xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *, struct iwn_rx_data *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 		    uint8_t);
215 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
216 		    void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static void	iwn_xmit_task(void *arg0, int pending);
236 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
237 		    const struct ieee80211_bpf_params *);
238 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
239 static void	iwn_scan_timeout(void *);
240 static void	iwn_watchdog(void *);
241 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
242 static void	iwn_parent(struct ieee80211com *);
243 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
244 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
245 		    int);
246 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn_set_link_quality(struct iwn_softc *,
249 		    struct ieee80211_node *);
250 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
251 static int	iwn_updateedca(struct ieee80211com *);
252 static void	iwn_update_mcast(struct ieee80211com *);
253 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
254 static int	iwn_set_critical_temp(struct iwn_softc *);
255 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
256 static void	iwn4965_power_calibration(struct iwn_softc *, int);
257 static int	iwn4965_set_txpower(struct iwn_softc *,
258 		    struct ieee80211_channel *, int);
259 static int	iwn5000_set_txpower(struct iwn_softc *,
260 		    struct ieee80211_channel *, int);
261 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
263 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
264 static int	iwn4965_get_temperature(struct iwn_softc *);
265 static int	iwn5000_get_temperature(struct iwn_softc *);
266 static int	iwn_init_sensitivity(struct iwn_softc *);
267 static void	iwn_collect_noise(struct iwn_softc *,
268 		    const struct iwn_rx_general_stats *);
269 static int	iwn4965_init_gains(struct iwn_softc *);
270 static int	iwn5000_init_gains(struct iwn_softc *);
271 static int	iwn4965_set_gains(struct iwn_softc *);
272 static int	iwn5000_set_gains(struct iwn_softc *);
273 static void	iwn_tune_sensitivity(struct iwn_softc *,
274 		    const struct iwn_rx_stats *);
275 static void	iwn_save_stats_counters(struct iwn_softc *,
276 		    const struct iwn_stats *);
277 static int	iwn_send_sensitivity(struct iwn_softc *);
278 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
279 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
280 static int	iwn_send_btcoex(struct iwn_softc *);
281 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
282 static int	iwn5000_runtime_calib(struct iwn_softc *);
283 static int	iwn_config(struct iwn_softc *);
284 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
285 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
286 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
288 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
289 		    struct ieee80211_rx_ampdu *, int, int, int);
290 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
291 		    struct ieee80211_rx_ampdu *);
292 static int	iwn_addba_request(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *, int, int, int);
294 static int	iwn_addba_response(struct ieee80211_node *,
295 		    struct ieee80211_tx_ampdu *, int, int, int);
296 static int	iwn_ampdu_tx_start(struct ieee80211com *,
297 		    struct ieee80211_node *, uint8_t);
298 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *);
300 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
301 		    struct ieee80211_node *, int, uint8_t, uint16_t);
302 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
303 		    uint8_t, uint16_t);
304 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
305 		    struct ieee80211_node *, int, uint8_t, uint16_t);
306 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
307 		    uint8_t, uint16_t);
308 static int	iwn5000_query_calibration(struct iwn_softc *);
309 static int	iwn5000_send_calibration(struct iwn_softc *);
310 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
311 static int	iwn5000_crystal_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
313 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
314 static int	iwn4965_post_alive(struct iwn_softc *);
315 static int	iwn5000_post_alive(struct iwn_softc *);
316 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
317 		    int);
318 static int	iwn4965_load_firmware(struct iwn_softc *);
319 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
320 		    const uint8_t *, int);
321 static int	iwn5000_load_firmware(struct iwn_softc *);
322 static int	iwn_read_firmware_leg(struct iwn_softc *,
323 		    struct iwn_fw_info *);
324 static int	iwn_read_firmware_tlv(struct iwn_softc *,
325 		    struct iwn_fw_info *, uint16_t);
326 static int	iwn_read_firmware(struct iwn_softc *);
327 static void	iwn_unload_firmware(struct iwn_softc *);
328 static int	iwn_clock_wait(struct iwn_softc *);
329 static int	iwn_apm_init(struct iwn_softc *);
330 static void	iwn_apm_stop_master(struct iwn_softc *);
331 static void	iwn_apm_stop(struct iwn_softc *);
332 static int	iwn4965_nic_config(struct iwn_softc *);
333 static int	iwn5000_nic_config(struct iwn_softc *);
334 static int	iwn_hw_prepare(struct iwn_softc *);
335 static int	iwn_hw_init(struct iwn_softc *);
336 static void	iwn_hw_stop(struct iwn_softc *);
337 static void	iwn_radio_on(void *, int);
338 static void	iwn_radio_off(void *, int);
339 static void	iwn_panicked(void *, int);
340 static void	iwn_init_locked(struct iwn_softc *);
341 static void	iwn_init(struct iwn_softc *);
342 static void	iwn_stop_locked(struct iwn_softc *);
343 static void	iwn_stop(struct iwn_softc *);
344 static void	iwn_scan_start(struct ieee80211com *);
345 static void	iwn_scan_end(struct ieee80211com *);
346 static void	iwn_set_channel(struct ieee80211com *);
347 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
348 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
349 #ifdef	IWN_DEBUG
350 static char	*iwn_get_csr_string(int);
351 static void	iwn_debug_register(struct iwn_softc *);
352 #endif
353 
354 static device_method_t iwn_methods[] = {
355 	/* Device interface */
356 	DEVMETHOD(device_probe,		iwn_probe),
357 	DEVMETHOD(device_attach,	iwn_attach),
358 	DEVMETHOD(device_detach,	iwn_detach),
359 	DEVMETHOD(device_shutdown,	iwn_shutdown),
360 	DEVMETHOD(device_suspend,	iwn_suspend),
361 	DEVMETHOD(device_resume,	iwn_resume),
362 
363 	DEVMETHOD_END
364 };
365 
366 static driver_t iwn_driver = {
367 	"iwn",
368 	iwn_methods,
369 	sizeof(struct iwn_softc)
370 };
371 static devclass_t iwn_devclass;
372 
373 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
374 
375 MODULE_VERSION(iwn, 1);
376 
377 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
378 MODULE_DEPEND(iwn, pci, 1, 1, 1);
379 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
380 
381 static d_ioctl_t iwn_cdev_ioctl;
382 static d_open_t iwn_cdev_open;
383 static d_close_t iwn_cdev_close;
384 
385 static struct cdevsw iwn_cdevsw = {
386 	.d_version = D_VERSION,
387 	.d_flags = 0,
388 	.d_open = iwn_cdev_open,
389 	.d_close = iwn_cdev_close,
390 	.d_ioctl = iwn_cdev_ioctl,
391 	.d_name = "iwn",
392 };
393 
394 static int
395 iwn_probe(device_t dev)
396 {
397 	const struct iwn_ident *ident;
398 
399 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
400 		if (pci_get_vendor(dev) == ident->vendor &&
401 		    pci_get_device(dev) == ident->device) {
402 			device_set_desc(dev, ident->name);
403 			return (BUS_PROBE_DEFAULT);
404 		}
405 	}
406 	return ENXIO;
407 }
408 
409 static int
410 iwn_is_3stream_device(struct iwn_softc *sc)
411 {
412 	/* XXX for now only 5300, until the 5350 can be tested */
413 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
414 		return (1);
415 	return (0);
416 }
417 
418 static int
419 iwn_attach(device_t dev)
420 {
421 	struct iwn_softc *sc = device_get_softc(dev);
422 	struct ieee80211com *ic;
423 	int i, error, rid;
424 
425 	sc->sc_dev = dev;
426 
427 #ifdef	IWN_DEBUG
428 	error = resource_int_value(device_get_name(sc->sc_dev),
429 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
430 	if (error != 0)
431 		sc->sc_debug = 0;
432 #else
433 	sc->sc_debug = 0;
434 #endif
435 
436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
437 
438 	/*
439 	 * Get the offset of the PCI Express Capability Structure in PCI
440 	 * Configuration Space.
441 	 */
442 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
443 	if (error != 0) {
444 		device_printf(dev, "PCIe capability structure not found!\n");
445 		return error;
446 	}
447 
448 	/* Clear device-specific "PCI retry timeout" register (41h). */
449 	pci_write_config(dev, 0x41, 0, 1);
450 
451 	/* Enable bus-mastering. */
452 	pci_enable_busmaster(dev);
453 
454 	rid = PCIR_BAR(0);
455 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
456 	    RF_ACTIVE);
457 	if (sc->mem == NULL) {
458 		device_printf(dev, "can't map mem space\n");
459 		error = ENOMEM;
460 		return error;
461 	}
462 	sc->sc_st = rman_get_bustag(sc->mem);
463 	sc->sc_sh = rman_get_bushandle(sc->mem);
464 
465 	i = 1;
466 	rid = 0;
467 	if (pci_alloc_msi(dev, &i) == 0)
468 		rid = 1;
469 	/* Install interrupt handler. */
470 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
471 	    (rid != 0 ? 0 : RF_SHAREABLE));
472 	if (sc->irq == NULL) {
473 		device_printf(dev, "can't map interrupt\n");
474 		error = ENOMEM;
475 		goto fail;
476 	}
477 
478 	IWN_LOCK_INIT(sc);
479 
480 	/* Read hardware revision and attach. */
481 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
482 	    & IWN_HW_REV_TYPE_MASK;
483 	sc->subdevice_id = pci_get_subdevice(dev);
484 
485 	/*
486 	 * 4965 versus 5000 and later have different methods.
487 	 * Let's set those up first.
488 	 */
489 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
490 		error = iwn4965_attach(sc, pci_get_device(dev));
491 	else
492 		error = iwn5000_attach(sc, pci_get_device(dev));
493 	if (error != 0) {
494 		device_printf(dev, "could not attach device, error %d\n",
495 		    error);
496 		goto fail;
497 	}
498 
499 	/*
500 	 * Next, let's setup the various parameters of each NIC.
501 	 */
502 	error = iwn_config_specific(sc, pci_get_device(dev));
503 	if (error != 0) {
504 		device_printf(dev, "could not attach device, error %d\n",
505 		    error);
506 		goto fail;
507 	}
508 
509 	if ((error = iwn_hw_prepare(sc)) != 0) {
510 		device_printf(dev, "hardware not ready, error %d\n", error);
511 		goto fail;
512 	}
513 
514 	/* Allocate DMA memory for firmware transfers. */
515 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
516 		device_printf(dev,
517 		    "could not allocate memory for firmware, error %d\n",
518 		    error);
519 		goto fail;
520 	}
521 
522 	/* Allocate "Keep Warm" page. */
523 	if ((error = iwn_alloc_kw(sc)) != 0) {
524 		device_printf(dev,
525 		    "could not allocate keep warm page, error %d\n", error);
526 		goto fail;
527 	}
528 
529 	/* Allocate ICT table for 5000 Series. */
530 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
531 	    (error = iwn_alloc_ict(sc)) != 0) {
532 		device_printf(dev, "could not allocate ICT table, error %d\n",
533 		    error);
534 		goto fail;
535 	}
536 
537 	/* Allocate TX scheduler "rings". */
538 	if ((error = iwn_alloc_sched(sc)) != 0) {
539 		device_printf(dev,
540 		    "could not allocate TX scheduler rings, error %d\n", error);
541 		goto fail;
542 	}
543 
544 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
545 	for (i = 0; i < sc->ntxqs; i++) {
546 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
547 			device_printf(dev,
548 			    "could not allocate TX ring %d, error %d\n", i,
549 			    error);
550 			goto fail;
551 		}
552 	}
553 
554 	/* Allocate RX ring. */
555 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
556 		device_printf(dev, "could not allocate RX ring, error %d\n",
557 		    error);
558 		goto fail;
559 	}
560 
561 	/* Clear pending interrupts. */
562 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
563 
564 	ic = &sc->sc_ic;
565 	ic->ic_softc = sc;
566 	ic->ic_name = device_get_nameunit(dev);
567 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
568 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
569 
570 	/* Set device capabilities. */
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode supported */
573 		| IEEE80211_C_MONITOR		/* monitor mode supported */
574 #if 0
575 		| IEEE80211_C_BGSCAN		/* background scanning */
576 #endif
577 		| IEEE80211_C_TXPMGT		/* tx power management */
578 		| IEEE80211_C_SHSLOT		/* short slot time supported */
579 		| IEEE80211_C_WPA
580 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
581 #if 0
582 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
583 #endif
584 		| IEEE80211_C_WME		/* WME */
585 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
586 		;
587 
588 	/* Read MAC address, channels, etc from EEPROM. */
589 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
590 		device_printf(dev, "could not read EEPROM, error %d\n",
591 		    error);
592 		goto fail;
593 	}
594 
595 	/* Count the number of available chains. */
596 	sc->ntxchains =
597 	    ((sc->txchainmask >> 2) & 1) +
598 	    ((sc->txchainmask >> 1) & 1) +
599 	    ((sc->txchainmask >> 0) & 1);
600 	sc->nrxchains =
601 	    ((sc->rxchainmask >> 2) & 1) +
602 	    ((sc->rxchainmask >> 1) & 1) +
603 	    ((sc->rxchainmask >> 0) & 1);
604 	if (bootverbose) {
605 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
606 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
607 		    ic->ic_macaddr, ":");
608 	}
609 
610 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
611 		ic->ic_rxstream = sc->nrxchains;
612 		ic->ic_txstream = sc->ntxchains;
613 
614 		/*
615 		 * Some of the 3 antenna devices (ie, the 4965) only supports
616 		 * 2x2 operation.  So correct the number of streams if
617 		 * it's not a 3-stream device.
618 		 */
619 		if (! iwn_is_3stream_device(sc)) {
620 			if (ic->ic_rxstream > 2)
621 				ic->ic_rxstream = 2;
622 			if (ic->ic_txstream > 2)
623 				ic->ic_txstream = 2;
624 		}
625 
626 		ic->ic_htcaps =
627 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
628 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
629 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
630 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
631 #ifdef notyet
632 			| IEEE80211_HTCAP_GREENFIELD
633 #if IWN_RBUF_SIZE == 8192
634 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
635 #else
636 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
637 #endif
638 #endif
639 			/* s/w capabilities */
640 			| IEEE80211_HTC_HT		/* HT operation */
641 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
642 #ifdef notyet
643 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
644 #endif
645 			;
646 	}
647 
648 	ieee80211_ifattach(ic);
649 	ic->ic_vap_create = iwn_vap_create;
650 	ic->ic_ioctl = iwn_ioctl;
651 	ic->ic_parent = iwn_parent;
652 	ic->ic_vap_delete = iwn_vap_delete;
653 	ic->ic_transmit = iwn_transmit;
654 	ic->ic_raw_xmit = iwn_raw_xmit;
655 	ic->ic_node_alloc = iwn_node_alloc;
656 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
657 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
658 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
659 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
660 	sc->sc_addba_request = ic->ic_addba_request;
661 	ic->ic_addba_request = iwn_addba_request;
662 	sc->sc_addba_response = ic->ic_addba_response;
663 	ic->ic_addba_response = iwn_addba_response;
664 	sc->sc_addba_stop = ic->ic_addba_stop;
665 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
666 	ic->ic_newassoc = iwn_newassoc;
667 	ic->ic_wme.wme_update = iwn_updateedca;
668 	ic->ic_update_mcast = iwn_update_mcast;
669 	ic->ic_scan_start = iwn_scan_start;
670 	ic->ic_scan_end = iwn_scan_end;
671 	ic->ic_set_channel = iwn_set_channel;
672 	ic->ic_scan_curchan = iwn_scan_curchan;
673 	ic->ic_scan_mindwell = iwn_scan_mindwell;
674 	ic->ic_getradiocaps = iwn_getradiocaps;
675 	ic->ic_setregdomain = iwn_setregdomain;
676 
677 	iwn_radiotap_attach(sc);
678 
679 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
680 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
681 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
682 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
683 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
684 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
685 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
686 
687 	mbufq_init(&sc->sc_xmit_queue, 1024);
688 
689 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
690 	    taskqueue_thread_enqueue, &sc->sc_tq);
691 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
692 	if (error != 0) {
693 		device_printf(dev, "can't start threads, error %d\n", error);
694 		goto fail;
695 	}
696 
697 	iwn_sysctlattach(sc);
698 
699 	/*
700 	 * Hook our interrupt after all initialization is complete.
701 	 */
702 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
703 	    NULL, iwn_intr, sc, &sc->sc_ih);
704 	if (error != 0) {
705 		device_printf(dev, "can't establish interrupt, error %d\n",
706 		    error);
707 		goto fail;
708 	}
709 
710 #if 0
711 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
712 	    __func__,
713 	    sizeof(struct iwn_stats),
714 	    sizeof(struct iwn_stats_bt));
715 #endif
716 
717 	if (bootverbose)
718 		ieee80211_announce(ic);
719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
720 
721 	/* Add debug ioctl right at the end */
722 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
723 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
724 	if (sc->sc_cdev == NULL) {
725 		device_printf(dev, "failed to create debug character device\n");
726 	} else {
727 		sc->sc_cdev->si_drv1 = sc;
728 	}
729 	return 0;
730 fail:
731 	iwn_detach(dev);
732 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
733 	return error;
734 }
735 
736 /*
737  * Define specific configuration based on device id and subdevice id
738  * pid : PCI device id
739  */
740 static int
741 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
742 {
743 
744 	switch (pid) {
745 /* 4965 series */
746 	case IWN_DID_4965_1:
747 	case IWN_DID_4965_2:
748 	case IWN_DID_4965_3:
749 	case IWN_DID_4965_4:
750 		sc->base_params = &iwn4965_base_params;
751 		sc->limits = &iwn4965_sensitivity_limits;
752 		sc->fwname = "iwn4965fw";
753 		/* Override chains masks, ROM is known to be broken. */
754 		sc->txchainmask = IWN_ANT_AB;
755 		sc->rxchainmask = IWN_ANT_ABC;
756 		/* Enable normal btcoex */
757 		sc->sc_flags |= IWN_FLAG_BTCOEX;
758 		break;
759 /* 1000 Series */
760 	case IWN_DID_1000_1:
761 	case IWN_DID_1000_2:
762 		switch(sc->subdevice_id) {
763 			case	IWN_SDID_1000_1:
764 			case	IWN_SDID_1000_2:
765 			case	IWN_SDID_1000_3:
766 			case	IWN_SDID_1000_4:
767 			case	IWN_SDID_1000_5:
768 			case	IWN_SDID_1000_6:
769 			case	IWN_SDID_1000_7:
770 			case	IWN_SDID_1000_8:
771 			case	IWN_SDID_1000_9:
772 			case	IWN_SDID_1000_10:
773 			case	IWN_SDID_1000_11:
774 			case	IWN_SDID_1000_12:
775 				sc->limits = &iwn1000_sensitivity_limits;
776 				sc->base_params = &iwn1000_base_params;
777 				sc->fwname = "iwn1000fw";
778 				break;
779 			default:
780 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
781 				    "0x%04x rev %d not supported (subdevice)\n", pid,
782 				    sc->subdevice_id,sc->hw_type);
783 				return ENOTSUP;
784 		}
785 		break;
786 /* 6x00 Series */
787 	case IWN_DID_6x00_2:
788 	case IWN_DID_6x00_4:
789 	case IWN_DID_6x00_1:
790 	case IWN_DID_6x00_3:
791 		sc->fwname = "iwn6000fw";
792 		sc->limits = &iwn6000_sensitivity_limits;
793 		switch(sc->subdevice_id) {
794 			case IWN_SDID_6x00_1:
795 			case IWN_SDID_6x00_2:
796 			case IWN_SDID_6x00_8:
797 				//iwl6000_3agn_cfg
798 				sc->base_params = &iwn_6000_base_params;
799 				break;
800 			case IWN_SDID_6x00_3:
801 			case IWN_SDID_6x00_6:
802 			case IWN_SDID_6x00_9:
803 				////iwl6000i_2agn
804 			case IWN_SDID_6x00_4:
805 			case IWN_SDID_6x00_7:
806 			case IWN_SDID_6x00_10:
807 				//iwl6000i_2abg_cfg
808 			case IWN_SDID_6x00_5:
809 				//iwl6000i_2bg_cfg
810 				sc->base_params = &iwn_6000i_base_params;
811 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
812 				sc->txchainmask = IWN_ANT_BC;
813 				sc->rxchainmask = IWN_ANT_BC;
814 				break;
815 			default:
816 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
817 				    "0x%04x rev %d not supported (subdevice)\n", pid,
818 				    sc->subdevice_id,sc->hw_type);
819 				return ENOTSUP;
820 		}
821 		break;
822 /* 6x05 Series */
823 	case IWN_DID_6x05_1:
824 	case IWN_DID_6x05_2:
825 		switch(sc->subdevice_id) {
826 			case IWN_SDID_6x05_1:
827 			case IWN_SDID_6x05_4:
828 			case IWN_SDID_6x05_6:
829 				//iwl6005_2agn_cfg
830 			case IWN_SDID_6x05_2:
831 			case IWN_SDID_6x05_5:
832 			case IWN_SDID_6x05_7:
833 				//iwl6005_2abg_cfg
834 			case IWN_SDID_6x05_3:
835 				//iwl6005_2bg_cfg
836 			case IWN_SDID_6x05_8:
837 			case IWN_SDID_6x05_9:
838 				//iwl6005_2agn_sff_cfg
839 			case IWN_SDID_6x05_10:
840 				//iwl6005_2agn_d_cfg
841 			case IWN_SDID_6x05_11:
842 				//iwl6005_2agn_mow1_cfg
843 			case IWN_SDID_6x05_12:
844 				//iwl6005_2agn_mow2_cfg
845 				sc->fwname = "iwn6000g2afw";
846 				sc->limits = &iwn6000_sensitivity_limits;
847 				sc->base_params = &iwn_6000g2_base_params;
848 				break;
849 			default:
850 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
851 				    "0x%04x rev %d not supported (subdevice)\n", pid,
852 				    sc->subdevice_id,sc->hw_type);
853 				return ENOTSUP;
854 		}
855 		break;
856 /* 6x35 Series */
857 	case IWN_DID_6035_1:
858 	case IWN_DID_6035_2:
859 		switch(sc->subdevice_id) {
860 			case IWN_SDID_6035_1:
861 			case IWN_SDID_6035_2:
862 			case IWN_SDID_6035_3:
863 			case IWN_SDID_6035_4:
864 				sc->fwname = "iwn6000g2bfw";
865 				sc->limits = &iwn6235_sensitivity_limits;
866 				sc->base_params = &iwn_6235_base_params;
867 				break;
868 			default:
869 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
870 				    "0x%04x rev %d not supported (subdevice)\n", pid,
871 				    sc->subdevice_id,sc->hw_type);
872 				return ENOTSUP;
873 		}
874 		break;
875 /* 6x50 WiFi/WiMax Series */
876 	case IWN_DID_6050_1:
877 	case IWN_DID_6050_2:
878 		switch(sc->subdevice_id) {
879 			case IWN_SDID_6050_1:
880 			case IWN_SDID_6050_3:
881 			case IWN_SDID_6050_5:
882 				//iwl6050_2agn_cfg
883 			case IWN_SDID_6050_2:
884 			case IWN_SDID_6050_4:
885 			case IWN_SDID_6050_6:
886 				//iwl6050_2abg_cfg
887 				sc->fwname = "iwn6050fw";
888 				sc->txchainmask = IWN_ANT_AB;
889 				sc->rxchainmask = IWN_ANT_AB;
890 				sc->limits = &iwn6000_sensitivity_limits;
891 				sc->base_params = &iwn_6050_base_params;
892 				break;
893 			default:
894 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
895 				    "0x%04x rev %d not supported (subdevice)\n", pid,
896 				    sc->subdevice_id,sc->hw_type);
897 				return ENOTSUP;
898 		}
899 		break;
900 /* 6150 WiFi/WiMax Series */
901 	case IWN_DID_6150_1:
902 	case IWN_DID_6150_2:
903 		switch(sc->subdevice_id) {
904 			case IWN_SDID_6150_1:
905 			case IWN_SDID_6150_3:
906 			case IWN_SDID_6150_5:
907 				// iwl6150_bgn_cfg
908 			case IWN_SDID_6150_2:
909 			case IWN_SDID_6150_4:
910 			case IWN_SDID_6150_6:
911 				//iwl6150_bg_cfg
912 				sc->fwname = "iwn6050fw";
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6150_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6030 Series and 1030 Series */
924 	case IWN_DID_x030_1:
925 	case IWN_DID_x030_2:
926 	case IWN_DID_x030_3:
927 	case IWN_DID_x030_4:
928 		switch(sc->subdevice_id) {
929 			case IWN_SDID_x030_1:
930 			case IWN_SDID_x030_3:
931 			case IWN_SDID_x030_5:
932 			// iwl1030_bgn_cfg
933 			case IWN_SDID_x030_2:
934 			case IWN_SDID_x030_4:
935 			case IWN_SDID_x030_6:
936 			//iwl1030_bg_cfg
937 			case IWN_SDID_x030_7:
938 			case IWN_SDID_x030_10:
939 			case IWN_SDID_x030_14:
940 			//iwl6030_2agn_cfg
941 			case IWN_SDID_x030_8:
942 			case IWN_SDID_x030_11:
943 			case IWN_SDID_x030_15:
944 			// iwl6030_2bgn_cfg
945 			case IWN_SDID_x030_9:
946 			case IWN_SDID_x030_12:
947 			case IWN_SDID_x030_16:
948 			// iwl6030_2abg_cfg
949 			case IWN_SDID_x030_13:
950 			//iwl6030_2bg_cfg
951 				sc->fwname = "iwn6000g2bfw";
952 				sc->limits = &iwn6000_sensitivity_limits;
953 				sc->base_params = &iwn_6000g2b_base_params;
954 				break;
955 			default:
956 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
957 				    "0x%04x rev %d not supported (subdevice)\n", pid,
958 				    sc->subdevice_id,sc->hw_type);
959 				return ENOTSUP;
960 		}
961 		break;
962 /* 130 Series WiFi */
963 /* XXX: This series will need adjustment for rate.
964  * see rx_with_siso_diversity in linux kernel
965  */
966 	case IWN_DID_130_1:
967 	case IWN_DID_130_2:
968 		switch(sc->subdevice_id) {
969 			case IWN_SDID_130_1:
970 			case IWN_SDID_130_3:
971 			case IWN_SDID_130_5:
972 			//iwl130_bgn_cfg
973 			case IWN_SDID_130_2:
974 			case IWN_SDID_130_4:
975 			case IWN_SDID_130_6:
976 			//iwl130_bg_cfg
977 				sc->fwname = "iwn6000g2bfw";
978 				sc->limits = &iwn6000_sensitivity_limits;
979 				sc->base_params = &iwn_6000g2b_base_params;
980 				break;
981 			default:
982 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
983 				    "0x%04x rev %d not supported (subdevice)\n", pid,
984 				    sc->subdevice_id,sc->hw_type);
985 				return ENOTSUP;
986 		}
987 		break;
988 /* 100 Series WiFi */
989 	case IWN_DID_100_1:
990 	case IWN_DID_100_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_100_1:
993 			case IWN_SDID_100_2:
994 			case IWN_SDID_100_3:
995 			case IWN_SDID_100_4:
996 			case IWN_SDID_100_5:
997 			case IWN_SDID_100_6:
998 				sc->limits = &iwn1000_sensitivity_limits;
999 				sc->base_params = &iwn1000_base_params;
1000 				sc->fwname = "iwn100fw";
1001 				break;
1002 			default:
1003 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1004 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1005 				    sc->subdevice_id,sc->hw_type);
1006 				return ENOTSUP;
1007 		}
1008 		break;
1009 
1010 /* 105 Series */
1011 /* XXX: This series will need adjustment for rate.
1012  * see rx_with_siso_diversity in linux kernel
1013  */
1014 	case IWN_DID_105_1:
1015 	case IWN_DID_105_2:
1016 		switch(sc->subdevice_id) {
1017 			case IWN_SDID_105_1:
1018 			case IWN_SDID_105_2:
1019 			case IWN_SDID_105_3:
1020 			//iwl105_bgn_cfg
1021 			case IWN_SDID_105_4:
1022 			//iwl105_bgn_d_cfg
1023 				sc->limits = &iwn2030_sensitivity_limits;
1024 				sc->base_params = &iwn2000_base_params;
1025 				sc->fwname = "iwn105fw";
1026 				break;
1027 			default:
1028 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1029 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1030 				    sc->subdevice_id,sc->hw_type);
1031 				return ENOTSUP;
1032 		}
1033 		break;
1034 
1035 /* 135 Series */
1036 /* XXX: This series will need adjustment for rate.
1037  * see rx_with_siso_diversity in linux kernel
1038  */
1039 	case IWN_DID_135_1:
1040 	case IWN_DID_135_2:
1041 		switch(sc->subdevice_id) {
1042 			case IWN_SDID_135_1:
1043 			case IWN_SDID_135_2:
1044 			case IWN_SDID_135_3:
1045 				sc->limits = &iwn2030_sensitivity_limits;
1046 				sc->base_params = &iwn2030_base_params;
1047 				sc->fwname = "iwn135fw";
1048 				break;
1049 			default:
1050 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1051 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1052 				    sc->subdevice_id,sc->hw_type);
1053 				return ENOTSUP;
1054 		}
1055 		break;
1056 
1057 /* 2x00 Series */
1058 	case IWN_DID_2x00_1:
1059 	case IWN_DID_2x00_2:
1060 		switch(sc->subdevice_id) {
1061 			case IWN_SDID_2x00_1:
1062 			case IWN_SDID_2x00_2:
1063 			case IWN_SDID_2x00_3:
1064 			//iwl2000_2bgn_cfg
1065 			case IWN_SDID_2x00_4:
1066 			//iwl2000_2bgn_d_cfg
1067 				sc->limits = &iwn2030_sensitivity_limits;
1068 				sc->base_params = &iwn2000_base_params;
1069 				sc->fwname = "iwn2000fw";
1070 				break;
1071 			default:
1072 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1073 				    "0x%04x rev %d not supported (subdevice) \n",
1074 				    pid, sc->subdevice_id, sc->hw_type);
1075 				return ENOTSUP;
1076 		}
1077 		break;
1078 /* 2x30 Series */
1079 	case IWN_DID_2x30_1:
1080 	case IWN_DID_2x30_2:
1081 		switch(sc->subdevice_id) {
1082 			case IWN_SDID_2x30_1:
1083 			case IWN_SDID_2x30_3:
1084 			case IWN_SDID_2x30_5:
1085 			//iwl100_bgn_cfg
1086 			case IWN_SDID_2x30_2:
1087 			case IWN_SDID_2x30_4:
1088 			case IWN_SDID_2x30_6:
1089 			//iwl100_bg_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2030_base_params;
1092 				sc->fwname = "iwn2030fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1097 				    sc->subdevice_id,sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 5x00 Series */
1102 	case IWN_DID_5x00_1:
1103 	case IWN_DID_5x00_2:
1104 	case IWN_DID_5x00_3:
1105 	case IWN_DID_5x00_4:
1106 		sc->limits = &iwn5000_sensitivity_limits;
1107 		sc->base_params = &iwn5000_base_params;
1108 		sc->fwname = "iwn5000fw";
1109 		switch(sc->subdevice_id) {
1110 			case IWN_SDID_5x00_1:
1111 			case IWN_SDID_5x00_2:
1112 			case IWN_SDID_5x00_3:
1113 			case IWN_SDID_5x00_4:
1114 			case IWN_SDID_5x00_9:
1115 			case IWN_SDID_5x00_10:
1116 			case IWN_SDID_5x00_11:
1117 			case IWN_SDID_5x00_12:
1118 			case IWN_SDID_5x00_17:
1119 			case IWN_SDID_5x00_18:
1120 			case IWN_SDID_5x00_19:
1121 			case IWN_SDID_5x00_20:
1122 			//iwl5100_agn_cfg
1123 				sc->txchainmask = IWN_ANT_B;
1124 				sc->rxchainmask = IWN_ANT_AB;
1125 				break;
1126 			case IWN_SDID_5x00_5:
1127 			case IWN_SDID_5x00_6:
1128 			case IWN_SDID_5x00_13:
1129 			case IWN_SDID_5x00_14:
1130 			case IWN_SDID_5x00_21:
1131 			case IWN_SDID_5x00_22:
1132 			//iwl5100_bgn_cfg
1133 				sc->txchainmask = IWN_ANT_B;
1134 				sc->rxchainmask = IWN_ANT_AB;
1135 				break;
1136 			case IWN_SDID_5x00_7:
1137 			case IWN_SDID_5x00_8:
1138 			case IWN_SDID_5x00_15:
1139 			case IWN_SDID_5x00_16:
1140 			case IWN_SDID_5x00_23:
1141 			case IWN_SDID_5x00_24:
1142 			//iwl5100_abg_cfg
1143 				sc->txchainmask = IWN_ANT_B;
1144 				sc->rxchainmask = IWN_ANT_AB;
1145 				break;
1146 			case IWN_SDID_5x00_25:
1147 			case IWN_SDID_5x00_26:
1148 			case IWN_SDID_5x00_27:
1149 			case IWN_SDID_5x00_28:
1150 			case IWN_SDID_5x00_29:
1151 			case IWN_SDID_5x00_30:
1152 			case IWN_SDID_5x00_31:
1153 			case IWN_SDID_5x00_32:
1154 			case IWN_SDID_5x00_33:
1155 			case IWN_SDID_5x00_34:
1156 			case IWN_SDID_5x00_35:
1157 			case IWN_SDID_5x00_36:
1158 			//iwl5300_agn_cfg
1159 				sc->txchainmask = IWN_ANT_ABC;
1160 				sc->rxchainmask = IWN_ANT_ABC;
1161 				break;
1162 			default:
1163 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1164 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1165 				    sc->subdevice_id,sc->hw_type);
1166 				return ENOTSUP;
1167 		}
1168 		break;
1169 /* 5x50 Series */
1170 	case IWN_DID_5x50_1:
1171 	case IWN_DID_5x50_2:
1172 	case IWN_DID_5x50_3:
1173 	case IWN_DID_5x50_4:
1174 		sc->limits = &iwn5000_sensitivity_limits;
1175 		sc->base_params = &iwn5000_base_params;
1176 		sc->fwname = "iwn5000fw";
1177 		switch(sc->subdevice_id) {
1178 			case IWN_SDID_5x50_1:
1179 			case IWN_SDID_5x50_2:
1180 			case IWN_SDID_5x50_3:
1181 			//iwl5350_agn_cfg
1182 				sc->limits = &iwn5000_sensitivity_limits;
1183 				sc->base_params = &iwn5000_base_params;
1184 				sc->fwname = "iwn5000fw";
1185 				break;
1186 			case IWN_SDID_5x50_4:
1187 			case IWN_SDID_5x50_5:
1188 			case IWN_SDID_5x50_8:
1189 			case IWN_SDID_5x50_9:
1190 			case IWN_SDID_5x50_10:
1191 			case IWN_SDID_5x50_11:
1192 			//iwl5150_agn_cfg
1193 			case IWN_SDID_5x50_6:
1194 			case IWN_SDID_5x50_7:
1195 			case IWN_SDID_5x50_12:
1196 			case IWN_SDID_5x50_13:
1197 			//iwl5150_abg_cfg
1198 				sc->limits = &iwn5000_sensitivity_limits;
1199 				sc->fwname = "iwn5150fw";
1200 				sc->base_params = &iwn_5x50_base_params;
1201 				break;
1202 			default:
1203 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1204 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1205 				    sc->subdevice_id,sc->hw_type);
1206 				return ENOTSUP;
1207 		}
1208 		break;
1209 	default:
1210 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1211 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1212 		     sc->hw_type);
1213 		return ENOTSUP;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static int
1219 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1220 {
1221 	struct iwn_ops *ops = &sc->ops;
1222 
1223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1224 	ops->load_firmware = iwn4965_load_firmware;
1225 	ops->read_eeprom = iwn4965_read_eeprom;
1226 	ops->post_alive = iwn4965_post_alive;
1227 	ops->nic_config = iwn4965_nic_config;
1228 	ops->update_sched = iwn4965_update_sched;
1229 	ops->get_temperature = iwn4965_get_temperature;
1230 	ops->get_rssi = iwn4965_get_rssi;
1231 	ops->set_txpower = iwn4965_set_txpower;
1232 	ops->init_gains = iwn4965_init_gains;
1233 	ops->set_gains = iwn4965_set_gains;
1234 	ops->add_node = iwn4965_add_node;
1235 	ops->tx_done = iwn4965_tx_done;
1236 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1237 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1238 	sc->ntxqs = IWN4965_NTXQUEUES;
1239 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1240 	sc->ndmachnls = IWN4965_NDMACHNLS;
1241 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1242 	sc->rxonsz = IWN4965_RXONSZ;
1243 	sc->schedsz = IWN4965_SCHEDSZ;
1244 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1245 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1246 	sc->fwsz = IWN4965_FWSZ;
1247 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1248 	sc->limits = &iwn4965_sensitivity_limits;
1249 	sc->fwname = "iwn4965fw";
1250 	/* Override chains masks, ROM is known to be broken. */
1251 	sc->txchainmask = IWN_ANT_AB;
1252 	sc->rxchainmask = IWN_ANT_ABC;
1253 	/* Enable normal btcoex */
1254 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1255 
1256 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1257 
1258 	return 0;
1259 }
1260 
1261 static int
1262 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1263 {
1264 	struct iwn_ops *ops = &sc->ops;
1265 
1266 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1267 
1268 	ops->load_firmware = iwn5000_load_firmware;
1269 	ops->read_eeprom = iwn5000_read_eeprom;
1270 	ops->post_alive = iwn5000_post_alive;
1271 	ops->nic_config = iwn5000_nic_config;
1272 	ops->update_sched = iwn5000_update_sched;
1273 	ops->get_temperature = iwn5000_get_temperature;
1274 	ops->get_rssi = iwn5000_get_rssi;
1275 	ops->set_txpower = iwn5000_set_txpower;
1276 	ops->init_gains = iwn5000_init_gains;
1277 	ops->set_gains = iwn5000_set_gains;
1278 	ops->add_node = iwn5000_add_node;
1279 	ops->tx_done = iwn5000_tx_done;
1280 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1281 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1282 	sc->ntxqs = IWN5000_NTXQUEUES;
1283 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1284 	sc->ndmachnls = IWN5000_NDMACHNLS;
1285 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1286 	sc->rxonsz = IWN5000_RXONSZ;
1287 	sc->schedsz = IWN5000_SCHEDSZ;
1288 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1289 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1290 	sc->fwsz = IWN5000_FWSZ;
1291 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1292 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1293 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Attach the interface to 802.11 radiotap.
1300  */
1301 static void
1302 iwn_radiotap_attach(struct iwn_softc *sc)
1303 {
1304 
1305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1306 	ieee80211_radiotap_attach(&sc->sc_ic,
1307 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1308 		IWN_TX_RADIOTAP_PRESENT,
1309 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1310 		IWN_RX_RADIOTAP_PRESENT);
1311 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1312 }
1313 
1314 static void
1315 iwn_sysctlattach(struct iwn_softc *sc)
1316 {
1317 #ifdef	IWN_DEBUG
1318 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1319 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1320 
1321 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1322 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1323 		"control debugging printfs");
1324 #endif
1325 }
1326 
1327 static struct ieee80211vap *
1328 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1329     enum ieee80211_opmode opmode, int flags,
1330     const uint8_t bssid[IEEE80211_ADDR_LEN],
1331     const uint8_t mac[IEEE80211_ADDR_LEN])
1332 {
1333 	struct iwn_softc *sc = ic->ic_softc;
1334 	struct iwn_vap *ivp;
1335 	struct ieee80211vap *vap;
1336 
1337 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1338 		return NULL;
1339 
1340 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1341 	vap = &ivp->iv_vap;
1342 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1343 	ivp->ctx = IWN_RXON_BSS_CTX;
1344 	vap->iv_bmissthreshold = 10;		/* override default */
1345 	/* Override with driver methods. */
1346 	ivp->iv_newstate = vap->iv_newstate;
1347 	vap->iv_newstate = iwn_newstate;
1348 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1349 
1350 	ieee80211_ratectl_init(vap);
1351 	/* Complete setup. */
1352 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1353 	    mac);
1354 	ic->ic_opmode = opmode;
1355 	return vap;
1356 }
1357 
1358 static void
1359 iwn_vap_delete(struct ieee80211vap *vap)
1360 {
1361 	struct iwn_vap *ivp = IWN_VAP(vap);
1362 
1363 	ieee80211_ratectl_deinit(vap);
1364 	ieee80211_vap_detach(vap);
1365 	free(ivp, M_80211_VAP);
1366 }
1367 
1368 static void
1369 iwn_xmit_queue_drain(struct iwn_softc *sc)
1370 {
1371 	struct mbuf *m;
1372 	struct ieee80211_node *ni;
1373 
1374 	IWN_LOCK_ASSERT(sc);
1375 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1376 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1377 		ieee80211_free_node(ni);
1378 		m_freem(m);
1379 	}
1380 }
1381 
1382 static int
1383 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1384 {
1385 
1386 	IWN_LOCK_ASSERT(sc);
1387 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1388 }
1389 
1390 static int
1391 iwn_detach(device_t dev)
1392 {
1393 	struct iwn_softc *sc = device_get_softc(dev);
1394 	int qid;
1395 
1396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1397 
1398 	if (sc->sc_ic.ic_softc != NULL) {
1399 		/* Free the mbuf queue and node references */
1400 		IWN_LOCK(sc);
1401 		iwn_xmit_queue_drain(sc);
1402 		IWN_UNLOCK(sc);
1403 
1404 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1405 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1406 		iwn_stop(sc);
1407 
1408 		taskqueue_drain_all(sc->sc_tq);
1409 		taskqueue_free(sc->sc_tq);
1410 
1411 		callout_drain(&sc->watchdog_to);
1412 		callout_drain(&sc->scan_timeout);
1413 		callout_drain(&sc->calib_to);
1414 		ieee80211_ifdetach(&sc->sc_ic);
1415 	}
1416 
1417 	/* Uninstall interrupt handler. */
1418 	if (sc->irq != NULL) {
1419 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1420 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1421 		    sc->irq);
1422 		pci_release_msi(dev);
1423 	}
1424 
1425 	/* Free DMA resources. */
1426 	iwn_free_rx_ring(sc, &sc->rxq);
1427 	for (qid = 0; qid < sc->ntxqs; qid++)
1428 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1429 	iwn_free_sched(sc);
1430 	iwn_free_kw(sc);
1431 	if (sc->ict != NULL)
1432 		iwn_free_ict(sc);
1433 	iwn_free_fwmem(sc);
1434 
1435 	if (sc->mem != NULL)
1436 		bus_release_resource(dev, SYS_RES_MEMORY,
1437 		    rman_get_rid(sc->mem), sc->mem);
1438 
1439 	if (sc->sc_cdev) {
1440 		destroy_dev(sc->sc_cdev);
1441 		sc->sc_cdev = NULL;
1442 	}
1443 
1444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1445 	IWN_LOCK_DESTROY(sc);
1446 	return 0;
1447 }
1448 
1449 static int
1450 iwn_shutdown(device_t dev)
1451 {
1452 	struct iwn_softc *sc = device_get_softc(dev);
1453 
1454 	iwn_stop(sc);
1455 	return 0;
1456 }
1457 
1458 static int
1459 iwn_suspend(device_t dev)
1460 {
1461 	struct iwn_softc *sc = device_get_softc(dev);
1462 
1463 	ieee80211_suspend_all(&sc->sc_ic);
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwn_resume(device_t dev)
1469 {
1470 	struct iwn_softc *sc = device_get_softc(dev);
1471 
1472 	/* Clear device-specific "PCI retry timeout" register (41h). */
1473 	pci_write_config(dev, 0x41, 0, 1);
1474 
1475 	ieee80211_resume_all(&sc->sc_ic);
1476 	return 0;
1477 }
1478 
1479 static int
1480 iwn_nic_lock(struct iwn_softc *sc)
1481 {
1482 	int ntries;
1483 
1484 	/* Request exclusive access to NIC. */
1485 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1486 
1487 	/* Spin until we actually get the lock. */
1488 	for (ntries = 0; ntries < 1000; ntries++) {
1489 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1490 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1491 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1492 			return 0;
1493 		DELAY(10);
1494 	}
1495 	return ETIMEDOUT;
1496 }
1497 
1498 static __inline void
1499 iwn_nic_unlock(struct iwn_softc *sc)
1500 {
1501 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1502 }
1503 
1504 static __inline uint32_t
1505 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1506 {
1507 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1508 	IWN_BARRIER_READ_WRITE(sc);
1509 	return IWN_READ(sc, IWN_PRPH_RDATA);
1510 }
1511 
1512 static __inline void
1513 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1514 {
1515 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1516 	IWN_BARRIER_WRITE(sc);
1517 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1518 }
1519 
1520 static __inline void
1521 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1522 {
1523 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1524 }
1525 
1526 static __inline void
1527 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1528 {
1529 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1530 }
1531 
1532 static __inline void
1533 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1534     const uint32_t *data, int count)
1535 {
1536 	for (; count > 0; count--, data++, addr += 4)
1537 		iwn_prph_write(sc, addr, *data);
1538 }
1539 
1540 static __inline uint32_t
1541 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1542 {
1543 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1544 	IWN_BARRIER_READ_WRITE(sc);
1545 	return IWN_READ(sc, IWN_MEM_RDATA);
1546 }
1547 
1548 static __inline void
1549 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1550 {
1551 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1552 	IWN_BARRIER_WRITE(sc);
1553 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1554 }
1555 
1556 static __inline void
1557 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1558 {
1559 	uint32_t tmp;
1560 
1561 	tmp = iwn_mem_read(sc, addr & ~3);
1562 	if (addr & 3)
1563 		tmp = (tmp & 0x0000ffff) | data << 16;
1564 	else
1565 		tmp = (tmp & 0xffff0000) | data;
1566 	iwn_mem_write(sc, addr & ~3, tmp);
1567 }
1568 
1569 static __inline void
1570 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1571     int count)
1572 {
1573 	for (; count > 0; count--, addr += 4)
1574 		*data++ = iwn_mem_read(sc, addr);
1575 }
1576 
1577 static __inline void
1578 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1579     int count)
1580 {
1581 	for (; count > 0; count--, addr += 4)
1582 		iwn_mem_write(sc, addr, val);
1583 }
1584 
1585 static int
1586 iwn_eeprom_lock(struct iwn_softc *sc)
1587 {
1588 	int i, ntries;
1589 
1590 	for (i = 0; i < 100; i++) {
1591 		/* Request exclusive access to EEPROM. */
1592 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1593 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1594 
1595 		/* Spin until we actually get the lock. */
1596 		for (ntries = 0; ntries < 100; ntries++) {
1597 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1598 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1599 				return 0;
1600 			DELAY(10);
1601 		}
1602 	}
1603 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1604 	return ETIMEDOUT;
1605 }
1606 
1607 static __inline void
1608 iwn_eeprom_unlock(struct iwn_softc *sc)
1609 {
1610 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1611 }
1612 
1613 /*
1614  * Initialize access by host to One Time Programmable ROM.
1615  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1616  */
1617 static int
1618 iwn_init_otprom(struct iwn_softc *sc)
1619 {
1620 	uint16_t prev, base, next;
1621 	int count, error;
1622 
1623 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1624 
1625 	/* Wait for clock stabilization before accessing prph. */
1626 	if ((error = iwn_clock_wait(sc)) != 0)
1627 		return error;
1628 
1629 	if ((error = iwn_nic_lock(sc)) != 0)
1630 		return error;
1631 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1632 	DELAY(5);
1633 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1634 	iwn_nic_unlock(sc);
1635 
1636 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1637 	if (sc->base_params->shadow_ram_support) {
1638 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1639 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1640 	}
1641 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1642 	/* Clear ECC status. */
1643 	IWN_SETBITS(sc, IWN_OTP_GP,
1644 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1645 
1646 	/*
1647 	 * Find the block before last block (contains the EEPROM image)
1648 	 * for HW without OTP shadow RAM.
1649 	 */
1650 	if (! sc->base_params->shadow_ram_support) {
1651 		/* Switch to absolute addressing mode. */
1652 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1653 		base = prev = 0;
1654 		for (count = 0; count < sc->base_params->max_ll_items;
1655 		    count++) {
1656 			error = iwn_read_prom_data(sc, base, &next, 2);
1657 			if (error != 0)
1658 				return error;
1659 			if (next == 0)	/* End of linked-list. */
1660 				break;
1661 			prev = base;
1662 			base = le16toh(next);
1663 		}
1664 		if (count == 0 || count == sc->base_params->max_ll_items)
1665 			return EIO;
1666 		/* Skip "next" word. */
1667 		sc->prom_base = prev + 1;
1668 	}
1669 
1670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1671 
1672 	return 0;
1673 }
1674 
1675 static int
1676 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1677 {
1678 	uint8_t *out = data;
1679 	uint32_t val, tmp;
1680 	int ntries;
1681 
1682 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1683 
1684 	addr += sc->prom_base;
1685 	for (; count > 0; count -= 2, addr++) {
1686 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1687 		for (ntries = 0; ntries < 10; ntries++) {
1688 			val = IWN_READ(sc, IWN_EEPROM);
1689 			if (val & IWN_EEPROM_READ_VALID)
1690 				break;
1691 			DELAY(5);
1692 		}
1693 		if (ntries == 10) {
1694 			device_printf(sc->sc_dev,
1695 			    "timeout reading ROM at 0x%x\n", addr);
1696 			return ETIMEDOUT;
1697 		}
1698 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1699 			/* OTPROM, check for ECC errors. */
1700 			tmp = IWN_READ(sc, IWN_OTP_GP);
1701 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1702 				device_printf(sc->sc_dev,
1703 				    "OTPROM ECC error at 0x%x\n", addr);
1704 				return EIO;
1705 			}
1706 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1707 				/* Correctable ECC error, clear bit. */
1708 				IWN_SETBITS(sc, IWN_OTP_GP,
1709 				    IWN_OTP_GP_ECC_CORR_STTS);
1710 			}
1711 		}
1712 		*out++ = val >> 16;
1713 		if (count > 1)
1714 			*out++ = val >> 24;
1715 	}
1716 
1717 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1718 
1719 	return 0;
1720 }
1721 
1722 static void
1723 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1724 {
1725 	if (error != 0)
1726 		return;
1727 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1728 	*(bus_addr_t *)arg = segs[0].ds_addr;
1729 }
1730 
1731 static int
1732 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1733     void **kvap, bus_size_t size, bus_size_t alignment)
1734 {
1735 	int error;
1736 
1737 	dma->tag = NULL;
1738 	dma->size = size;
1739 
1740 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1741 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1742 	    1, size, 0, NULL, NULL, &dma->tag);
1743 	if (error != 0)
1744 		goto fail;
1745 
1746 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1747 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1748 	if (error != 0)
1749 		goto fail;
1750 
1751 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1752 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1753 	if (error != 0)
1754 		goto fail;
1755 
1756 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1757 
1758 	if (kvap != NULL)
1759 		*kvap = dma->vaddr;
1760 
1761 	return 0;
1762 
1763 fail:	iwn_dma_contig_free(dma);
1764 	return error;
1765 }
1766 
1767 static void
1768 iwn_dma_contig_free(struct iwn_dma_info *dma)
1769 {
1770 	if (dma->vaddr != NULL) {
1771 		bus_dmamap_sync(dma->tag, dma->map,
1772 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1773 		bus_dmamap_unload(dma->tag, dma->map);
1774 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1775 		dma->vaddr = NULL;
1776 	}
1777 	if (dma->tag != NULL) {
1778 		bus_dma_tag_destroy(dma->tag);
1779 		dma->tag = NULL;
1780 	}
1781 }
1782 
1783 static int
1784 iwn_alloc_sched(struct iwn_softc *sc)
1785 {
1786 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1787 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1788 	    sc->schedsz, 1024);
1789 }
1790 
1791 static void
1792 iwn_free_sched(struct iwn_softc *sc)
1793 {
1794 	iwn_dma_contig_free(&sc->sched_dma);
1795 }
1796 
1797 static int
1798 iwn_alloc_kw(struct iwn_softc *sc)
1799 {
1800 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1801 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1802 }
1803 
1804 static void
1805 iwn_free_kw(struct iwn_softc *sc)
1806 {
1807 	iwn_dma_contig_free(&sc->kw_dma);
1808 }
1809 
1810 static int
1811 iwn_alloc_ict(struct iwn_softc *sc)
1812 {
1813 	/* ICT table must be aligned on a 4KB boundary. */
1814 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1815 	    IWN_ICT_SIZE, 4096);
1816 }
1817 
1818 static void
1819 iwn_free_ict(struct iwn_softc *sc)
1820 {
1821 	iwn_dma_contig_free(&sc->ict_dma);
1822 }
1823 
1824 static int
1825 iwn_alloc_fwmem(struct iwn_softc *sc)
1826 {
1827 	/* Must be aligned on a 16-byte boundary. */
1828 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1829 }
1830 
1831 static void
1832 iwn_free_fwmem(struct iwn_softc *sc)
1833 {
1834 	iwn_dma_contig_free(&sc->fw_dma);
1835 }
1836 
1837 static int
1838 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1839 {
1840 	bus_size_t size;
1841 	int i, error;
1842 
1843 	ring->cur = 0;
1844 
1845 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1846 
1847 	/* Allocate RX descriptors (256-byte aligned). */
1848 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1849 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1850 	    size, 256);
1851 	if (error != 0) {
1852 		device_printf(sc->sc_dev,
1853 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1854 		    __func__, error);
1855 		goto fail;
1856 	}
1857 
1858 	/* Allocate RX status area (16-byte aligned). */
1859 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1860 	    sizeof (struct iwn_rx_status), 16);
1861 	if (error != 0) {
1862 		device_printf(sc->sc_dev,
1863 		    "%s: could not allocate RX status DMA memory, error %d\n",
1864 		    __func__, error);
1865 		goto fail;
1866 	}
1867 
1868 	/* Create RX buffer DMA tag. */
1869 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1870 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1871 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1872 	if (error != 0) {
1873 		device_printf(sc->sc_dev,
1874 		    "%s: could not create RX buf DMA tag, error %d\n",
1875 		    __func__, error);
1876 		goto fail;
1877 	}
1878 
1879 	/*
1880 	 * Allocate and map RX buffers.
1881 	 */
1882 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1883 		struct iwn_rx_data *data = &ring->data[i];
1884 		bus_addr_t paddr;
1885 
1886 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1887 		if (error != 0) {
1888 			device_printf(sc->sc_dev,
1889 			    "%s: could not create RX buf DMA map, error %d\n",
1890 			    __func__, error);
1891 			goto fail;
1892 		}
1893 
1894 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1895 		    IWN_RBUF_SIZE);
1896 		if (data->m == NULL) {
1897 			device_printf(sc->sc_dev,
1898 			    "%s: could not allocate RX mbuf\n", __func__);
1899 			error = ENOBUFS;
1900 			goto fail;
1901 		}
1902 
1903 		error = bus_dmamap_load(ring->data_dmat, data->map,
1904 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1905 		    &paddr, BUS_DMA_NOWAIT);
1906 		if (error != 0 && error != EFBIG) {
1907 			device_printf(sc->sc_dev,
1908 			    "%s: can't map mbuf, error %d\n", __func__,
1909 			    error);
1910 			goto fail;
1911 		}
1912 
1913 		/* Set physical address of RX buffer (256-byte aligned). */
1914 		ring->desc[i] = htole32(paddr >> 8);
1915 	}
1916 
1917 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1918 	    BUS_DMASYNC_PREWRITE);
1919 
1920 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1921 
1922 	return 0;
1923 
1924 fail:	iwn_free_rx_ring(sc, ring);
1925 
1926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1927 
1928 	return error;
1929 }
1930 
1931 static void
1932 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1933 {
1934 	int ntries;
1935 
1936 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1937 
1938 	if (iwn_nic_lock(sc) == 0) {
1939 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1940 		for (ntries = 0; ntries < 1000; ntries++) {
1941 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1942 			    IWN_FH_RX_STATUS_IDLE)
1943 				break;
1944 			DELAY(10);
1945 		}
1946 		iwn_nic_unlock(sc);
1947 	}
1948 	ring->cur = 0;
1949 	sc->last_rx_valid = 0;
1950 }
1951 
1952 static void
1953 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1954 {
1955 	int i;
1956 
1957 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1958 
1959 	iwn_dma_contig_free(&ring->desc_dma);
1960 	iwn_dma_contig_free(&ring->stat_dma);
1961 
1962 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1963 		struct iwn_rx_data *data = &ring->data[i];
1964 
1965 		if (data->m != NULL) {
1966 			bus_dmamap_sync(ring->data_dmat, data->map,
1967 			    BUS_DMASYNC_POSTREAD);
1968 			bus_dmamap_unload(ring->data_dmat, data->map);
1969 			m_freem(data->m);
1970 			data->m = NULL;
1971 		}
1972 		if (data->map != NULL)
1973 			bus_dmamap_destroy(ring->data_dmat, data->map);
1974 	}
1975 	if (ring->data_dmat != NULL) {
1976 		bus_dma_tag_destroy(ring->data_dmat);
1977 		ring->data_dmat = NULL;
1978 	}
1979 }
1980 
1981 static int
1982 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1983 {
1984 	bus_addr_t paddr;
1985 	bus_size_t size;
1986 	int i, error;
1987 
1988 	ring->qid = qid;
1989 	ring->queued = 0;
1990 	ring->cur = 0;
1991 
1992 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1993 
1994 	/* Allocate TX descriptors (256-byte aligned). */
1995 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1996 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1997 	    size, 256);
1998 	if (error != 0) {
1999 		device_printf(sc->sc_dev,
2000 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2001 		    __func__, error);
2002 		goto fail;
2003 	}
2004 
2005 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2006 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2007 	    size, 4);
2008 	if (error != 0) {
2009 		device_printf(sc->sc_dev,
2010 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2011 		    __func__, error);
2012 		goto fail;
2013 	}
2014 
2015 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2016 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2017 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2018 	if (error != 0) {
2019 		device_printf(sc->sc_dev,
2020 		    "%s: could not create TX buf DMA tag, error %d\n",
2021 		    __func__, error);
2022 		goto fail;
2023 	}
2024 
2025 	paddr = ring->cmd_dma.paddr;
2026 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2027 		struct iwn_tx_data *data = &ring->data[i];
2028 
2029 		data->cmd_paddr = paddr;
2030 		data->scratch_paddr = paddr + 12;
2031 		paddr += sizeof (struct iwn_tx_cmd);
2032 
2033 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2034 		if (error != 0) {
2035 			device_printf(sc->sc_dev,
2036 			    "%s: could not create TX buf DMA map, error %d\n",
2037 			    __func__, error);
2038 			goto fail;
2039 		}
2040 	}
2041 
2042 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2043 
2044 	return 0;
2045 
2046 fail:	iwn_free_tx_ring(sc, ring);
2047 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2048 	return error;
2049 }
2050 
2051 static void
2052 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2053 {
2054 	int i;
2055 
2056 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2057 
2058 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2059 		struct iwn_tx_data *data = &ring->data[i];
2060 
2061 		if (data->m != NULL) {
2062 			bus_dmamap_sync(ring->data_dmat, data->map,
2063 			    BUS_DMASYNC_POSTWRITE);
2064 			bus_dmamap_unload(ring->data_dmat, data->map);
2065 			m_freem(data->m);
2066 			data->m = NULL;
2067 		}
2068 		if (data->ni != NULL) {
2069 			ieee80211_free_node(data->ni);
2070 			data->ni = NULL;
2071 		}
2072 	}
2073 	/* Clear TX descriptors. */
2074 	memset(ring->desc, 0, ring->desc_dma.size);
2075 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2076 	    BUS_DMASYNC_PREWRITE);
2077 	sc->qfullmsk &= ~(1 << ring->qid);
2078 	ring->queued = 0;
2079 	ring->cur = 0;
2080 }
2081 
2082 static void
2083 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2084 {
2085 	int i;
2086 
2087 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2088 
2089 	iwn_dma_contig_free(&ring->desc_dma);
2090 	iwn_dma_contig_free(&ring->cmd_dma);
2091 
2092 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2093 		struct iwn_tx_data *data = &ring->data[i];
2094 
2095 		if (data->m != NULL) {
2096 			bus_dmamap_sync(ring->data_dmat, data->map,
2097 			    BUS_DMASYNC_POSTWRITE);
2098 			bus_dmamap_unload(ring->data_dmat, data->map);
2099 			m_freem(data->m);
2100 		}
2101 		if (data->map != NULL)
2102 			bus_dmamap_destroy(ring->data_dmat, data->map);
2103 	}
2104 	if (ring->data_dmat != NULL) {
2105 		bus_dma_tag_destroy(ring->data_dmat);
2106 		ring->data_dmat = NULL;
2107 	}
2108 }
2109 
2110 static void
2111 iwn5000_ict_reset(struct iwn_softc *sc)
2112 {
2113 	/* Disable interrupts. */
2114 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2115 
2116 	/* Reset ICT table. */
2117 	memset(sc->ict, 0, IWN_ICT_SIZE);
2118 	sc->ict_cur = 0;
2119 
2120 	/* Set physical address of ICT table (4KB aligned). */
2121 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2122 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2123 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2124 
2125 	/* Enable periodic RX interrupt. */
2126 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2127 	/* Switch to ICT interrupt mode in driver. */
2128 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2129 
2130 	/* Re-enable interrupts. */
2131 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2132 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2133 }
2134 
2135 static int
2136 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2137 {
2138 	struct iwn_ops *ops = &sc->ops;
2139 	uint16_t val;
2140 	int error;
2141 
2142 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2143 
2144 	/* Check whether adapter has an EEPROM or an OTPROM. */
2145 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2146 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2147 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2148 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2149 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2150 
2151 	/* Adapter has to be powered on for EEPROM access to work. */
2152 	if ((error = iwn_apm_init(sc)) != 0) {
2153 		device_printf(sc->sc_dev,
2154 		    "%s: could not power ON adapter, error %d\n", __func__,
2155 		    error);
2156 		return error;
2157 	}
2158 
2159 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2160 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2161 		return EIO;
2162 	}
2163 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2164 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2165 		    __func__, error);
2166 		return error;
2167 	}
2168 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2169 		if ((error = iwn_init_otprom(sc)) != 0) {
2170 			device_printf(sc->sc_dev,
2171 			    "%s: could not initialize OTPROM, error %d\n",
2172 			    __func__, error);
2173 			return error;
2174 		}
2175 	}
2176 
2177 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2178 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2179 	/* Check if HT support is bonded out. */
2180 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2181 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2182 
2183 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2184 	sc->rfcfg = le16toh(val);
2185 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2186 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2187 	if (sc->txchainmask == 0)
2188 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2189 	if (sc->rxchainmask == 0)
2190 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2191 
2192 	/* Read MAC address. */
2193 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2194 
2195 	/* Read adapter-specific information from EEPROM. */
2196 	ops->read_eeprom(sc);
2197 
2198 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2199 
2200 	iwn_eeprom_unlock(sc);
2201 
2202 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2203 
2204 	return 0;
2205 }
2206 
2207 static void
2208 iwn4965_read_eeprom(struct iwn_softc *sc)
2209 {
2210 	uint32_t addr;
2211 	uint16_t val;
2212 	int i;
2213 
2214 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2215 
2216 	/* Read regulatory domain (4 ASCII characters). */
2217 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2218 
2219 	/* Read the list of authorized channels (20MHz & 40MHz). */
2220 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2221 		addr = iwn4965_regulatory_bands[i];
2222 		iwn_read_eeprom_channels(sc, i, addr);
2223 	}
2224 
2225 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2226 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2227 	sc->maxpwr2GHz = val & 0xff;
2228 	sc->maxpwr5GHz = val >> 8;
2229 	/* Check that EEPROM values are within valid range. */
2230 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2231 		sc->maxpwr5GHz = 38;
2232 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2233 		sc->maxpwr2GHz = 38;
2234 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2235 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2236 
2237 	/* Read samples for each TX power group. */
2238 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2239 	    sizeof sc->bands);
2240 
2241 	/* Read voltage at which samples were taken. */
2242 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2243 	sc->eeprom_voltage = (int16_t)le16toh(val);
2244 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2245 	    sc->eeprom_voltage);
2246 
2247 #ifdef IWN_DEBUG
2248 	/* Print samples. */
2249 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2250 		for (i = 0; i < IWN_NBANDS - 1; i++)
2251 			iwn4965_print_power_group(sc, i);
2252 	}
2253 #endif
2254 
2255 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2256 }
2257 
2258 #ifdef IWN_DEBUG
2259 static void
2260 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2261 {
2262 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2263 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2264 	int j, c;
2265 
2266 	printf("===band %d===\n", i);
2267 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2268 	printf("chan1 num=%d\n", chans[0].num);
2269 	for (c = 0; c < 2; c++) {
2270 		for (j = 0; j < IWN_NSAMPLES; j++) {
2271 			printf("chain %d, sample %d: temp=%d gain=%d "
2272 			    "power=%d pa_det=%d\n", c, j,
2273 			    chans[0].samples[c][j].temp,
2274 			    chans[0].samples[c][j].gain,
2275 			    chans[0].samples[c][j].power,
2276 			    chans[0].samples[c][j].pa_det);
2277 		}
2278 	}
2279 	printf("chan2 num=%d\n", chans[1].num);
2280 	for (c = 0; c < 2; c++) {
2281 		for (j = 0; j < IWN_NSAMPLES; j++) {
2282 			printf("chain %d, sample %d: temp=%d gain=%d "
2283 			    "power=%d pa_det=%d\n", c, j,
2284 			    chans[1].samples[c][j].temp,
2285 			    chans[1].samples[c][j].gain,
2286 			    chans[1].samples[c][j].power,
2287 			    chans[1].samples[c][j].pa_det);
2288 		}
2289 	}
2290 }
2291 #endif
2292 
2293 static void
2294 iwn5000_read_eeprom(struct iwn_softc *sc)
2295 {
2296 	struct iwn5000_eeprom_calib_hdr hdr;
2297 	int32_t volt;
2298 	uint32_t base, addr;
2299 	uint16_t val;
2300 	int i;
2301 
2302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2303 
2304 	/* Read regulatory domain (4 ASCII characters). */
2305 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2306 	base = le16toh(val);
2307 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2308 	    sc->eeprom_domain, 4);
2309 
2310 	/* Read the list of authorized channels (20MHz & 40MHz). */
2311 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2312 		addr =  base + sc->base_params->regulatory_bands[i];
2313 		iwn_read_eeprom_channels(sc, i, addr);
2314 	}
2315 
2316 	/* Read enhanced TX power information for 6000 Series. */
2317 	if (sc->base_params->enhanced_TX_power)
2318 		iwn_read_eeprom_enhinfo(sc);
2319 
2320 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2321 	base = le16toh(val);
2322 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2323 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2324 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2325 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2326 	sc->calib_ver = hdr.version;
2327 
2328 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2329 		sc->eeprom_voltage = le16toh(hdr.volt);
2330 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2331 		sc->eeprom_temp_high=le16toh(val);
2332 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2333 		sc->eeprom_temp = le16toh(val);
2334 	}
2335 
2336 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2337 		/* Compute temperature offset. */
2338 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2339 		sc->eeprom_temp = le16toh(val);
2340 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2341 		volt = le16toh(val);
2342 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2343 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2344 		    sc->eeprom_temp, volt, sc->temp_off);
2345 	} else {
2346 		/* Read crystal calibration. */
2347 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2348 		    &sc->eeprom_crystal, sizeof (uint32_t));
2349 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2350 		    le32toh(sc->eeprom_crystal));
2351 	}
2352 
2353 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2354 
2355 }
2356 
2357 /*
2358  * Translate EEPROM flags to net80211.
2359  */
2360 static uint32_t
2361 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2362 {
2363 	uint32_t nflags;
2364 
2365 	nflags = 0;
2366 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2367 		nflags |= IEEE80211_CHAN_PASSIVE;
2368 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2369 		nflags |= IEEE80211_CHAN_NOADHOC;
2370 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2371 		nflags |= IEEE80211_CHAN_DFS;
2372 		/* XXX apparently IBSS may still be marked */
2373 		nflags |= IEEE80211_CHAN_NOADHOC;
2374 	}
2375 
2376 	return nflags;
2377 }
2378 
2379 static void
2380 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2381     struct ieee80211_channel chans[])
2382 {
2383 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2384 	const struct iwn_chan_band *band = &iwn_bands[n];
2385 	uint8_t bands[IEEE80211_MODE_BYTES];
2386 	uint8_t chan;
2387 	int i, error, nflags;
2388 
2389 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2390 
2391 	memset(bands, 0, sizeof(bands));
2392 	if (n == 0) {
2393 		setbit(bands, IEEE80211_MODE_11B);
2394 		setbit(bands, IEEE80211_MODE_11G);
2395 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2396 			setbit(bands, IEEE80211_MODE_11NG);
2397 	} else {
2398 		setbit(bands, IEEE80211_MODE_11A);
2399 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2400 			setbit(bands, IEEE80211_MODE_11NA);
2401 	}
2402 
2403 	for (i = 0; i < band->nchan; i++) {
2404 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2405 			DPRINTF(sc, IWN_DEBUG_RESET,
2406 			    "skip chan %d flags 0x%x maxpwr %d\n",
2407 			    band->chan[i], channels[i].flags,
2408 			    channels[i].maxpwr);
2409 			continue;
2410 		}
2411 
2412 		chan = band->chan[i];
2413 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2414 		error = ieee80211_add_channel(chans, maxchans, nchans,
2415 		    chan, 0, channels[i].maxpwr, nflags, bands);
2416 		if (error != 0)
2417 			break;
2418 
2419 		/* Save maximum allowed TX power for this channel. */
2420 		/* XXX wrong */
2421 		sc->maxpwr[chan] = channels[i].maxpwr;
2422 
2423 		DPRINTF(sc, IWN_DEBUG_RESET,
2424 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2425 		    channels[i].flags, channels[i].maxpwr);
2426 	}
2427 
2428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2429 
2430 }
2431 
2432 static void
2433 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2434     struct ieee80211_channel chans[])
2435 {
2436 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2437 	const struct iwn_chan_band *band = &iwn_bands[n];
2438 	uint8_t chan;
2439 	int i, error, nflags;
2440 
2441 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2442 
2443 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2444 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2445 		return;
2446 	}
2447 
2448 	for (i = 0; i < band->nchan; i++) {
2449 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2450 			DPRINTF(sc, IWN_DEBUG_RESET,
2451 			    "skip chan %d flags 0x%x maxpwr %d\n",
2452 			    band->chan[i], channels[i].flags,
2453 			    channels[i].maxpwr);
2454 			continue;
2455 		}
2456 
2457 		chan = band->chan[i];
2458 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2459 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2460 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2461 		    chan, channels[i].maxpwr, nflags);
2462 		switch (error) {
2463 		case EINVAL:
2464 			device_printf(sc->sc_dev,
2465 			    "%s: no entry for channel %d\n", __func__, chan);
2466 			continue;
2467 		case ENOENT:
2468 			DPRINTF(sc, IWN_DEBUG_RESET,
2469 			    "%s: skip chan %d, extension channel not found\n",
2470 			    __func__, chan);
2471 			continue;
2472 		case ENOBUFS:
2473 			device_printf(sc->sc_dev,
2474 			    "%s: channel table is full!\n", __func__);
2475 			break;
2476 		case 0:
2477 			DPRINTF(sc, IWN_DEBUG_RESET,
2478 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2479 			    chan, channels[i].flags, channels[i].maxpwr);
2480 			/* FALLTHROUGH */
2481 		default:
2482 			break;
2483 		}
2484 	}
2485 
2486 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2487 
2488 }
2489 
2490 static void
2491 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2492 {
2493 	struct ieee80211com *ic = &sc->sc_ic;
2494 
2495 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2496 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2497 
2498 	if (n < 5) {
2499 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2500 		    ic->ic_channels);
2501 	} else {
2502 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2503 		    ic->ic_channels);
2504 	}
2505 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2506 }
2507 
2508 static struct iwn_eeprom_chan *
2509 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2510 {
2511 	int band, chan, i, j;
2512 
2513 	if (IEEE80211_IS_CHAN_HT40(c)) {
2514 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2515 		if (IEEE80211_IS_CHAN_HT40D(c))
2516 			chan = c->ic_extieee;
2517 		else
2518 			chan = c->ic_ieee;
2519 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2520 			if (iwn_bands[band].chan[i] == chan)
2521 				return &sc->eeprom_channels[band][i];
2522 		}
2523 	} else {
2524 		for (j = 0; j < 5; j++) {
2525 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2526 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2527 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2528 					return &sc->eeprom_channels[j][i];
2529 			}
2530 		}
2531 	}
2532 	return NULL;
2533 }
2534 
2535 static void
2536 iwn_getradiocaps(struct ieee80211com *ic,
2537     int maxchans, int *nchans, struct ieee80211_channel chans[])
2538 {
2539 	struct iwn_softc *sc = ic->ic_softc;
2540 	int i;
2541 
2542 	/* Parse the list of authorized channels. */
2543 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2544 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2545 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2546 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2547 }
2548 
2549 /*
2550  * Enforce flags read from EEPROM.
2551  */
2552 static int
2553 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2554     int nchan, struct ieee80211_channel chans[])
2555 {
2556 	struct iwn_softc *sc = ic->ic_softc;
2557 	int i;
2558 
2559 	for (i = 0; i < nchan; i++) {
2560 		struct ieee80211_channel *c = &chans[i];
2561 		struct iwn_eeprom_chan *channel;
2562 
2563 		channel = iwn_find_eeprom_channel(sc, c);
2564 		if (channel == NULL) {
2565 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2566 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2567 			return EINVAL;
2568 		}
2569 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static void
2576 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2577 {
2578 	struct iwn_eeprom_enhinfo enhinfo[35];
2579 	struct ieee80211com *ic = &sc->sc_ic;
2580 	struct ieee80211_channel *c;
2581 	uint16_t val, base;
2582 	int8_t maxpwr;
2583 	uint8_t flags;
2584 	int i, j;
2585 
2586 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2587 
2588 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2589 	base = le16toh(val);
2590 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2591 	    enhinfo, sizeof enhinfo);
2592 
2593 	for (i = 0; i < nitems(enhinfo); i++) {
2594 		flags = enhinfo[i].flags;
2595 		if (!(flags & IWN_ENHINFO_VALID))
2596 			continue;	/* Skip invalid entries. */
2597 
2598 		maxpwr = 0;
2599 		if (sc->txchainmask & IWN_ANT_A)
2600 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2601 		if (sc->txchainmask & IWN_ANT_B)
2602 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2603 		if (sc->txchainmask & IWN_ANT_C)
2604 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2605 		if (sc->ntxchains == 2)
2606 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2607 		else if (sc->ntxchains == 3)
2608 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2609 
2610 		for (j = 0; j < ic->ic_nchans; j++) {
2611 			c = &ic->ic_channels[j];
2612 			if ((flags & IWN_ENHINFO_5GHZ)) {
2613 				if (!IEEE80211_IS_CHAN_A(c))
2614 					continue;
2615 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2616 				if (!IEEE80211_IS_CHAN_G(c))
2617 					continue;
2618 			} else if (!IEEE80211_IS_CHAN_B(c))
2619 				continue;
2620 			if ((flags & IWN_ENHINFO_HT40)) {
2621 				if (!IEEE80211_IS_CHAN_HT40(c))
2622 					continue;
2623 			} else {
2624 				if (IEEE80211_IS_CHAN_HT40(c))
2625 					continue;
2626 			}
2627 			if (enhinfo[i].chan != 0 &&
2628 			    enhinfo[i].chan != c->ic_ieee)
2629 				continue;
2630 
2631 			DPRINTF(sc, IWN_DEBUG_RESET,
2632 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2633 			    c->ic_flags, maxpwr / 2);
2634 			c->ic_maxregpower = maxpwr / 2;
2635 			c->ic_maxpower = maxpwr;
2636 		}
2637 	}
2638 
2639 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2640 
2641 }
2642 
2643 static struct ieee80211_node *
2644 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2645 {
2646 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2647 }
2648 
2649 static __inline int
2650 rate2plcp(int rate)
2651 {
2652 	switch (rate & 0xff) {
2653 	case 12:	return 0xd;
2654 	case 18:	return 0xf;
2655 	case 24:	return 0x5;
2656 	case 36:	return 0x7;
2657 	case 48:	return 0x9;
2658 	case 72:	return 0xb;
2659 	case 96:	return 0x1;
2660 	case 108:	return 0x3;
2661 	case 2:		return 10;
2662 	case 4:		return 20;
2663 	case 11:	return 55;
2664 	case 22:	return 110;
2665 	}
2666 	return 0;
2667 }
2668 
2669 static int
2670 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2671 {
2672 
2673 	return IWN_LSB(sc->txchainmask);
2674 }
2675 
2676 static int
2677 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2678 {
2679 	int tx;
2680 
2681 	/*
2682 	 * The '2 stream' setup is a bit .. odd.
2683 	 *
2684 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2685 	 * the firmware panics (eg Intel 5100.)
2686 	 *
2687 	 * For NICs that support two antennas, we use ANT_AB.
2688 	 *
2689 	 * For NICs that support three antennas, we use the two that
2690 	 * wasn't the default one.
2691 	 *
2692 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2693 	 * this to only one antenna.
2694 	 */
2695 
2696 	/* Default - transmit on the other antennas */
2697 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2698 
2699 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2700 	if (tx == 0)
2701 		tx = IWN_ANT_AB;
2702 
2703 	/*
2704 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2705 	 * the default chainmask
2706 	 */
2707 	else if (sc->ntxchains == 2)
2708 		tx = sc->txchainmask;
2709 
2710 	return (tx);
2711 }
2712 
2713 
2714 
2715 /*
2716  * Calculate the required PLCP value from the given rate,
2717  * to the given node.
2718  *
2719  * This will take the node configuration (eg 11n, rate table
2720  * setup, etc) into consideration.
2721  */
2722 static uint32_t
2723 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2724     uint8_t rate)
2725 {
2726 	struct ieee80211com *ic = ni->ni_ic;
2727 	uint32_t plcp = 0;
2728 	int ridx;
2729 
2730 	/*
2731 	 * If it's an MCS rate, let's set the plcp correctly
2732 	 * and set the relevant flags based on the node config.
2733 	 */
2734 	if (rate & IEEE80211_RATE_MCS) {
2735 		/*
2736 		 * Set the initial PLCP value to be between 0->31 for
2737 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2738 		 * flag.
2739 		 */
2740 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2741 
2742 		/*
2743 		 * XXX the following should only occur if both
2744 		 * the local configuration _and_ the remote node
2745 		 * advertise these capabilities.  Thus this code
2746 		 * may need fixing!
2747 		 */
2748 
2749 		/*
2750 		 * Set the channel width and guard interval.
2751 		 */
2752 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2753 			plcp |= IWN_RFLAG_HT40;
2754 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2755 				plcp |= IWN_RFLAG_SGI;
2756 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2757 			plcp |= IWN_RFLAG_SGI;
2758 		}
2759 
2760 		/*
2761 		 * Ensure the selected rate matches the link quality
2762 		 * table entries being used.
2763 		 */
2764 		if (rate > 0x8f)
2765 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2766 		else if (rate > 0x87)
2767 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2768 		else
2769 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2770 	} else {
2771 		/*
2772 		 * Set the initial PLCP - fine for both
2773 		 * OFDM and CCK rates.
2774 		 */
2775 		plcp = rate2plcp(rate);
2776 
2777 		/* Set CCK flag if it's CCK */
2778 
2779 		/* XXX It would be nice to have a method
2780 		 * to map the ridx -> phy table entry
2781 		 * so we could just query that, rather than
2782 		 * this hack to check against IWN_RIDX_OFDM6.
2783 		 */
2784 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2785 		    rate & IEEE80211_RATE_VAL);
2786 		if (ridx < IWN_RIDX_OFDM6 &&
2787 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2788 			plcp |= IWN_RFLAG_CCK;
2789 
2790 		/* Set antenna configuration */
2791 		/* XXX TODO: is this the right antenna to use for legacy? */
2792 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2793 	}
2794 
2795 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2796 	    __func__,
2797 	    rate,
2798 	    plcp);
2799 
2800 	return (htole32(plcp));
2801 }
2802 
2803 static void
2804 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2805 {
2806 	/* Doesn't do anything at the moment */
2807 }
2808 
2809 static int
2810 iwn_media_change(struct ifnet *ifp)
2811 {
2812 	int error;
2813 
2814 	error = ieee80211_media_change(ifp);
2815 	/* NB: only the fixed rate can change and that doesn't need a reset */
2816 	return (error == ENETRESET ? 0 : error);
2817 }
2818 
2819 static int
2820 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2821 {
2822 	struct iwn_vap *ivp = IWN_VAP(vap);
2823 	struct ieee80211com *ic = vap->iv_ic;
2824 	struct iwn_softc *sc = ic->ic_softc;
2825 	int error = 0;
2826 
2827 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2828 
2829 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2830 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2831 
2832 	IEEE80211_UNLOCK(ic);
2833 	IWN_LOCK(sc);
2834 	callout_stop(&sc->calib_to);
2835 
2836 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2837 
2838 	switch (nstate) {
2839 	case IEEE80211_S_ASSOC:
2840 		if (vap->iv_state != IEEE80211_S_RUN)
2841 			break;
2842 		/* FALLTHROUGH */
2843 	case IEEE80211_S_AUTH:
2844 		if (vap->iv_state == IEEE80211_S_AUTH)
2845 			break;
2846 
2847 		/*
2848 		 * !AUTH -> AUTH transition requires state reset to handle
2849 		 * reassociations correctly.
2850 		 */
2851 		sc->rxon->associd = 0;
2852 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2853 		sc->calib.state = IWN_CALIB_STATE_INIT;
2854 
2855 		/* Wait until we hear a beacon before we transmit */
2856 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2857 			sc->sc_beacon_wait = 1;
2858 
2859 		if ((error = iwn_auth(sc, vap)) != 0) {
2860 			device_printf(sc->sc_dev,
2861 			    "%s: could not move to auth state\n", __func__);
2862 		}
2863 		break;
2864 
2865 	case IEEE80211_S_RUN:
2866 		/*
2867 		 * RUN -> RUN transition; Just restart the timers.
2868 		 */
2869 		if (vap->iv_state == IEEE80211_S_RUN) {
2870 			sc->calib_cnt = 0;
2871 			break;
2872 		}
2873 
2874 		/* Wait until we hear a beacon before we transmit */
2875 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2876 			sc->sc_beacon_wait = 1;
2877 
2878 		/*
2879 		 * !RUN -> RUN requires setting the association id
2880 		 * which is done with a firmware cmd.  We also defer
2881 		 * starting the timers until that work is done.
2882 		 */
2883 		if ((error = iwn_run(sc, vap)) != 0) {
2884 			device_printf(sc->sc_dev,
2885 			    "%s: could not move to run state\n", __func__);
2886 		}
2887 		break;
2888 
2889 	case IEEE80211_S_INIT:
2890 		sc->calib.state = IWN_CALIB_STATE_INIT;
2891 		/*
2892 		 * Purge the xmit queue so we don't have old frames
2893 		 * during a new association attempt.
2894 		 */
2895 		sc->sc_beacon_wait = 0;
2896 		iwn_xmit_queue_drain(sc);
2897 		break;
2898 
2899 	default:
2900 		break;
2901 	}
2902 	IWN_UNLOCK(sc);
2903 	IEEE80211_LOCK(ic);
2904 	if (error != 0){
2905 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2906 		return error;
2907 	}
2908 
2909 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2910 
2911 	return ivp->iv_newstate(vap, nstate, arg);
2912 }
2913 
2914 static void
2915 iwn_calib_timeout(void *arg)
2916 {
2917 	struct iwn_softc *sc = arg;
2918 
2919 	IWN_LOCK_ASSERT(sc);
2920 
2921 	/* Force automatic TX power calibration every 60 secs. */
2922 	if (++sc->calib_cnt >= 120) {
2923 		uint32_t flags = 0;
2924 
2925 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2926 		    "sending request for statistics");
2927 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2928 		    sizeof flags, 1);
2929 		sc->calib_cnt = 0;
2930 	}
2931 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2932 	    sc);
2933 }
2934 
2935 /*
2936  * Process an RX_PHY firmware notification.  This is usually immediately
2937  * followed by an MPDU_RX_DONE notification.
2938  */
2939 static void
2940 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2941     struct iwn_rx_data *data)
2942 {
2943 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2944 
2945 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2946 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2947 
2948 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2949 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2950 	sc->last_rx_valid = 1;
2951 }
2952 
2953 /*
2954  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2955  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2956  */
2957 static void
2958 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2959     struct iwn_rx_data *data)
2960 {
2961 	struct iwn_ops *ops = &sc->ops;
2962 	struct ieee80211com *ic = &sc->sc_ic;
2963 	struct iwn_rx_ring *ring = &sc->rxq;
2964 	struct ieee80211_frame *wh;
2965 	struct ieee80211_node *ni;
2966 	struct mbuf *m, *m1;
2967 	struct iwn_rx_stat *stat;
2968 	caddr_t head;
2969 	bus_addr_t paddr;
2970 	uint32_t flags;
2971 	int error, len, rssi, nf;
2972 
2973 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2974 
2975 	if (desc->type == IWN_MPDU_RX_DONE) {
2976 		/* Check for prior RX_PHY notification. */
2977 		if (!sc->last_rx_valid) {
2978 			DPRINTF(sc, IWN_DEBUG_ANY,
2979 			    "%s: missing RX_PHY\n", __func__);
2980 			return;
2981 		}
2982 		stat = &sc->last_rx_stat;
2983 	} else
2984 		stat = (struct iwn_rx_stat *)(desc + 1);
2985 
2986 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2987 
2988 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2989 		device_printf(sc->sc_dev,
2990 		    "%s: invalid RX statistic header, len %d\n", __func__,
2991 		    stat->cfg_phy_len);
2992 		return;
2993 	}
2994 	if (desc->type == IWN_MPDU_RX_DONE) {
2995 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2996 		head = (caddr_t)(mpdu + 1);
2997 		len = le16toh(mpdu->len);
2998 	} else {
2999 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3000 		len = le16toh(stat->len);
3001 	}
3002 
3003 	flags = le32toh(*(uint32_t *)(head + len));
3004 
3005 	/* Discard frames with a bad FCS early. */
3006 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3007 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3008 		    __func__, flags);
3009 		counter_u64_add(ic->ic_ierrors, 1);
3010 		return;
3011 	}
3012 	/* Discard frames that are too short. */
3013 	if (len < sizeof (struct ieee80211_frame_ack)) {
3014 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3015 		    __func__, len);
3016 		counter_u64_add(ic->ic_ierrors, 1);
3017 		return;
3018 	}
3019 
3020 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3021 	if (m1 == NULL) {
3022 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3023 		    __func__);
3024 		counter_u64_add(ic->ic_ierrors, 1);
3025 		return;
3026 	}
3027 	bus_dmamap_unload(ring->data_dmat, data->map);
3028 
3029 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3030 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3031 	if (error != 0 && error != EFBIG) {
3032 		device_printf(sc->sc_dev,
3033 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3034 		m_freem(m1);
3035 
3036 		/* Try to reload the old mbuf. */
3037 		error = bus_dmamap_load(ring->data_dmat, data->map,
3038 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3039 		    &paddr, BUS_DMA_NOWAIT);
3040 		if (error != 0 && error != EFBIG) {
3041 			panic("%s: could not load old RX mbuf", __func__);
3042 		}
3043 		/* Physical address may have changed. */
3044 		ring->desc[ring->cur] = htole32(paddr >> 8);
3045 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3046 		    BUS_DMASYNC_PREWRITE);
3047 		counter_u64_add(ic->ic_ierrors, 1);
3048 		return;
3049 	}
3050 
3051 	m = data->m;
3052 	data->m = m1;
3053 	/* Update RX descriptor. */
3054 	ring->desc[ring->cur] = htole32(paddr >> 8);
3055 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3056 	    BUS_DMASYNC_PREWRITE);
3057 
3058 	/* Finalize mbuf. */
3059 	m->m_data = head;
3060 	m->m_pkthdr.len = m->m_len = len;
3061 
3062 	/* Grab a reference to the source node. */
3063 	wh = mtod(m, struct ieee80211_frame *);
3064 	if (len >= sizeof(struct ieee80211_frame_min))
3065 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3066 	else
3067 		ni = NULL;
3068 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3069 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3070 
3071 	rssi = ops->get_rssi(sc, stat);
3072 
3073 	if (ieee80211_radiotap_active(ic)) {
3074 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3075 
3076 		tap->wr_flags = 0;
3077 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3078 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3079 		tap->wr_dbm_antsignal = (int8_t)rssi;
3080 		tap->wr_dbm_antnoise = (int8_t)nf;
3081 		tap->wr_tsft = stat->tstamp;
3082 		switch (stat->rate) {
3083 		/* CCK rates. */
3084 		case  10: tap->wr_rate =   2; break;
3085 		case  20: tap->wr_rate =   4; break;
3086 		case  55: tap->wr_rate =  11; break;
3087 		case 110: tap->wr_rate =  22; break;
3088 		/* OFDM rates. */
3089 		case 0xd: tap->wr_rate =  12; break;
3090 		case 0xf: tap->wr_rate =  18; break;
3091 		case 0x5: tap->wr_rate =  24; break;
3092 		case 0x7: tap->wr_rate =  36; break;
3093 		case 0x9: tap->wr_rate =  48; break;
3094 		case 0xb: tap->wr_rate =  72; break;
3095 		case 0x1: tap->wr_rate =  96; break;
3096 		case 0x3: tap->wr_rate = 108; break;
3097 		/* Unknown rate: should not happen. */
3098 		default:  tap->wr_rate =   0;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * If it's a beacon and we're waiting, then do the
3104 	 * wakeup.  This should unblock raw_xmit/start.
3105 	 */
3106 	if (sc->sc_beacon_wait) {
3107 		uint8_t type, subtype;
3108 		/* NB: Re-assign wh */
3109 		wh = mtod(m, struct ieee80211_frame *);
3110 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3111 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3112 		/*
3113 		 * This assumes at this point we've received our own
3114 		 * beacon.
3115 		 */
3116 		DPRINTF(sc, IWN_DEBUG_TRACE,
3117 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3118 		    __func__, type, subtype);
3119 		if (type == IEEE80211_FC0_TYPE_MGT &&
3120 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3121 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3122 			    "%s: waking things up\n", __func__);
3123 			/* queue taskqueue to transmit! */
3124 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3125 		}
3126 	}
3127 
3128 	IWN_UNLOCK(sc);
3129 
3130 	/* Send the frame to the 802.11 layer. */
3131 	if (ni != NULL) {
3132 		if (ni->ni_flags & IEEE80211_NODE_HT)
3133 			m->m_flags |= M_AMPDU;
3134 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3135 		/* Node is no longer needed. */
3136 		ieee80211_free_node(ni);
3137 	} else
3138 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3139 
3140 	IWN_LOCK(sc);
3141 
3142 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3143 
3144 }
3145 
3146 /* Process an incoming Compressed BlockAck. */
3147 static void
3148 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3149     struct iwn_rx_data *data)
3150 {
3151 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3152 	struct iwn_ops *ops = &sc->ops;
3153 	struct iwn_node *wn;
3154 	struct ieee80211_node *ni;
3155 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3156 	struct iwn_tx_ring *txq;
3157 	struct iwn_tx_data *txdata;
3158 	struct ieee80211_tx_ampdu *tap;
3159 	struct mbuf *m;
3160 	uint64_t bitmap;
3161 	uint16_t ssn;
3162 	uint8_t tid;
3163 	int i, lastidx, qid, *res, shift;
3164 	int tx_ok = 0, tx_err = 0;
3165 
3166 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3167 
3168 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3169 
3170 	qid = le16toh(ba->qid);
3171 	txq = &sc->txq[ba->qid];
3172 	tap = sc->qid2tap[ba->qid];
3173 	tid = tap->txa_tid;
3174 	wn = (void *)tap->txa_ni;
3175 
3176 	res = NULL;
3177 	ssn = 0;
3178 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3179 		res = tap->txa_private;
3180 		ssn = tap->txa_start & 0xfff;
3181 	}
3182 
3183 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3184 		txdata = &txq->data[txq->read];
3185 
3186 		/* Unmap and free mbuf. */
3187 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3188 		    BUS_DMASYNC_POSTWRITE);
3189 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3190 		m = txdata->m, txdata->m = NULL;
3191 		ni = txdata->ni, txdata->ni = NULL;
3192 
3193 		KASSERT(ni != NULL, ("no node"));
3194 		KASSERT(m != NULL, ("no mbuf"));
3195 
3196 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3197 		ieee80211_tx_complete(ni, m, 1);
3198 
3199 		txq->queued--;
3200 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3201 	}
3202 
3203 	if (txq->queued == 0 && res != NULL) {
3204 		iwn_nic_lock(sc);
3205 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3206 		iwn_nic_unlock(sc);
3207 		sc->qid2tap[qid] = NULL;
3208 		free(res, M_DEVBUF);
3209 		return;
3210 	}
3211 
3212 	if (wn->agg[tid].bitmap == 0)
3213 		return;
3214 
3215 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3216 	if (shift < 0)
3217 		shift += 0x100;
3218 
3219 	if (wn->agg[tid].nframes > (64 - shift))
3220 		return;
3221 
3222 	/*
3223 	 * Walk the bitmap and calculate how many successful and failed
3224 	 * attempts are made.
3225 	 *
3226 	 * Yes, the rate control code doesn't know these are A-MPDU
3227 	 * subframes and that it's okay to fail some of these.
3228 	 */
3229 	ni = tap->txa_ni;
3230 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3231 	for (i = 0; bitmap; i++) {
3232 		txs->flags = 0;		/* XXX TODO */
3233 		if ((bitmap & 1) == 0) {
3234 			tx_err ++;
3235 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3236 		} else {
3237 			tx_ok ++;
3238 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3239 		}
3240 		ieee80211_ratectl_tx_complete(ni, txs);
3241 		bitmap >>= 1;
3242 	}
3243 
3244 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3245 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3246 
3247 }
3248 
3249 /*
3250  * Process a CALIBRATION_RESULT notification sent by the initialization
3251  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3252  */
3253 static void
3254 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3255     struct iwn_rx_data *data)
3256 {
3257 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3258 	int len, idx = -1;
3259 
3260 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3261 
3262 	/* Runtime firmware should not send such a notification. */
3263 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3264 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3265 	    __func__);
3266 		return;
3267 	}
3268 	len = (le32toh(desc->len) & 0x3fff) - 4;
3269 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3270 
3271 	switch (calib->code) {
3272 	case IWN5000_PHY_CALIB_DC:
3273 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3274 			idx = 0;
3275 		break;
3276 	case IWN5000_PHY_CALIB_LO:
3277 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3278 			idx = 1;
3279 		break;
3280 	case IWN5000_PHY_CALIB_TX_IQ:
3281 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3282 			idx = 2;
3283 		break;
3284 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3285 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3286 			idx = 3;
3287 		break;
3288 	case IWN5000_PHY_CALIB_BASE_BAND:
3289 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3290 			idx = 4;
3291 		break;
3292 	}
3293 	if (idx == -1)	/* Ignore other results. */
3294 		return;
3295 
3296 	/* Save calibration result. */
3297 	if (sc->calibcmd[idx].buf != NULL)
3298 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3299 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3300 	if (sc->calibcmd[idx].buf == NULL) {
3301 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3302 		    "not enough memory for calibration result %d\n",
3303 		    calib->code);
3304 		return;
3305 	}
3306 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3307 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3308 	sc->calibcmd[idx].len = len;
3309 	memcpy(sc->calibcmd[idx].buf, calib, len);
3310 }
3311 
3312 static void
3313 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3314     struct iwn_stats *stats, int len)
3315 {
3316 	struct iwn_stats_bt *stats_bt;
3317 	struct iwn_stats *lstats;
3318 
3319 	/*
3320 	 * First - check whether the length is the bluetooth or normal.
3321 	 *
3322 	 * If it's normal - just copy it and bump out.
3323 	 * Otherwise we have to convert things.
3324 	 */
3325 
3326 	if (len == sizeof(struct iwn_stats) + 4) {
3327 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3328 		sc->last_stat_valid = 1;
3329 		return;
3330 	}
3331 
3332 	/*
3333 	 * If it's not the bluetooth size - log, then just copy.
3334 	 */
3335 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3336 		DPRINTF(sc, IWN_DEBUG_STATS,
3337 		    "%s: size of rx statistics (%d) not an expected size!\n",
3338 		    __func__,
3339 		    len);
3340 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3341 		sc->last_stat_valid = 1;
3342 		return;
3343 	}
3344 
3345 	/*
3346 	 * Ok. Time to copy.
3347 	 */
3348 	stats_bt = (struct iwn_stats_bt *) stats;
3349 	lstats = &sc->last_stat;
3350 
3351 	/* flags */
3352 	lstats->flags = stats_bt->flags;
3353 	/* rx_bt */
3354 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3355 	    sizeof(struct iwn_rx_phy_stats));
3356 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3357 	    sizeof(struct iwn_rx_phy_stats));
3358 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3359 	    sizeof(struct iwn_rx_general_stats));
3360 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3361 	    sizeof(struct iwn_rx_ht_phy_stats));
3362 	/* tx */
3363 	memcpy(&lstats->tx, &stats_bt->tx,
3364 	    sizeof(struct iwn_tx_stats));
3365 	/* general */
3366 	memcpy(&lstats->general, &stats_bt->general,
3367 	    sizeof(struct iwn_general_stats));
3368 
3369 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3370 	sc->last_stat_valid = 1;
3371 }
3372 
3373 /*
3374  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3375  * The latter is sent by the firmware after each received beacon.
3376  */
3377 static void
3378 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3379     struct iwn_rx_data *data)
3380 {
3381 	struct iwn_ops *ops = &sc->ops;
3382 	struct ieee80211com *ic = &sc->sc_ic;
3383 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3384 	struct iwn_calib_state *calib = &sc->calib;
3385 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3386 	struct iwn_stats *lstats;
3387 	int temp;
3388 
3389 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3390 
3391 	/* Ignore statistics received during a scan. */
3392 	if (vap->iv_state != IEEE80211_S_RUN ||
3393 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3394 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3395 	    __func__);
3396 		return;
3397 	}
3398 
3399 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3400 
3401 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3402 	    "%s: received statistics, cmd %d, len %d\n",
3403 	    __func__, desc->type, le16toh(desc->len));
3404 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3405 
3406 	/*
3407 	 * Collect/track general statistics for reporting.
3408 	 *
3409 	 * This takes care of ensuring that the bluetooth sized message
3410 	 * will be correctly converted to the legacy sized message.
3411 	 */
3412 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3413 
3414 	/*
3415 	 * And now, let's take a reference of it to use!
3416 	 */
3417 	lstats = &sc->last_stat;
3418 
3419 	/* Test if temperature has changed. */
3420 	if (lstats->general.temp != sc->rawtemp) {
3421 		/* Convert "raw" temperature to degC. */
3422 		sc->rawtemp = stats->general.temp;
3423 		temp = ops->get_temperature(sc);
3424 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3425 		    __func__, temp);
3426 
3427 		/* Update TX power if need be (4965AGN only). */
3428 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3429 			iwn4965_power_calibration(sc, temp);
3430 	}
3431 
3432 	if (desc->type != IWN_BEACON_STATISTICS)
3433 		return;	/* Reply to a statistics request. */
3434 
3435 	sc->noise = iwn_get_noise(&lstats->rx.general);
3436 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3437 
3438 	/* Test that RSSI and noise are present in stats report. */
3439 	if (le32toh(lstats->rx.general.flags) != 1) {
3440 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3441 		    "received statistics without RSSI");
3442 		return;
3443 	}
3444 
3445 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3446 		iwn_collect_noise(sc, &lstats->rx.general);
3447 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3448 		iwn_tune_sensitivity(sc, &lstats->rx);
3449 		/*
3450 		 * XXX TODO: Only run the RX recovery if we're associated!
3451 		 */
3452 		iwn_check_rx_recovery(sc, lstats);
3453 		iwn_save_stats_counters(sc, lstats);
3454 	}
3455 
3456 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3457 }
3458 
3459 /*
3460  * Save the relevant statistic counters for the next calibration
3461  * pass.
3462  */
3463 static void
3464 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3465 {
3466 	struct iwn_calib_state *calib = &sc->calib;
3467 
3468 	/* Save counters values for next call. */
3469 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3470 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3471 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3472 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3473 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3474 
3475 	/* Last time we received these tick values */
3476 	sc->last_calib_ticks = ticks;
3477 }
3478 
3479 /*
3480  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3481  * and 5000 adapters have different incompatible TX status formats.
3482  */
3483 static void
3484 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3485     struct iwn_rx_data *data)
3486 {
3487 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3488 	struct iwn_tx_ring *ring;
3489 	int qid;
3490 
3491 	qid = desc->qid & 0xf;
3492 	ring = &sc->txq[qid];
3493 
3494 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3495 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3496 	    __func__, desc->qid, desc->idx,
3497 	    stat->rtsfailcnt,
3498 	    stat->ackfailcnt,
3499 	    stat->btkillcnt,
3500 	    stat->rate, le16toh(stat->duration),
3501 	    le32toh(stat->status));
3502 
3503 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3504 	if (qid >= sc->firstaggqueue) {
3505 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3506 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3507 	} else {
3508 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3509 		    le32toh(stat->status) & 0xff);
3510 	}
3511 }
3512 
3513 static void
3514 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3515     struct iwn_rx_data *data)
3516 {
3517 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3518 	struct iwn_tx_ring *ring;
3519 	int qid;
3520 
3521 	qid = desc->qid & 0xf;
3522 	ring = &sc->txq[qid];
3523 
3524 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3525 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3526 	    __func__, desc->qid, desc->idx,
3527 	    stat->rtsfailcnt,
3528 	    stat->ackfailcnt,
3529 	    stat->btkillcnt,
3530 	    stat->rate, le16toh(stat->duration),
3531 	    le32toh(stat->status));
3532 
3533 #ifdef notyet
3534 	/* Reset TX scheduler slot. */
3535 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3536 #endif
3537 
3538 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3539 	if (qid >= sc->firstaggqueue) {
3540 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3541 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3542 	} else {
3543 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3544 		    le16toh(stat->status) & 0xff);
3545 	}
3546 }
3547 
3548 /*
3549  * Adapter-independent backend for TX_DONE firmware notifications.
3550  */
3551 static void
3552 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3553     int ackfailcnt, uint8_t status)
3554 {
3555 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3556 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3557 	struct iwn_tx_data *data = &ring->data[desc->idx];
3558 	struct mbuf *m;
3559 	struct ieee80211_node *ni;
3560 
3561 	KASSERT(data->ni != NULL, ("no node"));
3562 
3563 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3564 
3565 	/* Unmap and free mbuf. */
3566 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3567 	bus_dmamap_unload(ring->data_dmat, data->map);
3568 	m = data->m, data->m = NULL;
3569 	ni = data->ni, data->ni = NULL;
3570 
3571 	/*
3572 	 * Update rate control statistics for the node.
3573 	 */
3574 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3575 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3576 	txs->short_retries = rtsfailcnt;
3577 	txs->long_retries = ackfailcnt;
3578 	if (!(status & IWN_TX_FAIL))
3579 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3580 	else {
3581 		switch (status) {
3582 		case IWN_TX_FAIL_SHORT_LIMIT:
3583 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3584 			break;
3585 		case IWN_TX_FAIL_LONG_LIMIT:
3586 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3587 			break;
3588 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3589 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3590 			break;
3591 		default:
3592 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3593 			break;
3594 		}
3595 	}
3596 	ieee80211_ratectl_tx_complete(ni, txs);
3597 
3598 	/*
3599 	 * Channels marked for "radar" require traffic to be received
3600 	 * to unlock before we can transmit.  Until traffic is seen
3601 	 * any attempt to transmit is returned immediately with status
3602 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3603 	 * happen on first authenticate after scanning.  To workaround
3604 	 * this we ignore a failure of this sort in AUTH state so the
3605 	 * 802.11 layer will fall back to using a timeout to wait for
3606 	 * the AUTH reply.  This allows the firmware time to see
3607 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3608 	 * unclear why the firmware does not maintain state for
3609 	 * channels recently visited as this would allow immediate
3610 	 * use of the channel after a scan (where we see traffic).
3611 	 */
3612 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3613 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3614 		ieee80211_tx_complete(ni, m, 0);
3615 	else
3616 		ieee80211_tx_complete(ni, m,
3617 		    (status & IWN_TX_FAIL) != 0);
3618 
3619 	sc->sc_tx_timer = 0;
3620 	if (--ring->queued < IWN_TX_RING_LOMARK)
3621 		sc->qfullmsk &= ~(1 << ring->qid);
3622 
3623 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3624 }
3625 
3626 /*
3627  * Process a "command done" firmware notification.  This is where we wakeup
3628  * processes waiting for a synchronous command completion.
3629  */
3630 static void
3631 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3632 {
3633 	struct iwn_tx_ring *ring;
3634 	struct iwn_tx_data *data;
3635 	int cmd_queue_num;
3636 
3637 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3638 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3639 	else
3640 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3641 
3642 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3643 		return;	/* Not a command ack. */
3644 
3645 	ring = &sc->txq[cmd_queue_num];
3646 	data = &ring->data[desc->idx];
3647 
3648 	/* If the command was mapped in an mbuf, free it. */
3649 	if (data->m != NULL) {
3650 		bus_dmamap_sync(ring->data_dmat, data->map,
3651 		    BUS_DMASYNC_POSTWRITE);
3652 		bus_dmamap_unload(ring->data_dmat, data->map);
3653 		m_freem(data->m);
3654 		data->m = NULL;
3655 	}
3656 	wakeup(&ring->desc[desc->idx]);
3657 }
3658 
3659 static void
3660 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3661     int rtsfailcnt, int ackfailcnt, void *stat)
3662 {
3663 	struct iwn_ops *ops = &sc->ops;
3664 	struct iwn_tx_ring *ring = &sc->txq[qid];
3665 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3666 	struct iwn_tx_data *data;
3667 	struct mbuf *m;
3668 	struct iwn_node *wn;
3669 	struct ieee80211_node *ni;
3670 	struct ieee80211_tx_ampdu *tap;
3671 	uint64_t bitmap;
3672 	uint32_t *status = stat;
3673 	uint16_t *aggstatus = stat;
3674 	uint16_t ssn;
3675 	uint8_t tid;
3676 	int bit, i, lastidx, *res, seqno, shift, start;
3677 
3678 	/* XXX TODO: status is le16 field! Grr */
3679 
3680 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3681 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3682 	    __func__,
3683 	    nframes,
3684 	    *status);
3685 
3686 	tap = sc->qid2tap[qid];
3687 	tid = tap->txa_tid;
3688 	wn = (void *)tap->txa_ni;
3689 	ni = tap->txa_ni;
3690 
3691 	/*
3692 	 * XXX TODO: ACK and RTS failures would be nice here!
3693 	 */
3694 
3695 	/*
3696 	 * A-MPDU single frame status - if we failed to transmit it
3697 	 * in A-MPDU, then it may be a permanent failure.
3698 	 *
3699 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3700 	 * there's some permanent and temporary failures that may be
3701 	 * handled differently.
3702 	 */
3703 	if (nframes == 1) {
3704 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3705 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3706 		txs->short_retries = rtsfailcnt;
3707 		txs->long_retries = ackfailcnt;
3708 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3709 #ifdef	NOT_YET
3710 			printf("ieee80211_send_bar()\n");
3711 #endif
3712 			/*
3713 			 * If we completely fail a transmit, make sure a
3714 			 * notification is pushed up to the rate control
3715 			 * layer.
3716 			 */
3717 			/* XXX */
3718 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3719 		} else {
3720 			/*
3721 			 * If nframes=1, then we won't be getting a BA for
3722 			 * this frame.  Ensure that we correctly update the
3723 			 * rate control code with how many retries were
3724 			 * needed to send it.
3725 			 */
3726 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3727 		}
3728 		ieee80211_ratectl_tx_complete(ni, txs);
3729 	}
3730 
3731 	bitmap = 0;
3732 	start = idx;
3733 	for (i = 0; i < nframes; i++) {
3734 		if (le16toh(aggstatus[i * 2]) & 0xc)
3735 			continue;
3736 
3737 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3738 		bit = idx - start;
3739 		shift = 0;
3740 		if (bit >= 64) {
3741 			shift = 0x100 - idx + start;
3742 			bit = 0;
3743 			start = idx;
3744 		} else if (bit <= -64)
3745 			bit = 0x100 - start + idx;
3746 		else if (bit < 0) {
3747 			shift = start - idx;
3748 			start = idx;
3749 			bit = 0;
3750 		}
3751 		bitmap = bitmap << shift;
3752 		bitmap |= 1ULL << bit;
3753 	}
3754 	tap = sc->qid2tap[qid];
3755 	tid = tap->txa_tid;
3756 	wn = (void *)tap->txa_ni;
3757 	wn->agg[tid].bitmap = bitmap;
3758 	wn->agg[tid].startidx = start;
3759 	wn->agg[tid].nframes = nframes;
3760 
3761 	res = NULL;
3762 	ssn = 0;
3763 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3764 		res = tap->txa_private;
3765 		ssn = tap->txa_start & 0xfff;
3766 	}
3767 
3768 	/* This is going nframes DWORDS into the descriptor? */
3769 	seqno = le32toh(*(status + nframes)) & 0xfff;
3770 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3771 		data = &ring->data[ring->read];
3772 
3773 		/* Unmap and free mbuf. */
3774 		bus_dmamap_sync(ring->data_dmat, data->map,
3775 		    BUS_DMASYNC_POSTWRITE);
3776 		bus_dmamap_unload(ring->data_dmat, data->map);
3777 		m = data->m, data->m = NULL;
3778 		ni = data->ni, data->ni = NULL;
3779 
3780 		KASSERT(ni != NULL, ("no node"));
3781 		KASSERT(m != NULL, ("no mbuf"));
3782 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3783 		ieee80211_tx_complete(ni, m, 1);
3784 
3785 		ring->queued--;
3786 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3787 	}
3788 
3789 	if (ring->queued == 0 && res != NULL) {
3790 		iwn_nic_lock(sc);
3791 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3792 		iwn_nic_unlock(sc);
3793 		sc->qid2tap[qid] = NULL;
3794 		free(res, M_DEVBUF);
3795 		return;
3796 	}
3797 
3798 	sc->sc_tx_timer = 0;
3799 	if (ring->queued < IWN_TX_RING_LOMARK)
3800 		sc->qfullmsk &= ~(1 << ring->qid);
3801 
3802 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3803 }
3804 
3805 /*
3806  * Process an INT_FH_RX or INT_SW_RX interrupt.
3807  */
3808 static void
3809 iwn_notif_intr(struct iwn_softc *sc)
3810 {
3811 	struct iwn_ops *ops = &sc->ops;
3812 	struct ieee80211com *ic = &sc->sc_ic;
3813 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3814 	uint16_t hw;
3815 
3816 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3817 	    BUS_DMASYNC_POSTREAD);
3818 
3819 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3820 	while (sc->rxq.cur != hw) {
3821 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3822 		struct iwn_rx_desc *desc;
3823 
3824 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3825 		    BUS_DMASYNC_POSTREAD);
3826 		desc = mtod(data->m, struct iwn_rx_desc *);
3827 
3828 		DPRINTF(sc, IWN_DEBUG_RECV,
3829 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3830 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3831 		    desc->type, iwn_intr_str(desc->type),
3832 		    le16toh(desc->len));
3833 
3834 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3835 			iwn_cmd_done(sc, desc);
3836 
3837 		switch (desc->type) {
3838 		case IWN_RX_PHY:
3839 			iwn_rx_phy(sc, desc, data);
3840 			break;
3841 
3842 		case IWN_RX_DONE:		/* 4965AGN only. */
3843 		case IWN_MPDU_RX_DONE:
3844 			/* An 802.11 frame has been received. */
3845 			iwn_rx_done(sc, desc, data);
3846 			break;
3847 
3848 		case IWN_RX_COMPRESSED_BA:
3849 			/* A Compressed BlockAck has been received. */
3850 			iwn_rx_compressed_ba(sc, desc, data);
3851 			break;
3852 
3853 		case IWN_TX_DONE:
3854 			/* An 802.11 frame has been transmitted. */
3855 			ops->tx_done(sc, desc, data);
3856 			break;
3857 
3858 		case IWN_RX_STATISTICS:
3859 		case IWN_BEACON_STATISTICS:
3860 			iwn_rx_statistics(sc, desc, data);
3861 			break;
3862 
3863 		case IWN_BEACON_MISSED:
3864 		{
3865 			struct iwn_beacon_missed *miss =
3866 			    (struct iwn_beacon_missed *)(desc + 1);
3867 			int misses;
3868 
3869 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3870 			    BUS_DMASYNC_POSTREAD);
3871 			misses = le32toh(miss->consecutive);
3872 
3873 			DPRINTF(sc, IWN_DEBUG_STATE,
3874 			    "%s: beacons missed %d/%d\n", __func__,
3875 			    misses, le32toh(miss->total));
3876 			/*
3877 			 * If more than 5 consecutive beacons are missed,
3878 			 * reinitialize the sensitivity state machine.
3879 			 */
3880 			if (vap->iv_state == IEEE80211_S_RUN &&
3881 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3882 				if (misses > 5)
3883 					(void)iwn_init_sensitivity(sc);
3884 				if (misses >= vap->iv_bmissthreshold) {
3885 					IWN_UNLOCK(sc);
3886 					ieee80211_beacon_miss(ic);
3887 					IWN_LOCK(sc);
3888 				}
3889 			}
3890 			break;
3891 		}
3892 		case IWN_UC_READY:
3893 		{
3894 			struct iwn_ucode_info *uc =
3895 			    (struct iwn_ucode_info *)(desc + 1);
3896 
3897 			/* The microcontroller is ready. */
3898 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3899 			    BUS_DMASYNC_POSTREAD);
3900 			DPRINTF(sc, IWN_DEBUG_RESET,
3901 			    "microcode alive notification version=%d.%d "
3902 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3903 			    uc->subtype, le32toh(uc->valid));
3904 
3905 			if (le32toh(uc->valid) != 1) {
3906 				device_printf(sc->sc_dev,
3907 				    "microcontroller initialization failed");
3908 				break;
3909 			}
3910 			if (uc->subtype == IWN_UCODE_INIT) {
3911 				/* Save microcontroller report. */
3912 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3913 			}
3914 			/* Save the address of the error log in SRAM. */
3915 			sc->errptr = le32toh(uc->errptr);
3916 			break;
3917 		}
3918 		case IWN_STATE_CHANGED:
3919 		{
3920 			/*
3921 			 * State change allows hardware switch change to be
3922 			 * noted. However, we handle this in iwn_intr as we
3923 			 * get both the enable/disble intr.
3924 			 */
3925 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3926 			    BUS_DMASYNC_POSTREAD);
3927 #ifdef	IWN_DEBUG
3928 			uint32_t *status = (uint32_t *)(desc + 1);
3929 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3930 			    "state changed to %x\n",
3931 			    le32toh(*status));
3932 #endif
3933 			break;
3934 		}
3935 		case IWN_START_SCAN:
3936 		{
3937 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3938 			    BUS_DMASYNC_POSTREAD);
3939 #ifdef	IWN_DEBUG
3940 			struct iwn_start_scan *scan =
3941 			    (struct iwn_start_scan *)(desc + 1);
3942 			DPRINTF(sc, IWN_DEBUG_ANY,
3943 			    "%s: scanning channel %d status %x\n",
3944 			    __func__, scan->chan, le32toh(scan->status));
3945 #endif
3946 			break;
3947 		}
3948 		case IWN_STOP_SCAN:
3949 		{
3950 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3951 			    BUS_DMASYNC_POSTREAD);
3952 #ifdef	IWN_DEBUG
3953 			struct iwn_stop_scan *scan =
3954 			    (struct iwn_stop_scan *)(desc + 1);
3955 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3956 			    "scan finished nchan=%d status=%d chan=%d\n",
3957 			    scan->nchan, scan->status, scan->chan);
3958 #endif
3959 			sc->sc_is_scanning = 0;
3960 			callout_stop(&sc->scan_timeout);
3961 			IWN_UNLOCK(sc);
3962 			ieee80211_scan_next(vap);
3963 			IWN_LOCK(sc);
3964 			break;
3965 		}
3966 		case IWN5000_CALIBRATION_RESULT:
3967 			iwn5000_rx_calib_results(sc, desc, data);
3968 			break;
3969 
3970 		case IWN5000_CALIBRATION_DONE:
3971 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3972 			wakeup(sc);
3973 			break;
3974 		}
3975 
3976 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3977 	}
3978 
3979 	/* Tell the firmware what we have processed. */
3980 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3981 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3982 }
3983 
3984 /*
3985  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3986  * from power-down sleep mode.
3987  */
3988 static void
3989 iwn_wakeup_intr(struct iwn_softc *sc)
3990 {
3991 	int qid;
3992 
3993 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3994 	    __func__);
3995 
3996 	/* Wakeup RX and TX rings. */
3997 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3998 	for (qid = 0; qid < sc->ntxqs; qid++) {
3999 		struct iwn_tx_ring *ring = &sc->txq[qid];
4000 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4001 	}
4002 }
4003 
4004 static void
4005 iwn_rftoggle_intr(struct iwn_softc *sc)
4006 {
4007 	struct ieee80211com *ic = &sc->sc_ic;
4008 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4009 
4010 	IWN_LOCK_ASSERT(sc);
4011 
4012 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4013 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4014 	if (tmp & IWN_GP_CNTRL_RFKILL)
4015 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4016 	else
4017 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4018 }
4019 
4020 /*
4021  * Dump the error log of the firmware when a firmware panic occurs.  Although
4022  * we can't debug the firmware because it is neither open source nor free, it
4023  * can help us to identify certain classes of problems.
4024  */
4025 static void
4026 iwn_fatal_intr(struct iwn_softc *sc)
4027 {
4028 	struct iwn_fw_dump dump;
4029 	int i;
4030 
4031 	IWN_LOCK_ASSERT(sc);
4032 
4033 	/* Force a complete recalibration on next init. */
4034 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4035 
4036 	/* Check that the error log address is valid. */
4037 	if (sc->errptr < IWN_FW_DATA_BASE ||
4038 	    sc->errptr + sizeof (dump) >
4039 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4040 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4041 		    sc->errptr);
4042 		return;
4043 	}
4044 	if (iwn_nic_lock(sc) != 0) {
4045 		printf("%s: could not read firmware error log\n", __func__);
4046 		return;
4047 	}
4048 	/* Read firmware error log from SRAM. */
4049 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4050 	    sizeof (dump) / sizeof (uint32_t));
4051 	iwn_nic_unlock(sc);
4052 
4053 	if (dump.valid == 0) {
4054 		printf("%s: firmware error log is empty\n", __func__);
4055 		return;
4056 	}
4057 	printf("firmware error log:\n");
4058 	printf("  error type      = \"%s\" (0x%08X)\n",
4059 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4060 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4061 	    dump.id);
4062 	printf("  program counter = 0x%08X\n", dump.pc);
4063 	printf("  source line     = 0x%08X\n", dump.src_line);
4064 	printf("  error data      = 0x%08X%08X\n",
4065 	    dump.error_data[0], dump.error_data[1]);
4066 	printf("  branch link     = 0x%08X%08X\n",
4067 	    dump.branch_link[0], dump.branch_link[1]);
4068 	printf("  interrupt link  = 0x%08X%08X\n",
4069 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4070 	printf("  time            = %u\n", dump.time[0]);
4071 
4072 	/* Dump driver status (TX and RX rings) while we're here. */
4073 	printf("driver status:\n");
4074 	for (i = 0; i < sc->ntxqs; i++) {
4075 		struct iwn_tx_ring *ring = &sc->txq[i];
4076 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4077 		    i, ring->qid, ring->cur, ring->queued);
4078 	}
4079 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4080 }
4081 
4082 static void
4083 iwn_intr(void *arg)
4084 {
4085 	struct iwn_softc *sc = arg;
4086 	uint32_t r1, r2, tmp;
4087 
4088 	IWN_LOCK(sc);
4089 
4090 	/* Disable interrupts. */
4091 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4092 
4093 	/* Read interrupts from ICT (fast) or from registers (slow). */
4094 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4095 		tmp = 0;
4096 		while (sc->ict[sc->ict_cur] != 0) {
4097 			tmp |= sc->ict[sc->ict_cur];
4098 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4099 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4100 		}
4101 		tmp = le32toh(tmp);
4102 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4103 			tmp = 0;
4104 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4105 			tmp |= 0x8000;
4106 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4107 		r2 = 0;	/* Unused. */
4108 	} else {
4109 		r1 = IWN_READ(sc, IWN_INT);
4110 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4111 			IWN_UNLOCK(sc);
4112 			return;	/* Hardware gone! */
4113 		}
4114 		r2 = IWN_READ(sc, IWN_FH_INT);
4115 	}
4116 
4117 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4118     , r1, r2);
4119 
4120 	if (r1 == 0 && r2 == 0)
4121 		goto done;	/* Interrupt not for us. */
4122 
4123 	/* Acknowledge interrupts. */
4124 	IWN_WRITE(sc, IWN_INT, r1);
4125 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4126 		IWN_WRITE(sc, IWN_FH_INT, r2);
4127 
4128 	if (r1 & IWN_INT_RF_TOGGLED) {
4129 		iwn_rftoggle_intr(sc);
4130 		goto done;
4131 	}
4132 	if (r1 & IWN_INT_CT_REACHED) {
4133 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4134 		    __func__);
4135 	}
4136 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4137 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4138 		    __func__);
4139 #ifdef	IWN_DEBUG
4140 		iwn_debug_register(sc);
4141 #endif
4142 		/* Dump firmware error log and stop. */
4143 		iwn_fatal_intr(sc);
4144 
4145 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4146 		goto done;
4147 	}
4148 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4149 	    (r2 & IWN_FH_INT_RX)) {
4150 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4151 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4152 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4153 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4154 			    IWN_INT_PERIODIC_DIS);
4155 			iwn_notif_intr(sc);
4156 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4157 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4158 				    IWN_INT_PERIODIC_ENA);
4159 			}
4160 		} else
4161 			iwn_notif_intr(sc);
4162 	}
4163 
4164 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4165 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4166 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4167 		wakeup(sc);	/* FH DMA transfer completed. */
4168 	}
4169 
4170 	if (r1 & IWN_INT_ALIVE)
4171 		wakeup(sc);	/* Firmware is alive. */
4172 
4173 	if (r1 & IWN_INT_WAKEUP)
4174 		iwn_wakeup_intr(sc);
4175 
4176 done:
4177 	/* Re-enable interrupts. */
4178 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4179 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4180 
4181 	IWN_UNLOCK(sc);
4182 }
4183 
4184 /*
4185  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4186  * 5000 adapters use a slightly different format).
4187  */
4188 static void
4189 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4190     uint16_t len)
4191 {
4192 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4193 
4194 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4195 
4196 	*w = htole16(len + 8);
4197 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4198 	    BUS_DMASYNC_PREWRITE);
4199 	if (idx < IWN_SCHED_WINSZ) {
4200 		*(w + IWN_TX_RING_COUNT) = *w;
4201 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4202 		    BUS_DMASYNC_PREWRITE);
4203 	}
4204 }
4205 
4206 static void
4207 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4208     uint16_t len)
4209 {
4210 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4211 
4212 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4213 
4214 	*w = htole16(id << 12 | (len + 8));
4215 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4216 	    BUS_DMASYNC_PREWRITE);
4217 	if (idx < IWN_SCHED_WINSZ) {
4218 		*(w + IWN_TX_RING_COUNT) = *w;
4219 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4220 		    BUS_DMASYNC_PREWRITE);
4221 	}
4222 }
4223 
4224 #ifdef notyet
4225 static void
4226 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4227 {
4228 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4229 
4230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4231 
4232 	*w = (*w & htole16(0xf000)) | htole16(1);
4233 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4234 	    BUS_DMASYNC_PREWRITE);
4235 	if (idx < IWN_SCHED_WINSZ) {
4236 		*(w + IWN_TX_RING_COUNT) = *w;
4237 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4238 		    BUS_DMASYNC_PREWRITE);
4239 	}
4240 }
4241 #endif
4242 
4243 /*
4244  * Check whether OFDM 11g protection will be enabled for the given rate.
4245  *
4246  * The original driver code only enabled protection for OFDM rates.
4247  * It didn't check to see whether it was operating in 11a or 11bg mode.
4248  */
4249 static int
4250 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4251     struct ieee80211vap *vap, uint8_t rate)
4252 {
4253 	struct ieee80211com *ic = vap->iv_ic;
4254 
4255 	/*
4256 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4257 	 * 11bg protection.
4258 	 */
4259 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4260 		return (0);
4261 	}
4262 
4263 	/*
4264 	 * 11bg protection not enabled? Then don't use it.
4265 	 */
4266 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4267 		return (0);
4268 
4269 	/*
4270 	 * If it's an 11n rate - no protection.
4271 	 * We'll do it via a specific 11n check.
4272 	 */
4273 	if (rate & IEEE80211_RATE_MCS) {
4274 		return (0);
4275 	}
4276 
4277 	/*
4278 	 * Do a rate table lookup.  If the PHY is CCK,
4279 	 * don't do protection.
4280 	 */
4281 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4282 		return (0);
4283 
4284 	/*
4285 	 * Yup, enable protection.
4286 	 */
4287 	return (1);
4288 }
4289 
4290 /*
4291  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4292  * the link quality table that reflects this particular entry.
4293  */
4294 static int
4295 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4296     uint8_t rate)
4297 {
4298 	struct ieee80211_rateset *rs;
4299 	int is_11n;
4300 	int nr;
4301 	int i;
4302 	uint8_t cmp_rate;
4303 
4304 	/*
4305 	 * Figure out if we're using 11n or not here.
4306 	 */
4307 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4308 		is_11n = 1;
4309 	else
4310 		is_11n = 0;
4311 
4312 	/*
4313 	 * Use the correct rate table.
4314 	 */
4315 	if (is_11n) {
4316 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4317 		nr = ni->ni_htrates.rs_nrates;
4318 	} else {
4319 		rs = &ni->ni_rates;
4320 		nr = rs->rs_nrates;
4321 	}
4322 
4323 	/*
4324 	 * Find the relevant link quality entry in the table.
4325 	 */
4326 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4327 		/*
4328 		 * The link quality table index starts at 0 == highest
4329 		 * rate, so we walk the rate table backwards.
4330 		 */
4331 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4332 		if (rate & IEEE80211_RATE_MCS)
4333 			cmp_rate |= IEEE80211_RATE_MCS;
4334 
4335 #if 0
4336 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4337 		    __func__,
4338 		    i,
4339 		    nr,
4340 		    rate,
4341 		    cmp_rate);
4342 #endif
4343 
4344 		if (cmp_rate == rate)
4345 			return (i);
4346 	}
4347 
4348 	/* Failed? Start at the end */
4349 	return (IWN_MAX_TX_RETRIES - 1);
4350 }
4351 
4352 static int
4353 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4354 {
4355 	struct iwn_ops *ops = &sc->ops;
4356 	const struct ieee80211_txparam *tp;
4357 	struct ieee80211vap *vap = ni->ni_vap;
4358 	struct ieee80211com *ic = ni->ni_ic;
4359 	struct iwn_node *wn = (void *)ni;
4360 	struct iwn_tx_ring *ring;
4361 	struct iwn_tx_desc *desc;
4362 	struct iwn_tx_data *data;
4363 	struct iwn_tx_cmd *cmd;
4364 	struct iwn_cmd_data *tx;
4365 	struct ieee80211_frame *wh;
4366 	struct ieee80211_key *k = NULL;
4367 	struct mbuf *m1;
4368 	uint32_t flags;
4369 	uint16_t qos;
4370 	u_int hdrlen;
4371 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4372 	uint8_t tid, type;
4373 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4374 
4375 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4376 
4377 	IWN_LOCK_ASSERT(sc);
4378 
4379 	wh = mtod(m, struct ieee80211_frame *);
4380 	hdrlen = ieee80211_anyhdrsize(wh);
4381 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4382 
4383 	/* Select EDCA Access Category and TX ring for this frame. */
4384 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4385 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4386 		tid = qos & IEEE80211_QOS_TID;
4387 	} else {
4388 		qos = 0;
4389 		tid = 0;
4390 	}
4391 	ac = M_WME_GETAC(m);
4392 	if (m->m_flags & M_AMPDU_MPDU) {
4393 		uint16_t seqno;
4394 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4395 
4396 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4397 			return EINVAL;
4398 		}
4399 
4400 		/*
4401 		 * Queue this frame to the hardware ring that we've
4402 		 * negotiated AMPDU TX on.
4403 		 *
4404 		 * Note that the sequence number must match the TX slot
4405 		 * being used!
4406 		 */
4407 		ac = *(int *)tap->txa_private;
4408 		seqno = ni->ni_txseqs[tid];
4409 		*(uint16_t *)wh->i_seq =
4410 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4411 		ring = &sc->txq[ac];
4412 		if ((seqno % 256) != ring->cur) {
4413 			device_printf(sc->sc_dev,
4414 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4415 			    __func__,
4416 			    m,
4417 			    seqno,
4418 			    seqno % 256,
4419 			    ring->cur);
4420 		}
4421 		ni->ni_txseqs[tid]++;
4422 	}
4423 	ring = &sc->txq[ac];
4424 	desc = &ring->desc[ring->cur];
4425 	data = &ring->data[ring->cur];
4426 
4427 	/* Choose a TX rate index. */
4428 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4429 	if (type == IEEE80211_FC0_TYPE_MGT)
4430 		rate = tp->mgmtrate;
4431 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4432 		rate = tp->mcastrate;
4433 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4434 		rate = tp->ucastrate;
4435 	else if (m->m_flags & M_EAPOL)
4436 		rate = tp->mgmtrate;
4437 	else {
4438 		/* XXX pass pktlen */
4439 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4440 		rate = ni->ni_txrate;
4441 	}
4442 
4443 	/* Encrypt the frame if need be. */
4444 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4445 		/* Retrieve key for TX. */
4446 		k = ieee80211_crypto_encap(ni, m);
4447 		if (k == NULL) {
4448 			return ENOBUFS;
4449 		}
4450 		/* 802.11 header may have moved. */
4451 		wh = mtod(m, struct ieee80211_frame *);
4452 	}
4453 	totlen = m->m_pkthdr.len;
4454 
4455 	if (ieee80211_radiotap_active_vap(vap)) {
4456 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4457 
4458 		tap->wt_flags = 0;
4459 		tap->wt_rate = rate;
4460 		if (k != NULL)
4461 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4462 
4463 		ieee80211_radiotap_tx(vap, m);
4464 	}
4465 
4466 	/* Prepare TX firmware command. */
4467 	cmd = &ring->cmd[ring->cur];
4468 	cmd->code = IWN_CMD_TX_DATA;
4469 	cmd->flags = 0;
4470 	cmd->qid = ring->qid;
4471 	cmd->idx = ring->cur;
4472 
4473 	tx = (struct iwn_cmd_data *)cmd->data;
4474 	/* NB: No need to clear tx, all fields are reinitialized here. */
4475 	tx->scratch = 0;	/* clear "scratch" area */
4476 
4477 	flags = 0;
4478 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4479 		/* Unicast frame, check if an ACK is expected. */
4480 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4481 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4482 			flags |= IWN_TX_NEED_ACK;
4483 	}
4484 	if ((wh->i_fc[0] &
4485 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4486 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4487 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4488 
4489 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4490 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4491 
4492 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4493 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4494 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4495 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4496 			flags |= IWN_TX_NEED_RTS;
4497 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4498 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4499 				flags |= IWN_TX_NEED_CTS;
4500 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4501 				flags |= IWN_TX_NEED_RTS;
4502 		} else if ((rate & IEEE80211_RATE_MCS) &&
4503 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4504 			flags |= IWN_TX_NEED_RTS;
4505 		}
4506 
4507 		/* XXX HT protection? */
4508 
4509 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4510 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4511 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4512 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4513 				flags |= IWN_TX_NEED_PROTECTION;
4514 			} else
4515 				flags |= IWN_TX_FULL_TXOP;
4516 		}
4517 	}
4518 
4519 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4520 	    type != IEEE80211_FC0_TYPE_DATA)
4521 		tx->id = sc->broadcast_id;
4522 	else
4523 		tx->id = wn->id;
4524 
4525 	if (type == IEEE80211_FC0_TYPE_MGT) {
4526 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4527 
4528 		/* Tell HW to set timestamp in probe responses. */
4529 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4530 			flags |= IWN_TX_INSERT_TSTAMP;
4531 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4532 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4533 			tx->timeout = htole16(3);
4534 		else
4535 			tx->timeout = htole16(2);
4536 	} else
4537 		tx->timeout = htole16(0);
4538 
4539 	if (hdrlen & 3) {
4540 		/* First segment length must be a multiple of 4. */
4541 		flags |= IWN_TX_NEED_PADDING;
4542 		pad = 4 - (hdrlen & 3);
4543 	} else
4544 		pad = 0;
4545 
4546 	tx->len = htole16(totlen);
4547 	tx->tid = tid;
4548 	tx->rts_ntries = 60;
4549 	tx->data_ntries = 15;
4550 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4551 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4552 	if (tx->id == sc->broadcast_id) {
4553 		/* Group or management frame. */
4554 		tx->linkq = 0;
4555 	} else {
4556 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4557 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4558 	}
4559 
4560 	/* Set physical address of "scratch area". */
4561 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4562 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4563 
4564 	/* Copy 802.11 header in TX command. */
4565 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4566 
4567 	/* Trim 802.11 header. */
4568 	m_adj(m, hdrlen);
4569 	tx->security = 0;
4570 	tx->flags = htole32(flags);
4571 
4572 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4573 	    &nsegs, BUS_DMA_NOWAIT);
4574 	if (error != 0) {
4575 		if (error != EFBIG) {
4576 			device_printf(sc->sc_dev,
4577 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4578 			return error;
4579 		}
4580 		/* Too many DMA segments, linearize mbuf. */
4581 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4582 		if (m1 == NULL) {
4583 			device_printf(sc->sc_dev,
4584 			    "%s: could not defrag mbuf\n", __func__);
4585 			return ENOBUFS;
4586 		}
4587 		m = m1;
4588 
4589 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4590 		    segs, &nsegs, BUS_DMA_NOWAIT);
4591 		if (error != 0) {
4592 			device_printf(sc->sc_dev,
4593 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4594 			return error;
4595 		}
4596 	}
4597 
4598 	data->m = m;
4599 	data->ni = ni;
4600 
4601 	DPRINTF(sc, IWN_DEBUG_XMIT,
4602 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4603 	    __func__,
4604 	    ring->qid,
4605 	    ring->cur,
4606 	    m->m_pkthdr.len,
4607 	    nsegs,
4608 	    flags,
4609 	    rate,
4610 	    tx->rate);
4611 
4612 	/* Fill TX descriptor. */
4613 	desc->nsegs = 1;
4614 	if (m->m_len != 0)
4615 		desc->nsegs += nsegs;
4616 	/* First DMA segment is used by the TX command. */
4617 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4618 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4619 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4620 	/* Other DMA segments are for data payload. */
4621 	seg = &segs[0];
4622 	for (i = 1; i <= nsegs; i++) {
4623 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4624 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4625 		    seg->ds_len << 4);
4626 		seg++;
4627 	}
4628 
4629 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4630 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4631 	    BUS_DMASYNC_PREWRITE);
4632 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4633 	    BUS_DMASYNC_PREWRITE);
4634 
4635 	/* Update TX scheduler. */
4636 	if (ring->qid >= sc->firstaggqueue)
4637 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4638 
4639 	/* Kick TX ring. */
4640 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4641 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4642 
4643 	/* Mark TX ring as full if we reach a certain threshold. */
4644 	if (++ring->queued > IWN_TX_RING_HIMARK)
4645 		sc->qfullmsk |= 1 << ring->qid;
4646 
4647 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4648 
4649 	return 0;
4650 }
4651 
4652 static int
4653 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4654     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4655 {
4656 	struct iwn_ops *ops = &sc->ops;
4657 	struct ieee80211vap *vap = ni->ni_vap;
4658 	struct iwn_tx_cmd *cmd;
4659 	struct iwn_cmd_data *tx;
4660 	struct ieee80211_frame *wh;
4661 	struct iwn_tx_ring *ring;
4662 	struct iwn_tx_desc *desc;
4663 	struct iwn_tx_data *data;
4664 	struct mbuf *m1;
4665 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4666 	uint32_t flags;
4667 	u_int hdrlen;
4668 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4669 	uint8_t type;
4670 
4671 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4672 
4673 	IWN_LOCK_ASSERT(sc);
4674 
4675 	wh = mtod(m, struct ieee80211_frame *);
4676 	hdrlen = ieee80211_anyhdrsize(wh);
4677 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4678 
4679 	ac = params->ibp_pri & 3;
4680 
4681 	ring = &sc->txq[ac];
4682 	desc = &ring->desc[ring->cur];
4683 	data = &ring->data[ring->cur];
4684 
4685 	/* Choose a TX rate. */
4686 	rate = params->ibp_rate0;
4687 	totlen = m->m_pkthdr.len;
4688 
4689 	/* Prepare TX firmware command. */
4690 	cmd = &ring->cmd[ring->cur];
4691 	cmd->code = IWN_CMD_TX_DATA;
4692 	cmd->flags = 0;
4693 	cmd->qid = ring->qid;
4694 	cmd->idx = ring->cur;
4695 
4696 	tx = (struct iwn_cmd_data *)cmd->data;
4697 	/* NB: No need to clear tx, all fields are reinitialized here. */
4698 	tx->scratch = 0;	/* clear "scratch" area */
4699 
4700 	flags = 0;
4701 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4702 		flags |= IWN_TX_NEED_ACK;
4703 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4704 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4705 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4706 			flags &= ~IWN_TX_NEED_RTS;
4707 			flags |= IWN_TX_NEED_PROTECTION;
4708 		} else
4709 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4710 	}
4711 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4712 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4713 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4714 			flags &= ~IWN_TX_NEED_CTS;
4715 			flags |= IWN_TX_NEED_PROTECTION;
4716 		} else
4717 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4718 	}
4719 	if (type == IEEE80211_FC0_TYPE_MGT) {
4720 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4721 
4722 		/* Tell HW to set timestamp in probe responses. */
4723 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4724 			flags |= IWN_TX_INSERT_TSTAMP;
4725 
4726 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4727 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4728 			tx->timeout = htole16(3);
4729 		else
4730 			tx->timeout = htole16(2);
4731 	} else
4732 		tx->timeout = htole16(0);
4733 
4734 	if (hdrlen & 3) {
4735 		/* First segment length must be a multiple of 4. */
4736 		flags |= IWN_TX_NEED_PADDING;
4737 		pad = 4 - (hdrlen & 3);
4738 	} else
4739 		pad = 0;
4740 
4741 	if (ieee80211_radiotap_active_vap(vap)) {
4742 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4743 
4744 		tap->wt_flags = 0;
4745 		tap->wt_rate = rate;
4746 
4747 		ieee80211_radiotap_tx(vap, m);
4748 	}
4749 
4750 	tx->len = htole16(totlen);
4751 	tx->tid = 0;
4752 	tx->id = sc->broadcast_id;
4753 	tx->rts_ntries = params->ibp_try1;
4754 	tx->data_ntries = params->ibp_try0;
4755 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4756 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4757 
4758 	/* Group or management frame. */
4759 	tx->linkq = 0;
4760 
4761 	/* Set physical address of "scratch area". */
4762 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4763 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4764 
4765 	/* Copy 802.11 header in TX command. */
4766 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4767 
4768 	/* Trim 802.11 header. */
4769 	m_adj(m, hdrlen);
4770 	tx->security = 0;
4771 	tx->flags = htole32(flags);
4772 
4773 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4774 	    &nsegs, BUS_DMA_NOWAIT);
4775 	if (error != 0) {
4776 		if (error != EFBIG) {
4777 			device_printf(sc->sc_dev,
4778 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4779 			return error;
4780 		}
4781 		/* Too many DMA segments, linearize mbuf. */
4782 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4783 		if (m1 == NULL) {
4784 			device_printf(sc->sc_dev,
4785 			    "%s: could not defrag mbuf\n", __func__);
4786 			return ENOBUFS;
4787 		}
4788 		m = m1;
4789 
4790 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4791 		    segs, &nsegs, BUS_DMA_NOWAIT);
4792 		if (error != 0) {
4793 			device_printf(sc->sc_dev,
4794 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4795 			return error;
4796 		}
4797 	}
4798 
4799 	data->m = m;
4800 	data->ni = ni;
4801 
4802 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4803 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4804 
4805 	/* Fill TX descriptor. */
4806 	desc->nsegs = 1;
4807 	if (m->m_len != 0)
4808 		desc->nsegs += nsegs;
4809 	/* First DMA segment is used by the TX command. */
4810 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4811 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4812 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4813 	/* Other DMA segments are for data payload. */
4814 	seg = &segs[0];
4815 	for (i = 1; i <= nsegs; i++) {
4816 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4817 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4818 		    seg->ds_len << 4);
4819 		seg++;
4820 	}
4821 
4822 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4823 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4824 	    BUS_DMASYNC_PREWRITE);
4825 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4826 	    BUS_DMASYNC_PREWRITE);
4827 
4828 	/* Update TX scheduler. */
4829 	if (ring->qid >= sc->firstaggqueue)
4830 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4831 
4832 	/* Kick TX ring. */
4833 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4834 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4835 
4836 	/* Mark TX ring as full if we reach a certain threshold. */
4837 	if (++ring->queued > IWN_TX_RING_HIMARK)
4838 		sc->qfullmsk |= 1 << ring->qid;
4839 
4840 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4841 
4842 	return 0;
4843 }
4844 
4845 static void
4846 iwn_xmit_task(void *arg0, int pending)
4847 {
4848 	struct iwn_softc *sc = arg0;
4849 	struct ieee80211_node *ni;
4850 	struct mbuf *m;
4851 	int error;
4852 	struct ieee80211_bpf_params p;
4853 	int have_p;
4854 
4855 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4856 
4857 	IWN_LOCK(sc);
4858 	/*
4859 	 * Dequeue frames, attempt to transmit,
4860 	 * then disable beaconwait when we're done.
4861 	 */
4862 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4863 		have_p = 0;
4864 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4865 
4866 		/* Get xmit params if appropriate */
4867 		if (ieee80211_get_xmit_params(m, &p) == 0)
4868 			have_p = 1;
4869 
4870 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4871 		    __func__, m, have_p);
4872 
4873 		/* If we have xmit params, use them */
4874 		if (have_p)
4875 			error = iwn_tx_data_raw(sc, m, ni, &p);
4876 		else
4877 			error = iwn_tx_data(sc, m, ni);
4878 
4879 		if (error != 0) {
4880 			if_inc_counter(ni->ni_vap->iv_ifp,
4881 			    IFCOUNTER_OERRORS, 1);
4882 			ieee80211_free_node(ni);
4883 			m_freem(m);
4884 		}
4885 	}
4886 
4887 	sc->sc_beacon_wait = 0;
4888 	IWN_UNLOCK(sc);
4889 }
4890 
4891 /*
4892  * raw frame xmit - free node/reference if failed.
4893  */
4894 static int
4895 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4896     const struct ieee80211_bpf_params *params)
4897 {
4898 	struct ieee80211com *ic = ni->ni_ic;
4899 	struct iwn_softc *sc = ic->ic_softc;
4900 	int error = 0;
4901 
4902 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4903 
4904 	IWN_LOCK(sc);
4905 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4906 		m_freem(m);
4907 		IWN_UNLOCK(sc);
4908 		return (ENETDOWN);
4909 	}
4910 
4911 	/* queue frame if we have to */
4912 	if (sc->sc_beacon_wait) {
4913 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4914 			m_freem(m);
4915 			IWN_UNLOCK(sc);
4916 			return (ENOBUFS);
4917 		}
4918 		/* Queued, so just return OK */
4919 		IWN_UNLOCK(sc);
4920 		return (0);
4921 	}
4922 
4923 	if (params == NULL) {
4924 		/*
4925 		 * Legacy path; interpret frame contents to decide
4926 		 * precisely how to send the frame.
4927 		 */
4928 		error = iwn_tx_data(sc, m, ni);
4929 	} else {
4930 		/*
4931 		 * Caller supplied explicit parameters to use in
4932 		 * sending the frame.
4933 		 */
4934 		error = iwn_tx_data_raw(sc, m, ni, params);
4935 	}
4936 	if (error == 0)
4937 		sc->sc_tx_timer = 5;
4938 	else
4939 		m_freem(m);
4940 
4941 	IWN_UNLOCK(sc);
4942 
4943 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4944 
4945 	return (error);
4946 }
4947 
4948 /*
4949  * transmit - don't free mbuf if failed; don't free node ref if failed.
4950  */
4951 static int
4952 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4953 {
4954 	struct iwn_softc *sc = ic->ic_softc;
4955 	struct ieee80211_node *ni;
4956 	int error;
4957 
4958 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4959 
4960 	IWN_LOCK(sc);
4961 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4962 		IWN_UNLOCK(sc);
4963 		return (ENXIO);
4964 	}
4965 
4966 	if (sc->qfullmsk) {
4967 		IWN_UNLOCK(sc);
4968 		return (ENOBUFS);
4969 	}
4970 
4971 	error = iwn_tx_data(sc, m, ni);
4972 	if (!error)
4973 		sc->sc_tx_timer = 5;
4974 	IWN_UNLOCK(sc);
4975 	return (error);
4976 }
4977 
4978 static void
4979 iwn_scan_timeout(void *arg)
4980 {
4981 	struct iwn_softc *sc = arg;
4982 	struct ieee80211com *ic = &sc->sc_ic;
4983 
4984 	ic_printf(ic, "scan timeout\n");
4985 	ieee80211_restart_all(ic);
4986 }
4987 
4988 static void
4989 iwn_watchdog(void *arg)
4990 {
4991 	struct iwn_softc *sc = arg;
4992 	struct ieee80211com *ic = &sc->sc_ic;
4993 
4994 	IWN_LOCK_ASSERT(sc);
4995 
4996 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4997 
4998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4999 
5000 	if (sc->sc_tx_timer > 0) {
5001 		if (--sc->sc_tx_timer == 0) {
5002 			ic_printf(ic, "device timeout\n");
5003 			ieee80211_restart_all(ic);
5004 			return;
5005 		}
5006 	}
5007 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5008 }
5009 
5010 static int
5011 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5012 {
5013 
5014 	return (0);
5015 }
5016 
5017 static int
5018 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5019 {
5020 
5021 	return (0);
5022 }
5023 
5024 static int
5025 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5026     struct thread *td)
5027 {
5028 	int rc;
5029 	struct iwn_softc *sc = dev->si_drv1;
5030 	struct iwn_ioctl_data *d;
5031 
5032 	rc = priv_check(td, PRIV_DRIVER);
5033 	if (rc != 0)
5034 		return (0);
5035 
5036 	switch (cmd) {
5037 	case SIOCGIWNSTATS:
5038 		d = (struct iwn_ioctl_data *) data;
5039 		IWN_LOCK(sc);
5040 		/* XXX validate permissions/memory/etc? */
5041 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5042 		IWN_UNLOCK(sc);
5043 		break;
5044 	case SIOCZIWNSTATS:
5045 		IWN_LOCK(sc);
5046 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5047 		IWN_UNLOCK(sc);
5048 		break;
5049 	default:
5050 		rc = EINVAL;
5051 		break;
5052 	}
5053 	return (rc);
5054 }
5055 
5056 static int
5057 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5058 {
5059 
5060 	return (ENOTTY);
5061 }
5062 
5063 static void
5064 iwn_parent(struct ieee80211com *ic)
5065 {
5066 	struct iwn_softc *sc = ic->ic_softc;
5067 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5068 	int startall = 0, stop = 0;
5069 
5070 	IWN_LOCK(sc);
5071 	if (ic->ic_nrunning > 0) {
5072 		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5073 			iwn_init_locked(sc);
5074 			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5075 				startall = 1;
5076 			else
5077 				stop = 1;
5078 		}
5079 	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5080 		iwn_stop_locked(sc);
5081 	IWN_UNLOCK(sc);
5082 	if (startall)
5083 		ieee80211_start_all(ic);
5084 	else if (vap != NULL && stop)
5085 		ieee80211_stop(vap);
5086 }
5087 
5088 /*
5089  * Send a command to the firmware.
5090  */
5091 static int
5092 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5093 {
5094 	struct iwn_tx_ring *ring;
5095 	struct iwn_tx_desc *desc;
5096 	struct iwn_tx_data *data;
5097 	struct iwn_tx_cmd *cmd;
5098 	struct mbuf *m;
5099 	bus_addr_t paddr;
5100 	int totlen, error;
5101 	int cmd_queue_num;
5102 
5103 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5104 
5105 	if (async == 0)
5106 		IWN_LOCK_ASSERT(sc);
5107 
5108 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5109 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5110 	else
5111 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5112 
5113 	ring = &sc->txq[cmd_queue_num];
5114 	desc = &ring->desc[ring->cur];
5115 	data = &ring->data[ring->cur];
5116 	totlen = 4 + size;
5117 
5118 	if (size > sizeof cmd->data) {
5119 		/* Command is too large to fit in a descriptor. */
5120 		if (totlen > MCLBYTES)
5121 			return EINVAL;
5122 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5123 		if (m == NULL)
5124 			return ENOMEM;
5125 		cmd = mtod(m, struct iwn_tx_cmd *);
5126 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5127 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5128 		if (error != 0) {
5129 			m_freem(m);
5130 			return error;
5131 		}
5132 		data->m = m;
5133 	} else {
5134 		cmd = &ring->cmd[ring->cur];
5135 		paddr = data->cmd_paddr;
5136 	}
5137 
5138 	cmd->code = code;
5139 	cmd->flags = 0;
5140 	cmd->qid = ring->qid;
5141 	cmd->idx = ring->cur;
5142 	memcpy(cmd->data, buf, size);
5143 
5144 	desc->nsegs = 1;
5145 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5146 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5147 
5148 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5149 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5150 	    cmd->flags, cmd->qid, cmd->idx);
5151 
5152 	if (size > sizeof cmd->data) {
5153 		bus_dmamap_sync(ring->data_dmat, data->map,
5154 		    BUS_DMASYNC_PREWRITE);
5155 	} else {
5156 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5157 		    BUS_DMASYNC_PREWRITE);
5158 	}
5159 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5160 	    BUS_DMASYNC_PREWRITE);
5161 
5162 	/* Kick command ring. */
5163 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5164 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5165 
5166 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5167 
5168 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5169 }
5170 
5171 static int
5172 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5173 {
5174 	struct iwn4965_node_info hnode;
5175 	caddr_t src, dst;
5176 
5177 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5178 
5179 	/*
5180 	 * We use the node structure for 5000 Series internally (it is
5181 	 * a superset of the one for 4965AGN). We thus copy the common
5182 	 * fields before sending the command.
5183 	 */
5184 	src = (caddr_t)node;
5185 	dst = (caddr_t)&hnode;
5186 	memcpy(dst, src, 48);
5187 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5188 	memcpy(dst + 48, src + 72, 20);
5189 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5190 }
5191 
5192 static int
5193 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5194 {
5195 
5196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5197 
5198 	/* Direct mapping. */
5199 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5200 }
5201 
5202 static int
5203 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5204 {
5205 	struct iwn_node *wn = (void *)ni;
5206 	struct ieee80211_rateset *rs;
5207 	struct iwn_cmd_link_quality linkq;
5208 	int i, rate, txrate;
5209 	int is_11n;
5210 
5211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5212 
5213 	memset(&linkq, 0, sizeof linkq);
5214 	linkq.id = wn->id;
5215 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5216 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5217 
5218 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5219 	linkq.ampdu_threshold = 3;
5220 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5221 
5222 	DPRINTF(sc, IWN_DEBUG_XMIT,
5223 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5224 	    __func__,
5225 	    linkq.antmsk_1stream,
5226 	    linkq.antmsk_2stream,
5227 	    sc->ntxchains);
5228 
5229 	/*
5230 	 * Are we using 11n rates? Ensure the channel is
5231 	 * 11n _and_ we have some 11n rates, or don't
5232 	 * try.
5233 	 */
5234 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5235 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5236 		is_11n = 1;
5237 	} else {
5238 		rs = &ni->ni_rates;
5239 		is_11n = 0;
5240 	}
5241 
5242 	/* Start at highest available bit-rate. */
5243 	/*
5244 	 * XXX this is all very dirty!
5245 	 */
5246 	if (is_11n)
5247 		txrate = ni->ni_htrates.rs_nrates - 1;
5248 	else
5249 		txrate = rs->rs_nrates - 1;
5250 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5251 		uint32_t plcp;
5252 
5253 		/*
5254 		 * XXX TODO: ensure the last two slots are the two lowest
5255 		 * rate entries, just for now.
5256 		 */
5257 		if (i == 14 || i == 15)
5258 			txrate = 0;
5259 
5260 		if (is_11n)
5261 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5262 		else
5263 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5264 
5265 		/* Do rate -> PLCP config mapping */
5266 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5267 		linkq.retry[i] = plcp;
5268 		DPRINTF(sc, IWN_DEBUG_XMIT,
5269 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5270 		    __func__,
5271 		    i,
5272 		    txrate,
5273 		    rate,
5274 		    le32toh(plcp));
5275 
5276 		/*
5277 		 * The mimo field is an index into the table which
5278 		 * indicates the first index where it and subsequent entries
5279 		 * will not be using MIMO.
5280 		 *
5281 		 * Since we're filling linkq from 0..15 and we're filling
5282 		 * from the highest MCS rates to the lowest rates, if we
5283 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5284 		 * the next entry.)  That way if the next entry is a non-MIMO
5285 		 * entry, we're already pointing at it.
5286 		 */
5287 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5288 		    IEEE80211_RV(le32toh(plcp)) > 7)
5289 			linkq.mimo = i + 1;
5290 
5291 		/* Next retry at immediate lower bit-rate. */
5292 		if (txrate > 0)
5293 			txrate--;
5294 	}
5295 	/*
5296 	 * If we reached the end of the list and indeed we hit
5297 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5298 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5299 	 */
5300 	if (linkq.mimo > 15)
5301 		linkq.mimo = 15;
5302 
5303 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5304 
5305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5306 
5307 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5308 }
5309 
5310 /*
5311  * Broadcast node is used to send group-addressed and management frames.
5312  */
5313 static int
5314 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5315 {
5316 	struct iwn_ops *ops = &sc->ops;
5317 	struct ieee80211com *ic = &sc->sc_ic;
5318 	struct iwn_node_info node;
5319 	struct iwn_cmd_link_quality linkq;
5320 	uint8_t txant;
5321 	int i, error;
5322 
5323 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5324 
5325 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5326 
5327 	memset(&node, 0, sizeof node);
5328 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5329 	node.id = sc->broadcast_id;
5330 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5331 	if ((error = ops->add_node(sc, &node, async)) != 0)
5332 		return error;
5333 
5334 	/* Use the first valid TX antenna. */
5335 	txant = IWN_LSB(sc->txchainmask);
5336 
5337 	memset(&linkq, 0, sizeof linkq);
5338 	linkq.id = sc->broadcast_id;
5339 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5340 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5341 	linkq.ampdu_max = 64;
5342 	linkq.ampdu_threshold = 3;
5343 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5344 
5345 	/* Use lowest mandatory bit-rate. */
5346 	/* XXX rate table lookup? */
5347 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5348 		linkq.retry[0] = htole32(0xd);
5349 	else
5350 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5351 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5352 	/* Use same bit-rate for all TX retries. */
5353 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5354 		linkq.retry[i] = linkq.retry[0];
5355 	}
5356 
5357 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5358 
5359 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5360 }
5361 
5362 static int
5363 iwn_updateedca(struct ieee80211com *ic)
5364 {
5365 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5366 	struct iwn_softc *sc = ic->ic_softc;
5367 	struct iwn_edca_params cmd;
5368 	int aci;
5369 
5370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5371 
5372 	memset(&cmd, 0, sizeof cmd);
5373 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5374 
5375 	IEEE80211_LOCK(ic);
5376 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5377 		const struct wmeParams *ac =
5378 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5379 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5380 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5381 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5382 		cmd.ac[aci].txoplimit =
5383 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5384 	}
5385 	IEEE80211_UNLOCK(ic);
5386 
5387 	IWN_LOCK(sc);
5388 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5389 	IWN_UNLOCK(sc);
5390 
5391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5392 
5393 	return 0;
5394 #undef IWN_EXP2
5395 }
5396 
5397 static void
5398 iwn_update_mcast(struct ieee80211com *ic)
5399 {
5400 	/* Ignore */
5401 }
5402 
5403 static void
5404 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5405 {
5406 	struct iwn_cmd_led led;
5407 
5408 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5409 
5410 #if 0
5411 	/* XXX don't set LEDs during scan? */
5412 	if (sc->sc_is_scanning)
5413 		return;
5414 #endif
5415 
5416 	/* Clear microcode LED ownership. */
5417 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5418 
5419 	led.which = which;
5420 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5421 	led.off = off;
5422 	led.on = on;
5423 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5424 }
5425 
5426 /*
5427  * Set the critical temperature at which the firmware will stop the radio
5428  * and notify us.
5429  */
5430 static int
5431 iwn_set_critical_temp(struct iwn_softc *sc)
5432 {
5433 	struct iwn_critical_temp crit;
5434 	int32_t temp;
5435 
5436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5437 
5438 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5439 
5440 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5441 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5442 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5443 		temp = IWN_CTOK(110);
5444 	else
5445 		temp = 110;
5446 	memset(&crit, 0, sizeof crit);
5447 	crit.tempR = htole32(temp);
5448 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5449 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5450 }
5451 
5452 static int
5453 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5454 {
5455 	struct iwn_cmd_timing cmd;
5456 	uint64_t val, mod;
5457 
5458 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5459 
5460 	memset(&cmd, 0, sizeof cmd);
5461 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5462 	cmd.bintval = htole16(ni->ni_intval);
5463 	cmd.lintval = htole16(10);
5464 
5465 	/* Compute remaining time until next beacon. */
5466 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5467 	mod = le64toh(cmd.tstamp) % val;
5468 	cmd.binitval = htole32((uint32_t)(val - mod));
5469 
5470 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5471 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5472 
5473 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5474 }
5475 
5476 static void
5477 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5478 {
5479 	struct ieee80211com *ic = &sc->sc_ic;
5480 
5481 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5482 
5483 	/* Adjust TX power if need be (delta >= 3 degC). */
5484 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5485 	    __func__, sc->temp, temp);
5486 	if (abs(temp - sc->temp) >= 3) {
5487 		/* Record temperature of last calibration. */
5488 		sc->temp = temp;
5489 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5490 	}
5491 }
5492 
5493 /*
5494  * Set TX power for current channel (each rate has its own power settings).
5495  * This function takes into account the regulatory information from EEPROM,
5496  * the current temperature and the current voltage.
5497  */
5498 static int
5499 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5500     int async)
5501 {
5502 /* Fixed-point arithmetic division using a n-bit fractional part. */
5503 #define fdivround(a, b, n)	\
5504 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5505 /* Linear interpolation. */
5506 #define interpolate(x, x1, y1, x2, y2, n)	\
5507 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5508 
5509 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5510 	struct iwn_ucode_info *uc = &sc->ucode_info;
5511 	struct iwn4965_cmd_txpower cmd;
5512 	struct iwn4965_eeprom_chan_samples *chans;
5513 	const uint8_t *rf_gain, *dsp_gain;
5514 	int32_t vdiff, tdiff;
5515 	int i, c, grp, maxpwr;
5516 	uint8_t chan;
5517 
5518 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5519 	/* Retrieve current channel from last RXON. */
5520 	chan = sc->rxon->chan;
5521 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5522 	    chan);
5523 
5524 	memset(&cmd, 0, sizeof cmd);
5525 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5526 	cmd.chan = chan;
5527 
5528 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5529 		maxpwr   = sc->maxpwr5GHz;
5530 		rf_gain  = iwn4965_rf_gain_5ghz;
5531 		dsp_gain = iwn4965_dsp_gain_5ghz;
5532 	} else {
5533 		maxpwr   = sc->maxpwr2GHz;
5534 		rf_gain  = iwn4965_rf_gain_2ghz;
5535 		dsp_gain = iwn4965_dsp_gain_2ghz;
5536 	}
5537 
5538 	/* Compute voltage compensation. */
5539 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5540 	if (vdiff > 0)
5541 		vdiff *= 2;
5542 	if (abs(vdiff) > 2)
5543 		vdiff = 0;
5544 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5545 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5546 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5547 
5548 	/* Get channel attenuation group. */
5549 	if (chan <= 20)		/* 1-20 */
5550 		grp = 4;
5551 	else if (chan <= 43)	/* 34-43 */
5552 		grp = 0;
5553 	else if (chan <= 70)	/* 44-70 */
5554 		grp = 1;
5555 	else if (chan <= 124)	/* 71-124 */
5556 		grp = 2;
5557 	else			/* 125-200 */
5558 		grp = 3;
5559 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5560 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5561 
5562 	/* Get channel sub-band. */
5563 	for (i = 0; i < IWN_NBANDS; i++)
5564 		if (sc->bands[i].lo != 0 &&
5565 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5566 			break;
5567 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5568 		return EINVAL;
5569 	chans = sc->bands[i].chans;
5570 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5571 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5572 
5573 	for (c = 0; c < 2; c++) {
5574 		uint8_t power, gain, temp;
5575 		int maxchpwr, pwr, ridx, idx;
5576 
5577 		power = interpolate(chan,
5578 		    chans[0].num, chans[0].samples[c][1].power,
5579 		    chans[1].num, chans[1].samples[c][1].power, 1);
5580 		gain  = interpolate(chan,
5581 		    chans[0].num, chans[0].samples[c][1].gain,
5582 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5583 		temp  = interpolate(chan,
5584 		    chans[0].num, chans[0].samples[c][1].temp,
5585 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5586 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5587 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5588 		    __func__, c, power, gain, temp);
5589 
5590 		/* Compute temperature compensation. */
5591 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5592 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5593 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5594 		    __func__, tdiff, sc->temp, temp);
5595 
5596 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5597 			/* Convert dBm to half-dBm. */
5598 			maxchpwr = sc->maxpwr[chan] * 2;
5599 			if ((ridx / 8) & 1)
5600 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5601 
5602 			pwr = maxpwr;
5603 
5604 			/* Adjust TX power based on rate. */
5605 			if ((ridx % 8) == 5)
5606 				pwr -= 15;	/* OFDM48: -7.5dB */
5607 			else if ((ridx % 8) == 6)
5608 				pwr -= 17;	/* OFDM54: -8.5dB */
5609 			else if ((ridx % 8) == 7)
5610 				pwr -= 20;	/* OFDM60: -10dB */
5611 			else
5612 				pwr -= 10;	/* Others: -5dB */
5613 
5614 			/* Do not exceed channel max TX power. */
5615 			if (pwr > maxchpwr)
5616 				pwr = maxchpwr;
5617 
5618 			idx = gain - (pwr - power) - tdiff - vdiff;
5619 			if ((ridx / 8) & 1)	/* MIMO */
5620 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5621 
5622 			if (cmd.band == 0)
5623 				idx += 9;	/* 5GHz */
5624 			if (ridx == IWN_RIDX_MAX)
5625 				idx += 5;	/* CCK */
5626 
5627 			/* Make sure idx stays in a valid range. */
5628 			if (idx < 0)
5629 				idx = 0;
5630 			else if (idx > IWN4965_MAX_PWR_INDEX)
5631 				idx = IWN4965_MAX_PWR_INDEX;
5632 
5633 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5634 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5635 			    __func__, c, ridx, idx);
5636 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5637 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5638 		}
5639 	}
5640 
5641 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5642 	    "%s: set tx power for chan %d\n", __func__, chan);
5643 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5644 
5645 #undef interpolate
5646 #undef fdivround
5647 }
5648 
5649 static int
5650 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5651     int async)
5652 {
5653 	struct iwn5000_cmd_txpower cmd;
5654 	int cmdid;
5655 
5656 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5657 
5658 	/*
5659 	 * TX power calibration is handled automatically by the firmware
5660 	 * for 5000 Series.
5661 	 */
5662 	memset(&cmd, 0, sizeof cmd);
5663 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5664 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5665 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5666 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5667 	    "%s: setting TX power; rev=%d\n",
5668 	    __func__,
5669 	    IWN_UCODE_API(sc->ucode_rev));
5670 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5671 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5672 	else
5673 		cmdid = IWN_CMD_TXPOWER_DBM;
5674 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5675 }
5676 
5677 /*
5678  * Retrieve the maximum RSSI (in dBm) among receivers.
5679  */
5680 static int
5681 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5682 {
5683 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5684 	uint8_t mask, agc;
5685 	int rssi;
5686 
5687 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5688 
5689 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5690 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5691 
5692 	rssi = 0;
5693 	if (mask & IWN_ANT_A)
5694 		rssi = MAX(rssi, phy->rssi[0]);
5695 	if (mask & IWN_ANT_B)
5696 		rssi = MAX(rssi, phy->rssi[2]);
5697 	if (mask & IWN_ANT_C)
5698 		rssi = MAX(rssi, phy->rssi[4]);
5699 
5700 	DPRINTF(sc, IWN_DEBUG_RECV,
5701 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5702 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5703 	    rssi - agc - IWN_RSSI_TO_DBM);
5704 	return rssi - agc - IWN_RSSI_TO_DBM;
5705 }
5706 
5707 static int
5708 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5709 {
5710 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5711 	uint8_t agc;
5712 	int rssi;
5713 
5714 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5715 
5716 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5717 
5718 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5719 		   le16toh(phy->rssi[1]) & 0xff);
5720 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5721 
5722 	DPRINTF(sc, IWN_DEBUG_RECV,
5723 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5724 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5725 	    rssi - agc - IWN_RSSI_TO_DBM);
5726 	return rssi - agc - IWN_RSSI_TO_DBM;
5727 }
5728 
5729 /*
5730  * Retrieve the average noise (in dBm) among receivers.
5731  */
5732 static int
5733 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5734 {
5735 	int i, total, nbant, noise;
5736 
5737 	total = nbant = 0;
5738 	for (i = 0; i < 3; i++) {
5739 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5740 			continue;
5741 		total += noise;
5742 		nbant++;
5743 	}
5744 	/* There should be at least one antenna but check anyway. */
5745 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5746 }
5747 
5748 /*
5749  * Compute temperature (in degC) from last received statistics.
5750  */
5751 static int
5752 iwn4965_get_temperature(struct iwn_softc *sc)
5753 {
5754 	struct iwn_ucode_info *uc = &sc->ucode_info;
5755 	int32_t r1, r2, r3, r4, temp;
5756 
5757 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5758 
5759 	r1 = le32toh(uc->temp[0].chan20MHz);
5760 	r2 = le32toh(uc->temp[1].chan20MHz);
5761 	r3 = le32toh(uc->temp[2].chan20MHz);
5762 	r4 = le32toh(sc->rawtemp);
5763 
5764 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5765 		return 0;
5766 
5767 	/* Sign-extend 23-bit R4 value to 32-bit. */
5768 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5769 	/* Compute temperature in Kelvin. */
5770 	temp = (259 * (r4 - r2)) / (r3 - r1);
5771 	temp = (temp * 97) / 100 + 8;
5772 
5773 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5774 	    IWN_KTOC(temp));
5775 	return IWN_KTOC(temp);
5776 }
5777 
5778 static int
5779 iwn5000_get_temperature(struct iwn_softc *sc)
5780 {
5781 	int32_t temp;
5782 
5783 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5784 
5785 	/*
5786 	 * Temperature is not used by the driver for 5000 Series because
5787 	 * TX power calibration is handled by firmware.
5788 	 */
5789 	temp = le32toh(sc->rawtemp);
5790 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5791 		temp = (temp / -5) + sc->temp_off;
5792 		temp = IWN_KTOC(temp);
5793 	}
5794 	return temp;
5795 }
5796 
5797 /*
5798  * Initialize sensitivity calibration state machine.
5799  */
5800 static int
5801 iwn_init_sensitivity(struct iwn_softc *sc)
5802 {
5803 	struct iwn_ops *ops = &sc->ops;
5804 	struct iwn_calib_state *calib = &sc->calib;
5805 	uint32_t flags;
5806 	int error;
5807 
5808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5809 
5810 	/* Reset calibration state machine. */
5811 	memset(calib, 0, sizeof (*calib));
5812 	calib->state = IWN_CALIB_STATE_INIT;
5813 	calib->cck_state = IWN_CCK_STATE_HIFA;
5814 	/* Set initial correlation values. */
5815 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5816 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5817 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5818 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5819 	calib->cck_x4      = 125;
5820 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5821 	calib->energy_cck  = sc->limits->energy_cck;
5822 
5823 	/* Write initial sensitivity. */
5824 	if ((error = iwn_send_sensitivity(sc)) != 0)
5825 		return error;
5826 
5827 	/* Write initial gains. */
5828 	if ((error = ops->init_gains(sc)) != 0)
5829 		return error;
5830 
5831 	/* Request statistics at each beacon interval. */
5832 	flags = 0;
5833 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5834 	    __func__);
5835 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5836 }
5837 
5838 /*
5839  * Collect noise and RSSI statistics for the first 20 beacons received
5840  * after association and use them to determine connected antennas and
5841  * to set differential gains.
5842  */
5843 static void
5844 iwn_collect_noise(struct iwn_softc *sc,
5845     const struct iwn_rx_general_stats *stats)
5846 {
5847 	struct iwn_ops *ops = &sc->ops;
5848 	struct iwn_calib_state *calib = &sc->calib;
5849 	struct ieee80211com *ic = &sc->sc_ic;
5850 	uint32_t val;
5851 	int i;
5852 
5853 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5854 
5855 	/* Accumulate RSSI and noise for all 3 antennas. */
5856 	for (i = 0; i < 3; i++) {
5857 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5858 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5859 	}
5860 	/* NB: We update differential gains only once after 20 beacons. */
5861 	if (++calib->nbeacons < 20)
5862 		return;
5863 
5864 	/* Determine highest average RSSI. */
5865 	val = MAX(calib->rssi[0], calib->rssi[1]);
5866 	val = MAX(calib->rssi[2], val);
5867 
5868 	/* Determine which antennas are connected. */
5869 	sc->chainmask = sc->rxchainmask;
5870 	for (i = 0; i < 3; i++)
5871 		if (val - calib->rssi[i] > 15 * 20)
5872 			sc->chainmask &= ~(1 << i);
5873 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5874 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5875 	    __func__, sc->rxchainmask, sc->chainmask);
5876 
5877 	/* If none of the TX antennas are connected, keep at least one. */
5878 	if ((sc->chainmask & sc->txchainmask) == 0)
5879 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5880 
5881 	(void)ops->set_gains(sc);
5882 	calib->state = IWN_CALIB_STATE_RUN;
5883 
5884 #ifdef notyet
5885 	/* XXX Disable RX chains with no antennas connected. */
5886 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5887 	if (sc->sc_is_scanning)
5888 		device_printf(sc->sc_dev,
5889 		    "%s: is_scanning set, before RXON\n",
5890 		    __func__);
5891 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5892 #endif
5893 
5894 	/* Enable power-saving mode if requested by user. */
5895 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5896 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5897 
5898 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5899 
5900 }
5901 
5902 static int
5903 iwn4965_init_gains(struct iwn_softc *sc)
5904 {
5905 	struct iwn_phy_calib_gain cmd;
5906 
5907 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5908 
5909 	memset(&cmd, 0, sizeof cmd);
5910 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5911 	/* Differential gains initially set to 0 for all 3 antennas. */
5912 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5913 	    "%s: setting initial differential gains\n", __func__);
5914 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5915 }
5916 
5917 static int
5918 iwn5000_init_gains(struct iwn_softc *sc)
5919 {
5920 	struct iwn_phy_calib cmd;
5921 
5922 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5923 
5924 	memset(&cmd, 0, sizeof cmd);
5925 	cmd.code = sc->reset_noise_gain;
5926 	cmd.ngroups = 1;
5927 	cmd.isvalid = 1;
5928 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5929 	    "%s: setting initial differential gains\n", __func__);
5930 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5931 }
5932 
5933 static int
5934 iwn4965_set_gains(struct iwn_softc *sc)
5935 {
5936 	struct iwn_calib_state *calib = &sc->calib;
5937 	struct iwn_phy_calib_gain cmd;
5938 	int i, delta, noise;
5939 
5940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5941 
5942 	/* Get minimal noise among connected antennas. */
5943 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5944 	for (i = 0; i < 3; i++)
5945 		if (sc->chainmask & (1 << i))
5946 			noise = MIN(calib->noise[i], noise);
5947 
5948 	memset(&cmd, 0, sizeof cmd);
5949 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5950 	/* Set differential gains for connected antennas. */
5951 	for (i = 0; i < 3; i++) {
5952 		if (sc->chainmask & (1 << i)) {
5953 			/* Compute attenuation (in unit of 1.5dB). */
5954 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5955 			/* NB: delta <= 0 */
5956 			/* Limit to [-4.5dB,0]. */
5957 			cmd.gain[i] = MIN(abs(delta), 3);
5958 			if (delta < 0)
5959 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5960 		}
5961 	}
5962 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5963 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5964 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5965 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5966 }
5967 
5968 static int
5969 iwn5000_set_gains(struct iwn_softc *sc)
5970 {
5971 	struct iwn_calib_state *calib = &sc->calib;
5972 	struct iwn_phy_calib_gain cmd;
5973 	int i, ant, div, delta;
5974 
5975 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5976 
5977 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5978 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5979 
5980 	memset(&cmd, 0, sizeof cmd);
5981 	cmd.code = sc->noise_gain;
5982 	cmd.ngroups = 1;
5983 	cmd.isvalid = 1;
5984 	/* Get first available RX antenna as referential. */
5985 	ant = IWN_LSB(sc->rxchainmask);
5986 	/* Set differential gains for other antennas. */
5987 	for (i = ant + 1; i < 3; i++) {
5988 		if (sc->chainmask & (1 << i)) {
5989 			/* The delta is relative to antenna "ant". */
5990 			delta = ((int32_t)calib->noise[ant] -
5991 			    (int32_t)calib->noise[i]) / div;
5992 			/* Limit to [-4.5dB,+4.5dB]. */
5993 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5994 			if (delta < 0)
5995 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5996 		}
5997 	}
5998 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5999 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6000 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6001 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6002 }
6003 
6004 /*
6005  * Tune RF RX sensitivity based on the number of false alarms detected
6006  * during the last beacon period.
6007  */
6008 static void
6009 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6010 {
6011 #define inc(val, inc, max)			\
6012 	if ((val) < (max)) {			\
6013 		if ((val) < (max) - (inc))	\
6014 			(val) += (inc);		\
6015 		else				\
6016 			(val) = (max);		\
6017 		needs_update = 1;		\
6018 	}
6019 #define dec(val, dec, min)			\
6020 	if ((val) > (min)) {			\
6021 		if ((val) > (min) + (dec))	\
6022 			(val) -= (dec);		\
6023 		else				\
6024 			(val) = (min);		\
6025 		needs_update = 1;		\
6026 	}
6027 
6028 	const struct iwn_sensitivity_limits *limits = sc->limits;
6029 	struct iwn_calib_state *calib = &sc->calib;
6030 	uint32_t val, rxena, fa;
6031 	uint32_t energy[3], energy_min;
6032 	uint8_t noise[3], noise_ref;
6033 	int i, needs_update = 0;
6034 
6035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6036 
6037 	/* Check that we've been enabled long enough. */
6038 	if ((rxena = le32toh(stats->general.load)) == 0){
6039 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6040 		return;
6041 	}
6042 
6043 	/* Compute number of false alarms since last call for OFDM. */
6044 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6045 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6046 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6047 
6048 	if (fa > 50 * rxena) {
6049 		/* High false alarm count, decrease sensitivity. */
6050 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6051 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6052 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6053 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6054 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6055 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6056 
6057 	} else if (fa < 5 * rxena) {
6058 		/* Low false alarm count, increase sensitivity. */
6059 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6060 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6061 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6062 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6063 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6064 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6065 	}
6066 
6067 	/* Compute maximum noise among 3 receivers. */
6068 	for (i = 0; i < 3; i++)
6069 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6070 	val = MAX(noise[0], noise[1]);
6071 	val = MAX(noise[2], val);
6072 	/* Insert it into our samples table. */
6073 	calib->noise_samples[calib->cur_noise_sample] = val;
6074 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6075 
6076 	/* Compute maximum noise among last 20 samples. */
6077 	noise_ref = calib->noise_samples[0];
6078 	for (i = 1; i < 20; i++)
6079 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6080 
6081 	/* Compute maximum energy among 3 receivers. */
6082 	for (i = 0; i < 3; i++)
6083 		energy[i] = le32toh(stats->general.energy[i]);
6084 	val = MIN(energy[0], energy[1]);
6085 	val = MIN(energy[2], val);
6086 	/* Insert it into our samples table. */
6087 	calib->energy_samples[calib->cur_energy_sample] = val;
6088 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6089 
6090 	/* Compute minimum energy among last 10 samples. */
6091 	energy_min = calib->energy_samples[0];
6092 	for (i = 1; i < 10; i++)
6093 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6094 	energy_min += 6;
6095 
6096 	/* Compute number of false alarms since last call for CCK. */
6097 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6098 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6099 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6100 
6101 	if (fa > 50 * rxena) {
6102 		/* High false alarm count, decrease sensitivity. */
6103 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6104 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6105 		calib->cck_state = IWN_CCK_STATE_HIFA;
6106 		calib->low_fa = 0;
6107 
6108 		if (calib->cck_x4 > 160) {
6109 			calib->noise_ref = noise_ref;
6110 			if (calib->energy_cck > 2)
6111 				dec(calib->energy_cck, 2, energy_min);
6112 		}
6113 		if (calib->cck_x4 < 160) {
6114 			calib->cck_x4 = 161;
6115 			needs_update = 1;
6116 		} else
6117 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6118 
6119 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6120 
6121 	} else if (fa < 5 * rxena) {
6122 		/* Low false alarm count, increase sensitivity. */
6123 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6124 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6125 		calib->cck_state = IWN_CCK_STATE_LOFA;
6126 		calib->low_fa++;
6127 
6128 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6129 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6130 		     calib->low_fa > 100)) {
6131 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6132 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6133 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6134 		}
6135 	} else {
6136 		/* Not worth to increase or decrease sensitivity. */
6137 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6138 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6139 		calib->low_fa = 0;
6140 		calib->noise_ref = noise_ref;
6141 
6142 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6143 			/* Previous interval had many false alarms. */
6144 			dec(calib->energy_cck, 8, energy_min);
6145 		}
6146 		calib->cck_state = IWN_CCK_STATE_INIT;
6147 	}
6148 
6149 	if (needs_update)
6150 		(void)iwn_send_sensitivity(sc);
6151 
6152 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6153 
6154 #undef dec
6155 #undef inc
6156 }
6157 
6158 static int
6159 iwn_send_sensitivity(struct iwn_softc *sc)
6160 {
6161 	struct iwn_calib_state *calib = &sc->calib;
6162 	struct iwn_enhanced_sensitivity_cmd cmd;
6163 	int len;
6164 
6165 	memset(&cmd, 0, sizeof cmd);
6166 	len = sizeof (struct iwn_sensitivity_cmd);
6167 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6168 	/* OFDM modulation. */
6169 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6170 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6171 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6172 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6173 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6174 	cmd.energy_ofdm_th     = htole16(62);
6175 	/* CCK modulation. */
6176 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6177 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6178 	cmd.energy_cck         = htole16(calib->energy_cck);
6179 	/* Barker modulation: use default values. */
6180 	cmd.corr_barker        = htole16(190);
6181 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6182 
6183 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6184 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6185 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6186 	    calib->ofdm_mrc_x4, calib->cck_x4,
6187 	    calib->cck_mrc_x4, calib->energy_cck);
6188 
6189 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6190 		goto send;
6191 	/* Enhanced sensitivity settings. */
6192 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6193 	cmd.ofdm_det_slope_mrc = htole16(668);
6194 	cmd.ofdm_det_icept_mrc = htole16(4);
6195 	cmd.ofdm_det_slope     = htole16(486);
6196 	cmd.ofdm_det_icept     = htole16(37);
6197 	cmd.cck_det_slope_mrc  = htole16(853);
6198 	cmd.cck_det_icept_mrc  = htole16(4);
6199 	cmd.cck_det_slope      = htole16(476);
6200 	cmd.cck_det_icept      = htole16(99);
6201 send:
6202 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6203 }
6204 
6205 /*
6206  * Look at the increase of PLCP errors over time; if it exceeds
6207  * a programmed threshold then trigger an RF retune.
6208  */
6209 static void
6210 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6211 {
6212 	int32_t delta_ofdm, delta_ht, delta_cck;
6213 	struct iwn_calib_state *calib = &sc->calib;
6214 	int delta_ticks, cur_ticks;
6215 	int delta_msec;
6216 	int thresh;
6217 
6218 	/*
6219 	 * Calculate the difference between the current and
6220 	 * previous statistics.
6221 	 */
6222 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6223 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6224 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6225 
6226 	/*
6227 	 * Calculate the delta in time between successive statistics
6228 	 * messages.  Yes, it can roll over; so we make sure that
6229 	 * this doesn't happen.
6230 	 *
6231 	 * XXX go figure out what to do about rollover
6232 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6233 	 * XXX go stab signed integer overflow undefined-ness in the face.
6234 	 */
6235 	cur_ticks = ticks;
6236 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6237 
6238 	/*
6239 	 * If any are negative, then the firmware likely reset; so just
6240 	 * bail.  We'll pick this up next time.
6241 	 */
6242 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6243 		return;
6244 
6245 	/*
6246 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6247 	 * so we can do some useful math with it.
6248 	 */
6249 	delta_msec = ticks_to_msecs(delta_ticks);
6250 
6251 	/*
6252 	 * Calculate what our threshold is given the current delta_msec.
6253 	 */
6254 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6255 
6256 	DPRINTF(sc, IWN_DEBUG_STATE,
6257 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6258 	    __func__,
6259 	    delta_msec,
6260 	    delta_cck,
6261 	    delta_ofdm,
6262 	    delta_ht,
6263 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6264 	    thresh);
6265 
6266 	/*
6267 	 * If we need a retune, then schedule a single channel scan
6268 	 * to a channel that isn't the currently active one!
6269 	 *
6270 	 * The math from linux iwlwifi:
6271 	 *
6272 	 * if ((delta * 100 / msecs) > threshold)
6273 	 */
6274 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6275 		DPRINTF(sc, IWN_DEBUG_ANY,
6276 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6277 		    "over limit (%d); retune!\n",
6278 		    __func__,
6279 		    (delta_cck + delta_ofdm + delta_ht),
6280 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6281 		    thresh);
6282 	}
6283 }
6284 
6285 /*
6286  * Set STA mode power saving level (between 0 and 5).
6287  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6288  */
6289 static int
6290 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6291 {
6292 	struct iwn_pmgt_cmd cmd;
6293 	const struct iwn_pmgt *pmgt;
6294 	uint32_t max, skip_dtim;
6295 	uint32_t reg;
6296 	int i;
6297 
6298 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6299 	    "%s: dtim=%d, level=%d, async=%d\n",
6300 	    __func__,
6301 	    dtim,
6302 	    level,
6303 	    async);
6304 
6305 	/* Select which PS parameters to use. */
6306 	if (dtim <= 2)
6307 		pmgt = &iwn_pmgt[0][level];
6308 	else if (dtim <= 10)
6309 		pmgt = &iwn_pmgt[1][level];
6310 	else
6311 		pmgt = &iwn_pmgt[2][level];
6312 
6313 	memset(&cmd, 0, sizeof cmd);
6314 	if (level != 0)	/* not CAM */
6315 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6316 	if (level == 5)
6317 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6318 	/* Retrieve PCIe Active State Power Management (ASPM). */
6319 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6320 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6321 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6322 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6323 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6324 
6325 	if (dtim == 0) {
6326 		dtim = 1;
6327 		skip_dtim = 0;
6328 	} else
6329 		skip_dtim = pmgt->skip_dtim;
6330 	if (skip_dtim != 0) {
6331 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6332 		max = pmgt->intval[4];
6333 		if (max == (uint32_t)-1)
6334 			max = dtim * (skip_dtim + 1);
6335 		else if (max > dtim)
6336 			max = rounddown(max, dtim);
6337 	} else
6338 		max = dtim;
6339 	for (i = 0; i < 5; i++)
6340 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6341 
6342 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6343 	    level);
6344 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6345 }
6346 
6347 static int
6348 iwn_send_btcoex(struct iwn_softc *sc)
6349 {
6350 	struct iwn_bluetooth cmd;
6351 
6352 	memset(&cmd, 0, sizeof cmd);
6353 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6354 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6355 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6356 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6357 	    __func__);
6358 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6359 }
6360 
6361 static int
6362 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6363 {
6364 	static const uint32_t btcoex_3wire[12] = {
6365 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6366 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6367 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6368 	};
6369 	struct iwn6000_btcoex_config btconfig;
6370 	struct iwn2000_btcoex_config btconfig2k;
6371 	struct iwn_btcoex_priotable btprio;
6372 	struct iwn_btcoex_prot btprot;
6373 	int error, i;
6374 	uint8_t flags;
6375 
6376 	memset(&btconfig, 0, sizeof btconfig);
6377 	memset(&btconfig2k, 0, sizeof btconfig2k);
6378 
6379 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6380 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6381 
6382 	if (sc->base_params->bt_sco_disable)
6383 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6384 	else
6385 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6386 
6387 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6388 
6389 	/* Default flags result is 145 as old value */
6390 
6391 	/*
6392 	 * Flags value has to be review. Values must change if we
6393 	 * which to disable it
6394 	 */
6395 	if (sc->base_params->bt_session_2) {
6396 		btconfig2k.flags = flags;
6397 		btconfig2k.max_kill = 5;
6398 		btconfig2k.bt3_t7_timer = 1;
6399 		btconfig2k.kill_ack = htole32(0xffff0000);
6400 		btconfig2k.kill_cts = htole32(0xffff0000);
6401 		btconfig2k.sample_time = 2;
6402 		btconfig2k.bt3_t2_timer = 0xc;
6403 
6404 		for (i = 0; i < 12; i++)
6405 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6406 		btconfig2k.valid = htole16(0xff);
6407 		btconfig2k.prio_boost = htole32(0xf0);
6408 		DPRINTF(sc, IWN_DEBUG_RESET,
6409 		    "%s: configuring advanced bluetooth coexistence"
6410 		    " session 2, flags : 0x%x\n",
6411 		    __func__,
6412 		    flags);
6413 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6414 		    sizeof(btconfig2k), 1);
6415 	} else {
6416 		btconfig.flags = flags;
6417 		btconfig.max_kill = 5;
6418 		btconfig.bt3_t7_timer = 1;
6419 		btconfig.kill_ack = htole32(0xffff0000);
6420 		btconfig.kill_cts = htole32(0xffff0000);
6421 		btconfig.sample_time = 2;
6422 		btconfig.bt3_t2_timer = 0xc;
6423 
6424 		for (i = 0; i < 12; i++)
6425 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6426 		btconfig.valid = htole16(0xff);
6427 		btconfig.prio_boost = 0xf0;
6428 		DPRINTF(sc, IWN_DEBUG_RESET,
6429 		    "%s: configuring advanced bluetooth coexistence,"
6430 		    " flags : 0x%x\n",
6431 		    __func__,
6432 		    flags);
6433 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6434 		    sizeof(btconfig), 1);
6435 	}
6436 
6437 	if (error != 0)
6438 		return error;
6439 
6440 	memset(&btprio, 0, sizeof btprio);
6441 	btprio.calib_init1 = 0x6;
6442 	btprio.calib_init2 = 0x7;
6443 	btprio.calib_periodic_low1 = 0x2;
6444 	btprio.calib_periodic_low2 = 0x3;
6445 	btprio.calib_periodic_high1 = 0x4;
6446 	btprio.calib_periodic_high2 = 0x5;
6447 	btprio.dtim = 0x6;
6448 	btprio.scan52 = 0x8;
6449 	btprio.scan24 = 0xa;
6450 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6451 	    1);
6452 	if (error != 0)
6453 		return error;
6454 
6455 	/* Force BT state machine change. */
6456 	memset(&btprot, 0, sizeof btprot);
6457 	btprot.open = 1;
6458 	btprot.type = 1;
6459 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6460 	if (error != 0)
6461 		return error;
6462 	btprot.open = 0;
6463 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6464 }
6465 
6466 static int
6467 iwn5000_runtime_calib(struct iwn_softc *sc)
6468 {
6469 	struct iwn5000_calib_config cmd;
6470 
6471 	memset(&cmd, 0, sizeof cmd);
6472 	cmd.ucode.once.enable = 0xffffffff;
6473 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6474 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6475 	    "%s: configuring runtime calibration\n", __func__);
6476 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6477 }
6478 
6479 static uint32_t
6480 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6481 {
6482 	struct ieee80211com *ic = &sc->sc_ic;
6483 	uint32_t htflags = 0;
6484 
6485 	if (! IEEE80211_IS_CHAN_HT(c))
6486 		return (0);
6487 
6488 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6489 
6490 	if (IEEE80211_IS_CHAN_HT40(c)) {
6491 		switch (ic->ic_curhtprotmode) {
6492 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6493 			htflags |= IWN_RXON_HT_MODEPURE40;
6494 			break;
6495 		default:
6496 			htflags |= IWN_RXON_HT_MODEMIXED;
6497 			break;
6498 		}
6499 	}
6500 	if (IEEE80211_IS_CHAN_HT40D(c))
6501 		htflags |= IWN_RXON_HT_HT40MINUS;
6502 
6503 	return (htflags);
6504 }
6505 
6506 static int
6507 iwn_config(struct iwn_softc *sc)
6508 {
6509 	struct iwn_ops *ops = &sc->ops;
6510 	struct ieee80211com *ic = &sc->sc_ic;
6511 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6512 	const uint8_t *macaddr;
6513 	uint32_t txmask;
6514 	uint16_t rxchain;
6515 	int error;
6516 
6517 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6518 
6519 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6520 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6521 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6522 		    " exclusive each together. Review NIC config file. Conf"
6523 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6524 		    sc->base_params->calib_need,
6525 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6526 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6527 		return (EINVAL);
6528 	}
6529 
6530 	/* Compute temperature calib if needed. Will be send by send calib */
6531 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6532 		error = iwn5000_temp_offset_calib(sc);
6533 		if (error != 0) {
6534 			device_printf(sc->sc_dev,
6535 			    "%s: could not set temperature offset\n", __func__);
6536 			return (error);
6537 		}
6538 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6539 		error = iwn5000_temp_offset_calibv2(sc);
6540 		if (error != 0) {
6541 			device_printf(sc->sc_dev,
6542 			    "%s: could not compute temperature offset v2\n",
6543 			    __func__);
6544 			return (error);
6545 		}
6546 	}
6547 
6548 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6549 		/* Configure runtime DC calibration. */
6550 		error = iwn5000_runtime_calib(sc);
6551 		if (error != 0) {
6552 			device_printf(sc->sc_dev,
6553 			    "%s: could not configure runtime calibration\n",
6554 			    __func__);
6555 			return error;
6556 		}
6557 	}
6558 
6559 	/* Configure valid TX chains for >=5000 Series. */
6560 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6561 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6562 		txmask = htole32(sc->txchainmask);
6563 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6564 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6565 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6566 		    sizeof txmask, 0);
6567 		if (error != 0) {
6568 			device_printf(sc->sc_dev,
6569 			    "%s: could not configure valid TX chains, "
6570 			    "error %d\n", __func__, error);
6571 			return error;
6572 		}
6573 	}
6574 
6575 	/* Configure bluetooth coexistence. */
6576 	error = 0;
6577 
6578 	/* Configure bluetooth coexistence if needed. */
6579 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6580 		error = iwn_send_advanced_btcoex(sc);
6581 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6582 		error = iwn_send_btcoex(sc);
6583 
6584 	if (error != 0) {
6585 		device_printf(sc->sc_dev,
6586 		    "%s: could not configure bluetooth coexistence, error %d\n",
6587 		    __func__, error);
6588 		return error;
6589 	}
6590 
6591 	/* Set mode, channel, RX filter and enable RX. */
6592 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6593 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6594 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6595 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6596 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6597 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6598 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6599 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6600 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6601 	switch (ic->ic_opmode) {
6602 	case IEEE80211_M_STA:
6603 		sc->rxon->mode = IWN_MODE_STA;
6604 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6605 		break;
6606 	case IEEE80211_M_MONITOR:
6607 		sc->rxon->mode = IWN_MODE_MONITOR;
6608 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6609 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6610 		break;
6611 	default:
6612 		/* Should not get there. */
6613 		break;
6614 	}
6615 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6616 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6617 	sc->rxon->ht_single_mask = 0xff;
6618 	sc->rxon->ht_dual_mask = 0xff;
6619 	sc->rxon->ht_triple_mask = 0xff;
6620 	/*
6621 	 * In active association mode, ensure that
6622 	 * all the receive chains are enabled.
6623 	 *
6624 	 * Since we're not yet doing SMPS, don't allow the
6625 	 * number of idle RX chains to be less than the active
6626 	 * number.
6627 	 */
6628 	rxchain =
6629 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6630 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6631 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6632 	sc->rxon->rxchain = htole16(rxchain);
6633 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6634 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6635 	    __func__,
6636 	    sc->rxchainmask,
6637 	    sc->nrxchains);
6638 
6639 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6640 
6641 	DPRINTF(sc, IWN_DEBUG_RESET,
6642 	    "%s: setting configuration; flags=0x%08x\n",
6643 	    __func__, le32toh(sc->rxon->flags));
6644 	if (sc->sc_is_scanning)
6645 		device_printf(sc->sc_dev,
6646 		    "%s: is_scanning set, before RXON\n",
6647 		    __func__);
6648 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6649 	if (error != 0) {
6650 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6651 		    __func__);
6652 		return error;
6653 	}
6654 
6655 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6656 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6657 		    __func__);
6658 		return error;
6659 	}
6660 
6661 	/* Configuration has changed, set TX power accordingly. */
6662 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6663 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6664 		    __func__);
6665 		return error;
6666 	}
6667 
6668 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6669 		device_printf(sc->sc_dev,
6670 		    "%s: could not set critical temperature\n", __func__);
6671 		return error;
6672 	}
6673 
6674 	/* Set power saving level to CAM during initialization. */
6675 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6676 		device_printf(sc->sc_dev,
6677 		    "%s: could not set power saving level\n", __func__);
6678 		return error;
6679 	}
6680 
6681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6682 
6683 	return 0;
6684 }
6685 
6686 static uint16_t
6687 iwn_get_active_dwell_time(struct iwn_softc *sc,
6688     struct ieee80211_channel *c, uint8_t n_probes)
6689 {
6690 	/* No channel? Default to 2GHz settings */
6691 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6692 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6693 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6694 	}
6695 
6696 	/* 5GHz dwell time */
6697 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6698 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6699 }
6700 
6701 /*
6702  * Limit the total dwell time to 85% of the beacon interval.
6703  *
6704  * Returns the dwell time in milliseconds.
6705  */
6706 static uint16_t
6707 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6708 {
6709 	struct ieee80211com *ic = &sc->sc_ic;
6710 	struct ieee80211vap *vap = NULL;
6711 	int bintval = 0;
6712 
6713 	/* bintval is in TU (1.024mS) */
6714 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6715 		vap = TAILQ_FIRST(&ic->ic_vaps);
6716 		bintval = vap->iv_bss->ni_intval;
6717 	}
6718 
6719 	/*
6720 	 * If it's non-zero, we should calculate the minimum of
6721 	 * it and the DWELL_BASE.
6722 	 *
6723 	 * XXX Yes, the math should take into account that bintval
6724 	 * is 1.024mS, not 1mS..
6725 	 */
6726 	if (bintval > 0) {
6727 		DPRINTF(sc, IWN_DEBUG_SCAN,
6728 		    "%s: bintval=%d\n",
6729 		    __func__,
6730 		    bintval);
6731 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6732 	}
6733 
6734 	/* No association context? Default */
6735 	return (IWN_PASSIVE_DWELL_BASE);
6736 }
6737 
6738 static uint16_t
6739 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6740 {
6741 	uint16_t passive;
6742 
6743 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6744 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6745 	} else {
6746 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6747 	}
6748 
6749 	/* Clamp to the beacon interval if we're associated */
6750 	return (iwn_limit_dwell(sc, passive));
6751 }
6752 
6753 static int
6754 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6755     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6756 {
6757 	struct ieee80211com *ic = &sc->sc_ic;
6758 	struct ieee80211_node *ni = vap->iv_bss;
6759 	struct iwn_scan_hdr *hdr;
6760 	struct iwn_cmd_data *tx;
6761 	struct iwn_scan_essid *essid;
6762 	struct iwn_scan_chan *chan;
6763 	struct ieee80211_frame *wh;
6764 	struct ieee80211_rateset *rs;
6765 	uint8_t *buf, *frm;
6766 	uint16_t rxchain;
6767 	uint8_t txant;
6768 	int buflen, error;
6769 	int is_active;
6770 	uint16_t dwell_active, dwell_passive;
6771 	uint32_t extra, scan_service_time;
6772 
6773 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6774 
6775 	/*
6776 	 * We are absolutely not allowed to send a scan command when another
6777 	 * scan command is pending.
6778 	 */
6779 	if (sc->sc_is_scanning) {
6780 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6781 		    __func__);
6782 		return (EAGAIN);
6783 	}
6784 
6785 	/* Assign the scan channel */
6786 	c = ic->ic_curchan;
6787 
6788 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6789 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6790 	if (buf == NULL) {
6791 		device_printf(sc->sc_dev,
6792 		    "%s: could not allocate buffer for scan command\n",
6793 		    __func__);
6794 		return ENOMEM;
6795 	}
6796 	hdr = (struct iwn_scan_hdr *)buf;
6797 	/*
6798 	 * Move to the next channel if no frames are received within 10ms
6799 	 * after sending the probe request.
6800 	 */
6801 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6802 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6803 	/*
6804 	 * Max needs to be greater than active and passive and quiet!
6805 	 * It's also in microseconds!
6806 	 */
6807 	hdr->max_svc = htole32(250 * 1024);
6808 
6809 	/*
6810 	 * Reset scan: interval=100
6811 	 * Normal scan: interval=becaon interval
6812 	 * suspend_time: 100 (TU)
6813 	 *
6814 	 */
6815 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6816 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6817 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6818 	hdr->pause_svc = htole32(scan_service_time);
6819 
6820 	/* Select antennas for scanning. */
6821 	rxchain =
6822 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6823 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6824 	    IWN_RXCHAIN_DRIVER_FORCE;
6825 	if (IEEE80211_IS_CHAN_A(c) &&
6826 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6827 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6828 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6829 	} else	/* Use all available RX antennas. */
6830 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6831 	hdr->rxchain = htole16(rxchain);
6832 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6833 
6834 	tx = (struct iwn_cmd_data *)(hdr + 1);
6835 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6836 	tx->id = sc->broadcast_id;
6837 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6838 
6839 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6840 		/* Send probe requests at 6Mbps. */
6841 		tx->rate = htole32(0xd);
6842 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6843 	} else {
6844 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6845 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6846 		    sc->rxon->associd && sc->rxon->chan > 14)
6847 			tx->rate = htole32(0xd);
6848 		else {
6849 			/* Send probe requests at 1Mbps. */
6850 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6851 		}
6852 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6853 	}
6854 	/* Use the first valid TX antenna. */
6855 	txant = IWN_LSB(sc->txchainmask);
6856 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6857 
6858 	/*
6859 	 * Only do active scanning if we're announcing a probe request
6860 	 * for a given SSID (or more, if we ever add it to the driver.)
6861 	 */
6862 	is_active = 0;
6863 
6864 	/*
6865 	 * If we're scanning for a specific SSID, add it to the command.
6866 	 *
6867 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6868 	 */
6869 	essid = (struct iwn_scan_essid *)(tx + 1);
6870 	if (ss != NULL) {
6871 		if (ss->ss_ssid[0].len != 0) {
6872 			essid[0].id = IEEE80211_ELEMID_SSID;
6873 			essid[0].len = ss->ss_ssid[0].len;
6874 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6875 		}
6876 
6877 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6878 		    __func__,
6879 		    ss->ss_ssid[0].len,
6880 		    ss->ss_ssid[0].len,
6881 		    ss->ss_ssid[0].ssid);
6882 
6883 		if (ss->ss_nssid > 0)
6884 			is_active = 1;
6885 	}
6886 
6887 	/*
6888 	 * Build a probe request frame.  Most of the following code is a
6889 	 * copy & paste of what is done in net80211.
6890 	 */
6891 	wh = (struct ieee80211_frame *)(essid + 20);
6892 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6893 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6894 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6895 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6896 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6897 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6898 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6899 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6900 
6901 	frm = (uint8_t *)(wh + 1);
6902 	frm = ieee80211_add_ssid(frm, NULL, 0);
6903 	frm = ieee80211_add_rates(frm, rs);
6904 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6905 		frm = ieee80211_add_xrates(frm, rs);
6906 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6907 		frm = ieee80211_add_htcap(frm, ni);
6908 
6909 	/* Set length of probe request. */
6910 	tx->len = htole16(frm - (uint8_t *)wh);
6911 
6912 	/*
6913 	 * If active scanning is requested but a certain channel is
6914 	 * marked passive, we can do active scanning if we detect
6915 	 * transmissions.
6916 	 *
6917 	 * There is an issue with some firmware versions that triggers
6918 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6919 	 * on a radar channel even though this means that we should NOT
6920 	 * send probes.
6921 	 *
6922 	 * The "good CRC threshold" is the number of frames that we
6923 	 * need to receive during our dwell time on a channel before
6924 	 * sending out probes -- setting this to a huge value will
6925 	 * mean we never reach it, but at the same time work around
6926 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6927 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6928 	 *
6929 	 * This was fixed in later versions along with some other
6930 	 * scan changes, and the threshold behaves as a flag in those
6931 	 * versions.
6932 	 */
6933 
6934 	/*
6935 	 * If we're doing active scanning, set the crc_threshold
6936 	 * to a suitable value.  This is different to active veruss
6937 	 * passive scanning depending upon the channel flags; the
6938 	 * firmware will obey that particular check for us.
6939 	 */
6940 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6941 		hdr->crc_threshold = is_active ?
6942 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6943 	else
6944 		hdr->crc_threshold = is_active ?
6945 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6946 
6947 	chan = (struct iwn_scan_chan *)frm;
6948 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6949 	chan->flags = 0;
6950 	if (ss->ss_nssid > 0)
6951 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6952 	chan->dsp_gain = 0x6e;
6953 
6954 	/*
6955 	 * Set the passive/active flag depending upon the channel mode.
6956 	 * XXX TODO: take the is_active flag into account as well?
6957 	 */
6958 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6959 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6960 	else
6961 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6962 
6963 	/*
6964 	 * Calculate the active/passive dwell times.
6965 	 */
6966 
6967 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6968 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6969 
6970 	/* Make sure they're valid */
6971 	if (dwell_passive <= dwell_active)
6972 		dwell_passive = dwell_active + 1;
6973 
6974 	chan->active = htole16(dwell_active);
6975 	chan->passive = htole16(dwell_passive);
6976 
6977 	if (IEEE80211_IS_CHAN_5GHZ(c))
6978 		chan->rf_gain = 0x3b;
6979 	else
6980 		chan->rf_gain = 0x28;
6981 
6982 	DPRINTF(sc, IWN_DEBUG_STATE,
6983 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6984 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6985 	    "isactive=%d numssid=%d\n", __func__,
6986 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6987 	    dwell_active, dwell_passive, scan_service_time,
6988 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6989 
6990 	hdr->nchan++;
6991 	chan++;
6992 	buflen = (uint8_t *)chan - buf;
6993 	hdr->len = htole16(buflen);
6994 
6995 	if (sc->sc_is_scanning) {
6996 		device_printf(sc->sc_dev,
6997 		    "%s: called with is_scanning set!\n",
6998 		    __func__);
6999 	}
7000 	sc->sc_is_scanning = 1;
7001 
7002 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7003 	    hdr->nchan);
7004 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7005 	free(buf, M_DEVBUF);
7006 	if (error == 0)
7007 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7008 
7009 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7010 
7011 	return error;
7012 }
7013 
7014 static int
7015 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7016 {
7017 	struct iwn_ops *ops = &sc->ops;
7018 	struct ieee80211com *ic = &sc->sc_ic;
7019 	struct ieee80211_node *ni = vap->iv_bss;
7020 	int error;
7021 
7022 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7023 
7024 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7025 	/* Update adapter configuration. */
7026 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7027 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7028 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7029 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7030 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7031 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7032 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7033 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7034 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7035 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7036 		sc->rxon->cck_mask  = 0;
7037 		sc->rxon->ofdm_mask = 0x15;
7038 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7039 		sc->rxon->cck_mask  = 0x03;
7040 		sc->rxon->ofdm_mask = 0;
7041 	} else {
7042 		/* Assume 802.11b/g. */
7043 		sc->rxon->cck_mask  = 0x03;
7044 		sc->rxon->ofdm_mask = 0x15;
7045 	}
7046 
7047 	/* try HT */
7048 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7049 
7050 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7051 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7052 	    sc->rxon->ofdm_mask);
7053 	if (sc->sc_is_scanning)
7054 		device_printf(sc->sc_dev,
7055 		    "%s: is_scanning set, before RXON\n",
7056 		    __func__);
7057 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7058 	if (error != 0) {
7059 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7060 		    __func__, error);
7061 		return error;
7062 	}
7063 
7064 	/* Configuration has changed, set TX power accordingly. */
7065 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7066 		device_printf(sc->sc_dev,
7067 		    "%s: could not set TX power, error %d\n", __func__, error);
7068 		return error;
7069 	}
7070 	/*
7071 	 * Reconfiguring RXON clears the firmware nodes table so we must
7072 	 * add the broadcast node again.
7073 	 */
7074 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7075 		device_printf(sc->sc_dev,
7076 		    "%s: could not add broadcast node, error %d\n", __func__,
7077 		    error);
7078 		return error;
7079 	}
7080 
7081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7082 
7083 	return 0;
7084 }
7085 
7086 static int
7087 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7088 {
7089 	struct iwn_ops *ops = &sc->ops;
7090 	struct ieee80211com *ic = &sc->sc_ic;
7091 	struct ieee80211_node *ni = vap->iv_bss;
7092 	struct iwn_node_info node;
7093 	int error;
7094 
7095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7096 
7097 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7098 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7099 		/* Link LED blinks while monitoring. */
7100 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7101 		return 0;
7102 	}
7103 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7104 		device_printf(sc->sc_dev,
7105 		    "%s: could not set timing, error %d\n", __func__, error);
7106 		return error;
7107 	}
7108 
7109 	/* Update adapter configuration. */
7110 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7111 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7112 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7113 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7114 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7115 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7116 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7117 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7118 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7119 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7120 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7121 		sc->rxon->cck_mask  = 0;
7122 		sc->rxon->ofdm_mask = 0x15;
7123 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7124 		sc->rxon->cck_mask  = 0x03;
7125 		sc->rxon->ofdm_mask = 0;
7126 	} else {
7127 		/* Assume 802.11b/g. */
7128 		sc->rxon->cck_mask  = 0x0f;
7129 		sc->rxon->ofdm_mask = 0x15;
7130 	}
7131 	/* try HT */
7132 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7133 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7134 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7135 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7136 	if (sc->sc_is_scanning)
7137 		device_printf(sc->sc_dev,
7138 		    "%s: is_scanning set, before RXON\n",
7139 		    __func__);
7140 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7141 	if (error != 0) {
7142 		device_printf(sc->sc_dev,
7143 		    "%s: could not update configuration, error %d\n", __func__,
7144 		    error);
7145 		return error;
7146 	}
7147 
7148 	/* Configuration has changed, set TX power accordingly. */
7149 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7150 		device_printf(sc->sc_dev,
7151 		    "%s: could not set TX power, error %d\n", __func__, error);
7152 		return error;
7153 	}
7154 
7155 	/* Fake a join to initialize the TX rate. */
7156 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7157 	iwn_newassoc(ni, 1);
7158 
7159 	/* Add BSS node. */
7160 	memset(&node, 0, sizeof node);
7161 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7162 	node.id = IWN_ID_BSS;
7163 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7164 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7165 		case IEEE80211_HTCAP_SMPS_ENA:
7166 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7167 			break;
7168 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7169 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7170 			break;
7171 		}
7172 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7173 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7174 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7175 			node.htflags |= htole32(IWN_NODE_HT40);
7176 	}
7177 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7178 	error = ops->add_node(sc, &node, 1);
7179 	if (error != 0) {
7180 		device_printf(sc->sc_dev,
7181 		    "%s: could not add BSS node, error %d\n", __func__, error);
7182 		return error;
7183 	}
7184 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7185 	    __func__, node.id);
7186 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7187 		device_printf(sc->sc_dev,
7188 		    "%s: could not setup link quality for node %d, error %d\n",
7189 		    __func__, node.id, error);
7190 		return error;
7191 	}
7192 
7193 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7194 		device_printf(sc->sc_dev,
7195 		    "%s: could not set sensitivity, error %d\n", __func__,
7196 		    error);
7197 		return error;
7198 	}
7199 	/* Start periodic calibration timer. */
7200 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7201 	sc->calib_cnt = 0;
7202 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7203 	    sc);
7204 
7205 	/* Link LED always on while associated. */
7206 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7207 
7208 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7209 
7210 	return 0;
7211 }
7212 
7213 /*
7214  * This function is called by upper layer when an ADDBA request is received
7215  * from another STA and before the ADDBA response is sent.
7216  */
7217 static int
7218 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7219     int baparamset, int batimeout, int baseqctl)
7220 {
7221 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7222 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7223 	struct iwn_ops *ops = &sc->ops;
7224 	struct iwn_node *wn = (void *)ni;
7225 	struct iwn_node_info node;
7226 	uint16_t ssn;
7227 	uint8_t tid;
7228 	int error;
7229 
7230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7231 
7232 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7233 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7234 
7235 	memset(&node, 0, sizeof node);
7236 	node.id = wn->id;
7237 	node.control = IWN_NODE_UPDATE;
7238 	node.flags = IWN_FLAG_SET_ADDBA;
7239 	node.addba_tid = tid;
7240 	node.addba_ssn = htole16(ssn);
7241 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7242 	    wn->id, tid, ssn);
7243 	error = ops->add_node(sc, &node, 1);
7244 	if (error != 0)
7245 		return error;
7246 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7247 #undef MS
7248 }
7249 
7250 /*
7251  * This function is called by upper layer on teardown of an HT-immediate
7252  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7253  */
7254 static void
7255 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7256 {
7257 	struct ieee80211com *ic = ni->ni_ic;
7258 	struct iwn_softc *sc = ic->ic_softc;
7259 	struct iwn_ops *ops = &sc->ops;
7260 	struct iwn_node *wn = (void *)ni;
7261 	struct iwn_node_info node;
7262 	uint8_t tid;
7263 
7264 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7265 
7266 	/* XXX: tid as an argument */
7267 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7268 		if (&ni->ni_rx_ampdu[tid] == rap)
7269 			break;
7270 	}
7271 
7272 	memset(&node, 0, sizeof node);
7273 	node.id = wn->id;
7274 	node.control = IWN_NODE_UPDATE;
7275 	node.flags = IWN_FLAG_SET_DELBA;
7276 	node.delba_tid = tid;
7277 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7278 	(void)ops->add_node(sc, &node, 1);
7279 	sc->sc_ampdu_rx_stop(ni, rap);
7280 }
7281 
7282 static int
7283 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7284     int dialogtoken, int baparamset, int batimeout)
7285 {
7286 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7287 	int qid;
7288 
7289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7290 
7291 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7292 		if (sc->qid2tap[qid] == NULL)
7293 			break;
7294 	}
7295 	if (qid == sc->ntxqs) {
7296 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7297 		    __func__);
7298 		return 0;
7299 	}
7300 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7301 	if (tap->txa_private == NULL) {
7302 		device_printf(sc->sc_dev,
7303 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7304 		return 0;
7305 	}
7306 	sc->qid2tap[qid] = tap;
7307 	*(int *)tap->txa_private = qid;
7308 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7309 	    batimeout);
7310 }
7311 
7312 static int
7313 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7314     int code, int baparamset, int batimeout)
7315 {
7316 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7317 	int qid = *(int *)tap->txa_private;
7318 	uint8_t tid = tap->txa_tid;
7319 	int ret;
7320 
7321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7322 
7323 	if (code == IEEE80211_STATUS_SUCCESS) {
7324 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7325 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7326 		if (ret != 1)
7327 			return ret;
7328 	} else {
7329 		sc->qid2tap[qid] = NULL;
7330 		free(tap->txa_private, M_DEVBUF);
7331 		tap->txa_private = NULL;
7332 	}
7333 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7334 }
7335 
7336 /*
7337  * This function is called by upper layer when an ADDBA response is received
7338  * from another STA.
7339  */
7340 static int
7341 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7342     uint8_t tid)
7343 {
7344 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7345 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7346 	struct iwn_ops *ops = &sc->ops;
7347 	struct iwn_node *wn = (void *)ni;
7348 	struct iwn_node_info node;
7349 	int error, qid;
7350 
7351 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7352 
7353 	/* Enable TX for the specified RA/TID. */
7354 	wn->disable_tid &= ~(1 << tid);
7355 	memset(&node, 0, sizeof node);
7356 	node.id = wn->id;
7357 	node.control = IWN_NODE_UPDATE;
7358 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7359 	node.disable_tid = htole16(wn->disable_tid);
7360 	error = ops->add_node(sc, &node, 1);
7361 	if (error != 0)
7362 		return 0;
7363 
7364 	if ((error = iwn_nic_lock(sc)) != 0)
7365 		return 0;
7366 	qid = *(int *)tap->txa_private;
7367 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7368 	    __func__, wn->id, tid, tap->txa_start, qid);
7369 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7370 	iwn_nic_unlock(sc);
7371 
7372 	iwn_set_link_quality(sc, ni);
7373 	return 1;
7374 }
7375 
7376 static void
7377 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7378 {
7379 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7380 	struct iwn_ops *ops = &sc->ops;
7381 	uint8_t tid = tap->txa_tid;
7382 	int qid;
7383 
7384 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7385 
7386 	sc->sc_addba_stop(ni, tap);
7387 
7388 	if (tap->txa_private == NULL)
7389 		return;
7390 
7391 	qid = *(int *)tap->txa_private;
7392 	if (sc->txq[qid].queued != 0)
7393 		return;
7394 	if (iwn_nic_lock(sc) != 0)
7395 		return;
7396 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7397 	iwn_nic_unlock(sc);
7398 	sc->qid2tap[qid] = NULL;
7399 	free(tap->txa_private, M_DEVBUF);
7400 	tap->txa_private = NULL;
7401 }
7402 
7403 static void
7404 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7405     int qid, uint8_t tid, uint16_t ssn)
7406 {
7407 	struct iwn_node *wn = (void *)ni;
7408 
7409 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7410 
7411 	/* Stop TX scheduler while we're changing its configuration. */
7412 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7413 	    IWN4965_TXQ_STATUS_CHGACT);
7414 
7415 	/* Assign RA/TID translation to the queue. */
7416 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7417 	    wn->id << 4 | tid);
7418 
7419 	/* Enable chain-building mode for the queue. */
7420 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7421 
7422 	/* Set starting sequence number from the ADDBA request. */
7423 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7424 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7425 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7426 
7427 	/* Set scheduler window size. */
7428 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7429 	    IWN_SCHED_WINSZ);
7430 	/* Set scheduler frame limit. */
7431 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7432 	    IWN_SCHED_LIMIT << 16);
7433 
7434 	/* Enable interrupts for the queue. */
7435 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7436 
7437 	/* Mark the queue as active. */
7438 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7439 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7440 	    iwn_tid2fifo[tid] << 1);
7441 }
7442 
7443 static void
7444 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7445 {
7446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7447 
7448 	/* Stop TX scheduler while we're changing its configuration. */
7449 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7450 	    IWN4965_TXQ_STATUS_CHGACT);
7451 
7452 	/* Set starting sequence number from the ADDBA request. */
7453 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7454 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7455 
7456 	/* Disable interrupts for the queue. */
7457 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7458 
7459 	/* Mark the queue as inactive. */
7460 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7461 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7462 }
7463 
7464 static void
7465 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7466     int qid, uint8_t tid, uint16_t ssn)
7467 {
7468 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7469 
7470 	struct iwn_node *wn = (void *)ni;
7471 
7472 	/* Stop TX scheduler while we're changing its configuration. */
7473 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7474 	    IWN5000_TXQ_STATUS_CHGACT);
7475 
7476 	/* Assign RA/TID translation to the queue. */
7477 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7478 	    wn->id << 4 | tid);
7479 
7480 	/* Enable chain-building mode for the queue. */
7481 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7482 
7483 	/* Enable aggregation for the queue. */
7484 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7485 
7486 	/* Set starting sequence number from the ADDBA request. */
7487 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7488 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7489 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7490 
7491 	/* Set scheduler window size and frame limit. */
7492 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7493 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7494 
7495 	/* Enable interrupts for the queue. */
7496 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7497 
7498 	/* Mark the queue as active. */
7499 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7500 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7501 }
7502 
7503 static void
7504 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7505 {
7506 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7507 
7508 	/* Stop TX scheduler while we're changing its configuration. */
7509 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7510 	    IWN5000_TXQ_STATUS_CHGACT);
7511 
7512 	/* Disable aggregation for the queue. */
7513 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7514 
7515 	/* Set starting sequence number from the ADDBA request. */
7516 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7517 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7518 
7519 	/* Disable interrupts for the queue. */
7520 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7521 
7522 	/* Mark the queue as inactive. */
7523 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7524 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7525 }
7526 
7527 /*
7528  * Query calibration tables from the initialization firmware.  We do this
7529  * only once at first boot.  Called from a process context.
7530  */
7531 static int
7532 iwn5000_query_calibration(struct iwn_softc *sc)
7533 {
7534 	struct iwn5000_calib_config cmd;
7535 	int error;
7536 
7537 	memset(&cmd, 0, sizeof cmd);
7538 	cmd.ucode.once.enable = htole32(0xffffffff);
7539 	cmd.ucode.once.start  = htole32(0xffffffff);
7540 	cmd.ucode.once.send   = htole32(0xffffffff);
7541 	cmd.ucode.flags       = htole32(0xffffffff);
7542 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7543 	    __func__);
7544 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7545 	if (error != 0)
7546 		return error;
7547 
7548 	/* Wait at most two seconds for calibration to complete. */
7549 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7550 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7551 	return error;
7552 }
7553 
7554 /*
7555  * Send calibration results to the runtime firmware.  These results were
7556  * obtained on first boot from the initialization firmware.
7557  */
7558 static int
7559 iwn5000_send_calibration(struct iwn_softc *sc)
7560 {
7561 	int idx, error;
7562 
7563 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7564 		if (!(sc->base_params->calib_need & (1<<idx))) {
7565 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7566 			    "No need of calib %d\n",
7567 			    idx);
7568 			continue; /* no need for this calib */
7569 		}
7570 		if (sc->calibcmd[idx].buf == NULL) {
7571 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7572 			    "Need calib idx : %d but no available data\n",
7573 			    idx);
7574 			continue;
7575 		}
7576 
7577 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7578 		    "send calibration result idx=%d len=%d\n", idx,
7579 		    sc->calibcmd[idx].len);
7580 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7581 		    sc->calibcmd[idx].len, 0);
7582 		if (error != 0) {
7583 			device_printf(sc->sc_dev,
7584 			    "%s: could not send calibration result, error %d\n",
7585 			    __func__, error);
7586 			return error;
7587 		}
7588 	}
7589 	return 0;
7590 }
7591 
7592 static int
7593 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7594 {
7595 	struct iwn5000_wimax_coex wimax;
7596 
7597 #if 0
7598 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7599 		/* Enable WiMAX coexistence for combo adapters. */
7600 		wimax.flags =
7601 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7602 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7603 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7604 		    IWN_WIMAX_COEX_ENABLE;
7605 		memcpy(wimax.events, iwn6050_wimax_events,
7606 		    sizeof iwn6050_wimax_events);
7607 	} else
7608 #endif
7609 	{
7610 		/* Disable WiMAX coexistence. */
7611 		wimax.flags = 0;
7612 		memset(wimax.events, 0, sizeof wimax.events);
7613 	}
7614 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7615 	    __func__);
7616 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7617 }
7618 
7619 static int
7620 iwn5000_crystal_calib(struct iwn_softc *sc)
7621 {
7622 	struct iwn5000_phy_calib_crystal cmd;
7623 
7624 	memset(&cmd, 0, sizeof cmd);
7625 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7626 	cmd.ngroups = 1;
7627 	cmd.isvalid = 1;
7628 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7629 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7630 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7631 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7632 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7633 }
7634 
7635 static int
7636 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7637 {
7638 	struct iwn5000_phy_calib_temp_offset cmd;
7639 
7640 	memset(&cmd, 0, sizeof cmd);
7641 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7642 	cmd.ngroups = 1;
7643 	cmd.isvalid = 1;
7644 	if (sc->eeprom_temp != 0)
7645 		cmd.offset = htole16(sc->eeprom_temp);
7646 	else
7647 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7648 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7649 	    le16toh(cmd.offset));
7650 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7651 }
7652 
7653 static int
7654 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7655 {
7656 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7657 
7658 	memset(&cmd, 0, sizeof cmd);
7659 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7660 	cmd.ngroups = 1;
7661 	cmd.isvalid = 1;
7662 	if (sc->eeprom_temp != 0) {
7663 		cmd.offset_low = htole16(sc->eeprom_temp);
7664 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7665 	} else {
7666 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7667 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7668 	}
7669 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7670 
7671 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7672 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7673 	    le16toh(cmd.offset_low),
7674 	    le16toh(cmd.offset_high),
7675 	    le16toh(cmd.burnt_voltage_ref));
7676 
7677 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7678 }
7679 
7680 /*
7681  * This function is called after the runtime firmware notifies us of its
7682  * readiness (called in a process context).
7683  */
7684 static int
7685 iwn4965_post_alive(struct iwn_softc *sc)
7686 {
7687 	int error, qid;
7688 
7689 	if ((error = iwn_nic_lock(sc)) != 0)
7690 		return error;
7691 
7692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7693 
7694 	/* Clear TX scheduler state in SRAM. */
7695 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7696 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7697 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7698 
7699 	/* Set physical address of TX scheduler rings (1KB aligned). */
7700 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7701 
7702 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7703 
7704 	/* Disable chain mode for all our 16 queues. */
7705 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7706 
7707 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7708 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7709 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7710 
7711 		/* Set scheduler window size. */
7712 		iwn_mem_write(sc, sc->sched_base +
7713 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7714 		/* Set scheduler frame limit. */
7715 		iwn_mem_write(sc, sc->sched_base +
7716 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7717 		    IWN_SCHED_LIMIT << 16);
7718 	}
7719 
7720 	/* Enable interrupts for all our 16 queues. */
7721 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7722 	/* Identify TX FIFO rings (0-7). */
7723 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7724 
7725 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7726 	for (qid = 0; qid < 7; qid++) {
7727 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7728 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7729 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7730 	}
7731 	iwn_nic_unlock(sc);
7732 	return 0;
7733 }
7734 
7735 /*
7736  * This function is called after the initialization or runtime firmware
7737  * notifies us of its readiness (called in a process context).
7738  */
7739 static int
7740 iwn5000_post_alive(struct iwn_softc *sc)
7741 {
7742 	int error, qid;
7743 
7744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7745 
7746 	/* Switch to using ICT interrupt mode. */
7747 	iwn5000_ict_reset(sc);
7748 
7749 	if ((error = iwn_nic_lock(sc)) != 0){
7750 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7751 		return error;
7752 	}
7753 
7754 	/* Clear TX scheduler state in SRAM. */
7755 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7756 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7757 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7758 
7759 	/* Set physical address of TX scheduler rings (1KB aligned). */
7760 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7761 
7762 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7763 
7764 	/* Enable chain mode for all queues, except command queue. */
7765 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7766 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7767 	else
7768 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7769 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7770 
7771 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7772 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7773 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7774 
7775 		iwn_mem_write(sc, sc->sched_base +
7776 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7777 		/* Set scheduler window size and frame limit. */
7778 		iwn_mem_write(sc, sc->sched_base +
7779 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7780 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7781 	}
7782 
7783 	/* Enable interrupts for all our 20 queues. */
7784 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7785 	/* Identify TX FIFO rings (0-7). */
7786 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7787 
7788 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7789 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7790 		/* Mark TX rings as active. */
7791 		for (qid = 0; qid < 11; qid++) {
7792 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7793 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7794 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7795 		}
7796 	} else {
7797 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7798 		for (qid = 0; qid < 7; qid++) {
7799 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7800 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7801 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7802 		}
7803 	}
7804 	iwn_nic_unlock(sc);
7805 
7806 	/* Configure WiMAX coexistence for combo adapters. */
7807 	error = iwn5000_send_wimax_coex(sc);
7808 	if (error != 0) {
7809 		device_printf(sc->sc_dev,
7810 		    "%s: could not configure WiMAX coexistence, error %d\n",
7811 		    __func__, error);
7812 		return error;
7813 	}
7814 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7815 		/* Perform crystal calibration. */
7816 		error = iwn5000_crystal_calib(sc);
7817 		if (error != 0) {
7818 			device_printf(sc->sc_dev,
7819 			    "%s: crystal calibration failed, error %d\n",
7820 			    __func__, error);
7821 			return error;
7822 		}
7823 	}
7824 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7825 		/* Query calibration from the initialization firmware. */
7826 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7827 			device_printf(sc->sc_dev,
7828 			    "%s: could not query calibration, error %d\n",
7829 			    __func__, error);
7830 			return error;
7831 		}
7832 		/*
7833 		 * We have the calibration results now, reboot with the
7834 		 * runtime firmware (call ourselves recursively!)
7835 		 */
7836 		iwn_hw_stop(sc);
7837 		error = iwn_hw_init(sc);
7838 	} else {
7839 		/* Send calibration results to runtime firmware. */
7840 		error = iwn5000_send_calibration(sc);
7841 	}
7842 
7843 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7844 
7845 	return error;
7846 }
7847 
7848 /*
7849  * The firmware boot code is small and is intended to be copied directly into
7850  * the NIC internal memory (no DMA transfer).
7851  */
7852 static int
7853 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7854 {
7855 	int error, ntries;
7856 
7857 	size /= sizeof (uint32_t);
7858 
7859 	if ((error = iwn_nic_lock(sc)) != 0)
7860 		return error;
7861 
7862 	/* Copy microcode image into NIC memory. */
7863 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7864 	    (const uint32_t *)ucode, size);
7865 
7866 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7867 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7868 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7869 
7870 	/* Start boot load now. */
7871 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7872 
7873 	/* Wait for transfer to complete. */
7874 	for (ntries = 0; ntries < 1000; ntries++) {
7875 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7876 		    IWN_BSM_WR_CTRL_START))
7877 			break;
7878 		DELAY(10);
7879 	}
7880 	if (ntries == 1000) {
7881 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7882 		    __func__);
7883 		iwn_nic_unlock(sc);
7884 		return ETIMEDOUT;
7885 	}
7886 
7887 	/* Enable boot after power up. */
7888 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7889 
7890 	iwn_nic_unlock(sc);
7891 	return 0;
7892 }
7893 
7894 static int
7895 iwn4965_load_firmware(struct iwn_softc *sc)
7896 {
7897 	struct iwn_fw_info *fw = &sc->fw;
7898 	struct iwn_dma_info *dma = &sc->fw_dma;
7899 	int error;
7900 
7901 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7902 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7903 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7904 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7905 	    fw->init.text, fw->init.textsz);
7906 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7907 
7908 	/* Tell adapter where to find initialization sections. */
7909 	if ((error = iwn_nic_lock(sc)) != 0)
7910 		return error;
7911 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7912 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7913 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7914 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7915 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7916 	iwn_nic_unlock(sc);
7917 
7918 	/* Load firmware boot code. */
7919 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7920 	if (error != 0) {
7921 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7922 		    __func__);
7923 		return error;
7924 	}
7925 	/* Now press "execute". */
7926 	IWN_WRITE(sc, IWN_RESET, 0);
7927 
7928 	/* Wait at most one second for first alive notification. */
7929 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7930 		device_printf(sc->sc_dev,
7931 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7932 		    __func__, error);
7933 		return error;
7934 	}
7935 
7936 	/* Retrieve current temperature for initial TX power calibration. */
7937 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7938 	sc->temp = iwn4965_get_temperature(sc);
7939 
7940 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7941 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7942 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7943 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7944 	    fw->main.text, fw->main.textsz);
7945 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7946 
7947 	/* Tell adapter where to find runtime sections. */
7948 	if ((error = iwn_nic_lock(sc)) != 0)
7949 		return error;
7950 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7951 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7952 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7953 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7954 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7955 	    IWN_FW_UPDATED | fw->main.textsz);
7956 	iwn_nic_unlock(sc);
7957 
7958 	return 0;
7959 }
7960 
7961 static int
7962 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7963     const uint8_t *section, int size)
7964 {
7965 	struct iwn_dma_info *dma = &sc->fw_dma;
7966 	int error;
7967 
7968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7969 
7970 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7971 	memcpy(dma->vaddr, section, size);
7972 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7973 
7974 	if ((error = iwn_nic_lock(sc)) != 0)
7975 		return error;
7976 
7977 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7978 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7979 
7980 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7981 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7982 	    IWN_LOADDR(dma->paddr));
7983 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7984 	    IWN_HIADDR(dma->paddr) << 28 | size);
7985 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7986 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7987 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7988 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7989 
7990 	/* Kick Flow Handler to start DMA transfer. */
7991 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7992 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7993 
7994 	iwn_nic_unlock(sc);
7995 
7996 	/* Wait at most five seconds for FH DMA transfer to complete. */
7997 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7998 }
7999 
8000 static int
8001 iwn5000_load_firmware(struct iwn_softc *sc)
8002 {
8003 	struct iwn_fw_part *fw;
8004 	int error;
8005 
8006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8007 
8008 	/* Load the initialization firmware on first boot only. */
8009 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8010 	    &sc->fw.main : &sc->fw.init;
8011 
8012 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8013 	    fw->text, fw->textsz);
8014 	if (error != 0) {
8015 		device_printf(sc->sc_dev,
8016 		    "%s: could not load firmware %s section, error %d\n",
8017 		    __func__, ".text", error);
8018 		return error;
8019 	}
8020 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8021 	    fw->data, fw->datasz);
8022 	if (error != 0) {
8023 		device_printf(sc->sc_dev,
8024 		    "%s: could not load firmware %s section, error %d\n",
8025 		    __func__, ".data", error);
8026 		return error;
8027 	}
8028 
8029 	/* Now press "execute". */
8030 	IWN_WRITE(sc, IWN_RESET, 0);
8031 	return 0;
8032 }
8033 
8034 /*
8035  * Extract text and data sections from a legacy firmware image.
8036  */
8037 static int
8038 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8039 {
8040 	const uint32_t *ptr;
8041 	size_t hdrlen = 24;
8042 	uint32_t rev;
8043 
8044 	ptr = (const uint32_t *)fw->data;
8045 	rev = le32toh(*ptr++);
8046 
8047 	sc->ucode_rev = rev;
8048 
8049 	/* Check firmware API version. */
8050 	if (IWN_FW_API(rev) <= 1) {
8051 		device_printf(sc->sc_dev,
8052 		    "%s: bad firmware, need API version >=2\n", __func__);
8053 		return EINVAL;
8054 	}
8055 	if (IWN_FW_API(rev) >= 3) {
8056 		/* Skip build number (version 2 header). */
8057 		hdrlen += 4;
8058 		ptr++;
8059 	}
8060 	if (fw->size < hdrlen) {
8061 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8062 		    __func__, fw->size);
8063 		return EINVAL;
8064 	}
8065 	fw->main.textsz = le32toh(*ptr++);
8066 	fw->main.datasz = le32toh(*ptr++);
8067 	fw->init.textsz = le32toh(*ptr++);
8068 	fw->init.datasz = le32toh(*ptr++);
8069 	fw->boot.textsz = le32toh(*ptr++);
8070 
8071 	/* Check that all firmware sections fit. */
8072 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8073 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8074 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8075 		    __func__, fw->size);
8076 		return EINVAL;
8077 	}
8078 
8079 	/* Get pointers to firmware sections. */
8080 	fw->main.text = (const uint8_t *)ptr;
8081 	fw->main.data = fw->main.text + fw->main.textsz;
8082 	fw->init.text = fw->main.data + fw->main.datasz;
8083 	fw->init.data = fw->init.text + fw->init.textsz;
8084 	fw->boot.text = fw->init.data + fw->init.datasz;
8085 	return 0;
8086 }
8087 
8088 /*
8089  * Extract text and data sections from a TLV firmware image.
8090  */
8091 static int
8092 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8093     uint16_t alt)
8094 {
8095 	const struct iwn_fw_tlv_hdr *hdr;
8096 	const struct iwn_fw_tlv *tlv;
8097 	const uint8_t *ptr, *end;
8098 	uint64_t altmask;
8099 	uint32_t len, tmp;
8100 
8101 	if (fw->size < sizeof (*hdr)) {
8102 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8103 		    __func__, fw->size);
8104 		return EINVAL;
8105 	}
8106 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8107 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8108 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8109 		    __func__, le32toh(hdr->signature));
8110 		return EINVAL;
8111 	}
8112 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8113 	    le32toh(hdr->build));
8114 	sc->ucode_rev = le32toh(hdr->rev);
8115 
8116 	/*
8117 	 * Select the closest supported alternative that is less than
8118 	 * or equal to the specified one.
8119 	 */
8120 	altmask = le64toh(hdr->altmask);
8121 	while (alt > 0 && !(altmask & (1ULL << alt)))
8122 		alt--;	/* Downgrade. */
8123 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8124 
8125 	ptr = (const uint8_t *)(hdr + 1);
8126 	end = (const uint8_t *)(fw->data + fw->size);
8127 
8128 	/* Parse type-length-value fields. */
8129 	while (ptr + sizeof (*tlv) <= end) {
8130 		tlv = (const struct iwn_fw_tlv *)ptr;
8131 		len = le32toh(tlv->len);
8132 
8133 		ptr += sizeof (*tlv);
8134 		if (ptr + len > end) {
8135 			device_printf(sc->sc_dev,
8136 			    "%s: firmware too short: %zu bytes\n", __func__,
8137 			    fw->size);
8138 			return EINVAL;
8139 		}
8140 		/* Skip other alternatives. */
8141 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8142 			goto next;
8143 
8144 		switch (le16toh(tlv->type)) {
8145 		case IWN_FW_TLV_MAIN_TEXT:
8146 			fw->main.text = ptr;
8147 			fw->main.textsz = len;
8148 			break;
8149 		case IWN_FW_TLV_MAIN_DATA:
8150 			fw->main.data = ptr;
8151 			fw->main.datasz = len;
8152 			break;
8153 		case IWN_FW_TLV_INIT_TEXT:
8154 			fw->init.text = ptr;
8155 			fw->init.textsz = len;
8156 			break;
8157 		case IWN_FW_TLV_INIT_DATA:
8158 			fw->init.data = ptr;
8159 			fw->init.datasz = len;
8160 			break;
8161 		case IWN_FW_TLV_BOOT_TEXT:
8162 			fw->boot.text = ptr;
8163 			fw->boot.textsz = len;
8164 			break;
8165 		case IWN_FW_TLV_ENH_SENS:
8166 			if (!len)
8167 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8168 			break;
8169 		case IWN_FW_TLV_PHY_CALIB:
8170 			tmp = le32toh(*ptr);
8171 			if (tmp < 253) {
8172 				sc->reset_noise_gain = tmp;
8173 				sc->noise_gain = tmp + 1;
8174 			}
8175 			break;
8176 		case IWN_FW_TLV_PAN:
8177 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8178 			DPRINTF(sc, IWN_DEBUG_RESET,
8179 			    "PAN Support found: %d\n", 1);
8180 			break;
8181 		case IWN_FW_TLV_FLAGS:
8182 			if (len < sizeof(uint32_t))
8183 				break;
8184 			if (len % sizeof(uint32_t))
8185 				break;
8186 			sc->tlv_feature_flags = le32toh(*ptr);
8187 			DPRINTF(sc, IWN_DEBUG_RESET,
8188 			    "%s: feature: 0x%08x\n",
8189 			    __func__,
8190 			    sc->tlv_feature_flags);
8191 			break;
8192 		case IWN_FW_TLV_PBREQ_MAXLEN:
8193 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8194 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8195 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8196 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8197 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8198 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8199 		case IWN_FW_TLV_WOWLAN_INST:
8200 		case IWN_FW_TLV_WOWLAN_DATA:
8201 			DPRINTF(sc, IWN_DEBUG_RESET,
8202 			    "TLV type %d recognized but not handled\n",
8203 			    le16toh(tlv->type));
8204 			break;
8205 		default:
8206 			DPRINTF(sc, IWN_DEBUG_RESET,
8207 			    "TLV type %d not handled\n", le16toh(tlv->type));
8208 			break;
8209 		}
8210  next:		/* TLV fields are 32-bit aligned. */
8211 		ptr += (len + 3) & ~3;
8212 	}
8213 	return 0;
8214 }
8215 
8216 static int
8217 iwn_read_firmware(struct iwn_softc *sc)
8218 {
8219 	struct iwn_fw_info *fw = &sc->fw;
8220 	int error;
8221 
8222 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8223 
8224 	IWN_UNLOCK(sc);
8225 
8226 	memset(fw, 0, sizeof (*fw));
8227 
8228 	/* Read firmware image from filesystem. */
8229 	sc->fw_fp = firmware_get(sc->fwname);
8230 	if (sc->fw_fp == NULL) {
8231 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8232 		    __func__, sc->fwname);
8233 		IWN_LOCK(sc);
8234 		return EINVAL;
8235 	}
8236 	IWN_LOCK(sc);
8237 
8238 	fw->size = sc->fw_fp->datasize;
8239 	fw->data = (const uint8_t *)sc->fw_fp->data;
8240 	if (fw->size < sizeof (uint32_t)) {
8241 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8242 		    __func__, fw->size);
8243 		error = EINVAL;
8244 		goto fail;
8245 	}
8246 
8247 	/* Retrieve text and data sections. */
8248 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8249 		error = iwn_read_firmware_leg(sc, fw);
8250 	else
8251 		error = iwn_read_firmware_tlv(sc, fw, 1);
8252 	if (error != 0) {
8253 		device_printf(sc->sc_dev,
8254 		    "%s: could not read firmware sections, error %d\n",
8255 		    __func__, error);
8256 		goto fail;
8257 	}
8258 
8259 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8260 
8261 	/* Make sure text and data sections fit in hardware memory. */
8262 	if (fw->main.textsz > sc->fw_text_maxsz ||
8263 	    fw->main.datasz > sc->fw_data_maxsz ||
8264 	    fw->init.textsz > sc->fw_text_maxsz ||
8265 	    fw->init.datasz > sc->fw_data_maxsz ||
8266 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8267 	    (fw->boot.textsz & 3) != 0) {
8268 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8269 		    __func__);
8270 		error = EINVAL;
8271 		goto fail;
8272 	}
8273 
8274 	/* We can proceed with loading the firmware. */
8275 	return 0;
8276 
8277 fail:	iwn_unload_firmware(sc);
8278 	return error;
8279 }
8280 
8281 static void
8282 iwn_unload_firmware(struct iwn_softc *sc)
8283 {
8284 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8285 	sc->fw_fp = NULL;
8286 }
8287 
8288 static int
8289 iwn_clock_wait(struct iwn_softc *sc)
8290 {
8291 	int ntries;
8292 
8293 	/* Set "initialization complete" bit. */
8294 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8295 
8296 	/* Wait for clock stabilization. */
8297 	for (ntries = 0; ntries < 2500; ntries++) {
8298 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8299 			return 0;
8300 		DELAY(10);
8301 	}
8302 	device_printf(sc->sc_dev,
8303 	    "%s: timeout waiting for clock stabilization\n", __func__);
8304 	return ETIMEDOUT;
8305 }
8306 
8307 static int
8308 iwn_apm_init(struct iwn_softc *sc)
8309 {
8310 	uint32_t reg;
8311 	int error;
8312 
8313 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8314 
8315 	/* Disable L0s exit timer (NMI bug workaround). */
8316 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8317 	/* Don't wait for ICH L0s (ICH bug workaround). */
8318 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8319 
8320 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8321 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8322 
8323 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8324 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8325 
8326 	/* Retrieve PCIe Active State Power Management (ASPM). */
8327 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8328 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8329 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8330 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8331 	else
8332 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8333 
8334 	if (sc->base_params->pll_cfg_val)
8335 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8336 
8337 	/* Wait for clock stabilization before accessing prph. */
8338 	if ((error = iwn_clock_wait(sc)) != 0)
8339 		return error;
8340 
8341 	if ((error = iwn_nic_lock(sc)) != 0)
8342 		return error;
8343 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8344 		/* Enable DMA and BSM (Bootstrap State Machine). */
8345 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8346 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8347 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8348 	} else {
8349 		/* Enable DMA. */
8350 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8351 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8352 	}
8353 	DELAY(20);
8354 	/* Disable L1-Active. */
8355 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8356 	iwn_nic_unlock(sc);
8357 
8358 	return 0;
8359 }
8360 
8361 static void
8362 iwn_apm_stop_master(struct iwn_softc *sc)
8363 {
8364 	int ntries;
8365 
8366 	/* Stop busmaster DMA activity. */
8367 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8368 	for (ntries = 0; ntries < 100; ntries++) {
8369 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8370 			return;
8371 		DELAY(10);
8372 	}
8373 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8374 }
8375 
8376 static void
8377 iwn_apm_stop(struct iwn_softc *sc)
8378 {
8379 	iwn_apm_stop_master(sc);
8380 
8381 	/* Reset the entire device. */
8382 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8383 	DELAY(10);
8384 	/* Clear "initialization complete" bit. */
8385 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8386 }
8387 
8388 static int
8389 iwn4965_nic_config(struct iwn_softc *sc)
8390 {
8391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8392 
8393 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8394 		/*
8395 		 * I don't believe this to be correct but this is what the
8396 		 * vendor driver is doing. Probably the bits should not be
8397 		 * shifted in IWN_RFCFG_*.
8398 		 */
8399 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8400 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8401 		    IWN_RFCFG_STEP(sc->rfcfg) |
8402 		    IWN_RFCFG_DASH(sc->rfcfg));
8403 	}
8404 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8405 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8406 	return 0;
8407 }
8408 
8409 static int
8410 iwn5000_nic_config(struct iwn_softc *sc)
8411 {
8412 	uint32_t tmp;
8413 	int error;
8414 
8415 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8416 
8417 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8418 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8419 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8420 		    IWN_RFCFG_STEP(sc->rfcfg) |
8421 		    IWN_RFCFG_DASH(sc->rfcfg));
8422 	}
8423 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8424 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8425 
8426 	if ((error = iwn_nic_lock(sc)) != 0)
8427 		return error;
8428 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8429 
8430 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8431 		/*
8432 		 * Select first Switching Voltage Regulator (1.32V) to
8433 		 * solve a stability issue related to noisy DC2DC line
8434 		 * in the silicon of 1000 Series.
8435 		 */
8436 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8437 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8438 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8439 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8440 	}
8441 	iwn_nic_unlock(sc);
8442 
8443 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8444 		/* Use internal power amplifier only. */
8445 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8446 	}
8447 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8448 		/* Indicate that ROM calibration version is >=6. */
8449 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8450 	}
8451 	if (sc->base_params->additional_gp_drv_bit)
8452 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8453 		    sc->base_params->additional_gp_drv_bit);
8454 	return 0;
8455 }
8456 
8457 /*
8458  * Take NIC ownership over Intel Active Management Technology (AMT).
8459  */
8460 static int
8461 iwn_hw_prepare(struct iwn_softc *sc)
8462 {
8463 	int ntries;
8464 
8465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8466 
8467 	/* Check if hardware is ready. */
8468 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8469 	for (ntries = 0; ntries < 5; ntries++) {
8470 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8471 		    IWN_HW_IF_CONFIG_NIC_READY)
8472 			return 0;
8473 		DELAY(10);
8474 	}
8475 
8476 	/* Hardware not ready, force into ready state. */
8477 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8478 	for (ntries = 0; ntries < 15000; ntries++) {
8479 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8480 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8481 			break;
8482 		DELAY(10);
8483 	}
8484 	if (ntries == 15000)
8485 		return ETIMEDOUT;
8486 
8487 	/* Hardware should be ready now. */
8488 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8489 	for (ntries = 0; ntries < 5; ntries++) {
8490 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8491 		    IWN_HW_IF_CONFIG_NIC_READY)
8492 			return 0;
8493 		DELAY(10);
8494 	}
8495 	return ETIMEDOUT;
8496 }
8497 
8498 static int
8499 iwn_hw_init(struct iwn_softc *sc)
8500 {
8501 	struct iwn_ops *ops = &sc->ops;
8502 	int error, chnl, qid;
8503 
8504 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8505 
8506 	/* Clear pending interrupts. */
8507 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8508 
8509 	if ((error = iwn_apm_init(sc)) != 0) {
8510 		device_printf(sc->sc_dev,
8511 		    "%s: could not power ON adapter, error %d\n", __func__,
8512 		    error);
8513 		return error;
8514 	}
8515 
8516 	/* Select VMAIN power source. */
8517 	if ((error = iwn_nic_lock(sc)) != 0)
8518 		return error;
8519 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8520 	iwn_nic_unlock(sc);
8521 
8522 	/* Perform adapter-specific initialization. */
8523 	if ((error = ops->nic_config(sc)) != 0)
8524 		return error;
8525 
8526 	/* Initialize RX ring. */
8527 	if ((error = iwn_nic_lock(sc)) != 0)
8528 		return error;
8529 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8530 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8531 	/* Set physical address of RX ring (256-byte aligned). */
8532 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8533 	/* Set physical address of RX status (16-byte aligned). */
8534 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8535 	/* Enable RX. */
8536 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8537 	    IWN_FH_RX_CONFIG_ENA           |
8538 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8539 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8540 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8541 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8542 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8543 	iwn_nic_unlock(sc);
8544 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8545 
8546 	if ((error = iwn_nic_lock(sc)) != 0)
8547 		return error;
8548 
8549 	/* Initialize TX scheduler. */
8550 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8551 
8552 	/* Set physical address of "keep warm" page (16-byte aligned). */
8553 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8554 
8555 	/* Initialize TX rings. */
8556 	for (qid = 0; qid < sc->ntxqs; qid++) {
8557 		struct iwn_tx_ring *txq = &sc->txq[qid];
8558 
8559 		/* Set physical address of TX ring (256-byte aligned). */
8560 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8561 		    txq->desc_dma.paddr >> 8);
8562 	}
8563 	iwn_nic_unlock(sc);
8564 
8565 	/* Enable DMA channels. */
8566 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8567 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8568 		    IWN_FH_TX_CONFIG_DMA_ENA |
8569 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8570 	}
8571 
8572 	/* Clear "radio off" and "commands blocked" bits. */
8573 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8574 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8575 
8576 	/* Clear pending interrupts. */
8577 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8578 	/* Enable interrupt coalescing. */
8579 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8580 	/* Enable interrupts. */
8581 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8582 
8583 	/* _Really_ make sure "radio off" bit is cleared! */
8584 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8585 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8586 
8587 	/* Enable shadow registers. */
8588 	if (sc->base_params->shadow_reg_enable)
8589 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8590 
8591 	if ((error = ops->load_firmware(sc)) != 0) {
8592 		device_printf(sc->sc_dev,
8593 		    "%s: could not load firmware, error %d\n", __func__,
8594 		    error);
8595 		return error;
8596 	}
8597 	/* Wait at most one second for firmware alive notification. */
8598 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8599 		device_printf(sc->sc_dev,
8600 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8601 		    __func__, error);
8602 		return error;
8603 	}
8604 	/* Do post-firmware initialization. */
8605 
8606 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8607 
8608 	return ops->post_alive(sc);
8609 }
8610 
8611 static void
8612 iwn_hw_stop(struct iwn_softc *sc)
8613 {
8614 	int chnl, qid, ntries;
8615 
8616 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8617 
8618 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8619 
8620 	/* Disable interrupts. */
8621 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8622 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8623 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8624 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8625 
8626 	/* Make sure we no longer hold the NIC lock. */
8627 	iwn_nic_unlock(sc);
8628 
8629 	/* Stop TX scheduler. */
8630 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8631 
8632 	/* Stop all DMA channels. */
8633 	if (iwn_nic_lock(sc) == 0) {
8634 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8635 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8636 			for (ntries = 0; ntries < 200; ntries++) {
8637 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8638 				    IWN_FH_TX_STATUS_IDLE(chnl))
8639 					break;
8640 				DELAY(10);
8641 			}
8642 		}
8643 		iwn_nic_unlock(sc);
8644 	}
8645 
8646 	/* Stop RX ring. */
8647 	iwn_reset_rx_ring(sc, &sc->rxq);
8648 
8649 	/* Reset all TX rings. */
8650 	for (qid = 0; qid < sc->ntxqs; qid++)
8651 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8652 
8653 	if (iwn_nic_lock(sc) == 0) {
8654 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8655 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8656 		iwn_nic_unlock(sc);
8657 	}
8658 	DELAY(5);
8659 	/* Power OFF adapter. */
8660 	iwn_apm_stop(sc);
8661 }
8662 
8663 static void
8664 iwn_radio_on(void *arg0, int pending)
8665 {
8666 	struct iwn_softc *sc = arg0;
8667 	struct ieee80211com *ic = &sc->sc_ic;
8668 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8669 
8670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8671 
8672 	if (vap != NULL) {
8673 		iwn_init(sc);
8674 		ieee80211_init(vap);
8675 	}
8676 }
8677 
8678 static void
8679 iwn_radio_off(void *arg0, int pending)
8680 {
8681 	struct iwn_softc *sc = arg0;
8682 	struct ieee80211com *ic = &sc->sc_ic;
8683 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8684 
8685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8686 
8687 	iwn_stop(sc);
8688 	if (vap != NULL)
8689 		ieee80211_stop(vap);
8690 
8691 	/* Enable interrupts to get RF toggle notification. */
8692 	IWN_LOCK(sc);
8693 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8694 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8695 	IWN_UNLOCK(sc);
8696 }
8697 
8698 static void
8699 iwn_panicked(void *arg0, int pending)
8700 {
8701 	struct iwn_softc *sc = arg0;
8702 	struct ieee80211com *ic = &sc->sc_ic;
8703 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8704 #if 0
8705 	int error;
8706 #endif
8707 
8708 	if (vap == NULL) {
8709 		printf("%s: null vap\n", __func__);
8710 		return;
8711 	}
8712 
8713 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8714 	    "restarting\n", __func__, vap->iv_state);
8715 
8716 	/*
8717 	 * This is not enough work. We need to also reinitialise
8718 	 * the correct transmit state for aggregation enabled queues,
8719 	 * which has a very specific requirement of
8720 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8721 	 * we definitely don't!) then the firmware will just panic again.
8722 	 */
8723 #if 1
8724 	ieee80211_restart_all(ic);
8725 #else
8726 	IWN_LOCK(sc);
8727 
8728 	iwn_stop_locked(sc);
8729 	iwn_init_locked(sc);
8730 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8731 	    (error = iwn_auth(sc, vap)) != 0) {
8732 		device_printf(sc->sc_dev,
8733 		    "%s: could not move to auth state\n", __func__);
8734 	}
8735 	if (vap->iv_state >= IEEE80211_S_RUN &&
8736 	    (error = iwn_run(sc, vap)) != 0) {
8737 		device_printf(sc->sc_dev,
8738 		    "%s: could not move to run state\n", __func__);
8739 	}
8740 
8741 	IWN_UNLOCK(sc);
8742 #endif
8743 }
8744 
8745 static void
8746 iwn_init_locked(struct iwn_softc *sc)
8747 {
8748 	int error;
8749 
8750 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8751 
8752 	IWN_LOCK_ASSERT(sc);
8753 
8754 	sc->sc_flags |= IWN_FLAG_RUNNING;
8755 
8756 	if ((error = iwn_hw_prepare(sc)) != 0) {
8757 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8758 		    __func__, error);
8759 		goto fail;
8760 	}
8761 
8762 	/* Initialize interrupt mask to default value. */
8763 	sc->int_mask = IWN_INT_MASK_DEF;
8764 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8765 
8766 	/* Check that the radio is not disabled by hardware switch. */
8767 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8768 		device_printf(sc->sc_dev,
8769 		    "radio is disabled by hardware switch\n");
8770 		/* Enable interrupts to get RF toggle notifications. */
8771 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8772 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8773 		return;
8774 	}
8775 
8776 	/* Read firmware images from the filesystem. */
8777 	if ((error = iwn_read_firmware(sc)) != 0) {
8778 		device_printf(sc->sc_dev,
8779 		    "%s: could not read firmware, error %d\n", __func__,
8780 		    error);
8781 		goto fail;
8782 	}
8783 
8784 	/* Initialize hardware and upload firmware. */
8785 	error = iwn_hw_init(sc);
8786 	iwn_unload_firmware(sc);
8787 	if (error != 0) {
8788 		device_printf(sc->sc_dev,
8789 		    "%s: could not initialize hardware, error %d\n", __func__,
8790 		    error);
8791 		goto fail;
8792 	}
8793 
8794 	/* Configure adapter now that it is ready. */
8795 	if ((error = iwn_config(sc)) != 0) {
8796 		device_printf(sc->sc_dev,
8797 		    "%s: could not configure device, error %d\n", __func__,
8798 		    error);
8799 		goto fail;
8800 	}
8801 
8802 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8803 
8804 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8805 
8806 	return;
8807 
8808 fail:
8809 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8810 	iwn_stop_locked(sc);
8811 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8812 }
8813 
8814 static void
8815 iwn_init(struct iwn_softc *sc)
8816 {
8817 
8818 	IWN_LOCK(sc);
8819 	iwn_init_locked(sc);
8820 	IWN_UNLOCK(sc);
8821 
8822 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8823 		ieee80211_start_all(&sc->sc_ic);
8824 }
8825 
8826 static void
8827 iwn_stop_locked(struct iwn_softc *sc)
8828 {
8829 
8830 	IWN_LOCK_ASSERT(sc);
8831 
8832 	sc->sc_is_scanning = 0;
8833 	sc->sc_tx_timer = 0;
8834 	callout_stop(&sc->watchdog_to);
8835 	callout_stop(&sc->calib_to);
8836 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8837 
8838 	/* Power OFF hardware. */
8839 	iwn_hw_stop(sc);
8840 }
8841 
8842 static void
8843 iwn_stop(struct iwn_softc *sc)
8844 {
8845 	IWN_LOCK(sc);
8846 	iwn_stop_locked(sc);
8847 	IWN_UNLOCK(sc);
8848 }
8849 
8850 /*
8851  * Callback from net80211 to start a scan.
8852  */
8853 static void
8854 iwn_scan_start(struct ieee80211com *ic)
8855 {
8856 	struct iwn_softc *sc = ic->ic_softc;
8857 
8858 	IWN_LOCK(sc);
8859 	/* make the link LED blink while we're scanning */
8860 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8861 	IWN_UNLOCK(sc);
8862 }
8863 
8864 /*
8865  * Callback from net80211 to terminate a scan.
8866  */
8867 static void
8868 iwn_scan_end(struct ieee80211com *ic)
8869 {
8870 	struct iwn_softc *sc = ic->ic_softc;
8871 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8872 
8873 	IWN_LOCK(sc);
8874 	if (vap->iv_state == IEEE80211_S_RUN) {
8875 		/* Set link LED to ON status if we are associated */
8876 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8877 	}
8878 	IWN_UNLOCK(sc);
8879 }
8880 
8881 /*
8882  * Callback from net80211 to force a channel change.
8883  */
8884 static void
8885 iwn_set_channel(struct ieee80211com *ic)
8886 {
8887 	const struct ieee80211_channel *c = ic->ic_curchan;
8888 	struct iwn_softc *sc = ic->ic_softc;
8889 	int error;
8890 
8891 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8892 
8893 	IWN_LOCK(sc);
8894 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8895 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8896 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8897 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8898 
8899 	/*
8900 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8901 	 * are already taken care of by their respective firmware commands.
8902 	 */
8903 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8904 		error = iwn_config(sc);
8905 		if (error != 0)
8906 		device_printf(sc->sc_dev,
8907 		    "%s: error %d settting channel\n", __func__, error);
8908 	}
8909 	IWN_UNLOCK(sc);
8910 }
8911 
8912 /*
8913  * Callback from net80211 to start scanning of the current channel.
8914  */
8915 static void
8916 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8917 {
8918 	struct ieee80211vap *vap = ss->ss_vap;
8919 	struct ieee80211com *ic = vap->iv_ic;
8920 	struct iwn_softc *sc = ic->ic_softc;
8921 	int error;
8922 
8923 	IWN_LOCK(sc);
8924 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8925 	IWN_UNLOCK(sc);
8926 	if (error != 0)
8927 		ieee80211_cancel_scan(vap);
8928 }
8929 
8930 /*
8931  * Callback from net80211 to handle the minimum dwell time being met.
8932  * The intent is to terminate the scan but we just let the firmware
8933  * notify us when it's finished as we have no safe way to abort it.
8934  */
8935 static void
8936 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8937 {
8938 	/* NB: don't try to abort scan; wait for firmware to finish */
8939 }
8940 #ifdef	IWN_DEBUG
8941 #define	IWN_DESC(x) case x:	return #x
8942 
8943 /*
8944  * Translate CSR code to string
8945  */
8946 static char *iwn_get_csr_string(int csr)
8947 {
8948 	switch (csr) {
8949 		IWN_DESC(IWN_HW_IF_CONFIG);
8950 		IWN_DESC(IWN_INT_COALESCING);
8951 		IWN_DESC(IWN_INT);
8952 		IWN_DESC(IWN_INT_MASK);
8953 		IWN_DESC(IWN_FH_INT);
8954 		IWN_DESC(IWN_GPIO_IN);
8955 		IWN_DESC(IWN_RESET);
8956 		IWN_DESC(IWN_GP_CNTRL);
8957 		IWN_DESC(IWN_HW_REV);
8958 		IWN_DESC(IWN_EEPROM);
8959 		IWN_DESC(IWN_EEPROM_GP);
8960 		IWN_DESC(IWN_OTP_GP);
8961 		IWN_DESC(IWN_GIO);
8962 		IWN_DESC(IWN_GP_UCODE);
8963 		IWN_DESC(IWN_GP_DRIVER);
8964 		IWN_DESC(IWN_UCODE_GP1);
8965 		IWN_DESC(IWN_UCODE_GP2);
8966 		IWN_DESC(IWN_LED);
8967 		IWN_DESC(IWN_DRAM_INT_TBL);
8968 		IWN_DESC(IWN_GIO_CHICKEN);
8969 		IWN_DESC(IWN_ANA_PLL);
8970 		IWN_DESC(IWN_HW_REV_WA);
8971 		IWN_DESC(IWN_DBG_HPET_MEM);
8972 	default:
8973 		return "UNKNOWN CSR";
8974 	}
8975 }
8976 
8977 /*
8978  * This function print firmware register
8979  */
8980 static void
8981 iwn_debug_register(struct iwn_softc *sc)
8982 {
8983 	int i;
8984 	static const uint32_t csr_tbl[] = {
8985 		IWN_HW_IF_CONFIG,
8986 		IWN_INT_COALESCING,
8987 		IWN_INT,
8988 		IWN_INT_MASK,
8989 		IWN_FH_INT,
8990 		IWN_GPIO_IN,
8991 		IWN_RESET,
8992 		IWN_GP_CNTRL,
8993 		IWN_HW_REV,
8994 		IWN_EEPROM,
8995 		IWN_EEPROM_GP,
8996 		IWN_OTP_GP,
8997 		IWN_GIO,
8998 		IWN_GP_UCODE,
8999 		IWN_GP_DRIVER,
9000 		IWN_UCODE_GP1,
9001 		IWN_UCODE_GP2,
9002 		IWN_LED,
9003 		IWN_DRAM_INT_TBL,
9004 		IWN_GIO_CHICKEN,
9005 		IWN_ANA_PLL,
9006 		IWN_HW_REV_WA,
9007 		IWN_DBG_HPET_MEM,
9008 	};
9009 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9010 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9011 	    "\n");
9012 	for (i = 0; i <  nitems(csr_tbl); i++){
9013 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9014 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9015 		if ((i+1) % 3 == 0)
9016 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9017 	}
9018 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9019 }
9020 #endif
9021 
9022 
9023