_bands[i];
1764 		iwn_read_eeprom_channels(sc, i, addr);
1765 	}
1766 
1767 	/* Read enhanced TX power information for 6000 Series. */
1768 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1769 		iwn_read_eeprom_enhinfo(sc);
1770 
1771 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1772 	base = le16toh(val);
1773 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1774 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1775 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1776 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1777 	sc->calib_ver = hdr.version;
1778 
1779 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1780 		/* Compute temperature offset. */
1781 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1782 		sc->eeprom_temp = le16toh(val);
1783 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1784 		volt = le16toh(val);
1785 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1786 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1787 		    sc->eeprom_temp, volt, sc->temp_off);
1788 	} else {
1789 		/* Read crystal calibration. */
1790 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1791 		    &sc->eeprom_crystal, sizeof (uint32_t));
1792 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1793 		    le32toh(sc->eeprom_crystal));
1794 	}
1795 }
1796 
1797 /*
1798  * Translate EEPROM flags to net80211.
1799  */
1800 static uint32_t
1801 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1802 {
1803 	uint32_t nflags;
1804 
1805 	nflags = 0;
1806 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1807 		nflags |= IEEE80211_CHAN_PASSIVE;
1808 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1809 		nflags |= IEEE80211_CHAN_NOADHOC;
1810 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1811 		nflags |= IEEE80211_CHAN_DFS;
1812 		/* XXX apparently IBSS may still be marked */
1813 		nflags |= IEEE80211_CHAN_NOADHOC;
1814 	}
1815 
1816 	return nflags;
1817 }
1818 
1819 static void
1820 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1821 {
1822 	struct ifnet *ifp = sc->sc_ifp;
1823 	struct ieee80211com *ic = ifp->if_l2com;
1824 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1825 	const struct iwn_chan_band *band = &iwn_bands[n];
1826 	struct ieee80211_channel *c;
1827 	uint8_t chan;
1828 	int i, nflags;
1829 
1830 	for (i = 0; i < band->nchan; i++) {
1831 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1832 			DPRINTF(sc, IWN_DEBUG_RESET,
1833 			    "skip chan %d flags 0x%x maxpwr %d\n",
1834 			    band->chan[i], channels[i].flags,
1835 			    channels[i].maxpwr);
1836 			continue;
1837 		}
1838 		chan = band->chan[i];
1839 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1840 
1841 		c = &ic->ic_channels[ic->ic_nchans++];
1842 		c->ic_ieee = chan;
1843 		c->ic_maxregpower = channels[i].maxpwr;
1844 		c->ic_maxpower = 2*c->ic_maxregpower;
1845 
1846 		if (n == 0) {	/* 2GHz band */
1847 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1848 			/* G =>'s B is supported */
1849 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1850 			c = &ic->ic_channels[ic->ic_nchans++];
1851 			c[0] = c[-1];
1852 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1853 		} else {	/* 5GHz band */
1854 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1855 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1856 		}
1857 
1858 		/* Save maximum allowed TX power for this channel. */
1859 		sc->maxpwr[chan] = channels[i].maxpwr;
1860 
1861 		DPRINTF(sc, IWN_DEBUG_RESET,
1862 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1863 		    channels[i].flags, channels[i].maxpwr);
1864 
1865 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1866 			/* add HT20, HT40 added separately */
1867 			c = &ic->ic_channels[ic->ic_nchans++];
1868 			c[0] = c[-1];
1869 			c->ic_flags |= IEEE80211_CHAN_HT20;
1870 		}
1871 	}
1872 }
1873 
1874 static void
1875 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1876 {
1877 	struct ifnet *ifp = sc->sc_ifp;
1878 	struct ieee80211com *ic = ifp->if_l2com;
1879 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1880 	const struct iwn_chan_band *band = &iwn_bands[n];
1881 	struct ieee80211_channel *c, *cent, *extc;
1882 	uint8_t chan;
1883 	int i, nflags;
1884 
1885 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
1886 		return;
1887 
1888 	for (i = 0; i < band->nchan; i++) {
1889 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1890 			DPRINTF(sc, IWN_DEBUG_RESET,
1891 			    "skip chan %d flags 0x%x maxpwr %d\n",
1892 			    band->chan[i], channels[i].flags,
1893 			    channels[i].maxpwr);
1894 			continue;
1895 		}
1896 		chan = band->chan[i];
1897 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1898 
1899 		/*
1900 		 * Each entry defines an HT40 channel pair; find the
1901 		 * center channel, then the extension channel above.
1902 		 */
1903 		cent = ieee80211_find_channel_byieee(ic, chan,
1904 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1905 		if (cent == NULL) {	/* XXX shouldn't happen */
1906 			device_printf(sc->sc_dev,
1907 			    "%s: no entry for channel %d\n", __func__, chan);
1908 			continue;
1909 		}
1910 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1911 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1912 		if (extc == NULL) {
1913 			DPRINTF(sc, IWN_DEBUG_RESET,
1914 			    "%s: skip chan %d, extension channel not found\n",
1915 			    __func__, chan);
1916 			continue;
1917 		}
1918 
1919 		DPRINTF(sc, IWN_DEBUG_RESET,
1920 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1921 		    chan, channels[i].flags, channels[i].maxpwr);
1922 
1923 		c = &ic->ic_channels[ic->ic_nchans++];
1924 		c[0] = cent[0];
1925 		c->ic_extieee = extc->ic_ieee;
1926 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1927 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
1928 		c = &ic->ic_channels[ic->ic_nchans++];
1929 		c[0] = extc[0];
1930 		c->ic_extieee = cent->ic_ieee;
1931 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1932 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
1933 	}
1934 }
1935 
1936 static void
1937 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1938 {
1939 	struct ifnet *ifp = sc->sc_ifp;
1940 	struct ieee80211com *ic = ifp->if_l2com;
1941 
1942 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1943 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1944 
1945 	if (n < 5)
1946 		iwn_read_eeprom_band(sc, n);
1947 	else
1948 		iwn_read_eeprom_ht40(sc, n);
1949 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1950 }
1951 
1952 static struct iwn_eeprom_chan *
1953 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1954 {
1955 	int band, chan, i, j;
1956 
1957 	if (IEEE80211_IS_CHAN_HT40(c)) {
1958 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
1959 		if (IEEE80211_IS_CHAN_HT40D(c))
1960 			chan = c->ic_extieee;
1961 		else
1962 			chan = c->ic_ieee;
1963 		for (i = 0; i < iwn_bands[band].nchan; i++) {
1964 			if (iwn_bands[band].chan[i] == chan)
1965 				return &sc->eeprom_channels[band][i];
1966 		}
1967 	} else {
1968 		for (j = 0; j < 5; j++) {
1969 			for (i = 0; i < iwn_bands[j].nchan; i++) {
1970 				if (iwn_bands[j].chan[i] == c->ic_ieee)
1971 					return &sc->eeprom_channels[j][i];
1972 			}
1973 		}
1974 	}
1975 	return NULL;
1976 }
1977 
1978 /*
1979  * Enforce flags read from EEPROM.
1980  */
1981 static int
1982 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1983     int nchan, struct ieee80211_channel chans[])
1984 {
1985 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1986 	int i;
1987 
1988 	for (i = 0; i < nchan; i++) {
1989 		struct ieee80211_channel *c = &chans[i];
1990 		struct iwn_eeprom_chan *channel;
1991 
1992 		channel = iwn_find_eeprom_channel(sc, c);
1993 		if (channel == NULL) {
1994 			if_printf(ic->ic_ifp,
1995 			    "%s: invalid channel %u freq %u/0x%x\n",
1996 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1997 			return EINVAL;
1998 		}
1999 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
2006 
2007 static void
2008 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2009 {
2010 	struct iwn_eeprom_enhinfo enhinfo[35];
2011 	struct ifnet *ifp = sc->sc_ifp;
2012 	struct ieee80211com *ic = ifp->if_l2com;
2013 	struct ieee80211_channel *c;
2014 	uint16_t val, base;
2015 	int8_t maxpwr;
2016 	uint8_t flags;
2017 	int i, j;
2018 
2019 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2020 	base = le16toh(val);
2021 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2022 	    enhinfo, sizeof enhinfo);
2023 
2024 	for (i = 0; i < nitems(enhinfo); i++) {
2025 		flags = enhinfo[i].flags;
2026 		if (!(flags & IWN_ENHINFO_VALID))
2027 			continue;	/* Skip invalid entries. */
2028 
2029 		maxpwr = 0;
2030 		if (sc->txchainmask & IWN_ANT_A)
2031 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2032 		if (sc->txchainmask & IWN_ANT_B)
2033 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2034 		if (sc->txchainmask & IWN_ANT_C)
2035 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2036 		if (sc->ntxchains == 2)
2037 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2038 		else if (sc->ntxchains == 3)
2039 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2040 
2041 		for (j = 0; j < ic->ic_nchans; j++) {
2042 			c = &ic->ic_channels[j];
2043 			if ((flags & IWN_ENHINFO_5GHZ)) {
2044 				if (!IEEE80211_IS_CHAN_A(c))
2045 					continue;
2046 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2047 				if (!IEEE80211_IS_CHAN_G(c))
2048 					continue;
2049 			} else if (!IEEE80211_IS_CHAN_B(c))
2050 				continue;
2051 			if ((flags & IWN_ENHINFO_HT40)) {
2052 				if (!IEEE80211_IS_CHAN_HT40(c))
2053 					continue;
2054 			} else {
2055 				if (IEEE80211_IS_CHAN_HT40(c))
2056 					continue;
2057 			}
2058 			if (enhinfo[i].chan != 0 &&
2059 			    enhinfo[i].chan != c->ic_ieee)
2060 				continue;
2061 
2062 			DPRINTF(sc, IWN_DEBUG_RESET,
2063 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2064 			    c->ic_flags, maxpwr / 2);
2065 			c->ic_maxregpower = maxpwr / 2;
2066 			c->ic_maxpower = maxpwr;
2067 		}
2068 	}
2069 }
2070 
2071 static struct ieee80211_node *
2072 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2073 {
2074 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2075 }
2076 
2077 static __inline int
2078 rate2plcp(int rate)
2079 {
2080 	switch (rate & 0xff) {
2081 	case 12:	return 0xd;
2082 	case 18:	return 0xf;
2083 	case 24:	return 0x5;
2084 	case 36:	return 0x7;
2085 	case 48:	return 0x9;
2086 	case 72:	return 0xb;
2087 	case 96:	return 0x1;
2088 	case 108:	return 0x3;
2089 	case 2:		return 10;
2090 	case 4:		return 20;
2091 	case 11:	return 55;
2092 	case 22:	return 110;
2093 	}
2094 	return 0;
2095 }
2096 
2097 static void
2098 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2099 {
2100 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2101 	struct ieee80211com *ic = ni->ni_ic;
2102 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2103 	struct iwn_node *wn = (void *)ni;
2104 	uint8_t txant1, txant2;
2105 	int i, plcp, rate, ridx;
2106 
2107 	/* Use the first valid TX antenna. */
2108 	txant1 = IWN_LSB(sc->txchainmask);
2109 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2110 
2111 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2112 		ridx = ni->ni_rates.rs_nrates - 1;
2113 		for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) {
2114 			plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS;
2115 			if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2116 				plcp |= IWN_RFLAG_HT40;
2117 				if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2118 					plcp |= IWN_RFLAG_SGI;
2119 			} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20)
2120 				plcp |= IWN_RFLAG_SGI;
2121 			if (RV(ni->ni_htrates.rs_rates[i]) > 7)
2122 				plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2123 			else
2124 				plcp |= IWN_RFLAG_ANT(txant1);
2125 			if (ridx >= 0) {
2126 				rate = RV(ni->ni_rates.rs_rates[ridx]);
2127 				wn->ridx[rate] = plcp;
2128 			}
2129 			wn->ridx[IEEE80211_RATE_MCS | i] = plcp;
2130 			ridx--;
2131 		}
2132 	} else {
2133 		for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
2134 			rate = RV(ni->ni_rates.rs_rates[i]);
2135 			plcp = rate2plcp(rate);
2136 			ridx = ic->ic_rt->rateCodeToIndex[rate];
2137 			if (ridx < IWN_RIDX_OFDM6 &&
2138 			    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2139 				plcp |= IWN_RFLAG_CCK;
2140 			plcp |= IWN_RFLAG_ANT(txant1);
2141 			wn->ridx[rate] = htole32(plcp);
2142 		}
2143 	}
2144 #undef	RV
2145 }
2146 
2147 static int
2148 iwn_media_change(struct ifnet *ifp)
2149 {
2150 	int error;
2151 
2152 	error = ieee80211_media_change(ifp);
2153 	/* NB: only the fixed rate can change and that doesn't need a reset */
2154 	return (error == ENETRESET ? 0 : error);
2155 }
2156 
2157 static int
2158 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2159 {
2160 	struct iwn_vap *ivp = IWN_VAP(vap);
2161 	struct ieee80211com *ic = vap->iv_ic;
2162 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2163 	int error = 0;
2164 
2165 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2166 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2167 
2168 	IEEE80211_UNLOCK(ic);
2169 	IWN_LOCK(sc);
2170 	callout_stop(&sc->calib_to);
2171 
2172 	switch (nstate) {
2173 	case IEEE80211_S_ASSOC:
2174 		if (vap->iv_state != IEEE80211_S_RUN)
2175 			break;
2176 		/* FALLTHROUGH */
2177 	case IEEE80211_S_AUTH:
2178 		if (vap->iv_state == IEEE80211_S_AUTH)
2179 			break;
2180 
2181 		/*
2182 		 * !AUTH -> AUTH transition requires state reset to handle
2183 		 * reassociations correctly.
2184 		 */
2185 		sc->rxon.associd = 0;
2186 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2187 		sc->calib.state = IWN_CALIB_STATE_INIT;
2188 
2189 		if ((error = iwn_auth(sc, vap)) != 0) {
2190 			device_printf(sc->sc_dev,
2191 			    "%s: could not move to auth state\n", __func__);
2192 		}
2193 		break;
2194 
2195 	case IEEE80211_S_RUN:
2196 		/*
2197 		 * RUN -> RUN transition; Just restart the timers.
2198 		 */
2199 		if (vap->iv_state == IEEE80211_S_RUN) {
2200 			sc->calib_cnt = 0;
2201 			break;
2202 		}
2203 
2204 		/*
2205 		 * !RUN -> RUN requires setting the association id
2206 		 * which is done with a firmware cmd.  We also defer
2207 		 * starting the timers until that work is done.
2208 		 */
2209 		if ((error = iwn_run(sc, vap)) != 0) {
2210 			device_printf(sc->sc_dev,
2211 			    "%s: could not move to run state\n", __func__);
2212 		}
2213 		break;
2214 
2215 	case IEEE80211_S_INIT:
2216 		sc->calib.state = IWN_CALIB_STATE_INIT;
2217 		break;
2218 
2219 	default:
2220 		break;
2221 	}
2222 	IWN_UNLOCK(sc);
2223 	IEEE80211_LOCK(ic);
2224 	if (error != 0)
2225 		return error;
2226 	return ivp->iv_newstate(vap, nstate, arg);
2227 }
2228 
2229 static void
2230 iwn_calib_timeout(void *arg)
2231 {
2232 	struct iwn_softc *sc = arg;
2233 
2234 	IWN_LOCK_ASSERT(sc);
2235 
2236 	/* Force automatic TX power calibration every 60 secs. */
2237 	if (++sc->calib_cnt >= 120) {
2238 		uint32_t flags = 0;
2239 
2240 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2241 		    "sending request for statistics");
2242 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2243 		    sizeof flags, 1);
2244 		sc->calib_cnt = 0;
2245 	}
2246 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2247 	    sc);
2248 }
2249 
2250 /*
2251  * Process an RX_PHY firmware notification.  This is usually immediately
2252  * followed by an MPDU_RX_DONE notification.
2253  */
2254 static void
2255 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2256     struct iwn_rx_data *data)
2257 {
2258 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2259 
2260 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2261 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2262 
2263 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2264 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2265 	sc->last_rx_valid = 1;
2266 }
2267 
2268 /*
2269  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2270  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2271  */
2272 static void
2273 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2274     struct iwn_rx_data *data)
2275 {
2276 	struct iwn_ops *ops = &sc->ops;
2277 	struct ifnet *ifp = sc->sc_ifp;
2278 	struct ieee80211com *ic = ifp->if_l2com;
2279 	struct iwn_rx_ring *ring = &sc->rxq;
2280 	struct ieee80211_frame *wh;
2281 	struct ieee80211_node *ni;
2282 	struct mbuf *m, *m1;
2283 	struct iwn_rx_stat *stat;
2284 	caddr_t head;
2285 	bus_addr_t paddr;
2286 	uint32_t flags;
2287 	int error, len, rssi, nf;
2288 
2289 	if (desc->type == IWN_MPDU_RX_DONE) {
2290 		/* Check for prior RX_PHY notification. */
2291 		if (!sc->last_rx_valid) {
2292 			DPRINTF(sc, IWN_DEBUG_ANY,
2293 			    "%s: missing RX_PHY\n", __func__);
2294 			return;
2295 		}
2296 		stat = &sc->last_rx_stat;
2297 	} else
2298 		stat = (struct iwn_rx_stat *)(desc + 1);
2299 
2300 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2301 
2302 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2303 		device_printf(sc->sc_dev,
2304 		    "%s: invalid RX statistic header, len %d\n", __func__,
2305 		    stat->cfg_phy_len);
2306 		return;
2307 	}
2308 	if (desc->type == IWN_MPDU_RX_DONE) {
2309 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2310 		head = (caddr_t)(mpdu + 1);
2311 		len = le16toh(mpdu->len);
2312 	} else {
2313 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2314 		len = le16toh(stat->len);
2315 	}
2316 
2317 	flags = le32toh(*(uint32_t *)(head + len));
2318 
2319 	/* Discard frames with a bad FCS early. */
2320 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2321 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2322 		    __func__, flags);
2323 		ifp->if_ierrors++;
2324 		return;
2325 	}
2326 	/* Discard frames that are too short. */
2327 	if (len < sizeof (*wh)) {
2328 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2329 		    __func__, len);
2330 		ifp->if_ierrors++;
2331 		return;
2332 	}
2333 
2334 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2335 	if (m1 == NULL) {
2336 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2337 		    __func__);
2338 		ifp->if_ierrors++;
2339 		return;
2340 	}
2341 	bus_dmamap_unload(ring->data_dmat, data->map);
2342 
2343 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2344 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2345 	if (error != 0 && error != EFBIG) {
2346 		device_printf(sc->sc_dev,
2347 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2348 		m_freem(m1);
2349 
2350 		/* Try to reload the old mbuf. */
2351 		error = bus_dmamap_load(ring->data_dmat, data->map,
2352 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2353 		    &paddr, BUS_DMA_NOWAIT);
2354 		if (error != 0 && error != EFBIG) {
2355 			panic("%s: could not load old RX mbuf", __func__);
2356 		}
2357 		/* Physical address may have changed. */
2358 		ring->desc[ring->cur] = htole32(paddr >> 8);
2359 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2360 		    BUS_DMASYNC_PREWRITE);
2361 		ifp->if_ierrors++;
2362 		return;
2363 	}
2364 
2365 	m = data->m;
2366 	data->m = m1;
2367 	/* Update RX descriptor. */
2368 	ring->desc[ring->cur] = htole32(paddr >> 8);
2369 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2370 	    BUS_DMASYNC_PREWRITE);
2371 
2372 	/* Finalize mbuf. */
2373 	m->m_pkthdr.rcvif = ifp;
2374 	m->m_data = head;
2375 	m->m_pkthdr.len = m->m_len = len;
2376 
2377 	/* Grab a reference to the source node. */
2378 	wh = mtod(m, struct ieee80211_frame *);
2379 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2380 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2381 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2382 
2383 	rssi = ops->get_rssi(sc, stat);
2384 
2385 	if (ieee80211_radiotap_active(ic)) {
2386 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2387 
2388 		tap->wr_flags = 0;
2389 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2390 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2391 		tap->wr_dbm_antsignal = (int8_t)rssi;
2392 		tap->wr_dbm_antnoise = (int8_t)nf;
2393 		tap->wr_tsft = stat->tstamp;
2394 		switch (stat->rate) {
2395 		/* CCK rates. */
2396 		case  10: tap->wr_rate =   2; break;
2397 		case  20: tap->wr_rate =   4; break;
2398 		case  55: tap->wr_rate =  11; break;
2399 		case 110: tap->wr_rate =  22; break;
2400 		/* OFDM rates. */
2401 		case 0xd: tap->wr_rate =  12; break;
2402 		case 0xf: tap->wr_rate =  18; break;
2403 		case 0x5: tap->wr_rate =  24; break;
2404 		case 0x7: tap->wr_rate =  36; break;
2405 		case 0x9: tap->wr_rate =  48; break;
2406 		case 0xb: tap->wr_rate =  72; break;
2407 		case 0x1: tap->wr_rate =  96; break;
2408 		case 0x3: tap->wr_rate = 108; break;
2409 		/* Unknown rate: should not happen. */
2410 		default:  tap->wr_rate =   0;
2411 		}
2412 	}
2413 
2414 	IWN_UNLOCK(sc);
2415 
2416 	/* Send the frame to the 802.11 layer. */
2417 	if (ni != NULL) {
2418 		if (ni->ni_flags & IEEE80211_NODE_HT)
2419 			m->m_flags |= M_AMPDU;
2420 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2421 		/* Node is no longer needed. */
2422 		ieee80211_free_node(ni);
2423 	} else
2424 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2425 
2426 	IWN_LOCK(sc);
2427 }
2428 
2429 /* Process an incoming Compressed BlockAck. */
2430 static void
2431 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2432     struct iwn_rx_data *data)
2433 {
2434 	struct ifnet *ifp = sc->sc_ifp;
2435 	struct iwn_node *wn;
2436 	struct ieee80211_node *ni;
2437 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2438 	struct iwn_tx_ring *txq;
2439 	struct ieee80211_tx_ampdu *tap;
2440 	uint64_t bitmap;
2441 	uint8_t tid;
2442 	int ackfailcnt = 0, i, shift;
2443 
2444 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2445 
2446 	txq = &sc->txq[le16toh(ba->qid)];
2447 	tap = sc->qid2tap[le16toh(ba->qid)];
2448 	tid = tap->txa_tid;
2449 	ni = tap->txa_ni;
2450 	wn = (void *)ni;
2451 
2452 	if (wn->agg[tid].bitmap == 0)
2453 		return;
2454 
2455 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2456 	if (shift < 0)
2457 		shift += 0x100;
2458 
2459 	if (wn->agg[tid].nframes > (64 - shift))
2460 		return;
2461 
2462 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2463 	for (i = 0; bitmap; i++) {
2464 		if ((bitmap & 1) == 0) {
2465 			ifp->if_oerrors++;
2466 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2467 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2468 		} else {
2469 			ifp->if_opackets++;
2470 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2471 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2472 		}
2473 		bitmap >>= 1;
2474 	}
2475 }
2476 
2477 /*
2478  * Process a CALIBRATION_RESULT notification sent by the initialization
2479  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2480  */
2481 static void
2482 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2483     struct iwn_rx_data *data)
2484 {
2485 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2486 	int len, idx = -1;
2487 
2488 	/* Runtime firmware should not send such a notification. */
2489 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2490 		return;
2491 
2492 	len = (le32toh(desc->len) & 0x3fff) - 4;
2493 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2494 
2495 	switch (calib->code) {
2496 	case IWN5000_PHY_CALIB_DC:
2497 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2498 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2499 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2500 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2501 			idx = 0;
2502 		break;
2503 	case IWN5000_PHY_CALIB_LO:
2504 		idx = 1;
2505 		break;
2506 	case IWN5000_PHY_CALIB_TX_IQ:
2507 		idx = 2;
2508 		break;
2509 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2510 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2511 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2512 			idx = 3;
2513 		break;
2514 	case IWN5000_PHY_CALIB_BASE_BAND:
2515 		idx = 4;
2516 		break;
2517 	}
2518 	if (idx == -1)	/* Ignore other results. */
2519 		return;
2520 
2521 	/* Save calibration result. */
2522 	if (sc->calibcmd[idx].buf != NULL)
2523 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2524 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2525 	if (sc->calibcmd[idx].buf == NULL) {
2526 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2527 		    "not enough memory for calibration result %d\n",
2528 		    calib->code);
2529 		return;
2530 	}
2531 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2532 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2533 	sc->calibcmd[idx].len = len;
2534 	memcpy(sc->calibcmd[idx].buf, calib, len);
2535 }
2536 
2537 /*
2538  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2539  * The latter is sent by the firmware after each received beacon.
2540  */
2541 static void
2542 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2543     struct iwn_rx_data *data)
2544 {
2545 	struct iwn_ops *ops = &sc->ops;
2546 	struct ifnet *ifp = sc->sc_ifp;
2547 	struct ieee80211com *ic = ifp->if_l2com;
2548 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2549 	struct iwn_calib_state *calib = &sc->calib;
2550 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2551 	int temp;
2552 
2553 	/* Ignore statistics received during a scan. */
2554 	if (vap->iv_state != IEEE80211_S_RUN ||
2555 	    (ic->ic_flags & IEEE80211_F_SCAN))
2556 		return;
2557 
2558 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2559 
2560 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2561 	    __func__, desc->type);
2562 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2563 
2564 	/* Test if temperature has changed. */
2565 	if (stats->general.temp != sc->rawtemp) {
2566 		/* Convert "raw" temperature to degC. */
2567 		sc->rawtemp = stats->general.temp;
2568 		temp = ops->get_temperature(sc);
2569 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2570 		    __func__, temp);
2571 
2572 		/* Update TX power if need be (4965AGN only). */
2573 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2574 			iwn4965_power_calibration(sc, temp);
2575 	}
2576 
2577 	if (desc->type != IWN_BEACON_STATISTICS)
2578 		return;	/* Reply to a statistics request. */
2579 
2580 	sc->noise = iwn_get_noise(&stats->rx.general);
2581 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2582 
2583 	/* Test that RSSI and noise are present in stats report. */
2584 	if (le32toh(stats->rx.general.flags) != 1) {
2585 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2586 		    "received statistics without RSSI");
2587 		return;
2588 	}
2589 
2590 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2591 		iwn_collect_noise(sc, &stats->rx.general);
2592 	else if (calib->state == IWN_CALIB_STATE_RUN)
2593 		iwn_tune_sensitivity(sc, &stats->rx);
2594 }
2595 
2596 /*
2597  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2598  * and 5000 adapters have different incompatible TX status formats.
2599  */
2600 static void
2601 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2602     struct iwn_rx_data *data)
2603 {
2604 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2605 	struct iwn_tx_ring *ring;
2606 	int qid;
2607 
2608 	qid = desc->qid & 0xf;
2609 	ring = &sc->txq[qid];
2610 
2611 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2612 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2613 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2614 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2615 	    le32toh(stat->status));
2616 
2617 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2618 	if (qid >= sc->firstaggqueue) {
2619 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2620 		    &stat->status);
2621 	} else {
2622 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2623 		    le32toh(stat->status) & 0xff);
2624 	}
2625 }
2626 
2627 static void
2628 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2629     struct iwn_rx_data *data)
2630 {
2631 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2632 	struct iwn_tx_ring *ring;
2633 	int qid;
2634 
2635 	qid = desc->qid & 0xf;
2636 	ring = &sc->txq[qid];
2637 
2638 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2639 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2640 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2641 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2642 	    le32toh(stat->status));
2643 
2644 #ifdef notyet
2645 	/* Reset TX scheduler slot. */
2646 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2647 #endif
2648 
2649 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2650 	if (qid >= sc->firstaggqueue) {
2651 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2652 		    &stat->status);
2653 	} else {
2654 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2655 		    le16toh(stat->status) & 0xff);
2656 	}
2657 }
2658 
2659 /*
2660  * Adapter-independent backend for TX_DONE firmware notifications.
2661  */
2662 static void
2663 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2664     uint8_t status)
2665 {
2666 	struct ifnet *ifp = sc->sc_ifp;
2667 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2668 	struct iwn_tx_data *data = &ring->data[desc->idx];
2669 	struct mbuf *m;
2670 	struct ieee80211_node *ni;
2671 	struct ieee80211vap *vap;
2672 
2673 	KASSERT(data->ni != NULL, ("no node"));
2674 
2675 	/* Unmap and free mbuf. */
2676 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2677 	bus_dmamap_unload(ring->data_dmat, data->map);
2678 	m = data->m, data->m = NULL;
2679 	ni = data->ni, data->ni = NULL;
2680 	vap = ni->ni_vap;
2681 
2682 	if (m->m_flags & M_TXCB) {
2683 		/*
2684 		 * Channels marked for "radar" require traffic to be received
2685 		 * to unlock before we can transmit.  Until traffic is seen
2686 		 * any attempt to transmit is returned immediately with status
2687 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2688 		 * happen on first authenticate after scanning.  To workaround
2689 		 * this we ignore a failure of this sort in AUTH state so the
2690 		 * 802.11 layer will fall back to using a timeout to wait for
2691 		 * the AUTH reply.  This allows the firmware time to see
2692 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2693 		 * unclear why the firmware does not maintain state for
2694 		 * channels recently visited as this would allow immediate
2695 		 * use of the channel after a scan (where we see traffic).
2696 		 */
2697 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2698 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2699 			ieee80211_process_callback(ni, m, 0);
2700 		else
2701 			ieee80211_process_callback(ni, m,
2702 			    (status & IWN_TX_FAIL) != 0);
2703 	}
2704 
2705 	/*
2706 	 * Update rate control statistics for the node.
2707 	 */
2708 	if (status & IWN_TX_FAIL) {
2709 		ifp->if_oerrors++;
2710 		ieee80211_ratectl_tx_complete(vap, ni,
2711 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2712 	} else {
2713 		ifp->if_opackets++;
2714 		ieee80211_ratectl_tx_complete(vap, ni,
2715 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2716 	}
2717 	m_freem(m);
2718 	ieee80211_free_node(ni);
2719 
2720 	sc->sc_tx_timer = 0;
2721 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2722 		sc->qfullmsk &= ~(1 << ring->qid);
2723 		if (sc->qfullmsk == 0 &&
2724 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2725 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2726 			iwn_start_locked(ifp);
2727 		}
2728 	}
2729 }
2730 
2731 /*
2732  * Process a "command done" firmware notification.  This is where we wakeup
2733  * processes waiting for a synchronous command completion.
2734  */
2735 static void
2736 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2737 {
2738 	struct iwn_tx_ring *ring = &sc->txq[4];
2739 	struct iwn_tx_data *data;
2740 
2741 	if ((desc->qid & 0xf) != 4)
2742 		return;	/* Not a command ack. */
2743 
2744 	data = &ring->data[desc->idx];
2745 
2746 	/* If the command was mapped in an mbuf, free it. */
2747 	if (data->m != NULL) {
2748 		bus_dmamap_sync(ring->data_dmat, data->map,
2749 		    BUS_DMASYNC_POSTWRITE);
2750 		bus_dmamap_unload(ring->data_dmat, data->map);
2751 		m_freem(data->m);
2752 		data->m = NULL;
2753 	}
2754 	wakeup(&ring->desc[desc->idx]);
2755 }
2756 
2757 static void
2758 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2759     void *stat)
2760 {
2761 	struct ifnet *ifp = sc->sc_ifp;
2762 	struct iwn_tx_ring *ring = &sc->txq[qid];
2763 	struct iwn_tx_data *data;
2764 	struct mbuf *m;
2765 	struct iwn_node *wn;
2766 	struct ieee80211_node *ni;
2767 	struct ieee80211vap *vap;
2768 	struct ieee80211_tx_ampdu *tap;
2769 	uint64_t bitmap;
2770 	uint32_t *status = stat;
2771 	uint16_t *aggstatus = stat;
2772 	uint8_t tid;
2773 	int bit, i, lastidx, seqno, shift, start;
2774 
2775 #ifdef NOT_YET
2776 	if (nframes == 1) {
2777 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
2778 			printf("ieee80211_send_bar()\n");
2779 	}
2780 #endif
2781 
2782 	bitmap = 0;
2783 	start = idx;
2784 	for (i = 0; i < nframes; i++) {
2785 		if (le16toh(aggstatus[i * 2]) & 0xc)
2786 			continue;
2787 
2788 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
2789 		bit = idx - start;
2790 		shift = 0;
2791 		if (bit >= 64) {
2792 			shift = 0x100 - idx + start;
2793 			bit = 0;
2794 			start = idx;
2795 		} else if (bit <= -64)
2796 			bit = 0x100 - start + idx;
2797 		else if (bit < 0) {
2798 			shift = start - idx;
2799 			start = idx;
2800 			bit = 0;
2801 		}
2802 		bitmap = bitmap << shift;
2803 		bitmap |= 1ULL << bit;
2804 	}
2805 	tap = sc->qid2tap[qid];
2806 	if (tap != NULL) {
2807 		tid = tap->txa_tid;
2808 		wn = (void *)tap->txa_ni;
2809 		wn->agg[tid].bitmap = bitmap;
2810 		wn->agg[tid].startidx = start;
2811 		wn->agg[tid].nframes = nframes;
2812 	}
2813 
2814 	seqno = le32toh(*(status + nframes)) & 0xfff;
2815 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
2816 		data = &ring->data[ring->read];
2817 
2818 		KASSERT(data->ni != NULL, ("no node"));
2819 
2820 		/* Unmap and free mbuf. */
2821 		bus_dmamap_sync(ring->data_dmat, data->map,
2822 		    BUS_DMASYNC_POSTWRITE);
2823 		bus_dmamap_unload(ring->data_dmat, data->map);
2824 		m = data->m, data->m = NULL;
2825 		ni = data->ni, data->ni = NULL;
2826 		vap = ni->ni_vap;
2827 
2828 		if (m->m_flags & M_TXCB)
2829 			ieee80211_process_callback(ni, m, 1);
2830 
2831 		m_freem(m);
2832 		ieee80211_free_node(ni);
2833 
2834 		ring->queued--;
2835 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
2836 	}
2837 
2838 	sc->sc_tx_timer = 0;
2839 	if (ring->queued < IWN_TX_RING_LOMARK) {
2840 		sc->qfullmsk &= ~(1 << ring->qid);
2841 		if (sc->qfullmsk == 0 &&
2842 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2843 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2844 			iwn_start_locked(ifp);
2845 		}
2846 	}
2847 }
2848 
2849 /*
2850  * Process an INT_FH_RX or INT_SW_RX interrupt.
2851  */
2852 static void
2853 iwn_notif_intr(struct iwn_softc *sc)
2854 {
2855 	struct iwn_ops *ops = &sc->ops;
2856 	struct ifnet *ifp = sc->sc_ifp;
2857 	struct ieee80211com *ic = ifp->if_l2com;
2858 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2859 	uint16_t hw;
2860 
2861 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2862 	    BUS_DMASYNC_POSTREAD);
2863 
2864 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2865 	while (sc->rxq.cur != hw) {
2866 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2867 		struct iwn_rx_desc *desc;
2868 
2869 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2870 		    BUS_DMASYNC_POSTREAD);
2871 		desc = mtod(data->m, struct iwn_rx_desc *);
2872 
2873 		DPRINTF(sc, IWN_DEBUG_RECV,
2874 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2875 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2876 		    desc->type, iwn_intr_str(desc->type),
2877 		    le16toh(desc->len));
2878 
2879 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2880 			iwn_cmd_done(sc, desc);
2881 
2882 		switch (desc->type) {
2883 		case IWN_RX_PHY:
2884 			iwn_rx_phy(sc, desc, data);
2885 			break;
2886 
2887 		case IWN_RX_DONE:		/* 4965AGN only. */
2888 		case IWN_MPDU_RX_DONE:
2889 			/* An 802.11 frame has been received. */
2890 			iwn_rx_done(sc, desc, data);
2891 			break;
2892 
2893 		case IWN_RX_COMPRESSED_BA:
2894 			/* A Compressed BlockAck has been received. */
2895 			iwn_rx_compressed_ba(sc, desc, data);
2896 			break;
2897 
2898 		case IWN_TX_DONE:
2899 			/* An 802.11 frame has been transmitted. */
2900 			ops->tx_done(sc, desc, data);
2901 			break;
2902 
2903 		case IWN_RX_STATISTICS:
2904 		case IWN_BEACON_STATISTICS:
2905 			iwn_rx_statistics(sc, desc, data);
2906 			break;
2907 
2908 		case IWN_BEACON_MISSED:
2909 		{
2910 			struct iwn_beacon_missed *miss =
2911 			    (struct iwn_beacon_missed *)(desc + 1);
2912 			int misses;
2913 
2914 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2915 			    BUS_DMASYNC_POSTREAD);
2916 			misses = le32toh(miss->consecutive);
2917 
2918 			DPRINTF(sc, IWN_DEBUG_STATE,
2919 			    "%s: beacons missed %d/%d\n", __func__,
2920 			    misses, le32toh(miss->total));
2921 			/*
2922 			 * If more than 5 consecutive beacons are missed,
2923 			 * reinitialize the sensitivity state machine.
2924 			 */
2925 			if (vap->iv_state == IEEE80211_S_RUN &&
2926 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2927 				if (misses > 5)
2928 					(void)iwn_init_sensitivity(sc);
2929 				if (misses >= vap->iv_bmissthreshold) {
2930 					IWN_UNLOCK(sc);
2931 					ieee80211_beacon_miss(ic);
2932 					IWN_LOCK(sc);
2933 				}
2934 			}
2935 			break;
2936 		}
2937 		case IWN_UC_READY:
2938 		{
2939 			struct iwn_ucode_info *uc =
2940 			    (struct iwn_ucode_info *)(desc + 1);
2941 
2942 			/* The microcontroller is ready. */
2943 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2944 			    BUS_DMASYNC_POSTREAD);
2945 			DPRINTF(sc, IWN_DEBUG_RESET,
2946 			    "microcode alive notification version=%d.%d "
2947 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2948 			    uc->subtype, le32toh(uc->valid));
2949 
2950 			if (le32toh(uc->valid) != 1) {
2951 				device_printf(sc->sc_dev,
2952 				    "microcontroller initialization failed");
2953 				break;
2954 			}
2955 			if (uc->subtype == IWN_UCODE_INIT) {
2956 				/* Save microcontroller report. */
2957 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2958 			}
2959 			/* Save the address of the error log in SRAM. */
2960 			sc->errptr = le32toh(uc->errptr);
2961 			break;
2962 		}
2963 		case IWN_STATE_CHANGED:
2964 		{
2965 			uint32_t *status = (uint32_t *)(desc + 1);
2966 
2967 			/*
2968 			 * State change allows hardware switch change to be
2969 			 * noted. However, we handle this in iwn_intr as we
2970 			 * get both the enable/disble intr.
2971 			 */
2972 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2973 			    BUS_DMASYNC_POSTREAD);
2974 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2975 			    le32toh(*status));
2976 			break;
2977 		}
2978 		case IWN_START_SCAN:
2979 		{
2980 			struct iwn_start_scan *scan =
2981 			    (struct iwn_start_scan *)(desc + 1);
2982 
2983 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2984 			    BUS_DMASYNC_POSTREAD);
2985 			DPRINTF(sc, IWN_DEBUG_ANY,
2986 			    "%s: scanning channel %d status %x\n",
2987 			    __func__, scan->chan, le32toh(scan->status));
2988 			break;
2989 		}
2990 		case IWN_STOP_SCAN:
2991 		{
2992 			struct iwn_stop_scan *scan =
2993 			    (struct iwn_stop_scan *)(desc + 1);
2994 
2995 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2996 			    BUS_DMASYNC_POSTREAD);
2997 			DPRINTF(sc, IWN_DEBUG_STATE,
2998 			    "scan finished nchan=%d status=%d chan=%d\n",
2999 			    scan->nchan, scan->status, scan->chan);
3000 
3001 			IWN_UNLOCK(sc);
3002 			ieee80211_scan_next(vap);
3003 			IWN_LOCK(sc);
3004 			break;
3005 		}
3006 		case IWN5000_CALIBRATION_RESULT:
3007 			iwn5000_rx_calib_results(sc, desc, data);
3008 			break;
3009 
3010 		case IWN5000_CALIBRATION_DONE:
3011 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3012 			wakeup(sc);
3013 			break;
3014 		}
3015 
3016 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3017 	}
3018 
3019 	/* Tell the firmware what we have processed. */
3020 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3021 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3022 }
3023 
3024 /*
3025  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3026  * from power-down sleep mode.
3027  */
3028 static void
3029 iwn_wakeup_intr(struct iwn_softc *sc)
3030 {
3031 	int qid;
3032 
3033 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3034 	    __func__);
3035 
3036 	/* Wakeup RX and TX rings. */
3037 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3038 	for (qid = 0; qid < sc->ntxqs; qid++) {
3039 		struct iwn_tx_ring *ring = &sc->txq[qid];
3040 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3041 	}
3042 }
3043 
3044 static void
3045 iwn_rftoggle_intr(struct iwn_softc *sc)
3046 {
3047 	struct ifnet *ifp = sc->sc_ifp;
3048 	struct ieee80211com *ic = ifp->if_l2com;
3049 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3050 
3051 	IWN_LOCK_ASSERT(sc);
3052 
3053 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3054 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3055 	if (tmp & IWN_GP_CNTRL_RFKILL)
3056 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3057 	else
3058 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3059 }
3060 
3061 /*
3062  * Dump the error log of the firmware when a firmware panic occurs.  Although
3063  * we can't debug the firmware because it is neither open source nor free, it
3064  * can help us to identify certain classes of problems.
3065  */
3066 static void
3067 iwn_fatal_intr(struct iwn_softc *sc)
3068 {
3069 	struct iwn_fw_dump dump;
3070 	int i;
3071 
3072 	IWN_LOCK_ASSERT(sc);
3073 
3074 	/* Force a complete recalibration on next init. */
3075 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3076 
3077 	/* Check that the error log address is valid. */
3078 	if (sc->errptr < IWN_FW_DATA_BASE ||
3079 	    sc->errptr + sizeof (dump) >
3080 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3081 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3082 		    sc->errptr);
3083 		return;
3084 	}
3085 	if (iwn_nic_lock(sc) != 0) {
3086 		printf("%s: could not read firmware error log\n", __func__);
3087 		return;
3088 	}
3089 	/* Read firmware error log from SRAM. */
3090 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3091 	    sizeof (dump) / sizeof (uint32_t));
3092 	iwn_nic_unlock(sc);
3093 
3094 	if (dump.valid == 0) {
3095 		printf("%s: firmware error log is empty\n", __func__);
3096 		return;
3097 	}
3098 	printf("firmware error log:\n");
3099 	printf("  error type      = \"%s\" (0x%08X)\n",
3100 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3101 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3102 	    dump.id);
3103 	printf("  program counter = 0x%08X\n", dump.pc);
3104 	printf("  source line     = 0x%08X\n", dump.src_line);
3105 	printf("  error data      = 0x%08X%08X\n",
3106 	    dump.error_data[0], dump.error_data[1]);
3107 	printf("  branch link     = 0x%08X%08X\n",
3108 	    dump.branch_link[0], dump.branch_link[1]);
3109 	printf("  interrupt link  = 0x%08X%08X\n",
3110 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3111 	printf("  time            = %u\n", dump.time[0]);
3112 
3113 	/* Dump driver status (TX and RX rings) while we're here. */
3114 	printf("driver status:\n");
3115 	for (i = 0; i < sc->ntxqs; i++) {
3116 		struct iwn_tx_ring *ring = &sc->txq[i];
3117 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3118 		    i, ring->qid, ring->cur, ring->queued);
3119 	}
3120 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3121 }
3122 
3123 static void
3124 iwn_intr(void *arg)
3125 {
3126 	struct iwn_softc *sc = arg;
3127 	struct ifnet *ifp = sc->sc_ifp;
3128 	uint32_t r1, r2, tmp;
3129 
3130 	IWN_LOCK(sc);
3131 
3132 	/* Disable interrupts. */
3133 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3134 
3135 	/* Read interrupts from ICT (fast) or from registers (slow). */
3136 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3137 		tmp = 0;
3138 		while (sc->ict[sc->ict_cur] != 0) {
3139 			tmp |= sc->ict[sc->ict_cur];
3140 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3141 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3142 		}
3143 		tmp = le32toh(tmp);
3144 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3145 			tmp = 0;
3146 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3147 			tmp |= 0x8000;
3148 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3149 		r2 = 0;	/* Unused. */
3150 	} else {
3151 		r1 = IWN_READ(sc, IWN_INT);
3152 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3153 			return;	/* Hardware gone! */
3154 		r2 = IWN_READ(sc, IWN_FH_INT);
3155 	}
3156 
3157 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
3158 
3159 	if (r1 == 0 && r2 == 0)
3160 		goto done;	/* Interrupt not for us. */
3161 
3162 	/* Acknowledge interrupts. */
3163 	IWN_WRITE(sc, IWN_INT, r1);
3164 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3165 		IWN_WRITE(sc, IWN_FH_INT, r2);
3166 
3167 	if (r1 & IWN_INT_RF_TOGGLED) {
3168 		iwn_rftoggle_intr(sc);
3169 		goto done;
3170 	}
3171 	if (r1 & IWN_INT_CT_REACHED) {
3172 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3173 		    __func__);
3174 	}
3175 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3176 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3177 		    __func__);
3178 		/* Dump firmware error log and stop. */
3179 		iwn_fatal_intr(sc);
3180 		ifp->if_flags &= ~IFF_UP;
3181 		iwn_stop_locked(sc);
3182 		goto done;
3183 	}
3184 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3185 	    (r2 & IWN_FH_INT_RX)) {
3186 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3187 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3188 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3189 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3190 			    IWN_INT_PERIODIC_DIS);
3191 			iwn_notif_intr(sc);
3192 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3193 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3194 				    IWN_INT_PERIODIC_ENA);
3195 			}
3196 		} else
3197 			iwn_notif_intr(sc);
3198 	}
3199 
3200 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3201 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3202 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3203 		wakeup(sc);	/* FH DMA transfer completed. */
3204 	}
3205 
3206 	if (r1 & IWN_INT_ALIVE)
3207 		wakeup(sc);	/* Firmware is alive. */
3208 
3209 	if (r1 & IWN_INT_WAKEUP)
3210 		iwn_wakeup_intr(sc);
3211 
3212 done:
3213 	/* Re-enable interrupts. */
3214 	if (ifp->if_flags & IFF_UP)
3215 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3216 
3217 	IWN_UNLOCK(sc);
3218 }
3219 
3220 /*
3221  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3222  * 5000 adapters use a slightly different format).
3223  */
3224 static void
3225 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3226     uint16_t len)
3227 {
3228 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3229 
3230 	*w = htole16(len + 8);
3231 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3232 	    BUS_DMASYNC_PREWRITE);
3233 	if (idx < IWN_SCHED_WINSZ) {
3234 		*(w + IWN_TX_RING_COUNT) = *w;
3235 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3236 		    BUS_DMASYNC_PREWRITE);
3237 	}
3238 }
3239 
3240 static void
3241 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3242     uint16_t len)
3243 {
3244 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3245 
3246 	*w = htole16(id << 12 | (len + 8));
3247 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3248 	    BUS_DMASYNC_PREWRITE);
3249 	if (idx < IWN_SCHED_WINSZ) {
3250 		*(w + IWN_TX_RING_COUNT) = *w;
3251 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3252 		    BUS_DMASYNC_PREWRITE);
3253 	}
3254 }
3255 
3256 #ifdef notyet
3257 static void
3258 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3259 {
3260 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3261 
3262 	*w = (*w & htole16(0xf000)) | htole16(1);
3263 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3264 	    BUS_DMASYNC_PREWRITE);
3265 	if (idx < IWN_SCHED_WINSZ) {
3266 		*(w + IWN_TX_RING_COUNT) = *w;
3267 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3268 		    BUS_DMASYNC_PREWRITE);
3269 	}
3270 }
3271 #endif
3272 
3273 static int
3274 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3275 {
3276 	struct iwn_ops *ops = &sc->ops;
3277 	const struct ieee80211_txparam *tp;
3278 	struct ieee80211vap *vap = ni->ni_vap;
3279 	struct ieee80211com *ic = ni->ni_ic;
3280 	struct iwn_node *wn = (void *)ni;
3281 	struct iwn_tx_ring *ring;
3282 	struct iwn_tx_desc *desc;
3283 	struct iwn_tx_data *data;
3284 	struct iwn_tx_cmd *cmd;
3285 	struct iwn_cmd_data *tx;
3286 	struct ieee80211_frame *wh;
3287 	struct ieee80211_key *k = NULL;
3288 	struct mbuf *m1;
3289 	uint32_t flags;
3290 	uint16_t qos;
3291 	u_int hdrlen;
3292 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3293 	uint8_t tid, ridx, txant, type;
3294 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3295 
3296 	IWN_LOCK_ASSERT(sc);
3297 
3298 	wh = mtod(m, struct ieee80211_frame *);
3299 	hdrlen = ieee80211_anyhdrsize(wh);
3300 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3301 
3302 	/* Select EDCA Access Category and TX ring for this frame. */
3303 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3304 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3305 		tid = qos & IEEE80211_QOS_TID;
3306 	} else {
3307 		qos = 0;
3308 		tid = 0;
3309 	}
3310 	ac = M_WME_GETAC(m);
3311 	if (m->m_flags & M_AMPDU_MPDU) {
3312 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3313 
3314 		ac = *(int *)tap->txa_private;
3315 		*(uint16_t *)wh->i_seq =
3316 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3317 		ni->ni_txseqs[tid]++;
3318 	}
3319 	ring = &sc->txq[ac];
3320 	desc = &ring->desc[ring->cur];
3321 	data = &ring->data[ring->cur];
3322 
3323 	/* Choose a TX rate index. */
3324 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3325 	if (type == IEEE80211_FC0_TYPE_MGT)
3326 		rate = tp->mgmtrate;
3327 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3328 		rate = tp->mcastrate;
3329 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3330 		rate = tp->ucastrate;
3331 	else {
3332 		/* XXX pass pktlen */
3333 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3334 		rate = ni->ni_txrate;
3335 	}
3336 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3337 
3338 	/* Encrypt the frame if need be. */
3339 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3340 		/* Retrieve key for TX. */
3341 		k = ieee80211_crypto_encap(ni, m);
3342 		if (k == NULL) {
3343 			m_freem(m);
3344 			return ENOBUFS;
3345 		}
3346 		/* 802.11 header may have moved. */
3347 		wh = mtod(m, struct ieee80211_frame *);
3348 	}
3349 	totlen = m->m_pkthdr.len;
3350 
3351 	if (ieee80211_radiotap_active_vap(vap)) {
3352 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3353 
3354 		tap->wt_flags = 0;
3355 		tap->wt_rate = rate;
3356 		if (k != NULL)
3357 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3358 
3359 		ieee80211_radiotap_tx(vap, m);
3360 	}
3361 
3362 	/* Prepare TX firmware command. */
3363 	cmd = &ring->cmd[ring->cur];
3364 	cmd->code = IWN_CMD_TX_DATA;
3365 	cmd->flags = 0;
3366 	cmd->qid = ring->qid;
3367 	cmd->idx = ring->cur;
3368 
3369 	tx = (struct iwn_cmd_data *)cmd->data;
3370 	/* NB: No need to clear tx, all fields are reinitialized here. */
3371 	tx->scratch = 0;	/* clear "scratch" area */
3372 
3373 	flags = 0;
3374 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3375 		/* Unicast frame, check if an ACK is expected. */
3376 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3377 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3378 			flags |= IWN_TX_NEED_ACK;
3379 	}
3380 	if ((wh->i_fc[0] &
3381 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3382 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3383 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3384 
3385 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3386 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3387 
3388 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3389 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3390 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3391 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3392 			flags |= IWN_TX_NEED_RTS;
3393 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3394 		    ridx >= IWN_RIDX_OFDM6) {
3395 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3396 				flags |= IWN_TX_NEED_CTS;
3397 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3398 				flags |= IWN_TX_NEED_RTS;
3399 		}
3400 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3401 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3402 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3403 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3404 				flags |= IWN_TX_NEED_PROTECTION;
3405 			} else
3406 				flags |= IWN_TX_FULL_TXOP;
3407 		}
3408 	}
3409 
3410 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3411 	    type != IEEE80211_FC0_TYPE_DATA)
3412 		tx->id = sc->broadcast_id;
3413 	else
3414 		tx->id = wn->id;
3415 
3416 	if (type == IEEE80211_FC0_TYPE_MGT) {
3417 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3418 
3419 		/* Tell HW to set timestamp in probe responses. */
3420 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3421 			flags |= IWN_TX_INSERT_TSTAMP;
3422 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3423 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3424 			tx->timeout = htole16(3);
3425 		else
3426 			tx->timeout = htole16(2);
3427 	} else
3428 		tx->timeout = htole16(0);
3429 
3430 	if (hdrlen & 3) {
3431 		/* First segment length must be a multiple of 4. */
3432 		flags |= IWN_TX_NEED_PADDING;
3433 		pad = 4 - (hdrlen & 3);
3434 	} else
3435 		pad = 0;
3436 
3437 	tx->len = htole16(totlen);
3438 	tx->tid = tid;
3439 	tx->rts_ntries = 60;
3440 	tx->data_ntries = 15;
3441 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3442 	tx->rate = wn->ridx[rate];
3443 	if (tx->id == sc->broadcast_id) {
3444 		/* Group or management frame. */
3445 		tx->linkq = 0;
3446 		/* XXX Alternate between antenna A and B? */
3447 		txant = IWN_LSB(sc->txchainmask);
3448 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3449 	} else {
3450 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3451 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3452 	}
3453 	/* Set physical address of "scratch area". */
3454 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3455 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3456 
3457 	/* Copy 802.11 header in TX command. */
3458 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3459 
3460 	/* Trim 802.11 header. */
3461 	m_adj(m, hdrlen);
3462 	tx->security = 0;
3463 	tx->flags = htole32(flags);
3464 
3465 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3466 	    &nsegs, BUS_DMA_NOWAIT);
3467 	if (error != 0) {
3468 		if (error != EFBIG) {
3469 			device_printf(sc->sc_dev,
3470 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3471 			m_freem(m);
3472 			return error;
3473 		}
3474 		/* Too many DMA segments, linearize mbuf. */
3475 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3476 		if (m1 == NULL) {
3477 			device_printf(sc->sc_dev,
3478 			    "%s: could not defrag mbuf\n", __func__);
3479 			m_freem(m);
3480 			return ENOBUFS;
3481 		}
3482 		m = m1;
3483 
3484 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3485 		    segs, &nsegs, BUS_DMA_NOWAIT);
3486 		if (error != 0) {
3487 			device_printf(sc->sc_dev,
3488 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3489 			m_freem(m);
3490 			return error;
3491 		}
3492 	}
3493 
3494 	data->m = m;
3495 	data->ni = ni;
3496 
3497 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3498 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3499 
3500 	/* Fill TX descriptor. */
3501 	desc->nsegs = 1;
3502 	if (m->m_len != 0)
3503 		desc->nsegs += nsegs;
3504 	/* First DMA segment is used by the TX command. */
3505 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3506 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3507 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3508 	/* Other DMA segments are for data payload. */
3509 	seg = &segs[0];
3510 	for (i = 1; i <= nsegs; i++) {
3511 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3512 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3513 		    seg->ds_len << 4);
3514 		seg++;
3515 	}
3516 
3517 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3518 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3519 	    BUS_DMASYNC_PREWRITE);
3520 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3521 	    BUS_DMASYNC_PREWRITE);
3522 
3523 	/* Update TX scheduler. */
3524 	if (ring->qid >= sc->firstaggqueue)
3525 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3526 
3527 	/* Kick TX ring. */
3528 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3529 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3530 
3531 	/* Mark TX ring as full if we reach a certain threshold. */
3532 	if (++ring->queued > IWN_TX_RING_HIMARK)
3533 		sc->qfullmsk |= 1 << ring->qid;
3534 
3535 	return 0;
3536 }
3537 
3538 static int
3539 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3540     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3541 {
3542 	struct iwn_ops *ops = &sc->ops;
3543 	struct ifnet *ifp = sc->sc_ifp;
3544 	struct ieee80211vap *vap = ni->ni_vap;
3545 	struct ieee80211com *ic = ifp->if_l2com;
3546 	struct iwn_tx_cmd *cmd;
3547 	struct iwn_cmd_data *tx;
3548 	struct ieee80211_frame *wh;
3549 	struct iwn_tx_ring *ring;
3550 	struct iwn_tx_desc *desc;
3551 	struct iwn_tx_data *data;
3552 	struct mbuf *m1;
3553 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3554 	uint32_t flags;
3555 	u_int hdrlen;
3556 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3557 	uint8_t ridx, type, txant;
3558 
3559 	IWN_LOCK_ASSERT(sc);
3560 
3561 	wh = mtod(m, struct ieee80211_frame *);
3562 	hdrlen = ieee80211_anyhdrsize(wh);
3563 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3564 
3565 	ac = params->ibp_pri & 3;
3566 
3567 	ring = &sc->txq[ac];
3568 	desc = &ring->desc[ring->cur];
3569 	data = &ring->data[ring->cur];
3570 
3571 	/* Choose a TX rate index. */
3572 	rate = params->ibp_rate0;
3573 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3574 	if (ridx == (uint8_t)-1) {
3575 		/* XXX fall back to mcast/mgmt rate? */
3576 		m_freem(m);
3577 		return EINVAL;
3578 	}
3579 
3580 	totlen = m->m_pkthdr.len;
3581 
3582 	/* Prepare TX firmware command. */
3583 	cmd = &ring->cmd[ring->cur];
3584 	cmd->code = IWN_CMD_TX_DATA;
3585 	cmd->flags = 0;
3586 	cmd->qid = ring->qid;
3587 	cmd->idx = ring->cur;
3588 
3589 	tx = (struct iwn_cmd_data *)cmd->data;
3590 	/* NB: No need to clear tx, all fields are reinitialized here. */
3591 	tx->scratch = 0;	/* clear "scratch" area */
3592 
3593 	flags = 0;
3594 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3595 		flags |= IWN_TX_NEED_ACK;
3596 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3597 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3598 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3599 			flags &= ~IWN_TX_NEED_RTS;
3600 			flags |= IWN_TX_NEED_PROTECTION;
3601 		} else
3602 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3603 	}
3604 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3605 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3606 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3607 			flags &= ~IWN_TX_NEED_CTS;
3608 			flags |= IWN_TX_NEED_PROTECTION;
3609 		} else
3610 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3611 	}
3612 	if (type == IEEE80211_FC0_TYPE_MGT) {
3613 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3614 
3615 		/* Tell HW to set timestamp in probe responses. */
3616 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3617 			flags |= IWN_TX_INSERT_TSTAMP;
3618 
3619 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3620 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3621 			tx->timeout = htole16(3);
3622 		else
3623 			tx->timeout = htole16(2);
3624 	} else
3625 		tx->timeout = htole16(0);
3626 
3627 	if (hdrlen & 3) {
3628 		/* First segment length must be a multiple of 4. */
3629 		flags |= IWN_TX_NEED_PADDING;
3630 		pad = 4 - (hdrlen & 3);
3631 	} else
3632 		pad = 0;
3633 
3634 	if (ieee80211_radiotap_active_vap(vap)) {
3635 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3636 
3637 		tap->wt_flags = 0;
3638 		tap->wt_rate = rate;
3639 
3640 		ieee80211_radiotap_tx(vap, m);
3641 	}
3642 
3643 	tx->len = htole16(totlen);
3644 	tx->tid = 0;
3645 	tx->id = sc->broadcast_id;
3646 	tx->rts_ntries = params->ibp_try1;
3647 	tx->data_ntries = params->ibp_try0;
3648 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3649 	tx->rate = htole32(rate2plcp(rate));
3650 	if (ridx < IWN_RIDX_OFDM6 &&
3651 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3652 		tx->rate |= htole32(IWN_RFLAG_CCK);
3653 	/* Group or management frame. */
3654 	tx->linkq = 0;
3655 	txant = IWN_LSB(sc->txchainmask);
3656 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3657 	/* Set physical address of "scratch area". */
3658 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3659 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3660 
3661 	/* Copy 802.11 header in TX command. */
3662 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3663 
3664 	/* Trim 802.11 header. */
3665 	m_adj(m, hdrlen);
3666 	tx->security = 0;
3667 	tx->flags = htole32(flags);
3668 
3669 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3670 	    &nsegs, BUS_DMA_NOWAIT);
3671 	if (error != 0) {
3672 		if (error != EFBIG) {
3673 			device_printf(sc->sc_dev,
3674 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3675 			m_freem(m);
3676 			return error;
3677 		}
3678 		/* Too many DMA segments, linearize mbuf. */
3679 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3680 		if (m1 == NULL) {
3681 			device_printf(sc->sc_dev,
3682 			    "%s: could not defrag mbuf\n", __func__);
3683 			m_freem(m);
3684 			return ENOBUFS;
3685 		}
3686 		m = m1;
3687 
3688 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3689 		    segs, &nsegs, BUS_DMA_NOWAIT);
3690 		if (error != 0) {
3691 			device_printf(sc->sc_dev,
3692 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3693 			m_freem(m);
3694 			return error;
3695 		}
3696 	}
3697 
3698 	data->m = m;
3699 	data->ni = ni;
3700 
3701 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3702 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3703 
3704 	/* Fill TX descriptor. */
3705 	desc->nsegs = 1;
3706 	if (m->m_len != 0)
3707 		desc->nsegs += nsegs;
3708 	/* First DMA segment is used by the TX command. */
3709 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3710 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3711 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3712 	/* Other DMA segments are for data payload. */
3713 	seg = &segs[0];
3714 	for (i = 1; i <= nsegs; i++) {
3715 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3716 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3717 		    seg->ds_len << 4);
3718 		seg++;
3719 	}
3720 
3721 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3722 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3723 	    BUS_DMASYNC_PREWRITE);
3724 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3725 	    BUS_DMASYNC_PREWRITE);
3726 
3727 	/* Update TX scheduler. */
3728 	if (ring->qid >= sc->firstaggqueue)
3729 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3730 
3731 	/* Kick TX ring. */
3732 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3733 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3734 
3735 	/* Mark TX ring as full if we reach a certain threshold. */
3736 	if (++ring->queued > IWN_TX_RING_HIMARK)
3737 		sc->qfullmsk |= 1 << ring->qid;
3738 
3739 	return 0;
3740 }
3741 
3742 static int
3743 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3744     const struct ieee80211_bpf_params *params)
3745 {
3746 	struct ieee80211com *ic = ni->ni_ic;
3747 	struct ifnet *ifp = ic->ic_ifp;
3748 	struct iwn_softc *sc = ifp->if_softc;
3749 	int error = 0;
3750 
3751 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3752 		ieee80211_free_node(ni);
3753 		m_freem(m);
3754 		return ENETDOWN;
3755 	}
3756 
3757 	IWN_LOCK(sc);
3758 	if (params == NULL) {
3759 		/*
3760 		 * Legacy path; interpret frame contents to decide
3761 		 * precisely how to send the frame.
3762 		 */
3763 		error = iwn_tx_data(sc, m, ni);
3764 	} else {
3765 		/*
3766 		 * Caller supplied explicit parameters to use in
3767 		 * sending the frame.
3768 		 */
3769 		error = iwn_tx_data_raw(sc, m, ni, params);
3770 	}
3771 	if (error != 0) {
3772 		/* NB: m is reclaimed on tx failure */
3773 		ieee80211_free_node(ni);
3774 		ifp->if_oerrors++;
3775 	}
3776 	sc->sc_tx_timer = 5;
3777 
3778 	IWN_UNLOCK(sc);
3779 	return error;
3780 }
3781 
3782 static void
3783 iwn_start(struct ifnet *ifp)
3784 {
3785 	struct iwn_softc *sc = ifp->if_softc;
3786 
3787 	IWN_LOCK(sc);
3788 	iwn_start_locked(ifp);
3789 	IWN_UNLOCK(sc);
3790 }
3791 
3792 static void
3793 iwn_start_locked(struct ifnet *ifp)
3794 {
3795 	struct iwn_softc *sc = ifp->if_softc;
3796 	struct ieee80211_node *ni;
3797 	struct mbuf *m;
3798 
3799 	IWN_LOCK_ASSERT(sc);
3800 
3801 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3802 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3803 		return;
3804 
3805 	for (;;) {
3806 		if (sc->qfullmsk != 0) {
3807 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3808 			break;
3809 		}
3810 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3811 		if (m == NULL)
3812 			break;
3813 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3814 		if (iwn_tx_data(sc, m, ni) != 0) {
3815 			ieee80211_free_node(ni);
3816 			ifp->if_oerrors++;
3817 			continue;
3818 		}
3819 		sc->sc_tx_timer = 5;
3820 	}
3821 }
3822 
3823 static void
3824 iwn_watchdog(void *arg)
3825 {
3826 	struct iwn_softc *sc = arg;
3827 	struct ifnet *ifp = sc->sc_ifp;
3828 	struct ieee80211com *ic = ifp->if_l2com;
3829 
3830 	IWN_LOCK_ASSERT(sc);
3831 
3832 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3833 
3834 	if (sc->sc_tx_timer > 0) {
3835 		if (--sc->sc_tx_timer == 0) {
3836 			if_printf(ifp, "device timeout\n");
3837 			ieee80211_runtask(ic, &sc->sc_reinit_task);
3838 			return;
3839 		}
3840 	}
3841 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3842 }
3843 
3844 static int
3845 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3846 {
3847 	struct iwn_softc *sc = ifp->if_softc;
3848 	struct ieee80211com *ic = ifp->if_l2com;
3849 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3850 	struct ifreq *ifr = (struct ifreq *) data;
3851 	int error = 0, startall = 0, stop = 0;
3852 
3853 	switch (cmd) {
3854 	case SIOCGIFADDR:
3855 		error = ether_ioctl(ifp, cmd, data);
3856 		break;
3857 	case SIOCSIFFLAGS:
3858 		IWN_LOCK(sc);
3859 		if (ifp->if_flags & IFF_UP) {
3860 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3861 				iwn_init_locked(sc);
3862 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3863 					startall = 1;
3864 				else
3865 					stop = 1;
3866 			}
3867 		} else {
3868 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3869 				iwn_stop_locked(sc);
3870 		}
3871 		IWN_UNLOCK(sc);
3872 		if (startall)
3873 			ieee80211_start_all(ic);
3874 		else if (vap != NULL && stop)
3875 			ieee80211_stop(vap);
3876 		break;
3877 	case SIOCGIFMEDIA:
3878 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3879 		break;
3880 	default:
3881 		error = EINVAL;
3882 		break;
3883 	}
3884 	return error;
3885 }
3886 
3887 /*
3888  * Send a command to the firmware.
3889  */
3890 static int
3891 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3892 {
3893 	struct iwn_tx_ring *ring = &sc->txq[4];
3894 	struct iwn_tx_desc *desc;
3895 	struct iwn_tx_data *data;
3896 	struct iwn_tx_cmd *cmd;
3897 	struct mbuf *m;
3898 	bus_addr_t paddr;
3899 	int totlen, error;
3900 
3901 	if (async == 0)
3902 		IWN_LOCK_ASSERT(sc);
3903 
3904 	desc = &ring->desc[ring->cur];
3905 	data = &ring->data[ring->cur];
3906 	totlen = 4 + size;
3907 
3908 	if (size > sizeof cmd->data) {
3909 		/* Command is too large to fit in a descriptor. */
3910 		if (totlen > MCLBYTES)
3911 			return EINVAL;
3912 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3913 		if (m == NULL)
3914 			return ENOMEM;
3915 		cmd = mtod(m, struct iwn_tx_cmd *);
3916 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3917 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3918 		if (error != 0) {
3919 			m_freem(m);
3920 			return error;
3921 		}
3922 		data->m = m;
3923 	} else {
3924 		cmd = &ring->cmd[ring->cur];
3925 		paddr = data->cmd_paddr;
3926 	}
3927 
3928 	cmd->code = code;
3929 	cmd->flags = 0;
3930 	cmd->qid = ring->qid;
3931 	cmd->idx = ring->cur;
3932 	memcpy(cmd->data, buf, size);
3933 
3934 	desc->nsegs = 1;
3935 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3936 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3937 
3938 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3939 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3940 	    cmd->flags, cmd->qid, cmd->idx);
3941 
3942 	if (size > sizeof cmd->data) {
3943 		bus_dmamap_sync(ring->data_dmat, data->map,
3944 		    BUS_DMASYNC_PREWRITE);
3945 	} else {
3946 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3947 		    BUS_DMASYNC_PREWRITE);
3948 	}
3949 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3950 	    BUS_DMASYNC_PREWRITE);
3951 
3952 	/* Kick command ring. */
3953 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3954 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3955 
3956 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3957 }
3958 
3959 static int
3960 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3961 {
3962 	struct iwn4965_node_info hnode;
3963 	caddr_t src, dst;
3964 
3965 	/*
3966 	 * We use the node structure for 5000 Series internally (it is
3967 	 * a superset of the one for 4965AGN). We thus copy the common
3968 	 * fields before sending the command.
3969 	 */
3970 	src = (caddr_t)node;
3971 	dst = (caddr_t)&hnode;
3972 	memcpy(dst, src, 48);
3973 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3974 	memcpy(dst + 48, src + 72, 20);
3975 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3976 }
3977 
3978 static int
3979 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3980 {
3981 	/* Direct mapping. */
3982 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3983 }
3984 
3985 static int
3986 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3987 {
3988 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
3989 	struct iwn_node *wn = (void *)ni;
3990 	struct ieee80211_rateset *rs = &ni->ni_rates;
3991 	struct iwn_cmd_link_quality linkq;
3992 	uint8_t txant;
3993 	int i, rate, txrate;
3994 
3995 	/* Use the first valid TX antenna. */
3996 	txant = IWN_LSB(sc->txchainmask);
3997 
3998 	memset(&linkq, 0, sizeof linkq);
3999 	linkq.id = wn->id;
4000 	linkq.antmsk_1stream = txant;
4001 	linkq.antmsk_2stream = IWN_ANT_AB;
4002 	linkq.ampdu_max = 64;
4003 	linkq.ampdu_threshold = 3;
4004 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4005 
4006 	/* Start at highest available bit-rate. */
4007 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4008 		txrate = ni->ni_htrates.rs_nrates - 1;
4009 	else
4010 		txrate = rs->rs_nrates - 1;
4011 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4012 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4013 			rate = IEEE80211_RATE_MCS | txrate;
4014 		else
4015 			rate = RV(rs->rs_rates[txrate]);
4016 		linkq.retry[i] = wn->ridx[rate];
4017 
4018 		if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) &&
4019 		    RV(le32toh(wn->ridx[rate])) > 7)
4020 			linkq.mimo = i + 1;
4021 
4022 		/* Next retry at immediate lower bit-rate. */
4023 		if (txrate > 0)
4024 			txrate--;
4025 	}
4026 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4027 #undef	RV
4028 }
4029 
4030 /*
4031  * Broadcast node is used to send group-addressed and management frames.
4032  */
4033 static int
4034 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4035 {
4036 	struct iwn_ops *ops = &sc->ops;
4037 	struct ifnet *ifp = sc->sc_ifp;
4038 	struct ieee80211com *ic = ifp->if_l2com;
4039 	struct iwn_node_info node;
4040 	struct iwn_cmd_link_quality linkq;
4041 	uint8_t txant;
4042 	int i, error;
4043 
4044 	memset(&node, 0, sizeof node);
4045 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4046 	node.id = sc->broadcast_id;
4047 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4048 	if ((error = ops->add_node(sc, &node, async)) != 0)
4049 		return error;
4050 
4051 	/* Use the first valid TX antenna. */
4052 	txant = IWN_LSB(sc->txchainmask);
4053 
4054 	memset(&linkq, 0, sizeof linkq);
4055 	linkq.id = sc->broadcast_id;
4056 	linkq.antmsk_1stream = txant;
4057 	linkq.antmsk_2stream = IWN_ANT_AB;
4058 	linkq.ampdu_max = 64;
4059 	linkq.ampdu_threshold = 3;
4060 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4061 
4062 	/* Use lowest mandatory bit-rate. */
4063 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4064 		linkq.retry[0] = htole32(0xd);
4065 	else
4066 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4067 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4068 	/* Use same bit-rate for all TX retries. */
4069 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4070 		linkq.retry[i] = linkq.retry[0];
4071 	}
4072 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4073 }
4074 
4075 static int
4076 iwn_updateedca(struct ieee80211com *ic)
4077 {
4078 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4079 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4080 	struct iwn_edca_params cmd;
4081 	int aci;
4082 
4083 	memset(&cmd, 0, sizeof cmd);
4084 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4085 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4086 		const struct wmeParams *ac =
4087 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4088 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4089 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4090 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4091 		cmd.ac[aci].txoplimit =
4092 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4093 	}
4094 	IEEE80211_UNLOCK(ic);
4095 	IWN_LOCK(sc);
4096 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4097 	IWN_UNLOCK(sc);
4098 	IEEE80211_LOCK(ic);
4099 	return 0;
4100 #undef IWN_EXP2
4101 }
4102 
4103 static void
4104 iwn_update_mcast(struct ifnet *ifp)
4105 {
4106 	/* Ignore */
4107 }
4108 
4109 static void
4110 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4111 {
4112 	struct iwn_cmd_led led;
4113 
4114 	/* Clear microcode LED ownership. */
4115 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4116 
4117 	led.which = which;
4118 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4119 	led.off = off;
4120 	led.on = on;
4121 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4122 }
4123 
4124 /*
4125  * Set the critical temperature at which the firmware will stop the radio
4126  * and notify us.
4127  */
4128 static int
4129 iwn_set_critical_temp(struct iwn_softc *sc)
4130 {
4131 	struct iwn_critical_temp crit;
4132 	int32_t temp;
4133 
4134 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4135 
4136 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4137 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4138 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4139 		temp = IWN_CTOK(110);
4140 	else
4141 		temp = 110;
4142 	memset(&crit, 0, sizeof crit);
4143 	crit.tempR = htole32(temp);
4144 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4145 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4146 }
4147 
4148 static int
4149 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4150 {
4151 	struct iwn_cmd_timing cmd;
4152 	uint64_t val, mod;
4153 
4154 	memset(&cmd, 0, sizeof cmd);
4155 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4156 	cmd.bintval = htole16(ni->ni_intval);
4157 	cmd.lintval = htole16(10);
4158 
4159 	/* Compute remaining time until next beacon. */
4160 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4161 	mod = le64toh(cmd.tstamp) % val;
4162 	cmd.binitval = htole32((uint32_t)(val - mod));
4163 
4164 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4165 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4166 
4167 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4168 }
4169 
4170 static void
4171 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4172 {
4173 	struct ifnet *ifp = sc->sc_ifp;
4174 	struct ieee80211com *ic = ifp->if_l2com;
4175 
4176 	/* Adjust TX power if need be (delta >= 3 degC). */
4177 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4178 	    __func__, sc->temp, temp);
4179 	if (abs(temp - sc->temp) >= 3) {
4180 		/* Record temperature of last calibration. */
4181 		sc->temp = temp;
4182 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4183 	}
4184 }
4185 
4186 /*
4187  * Set TX power for current channel (each rate has its own power settings).
4188  * This function takes into account the regulatory information from EEPROM,
4189  * the current temperature and the current voltage.
4190  */
4191 static int
4192 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4193     int async)
4194 {
4195 /* Fixed-point arithmetic division using a n-bit fractional part. */
4196 #define fdivround(a, b, n)	\
4197 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4198 /* Linear interpolation. */
4199 #define interpolate(x, x1, y1, x2, y2, n)	\
4200 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4201 
4202 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4203 	struct iwn_ucode_info *uc = &sc->ucode_info;
4204 	struct iwn4965_cmd_txpower cmd;
4205 	struct iwn4965_eeprom_chan_samples *chans;
4206 	const uint8_t *rf_gain, *dsp_gain;
4207 	int32_t vdiff, tdiff;
4208 	int i, c, grp, maxpwr;
4209 	uint8_t chan;
4210 
4211 	/* Retrieve current channel from last RXON. */
4212 	chan = sc->rxon.chan;
4213 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4214 	    chan);
4215 
4216 	memset(&cmd, 0, sizeof cmd);
4217 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4218 	cmd.chan = chan;
4219 
4220 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4221 		maxpwr   = sc->maxpwr5GHz;
4222 		rf_gain  = iwn4965_rf_gain_5ghz;
4223 		dsp_gain = iwn4965_dsp_gain_5ghz;
4224 	} else {
4225 		maxpwr   = sc->maxpwr2GHz;
4226 		rf_gain  = iwn4965_rf_gain_2ghz;
4227 		dsp_gain = iwn4965_dsp_gain_2ghz;
4228 	}
4229 
4230 	/* Compute voltage compensation. */
4231 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4232 	if (vdiff > 0)
4233 		vdiff *= 2;
4234 	if (abs(vdiff) > 2)
4235 		vdiff = 0;
4236 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4237 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4238 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4239 
4240 	/* Get channel attenuation group. */
4241 	if (chan <= 20)		/* 1-20 */
4242 		grp = 4;
4243 	else if (chan <= 43)	/* 34-43 */
4244 		grp = 0;
4245 	else if (chan <= 70)	/* 44-70 */
4246 		grp = 1;
4247 	else if (chan <= 124)	/* 71-124 */
4248 		grp = 2;
4249 	else			/* 125-200 */
4250 		grp = 3;
4251 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4252 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4253 
4254 	/* Get channel sub-band. */
4255 	for (i = 0; i < IWN_NBANDS; i++)
4256 		if (sc->bands[i].lo != 0 &&
4257 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4258 			break;
4259 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4260 		return EINVAL;
4261 	chans = sc->bands[i].chans;
4262 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4263 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4264 
4265 	for (c = 0; c < 2; c++) {
4266 		uint8_t power, gain, temp;
4267 		int maxchpwr, pwr, ridx, idx;
4268 
4269 		power = interpolate(chan,
4270 		    chans[0].num, chans[0].samples[c][1].power,
4271 		    chans[1].num, chans[1].samples[c][1].power, 1);
4272 		gain  = interpolate(chan,
4273 		    chans[0].num, chans[0].samples[c][1].gain,
4274 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4275 		temp  = interpolate(chan,
4276 		    chans[0].num, chans[0].samples[c][1].temp,
4277 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4278 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4279 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4280 		    __func__, c, power, gain, temp);
4281 
4282 		/* Compute temperature compensation. */
4283 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4284 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4285 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4286 		    __func__, tdiff, sc->temp, temp);
4287 
4288 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4289 			/* Convert dBm to half-dBm. */
4290 			maxchpwr = sc->maxpwr[chan] * 2;
4291 			if ((ridx / 8) & 1)
4292 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4293 
4294 			pwr = maxpwr;
4295 
4296 			/* Adjust TX power based on rate. */
4297 			if ((ridx % 8) == 5)
4298 				pwr -= 15;	/* OFDM48: -7.5dB */
4299 			else if ((ridx % 8) == 6)
4300 				pwr -= 17;	/* OFDM54: -8.5dB */
4301 			else if ((ridx % 8) == 7)
4302 				pwr -= 20;	/* OFDM60: -10dB */
4303 			else
4304 				pwr -= 10;	/* Others: -5dB */
4305 
4306 			/* Do not exceed channel max TX power. */
4307 			if (pwr > maxchpwr)
4308 				pwr = maxchpwr;
4309 
4310 			idx = gain - (pwr - power) - tdiff - vdiff;
4311 			if ((ridx / 8) & 1)	/* MIMO */
4312 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4313 
4314 			if (cmd.band == 0)
4315 				idx += 9;	/* 5GHz */
4316 			if (ridx == IWN_RIDX_MAX)
4317 				idx += 5;	/* CCK */
4318 
4319 			/* Make sure idx stays in a valid range. */
4320 			if (idx < 0)
4321 				idx = 0;
4322 			else if (idx > IWN4965_MAX_PWR_INDEX)
4323 				idx = IWN4965_MAX_PWR_INDEX;
4324 
4325 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4326 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4327 			    __func__, c, ridx, idx);
4328 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4329 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4330 		}
4331 	}
4332 
4333 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4334 	    "%s: set tx power for chan %d\n", __func__, chan);
4335 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4336 
4337 #undef interpolate
4338 #undef fdivround
4339 }
4340 
4341 static int
4342 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4343     int async)
4344 {
4345 	struct iwn5000_cmd_txpower cmd;
4346 
4347 	/*
4348 	 * TX power calibration is handled automatically by the firmware
4349 	 * for 5000 Series.
4350 	 */
4351 	memset(&cmd, 0, sizeof cmd);
4352 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4353 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4354 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4355 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4356 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4357 }
4358 
4359 /*
4360  * Retrieve the maximum RSSI (in dBm) among receivers.
4361  */
4362 static int
4363 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4364 {
4365 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4366 	uint8_t mask, agc;
4367 	int rssi;
4368 
4369 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4370 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4371 
4372 	rssi = 0;
4373 	if (mask & IWN_ANT_A)
4374 		rssi = MAX(rssi, phy->rssi[0]);
4375 	if (mask & IWN_ANT_B)
4376 		rssi = MAX(rssi, phy->rssi[2]);
4377 	if (mask & IWN_ANT_C)
4378 		rssi = MAX(rssi, phy->rssi[4]);
4379 
4380 	DPRINTF(sc, IWN_DEBUG_RECV,
4381 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4382 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4383 	    rssi - agc - IWN_RSSI_TO_DBM);
4384 	return rssi - agc - IWN_RSSI_TO_DBM;
4385 }
4386 
4387 static int
4388 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4389 {
4390 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4391 	uint8_t agc;
4392 	int rssi;
4393 
4394 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4395 
4396 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4397 		   le16toh(phy->rssi[1]) & 0xff);
4398 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4399 
4400 	DPRINTF(sc, IWN_DEBUG_RECV,
4401 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4402 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4403 	    rssi - agc - IWN_RSSI_TO_DBM);
4404 	return rssi - agc - IWN_RSSI_TO_DBM;
4405 }
4406 
4407 /*
4408  * Retrieve the average noise (in dBm) among receivers.
4409  */
4410 static int
4411 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4412 {
4413 	int i, total, nbant, noise;
4414 
4415 	total = nbant = 0;
4416 	for (i = 0; i < 3; i++) {
4417 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4418 			continue;
4419 		total += noise;
4420 		nbant++;
4421 	}
4422 	/* There should be at least one antenna but check anyway. */
4423 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4424 }
4425 
4426 /*
4427  * Compute temperature (in degC) from last received statistics.
4428  */
4429 static int
4430 iwn4965_get_temperature(struct iwn_softc *sc)
4431 {
4432 	struct iwn_ucode_info *uc = &sc->ucode_info;
4433 	int32_t r1, r2, r3, r4, temp;
4434 
4435 	r1 = le32toh(uc->temp[0].chan20MHz);
4436 	r2 = le32toh(uc->temp[1].chan20MHz);
4437 	r3 = le32toh(uc->temp[2].chan20MHz);
4438 	r4 = le32toh(sc->rawtemp);
4439 
4440 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4441 		return 0;
4442 
4443 	/* Sign-extend 23-bit R4 value to 32-bit. */
4444 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4445 	/* Compute temperature in Kelvin. */
4446 	temp = (259 * (r4 - r2)) / (r3 - r1);
4447 	temp = (temp * 97) / 100 + 8;
4448 
4449 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4450 	    IWN_KTOC(temp));
4451 	return IWN_KTOC(temp);
4452 }
4453 
4454 static int
4455 iwn5000_get_temperature(struct iwn_softc *sc)
4456 {
4457 	int32_t temp;
4458 
4459 	/*
4460 	 * Temperature is not used by the driver for 5000 Series because
4461 	 * TX power calibration is handled by firmware.
4462 	 */
4463 	temp = le32toh(sc->rawtemp);
4464 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4465 		temp = (temp / -5) + sc->temp_off;
4466 		temp = IWN_KTOC(temp);
4467 	}
4468 	return temp;
4469 }
4470 
4471 /*
4472  * Initialize sensitivity calibration state machine.
4473  */
4474 static int
4475 iwn_init_sensitivity(struct iwn_softc *sc)
4476 {
4477 	struct iwn_ops *ops = &sc->ops;
4478 	struct iwn_calib_state *calib = &sc->calib;
4479 	uint32_t flags;
4480 	int error;
4481 
4482 	/* Reset calibration state machine. */
4483 	memset(calib, 0, sizeof (*calib));
4484 	calib->state = IWN_CALIB_STATE_INIT;
4485 	calib->cck_state = IWN_CCK_STATE_HIFA;
4486 	/* Set initial correlation values. */
4487 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4488 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4489 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4490 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4491 	calib->cck_x4      = 125;
4492 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4493 	calib->energy_cck  = sc->limits->energy_cck;
4494 
4495 	/* Write initial sensitivity. */
4496 	if ((error = iwn_send_sensitivity(sc)) != 0)
4497 		return error;
4498 
4499 	/* Write initial gains. */
4500 	if ((error = ops->init_gains(sc)) != 0)
4501 		return error;
4502 
4503 	/* Request statistics at each beacon interval. */
4504 	flags = 0;
4505 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4506 	    __func__);
4507 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4508 }
4509 
4510 /*
4511  * Collect noise and RSSI statistics for the first 20 beacons received
4512  * after association and use them to determine connected antennas and
4513  * to set differential gains.
4514  */
4515 static void
4516 iwn_collect_noise(struct iwn_softc *sc,
4517     const struct iwn_rx_general_stats *stats)
4518 {
4519 	struct iwn_ops *ops = &sc->ops;
4520 	struct iwn_calib_state *calib = &sc->calib;
4521 	uint32_t val;
4522 	int i;
4523 
4524 	/* Accumulate RSSI and noise for all 3 antennas. */
4525 	for (i = 0; i < 3; i++) {
4526 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4527 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4528 	}
4529 	/* NB: We update differential gains only once after 20 beacons. */
4530 	if (++calib->nbeacons < 20)
4531 		return;
4532 
4533 	/* Determine highest average RSSI. */
4534 	val = MAX(calib->rssi[0], calib->rssi[1]);
4535 	val = MAX(calib->rssi[2], val);
4536 
4537 	/* Determine which antennas are connected. */
4538 	sc->chainmask = sc->rxchainmask;
4539 	for (i = 0; i < 3; i++)
4540 		if (val - calib->rssi[i] > 15 * 20)
4541 			sc->chainmask &= ~(1 << i);
4542 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4543 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4544 	    __func__, sc->rxchainmask, sc->chainmask);
4545 
4546 	/* If none of the TX antennas are connected, keep at least one. */
4547 	if ((sc->chainmask & sc->txchainmask) == 0)
4548 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4549 
4550 	(void)ops->set_gains(sc);
4551 	calib->state = IWN_CALIB_STATE_RUN;
4552 
4553 #ifdef notyet
4554 	/* XXX Disable RX chains with no antennas connected. */
4555 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4556 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4557 #endif
4558 
4559 #if 0
4560 	/* XXX: not yet */
4561 	/* Enable power-saving mode if requested by user. */
4562 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4563 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4564 #endif
4565 }
4566 
4567 static int
4568 iwn4965_init_gains(struct iwn_softc *sc)
4569 {
4570 	struct iwn_phy_calib_gain cmd;
4571 
4572 	memset(&cmd, 0, sizeof cmd);
4573 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4574 	/* Differential gains initially set to 0 for all 3 antennas. */
4575 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4576 	    "%s: setting initial differential gains\n", __func__);
4577 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4578 }
4579 
4580 static int
4581 iwn5000_init_gains(struct iwn_softc *sc)
4582 {
4583 	struct iwn_phy_calib cmd;
4584 
4585 	memset(&cmd, 0, sizeof cmd);
4586 	cmd.code = sc->reset_noise_gain;
4587 	cmd.ngroups = 1;
4588 	cmd.isvalid = 1;
4589 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4590 	    "%s: setting initial differential gains\n", __func__);
4591 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4592 }
4593 
4594 static int
4595 iwn4965_set_gains(struct iwn_softc *sc)
4596 {
4597 	struct iwn_calib_state *calib = &sc->calib;
4598 	struct iwn_phy_calib_gain cmd;
4599 	int i, delta, noise;
4600 
4601 	/* Get minimal noise among connected antennas. */
4602 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4603 	for (i = 0; i < 3; i++)
4604 		if (sc->chainmask & (1 << i))
4605 			noise = MIN(calib->noise[i], noise);
4606 
4607 	memset(&cmd, 0, sizeof cmd);
4608 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4609 	/* Set differential gains for connected antennas. */
4610 	for (i = 0; i < 3; i++) {
4611 		if (sc->chainmask & (1 << i)) {
4612 			/* Compute attenuation (in unit of 1.5dB). */
4613 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4614 			/* NB: delta <= 0 */
4615 			/* Limit to [-4.5dB,0]. */
4616 			cmd.gain[i] = MIN(abs(delta), 3);
4617 			if (delta < 0)
4618 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4619 		}
4620 	}
4621 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4622 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4623 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4624 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4625 }
4626 
4627 static int
4628 iwn5000_set_gains(struct iwn_softc *sc)
4629 {
4630 	struct iwn_calib_state *calib = &sc->calib;
4631 	struct iwn_phy_calib_gain cmd;
4632 	int i, ant, div, delta;
4633 
4634 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4635 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4636 
4637 	memset(&cmd, 0, sizeof cmd);
4638 	cmd.code = sc->noise_gain;
4639 	cmd.ngroups = 1;
4640 	cmd.isvalid = 1;
4641 	/* Get first available RX antenna as referential. */
4642 	ant = IWN_LSB(sc->rxchainmask);
4643 	/* Set differential gains for other antennas. */
4644 	for (i = ant + 1; i < 3; i++) {
4645 		if (sc->chainmask & (1 << i)) {
4646 			/* The delta is relative to antenna "ant". */
4647 			delta = ((int32_t)calib->noise[ant] -
4648 			    (int32_t)calib->noise[i]) / div;
4649 			/* Limit to [-4.5dB,+4.5dB]. */
4650 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4651 			if (delta < 0)
4652 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4653 		}
4654 	}
4655 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4656 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4657 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4658 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4659 }
4660 
4661 /*
4662  * Tune RF RX sensitivity based on the number of false alarms detected
4663  * during the last beacon period.
4664  */
4665 static void
4666 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4667 {
4668 #define inc(val, inc, max)			\
4669 	if ((val) < (max)) {			\
4670 		if ((val) < (max) - (inc))	\
4671 			(val) += (inc);		\
4672 		else				\
4673 			(val) = (max);		\
4674 		needs_update = 1;		\
4675 	}
4676 #define dec(val, dec, min)			\
4677 	if ((val) > (min)) {			\
4678 		if ((val) > (min) + (dec))	\
4679 			(val) -= (dec);		\
4680 		else				\
4681 			(val) = (min);		\
4682 		needs_update = 1;		\
4683 	}
4684 
4685 	const struct iwn_sensitivity_limits *limits = sc->limits;
4686 	struct iwn_calib_state *calib = &sc->calib;
4687 	uint32_t val, rxena, fa;
4688 	uint32_t energy[3], energy_min;
4689 	uint8_t noise[3], noise_ref;
4690 	int i, needs_update = 0;
4691 
4692 	/* Check that we've been enabled long enough. */
4693 	if ((rxena = le32toh(stats->general.load)) == 0)
4694 		return;
4695 
4696 	/* Compute number of false alarms since last call for OFDM. */
4697 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4698 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4699 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4700 
4701 	/* Save counters values for next call. */
4702 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4703 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4704 
4705 	if (fa > 50 * rxena) {
4706 		/* High false alarm count, decrease sensitivity. */
4707 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4708 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4709 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4710 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4711 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4712 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4713 
4714 	} else if (fa < 5 * rxena) {
4715 		/* Low false alarm count, increase sensitivity. */
4716 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4717 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4718 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4719 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4720 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4721 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4722 	}
4723 
4724 	/* Compute maximum noise among 3 receivers. */
4725 	for (i = 0; i < 3; i++)
4726 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4727 	val = MAX(noise[0], noise[1]);
4728 	val = MAX(noise[2], val);
4729 	/* Insert it into our samples table. */
4730 	calib->noise_samples[calib->cur_noise_sample] = val;
4731 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4732 
4733 	/* Compute maximum noise among last 20 samples. */
4734 	noise_ref = calib->noise_samples[0];
4735 	for (i = 1; i < 20; i++)
4736 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4737 
4738 	/* Compute maximum energy among 3 receivers. */
4739 	for (i = 0; i < 3; i++)
4740 		energy[i] = le32toh(stats->general.energy[i]);
4741 	val = MIN(energy[0], energy[1]);
4742 	val = MIN(energy[2], val);
4743 	/* Insert it into our samples table. */
4744 	calib->energy_samples[calib->cur_energy_sample] = val;
4745 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4746 
4747 	/* Compute minimum energy among last 10 samples. */
4748 	energy_min = calib->energy_samples[0];
4749 	for (i = 1; i < 10; i++)
4750 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4751 	energy_min += 6;
4752 
4753 	/* Compute number of false alarms since last call for CCK. */
4754 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4755 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4756 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4757 
4758 	/* Save counters values for next call. */
4759 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4760 	calib->fa_cck = le32toh(stats->cck.fa);
4761 
4762 	if (fa > 50 * rxena) {
4763 		/* High false alarm count, decrease sensitivity. */
4764 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4765 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4766 		calib->cck_state = IWN_CCK_STATE_HIFA;
4767 		calib->low_fa = 0;
4768 
4769 		if (calib->cck_x4 > 160) {
4770 			calib->noise_ref = noise_ref;
4771 			if (calib->energy_cck > 2)
4772 				dec(calib->energy_cck, 2, energy_min);
4773 		}
4774 		if (calib->cck_x4 < 160) {
4775 			calib->cck_x4 = 161;
4776 			needs_update = 1;
4777 		} else
4778 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4779 
4780 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4781 
4782 	} else if (fa < 5 * rxena) {
4783 		/* Low false alarm count, increase sensitivity. */
4784 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4785 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4786 		calib->cck_state = IWN_CCK_STATE_LOFA;
4787 		calib->low_fa++;
4788 
4789 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4790 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4791 		     calib->low_fa > 100)) {
4792 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4793 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4794 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4795 		}
4796 	} else {
4797 		/* Not worth to increase or decrease sensitivity. */
4798 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4799 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4800 		calib->low_fa = 0;
4801 		calib->noise_ref = noise_ref;
4802 
4803 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4804 			/* Previous interval had many false alarms. */
4805 			dec(calib->energy_cck, 8, energy_min);
4806 		}
4807 		calib->cck_state = IWN_CCK_STATE_INIT;
4808 	}
4809 
4810 	if (needs_update)
4811 		(void)iwn_send_sensitivity(sc);
4812 #undef dec
4813 #undef inc
4814 }
4815 
4816 static int
4817 iwn_send_sensitivity(struct iwn_softc *sc)
4818 {
4819 	struct iwn_calib_state *calib = &sc->calib;
4820 	struct iwn_enhanced_sensitivity_cmd cmd;
4821 	int len;
4822 
4823 	memset(&cmd, 0, sizeof cmd);
4824 	len = sizeof (struct iwn_sensitivity_cmd);
4825 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4826 	/* OFDM modulation. */
4827 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4828 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4829 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4830 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4831 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4832 	cmd.energy_ofdm_th     = htole16(62);
4833 	/* CCK modulation. */
4834 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4835 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4836 	cmd.energy_cck         = htole16(calib->energy_cck);
4837 	/* Barker modulation: use default values. */
4838 	cmd.corr_barker        = htole16(190);
4839 	cmd.corr_barker_mrc    = htole16(390);
4840 
4841 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4842 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4843 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4844 	    calib->ofdm_mrc_x4, calib->cck_x4,
4845 	    calib->cck_mrc_x4, calib->energy_cck);
4846 
4847 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4848 		goto send;
4849 	/* Enhanced sensitivity settings. */
4850 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4851 	cmd.ofdm_det_slope_mrc = htole16(668);
4852 	cmd.ofdm_det_icept_mrc = htole16(4);
4853 	cmd.ofdm_det_slope     = htole16(486);
4854 	cmd.ofdm_det_icept     = htole16(37);
4855 	cmd.cck_det_slope_mrc  = htole16(853);
4856 	cmd.cck_det_icept_mrc  = htole16(4);
4857 	cmd.cck_det_slope      = htole16(476);
4858 	cmd.cck_det_icept      = htole16(99);
4859 send:
4860 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4861 }
4862 
4863 /*
4864  * Set STA mode power saving level (between 0 and 5).
4865  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4866  */
4867 static int
4868 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4869 {
4870 	struct iwn_pmgt_cmd cmd;
4871 	const struct iwn_pmgt *pmgt;
4872 	uint32_t max, skip_dtim;
4873 	uint32_t reg;
4874 	int i;
4875 
4876 	/* Select which PS parameters to use. */
4877 	if (dtim <= 2)
4878 		pmgt = &iwn_pmgt[0][level];
4879 	else if (dtim <= 10)
4880 		pmgt = &iwn_pmgt[1][level];
4881 	else
4882 		pmgt = &iwn_pmgt[2][level];
4883 
4884 	memset(&cmd, 0, sizeof cmd);
4885 	if (level != 0)	/* not CAM */
4886 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4887 	if (level == 5)
4888 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4889 	/* Retrieve PCIe Active State Power Management (ASPM). */
4890 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4891 	if (!(reg & 0x1))	/* L0s Entry disabled. */
4892 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4893 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4894 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4895 
4896 	if (dtim == 0) {
4897 		dtim = 1;
4898 		skip_dtim = 0;
4899 	} else
4900 		skip_dtim = pmgt->skip_dtim;
4901 	if (skip_dtim != 0) {
4902 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4903 		max = pmgt->intval[4];
4904 		if (max == (uint32_t)-1)
4905 			max = dtim * (skip_dtim + 1);
4906 		else if (max > dtim)
4907 			max = (max / dtim) * dtim;
4908 	} else
4909 		max = dtim;
4910 	for (i = 0; i < 5; i++)
4911 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4912 
4913 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4914 	    level);
4915 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4916 }
4917 
4918 static int
4919 iwn_send_btcoex(struct iwn_softc *sc)
4920 {
4921 	struct iwn_bluetooth cmd;
4922 
4923 	memset(&cmd, 0, sizeof cmd);
4924 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4925 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4926 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4927 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
4928 	    __func__);
4929 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4930 }
4931 
4932 static int
4933 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4934 {
4935 	static const uint32_t btcoex_3wire[12] = {
4936 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4937 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4938 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4939 	};
4940 	struct iwn6000_btcoex_config btconfig;
4941 	struct iwn_btcoex_priotable btprio;
4942 	struct iwn_btcoex_prot btprot;
4943 	int error, i;
4944 
4945 	memset(&btconfig, 0, sizeof btconfig);
4946 	btconfig.flags = 145;
4947 	btconfig.max_kill = 5;
4948 	btconfig.bt3_t7_timer = 1;
4949 	btconfig.kill_ack = htole32(0xffff0000);
4950 	btconfig.kill_cts = htole32(0xffff0000);
4951 	btconfig.sample_time = 2;
4952 	btconfig.bt3_t2_timer = 0xc;
4953 	for (i = 0; i < 12; i++)
4954 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4955 	btconfig.valid = htole16(0xff);
4956 	btconfig.prio_boost = 0xf0;
4957 	DPRINTF(sc, IWN_DEBUG_RESET,
4958 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
4959 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
4960 	if (error != 0)
4961 		return error;
4962 
4963 	memset(&btprio, 0, sizeof btprio);
4964 	btprio.calib_init1 = 0x6;
4965 	btprio.calib_init2 = 0x7;
4966 	btprio.calib_periodic_low1 = 0x2;
4967 	btprio.calib_periodic_low2 = 0x3;
4968 	btprio.calib_periodic_high1 = 0x4;
4969 	btprio.calib_periodic_high2 = 0x5;
4970 	btprio.dtim = 0x6;
4971 	btprio.scan52 = 0x8;
4972 	btprio.scan24 = 0xa;
4973 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4974 	    1);
4975 	if (error != 0)
4976 		return error;
4977 
4978 	/* Force BT state machine change. */
4979 	memset(&btprot, 0, sizeof btprio);
4980 	btprot.open = 1;
4981 	btprot.type = 1;
4982 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4983 	if (error != 0)
4984 		return error;
4985 	btprot.open = 0;
4986 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4987 }
4988 
4989 static int
4990 iwn5000_runtime_calib(struct iwn_softc *sc)
4991 {
4992 	struct iwn5000_calib_config cmd;
4993 
4994 	memset(&cmd, 0, sizeof cmd);
4995 	cmd.ucode.once.enable = 0xffffffff;
4996 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4997 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4998 	    "%s: configuring runtime calibration\n", __func__);
4999 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5000 }
5001 
5002 static int
5003 iwn_config(struct iwn_softc *sc)
5004 {
5005 	struct iwn_ops *ops = &sc->ops;
5006 	struct ifnet *ifp = sc->sc_ifp;
5007 	struct ieee80211com *ic = ifp->if_l2com;
5008 	uint32_t txmask;
5009 	uint16_t rxchain;
5010 	int error;
5011 
5012 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5013 		/* Set radio temperature sensor offset. */
5014 		error = iwn5000_temp_offset_calib(sc);
5015 		if (error != 0) {
5016 			device_printf(sc->sc_dev,
5017 			    "%s: could not set temperature offset\n", __func__);
5018 			return error;
5019 		}
5020 	}
5021 
5022 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5023 		/* Configure runtime DC calibration. */
5024 		error = iwn5000_runtime_calib(sc);
5025 		if (error != 0) {
5026 			device_printf(sc->sc_dev,
5027 			    "%s: could not configure runtime calibration\n",
5028 			    __func__);
5029 			return error;
5030 		}
5031 	}
5032 
5033 	/* Configure valid TX chains for >=5000 Series. */
5034 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5035 		txmask = htole32(sc->txchainmask);
5036 		DPRINTF(sc, IWN_DEBUG_RESET,
5037 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5038 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5039 		    sizeof txmask, 0);
5040 		if (error != 0) {
5041 			device_printf(sc->sc_dev,
5042 			    "%s: could not configure valid TX chains, "
5043 			    "error %d\n", __func__, error);
5044 			return error;
5045 		}
5046 	}
5047 
5048 	/* Configure bluetooth coexistence. */
5049 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5050 		error = iwn_send_advanced_btcoex(sc);
5051 	else
5052 		error = iwn_send_btcoex(sc);
5053 	if (error != 0) {
5054 		device_printf(sc->sc_dev,
5055 		    "%s: could not configure bluetooth coexistence, error %d\n",
5056 		    __func__, error);
5057 		return error;
5058 	}
5059 
5060 	/* Set mode, channel, RX filter and enable RX. */
5061 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5062 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5063 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5064 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5065 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5066 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5067 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5068 	switch (ic->ic_opmode) {
5069 	case IEEE80211_M_STA:
5070 		sc->rxon.mode = IWN_MODE_STA;
5071 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5072 		break;
5073 	case IEEE80211_M_MONITOR:
5074 		sc->rxon.mode = IWN_MODE_MONITOR;
5075 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5076 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5077 		break;
5078 	default:
5079 		/* Should not get there. */
5080 		break;
5081 	}
5082 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5083 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5084 	sc->rxon.ht_single_mask = 0xff;
5085 	sc->rxon.ht_dual_mask = 0xff;
5086 	sc->rxon.ht_triple_mask = 0xff;
5087 	rxchain =
5088 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5089 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5090 	    IWN_RXCHAIN_IDLE_COUNT(2);
5091 	sc->rxon.rxchain = htole16(rxchain);
5092 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5093 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5094 	if (error != 0) {
5095 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5096 		    __func__);
5097 		return error;
5098 	}
5099 
5100 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5101 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5102 		    __func__);
5103 		return error;
5104 	}
5105 
5106 	/* Configuration has changed, set TX power accordingly. */
5107 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5108 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5109 		    __func__);
5110 		return error;
5111 	}
5112 
5113 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5114 		device_printf(sc->sc_dev,
5115 		    "%s: could not set critical temperature\n", __func__);
5116 		return error;
5117 	}
5118 
5119 	/* Set power saving level to CAM during initialization. */
5120 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5121 		device_printf(sc->sc_dev,
5122 		    "%s: could not set power saving level\n", __func__);
5123 		return error;
5124 	}
5125 	return 0;
5126 }
5127 
5128 /*
5129  * Add an ssid element to a frame.
5130  */
5131 static uint8_t *
5132 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5133 {
5134 	*frm++ = IEEE80211_ELEMID_SSID;
5135 	*frm++ = len;
5136 	memcpy(frm, ssid, len);
5137 	return frm + len;
5138 }
5139 
5140 static int
5141 iwn_scan(struct iwn_softc *sc)
5142 {
5143 	struct ifnet *ifp = sc->sc_ifp;
5144 	struct ieee80211com *ic = ifp->if_l2com;
5145 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5146 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5147 	struct iwn_scan_hdr *hdr;
5148 	struct iwn_cmd_data *tx;
5149 	struct iwn_scan_essid *essid;
5150 	struct iwn_scan_chan *chan;
5151 	struct ieee80211_frame *wh;
5152 	struct ieee80211_rateset *rs;
5153 	struct ieee80211_channel *c;
5154 	uint8_t *buf, *frm;
5155 	uint16_t rxchain;
5156 	uint8_t txant;
5157 	int buflen, error;
5158 
5159 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5160 	if (buf == NULL) {
5161 		device_printf(sc->sc_dev,
5162 		    "%s: could not allocate buffer for scan command\n",
5163 		    __func__);
5164 		return ENOMEM;
5165 	}
5166 	hdr = (struct iwn_scan_hdr *)buf;
5167 	/*
5168 	 * Move to the next channel if no frames are received within 10ms
5169 	 * after sending the probe request.
5170 	 */
5171 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5172 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5173 
5174 	/* Select antennas for scanning. */
5175 	rxchain =
5176 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5177 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5178 	    IWN_RXCHAIN_DRIVER_FORCE;
5179 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5180 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5181 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5182 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5183 	} else	/* Use all available RX antennas. */
5184 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5185 	hdr->rxchain = htole16(rxchain);
5186 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5187 
5188 	tx = (struct iwn_cmd_data *)(hdr + 1);
5189 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5190 	tx->id = sc->broadcast_id;
5191 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5192 
5193 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5194 		/* Send probe requests at 6Mbps. */
5195 		tx->rate = htole32(0xd);
5196 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5197 	} else {
5198 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5199 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5200 		    sc->rxon.associd && sc->rxon.chan > 14)
5201 			tx->rate = htole32(0xd);
5202 		else {
5203 			/* Send probe requests at 1Mbps. */
5204 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5205 		}
5206 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5207 	}
5208 	/* Use the first valid TX antenna. */
5209 	txant = IWN_LSB(sc->txchainmask);
5210 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5211 
5212 	essid = (struct iwn_scan_essid *)(tx + 1);
5213 	if (ss->ss_ssid[0].len != 0) {
5214 		essid[0].id = IEEE80211_ELEMID_SSID;
5215 		essid[0].len = ss->ss_ssid[0].len;
5216 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5217 	}
5218 	/*
5219 	 * Build a probe request frame.  Most of the following code is a
5220 	 * copy & paste of what is done in net80211.
5221 	 */
5222 	wh = (struct ieee80211_frame *)(essid + 20);
5223 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5224 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5225 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5226 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5227 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5228 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5229 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5230 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5231 
5232 	frm = (uint8_t *)(wh + 1);
5233 	frm = ieee80211_add_ssid(frm, NULL, 0);
5234 	frm = ieee80211_add_rates(frm, rs);
5235 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5236 		frm = ieee80211_add_xrates(frm, rs);
5237 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5238 		frm = ieee80211_add_htcap(frm, ni);
5239 
5240 	/* Set length of probe request. */
5241 	tx->len = htole16(frm - (uint8_t *)wh);
5242 
5243 	c = ic->ic_curchan;
5244 	chan = (struct iwn_scan_chan *)frm;
5245 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5246 	chan->flags = 0;
5247 	if (ss->ss_nssid > 0)
5248 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5249 	chan->dsp_gain = 0x6e;
5250 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5251 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5252 		chan->rf_gain = 0x3b;
5253 		chan->active  = htole16(24);
5254 		chan->passive = htole16(110);
5255 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5256 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5257 		chan->rf_gain = 0x3b;
5258 		chan->active  = htole16(24);
5259 		if (sc->rxon.associd)
5260 			chan->passive = htole16(78);
5261 		else
5262 			chan->passive = htole16(110);
5263 		hdr->crc_threshold = 0xffff;
5264 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5265 		chan->rf_gain = 0x28;
5266 		chan->active  = htole16(36);
5267 		chan->passive = htole16(120);
5268 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5269 	} else {
5270 		chan->rf_gain = 0x28;
5271 		chan->active  = htole16(36);
5272 		if (sc->rxon.associd)
5273 			chan->passive = htole16(88);
5274 		else
5275 			chan->passive = htole16(120);
5276 		hdr->crc_threshold = 0xffff;
5277 	}
5278 
5279 	DPRINTF(sc, IWN_DEBUG_STATE,
5280 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5281 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5282 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5283 	    chan->active, chan->passive);
5284 
5285 	hdr->nchan++;
5286 	chan++;
5287 	buflen = (uint8_t *)chan - buf;
5288 	hdr->len = htole16(buflen);
5289 
5290 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5291 	    hdr->nchan);
5292 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5293 	free(buf, M_DEVBUF);
5294 	return error;
5295 }
5296 
5297 static int
5298 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5299 {
5300 	struct iwn_ops *ops = &sc->ops;
5301 	struct ifnet *ifp = sc->sc_ifp;
5302 	struct ieee80211com *ic = ifp->if_l2com;
5303 	struct ieee80211_node *ni = vap->iv_bss;
5304 	int error;
5305 
5306 	/* Update adapter configuration. */
5307 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5308 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5309 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5310 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5311 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5312 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5313 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5314 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5315 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5316 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5317 		sc->rxon.cck_mask  = 0;
5318 		sc->rxon.ofdm_mask = 0x15;
5319 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5320 		sc->rxon.cck_mask  = 0x03;
5321 		sc->rxon.ofdm_mask = 0;
5322 	} else {
5323 		/* Assume 802.11b/g. */
5324 		sc->rxon.cck_mask  = 0x0f;
5325 		sc->rxon.ofdm_mask = 0x15;
5326 	}
5327 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5328 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5329 	    sc->rxon.ofdm_mask);
5330 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5331 	if (error != 0) {
5332 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5333 		    __func__, error);
5334 		return error;
5335 	}
5336 
5337 	/* Configuration has changed, set TX power accordingly. */
5338 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5339 		device_printf(sc->sc_dev,
5340 		    "%s: could not set TX power, error %d\n", __func__, error);
5341 		return error;
5342 	}
5343 	/*
5344 	 * Reconfiguring RXON clears the firmware nodes table so we must
5345 	 * add the broadcast node again.
5346 	 */
5347 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5348 		device_printf(sc->sc_dev,
5349 		    "%s: could not add broadcast node, error %d\n", __func__,
5350 		    error);
5351 		return error;
5352 	}
5353 	return 0;
5354 }
5355 
5356 static int
5357 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5358 {
5359 	struct iwn_ops *ops = &sc->ops;
5360 	struct ifnet *ifp = sc->sc_ifp;
5361 	struct ieee80211com *ic = ifp->if_l2com;
5362 	struct ieee80211_node *ni = vap->iv_bss;
5363 	struct iwn_node_info node;
5364 	uint32_t htflags = 0;
5365 	int error;
5366 
5367 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5368 		/* Link LED blinks while monitoring. */
5369 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5370 		return 0;
5371 	}
5372 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5373 		device_printf(sc->sc_dev,
5374 		    "%s: could not set timing, error %d\n", __func__, error);
5375 		return error;
5376 	}
5377 
5378 	/* Update adapter configuration. */
5379 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5380 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5381 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5382 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5383 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5384 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5385 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5386 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5387 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5388 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5389 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5390 		sc->rxon.cck_mask  = 0;
5391 		sc->rxon.ofdm_mask = 0x15;
5392 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5393 		sc->rxon.cck_mask  = 0x03;
5394 		sc->rxon.ofdm_mask = 0;
5395 	} else {
5396 		/* Assume 802.11b/g. */
5397 		sc->rxon.cck_mask  = 0x0f;
5398 		sc->rxon.ofdm_mask = 0x15;
5399 	}
5400 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5401 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5402 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5403 			switch (ic->ic_curhtprotmode) {
5404 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5405 				htflags |= IWN_RXON_HT_MODEPURE40;
5406 				break;
5407 			default:
5408 				htflags |= IWN_RXON_HT_MODEMIXED;
5409 				break;
5410 			}
5411 		}
5412 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5413 			htflags |= IWN_RXON_HT_HT40MINUS;
5414 	}
5415 	sc->rxon.flags |= htole32(htflags);
5416 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5417 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5418 	    sc->rxon.chan, sc->rxon.flags);
5419 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5420 	if (error != 0) {
5421 		device_printf(sc->sc_dev,
5422 		    "%s: could not update configuration, error %d\n", __func__,
5423 		    error);
5424 		return error;
5425 	}
5426 
5427 	/* Configuration has changed, set TX power accordingly. */
5428 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5429 		device_printf(sc->sc_dev,
5430 		    "%s: could not set TX power, error %d\n", __func__, error);
5431 		return error;
5432 	}
5433 
5434 	/* Fake a join to initialize the TX rate. */
5435 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5436 	iwn_newassoc(ni, 1);
5437 
5438 	/* Add BSS node. */
5439 	memset(&node, 0, sizeof node);
5440 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5441 	node.id = IWN_ID_BSS;
5442 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5443 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5444 		case IEEE80211_HTCAP_SMPS_ENA:
5445 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5446 			break;
5447 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5448 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5449 			break;
5450 		}
5451 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5452 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5453 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5454 			node.htflags |= htole32(IWN_NODE_HT40);
5455 	}
5456 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5457 	error = ops->add_node(sc, &node, 1);
5458 	if (error != 0) {
5459 		device_printf(sc->sc_dev,
5460 		    "%s: could not add BSS node, error %d\n", __func__, error);
5461 		return error;
5462 	}
5463 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5464 	    __func__, node.id);
5465 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5466 		device_printf(sc->sc_dev,
5467 		    "%s: could not setup link quality for node %d, error %d\n",
5468 		    __func__, node.id, error);
5469 		return error;
5470 	}
5471 
5472 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5473 		device_printf(sc->sc_dev,
5474 		    "%s: could not set sensitivity, error %d\n", __func__,
5475 		    error);
5476 		return error;
5477 	}
5478 	/* Start periodic calibration timer. */
5479 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5480 	sc->calib_cnt = 0;
5481 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5482 	    sc);
5483 
5484 	/* Link LED always on while associated. */
5485 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5486 	return 0;
5487 }
5488 
5489 /*
5490  * This function is called by upper layer when an ADDBA request is received
5491  * from another STA and before the ADDBA response is sent.
5492  */
5493 static int
5494 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5495     int baparamset, int batimeout, int baseqctl)
5496 {
5497 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5498 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5499 	struct iwn_ops *ops = &sc->ops;
5500 	struct iwn_node *wn = (void *)ni;
5501 	struct iwn_node_info node;
5502 	uint16_t ssn;
5503 	uint8_t tid;
5504 	int error;
5505 
5506 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5507 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5508 
5509 	memset(&node, 0, sizeof node);
5510 	node.id = wn->id;
5511 	node.control = IWN_NODE_UPDATE;
5512 	node.flags = IWN_FLAG_SET_ADDBA;
5513 	node.addba_tid = tid;
5514 	node.addba_ssn = htole16(ssn);
5515 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5516 	    wn->id, tid, ssn);
5517 	error = ops->add_node(sc, &node, 1);
5518 	if (error != 0)
5519 		return error;
5520 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5521 #undef MS
5522 }
5523 
5524 /*
5525  * This function is called by upper layer on teardown of an HT-immediate
5526  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5527  */
5528 static void
5529 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5530 {
5531 	struct ieee80211com *ic = ni->ni_ic;
5532 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5533 	struct iwn_ops *ops = &sc->ops;
5534 	struct iwn_node *wn = (void *)ni;
5535 	struct iwn_node_info node;
5536 	uint8_t tid;
5537 
5538 	/* XXX: tid as an argument */
5539 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5540 		if (&ni->ni_rx_ampdu[tid] == rap)
5541 			break;
5542 	}
5543 
5544 	memset(&node, 0, sizeof node);
5545 	node.id = wn->id;
5546 	node.control = IWN_NODE_UPDATE;
5547 	node.flags = IWN_FLAG_SET_DELBA;
5548 	node.delba_tid = tid;
5549 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5550 	(void)ops->add_node(sc, &node, 1);
5551 	sc->sc_ampdu_rx_stop(ni, rap);
5552 }
5553 
5554 static int
5555 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5556     int dialogtoken, int baparamset, int batimeout)
5557 {
5558 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5559 	int qid;
5560 
5561 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5562 		if (sc->qid2tap[qid] == NULL)
5563 			break;
5564 	}
5565 	if (qid == sc->ntxqs) {
5566 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5567 		    __func__);
5568 		return 0;
5569 	}
5570 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5571 	if (tap->txa_private == NULL) {
5572 		device_printf(sc->sc_dev,
5573 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5574 		return 0;
5575 	}
5576 	sc->qid2tap[qid] = tap;
5577 	*(int *)tap->txa_private = qid;
5578 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5579 	    batimeout);
5580 }
5581 
5582 static int
5583 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5584     int code, int baparamset, int batimeout)
5585 {
5586 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5587 	int qid = *(int *)tap->txa_private;
5588 	uint8_t tid = tap->txa_tid;
5589 	int ret;
5590 
5591 	if (code == IEEE80211_STATUS_SUCCESS) {
5592 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5593 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5594 		if (ret != 1)
5595 			return ret;
5596 	} else {
5597 		sc->qid2tap[qid] = NULL;
5598 		free(tap->txa_private, M_DEVBUF);
5599 		tap->txa_private = NULL;
5600 	}
5601 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5602 }
5603 
5604 /*
5605  * This function is called by upper layer when an ADDBA response is received
5606  * from another STA.
5607  */
5608 static int
5609 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5610     uint8_t tid)
5611 {
5612 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
5613 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5614 	struct iwn_ops *ops = &sc->ops;
5615 	struct iwn_node *wn = (void *)ni;
5616 	struct iwn_node_info node;
5617 	int error, qid;
5618 
5619 	/* Enable TX for the specified RA/TID. */
5620 	wn->disable_tid &= ~(1 << tid);
5621 	memset(&node, 0, sizeof node);
5622 	node.id = wn->id;
5623 	node.control = IWN_NODE_UPDATE;
5624 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5625 	node.disable_tid = htole16(wn->disable_tid);
5626 	error = ops->add_node(sc, &node, 1);
5627 	if (error != 0)
5628 		return 0;
5629 
5630 	if ((error = iwn_nic_lock(sc)) != 0)
5631 		return 0;
5632 	qid = *(int *)tap->txa_private;
5633 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
5634 	iwn_nic_unlock(sc);
5635 
5636 	iwn_set_link_quality(sc, ni);
5637 	return 1;
5638 }
5639 
5640 static void
5641 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5642 {
5643 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5644 	struct iwn_ops *ops = &sc->ops;
5645 	uint8_t tid = tap->txa_tid;
5646 	int qid;
5647 
5648 	if (tap->txa_private == NULL)
5649 		return;
5650 
5651 	qid = *(int *)tap->txa_private;
5652 	if (iwn_nic_lock(sc) != 0)
5653 		return;
5654 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
5655 	iwn_nic_unlock(sc);
5656 	sc->qid2tap[qid] = NULL;
5657 	free(tap->txa_private, M_DEVBUF);
5658 	tap->txa_private = NULL;
5659 	sc->sc_addba_stop(ni, tap);
5660 }
5661 
5662 static void
5663 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5664     int qid, uint8_t tid, uint16_t ssn)
5665 {
5666 	struct iwn_node *wn = (void *)ni;
5667 
5668 	/* Stop TX scheduler while we're changing its configuration. */
5669 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5670 	    IWN4965_TXQ_STATUS_CHGACT);
5671 
5672 	/* Assign RA/TID translation to the queue. */
5673 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5674 	    wn->id << 4 | tid);
5675 
5676 	/* Enable chain-building mode for the queue. */
5677 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5678 
5679 	/* Set starting sequence number from the ADDBA request. */
5680 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5681 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5682 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5683 
5684 	/* Set scheduler window size. */
5685 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5686 	    IWN_SCHED_WINSZ);
5687 	/* Set scheduler frame limit. */
5688 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5689 	    IWN_SCHED_LIMIT << 16);
5690 
5691 	/* Enable interrupts for the queue. */
5692 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5693 
5694 	/* Mark the queue as active. */
5695 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5696 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5697 	    iwn_tid2fifo[tid] << 1);
5698 }
5699 
5700 static void
5701 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5702 {
5703 	/* Stop TX scheduler while we're changing its configuration. */
5704 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5705 	    IWN4965_TXQ_STATUS_CHGACT);
5706 
5707 	/* Set starting sequence number from the ADDBA request. */
5708 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5709 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5710 
5711 	/* Disable interrupts for the queue. */
5712 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5713 
5714 	/* Mark the queue as inactive. */
5715 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5716 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5717 }
5718 
5719 static void
5720 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5721     int qid, uint8_t tid, uint16_t ssn)
5722 {
5723 	struct iwn_node *wn = (void *)ni;
5724 
5725 	/* Stop TX scheduler while we're changing its configuration. */
5726 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5727 	    IWN5000_TXQ_STATUS_CHGACT);
5728 
5729 	/* Assign RA/TID translation to the queue. */
5730 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5731 	    wn->id << 4 | tid);
5732 
5733 	/* Enable chain-building mode for the queue. */
5734 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5735 
5736 	/* Enable aggregation for the queue. */
5737 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5738 
5739 	/* Set starting sequence number from the ADDBA request. */
5740 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5741 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5742 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5743 
5744 	/* Set scheduler window size and frame limit. */
5745 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5746 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5747 
5748 	/* Enable interrupts for the queue. */
5749 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5750 
5751 	/* Mark the queue as active. */
5752 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5753 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5754 }
5755 
5756 static void
5757 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5758 {
5759 	/* Stop TX scheduler while we're changing its configuration. */
5760 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5761 	    IWN5000_TXQ_STATUS_CHGACT);
5762 
5763 	/* Disable aggregation for the queue. */
5764 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5765 
5766 	/* Set starting sequence number from the ADDBA request. */
5767 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5768 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5769 
5770 	/* Disable interrupts for the queue. */
5771 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5772 
5773 	/* Mark the queue as inactive. */
5774 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5775 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5776 }
5777 
5778 /*
5779  * Query calibration tables from the initialization firmware.  We do this
5780  * only once at first boot.  Called from a process context.
5781  */
5782 static int
5783 iwn5000_query_calibration(struct iwn_softc *sc)
5784 {
5785 	struct iwn5000_calib_config cmd;
5786 	int error;
5787 
5788 	memset(&cmd, 0, sizeof cmd);
5789 	cmd.ucode.once.enable = 0xffffffff;
5790 	cmd.ucode.once.start  = 0xffffffff;
5791 	cmd.ucode.once.send   = 0xffffffff;
5792 	cmd.ucode.flags       = 0xffffffff;
5793 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5794 	    __func__);
5795 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5796 	if (error != 0)
5797 		return error;
5798 
5799 	/* Wait at most two seconds for calibration to complete. */
5800 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5801 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5802 	return error;
5803 }
5804 
5805 /*
5806  * Send calibration results to the runtime firmware.  These results were
5807  * obtained on first boot from the initialization firmware.
5808  */
5809 static int
5810 iwn5000_send_calibration(struct iwn_softc *sc)
5811 {
5812 	int idx, error;
5813 
5814 	for (idx = 0; idx < 5; idx++) {
5815 		if (sc->calibcmd[idx].buf == NULL)
5816 			continue;	/* No results available. */
5817 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5818 		    "send calibration result idx=%d len=%d\n", idx,
5819 		    sc->calibcmd[idx].len);
5820 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5821 		    sc->calibcmd[idx].len, 0);
5822 		if (error != 0) {
5823 			device_printf(sc->sc_dev,
5824 			    "%s: could not send calibration result, error %d\n",
5825 			    __func__, error);
5826 			return error;
5827 		}
5828 	}
5829 	return 0;
5830 }
5831 
5832 static int
5833 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5834 {
5835 	struct iwn5000_wimax_coex wimax;
5836 
5837 #ifdef notyet
5838 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5839 		/* Enable WiMAX coexistence for combo adapters. */
5840 		wimax.flags =
5841 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5842 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5843 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5844 		    IWN_WIMAX_COEX_ENABLE;
5845 		memcpy(wimax.events, iwn6050_wimax_events,
5846 		    sizeof iwn6050_wimax_events);
5847 	} else
5848 #endif
5849 	{
5850 		/* Disable WiMAX coexistence. */
5851 		wimax.flags = 0;
5852 		memset(wimax.events, 0, sizeof wimax.events);
5853 	}
5854 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5855 	    __func__);
5856 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5857 }
5858 
5859 static int
5860 iwn5000_crystal_calib(struct iwn_softc *sc)
5861 {
5862 	struct iwn5000_phy_calib_crystal cmd;
5863 
5864 	memset(&cmd, 0, sizeof cmd);
5865 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5866 	cmd.ngroups = 1;
5867 	cmd.isvalid = 1;
5868 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5869 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5870 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
5871 	    cmd.cap_pin[0], cmd.cap_pin[1]);
5872 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5873 }
5874 
5875 static int
5876 iwn5000_temp_offset_calib(struct iwn_softc *sc)
5877 {
5878 	struct iwn5000_phy_calib_temp_offset cmd;
5879 
5880 	memset(&cmd, 0, sizeof cmd);
5881 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
5882 	cmd.ngroups = 1;
5883 	cmd.isvalid = 1;
5884 	if (sc->eeprom_temp != 0)
5885 		cmd.offset = htole16(sc->eeprom_temp);
5886 	else
5887 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5888 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
5889 	    le16toh(cmd.offset));
5890 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5891 }
5892 
5893 /*
5894  * This function is called after the runtime firmware notifies us of its
5895  * readiness (called in a process context).
5896  */
5897 static int
5898 iwn4965_post_alive(struct iwn_softc *sc)
5899 {
5900 	int error, qid;
5901 
5902 	if ((error = iwn_nic_lock(sc)) != 0)
5903 		return error;
5904 
5905 	/* Clear TX scheduler state in SRAM. */
5906 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5907 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5908 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5909 
5910 	/* Set physical address of TX scheduler rings (1KB aligned). */
5911 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5912 
5913 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5914 
5915 	/* Disable chain mode for all our 16 queues. */
5916 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5917 
5918 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5919 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5920 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5921 
5922 		/* Set scheduler window size. */
5923 		iwn_mem_write(sc, sc->sched_base +
5924 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5925 		/* Set scheduler frame limit. */
5926 		iwn_mem_write(sc, sc->sched_base +
5927 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5928 		    IWN_SCHED_LIMIT << 16);
5929 	}
5930 
5931 	/* Enable interrupts for all our 16 queues. */
5932 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5933 	/* Identify TX FIFO rings (0-7). */
5934 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5935 
5936 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5937 	for (qid = 0; qid < 7; qid++) {
5938 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5939 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5940 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5941 	}
5942 	iwn_nic_unlock(sc);
5943 	return 0;
5944 }
5945 
5946 /*
5947  * This function is called after the initialization or runtime firmware
5948  * notifies us of its readiness (called in a process context).
5949  */
5950 static int
5951 iwn5000_post_alive(struct iwn_softc *sc)
5952 {
5953 	int error, qid;
5954 
5955 	/* Switch to using ICT interrupt mode. */
5956 	iwn5000_ict_reset(sc);
5957 
5958 	if ((error = iwn_nic_lock(sc)) != 0)
5959 		return error;
5960 
5961 	/* Clear TX scheduler state in SRAM. */
5962 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5963 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5964 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5965 
5966 	/* Set physical address of TX scheduler rings (1KB aligned). */
5967 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5968 
5969 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5970 
5971 	/* Enable chain mode for all queues, except command queue. */
5972 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5973 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5974 
5975 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5976 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5977 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5978 
5979 		iwn_mem_write(sc, sc->sched_base +
5980 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5981 		/* Set scheduler window size and frame limit. */
5982 		iwn_mem_write(sc, sc->sched_base +
5983 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5984 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5985 	}
5986 
5987 	/* Enable interrupts for all our 20 queues. */
5988 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5989 	/* Identify TX FIFO rings (0-7). */
5990 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5991 
5992 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5993 	for (qid = 0; qid < 7; qid++) {
5994 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5995 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5996 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5997 	}
5998 	iwn_nic_unlock(sc);
5999 
6000 	/* Configure WiMAX coexistence for combo adapters. */
6001 	error = iwn5000_send_wimax_coex(sc);
6002 	if (error != 0) {
6003 		device_printf(sc->sc_dev,
6004 		    "%s: could not configure WiMAX coexistence, error %d\n",
6005 		    __func__, error);
6006 		return error;
6007 	}
6008 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6009 		/* Perform crystal calibration. */
6010 		error = iwn5000_crystal_calib(sc);
6011 		if (error != 0) {
6012 			device_printf(sc->sc_dev,
6013 			    "%s: crystal calibration failed, error %d\n",
6014 			    __func__, error);
6015 			return error;
6016 		}
6017 	}
6018 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6019 		/* Query calibration from the initialization firmware. */
6020 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6021 			device_printf(sc->sc_dev,
6022 			    "%s: could not query calibration, error %d\n",
6023 			    __func__, error);
6024 			return error;
6025 		}
6026 		/*
6027 		 * We have the calibration results now, reboot with the
6028 		 * runtime firmware (call ourselves recursively!)
6029 		 */
6030 		iwn_hw_stop(sc);
6031 		error = iwn_hw_init(sc);
6032 	} else {
6033 		/* Send calibration results to runtime firmware. */
6034 		error = iwn5000_send_calibration(sc);
6035 	}
6036 	return error;
6037 }
6038 
6039 /*
6040  * The firmware boot code is small and is intended to be copied directly into
6041  * the NIC internal memory (no DMA transfer).
6042  */
6043 static int
6044 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6045 {
6046 	int error, ntries;
6047 
6048 	size /= sizeof (uint32_t);
6049 
6050 	if ((error = iwn_nic_lock(sc)) != 0)
6051 		return error;
6052 
6053 	/* Copy microcode image into NIC memory. */
6054 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6055 	    (const uint32_t *)ucode, size);
6056 
6057 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6058 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6059 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6060 
6061 	/* Start boot load now. */
6062 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6063 
6064 	/* Wait for transfer to complete. */
6065 	for (ntries = 0; ntries < 1000; ntries++) {
6066 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6067 		    IWN_BSM_WR_CTRL_START))
6068 			break;
6069 		DELAY(10);
6070 	}
6071 	if (ntries == 1000) {
6072 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6073 		    __func__);
6074 		iwn_nic_unlock(sc);
6075 		return ETIMEDOUT;
6076 	}
6077 
6078 	/* Enable boot after power up. */
6079 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6080 
6081 	iwn_nic_unlock(sc);
6082 	return 0;
6083 }
6084 
6085 static int
6086 iwn4965_load_firmware(struct iwn_softc *sc)
6087 {
6088 	struct iwn_fw_info *fw = &sc->fw;
6089 	struct iwn_dma_info *dma = &sc->fw_dma;
6090 	int error;
6091 
6092 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6093 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6094 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6095 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6096 	    fw->init.text, fw->init.textsz);
6097 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6098 
6099 	/* Tell adapter where to find initialization sections. */
6100 	if ((error = iwn_nic_lock(sc)) != 0)
6101 		return error;
6102 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6103 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6104 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6105 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6106 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6107 	iwn_nic_unlock(sc);
6108 
6109 	/* Load firmware boot code. */
6110 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6111 	if (error != 0) {
6112 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6113 		    __func__);
6114 		return error;
6115 	}
6116 	/* Now press "execute". */
6117 	IWN_WRITE(sc, IWN_RESET, 0);
6118 
6119 	/* Wait at most one second for first alive notification. */
6120 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6121 		device_printf(sc->sc_dev,
6122 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6123 		    __func__, error);
6124 		return error;
6125 	}
6126 
6127 	/* Retrieve current temperature for initial TX power calibration. */
6128 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6129 	sc->temp = iwn4965_get_temperature(sc);
6130 
6131 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6132 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6133 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6134 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6135 	    fw->main.text, fw->main.textsz);
6136 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6137 
6138 	/* Tell adapter where to find runtime sections. */
6139 	if ((error = iwn_nic_lock(sc)) != 0)
6140 		return error;
6141 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6142 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6143 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6144 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6145 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6146 	    IWN_FW_UPDATED | fw->main.textsz);
6147 	iwn_nic_unlock(sc);
6148 
6149 	return 0;
6150 }
6151 
6152 static int
6153 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6154     const uint8_t *section, int size)
6155 {
6156 	struct iwn_dma_info *dma = &sc->fw_dma;
6157 	int error;
6158 
6159 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6160 	memcpy(dma->vaddr, section, size);
6161 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6162 
6163 	if ((error = iwn_nic_lock(sc)) != 0)
6164 		return error;
6165 
6166 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6167 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6168 
6169 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6170 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6171 	    IWN_LOADDR(dma->paddr));
6172 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6173 	    IWN_HIADDR(dma->paddr) << 28 | size);
6174 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6175 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6176 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6177 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6178 
6179 	/* Kick Flow Handler to start DMA transfer. */
6180 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6181 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6182 
6183 	iwn_nic_unlock(sc);
6184 
6185 	/* Wait at most five seconds for FH DMA transfer to complete. */
6186 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6187 }
6188 
6189 static int
6190 iwn5000_load_firmware(struct iwn_softc *sc)
6191 {
6192 	struct iwn_fw_part *fw;
6193 	int error;
6194 
6195 	/* Load the initialization firmware on first boot only. */
6196 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6197 	    &sc->fw.main : &sc->fw.init;
6198 
6199 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6200 	    fw->text, fw->textsz);
6201 	if (error != 0) {
6202 		device_printf(sc->sc_dev,
6203 		    "%s: could not load firmware %s section, error %d\n",
6204 		    __func__, ".text", error);
6205 		return error;
6206 	}
6207 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6208 	    fw->data, fw->datasz);
6209 	if (error != 0) {
6210 		device_printf(sc->sc_dev,
6211 		    "%s: could not load firmware %s section, error %d\n",
6212 		    __func__, ".data", error);
6213 		return error;
6214 	}
6215 
6216 	/* Now press "execute". */
6217 	IWN_WRITE(sc, IWN_RESET, 0);
6218 	return 0;
6219 }
6220 
6221 /*
6222  * Extract text and data sections from a legacy firmware image.
6223  */
6224 static int
6225 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6226 {
6227 	const uint32_t *ptr;
6228 	size_t hdrlen = 24;
6229 	uint32_t rev;
6230 
6231 	ptr = (const uint32_t *)fw->data;
6232 	rev = le32toh(*ptr++);
6233 
6234 	/* Check firmware API version. */
6235 	if (IWN_FW_API(rev) <= 1) {
6236 		device_printf(sc->sc_dev,
6237 		    "%s: bad firmware, need API version >=2\n", __func__);
6238 		return EINVAL;
6239 	}
6240 	if (IWN_FW_API(rev) >= 3) {
6241 		/* Skip build number (version 2 header). */
6242 		hdrlen += 4;
6243 		ptr++;
6244 	}
6245 	if (fw->size < hdrlen) {
6246 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6247 		    __func__, fw->size);
6248 		return EINVAL;
6249 	}
6250 	fw->main.textsz = le32toh(*ptr++);
6251 	fw->main.datasz = le32toh(*ptr++);
6252 	fw->init.textsz = le32toh(*ptr++);
6253 	fw->init.datasz = le32toh(*ptr++);
6254 	fw->boot.textsz = le32toh(*ptr++);
6255 
6256 	/* Check that all firmware sections fit. */
6257 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6258 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6259 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6260 		    __func__, fw->size);
6261 		return EINVAL;
6262 	}
6263 
6264 	/* Get pointers to firmware sections. */
6265 	fw->main.text = (const uint8_t *)ptr;
6266 	fw->main.data = fw->main.text + fw->main.textsz;
6267 	fw->init.text = fw->main.data + fw->main.datasz;
6268 	fw->init.data = fw->init.text + fw->init.textsz;
6269 	fw->boot.text = fw->init.data + fw->init.datasz;
6270 	return 0;
6271 }
6272 
6273 /*
6274  * Extract text and data sections from a TLV firmware image.
6275  */
6276 static int
6277 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6278     uint16_t alt)
6279 {
6280 	const struct iwn_fw_tlv_hdr *hdr;
6281 	const struct iwn_fw_tlv *tlv;
6282 	const uint8_t *ptr, *end;
6283 	uint64_t altmask;
6284 	uint32_t len, tmp;
6285 
6286 	if (fw->size < sizeof (*hdr)) {
6287 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6288 		    __func__, fw->size);
6289 		return EINVAL;
6290 	}
6291 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6292 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6293 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6294 		    __func__, le32toh(hdr->signature));
6295 		return EINVAL;
6296 	}
6297 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6298 	    le32toh(hdr->build));
6299 
6300 	/*
6301 	 * Select the closest supported alternative that is less than
6302 	 * or equal to the specified one.
6303 	 */
6304 	altmask = le64toh(hdr->altmask);
6305 	while (alt > 0 && !(altmask & (1ULL << alt)))
6306 		alt--;	/* Downgrade. */
6307 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6308 
6309 	ptr = (const uint8_t *)(hdr + 1);
6310 	end = (const uint8_t *)(fw->data + fw->size);
6311 
6312 	/* Parse type-length-value fields. */
6313 	while (ptr + sizeof (*tlv) <= end) {
6314 		tlv = (const struct iwn_fw_tlv *)ptr;
6315 		len = le32toh(tlv->len);
6316 
6317 		ptr += sizeof (*tlv);
6318 		if (ptr + len > end) {
6319 			device_printf(sc->sc_dev,
6320 			    "%s: firmware too short: %zu bytes\n", __func__,
6321 			    fw->size);
6322 			return EINVAL;
6323 		}
6324 		/* Skip other alternatives. */
6325 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6326 			goto next;
6327 
6328 		switch (le16toh(tlv->type)) {
6329 		case IWN_FW_TLV_MAIN_TEXT:
6330 			fw->main.text = ptr;
6331 			fw->main.textsz = len;
6332 			break;
6333 		case IWN_FW_TLV_MAIN_DATA:
6334 			fw->main.data = ptr;
6335 			fw->main.datasz = len;
6336 			break;
6337 		case IWN_FW_TLV_INIT_TEXT:
6338 			fw->init.text = ptr;
6339 			fw->init.textsz = len;
6340 			break;
6341 		case IWN_FW_TLV_INIT_DATA:
6342 			fw->init.data = ptr;
6343 			fw->init.datasz = len;
6344 			break;
6345 		case IWN_FW_TLV_BOOT_TEXT:
6346 			fw->boot.text = ptr;
6347 			fw->boot.textsz = len;
6348 			break;
6349 		case IWN_FW_TLV_ENH_SENS:
6350 			if (!len)
6351 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6352 			break;
6353 		case IWN_FW_TLV_PHY_CALIB:
6354 			tmp = htole32(*ptr);
6355 			if (tmp < 253) {
6356 				sc->reset_noise_gain = tmp;
6357 				sc->noise_gain = tmp + 1;
6358 			}
6359 			break;
6360 		default:
6361 			DPRINTF(sc, IWN_DEBUG_RESET,
6362 			    "TLV type %d not handled\n", le16toh(tlv->type));
6363 			break;
6364 		}
6365  next:		/* TLV fields are 32-bit aligned. */
6366 		ptr += (len + 3) & ~3;
6367 	}
6368 	return 0;
6369 }
6370 
6371 static int
6372 iwn_read_firmware(struct iwn_softc *sc)
6373 {
6374 	struct iwn_fw_info *fw = &sc->fw;
6375 	int error;
6376 
6377 	IWN_UNLOCK(sc);
6378 
6379 	memset(fw, 0, sizeof (*fw));
6380 
6381 	/* Read firmware image from filesystem. */
6382 	sc->fw_fp = firmware_get(sc->fwname);
6383 	if (sc->fw_fp == NULL) {
6384 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6385 		    __func__, sc->fwname);
6386 		IWN_LOCK(sc);
6387 		return EINVAL;
6388 	}
6389 	IWN_LOCK(sc);
6390 
6391 	fw->size = sc->fw_fp->datasize;
6392 	fw->data = (const uint8_t *)sc->fw_fp->data;
6393 	if (fw->size < sizeof (uint32_t)) {
6394 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6395 		    __func__, fw->size);
6396 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6397 		sc->fw_fp = NULL;
6398 		return EINVAL;
6399 	}
6400 
6401 	/* Retrieve text and data sections. */
6402 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6403 		error = iwn_read_firmware_leg(sc, fw);
6404 	else
6405 		error = iwn_read_firmware_tlv(sc, fw, 1);
6406 	if (error != 0) {
6407 		device_printf(sc->sc_dev,
6408 		    "%s: could not read firmware sections, error %d\n",
6409 		    __func__, error);
6410 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6411 		sc->fw_fp = NULL;
6412 		return error;
6413 	}
6414 
6415 	/* Make sure text and data sections fit in hardware memory. */
6416 	if (fw->main.textsz > sc->fw_text_maxsz ||
6417 	    fw->main.datasz > sc->fw_data_maxsz ||
6418 	    fw->init.textsz > sc->fw_text_maxsz ||
6419 	    fw->init.datasz > sc->fw_data_maxsz ||
6420 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6421 	    (fw->boot.textsz & 3) != 0) {
6422 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6423 		    __func__);
6424 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6425 		sc->fw_fp = NULL;
6426 		return EINVAL;
6427 	}
6428 
6429 	/* We can proceed with loading the firmware. */
6430 	return 0;
6431 }
6432 
6433 static int
6434 iwn_clock_wait(struct iwn_softc *sc)
6435 {
6436 	int ntries;
6437 
6438 	/* Set "initialization complete" bit. */
6439 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6440 
6441 	/* Wait for clock stabilization. */
6442 	for (ntries = 0; ntries < 2500; ntries++) {
6443 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6444 			return 0;
6445 		DELAY(10);
6446 	}
6447 	device_printf(sc->sc_dev,
6448 	    "%s: timeout waiting for clock stabilization\n", __func__);
6449 	return ETIMEDOUT;
6450 }
6451 
6452 static int
6453 iwn_apm_init(struct iwn_softc *sc)
6454 {
6455 	uint32_t reg;
6456 	int error;
6457 
6458 	/* Disable L0s exit timer (NMI bug workaround). */
6459 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6460 	/* Don't wait for ICH L0s (ICH bug workaround). */
6461 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6462 
6463 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6464 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6465 
6466 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6467 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6468 
6469 	/* Retrieve PCIe Active State Power Management (ASPM). */
6470 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6471 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6472 	if (reg & 0x02)	/* L1 Entry enabled. */
6473 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6474 	else
6475 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6476 
6477 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6478 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6479 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6480 
6481 	/* Wait for clock stabilization before accessing prph. */
6482 	if ((error = iwn_clock_wait(sc)) != 0)
6483 		return error;
6484 
6485 	if ((error = iwn_nic_lock(sc)) != 0)
6486 		return error;
6487 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6488 		/* Enable DMA and BSM (Bootstrap State Machine). */
6489 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6490 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6491 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6492 	} else {
6493 		/* Enable DMA. */
6494 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6495 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6496 	}
6497 	DELAY(20);
6498 	/* Disable L1-Active. */
6499 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6500 	iwn_nic_unlock(sc);
6501 
6502 	return 0;
6503 }
6504 
6505 static void
6506 iwn_apm_stop_master(struct iwn_softc *sc)
6507 {
6508 	int ntries;
6509 
6510 	/* Stop busmaster DMA activity. */
6511 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6512 	for (ntries = 0; ntries < 100; ntries++) {
6513 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6514 			return;
6515 		DELAY(10);
6516 	}
6517 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6518 }
6519 
6520 static void
6521 iwn_apm_stop(struct iwn_softc *sc)
6522 {
6523 	iwn_apm_stop_master(sc);
6524 
6525 	/* Reset the entire device. */
6526 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6527 	DELAY(10);
6528 	/* Clear "initialization complete" bit. */
6529 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6530 }
6531 
6532 static int
6533 iwn4965_nic_config(struct iwn_softc *sc)
6534 {
6535 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6536 		/*
6537 		 * I don't believe this to be correct but this is what the
6538 		 * vendor driver is doing. Probably the bits should not be
6539 		 * shifted in IWN_RFCFG_*.
6540 		 */
6541 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6542 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6543 		    IWN_RFCFG_STEP(sc->rfcfg) |
6544 		    IWN_RFCFG_DASH(sc->rfcfg));
6545 	}
6546 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6547 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6548 	return 0;
6549 }
6550 
6551 static int
6552 iwn5000_nic_config(struct iwn_softc *sc)
6553 {
6554 	uint32_t tmp;
6555 	int error;
6556 
6557 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6558 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6559 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6560 		    IWN_RFCFG_STEP(sc->rfcfg) |
6561 		    IWN_RFCFG_DASH(sc->rfcfg));
6562 	}
6563 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6564 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6565 
6566 	if ((error = iwn_nic_lock(sc)) != 0)
6567 		return error;
6568 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6569 
6570 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6571 		/*
6572 		 * Select first Switching Voltage Regulator (1.32V) to
6573 		 * solve a stability issue related to noisy DC2DC line
6574 		 * in the silicon of 1000 Series.
6575 		 */
6576 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6577 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6578 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6579 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6580 	}
6581 	iwn_nic_unlock(sc);
6582 
6583 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6584 		/* Use internal power amplifier only. */
6585 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6586 	}
6587 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6588 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6589 		/* Indicate that ROM calibration version is >=6. */
6590 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6591 	}
6592 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6593 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6594 	return 0;
6595 }
6596 
6597 /*
6598  * Take NIC ownership over Intel Active Management Technology (AMT).
6599  */
6600 static int
6601 iwn_hw_prepare(struct iwn_softc *sc)
6602 {
6603 	int ntries;
6604 
6605 	/* Check if hardware is ready. */
6606 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6607 	for (ntries = 0; ntries < 5; ntries++) {
6608 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6609 		    IWN_HW_IF_CONFIG_NIC_READY)
6610 			return 0;
6611 		DELAY(10);
6612 	}
6613 
6614 	/* Hardware not ready, force into ready state. */
6615 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6616 	for (ntries = 0; ntries < 15000; ntries++) {
6617 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6618 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6619 			break;
6620 		DELAY(10);
6621 	}
6622 	if (ntries == 15000)
6623 		return ETIMEDOUT;
6624 
6625 	/* Hardware should be ready now. */
6626 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6627 	for (ntries = 0; ntries < 5; ntries++) {
6628 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6629 		    IWN_HW_IF_CONFIG_NIC_READY)
6630 			return 0;
6631 		DELAY(10);
6632 	}
6633 	return ETIMEDOUT;
6634 }
6635 
6636 static int
6637 iwn_hw_init(struct iwn_softc *sc)
6638 {
6639 	struct iwn_ops *ops = &sc->ops;
6640 	int error, chnl, qid;
6641 
6642 	/* Clear pending interrupts. */
6643 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6644 
6645 	if ((error = iwn_apm_init(sc)) != 0) {
6646 		device_printf(sc->sc_dev,
6647 		    "%s: could not power ON adapter, error %d\n", __func__,
6648 		    error);
6649 		return error;
6650 	}
6651 
6652 	/* Select VMAIN power source. */
6653 	if ((error = iwn_nic_lock(sc)) != 0)
6654 		return error;
6655 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6656 	iwn_nic_unlock(sc);
6657 
6658 	/* Perform adapter-specific initialization. */
6659 	if ((error = ops->nic_config(sc)) != 0)
6660 		return error;
6661 
6662 	/* Initialize RX ring. */
6663 	if ((error = iwn_nic_lock(sc)) != 0)
6664 		return error;
6665 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6666 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6667 	/* Set physical address of RX ring (256-byte aligned). */
6668 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6669 	/* Set physical address of RX status (16-byte aligned). */
6670 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6671 	/* Enable RX. */
6672 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6673 	    IWN_FH_RX_CONFIG_ENA           |
6674 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6675 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6676 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6677 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6678 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6679 	iwn_nic_unlock(sc);
6680 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6681 
6682 	if ((error = iwn_nic_lock(sc)) != 0)
6683 		return error;
6684 
6685 	/* Initialize TX scheduler. */
6686 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6687 
6688 	/* Set physical address of "keep warm" page (16-byte aligned). */
6689 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6690 
6691 	/* Initialize TX rings. */
6692 	for (qid = 0; qid < sc->ntxqs; qid++) {
6693 		struct iwn_tx_ring *txq = &sc->txq[qid];
6694 
6695 		/* Set physical address of TX ring (256-byte aligned). */
6696 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6697 		    txq->desc_dma.paddr >> 8);
6698 	}
6699 	iwn_nic_unlock(sc);
6700 
6701 	/* Enable DMA channels. */
6702 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6703 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6704 		    IWN_FH_TX_CONFIG_DMA_ENA |
6705 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6706 	}
6707 
6708 	/* Clear "radio off" and "commands blocked" bits. */
6709 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6710 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6711 
6712 	/* Clear pending interrupts. */
6713 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6714 	/* Enable interrupt coalescing. */
6715 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6716 	/* Enable interrupts. */
6717 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6718 
6719 	/* _Really_ make sure "radio off" bit is cleared! */
6720 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6721 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6722 
6723 	/* Enable shadow registers. */
6724 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6725 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6726 
6727 	if ((error = ops->load_firmware(sc)) != 0) {
6728 		device_printf(sc->sc_dev,
6729 		    "%s: could not load firmware, error %d\n", __func__,
6730 		    error);
6731 		return error;
6732 	}
6733 	/* Wait at most one second for firmware alive notification. */
6734 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6735 		device_printf(sc->sc_dev,
6736 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6737 		    __func__, error);
6738 		return error;
6739 	}
6740 	/* Do post-firmware initialization. */
6741 	return ops->post_alive(sc);
6742 }
6743 
6744 static void
6745 iwn_hw_stop(struct iwn_softc *sc)
6746 {
6747 	int chnl, qid, ntries;
6748 
6749 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6750 
6751 	/* Disable interrupts. */
6752 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6753 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6754 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6755 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6756 
6757 	/* Make sure we no longer hold the NIC lock. */
6758 	iwn_nic_unlock(sc);
6759 
6760 	/* Stop TX scheduler. */
6761 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6762 
6763 	/* Stop all DMA channels. */
6764 	if (iwn_nic_lock(sc) == 0) {
6765 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6766 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6767 			for (ntries = 0; ntries < 200; ntries++) {
6768 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6769 				    IWN_FH_TX_STATUS_IDLE(chnl))
6770 					break;
6771 				DELAY(10);
6772 			}
6773 		}
6774 		iwn_nic_unlock(sc);
6775 	}
6776 
6777 	/* Stop RX ring. */
6778 	iwn_reset_rx_ring(sc, &sc->rxq);
6779 
6780 	/* Reset all TX rings. */
6781 	for (qid = 0; qid < sc->ntxqs; qid++)
6782 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6783 
6784 	if (iwn_nic_lock(sc) == 0) {
6785 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6786 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6787 		iwn_nic_unlock(sc);
6788 	}
6789 	DELAY(5);
6790 	/* Power OFF adapter. */
6791 	iwn_apm_stop(sc);
6792 }
6793 
6794 static void
6795 iwn_radio_on(void *arg0, int pending)
6796 {
6797 	struct iwn_softc *sc = arg0;
6798 	struct ifnet *ifp = sc->sc_ifp;
6799 	struct ieee80211com *ic = ifp->if_l2com;
6800 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6801 
6802 	if (vap != NULL) {
6803 		iwn_init(sc);
6804 		ieee80211_init(vap);
6805 	}
6806 }
6807 
6808 static void
6809 iwn_radio_off(void *arg0, int pending)
6810 {
6811 	struct iwn_softc *sc = arg0;
6812 	struct ifnet *ifp = sc->sc_ifp;
6813 	struct ieee80211com *ic = ifp->if_l2com;
6814 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6815 
6816 	iwn_stop(sc);
6817 	if (vap != NULL)
6818 		ieee80211_stop(vap);
6819 
6820 	/* Enable interrupts to get RF toggle notification. */
6821 	IWN_LOCK(sc);
6822 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6823 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6824 	IWN_UNLOCK(sc);
6825 }
6826 
6827 static void
6828 iwn_init_locked(struct iwn_softc *sc)
6829 {
6830 	struct ifnet *ifp = sc->sc_ifp;
6831 	int error;
6832 
6833 	IWN_LOCK_ASSERT(sc);
6834 
6835 	if ((error = iwn_hw_prepare(sc)) != 0) {
6836 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6837 		    __func__, error);
6838 		goto fail;
6839 	}
6840 
6841 	/* Initialize interrupt mask to default value. */
6842 	sc->int_mask = IWN_INT_MASK_DEF;
6843 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6844 
6845 	/* Check that the radio is not disabled by hardware switch. */
6846 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6847 		device_printf(sc->sc_dev,
6848 		    "radio is disabled by hardware switch\n");
6849 		/* Enable interrupts to get RF toggle notifications. */
6850 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6851 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6852 		return;
6853 	}
6854 
6855 	/* Read firmware images from the filesystem. */
6856 	if ((error = iwn_read_firmware(sc)) != 0) {
6857 		device_printf(sc->sc_dev,
6858 		    "%s: could not read firmware, error %d\n", __func__,
6859 		    error);
6860 		goto fail;
6861 	}
6862 
6863 	/* Initialize hardware and upload firmware. */
6864 	error = iwn_hw_init(sc);
6865 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6866 	sc->fw_fp = NULL;
6867 	if (error != 0) {
6868 		device_printf(sc->sc_dev,
6869 		    "%s: could not initialize hardware, error %d\n", __func__,
6870 		    error);
6871 		goto fail;
6872 	}
6873 
6874 	/* Configure adapter now that it is ready. */
6875 	if ((error = iwn_config(sc)) != 0) {
6876 		device_printf(sc->sc_dev,
6877 		    "%s: could not configure device, error %d\n", __func__,
6878 		    error);
6879 		goto fail;
6880 	}
6881 
6882 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6883 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6884 
6885 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
6886 	return;
6887 
6888 fail:	iwn_stop_locked(sc);
6889 }
6890 
6891 static void
6892 iwn_init(void *arg)
6893 {
6894 	struct iwn_softc *sc = arg;
6895 	struct ifnet *ifp = sc->sc_ifp;
6896 	struct ieee80211com *ic = ifp->if_l2com;
6897 
6898 	IWN_LOCK(sc);
6899 	iwn_init_locked(sc);
6900 	IWN_UNLOCK(sc);
6901 
6902 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6903 		ieee80211_start_all(ic);
6904 }
6905 
6906 static void
6907 iwn_stop_locked(struct iwn_softc *sc)
6908 {
6909 	struct ifnet *ifp = sc->sc_ifp;
6910 
6911 	IWN_LOCK_ASSERT(sc);
6912 
6913 	sc->sc_tx_timer = 0;
6914 	callout_stop(&sc->watchdog_to);
6915 	callout_stop(&sc->calib_to);
6916 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6917 
6918 	/* Power OFF hardware. */
6919 	iwn_hw_stop(sc);
6920 }
6921 
6922 static void
6923 iwn_stop(struct iwn_softc *sc)
6924 {
6925 	IWN_LOCK(sc);
6926 	iwn_stop_locked(sc);
6927 	IWN_UNLOCK(sc);
6928 }
6929 
6930 /*
6931  * Callback from net80211 to start a scan.
6932  */
6933 static void
6934 iwn_scan_start(struct ieee80211com *ic)
6935 {
6936 	struct ifnet *ifp = ic->ic_ifp;
6937 	struct iwn_softc *sc = ifp->if_softc;
6938 
6939 	IWN_LOCK(sc);
6940 	/* make the link LED blink while we're scanning */
6941 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6942 	IWN_UNLOCK(sc);
6943 }
6944 
6945 /*
6946  * Callback from net80211 to terminate a scan.
6947  */
6948 static void
6949 iwn_scan_end(struct ieee80211com *ic)
6950 {
6951 	struct ifnet *ifp = ic->ic_ifp;
6952 	struct iwn_softc *sc = ifp->if_softc;
6953 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6954 
6955 	IWN_LOCK(sc);
6956 	if (vap->iv_state == IEEE80211_S_RUN) {
6957 		/* Set link LED to ON status if we are associated */
6958 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6959 	}
6960 	IWN_UNLOCK(sc);
6961 }
6962 
6963 /*
6964  * Callback from net80211 to force a channel change.
6965  */
6966 static void
6967 iwn_set_channel(struct ieee80211com *ic)
6968 {
6969 	const struct ieee80211_channel *c = ic->ic_curchan;
6970 	struct ifnet *ifp = ic->ic_ifp;
6971 	struct iwn_softc *sc = ifp->if_softc;
6972 	int error;
6973 
6974 	IWN_LOCK(sc);
6975 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6976 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6977 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6978 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6979 
6980 	/*
6981 	 * Only need to set the channel in Monitor mode. AP scanning and auth
6982 	 * are already taken care of by their respective firmware commands.
6983 	 */
6984 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6985 		error = iwn_config(sc);
6986 		if (error != 0)
6987 		device_printf(sc->sc_dev,
6988 		    "%s: error %d settting channel\n", __func__, error);
6989 	}
6990 	IWN_UNLOCK(sc);
6991 }
6992 
6993 /*
6994  * Callback from net80211 to start scanning of the current channel.
6995  */
6996 static void
6997 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6998 {
6999 	struct ieee80211vap *vap = ss->ss_vap;
7000 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7001 	int error;
7002 
7003 	IWN_LOCK(sc);
7004 	error = iwn_scan(sc);
7005 	IWN_UNLOCK(sc);
7006 	if (error != 0)
7007 		ieee80211_cancel_scan(vap);
7008 }
7009 
7010 /*
7011  * Callback from net80211 to handle the minimum dwell time being met.
7012  * The intent is to terminate the scan but we just let the firmware
7013  * notify us when it's finished as we have no safe way to abort it.
7014  */
7015 static void
7016 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7017 {
7018 	/* NB: don't try to abort scan; wait for firmware to finish */
7019 }
7020 
7021 static void
7022 iwn_hw_reset(void *arg0, int pending)
7023 {
7024 	struct iwn_softc *sc = arg0;
7025 	struct ifnet *ifp = sc->sc_ifp;
7026 	struct ieee80211com *ic = ifp->if_l2com;
7027 
7028 	iwn_stop(sc);
7029 	iwn_init(sc);
7030 	ieee80211_notify_radio(ic, 1);
7031 }
7032