1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_wlan.h" 31 #include "opt_iwn.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/priv.h> 49 #include <sys/queue.h> 50 #include <sys/taskqueue.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <machine/clock.h> 55 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 #include <dev/iwn/if_iwn_devid.h> 75 #include <dev/iwn/if_iwn_chip_cfg.h> 76 #include <dev/iwn/if_iwn_debug.h> 77 #include <dev/iwn/if_iwn_ioctl.h> 78 79 struct iwn_ident { 80 uint16_t vendor; 81 uint16_t device; 82 const char *name; 83 }; 84 85 static const struct iwn_ident iwn_ident_table[] = { 86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 129 { 0, 0, NULL } 130 }; 131 132 static int iwn_probe(device_t); 133 static int iwn_attach(device_t); 134 static void iwn4965_attach(struct iwn_softc *, uint16_t); 135 static void iwn5000_attach(struct iwn_softc *, uint16_t); 136 static int iwn_config_specific(struct iwn_softc *, uint16_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static void iwn_sysctlattach(struct iwn_softc *); 139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 141 const uint8_t [IEEE80211_ADDR_LEN], 142 const uint8_t [IEEE80211_ADDR_LEN]); 143 static void iwn_vap_delete(struct ieee80211vap *); 144 static int iwn_detach(device_t); 145 static int iwn_shutdown(device_t); 146 static int iwn_suspend(device_t); 147 static int iwn_resume(device_t); 148 static int iwn_nic_lock(struct iwn_softc *); 149 static int iwn_eeprom_lock(struct iwn_softc *); 150 static int iwn_init_otprom(struct iwn_softc *); 151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 154 void **, bus_size_t, bus_size_t); 155 static void iwn_dma_contig_free(struct iwn_dma_info *); 156 static int iwn_alloc_sched(struct iwn_softc *); 157 static void iwn_free_sched(struct iwn_softc *); 158 static int iwn_alloc_kw(struct iwn_softc *); 159 static void iwn_free_kw(struct iwn_softc *); 160 static int iwn_alloc_ict(struct iwn_softc *); 161 static void iwn_free_ict(struct iwn_softc *); 162 static int iwn_alloc_fwmem(struct iwn_softc *); 163 static void iwn_free_fwmem(struct iwn_softc *); 164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 168 int); 169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 171 static void iwn_check_tx_ring(struct iwn_softc *, int); 172 static void iwn5000_ict_reset(struct iwn_softc *); 173 static int iwn_read_eeprom(struct iwn_softc *, 174 uint8_t macaddr[IEEE80211_ADDR_LEN]); 175 static void iwn4965_read_eeprom(struct iwn_softc *); 176 #ifdef IWN_DEBUG 177 static void iwn4965_print_power_group(struct iwn_softc *, int); 178 #endif 179 static void iwn5000_read_eeprom(struct iwn_softc *); 180 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 181 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, 182 struct ieee80211_channel[]); 183 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, 184 struct ieee80211_channel[]); 185 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 187 struct ieee80211_channel *); 188 static void iwn_getradiocaps(struct ieee80211com *, int, int *, 189 struct ieee80211_channel[]); 190 static int iwn_setregdomain(struct ieee80211com *, 191 struct ieee80211_regdomain *, int, 192 struct ieee80211_channel[]); 193 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 195 const uint8_t mac[IEEE80211_ADDR_LEN]); 196 static void iwn_newassoc(struct ieee80211_node *, int); 197 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void iwn_calib_timeout(void *); 199 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *); 200 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 201 struct iwn_rx_data *); 202 static void iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *, 203 int, int, int); 204 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *); 205 static void iwn5000_rx_calib_results(struct iwn_softc *, 206 struct iwn_rx_desc *); 207 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *); 208 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 209 struct iwn_rx_data *); 210 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 211 struct iwn_rx_data *); 212 static void iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *); 213 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int, 214 uint8_t); 215 static int iwn_ampdu_check_bitmap(uint64_t, int, int); 216 static int iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *, 217 uint64_t, int, int); 218 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); 219 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 220 static void iwn_notif_intr(struct iwn_softc *); 221 static void iwn_wakeup_intr(struct iwn_softc *); 222 static void iwn_rftoggle_task(void *, int); 223 static void iwn_fatal_intr(struct iwn_softc *); 224 static void iwn_intr(void *); 225 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 226 uint16_t); 227 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 228 uint16_t); 229 #ifdef notyet 230 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 231 #endif 232 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 233 struct ieee80211_node *); 234 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 235 struct ieee80211_node *, 236 const struct ieee80211_bpf_params *params); 237 static int iwn_tx_cmd(struct iwn_softc *, struct mbuf *, 238 struct ieee80211_node *, struct iwn_tx_ring *); 239 static void iwn_xmit_task(void *arg0, int pending); 240 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 241 const struct ieee80211_bpf_params *); 242 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 243 static void iwn_scan_timeout(void *); 244 static void iwn_watchdog(void *); 245 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 246 static void iwn_parent(struct ieee80211com *); 247 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 248 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 249 int); 250 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 251 int); 252 static int iwn_set_link_quality(struct iwn_softc *, 253 struct ieee80211_node *); 254 static int iwn_add_broadcast_node(struct iwn_softc *, int); 255 static int iwn_updateedca(struct ieee80211com *); 256 static void iwn_set_promisc(struct iwn_softc *); 257 static void iwn_update_promisc(struct ieee80211com *); 258 static void iwn_update_mcast(struct ieee80211com *); 259 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 260 static int iwn_set_critical_temp(struct iwn_softc *); 261 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 262 static void iwn4965_power_calibration(struct iwn_softc *, int); 263 static int iwn4965_set_txpower(struct iwn_softc *, int); 264 static int iwn5000_set_txpower(struct iwn_softc *, int); 265 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 266 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 267 static int iwn_get_noise(const struct iwn_rx_general_stats *); 268 static int iwn4965_get_temperature(struct iwn_softc *); 269 static int iwn5000_get_temperature(struct iwn_softc *); 270 static int iwn_init_sensitivity(struct iwn_softc *); 271 static void iwn_collect_noise(struct iwn_softc *, 272 const struct iwn_rx_general_stats *); 273 static int iwn4965_init_gains(struct iwn_softc *); 274 static int iwn5000_init_gains(struct iwn_softc *); 275 static int iwn4965_set_gains(struct iwn_softc *); 276 static int iwn5000_set_gains(struct iwn_softc *); 277 static void iwn_tune_sensitivity(struct iwn_softc *, 278 const struct iwn_rx_stats *); 279 static void iwn_save_stats_counters(struct iwn_softc *, 280 const struct iwn_stats *); 281 static int iwn_send_sensitivity(struct iwn_softc *); 282 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 283 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 284 static int iwn_send_btcoex(struct iwn_softc *); 285 static int iwn_send_advanced_btcoex(struct iwn_softc *); 286 static int iwn5000_runtime_calib(struct iwn_softc *); 287 static int iwn_check_bss_filter(struct iwn_softc *); 288 static int iwn4965_rxon_assoc(struct iwn_softc *, int); 289 static int iwn5000_rxon_assoc(struct iwn_softc *, int); 290 static int iwn_send_rxon(struct iwn_softc *, int, int); 291 static int iwn_config(struct iwn_softc *); 292 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 293 struct ieee80211_scan_state *, struct ieee80211_channel *); 294 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 295 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 296 static int iwn_ampdu_rx_start(struct ieee80211_node *, 297 struct ieee80211_rx_ampdu *, int, int, int); 298 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 299 struct ieee80211_rx_ampdu *); 300 static int iwn_addba_request(struct ieee80211_node *, 301 struct ieee80211_tx_ampdu *, int, int, int); 302 static int iwn_addba_response(struct ieee80211_node *, 303 struct ieee80211_tx_ampdu *, int, int, int); 304 static int iwn_ampdu_tx_start(struct ieee80211com *, 305 struct ieee80211_node *, uint8_t); 306 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 307 struct ieee80211_tx_ampdu *); 308 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 309 struct ieee80211_node *, int, uint8_t, uint16_t); 310 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 311 uint8_t, uint16_t); 312 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 313 struct ieee80211_node *, int, uint8_t, uint16_t); 314 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 315 uint8_t, uint16_t); 316 static int iwn5000_query_calibration(struct iwn_softc *); 317 static int iwn5000_send_calibration(struct iwn_softc *); 318 static int iwn5000_send_wimax_coex(struct iwn_softc *); 319 static int iwn5000_crystal_calib(struct iwn_softc *); 320 static int iwn5000_temp_offset_calib(struct iwn_softc *); 321 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 322 static int iwn4965_post_alive(struct iwn_softc *); 323 static int iwn5000_post_alive(struct iwn_softc *); 324 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 325 int); 326 static int iwn4965_load_firmware(struct iwn_softc *); 327 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 328 const uint8_t *, int); 329 static int iwn5000_load_firmware(struct iwn_softc *); 330 static int iwn_read_firmware_leg(struct iwn_softc *, 331 struct iwn_fw_info *); 332 static int iwn_read_firmware_tlv(struct iwn_softc *, 333 struct iwn_fw_info *, uint16_t); 334 static int iwn_read_firmware(struct iwn_softc *); 335 static void iwn_unload_firmware(struct iwn_softc *); 336 static int iwn_clock_wait(struct iwn_softc *); 337 static int iwn_apm_init(struct iwn_softc *); 338 static void iwn_apm_stop_master(struct iwn_softc *); 339 static void iwn_apm_stop(struct iwn_softc *); 340 static int iwn4965_nic_config(struct iwn_softc *); 341 static int iwn5000_nic_config(struct iwn_softc *); 342 static int iwn_hw_prepare(struct iwn_softc *); 343 static int iwn_hw_init(struct iwn_softc *); 344 static void iwn_hw_stop(struct iwn_softc *); 345 static void iwn_panicked(void *, int); 346 static int iwn_init_locked(struct iwn_softc *); 347 static int iwn_init(struct iwn_softc *); 348 static void iwn_stop_locked(struct iwn_softc *); 349 static void iwn_stop(struct iwn_softc *); 350 static void iwn_scan_start(struct ieee80211com *); 351 static void iwn_scan_end(struct ieee80211com *); 352 static void iwn_set_channel(struct ieee80211com *); 353 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 354 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 355 #ifdef IWN_DEBUG 356 static char *iwn_get_csr_string(int); 357 static void iwn_debug_register(struct iwn_softc *); 358 #endif 359 360 static device_method_t iwn_methods[] = { 361 /* Device interface */ 362 DEVMETHOD(device_probe, iwn_probe), 363 DEVMETHOD(device_attach, iwn_attach), 364 DEVMETHOD(device_detach, iwn_detach), 365 DEVMETHOD(device_shutdown, iwn_shutdown), 366 DEVMETHOD(device_suspend, iwn_suspend), 367 DEVMETHOD(device_resume, iwn_resume), 368 369 DEVMETHOD_END 370 }; 371 372 static driver_t iwn_driver = { 373 "iwn", 374 iwn_methods, 375 sizeof(struct iwn_softc) 376 }; 377 static devclass_t iwn_devclass; 378 379 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); 380 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table, 381 nitems(iwn_ident_table) - 1); 382 MODULE_VERSION(iwn, 1); 383 384 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 385 MODULE_DEPEND(iwn, pci, 1, 1, 1); 386 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 387 388 static d_ioctl_t iwn_cdev_ioctl; 389 static d_open_t iwn_cdev_open; 390 static d_close_t iwn_cdev_close; 391 392 static struct cdevsw iwn_cdevsw = { 393 .d_version = D_VERSION, 394 .d_flags = 0, 395 .d_open = iwn_cdev_open, 396 .d_close = iwn_cdev_close, 397 .d_ioctl = iwn_cdev_ioctl, 398 .d_name = "iwn", 399 }; 400 401 static int 402 iwn_probe(device_t dev) 403 { 404 const struct iwn_ident *ident; 405 406 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 407 if (pci_get_vendor(dev) == ident->vendor && 408 pci_get_device(dev) == ident->device) { 409 device_set_desc(dev, ident->name); 410 return (BUS_PROBE_DEFAULT); 411 } 412 } 413 return ENXIO; 414 } 415 416 static int 417 iwn_is_3stream_device(struct iwn_softc *sc) 418 { 419 /* XXX for now only 5300, until the 5350 can be tested */ 420 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 421 return (1); 422 return (0); 423 } 424 425 static int 426 iwn_attach(device_t dev) 427 { 428 struct iwn_softc *sc = device_get_softc(dev); 429 struct ieee80211com *ic; 430 int i, error, rid; 431 432 sc->sc_dev = dev; 433 434 #ifdef IWN_DEBUG 435 error = resource_int_value(device_get_name(sc->sc_dev), 436 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 437 if (error != 0) 438 sc->sc_debug = 0; 439 #else 440 sc->sc_debug = 0; 441 #endif 442 443 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 444 445 /* 446 * Get the offset of the PCI Express Capability Structure in PCI 447 * Configuration Space. 448 */ 449 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 450 if (error != 0) { 451 device_printf(dev, "PCIe capability structure not found!\n"); 452 return error; 453 } 454 455 /* Clear device-specific "PCI retry timeout" register (41h). */ 456 pci_write_config(dev, 0x41, 0, 1); 457 458 /* Enable bus-mastering. */ 459 pci_enable_busmaster(dev); 460 461 rid = PCIR_BAR(0); 462 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 463 RF_ACTIVE); 464 if (sc->mem == NULL) { 465 device_printf(dev, "can't map mem space\n"); 466 error = ENOMEM; 467 return error; 468 } 469 sc->sc_st = rman_get_bustag(sc->mem); 470 sc->sc_sh = rman_get_bushandle(sc->mem); 471 472 i = 1; 473 rid = 0; 474 if (pci_alloc_msi(dev, &i) == 0) 475 rid = 1; 476 /* Install interrupt handler. */ 477 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 478 (rid != 0 ? 0 : RF_SHAREABLE)); 479 if (sc->irq == NULL) { 480 device_printf(dev, "can't map interrupt\n"); 481 error = ENOMEM; 482 goto fail; 483 } 484 485 IWN_LOCK_INIT(sc); 486 487 /* Read hardware revision and attach. */ 488 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 489 & IWN_HW_REV_TYPE_MASK; 490 sc->subdevice_id = pci_get_subdevice(dev); 491 492 /* 493 * 4965 versus 5000 and later have different methods. 494 * Let's set those up first. 495 */ 496 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 497 iwn4965_attach(sc, pci_get_device(dev)); 498 else 499 iwn5000_attach(sc, pci_get_device(dev)); 500 501 /* 502 * Next, let's setup the various parameters of each NIC. 503 */ 504 error = iwn_config_specific(sc, pci_get_device(dev)); 505 if (error != 0) { 506 device_printf(dev, "could not attach device, error %d\n", 507 error); 508 goto fail; 509 } 510 511 if ((error = iwn_hw_prepare(sc)) != 0) { 512 device_printf(dev, "hardware not ready, error %d\n", error); 513 goto fail; 514 } 515 516 /* Allocate DMA memory for firmware transfers. */ 517 if ((error = iwn_alloc_fwmem(sc)) != 0) { 518 device_printf(dev, 519 "could not allocate memory for firmware, error %d\n", 520 error); 521 goto fail; 522 } 523 524 /* Allocate "Keep Warm" page. */ 525 if ((error = iwn_alloc_kw(sc)) != 0) { 526 device_printf(dev, 527 "could not allocate keep warm page, error %d\n", error); 528 goto fail; 529 } 530 531 /* Allocate ICT table for 5000 Series. */ 532 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 533 (error = iwn_alloc_ict(sc)) != 0) { 534 device_printf(dev, "could not allocate ICT table, error %d\n", 535 error); 536 goto fail; 537 } 538 539 /* Allocate TX scheduler "rings". */ 540 if ((error = iwn_alloc_sched(sc)) != 0) { 541 device_printf(dev, 542 "could not allocate TX scheduler rings, error %d\n", error); 543 goto fail; 544 } 545 546 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 547 for (i = 0; i < sc->ntxqs; i++) { 548 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 549 device_printf(dev, 550 "could not allocate TX ring %d, error %d\n", i, 551 error); 552 goto fail; 553 } 554 } 555 556 /* Allocate RX ring. */ 557 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 558 device_printf(dev, "could not allocate RX ring, error %d\n", 559 error); 560 goto fail; 561 } 562 563 /* Clear pending interrupts. */ 564 IWN_WRITE(sc, IWN_INT, 0xffffffff); 565 566 ic = &sc->sc_ic; 567 ic->ic_softc = sc; 568 ic->ic_name = device_get_nameunit(dev); 569 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 570 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 571 572 /* Set device capabilities. */ 573 ic->ic_caps = 574 IEEE80211_C_STA /* station mode supported */ 575 | IEEE80211_C_MONITOR /* monitor mode supported */ 576 #if 0 577 | IEEE80211_C_BGSCAN /* background scanning */ 578 #endif 579 | IEEE80211_C_TXPMGT /* tx power management */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA 582 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 583 #if 0 584 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 585 #endif 586 | IEEE80211_C_WME /* WME */ 587 | IEEE80211_C_PMGT /* Station-side power mgmt */ 588 ; 589 590 /* Read MAC address, channels, etc from EEPROM. */ 591 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 592 device_printf(dev, "could not read EEPROM, error %d\n", 593 error); 594 goto fail; 595 } 596 597 /* Count the number of available chains. */ 598 sc->ntxchains = 599 ((sc->txchainmask >> 2) & 1) + 600 ((sc->txchainmask >> 1) & 1) + 601 ((sc->txchainmask >> 0) & 1); 602 sc->nrxchains = 603 ((sc->rxchainmask >> 2) & 1) + 604 ((sc->rxchainmask >> 1) & 1) + 605 ((sc->rxchainmask >> 0) & 1); 606 if (bootverbose) { 607 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 608 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 609 ic->ic_macaddr, ":"); 610 } 611 612 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 613 ic->ic_rxstream = sc->nrxchains; 614 ic->ic_txstream = sc->ntxchains; 615 616 /* 617 * Some of the 3 antenna devices (ie, the 4965) only supports 618 * 2x2 operation. So correct the number of streams if 619 * it's not a 3-stream device. 620 */ 621 if (! iwn_is_3stream_device(sc)) { 622 if (ic->ic_rxstream > 2) 623 ic->ic_rxstream = 2; 624 if (ic->ic_txstream > 2) 625 ic->ic_txstream = 2; 626 } 627 628 ic->ic_htcaps = 629 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 630 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 631 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 632 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 633 #ifdef notyet 634 | IEEE80211_HTCAP_GREENFIELD 635 #if IWN_RBUF_SIZE == 8192 636 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 637 #else 638 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 639 #endif 640 #endif 641 /* s/w capabilities */ 642 | IEEE80211_HTC_HT /* HT operation */ 643 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 644 #ifdef notyet 645 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 646 #endif 647 ; 648 } 649 650 ieee80211_ifattach(ic); 651 ic->ic_vap_create = iwn_vap_create; 652 ic->ic_ioctl = iwn_ioctl; 653 ic->ic_parent = iwn_parent; 654 ic->ic_vap_delete = iwn_vap_delete; 655 ic->ic_transmit = iwn_transmit; 656 ic->ic_raw_xmit = iwn_raw_xmit; 657 ic->ic_node_alloc = iwn_node_alloc; 658 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 659 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 660 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 661 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 662 sc->sc_addba_request = ic->ic_addba_request; 663 ic->ic_addba_request = iwn_addba_request; 664 sc->sc_addba_response = ic->ic_addba_response; 665 ic->ic_addba_response = iwn_addba_response; 666 sc->sc_addba_stop = ic->ic_addba_stop; 667 ic->ic_addba_stop = iwn_ampdu_tx_stop; 668 ic->ic_newassoc = iwn_newassoc; 669 ic->ic_wme.wme_update = iwn_updateedca; 670 ic->ic_update_promisc = iwn_update_promisc; 671 ic->ic_update_mcast = iwn_update_mcast; 672 ic->ic_scan_start = iwn_scan_start; 673 ic->ic_scan_end = iwn_scan_end; 674 ic->ic_set_channel = iwn_set_channel; 675 ic->ic_scan_curchan = iwn_scan_curchan; 676 ic->ic_scan_mindwell = iwn_scan_mindwell; 677 ic->ic_getradiocaps = iwn_getradiocaps; 678 ic->ic_setregdomain = iwn_setregdomain; 679 680 iwn_radiotap_attach(sc); 681 682 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 683 callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0); 684 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 685 TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc); 686 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 687 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 688 689 mbufq_init(&sc->sc_xmit_queue, 1024); 690 691 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 692 taskqueue_thread_enqueue, &sc->sc_tq); 693 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 694 if (error != 0) { 695 device_printf(dev, "can't start threads, error %d\n", error); 696 goto fail; 697 } 698 699 iwn_sysctlattach(sc); 700 701 /* 702 * Hook our interrupt after all initialization is complete. 703 */ 704 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 705 NULL, iwn_intr, sc, &sc->sc_ih); 706 if (error != 0) { 707 device_printf(dev, "can't establish interrupt, error %d\n", 708 error); 709 goto fail; 710 } 711 712 #if 0 713 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 714 __func__, 715 sizeof(struct iwn_stats), 716 sizeof(struct iwn_stats_bt)); 717 #endif 718 719 if (bootverbose) 720 ieee80211_announce(ic); 721 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 722 723 /* Add debug ioctl right at the end */ 724 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 725 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 726 if (sc->sc_cdev == NULL) { 727 device_printf(dev, "failed to create debug character device\n"); 728 } else { 729 sc->sc_cdev->si_drv1 = sc; 730 } 731 return 0; 732 fail: 733 iwn_detach(dev); 734 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 735 return error; 736 } 737 738 /* 739 * Define specific configuration based on device id and subdevice id 740 * pid : PCI device id 741 */ 742 static int 743 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 744 { 745 746 switch (pid) { 747 /* 4965 series */ 748 case IWN_DID_4965_1: 749 case IWN_DID_4965_2: 750 case IWN_DID_4965_3: 751 case IWN_DID_4965_4: 752 sc->base_params = &iwn4965_base_params; 753 sc->limits = &iwn4965_sensitivity_limits; 754 sc->fwname = "iwn4965fw"; 755 /* Override chains masks, ROM is known to be broken. */ 756 sc->txchainmask = IWN_ANT_AB; 757 sc->rxchainmask = IWN_ANT_ABC; 758 /* Enable normal btcoex */ 759 sc->sc_flags |= IWN_FLAG_BTCOEX; 760 break; 761 /* 1000 Series */ 762 case IWN_DID_1000_1: 763 case IWN_DID_1000_2: 764 switch(sc->subdevice_id) { 765 case IWN_SDID_1000_1: 766 case IWN_SDID_1000_2: 767 case IWN_SDID_1000_3: 768 case IWN_SDID_1000_4: 769 case IWN_SDID_1000_5: 770 case IWN_SDID_1000_6: 771 case IWN_SDID_1000_7: 772 case IWN_SDID_1000_8: 773 case IWN_SDID_1000_9: 774 case IWN_SDID_1000_10: 775 case IWN_SDID_1000_11: 776 case IWN_SDID_1000_12: 777 sc->limits = &iwn1000_sensitivity_limits; 778 sc->base_params = &iwn1000_base_params; 779 sc->fwname = "iwn1000fw"; 780 break; 781 default: 782 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 783 "0x%04x rev %d not supported (subdevice)\n", pid, 784 sc->subdevice_id,sc->hw_type); 785 return ENOTSUP; 786 } 787 break; 788 /* 6x00 Series */ 789 case IWN_DID_6x00_2: 790 case IWN_DID_6x00_4: 791 case IWN_DID_6x00_1: 792 case IWN_DID_6x00_3: 793 sc->fwname = "iwn6000fw"; 794 sc->limits = &iwn6000_sensitivity_limits; 795 switch(sc->subdevice_id) { 796 case IWN_SDID_6x00_1: 797 case IWN_SDID_6x00_2: 798 case IWN_SDID_6x00_8: 799 //iwl6000_3agn_cfg 800 sc->base_params = &iwn_6000_base_params; 801 break; 802 case IWN_SDID_6x00_3: 803 case IWN_SDID_6x00_6: 804 case IWN_SDID_6x00_9: 805 ////iwl6000i_2agn 806 case IWN_SDID_6x00_4: 807 case IWN_SDID_6x00_7: 808 case IWN_SDID_6x00_10: 809 //iwl6000i_2abg_cfg 810 case IWN_SDID_6x00_5: 811 //iwl6000i_2bg_cfg 812 sc->base_params = &iwn_6000i_base_params; 813 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 814 sc->txchainmask = IWN_ANT_BC; 815 sc->rxchainmask = IWN_ANT_BC; 816 break; 817 default: 818 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 819 "0x%04x rev %d not supported (subdevice)\n", pid, 820 sc->subdevice_id,sc->hw_type); 821 return ENOTSUP; 822 } 823 break; 824 /* 6x05 Series */ 825 case IWN_DID_6x05_1: 826 case IWN_DID_6x05_2: 827 switch(sc->subdevice_id) { 828 case IWN_SDID_6x05_1: 829 case IWN_SDID_6x05_4: 830 case IWN_SDID_6x05_6: 831 //iwl6005_2agn_cfg 832 case IWN_SDID_6x05_2: 833 case IWN_SDID_6x05_5: 834 case IWN_SDID_6x05_7: 835 //iwl6005_2abg_cfg 836 case IWN_SDID_6x05_3: 837 //iwl6005_2bg_cfg 838 case IWN_SDID_6x05_8: 839 case IWN_SDID_6x05_9: 840 //iwl6005_2agn_sff_cfg 841 case IWN_SDID_6x05_10: 842 //iwl6005_2agn_d_cfg 843 case IWN_SDID_6x05_11: 844 //iwl6005_2agn_mow1_cfg 845 case IWN_SDID_6x05_12: 846 //iwl6005_2agn_mow2_cfg 847 sc->fwname = "iwn6000g2afw"; 848 sc->limits = &iwn6000_sensitivity_limits; 849 sc->base_params = &iwn_6000g2_base_params; 850 break; 851 default: 852 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 853 "0x%04x rev %d not supported (subdevice)\n", pid, 854 sc->subdevice_id,sc->hw_type); 855 return ENOTSUP; 856 } 857 break; 858 /* 6x35 Series */ 859 case IWN_DID_6035_1: 860 case IWN_DID_6035_2: 861 switch(sc->subdevice_id) { 862 case IWN_SDID_6035_1: 863 case IWN_SDID_6035_2: 864 case IWN_SDID_6035_3: 865 case IWN_SDID_6035_4: 866 case IWN_SDID_6035_5: 867 sc->fwname = "iwn6000g2bfw"; 868 sc->limits = &iwn6235_sensitivity_limits; 869 sc->base_params = &iwn_6235_base_params; 870 break; 871 default: 872 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 873 "0x%04x rev %d not supported (subdevice)\n", pid, 874 sc->subdevice_id,sc->hw_type); 875 return ENOTSUP; 876 } 877 break; 878 /* 6x50 WiFi/WiMax Series */ 879 case IWN_DID_6050_1: 880 case IWN_DID_6050_2: 881 switch(sc->subdevice_id) { 882 case IWN_SDID_6050_1: 883 case IWN_SDID_6050_3: 884 case IWN_SDID_6050_5: 885 //iwl6050_2agn_cfg 886 case IWN_SDID_6050_2: 887 case IWN_SDID_6050_4: 888 case IWN_SDID_6050_6: 889 //iwl6050_2abg_cfg 890 sc->fwname = "iwn6050fw"; 891 sc->txchainmask = IWN_ANT_AB; 892 sc->rxchainmask = IWN_ANT_AB; 893 sc->limits = &iwn6000_sensitivity_limits; 894 sc->base_params = &iwn_6050_base_params; 895 break; 896 default: 897 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 898 "0x%04x rev %d not supported (subdevice)\n", pid, 899 sc->subdevice_id,sc->hw_type); 900 return ENOTSUP; 901 } 902 break; 903 /* 6150 WiFi/WiMax Series */ 904 case IWN_DID_6150_1: 905 case IWN_DID_6150_2: 906 switch(sc->subdevice_id) { 907 case IWN_SDID_6150_1: 908 case IWN_SDID_6150_3: 909 case IWN_SDID_6150_5: 910 // iwl6150_bgn_cfg 911 case IWN_SDID_6150_2: 912 case IWN_SDID_6150_4: 913 case IWN_SDID_6150_6: 914 //iwl6150_bg_cfg 915 sc->fwname = "iwn6050fw"; 916 sc->limits = &iwn6000_sensitivity_limits; 917 sc->base_params = &iwn_6150_base_params; 918 break; 919 default: 920 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 921 "0x%04x rev %d not supported (subdevice)\n", pid, 922 sc->subdevice_id,sc->hw_type); 923 return ENOTSUP; 924 } 925 break; 926 /* 6030 Series and 1030 Series */ 927 case IWN_DID_x030_1: 928 case IWN_DID_x030_2: 929 case IWN_DID_x030_3: 930 case IWN_DID_x030_4: 931 switch(sc->subdevice_id) { 932 case IWN_SDID_x030_1: 933 case IWN_SDID_x030_3: 934 case IWN_SDID_x030_5: 935 // iwl1030_bgn_cfg 936 case IWN_SDID_x030_2: 937 case IWN_SDID_x030_4: 938 case IWN_SDID_x030_6: 939 //iwl1030_bg_cfg 940 case IWN_SDID_x030_7: 941 case IWN_SDID_x030_10: 942 case IWN_SDID_x030_14: 943 //iwl6030_2agn_cfg 944 case IWN_SDID_x030_8: 945 case IWN_SDID_x030_11: 946 case IWN_SDID_x030_15: 947 // iwl6030_2bgn_cfg 948 case IWN_SDID_x030_9: 949 case IWN_SDID_x030_12: 950 case IWN_SDID_x030_16: 951 // iwl6030_2abg_cfg 952 case IWN_SDID_x030_13: 953 //iwl6030_2bg_cfg 954 sc->fwname = "iwn6000g2bfw"; 955 sc->limits = &iwn6000_sensitivity_limits; 956 sc->base_params = &iwn_6000g2b_base_params; 957 break; 958 default: 959 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 960 "0x%04x rev %d not supported (subdevice)\n", pid, 961 sc->subdevice_id,sc->hw_type); 962 return ENOTSUP; 963 } 964 break; 965 /* 130 Series WiFi */ 966 /* XXX: This series will need adjustment for rate. 967 * see rx_with_siso_diversity in linux kernel 968 */ 969 case IWN_DID_130_1: 970 case IWN_DID_130_2: 971 switch(sc->subdevice_id) { 972 case IWN_SDID_130_1: 973 case IWN_SDID_130_3: 974 case IWN_SDID_130_5: 975 //iwl130_bgn_cfg 976 case IWN_SDID_130_2: 977 case IWN_SDID_130_4: 978 case IWN_SDID_130_6: 979 //iwl130_bg_cfg 980 sc->fwname = "iwn6000g2bfw"; 981 sc->limits = &iwn6000_sensitivity_limits; 982 sc->base_params = &iwn_6000g2b_base_params; 983 break; 984 default: 985 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 986 "0x%04x rev %d not supported (subdevice)\n", pid, 987 sc->subdevice_id,sc->hw_type); 988 return ENOTSUP; 989 } 990 break; 991 /* 100 Series WiFi */ 992 case IWN_DID_100_1: 993 case IWN_DID_100_2: 994 switch(sc->subdevice_id) { 995 case IWN_SDID_100_1: 996 case IWN_SDID_100_2: 997 case IWN_SDID_100_3: 998 case IWN_SDID_100_4: 999 case IWN_SDID_100_5: 1000 case IWN_SDID_100_6: 1001 sc->limits = &iwn1000_sensitivity_limits; 1002 sc->base_params = &iwn1000_base_params; 1003 sc->fwname = "iwn100fw"; 1004 break; 1005 default: 1006 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1007 "0x%04x rev %d not supported (subdevice)\n", pid, 1008 sc->subdevice_id,sc->hw_type); 1009 return ENOTSUP; 1010 } 1011 break; 1012 1013 /* 105 Series */ 1014 /* XXX: This series will need adjustment for rate. 1015 * see rx_with_siso_diversity in linux kernel 1016 */ 1017 case IWN_DID_105_1: 1018 case IWN_DID_105_2: 1019 switch(sc->subdevice_id) { 1020 case IWN_SDID_105_1: 1021 case IWN_SDID_105_2: 1022 case IWN_SDID_105_3: 1023 //iwl105_bgn_cfg 1024 case IWN_SDID_105_4: 1025 //iwl105_bgn_d_cfg 1026 sc->limits = &iwn2030_sensitivity_limits; 1027 sc->base_params = &iwn2000_base_params; 1028 sc->fwname = "iwn105fw"; 1029 break; 1030 default: 1031 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1032 "0x%04x rev %d not supported (subdevice)\n", pid, 1033 sc->subdevice_id,sc->hw_type); 1034 return ENOTSUP; 1035 } 1036 break; 1037 1038 /* 135 Series */ 1039 /* XXX: This series will need adjustment for rate. 1040 * see rx_with_siso_diversity in linux kernel 1041 */ 1042 case IWN_DID_135_1: 1043 case IWN_DID_135_2: 1044 switch(sc->subdevice_id) { 1045 case IWN_SDID_135_1: 1046 case IWN_SDID_135_2: 1047 case IWN_SDID_135_3: 1048 sc->limits = &iwn2030_sensitivity_limits; 1049 sc->base_params = &iwn2030_base_params; 1050 sc->fwname = "iwn135fw"; 1051 break; 1052 default: 1053 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1054 "0x%04x rev %d not supported (subdevice)\n", pid, 1055 sc->subdevice_id,sc->hw_type); 1056 return ENOTSUP; 1057 } 1058 break; 1059 1060 /* 2x00 Series */ 1061 case IWN_DID_2x00_1: 1062 case IWN_DID_2x00_2: 1063 switch(sc->subdevice_id) { 1064 case IWN_SDID_2x00_1: 1065 case IWN_SDID_2x00_2: 1066 case IWN_SDID_2x00_3: 1067 //iwl2000_2bgn_cfg 1068 case IWN_SDID_2x00_4: 1069 //iwl2000_2bgn_d_cfg 1070 sc->limits = &iwn2030_sensitivity_limits; 1071 sc->base_params = &iwn2000_base_params; 1072 sc->fwname = "iwn2000fw"; 1073 break; 1074 default: 1075 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1076 "0x%04x rev %d not supported (subdevice) \n", 1077 pid, sc->subdevice_id, sc->hw_type); 1078 return ENOTSUP; 1079 } 1080 break; 1081 /* 2x30 Series */ 1082 case IWN_DID_2x30_1: 1083 case IWN_DID_2x30_2: 1084 switch(sc->subdevice_id) { 1085 case IWN_SDID_2x30_1: 1086 case IWN_SDID_2x30_3: 1087 case IWN_SDID_2x30_5: 1088 //iwl100_bgn_cfg 1089 case IWN_SDID_2x30_2: 1090 case IWN_SDID_2x30_4: 1091 case IWN_SDID_2x30_6: 1092 //iwl100_bg_cfg 1093 sc->limits = &iwn2030_sensitivity_limits; 1094 sc->base_params = &iwn2030_base_params; 1095 sc->fwname = "iwn2030fw"; 1096 break; 1097 default: 1098 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1099 "0x%04x rev %d not supported (subdevice)\n", pid, 1100 sc->subdevice_id,sc->hw_type); 1101 return ENOTSUP; 1102 } 1103 break; 1104 /* 5x00 Series */ 1105 case IWN_DID_5x00_1: 1106 case IWN_DID_5x00_2: 1107 case IWN_DID_5x00_3: 1108 case IWN_DID_5x00_4: 1109 sc->limits = &iwn5000_sensitivity_limits; 1110 sc->base_params = &iwn5000_base_params; 1111 sc->fwname = "iwn5000fw"; 1112 switch(sc->subdevice_id) { 1113 case IWN_SDID_5x00_1: 1114 case IWN_SDID_5x00_2: 1115 case IWN_SDID_5x00_3: 1116 case IWN_SDID_5x00_4: 1117 case IWN_SDID_5x00_9: 1118 case IWN_SDID_5x00_10: 1119 case IWN_SDID_5x00_11: 1120 case IWN_SDID_5x00_12: 1121 case IWN_SDID_5x00_17: 1122 case IWN_SDID_5x00_18: 1123 case IWN_SDID_5x00_19: 1124 case IWN_SDID_5x00_20: 1125 //iwl5100_agn_cfg 1126 sc->txchainmask = IWN_ANT_B; 1127 sc->rxchainmask = IWN_ANT_AB; 1128 break; 1129 case IWN_SDID_5x00_5: 1130 case IWN_SDID_5x00_6: 1131 case IWN_SDID_5x00_13: 1132 case IWN_SDID_5x00_14: 1133 case IWN_SDID_5x00_21: 1134 case IWN_SDID_5x00_22: 1135 //iwl5100_bgn_cfg 1136 sc->txchainmask = IWN_ANT_B; 1137 sc->rxchainmask = IWN_ANT_AB; 1138 break; 1139 case IWN_SDID_5x00_7: 1140 case IWN_SDID_5x00_8: 1141 case IWN_SDID_5x00_15: 1142 case IWN_SDID_5x00_16: 1143 case IWN_SDID_5x00_23: 1144 case IWN_SDID_5x00_24: 1145 //iwl5100_abg_cfg 1146 sc->txchainmask = IWN_ANT_B; 1147 sc->rxchainmask = IWN_ANT_AB; 1148 break; 1149 case IWN_SDID_5x00_25: 1150 case IWN_SDID_5x00_26: 1151 case IWN_SDID_5x00_27: 1152 case IWN_SDID_5x00_28: 1153 case IWN_SDID_5x00_29: 1154 case IWN_SDID_5x00_30: 1155 case IWN_SDID_5x00_31: 1156 case IWN_SDID_5x00_32: 1157 case IWN_SDID_5x00_33: 1158 case IWN_SDID_5x00_34: 1159 case IWN_SDID_5x00_35: 1160 case IWN_SDID_5x00_36: 1161 //iwl5300_agn_cfg 1162 sc->txchainmask = IWN_ANT_ABC; 1163 sc->rxchainmask = IWN_ANT_ABC; 1164 break; 1165 default: 1166 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1167 "0x%04x rev %d not supported (subdevice)\n", pid, 1168 sc->subdevice_id,sc->hw_type); 1169 return ENOTSUP; 1170 } 1171 break; 1172 /* 5x50 Series */ 1173 case IWN_DID_5x50_1: 1174 case IWN_DID_5x50_2: 1175 case IWN_DID_5x50_3: 1176 case IWN_DID_5x50_4: 1177 sc->limits = &iwn5000_sensitivity_limits; 1178 sc->base_params = &iwn5000_base_params; 1179 sc->fwname = "iwn5000fw"; 1180 switch(sc->subdevice_id) { 1181 case IWN_SDID_5x50_1: 1182 case IWN_SDID_5x50_2: 1183 case IWN_SDID_5x50_3: 1184 //iwl5350_agn_cfg 1185 sc->limits = &iwn5000_sensitivity_limits; 1186 sc->base_params = &iwn5000_base_params; 1187 sc->fwname = "iwn5000fw"; 1188 break; 1189 case IWN_SDID_5x50_4: 1190 case IWN_SDID_5x50_5: 1191 case IWN_SDID_5x50_8: 1192 case IWN_SDID_5x50_9: 1193 case IWN_SDID_5x50_10: 1194 case IWN_SDID_5x50_11: 1195 //iwl5150_agn_cfg 1196 case IWN_SDID_5x50_6: 1197 case IWN_SDID_5x50_7: 1198 case IWN_SDID_5x50_12: 1199 case IWN_SDID_5x50_13: 1200 //iwl5150_abg_cfg 1201 sc->limits = &iwn5000_sensitivity_limits; 1202 sc->fwname = "iwn5150fw"; 1203 sc->base_params = &iwn_5x50_base_params; 1204 break; 1205 default: 1206 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1207 "0x%04x rev %d not supported (subdevice)\n", pid, 1208 sc->subdevice_id,sc->hw_type); 1209 return ENOTSUP; 1210 } 1211 break; 1212 default: 1213 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1214 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1215 sc->hw_type); 1216 return ENOTSUP; 1217 } 1218 return 0; 1219 } 1220 1221 static void 1222 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1223 { 1224 struct iwn_ops *ops = &sc->ops; 1225 1226 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1227 1228 ops->load_firmware = iwn4965_load_firmware; 1229 ops->read_eeprom = iwn4965_read_eeprom; 1230 ops->post_alive = iwn4965_post_alive; 1231 ops->nic_config = iwn4965_nic_config; 1232 ops->update_sched = iwn4965_update_sched; 1233 ops->get_temperature = iwn4965_get_temperature; 1234 ops->get_rssi = iwn4965_get_rssi; 1235 ops->set_txpower = iwn4965_set_txpower; 1236 ops->init_gains = iwn4965_init_gains; 1237 ops->set_gains = iwn4965_set_gains; 1238 ops->rxon_assoc = iwn4965_rxon_assoc; 1239 ops->add_node = iwn4965_add_node; 1240 ops->tx_done = iwn4965_tx_done; 1241 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1242 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1243 sc->ntxqs = IWN4965_NTXQUEUES; 1244 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1245 sc->ndmachnls = IWN4965_NDMACHNLS; 1246 sc->broadcast_id = IWN4965_ID_BROADCAST; 1247 sc->rxonsz = IWN4965_RXONSZ; 1248 sc->schedsz = IWN4965_SCHEDSZ; 1249 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1250 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1251 sc->fwsz = IWN4965_FWSZ; 1252 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1253 sc->limits = &iwn4965_sensitivity_limits; 1254 sc->fwname = "iwn4965fw"; 1255 /* Override chains masks, ROM is known to be broken. */ 1256 sc->txchainmask = IWN_ANT_AB; 1257 sc->rxchainmask = IWN_ANT_ABC; 1258 /* Enable normal btcoex */ 1259 sc->sc_flags |= IWN_FLAG_BTCOEX; 1260 1261 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1262 } 1263 1264 static void 1265 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1266 { 1267 struct iwn_ops *ops = &sc->ops; 1268 1269 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1270 1271 ops->load_firmware = iwn5000_load_firmware; 1272 ops->read_eeprom = iwn5000_read_eeprom; 1273 ops->post_alive = iwn5000_post_alive; 1274 ops->nic_config = iwn5000_nic_config; 1275 ops->update_sched = iwn5000_update_sched; 1276 ops->get_temperature = iwn5000_get_temperature; 1277 ops->get_rssi = iwn5000_get_rssi; 1278 ops->set_txpower = iwn5000_set_txpower; 1279 ops->init_gains = iwn5000_init_gains; 1280 ops->set_gains = iwn5000_set_gains; 1281 ops->rxon_assoc = iwn5000_rxon_assoc; 1282 ops->add_node = iwn5000_add_node; 1283 ops->tx_done = iwn5000_tx_done; 1284 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1285 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1286 sc->ntxqs = IWN5000_NTXQUEUES; 1287 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1288 sc->ndmachnls = IWN5000_NDMACHNLS; 1289 sc->broadcast_id = IWN5000_ID_BROADCAST; 1290 sc->rxonsz = IWN5000_RXONSZ; 1291 sc->schedsz = IWN5000_SCHEDSZ; 1292 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1293 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1294 sc->fwsz = IWN5000_FWSZ; 1295 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1296 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1297 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1298 1299 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1300 } 1301 1302 /* 1303 * Attach the interface to 802.11 radiotap. 1304 */ 1305 static void 1306 iwn_radiotap_attach(struct iwn_softc *sc) 1307 { 1308 1309 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1310 ieee80211_radiotap_attach(&sc->sc_ic, 1311 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1312 IWN_TX_RADIOTAP_PRESENT, 1313 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1314 IWN_RX_RADIOTAP_PRESENT); 1315 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1316 } 1317 1318 static void 1319 iwn_sysctlattach(struct iwn_softc *sc) 1320 { 1321 #ifdef IWN_DEBUG 1322 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1323 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1324 1325 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1326 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1327 "control debugging printfs"); 1328 #endif 1329 } 1330 1331 static struct ieee80211vap * 1332 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1333 enum ieee80211_opmode opmode, int flags, 1334 const uint8_t bssid[IEEE80211_ADDR_LEN], 1335 const uint8_t mac[IEEE80211_ADDR_LEN]) 1336 { 1337 struct iwn_softc *sc = ic->ic_softc; 1338 struct iwn_vap *ivp; 1339 struct ieee80211vap *vap; 1340 1341 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1342 return NULL; 1343 1344 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1345 vap = &ivp->iv_vap; 1346 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1347 ivp->ctx = IWN_RXON_BSS_CTX; 1348 vap->iv_bmissthreshold = 10; /* override default */ 1349 /* Override with driver methods. */ 1350 ivp->iv_newstate = vap->iv_newstate; 1351 vap->iv_newstate = iwn_newstate; 1352 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1353 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1354 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */ 1355 1356 ieee80211_ratectl_init(vap); 1357 /* Complete setup. */ 1358 ieee80211_vap_attach(vap, ieee80211_media_change, 1359 ieee80211_media_status, mac); 1360 ic->ic_opmode = opmode; 1361 return vap; 1362 } 1363 1364 static void 1365 iwn_vap_delete(struct ieee80211vap *vap) 1366 { 1367 struct iwn_vap *ivp = IWN_VAP(vap); 1368 1369 ieee80211_ratectl_deinit(vap); 1370 ieee80211_vap_detach(vap); 1371 free(ivp, M_80211_VAP); 1372 } 1373 1374 static void 1375 iwn_xmit_queue_drain(struct iwn_softc *sc) 1376 { 1377 struct mbuf *m; 1378 struct ieee80211_node *ni; 1379 1380 IWN_LOCK_ASSERT(sc); 1381 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1382 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1383 ieee80211_free_node(ni); 1384 m_freem(m); 1385 } 1386 } 1387 1388 static int 1389 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1390 { 1391 1392 IWN_LOCK_ASSERT(sc); 1393 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1394 } 1395 1396 static int 1397 iwn_detach(device_t dev) 1398 { 1399 struct iwn_softc *sc = device_get_softc(dev); 1400 int qid; 1401 1402 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1403 1404 if (sc->sc_ic.ic_softc != NULL) { 1405 /* Free the mbuf queue and node references */ 1406 IWN_LOCK(sc); 1407 iwn_xmit_queue_drain(sc); 1408 IWN_UNLOCK(sc); 1409 1410 iwn_stop(sc); 1411 1412 taskqueue_drain_all(sc->sc_tq); 1413 taskqueue_free(sc->sc_tq); 1414 1415 callout_drain(&sc->watchdog_to); 1416 callout_drain(&sc->scan_timeout); 1417 callout_drain(&sc->calib_to); 1418 ieee80211_ifdetach(&sc->sc_ic); 1419 } 1420 1421 /* Uninstall interrupt handler. */ 1422 if (sc->irq != NULL) { 1423 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1424 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1425 sc->irq); 1426 pci_release_msi(dev); 1427 } 1428 1429 /* Free DMA resources. */ 1430 iwn_free_rx_ring(sc, &sc->rxq); 1431 for (qid = 0; qid < sc->ntxqs; qid++) 1432 iwn_free_tx_ring(sc, &sc->txq[qid]); 1433 iwn_free_sched(sc); 1434 iwn_free_kw(sc); 1435 if (sc->ict != NULL) 1436 iwn_free_ict(sc); 1437 iwn_free_fwmem(sc); 1438 1439 if (sc->mem != NULL) 1440 bus_release_resource(dev, SYS_RES_MEMORY, 1441 rman_get_rid(sc->mem), sc->mem); 1442 1443 if (sc->sc_cdev) { 1444 destroy_dev(sc->sc_cdev); 1445 sc->sc_cdev = NULL; 1446 } 1447 1448 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1449 IWN_LOCK_DESTROY(sc); 1450 return 0; 1451 } 1452 1453 static int 1454 iwn_shutdown(device_t dev) 1455 { 1456 struct iwn_softc *sc = device_get_softc(dev); 1457 1458 iwn_stop(sc); 1459 return 0; 1460 } 1461 1462 static int 1463 iwn_suspend(device_t dev) 1464 { 1465 struct iwn_softc *sc = device_get_softc(dev); 1466 1467 ieee80211_suspend_all(&sc->sc_ic); 1468 return 0; 1469 } 1470 1471 static int 1472 iwn_resume(device_t dev) 1473 { 1474 struct iwn_softc *sc = device_get_softc(dev); 1475 1476 /* Clear device-specific "PCI retry timeout" register (41h). */ 1477 pci_write_config(dev, 0x41, 0, 1); 1478 1479 ieee80211_resume_all(&sc->sc_ic); 1480 return 0; 1481 } 1482 1483 static int 1484 iwn_nic_lock(struct iwn_softc *sc) 1485 { 1486 int ntries; 1487 1488 /* Request exclusive access to NIC. */ 1489 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1490 1491 /* Spin until we actually get the lock. */ 1492 for (ntries = 0; ntries < 1000; ntries++) { 1493 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1494 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1495 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1496 return 0; 1497 DELAY(10); 1498 } 1499 return ETIMEDOUT; 1500 } 1501 1502 static __inline void 1503 iwn_nic_unlock(struct iwn_softc *sc) 1504 { 1505 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1506 } 1507 1508 static __inline uint32_t 1509 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1510 { 1511 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1512 IWN_BARRIER_READ_WRITE(sc); 1513 return IWN_READ(sc, IWN_PRPH_RDATA); 1514 } 1515 1516 static __inline void 1517 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1518 { 1519 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1520 IWN_BARRIER_WRITE(sc); 1521 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1522 } 1523 1524 static __inline void 1525 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1526 { 1527 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1528 } 1529 1530 static __inline void 1531 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1532 { 1533 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1534 } 1535 1536 static __inline void 1537 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1538 const uint32_t *data, int count) 1539 { 1540 for (; count > 0; count--, data++, addr += 4) 1541 iwn_prph_write(sc, addr, *data); 1542 } 1543 1544 static __inline uint32_t 1545 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1546 { 1547 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1548 IWN_BARRIER_READ_WRITE(sc); 1549 return IWN_READ(sc, IWN_MEM_RDATA); 1550 } 1551 1552 static __inline void 1553 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1554 { 1555 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1556 IWN_BARRIER_WRITE(sc); 1557 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1558 } 1559 1560 static __inline void 1561 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1562 { 1563 uint32_t tmp; 1564 1565 tmp = iwn_mem_read(sc, addr & ~3); 1566 if (addr & 3) 1567 tmp = (tmp & 0x0000ffff) | data << 16; 1568 else 1569 tmp = (tmp & 0xffff0000) | data; 1570 iwn_mem_write(sc, addr & ~3, tmp); 1571 } 1572 1573 static __inline void 1574 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1575 int count) 1576 { 1577 for (; count > 0; count--, addr += 4) 1578 *data++ = iwn_mem_read(sc, addr); 1579 } 1580 1581 static __inline void 1582 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1583 int count) 1584 { 1585 for (; count > 0; count--, addr += 4) 1586 iwn_mem_write(sc, addr, val); 1587 } 1588 1589 static int 1590 iwn_eeprom_lock(struct iwn_softc *sc) 1591 { 1592 int i, ntries; 1593 1594 for (i = 0; i < 100; i++) { 1595 /* Request exclusive access to EEPROM. */ 1596 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1597 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1598 1599 /* Spin until we actually get the lock. */ 1600 for (ntries = 0; ntries < 100; ntries++) { 1601 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1602 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1603 return 0; 1604 DELAY(10); 1605 } 1606 } 1607 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1608 return ETIMEDOUT; 1609 } 1610 1611 static __inline void 1612 iwn_eeprom_unlock(struct iwn_softc *sc) 1613 { 1614 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1615 } 1616 1617 /* 1618 * Initialize access by host to One Time Programmable ROM. 1619 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1620 */ 1621 static int 1622 iwn_init_otprom(struct iwn_softc *sc) 1623 { 1624 uint16_t prev, base, next; 1625 int count, error; 1626 1627 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1628 1629 /* Wait for clock stabilization before accessing prph. */ 1630 if ((error = iwn_clock_wait(sc)) != 0) 1631 return error; 1632 1633 if ((error = iwn_nic_lock(sc)) != 0) 1634 return error; 1635 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1636 DELAY(5); 1637 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1638 iwn_nic_unlock(sc); 1639 1640 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1641 if (sc->base_params->shadow_ram_support) { 1642 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1643 IWN_RESET_LINK_PWR_MGMT_DIS); 1644 } 1645 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1646 /* Clear ECC status. */ 1647 IWN_SETBITS(sc, IWN_OTP_GP, 1648 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1649 1650 /* 1651 * Find the block before last block (contains the EEPROM image) 1652 * for HW without OTP shadow RAM. 1653 */ 1654 if (! sc->base_params->shadow_ram_support) { 1655 /* Switch to absolute addressing mode. */ 1656 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1657 base = prev = 0; 1658 for (count = 0; count < sc->base_params->max_ll_items; 1659 count++) { 1660 error = iwn_read_prom_data(sc, base, &next, 2); 1661 if (error != 0) 1662 return error; 1663 if (next == 0) /* End of linked-list. */ 1664 break; 1665 prev = base; 1666 base = le16toh(next); 1667 } 1668 if (count == 0 || count == sc->base_params->max_ll_items) 1669 return EIO; 1670 /* Skip "next" word. */ 1671 sc->prom_base = prev + 1; 1672 } 1673 1674 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1675 1676 return 0; 1677 } 1678 1679 static int 1680 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1681 { 1682 uint8_t *out = data; 1683 uint32_t val, tmp; 1684 int ntries; 1685 1686 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1687 1688 addr += sc->prom_base; 1689 for (; count > 0; count -= 2, addr++) { 1690 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1691 for (ntries = 0; ntries < 10; ntries++) { 1692 val = IWN_READ(sc, IWN_EEPROM); 1693 if (val & IWN_EEPROM_READ_VALID) 1694 break; 1695 DELAY(5); 1696 } 1697 if (ntries == 10) { 1698 device_printf(sc->sc_dev, 1699 "timeout reading ROM at 0x%x\n", addr); 1700 return ETIMEDOUT; 1701 } 1702 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1703 /* OTPROM, check for ECC errors. */ 1704 tmp = IWN_READ(sc, IWN_OTP_GP); 1705 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1706 device_printf(sc->sc_dev, 1707 "OTPROM ECC error at 0x%x\n", addr); 1708 return EIO; 1709 } 1710 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1711 /* Correctable ECC error, clear bit. */ 1712 IWN_SETBITS(sc, IWN_OTP_GP, 1713 IWN_OTP_GP_ECC_CORR_STTS); 1714 } 1715 } 1716 *out++ = val >> 16; 1717 if (count > 1) 1718 *out++ = val >> 24; 1719 } 1720 1721 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1722 1723 return 0; 1724 } 1725 1726 static void 1727 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1728 { 1729 if (error != 0) 1730 return; 1731 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1732 *(bus_addr_t *)arg = segs[0].ds_addr; 1733 } 1734 1735 static int 1736 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1737 void **kvap, bus_size_t size, bus_size_t alignment) 1738 { 1739 int error; 1740 1741 dma->tag = NULL; 1742 dma->size = size; 1743 1744 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1745 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1746 1, size, 0, NULL, NULL, &dma->tag); 1747 if (error != 0) 1748 goto fail; 1749 1750 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1751 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1752 if (error != 0) 1753 goto fail; 1754 1755 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1756 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1757 if (error != 0) 1758 goto fail; 1759 1760 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1761 1762 if (kvap != NULL) 1763 *kvap = dma->vaddr; 1764 1765 return 0; 1766 1767 fail: iwn_dma_contig_free(dma); 1768 return error; 1769 } 1770 1771 static void 1772 iwn_dma_contig_free(struct iwn_dma_info *dma) 1773 { 1774 if (dma->vaddr != NULL) { 1775 bus_dmamap_sync(dma->tag, dma->map, 1776 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1777 bus_dmamap_unload(dma->tag, dma->map); 1778 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1779 dma->vaddr = NULL; 1780 } 1781 if (dma->tag != NULL) { 1782 bus_dma_tag_destroy(dma->tag); 1783 dma->tag = NULL; 1784 } 1785 } 1786 1787 static int 1788 iwn_alloc_sched(struct iwn_softc *sc) 1789 { 1790 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1791 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1792 sc->schedsz, 1024); 1793 } 1794 1795 static void 1796 iwn_free_sched(struct iwn_softc *sc) 1797 { 1798 iwn_dma_contig_free(&sc->sched_dma); 1799 } 1800 1801 static int 1802 iwn_alloc_kw(struct iwn_softc *sc) 1803 { 1804 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1805 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1806 } 1807 1808 static void 1809 iwn_free_kw(struct iwn_softc *sc) 1810 { 1811 iwn_dma_contig_free(&sc->kw_dma); 1812 } 1813 1814 static int 1815 iwn_alloc_ict(struct iwn_softc *sc) 1816 { 1817 /* ICT table must be aligned on a 4KB boundary. */ 1818 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1819 IWN_ICT_SIZE, 4096); 1820 } 1821 1822 static void 1823 iwn_free_ict(struct iwn_softc *sc) 1824 { 1825 iwn_dma_contig_free(&sc->ict_dma); 1826 } 1827 1828 static int 1829 iwn_alloc_fwmem(struct iwn_softc *sc) 1830 { 1831 /* Must be aligned on a 16-byte boundary. */ 1832 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1833 } 1834 1835 static void 1836 iwn_free_fwmem(struct iwn_softc *sc) 1837 { 1838 iwn_dma_contig_free(&sc->fw_dma); 1839 } 1840 1841 static int 1842 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1843 { 1844 bus_size_t size; 1845 int i, error; 1846 1847 ring->cur = 0; 1848 1849 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1850 1851 /* Allocate RX descriptors (256-byte aligned). */ 1852 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1853 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1854 size, 256); 1855 if (error != 0) { 1856 device_printf(sc->sc_dev, 1857 "%s: could not allocate RX ring DMA memory, error %d\n", 1858 __func__, error); 1859 goto fail; 1860 } 1861 1862 /* Allocate RX status area (16-byte aligned). */ 1863 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1864 sizeof (struct iwn_rx_status), 16); 1865 if (error != 0) { 1866 device_printf(sc->sc_dev, 1867 "%s: could not allocate RX status DMA memory, error %d\n", 1868 __func__, error); 1869 goto fail; 1870 } 1871 1872 /* Create RX buffer DMA tag. */ 1873 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1874 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1875 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1876 if (error != 0) { 1877 device_printf(sc->sc_dev, 1878 "%s: could not create RX buf DMA tag, error %d\n", 1879 __func__, error); 1880 goto fail; 1881 } 1882 1883 /* 1884 * Allocate and map RX buffers. 1885 */ 1886 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1887 struct iwn_rx_data *data = &ring->data[i]; 1888 bus_addr_t paddr; 1889 1890 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1891 if (error != 0) { 1892 device_printf(sc->sc_dev, 1893 "%s: could not create RX buf DMA map, error %d\n", 1894 __func__, error); 1895 goto fail; 1896 } 1897 1898 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1899 IWN_RBUF_SIZE); 1900 if (data->m == NULL) { 1901 device_printf(sc->sc_dev, 1902 "%s: could not allocate RX mbuf\n", __func__); 1903 error = ENOBUFS; 1904 goto fail; 1905 } 1906 1907 error = bus_dmamap_load(ring->data_dmat, data->map, 1908 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1909 &paddr, BUS_DMA_NOWAIT); 1910 if (error != 0 && error != EFBIG) { 1911 device_printf(sc->sc_dev, 1912 "%s: can't map mbuf, error %d\n", __func__, 1913 error); 1914 goto fail; 1915 } 1916 1917 bus_dmamap_sync(ring->data_dmat, data->map, 1918 BUS_DMASYNC_PREREAD); 1919 1920 /* Set physical address of RX buffer (256-byte aligned). */ 1921 ring->desc[i] = htole32(paddr >> 8); 1922 } 1923 1924 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1925 BUS_DMASYNC_PREWRITE); 1926 1927 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1928 1929 return 0; 1930 1931 fail: iwn_free_rx_ring(sc, ring); 1932 1933 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1934 1935 return error; 1936 } 1937 1938 static void 1939 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1940 { 1941 int ntries; 1942 1943 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1944 1945 if (iwn_nic_lock(sc) == 0) { 1946 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1947 for (ntries = 0; ntries < 1000; ntries++) { 1948 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1949 IWN_FH_RX_STATUS_IDLE) 1950 break; 1951 DELAY(10); 1952 } 1953 iwn_nic_unlock(sc); 1954 } 1955 ring->cur = 0; 1956 sc->last_rx_valid = 0; 1957 } 1958 1959 static void 1960 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1961 { 1962 int i; 1963 1964 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1965 1966 iwn_dma_contig_free(&ring->desc_dma); 1967 iwn_dma_contig_free(&ring->stat_dma); 1968 1969 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1970 struct iwn_rx_data *data = &ring->data[i]; 1971 1972 if (data->m != NULL) { 1973 bus_dmamap_sync(ring->data_dmat, data->map, 1974 BUS_DMASYNC_POSTREAD); 1975 bus_dmamap_unload(ring->data_dmat, data->map); 1976 m_freem(data->m); 1977 data->m = NULL; 1978 } 1979 if (data->map != NULL) 1980 bus_dmamap_destroy(ring->data_dmat, data->map); 1981 } 1982 if (ring->data_dmat != NULL) { 1983 bus_dma_tag_destroy(ring->data_dmat); 1984 ring->data_dmat = NULL; 1985 } 1986 } 1987 1988 static int 1989 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1990 { 1991 bus_addr_t paddr; 1992 bus_size_t size; 1993 int i, error; 1994 1995 ring->qid = qid; 1996 ring->queued = 0; 1997 ring->cur = 0; 1998 1999 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2000 2001 /* Allocate TX descriptors (256-byte aligned). */ 2002 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 2003 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 2004 size, 256); 2005 if (error != 0) { 2006 device_printf(sc->sc_dev, 2007 "%s: could not allocate TX ring DMA memory, error %d\n", 2008 __func__, error); 2009 goto fail; 2010 } 2011 2012 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2013 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2014 size, 4); 2015 if (error != 0) { 2016 device_printf(sc->sc_dev, 2017 "%s: could not allocate TX cmd DMA memory, error %d\n", 2018 __func__, error); 2019 goto fail; 2020 } 2021 2022 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2023 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2024 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2025 if (error != 0) { 2026 device_printf(sc->sc_dev, 2027 "%s: could not create TX buf DMA tag, error %d\n", 2028 __func__, error); 2029 goto fail; 2030 } 2031 2032 paddr = ring->cmd_dma.paddr; 2033 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2034 struct iwn_tx_data *data = &ring->data[i]; 2035 2036 data->cmd_paddr = paddr; 2037 data->scratch_paddr = paddr + 12; 2038 paddr += sizeof (struct iwn_tx_cmd); 2039 2040 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2041 if (error != 0) { 2042 device_printf(sc->sc_dev, 2043 "%s: could not create TX buf DMA map, error %d\n", 2044 __func__, error); 2045 goto fail; 2046 } 2047 } 2048 2049 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2050 2051 return 0; 2052 2053 fail: iwn_free_tx_ring(sc, ring); 2054 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2055 return error; 2056 } 2057 2058 static void 2059 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2060 { 2061 int i; 2062 2063 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2064 2065 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2066 struct iwn_tx_data *data = &ring->data[i]; 2067 2068 if (data->m != NULL) { 2069 bus_dmamap_sync(ring->data_dmat, data->map, 2070 BUS_DMASYNC_POSTWRITE); 2071 bus_dmamap_unload(ring->data_dmat, data->map); 2072 m_freem(data->m); 2073 data->m = NULL; 2074 } 2075 if (data->ni != NULL) { 2076 ieee80211_free_node(data->ni); 2077 data->ni = NULL; 2078 } 2079 data->remapped = 0; 2080 data->long_retries = 0; 2081 } 2082 /* Clear TX descriptors. */ 2083 memset(ring->desc, 0, ring->desc_dma.size); 2084 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2085 BUS_DMASYNC_PREWRITE); 2086 sc->qfullmsk &= ~(1 << ring->qid); 2087 ring->queued = 0; 2088 ring->cur = 0; 2089 } 2090 2091 static void 2092 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2093 { 2094 int i; 2095 2096 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2097 2098 iwn_dma_contig_free(&ring->desc_dma); 2099 iwn_dma_contig_free(&ring->cmd_dma); 2100 2101 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2102 struct iwn_tx_data *data = &ring->data[i]; 2103 2104 if (data->m != NULL) { 2105 bus_dmamap_sync(ring->data_dmat, data->map, 2106 BUS_DMASYNC_POSTWRITE); 2107 bus_dmamap_unload(ring->data_dmat, data->map); 2108 m_freem(data->m); 2109 } 2110 if (data->map != NULL) 2111 bus_dmamap_destroy(ring->data_dmat, data->map); 2112 } 2113 if (ring->data_dmat != NULL) { 2114 bus_dma_tag_destroy(ring->data_dmat); 2115 ring->data_dmat = NULL; 2116 } 2117 } 2118 2119 static void 2120 iwn_check_tx_ring(struct iwn_softc *sc, int qid) 2121 { 2122 struct iwn_tx_ring *ring = &sc->txq[qid]; 2123 2124 KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!", 2125 __func__, ring->queued, qid)); 2126 2127 if (qid >= sc->firstaggqueue) { 2128 struct iwn_ops *ops = &sc->ops; 2129 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; 2130 2131 if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) { 2132 uint16_t ssn = tap->txa_start & 0xfff; 2133 uint8_t tid = tap->txa_tid; 2134 int *res = tap->txa_private; 2135 2136 iwn_nic_lock(sc); 2137 ops->ampdu_tx_stop(sc, qid, tid, ssn); 2138 iwn_nic_unlock(sc); 2139 2140 sc->qid2tap[qid] = NULL; 2141 free(res, M_DEVBUF); 2142 } 2143 } 2144 2145 if (ring->queued < IWN_TX_RING_LOMARK) { 2146 sc->qfullmsk &= ~(1 << qid); 2147 2148 if (ring->queued == 0) 2149 sc->sc_tx_timer = 0; 2150 else 2151 sc->sc_tx_timer = 5; 2152 } 2153 } 2154 2155 static void 2156 iwn5000_ict_reset(struct iwn_softc *sc) 2157 { 2158 /* Disable interrupts. */ 2159 IWN_WRITE(sc, IWN_INT_MASK, 0); 2160 2161 /* Reset ICT table. */ 2162 memset(sc->ict, 0, IWN_ICT_SIZE); 2163 sc->ict_cur = 0; 2164 2165 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 2166 BUS_DMASYNC_PREWRITE); 2167 2168 /* Set physical address of ICT table (4KB aligned). */ 2169 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2170 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2171 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2172 2173 /* Enable periodic RX interrupt. */ 2174 sc->int_mask |= IWN_INT_RX_PERIODIC; 2175 /* Switch to ICT interrupt mode in driver. */ 2176 sc->sc_flags |= IWN_FLAG_USE_ICT; 2177 2178 /* Re-enable interrupts. */ 2179 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2180 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2181 } 2182 2183 static int 2184 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2185 { 2186 struct iwn_ops *ops = &sc->ops; 2187 uint16_t val; 2188 int error; 2189 2190 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2191 2192 /* Check whether adapter has an EEPROM or an OTPROM. */ 2193 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2194 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2195 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2196 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2197 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2198 2199 /* Adapter has to be powered on for EEPROM access to work. */ 2200 if ((error = iwn_apm_init(sc)) != 0) { 2201 device_printf(sc->sc_dev, 2202 "%s: could not power ON adapter, error %d\n", __func__, 2203 error); 2204 return error; 2205 } 2206 2207 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2208 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2209 return EIO; 2210 } 2211 if ((error = iwn_eeprom_lock(sc)) != 0) { 2212 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2213 __func__, error); 2214 return error; 2215 } 2216 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2217 if ((error = iwn_init_otprom(sc)) != 0) { 2218 device_printf(sc->sc_dev, 2219 "%s: could not initialize OTPROM, error %d\n", 2220 __func__, error); 2221 return error; 2222 } 2223 } 2224 2225 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2226 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2227 /* Check if HT support is bonded out. */ 2228 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2229 sc->sc_flags |= IWN_FLAG_HAS_11N; 2230 2231 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2232 sc->rfcfg = le16toh(val); 2233 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2234 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2235 if (sc->txchainmask == 0) 2236 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2237 if (sc->rxchainmask == 0) 2238 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2239 2240 /* Read MAC address. */ 2241 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2242 2243 /* Read adapter-specific information from EEPROM. */ 2244 ops->read_eeprom(sc); 2245 2246 iwn_apm_stop(sc); /* Power OFF adapter. */ 2247 2248 iwn_eeprom_unlock(sc); 2249 2250 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2251 2252 return 0; 2253 } 2254 2255 static void 2256 iwn4965_read_eeprom(struct iwn_softc *sc) 2257 { 2258 uint32_t addr; 2259 uint16_t val; 2260 int i; 2261 2262 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2263 2264 /* Read regulatory domain (4 ASCII characters). */ 2265 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2266 2267 /* Read the list of authorized channels (20MHz & 40MHz). */ 2268 for (i = 0; i < IWN_NBANDS - 1; i++) { 2269 addr = iwn4965_regulatory_bands[i]; 2270 iwn_read_eeprom_channels(sc, i, addr); 2271 } 2272 2273 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2274 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2275 sc->maxpwr2GHz = val & 0xff; 2276 sc->maxpwr5GHz = val >> 8; 2277 /* Check that EEPROM values are within valid range. */ 2278 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2279 sc->maxpwr5GHz = 38; 2280 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2281 sc->maxpwr2GHz = 38; 2282 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2283 sc->maxpwr2GHz, sc->maxpwr5GHz); 2284 2285 /* Read samples for each TX power group. */ 2286 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2287 sizeof sc->bands); 2288 2289 /* Read voltage at which samples were taken. */ 2290 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2291 sc->eeprom_voltage = (int16_t)le16toh(val); 2292 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2293 sc->eeprom_voltage); 2294 2295 #ifdef IWN_DEBUG 2296 /* Print samples. */ 2297 if (sc->sc_debug & IWN_DEBUG_ANY) { 2298 for (i = 0; i < IWN_NBANDS - 1; i++) 2299 iwn4965_print_power_group(sc, i); 2300 } 2301 #endif 2302 2303 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2304 } 2305 2306 #ifdef IWN_DEBUG 2307 static void 2308 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2309 { 2310 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2311 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2312 int j, c; 2313 2314 printf("===band %d===\n", i); 2315 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2316 printf("chan1 num=%d\n", chans[0].num); 2317 for (c = 0; c < 2; c++) { 2318 for (j = 0; j < IWN_NSAMPLES; j++) { 2319 printf("chain %d, sample %d: temp=%d gain=%d " 2320 "power=%d pa_det=%d\n", c, j, 2321 chans[0].samples[c][j].temp, 2322 chans[0].samples[c][j].gain, 2323 chans[0].samples[c][j].power, 2324 chans[0].samples[c][j].pa_det); 2325 } 2326 } 2327 printf("chan2 num=%d\n", chans[1].num); 2328 for (c = 0; c < 2; c++) { 2329 for (j = 0; j < IWN_NSAMPLES; j++) { 2330 printf("chain %d, sample %d: temp=%d gain=%d " 2331 "power=%d pa_det=%d\n", c, j, 2332 chans[1].samples[c][j].temp, 2333 chans[1].samples[c][j].gain, 2334 chans[1].samples[c][j].power, 2335 chans[1].samples[c][j].pa_det); 2336 } 2337 } 2338 } 2339 #endif 2340 2341 static void 2342 iwn5000_read_eeprom(struct iwn_softc *sc) 2343 { 2344 struct iwn5000_eeprom_calib_hdr hdr; 2345 int32_t volt; 2346 uint32_t base, addr; 2347 uint16_t val; 2348 int i; 2349 2350 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2351 2352 /* Read regulatory domain (4 ASCII characters). */ 2353 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2354 base = le16toh(val); 2355 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2356 sc->eeprom_domain, 4); 2357 2358 /* Read the list of authorized channels (20MHz & 40MHz). */ 2359 for (i = 0; i < IWN_NBANDS - 1; i++) { 2360 addr = base + sc->base_params->regulatory_bands[i]; 2361 iwn_read_eeprom_channels(sc, i, addr); 2362 } 2363 2364 /* Read enhanced TX power information for 6000 Series. */ 2365 if (sc->base_params->enhanced_TX_power) 2366 iwn_read_eeprom_enhinfo(sc); 2367 2368 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2369 base = le16toh(val); 2370 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2371 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2372 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2373 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2374 sc->calib_ver = hdr.version; 2375 2376 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2377 sc->eeprom_voltage = le16toh(hdr.volt); 2378 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2379 sc->eeprom_temp_high=le16toh(val); 2380 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2381 sc->eeprom_temp = le16toh(val); 2382 } 2383 2384 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2385 /* Compute temperature offset. */ 2386 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2387 sc->eeprom_temp = le16toh(val); 2388 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2389 volt = le16toh(val); 2390 sc->temp_off = sc->eeprom_temp - (volt / -5); 2391 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2392 sc->eeprom_temp, volt, sc->temp_off); 2393 } else { 2394 /* Read crystal calibration. */ 2395 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2396 &sc->eeprom_crystal, sizeof (uint32_t)); 2397 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2398 le32toh(sc->eeprom_crystal)); 2399 } 2400 2401 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2402 2403 } 2404 2405 /* 2406 * Translate EEPROM flags to net80211. 2407 */ 2408 static uint32_t 2409 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2410 { 2411 uint32_t nflags; 2412 2413 nflags = 0; 2414 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2415 nflags |= IEEE80211_CHAN_PASSIVE; 2416 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2417 nflags |= IEEE80211_CHAN_NOADHOC; 2418 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2419 nflags |= IEEE80211_CHAN_DFS; 2420 /* XXX apparently IBSS may still be marked */ 2421 nflags |= IEEE80211_CHAN_NOADHOC; 2422 } 2423 2424 return nflags; 2425 } 2426 2427 static void 2428 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2429 struct ieee80211_channel chans[]) 2430 { 2431 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2432 const struct iwn_chan_band *band = &iwn_bands[n]; 2433 uint8_t bands[IEEE80211_MODE_BYTES]; 2434 uint8_t chan; 2435 int i, error, nflags; 2436 2437 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2438 2439 memset(bands, 0, sizeof(bands)); 2440 if (n == 0) { 2441 setbit(bands, IEEE80211_MODE_11B); 2442 setbit(bands, IEEE80211_MODE_11G); 2443 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2444 setbit(bands, IEEE80211_MODE_11NG); 2445 } else { 2446 setbit(bands, IEEE80211_MODE_11A); 2447 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2448 setbit(bands, IEEE80211_MODE_11NA); 2449 } 2450 2451 for (i = 0; i < band->nchan; i++) { 2452 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2453 DPRINTF(sc, IWN_DEBUG_RESET, 2454 "skip chan %d flags 0x%x maxpwr %d\n", 2455 band->chan[i], channels[i].flags, 2456 channels[i].maxpwr); 2457 continue; 2458 } 2459 2460 chan = band->chan[i]; 2461 nflags = iwn_eeprom_channel_flags(&channels[i]); 2462 error = ieee80211_add_channel(chans, maxchans, nchans, 2463 chan, 0, channels[i].maxpwr, nflags, bands); 2464 if (error != 0) 2465 break; 2466 2467 /* Save maximum allowed TX power for this channel. */ 2468 /* XXX wrong */ 2469 sc->maxpwr[chan] = channels[i].maxpwr; 2470 2471 DPRINTF(sc, IWN_DEBUG_RESET, 2472 "add chan %d flags 0x%x maxpwr %d\n", chan, 2473 channels[i].flags, channels[i].maxpwr); 2474 } 2475 2476 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2477 2478 } 2479 2480 static void 2481 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2482 struct ieee80211_channel chans[]) 2483 { 2484 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2485 const struct iwn_chan_band *band = &iwn_bands[n]; 2486 uint8_t chan; 2487 int i, error, nflags; 2488 2489 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2490 2491 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2492 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2493 return; 2494 } 2495 2496 for (i = 0; i < band->nchan; i++) { 2497 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2498 DPRINTF(sc, IWN_DEBUG_RESET, 2499 "skip chan %d flags 0x%x maxpwr %d\n", 2500 band->chan[i], channels[i].flags, 2501 channels[i].maxpwr); 2502 continue; 2503 } 2504 2505 chan = band->chan[i]; 2506 nflags = iwn_eeprom_channel_flags(&channels[i]); 2507 nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A); 2508 error = ieee80211_add_channel_ht40(chans, maxchans, nchans, 2509 chan, channels[i].maxpwr, nflags); 2510 switch (error) { 2511 case EINVAL: 2512 device_printf(sc->sc_dev, 2513 "%s: no entry for channel %d\n", __func__, chan); 2514 continue; 2515 case ENOENT: 2516 DPRINTF(sc, IWN_DEBUG_RESET, 2517 "%s: skip chan %d, extension channel not found\n", 2518 __func__, chan); 2519 continue; 2520 case ENOBUFS: 2521 device_printf(sc->sc_dev, 2522 "%s: channel table is full!\n", __func__); 2523 break; 2524 case 0: 2525 DPRINTF(sc, IWN_DEBUG_RESET, 2526 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2527 chan, channels[i].flags, channels[i].maxpwr); 2528 /* FALLTHROUGH */ 2529 default: 2530 break; 2531 } 2532 } 2533 2534 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2535 2536 } 2537 2538 static void 2539 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2540 { 2541 struct ieee80211com *ic = &sc->sc_ic; 2542 2543 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2544 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2545 2546 if (n < 5) { 2547 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2548 ic->ic_channels); 2549 } else { 2550 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2551 ic->ic_channels); 2552 } 2553 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2554 } 2555 2556 static struct iwn_eeprom_chan * 2557 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2558 { 2559 int band, chan, i, j; 2560 2561 if (IEEE80211_IS_CHAN_HT40(c)) { 2562 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2563 if (IEEE80211_IS_CHAN_HT40D(c)) 2564 chan = c->ic_extieee; 2565 else 2566 chan = c->ic_ieee; 2567 for (i = 0; i < iwn_bands[band].nchan; i++) { 2568 if (iwn_bands[band].chan[i] == chan) 2569 return &sc->eeprom_channels[band][i]; 2570 } 2571 } else { 2572 for (j = 0; j < 5; j++) { 2573 for (i = 0; i < iwn_bands[j].nchan; i++) { 2574 if (iwn_bands[j].chan[i] == c->ic_ieee && 2575 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 2576 return &sc->eeprom_channels[j][i]; 2577 } 2578 } 2579 } 2580 return NULL; 2581 } 2582 2583 static void 2584 iwn_getradiocaps(struct ieee80211com *ic, 2585 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2586 { 2587 struct iwn_softc *sc = ic->ic_softc; 2588 int i; 2589 2590 /* Parse the list of authorized channels. */ 2591 for (i = 0; i < 5 && *nchans < maxchans; i++) 2592 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); 2593 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) 2594 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); 2595 } 2596 2597 /* 2598 * Enforce flags read from EEPROM. 2599 */ 2600 static int 2601 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2602 int nchan, struct ieee80211_channel chans[]) 2603 { 2604 struct iwn_softc *sc = ic->ic_softc; 2605 int i; 2606 2607 for (i = 0; i < nchan; i++) { 2608 struct ieee80211_channel *c = &chans[i]; 2609 struct iwn_eeprom_chan *channel; 2610 2611 channel = iwn_find_eeprom_channel(sc, c); 2612 if (channel == NULL) { 2613 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2614 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2615 return EINVAL; 2616 } 2617 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2618 } 2619 2620 return 0; 2621 } 2622 2623 static void 2624 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2625 { 2626 struct iwn_eeprom_enhinfo enhinfo[35]; 2627 struct ieee80211com *ic = &sc->sc_ic; 2628 struct ieee80211_channel *c; 2629 uint16_t val, base; 2630 int8_t maxpwr; 2631 uint8_t flags; 2632 int i, j; 2633 2634 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2635 2636 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2637 base = le16toh(val); 2638 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2639 enhinfo, sizeof enhinfo); 2640 2641 for (i = 0; i < nitems(enhinfo); i++) { 2642 flags = enhinfo[i].flags; 2643 if (!(flags & IWN_ENHINFO_VALID)) 2644 continue; /* Skip invalid entries. */ 2645 2646 maxpwr = 0; 2647 if (sc->txchainmask & IWN_ANT_A) 2648 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2649 if (sc->txchainmask & IWN_ANT_B) 2650 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2651 if (sc->txchainmask & IWN_ANT_C) 2652 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2653 if (sc->ntxchains == 2) 2654 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2655 else if (sc->ntxchains == 3) 2656 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2657 2658 for (j = 0; j < ic->ic_nchans; j++) { 2659 c = &ic->ic_channels[j]; 2660 if ((flags & IWN_ENHINFO_5GHZ)) { 2661 if (!IEEE80211_IS_CHAN_A(c)) 2662 continue; 2663 } else if ((flags & IWN_ENHINFO_OFDM)) { 2664 if (!IEEE80211_IS_CHAN_G(c)) 2665 continue; 2666 } else if (!IEEE80211_IS_CHAN_B(c)) 2667 continue; 2668 if ((flags & IWN_ENHINFO_HT40)) { 2669 if (!IEEE80211_IS_CHAN_HT40(c)) 2670 continue; 2671 } else { 2672 if (IEEE80211_IS_CHAN_HT40(c)) 2673 continue; 2674 } 2675 if (enhinfo[i].chan != 0 && 2676 enhinfo[i].chan != c->ic_ieee) 2677 continue; 2678 2679 DPRINTF(sc, IWN_DEBUG_RESET, 2680 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2681 c->ic_flags, maxpwr / 2); 2682 c->ic_maxregpower = maxpwr / 2; 2683 c->ic_maxpower = maxpwr; 2684 } 2685 } 2686 2687 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2688 2689 } 2690 2691 static struct ieee80211_node * 2692 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2693 { 2694 struct iwn_node *wn; 2695 2696 wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 2697 if (wn == NULL) 2698 return (NULL); 2699 2700 wn->id = IWN_ID_UNDEFINED; 2701 2702 return (&wn->ni); 2703 } 2704 2705 static __inline int 2706 rate2plcp(int rate) 2707 { 2708 switch (rate & 0xff) { 2709 case 12: return 0xd; 2710 case 18: return 0xf; 2711 case 24: return 0x5; 2712 case 36: return 0x7; 2713 case 48: return 0x9; 2714 case 72: return 0xb; 2715 case 96: return 0x1; 2716 case 108: return 0x3; 2717 case 2: return 10; 2718 case 4: return 20; 2719 case 11: return 55; 2720 case 22: return 110; 2721 } 2722 return 0; 2723 } 2724 2725 static __inline uint8_t 2726 plcp2rate(const uint8_t rate_plcp) 2727 { 2728 switch (rate_plcp) { 2729 case 0xd: return 12; 2730 case 0xf: return 18; 2731 case 0x5: return 24; 2732 case 0x7: return 36; 2733 case 0x9: return 48; 2734 case 0xb: return 72; 2735 case 0x1: return 96; 2736 case 0x3: return 108; 2737 case 10: return 2; 2738 case 20: return 4; 2739 case 55: return 11; 2740 case 110: return 22; 2741 default: return 0; 2742 } 2743 } 2744 2745 static int 2746 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2747 { 2748 2749 return IWN_LSB(sc->txchainmask); 2750 } 2751 2752 static int 2753 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2754 { 2755 int tx; 2756 2757 /* 2758 * The '2 stream' setup is a bit .. odd. 2759 * 2760 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2761 * the firmware panics (eg Intel 5100.) 2762 * 2763 * For NICs that support two antennas, we use ANT_AB. 2764 * 2765 * For NICs that support three antennas, we use the two that 2766 * wasn't the default one. 2767 * 2768 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2769 * this to only one antenna. 2770 */ 2771 2772 /* Default - transmit on the other antennas */ 2773 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2774 2775 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2776 if (tx == 0) 2777 tx = IWN_ANT_AB; 2778 2779 /* 2780 * If the NIC is a two-stream TX NIC, configure the TX mask to 2781 * the default chainmask 2782 */ 2783 else if (sc->ntxchains == 2) 2784 tx = sc->txchainmask; 2785 2786 return (tx); 2787 } 2788 2789 2790 2791 /* 2792 * Calculate the required PLCP value from the given rate, 2793 * to the given node. 2794 * 2795 * This will take the node configuration (eg 11n, rate table 2796 * setup, etc) into consideration. 2797 */ 2798 static uint32_t 2799 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2800 uint8_t rate) 2801 { 2802 struct ieee80211com *ic = ni->ni_ic; 2803 uint32_t plcp = 0; 2804 int ridx; 2805 2806 /* 2807 * If it's an MCS rate, let's set the plcp correctly 2808 * and set the relevant flags based on the node config. 2809 */ 2810 if (rate & IEEE80211_RATE_MCS) { 2811 /* 2812 * Set the initial PLCP value to be between 0->31 for 2813 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2814 * flag. 2815 */ 2816 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2817 2818 /* 2819 * XXX the following should only occur if both 2820 * the local configuration _and_ the remote node 2821 * advertise these capabilities. Thus this code 2822 * may need fixing! 2823 */ 2824 2825 /* 2826 * Set the channel width and guard interval. 2827 */ 2828 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2829 plcp |= IWN_RFLAG_HT40; 2830 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2831 plcp |= IWN_RFLAG_SGI; 2832 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2833 plcp |= IWN_RFLAG_SGI; 2834 } 2835 2836 /* 2837 * Ensure the selected rate matches the link quality 2838 * table entries being used. 2839 */ 2840 if (rate > 0x8f) 2841 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2842 else if (rate > 0x87) 2843 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2844 else 2845 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2846 } else { 2847 /* 2848 * Set the initial PLCP - fine for both 2849 * OFDM and CCK rates. 2850 */ 2851 plcp = rate2plcp(rate); 2852 2853 /* Set CCK flag if it's CCK */ 2854 2855 /* XXX It would be nice to have a method 2856 * to map the ridx -> phy table entry 2857 * so we could just query that, rather than 2858 * this hack to check against IWN_RIDX_OFDM6. 2859 */ 2860 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2861 rate & IEEE80211_RATE_VAL); 2862 if (ridx < IWN_RIDX_OFDM6 && 2863 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2864 plcp |= IWN_RFLAG_CCK; 2865 2866 /* Set antenna configuration */ 2867 /* XXX TODO: is this the right antenna to use for legacy? */ 2868 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2869 } 2870 2871 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2872 __func__, 2873 rate, 2874 plcp); 2875 2876 return (htole32(plcp)); 2877 } 2878 2879 static void 2880 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2881 { 2882 /* Doesn't do anything at the moment */ 2883 } 2884 2885 static int 2886 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2887 { 2888 struct iwn_vap *ivp = IWN_VAP(vap); 2889 struct ieee80211com *ic = vap->iv_ic; 2890 struct iwn_softc *sc = ic->ic_softc; 2891 int error = 0; 2892 2893 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2894 2895 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2896 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2897 2898 IEEE80211_UNLOCK(ic); 2899 IWN_LOCK(sc); 2900 callout_stop(&sc->calib_to); 2901 2902 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2903 2904 switch (nstate) { 2905 case IEEE80211_S_ASSOC: 2906 if (vap->iv_state != IEEE80211_S_RUN) 2907 break; 2908 /* FALLTHROUGH */ 2909 case IEEE80211_S_AUTH: 2910 if (vap->iv_state == IEEE80211_S_AUTH) 2911 break; 2912 2913 /* 2914 * !AUTH -> AUTH transition requires state reset to handle 2915 * reassociations correctly. 2916 */ 2917 sc->rxon->associd = 0; 2918 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2919 sc->calib.state = IWN_CALIB_STATE_INIT; 2920 2921 /* Wait until we hear a beacon before we transmit */ 2922 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2923 sc->sc_beacon_wait = 1; 2924 2925 if ((error = iwn_auth(sc, vap)) != 0) { 2926 device_printf(sc->sc_dev, 2927 "%s: could not move to auth state\n", __func__); 2928 } 2929 break; 2930 2931 case IEEE80211_S_RUN: 2932 /* 2933 * RUN -> RUN transition; Just restart the timers. 2934 */ 2935 if (vap->iv_state == IEEE80211_S_RUN) { 2936 sc->calib_cnt = 0; 2937 break; 2938 } 2939 2940 /* Wait until we hear a beacon before we transmit */ 2941 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2942 sc->sc_beacon_wait = 1; 2943 2944 /* 2945 * !RUN -> RUN requires setting the association id 2946 * which is done with a firmware cmd. We also defer 2947 * starting the timers until that work is done. 2948 */ 2949 if ((error = iwn_run(sc, vap)) != 0) { 2950 device_printf(sc->sc_dev, 2951 "%s: could not move to run state\n", __func__); 2952 } 2953 break; 2954 2955 case IEEE80211_S_INIT: 2956 sc->calib.state = IWN_CALIB_STATE_INIT; 2957 /* 2958 * Purge the xmit queue so we don't have old frames 2959 * during a new association attempt. 2960 */ 2961 sc->sc_beacon_wait = 0; 2962 iwn_xmit_queue_drain(sc); 2963 break; 2964 2965 default: 2966 break; 2967 } 2968 IWN_UNLOCK(sc); 2969 IEEE80211_LOCK(ic); 2970 if (error != 0){ 2971 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2972 return error; 2973 } 2974 2975 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2976 2977 return ivp->iv_newstate(vap, nstate, arg); 2978 } 2979 2980 static void 2981 iwn_calib_timeout(void *arg) 2982 { 2983 struct iwn_softc *sc = arg; 2984 2985 IWN_LOCK_ASSERT(sc); 2986 2987 /* Force automatic TX power calibration every 60 secs. */ 2988 if (++sc->calib_cnt >= 120) { 2989 uint32_t flags = 0; 2990 2991 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2992 "sending request for statistics"); 2993 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2994 sizeof flags, 1); 2995 sc->calib_cnt = 0; 2996 } 2997 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2998 sc); 2999 } 3000 3001 /* 3002 * Process an RX_PHY firmware notification. This is usually immediately 3003 * followed by an MPDU_RX_DONE notification. 3004 */ 3005 static void 3006 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3007 { 3008 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 3009 3010 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 3011 3012 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 3013 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 3014 sc->last_rx_valid = 1; 3015 } 3016 3017 /* 3018 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 3019 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 3020 */ 3021 static void 3022 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3023 struct iwn_rx_data *data) 3024 { 3025 struct epoch_tracker et; 3026 struct iwn_ops *ops = &sc->ops; 3027 struct ieee80211com *ic = &sc->sc_ic; 3028 struct iwn_rx_ring *ring = &sc->rxq; 3029 struct ieee80211_frame_min *wh; 3030 struct ieee80211_node *ni; 3031 struct mbuf *m, *m1; 3032 struct iwn_rx_stat *stat; 3033 caddr_t head; 3034 bus_addr_t paddr; 3035 uint32_t flags; 3036 int error, len, rssi, nf; 3037 3038 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3039 3040 if (desc->type == IWN_MPDU_RX_DONE) { 3041 /* Check for prior RX_PHY notification. */ 3042 if (!sc->last_rx_valid) { 3043 DPRINTF(sc, IWN_DEBUG_ANY, 3044 "%s: missing RX_PHY\n", __func__); 3045 return; 3046 } 3047 stat = &sc->last_rx_stat; 3048 } else 3049 stat = (struct iwn_rx_stat *)(desc + 1); 3050 3051 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 3052 device_printf(sc->sc_dev, 3053 "%s: invalid RX statistic header, len %d\n", __func__, 3054 stat->cfg_phy_len); 3055 return; 3056 } 3057 if (desc->type == IWN_MPDU_RX_DONE) { 3058 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 3059 head = (caddr_t)(mpdu + 1); 3060 len = le16toh(mpdu->len); 3061 } else { 3062 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 3063 len = le16toh(stat->len); 3064 } 3065 3066 flags = le32toh(*(uint32_t *)(head + len)); 3067 3068 /* Discard frames with a bad FCS early. */ 3069 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 3070 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 3071 __func__, flags); 3072 counter_u64_add(ic->ic_ierrors, 1); 3073 return; 3074 } 3075 /* Discard frames that are too short. */ 3076 if (len < sizeof (struct ieee80211_frame_ack)) { 3077 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3078 __func__, len); 3079 counter_u64_add(ic->ic_ierrors, 1); 3080 return; 3081 } 3082 3083 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3084 if (m1 == NULL) { 3085 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3086 __func__); 3087 counter_u64_add(ic->ic_ierrors, 1); 3088 return; 3089 } 3090 bus_dmamap_unload(ring->data_dmat, data->map); 3091 3092 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3093 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3094 if (error != 0 && error != EFBIG) { 3095 device_printf(sc->sc_dev, 3096 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3097 m_freem(m1); 3098 3099 /* Try to reload the old mbuf. */ 3100 error = bus_dmamap_load(ring->data_dmat, data->map, 3101 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3102 &paddr, BUS_DMA_NOWAIT); 3103 if (error != 0 && error != EFBIG) { 3104 panic("%s: could not load old RX mbuf", __func__); 3105 } 3106 bus_dmamap_sync(ring->data_dmat, data->map, 3107 BUS_DMASYNC_PREREAD); 3108 /* Physical address may have changed. */ 3109 ring->desc[ring->cur] = htole32(paddr >> 8); 3110 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3111 BUS_DMASYNC_PREWRITE); 3112 counter_u64_add(ic->ic_ierrors, 1); 3113 return; 3114 } 3115 3116 bus_dmamap_sync(ring->data_dmat, data->map, 3117 BUS_DMASYNC_PREREAD); 3118 3119 m = data->m; 3120 data->m = m1; 3121 /* Update RX descriptor. */ 3122 ring->desc[ring->cur] = htole32(paddr >> 8); 3123 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3124 BUS_DMASYNC_PREWRITE); 3125 3126 /* Finalize mbuf. */ 3127 m->m_data = head; 3128 m->m_pkthdr.len = m->m_len = len; 3129 3130 /* Grab a reference to the source node. */ 3131 wh = mtod(m, struct ieee80211_frame_min *); 3132 if (len >= sizeof(struct ieee80211_frame_min)) 3133 ni = ieee80211_find_rxnode(ic, wh); 3134 else 3135 ni = NULL; 3136 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3137 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3138 3139 rssi = ops->get_rssi(sc, stat); 3140 3141 if (ieee80211_radiotap_active(ic)) { 3142 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3143 uint32_t rate = le32toh(stat->rate); 3144 3145 tap->wr_flags = 0; 3146 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3147 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3148 tap->wr_dbm_antsignal = (int8_t)rssi; 3149 tap->wr_dbm_antnoise = (int8_t)nf; 3150 tap->wr_tsft = stat->tstamp; 3151 if (rate & IWN_RFLAG_MCS) { 3152 tap->wr_rate = rate & IWN_RFLAG_RATE_MCS; 3153 tap->wr_rate |= IEEE80211_RATE_MCS; 3154 } else 3155 tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE); 3156 } 3157 3158 /* 3159 * If it's a beacon and we're waiting, then do the 3160 * wakeup. This should unblock raw_xmit/start. 3161 */ 3162 if (sc->sc_beacon_wait) { 3163 uint8_t type, subtype; 3164 /* NB: Re-assign wh */ 3165 wh = mtod(m, struct ieee80211_frame_min *); 3166 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3167 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3168 /* 3169 * This assumes at this point we've received our own 3170 * beacon. 3171 */ 3172 DPRINTF(sc, IWN_DEBUG_TRACE, 3173 "%s: beacon_wait, type=%d, subtype=%d\n", 3174 __func__, type, subtype); 3175 if (type == IEEE80211_FC0_TYPE_MGT && 3176 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3177 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3178 "%s: waking things up\n", __func__); 3179 /* queue taskqueue to transmit! */ 3180 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3181 } 3182 } 3183 3184 IWN_UNLOCK(sc); 3185 NET_EPOCH_ENTER(et); 3186 3187 /* Send the frame to the 802.11 layer. */ 3188 if (ni != NULL) { 3189 if (ni->ni_flags & IEEE80211_NODE_HT) 3190 m->m_flags |= M_AMPDU; 3191 (void)ieee80211_input(ni, m, rssi - nf, nf); 3192 /* Node is no longer needed. */ 3193 ieee80211_free_node(ni); 3194 } else 3195 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3196 3197 NET_EPOCH_EXIT(et); 3198 IWN_LOCK(sc); 3199 3200 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3201 3202 } 3203 3204 static void 3205 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid, 3206 int idx, int success) 3207 { 3208 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3209 struct iwn_tx_data *data = &ring->data[idx]; 3210 struct iwn_node *wn; 3211 struct mbuf *m; 3212 struct ieee80211_node *ni; 3213 3214 KASSERT(data->ni != NULL, ("idx %d: no node", idx)); 3215 KASSERT(data->m != NULL, ("idx %d: no mbuf", idx)); 3216 3217 /* Unmap and free mbuf. */ 3218 bus_dmamap_sync(ring->data_dmat, data->map, 3219 BUS_DMASYNC_POSTWRITE); 3220 bus_dmamap_unload(ring->data_dmat, data->map); 3221 m = data->m, data->m = NULL; 3222 ni = data->ni, data->ni = NULL; 3223 wn = (void *)ni; 3224 3225 #if 0 3226 /* XXX causes significant performance degradation. */ 3227 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3228 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3229 txs->long_retries = data->long_retries - 1; 3230 #else 3231 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY; 3232 #endif 3233 txs->short_retries = wn->agg[tid].short_retries; 3234 if (success) 3235 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3236 else 3237 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3238 3239 wn->agg[tid].short_retries = 0; 3240 data->long_retries = 0; 3241 3242 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n", 3243 __func__, m, ni, idx, ring->qid); 3244 ieee80211_ratectl_tx_complete(ni, txs); 3245 ieee80211_tx_complete(ni, m, !success); 3246 } 3247 3248 /* Process an incoming Compressed BlockAck. */ 3249 static void 3250 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3251 { 3252 struct iwn_tx_ring *ring; 3253 struct iwn_tx_data *data; 3254 struct iwn_node *wn; 3255 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3256 struct ieee80211_tx_ampdu *tap; 3257 uint64_t bitmap; 3258 uint8_t tid; 3259 int i, qid, shift; 3260 int tx_ok = 0; 3261 3262 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3263 3264 qid = le16toh(ba->qid); 3265 tap = sc->qid2tap[qid]; 3266 ring = &sc->txq[qid]; 3267 tid = tap->txa_tid; 3268 wn = (void *)tap->txa_ni; 3269 3270 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n" 3271 "bitmap: ba %016jX wn %016jX, start %d\n", 3272 __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn), 3273 (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap, 3274 wn->agg[tid].startidx); 3275 3276 if (wn->agg[tid].bitmap == 0) 3277 return; 3278 3279 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3280 if (shift <= -64) 3281 shift += 0x100; 3282 3283 /* 3284 * Walk the bitmap and calculate how many successful attempts 3285 * are made. 3286 * 3287 * Yes, the rate control code doesn't know these are A-MPDU 3288 * subframes; due to that long_retries stats are not used here. 3289 */ 3290 bitmap = le64toh(ba->bitmap); 3291 if (shift >= 0) 3292 bitmap >>= shift; 3293 else 3294 bitmap <<= -shift; 3295 bitmap &= wn->agg[tid].bitmap; 3296 wn->agg[tid].bitmap = 0; 3297 3298 for (i = wn->agg[tid].startidx; 3299 bitmap; 3300 bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) { 3301 if ((bitmap & 1) == 0) 3302 continue; 3303 3304 data = &ring->data[i]; 3305 if (__predict_false(data->m == NULL)) { 3306 /* 3307 * There is no frame; skip this entry. 3308 * 3309 * NB: it is "ok" to have both 3310 * 'tx done' + 'compressed BA' replies for frame 3311 * with STATE_SCD_QUERY status. 3312 */ 3313 DPRINTF(sc, IWN_DEBUG_AMPDU, 3314 "%s: ring %d: no entry %d\n", __func__, qid, i); 3315 continue; 3316 } 3317 3318 tx_ok++; 3319 iwn_agg_tx_complete(sc, ring, tid, i, 1); 3320 } 3321 3322 ring->queued -= tx_ok; 3323 iwn_check_tx_ring(sc, qid); 3324 3325 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU, 3326 "->%s: end; %d ok\n",__func__, tx_ok); 3327 } 3328 3329 /* 3330 * Process a CALIBRATION_RESULT notification sent by the initialization 3331 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3332 */ 3333 static void 3334 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3335 { 3336 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3337 int len, idx = -1; 3338 3339 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3340 3341 /* Runtime firmware should not send such a notification. */ 3342 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3343 DPRINTF(sc, IWN_DEBUG_TRACE, 3344 "->%s received after calib done\n", __func__); 3345 return; 3346 } 3347 len = (le32toh(desc->len) & 0x3fff) - 4; 3348 3349 switch (calib->code) { 3350 case IWN5000_PHY_CALIB_DC: 3351 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3352 idx = 0; 3353 break; 3354 case IWN5000_PHY_CALIB_LO: 3355 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3356 idx = 1; 3357 break; 3358 case IWN5000_PHY_CALIB_TX_IQ: 3359 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3360 idx = 2; 3361 break; 3362 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3363 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3364 idx = 3; 3365 break; 3366 case IWN5000_PHY_CALIB_BASE_BAND: 3367 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3368 idx = 4; 3369 break; 3370 } 3371 if (idx == -1) /* Ignore other results. */ 3372 return; 3373 3374 /* Save calibration result. */ 3375 if (sc->calibcmd[idx].buf != NULL) 3376 free(sc->calibcmd[idx].buf, M_DEVBUF); 3377 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3378 if (sc->calibcmd[idx].buf == NULL) { 3379 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3380 "not enough memory for calibration result %d\n", 3381 calib->code); 3382 return; 3383 } 3384 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3385 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3386 sc->calibcmd[idx].len = len; 3387 memcpy(sc->calibcmd[idx].buf, calib, len); 3388 } 3389 3390 static void 3391 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3392 struct iwn_stats *stats, int len) 3393 { 3394 struct iwn_stats_bt *stats_bt; 3395 struct iwn_stats *lstats; 3396 3397 /* 3398 * First - check whether the length is the bluetooth or normal. 3399 * 3400 * If it's normal - just copy it and bump out. 3401 * Otherwise we have to convert things. 3402 */ 3403 3404 if (len == sizeof(struct iwn_stats) + 4) { 3405 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3406 sc->last_stat_valid = 1; 3407 return; 3408 } 3409 3410 /* 3411 * If it's not the bluetooth size - log, then just copy. 3412 */ 3413 if (len != sizeof(struct iwn_stats_bt) + 4) { 3414 DPRINTF(sc, IWN_DEBUG_STATS, 3415 "%s: size of rx statistics (%d) not an expected size!\n", 3416 __func__, 3417 len); 3418 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3419 sc->last_stat_valid = 1; 3420 return; 3421 } 3422 3423 /* 3424 * Ok. Time to copy. 3425 */ 3426 stats_bt = (struct iwn_stats_bt *) stats; 3427 lstats = &sc->last_stat; 3428 3429 /* flags */ 3430 lstats->flags = stats_bt->flags; 3431 /* rx_bt */ 3432 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3433 sizeof(struct iwn_rx_phy_stats)); 3434 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3435 sizeof(struct iwn_rx_phy_stats)); 3436 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3437 sizeof(struct iwn_rx_general_stats)); 3438 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3439 sizeof(struct iwn_rx_ht_phy_stats)); 3440 /* tx */ 3441 memcpy(&lstats->tx, &stats_bt->tx, 3442 sizeof(struct iwn_tx_stats)); 3443 /* general */ 3444 memcpy(&lstats->general, &stats_bt->general, 3445 sizeof(struct iwn_general_stats)); 3446 3447 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3448 sc->last_stat_valid = 1; 3449 } 3450 3451 /* 3452 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3453 * The latter is sent by the firmware after each received beacon. 3454 */ 3455 static void 3456 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3457 { 3458 struct iwn_ops *ops = &sc->ops; 3459 struct ieee80211com *ic = &sc->sc_ic; 3460 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3461 struct iwn_calib_state *calib = &sc->calib; 3462 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3463 struct iwn_stats *lstats; 3464 int temp; 3465 3466 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3467 3468 /* Ignore statistics received during a scan. */ 3469 if (vap->iv_state != IEEE80211_S_RUN || 3470 (ic->ic_flags & IEEE80211_F_SCAN)){ 3471 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3472 __func__); 3473 return; 3474 } 3475 3476 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3477 "%s: received statistics, cmd %d, len %d\n", 3478 __func__, desc->type, le16toh(desc->len)); 3479 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3480 3481 /* 3482 * Collect/track general statistics for reporting. 3483 * 3484 * This takes care of ensuring that the bluetooth sized message 3485 * will be correctly converted to the legacy sized message. 3486 */ 3487 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3488 3489 /* 3490 * And now, let's take a reference of it to use! 3491 */ 3492 lstats = &sc->last_stat; 3493 3494 /* Test if temperature has changed. */ 3495 if (lstats->general.temp != sc->rawtemp) { 3496 /* Convert "raw" temperature to degC. */ 3497 sc->rawtemp = stats->general.temp; 3498 temp = ops->get_temperature(sc); 3499 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3500 __func__, temp); 3501 3502 /* Update TX power if need be (4965AGN only). */ 3503 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3504 iwn4965_power_calibration(sc, temp); 3505 } 3506 3507 if (desc->type != IWN_BEACON_STATISTICS) 3508 return; /* Reply to a statistics request. */ 3509 3510 sc->noise = iwn_get_noise(&lstats->rx.general); 3511 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3512 3513 /* Test that RSSI and noise are present in stats report. */ 3514 if (le32toh(lstats->rx.general.flags) != 1) { 3515 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3516 "received statistics without RSSI"); 3517 return; 3518 } 3519 3520 if (calib->state == IWN_CALIB_STATE_ASSOC) 3521 iwn_collect_noise(sc, &lstats->rx.general); 3522 else if (calib->state == IWN_CALIB_STATE_RUN) { 3523 iwn_tune_sensitivity(sc, &lstats->rx); 3524 /* 3525 * XXX TODO: Only run the RX recovery if we're associated! 3526 */ 3527 iwn_check_rx_recovery(sc, lstats); 3528 iwn_save_stats_counters(sc, lstats); 3529 } 3530 3531 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3532 } 3533 3534 /* 3535 * Save the relevant statistic counters for the next calibration 3536 * pass. 3537 */ 3538 static void 3539 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3540 { 3541 struct iwn_calib_state *calib = &sc->calib; 3542 3543 /* Save counters values for next call. */ 3544 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3545 calib->fa_cck = le32toh(rs->rx.cck.fa); 3546 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3547 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3548 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3549 3550 /* Last time we received these tick values */ 3551 sc->last_calib_ticks = ticks; 3552 } 3553 3554 /* 3555 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3556 * and 5000 adapters have different incompatible TX status formats. 3557 */ 3558 static void 3559 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3560 struct iwn_rx_data *data) 3561 { 3562 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3563 int qid = desc->qid & IWN_RX_DESC_QID_MSK; 3564 3565 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3566 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3567 __func__, desc->qid, desc->idx, 3568 stat->rtsfailcnt, 3569 stat->ackfailcnt, 3570 stat->btkillcnt, 3571 stat->rate, le16toh(stat->duration), 3572 le32toh(stat->status)); 3573 3574 if (qid >= sc->firstaggqueue && stat->nframes != 1) { 3575 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, 3576 &stat->status); 3577 } else { 3578 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3579 le32toh(stat->status) & 0xff); 3580 } 3581 } 3582 3583 static void 3584 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3585 struct iwn_rx_data *data) 3586 { 3587 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3588 int qid = desc->qid & IWN_RX_DESC_QID_MSK; 3589 3590 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3591 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3592 __func__, desc->qid, desc->idx, 3593 stat->rtsfailcnt, 3594 stat->ackfailcnt, 3595 stat->btkillcnt, 3596 stat->rate, le16toh(stat->duration), 3597 le32toh(stat->status)); 3598 3599 #ifdef notyet 3600 /* Reset TX scheduler slot. */ 3601 iwn5000_reset_sched(sc, qid, desc->idx); 3602 #endif 3603 3604 if (qid >= sc->firstaggqueue && stat->nframes != 1) { 3605 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, 3606 &stat->status); 3607 } else { 3608 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3609 le16toh(stat->status) & 0xff); 3610 } 3611 } 3612 3613 static void 3614 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring) 3615 { 3616 int i; 3617 3618 for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) { 3619 struct iwn_tx_data *data = &ring->data[i]; 3620 3621 if (data->m != NULL) 3622 break; 3623 3624 data->remapped = 0; 3625 } 3626 3627 ring->read = i; 3628 } 3629 3630 /* 3631 * Adapter-independent backend for TX_DONE firmware notifications. 3632 */ 3633 static void 3634 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt, 3635 int ackfailcnt, uint8_t status) 3636 { 3637 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3638 struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK]; 3639 struct iwn_tx_data *data = &ring->data[desc->idx]; 3640 struct mbuf *m; 3641 struct ieee80211_node *ni; 3642 3643 if (__predict_false(data->m == NULL && 3644 ring->qid >= sc->firstaggqueue)) { 3645 /* 3646 * There is no frame; skip this entry. 3647 */ 3648 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n", 3649 __func__, ring->qid, desc->idx); 3650 return; 3651 } 3652 3653 KASSERT(data->ni != NULL, ("no node")); 3654 KASSERT(data->m != NULL, ("no mbuf")); 3655 3656 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3657 3658 /* Unmap and free mbuf. */ 3659 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3660 bus_dmamap_unload(ring->data_dmat, data->map); 3661 m = data->m, data->m = NULL; 3662 ni = data->ni, data->ni = NULL; 3663 3664 data->long_retries = 0; 3665 3666 if (ring->qid >= sc->firstaggqueue) 3667 iwn_adj_ampdu_ptr(sc, ring); 3668 3669 /* 3670 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64 3671 * (aggregation queues only). 3672 */ 3673 3674 ring->queued--; 3675 iwn_check_tx_ring(sc, ring->qid); 3676 3677 /* 3678 * Update rate control statistics for the node. 3679 */ 3680 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3681 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3682 txs->short_retries = rtsfailcnt; 3683 txs->long_retries = ackfailcnt; 3684 if (!(status & IWN_TX_FAIL)) 3685 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3686 else { 3687 switch (status) { 3688 case IWN_TX_FAIL_SHORT_LIMIT: 3689 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 3690 break; 3691 case IWN_TX_FAIL_LONG_LIMIT: 3692 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 3693 break; 3694 case IWN_TX_STATUS_FAIL_LIFE_EXPIRE: 3695 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 3696 break; 3697 default: 3698 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3699 break; 3700 } 3701 } 3702 ieee80211_ratectl_tx_complete(ni, txs); 3703 3704 /* 3705 * Channels marked for "radar" require traffic to be received 3706 * to unlock before we can transmit. Until traffic is seen 3707 * any attempt to transmit is returned immediately with status 3708 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3709 * happen on first authenticate after scanning. To workaround 3710 * this we ignore a failure of this sort in AUTH state so the 3711 * 802.11 layer will fall back to using a timeout to wait for 3712 * the AUTH reply. This allows the firmware time to see 3713 * traffic so a subsequent retry of AUTH succeeds. It's 3714 * unclear why the firmware does not maintain state for 3715 * channels recently visited as this would allow immediate 3716 * use of the channel after a scan (where we see traffic). 3717 */ 3718 if (status == IWN_TX_FAIL_TX_LOCKED && 3719 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3720 ieee80211_tx_complete(ni, m, 0); 3721 else 3722 ieee80211_tx_complete(ni, m, 3723 (status & IWN_TX_FAIL) != 0); 3724 3725 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3726 } 3727 3728 /* 3729 * Process a "command done" firmware notification. This is where we wakeup 3730 * processes waiting for a synchronous command completion. 3731 */ 3732 static void 3733 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3734 { 3735 struct iwn_tx_ring *ring; 3736 struct iwn_tx_data *data; 3737 int cmd_queue_num; 3738 3739 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3740 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3741 else 3742 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3743 3744 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3745 return; /* Not a command ack. */ 3746 3747 ring = &sc->txq[cmd_queue_num]; 3748 data = &ring->data[desc->idx]; 3749 3750 /* If the command was mapped in an mbuf, free it. */ 3751 if (data->m != NULL) { 3752 bus_dmamap_sync(ring->data_dmat, data->map, 3753 BUS_DMASYNC_POSTWRITE); 3754 bus_dmamap_unload(ring->data_dmat, data->map); 3755 m_freem(data->m); 3756 data->m = NULL; 3757 } 3758 wakeup(&ring->desc[desc->idx]); 3759 } 3760 3761 static int 3762 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx) 3763 { 3764 int bit, shift; 3765 3766 bit = idx - start; 3767 shift = 0; 3768 if (bit >= 64) { 3769 shift = 0x100 - bit; 3770 bit = 0; 3771 } else if (bit <= -64) 3772 bit = 0x100 + bit; 3773 else if (bit < 0) { 3774 shift = -bit; 3775 bit = 0; 3776 } 3777 3778 if (bit - shift >= 64) 3779 return (0); 3780 3781 return ((bitmap & (1ULL << (bit - shift))) != 0); 3782 } 3783 3784 /* 3785 * Firmware bug workaround: in case if 'retries' counter 3786 * overflows 'seqno' field will be incremented: 3787 * status|sequence|status|sequence|status|sequence 3788 * 0000 0A48 0001 0A49 0000 0A6A 3789 * 1000 0A48 1000 0A49 1000 0A6A 3790 * 2000 0A48 2000 0A49 2000 0A6A 3791 * ... 3792 * E000 0A48 E000 0A49 E000 0A6A 3793 * F000 0A48 F000 0A49 F000 0A6A 3794 * 0000 0A49 0000 0A49 0000 0A6B 3795 * 1000 0A49 1000 0A49 1000 0A6B 3796 * ... 3797 * D000 0A49 D000 0A49 D000 0A6B 3798 * E000 0A49 E001 0A49 E000 0A6B 3799 * F000 0A49 F001 0A49 F000 0A6B 3800 * 0000 0A4A 0000 0A4B 0000 0A6A 3801 * 1000 0A4A 1000 0A4B 1000 0A6A 3802 * ... 3803 * 3804 * Odd 'seqno' numbers are incremened by 2 every 2 overflows. 3805 * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0). 3806 * Not checked with nretries >= 64. 3807 * 3808 */ 3809 static int 3810 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring, 3811 uint64_t bitmap, int start, int idx) 3812 { 3813 struct ieee80211com *ic = &sc->sc_ic; 3814 struct iwn_tx_data *data; 3815 int diff, min_retries, max_retries, new_idx, loop_end; 3816 3817 new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG; 3818 if (new_idx < 0) 3819 new_idx += IWN_TX_RING_COUNT; 3820 3821 /* 3822 * Corner case: check if retry count is not too big; 3823 * reset device otherwise. 3824 */ 3825 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) { 3826 data = &ring->data[new_idx]; 3827 if (data->long_retries > IWN_LONG_RETRY_LIMIT) { 3828 device_printf(sc->sc_dev, 3829 "%s: retry count (%d) for idx %d/%d overflow, " 3830 "resetting...\n", __func__, data->long_retries, 3831 ring->qid, new_idx); 3832 ieee80211_restart_all(ic); 3833 return (-1); 3834 } 3835 } 3836 3837 /* Correct index if needed. */ 3838 loop_end = idx; 3839 do { 3840 data = &ring->data[new_idx]; 3841 diff = idx - new_idx; 3842 if (diff < 0) 3843 diff += IWN_TX_RING_COUNT; 3844 3845 min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff; 3846 if ((new_idx % 2) == 0) 3847 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1); 3848 else 3849 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2); 3850 3851 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) && 3852 ((data->long_retries >= min_retries && 3853 data->long_retries < max_retries) || 3854 (diff == 1 && 3855 (new_idx & 0x03) == 0x02 && 3856 data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) { 3857 DPRINTF(sc, IWN_DEBUG_AMPDU, 3858 "%s: correcting index %d -> %d in queue %d" 3859 " (retries %d)\n", __func__, idx, new_idx, 3860 ring->qid, data->long_retries); 3861 return (new_idx); 3862 } 3863 3864 new_idx = (new_idx + 1) % IWN_TX_RING_COUNT; 3865 } while (new_idx != loop_end); 3866 3867 return (idx); 3868 } 3869 3870 static void 3871 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt, 3872 void *stat) 3873 { 3874 struct iwn_tx_ring *ring = &sc->txq[qid]; 3875 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; 3876 struct iwn_node *wn = (void *)tap->txa_ni; 3877 struct iwn_tx_data *data; 3878 uint64_t bitmap = 0; 3879 uint16_t *aggstatus = stat; 3880 uint8_t tid = tap->txa_tid; 3881 int bit, i, idx, shift, start, tx_err; 3882 3883 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3884 3885 start = le16toh(*(aggstatus + nframes * 2)) & 0xff; 3886 3887 for (i = 0; i < nframes; i++) { 3888 uint16_t status = le16toh(aggstatus[i * 2]); 3889 3890 if (status & IWN_AGG_TX_STATE_IGNORE_MASK) 3891 continue; 3892 3893 idx = le16toh(aggstatus[i * 2 + 1]) & 0xff; 3894 data = &ring->data[idx]; 3895 if (data->remapped) { 3896 idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx); 3897 if (idx == -1) { 3898 /* skip error (device will be restarted anyway). */ 3899 continue; 3900 } 3901 3902 /* Index may have changed. */ 3903 data = &ring->data[idx]; 3904 } 3905 3906 /* 3907 * XXX Sometimes (rarely) some frames are excluded from events. 3908 * XXX Due to that long_retries counter may be wrong. 3909 */ 3910 data->long_retries &= ~0x0f; 3911 data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1; 3912 3913 if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) { 3914 int diff, wrong_idx; 3915 3916 diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW; 3917 wrong_idx = (idx + diff) % IWN_TX_RING_COUNT; 3918 3919 /* 3920 * Mark the entry so the above code will check it 3921 * next time. 3922 */ 3923 ring->data[wrong_idx].remapped = 1; 3924 } 3925 3926 if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) { 3927 /* 3928 * NB: count retries but postpone - it was not 3929 * transmitted. 3930 */ 3931 continue; 3932 } 3933 3934 bit = idx - start; 3935 shift = 0; 3936 if (bit >= 64) { 3937 shift = 0x100 - bit; 3938 bit = 0; 3939 } else if (bit <= -64) 3940 bit = 0x100 + bit; 3941 else if (bit < 0) { 3942 shift = -bit; 3943 bit = 0; 3944 } 3945 bitmap = bitmap << shift; 3946 bitmap |= 1ULL << bit; 3947 } 3948 wn->agg[tid].startidx = start; 3949 wn->agg[tid].bitmap = bitmap; 3950 wn->agg[tid].short_retries = rtsfailcnt; 3951 3952 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n", 3953 __func__, nframes, start, (uintmax_t)bitmap); 3954 3955 i = ring->read; 3956 3957 for (tx_err = 0; 3958 i != wn->agg[tid].startidx; 3959 i = (i + 1) % IWN_TX_RING_COUNT) { 3960 data = &ring->data[i]; 3961 data->remapped = 0; 3962 if (data->m == NULL) 3963 continue; 3964 3965 tx_err++; 3966 iwn_agg_tx_complete(sc, ring, tid, i, 0); 3967 } 3968 3969 ring->read = wn->agg[tid].startidx; 3970 ring->queued -= tx_err; 3971 3972 iwn_check_tx_ring(sc, qid); 3973 3974 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3975 } 3976 3977 /* 3978 * Process an INT_FH_RX or INT_SW_RX interrupt. 3979 */ 3980 static void 3981 iwn_notif_intr(struct iwn_softc *sc) 3982 { 3983 struct iwn_ops *ops = &sc->ops; 3984 struct ieee80211com *ic = &sc->sc_ic; 3985 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3986 uint16_t hw; 3987 int is_stopped; 3988 3989 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3990 BUS_DMASYNC_POSTREAD); 3991 3992 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3993 while (sc->rxq.cur != hw) { 3994 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3995 struct iwn_rx_desc *desc; 3996 3997 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3998 BUS_DMASYNC_POSTREAD); 3999 desc = mtod(data->m, struct iwn_rx_desc *); 4000 4001 DPRINTF(sc, IWN_DEBUG_RECV, 4002 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 4003 __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK, 4004 desc->idx, desc->flags, desc->type, 4005 iwn_intr_str(desc->type), le16toh(desc->len)); 4006 4007 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 4008 iwn_cmd_done(sc, desc); 4009 4010 switch (desc->type) { 4011 case IWN_RX_PHY: 4012 iwn_rx_phy(sc, desc); 4013 break; 4014 4015 case IWN_RX_DONE: /* 4965AGN only. */ 4016 case IWN_MPDU_RX_DONE: 4017 /* An 802.11 frame has been received. */ 4018 iwn_rx_done(sc, desc, data); 4019 4020 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; 4021 if (__predict_false(is_stopped)) 4022 return; 4023 4024 break; 4025 4026 case IWN_RX_COMPRESSED_BA: 4027 /* A Compressed BlockAck has been received. */ 4028 iwn_rx_compressed_ba(sc, desc); 4029 break; 4030 4031 case IWN_TX_DONE: 4032 /* An 802.11 frame has been transmitted. */ 4033 ops->tx_done(sc, desc, data); 4034 break; 4035 4036 case IWN_RX_STATISTICS: 4037 case IWN_BEACON_STATISTICS: 4038 iwn_rx_statistics(sc, desc); 4039 break; 4040 4041 case IWN_BEACON_MISSED: 4042 { 4043 struct iwn_beacon_missed *miss = 4044 (struct iwn_beacon_missed *)(desc + 1); 4045 int misses; 4046 4047 misses = le32toh(miss->consecutive); 4048 4049 DPRINTF(sc, IWN_DEBUG_STATE, 4050 "%s: beacons missed %d/%d\n", __func__, 4051 misses, le32toh(miss->total)); 4052 /* 4053 * If more than 5 consecutive beacons are missed, 4054 * reinitialize the sensitivity state machine. 4055 */ 4056 if (vap->iv_state == IEEE80211_S_RUN && 4057 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 4058 if (misses > 5) 4059 (void)iwn_init_sensitivity(sc); 4060 if (misses >= vap->iv_bmissthreshold) { 4061 IWN_UNLOCK(sc); 4062 ieee80211_beacon_miss(ic); 4063 IWN_LOCK(sc); 4064 4065 is_stopped = (sc->sc_flags & 4066 IWN_FLAG_RUNNING) == 0; 4067 if (__predict_false(is_stopped)) 4068 return; 4069 } 4070 } 4071 break; 4072 } 4073 case IWN_UC_READY: 4074 { 4075 struct iwn_ucode_info *uc = 4076 (struct iwn_ucode_info *)(desc + 1); 4077 4078 /* The microcontroller is ready. */ 4079 DPRINTF(sc, IWN_DEBUG_RESET, 4080 "microcode alive notification version=%d.%d " 4081 "subtype=%x alive=%x\n", uc->major, uc->minor, 4082 uc->subtype, le32toh(uc->valid)); 4083 4084 if (le32toh(uc->valid) != 1) { 4085 device_printf(sc->sc_dev, 4086 "microcontroller initialization failed"); 4087 break; 4088 } 4089 if (uc->subtype == IWN_UCODE_INIT) { 4090 /* Save microcontroller report. */ 4091 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 4092 } 4093 /* Save the address of the error log in SRAM. */ 4094 sc->errptr = le32toh(uc->errptr); 4095 break; 4096 } 4097 #ifdef IWN_DEBUG 4098 case IWN_STATE_CHANGED: 4099 { 4100 /* 4101 * State change allows hardware switch change to be 4102 * noted. However, we handle this in iwn_intr as we 4103 * get both the enable/disble intr. 4104 */ 4105 uint32_t *status = (uint32_t *)(desc + 1); 4106 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 4107 "state changed to %x\n", 4108 le32toh(*status)); 4109 break; 4110 } 4111 case IWN_START_SCAN: 4112 { 4113 struct iwn_start_scan *scan = 4114 (struct iwn_start_scan *)(desc + 1); 4115 DPRINTF(sc, IWN_DEBUG_ANY, 4116 "%s: scanning channel %d status %x\n", 4117 __func__, scan->chan, le32toh(scan->status)); 4118 break; 4119 } 4120 #endif 4121 case IWN_STOP_SCAN: 4122 { 4123 #ifdef IWN_DEBUG 4124 struct iwn_stop_scan *scan = 4125 (struct iwn_stop_scan *)(desc + 1); 4126 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 4127 "scan finished nchan=%d status=%d chan=%d\n", 4128 scan->nchan, scan->status, scan->chan); 4129 #endif 4130 sc->sc_is_scanning = 0; 4131 callout_stop(&sc->scan_timeout); 4132 IWN_UNLOCK(sc); 4133 ieee80211_scan_next(vap); 4134 IWN_LOCK(sc); 4135 4136 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; 4137 if (__predict_false(is_stopped)) 4138 return; 4139 4140 break; 4141 } 4142 case IWN5000_CALIBRATION_RESULT: 4143 iwn5000_rx_calib_results(sc, desc); 4144 break; 4145 4146 case IWN5000_CALIBRATION_DONE: 4147 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 4148 wakeup(sc); 4149 break; 4150 } 4151 4152 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 4153 } 4154 4155 /* Tell the firmware what we have processed. */ 4156 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 4157 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 4158 } 4159 4160 /* 4161 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 4162 * from power-down sleep mode. 4163 */ 4164 static void 4165 iwn_wakeup_intr(struct iwn_softc *sc) 4166 { 4167 int qid; 4168 4169 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 4170 __func__); 4171 4172 /* Wakeup RX and TX rings. */ 4173 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 4174 for (qid = 0; qid < sc->ntxqs; qid++) { 4175 struct iwn_tx_ring *ring = &sc->txq[qid]; 4176 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 4177 } 4178 } 4179 4180 static void 4181 iwn_rftoggle_task(void *arg, int npending) 4182 { 4183 struct iwn_softc *sc = arg; 4184 struct ieee80211com *ic = &sc->sc_ic; 4185 uint32_t tmp; 4186 4187 IWN_LOCK(sc); 4188 tmp = IWN_READ(sc, IWN_GP_CNTRL); 4189 IWN_UNLOCK(sc); 4190 4191 device_printf(sc->sc_dev, "RF switch: radio %s\n", 4192 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 4193 if (!(tmp & IWN_GP_CNTRL_RFKILL)) { 4194 ieee80211_suspend_all(ic); 4195 4196 /* Enable interrupts to get RF toggle notification. */ 4197 IWN_LOCK(sc); 4198 IWN_WRITE(sc, IWN_INT, 0xffffffff); 4199 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4200 IWN_UNLOCK(sc); 4201 } else 4202 ieee80211_resume_all(ic); 4203 } 4204 4205 /* 4206 * Dump the error log of the firmware when a firmware panic occurs. Although 4207 * we can't debug the firmware because it is neither open source nor free, it 4208 * can help us to identify certain classes of problems. 4209 */ 4210 static void 4211 iwn_fatal_intr(struct iwn_softc *sc) 4212 { 4213 struct iwn_fw_dump dump; 4214 int i; 4215 4216 IWN_LOCK_ASSERT(sc); 4217 4218 /* Force a complete recalibration on next init. */ 4219 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4220 4221 /* Check that the error log address is valid. */ 4222 if (sc->errptr < IWN_FW_DATA_BASE || 4223 sc->errptr + sizeof (dump) > 4224 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4225 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4226 sc->errptr); 4227 return; 4228 } 4229 if (iwn_nic_lock(sc) != 0) { 4230 printf("%s: could not read firmware error log\n", __func__); 4231 return; 4232 } 4233 /* Read firmware error log from SRAM. */ 4234 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4235 sizeof (dump) / sizeof (uint32_t)); 4236 iwn_nic_unlock(sc); 4237 4238 if (dump.valid == 0) { 4239 printf("%s: firmware error log is empty\n", __func__); 4240 return; 4241 } 4242 printf("firmware error log:\n"); 4243 printf(" error type = \"%s\" (0x%08X)\n", 4244 (dump.id < nitems(iwn_fw_errmsg)) ? 4245 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4246 dump.id); 4247 printf(" program counter = 0x%08X\n", dump.pc); 4248 printf(" source line = 0x%08X\n", dump.src_line); 4249 printf(" error data = 0x%08X%08X\n", 4250 dump.error_data[0], dump.error_data[1]); 4251 printf(" branch link = 0x%08X%08X\n", 4252 dump.branch_link[0], dump.branch_link[1]); 4253 printf(" interrupt link = 0x%08X%08X\n", 4254 dump.interrupt_link[0], dump.interrupt_link[1]); 4255 printf(" time = %u\n", dump.time[0]); 4256 4257 /* Dump driver status (TX and RX rings) while we're here. */ 4258 printf("driver status:\n"); 4259 for (i = 0; i < sc->ntxqs; i++) { 4260 struct iwn_tx_ring *ring = &sc->txq[i]; 4261 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4262 i, ring->qid, ring->cur, ring->queued); 4263 } 4264 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4265 } 4266 4267 static void 4268 iwn_intr(void *arg) 4269 { 4270 struct iwn_softc *sc = arg; 4271 uint32_t r1, r2, tmp; 4272 4273 IWN_LOCK(sc); 4274 4275 /* Disable interrupts. */ 4276 IWN_WRITE(sc, IWN_INT_MASK, 0); 4277 4278 /* Read interrupts from ICT (fast) or from registers (slow). */ 4279 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4280 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 4281 BUS_DMASYNC_POSTREAD); 4282 tmp = 0; 4283 while (sc->ict[sc->ict_cur] != 0) { 4284 tmp |= sc->ict[sc->ict_cur]; 4285 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4286 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4287 } 4288 tmp = le32toh(tmp); 4289 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4290 tmp = 0; 4291 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4292 tmp |= 0x8000; 4293 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4294 r2 = 0; /* Unused. */ 4295 } else { 4296 r1 = IWN_READ(sc, IWN_INT); 4297 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4298 IWN_UNLOCK(sc); 4299 return; /* Hardware gone! */ 4300 } 4301 r2 = IWN_READ(sc, IWN_FH_INT); 4302 } 4303 4304 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4305 , r1, r2); 4306 4307 if (r1 == 0 && r2 == 0) 4308 goto done; /* Interrupt not for us. */ 4309 4310 /* Acknowledge interrupts. */ 4311 IWN_WRITE(sc, IWN_INT, r1); 4312 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4313 IWN_WRITE(sc, IWN_FH_INT, r2); 4314 4315 if (r1 & IWN_INT_RF_TOGGLED) { 4316 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 4317 goto done; 4318 } 4319 if (r1 & IWN_INT_CT_REACHED) { 4320 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4321 __func__); 4322 } 4323 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4324 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4325 __func__); 4326 #ifdef IWN_DEBUG 4327 iwn_debug_register(sc); 4328 #endif 4329 /* Dump firmware error log and stop. */ 4330 iwn_fatal_intr(sc); 4331 4332 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4333 goto done; 4334 } 4335 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4336 (r2 & IWN_FH_INT_RX)) { 4337 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4338 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4339 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4340 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4341 IWN_INT_PERIODIC_DIS); 4342 iwn_notif_intr(sc); 4343 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4344 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4345 IWN_INT_PERIODIC_ENA); 4346 } 4347 } else 4348 iwn_notif_intr(sc); 4349 } 4350 4351 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4352 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4353 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4354 wakeup(sc); /* FH DMA transfer completed. */ 4355 } 4356 4357 if (r1 & IWN_INT_ALIVE) 4358 wakeup(sc); /* Firmware is alive. */ 4359 4360 if (r1 & IWN_INT_WAKEUP) 4361 iwn_wakeup_intr(sc); 4362 4363 done: 4364 /* Re-enable interrupts. */ 4365 if (sc->sc_flags & IWN_FLAG_RUNNING) 4366 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4367 4368 IWN_UNLOCK(sc); 4369 } 4370 4371 /* 4372 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4373 * 5000 adapters use a slightly different format). 4374 */ 4375 static void 4376 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4377 uint16_t len) 4378 { 4379 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4380 4381 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4382 4383 *w = htole16(len + 8); 4384 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4385 BUS_DMASYNC_PREWRITE); 4386 if (idx < IWN_SCHED_WINSZ) { 4387 *(w + IWN_TX_RING_COUNT) = *w; 4388 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4389 BUS_DMASYNC_PREWRITE); 4390 } 4391 } 4392 4393 static void 4394 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4395 uint16_t len) 4396 { 4397 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4398 4399 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4400 4401 *w = htole16(id << 12 | (len + 8)); 4402 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4403 BUS_DMASYNC_PREWRITE); 4404 if (idx < IWN_SCHED_WINSZ) { 4405 *(w + IWN_TX_RING_COUNT) = *w; 4406 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4407 BUS_DMASYNC_PREWRITE); 4408 } 4409 } 4410 4411 #ifdef notyet 4412 static void 4413 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4414 { 4415 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4416 4417 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4418 4419 *w = (*w & htole16(0xf000)) | htole16(1); 4420 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4421 BUS_DMASYNC_PREWRITE); 4422 if (idx < IWN_SCHED_WINSZ) { 4423 *(w + IWN_TX_RING_COUNT) = *w; 4424 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4425 BUS_DMASYNC_PREWRITE); 4426 } 4427 } 4428 #endif 4429 4430 /* 4431 * Check whether OFDM 11g protection will be enabled for the given rate. 4432 * 4433 * The original driver code only enabled protection for OFDM rates. 4434 * It didn't check to see whether it was operating in 11a or 11bg mode. 4435 */ 4436 static int 4437 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4438 struct ieee80211vap *vap, uint8_t rate) 4439 { 4440 struct ieee80211com *ic = vap->iv_ic; 4441 4442 /* 4443 * Not in 2GHz mode? Then there's no need to enable OFDM 4444 * 11bg protection. 4445 */ 4446 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4447 return (0); 4448 } 4449 4450 /* 4451 * 11bg protection not enabled? Then don't use it. 4452 */ 4453 if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) 4454 return (0); 4455 4456 /* 4457 * If it's an 11n rate - no protection. 4458 * We'll do it via a specific 11n check. 4459 */ 4460 if (rate & IEEE80211_RATE_MCS) { 4461 return (0); 4462 } 4463 4464 /* 4465 * Do a rate table lookup. If the PHY is CCK, 4466 * don't do protection. 4467 */ 4468 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4469 return (0); 4470 4471 /* 4472 * Yup, enable protection. 4473 */ 4474 return (1); 4475 } 4476 4477 /* 4478 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4479 * the link quality table that reflects this particular entry. 4480 */ 4481 static int 4482 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4483 uint8_t rate) 4484 { 4485 struct ieee80211_rateset *rs; 4486 int is_11n; 4487 int nr; 4488 int i; 4489 uint8_t cmp_rate; 4490 4491 /* 4492 * Figure out if we're using 11n or not here. 4493 */ 4494 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4495 is_11n = 1; 4496 else 4497 is_11n = 0; 4498 4499 /* 4500 * Use the correct rate table. 4501 */ 4502 if (is_11n) { 4503 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4504 nr = ni->ni_htrates.rs_nrates; 4505 } else { 4506 rs = &ni->ni_rates; 4507 nr = rs->rs_nrates; 4508 } 4509 4510 /* 4511 * Find the relevant link quality entry in the table. 4512 */ 4513 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4514 /* 4515 * The link quality table index starts at 0 == highest 4516 * rate, so we walk the rate table backwards. 4517 */ 4518 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4519 if (rate & IEEE80211_RATE_MCS) 4520 cmp_rate |= IEEE80211_RATE_MCS; 4521 4522 #if 0 4523 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4524 __func__, 4525 i, 4526 nr, 4527 rate, 4528 cmp_rate); 4529 #endif 4530 4531 if (cmp_rate == rate) 4532 return (i); 4533 } 4534 4535 /* Failed? Start at the end */ 4536 return (IWN_MAX_TX_RETRIES - 1); 4537 } 4538 4539 static int 4540 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4541 { 4542 const struct ieee80211_txparam *tp = ni->ni_txparms; 4543 struct ieee80211vap *vap = ni->ni_vap; 4544 struct ieee80211com *ic = ni->ni_ic; 4545 struct iwn_node *wn = (void *)ni; 4546 struct iwn_tx_ring *ring; 4547 struct iwn_tx_cmd *cmd; 4548 struct iwn_cmd_data *tx; 4549 struct ieee80211_frame *wh; 4550 struct ieee80211_key *k = NULL; 4551 uint32_t flags; 4552 uint16_t qos; 4553 uint8_t tid, type; 4554 int ac, totlen, rate; 4555 4556 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4557 4558 IWN_LOCK_ASSERT(sc); 4559 4560 wh = mtod(m, struct ieee80211_frame *); 4561 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4562 4563 /* Select EDCA Access Category and TX ring for this frame. */ 4564 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4565 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4566 tid = qos & IEEE80211_QOS_TID; 4567 } else { 4568 qos = 0; 4569 tid = 0; 4570 } 4571 4572 /* Choose a TX rate index. */ 4573 if (type == IEEE80211_FC0_TYPE_MGT || 4574 type == IEEE80211_FC0_TYPE_CTL || 4575 (m->m_flags & M_EAPOL) != 0) 4576 rate = tp->mgmtrate; 4577 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4578 rate = tp->mcastrate; 4579 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4580 rate = tp->ucastrate; 4581 else { 4582 /* XXX pass pktlen */ 4583 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4584 rate = ni->ni_txrate; 4585 } 4586 4587 /* 4588 * XXX TODO: Group addressed frames aren't aggregated and must 4589 * go to the normal non-aggregation queue, and have a NONQOS TID 4590 * assigned from net80211. 4591 */ 4592 4593 ac = M_WME_GETAC(m); 4594 if (m->m_flags & M_AMPDU_MPDU) { 4595 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4596 4597 if (!IEEE80211_AMPDU_RUNNING(tap)) 4598 return (EINVAL); 4599 4600 ac = *(int *)tap->txa_private; 4601 } 4602 4603 /* Encrypt the frame if need be. */ 4604 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4605 /* Retrieve key for TX. */ 4606 k = ieee80211_crypto_encap(ni, m); 4607 if (k == NULL) { 4608 return ENOBUFS; 4609 } 4610 /* 802.11 header may have moved. */ 4611 wh = mtod(m, struct ieee80211_frame *); 4612 } 4613 totlen = m->m_pkthdr.len; 4614 4615 if (ieee80211_radiotap_active_vap(vap)) { 4616 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4617 4618 tap->wt_flags = 0; 4619 tap->wt_rate = rate; 4620 if (k != NULL) 4621 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4622 4623 ieee80211_radiotap_tx(vap, m); 4624 } 4625 4626 flags = 0; 4627 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4628 /* Unicast frame, check if an ACK is expected. */ 4629 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4630 IEEE80211_QOS_ACKPOLICY_NOACK) 4631 flags |= IWN_TX_NEED_ACK; 4632 } 4633 if ((wh->i_fc[0] & 4634 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4635 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4636 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4637 4638 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4639 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4640 4641 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4642 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4643 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4644 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4645 flags |= IWN_TX_NEED_RTS; 4646 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4647 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4648 flags |= IWN_TX_NEED_CTS; 4649 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4650 flags |= IWN_TX_NEED_RTS; 4651 } else if ((rate & IEEE80211_RATE_MCS) && 4652 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4653 flags |= IWN_TX_NEED_RTS; 4654 } 4655 4656 /* XXX HT protection? */ 4657 4658 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4659 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4660 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4661 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4662 flags |= IWN_TX_NEED_PROTECTION; 4663 } else 4664 flags |= IWN_TX_FULL_TXOP; 4665 } 4666 } 4667 4668 ring = &sc->txq[ac]; 4669 if (m->m_flags & M_AMPDU_MPDU) { 4670 uint16_t seqno = ni->ni_txseqs[tid]; 4671 4672 if (ring->queued > IWN_TX_RING_COUNT / 2 && 4673 (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) { 4674 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space " 4675 "(queued %d) left in %d queue!\n", 4676 __func__, ring->queued, ac); 4677 return (ENOBUFS); 4678 } 4679 4680 /* 4681 * Queue this frame to the hardware ring that we've 4682 * negotiated AMPDU TX on. 4683 * 4684 * Note that the sequence number must match the TX slot 4685 * being used! 4686 */ 4687 if ((seqno % 256) != ring->cur) { 4688 device_printf(sc->sc_dev, 4689 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4690 __func__, 4691 m, 4692 seqno, 4693 seqno % 256, 4694 ring->cur); 4695 4696 /* XXX until D9195 will not be committed */ 4697 ni->ni_txseqs[tid] &= ~0xff; 4698 ni->ni_txseqs[tid] += ring->cur; 4699 seqno = ni->ni_txseqs[tid]; 4700 } 4701 4702 *(uint16_t *)wh->i_seq = 4703 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4704 ni->ni_txseqs[tid]++; 4705 } 4706 4707 /* Prepare TX firmware command. */ 4708 cmd = &ring->cmd[ring->cur]; 4709 tx = (struct iwn_cmd_data *)cmd->data; 4710 4711 /* NB: No need to clear tx, all fields are reinitialized here. */ 4712 tx->scratch = 0; /* clear "scratch" area */ 4713 4714 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4715 type != IEEE80211_FC0_TYPE_DATA) 4716 tx->id = sc->broadcast_id; 4717 else 4718 tx->id = wn->id; 4719 4720 if (type == IEEE80211_FC0_TYPE_MGT) { 4721 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4722 4723 /* Tell HW to set timestamp in probe responses. */ 4724 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4725 flags |= IWN_TX_INSERT_TSTAMP; 4726 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4727 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4728 tx->timeout = htole16(3); 4729 else 4730 tx->timeout = htole16(2); 4731 } else 4732 tx->timeout = htole16(0); 4733 4734 if (tx->id == sc->broadcast_id) { 4735 /* Group or management frame. */ 4736 tx->linkq = 0; 4737 } else { 4738 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4739 flags |= IWN_TX_LINKQ; /* enable MRR */ 4740 } 4741 4742 tx->tid = tid; 4743 tx->rts_ntries = 60; 4744 tx->data_ntries = 15; 4745 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4746 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4747 tx->security = 0; 4748 tx->flags = htole32(flags); 4749 4750 return (iwn_tx_cmd(sc, m, ni, ring)); 4751 } 4752 4753 static int 4754 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4755 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4756 { 4757 struct ieee80211vap *vap = ni->ni_vap; 4758 struct iwn_tx_cmd *cmd; 4759 struct iwn_cmd_data *tx; 4760 struct ieee80211_frame *wh; 4761 struct iwn_tx_ring *ring; 4762 uint32_t flags; 4763 int ac, rate; 4764 uint8_t type; 4765 4766 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4767 4768 IWN_LOCK_ASSERT(sc); 4769 4770 wh = mtod(m, struct ieee80211_frame *); 4771 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4772 4773 ac = params->ibp_pri & 3; 4774 4775 /* Choose a TX rate. */ 4776 rate = params->ibp_rate0; 4777 4778 flags = 0; 4779 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4780 flags |= IWN_TX_NEED_ACK; 4781 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4782 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4783 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4784 flags &= ~IWN_TX_NEED_RTS; 4785 flags |= IWN_TX_NEED_PROTECTION; 4786 } else 4787 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4788 } 4789 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4790 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4791 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4792 flags &= ~IWN_TX_NEED_CTS; 4793 flags |= IWN_TX_NEED_PROTECTION; 4794 } else 4795 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4796 } 4797 4798 if (ieee80211_radiotap_active_vap(vap)) { 4799 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4800 4801 tap->wt_flags = 0; 4802 tap->wt_rate = rate; 4803 4804 ieee80211_radiotap_tx(vap, m); 4805 } 4806 4807 ring = &sc->txq[ac]; 4808 cmd = &ring->cmd[ring->cur]; 4809 4810 tx = (struct iwn_cmd_data *)cmd->data; 4811 /* NB: No need to clear tx, all fields are reinitialized here. */ 4812 tx->scratch = 0; /* clear "scratch" area */ 4813 4814 if (type == IEEE80211_FC0_TYPE_MGT) { 4815 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4816 4817 /* Tell HW to set timestamp in probe responses. */ 4818 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4819 flags |= IWN_TX_INSERT_TSTAMP; 4820 4821 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4822 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4823 tx->timeout = htole16(3); 4824 else 4825 tx->timeout = htole16(2); 4826 } else 4827 tx->timeout = htole16(0); 4828 4829 tx->tid = 0; 4830 tx->id = sc->broadcast_id; 4831 tx->rts_ntries = params->ibp_try1; 4832 tx->data_ntries = params->ibp_try0; 4833 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4834 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4835 tx->security = 0; 4836 tx->flags = htole32(flags); 4837 4838 /* Group or management frame. */ 4839 tx->linkq = 0; 4840 4841 return (iwn_tx_cmd(sc, m, ni, ring)); 4842 } 4843 4844 static int 4845 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 4846 struct iwn_tx_ring *ring) 4847 { 4848 struct iwn_ops *ops = &sc->ops; 4849 struct iwn_tx_cmd *cmd; 4850 struct iwn_cmd_data *tx; 4851 struct ieee80211_frame *wh; 4852 struct iwn_tx_desc *desc; 4853 struct iwn_tx_data *data; 4854 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4855 struct mbuf *m1; 4856 u_int hdrlen; 4857 int totlen, error, pad, nsegs = 0, i; 4858 4859 wh = mtod(m, struct ieee80211_frame *); 4860 hdrlen = ieee80211_anyhdrsize(wh); 4861 totlen = m->m_pkthdr.len; 4862 4863 desc = &ring->desc[ring->cur]; 4864 data = &ring->data[ring->cur]; 4865 4866 if (__predict_false(data->m != NULL || data->ni != NULL)) { 4867 device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d " 4868 "in queue %d is not NULL!\n", __func__, data->ni, data->m, 4869 ring->cur, ring->qid); 4870 return EIO; 4871 } 4872 4873 /* Prepare TX firmware command. */ 4874 cmd = &ring->cmd[ring->cur]; 4875 cmd->code = IWN_CMD_TX_DATA; 4876 cmd->flags = 0; 4877 cmd->qid = ring->qid; 4878 cmd->idx = ring->cur; 4879 4880 tx = (struct iwn_cmd_data *)cmd->data; 4881 tx->len = htole16(totlen); 4882 4883 /* Set physical address of "scratch area". */ 4884 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4885 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4886 if (hdrlen & 3) { 4887 /* First segment length must be a multiple of 4. */ 4888 tx->flags |= htole32(IWN_TX_NEED_PADDING); 4889 pad = 4 - (hdrlen & 3); 4890 } else 4891 pad = 0; 4892 4893 /* Copy 802.11 header in TX command. */ 4894 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4895 4896 /* Trim 802.11 header. */ 4897 m_adj(m, hdrlen); 4898 4899 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4900 &nsegs, BUS_DMA_NOWAIT); 4901 if (error != 0) { 4902 if (error != EFBIG) { 4903 device_printf(sc->sc_dev, 4904 "%s: can't map mbuf (error %d)\n", __func__, error); 4905 return error; 4906 } 4907 /* Too many DMA segments, linearize mbuf. */ 4908 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4909 if (m1 == NULL) { 4910 device_printf(sc->sc_dev, 4911 "%s: could not defrag mbuf\n", __func__); 4912 return ENOBUFS; 4913 } 4914 m = m1; 4915 4916 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4917 segs, &nsegs, BUS_DMA_NOWAIT); 4918 if (error != 0) { 4919 /* XXX fix this */ 4920 /* 4921 * NB: Do not return error; 4922 * original mbuf does not exist anymore. 4923 */ 4924 device_printf(sc->sc_dev, 4925 "%s: can't map mbuf (error %d)\n", 4926 __func__, error); 4927 if_inc_counter(ni->ni_vap->iv_ifp, 4928 IFCOUNTER_OERRORS, 1); 4929 ieee80211_free_node(ni); 4930 m_freem(m); 4931 return 0; 4932 } 4933 } 4934 4935 data->m = m; 4936 data->ni = ni; 4937 4938 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d " 4939 "plcp %d\n", 4940 __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate); 4941 4942 /* Fill TX descriptor. */ 4943 desc->nsegs = 1; 4944 if (m->m_len != 0) 4945 desc->nsegs += nsegs; 4946 /* First DMA segment is used by the TX command. */ 4947 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4948 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4949 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4950 /* Other DMA segments are for data payload. */ 4951 seg = &segs[0]; 4952 for (i = 1; i <= nsegs; i++) { 4953 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4954 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4955 seg->ds_len << 4); 4956 seg++; 4957 } 4958 4959 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4960 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 4961 BUS_DMASYNC_PREWRITE); 4962 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4963 BUS_DMASYNC_PREWRITE); 4964 4965 /* Update TX scheduler. */ 4966 if (ring->qid >= sc->firstaggqueue) 4967 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4968 4969 /* Kick TX ring. */ 4970 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4971 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4972 4973 /* Mark TX ring as full if we reach a certain threshold. */ 4974 if (++ring->queued > IWN_TX_RING_HIMARK) 4975 sc->qfullmsk |= 1 << ring->qid; 4976 4977 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4978 4979 return 0; 4980 } 4981 4982 static void 4983 iwn_xmit_task(void *arg0, int pending) 4984 { 4985 struct iwn_softc *sc = arg0; 4986 struct ieee80211_node *ni; 4987 struct mbuf *m; 4988 int error; 4989 struct ieee80211_bpf_params p; 4990 int have_p; 4991 4992 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4993 4994 IWN_LOCK(sc); 4995 /* 4996 * Dequeue frames, attempt to transmit, 4997 * then disable beaconwait when we're done. 4998 */ 4999 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 5000 have_p = 0; 5001 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 5002 5003 /* Get xmit params if appropriate */ 5004 if (ieee80211_get_xmit_params(m, &p) == 0) 5005 have_p = 1; 5006 5007 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 5008 __func__, m, have_p); 5009 5010 /* If we have xmit params, use them */ 5011 if (have_p) 5012 error = iwn_tx_data_raw(sc, m, ni, &p); 5013 else 5014 error = iwn_tx_data(sc, m, ni); 5015 5016 if (error != 0) { 5017 if_inc_counter(ni->ni_vap->iv_ifp, 5018 IFCOUNTER_OERRORS, 1); 5019 ieee80211_free_node(ni); 5020 m_freem(m); 5021 } 5022 } 5023 5024 sc->sc_beacon_wait = 0; 5025 IWN_UNLOCK(sc); 5026 } 5027 5028 /* 5029 * raw frame xmit - free node/reference if failed. 5030 */ 5031 static int 5032 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 5033 const struct ieee80211_bpf_params *params) 5034 { 5035 struct ieee80211com *ic = ni->ni_ic; 5036 struct iwn_softc *sc = ic->ic_softc; 5037 int error = 0; 5038 5039 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5040 5041 IWN_LOCK(sc); 5042 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 5043 m_freem(m); 5044 IWN_UNLOCK(sc); 5045 return (ENETDOWN); 5046 } 5047 5048 /* queue frame if we have to */ 5049 if (sc->sc_beacon_wait) { 5050 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 5051 m_freem(m); 5052 IWN_UNLOCK(sc); 5053 return (ENOBUFS); 5054 } 5055 /* Queued, so just return OK */ 5056 IWN_UNLOCK(sc); 5057 return (0); 5058 } 5059 5060 if (params == NULL) { 5061 /* 5062 * Legacy path; interpret frame contents to decide 5063 * precisely how to send the frame. 5064 */ 5065 error = iwn_tx_data(sc, m, ni); 5066 } else { 5067 /* 5068 * Caller supplied explicit parameters to use in 5069 * sending the frame. 5070 */ 5071 error = iwn_tx_data_raw(sc, m, ni, params); 5072 } 5073 if (error == 0) 5074 sc->sc_tx_timer = 5; 5075 else 5076 m_freem(m); 5077 5078 IWN_UNLOCK(sc); 5079 5080 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 5081 5082 return (error); 5083 } 5084 5085 /* 5086 * transmit - don't free mbuf if failed; don't free node ref if failed. 5087 */ 5088 static int 5089 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 5090 { 5091 struct iwn_softc *sc = ic->ic_softc; 5092 struct ieee80211_node *ni; 5093 int error; 5094 5095 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 5096 5097 IWN_LOCK(sc); 5098 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 5099 IWN_UNLOCK(sc); 5100 return (ENXIO); 5101 } 5102 5103 if (sc->qfullmsk) { 5104 IWN_UNLOCK(sc); 5105 return (ENOBUFS); 5106 } 5107 5108 error = iwn_tx_data(sc, m, ni); 5109 if (!error) 5110 sc->sc_tx_timer = 5; 5111 IWN_UNLOCK(sc); 5112 return (error); 5113 } 5114 5115 static void 5116 iwn_scan_timeout(void *arg) 5117 { 5118 struct iwn_softc *sc = arg; 5119 struct ieee80211com *ic = &sc->sc_ic; 5120 5121 ic_printf(ic, "scan timeout\n"); 5122 ieee80211_restart_all(ic); 5123 } 5124 5125 static void 5126 iwn_watchdog(void *arg) 5127 { 5128 struct iwn_softc *sc = arg; 5129 struct ieee80211com *ic = &sc->sc_ic; 5130 5131 IWN_LOCK_ASSERT(sc); 5132 5133 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 5134 5135 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5136 5137 if (sc->sc_tx_timer > 0) { 5138 if (--sc->sc_tx_timer == 0) { 5139 ic_printf(ic, "device timeout\n"); 5140 ieee80211_restart_all(ic); 5141 return; 5142 } 5143 } 5144 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 5145 } 5146 5147 static int 5148 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 5149 { 5150 5151 return (0); 5152 } 5153 5154 static int 5155 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 5156 { 5157 5158 return (0); 5159 } 5160 5161 static int 5162 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 5163 struct thread *td) 5164 { 5165 int rc; 5166 struct iwn_softc *sc = dev->si_drv1; 5167 struct iwn_ioctl_data *d; 5168 5169 rc = priv_check(td, PRIV_DRIVER); 5170 if (rc != 0) 5171 return (0); 5172 5173 switch (cmd) { 5174 case SIOCGIWNSTATS: 5175 d = (struct iwn_ioctl_data *) data; 5176 IWN_LOCK(sc); 5177 /* XXX validate permissions/memory/etc? */ 5178 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5179 IWN_UNLOCK(sc); 5180 break; 5181 case SIOCZIWNSTATS: 5182 IWN_LOCK(sc); 5183 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5184 IWN_UNLOCK(sc); 5185 break; 5186 default: 5187 rc = EINVAL; 5188 break; 5189 } 5190 return (rc); 5191 } 5192 5193 static int 5194 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5195 { 5196 5197 return (ENOTTY); 5198 } 5199 5200 static void 5201 iwn_parent(struct ieee80211com *ic) 5202 { 5203 struct iwn_softc *sc = ic->ic_softc; 5204 struct ieee80211vap *vap; 5205 int error; 5206 5207 if (ic->ic_nrunning > 0) { 5208 error = iwn_init(sc); 5209 5210 switch (error) { 5211 case 0: 5212 ieee80211_start_all(ic); 5213 break; 5214 case 1: 5215 /* radio is disabled via RFkill switch */ 5216 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5217 break; 5218 default: 5219 vap = TAILQ_FIRST(&ic->ic_vaps); 5220 if (vap != NULL) 5221 ieee80211_stop(vap); 5222 break; 5223 } 5224 } else 5225 iwn_stop(sc); 5226 } 5227 5228 /* 5229 * Send a command to the firmware. 5230 */ 5231 static int 5232 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5233 { 5234 struct iwn_tx_ring *ring; 5235 struct iwn_tx_desc *desc; 5236 struct iwn_tx_data *data; 5237 struct iwn_tx_cmd *cmd; 5238 struct mbuf *m; 5239 bus_addr_t paddr; 5240 int totlen, error; 5241 int cmd_queue_num; 5242 5243 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5244 5245 if (async == 0) 5246 IWN_LOCK_ASSERT(sc); 5247 5248 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5249 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5250 else 5251 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5252 5253 ring = &sc->txq[cmd_queue_num]; 5254 desc = &ring->desc[ring->cur]; 5255 data = &ring->data[ring->cur]; 5256 totlen = 4 + size; 5257 5258 if (size > sizeof cmd->data) { 5259 /* Command is too large to fit in a descriptor. */ 5260 if (totlen > MCLBYTES) 5261 return EINVAL; 5262 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5263 if (m == NULL) 5264 return ENOMEM; 5265 cmd = mtod(m, struct iwn_tx_cmd *); 5266 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5267 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5268 if (error != 0) { 5269 m_freem(m); 5270 return error; 5271 } 5272 data->m = m; 5273 } else { 5274 cmd = &ring->cmd[ring->cur]; 5275 paddr = data->cmd_paddr; 5276 } 5277 5278 cmd->code = code; 5279 cmd->flags = 0; 5280 cmd->qid = ring->qid; 5281 cmd->idx = ring->cur; 5282 memcpy(cmd->data, buf, size); 5283 5284 desc->nsegs = 1; 5285 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5286 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5287 5288 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5289 __func__, iwn_intr_str(cmd->code), cmd->code, 5290 cmd->flags, cmd->qid, cmd->idx); 5291 5292 if (size > sizeof cmd->data) { 5293 bus_dmamap_sync(ring->data_dmat, data->map, 5294 BUS_DMASYNC_PREWRITE); 5295 } else { 5296 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 5297 BUS_DMASYNC_PREWRITE); 5298 } 5299 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5300 BUS_DMASYNC_PREWRITE); 5301 5302 /* Kick command ring. */ 5303 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5304 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5305 5306 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5307 5308 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5309 } 5310 5311 static int 5312 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5313 { 5314 struct iwn4965_node_info hnode; 5315 caddr_t src, dst; 5316 5317 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5318 5319 /* 5320 * We use the node structure for 5000 Series internally (it is 5321 * a superset of the one for 4965AGN). We thus copy the common 5322 * fields before sending the command. 5323 */ 5324 src = (caddr_t)node; 5325 dst = (caddr_t)&hnode; 5326 memcpy(dst, src, 48); 5327 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5328 memcpy(dst + 48, src + 72, 20); 5329 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5330 } 5331 5332 static int 5333 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5334 { 5335 5336 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5337 5338 /* Direct mapping. */ 5339 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5340 } 5341 5342 static int 5343 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5344 { 5345 struct iwn_node *wn = (void *)ni; 5346 struct ieee80211_rateset *rs; 5347 struct iwn_cmd_link_quality linkq; 5348 int i, rate, txrate; 5349 int is_11n; 5350 5351 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5352 5353 memset(&linkq, 0, sizeof linkq); 5354 linkq.id = wn->id; 5355 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5356 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5357 5358 linkq.ampdu_max = 32; /* XXX negotiated? */ 5359 linkq.ampdu_threshold = 3; 5360 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5361 5362 DPRINTF(sc, IWN_DEBUG_XMIT, 5363 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5364 __func__, 5365 linkq.antmsk_1stream, 5366 linkq.antmsk_2stream, 5367 sc->ntxchains); 5368 5369 /* 5370 * Are we using 11n rates? Ensure the channel is 5371 * 11n _and_ we have some 11n rates, or don't 5372 * try. 5373 */ 5374 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5375 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5376 is_11n = 1; 5377 } else { 5378 rs = &ni->ni_rates; 5379 is_11n = 0; 5380 } 5381 5382 /* Start at highest available bit-rate. */ 5383 /* 5384 * XXX this is all very dirty! 5385 */ 5386 if (is_11n) 5387 txrate = ni->ni_htrates.rs_nrates - 1; 5388 else 5389 txrate = rs->rs_nrates - 1; 5390 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5391 uint32_t plcp; 5392 5393 /* 5394 * XXX TODO: ensure the last two slots are the two lowest 5395 * rate entries, just for now. 5396 */ 5397 if (i == 14 || i == 15) 5398 txrate = 0; 5399 5400 if (is_11n) 5401 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5402 else 5403 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5404 5405 /* Do rate -> PLCP config mapping */ 5406 plcp = iwn_rate_to_plcp(sc, ni, rate); 5407 linkq.retry[i] = plcp; 5408 DPRINTF(sc, IWN_DEBUG_XMIT, 5409 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5410 __func__, 5411 i, 5412 txrate, 5413 rate, 5414 le32toh(plcp)); 5415 5416 /* 5417 * The mimo field is an index into the table which 5418 * indicates the first index where it and subsequent entries 5419 * will not be using MIMO. 5420 * 5421 * Since we're filling linkq from 0..15 and we're filling 5422 * from the highest MCS rates to the lowest rates, if we 5423 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5424 * the next entry.) That way if the next entry is a non-MIMO 5425 * entry, we're already pointing at it. 5426 */ 5427 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5428 IEEE80211_RV(le32toh(plcp)) > 7) 5429 linkq.mimo = i + 1; 5430 5431 /* Next retry at immediate lower bit-rate. */ 5432 if (txrate > 0) 5433 txrate--; 5434 } 5435 /* 5436 * If we reached the end of the list and indeed we hit 5437 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5438 * set mimo to 15. Setting it to 16 panics the firmware. 5439 */ 5440 if (linkq.mimo > 15) 5441 linkq.mimo = 15; 5442 5443 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5444 5445 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5446 5447 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5448 } 5449 5450 /* 5451 * Broadcast node is used to send group-addressed and management frames. 5452 */ 5453 static int 5454 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5455 { 5456 struct iwn_ops *ops = &sc->ops; 5457 struct ieee80211com *ic = &sc->sc_ic; 5458 struct iwn_node_info node; 5459 struct iwn_cmd_link_quality linkq; 5460 uint8_t txant; 5461 int i, error; 5462 5463 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5464 5465 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5466 5467 memset(&node, 0, sizeof node); 5468 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5469 node.id = sc->broadcast_id; 5470 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5471 if ((error = ops->add_node(sc, &node, async)) != 0) 5472 return error; 5473 5474 /* Use the first valid TX antenna. */ 5475 txant = IWN_LSB(sc->txchainmask); 5476 5477 memset(&linkq, 0, sizeof linkq); 5478 linkq.id = sc->broadcast_id; 5479 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5480 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5481 linkq.ampdu_max = 64; 5482 linkq.ampdu_threshold = 3; 5483 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5484 5485 /* Use lowest mandatory bit-rate. */ 5486 /* XXX rate table lookup? */ 5487 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5488 linkq.retry[0] = htole32(0xd); 5489 else 5490 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5491 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5492 /* Use same bit-rate for all TX retries. */ 5493 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5494 linkq.retry[i] = linkq.retry[0]; 5495 } 5496 5497 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5498 5499 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5500 } 5501 5502 static int 5503 iwn_updateedca(struct ieee80211com *ic) 5504 { 5505 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5506 struct iwn_softc *sc = ic->ic_softc; 5507 struct iwn_edca_params cmd; 5508 struct chanAccParams chp; 5509 int aci; 5510 5511 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5512 5513 ieee80211_wme_ic_getparams(ic, &chp); 5514 5515 memset(&cmd, 0, sizeof cmd); 5516 cmd.flags = htole32(IWN_EDCA_UPDATE); 5517 5518 IEEE80211_LOCK(ic); 5519 for (aci = 0; aci < WME_NUM_AC; aci++) { 5520 const struct wmeParams *ac = &chp.cap_wmeParams[aci]; 5521 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5522 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5523 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5524 cmd.ac[aci].txoplimit = 5525 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5526 } 5527 IEEE80211_UNLOCK(ic); 5528 5529 IWN_LOCK(sc); 5530 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5531 IWN_UNLOCK(sc); 5532 5533 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5534 5535 return 0; 5536 #undef IWN_EXP2 5537 } 5538 5539 static void 5540 iwn_set_promisc(struct iwn_softc *sc) 5541 { 5542 struct ieee80211com *ic = &sc->sc_ic; 5543 uint32_t promisc_filter; 5544 5545 promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC; 5546 if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) 5547 sc->rxon->filter |= htole32(promisc_filter); 5548 else 5549 sc->rxon->filter &= ~htole32(promisc_filter); 5550 } 5551 5552 static void 5553 iwn_update_promisc(struct ieee80211com *ic) 5554 { 5555 struct iwn_softc *sc = ic->ic_softc; 5556 int error; 5557 5558 if (ic->ic_opmode == IEEE80211_M_MONITOR) 5559 return; /* nothing to do */ 5560 5561 IWN_LOCK(sc); 5562 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5563 IWN_UNLOCK(sc); 5564 return; 5565 } 5566 5567 iwn_set_promisc(sc); 5568 if ((error = iwn_send_rxon(sc, 1, 1)) != 0) { 5569 device_printf(sc->sc_dev, 5570 "%s: could not send RXON, error %d\n", 5571 __func__, error); 5572 } 5573 IWN_UNLOCK(sc); 5574 } 5575 5576 static void 5577 iwn_update_mcast(struct ieee80211com *ic) 5578 { 5579 /* Ignore */ 5580 } 5581 5582 static void 5583 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5584 { 5585 struct iwn_cmd_led led; 5586 5587 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5588 5589 #if 0 5590 /* XXX don't set LEDs during scan? */ 5591 if (sc->sc_is_scanning) 5592 return; 5593 #endif 5594 5595 /* Clear microcode LED ownership. */ 5596 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5597 5598 led.which = which; 5599 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5600 led.off = off; 5601 led.on = on; 5602 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5603 } 5604 5605 /* 5606 * Set the critical temperature at which the firmware will stop the radio 5607 * and notify us. 5608 */ 5609 static int 5610 iwn_set_critical_temp(struct iwn_softc *sc) 5611 { 5612 struct iwn_critical_temp crit; 5613 int32_t temp; 5614 5615 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5616 5617 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5618 5619 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5620 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5621 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5622 temp = IWN_CTOK(110); 5623 else 5624 temp = 110; 5625 memset(&crit, 0, sizeof crit); 5626 crit.tempR = htole32(temp); 5627 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5628 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5629 } 5630 5631 static int 5632 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5633 { 5634 struct iwn_cmd_timing cmd; 5635 uint64_t val, mod; 5636 5637 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5638 5639 memset(&cmd, 0, sizeof cmd); 5640 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5641 cmd.bintval = htole16(ni->ni_intval); 5642 cmd.lintval = htole16(10); 5643 5644 /* Compute remaining time until next beacon. */ 5645 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5646 mod = le64toh(cmd.tstamp) % val; 5647 cmd.binitval = htole32((uint32_t)(val - mod)); 5648 5649 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5650 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5651 5652 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5653 } 5654 5655 static void 5656 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5657 { 5658 5659 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5660 5661 /* Adjust TX power if need be (delta >= 3 degC). */ 5662 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5663 __func__, sc->temp, temp); 5664 if (abs(temp - sc->temp) >= 3) { 5665 /* Record temperature of last calibration. */ 5666 sc->temp = temp; 5667 (void)iwn4965_set_txpower(sc, 1); 5668 } 5669 } 5670 5671 /* 5672 * Set TX power for current channel (each rate has its own power settings). 5673 * This function takes into account the regulatory information from EEPROM, 5674 * the current temperature and the current voltage. 5675 */ 5676 static int 5677 iwn4965_set_txpower(struct iwn_softc *sc, int async) 5678 { 5679 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5680 #define fdivround(a, b, n) \ 5681 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5682 /* Linear interpolation. */ 5683 #define interpolate(x, x1, y1, x2, y2, n) \ 5684 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5685 5686 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5687 struct iwn_ucode_info *uc = &sc->ucode_info; 5688 struct iwn4965_cmd_txpower cmd; 5689 struct iwn4965_eeprom_chan_samples *chans; 5690 const uint8_t *rf_gain, *dsp_gain; 5691 int32_t vdiff, tdiff; 5692 int i, is_chan_5ghz, c, grp, maxpwr; 5693 uint8_t chan; 5694 5695 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5696 /* Retrieve current channel from last RXON. */ 5697 chan = sc->rxon->chan; 5698 is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0; 5699 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5700 chan); 5701 5702 memset(&cmd, 0, sizeof cmd); 5703 cmd.band = is_chan_5ghz ? 0 : 1; 5704 cmd.chan = chan; 5705 5706 if (is_chan_5ghz) { 5707 maxpwr = sc->maxpwr5GHz; 5708 rf_gain = iwn4965_rf_gain_5ghz; 5709 dsp_gain = iwn4965_dsp_gain_5ghz; 5710 } else { 5711 maxpwr = sc->maxpwr2GHz; 5712 rf_gain = iwn4965_rf_gain_2ghz; 5713 dsp_gain = iwn4965_dsp_gain_2ghz; 5714 } 5715 5716 /* Compute voltage compensation. */ 5717 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5718 if (vdiff > 0) 5719 vdiff *= 2; 5720 if (abs(vdiff) > 2) 5721 vdiff = 0; 5722 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5723 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5724 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5725 5726 /* Get channel attenuation group. */ 5727 if (chan <= 20) /* 1-20 */ 5728 grp = 4; 5729 else if (chan <= 43) /* 34-43 */ 5730 grp = 0; 5731 else if (chan <= 70) /* 44-70 */ 5732 grp = 1; 5733 else if (chan <= 124) /* 71-124 */ 5734 grp = 2; 5735 else /* 125-200 */ 5736 grp = 3; 5737 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5738 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5739 5740 /* Get channel sub-band. */ 5741 for (i = 0; i < IWN_NBANDS; i++) 5742 if (sc->bands[i].lo != 0 && 5743 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5744 break; 5745 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5746 return EINVAL; 5747 chans = sc->bands[i].chans; 5748 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5749 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5750 5751 for (c = 0; c < 2; c++) { 5752 uint8_t power, gain, temp; 5753 int maxchpwr, pwr, ridx, idx; 5754 5755 power = interpolate(chan, 5756 chans[0].num, chans[0].samples[c][1].power, 5757 chans[1].num, chans[1].samples[c][1].power, 1); 5758 gain = interpolate(chan, 5759 chans[0].num, chans[0].samples[c][1].gain, 5760 chans[1].num, chans[1].samples[c][1].gain, 1); 5761 temp = interpolate(chan, 5762 chans[0].num, chans[0].samples[c][1].temp, 5763 chans[1].num, chans[1].samples[c][1].temp, 1); 5764 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5765 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5766 __func__, c, power, gain, temp); 5767 5768 /* Compute temperature compensation. */ 5769 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5770 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5771 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5772 __func__, tdiff, sc->temp, temp); 5773 5774 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5775 /* Convert dBm to half-dBm. */ 5776 maxchpwr = sc->maxpwr[chan] * 2; 5777 if ((ridx / 8) & 1) 5778 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5779 5780 pwr = maxpwr; 5781 5782 /* Adjust TX power based on rate. */ 5783 if ((ridx % 8) == 5) 5784 pwr -= 15; /* OFDM48: -7.5dB */ 5785 else if ((ridx % 8) == 6) 5786 pwr -= 17; /* OFDM54: -8.5dB */ 5787 else if ((ridx % 8) == 7) 5788 pwr -= 20; /* OFDM60: -10dB */ 5789 else 5790 pwr -= 10; /* Others: -5dB */ 5791 5792 /* Do not exceed channel max TX power. */ 5793 if (pwr > maxchpwr) 5794 pwr = maxchpwr; 5795 5796 idx = gain - (pwr - power) - tdiff - vdiff; 5797 if ((ridx / 8) & 1) /* MIMO */ 5798 idx += (int32_t)le32toh(uc->atten[grp][c]); 5799 5800 if (cmd.band == 0) 5801 idx += 9; /* 5GHz */ 5802 if (ridx == IWN_RIDX_MAX) 5803 idx += 5; /* CCK */ 5804 5805 /* Make sure idx stays in a valid range. */ 5806 if (idx < 0) 5807 idx = 0; 5808 else if (idx > IWN4965_MAX_PWR_INDEX) 5809 idx = IWN4965_MAX_PWR_INDEX; 5810 5811 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5812 "%s: Tx chain %d, rate idx %d: power=%d\n", 5813 __func__, c, ridx, idx); 5814 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5815 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5816 } 5817 } 5818 5819 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5820 "%s: set tx power for chan %d\n", __func__, chan); 5821 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5822 5823 #undef interpolate 5824 #undef fdivround 5825 } 5826 5827 static int 5828 iwn5000_set_txpower(struct iwn_softc *sc, int async) 5829 { 5830 struct iwn5000_cmd_txpower cmd; 5831 int cmdid; 5832 5833 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5834 5835 /* 5836 * TX power calibration is handled automatically by the firmware 5837 * for 5000 Series. 5838 */ 5839 memset(&cmd, 0, sizeof cmd); 5840 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5841 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5842 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5843 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5844 "%s: setting TX power; rev=%d\n", 5845 __func__, 5846 IWN_UCODE_API(sc->ucode_rev)); 5847 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5848 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5849 else 5850 cmdid = IWN_CMD_TXPOWER_DBM; 5851 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5852 } 5853 5854 /* 5855 * Retrieve the maximum RSSI (in dBm) among receivers. 5856 */ 5857 static int 5858 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5859 { 5860 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5861 uint8_t mask, agc; 5862 int rssi; 5863 5864 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5865 5866 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5867 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5868 5869 rssi = 0; 5870 if (mask & IWN_ANT_A) 5871 rssi = MAX(rssi, phy->rssi[0]); 5872 if (mask & IWN_ANT_B) 5873 rssi = MAX(rssi, phy->rssi[2]); 5874 if (mask & IWN_ANT_C) 5875 rssi = MAX(rssi, phy->rssi[4]); 5876 5877 DPRINTF(sc, IWN_DEBUG_RECV, 5878 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5879 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5880 rssi - agc - IWN_RSSI_TO_DBM); 5881 return rssi - agc - IWN_RSSI_TO_DBM; 5882 } 5883 5884 static int 5885 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5886 { 5887 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5888 uint8_t agc; 5889 int rssi; 5890 5891 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5892 5893 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5894 5895 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5896 le16toh(phy->rssi[1]) & 0xff); 5897 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5898 5899 DPRINTF(sc, IWN_DEBUG_RECV, 5900 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5901 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5902 rssi - agc - IWN_RSSI_TO_DBM); 5903 return rssi - agc - IWN_RSSI_TO_DBM; 5904 } 5905 5906 /* 5907 * Retrieve the average noise (in dBm) among receivers. 5908 */ 5909 static int 5910 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5911 { 5912 int i, total, nbant, noise; 5913 5914 total = nbant = 0; 5915 for (i = 0; i < 3; i++) { 5916 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5917 continue; 5918 total += noise; 5919 nbant++; 5920 } 5921 /* There should be at least one antenna but check anyway. */ 5922 return (nbant == 0) ? -127 : (total / nbant) - 107; 5923 } 5924 5925 /* 5926 * Compute temperature (in degC) from last received statistics. 5927 */ 5928 static int 5929 iwn4965_get_temperature(struct iwn_softc *sc) 5930 { 5931 struct iwn_ucode_info *uc = &sc->ucode_info; 5932 int32_t r1, r2, r3, r4, temp; 5933 5934 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5935 5936 r1 = le32toh(uc->temp[0].chan20MHz); 5937 r2 = le32toh(uc->temp[1].chan20MHz); 5938 r3 = le32toh(uc->temp[2].chan20MHz); 5939 r4 = le32toh(sc->rawtemp); 5940 5941 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5942 return 0; 5943 5944 /* Sign-extend 23-bit R4 value to 32-bit. */ 5945 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5946 /* Compute temperature in Kelvin. */ 5947 temp = (259 * (r4 - r2)) / (r3 - r1); 5948 temp = (temp * 97) / 100 + 8; 5949 5950 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5951 IWN_KTOC(temp)); 5952 return IWN_KTOC(temp); 5953 } 5954 5955 static int 5956 iwn5000_get_temperature(struct iwn_softc *sc) 5957 { 5958 int32_t temp; 5959 5960 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5961 5962 /* 5963 * Temperature is not used by the driver for 5000 Series because 5964 * TX power calibration is handled by firmware. 5965 */ 5966 temp = le32toh(sc->rawtemp); 5967 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5968 temp = (temp / -5) + sc->temp_off; 5969 temp = IWN_KTOC(temp); 5970 } 5971 return temp; 5972 } 5973 5974 /* 5975 * Initialize sensitivity calibration state machine. 5976 */ 5977 static int 5978 iwn_init_sensitivity(struct iwn_softc *sc) 5979 { 5980 struct iwn_ops *ops = &sc->ops; 5981 struct iwn_calib_state *calib = &sc->calib; 5982 uint32_t flags; 5983 int error; 5984 5985 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5986 5987 /* Reset calibration state machine. */ 5988 memset(calib, 0, sizeof (*calib)); 5989 calib->state = IWN_CALIB_STATE_INIT; 5990 calib->cck_state = IWN_CCK_STATE_HIFA; 5991 /* Set initial correlation values. */ 5992 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5993 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5994 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5995 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5996 calib->cck_x4 = 125; 5997 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5998 calib->energy_cck = sc->limits->energy_cck; 5999 6000 /* Write initial sensitivity. */ 6001 if ((error = iwn_send_sensitivity(sc)) != 0) 6002 return error; 6003 6004 /* Write initial gains. */ 6005 if ((error = ops->init_gains(sc)) != 0) 6006 return error; 6007 6008 /* Request statistics at each beacon interval. */ 6009 flags = 0; 6010 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 6011 __func__); 6012 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 6013 } 6014 6015 /* 6016 * Collect noise and RSSI statistics for the first 20 beacons received 6017 * after association and use them to determine connected antennas and 6018 * to set differential gains. 6019 */ 6020 static void 6021 iwn_collect_noise(struct iwn_softc *sc, 6022 const struct iwn_rx_general_stats *stats) 6023 { 6024 struct iwn_ops *ops = &sc->ops; 6025 struct iwn_calib_state *calib = &sc->calib; 6026 struct ieee80211com *ic = &sc->sc_ic; 6027 uint32_t val; 6028 int i; 6029 6030 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6031 6032 /* Accumulate RSSI and noise for all 3 antennas. */ 6033 for (i = 0; i < 3; i++) { 6034 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 6035 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 6036 } 6037 /* NB: We update differential gains only once after 20 beacons. */ 6038 if (++calib->nbeacons < 20) 6039 return; 6040 6041 /* Determine highest average RSSI. */ 6042 val = MAX(calib->rssi[0], calib->rssi[1]); 6043 val = MAX(calib->rssi[2], val); 6044 6045 /* Determine which antennas are connected. */ 6046 sc->chainmask = sc->rxchainmask; 6047 for (i = 0; i < 3; i++) 6048 if (val - calib->rssi[i] > 15 * 20) 6049 sc->chainmask &= ~(1 << i); 6050 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6051 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 6052 __func__, sc->rxchainmask, sc->chainmask); 6053 6054 /* If none of the TX antennas are connected, keep at least one. */ 6055 if ((sc->chainmask & sc->txchainmask) == 0) 6056 sc->chainmask |= IWN_LSB(sc->txchainmask); 6057 6058 (void)ops->set_gains(sc); 6059 calib->state = IWN_CALIB_STATE_RUN; 6060 6061 #ifdef notyet 6062 /* XXX Disable RX chains with no antennas connected. */ 6063 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 6064 if (sc->sc_is_scanning) 6065 device_printf(sc->sc_dev, 6066 "%s: is_scanning set, before RXON\n", 6067 __func__); 6068 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 6069 #endif 6070 6071 /* Enable power-saving mode if requested by user. */ 6072 if (ic->ic_flags & IEEE80211_F_PMGTON) 6073 (void)iwn_set_pslevel(sc, 0, 3, 1); 6074 6075 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6076 6077 } 6078 6079 static int 6080 iwn4965_init_gains(struct iwn_softc *sc) 6081 { 6082 struct iwn_phy_calib_gain cmd; 6083 6084 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6085 6086 memset(&cmd, 0, sizeof cmd); 6087 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 6088 /* Differential gains initially set to 0 for all 3 antennas. */ 6089 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6090 "%s: setting initial differential gains\n", __func__); 6091 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6092 } 6093 6094 static int 6095 iwn5000_init_gains(struct iwn_softc *sc) 6096 { 6097 struct iwn_phy_calib cmd; 6098 6099 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6100 6101 memset(&cmd, 0, sizeof cmd); 6102 cmd.code = sc->reset_noise_gain; 6103 cmd.ngroups = 1; 6104 cmd.isvalid = 1; 6105 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6106 "%s: setting initial differential gains\n", __func__); 6107 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6108 } 6109 6110 static int 6111 iwn4965_set_gains(struct iwn_softc *sc) 6112 { 6113 struct iwn_calib_state *calib = &sc->calib; 6114 struct iwn_phy_calib_gain cmd; 6115 int i, delta, noise; 6116 6117 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6118 6119 /* Get minimal noise among connected antennas. */ 6120 noise = INT_MAX; /* NB: There's at least one antenna. */ 6121 for (i = 0; i < 3; i++) 6122 if (sc->chainmask & (1 << i)) 6123 noise = MIN(calib->noise[i], noise); 6124 6125 memset(&cmd, 0, sizeof cmd); 6126 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 6127 /* Set differential gains for connected antennas. */ 6128 for (i = 0; i < 3; i++) { 6129 if (sc->chainmask & (1 << i)) { 6130 /* Compute attenuation (in unit of 1.5dB). */ 6131 delta = (noise - (int32_t)calib->noise[i]) / 30; 6132 /* NB: delta <= 0 */ 6133 /* Limit to [-4.5dB,0]. */ 6134 cmd.gain[i] = MIN(abs(delta), 3); 6135 if (delta < 0) 6136 cmd.gain[i] |= 1 << 2; /* sign bit */ 6137 } 6138 } 6139 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6140 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 6141 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 6142 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6143 } 6144 6145 static int 6146 iwn5000_set_gains(struct iwn_softc *sc) 6147 { 6148 struct iwn_calib_state *calib = &sc->calib; 6149 struct iwn_phy_calib_gain cmd; 6150 int i, ant, div, delta; 6151 6152 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6153 6154 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 6155 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 6156 6157 memset(&cmd, 0, sizeof cmd); 6158 cmd.code = sc->noise_gain; 6159 cmd.ngroups = 1; 6160 cmd.isvalid = 1; 6161 /* Get first available RX antenna as referential. */ 6162 ant = IWN_LSB(sc->rxchainmask); 6163 /* Set differential gains for other antennas. */ 6164 for (i = ant + 1; i < 3; i++) { 6165 if (sc->chainmask & (1 << i)) { 6166 /* The delta is relative to antenna "ant". */ 6167 delta = ((int32_t)calib->noise[ant] - 6168 (int32_t)calib->noise[i]) / div; 6169 /* Limit to [-4.5dB,+4.5dB]. */ 6170 cmd.gain[i - 1] = MIN(abs(delta), 3); 6171 if (delta < 0) 6172 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 6173 } 6174 } 6175 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6176 "setting differential gains Ant B/C: %x/%x (%x)\n", 6177 cmd.gain[0], cmd.gain[1], sc->chainmask); 6178 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6179 } 6180 6181 /* 6182 * Tune RF RX sensitivity based on the number of false alarms detected 6183 * during the last beacon period. 6184 */ 6185 static void 6186 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 6187 { 6188 #define inc(val, inc, max) \ 6189 if ((val) < (max)) { \ 6190 if ((val) < (max) - (inc)) \ 6191 (val) += (inc); \ 6192 else \ 6193 (val) = (max); \ 6194 needs_update = 1; \ 6195 } 6196 #define dec(val, dec, min) \ 6197 if ((val) > (min)) { \ 6198 if ((val) > (min) + (dec)) \ 6199 (val) -= (dec); \ 6200 else \ 6201 (val) = (min); \ 6202 needs_update = 1; \ 6203 } 6204 6205 const struct iwn_sensitivity_limits *limits = sc->limits; 6206 struct iwn_calib_state *calib = &sc->calib; 6207 uint32_t val, rxena, fa; 6208 uint32_t energy[3], energy_min; 6209 uint8_t noise[3], noise_ref; 6210 int i, needs_update = 0; 6211 6212 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6213 6214 /* Check that we've been enabled long enough. */ 6215 if ((rxena = le32toh(stats->general.load)) == 0){ 6216 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6217 return; 6218 } 6219 6220 /* Compute number of false alarms since last call for OFDM. */ 6221 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6222 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6223 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6224 6225 if (fa > 50 * rxena) { 6226 /* High false alarm count, decrease sensitivity. */ 6227 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6228 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6229 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6230 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6231 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6232 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6233 6234 } else if (fa < 5 * rxena) { 6235 /* Low false alarm count, increase sensitivity. */ 6236 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6237 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6238 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6239 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6240 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6241 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6242 } 6243 6244 /* Compute maximum noise among 3 receivers. */ 6245 for (i = 0; i < 3; i++) 6246 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6247 val = MAX(noise[0], noise[1]); 6248 val = MAX(noise[2], val); 6249 /* Insert it into our samples table. */ 6250 calib->noise_samples[calib->cur_noise_sample] = val; 6251 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6252 6253 /* Compute maximum noise among last 20 samples. */ 6254 noise_ref = calib->noise_samples[0]; 6255 for (i = 1; i < 20; i++) 6256 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6257 6258 /* Compute maximum energy among 3 receivers. */ 6259 for (i = 0; i < 3; i++) 6260 energy[i] = le32toh(stats->general.energy[i]); 6261 val = MIN(energy[0], energy[1]); 6262 val = MIN(energy[2], val); 6263 /* Insert it into our samples table. */ 6264 calib->energy_samples[calib->cur_energy_sample] = val; 6265 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6266 6267 /* Compute minimum energy among last 10 samples. */ 6268 energy_min = calib->energy_samples[0]; 6269 for (i = 1; i < 10; i++) 6270 energy_min = MAX(energy_min, calib->energy_samples[i]); 6271 energy_min += 6; 6272 6273 /* Compute number of false alarms since last call for CCK. */ 6274 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6275 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6276 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6277 6278 if (fa > 50 * rxena) { 6279 /* High false alarm count, decrease sensitivity. */ 6280 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6281 "%s: CCK high false alarm count: %u\n", __func__, fa); 6282 calib->cck_state = IWN_CCK_STATE_HIFA; 6283 calib->low_fa = 0; 6284 6285 if (calib->cck_x4 > 160) { 6286 calib->noise_ref = noise_ref; 6287 if (calib->energy_cck > 2) 6288 dec(calib->energy_cck, 2, energy_min); 6289 } 6290 if (calib->cck_x4 < 160) { 6291 calib->cck_x4 = 161; 6292 needs_update = 1; 6293 } else 6294 inc(calib->cck_x4, 3, limits->max_cck_x4); 6295 6296 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6297 6298 } else if (fa < 5 * rxena) { 6299 /* Low false alarm count, increase sensitivity. */ 6300 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6301 "%s: CCK low false alarm count: %u\n", __func__, fa); 6302 calib->cck_state = IWN_CCK_STATE_LOFA; 6303 calib->low_fa++; 6304 6305 if (calib->cck_state != IWN_CCK_STATE_INIT && 6306 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6307 calib->low_fa > 100)) { 6308 inc(calib->energy_cck, 2, limits->min_energy_cck); 6309 dec(calib->cck_x4, 3, limits->min_cck_x4); 6310 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6311 } 6312 } else { 6313 /* Not worth to increase or decrease sensitivity. */ 6314 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6315 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6316 calib->low_fa = 0; 6317 calib->noise_ref = noise_ref; 6318 6319 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6320 /* Previous interval had many false alarms. */ 6321 dec(calib->energy_cck, 8, energy_min); 6322 } 6323 calib->cck_state = IWN_CCK_STATE_INIT; 6324 } 6325 6326 if (needs_update) 6327 (void)iwn_send_sensitivity(sc); 6328 6329 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6330 6331 #undef dec 6332 #undef inc 6333 } 6334 6335 static int 6336 iwn_send_sensitivity(struct iwn_softc *sc) 6337 { 6338 struct iwn_calib_state *calib = &sc->calib; 6339 struct iwn_enhanced_sensitivity_cmd cmd; 6340 int len; 6341 6342 memset(&cmd, 0, sizeof cmd); 6343 len = sizeof (struct iwn_sensitivity_cmd); 6344 cmd.which = IWN_SENSITIVITY_WORKTBL; 6345 /* OFDM modulation. */ 6346 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6347 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6348 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6349 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6350 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6351 cmd.energy_ofdm_th = htole16(62); 6352 /* CCK modulation. */ 6353 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6354 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6355 cmd.energy_cck = htole16(calib->energy_cck); 6356 /* Barker modulation: use default values. */ 6357 cmd.corr_barker = htole16(190); 6358 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6359 6360 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6361 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6362 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6363 calib->ofdm_mrc_x4, calib->cck_x4, 6364 calib->cck_mrc_x4, calib->energy_cck); 6365 6366 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6367 goto send; 6368 /* Enhanced sensitivity settings. */ 6369 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6370 cmd.ofdm_det_slope_mrc = htole16(668); 6371 cmd.ofdm_det_icept_mrc = htole16(4); 6372 cmd.ofdm_det_slope = htole16(486); 6373 cmd.ofdm_det_icept = htole16(37); 6374 cmd.cck_det_slope_mrc = htole16(853); 6375 cmd.cck_det_icept_mrc = htole16(4); 6376 cmd.cck_det_slope = htole16(476); 6377 cmd.cck_det_icept = htole16(99); 6378 send: 6379 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6380 } 6381 6382 /* 6383 * Look at the increase of PLCP errors over time; if it exceeds 6384 * a programmed threshold then trigger an RF retune. 6385 */ 6386 static void 6387 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6388 { 6389 int32_t delta_ofdm, delta_ht, delta_cck; 6390 struct iwn_calib_state *calib = &sc->calib; 6391 int delta_ticks, cur_ticks; 6392 int delta_msec; 6393 int thresh; 6394 6395 /* 6396 * Calculate the difference between the current and 6397 * previous statistics. 6398 */ 6399 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6400 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6401 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6402 6403 /* 6404 * Calculate the delta in time between successive statistics 6405 * messages. Yes, it can roll over; so we make sure that 6406 * this doesn't happen. 6407 * 6408 * XXX go figure out what to do about rollover 6409 * XXX go figure out what to do if ticks rolls over to -ve instead! 6410 * XXX go stab signed integer overflow undefined-ness in the face. 6411 */ 6412 cur_ticks = ticks; 6413 delta_ticks = cur_ticks - sc->last_calib_ticks; 6414 6415 /* 6416 * If any are negative, then the firmware likely reset; so just 6417 * bail. We'll pick this up next time. 6418 */ 6419 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6420 return; 6421 6422 /* 6423 * delta_ticks is in ticks; we need to convert it up to milliseconds 6424 * so we can do some useful math with it. 6425 */ 6426 delta_msec = ticks_to_msecs(delta_ticks); 6427 6428 /* 6429 * Calculate what our threshold is given the current delta_msec. 6430 */ 6431 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6432 6433 DPRINTF(sc, IWN_DEBUG_STATE, 6434 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6435 __func__, 6436 delta_msec, 6437 delta_cck, 6438 delta_ofdm, 6439 delta_ht, 6440 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6441 thresh); 6442 6443 /* 6444 * If we need a retune, then schedule a single channel scan 6445 * to a channel that isn't the currently active one! 6446 * 6447 * The math from linux iwlwifi: 6448 * 6449 * if ((delta * 100 / msecs) > threshold) 6450 */ 6451 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6452 DPRINTF(sc, IWN_DEBUG_ANY, 6453 "%s: PLCP error threshold raw (%d) comparison (%d) " 6454 "over limit (%d); retune!\n", 6455 __func__, 6456 (delta_cck + delta_ofdm + delta_ht), 6457 (delta_cck + delta_ofdm + delta_ht) * 100, 6458 thresh); 6459 } 6460 } 6461 6462 /* 6463 * Set STA mode power saving level (between 0 and 5). 6464 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6465 */ 6466 static int 6467 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6468 { 6469 struct iwn_pmgt_cmd cmd; 6470 const struct iwn_pmgt *pmgt; 6471 uint32_t max, skip_dtim; 6472 uint32_t reg; 6473 int i; 6474 6475 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6476 "%s: dtim=%d, level=%d, async=%d\n", 6477 __func__, 6478 dtim, 6479 level, 6480 async); 6481 6482 /* Select which PS parameters to use. */ 6483 if (dtim <= 2) 6484 pmgt = &iwn_pmgt[0][level]; 6485 else if (dtim <= 10) 6486 pmgt = &iwn_pmgt[1][level]; 6487 else 6488 pmgt = &iwn_pmgt[2][level]; 6489 6490 memset(&cmd, 0, sizeof cmd); 6491 if (level != 0) /* not CAM */ 6492 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6493 if (level == 5) 6494 cmd.flags |= htole16(IWN_PS_FAST_PD); 6495 /* Retrieve PCIe Active State Power Management (ASPM). */ 6496 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6497 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6498 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6499 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6500 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6501 6502 if (dtim == 0) { 6503 dtim = 1; 6504 skip_dtim = 0; 6505 } else 6506 skip_dtim = pmgt->skip_dtim; 6507 if (skip_dtim != 0) { 6508 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6509 max = pmgt->intval[4]; 6510 if (max == (uint32_t)-1) 6511 max = dtim * (skip_dtim + 1); 6512 else if (max > dtim) 6513 max = rounddown(max, dtim); 6514 } else 6515 max = dtim; 6516 for (i = 0; i < 5; i++) 6517 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6518 6519 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6520 level); 6521 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6522 } 6523 6524 static int 6525 iwn_send_btcoex(struct iwn_softc *sc) 6526 { 6527 struct iwn_bluetooth cmd; 6528 6529 memset(&cmd, 0, sizeof cmd); 6530 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6531 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6532 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6533 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6534 __func__); 6535 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6536 } 6537 6538 static int 6539 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6540 { 6541 static const uint32_t btcoex_3wire[12] = { 6542 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6543 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6544 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6545 }; 6546 struct iwn6000_btcoex_config btconfig; 6547 struct iwn2000_btcoex_config btconfig2k; 6548 struct iwn_btcoex_priotable btprio; 6549 struct iwn_btcoex_prot btprot; 6550 int error, i; 6551 uint8_t flags; 6552 6553 memset(&btconfig, 0, sizeof btconfig); 6554 memset(&btconfig2k, 0, sizeof btconfig2k); 6555 6556 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6557 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6558 6559 if (sc->base_params->bt_sco_disable) 6560 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6561 else 6562 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6563 6564 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6565 6566 /* Default flags result is 145 as old value */ 6567 6568 /* 6569 * Flags value has to be review. Values must change if we 6570 * which to disable it 6571 */ 6572 if (sc->base_params->bt_session_2) { 6573 btconfig2k.flags = flags; 6574 btconfig2k.max_kill = 5; 6575 btconfig2k.bt3_t7_timer = 1; 6576 btconfig2k.kill_ack = htole32(0xffff0000); 6577 btconfig2k.kill_cts = htole32(0xffff0000); 6578 btconfig2k.sample_time = 2; 6579 btconfig2k.bt3_t2_timer = 0xc; 6580 6581 for (i = 0; i < 12; i++) 6582 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6583 btconfig2k.valid = htole16(0xff); 6584 btconfig2k.prio_boost = htole32(0xf0); 6585 DPRINTF(sc, IWN_DEBUG_RESET, 6586 "%s: configuring advanced bluetooth coexistence" 6587 " session 2, flags : 0x%x\n", 6588 __func__, 6589 flags); 6590 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6591 sizeof(btconfig2k), 1); 6592 } else { 6593 btconfig.flags = flags; 6594 btconfig.max_kill = 5; 6595 btconfig.bt3_t7_timer = 1; 6596 btconfig.kill_ack = htole32(0xffff0000); 6597 btconfig.kill_cts = htole32(0xffff0000); 6598 btconfig.sample_time = 2; 6599 btconfig.bt3_t2_timer = 0xc; 6600 6601 for (i = 0; i < 12; i++) 6602 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6603 btconfig.valid = htole16(0xff); 6604 btconfig.prio_boost = 0xf0; 6605 DPRINTF(sc, IWN_DEBUG_RESET, 6606 "%s: configuring advanced bluetooth coexistence," 6607 " flags : 0x%x\n", 6608 __func__, 6609 flags); 6610 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6611 sizeof(btconfig), 1); 6612 } 6613 6614 if (error != 0) 6615 return error; 6616 6617 memset(&btprio, 0, sizeof btprio); 6618 btprio.calib_init1 = 0x6; 6619 btprio.calib_init2 = 0x7; 6620 btprio.calib_periodic_low1 = 0x2; 6621 btprio.calib_periodic_low2 = 0x3; 6622 btprio.calib_periodic_high1 = 0x4; 6623 btprio.calib_periodic_high2 = 0x5; 6624 btprio.dtim = 0x6; 6625 btprio.scan52 = 0x8; 6626 btprio.scan24 = 0xa; 6627 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6628 1); 6629 if (error != 0) 6630 return error; 6631 6632 /* Force BT state machine change. */ 6633 memset(&btprot, 0, sizeof btprot); 6634 btprot.open = 1; 6635 btprot.type = 1; 6636 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6637 if (error != 0) 6638 return error; 6639 btprot.open = 0; 6640 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6641 } 6642 6643 static int 6644 iwn5000_runtime_calib(struct iwn_softc *sc) 6645 { 6646 struct iwn5000_calib_config cmd; 6647 6648 memset(&cmd, 0, sizeof cmd); 6649 cmd.ucode.once.enable = 0xffffffff; 6650 cmd.ucode.once.start = IWN5000_CALIB_DC; 6651 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6652 "%s: configuring runtime calibration\n", __func__); 6653 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6654 } 6655 6656 static uint32_t 6657 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) 6658 { 6659 struct ieee80211com *ic = &sc->sc_ic; 6660 uint32_t htflags = 0; 6661 6662 if (! IEEE80211_IS_CHAN_HT(c)) 6663 return (0); 6664 6665 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 6666 6667 if (IEEE80211_IS_CHAN_HT40(c)) { 6668 switch (ic->ic_curhtprotmode) { 6669 case IEEE80211_HTINFO_OPMODE_HT20PR: 6670 htflags |= IWN_RXON_HT_MODEPURE40; 6671 break; 6672 default: 6673 htflags |= IWN_RXON_HT_MODEMIXED; 6674 break; 6675 } 6676 } 6677 if (IEEE80211_IS_CHAN_HT40D(c)) 6678 htflags |= IWN_RXON_HT_HT40MINUS; 6679 6680 return (htflags); 6681 } 6682 6683 static int 6684 iwn_check_bss_filter(struct iwn_softc *sc) 6685 { 6686 return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0); 6687 } 6688 6689 static int 6690 iwn4965_rxon_assoc(struct iwn_softc *sc, int async) 6691 { 6692 struct iwn4965_rxon_assoc cmd; 6693 struct iwn_rxon *rxon = sc->rxon; 6694 6695 cmd.flags = rxon->flags; 6696 cmd.filter = rxon->filter; 6697 cmd.ofdm_mask = rxon->ofdm_mask; 6698 cmd.cck_mask = rxon->cck_mask; 6699 cmd.ht_single_mask = rxon->ht_single_mask; 6700 cmd.ht_dual_mask = rxon->ht_dual_mask; 6701 cmd.rxchain = rxon->rxchain; 6702 cmd.reserved = 0; 6703 6704 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6705 } 6706 6707 static int 6708 iwn5000_rxon_assoc(struct iwn_softc *sc, int async) 6709 { 6710 struct iwn5000_rxon_assoc cmd; 6711 struct iwn_rxon *rxon = sc->rxon; 6712 6713 cmd.flags = rxon->flags; 6714 cmd.filter = rxon->filter; 6715 cmd.ofdm_mask = rxon->ofdm_mask; 6716 cmd.cck_mask = rxon->cck_mask; 6717 cmd.reserved1 = 0; 6718 cmd.ht_single_mask = rxon->ht_single_mask; 6719 cmd.ht_dual_mask = rxon->ht_dual_mask; 6720 cmd.ht_triple_mask = rxon->ht_triple_mask; 6721 cmd.reserved2 = 0; 6722 cmd.rxchain = rxon->rxchain; 6723 cmd.acquisition = rxon->acquisition; 6724 cmd.reserved3 = 0; 6725 6726 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6727 } 6728 6729 static int 6730 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async) 6731 { 6732 struct iwn_ops *ops = &sc->ops; 6733 int error; 6734 6735 IWN_LOCK_ASSERT(sc); 6736 6737 if (assoc && iwn_check_bss_filter(sc) != 0) { 6738 error = ops->rxon_assoc(sc, async); 6739 if (error != 0) { 6740 device_printf(sc->sc_dev, 6741 "%s: RXON_ASSOC command failed, error %d\n", 6742 __func__, error); 6743 return (error); 6744 } 6745 } else { 6746 if (sc->sc_is_scanning) 6747 device_printf(sc->sc_dev, 6748 "%s: is_scanning set, before RXON\n", 6749 __func__); 6750 6751 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async); 6752 if (error != 0) { 6753 device_printf(sc->sc_dev, 6754 "%s: RXON command failed, error %d\n", 6755 __func__, error); 6756 return (error); 6757 } 6758 6759 /* 6760 * Reconfiguring RXON clears the firmware nodes table so 6761 * we must add the broadcast node again. 6762 */ 6763 if (iwn_check_bss_filter(sc) == 0 && 6764 (error = iwn_add_broadcast_node(sc, async)) != 0) { 6765 device_printf(sc->sc_dev, 6766 "%s: could not add broadcast node, error %d\n", 6767 __func__, error); 6768 return (error); 6769 } 6770 } 6771 6772 /* Configuration has changed, set TX power accordingly. */ 6773 if ((error = ops->set_txpower(sc, async)) != 0) { 6774 device_printf(sc->sc_dev, 6775 "%s: could not set TX power, error %d\n", 6776 __func__, error); 6777 return (error); 6778 } 6779 6780 return (0); 6781 } 6782 6783 static int 6784 iwn_config(struct iwn_softc *sc) 6785 { 6786 struct ieee80211com *ic = &sc->sc_ic; 6787 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6788 const uint8_t *macaddr; 6789 uint32_t txmask; 6790 uint16_t rxchain; 6791 int error; 6792 6793 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6794 6795 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6796 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6797 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6798 " exclusive each together. Review NIC config file. Conf" 6799 " : 0x%08x Flags : 0x%08x \n", __func__, 6800 sc->base_params->calib_need, 6801 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6802 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6803 return (EINVAL); 6804 } 6805 6806 /* Compute temperature calib if needed. Will be send by send calib */ 6807 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6808 error = iwn5000_temp_offset_calib(sc); 6809 if (error != 0) { 6810 device_printf(sc->sc_dev, 6811 "%s: could not set temperature offset\n", __func__); 6812 return (error); 6813 } 6814 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6815 error = iwn5000_temp_offset_calibv2(sc); 6816 if (error != 0) { 6817 device_printf(sc->sc_dev, 6818 "%s: could not compute temperature offset v2\n", 6819 __func__); 6820 return (error); 6821 } 6822 } 6823 6824 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6825 /* Configure runtime DC calibration. */ 6826 error = iwn5000_runtime_calib(sc); 6827 if (error != 0) { 6828 device_printf(sc->sc_dev, 6829 "%s: could not configure runtime calibration\n", 6830 __func__); 6831 return error; 6832 } 6833 } 6834 6835 /* Configure valid TX chains for >=5000 Series. */ 6836 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6837 IWN_UCODE_API(sc->ucode_rev) > 1) { 6838 txmask = htole32(sc->txchainmask); 6839 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6840 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6841 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6842 sizeof txmask, 0); 6843 if (error != 0) { 6844 device_printf(sc->sc_dev, 6845 "%s: could not configure valid TX chains, " 6846 "error %d\n", __func__, error); 6847 return error; 6848 } 6849 } 6850 6851 /* Configure bluetooth coexistence. */ 6852 error = 0; 6853 6854 /* Configure bluetooth coexistence if needed. */ 6855 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6856 error = iwn_send_advanced_btcoex(sc); 6857 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6858 error = iwn_send_btcoex(sc); 6859 6860 if (error != 0) { 6861 device_printf(sc->sc_dev, 6862 "%s: could not configure bluetooth coexistence, error %d\n", 6863 __func__, error); 6864 return error; 6865 } 6866 6867 /* Set mode, channel, RX filter and enable RX. */ 6868 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6869 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6870 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6871 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6872 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6873 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6874 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6875 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6876 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6877 6878 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6879 switch (ic->ic_opmode) { 6880 case IEEE80211_M_STA: 6881 sc->rxon->mode = IWN_MODE_STA; 6882 break; 6883 case IEEE80211_M_MONITOR: 6884 sc->rxon->mode = IWN_MODE_MONITOR; 6885 break; 6886 default: 6887 /* Should not get there. */ 6888 break; 6889 } 6890 iwn_set_promisc(sc); 6891 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6892 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6893 sc->rxon->ht_single_mask = 0xff; 6894 sc->rxon->ht_dual_mask = 0xff; 6895 sc->rxon->ht_triple_mask = 0xff; 6896 /* 6897 * In active association mode, ensure that 6898 * all the receive chains are enabled. 6899 * 6900 * Since we're not yet doing SMPS, don't allow the 6901 * number of idle RX chains to be less than the active 6902 * number. 6903 */ 6904 rxchain = 6905 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6906 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6907 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6908 sc->rxon->rxchain = htole16(rxchain); 6909 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6910 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6911 __func__, 6912 sc->rxchainmask, 6913 sc->nrxchains); 6914 6915 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 6916 6917 DPRINTF(sc, IWN_DEBUG_RESET, 6918 "%s: setting configuration; flags=0x%08x\n", 6919 __func__, le32toh(sc->rxon->flags)); 6920 if ((error = iwn_send_rxon(sc, 0, 0)) != 0) { 6921 device_printf(sc->sc_dev, "%s: could not send RXON\n", 6922 __func__); 6923 return error; 6924 } 6925 6926 if ((error = iwn_set_critical_temp(sc)) != 0) { 6927 device_printf(sc->sc_dev, 6928 "%s: could not set critical temperature\n", __func__); 6929 return error; 6930 } 6931 6932 /* Set power saving level to CAM during initialization. */ 6933 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6934 device_printf(sc->sc_dev, 6935 "%s: could not set power saving level\n", __func__); 6936 return error; 6937 } 6938 6939 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6940 6941 return 0; 6942 } 6943 6944 static uint16_t 6945 iwn_get_active_dwell_time(struct iwn_softc *sc, 6946 struct ieee80211_channel *c, uint8_t n_probes) 6947 { 6948 /* No channel? Default to 2GHz settings */ 6949 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6950 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6951 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6952 } 6953 6954 /* 5GHz dwell time */ 6955 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6956 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6957 } 6958 6959 /* 6960 * Limit the total dwell time to 85% of the beacon interval. 6961 * 6962 * Returns the dwell time in milliseconds. 6963 */ 6964 static uint16_t 6965 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6966 { 6967 struct ieee80211com *ic = &sc->sc_ic; 6968 struct ieee80211vap *vap = NULL; 6969 int bintval = 0; 6970 6971 /* bintval is in TU (1.024mS) */ 6972 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6973 vap = TAILQ_FIRST(&ic->ic_vaps); 6974 bintval = vap->iv_bss->ni_intval; 6975 } 6976 6977 /* 6978 * If it's non-zero, we should calculate the minimum of 6979 * it and the DWELL_BASE. 6980 * 6981 * XXX Yes, the math should take into account that bintval 6982 * is 1.024mS, not 1mS.. 6983 */ 6984 if (bintval > 0) { 6985 DPRINTF(sc, IWN_DEBUG_SCAN, 6986 "%s: bintval=%d\n", 6987 __func__, 6988 bintval); 6989 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6990 } 6991 6992 /* No association context? Default */ 6993 return (IWN_PASSIVE_DWELL_BASE); 6994 } 6995 6996 static uint16_t 6997 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6998 { 6999 uint16_t passive; 7000 7001 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 7002 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 7003 } else { 7004 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 7005 } 7006 7007 /* Clamp to the beacon interval if we're associated */ 7008 return (iwn_limit_dwell(sc, passive)); 7009 } 7010 7011 static int 7012 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 7013 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 7014 { 7015 struct ieee80211com *ic = &sc->sc_ic; 7016 struct ieee80211_node *ni = vap->iv_bss; 7017 struct iwn_scan_hdr *hdr; 7018 struct iwn_cmd_data *tx; 7019 struct iwn_scan_essid *essid; 7020 struct iwn_scan_chan *chan; 7021 struct ieee80211_frame *wh; 7022 struct ieee80211_rateset *rs; 7023 uint8_t *buf, *frm; 7024 uint16_t rxchain; 7025 uint8_t txant; 7026 int buflen, error; 7027 int is_active; 7028 uint16_t dwell_active, dwell_passive; 7029 uint32_t extra, scan_service_time; 7030 7031 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7032 7033 /* 7034 * We are absolutely not allowed to send a scan command when another 7035 * scan command is pending. 7036 */ 7037 if (sc->sc_is_scanning) { 7038 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 7039 __func__); 7040 return (EAGAIN); 7041 } 7042 7043 /* Assign the scan channel */ 7044 c = ic->ic_curchan; 7045 7046 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7047 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 7048 if (buf == NULL) { 7049 device_printf(sc->sc_dev, 7050 "%s: could not allocate buffer for scan command\n", 7051 __func__); 7052 return ENOMEM; 7053 } 7054 hdr = (struct iwn_scan_hdr *)buf; 7055 /* 7056 * Move to the next channel if no frames are received within 10ms 7057 * after sending the probe request. 7058 */ 7059 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 7060 hdr->quiet_threshold = htole16(1); /* min # of packets */ 7061 /* 7062 * Max needs to be greater than active and passive and quiet! 7063 * It's also in microseconds! 7064 */ 7065 hdr->max_svc = htole32(250 * 1024); 7066 7067 /* 7068 * Reset scan: interval=100 7069 * Normal scan: interval=becaon interval 7070 * suspend_time: 100 (TU) 7071 * 7072 */ 7073 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 7074 //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 7075 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 7076 hdr->pause_svc = htole32(scan_service_time); 7077 7078 /* Select antennas for scanning. */ 7079 rxchain = 7080 IWN_RXCHAIN_VALID(sc->rxchainmask) | 7081 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 7082 IWN_RXCHAIN_DRIVER_FORCE; 7083 if (IEEE80211_IS_CHAN_A(c) && 7084 sc->hw_type == IWN_HW_REV_TYPE_4965) { 7085 /* Ant A must be avoided in 5GHz because of an HW bug. */ 7086 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 7087 } else /* Use all available RX antennas. */ 7088 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 7089 hdr->rxchain = htole16(rxchain); 7090 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 7091 7092 tx = (struct iwn_cmd_data *)(hdr + 1); 7093 tx->flags = htole32(IWN_TX_AUTO_SEQ); 7094 tx->id = sc->broadcast_id; 7095 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 7096 7097 if (IEEE80211_IS_CHAN_5GHZ(c)) { 7098 /* Send probe requests at 6Mbps. */ 7099 tx->rate = htole32(0xd); 7100 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 7101 } else { 7102 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 7103 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 7104 sc->rxon->associd && sc->rxon->chan > 14) 7105 tx->rate = htole32(0xd); 7106 else { 7107 /* Send probe requests at 1Mbps. */ 7108 tx->rate = htole32(10 | IWN_RFLAG_CCK); 7109 } 7110 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 7111 } 7112 /* Use the first valid TX antenna. */ 7113 txant = IWN_LSB(sc->txchainmask); 7114 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 7115 7116 /* 7117 * Only do active scanning if we're announcing a probe request 7118 * for a given SSID (or more, if we ever add it to the driver.) 7119 */ 7120 is_active = 0; 7121 7122 /* 7123 * If we're scanning for a specific SSID, add it to the command. 7124 * 7125 * XXX maybe look at adding support for scanning multiple SSIDs? 7126 */ 7127 essid = (struct iwn_scan_essid *)(tx + 1); 7128 if (ss != NULL) { 7129 if (ss->ss_ssid[0].len != 0) { 7130 essid[0].id = IEEE80211_ELEMID_SSID; 7131 essid[0].len = ss->ss_ssid[0].len; 7132 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 7133 } 7134 7135 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 7136 __func__, 7137 ss->ss_ssid[0].len, 7138 ss->ss_ssid[0].len, 7139 ss->ss_ssid[0].ssid); 7140 7141 if (ss->ss_nssid > 0) 7142 is_active = 1; 7143 } 7144 7145 /* 7146 * Build a probe request frame. Most of the following code is a 7147 * copy & paste of what is done in net80211. 7148 */ 7149 wh = (struct ieee80211_frame *)(essid + 20); 7150 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 7151 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 7152 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 7153 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); 7154 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); 7155 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); 7156 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 7157 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 7158 7159 frm = (uint8_t *)(wh + 1); 7160 frm = ieee80211_add_ssid(frm, NULL, 0); 7161 frm = ieee80211_add_rates(frm, rs); 7162 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 7163 frm = ieee80211_add_xrates(frm, rs); 7164 if (ic->ic_htcaps & IEEE80211_HTC_HT) 7165 frm = ieee80211_add_htcap(frm, ni); 7166 7167 /* Set length of probe request. */ 7168 tx->len = htole16(frm - (uint8_t *)wh); 7169 7170 /* 7171 * If active scanning is requested but a certain channel is 7172 * marked passive, we can do active scanning if we detect 7173 * transmissions. 7174 * 7175 * There is an issue with some firmware versions that triggers 7176 * a sysassert on a "good CRC threshold" of zero (== disabled), 7177 * on a radar channel even though this means that we should NOT 7178 * send probes. 7179 * 7180 * The "good CRC threshold" is the number of frames that we 7181 * need to receive during our dwell time on a channel before 7182 * sending out probes -- setting this to a huge value will 7183 * mean we never reach it, but at the same time work around 7184 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 7185 * here instead of IWL_GOOD_CRC_TH_DISABLED. 7186 * 7187 * This was fixed in later versions along with some other 7188 * scan changes, and the threshold behaves as a flag in those 7189 * versions. 7190 */ 7191 7192 /* 7193 * If we're doing active scanning, set the crc_threshold 7194 * to a suitable value. This is different to active veruss 7195 * passive scanning depending upon the channel flags; the 7196 * firmware will obey that particular check for us. 7197 */ 7198 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 7199 hdr->crc_threshold = is_active ? 7200 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 7201 else 7202 hdr->crc_threshold = is_active ? 7203 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 7204 7205 chan = (struct iwn_scan_chan *)frm; 7206 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 7207 chan->flags = 0; 7208 if (ss->ss_nssid > 0) 7209 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 7210 chan->dsp_gain = 0x6e; 7211 7212 /* 7213 * Set the passive/active flag depending upon the channel mode. 7214 * XXX TODO: take the is_active flag into account as well? 7215 */ 7216 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 7217 chan->flags |= htole32(IWN_CHAN_PASSIVE); 7218 else 7219 chan->flags |= htole32(IWN_CHAN_ACTIVE); 7220 7221 /* 7222 * Calculate the active/passive dwell times. 7223 */ 7224 7225 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 7226 dwell_passive = iwn_get_passive_dwell_time(sc, c); 7227 7228 /* Make sure they're valid */ 7229 if (dwell_passive <= dwell_active) 7230 dwell_passive = dwell_active + 1; 7231 7232 chan->active = htole16(dwell_active); 7233 chan->passive = htole16(dwell_passive); 7234 7235 if (IEEE80211_IS_CHAN_5GHZ(c)) 7236 chan->rf_gain = 0x3b; 7237 else 7238 chan->rf_gain = 0x28; 7239 7240 DPRINTF(sc, IWN_DEBUG_STATE, 7241 "%s: chan %u flags 0x%x rf_gain 0x%x " 7242 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 7243 "isactive=%d numssid=%d\n", __func__, 7244 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 7245 dwell_active, dwell_passive, scan_service_time, 7246 hdr->crc_threshold, is_active, ss->ss_nssid); 7247 7248 hdr->nchan++; 7249 chan++; 7250 buflen = (uint8_t *)chan - buf; 7251 hdr->len = htole16(buflen); 7252 7253 if (sc->sc_is_scanning) { 7254 device_printf(sc->sc_dev, 7255 "%s: called with is_scanning set!\n", 7256 __func__); 7257 } 7258 sc->sc_is_scanning = 1; 7259 7260 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 7261 hdr->nchan); 7262 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 7263 free(buf, M_DEVBUF); 7264 if (error == 0) 7265 callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc); 7266 7267 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7268 7269 return error; 7270 } 7271 7272 static int 7273 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 7274 { 7275 struct ieee80211com *ic = &sc->sc_ic; 7276 struct ieee80211_node *ni = vap->iv_bss; 7277 int error; 7278 7279 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7280 7281 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7282 /* Update adapter configuration. */ 7283 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7284 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7285 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7286 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7287 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7288 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7289 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7290 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7291 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7292 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7293 sc->rxon->cck_mask = 0; 7294 sc->rxon->ofdm_mask = 0x15; 7295 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7296 sc->rxon->cck_mask = 0x03; 7297 sc->rxon->ofdm_mask = 0; 7298 } else { 7299 /* Assume 802.11b/g. */ 7300 sc->rxon->cck_mask = 0x03; 7301 sc->rxon->ofdm_mask = 0x15; 7302 } 7303 7304 /* try HT */ 7305 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 7306 7307 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7308 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7309 sc->rxon->ofdm_mask); 7310 7311 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7312 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7313 __func__); 7314 return (error); 7315 } 7316 7317 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7318 7319 return (0); 7320 } 7321 7322 static int 7323 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7324 { 7325 struct iwn_ops *ops = &sc->ops; 7326 struct ieee80211com *ic = &sc->sc_ic; 7327 struct ieee80211_node *ni = vap->iv_bss; 7328 struct iwn_node_info node; 7329 int error; 7330 7331 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7332 7333 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7334 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7335 /* Link LED blinks while monitoring. */ 7336 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7337 return 0; 7338 } 7339 if ((error = iwn_set_timing(sc, ni)) != 0) { 7340 device_printf(sc->sc_dev, 7341 "%s: could not set timing, error %d\n", __func__, error); 7342 return error; 7343 } 7344 7345 /* Update adapter configuration. */ 7346 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7347 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7348 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7349 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7350 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7351 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7352 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7353 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7354 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7355 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7356 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7357 sc->rxon->cck_mask = 0; 7358 sc->rxon->ofdm_mask = 0x15; 7359 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7360 sc->rxon->cck_mask = 0x03; 7361 sc->rxon->ofdm_mask = 0; 7362 } else { 7363 /* Assume 802.11b/g. */ 7364 sc->rxon->cck_mask = 0x0f; 7365 sc->rxon->ofdm_mask = 0x15; 7366 } 7367 /* try HT */ 7368 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); 7369 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7370 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7371 sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); 7372 7373 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7374 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7375 __func__); 7376 return error; 7377 } 7378 7379 /* Fake a join to initialize the TX rate. */ 7380 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7381 iwn_newassoc(ni, 1); 7382 7383 /* Add BSS node. */ 7384 memset(&node, 0, sizeof node); 7385 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7386 node.id = IWN_ID_BSS; 7387 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7388 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7389 case IEEE80211_HTCAP_SMPS_ENA: 7390 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7391 break; 7392 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7393 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7394 break; 7395 } 7396 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7397 IWN_AMDPU_DENSITY(5)); /* 4us */ 7398 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7399 node.htflags |= htole32(IWN_NODE_HT40); 7400 } 7401 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7402 error = ops->add_node(sc, &node, 1); 7403 if (error != 0) { 7404 device_printf(sc->sc_dev, 7405 "%s: could not add BSS node, error %d\n", __func__, error); 7406 return error; 7407 } 7408 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7409 __func__, node.id); 7410 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7411 device_printf(sc->sc_dev, 7412 "%s: could not setup link quality for node %d, error %d\n", 7413 __func__, node.id, error); 7414 return error; 7415 } 7416 7417 if ((error = iwn_init_sensitivity(sc)) != 0) { 7418 device_printf(sc->sc_dev, 7419 "%s: could not set sensitivity, error %d\n", __func__, 7420 error); 7421 return error; 7422 } 7423 /* Start periodic calibration timer. */ 7424 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7425 sc->calib_cnt = 0; 7426 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7427 sc); 7428 7429 /* Link LED always on while associated. */ 7430 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7431 7432 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7433 7434 return 0; 7435 } 7436 7437 /* 7438 * This function is called by upper layer when an ADDBA request is received 7439 * from another STA and before the ADDBA response is sent. 7440 */ 7441 static int 7442 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7443 int baparamset, int batimeout, int baseqctl) 7444 { 7445 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 7446 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7447 struct iwn_ops *ops = &sc->ops; 7448 struct iwn_node *wn = (void *)ni; 7449 struct iwn_node_info node; 7450 uint16_t ssn; 7451 uint8_t tid; 7452 int error; 7453 7454 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7455 7456 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 7457 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 7458 7459 if (wn->id == IWN_ID_UNDEFINED) 7460 return (ENOENT); 7461 7462 memset(&node, 0, sizeof node); 7463 node.id = wn->id; 7464 node.control = IWN_NODE_UPDATE; 7465 node.flags = IWN_FLAG_SET_ADDBA; 7466 node.addba_tid = tid; 7467 node.addba_ssn = htole16(ssn); 7468 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7469 wn->id, tid, ssn); 7470 error = ops->add_node(sc, &node, 1); 7471 if (error != 0) 7472 return error; 7473 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7474 #undef MS 7475 } 7476 7477 /* 7478 * This function is called by upper layer on teardown of an HT-immediate 7479 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7480 */ 7481 static void 7482 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7483 { 7484 struct ieee80211com *ic = ni->ni_ic; 7485 struct iwn_softc *sc = ic->ic_softc; 7486 struct iwn_ops *ops = &sc->ops; 7487 struct iwn_node *wn = (void *)ni; 7488 struct iwn_node_info node; 7489 uint8_t tid; 7490 7491 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7492 7493 if (wn->id == IWN_ID_UNDEFINED) 7494 goto end; 7495 7496 /* XXX: tid as an argument */ 7497 for (tid = 0; tid < WME_NUM_TID; tid++) { 7498 if (&ni->ni_rx_ampdu[tid] == rap) 7499 break; 7500 } 7501 7502 memset(&node, 0, sizeof node); 7503 node.id = wn->id; 7504 node.control = IWN_NODE_UPDATE; 7505 node.flags = IWN_FLAG_SET_DELBA; 7506 node.delba_tid = tid; 7507 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7508 (void)ops->add_node(sc, &node, 1); 7509 end: 7510 sc->sc_ampdu_rx_stop(ni, rap); 7511 } 7512 7513 static int 7514 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7515 int dialogtoken, int baparamset, int batimeout) 7516 { 7517 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7518 int qid; 7519 7520 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7521 7522 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7523 if (sc->qid2tap[qid] == NULL) 7524 break; 7525 } 7526 if (qid == sc->ntxqs) { 7527 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 7528 __func__); 7529 return 0; 7530 } 7531 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7532 if (tap->txa_private == NULL) { 7533 device_printf(sc->sc_dev, 7534 "%s: failed to alloc TX aggregation structure\n", __func__); 7535 return 0; 7536 } 7537 sc->qid2tap[qid] = tap; 7538 *(int *)tap->txa_private = qid; 7539 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7540 batimeout); 7541 } 7542 7543 static int 7544 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7545 int code, int baparamset, int batimeout) 7546 { 7547 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7548 int qid = *(int *)tap->txa_private; 7549 uint8_t tid = tap->txa_tid; 7550 int ret; 7551 7552 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7553 7554 if (code == IEEE80211_STATUS_SUCCESS) { 7555 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7556 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7557 if (ret != 1) 7558 return ret; 7559 } else { 7560 sc->qid2tap[qid] = NULL; 7561 free(tap->txa_private, M_DEVBUF); 7562 tap->txa_private = NULL; 7563 } 7564 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7565 } 7566 7567 /* 7568 * This function is called by upper layer when an ADDBA response is received 7569 * from another STA. 7570 */ 7571 static int 7572 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7573 uint8_t tid) 7574 { 7575 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7576 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7577 struct iwn_ops *ops = &sc->ops; 7578 struct iwn_node *wn = (void *)ni; 7579 struct iwn_node_info node; 7580 int error, qid; 7581 7582 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7583 7584 if (wn->id == IWN_ID_UNDEFINED) 7585 return (0); 7586 7587 /* Enable TX for the specified RA/TID. */ 7588 wn->disable_tid &= ~(1 << tid); 7589 memset(&node, 0, sizeof node); 7590 node.id = wn->id; 7591 node.control = IWN_NODE_UPDATE; 7592 node.flags = IWN_FLAG_SET_DISABLE_TID; 7593 node.disable_tid = htole16(wn->disable_tid); 7594 error = ops->add_node(sc, &node, 1); 7595 if (error != 0) 7596 return 0; 7597 7598 if ((error = iwn_nic_lock(sc)) != 0) 7599 return 0; 7600 qid = *(int *)tap->txa_private; 7601 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7602 __func__, wn->id, tid, tap->txa_start, qid); 7603 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7604 iwn_nic_unlock(sc); 7605 7606 iwn_set_link_quality(sc, ni); 7607 return 1; 7608 } 7609 7610 static void 7611 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7612 { 7613 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7614 struct iwn_ops *ops = &sc->ops; 7615 uint8_t tid = tap->txa_tid; 7616 int qid; 7617 7618 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7619 7620 sc->sc_addba_stop(ni, tap); 7621 7622 if (tap->txa_private == NULL) 7623 return; 7624 7625 qid = *(int *)tap->txa_private; 7626 if (sc->txq[qid].queued != 0) 7627 return; 7628 if (iwn_nic_lock(sc) != 0) 7629 return; 7630 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7631 iwn_nic_unlock(sc); 7632 sc->qid2tap[qid] = NULL; 7633 free(tap->txa_private, M_DEVBUF); 7634 tap->txa_private = NULL; 7635 } 7636 7637 static void 7638 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7639 int qid, uint8_t tid, uint16_t ssn) 7640 { 7641 struct iwn_node *wn = (void *)ni; 7642 7643 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7644 7645 /* Stop TX scheduler while we're changing its configuration. */ 7646 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7647 IWN4965_TXQ_STATUS_CHGACT); 7648 7649 /* Assign RA/TID translation to the queue. */ 7650 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7651 wn->id << 4 | tid); 7652 7653 /* Enable chain-building mode for the queue. */ 7654 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7655 7656 /* Set starting sequence number from the ADDBA request. */ 7657 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7658 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7659 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7660 7661 /* Set scheduler window size. */ 7662 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7663 IWN_SCHED_WINSZ); 7664 /* Set scheduler frame limit. */ 7665 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7666 IWN_SCHED_LIMIT << 16); 7667 7668 /* Enable interrupts for the queue. */ 7669 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7670 7671 /* Mark the queue as active. */ 7672 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7673 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7674 iwn_tid2fifo[tid] << 1); 7675 } 7676 7677 static void 7678 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7679 { 7680 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7681 7682 /* Stop TX scheduler while we're changing its configuration. */ 7683 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7684 IWN4965_TXQ_STATUS_CHGACT); 7685 7686 /* Set starting sequence number from the ADDBA request. */ 7687 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7688 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7689 7690 /* Disable interrupts for the queue. */ 7691 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7692 7693 /* Mark the queue as inactive. */ 7694 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7695 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7696 } 7697 7698 static void 7699 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7700 int qid, uint8_t tid, uint16_t ssn) 7701 { 7702 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7703 7704 struct iwn_node *wn = (void *)ni; 7705 7706 /* Stop TX scheduler while we're changing its configuration. */ 7707 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7708 IWN5000_TXQ_STATUS_CHGACT); 7709 7710 /* Assign RA/TID translation to the queue. */ 7711 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7712 wn->id << 4 | tid); 7713 7714 /* Enable chain-building mode for the queue. */ 7715 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7716 7717 /* Enable aggregation for the queue. */ 7718 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7719 7720 /* Set starting sequence number from the ADDBA request. */ 7721 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7722 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7723 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7724 7725 /* Set scheduler window size and frame limit. */ 7726 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7727 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7728 7729 /* Enable interrupts for the queue. */ 7730 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7731 7732 /* Mark the queue as active. */ 7733 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7734 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7735 } 7736 7737 static void 7738 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7739 { 7740 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7741 7742 /* Stop TX scheduler while we're changing its configuration. */ 7743 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7744 IWN5000_TXQ_STATUS_CHGACT); 7745 7746 /* Disable aggregation for the queue. */ 7747 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7748 7749 /* Set starting sequence number from the ADDBA request. */ 7750 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7751 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7752 7753 /* Disable interrupts for the queue. */ 7754 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7755 7756 /* Mark the queue as inactive. */ 7757 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7758 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7759 } 7760 7761 /* 7762 * Query calibration tables from the initialization firmware. We do this 7763 * only once at first boot. Called from a process context. 7764 */ 7765 static int 7766 iwn5000_query_calibration(struct iwn_softc *sc) 7767 { 7768 struct iwn5000_calib_config cmd; 7769 int error; 7770 7771 memset(&cmd, 0, sizeof cmd); 7772 cmd.ucode.once.enable = htole32(0xffffffff); 7773 cmd.ucode.once.start = htole32(0xffffffff); 7774 cmd.ucode.once.send = htole32(0xffffffff); 7775 cmd.ucode.flags = htole32(0xffffffff); 7776 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7777 __func__); 7778 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7779 if (error != 0) 7780 return error; 7781 7782 /* Wait at most two seconds for calibration to complete. */ 7783 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7784 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7785 return error; 7786 } 7787 7788 /* 7789 * Send calibration results to the runtime firmware. These results were 7790 * obtained on first boot from the initialization firmware. 7791 */ 7792 static int 7793 iwn5000_send_calibration(struct iwn_softc *sc) 7794 { 7795 int idx, error; 7796 7797 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7798 if (!(sc->base_params->calib_need & (1<<idx))) { 7799 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7800 "No need of calib %d\n", 7801 idx); 7802 continue; /* no need for this calib */ 7803 } 7804 if (sc->calibcmd[idx].buf == NULL) { 7805 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7806 "Need calib idx : %d but no available data\n", 7807 idx); 7808 continue; 7809 } 7810 7811 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7812 "send calibration result idx=%d len=%d\n", idx, 7813 sc->calibcmd[idx].len); 7814 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7815 sc->calibcmd[idx].len, 0); 7816 if (error != 0) { 7817 device_printf(sc->sc_dev, 7818 "%s: could not send calibration result, error %d\n", 7819 __func__, error); 7820 return error; 7821 } 7822 } 7823 return 0; 7824 } 7825 7826 static int 7827 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7828 { 7829 struct iwn5000_wimax_coex wimax; 7830 7831 #if 0 7832 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7833 /* Enable WiMAX coexistence for combo adapters. */ 7834 wimax.flags = 7835 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7836 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7837 IWN_WIMAX_COEX_STA_TABLE_VALID | 7838 IWN_WIMAX_COEX_ENABLE; 7839 memcpy(wimax.events, iwn6050_wimax_events, 7840 sizeof iwn6050_wimax_events); 7841 } else 7842 #endif 7843 { 7844 /* Disable WiMAX coexistence. */ 7845 wimax.flags = 0; 7846 memset(wimax.events, 0, sizeof wimax.events); 7847 } 7848 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7849 __func__); 7850 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7851 } 7852 7853 static int 7854 iwn5000_crystal_calib(struct iwn_softc *sc) 7855 { 7856 struct iwn5000_phy_calib_crystal cmd; 7857 7858 memset(&cmd, 0, sizeof cmd); 7859 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7860 cmd.ngroups = 1; 7861 cmd.isvalid = 1; 7862 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7863 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7864 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7865 cmd.cap_pin[0], cmd.cap_pin[1]); 7866 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7867 } 7868 7869 static int 7870 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7871 { 7872 struct iwn5000_phy_calib_temp_offset cmd; 7873 7874 memset(&cmd, 0, sizeof cmd); 7875 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7876 cmd.ngroups = 1; 7877 cmd.isvalid = 1; 7878 if (sc->eeprom_temp != 0) 7879 cmd.offset = htole16(sc->eeprom_temp); 7880 else 7881 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7882 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7883 le16toh(cmd.offset)); 7884 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7885 } 7886 7887 static int 7888 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7889 { 7890 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7891 7892 memset(&cmd, 0, sizeof cmd); 7893 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7894 cmd.ngroups = 1; 7895 cmd.isvalid = 1; 7896 if (sc->eeprom_temp != 0) { 7897 cmd.offset_low = htole16(sc->eeprom_temp); 7898 cmd.offset_high = htole16(sc->eeprom_temp_high); 7899 } else { 7900 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7901 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7902 } 7903 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7904 7905 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7906 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7907 le16toh(cmd.offset_low), 7908 le16toh(cmd.offset_high), 7909 le16toh(cmd.burnt_voltage_ref)); 7910 7911 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7912 } 7913 7914 /* 7915 * This function is called after the runtime firmware notifies us of its 7916 * readiness (called in a process context). 7917 */ 7918 static int 7919 iwn4965_post_alive(struct iwn_softc *sc) 7920 { 7921 int error, qid; 7922 7923 if ((error = iwn_nic_lock(sc)) != 0) 7924 return error; 7925 7926 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7927 7928 /* Clear TX scheduler state in SRAM. */ 7929 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7930 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7931 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7932 7933 /* Set physical address of TX scheduler rings (1KB aligned). */ 7934 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7935 7936 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7937 7938 /* Disable chain mode for all our 16 queues. */ 7939 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7940 7941 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7942 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7943 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7944 7945 /* Set scheduler window size. */ 7946 iwn_mem_write(sc, sc->sched_base + 7947 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7948 /* Set scheduler frame limit. */ 7949 iwn_mem_write(sc, sc->sched_base + 7950 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7951 IWN_SCHED_LIMIT << 16); 7952 } 7953 7954 /* Enable interrupts for all our 16 queues. */ 7955 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7956 /* Identify TX FIFO rings (0-7). */ 7957 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7958 7959 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7960 for (qid = 0; qid < 7; qid++) { 7961 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7962 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7963 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7964 } 7965 iwn_nic_unlock(sc); 7966 return 0; 7967 } 7968 7969 /* 7970 * This function is called after the initialization or runtime firmware 7971 * notifies us of its readiness (called in a process context). 7972 */ 7973 static int 7974 iwn5000_post_alive(struct iwn_softc *sc) 7975 { 7976 int error, qid; 7977 7978 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7979 7980 /* Switch to using ICT interrupt mode. */ 7981 iwn5000_ict_reset(sc); 7982 7983 if ((error = iwn_nic_lock(sc)) != 0){ 7984 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7985 return error; 7986 } 7987 7988 /* Clear TX scheduler state in SRAM. */ 7989 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7990 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7991 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 7992 7993 /* Set physical address of TX scheduler rings (1KB aligned). */ 7994 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7995 7996 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7997 7998 /* Enable chain mode for all queues, except command queue. */ 7999 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 8000 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 8001 else 8002 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 8003 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 8004 8005 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 8006 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 8007 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 8008 8009 iwn_mem_write(sc, sc->sched_base + 8010 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 8011 /* Set scheduler window size and frame limit. */ 8012 iwn_mem_write(sc, sc->sched_base + 8013 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 8014 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 8015 } 8016 8017 /* Enable interrupts for all our 20 queues. */ 8018 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 8019 /* Identify TX FIFO rings (0-7). */ 8020 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 8021 8022 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 8023 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 8024 /* Mark TX rings as active. */ 8025 for (qid = 0; qid < 11; qid++) { 8026 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 8027 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 8028 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 8029 } 8030 } else { 8031 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 8032 for (qid = 0; qid < 7; qid++) { 8033 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 8034 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 8035 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 8036 } 8037 } 8038 iwn_nic_unlock(sc); 8039 8040 /* Configure WiMAX coexistence for combo adapters. */ 8041 error = iwn5000_send_wimax_coex(sc); 8042 if (error != 0) { 8043 device_printf(sc->sc_dev, 8044 "%s: could not configure WiMAX coexistence, error %d\n", 8045 __func__, error); 8046 return error; 8047 } 8048 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 8049 /* Perform crystal calibration. */ 8050 error = iwn5000_crystal_calib(sc); 8051 if (error != 0) { 8052 device_printf(sc->sc_dev, 8053 "%s: crystal calibration failed, error %d\n", 8054 __func__, error); 8055 return error; 8056 } 8057 } 8058 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 8059 /* Query calibration from the initialization firmware. */ 8060 if ((error = iwn5000_query_calibration(sc)) != 0) { 8061 device_printf(sc->sc_dev, 8062 "%s: could not query calibration, error %d\n", 8063 __func__, error); 8064 return error; 8065 } 8066 /* 8067 * We have the calibration results now, reboot with the 8068 * runtime firmware (call ourselves recursively!) 8069 */ 8070 iwn_hw_stop(sc); 8071 error = iwn_hw_init(sc); 8072 } else { 8073 /* Send calibration results to runtime firmware. */ 8074 error = iwn5000_send_calibration(sc); 8075 } 8076 8077 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8078 8079 return error; 8080 } 8081 8082 /* 8083 * The firmware boot code is small and is intended to be copied directly into 8084 * the NIC internal memory (no DMA transfer). 8085 */ 8086 static int 8087 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 8088 { 8089 int error, ntries; 8090 8091 size /= sizeof (uint32_t); 8092 8093 if ((error = iwn_nic_lock(sc)) != 0) 8094 return error; 8095 8096 /* Copy microcode image into NIC memory. */ 8097 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 8098 (const uint32_t *)ucode, size); 8099 8100 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 8101 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 8102 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 8103 8104 /* Start boot load now. */ 8105 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 8106 8107 /* Wait for transfer to complete. */ 8108 for (ntries = 0; ntries < 1000; ntries++) { 8109 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 8110 IWN_BSM_WR_CTRL_START)) 8111 break; 8112 DELAY(10); 8113 } 8114 if (ntries == 1000) { 8115 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8116 __func__); 8117 iwn_nic_unlock(sc); 8118 return ETIMEDOUT; 8119 } 8120 8121 /* Enable boot after power up. */ 8122 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 8123 8124 iwn_nic_unlock(sc); 8125 return 0; 8126 } 8127 8128 static int 8129 iwn4965_load_firmware(struct iwn_softc *sc) 8130 { 8131 struct iwn_fw_info *fw = &sc->fw; 8132 struct iwn_dma_info *dma = &sc->fw_dma; 8133 int error; 8134 8135 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 8136 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 8137 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8138 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8139 fw->init.text, fw->init.textsz); 8140 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8141 8142 /* Tell adapter where to find initialization sections. */ 8143 if ((error = iwn_nic_lock(sc)) != 0) 8144 return error; 8145 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8146 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 8147 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8148 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8149 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 8150 iwn_nic_unlock(sc); 8151 8152 /* Load firmware boot code. */ 8153 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 8154 if (error != 0) { 8155 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8156 __func__); 8157 return error; 8158 } 8159 /* Now press "execute". */ 8160 IWN_WRITE(sc, IWN_RESET, 0); 8161 8162 /* Wait at most one second for first alive notification. */ 8163 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8164 device_printf(sc->sc_dev, 8165 "%s: timeout waiting for adapter to initialize, error %d\n", 8166 __func__, error); 8167 return error; 8168 } 8169 8170 /* Retrieve current temperature for initial TX power calibration. */ 8171 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 8172 sc->temp = iwn4965_get_temperature(sc); 8173 8174 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 8175 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 8176 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8177 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8178 fw->main.text, fw->main.textsz); 8179 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8180 8181 /* Tell adapter where to find runtime sections. */ 8182 if ((error = iwn_nic_lock(sc)) != 0) 8183 return error; 8184 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8185 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 8186 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8187 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8188 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 8189 IWN_FW_UPDATED | fw->main.textsz); 8190 iwn_nic_unlock(sc); 8191 8192 return 0; 8193 } 8194 8195 static int 8196 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 8197 const uint8_t *section, int size) 8198 { 8199 struct iwn_dma_info *dma = &sc->fw_dma; 8200 int error; 8201 8202 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8203 8204 /* Copy firmware section into pre-allocated DMA-safe memory. */ 8205 memcpy(dma->vaddr, section, size); 8206 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8207 8208 if ((error = iwn_nic_lock(sc)) != 0) 8209 return error; 8210 8211 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8212 IWN_FH_TX_CONFIG_DMA_PAUSE); 8213 8214 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 8215 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 8216 IWN_LOADDR(dma->paddr)); 8217 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 8218 IWN_HIADDR(dma->paddr) << 28 | size); 8219 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 8220 IWN_FH_TXBUF_STATUS_TBNUM(1) | 8221 IWN_FH_TXBUF_STATUS_TBIDX(1) | 8222 IWN_FH_TXBUF_STATUS_TFBD_VALID); 8223 8224 /* Kick Flow Handler to start DMA transfer. */ 8225 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8226 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 8227 8228 iwn_nic_unlock(sc); 8229 8230 /* Wait at most five seconds for FH DMA transfer to complete. */ 8231 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 8232 } 8233 8234 static int 8235 iwn5000_load_firmware(struct iwn_softc *sc) 8236 { 8237 struct iwn_fw_part *fw; 8238 int error; 8239 8240 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8241 8242 /* Load the initialization firmware on first boot only. */ 8243 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 8244 &sc->fw.main : &sc->fw.init; 8245 8246 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 8247 fw->text, fw->textsz); 8248 if (error != 0) { 8249 device_printf(sc->sc_dev, 8250 "%s: could not load firmware %s section, error %d\n", 8251 __func__, ".text", error); 8252 return error; 8253 } 8254 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 8255 fw->data, fw->datasz); 8256 if (error != 0) { 8257 device_printf(sc->sc_dev, 8258 "%s: could not load firmware %s section, error %d\n", 8259 __func__, ".data", error); 8260 return error; 8261 } 8262 8263 /* Now press "execute". */ 8264 IWN_WRITE(sc, IWN_RESET, 0); 8265 return 0; 8266 } 8267 8268 /* 8269 * Extract text and data sections from a legacy firmware image. 8270 */ 8271 static int 8272 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8273 { 8274 const uint32_t *ptr; 8275 size_t hdrlen = 24; 8276 uint32_t rev; 8277 8278 ptr = (const uint32_t *)fw->data; 8279 rev = le32toh(*ptr++); 8280 8281 sc->ucode_rev = rev; 8282 8283 /* Check firmware API version. */ 8284 if (IWN_FW_API(rev) <= 1) { 8285 device_printf(sc->sc_dev, 8286 "%s: bad firmware, need API version >=2\n", __func__); 8287 return EINVAL; 8288 } 8289 if (IWN_FW_API(rev) >= 3) { 8290 /* Skip build number (version 2 header). */ 8291 hdrlen += 4; 8292 ptr++; 8293 } 8294 if (fw->size < hdrlen) { 8295 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8296 __func__, fw->size); 8297 return EINVAL; 8298 } 8299 fw->main.textsz = le32toh(*ptr++); 8300 fw->main.datasz = le32toh(*ptr++); 8301 fw->init.textsz = le32toh(*ptr++); 8302 fw->init.datasz = le32toh(*ptr++); 8303 fw->boot.textsz = le32toh(*ptr++); 8304 8305 /* Check that all firmware sections fit. */ 8306 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8307 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8308 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8309 __func__, fw->size); 8310 return EINVAL; 8311 } 8312 8313 /* Get pointers to firmware sections. */ 8314 fw->main.text = (const uint8_t *)ptr; 8315 fw->main.data = fw->main.text + fw->main.textsz; 8316 fw->init.text = fw->main.data + fw->main.datasz; 8317 fw->init.data = fw->init.text + fw->init.textsz; 8318 fw->boot.text = fw->init.data + fw->init.datasz; 8319 return 0; 8320 } 8321 8322 /* 8323 * Extract text and data sections from a TLV firmware image. 8324 */ 8325 static int 8326 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8327 uint16_t alt) 8328 { 8329 const struct iwn_fw_tlv_hdr *hdr; 8330 const struct iwn_fw_tlv *tlv; 8331 const uint8_t *ptr, *end; 8332 uint64_t altmask; 8333 uint32_t len, tmp; 8334 8335 if (fw->size < sizeof (*hdr)) { 8336 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8337 __func__, fw->size); 8338 return EINVAL; 8339 } 8340 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8341 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8342 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8343 __func__, le32toh(hdr->signature)); 8344 return EINVAL; 8345 } 8346 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8347 le32toh(hdr->build)); 8348 sc->ucode_rev = le32toh(hdr->rev); 8349 8350 /* 8351 * Select the closest supported alternative that is less than 8352 * or equal to the specified one. 8353 */ 8354 altmask = le64toh(hdr->altmask); 8355 while (alt > 0 && !(altmask & (1ULL << alt))) 8356 alt--; /* Downgrade. */ 8357 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8358 8359 ptr = (const uint8_t *)(hdr + 1); 8360 end = (const uint8_t *)(fw->data + fw->size); 8361 8362 /* Parse type-length-value fields. */ 8363 while (ptr + sizeof (*tlv) <= end) { 8364 tlv = (const struct iwn_fw_tlv *)ptr; 8365 len = le32toh(tlv->len); 8366 8367 ptr += sizeof (*tlv); 8368 if (ptr + len > end) { 8369 device_printf(sc->sc_dev, 8370 "%s: firmware too short: %zu bytes\n", __func__, 8371 fw->size); 8372 return EINVAL; 8373 } 8374 /* Skip other alternatives. */ 8375 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8376 goto next; 8377 8378 switch (le16toh(tlv->type)) { 8379 case IWN_FW_TLV_MAIN_TEXT: 8380 fw->main.text = ptr; 8381 fw->main.textsz = len; 8382 break; 8383 case IWN_FW_TLV_MAIN_DATA: 8384 fw->main.data = ptr; 8385 fw->main.datasz = len; 8386 break; 8387 case IWN_FW_TLV_INIT_TEXT: 8388 fw->init.text = ptr; 8389 fw->init.textsz = len; 8390 break; 8391 case IWN_FW_TLV_INIT_DATA: 8392 fw->init.data = ptr; 8393 fw->init.datasz = len; 8394 break; 8395 case IWN_FW_TLV_BOOT_TEXT: 8396 fw->boot.text = ptr; 8397 fw->boot.textsz = len; 8398 break; 8399 case IWN_FW_TLV_ENH_SENS: 8400 if (!len) 8401 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8402 break; 8403 case IWN_FW_TLV_PHY_CALIB: 8404 tmp = le32toh(*ptr); 8405 if (tmp < 253) { 8406 sc->reset_noise_gain = tmp; 8407 sc->noise_gain = tmp + 1; 8408 } 8409 break; 8410 case IWN_FW_TLV_PAN: 8411 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8412 DPRINTF(sc, IWN_DEBUG_RESET, 8413 "PAN Support found: %d\n", 1); 8414 break; 8415 case IWN_FW_TLV_FLAGS: 8416 if (len < sizeof(uint32_t)) 8417 break; 8418 if (len % sizeof(uint32_t)) 8419 break; 8420 sc->tlv_feature_flags = le32toh(*ptr); 8421 DPRINTF(sc, IWN_DEBUG_RESET, 8422 "%s: feature: 0x%08x\n", 8423 __func__, 8424 sc->tlv_feature_flags); 8425 break; 8426 case IWN_FW_TLV_PBREQ_MAXLEN: 8427 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8428 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8429 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8430 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8431 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8432 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8433 case IWN_FW_TLV_WOWLAN_INST: 8434 case IWN_FW_TLV_WOWLAN_DATA: 8435 DPRINTF(sc, IWN_DEBUG_RESET, 8436 "TLV type %d recognized but not handled\n", 8437 le16toh(tlv->type)); 8438 break; 8439 default: 8440 DPRINTF(sc, IWN_DEBUG_RESET, 8441 "TLV type %d not handled\n", le16toh(tlv->type)); 8442 break; 8443 } 8444 next: /* TLV fields are 32-bit aligned. */ 8445 ptr += (len + 3) & ~3; 8446 } 8447 return 0; 8448 } 8449 8450 static int 8451 iwn_read_firmware(struct iwn_softc *sc) 8452 { 8453 struct iwn_fw_info *fw = &sc->fw; 8454 int error; 8455 8456 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8457 8458 IWN_UNLOCK(sc); 8459 8460 memset(fw, 0, sizeof (*fw)); 8461 8462 /* Read firmware image from filesystem. */ 8463 sc->fw_fp = firmware_get(sc->fwname); 8464 if (sc->fw_fp == NULL) { 8465 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8466 __func__, sc->fwname); 8467 IWN_LOCK(sc); 8468 return EINVAL; 8469 } 8470 IWN_LOCK(sc); 8471 8472 fw->size = sc->fw_fp->datasize; 8473 fw->data = (const uint8_t *)sc->fw_fp->data; 8474 if (fw->size < sizeof (uint32_t)) { 8475 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8476 __func__, fw->size); 8477 error = EINVAL; 8478 goto fail; 8479 } 8480 8481 /* Retrieve text and data sections. */ 8482 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8483 error = iwn_read_firmware_leg(sc, fw); 8484 else 8485 error = iwn_read_firmware_tlv(sc, fw, 1); 8486 if (error != 0) { 8487 device_printf(sc->sc_dev, 8488 "%s: could not read firmware sections, error %d\n", 8489 __func__, error); 8490 goto fail; 8491 } 8492 8493 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8494 8495 /* Make sure text and data sections fit in hardware memory. */ 8496 if (fw->main.textsz > sc->fw_text_maxsz || 8497 fw->main.datasz > sc->fw_data_maxsz || 8498 fw->init.textsz > sc->fw_text_maxsz || 8499 fw->init.datasz > sc->fw_data_maxsz || 8500 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8501 (fw->boot.textsz & 3) != 0) { 8502 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8503 __func__); 8504 error = EINVAL; 8505 goto fail; 8506 } 8507 8508 /* We can proceed with loading the firmware. */ 8509 return 0; 8510 8511 fail: iwn_unload_firmware(sc); 8512 return error; 8513 } 8514 8515 static void 8516 iwn_unload_firmware(struct iwn_softc *sc) 8517 { 8518 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8519 sc->fw_fp = NULL; 8520 } 8521 8522 static int 8523 iwn_clock_wait(struct iwn_softc *sc) 8524 { 8525 int ntries; 8526 8527 /* Set "initialization complete" bit. */ 8528 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8529 8530 /* Wait for clock stabilization. */ 8531 for (ntries = 0; ntries < 2500; ntries++) { 8532 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8533 return 0; 8534 DELAY(10); 8535 } 8536 device_printf(sc->sc_dev, 8537 "%s: timeout waiting for clock stabilization\n", __func__); 8538 return ETIMEDOUT; 8539 } 8540 8541 static int 8542 iwn_apm_init(struct iwn_softc *sc) 8543 { 8544 uint32_t reg; 8545 int error; 8546 8547 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8548 8549 /* Disable L0s exit timer (NMI bug workaround). */ 8550 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8551 /* Don't wait for ICH L0s (ICH bug workaround). */ 8552 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8553 8554 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8555 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8556 8557 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8558 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8559 8560 /* Retrieve PCIe Active State Power Management (ASPM). */ 8561 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8562 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8563 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8564 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8565 else 8566 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8567 8568 if (sc->base_params->pll_cfg_val) 8569 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8570 8571 /* Wait for clock stabilization before accessing prph. */ 8572 if ((error = iwn_clock_wait(sc)) != 0) 8573 return error; 8574 8575 if ((error = iwn_nic_lock(sc)) != 0) 8576 return error; 8577 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8578 /* Enable DMA and BSM (Bootstrap State Machine). */ 8579 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8580 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8581 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8582 } else { 8583 /* Enable DMA. */ 8584 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8585 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8586 } 8587 DELAY(20); 8588 /* Disable L1-Active. */ 8589 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8590 iwn_nic_unlock(sc); 8591 8592 return 0; 8593 } 8594 8595 static void 8596 iwn_apm_stop_master(struct iwn_softc *sc) 8597 { 8598 int ntries; 8599 8600 /* Stop busmaster DMA activity. */ 8601 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8602 for (ntries = 0; ntries < 100; ntries++) { 8603 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8604 return; 8605 DELAY(10); 8606 } 8607 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8608 } 8609 8610 static void 8611 iwn_apm_stop(struct iwn_softc *sc) 8612 { 8613 iwn_apm_stop_master(sc); 8614 8615 /* Reset the entire device. */ 8616 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8617 DELAY(10); 8618 /* Clear "initialization complete" bit. */ 8619 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8620 } 8621 8622 static int 8623 iwn4965_nic_config(struct iwn_softc *sc) 8624 { 8625 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8626 8627 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8628 /* 8629 * I don't believe this to be correct but this is what the 8630 * vendor driver is doing. Probably the bits should not be 8631 * shifted in IWN_RFCFG_*. 8632 */ 8633 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8634 IWN_RFCFG_TYPE(sc->rfcfg) | 8635 IWN_RFCFG_STEP(sc->rfcfg) | 8636 IWN_RFCFG_DASH(sc->rfcfg)); 8637 } 8638 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8639 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8640 return 0; 8641 } 8642 8643 static int 8644 iwn5000_nic_config(struct iwn_softc *sc) 8645 { 8646 uint32_t tmp; 8647 int error; 8648 8649 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8650 8651 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8652 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8653 IWN_RFCFG_TYPE(sc->rfcfg) | 8654 IWN_RFCFG_STEP(sc->rfcfg) | 8655 IWN_RFCFG_DASH(sc->rfcfg)); 8656 } 8657 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8658 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8659 8660 if ((error = iwn_nic_lock(sc)) != 0) 8661 return error; 8662 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8663 8664 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8665 /* 8666 * Select first Switching Voltage Regulator (1.32V) to 8667 * solve a stability issue related to noisy DC2DC line 8668 * in the silicon of 1000 Series. 8669 */ 8670 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8671 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8672 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8673 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8674 } 8675 iwn_nic_unlock(sc); 8676 8677 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8678 /* Use internal power amplifier only. */ 8679 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8680 } 8681 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8682 /* Indicate that ROM calibration version is >=6. */ 8683 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8684 } 8685 if (sc->base_params->additional_gp_drv_bit) 8686 IWN_SETBITS(sc, IWN_GP_DRIVER, 8687 sc->base_params->additional_gp_drv_bit); 8688 return 0; 8689 } 8690 8691 /* 8692 * Take NIC ownership over Intel Active Management Technology (AMT). 8693 */ 8694 static int 8695 iwn_hw_prepare(struct iwn_softc *sc) 8696 { 8697 int ntries; 8698 8699 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8700 8701 /* Check if hardware is ready. */ 8702 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8703 for (ntries = 0; ntries < 5; ntries++) { 8704 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8705 IWN_HW_IF_CONFIG_NIC_READY) 8706 return 0; 8707 DELAY(10); 8708 } 8709 8710 /* Hardware not ready, force into ready state. */ 8711 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8712 for (ntries = 0; ntries < 15000; ntries++) { 8713 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8714 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8715 break; 8716 DELAY(10); 8717 } 8718 if (ntries == 15000) 8719 return ETIMEDOUT; 8720 8721 /* Hardware should be ready now. */ 8722 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8723 for (ntries = 0; ntries < 5; ntries++) { 8724 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8725 IWN_HW_IF_CONFIG_NIC_READY) 8726 return 0; 8727 DELAY(10); 8728 } 8729 return ETIMEDOUT; 8730 } 8731 8732 static int 8733 iwn_hw_init(struct iwn_softc *sc) 8734 { 8735 struct iwn_ops *ops = &sc->ops; 8736 int error, chnl, qid; 8737 8738 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8739 8740 /* Clear pending interrupts. */ 8741 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8742 8743 if ((error = iwn_apm_init(sc)) != 0) { 8744 device_printf(sc->sc_dev, 8745 "%s: could not power ON adapter, error %d\n", __func__, 8746 error); 8747 return error; 8748 } 8749 8750 /* Select VMAIN power source. */ 8751 if ((error = iwn_nic_lock(sc)) != 0) 8752 return error; 8753 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8754 iwn_nic_unlock(sc); 8755 8756 /* Perform adapter-specific initialization. */ 8757 if ((error = ops->nic_config(sc)) != 0) 8758 return error; 8759 8760 /* Initialize RX ring. */ 8761 if ((error = iwn_nic_lock(sc)) != 0) 8762 return error; 8763 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8764 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8765 /* Set physical address of RX ring (256-byte aligned). */ 8766 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8767 /* Set physical address of RX status (16-byte aligned). */ 8768 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8769 /* Enable RX. */ 8770 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8771 IWN_FH_RX_CONFIG_ENA | 8772 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8773 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8774 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8775 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8776 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8777 iwn_nic_unlock(sc); 8778 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8779 8780 if ((error = iwn_nic_lock(sc)) != 0) 8781 return error; 8782 8783 /* Initialize TX scheduler. */ 8784 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8785 8786 /* Set physical address of "keep warm" page (16-byte aligned). */ 8787 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8788 8789 /* Initialize TX rings. */ 8790 for (qid = 0; qid < sc->ntxqs; qid++) { 8791 struct iwn_tx_ring *txq = &sc->txq[qid]; 8792 8793 /* Set physical address of TX ring (256-byte aligned). */ 8794 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8795 txq->desc_dma.paddr >> 8); 8796 } 8797 iwn_nic_unlock(sc); 8798 8799 /* Enable DMA channels. */ 8800 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8801 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8802 IWN_FH_TX_CONFIG_DMA_ENA | 8803 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8804 } 8805 8806 /* Clear "radio off" and "commands blocked" bits. */ 8807 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8808 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8809 8810 /* Clear pending interrupts. */ 8811 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8812 /* Enable interrupt coalescing. */ 8813 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8814 /* Enable interrupts. */ 8815 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8816 8817 /* _Really_ make sure "radio off" bit is cleared! */ 8818 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8819 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8820 8821 /* Enable shadow registers. */ 8822 if (sc->base_params->shadow_reg_enable) 8823 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8824 8825 if ((error = ops->load_firmware(sc)) != 0) { 8826 device_printf(sc->sc_dev, 8827 "%s: could not load firmware, error %d\n", __func__, 8828 error); 8829 return error; 8830 } 8831 /* Wait at most one second for firmware alive notification. */ 8832 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8833 device_printf(sc->sc_dev, 8834 "%s: timeout waiting for adapter to initialize, error %d\n", 8835 __func__, error); 8836 return error; 8837 } 8838 /* Do post-firmware initialization. */ 8839 8840 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8841 8842 return ops->post_alive(sc); 8843 } 8844 8845 static void 8846 iwn_hw_stop(struct iwn_softc *sc) 8847 { 8848 int chnl, qid, ntries; 8849 8850 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8851 8852 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8853 8854 /* Disable interrupts. */ 8855 IWN_WRITE(sc, IWN_INT_MASK, 0); 8856 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8857 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8858 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8859 8860 /* Make sure we no longer hold the NIC lock. */ 8861 iwn_nic_unlock(sc); 8862 8863 /* Stop TX scheduler. */ 8864 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8865 8866 /* Stop all DMA channels. */ 8867 if (iwn_nic_lock(sc) == 0) { 8868 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8869 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8870 for (ntries = 0; ntries < 200; ntries++) { 8871 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8872 IWN_FH_TX_STATUS_IDLE(chnl)) 8873 break; 8874 DELAY(10); 8875 } 8876 } 8877 iwn_nic_unlock(sc); 8878 } 8879 8880 /* Stop RX ring. */ 8881 iwn_reset_rx_ring(sc, &sc->rxq); 8882 8883 /* Reset all TX rings. */ 8884 for (qid = 0; qid < sc->ntxqs; qid++) 8885 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8886 8887 if (iwn_nic_lock(sc) == 0) { 8888 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8889 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8890 iwn_nic_unlock(sc); 8891 } 8892 DELAY(5); 8893 /* Power OFF adapter. */ 8894 iwn_apm_stop(sc); 8895 } 8896 8897 static void 8898 iwn_panicked(void *arg0, int pending) 8899 { 8900 struct iwn_softc *sc = arg0; 8901 struct ieee80211com *ic = &sc->sc_ic; 8902 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8903 #if 0 8904 int error; 8905 #endif 8906 8907 if (vap == NULL) { 8908 printf("%s: null vap\n", __func__); 8909 return; 8910 } 8911 8912 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8913 "restarting\n", __func__, vap->iv_state); 8914 8915 /* 8916 * This is not enough work. We need to also reinitialise 8917 * the correct transmit state for aggregation enabled queues, 8918 * which has a very specific requirement of 8919 * ring index = 802.11 seqno % 256. If we don't do this (which 8920 * we definitely don't!) then the firmware will just panic again. 8921 */ 8922 #if 1 8923 ieee80211_restart_all(ic); 8924 #else 8925 IWN_LOCK(sc); 8926 8927 iwn_stop_locked(sc); 8928 if ((error = iwn_init_locked(sc)) != 0) { 8929 device_printf(sc->sc_dev, 8930 "%s: could not init hardware\n", __func__); 8931 goto unlock; 8932 } 8933 if (vap->iv_state >= IEEE80211_S_AUTH && 8934 (error = iwn_auth(sc, vap)) != 0) { 8935 device_printf(sc->sc_dev, 8936 "%s: could not move to auth state\n", __func__); 8937 } 8938 if (vap->iv_state >= IEEE80211_S_RUN && 8939 (error = iwn_run(sc, vap)) != 0) { 8940 device_printf(sc->sc_dev, 8941 "%s: could not move to run state\n", __func__); 8942 } 8943 8944 unlock: 8945 IWN_UNLOCK(sc); 8946 #endif 8947 } 8948 8949 static int 8950 iwn_init_locked(struct iwn_softc *sc) 8951 { 8952 int error; 8953 8954 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8955 8956 IWN_LOCK_ASSERT(sc); 8957 8958 if (sc->sc_flags & IWN_FLAG_RUNNING) 8959 goto end; 8960 8961 sc->sc_flags |= IWN_FLAG_RUNNING; 8962 8963 if ((error = iwn_hw_prepare(sc)) != 0) { 8964 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8965 __func__, error); 8966 goto fail; 8967 } 8968 8969 /* Initialize interrupt mask to default value. */ 8970 sc->int_mask = IWN_INT_MASK_DEF; 8971 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8972 8973 /* Check that the radio is not disabled by hardware switch. */ 8974 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8975 iwn_stop_locked(sc); 8976 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8977 8978 return (1); 8979 } 8980 8981 /* Read firmware images from the filesystem. */ 8982 if ((error = iwn_read_firmware(sc)) != 0) { 8983 device_printf(sc->sc_dev, 8984 "%s: could not read firmware, error %d\n", __func__, 8985 error); 8986 goto fail; 8987 } 8988 8989 /* Initialize hardware and upload firmware. */ 8990 error = iwn_hw_init(sc); 8991 iwn_unload_firmware(sc); 8992 if (error != 0) { 8993 device_printf(sc->sc_dev, 8994 "%s: could not initialize hardware, error %d\n", __func__, 8995 error); 8996 goto fail; 8997 } 8998 8999 /* Configure adapter now that it is ready. */ 9000 if ((error = iwn_config(sc)) != 0) { 9001 device_printf(sc->sc_dev, 9002 "%s: could not configure device, error %d\n", __func__, 9003 error); 9004 goto fail; 9005 } 9006 9007 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 9008 9009 end: 9010 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 9011 9012 return (0); 9013 9014 fail: 9015 iwn_stop_locked(sc); 9016 9017 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 9018 9019 return (-1); 9020 } 9021 9022 static int 9023 iwn_init(struct iwn_softc *sc) 9024 { 9025 int error; 9026 9027 IWN_LOCK(sc); 9028 error = iwn_init_locked(sc); 9029 IWN_UNLOCK(sc); 9030 9031 return (error); 9032 } 9033 9034 static void 9035 iwn_stop_locked(struct iwn_softc *sc) 9036 { 9037 9038 IWN_LOCK_ASSERT(sc); 9039 9040 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) 9041 return; 9042 9043 sc->sc_is_scanning = 0; 9044 sc->sc_tx_timer = 0; 9045 callout_stop(&sc->watchdog_to); 9046 callout_stop(&sc->scan_timeout); 9047 callout_stop(&sc->calib_to); 9048 sc->sc_flags &= ~IWN_FLAG_RUNNING; 9049 9050 /* Power OFF hardware. */ 9051 iwn_hw_stop(sc); 9052 } 9053 9054 static void 9055 iwn_stop(struct iwn_softc *sc) 9056 { 9057 IWN_LOCK(sc); 9058 iwn_stop_locked(sc); 9059 IWN_UNLOCK(sc); 9060 } 9061 9062 /* 9063 * Callback from net80211 to start a scan. 9064 */ 9065 static void 9066 iwn_scan_start(struct ieee80211com *ic) 9067 { 9068 struct iwn_softc *sc = ic->ic_softc; 9069 9070 IWN_LOCK(sc); 9071 /* make the link LED blink while we're scanning */ 9072 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 9073 IWN_UNLOCK(sc); 9074 } 9075 9076 /* 9077 * Callback from net80211 to terminate a scan. 9078 */ 9079 static void 9080 iwn_scan_end(struct ieee80211com *ic) 9081 { 9082 struct iwn_softc *sc = ic->ic_softc; 9083 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 9084 9085 IWN_LOCK(sc); 9086 if (vap->iv_state == IEEE80211_S_RUN) { 9087 /* Set link LED to ON status if we are associated */ 9088 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 9089 } 9090 IWN_UNLOCK(sc); 9091 } 9092 9093 /* 9094 * Callback from net80211 to force a channel change. 9095 */ 9096 static void 9097 iwn_set_channel(struct ieee80211com *ic) 9098 { 9099 struct iwn_softc *sc = ic->ic_softc; 9100 int error; 9101 9102 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 9103 9104 IWN_LOCK(sc); 9105 /* 9106 * Only need to set the channel in Monitor mode. AP scanning and auth 9107 * are already taken care of by their respective firmware commands. 9108 */ 9109 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 9110 error = iwn_config(sc); 9111 if (error != 0) 9112 device_printf(sc->sc_dev, 9113 "%s: error %d settting channel\n", __func__, error); 9114 } 9115 IWN_UNLOCK(sc); 9116 } 9117 9118 /* 9119 * Callback from net80211 to start scanning of the current channel. 9120 */ 9121 static void 9122 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 9123 { 9124 struct ieee80211vap *vap = ss->ss_vap; 9125 struct ieee80211com *ic = vap->iv_ic; 9126 struct iwn_softc *sc = ic->ic_softc; 9127 int error; 9128 9129 IWN_LOCK(sc); 9130 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 9131 IWN_UNLOCK(sc); 9132 if (error != 0) 9133 ieee80211_cancel_scan(vap); 9134 } 9135 9136 /* 9137 * Callback from net80211 to handle the minimum dwell time being met. 9138 * The intent is to terminate the scan but we just let the firmware 9139 * notify us when it's finished as we have no safe way to abort it. 9140 */ 9141 static void 9142 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 9143 { 9144 /* NB: don't try to abort scan; wait for firmware to finish */ 9145 } 9146 #ifdef IWN_DEBUG 9147 #define IWN_DESC(x) case x: return #x 9148 9149 /* 9150 * Translate CSR code to string 9151 */ 9152 static char *iwn_get_csr_string(int csr) 9153 { 9154 switch (csr) { 9155 IWN_DESC(IWN_HW_IF_CONFIG); 9156 IWN_DESC(IWN_INT_COALESCING); 9157 IWN_DESC(IWN_INT); 9158 IWN_DESC(IWN_INT_MASK); 9159 IWN_DESC(IWN_FH_INT); 9160 IWN_DESC(IWN_GPIO_IN); 9161 IWN_DESC(IWN_RESET); 9162 IWN_DESC(IWN_GP_CNTRL); 9163 IWN_DESC(IWN_HW_REV); 9164 IWN_DESC(IWN_EEPROM); 9165 IWN_DESC(IWN_EEPROM_GP); 9166 IWN_DESC(IWN_OTP_GP); 9167 IWN_DESC(IWN_GIO); 9168 IWN_DESC(IWN_GP_UCODE); 9169 IWN_DESC(IWN_GP_DRIVER); 9170 IWN_DESC(IWN_UCODE_GP1); 9171 IWN_DESC(IWN_UCODE_GP2); 9172 IWN_DESC(IWN_LED); 9173 IWN_DESC(IWN_DRAM_INT_TBL); 9174 IWN_DESC(IWN_GIO_CHICKEN); 9175 IWN_DESC(IWN_ANA_PLL); 9176 IWN_DESC(IWN_HW_REV_WA); 9177 IWN_DESC(IWN_DBG_HPET_MEM); 9178 default: 9179 return "UNKNOWN CSR"; 9180 } 9181 } 9182 9183 /* 9184 * This function print firmware register 9185 */ 9186 static void 9187 iwn_debug_register(struct iwn_softc *sc) 9188 { 9189 int i; 9190 static const uint32_t csr_tbl[] = { 9191 IWN_HW_IF_CONFIG, 9192 IWN_INT_COALESCING, 9193 IWN_INT, 9194 IWN_INT_MASK, 9195 IWN_FH_INT, 9196 IWN_GPIO_IN, 9197 IWN_RESET, 9198 IWN_GP_CNTRL, 9199 IWN_HW_REV, 9200 IWN_EEPROM, 9201 IWN_EEPROM_GP, 9202 IWN_OTP_GP, 9203 IWN_GIO, 9204 IWN_GP_UCODE, 9205 IWN_GP_DRIVER, 9206 IWN_UCODE_GP1, 9207 IWN_UCODE_GP2, 9208 IWN_LED, 9209 IWN_DRAM_INT_TBL, 9210 IWN_GIO_CHICKEN, 9211 IWN_ANA_PLL, 9212 IWN_HW_REV_WA, 9213 IWN_DBG_HPET_MEM, 9214 }; 9215 DPRINTF(sc, IWN_DEBUG_REGISTER, 9216 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 9217 "\n"); 9218 for (i = 0; i < nitems(csr_tbl); i++){ 9219 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 9220 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 9221 if ((i+1) % 3 == 0) 9222 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9223 } 9224 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9225 } 9226 #endif 9227 9228 9229