xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 48855ec75316aaec5538ef22132f96fd04e137d4)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 struct iwn_ident {
76 	uint16_t	vendor;
77 	uint16_t	device;
78 	const char	*name;
79 };
80 
81 static const struct iwn_ident iwn_ident_table[] = {
82 	{ 0x8086, 0x0082, "Intel(R) Centrino(R) Advanced-N 6205"	 },
83 	{ 0x8086, 0x0083, "Intel(R) Centrino(R) Wireless-N 1000"	 },
84 	{ 0x8086, 0x0084, "Intel(R) Centrino(R) Wireless-N 1000"	 },
85 	{ 0x8086, 0x0085, "Intel(R) Centrino(R) Advanced-N 6205"	 },
86 	{ 0x8086, 0x0087, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
87 	{ 0x8086, 0x0089, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
88 	{ 0x8086, 0x008a, "Intel(R) Centrino(R) Wireless-N 1030"	 },
89 	{ 0x8086, 0x008b, "Intel(R) Centrino(R) Wireless-N 1030"	 },
90 	{ 0x8086, 0x0090, "Intel(R) Centrino(R) Advanced-N 6230"	 },
91 	{ 0x8086, 0x0091, "Intel(R) Centrino(R) Advanced-N 6230"	 },
92 	{ 0x8086, 0x4229, "Intel(R) Wireless WiFi Link 4965"		 },
93 	{ 0x8086, 0x422b, "Intel(R) Centrino(R) Ultimate-N 6300"	 },
94 	{ 0x8086, 0x422c, "Intel(R) Centrino(R) Advanced-N 6200"	 },
95 	{ 0x8086, 0x4230, "Intel(R) Wireless WiFi Link 4965"		 },
96 	{ 0x8086, 0x4232, "Intel(R) WiFi Link 5100"			 },
97 	{ 0x8086, 0x4235, "Intel(R) Ultimate N WiFi Link 5300"		 },
98 	{ 0x8086, 0x4236, "Intel(R) Ultimate N WiFi Link 5300"		 },
99 	{ 0x8086, 0x4237, "Intel(R) WiFi Link 5100"			 },
100 	{ 0x8086, 0x4238, "Intel(R) Centrino(R) Ultimate-N 6300"	 },
101 	{ 0x8086, 0x4239, "Intel(R) Centrino(R) Advanced-N 6200"	 },
102 	{ 0x8086, 0x423a, "Intel(R) WiMAX/WiFi Link 5350"		 },
103 	{ 0x8086, 0x423b, "Intel(R) WiMAX/WiFi Link 5350"		 },
104 	{ 0x8086, 0x423c, "Intel(R) WiMAX/WiFi Link 5150"		 },
105 	{ 0x8086, 0x423d, "Intel(R) WiMAX/WiFi Link 5150"		 },
106 	{ 0, 0, NULL }
107 };
108 
109 static int	iwn_probe(device_t);
110 static int	iwn_attach(device_t);
111 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
112 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
113 static void	iwn_radiotap_attach(struct iwn_softc *);
114 static void	iwn_sysctlattach(struct iwn_softc *);
115 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
116 		    const char name[IFNAMSIZ], int unit, int opmode,
117 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
118 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
119 static void	iwn_vap_delete(struct ieee80211vap *);
120 static int	iwn_detach(device_t);
121 static int	iwn_shutdown(device_t);
122 static int	iwn_suspend(device_t);
123 static int	iwn_resume(device_t);
124 static int	iwn_nic_lock(struct iwn_softc *);
125 static int	iwn_eeprom_lock(struct iwn_softc *);
126 static int	iwn_init_otprom(struct iwn_softc *);
127 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
128 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
129 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
130 		    void **, bus_size_t, bus_size_t);
131 static void	iwn_dma_contig_free(struct iwn_dma_info *);
132 static int	iwn_alloc_sched(struct iwn_softc *);
133 static void	iwn_free_sched(struct iwn_softc *);
134 static int	iwn_alloc_kw(struct iwn_softc *);
135 static void	iwn_free_kw(struct iwn_softc *);
136 static int	iwn_alloc_ict(struct iwn_softc *);
137 static void	iwn_free_ict(struct iwn_softc *);
138 static int	iwn_alloc_fwmem(struct iwn_softc *);
139 static void	iwn_free_fwmem(struct iwn_softc *);
140 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
141 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
142 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
143 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
144 		    int);
145 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
146 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
147 static void	iwn5000_ict_reset(struct iwn_softc *);
148 static int	iwn_read_eeprom(struct iwn_softc *,
149 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
150 static void	iwn4965_read_eeprom(struct iwn_softc *);
151 static void	iwn4965_print_power_group(struct iwn_softc *, int);
152 static void	iwn5000_read_eeprom(struct iwn_softc *);
153 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
154 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
155 #if 0	/* HT */
156 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
157 #endif
158 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
159 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
160 		    struct ieee80211_channel *);
161 static int	iwn_setregdomain(struct ieee80211com *,
162 		    struct ieee80211_regdomain *, int,
163 		    struct ieee80211_channel[]);
164 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
165 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
166 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
167 static void	iwn_newassoc(struct ieee80211_node *, int);
168 static int	iwn_media_change(struct ifnet *);
169 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
170 static void	iwn_calib_timeout(void *);
171 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
172 		    struct iwn_rx_data *);
173 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
174 		    struct iwn_rx_data *);
175 #if 0	/* HT */
176 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 #endif
179 static void	iwn5000_rx_calib_results(struct iwn_softc *,
180 		    struct iwn_rx_desc *, struct iwn_rx_data *);
181 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
186 		    struct iwn_rx_data *);
187 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
188 		    uint8_t);
189 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
190 static void	iwn_notif_intr(struct iwn_softc *);
191 static void	iwn_wakeup_intr(struct iwn_softc *);
192 static void	iwn_rftoggle_intr(struct iwn_softc *);
193 static void	iwn_fatal_intr(struct iwn_softc *);
194 static void	iwn_intr(void *);
195 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
196 		    uint16_t);
197 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
198 		    uint16_t);
199 #ifdef notyet
200 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
201 #endif
202 static uint8_t	iwn_plcp_signal(int);
203 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
204 		    struct ieee80211_node *);
205 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
206 		    struct ieee80211_node *,
207 		    const struct ieee80211_bpf_params *params);
208 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
209 		    const struct ieee80211_bpf_params *);
210 static void	iwn_start(struct ifnet *);
211 static void	iwn_start_locked(struct ifnet *);
212 static void	iwn_watchdog(void *);
213 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
214 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
215 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
216 		    int);
217 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
218 		    int);
219 static int	iwn_set_link_quality(struct iwn_softc *,
220 		    struct ieee80211_node *);
221 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
222 static int	iwn_updateedca(struct ieee80211com *);
223 static void	iwn_update_mcast(struct ifnet *);
224 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
225 static int	iwn_set_critical_temp(struct iwn_softc *);
226 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
227 static void	iwn4965_power_calibration(struct iwn_softc *, int);
228 static int	iwn4965_set_txpower(struct iwn_softc *,
229 		    struct ieee80211_channel *, int);
230 static int	iwn5000_set_txpower(struct iwn_softc *,
231 		    struct ieee80211_channel *, int);
232 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
233 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
234 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
235 static int	iwn4965_get_temperature(struct iwn_softc *);
236 static int	iwn5000_get_temperature(struct iwn_softc *);
237 static int	iwn_init_sensitivity(struct iwn_softc *);
238 static void	iwn_collect_noise(struct iwn_softc *,
239 		    const struct iwn_rx_general_stats *);
240 static int	iwn4965_init_gains(struct iwn_softc *);
241 static int	iwn5000_init_gains(struct iwn_softc *);
242 static int	iwn4965_set_gains(struct iwn_softc *);
243 static int	iwn5000_set_gains(struct iwn_softc *);
244 static void	iwn_tune_sensitivity(struct iwn_softc *,
245 		    const struct iwn_rx_stats *);
246 static int	iwn_send_sensitivity(struct iwn_softc *);
247 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
248 static int	iwn_send_btcoex(struct iwn_softc *);
249 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
250 static int	iwn_config(struct iwn_softc *);
251 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
252 static int	iwn_scan(struct iwn_softc *);
253 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
254 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
255 #if 0	/* HT */
256 static int	iwn_ampdu_rx_start(struct ieee80211com *,
257 		    struct ieee80211_node *, uint8_t);
258 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 static int	iwn_ampdu_tx_start(struct ieee80211com *,
261 		    struct ieee80211_node *, uint8_t);
262 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
263 		    struct ieee80211_node *, uint8_t);
264 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
265 		    struct ieee80211_node *, uint8_t, uint16_t);
266 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
267 		    uint8_t, uint16_t);
268 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
269 		    struct ieee80211_node *, uint8_t, uint16_t);
270 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
271 		    uint8_t, uint16_t);
272 #endif
273 static int	iwn5000_query_calibration(struct iwn_softc *);
274 static int	iwn5000_send_calibration(struct iwn_softc *);
275 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
276 static int	iwn5000_crystal_calib(struct iwn_softc *);
277 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
278 static int	iwn4965_post_alive(struct iwn_softc *);
279 static int	iwn5000_post_alive(struct iwn_softc *);
280 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
281 		    int);
282 static int	iwn4965_load_firmware(struct iwn_softc *);
283 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
284 		    const uint8_t *, int);
285 static int	iwn5000_load_firmware(struct iwn_softc *);
286 static int	iwn_read_firmware_leg(struct iwn_softc *,
287 		    struct iwn_fw_info *);
288 static int	iwn_read_firmware_tlv(struct iwn_softc *,
289 		    struct iwn_fw_info *, uint16_t);
290 static int	iwn_read_firmware(struct iwn_softc *);
291 static int	iwn_clock_wait(struct iwn_softc *);
292 static int	iwn_apm_init(struct iwn_softc *);
293 static void	iwn_apm_stop_master(struct iwn_softc *);
294 static void	iwn_apm_stop(struct iwn_softc *);
295 static int	iwn4965_nic_config(struct iwn_softc *);
296 static int	iwn5000_nic_config(struct iwn_softc *);
297 static int	iwn_hw_prepare(struct iwn_softc *);
298 static int	iwn_hw_init(struct iwn_softc *);
299 static void	iwn_hw_stop(struct iwn_softc *);
300 static void	iwn_radio_on(void *, int);
301 static void	iwn_radio_off(void *, int);
302 static void	iwn_init_locked(struct iwn_softc *);
303 static void	iwn_init(void *);
304 static void	iwn_stop_locked(struct iwn_softc *);
305 static void	iwn_stop(struct iwn_softc *);
306 static void	iwn_scan_start(struct ieee80211com *);
307 static void	iwn_scan_end(struct ieee80211com *);
308 static void	iwn_set_channel(struct ieee80211com *);
309 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
310 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
311 static void	iwn_hw_reset(void *, int);
312 
313 #define IWN_DEBUG
314 #ifdef IWN_DEBUG
315 enum {
316 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
317 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
318 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
319 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
320 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
321 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
322 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
323 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
324 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
325 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
326 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
327 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
328 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
329 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
330 	IWN_DEBUG_ANY		= 0xffffffff
331 };
332 
333 #define DPRINTF(sc, m, fmt, ...) do {			\
334 	if (sc->sc_debug & (m))				\
335 		printf(fmt, __VA_ARGS__);		\
336 } while (0)
337 
338 static const char *
339 iwn_intr_str(uint8_t cmd)
340 {
341 	switch (cmd) {
342 	/* Notifications */
343 	case IWN_UC_READY:		return "UC_READY";
344 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
345 	case IWN_TX_DONE:		return "TX_DONE";
346 	case IWN_START_SCAN:		return "START_SCAN";
347 	case IWN_STOP_SCAN:		return "STOP_SCAN";
348 	case IWN_RX_STATISTICS:		return "RX_STATS";
349 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
350 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
351 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
352 	case IWN_RX_PHY:		return "RX_PHY";
353 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
354 	case IWN_RX_DONE:		return "RX_DONE";
355 
356 	/* Command Notifications */
357 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
358 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
359 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
360 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
361 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
362 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
363 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
364 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
365 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
366 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
367 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
368 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
369 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
370 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
371 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
372 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
373 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
374 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
375 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
376 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
377 	}
378 	return "UNKNOWN INTR NOTIF/CMD";
379 }
380 #else
381 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
382 #endif
383 
384 static device_method_t iwn_methods[] = {
385 	/* Device interface */
386 	DEVMETHOD(device_probe,		iwn_probe),
387 	DEVMETHOD(device_attach,	iwn_attach),
388 	DEVMETHOD(device_detach,	iwn_detach),
389 	DEVMETHOD(device_shutdown,	iwn_shutdown),
390 	DEVMETHOD(device_suspend,	iwn_suspend),
391 	DEVMETHOD(device_resume,	iwn_resume),
392 	{ 0, 0 }
393 };
394 
395 static driver_t iwn_driver = {
396 	"iwn",
397 	iwn_methods,
398 	sizeof(struct iwn_softc)
399 };
400 static devclass_t iwn_devclass;
401 
402 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
403 
404 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
405 MODULE_DEPEND(iwn, pci, 1, 1, 1);
406 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
407 
408 static int
409 iwn_probe(device_t dev)
410 {
411 	const struct iwn_ident *ident;
412 
413 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
414 		if (pci_get_vendor(dev) == ident->vendor &&
415 		    pci_get_device(dev) == ident->device) {
416 			device_set_desc(dev, ident->name);
417 			return 0;
418 		}
419 	}
420 	return ENXIO;
421 }
422 
423 static int
424 iwn_attach(device_t dev)
425 {
426 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
427 	struct ieee80211com *ic;
428 	struct ifnet *ifp;
429 	uint32_t reg;
430 	int i, error, result;
431 	uint8_t macaddr[IEEE80211_ADDR_LEN];
432 
433 	sc->sc_dev = dev;
434 
435 	/*
436 	 * Get the offset of the PCI Express Capability Structure in PCI
437 	 * Configuration Space.
438 	 */
439 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
440 	if (error != 0) {
441 		device_printf(dev, "PCIe capability structure not found!\n");
442 		return error;
443 	}
444 
445 	/* Clear device-specific "PCI retry timeout" register (41h). */
446 	pci_write_config(dev, 0x41, 0, 1);
447 
448 	/* Hardware bug workaround. */
449 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
450 	if (reg & PCIM_CMD_INTxDIS) {
451 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
452 		    __func__);
453 		reg &= ~PCIM_CMD_INTxDIS;
454 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
455 	}
456 
457 	/* Enable bus-mastering. */
458 	pci_enable_busmaster(dev);
459 
460 	sc->mem_rid = PCIR_BAR(0);
461 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
462 	    RF_ACTIVE);
463 	if (sc->mem == NULL) {
464 		device_printf(dev, "can't map mem space\n");
465 		error = ENOMEM;
466 		return error;
467 	}
468 	sc->sc_st = rman_get_bustag(sc->mem);
469 	sc->sc_sh = rman_get_bushandle(sc->mem);
470 
471 	sc->irq_rid = 0;
472 	if ((result = pci_msi_count(dev)) == 1 &&
473 	    pci_alloc_msi(dev, &result) == 0)
474 		sc->irq_rid = 1;
475 	/* Install interrupt handler. */
476 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
477 	    RF_ACTIVE | RF_SHAREABLE);
478 	if (sc->irq == NULL) {
479 		device_printf(dev, "can't map interrupt\n");
480 		error = ENOMEM;
481 		goto fail;
482 	}
483 
484 	IWN_LOCK_INIT(sc);
485 
486 	/* Read hardware revision and attach. */
487 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
488 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
489 		error = iwn4965_attach(sc, pci_get_device(dev));
490 	else
491 		error = iwn5000_attach(sc, pci_get_device(dev));
492 	if (error != 0) {
493 		device_printf(dev, "could not attach device, error %d\n",
494 		    error);
495 		goto fail;
496 	}
497 
498 	if ((error = iwn_hw_prepare(sc)) != 0) {
499 		device_printf(dev, "hardware not ready, error %d\n", error);
500 		goto fail;
501 	}
502 
503 	/* Allocate DMA memory for firmware transfers. */
504 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
505 		device_printf(dev,
506 		    "could not allocate memory for firmware, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	/* Allocate "Keep Warm" page. */
512 	if ((error = iwn_alloc_kw(sc)) != 0) {
513 		device_printf(dev,
514 		    "could not allocate keep warm page, error %d\n", error);
515 		goto fail;
516 	}
517 
518 	/* Allocate ICT table for 5000 Series. */
519 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
520 	    (error = iwn_alloc_ict(sc)) != 0) {
521 		device_printf(dev, "could not allocate ICT table, error %d\n",
522 		    error);
523 		goto fail;
524 	}
525 
526 	/* Allocate TX scheduler "rings". */
527 	if ((error = iwn_alloc_sched(sc)) != 0) {
528 		device_printf(dev,
529 		    "could not allocate TX scheduler rings, error %d\n", error);
530 		goto fail;
531 	}
532 
533 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
534 	for (i = 0; i < sc->ntxqs; i++) {
535 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
536 			device_printf(dev,
537 			    "could not allocate TX ring %d, error %d\n", i,
538 			    error);
539 			goto fail;
540 		}
541 	}
542 
543 	/* Allocate RX ring. */
544 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
545 		device_printf(dev, "could not allocate RX ring, error %d\n",
546 		    error);
547 		goto fail;
548 	}
549 
550 	/* Clear pending interrupts. */
551 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
552 
553 	/* Count the number of available chains. */
554 	sc->ntxchains =
555 	    ((sc->txchainmask >> 2) & 1) +
556 	    ((sc->txchainmask >> 1) & 1) +
557 	    ((sc->txchainmask >> 0) & 1);
558 	sc->nrxchains =
559 	    ((sc->rxchainmask >> 2) & 1) +
560 	    ((sc->rxchainmask >> 1) & 1) +
561 	    ((sc->rxchainmask >> 0) & 1);
562 	if (bootverbose) {
563 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
564 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
565 		    macaddr, ":");
566 	}
567 
568 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
569 	if (ifp == NULL) {
570 		device_printf(dev, "can not allocate ifnet structure\n");
571 		goto fail;
572 	}
573 
574 	ic = ifp->if_l2com;
575 	ic->ic_ifp = ifp;
576 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
577 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
578 
579 	/* Set device capabilities. */
580 	ic->ic_caps =
581 		  IEEE80211_C_STA		/* station mode supported */
582 		| IEEE80211_C_MONITOR		/* monitor mode supported */
583 		| IEEE80211_C_TXPMGT		/* tx power management */
584 		| IEEE80211_C_SHSLOT		/* short slot time supported */
585 		| IEEE80211_C_WPA
586 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
587 		| IEEE80211_C_BGSCAN		/* background scanning */
588 #if 0
589 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
590 #endif
591 		| IEEE80211_C_WME		/* WME */
592 		;
593 #if 0	/* HT */
594 	/* XXX disable until HT channel setup works */
595 	ic->ic_htcaps =
596 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
597 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
598 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
599 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
600 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
601 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
602 		/* s/w capabilities */
603 		| IEEE80211_HTC_HT		/* HT operation */
604 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
605 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
606 		;
607 
608 	/* Set HT capabilities. */
609 	ic->ic_htcaps =
610 #if IWN_RBUF_SIZE == 8192
611 	    IEEE80211_HTCAP_AMSDU7935 |
612 #endif
613 	    IEEE80211_HTCAP_CBW20_40 |
614 	    IEEE80211_HTCAP_SGI20 |
615 	    IEEE80211_HTCAP_SGI40;
616 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
617 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
618 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
619 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
620 	else
621 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
622 #endif
623 
624 	/* Read MAC address, channels, etc from EEPROM. */
625 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
626 		device_printf(dev, "could not read EEPROM, error %d\n",
627 		    error);
628 		goto fail;
629 	}
630 
631 #if 0	/* HT */
632 	/* Set supported HT rates. */
633 	ic->ic_sup_mcs[0] = 0xff;
634 	if (sc->nrxchains > 1)
635 		ic->ic_sup_mcs[1] = 0xff;
636 	if (sc->nrxchains > 2)
637 		ic->ic_sup_mcs[2] = 0xff;
638 #endif
639 
640 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
641 	ifp->if_softc = sc;
642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_init = iwn_init;
644 	ifp->if_ioctl = iwn_ioctl;
645 	ifp->if_start = iwn_start;
646 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
647 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
648 	IFQ_SET_READY(&ifp->if_snd);
649 
650 	ieee80211_ifattach(ic, macaddr);
651 	ic->ic_vap_create = iwn_vap_create;
652 	ic->ic_vap_delete = iwn_vap_delete;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 #if 0	/* HT */
656 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
658 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
659 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
660 #endif
661 	ic->ic_newassoc = iwn_newassoc;
662 	ic->ic_wme.wme_update = iwn_updateedca;
663 	ic->ic_update_mcast = iwn_update_mcast;
664 	ic->ic_scan_start = iwn_scan_start;
665 	ic->ic_scan_end = iwn_scan_end;
666 	ic->ic_set_channel = iwn_set_channel;
667 	ic->ic_scan_curchan = iwn_scan_curchan;
668 	ic->ic_scan_mindwell = iwn_scan_mindwell;
669 	ic->ic_setregdomain = iwn_setregdomain;
670 
671 	iwn_radiotap_attach(sc);
672 
673 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
674 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
675 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
676 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
677 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
678 
679 	iwn_sysctlattach(sc);
680 
681 	/*
682 	 * Hook our interrupt after all initialization is complete.
683 	 */
684 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
685 	    NULL, iwn_intr, sc, &sc->sc_ih);
686 	if (error != 0) {
687 		device_printf(dev, "can't establish interrupt, error %d\n",
688 		    error);
689 		goto fail;
690 	}
691 
692 	if (bootverbose)
693 		ieee80211_announce(ic);
694 	return 0;
695 fail:
696 	iwn_detach(dev);
697 	return error;
698 }
699 
700 static int
701 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
702 {
703 	struct iwn_ops *ops = &sc->ops;
704 
705 	ops->load_firmware = iwn4965_load_firmware;
706 	ops->read_eeprom = iwn4965_read_eeprom;
707 	ops->post_alive = iwn4965_post_alive;
708 	ops->nic_config = iwn4965_nic_config;
709 	ops->update_sched = iwn4965_update_sched;
710 	ops->get_temperature = iwn4965_get_temperature;
711 	ops->get_rssi = iwn4965_get_rssi;
712 	ops->set_txpower = iwn4965_set_txpower;
713 	ops->init_gains = iwn4965_init_gains;
714 	ops->set_gains = iwn4965_set_gains;
715 	ops->add_node = iwn4965_add_node;
716 	ops->tx_done = iwn4965_tx_done;
717 #if 0	/* HT */
718 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
719 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
720 #endif
721 	sc->ntxqs = IWN4965_NTXQUEUES;
722 	sc->ndmachnls = IWN4965_NDMACHNLS;
723 	sc->broadcast_id = IWN4965_ID_BROADCAST;
724 	sc->rxonsz = IWN4965_RXONSZ;
725 	sc->schedsz = IWN4965_SCHEDSZ;
726 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
727 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
728 	sc->fwsz = IWN4965_FWSZ;
729 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
730 	sc->limits = &iwn4965_sensitivity_limits;
731 	sc->fwname = "iwn4965fw";
732 	/* Override chains masks, ROM is known to be broken. */
733 	sc->txchainmask = IWN_ANT_AB;
734 	sc->rxchainmask = IWN_ANT_ABC;
735 
736 	return 0;
737 }
738 
739 static int
740 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
741 {
742 	struct iwn_ops *ops = &sc->ops;
743 
744 	ops->load_firmware = iwn5000_load_firmware;
745 	ops->read_eeprom = iwn5000_read_eeprom;
746 	ops->post_alive = iwn5000_post_alive;
747 	ops->nic_config = iwn5000_nic_config;
748 	ops->update_sched = iwn5000_update_sched;
749 	ops->get_temperature = iwn5000_get_temperature;
750 	ops->get_rssi = iwn5000_get_rssi;
751 	ops->set_txpower = iwn5000_set_txpower;
752 	ops->init_gains = iwn5000_init_gains;
753 	ops->set_gains = iwn5000_set_gains;
754 	ops->add_node = iwn5000_add_node;
755 	ops->tx_done = iwn5000_tx_done;
756 #if 0	/* HT */
757 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
758 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
759 #endif
760 	sc->ntxqs = IWN5000_NTXQUEUES;
761 	sc->ndmachnls = IWN5000_NDMACHNLS;
762 	sc->broadcast_id = IWN5000_ID_BROADCAST;
763 	sc->rxonsz = IWN5000_RXONSZ;
764 	sc->schedsz = IWN5000_SCHEDSZ;
765 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
766 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
767 	sc->fwsz = IWN5000_FWSZ;
768 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
769 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
770 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
771 
772 	switch (sc->hw_type) {
773 	case IWN_HW_REV_TYPE_5100:
774 		sc->limits = &iwn5000_sensitivity_limits;
775 		sc->fwname = "iwn5000fw";
776 		/* Override chains masks, ROM is known to be broken. */
777 		sc->txchainmask = IWN_ANT_B;
778 		sc->rxchainmask = IWN_ANT_AB;
779 		break;
780 	case IWN_HW_REV_TYPE_5150:
781 		sc->limits = &iwn5150_sensitivity_limits;
782 		sc->fwname = "iwn5150fw";
783 		break;
784 	case IWN_HW_REV_TYPE_5300:
785 	case IWN_HW_REV_TYPE_5350:
786 		sc->limits = &iwn5000_sensitivity_limits;
787 		sc->fwname = "iwn5000fw";
788 		break;
789 	case IWN_HW_REV_TYPE_1000:
790 		sc->limits = &iwn1000_sensitivity_limits;
791 		sc->fwname = "iwn1000fw";
792 		break;
793 	case IWN_HW_REV_TYPE_6000:
794 		sc->limits = &iwn6000_sensitivity_limits;
795 		sc->fwname = "iwn6000fw";
796 		if (pid == 0x422c || pid == 0x4239) {
797 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
798 			/* Override chains masks, ROM is known to be broken. */
799 			sc->txchainmask = IWN_ANT_BC;
800 			sc->rxchainmask = IWN_ANT_BC;
801 		}
802 		break;
803 	case IWN_HW_REV_TYPE_6050:
804 		sc->limits = &iwn6000_sensitivity_limits;
805 		sc->fwname = "iwn6050fw";
806 		/* Override chains masks, ROM is known to be broken. */
807 		sc->txchainmask = IWN_ANT_AB;
808 		sc->rxchainmask = IWN_ANT_AB;
809 		break;
810 	case IWN_HW_REV_TYPE_6005:
811 		sc->limits = &iwn6000_sensitivity_limits;
812 		if (pid != 0x0082 && pid != 0x0085) {
813 			sc->fwname = "iwn6000g2bfw";
814 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
815 		} else
816 			sc->fwname = "iwn6000g2afw";
817 		break;
818 	default:
819 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
820 		    sc->hw_type);
821 		return ENOTSUP;
822 	}
823 	return 0;
824 }
825 
826 /*
827  * Attach the interface to 802.11 radiotap.
828  */
829 static void
830 iwn_radiotap_attach(struct iwn_softc *sc)
831 {
832 	struct ifnet *ifp = sc->sc_ifp;
833 	struct ieee80211com *ic = ifp->if_l2com;
834 
835 	ieee80211_radiotap_attach(ic,
836 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
837 		IWN_TX_RADIOTAP_PRESENT,
838 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
839 		IWN_RX_RADIOTAP_PRESENT);
840 }
841 
842 static void
843 iwn_sysctlattach(struct iwn_softc *sc)
844 {
845 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
846 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
847 
848 #ifdef IWN_DEBUG
849 	sc->sc_debug = 0;
850 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
851 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
852 #endif
853 }
854 
855 static struct ieee80211vap *
856 iwn_vap_create(struct ieee80211com *ic,
857     const char name[IFNAMSIZ], int unit, int opmode, int flags,
858     const uint8_t bssid[IEEE80211_ADDR_LEN],
859     const uint8_t mac[IEEE80211_ADDR_LEN])
860 {
861 	struct iwn_vap *ivp;
862 	struct ieee80211vap *vap;
863 
864 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
865 		return NULL;
866 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
867 	    M_80211_VAP, M_NOWAIT | M_ZERO);
868 	if (ivp == NULL)
869 		return NULL;
870 	vap = &ivp->iv_vap;
871 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
872 	vap->iv_bmissthreshold = 10;		/* override default */
873 	/* Override with driver methods. */
874 	ivp->iv_newstate = vap->iv_newstate;
875 	vap->iv_newstate = iwn_newstate;
876 
877 	ieee80211_ratectl_init(vap);
878 	/* Complete setup. */
879 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
880 	ic->ic_opmode = opmode;
881 	return vap;
882 }
883 
884 static void
885 iwn_vap_delete(struct ieee80211vap *vap)
886 {
887 	struct iwn_vap *ivp = IWN_VAP(vap);
888 
889 	ieee80211_ratectl_deinit(vap);
890 	ieee80211_vap_detach(vap);
891 	free(ivp, M_80211_VAP);
892 }
893 
894 static int
895 iwn_detach(device_t dev)
896 {
897 	struct iwn_softc *sc = device_get_softc(dev);
898 	struct ifnet *ifp = sc->sc_ifp;
899 	struct ieee80211com *ic;
900 	int qid;
901 
902 	if (ifp != NULL) {
903 		ic = ifp->if_l2com;
904 
905 		ieee80211_draintask(ic, &sc->sc_reinit_task);
906 		ieee80211_draintask(ic, &sc->sc_radioon_task);
907 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
908 
909 		iwn_stop(sc);
910 		callout_drain(&sc->watchdog_to);
911 		callout_drain(&sc->calib_to);
912 		ieee80211_ifdetach(ic);
913 	}
914 
915 	/* Uninstall interrupt handler. */
916 	if (sc->irq != NULL) {
917 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
918 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
919 		if (sc->irq_rid == 1)
920 			pci_release_msi(dev);
921 	}
922 
923 	/* Free DMA resources. */
924 	iwn_free_rx_ring(sc, &sc->rxq);
925 	for (qid = 0; qid < sc->ntxqs; qid++)
926 		iwn_free_tx_ring(sc, &sc->txq[qid]);
927 	iwn_free_sched(sc);
928 	iwn_free_kw(sc);
929 	if (sc->ict != NULL)
930 		iwn_free_ict(sc);
931 	iwn_free_fwmem(sc);
932 
933 	if (sc->mem != NULL)
934 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
935 
936 	if (ifp != NULL)
937 		if_free(ifp);
938 
939 	IWN_LOCK_DESTROY(sc);
940 	return 0;
941 }
942 
943 static int
944 iwn_shutdown(device_t dev)
945 {
946 	struct iwn_softc *sc = device_get_softc(dev);
947 
948 	iwn_stop(sc);
949 	return 0;
950 }
951 
952 static int
953 iwn_suspend(device_t dev)
954 {
955 	struct iwn_softc *sc = device_get_softc(dev);
956 	struct ifnet *ifp = sc->sc_ifp;
957 	struct ieee80211com *ic = ifp->if_l2com;
958 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
959 
960 	iwn_stop(sc);
961 	if (vap != NULL)
962 		ieee80211_stop(vap);
963 	return 0;
964 }
965 
966 static int
967 iwn_resume(device_t dev)
968 {
969 	struct iwn_softc *sc = device_get_softc(dev);
970 	struct ifnet *ifp = sc->sc_ifp;
971 	struct ieee80211com *ic = ifp->if_l2com;
972 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
973 
974 	/* Clear device-specific "PCI retry timeout" register (41h). */
975 	pci_write_config(dev, 0x41, 0, 1);
976 
977 	if (ifp->if_flags & IFF_UP) {
978 		iwn_init(sc);
979 		if (vap != NULL)
980 			ieee80211_init(vap);
981 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
982 			iwn_start(ifp);
983 	}
984 	return 0;
985 }
986 
987 static int
988 iwn_nic_lock(struct iwn_softc *sc)
989 {
990 	int ntries;
991 
992 	/* Request exclusive access to NIC. */
993 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
994 
995 	/* Spin until we actually get the lock. */
996 	for (ntries = 0; ntries < 1000; ntries++) {
997 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
998 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
999 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1000 			return 0;
1001 		DELAY(10);
1002 	}
1003 	return ETIMEDOUT;
1004 }
1005 
1006 static __inline void
1007 iwn_nic_unlock(struct iwn_softc *sc)
1008 {
1009 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1010 }
1011 
1012 static __inline uint32_t
1013 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1014 {
1015 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1016 	IWN_BARRIER_READ_WRITE(sc);
1017 	return IWN_READ(sc, IWN_PRPH_RDATA);
1018 }
1019 
1020 static __inline void
1021 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1022 {
1023 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1024 	IWN_BARRIER_WRITE(sc);
1025 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1026 }
1027 
1028 static __inline void
1029 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1030 {
1031 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1032 }
1033 
1034 static __inline void
1035 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1036 {
1037 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1038 }
1039 
1040 static __inline void
1041 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1042     const uint32_t *data, int count)
1043 {
1044 	for (; count > 0; count--, data++, addr += 4)
1045 		iwn_prph_write(sc, addr, *data);
1046 }
1047 
1048 static __inline uint32_t
1049 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1050 {
1051 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1052 	IWN_BARRIER_READ_WRITE(sc);
1053 	return IWN_READ(sc, IWN_MEM_RDATA);
1054 }
1055 
1056 static __inline void
1057 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1058 {
1059 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1060 	IWN_BARRIER_WRITE(sc);
1061 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1062 }
1063 
1064 static __inline void
1065 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1066 {
1067 	uint32_t tmp;
1068 
1069 	tmp = iwn_mem_read(sc, addr & ~3);
1070 	if (addr & 3)
1071 		tmp = (tmp & 0x0000ffff) | data << 16;
1072 	else
1073 		tmp = (tmp & 0xffff0000) | data;
1074 	iwn_mem_write(sc, addr & ~3, tmp);
1075 }
1076 
1077 static __inline void
1078 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1079     int count)
1080 {
1081 	for (; count > 0; count--, addr += 4)
1082 		*data++ = iwn_mem_read(sc, addr);
1083 }
1084 
1085 static __inline void
1086 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1087     int count)
1088 {
1089 	for (; count > 0; count--, addr += 4)
1090 		iwn_mem_write(sc, addr, val);
1091 }
1092 
1093 static int
1094 iwn_eeprom_lock(struct iwn_softc *sc)
1095 {
1096 	int i, ntries;
1097 
1098 	for (i = 0; i < 100; i++) {
1099 		/* Request exclusive access to EEPROM. */
1100 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1101 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1102 
1103 		/* Spin until we actually get the lock. */
1104 		for (ntries = 0; ntries < 100; ntries++) {
1105 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1106 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1107 				return 0;
1108 			DELAY(10);
1109 		}
1110 	}
1111 	return ETIMEDOUT;
1112 }
1113 
1114 static __inline void
1115 iwn_eeprom_unlock(struct iwn_softc *sc)
1116 {
1117 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1118 }
1119 
1120 /*
1121  * Initialize access by host to One Time Programmable ROM.
1122  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1123  */
1124 static int
1125 iwn_init_otprom(struct iwn_softc *sc)
1126 {
1127 	uint16_t prev, base, next;
1128 	int count, error;
1129 
1130 	/* Wait for clock stabilization before accessing prph. */
1131 	if ((error = iwn_clock_wait(sc)) != 0)
1132 		return error;
1133 
1134 	if ((error = iwn_nic_lock(sc)) != 0)
1135 		return error;
1136 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1137 	DELAY(5);
1138 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1139 	iwn_nic_unlock(sc);
1140 
1141 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1142 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1143 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1144 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1145 	}
1146 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1147 	/* Clear ECC status. */
1148 	IWN_SETBITS(sc, IWN_OTP_GP,
1149 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1150 
1151 	/*
1152 	 * Find the block before last block (contains the EEPROM image)
1153 	 * for HW without OTP shadow RAM.
1154 	 */
1155 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1156 		/* Switch to absolute addressing mode. */
1157 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1158 		base = prev = 0;
1159 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1160 			error = iwn_read_prom_data(sc, base, &next, 2);
1161 			if (error != 0)
1162 				return error;
1163 			if (next == 0)	/* End of linked-list. */
1164 				break;
1165 			prev = base;
1166 			base = le16toh(next);
1167 		}
1168 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1169 			return EIO;
1170 		/* Skip "next" word. */
1171 		sc->prom_base = prev + 1;
1172 	}
1173 	return 0;
1174 }
1175 
1176 static int
1177 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1178 {
1179 	uint8_t *out = data;
1180 	uint32_t val, tmp;
1181 	int ntries;
1182 
1183 	addr += sc->prom_base;
1184 	for (; count > 0; count -= 2, addr++) {
1185 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1186 		for (ntries = 0; ntries < 10; ntries++) {
1187 			val = IWN_READ(sc, IWN_EEPROM);
1188 			if (val & IWN_EEPROM_READ_VALID)
1189 				break;
1190 			DELAY(5);
1191 		}
1192 		if (ntries == 10) {
1193 			device_printf(sc->sc_dev,
1194 			    "timeout reading ROM at 0x%x\n", addr);
1195 			return ETIMEDOUT;
1196 		}
1197 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1198 			/* OTPROM, check for ECC errors. */
1199 			tmp = IWN_READ(sc, IWN_OTP_GP);
1200 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1201 				device_printf(sc->sc_dev,
1202 				    "OTPROM ECC error at 0x%x\n", addr);
1203 				return EIO;
1204 			}
1205 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1206 				/* Correctable ECC error, clear bit. */
1207 				IWN_SETBITS(sc, IWN_OTP_GP,
1208 				    IWN_OTP_GP_ECC_CORR_STTS);
1209 			}
1210 		}
1211 		*out++ = val >> 16;
1212 		if (count > 1)
1213 			*out++ = val >> 24;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static void
1219 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1220 {
1221 	if (error != 0)
1222 		return;
1223 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1224 	*(bus_addr_t *)arg = segs[0].ds_addr;
1225 }
1226 
1227 static int
1228 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1229     void **kvap, bus_size_t size, bus_size_t alignment)
1230 {
1231 	int error;
1232 
1233 	dma->tag = NULL;
1234 	dma->size = size;
1235 
1236 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1237 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1238 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1239 	if (error != 0)
1240 		goto fail;
1241 
1242 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1243 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1244 	if (error != 0)
1245 		goto fail;
1246 
1247 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1248 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1249 	if (error != 0)
1250 		goto fail;
1251 
1252 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1253 
1254 	if (kvap != NULL)
1255 		*kvap = dma->vaddr;
1256 
1257 	return 0;
1258 
1259 fail:	iwn_dma_contig_free(dma);
1260 	return error;
1261 }
1262 
1263 static void
1264 iwn_dma_contig_free(struct iwn_dma_info *dma)
1265 {
1266 	if (dma->map != NULL) {
1267 		if (dma->vaddr != NULL) {
1268 			bus_dmamap_sync(dma->tag, dma->map,
1269 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1270 			bus_dmamap_unload(dma->tag, dma->map);
1271 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1272 			dma->vaddr = NULL;
1273 		}
1274 		bus_dmamap_destroy(dma->tag, dma->map);
1275 		dma->map = NULL;
1276 	}
1277 	if (dma->tag != NULL) {
1278 		bus_dma_tag_destroy(dma->tag);
1279 		dma->tag = NULL;
1280 	}
1281 }
1282 
1283 static int
1284 iwn_alloc_sched(struct iwn_softc *sc)
1285 {
1286 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1287 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1288 	    sc->schedsz, 1024);
1289 }
1290 
1291 static void
1292 iwn_free_sched(struct iwn_softc *sc)
1293 {
1294 	iwn_dma_contig_free(&sc->sched_dma);
1295 }
1296 
1297 static int
1298 iwn_alloc_kw(struct iwn_softc *sc)
1299 {
1300 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1301 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1302 }
1303 
1304 static void
1305 iwn_free_kw(struct iwn_softc *sc)
1306 {
1307 	iwn_dma_contig_free(&sc->kw_dma);
1308 }
1309 
1310 static int
1311 iwn_alloc_ict(struct iwn_softc *sc)
1312 {
1313 	/* ICT table must be aligned on a 4KB boundary. */
1314 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1315 	    IWN_ICT_SIZE, 4096);
1316 }
1317 
1318 static void
1319 iwn_free_ict(struct iwn_softc *sc)
1320 {
1321 	iwn_dma_contig_free(&sc->ict_dma);
1322 }
1323 
1324 static int
1325 iwn_alloc_fwmem(struct iwn_softc *sc)
1326 {
1327 	/* Must be aligned on a 16-byte boundary. */
1328 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1329 }
1330 
1331 static void
1332 iwn_free_fwmem(struct iwn_softc *sc)
1333 {
1334 	iwn_dma_contig_free(&sc->fw_dma);
1335 }
1336 
1337 static int
1338 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1339 {
1340 	bus_size_t size;
1341 	int i, error;
1342 
1343 	ring->cur = 0;
1344 
1345 	/* Allocate RX descriptors (256-byte aligned). */
1346 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1347 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1348 	    size, 256);
1349 	if (error != 0) {
1350 		device_printf(sc->sc_dev,
1351 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1352 		    __func__, error);
1353 		goto fail;
1354 	}
1355 
1356 	/* Allocate RX status area (16-byte aligned). */
1357 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1358 	    sizeof (struct iwn_rx_status), 16);
1359 	if (error != 0) {
1360 		device_printf(sc->sc_dev,
1361 		    "%s: could not allocate RX status DMA memory, error %d\n",
1362 		    __func__, error);
1363 		goto fail;
1364 	}
1365 
1366 	/* Create RX buffer DMA tag. */
1367 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1368 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1369 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1370 	    &ring->data_dmat);
1371 	if (error != 0) {
1372 		device_printf(sc->sc_dev,
1373 		    "%s: could not create RX buf DMA tag, error %d\n",
1374 		    __func__, error);
1375 		goto fail;
1376 	}
1377 
1378 	/*
1379 	 * Allocate and map RX buffers.
1380 	 */
1381 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1382 		struct iwn_rx_data *data = &ring->data[i];
1383 		bus_addr_t paddr;
1384 
1385 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1386 		if (error != 0) {
1387 			device_printf(sc->sc_dev,
1388 			    "%s: could not create RX buf DMA map, error %d\n",
1389 			    __func__, error);
1390 			goto fail;
1391 		}
1392 
1393 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
1394 		    IWN_RBUF_SIZE);
1395 		if (data->m == NULL) {
1396 			device_printf(sc->sc_dev,
1397 			    "%s: could not allocate RX mbuf\n", __func__);
1398 			error = ENOBUFS;
1399 			goto fail;
1400 		}
1401 
1402 		error = bus_dmamap_load(ring->data_dmat, data->map,
1403 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1404 		    &paddr, BUS_DMA_NOWAIT);
1405 		if (error != 0 && error != EFBIG) {
1406 			device_printf(sc->sc_dev,
1407 			    "%s: can't not map mbuf, error %d\n", __func__,
1408 			    error);
1409 			goto fail;
1410 		}
1411 
1412 		/* Set physical address of RX buffer (256-byte aligned). */
1413 		ring->desc[i] = htole32(paddr >> 8);
1414 	}
1415 
1416 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1417 	    BUS_DMASYNC_PREWRITE);
1418 
1419 	return 0;
1420 
1421 fail:	iwn_free_rx_ring(sc, ring);
1422 	return error;
1423 }
1424 
1425 static void
1426 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1427 {
1428 	int ntries;
1429 
1430 	if (iwn_nic_lock(sc) == 0) {
1431 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1432 		for (ntries = 0; ntries < 1000; ntries++) {
1433 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1434 			    IWN_FH_RX_STATUS_IDLE)
1435 				break;
1436 			DELAY(10);
1437 		}
1438 		iwn_nic_unlock(sc);
1439 	}
1440 	ring->cur = 0;
1441 	sc->last_rx_valid = 0;
1442 }
1443 
1444 static void
1445 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1446 {
1447 	int i;
1448 
1449 	iwn_dma_contig_free(&ring->desc_dma);
1450 	iwn_dma_contig_free(&ring->stat_dma);
1451 
1452 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1453 		struct iwn_rx_data *data = &ring->data[i];
1454 
1455 		if (data->m != NULL) {
1456 			bus_dmamap_sync(ring->data_dmat, data->map,
1457 			    BUS_DMASYNC_POSTREAD);
1458 			bus_dmamap_unload(ring->data_dmat, data->map);
1459 			m_freem(data->m);
1460 			data->m = NULL;
1461 		}
1462 		if (data->map != NULL)
1463 			bus_dmamap_destroy(ring->data_dmat, data->map);
1464 	}
1465 	if (ring->data_dmat != NULL) {
1466 		bus_dma_tag_destroy(ring->data_dmat);
1467 		ring->data_dmat = NULL;
1468 	}
1469 }
1470 
1471 static int
1472 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1473 {
1474 	bus_addr_t paddr;
1475 	bus_size_t size;
1476 	int i, error;
1477 
1478 	ring->qid = qid;
1479 	ring->queued = 0;
1480 	ring->cur = 0;
1481 
1482 	/* Allocate TX descriptors (256-byte aligned). */
1483 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1484 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1485 	    size, 256);
1486 	if (error != 0) {
1487 		device_printf(sc->sc_dev,
1488 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1489 		    __func__, error);
1490 		goto fail;
1491 	}
1492 	/*
1493 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1494 	 * to allocate commands space for other rings.
1495 	 * XXX Do we really need to allocate descriptors for other rings?
1496 	 */
1497 	if (qid > 4)
1498 		return 0;
1499 
1500 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1501 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1502 	    size, 4);
1503 	if (error != 0) {
1504 		device_printf(sc->sc_dev,
1505 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1506 		    __func__, error);
1507 		goto fail;
1508 	}
1509 
1510 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1511 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1512 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1513 	    &ring->data_dmat);
1514 	if (error != 0) {
1515 		device_printf(sc->sc_dev,
1516 		    "%s: could not create TX buf DMA tag, error %d\n",
1517 		    __func__, error);
1518 		goto fail;
1519 	}
1520 
1521 	paddr = ring->cmd_dma.paddr;
1522 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1523 		struct iwn_tx_data *data = &ring->data[i];
1524 
1525 		data->cmd_paddr = paddr;
1526 		data->scratch_paddr = paddr + 12;
1527 		paddr += sizeof (struct iwn_tx_cmd);
1528 
1529 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1530 		if (error != 0) {
1531 			device_printf(sc->sc_dev,
1532 			    "%s: could not create TX buf DMA map, error %d\n",
1533 			    __func__, error);
1534 			goto fail;
1535 		}
1536 	}
1537 	return 0;
1538 
1539 fail:	iwn_free_tx_ring(sc, ring);
1540 	return error;
1541 }
1542 
1543 static void
1544 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1545 {
1546 	int i;
1547 
1548 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1549 		struct iwn_tx_data *data = &ring->data[i];
1550 
1551 		if (data->m != NULL) {
1552 			bus_dmamap_sync(ring->data_dmat, data->map,
1553 			    BUS_DMASYNC_POSTWRITE);
1554 			bus_dmamap_unload(ring->data_dmat, data->map);
1555 			m_freem(data->m);
1556 			data->m = NULL;
1557 		}
1558 	}
1559 	/* Clear TX descriptors. */
1560 	memset(ring->desc, 0, ring->desc_dma.size);
1561 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1562 	    BUS_DMASYNC_PREWRITE);
1563 	sc->qfullmsk &= ~(1 << ring->qid);
1564 	ring->queued = 0;
1565 	ring->cur = 0;
1566 }
1567 
1568 static void
1569 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1570 {
1571 	int i;
1572 
1573 	iwn_dma_contig_free(&ring->desc_dma);
1574 	iwn_dma_contig_free(&ring->cmd_dma);
1575 
1576 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1577 		struct iwn_tx_data *data = &ring->data[i];
1578 
1579 		if (data->m != NULL) {
1580 			bus_dmamap_sync(ring->data_dmat, data->map,
1581 			    BUS_DMASYNC_POSTWRITE);
1582 			bus_dmamap_unload(ring->data_dmat, data->map);
1583 			m_freem(data->m);
1584 		}
1585 		if (data->map != NULL)
1586 			bus_dmamap_destroy(ring->data_dmat, data->map);
1587 	}
1588 	if (ring->data_dmat != NULL) {
1589 		bus_dma_tag_destroy(ring->data_dmat);
1590 		ring->data_dmat = NULL;
1591 	}
1592 }
1593 
1594 static void
1595 iwn5000_ict_reset(struct iwn_softc *sc)
1596 {
1597 	/* Disable interrupts. */
1598 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1599 
1600 	/* Reset ICT table. */
1601 	memset(sc->ict, 0, IWN_ICT_SIZE);
1602 	sc->ict_cur = 0;
1603 
1604 	/* Set physical address of ICT table (4KB aligned). */
1605 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1606 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1607 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1608 
1609 	/* Enable periodic RX interrupt. */
1610 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1611 	/* Switch to ICT interrupt mode in driver. */
1612 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1613 
1614 	/* Re-enable interrupts. */
1615 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1616 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1617 }
1618 
1619 static int
1620 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1621 {
1622 	struct iwn_ops *ops = &sc->ops;
1623 	uint16_t val;
1624 	int error;
1625 
1626 	/* Check whether adapter has an EEPROM or an OTPROM. */
1627 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1628 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1629 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1630 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1631 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1632 
1633 	/* Adapter has to be powered on for EEPROM access to work. */
1634 	if ((error = iwn_apm_init(sc)) != 0) {
1635 		device_printf(sc->sc_dev,
1636 		    "%s: could not power ON adapter, error %d\n", __func__,
1637 		    error);
1638 		return error;
1639 	}
1640 
1641 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1642 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1643 		return EIO;
1644 	}
1645 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1646 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1647 		    __func__, error);
1648 		return error;
1649 	}
1650 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1651 		if ((error = iwn_init_otprom(sc)) != 0) {
1652 			device_printf(sc->sc_dev,
1653 			    "%s: could not initialize OTPROM, error %d\n",
1654 			    __func__, error);
1655 			return error;
1656 		}
1657 	}
1658 
1659 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1660 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1661 	/* Check if HT support is bonded out. */
1662 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1663 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1664 
1665 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1666 	sc->rfcfg = le16toh(val);
1667 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1668 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1669 	if (sc->txchainmask == 0)
1670 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1671 	if (sc->rxchainmask == 0)
1672 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1673 
1674 	/* Read MAC address. */
1675 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1676 
1677 	/* Read adapter-specific information from EEPROM. */
1678 	ops->read_eeprom(sc);
1679 
1680 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1681 
1682 	iwn_eeprom_unlock(sc);
1683 	return 0;
1684 }
1685 
1686 static void
1687 iwn4965_read_eeprom(struct iwn_softc *sc)
1688 {
1689 	uint32_t addr;
1690 	uint16_t val;
1691 	int i;
1692 
1693 	/* Read regulatory domain (4 ASCII characters). */
1694 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1695 
1696 	/* Read the list of authorized channels (20MHz ones only). */
1697 	for (i = 0; i < 5; i++) {
1698 		addr = iwn4965_regulatory_bands[i];
1699 		iwn_read_eeprom_channels(sc, i, addr);
1700 	}
1701 
1702 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1703 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1704 	sc->maxpwr2GHz = val & 0xff;
1705 	sc->maxpwr5GHz = val >> 8;
1706 	/* Check that EEPROM values are within valid range. */
1707 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1708 		sc->maxpwr5GHz = 38;
1709 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1710 		sc->maxpwr2GHz = 38;
1711 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1712 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1713 
1714 	/* Read samples for each TX power group. */
1715 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1716 	    sizeof sc->bands);
1717 
1718 	/* Read voltage at which samples were taken. */
1719 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1720 	sc->eeprom_voltage = (int16_t)le16toh(val);
1721 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1722 	    sc->eeprom_voltage);
1723 
1724 #ifdef IWN_DEBUG
1725 	/* Print samples. */
1726 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1727 		for (i = 0; i < IWN_NBANDS; i++)
1728 			iwn4965_print_power_group(sc, i);
1729 	}
1730 #endif
1731 }
1732 
1733 #ifdef IWN_DEBUG
1734 static void
1735 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1736 {
1737 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1738 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1739 	int j, c;
1740 
1741 	printf("===band %d===\n", i);
1742 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1743 	printf("chan1 num=%d\n", chans[0].num);
1744 	for (c = 0; c < 2; c++) {
1745 		for (j = 0; j < IWN_NSAMPLES; j++) {
1746 			printf("chain %d, sample %d: temp=%d gain=%d "
1747 			    "power=%d pa_det=%d\n", c, j,
1748 			    chans[0].samples[c][j].temp,
1749 			    chans[0].samples[c][j].gain,
1750 			    chans[0].samples[c][j].power,
1751 			    chans[0].samples[c][j].pa_det);
1752 		}
1753 	}
1754 	printf("chan2 num=%d\n", chans[1].num);
1755 	for (c = 0; c < 2; c++) {
1756 		for (j = 0; j < IWN_NSAMPLES; j++) {
1757 			printf("chain %d, sample %d: temp=%d gain=%d "
1758 			    "power=%d pa_det=%d\n", c, j,
1759 			    chans[1].samples[c][j].temp,
1760 			    chans[1].samples[c][j].gain,
1761 			    chans[1].samples[c][j].power,
1762 			    chans[1].samples[c][j].pa_det);
1763 		}
1764 	}
1765 }
1766 #endif
1767 
1768 static void
1769 iwn5000_read_eeprom(struct iwn_softc *sc)
1770 {
1771 	struct iwn5000_eeprom_calib_hdr hdr;
1772 	int32_t volt;
1773 	uint32_t base, addr;
1774 	uint16_t val;
1775 	int i;
1776 
1777 	/* Read regulatory domain (4 ASCII characters). */
1778 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1779 	base = le16toh(val);
1780 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1781 	    sc->eeprom_domain, 4);
1782 
1783 	/* Read the list of authorized channels (20MHz ones only). */
1784 	for (i = 0; i < 5; i++) {
1785 		addr = base + iwn5000_regulatory_bands[i];
1786 		iwn_read_eeprom_channels(sc, i, addr);
1787 	}
1788 
1789 	/* Read enhanced TX power information for 6000 Series. */
1790 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1791 		iwn_read_eeprom_enhinfo(sc);
1792 
1793 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1794 	base = le16toh(val);
1795 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1796 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1797 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1798 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1799 	sc->calib_ver = hdr.version;
1800 
1801 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1802 		/* Compute temperature offset. */
1803 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1804 		sc->eeprom_temp = le16toh(val);
1805 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1806 		volt = le16toh(val);
1807 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1808 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1809 		    sc->eeprom_temp, volt, sc->temp_off);
1810 	} else {
1811 		/* Read crystal calibration. */
1812 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1813 		    &sc->eeprom_crystal, sizeof (uint32_t));
1814 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1815 		    le32toh(sc->eeprom_crystal));
1816 	}
1817 }
1818 
1819 /*
1820  * Translate EEPROM flags to net80211.
1821  */
1822 static uint32_t
1823 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1824 {
1825 	uint32_t nflags;
1826 
1827 	nflags = 0;
1828 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1829 		nflags |= IEEE80211_CHAN_PASSIVE;
1830 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1831 		nflags |= IEEE80211_CHAN_NOADHOC;
1832 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1833 		nflags |= IEEE80211_CHAN_DFS;
1834 		/* XXX apparently IBSS may still be marked */
1835 		nflags |= IEEE80211_CHAN_NOADHOC;
1836 	}
1837 
1838 	return nflags;
1839 }
1840 
1841 static void
1842 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1843 {
1844 	struct ifnet *ifp = sc->sc_ifp;
1845 	struct ieee80211com *ic = ifp->if_l2com;
1846 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1847 	const struct iwn_chan_band *band = &iwn_bands[n];
1848 	struct ieee80211_channel *c;
1849 	uint8_t chan;
1850 	int i, nflags;
1851 
1852 	for (i = 0; i < band->nchan; i++) {
1853 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1854 			DPRINTF(sc, IWN_DEBUG_RESET,
1855 			    "skip chan %d flags 0x%x maxpwr %d\n",
1856 			    band->chan[i], channels[i].flags,
1857 			    channels[i].maxpwr);
1858 			continue;
1859 		}
1860 		chan = band->chan[i];
1861 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1862 
1863 		c = &ic->ic_channels[ic->ic_nchans++];
1864 		c->ic_ieee = chan;
1865 		c->ic_maxregpower = channels[i].maxpwr;
1866 		c->ic_maxpower = 2*c->ic_maxregpower;
1867 
1868 		if (n == 0) {	/* 2GHz band */
1869 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1870 			/* G =>'s B is supported */
1871 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1872 			c = &ic->ic_channels[ic->ic_nchans++];
1873 			c[0] = c[-1];
1874 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1875 		} else {	/* 5GHz band */
1876 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1877 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1878 		}
1879 
1880 		/* Save maximum allowed TX power for this channel. */
1881 		sc->maxpwr[chan] = channels[i].maxpwr;
1882 
1883 		DPRINTF(sc, IWN_DEBUG_RESET,
1884 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1885 		    channels[i].flags, channels[i].maxpwr);
1886 
1887 #if 0	/* HT */
1888 		/* XXX no constraints on using HT20 */
1889 		/* add HT20, HT40 added separately */
1890 		c = &ic->ic_channels[ic->ic_nchans++];
1891 		c[0] = c[-1];
1892 		c->ic_flags |= IEEE80211_CHAN_HT20;
1893 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1894 #endif
1895 	}
1896 }
1897 
1898 #if 0	/* HT */
1899 static void
1900 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1901 {
1902 	struct ifnet *ifp = sc->sc_ifp;
1903 	struct ieee80211com *ic = ifp->if_l2com;
1904 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1905 	const struct iwn_chan_band *band = &iwn_bands[n];
1906 	struct ieee80211_channel *c, *cent, *extc;
1907 	int i;
1908 
1909 	for (i = 0; i < band->nchan; i++) {
1910 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1911 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1912 			DPRINTF(sc, IWN_DEBUG_RESET,
1913 			    "skip chan %d flags 0x%x maxpwr %d\n",
1914 			    band->chan[i], channels[i].flags,
1915 			    channels[i].maxpwr);
1916 			continue;
1917 		}
1918 		/*
1919 		 * Each entry defines an HT40 channel pair; find the
1920 		 * center channel, then the extension channel above.
1921 		 */
1922 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1923 		    band->flags & ~IEEE80211_CHAN_HT);
1924 		if (cent == NULL) {	/* XXX shouldn't happen */
1925 			device_printf(sc->sc_dev,
1926 			    "%s: no entry for channel %d\n",
1927 			    __func__, band->chan[i]);
1928 			continue;
1929 		}
1930 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1931 		    band->flags & ~IEEE80211_CHAN_HT);
1932 		if (extc == NULL) {
1933 			DPRINTF(sc, IWN_DEBUG_RESET,
1934 			    "skip chan %d, extension channel not found\n",
1935 			    band->chan[i]);
1936 			continue;
1937 		}
1938 
1939 		DPRINTF(sc, IWN_DEBUG_RESET,
1940 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1941 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1942 
1943 		c = &ic->ic_channels[ic->ic_nchans++];
1944 		c[0] = cent[0];
1945 		c->ic_extieee = extc->ic_ieee;
1946 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1947 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1948 		c = &ic->ic_channels[ic->ic_nchans++];
1949 		c[0] = extc[0];
1950 		c->ic_extieee = cent->ic_ieee;
1951 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1952 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1953 	}
1954 }
1955 #endif
1956 
1957 static void
1958 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1959 {
1960 	struct ifnet *ifp = sc->sc_ifp;
1961 	struct ieee80211com *ic = ifp->if_l2com;
1962 
1963 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1964 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1965 
1966 	if (n < 5)
1967 		iwn_read_eeprom_band(sc, n);
1968 #if 0	/* HT */
1969 	else
1970 		iwn_read_eeprom_ht40(sc, n);
1971 #endif
1972 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1973 }
1974 
1975 static struct iwn_eeprom_chan *
1976 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1977 {
1978 	int i, j;
1979 
1980 	for (j = 0; j < 7; j++) {
1981 		for (i = 0; i < iwn_bands[j].nchan; i++) {
1982 			if (iwn_bands[j].chan[i] == c->ic_ieee)
1983 				return &sc->eeprom_channels[j][i];
1984 		}
1985 	}
1986 
1987 	return NULL;
1988 }
1989 
1990 /*
1991  * Enforce flags read from EEPROM.
1992  */
1993 static int
1994 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1995     int nchan, struct ieee80211_channel chans[])
1996 {
1997 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1998 	int i;
1999 
2000 	for (i = 0; i < nchan; i++) {
2001 		struct ieee80211_channel *c = &chans[i];
2002 		struct iwn_eeprom_chan *channel;
2003 
2004 		channel = iwn_find_eeprom_channel(sc, c);
2005 		if (channel == NULL) {
2006 			if_printf(ic->ic_ifp,
2007 			    "%s: invalid channel %u freq %u/0x%x\n",
2008 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2009 			return EINVAL;
2010 		}
2011 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
2018 
2019 static void
2020 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2021 {
2022 	struct iwn_eeprom_enhinfo enhinfo[35];
2023 	uint16_t val, base;
2024 	int8_t maxpwr;
2025 	int i;
2026 
2027 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2028 	base = le16toh(val);
2029 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2030 	    enhinfo, sizeof enhinfo);
2031 
2032 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
2033 	for (i = 0; i < nitems(enhinfo); i++) {
2034 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
2035 			continue;	/* Skip invalid entries. */
2036 
2037 		maxpwr = 0;
2038 		if (sc->txchainmask & IWN_ANT_A)
2039 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2040 		if (sc->txchainmask & IWN_ANT_B)
2041 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2042 		if (sc->txchainmask & IWN_ANT_C)
2043 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2044 		if (sc->ntxchains == 2)
2045 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2046 		else if (sc->ntxchains == 3)
2047 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2048 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
2049 
2050 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
2051 		    maxpwr);
2052 		sc->enh_maxpwr[i] = maxpwr;
2053 	}
2054 }
2055 
2056 static struct ieee80211_node *
2057 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2058 {
2059 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2060 }
2061 
2062 static void
2063 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2064 {
2065 	struct iwn_node *wn = (void *)ni;
2066 	int ridx, i;
2067 
2068 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
2069 		ridx = iwn_plcp_signal(ni->ni_rates.rs_rates[i]);
2070 		wn->ridx[i] = ridx;
2071 	}
2072 }
2073 
2074 static int
2075 iwn_media_change(struct ifnet *ifp)
2076 {
2077 	int error;
2078 
2079 	error = ieee80211_media_change(ifp);
2080 	/* NB: only the fixed rate can change and that doesn't need a reset */
2081 	return (error == ENETRESET ? 0 : error);
2082 }
2083 
2084 static int
2085 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2086 {
2087 	struct iwn_vap *ivp = IWN_VAP(vap);
2088 	struct ieee80211com *ic = vap->iv_ic;
2089 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2090 	int error = 0;
2091 
2092 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2093 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2094 
2095 	IEEE80211_UNLOCK(ic);
2096 	IWN_LOCK(sc);
2097 	callout_stop(&sc->calib_to);
2098 
2099 	switch (nstate) {
2100 	case IEEE80211_S_ASSOC:
2101 		if (vap->iv_state != IEEE80211_S_RUN)
2102 			break;
2103 		/* FALLTHROUGH */
2104 	case IEEE80211_S_AUTH:
2105 		if (vap->iv_state == IEEE80211_S_AUTH)
2106 			break;
2107 
2108 		/*
2109 		 * !AUTH -> AUTH transition requires state reset to handle
2110 		 * reassociations correctly.
2111 		 */
2112 		sc->rxon.associd = 0;
2113 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2114 		sc->calib.state = IWN_CALIB_STATE_INIT;
2115 
2116 		if ((error = iwn_auth(sc, vap)) != 0) {
2117 			device_printf(sc->sc_dev,
2118 			    "%s: could not move to auth state\n", __func__);
2119 		}
2120 		break;
2121 
2122 	case IEEE80211_S_RUN:
2123 		/*
2124 		 * RUN -> RUN transition; Just restart the timers.
2125 		 */
2126 		if (vap->iv_state == IEEE80211_S_RUN) {
2127 			sc->calib_cnt = 0;
2128 			break;
2129 		}
2130 
2131 		/*
2132 		 * !RUN -> RUN requires setting the association id
2133 		 * which is done with a firmware cmd.  We also defer
2134 		 * starting the timers until that work is done.
2135 		 */
2136 		if ((error = iwn_run(sc, vap)) != 0) {
2137 			device_printf(sc->sc_dev,
2138 			    "%s: could not move to run state\n", __func__);
2139 		}
2140 		break;
2141 
2142 	case IEEE80211_S_INIT:
2143 		sc->calib.state = IWN_CALIB_STATE_INIT;
2144 		break;
2145 
2146 	default:
2147 		break;
2148 	}
2149 	IWN_UNLOCK(sc);
2150 	IEEE80211_LOCK(ic);
2151 	if (error != 0)
2152 		return error;
2153 	return ivp->iv_newstate(vap, nstate, arg);
2154 }
2155 
2156 static void
2157 iwn_calib_timeout(void *arg)
2158 {
2159 	struct iwn_softc *sc = arg;
2160 
2161 	IWN_LOCK_ASSERT(sc);
2162 
2163 	/* Force automatic TX power calibration every 60 secs. */
2164 	if (++sc->calib_cnt >= 120) {
2165 		uint32_t flags = 0;
2166 
2167 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2168 		    "sending request for statistics");
2169 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2170 		    sizeof flags, 1);
2171 		sc->calib_cnt = 0;
2172 	}
2173 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2174 	    sc);
2175 }
2176 
2177 /*
2178  * Process an RX_PHY firmware notification.  This is usually immediately
2179  * followed by an MPDU_RX_DONE notification.
2180  */
2181 static void
2182 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2183     struct iwn_rx_data *data)
2184 {
2185 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2186 
2187 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2188 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2189 
2190 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2191 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2192 	sc->last_rx_valid = 1;
2193 }
2194 
2195 /*
2196  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2197  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2198  */
2199 static void
2200 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2201     struct iwn_rx_data *data)
2202 {
2203 	struct iwn_ops *ops = &sc->ops;
2204 	struct ifnet *ifp = sc->sc_ifp;
2205 	struct ieee80211com *ic = ifp->if_l2com;
2206 	struct iwn_rx_ring *ring = &sc->rxq;
2207 	struct ieee80211_frame *wh;
2208 	struct ieee80211_node *ni;
2209 	struct mbuf *m, *m1;
2210 	struct iwn_rx_stat *stat;
2211 	caddr_t head;
2212 	bus_addr_t paddr;
2213 	uint32_t flags;
2214 	int error, len, rssi, nf;
2215 
2216 	if (desc->type == IWN_MPDU_RX_DONE) {
2217 		/* Check for prior RX_PHY notification. */
2218 		if (!sc->last_rx_valid) {
2219 			DPRINTF(sc, IWN_DEBUG_ANY,
2220 			    "%s: missing RX_PHY\n", __func__);
2221 			return;
2222 		}
2223 		sc->last_rx_valid = 0;
2224 		stat = &sc->last_rx_stat;
2225 	} else
2226 		stat = (struct iwn_rx_stat *)(desc + 1);
2227 
2228 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2229 
2230 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2231 		device_printf(sc->sc_dev,
2232 		    "%s: invalid RX statistic header, len %d\n", __func__,
2233 		    stat->cfg_phy_len);
2234 		return;
2235 	}
2236 	if (desc->type == IWN_MPDU_RX_DONE) {
2237 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2238 		head = (caddr_t)(mpdu + 1);
2239 		len = le16toh(mpdu->len);
2240 	} else {
2241 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2242 		len = le16toh(stat->len);
2243 	}
2244 
2245 	flags = le32toh(*(uint32_t *)(head + len));
2246 
2247 	/* Discard frames with a bad FCS early. */
2248 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2249 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2250 		    __func__, flags);
2251 		ifp->if_ierrors++;
2252 		return;
2253 	}
2254 	/* Discard frames that are too short. */
2255 	if (len < sizeof (*wh)) {
2256 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2257 		    __func__, len);
2258 		ifp->if_ierrors++;
2259 		return;
2260 	}
2261 
2262 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2263 	if (m1 == NULL) {
2264 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2265 		    __func__);
2266 		ifp->if_ierrors++;
2267 		return;
2268 	}
2269 	bus_dmamap_unload(ring->data_dmat, data->map);
2270 
2271 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2272 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2273 	if (error != 0 && error != EFBIG) {
2274 		device_printf(sc->sc_dev,
2275 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2276 		m_freem(m1);
2277 
2278 		/* Try to reload the old mbuf. */
2279 		error = bus_dmamap_load(ring->data_dmat, data->map,
2280 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2281 		    &paddr, BUS_DMA_NOWAIT);
2282 		if (error != 0 && error != EFBIG) {
2283 			panic("%s: could not load old RX mbuf", __func__);
2284 		}
2285 		/* Physical address may have changed. */
2286 		ring->desc[ring->cur] = htole32(paddr >> 8);
2287 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2288 		    BUS_DMASYNC_PREWRITE);
2289 		ifp->if_ierrors++;
2290 		return;
2291 	}
2292 
2293 	m = data->m;
2294 	data->m = m1;
2295 	/* Update RX descriptor. */
2296 	ring->desc[ring->cur] = htole32(paddr >> 8);
2297 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2298 	    BUS_DMASYNC_PREWRITE);
2299 
2300 	/* Finalize mbuf. */
2301 	m->m_pkthdr.rcvif = ifp;
2302 	m->m_data = head;
2303 	m->m_pkthdr.len = m->m_len = len;
2304 
2305 	/* Grab a reference to the source node. */
2306 	wh = mtod(m, struct ieee80211_frame *);
2307 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2308 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2309 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2310 
2311 	rssi = ops->get_rssi(sc, stat);
2312 
2313 	if (ieee80211_radiotap_active(ic)) {
2314 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2315 
2316 		tap->wr_flags = 0;
2317 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2318 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2319 		tap->wr_dbm_antsignal = (int8_t)rssi;
2320 		tap->wr_dbm_antnoise = (int8_t)nf;
2321 		tap->wr_tsft = stat->tstamp;
2322 		switch (stat->rate) {
2323 		/* CCK rates. */
2324 		case  10: tap->wr_rate =   2; break;
2325 		case  20: tap->wr_rate =   4; break;
2326 		case  55: tap->wr_rate =  11; break;
2327 		case 110: tap->wr_rate =  22; break;
2328 		/* OFDM rates. */
2329 		case 0xd: tap->wr_rate =  12; break;
2330 		case 0xf: tap->wr_rate =  18; break;
2331 		case 0x5: tap->wr_rate =  24; break;
2332 		case 0x7: tap->wr_rate =  36; break;
2333 		case 0x9: tap->wr_rate =  48; break;
2334 		case 0xb: tap->wr_rate =  72; break;
2335 		case 0x1: tap->wr_rate =  96; break;
2336 		case 0x3: tap->wr_rate = 108; break;
2337 		/* Unknown rate: should not happen. */
2338 		default:  tap->wr_rate =   0;
2339 		}
2340 	}
2341 
2342 	IWN_UNLOCK(sc);
2343 
2344 	/* Send the frame to the 802.11 layer. */
2345 	if (ni != NULL) {
2346 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2347 		/* Node is no longer needed. */
2348 		ieee80211_free_node(ni);
2349 	} else
2350 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2351 
2352 	IWN_LOCK(sc);
2353 }
2354 
2355 #if 0	/* HT */
2356 /* Process an incoming Compressed BlockAck. */
2357 static void
2358 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2359     struct iwn_rx_data *data)
2360 {
2361 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2362 	struct iwn_tx_ring *txq;
2363 
2364 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2365 
2366 	txq = &sc->txq[letoh16(ba->qid)];
2367 	/* XXX TBD */
2368 }
2369 #endif
2370 
2371 /*
2372  * Process a CALIBRATION_RESULT notification sent by the initialization
2373  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2374  */
2375 static void
2376 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2377     struct iwn_rx_data *data)
2378 {
2379 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2380 	int len, idx = -1;
2381 
2382 	/* Runtime firmware should not send such a notification. */
2383 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2384 		return;
2385 
2386 	len = (le32toh(desc->len) & 0x3fff) - 4;
2387 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2388 
2389 	switch (calib->code) {
2390 	case IWN5000_PHY_CALIB_DC:
2391 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2392 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2393 		     sc->hw_type >= IWN_HW_REV_TYPE_6000))
2394 			idx = 0;
2395 		break;
2396 	case IWN5000_PHY_CALIB_LO:
2397 		idx = 1;
2398 		break;
2399 	case IWN5000_PHY_CALIB_TX_IQ:
2400 		idx = 2;
2401 		break;
2402 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2403 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2404 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2405 			idx = 3;
2406 		break;
2407 	case IWN5000_PHY_CALIB_BASE_BAND:
2408 		idx = 4;
2409 		break;
2410 	}
2411 	if (idx == -1)	/* Ignore other results. */
2412 		return;
2413 
2414 	/* Save calibration result. */
2415 	if (sc->calibcmd[idx].buf != NULL)
2416 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2417 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2418 	if (sc->calibcmd[idx].buf == NULL) {
2419 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2420 		    "not enough memory for calibration result %d\n",
2421 		    calib->code);
2422 		return;
2423 	}
2424 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2425 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2426 	sc->calibcmd[idx].len = len;
2427 	memcpy(sc->calibcmd[idx].buf, calib, len);
2428 }
2429 
2430 /*
2431  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2432  * The latter is sent by the firmware after each received beacon.
2433  */
2434 static void
2435 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2436     struct iwn_rx_data *data)
2437 {
2438 	struct iwn_ops *ops = &sc->ops;
2439 	struct ifnet *ifp = sc->sc_ifp;
2440 	struct ieee80211com *ic = ifp->if_l2com;
2441 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2442 	struct iwn_calib_state *calib = &sc->calib;
2443 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2444 	int temp;
2445 
2446 	/* Ignore statistics received during a scan. */
2447 	if (vap->iv_state != IEEE80211_S_RUN ||
2448 	    (ic->ic_flags & IEEE80211_F_SCAN))
2449 		return;
2450 
2451 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2452 
2453 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2454 	    __func__, desc->type);
2455 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2456 
2457 	/* Test if temperature has changed. */
2458 	if (stats->general.temp != sc->rawtemp) {
2459 		/* Convert "raw" temperature to degC. */
2460 		sc->rawtemp = stats->general.temp;
2461 		temp = ops->get_temperature(sc);
2462 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2463 		    __func__, temp);
2464 
2465 		/* Update TX power if need be (4965AGN only). */
2466 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2467 			iwn4965_power_calibration(sc, temp);
2468 	}
2469 
2470 	if (desc->type != IWN_BEACON_STATISTICS)
2471 		return;	/* Reply to a statistics request. */
2472 
2473 	sc->noise = iwn_get_noise(&stats->rx.general);
2474 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2475 
2476 	/* Test that RSSI and noise are present in stats report. */
2477 	if (le32toh(stats->rx.general.flags) != 1) {
2478 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2479 		    "received statistics without RSSI");
2480 		return;
2481 	}
2482 
2483 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2484 		iwn_collect_noise(sc, &stats->rx.general);
2485 	else if (calib->state == IWN_CALIB_STATE_RUN)
2486 		iwn_tune_sensitivity(sc, &stats->rx);
2487 }
2488 
2489 /*
2490  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2491  * and 5000 adapters have different incompatible TX status formats.
2492  */
2493 static void
2494 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2495     struct iwn_rx_data *data)
2496 {
2497 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2498 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2499 
2500 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2501 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2502 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2503 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2504 	    le32toh(stat->status));
2505 
2506 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2507 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2508 }
2509 
2510 static void
2511 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2512     struct iwn_rx_data *data)
2513 {
2514 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2515 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2516 
2517 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2518 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2519 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2520 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2521 	    le32toh(stat->status));
2522 
2523 #ifdef notyet
2524 	/* Reset TX scheduler slot. */
2525 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2526 #endif
2527 
2528 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2529 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2530 }
2531 
2532 /*
2533  * Adapter-independent backend for TX_DONE firmware notifications.
2534  */
2535 static void
2536 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2537     uint8_t status)
2538 {
2539 	struct ifnet *ifp = sc->sc_ifp;
2540 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2541 	struct iwn_tx_data *data = &ring->data[desc->idx];
2542 	struct mbuf *m;
2543 	struct ieee80211_node *ni;
2544 	struct ieee80211vap *vap;
2545 
2546 	KASSERT(data->ni != NULL, ("no node"));
2547 
2548 	/* Unmap and free mbuf. */
2549 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2550 	bus_dmamap_unload(ring->data_dmat, data->map);
2551 	m = data->m, data->m = NULL;
2552 	ni = data->ni, data->ni = NULL;
2553 	vap = ni->ni_vap;
2554 
2555 	if (m->m_flags & M_TXCB) {
2556 		/*
2557 		 * Channels marked for "radar" require traffic to be received
2558 		 * to unlock before we can transmit.  Until traffic is seen
2559 		 * any attempt to transmit is returned immediately with status
2560 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2561 		 * happen on first authenticate after scanning.  To workaround
2562 		 * this we ignore a failure of this sort in AUTH state so the
2563 		 * 802.11 layer will fall back to using a timeout to wait for
2564 		 * the AUTH reply.  This allows the firmware time to see
2565 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2566 		 * unclear why the firmware does not maintain state for
2567 		 * channels recently visited as this would allow immediate
2568 		 * use of the channel after a scan (where we see traffic).
2569 		 */
2570 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2571 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2572 			ieee80211_process_callback(ni, m, 0);
2573 		else
2574 			ieee80211_process_callback(ni, m,
2575 			    (status & IWN_TX_FAIL) != 0);
2576 	}
2577 
2578 	/*
2579 	 * Update rate control statistics for the node.
2580 	 */
2581 	if (status & IWN_TX_FAIL) {
2582 		ifp->if_oerrors++;
2583 		ieee80211_ratectl_tx_complete(vap, ni,
2584 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2585 	} else {
2586 		ifp->if_opackets++;
2587 		ieee80211_ratectl_tx_complete(vap, ni,
2588 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2589 	}
2590 	m_freem(m);
2591 	ieee80211_free_node(ni);
2592 
2593 	sc->sc_tx_timer = 0;
2594 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2595 		sc->qfullmsk &= ~(1 << ring->qid);
2596 		if (sc->qfullmsk == 0 &&
2597 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2598 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2599 			iwn_start_locked(ifp);
2600 		}
2601 	}
2602 }
2603 
2604 /*
2605  * Process a "command done" firmware notification.  This is where we wakeup
2606  * processes waiting for a synchronous command completion.
2607  */
2608 static void
2609 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2610 {
2611 	struct iwn_tx_ring *ring = &sc->txq[4];
2612 	struct iwn_tx_data *data;
2613 
2614 	if ((desc->qid & 0xf) != 4)
2615 		return;	/* Not a command ack. */
2616 
2617 	data = &ring->data[desc->idx];
2618 
2619 	/* If the command was mapped in an mbuf, free it. */
2620 	if (data->m != NULL) {
2621 		bus_dmamap_sync(ring->data_dmat, data->map,
2622 		    BUS_DMASYNC_POSTWRITE);
2623 		bus_dmamap_unload(ring->data_dmat, data->map);
2624 		m_freem(data->m);
2625 		data->m = NULL;
2626 	}
2627 	wakeup(&ring->desc[desc->idx]);
2628 }
2629 
2630 /*
2631  * Process an INT_FH_RX or INT_SW_RX interrupt.
2632  */
2633 static void
2634 iwn_notif_intr(struct iwn_softc *sc)
2635 {
2636 	struct iwn_ops *ops = &sc->ops;
2637 	struct ifnet *ifp = sc->sc_ifp;
2638 	struct ieee80211com *ic = ifp->if_l2com;
2639 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2640 	uint16_t hw;
2641 
2642 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2643 	    BUS_DMASYNC_POSTREAD);
2644 
2645 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2646 	while (sc->rxq.cur != hw) {
2647 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2648 		struct iwn_rx_desc *desc;
2649 
2650 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2651 		    BUS_DMASYNC_POSTREAD);
2652 		desc = mtod(data->m, struct iwn_rx_desc *);
2653 
2654 		DPRINTF(sc, IWN_DEBUG_RECV,
2655 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2656 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2657 		    desc->type, iwn_intr_str(desc->type),
2658 		    le16toh(desc->len));
2659 
2660 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2661 			iwn_cmd_done(sc, desc);
2662 
2663 		switch (desc->type) {
2664 		case IWN_RX_PHY:
2665 			iwn_rx_phy(sc, desc, data);
2666 			break;
2667 
2668 		case IWN_RX_DONE:		/* 4965AGN only. */
2669 		case IWN_MPDU_RX_DONE:
2670 			/* An 802.11 frame has been received. */
2671 			iwn_rx_done(sc, desc, data);
2672 			break;
2673 
2674 #if 0	/* HT */
2675 		case IWN_RX_COMPRESSED_BA:
2676 			/* A Compressed BlockAck has been received. */
2677 			iwn_rx_compressed_ba(sc, desc, data);
2678 			break;
2679 #endif
2680 
2681 		case IWN_TX_DONE:
2682 			/* An 802.11 frame has been transmitted. */
2683 			ops->tx_done(sc, desc, data);
2684 			break;
2685 
2686 		case IWN_RX_STATISTICS:
2687 		case IWN_BEACON_STATISTICS:
2688 			iwn_rx_statistics(sc, desc, data);
2689 			break;
2690 
2691 		case IWN_BEACON_MISSED:
2692 		{
2693 			struct iwn_beacon_missed *miss =
2694 			    (struct iwn_beacon_missed *)(desc + 1);
2695 			int misses;
2696 
2697 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2698 			    BUS_DMASYNC_POSTREAD);
2699 			misses = le32toh(miss->consecutive);
2700 
2701 			DPRINTF(sc, IWN_DEBUG_STATE,
2702 			    "%s: beacons missed %d/%d\n", __func__,
2703 			    misses, le32toh(miss->total));
2704 			/*
2705 			 * If more than 5 consecutive beacons are missed,
2706 			 * reinitialize the sensitivity state machine.
2707 			 */
2708 			if (vap->iv_state == IEEE80211_S_RUN &&
2709 			    (ic->ic_flags & IEEE80211_F_SCAN) != 0) {
2710 				if (misses > 5)
2711 					(void)iwn_init_sensitivity(sc);
2712 				if (misses >= vap->iv_bmissthreshold) {
2713 					IWN_UNLOCK(sc);
2714 					ieee80211_beacon_miss(ic);
2715 					IWN_LOCK(sc);
2716 				}
2717 			}
2718 			break;
2719 		}
2720 		case IWN_UC_READY:
2721 		{
2722 			struct iwn_ucode_info *uc =
2723 			    (struct iwn_ucode_info *)(desc + 1);
2724 
2725 			/* The microcontroller is ready. */
2726 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2727 			    BUS_DMASYNC_POSTREAD);
2728 			DPRINTF(sc, IWN_DEBUG_RESET,
2729 			    "microcode alive notification version=%d.%d "
2730 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2731 			    uc->subtype, le32toh(uc->valid));
2732 
2733 			if (le32toh(uc->valid) != 1) {
2734 				device_printf(sc->sc_dev,
2735 				    "microcontroller initialization failed");
2736 				break;
2737 			}
2738 			if (uc->subtype == IWN_UCODE_INIT) {
2739 				/* Save microcontroller report. */
2740 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2741 			}
2742 			/* Save the address of the error log in SRAM. */
2743 			sc->errptr = le32toh(uc->errptr);
2744 			break;
2745 		}
2746 		case IWN_STATE_CHANGED:
2747 		{
2748 			uint32_t *status = (uint32_t *)(desc + 1);
2749 
2750 			/*
2751 			 * State change allows hardware switch change to be
2752 			 * noted. However, we handle this in iwn_intr as we
2753 			 * get both the enable/disble intr.
2754 			 */
2755 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2756 			    BUS_DMASYNC_POSTREAD);
2757 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2758 			    le32toh(*status));
2759 			break;
2760 		}
2761 		case IWN_START_SCAN:
2762 		{
2763 			struct iwn_start_scan *scan =
2764 			    (struct iwn_start_scan *)(desc + 1);
2765 
2766 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2767 			    BUS_DMASYNC_POSTREAD);
2768 			DPRINTF(sc, IWN_DEBUG_ANY,
2769 			    "%s: scanning channel %d status %x\n",
2770 			    __func__, scan->chan, le32toh(scan->status));
2771 			break;
2772 		}
2773 		case IWN_STOP_SCAN:
2774 		{
2775 			struct iwn_stop_scan *scan =
2776 			    (struct iwn_stop_scan *)(desc + 1);
2777 
2778 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2779 			    BUS_DMASYNC_POSTREAD);
2780 			DPRINTF(sc, IWN_DEBUG_STATE,
2781 			    "scan finished nchan=%d status=%d chan=%d\n",
2782 			    scan->nchan, scan->status, scan->chan);
2783 
2784 			IWN_UNLOCK(sc);
2785 			ieee80211_scan_next(vap);
2786 			IWN_LOCK(sc);
2787 			break;
2788 		}
2789 		case IWN5000_CALIBRATION_RESULT:
2790 			iwn5000_rx_calib_results(sc, desc, data);
2791 			break;
2792 
2793 		case IWN5000_CALIBRATION_DONE:
2794 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2795 			wakeup(sc);
2796 			break;
2797 		}
2798 
2799 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2800 	}
2801 
2802 	/* Tell the firmware what we have processed. */
2803 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2804 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2805 }
2806 
2807 /*
2808  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2809  * from power-down sleep mode.
2810  */
2811 static void
2812 iwn_wakeup_intr(struct iwn_softc *sc)
2813 {
2814 	int qid;
2815 
2816 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2817 	    __func__);
2818 
2819 	/* Wakeup RX and TX rings. */
2820 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2821 	for (qid = 0; qid < sc->ntxqs; qid++) {
2822 		struct iwn_tx_ring *ring = &sc->txq[qid];
2823 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2824 	}
2825 }
2826 
2827 static void
2828 iwn_rftoggle_intr(struct iwn_softc *sc)
2829 {
2830 	struct ifnet *ifp = sc->sc_ifp;
2831 	struct ieee80211com *ic = ifp->if_l2com;
2832 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2833 
2834 	IWN_LOCK_ASSERT(sc);
2835 
2836 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2837 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2838 	if (tmp & IWN_GP_CNTRL_RFKILL)
2839 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2840 	else
2841 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2842 }
2843 
2844 /*
2845  * Dump the error log of the firmware when a firmware panic occurs.  Although
2846  * we can't debug the firmware because it is neither open source nor free, it
2847  * can help us to identify certain classes of problems.
2848  */
2849 static void
2850 iwn_fatal_intr(struct iwn_softc *sc)
2851 {
2852 	struct iwn_fw_dump dump;
2853 	int i;
2854 
2855 	IWN_LOCK_ASSERT(sc);
2856 
2857 	/* Force a complete recalibration on next init. */
2858 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2859 
2860 	/* Check that the error log address is valid. */
2861 	if (sc->errptr < IWN_FW_DATA_BASE ||
2862 	    sc->errptr + sizeof (dump) >
2863 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2864 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2865 		    sc->errptr);
2866 		return;
2867 	}
2868 	if (iwn_nic_lock(sc) != 0) {
2869 		printf("%s: could not read firmware error log\n", __func__);
2870 		return;
2871 	}
2872 	/* Read firmware error log from SRAM. */
2873 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2874 	    sizeof (dump) / sizeof (uint32_t));
2875 	iwn_nic_unlock(sc);
2876 
2877 	if (dump.valid == 0) {
2878 		printf("%s: firmware error log is empty\n", __func__);
2879 		return;
2880 	}
2881 	printf("firmware error log:\n");
2882 	printf("  error type      = \"%s\" (0x%08X)\n",
2883 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2884 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2885 	    dump.id);
2886 	printf("  program counter = 0x%08X\n", dump.pc);
2887 	printf("  source line     = 0x%08X\n", dump.src_line);
2888 	printf("  error data      = 0x%08X%08X\n",
2889 	    dump.error_data[0], dump.error_data[1]);
2890 	printf("  branch link     = 0x%08X%08X\n",
2891 	    dump.branch_link[0], dump.branch_link[1]);
2892 	printf("  interrupt link  = 0x%08X%08X\n",
2893 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2894 	printf("  time            = %u\n", dump.time[0]);
2895 
2896 	/* Dump driver status (TX and RX rings) while we're here. */
2897 	printf("driver status:\n");
2898 	for (i = 0; i < sc->ntxqs; i++) {
2899 		struct iwn_tx_ring *ring = &sc->txq[i];
2900 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2901 		    i, ring->qid, ring->cur, ring->queued);
2902 	}
2903 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2904 }
2905 
2906 static void
2907 iwn_intr(void *arg)
2908 {
2909 	struct iwn_softc *sc = arg;
2910 	struct ifnet *ifp = sc->sc_ifp;
2911 	uint32_t r1, r2, tmp;
2912 
2913 	IWN_LOCK(sc);
2914 
2915 	/* Disable interrupts. */
2916 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2917 
2918 	/* Read interrupts from ICT (fast) or from registers (slow). */
2919 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2920 		tmp = 0;
2921 		while (sc->ict[sc->ict_cur] != 0) {
2922 			tmp |= sc->ict[sc->ict_cur];
2923 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2924 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2925 		}
2926 		tmp = le32toh(tmp);
2927 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2928 			tmp = 0;
2929 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2930 			tmp |= 0x8000;
2931 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2932 		r2 = 0;	/* Unused. */
2933 	} else {
2934 		r1 = IWN_READ(sc, IWN_INT);
2935 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2936 			return;	/* Hardware gone! */
2937 		r2 = IWN_READ(sc, IWN_FH_INT);
2938 	}
2939 
2940 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2941 
2942 	if (r1 == 0 && r2 == 0)
2943 		goto done;	/* Interrupt not for us. */
2944 
2945 	/* Acknowledge interrupts. */
2946 	IWN_WRITE(sc, IWN_INT, r1);
2947 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2948 		IWN_WRITE(sc, IWN_FH_INT, r2);
2949 
2950 	if (r1 & IWN_INT_RF_TOGGLED) {
2951 		iwn_rftoggle_intr(sc);
2952 		goto done;
2953 	}
2954 	if (r1 & IWN_INT_CT_REACHED) {
2955 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2956 		    __func__);
2957 	}
2958 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2959 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
2960 		    __func__);
2961 		/* Dump firmware error log and stop. */
2962 		iwn_fatal_intr(sc);
2963 		ifp->if_flags &= ~IFF_UP;
2964 		iwn_stop_locked(sc);
2965 		goto done;
2966 	}
2967 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2968 	    (r2 & IWN_FH_INT_RX)) {
2969 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2970 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2971 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2972 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2973 			    IWN_INT_PERIODIC_DIS);
2974 			iwn_notif_intr(sc);
2975 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2976 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2977 				    IWN_INT_PERIODIC_ENA);
2978 			}
2979 		} else
2980 			iwn_notif_intr(sc);
2981 	}
2982 
2983 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2984 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2985 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2986 		wakeup(sc);	/* FH DMA transfer completed. */
2987 	}
2988 
2989 	if (r1 & IWN_INT_ALIVE)
2990 		wakeup(sc);	/* Firmware is alive. */
2991 
2992 	if (r1 & IWN_INT_WAKEUP)
2993 		iwn_wakeup_intr(sc);
2994 
2995 done:
2996 	/* Re-enable interrupts. */
2997 	if (ifp->if_flags & IFF_UP)
2998 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2999 
3000 	IWN_UNLOCK(sc);
3001 }
3002 
3003 /*
3004  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3005  * 5000 adapters use a slightly different format).
3006  */
3007 static void
3008 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3009     uint16_t len)
3010 {
3011 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3012 
3013 	*w = htole16(len + 8);
3014 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3015 	    BUS_DMASYNC_PREWRITE);
3016 	if (idx < IWN_SCHED_WINSZ) {
3017 		*(w + IWN_TX_RING_COUNT) = *w;
3018 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3019 		    BUS_DMASYNC_PREWRITE);
3020 	}
3021 }
3022 
3023 static void
3024 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3025     uint16_t len)
3026 {
3027 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3028 
3029 	*w = htole16(id << 12 | (len + 8));
3030 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3031 	    BUS_DMASYNC_PREWRITE);
3032 	if (idx < IWN_SCHED_WINSZ) {
3033 		*(w + IWN_TX_RING_COUNT) = *w;
3034 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3035 		    BUS_DMASYNC_PREWRITE);
3036 	}
3037 }
3038 
3039 #ifdef notyet
3040 static void
3041 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3042 {
3043 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3044 
3045 	*w = (*w & htole16(0xf000)) | htole16(1);
3046 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3047 	    BUS_DMASYNC_PREWRITE);
3048 	if (idx < IWN_SCHED_WINSZ) {
3049 		*(w + IWN_TX_RING_COUNT) = *w;
3050 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3051 		    BUS_DMASYNC_PREWRITE);
3052 	}
3053 }
3054 #endif
3055 
3056 static uint8_t
3057 iwn_plcp_signal(int rate) {
3058 	int i;
3059 
3060 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
3061 		if ((rate & IEEE80211_RATE_VAL) == iwn_rates[i].rate)
3062 			return i;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static int
3069 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3070 {
3071 	const struct ieee80211_txparam *tp;
3072 	struct ieee80211vap *vap = ni->ni_vap;
3073 	struct ieee80211com *ic = ni->ni_ic;
3074 	struct iwn_node *wn = (void *)ni;
3075 	struct iwn_tx_ring *ring;
3076 	struct iwn_tx_desc *desc;
3077 	struct iwn_tx_data *data;
3078 	struct iwn_tx_cmd *cmd;
3079 	struct iwn_cmd_data *tx;
3080 	const struct iwn_rate *rinfo;
3081 	struct ieee80211_frame *wh;
3082 	struct ieee80211_key *k = NULL;
3083 	struct mbuf *m1;
3084 	uint32_t flags;
3085 	uint16_t qos;
3086 	u_int hdrlen;
3087 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3088 	uint8_t tid, ridx, txant, type;
3089 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3090 
3091 	IWN_LOCK_ASSERT(sc);
3092 
3093 	wh = mtod(m, struct ieee80211_frame *);
3094 	hdrlen = ieee80211_anyhdrsize(wh);
3095 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3096 
3097 	/* Select EDCA Access Category and TX ring for this frame. */
3098 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3099 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3100 		tid = qos & IEEE80211_QOS_TID;
3101 	} else {
3102 		qos = 0;
3103 		tid = 0;
3104 	}
3105 	ac = M_WME_GETAC(m);
3106 
3107 	ring = &sc->txq[ac];
3108 	desc = &ring->desc[ring->cur];
3109 	data = &ring->data[ring->cur];
3110 
3111 	/* Choose a TX rate index. */
3112 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3113 	if (type == IEEE80211_FC0_TYPE_MGT)
3114 		rate = tp->mgmtrate;
3115 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3116 		rate = tp->mcastrate;
3117 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3118 		rate = tp->ucastrate;
3119 	else {
3120 		/* XXX pass pktlen */
3121 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3122 		rate = ni->ni_txrate;
3123 	}
3124 	ridx = iwn_plcp_signal(rate);
3125 	rinfo = &iwn_rates[ridx];
3126 
3127 	/* Encrypt the frame if need be. */
3128 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3129 		/* Retrieve key for TX. */
3130 		k = ieee80211_crypto_encap(ni, m);
3131 		if (k == NULL) {
3132 			m_freem(m);
3133 			return ENOBUFS;
3134 		}
3135 		/* 802.11 header may have moved. */
3136 		wh = mtod(m, struct ieee80211_frame *);
3137 	}
3138 	totlen = m->m_pkthdr.len;
3139 
3140 	if (ieee80211_radiotap_active_vap(vap)) {
3141 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3142 
3143 		tap->wt_flags = 0;
3144 		tap->wt_rate = rinfo->rate;
3145 		if (k != NULL)
3146 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3147 
3148 		ieee80211_radiotap_tx(vap, m);
3149 	}
3150 
3151 	/* Prepare TX firmware command. */
3152 	cmd = &ring->cmd[ring->cur];
3153 	cmd->code = IWN_CMD_TX_DATA;
3154 	cmd->flags = 0;
3155 	cmd->qid = ring->qid;
3156 	cmd->idx = ring->cur;
3157 
3158 	tx = (struct iwn_cmd_data *)cmd->data;
3159 	/* NB: No need to clear tx, all fields are reinitialized here. */
3160 	tx->scratch = 0;	/* clear "scratch" area */
3161 
3162 	flags = 0;
3163 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3164 		/* Unicast frame, check if an ACK is expected. */
3165 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3166 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3167 			flags |= IWN_TX_NEED_ACK;
3168 	}
3169 	if ((wh->i_fc[0] &
3170 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3171 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3172 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3173 
3174 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3175 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3176 
3177 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3178 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3179 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3180 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3181 			flags |= IWN_TX_NEED_RTS;
3182 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3183 		    ridx >= IWN_RIDX_OFDM6) {
3184 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3185 				flags |= IWN_TX_NEED_CTS;
3186 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3187 				flags |= IWN_TX_NEED_RTS;
3188 		}
3189 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3190 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3191 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3192 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3193 				flags |= IWN_TX_NEED_PROTECTION;
3194 			} else
3195 				flags |= IWN_TX_FULL_TXOP;
3196 		}
3197 	}
3198 
3199 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3200 	    type != IEEE80211_FC0_TYPE_DATA)
3201 		tx->id = sc->broadcast_id;
3202 	else
3203 		tx->id = wn->id;
3204 
3205 	if (type == IEEE80211_FC0_TYPE_MGT) {
3206 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3207 
3208 		/* Tell HW to set timestamp in probe responses. */
3209 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3210 			flags |= IWN_TX_INSERT_TSTAMP;
3211 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3212 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3213 			tx->timeout = htole16(3);
3214 		else
3215 			tx->timeout = htole16(2);
3216 	} else
3217 		tx->timeout = htole16(0);
3218 
3219 	if (hdrlen & 3) {
3220 		/* First segment length must be a multiple of 4. */
3221 		flags |= IWN_TX_NEED_PADDING;
3222 		pad = 4 - (hdrlen & 3);
3223 	} else
3224 		pad = 0;
3225 
3226 	tx->len = htole16(totlen);
3227 	tx->tid = tid;
3228 	tx->rts_ntries = 60;
3229 	tx->data_ntries = 15;
3230 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3231 	tx->plcp = rinfo->plcp;
3232 	tx->rflags = rinfo->flags;
3233 	if (tx->id == sc->broadcast_id) {
3234 		/* Group or management frame. */
3235 		tx->linkq = 0;
3236 		/* XXX Alternate between antenna A and B? */
3237 		txant = IWN_LSB(sc->txchainmask);
3238 		tx->rflags |= IWN_RFLAG_ANT(txant);
3239 	} else {
3240 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3241 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3242 	}
3243 	/* Set physical address of "scratch area". */
3244 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3245 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3246 
3247 	/* Copy 802.11 header in TX command. */
3248 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3249 
3250 	/* Trim 802.11 header. */
3251 	m_adj(m, hdrlen);
3252 	tx->security = 0;
3253 	tx->flags = htole32(flags);
3254 
3255 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3256 	    &nsegs, BUS_DMA_NOWAIT);
3257 	if (error != 0) {
3258 		if (error != EFBIG) {
3259 			device_printf(sc->sc_dev,
3260 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3261 			m_freem(m);
3262 			return error;
3263 		}
3264 		/* Too many DMA segments, linearize mbuf. */
3265 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3266 		if (m1 == NULL) {
3267 			device_printf(sc->sc_dev,
3268 			    "%s: could not defrag mbuf\n", __func__);
3269 			m_freem(m);
3270 			return ENOBUFS;
3271 		}
3272 		m = m1;
3273 
3274 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3275 		    segs, &nsegs, BUS_DMA_NOWAIT);
3276 		if (error != 0) {
3277 			device_printf(sc->sc_dev,
3278 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3279 			m_freem(m);
3280 			return error;
3281 		}
3282 	}
3283 
3284 	data->m = m;
3285 	data->ni = ni;
3286 
3287 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3288 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3289 
3290 	/* Fill TX descriptor. */
3291 	desc->nsegs = 1;
3292 	if (m->m_len != 0)
3293 		desc->nsegs += nsegs;
3294 	/* First DMA segment is used by the TX command. */
3295 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3296 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3297 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3298 	/* Other DMA segments are for data payload. */
3299 	seg = &segs[0];
3300 	for (i = 1; i <= nsegs; i++) {
3301 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3302 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3303 		    seg->ds_len << 4);
3304 		seg++;
3305 	}
3306 
3307 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3308 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3309 	    BUS_DMASYNC_PREWRITE);
3310 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3311 	    BUS_DMASYNC_PREWRITE);
3312 
3313 #ifdef notyet
3314 	/* Update TX scheduler. */
3315 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3316 #endif
3317 
3318 	/* Kick TX ring. */
3319 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3320 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3321 
3322 	/* Mark TX ring as full if we reach a certain threshold. */
3323 	if (++ring->queued > IWN_TX_RING_HIMARK)
3324 		sc->qfullmsk |= 1 << ring->qid;
3325 
3326 	return 0;
3327 }
3328 
3329 static int
3330 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3331     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3332 {
3333 	const struct iwn_rate *rinfo;
3334 	struct ifnet *ifp = sc->sc_ifp;
3335 	struct ieee80211vap *vap = ni->ni_vap;
3336 	struct ieee80211com *ic = ifp->if_l2com;
3337 	struct iwn_tx_cmd *cmd;
3338 	struct iwn_cmd_data *tx;
3339 	struct ieee80211_frame *wh;
3340 	struct iwn_tx_ring *ring;
3341 	struct iwn_tx_desc *desc;
3342 	struct iwn_tx_data *data;
3343 	struct mbuf *m1;
3344 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3345 	uint32_t flags;
3346 	u_int hdrlen;
3347 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3348 	uint8_t ridx, type, txant;
3349 
3350 	IWN_LOCK_ASSERT(sc);
3351 
3352 	wh = mtod(m, struct ieee80211_frame *);
3353 	hdrlen = ieee80211_anyhdrsize(wh);
3354 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3355 
3356 	ac = params->ibp_pri & 3;
3357 
3358 	ring = &sc->txq[ac];
3359 	desc = &ring->desc[ring->cur];
3360 	data = &ring->data[ring->cur];
3361 
3362 	/* Choose a TX rate index. */
3363 	rate = params->ibp_rate0;
3364 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3365 		/* XXX fall back to mcast/mgmt rate? */
3366 		m_freem(m);
3367 		return EINVAL;
3368 	}
3369 	ridx = iwn_plcp_signal(rate);
3370 	rinfo = &iwn_rates[ridx];
3371 
3372 	totlen = m->m_pkthdr.len;
3373 
3374 	/* Prepare TX firmware command. */
3375 	cmd = &ring->cmd[ring->cur];
3376 	cmd->code = IWN_CMD_TX_DATA;
3377 	cmd->flags = 0;
3378 	cmd->qid = ring->qid;
3379 	cmd->idx = ring->cur;
3380 
3381 	tx = (struct iwn_cmd_data *)cmd->data;
3382 	/* NB: No need to clear tx, all fields are reinitialized here. */
3383 	tx->scratch = 0;	/* clear "scratch" area */
3384 
3385 	flags = 0;
3386 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3387 		flags |= IWN_TX_NEED_ACK;
3388 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3389 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3390 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3391 			flags &= ~IWN_TX_NEED_RTS;
3392 			flags |= IWN_TX_NEED_PROTECTION;
3393 		} else
3394 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3395 	}
3396 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3397 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3398 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3399 			flags &= ~IWN_TX_NEED_CTS;
3400 			flags |= IWN_TX_NEED_PROTECTION;
3401 		} else
3402 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3403 	}
3404 	if (type == IEEE80211_FC0_TYPE_MGT) {
3405 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3406 
3407 		/* Tell HW to set timestamp in probe responses. */
3408 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3409 			flags |= IWN_TX_INSERT_TSTAMP;
3410 
3411 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3412 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3413 			tx->timeout = htole16(3);
3414 		else
3415 			tx->timeout = htole16(2);
3416 	} else
3417 		tx->timeout = htole16(0);
3418 
3419 	if (hdrlen & 3) {
3420 		/* First segment length must be a multiple of 4. */
3421 		flags |= IWN_TX_NEED_PADDING;
3422 		pad = 4 - (hdrlen & 3);
3423 	} else
3424 		pad = 0;
3425 
3426 	if (ieee80211_radiotap_active_vap(vap)) {
3427 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3428 
3429 		tap->wt_flags = 0;
3430 		tap->wt_rate = rate;
3431 
3432 		ieee80211_radiotap_tx(vap, m);
3433 	}
3434 
3435 	tx->len = htole16(totlen);
3436 	tx->tid = 0;
3437 	tx->id = sc->broadcast_id;
3438 	tx->rts_ntries = params->ibp_try1;
3439 	tx->data_ntries = params->ibp_try0;
3440 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3441 	tx->plcp = rinfo->plcp;
3442 	tx->rflags = rinfo->flags;
3443 	/* Group or management frame. */
3444 	tx->linkq = 0;
3445 	txant = IWN_LSB(sc->txchainmask);
3446 	tx->rflags |= IWN_RFLAG_ANT(txant);
3447 	/* Set physical address of "scratch area". */
3448 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3449 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3450 
3451 	/* Copy 802.11 header in TX command. */
3452 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3453 
3454 	/* Trim 802.11 header. */
3455 	m_adj(m, hdrlen);
3456 	tx->security = 0;
3457 	tx->flags = htole32(flags);
3458 
3459 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3460 	    &nsegs, BUS_DMA_NOWAIT);
3461 	if (error != 0) {
3462 		if (error != EFBIG) {
3463 			device_printf(sc->sc_dev,
3464 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3465 			m_freem(m);
3466 			return error;
3467 		}
3468 		/* Too many DMA segments, linearize mbuf. */
3469 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3470 		if (m1 == NULL) {
3471 			device_printf(sc->sc_dev,
3472 			    "%s: could not defrag mbuf\n", __func__);
3473 			m_freem(m);
3474 			return ENOBUFS;
3475 		}
3476 		m = m1;
3477 
3478 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3479 		    segs, &nsegs, BUS_DMA_NOWAIT);
3480 		if (error != 0) {
3481 			device_printf(sc->sc_dev,
3482 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3483 			m_freem(m);
3484 			return error;
3485 		}
3486 	}
3487 
3488 	data->m = m;
3489 	data->ni = ni;
3490 
3491 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3492 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3493 
3494 	/* Fill TX descriptor. */
3495 	desc->nsegs = 1;
3496 	if (m->m_len != 0)
3497 		desc->nsegs += nsegs;
3498 	/* First DMA segment is used by the TX command. */
3499 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3500 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3501 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3502 	/* Other DMA segments are for data payload. */
3503 	seg = &segs[0];
3504 	for (i = 1; i <= nsegs; i++) {
3505 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3506 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3507 		    seg->ds_len << 4);
3508 		seg++;
3509 	}
3510 
3511 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3512 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3513 	    BUS_DMASYNC_PREWRITE);
3514 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3515 	    BUS_DMASYNC_PREWRITE);
3516 
3517 #ifdef notyet
3518 	/* Update TX scheduler. */
3519 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3520 #endif
3521 
3522 	/* Kick TX ring. */
3523 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3524 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3525 
3526 	/* Mark TX ring as full if we reach a certain threshold. */
3527 	if (++ring->queued > IWN_TX_RING_HIMARK)
3528 		sc->qfullmsk |= 1 << ring->qid;
3529 
3530 	return 0;
3531 }
3532 
3533 static int
3534 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3535     const struct ieee80211_bpf_params *params)
3536 {
3537 	struct ieee80211com *ic = ni->ni_ic;
3538 	struct ifnet *ifp = ic->ic_ifp;
3539 	struct iwn_softc *sc = ifp->if_softc;
3540 	int error = 0;
3541 
3542 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3543 		ieee80211_free_node(ni);
3544 		m_freem(m);
3545 		return ENETDOWN;
3546 	}
3547 
3548 	IWN_LOCK(sc);
3549 	if (params == NULL) {
3550 		/*
3551 		 * Legacy path; interpret frame contents to decide
3552 		 * precisely how to send the frame.
3553 		 */
3554 		error = iwn_tx_data(sc, m, ni);
3555 	} else {
3556 		/*
3557 		 * Caller supplied explicit parameters to use in
3558 		 * sending the frame.
3559 		 */
3560 		error = iwn_tx_data_raw(sc, m, ni, params);
3561 	}
3562 	if (error != 0) {
3563 		/* NB: m is reclaimed on tx failure */
3564 		ieee80211_free_node(ni);
3565 		ifp->if_oerrors++;
3566 	}
3567 	sc->sc_tx_timer = 5;
3568 
3569 	IWN_UNLOCK(sc);
3570 	return error;
3571 }
3572 
3573 static void
3574 iwn_start(struct ifnet *ifp)
3575 {
3576 	struct iwn_softc *sc = ifp->if_softc;
3577 
3578 	IWN_LOCK(sc);
3579 	iwn_start_locked(ifp);
3580 	IWN_UNLOCK(sc);
3581 }
3582 
3583 static void
3584 iwn_start_locked(struct ifnet *ifp)
3585 {
3586 	struct iwn_softc *sc = ifp->if_softc;
3587 	struct ieee80211_node *ni;
3588 	struct mbuf *m;
3589 
3590 	IWN_LOCK_ASSERT(sc);
3591 
3592 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3593 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3594 		return;
3595 
3596 	for (;;) {
3597 		if (sc->qfullmsk != 0) {
3598 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3599 			break;
3600 		}
3601 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3602 		if (m == NULL)
3603 			break;
3604 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3605 		if (iwn_tx_data(sc, m, ni) != 0) {
3606 			ieee80211_free_node(ni);
3607 			ifp->if_oerrors++;
3608 			continue;
3609 		}
3610 		sc->sc_tx_timer = 5;
3611 	}
3612 }
3613 
3614 static void
3615 iwn_watchdog(void *arg)
3616 {
3617 	struct iwn_softc *sc = arg;
3618 	struct ifnet *ifp = sc->sc_ifp;
3619 	struct ieee80211com *ic = ifp->if_l2com;
3620 
3621 	IWN_LOCK_ASSERT(sc);
3622 
3623 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3624 
3625 	if (sc->sc_tx_timer > 0) {
3626 		if (--sc->sc_tx_timer == 0) {
3627 			if_printf(ifp, "device timeout\n");
3628 			ieee80211_runtask(ic, &sc->sc_reinit_task);
3629 			return;
3630 		}
3631 	}
3632 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3633 }
3634 
3635 static int
3636 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3637 {
3638 	struct iwn_softc *sc = ifp->if_softc;
3639 	struct ieee80211com *ic = ifp->if_l2com;
3640 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3641 	struct ifreq *ifr = (struct ifreq *) data;
3642 	int error = 0, startall = 0, stop = 0;
3643 
3644 	switch (cmd) {
3645 	case SIOCGIFADDR:
3646 		error = ether_ioctl(ifp, cmd, data);
3647 		break;
3648 	case SIOCSIFFLAGS:
3649 		IWN_LOCK(sc);
3650 		if (ifp->if_flags & IFF_UP) {
3651 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3652 				iwn_init_locked(sc);
3653 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3654 					startall = 1;
3655 				else
3656 					stop = 1;
3657 			}
3658 		} else {
3659 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3660 				iwn_stop_locked(sc);
3661 		}
3662 		IWN_UNLOCK(sc);
3663 		if (startall)
3664 			ieee80211_start_all(ic);
3665 		else if (vap != NULL && stop)
3666 			ieee80211_stop(vap);
3667 		break;
3668 	case SIOCGIFMEDIA:
3669 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3670 		break;
3671 	default:
3672 		error = EINVAL;
3673 		break;
3674 	}
3675 	return error;
3676 }
3677 
3678 /*
3679  * Send a command to the firmware.
3680  */
3681 static int
3682 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3683 {
3684 	struct iwn_tx_ring *ring = &sc->txq[4];
3685 	struct iwn_tx_desc *desc;
3686 	struct iwn_tx_data *data;
3687 	struct iwn_tx_cmd *cmd;
3688 	struct mbuf *m;
3689 	bus_addr_t paddr;
3690 	int totlen, error;
3691 
3692 	IWN_LOCK_ASSERT(sc);
3693 
3694 	desc = &ring->desc[ring->cur];
3695 	data = &ring->data[ring->cur];
3696 	totlen = 4 + size;
3697 
3698 	if (size > sizeof cmd->data) {
3699 		/* Command is too large to fit in a descriptor. */
3700 		if (totlen > MCLBYTES)
3701 			return EINVAL;
3702 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3703 		if (m == NULL)
3704 			return ENOMEM;
3705 		cmd = mtod(m, struct iwn_tx_cmd *);
3706 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3707 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3708 		if (error != 0) {
3709 			m_freem(m);
3710 			return error;
3711 		}
3712 		data->m = m;
3713 	} else {
3714 		cmd = &ring->cmd[ring->cur];
3715 		paddr = data->cmd_paddr;
3716 	}
3717 
3718 	cmd->code = code;
3719 	cmd->flags = 0;
3720 	cmd->qid = ring->qid;
3721 	cmd->idx = ring->cur;
3722 	memcpy(cmd->data, buf, size);
3723 
3724 	desc->nsegs = 1;
3725 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3726 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3727 
3728 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3729 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3730 	    cmd->flags, cmd->qid, cmd->idx);
3731 
3732 	if (size > sizeof cmd->data) {
3733 		bus_dmamap_sync(ring->data_dmat, data->map,
3734 		    BUS_DMASYNC_PREWRITE);
3735 	} else {
3736 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3737 		    BUS_DMASYNC_PREWRITE);
3738 	}
3739 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3740 	    BUS_DMASYNC_PREWRITE);
3741 
3742 #ifdef notyet
3743 	/* Update TX scheduler. */
3744 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3745 #endif
3746 
3747 	/* Kick command ring. */
3748 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3749 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3750 
3751 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3752 }
3753 
3754 static int
3755 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3756 {
3757 	struct iwn4965_node_info hnode;
3758 	caddr_t src, dst;
3759 
3760 	/*
3761 	 * We use the node structure for 5000 Series internally (it is
3762 	 * a superset of the one for 4965AGN). We thus copy the common
3763 	 * fields before sending the command.
3764 	 */
3765 	src = (caddr_t)node;
3766 	dst = (caddr_t)&hnode;
3767 	memcpy(dst, src, 48);
3768 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3769 	memcpy(dst + 48, src + 72, 20);
3770 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3771 }
3772 
3773 static int
3774 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3775 {
3776 	/* Direct mapping. */
3777 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3778 }
3779 
3780 static int
3781 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3782 {
3783 	struct iwn_node *wn = (void *)ni;
3784 	struct ieee80211_rateset *rs = &ni->ni_rates;
3785 	struct iwn_cmd_link_quality linkq;
3786 	const struct iwn_rate *rinfo;
3787 	uint8_t txant;
3788 	int i, txrate;
3789 
3790 	/* Use the first valid TX antenna. */
3791 	txant = IWN_LSB(sc->txchainmask);
3792 
3793 	memset(&linkq, 0, sizeof linkq);
3794 	linkq.id = wn->id;
3795 	linkq.antmsk_1stream = txant;
3796 	linkq.antmsk_2stream = IWN_ANT_AB;
3797 	linkq.ampdu_max = 31;
3798 	linkq.ampdu_threshold = 3;
3799 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3800 
3801 	/* Start at highest available bit-rate. */
3802 	txrate = rs->rs_nrates - 1;
3803 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3804 		rinfo = &iwn_rates[wn->ridx[txrate]];
3805 		linkq.retry[i].plcp = rinfo->plcp;
3806 		linkq.retry[i].rflags = rinfo->flags;
3807 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3808 		/* Next retry at immediate lower bit-rate. */
3809 		if (txrate > 0)
3810 			txrate--;
3811 	}
3812 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3813 }
3814 
3815 /*
3816  * Broadcast node is used to send group-addressed and management frames.
3817  */
3818 static int
3819 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3820 {
3821 	struct iwn_ops *ops = &sc->ops;
3822 	struct ifnet *ifp = sc->sc_ifp;
3823 	struct ieee80211com *ic = ifp->if_l2com;
3824 	struct iwn_node_info node;
3825 	struct iwn_cmd_link_quality linkq;
3826 	const struct iwn_rate *rinfo;
3827 	uint8_t txant;
3828 	int i, error;
3829 
3830 	memset(&node, 0, sizeof node);
3831 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3832 	node.id = sc->broadcast_id;
3833 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3834 	if ((error = ops->add_node(sc, &node, async)) != 0)
3835 		return error;
3836 
3837 	/* Use the first valid TX antenna. */
3838 	txant = IWN_LSB(sc->txchainmask);
3839 
3840 	memset(&linkq, 0, sizeof linkq);
3841 	linkq.id = sc->broadcast_id;
3842 	linkq.antmsk_1stream = txant;
3843 	linkq.antmsk_2stream = IWN_ANT_AB;
3844 	linkq.ampdu_max = 64;
3845 	linkq.ampdu_threshold = 3;
3846 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3847 
3848 	/* Use lowest mandatory bit-rate. */
3849 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
3850 		rinfo = &iwn_rates[IWN_RIDX_OFDM6];
3851 	else
3852 		rinfo = &iwn_rates[IWN_RIDX_CCK1];
3853 	linkq.retry[0].plcp = rinfo->plcp;
3854 	linkq.retry[0].rflags = rinfo->flags;
3855 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3856 	/* Use same bit-rate for all TX retries. */
3857 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3858 		linkq.retry[i].plcp = linkq.retry[0].plcp;
3859 		linkq.retry[i].rflags = linkq.retry[0].rflags;
3860 	}
3861 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3862 }
3863 
3864 static int
3865 iwn_updateedca(struct ieee80211com *ic)
3866 {
3867 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3868 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3869 	struct iwn_edca_params cmd;
3870 	int aci;
3871 
3872 	memset(&cmd, 0, sizeof cmd);
3873 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3874 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3875 		const struct wmeParams *ac =
3876 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3877 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3878 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
3879 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
3880 		cmd.ac[aci].txoplimit =
3881 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3882 	}
3883 	IEEE80211_UNLOCK(ic);
3884 	IWN_LOCK(sc);
3885 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3886 	IWN_UNLOCK(sc);
3887 	IEEE80211_LOCK(ic);
3888 	return 0;
3889 #undef IWN_EXP2
3890 }
3891 
3892 static void
3893 iwn_update_mcast(struct ifnet *ifp)
3894 {
3895 	/* Ignore */
3896 }
3897 
3898 static void
3899 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3900 {
3901 	struct iwn_cmd_led led;
3902 
3903 	/* Clear microcode LED ownership. */
3904 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3905 
3906 	led.which = which;
3907 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3908 	led.off = off;
3909 	led.on = on;
3910 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3911 }
3912 
3913 /*
3914  * Set the critical temperature at which the firmware will stop the radio
3915  * and notify us.
3916  */
3917 static int
3918 iwn_set_critical_temp(struct iwn_softc *sc)
3919 {
3920 	struct iwn_critical_temp crit;
3921 	int32_t temp;
3922 
3923 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3924 
3925 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3926 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3927 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3928 		temp = IWN_CTOK(110);
3929 	else
3930 		temp = 110;
3931 	memset(&crit, 0, sizeof crit);
3932 	crit.tempR = htole32(temp);
3933 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
3934 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3935 }
3936 
3937 static int
3938 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3939 {
3940 	struct iwn_cmd_timing cmd;
3941 	uint64_t val, mod;
3942 
3943 	memset(&cmd, 0, sizeof cmd);
3944 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3945 	cmd.bintval = htole16(ni->ni_intval);
3946 	cmd.lintval = htole16(10);
3947 
3948 	/* Compute remaining time until next beacon. */
3949 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3950 	mod = le64toh(cmd.tstamp) % val;
3951 	cmd.binitval = htole32((uint32_t)(val - mod));
3952 
3953 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3954 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3955 
3956 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3957 }
3958 
3959 static void
3960 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3961 {
3962 	struct ifnet *ifp = sc->sc_ifp;
3963 	struct ieee80211com *ic = ifp->if_l2com;
3964 
3965 	/* Adjust TX power if need be (delta >= 3 degC). */
3966 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3967 	    __func__, sc->temp, temp);
3968 	if (abs(temp - sc->temp) >= 3) {
3969 		/* Record temperature of last calibration. */
3970 		sc->temp = temp;
3971 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3972 	}
3973 }
3974 
3975 /*
3976  * Set TX power for current channel (each rate has its own power settings).
3977  * This function takes into account the regulatory information from EEPROM,
3978  * the current temperature and the current voltage.
3979  */
3980 static int
3981 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3982     int async)
3983 {
3984 /* Fixed-point arithmetic division using a n-bit fractional part. */
3985 #define fdivround(a, b, n)	\
3986 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3987 /* Linear interpolation. */
3988 #define interpolate(x, x1, y1, x2, y2, n)	\
3989 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3990 
3991 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3992 	struct iwn_ucode_info *uc = &sc->ucode_info;
3993 	struct iwn4965_cmd_txpower cmd;
3994 	struct iwn4965_eeprom_chan_samples *chans;
3995 	const uint8_t *rf_gain, *dsp_gain;
3996 	int32_t vdiff, tdiff;
3997 	int i, c, grp, maxpwr;
3998 	uint8_t chan;
3999 
4000 	/* Retrieve current channel from last RXON. */
4001 	chan = sc->rxon.chan;
4002 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4003 	    chan);
4004 
4005 	memset(&cmd, 0, sizeof cmd);
4006 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4007 	cmd.chan = chan;
4008 
4009 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4010 		maxpwr   = sc->maxpwr5GHz;
4011 		rf_gain  = iwn4965_rf_gain_5ghz;
4012 		dsp_gain = iwn4965_dsp_gain_5ghz;
4013 	} else {
4014 		maxpwr   = sc->maxpwr2GHz;
4015 		rf_gain  = iwn4965_rf_gain_2ghz;
4016 		dsp_gain = iwn4965_dsp_gain_2ghz;
4017 	}
4018 
4019 	/* Compute voltage compensation. */
4020 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4021 	if (vdiff > 0)
4022 		vdiff *= 2;
4023 	if (abs(vdiff) > 2)
4024 		vdiff = 0;
4025 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4026 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4027 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4028 
4029 	/* Get channel attenuation group. */
4030 	if (chan <= 20)		/* 1-20 */
4031 		grp = 4;
4032 	else if (chan <= 43)	/* 34-43 */
4033 		grp = 0;
4034 	else if (chan <= 70)	/* 44-70 */
4035 		grp = 1;
4036 	else if (chan <= 124)	/* 71-124 */
4037 		grp = 2;
4038 	else			/* 125-200 */
4039 		grp = 3;
4040 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4041 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4042 
4043 	/* Get channel sub-band. */
4044 	for (i = 0; i < IWN_NBANDS; i++)
4045 		if (sc->bands[i].lo != 0 &&
4046 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4047 			break;
4048 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4049 		return EINVAL;
4050 	chans = sc->bands[i].chans;
4051 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4052 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4053 
4054 	for (c = 0; c < 2; c++) {
4055 		uint8_t power, gain, temp;
4056 		int maxchpwr, pwr, ridx, idx;
4057 
4058 		power = interpolate(chan,
4059 		    chans[0].num, chans[0].samples[c][1].power,
4060 		    chans[1].num, chans[1].samples[c][1].power, 1);
4061 		gain  = interpolate(chan,
4062 		    chans[0].num, chans[0].samples[c][1].gain,
4063 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4064 		temp  = interpolate(chan,
4065 		    chans[0].num, chans[0].samples[c][1].temp,
4066 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4067 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4068 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4069 		    __func__, c, power, gain, temp);
4070 
4071 		/* Compute temperature compensation. */
4072 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4073 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4074 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4075 		    __func__, tdiff, sc->temp, temp);
4076 
4077 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4078 			/* Convert dBm to half-dBm. */
4079 			maxchpwr = sc->maxpwr[chan] * 2;
4080 			if ((ridx / 8) & 1)
4081 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4082 
4083 			pwr = maxpwr;
4084 
4085 			/* Adjust TX power based on rate. */
4086 			if ((ridx % 8) == 5)
4087 				pwr -= 15;	/* OFDM48: -7.5dB */
4088 			else if ((ridx % 8) == 6)
4089 				pwr -= 17;	/* OFDM54: -8.5dB */
4090 			else if ((ridx % 8) == 7)
4091 				pwr -= 20;	/* OFDM60: -10dB */
4092 			else
4093 				pwr -= 10;	/* Others: -5dB */
4094 
4095 			/* Do not exceed channel max TX power. */
4096 			if (pwr > maxchpwr)
4097 				pwr = maxchpwr;
4098 
4099 			idx = gain - (pwr - power) - tdiff - vdiff;
4100 			if ((ridx / 8) & 1)	/* MIMO */
4101 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4102 
4103 			if (cmd.band == 0)
4104 				idx += 9;	/* 5GHz */
4105 			if (ridx == IWN_RIDX_MAX)
4106 				idx += 5;	/* CCK */
4107 
4108 			/* Make sure idx stays in a valid range. */
4109 			if (idx < 0)
4110 				idx = 0;
4111 			else if (idx > IWN4965_MAX_PWR_INDEX)
4112 				idx = IWN4965_MAX_PWR_INDEX;
4113 
4114 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4115 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4116 			    __func__, c, ridx, idx);
4117 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4118 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4119 		}
4120 	}
4121 
4122 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4123 	    "%s: set tx power for chan %d\n", __func__, chan);
4124 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4125 
4126 #undef interpolate
4127 #undef fdivround
4128 }
4129 
4130 static int
4131 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4132     int async)
4133 {
4134 	struct iwn5000_cmd_txpower cmd;
4135 
4136 	/*
4137 	 * TX power calibration is handled automatically by the firmware
4138 	 * for 5000 Series.
4139 	 */
4140 	memset(&cmd, 0, sizeof cmd);
4141 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4142 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4143 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4144 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4145 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4146 }
4147 
4148 /*
4149  * Retrieve the maximum RSSI (in dBm) among receivers.
4150  */
4151 static int
4152 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4153 {
4154 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4155 	uint8_t mask, agc;
4156 	int rssi;
4157 
4158 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4159 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4160 
4161 	rssi = 0;
4162 	if (mask & IWN_ANT_A)
4163 		rssi = MAX(rssi, phy->rssi[0]);
4164 	if (mask & IWN_ANT_B)
4165 		rssi = MAX(rssi, phy->rssi[2]);
4166 	if (mask & IWN_ANT_C)
4167 		rssi = MAX(rssi, phy->rssi[4]);
4168 
4169 	DPRINTF(sc, IWN_DEBUG_RECV,
4170 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4171 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4172 	    rssi - agc - IWN_RSSI_TO_DBM);
4173 	return rssi - agc - IWN_RSSI_TO_DBM;
4174 }
4175 
4176 static int
4177 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4178 {
4179 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4180 	uint8_t agc;
4181 	int rssi;
4182 
4183 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4184 
4185 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4186 		   le16toh(phy->rssi[1]) & 0xff);
4187 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4188 
4189 	DPRINTF(sc, IWN_DEBUG_RECV,
4190 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4191 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4192 	    rssi - agc - IWN_RSSI_TO_DBM);
4193 	return rssi - agc - IWN_RSSI_TO_DBM;
4194 }
4195 
4196 /*
4197  * Retrieve the average noise (in dBm) among receivers.
4198  */
4199 static int
4200 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4201 {
4202 	int i, total, nbant, noise;
4203 
4204 	total = nbant = 0;
4205 	for (i = 0; i < 3; i++) {
4206 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4207 			continue;
4208 		total += noise;
4209 		nbant++;
4210 	}
4211 	/* There should be at least one antenna but check anyway. */
4212 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4213 }
4214 
4215 /*
4216  * Compute temperature (in degC) from last received statistics.
4217  */
4218 static int
4219 iwn4965_get_temperature(struct iwn_softc *sc)
4220 {
4221 	struct iwn_ucode_info *uc = &sc->ucode_info;
4222 	int32_t r1, r2, r3, r4, temp;
4223 
4224 	r1 = le32toh(uc->temp[0].chan20MHz);
4225 	r2 = le32toh(uc->temp[1].chan20MHz);
4226 	r3 = le32toh(uc->temp[2].chan20MHz);
4227 	r4 = le32toh(sc->rawtemp);
4228 
4229 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4230 		return 0;
4231 
4232 	/* Sign-extend 23-bit R4 value to 32-bit. */
4233 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4234 	/* Compute temperature in Kelvin. */
4235 	temp = (259 * (r4 - r2)) / (r3 - r1);
4236 	temp = (temp * 97) / 100 + 8;
4237 
4238 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4239 	    IWN_KTOC(temp));
4240 	return IWN_KTOC(temp);
4241 }
4242 
4243 static int
4244 iwn5000_get_temperature(struct iwn_softc *sc)
4245 {
4246 	int32_t temp;
4247 
4248 	/*
4249 	 * Temperature is not used by the driver for 5000 Series because
4250 	 * TX power calibration is handled by firmware.
4251 	 */
4252 	temp = le32toh(sc->rawtemp);
4253 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4254 		temp = (temp / -5) + sc->temp_off;
4255 		temp = IWN_KTOC(temp);
4256 	}
4257 	return temp;
4258 }
4259 
4260 /*
4261  * Initialize sensitivity calibration state machine.
4262  */
4263 static int
4264 iwn_init_sensitivity(struct iwn_softc *sc)
4265 {
4266 	struct iwn_ops *ops = &sc->ops;
4267 	struct iwn_calib_state *calib = &sc->calib;
4268 	uint32_t flags;
4269 	int error;
4270 
4271 	/* Reset calibration state machine. */
4272 	memset(calib, 0, sizeof (*calib));
4273 	calib->state = IWN_CALIB_STATE_INIT;
4274 	calib->cck_state = IWN_CCK_STATE_HIFA;
4275 	/* Set initial correlation values. */
4276 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4277 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4278 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4279 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4280 	calib->cck_x4      = 125;
4281 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4282 	calib->energy_cck  = sc->limits->energy_cck;
4283 
4284 	/* Write initial sensitivity. */
4285 	if ((error = iwn_send_sensitivity(sc)) != 0)
4286 		return error;
4287 
4288 	/* Write initial gains. */
4289 	if ((error = ops->init_gains(sc)) != 0)
4290 		return error;
4291 
4292 	/* Request statistics at each beacon interval. */
4293 	flags = 0;
4294 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4295 	    __func__);
4296 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4297 }
4298 
4299 /*
4300  * Collect noise and RSSI statistics for the first 20 beacons received
4301  * after association and use them to determine connected antennas and
4302  * to set differential gains.
4303  */
4304 static void
4305 iwn_collect_noise(struct iwn_softc *sc,
4306     const struct iwn_rx_general_stats *stats)
4307 {
4308 	struct iwn_ops *ops = &sc->ops;
4309 	struct iwn_calib_state *calib = &sc->calib;
4310 	uint32_t val;
4311 	int i;
4312 
4313 	/* Accumulate RSSI and noise for all 3 antennas. */
4314 	for (i = 0; i < 3; i++) {
4315 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4316 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4317 	}
4318 	/* NB: We update differential gains only once after 20 beacons. */
4319 	if (++calib->nbeacons < 20)
4320 		return;
4321 
4322 	/* Determine highest average RSSI. */
4323 	val = MAX(calib->rssi[0], calib->rssi[1]);
4324 	val = MAX(calib->rssi[2], val);
4325 
4326 	/* Determine which antennas are connected. */
4327 	sc->chainmask = sc->rxchainmask;
4328 	for (i = 0; i < 3; i++)
4329 		if (val - calib->rssi[i] > 15 * 20)
4330 			sc->chainmask &= ~(1 << i);
4331 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4332 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4333 	    __func__, sc->rxchainmask, sc->chainmask);
4334 
4335 	/* If none of the TX antennas are connected, keep at least one. */
4336 	if ((sc->chainmask & sc->txchainmask) == 0)
4337 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4338 
4339 	(void)ops->set_gains(sc);
4340 	calib->state = IWN_CALIB_STATE_RUN;
4341 
4342 #ifdef notyet
4343 	/* XXX Disable RX chains with no antennas connected. */
4344 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4345 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4346 #endif
4347 
4348 #if 0
4349 	/* XXX: not yet */
4350 	/* Enable power-saving mode if requested by user. */
4351 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4352 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4353 #endif
4354 }
4355 
4356 static int
4357 iwn4965_init_gains(struct iwn_softc *sc)
4358 {
4359 	struct iwn_phy_calib_gain cmd;
4360 
4361 	memset(&cmd, 0, sizeof cmd);
4362 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4363 	/* Differential gains initially set to 0 for all 3 antennas. */
4364 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4365 	    "%s: setting initial differential gains\n", __func__);
4366 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4367 }
4368 
4369 static int
4370 iwn5000_init_gains(struct iwn_softc *sc)
4371 {
4372 	struct iwn_phy_calib cmd;
4373 
4374 	memset(&cmd, 0, sizeof cmd);
4375 	cmd.code = sc->reset_noise_gain;
4376 	cmd.ngroups = 1;
4377 	cmd.isvalid = 1;
4378 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4379 	    "%s: setting initial differential gains\n", __func__);
4380 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4381 }
4382 
4383 static int
4384 iwn4965_set_gains(struct iwn_softc *sc)
4385 {
4386 	struct iwn_calib_state *calib = &sc->calib;
4387 	struct iwn_phy_calib_gain cmd;
4388 	int i, delta, noise;
4389 
4390 	/* Get minimal noise among connected antennas. */
4391 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4392 	for (i = 0; i < 3; i++)
4393 		if (sc->chainmask & (1 << i))
4394 			noise = MIN(calib->noise[i], noise);
4395 
4396 	memset(&cmd, 0, sizeof cmd);
4397 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4398 	/* Set differential gains for connected antennas. */
4399 	for (i = 0; i < 3; i++) {
4400 		if (sc->chainmask & (1 << i)) {
4401 			/* Compute attenuation (in unit of 1.5dB). */
4402 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4403 			/* NB: delta <= 0 */
4404 			/* Limit to [-4.5dB,0]. */
4405 			cmd.gain[i] = MIN(abs(delta), 3);
4406 			if (delta < 0)
4407 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4408 		}
4409 	}
4410 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4411 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4412 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4413 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4414 }
4415 
4416 static int
4417 iwn5000_set_gains(struct iwn_softc *sc)
4418 {
4419 	struct iwn_calib_state *calib = &sc->calib;
4420 	struct iwn_phy_calib_gain cmd;
4421 	int i, ant, div, delta;
4422 
4423 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4424 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4425 
4426 	memset(&cmd, 0, sizeof cmd);
4427 	cmd.code = sc->noise_gain;
4428 	cmd.ngroups = 1;
4429 	cmd.isvalid = 1;
4430 	/* Get first available RX antenna as referential. */
4431 	ant = IWN_LSB(sc->rxchainmask);
4432 	/* Set differential gains for other antennas. */
4433 	for (i = ant + 1; i < 3; i++) {
4434 		if (sc->chainmask & (1 << i)) {
4435 			/* The delta is relative to antenna "ant". */
4436 			delta = ((int32_t)calib->noise[ant] -
4437 			    (int32_t)calib->noise[i]) / div;
4438 			/* Limit to [-4.5dB,+4.5dB]. */
4439 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4440 			if (delta < 0)
4441 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4442 		}
4443 	}
4444 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4445 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4446 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4447 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4448 }
4449 
4450 /*
4451  * Tune RF RX sensitivity based on the number of false alarms detected
4452  * during the last beacon period.
4453  */
4454 static void
4455 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4456 {
4457 #define inc(val, inc, max)			\
4458 	if ((val) < (max)) {			\
4459 		if ((val) < (max) - (inc))	\
4460 			(val) += (inc);		\
4461 		else				\
4462 			(val) = (max);		\
4463 		needs_update = 1;		\
4464 	}
4465 #define dec(val, dec, min)			\
4466 	if ((val) > (min)) {			\
4467 		if ((val) > (min) + (dec))	\
4468 			(val) -= (dec);		\
4469 		else				\
4470 			(val) = (min);		\
4471 		needs_update = 1;		\
4472 	}
4473 
4474 	const struct iwn_sensitivity_limits *limits = sc->limits;
4475 	struct iwn_calib_state *calib = &sc->calib;
4476 	uint32_t val, rxena, fa;
4477 	uint32_t energy[3], energy_min;
4478 	uint8_t noise[3], noise_ref;
4479 	int i, needs_update = 0;
4480 
4481 	/* Check that we've been enabled long enough. */
4482 	if ((rxena = le32toh(stats->general.load)) == 0)
4483 		return;
4484 
4485 	/* Compute number of false alarms since last call for OFDM. */
4486 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4487 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4488 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4489 
4490 	/* Save counters values for next call. */
4491 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4492 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4493 
4494 	if (fa > 50 * rxena) {
4495 		/* High false alarm count, decrease sensitivity. */
4496 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4497 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4498 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4499 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4500 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4501 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4502 
4503 	} else if (fa < 5 * rxena) {
4504 		/* Low false alarm count, increase sensitivity. */
4505 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4506 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4507 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4508 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4509 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4510 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4511 	}
4512 
4513 	/* Compute maximum noise among 3 receivers. */
4514 	for (i = 0; i < 3; i++)
4515 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4516 	val = MAX(noise[0], noise[1]);
4517 	val = MAX(noise[2], val);
4518 	/* Insert it into our samples table. */
4519 	calib->noise_samples[calib->cur_noise_sample] = val;
4520 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4521 
4522 	/* Compute maximum noise among last 20 samples. */
4523 	noise_ref = calib->noise_samples[0];
4524 	for (i = 1; i < 20; i++)
4525 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4526 
4527 	/* Compute maximum energy among 3 receivers. */
4528 	for (i = 0; i < 3; i++)
4529 		energy[i] = le32toh(stats->general.energy[i]);
4530 	val = MIN(energy[0], energy[1]);
4531 	val = MIN(energy[2], val);
4532 	/* Insert it into our samples table. */
4533 	calib->energy_samples[calib->cur_energy_sample] = val;
4534 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4535 
4536 	/* Compute minimum energy among last 10 samples. */
4537 	energy_min = calib->energy_samples[0];
4538 	for (i = 1; i < 10; i++)
4539 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4540 	energy_min += 6;
4541 
4542 	/* Compute number of false alarms since last call for CCK. */
4543 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4544 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4545 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4546 
4547 	/* Save counters values for next call. */
4548 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4549 	calib->fa_cck = le32toh(stats->cck.fa);
4550 
4551 	if (fa > 50 * rxena) {
4552 		/* High false alarm count, decrease sensitivity. */
4553 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4554 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4555 		calib->cck_state = IWN_CCK_STATE_HIFA;
4556 		calib->low_fa = 0;
4557 
4558 		if (calib->cck_x4 > 160) {
4559 			calib->noise_ref = noise_ref;
4560 			if (calib->energy_cck > 2)
4561 				dec(calib->energy_cck, 2, energy_min);
4562 		}
4563 		if (calib->cck_x4 < 160) {
4564 			calib->cck_x4 = 161;
4565 			needs_update = 1;
4566 		} else
4567 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4568 
4569 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4570 
4571 	} else if (fa < 5 * rxena) {
4572 		/* Low false alarm count, increase sensitivity. */
4573 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4574 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4575 		calib->cck_state = IWN_CCK_STATE_LOFA;
4576 		calib->low_fa++;
4577 
4578 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4579 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4580 		     calib->low_fa > 100)) {
4581 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4582 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4583 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4584 		}
4585 	} else {
4586 		/* Not worth to increase or decrease sensitivity. */
4587 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4588 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4589 		calib->low_fa = 0;
4590 		calib->noise_ref = noise_ref;
4591 
4592 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4593 			/* Previous interval had many false alarms. */
4594 			dec(calib->energy_cck, 8, energy_min);
4595 		}
4596 		calib->cck_state = IWN_CCK_STATE_INIT;
4597 	}
4598 
4599 	if (needs_update)
4600 		(void)iwn_send_sensitivity(sc);
4601 #undef dec
4602 #undef inc
4603 }
4604 
4605 static int
4606 iwn_send_sensitivity(struct iwn_softc *sc)
4607 {
4608 	struct iwn_calib_state *calib = &sc->calib;
4609 	struct iwn_enhanced_sensitivity_cmd cmd;
4610 	int len;
4611 
4612 	memset(&cmd, 0, sizeof cmd);
4613 	len = sizeof (struct iwn_sensitivity_cmd);
4614 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4615 	/* OFDM modulation. */
4616 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4617 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4618 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4619 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4620 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4621 	cmd.energy_ofdm_th     = htole16(62);
4622 	/* CCK modulation. */
4623 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4624 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4625 	cmd.energy_cck         = htole16(calib->energy_cck);
4626 	/* Barker modulation: use default values. */
4627 	cmd.corr_barker        = htole16(190);
4628 	cmd.corr_barker_mrc    = htole16(390);
4629 
4630 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4631 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4632 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4633 	    calib->ofdm_mrc_x4, calib->cck_x4,
4634 	    calib->cck_mrc_x4, calib->energy_cck);
4635 
4636 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4637 		goto send;
4638 	/* Enhanced sensitivity settings. */
4639 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4640 	cmd.ofdm_det_slope_mrc = htole16(668);
4641 	cmd.ofdm_det_icept_mrc = htole16(4);
4642 	cmd.ofdm_det_slope     = htole16(486);
4643 	cmd.ofdm_det_icept     = htole16(37);
4644 	cmd.cck_det_slope_mrc  = htole16(853);
4645 	cmd.cck_det_icept_mrc  = htole16(4);
4646 	cmd.cck_det_slope      = htole16(476);
4647 	cmd.cck_det_icept      = htole16(99);
4648 send:
4649 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4650 }
4651 
4652 /*
4653  * Set STA mode power saving level (between 0 and 5).
4654  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4655  */
4656 static int
4657 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4658 {
4659 	struct iwn_pmgt_cmd cmd;
4660 	const struct iwn_pmgt *pmgt;
4661 	uint32_t max, skip_dtim;
4662 	uint32_t reg;
4663 	int i;
4664 
4665 	/* Select which PS parameters to use. */
4666 	if (dtim <= 2)
4667 		pmgt = &iwn_pmgt[0][level];
4668 	else if (dtim <= 10)
4669 		pmgt = &iwn_pmgt[1][level];
4670 	else
4671 		pmgt = &iwn_pmgt[2][level];
4672 
4673 	memset(&cmd, 0, sizeof cmd);
4674 	if (level != 0)	/* not CAM */
4675 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4676 	if (level == 5)
4677 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4678 	/* Retrieve PCIe Active State Power Management (ASPM). */
4679 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4680 	if (!(reg & 0x1))	/* L0s Entry disabled. */
4681 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4682 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4683 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4684 
4685 	if (dtim == 0) {
4686 		dtim = 1;
4687 		skip_dtim = 0;
4688 	} else
4689 		skip_dtim = pmgt->skip_dtim;
4690 	if (skip_dtim != 0) {
4691 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4692 		max = pmgt->intval[4];
4693 		if (max == (uint32_t)-1)
4694 			max = dtim * (skip_dtim + 1);
4695 		else if (max > dtim)
4696 			max = (max / dtim) * dtim;
4697 	} else
4698 		max = dtim;
4699 	for (i = 0; i < 5; i++)
4700 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4701 
4702 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4703 	    level);
4704 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4705 }
4706 
4707 static int
4708 iwn_send_btcoex(struct iwn_softc *sc)
4709 {
4710 	struct iwn_bluetooth cmd;
4711 
4712 	memset(&cmd, 0, sizeof cmd);
4713 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4714 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4715 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4716 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
4717 	    __func__);
4718 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4719 }
4720 
4721 static int
4722 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4723 {
4724 	static const uint32_t btcoex_3wire[12] = {
4725 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4726 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4727 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4728 	};
4729 	struct iwn6000_btcoex_config btconfig;
4730 	struct iwn_btcoex_priotable btprio;
4731 	struct iwn_btcoex_prot btprot;
4732 	int error, i;
4733 
4734 	memset(&btconfig, 0, sizeof btconfig);
4735 	btconfig.flags = 145;
4736 	btconfig.max_kill = 5;
4737 	btconfig.bt3_t7_timer = 1;
4738 	btconfig.kill_ack = htole32(0xffff0000);
4739 	btconfig.kill_cts = htole32(0xffff0000);
4740 	btconfig.sample_time = 2;
4741 	btconfig.bt3_t2_timer = 0xc;
4742 	for (i = 0; i < 12; i++)
4743 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4744 	btconfig.valid = htole16(0xff);
4745 	btconfig.prio_boost = 0xf0;
4746 	DPRINTF(sc, IWN_DEBUG_RESET,
4747 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
4748 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
4749 	if (error != 0)
4750 		return error;
4751 
4752 	memset(&btprio, 0, sizeof btprio);
4753 	btprio.calib_init1 = 0x6;
4754 	btprio.calib_init2 = 0x7;
4755 	btprio.calib_periodic_low1 = 0x2;
4756 	btprio.calib_periodic_low2 = 0x3;
4757 	btprio.calib_periodic_high1 = 0x4;
4758 	btprio.calib_periodic_high2 = 0x5;
4759 	btprio.dtim = 0x6;
4760 	btprio.scan52 = 0x8;
4761 	btprio.scan24 = 0xa;
4762 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4763 	    1);
4764 	if (error != 0)
4765 		return error;
4766 
4767 	/* Force BT state machine change. */
4768 	memset(&btprot, 0, sizeof btprio);
4769 	btprot.open = 1;
4770 	btprot.type = 1;
4771 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4772 	if (error != 0)
4773 		return error;
4774 	btprot.open = 0;
4775 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4776 }
4777 
4778 static int
4779 iwn_config(struct iwn_softc *sc)
4780 {
4781 	struct iwn_ops *ops = &sc->ops;
4782 	struct ifnet *ifp = sc->sc_ifp;
4783 	struct ieee80211com *ic = ifp->if_l2com;
4784 	uint32_t txmask;
4785 	uint16_t rxchain;
4786 	int error;
4787 
4788 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4789 		/* Set radio temperature sensor offset. */
4790 		error = iwn5000_temp_offset_calib(sc);
4791 		if (error != 0) {
4792 			device_printf(sc->sc_dev,
4793 			    "%s: could not set temperature offset\n", __func__);
4794 			return error;
4795 		}
4796 	}
4797 
4798 	/* Configure valid TX chains for >=5000 Series. */
4799 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4800 		txmask = htole32(sc->txchainmask);
4801 		DPRINTF(sc, IWN_DEBUG_RESET,
4802 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4803 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4804 		    sizeof txmask, 0);
4805 		if (error != 0) {
4806 			device_printf(sc->sc_dev,
4807 			    "%s: could not configure valid TX chains, "
4808 			    "error %d\n", __func__, error);
4809 			return error;
4810 		}
4811 	}
4812 
4813 	/* Configure bluetooth coexistence. */
4814 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
4815 		error = iwn_send_advanced_btcoex(sc);
4816 	else
4817 		error = iwn_send_btcoex(sc);
4818 	if (error != 0) {
4819 		device_printf(sc->sc_dev,
4820 		    "%s: could not configure bluetooth coexistence, error %d\n",
4821 		    __func__, error);
4822 		return error;
4823 	}
4824 
4825 	/* Set mode, channel, RX filter and enable RX. */
4826 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4827 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4828 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4829 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4830 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4831 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4832 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4833 	switch (ic->ic_opmode) {
4834 	case IEEE80211_M_STA:
4835 		sc->rxon.mode = IWN_MODE_STA;
4836 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4837 		break;
4838 	case IEEE80211_M_MONITOR:
4839 		sc->rxon.mode = IWN_MODE_MONITOR;
4840 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4841 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4842 		break;
4843 	default:
4844 		/* Should not get there. */
4845 		break;
4846 	}
4847 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4848 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4849 	sc->rxon.ht_single_mask = 0xff;
4850 	sc->rxon.ht_dual_mask = 0xff;
4851 	sc->rxon.ht_triple_mask = 0xff;
4852 	rxchain =
4853 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4854 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4855 	    IWN_RXCHAIN_IDLE_COUNT(2);
4856 	sc->rxon.rxchain = htole16(rxchain);
4857 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4858 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4859 	if (error != 0) {
4860 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
4861 		    __func__);
4862 		return error;
4863 	}
4864 
4865 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4866 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
4867 		    __func__);
4868 		return error;
4869 	}
4870 
4871 	/* Configuration has changed, set TX power accordingly. */
4872 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
4873 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
4874 		    __func__);
4875 		return error;
4876 	}
4877 
4878 	if ((error = iwn_set_critical_temp(sc)) != 0) {
4879 		device_printf(sc->sc_dev,
4880 		    "%s: could not set critical temperature\n", __func__);
4881 		return error;
4882 	}
4883 
4884 	/* Set power saving level to CAM during initialization. */
4885 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4886 		device_printf(sc->sc_dev,
4887 		    "%s: could not set power saving level\n", __func__);
4888 		return error;
4889 	}
4890 	return 0;
4891 }
4892 
4893 /*
4894  * Add an ssid element to a frame.
4895  */
4896 static uint8_t *
4897 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
4898 {
4899 	*frm++ = IEEE80211_ELEMID_SSID;
4900 	*frm++ = len;
4901 	memcpy(frm, ssid, len);
4902 	return frm + len;
4903 }
4904 
4905 static int
4906 iwn_scan(struct iwn_softc *sc)
4907 {
4908 	struct ifnet *ifp = sc->sc_ifp;
4909 	struct ieee80211com *ic = ifp->if_l2com;
4910 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4911 	struct iwn_scan_hdr *hdr;
4912 	struct iwn_cmd_data *tx;
4913 	struct iwn_scan_essid *essid;
4914 	struct iwn_scan_chan *chan;
4915 	struct ieee80211_frame *wh;
4916 	struct ieee80211_rateset *rs;
4917 	struct ieee80211_channel *c;
4918 	uint8_t *buf, *frm;
4919 	uint16_t rxchain;
4920 	uint8_t txant;
4921 	int buflen, error;
4922 
4923 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4924 	if (buf == NULL) {
4925 		device_printf(sc->sc_dev,
4926 		    "%s: could not allocate buffer for scan command\n",
4927 		    __func__);
4928 		return ENOMEM;
4929 	}
4930 	hdr = (struct iwn_scan_hdr *)buf;
4931 	/*
4932 	 * Move to the next channel if no frames are received within 10ms
4933 	 * after sending the probe request.
4934 	 */
4935 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4936 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4937 
4938 	/* Select antennas for scanning. */
4939 	rxchain =
4940 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4941 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4942 	    IWN_RXCHAIN_DRIVER_FORCE;
4943 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4944 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4945 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4946 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4947 	} else	/* Use all available RX antennas. */
4948 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4949 	hdr->rxchain = htole16(rxchain);
4950 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4951 
4952 	tx = (struct iwn_cmd_data *)(hdr + 1);
4953 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4954 	tx->id = sc->broadcast_id;
4955 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4956 
4957 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4958 		/* Send probe requests at 6Mbps. */
4959 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4960 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4961 	} else {
4962 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4963 		/* Send probe requests at 1Mbps. */
4964 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4965 		tx->rflags = IWN_RFLAG_CCK;
4966 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4967 	}
4968 	/* Use the first valid TX antenna. */
4969 	txant = IWN_LSB(sc->txchainmask);
4970 	tx->rflags |= IWN_RFLAG_ANT(txant);
4971 
4972 	essid = (struct iwn_scan_essid *)(tx + 1);
4973 	if (ss->ss_ssid[0].len != 0) {
4974 		essid[0].id = IEEE80211_ELEMID_SSID;
4975 		essid[0].len = ss->ss_ssid[0].len;
4976 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4977 	}
4978 	/*
4979 	 * Build a probe request frame.  Most of the following code is a
4980 	 * copy & paste of what is done in net80211.
4981 	 */
4982 	wh = (struct ieee80211_frame *)(essid + 20);
4983 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4984 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4985 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4986 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4987 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4988 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4989 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4990 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4991 
4992 	frm = (uint8_t *)(wh + 1);
4993 	frm = ieee80211_add_ssid(frm, NULL, 0);
4994 	frm = ieee80211_add_rates(frm, rs);
4995 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4996 		frm = ieee80211_add_xrates(frm, rs);
4997 #if 0	/* HT */
4998 	if (ic->ic_flags & IEEE80211_F_HTON)
4999 		frm = ieee80211_add_htcaps(frm, ic);
5000 #endif
5001 
5002 	/* Set length of probe request. */
5003 	tx->len = htole16(frm - (uint8_t *)wh);
5004 
5005 	c = ic->ic_curchan;
5006 	chan = (struct iwn_scan_chan *)frm;
5007 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5008 	chan->flags = 0;
5009 	if (ss->ss_nssid > 0)
5010 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5011 	chan->dsp_gain = 0x6e;
5012 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5013 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5014 		chan->rf_gain = 0x3b;
5015 		chan->active  = htole16(24);
5016 		chan->passive = htole16(110);
5017 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5018 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5019 		chan->rf_gain = 0x3b;
5020 		chan->active  = htole16(24);
5021 		if (sc->rxon.associd)
5022 			chan->passive = htole16(78);
5023 		else
5024 			chan->passive = htole16(110);
5025 		hdr->crc_threshold = 0xffff;
5026 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5027 		chan->rf_gain = 0x28;
5028 		chan->active  = htole16(36);
5029 		chan->passive = htole16(120);
5030 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5031 	} else {
5032 		chan->rf_gain = 0x28;
5033 		chan->active  = htole16(36);
5034 		if (sc->rxon.associd)
5035 			chan->passive = htole16(88);
5036 		else
5037 			chan->passive = htole16(120);
5038 		hdr->crc_threshold = 0xffff;
5039 	}
5040 
5041 	DPRINTF(sc, IWN_DEBUG_STATE,
5042 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5043 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5044 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5045 	    chan->active, chan->passive);
5046 
5047 	hdr->nchan++;
5048 	chan++;
5049 	buflen = (uint8_t *)chan - buf;
5050 	hdr->len = htole16(buflen);
5051 
5052 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5053 	    hdr->nchan);
5054 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5055 	free(buf, M_DEVBUF);
5056 	return error;
5057 }
5058 
5059 static int
5060 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5061 {
5062 	struct iwn_ops *ops = &sc->ops;
5063 	struct ifnet *ifp = sc->sc_ifp;
5064 	struct ieee80211com *ic = ifp->if_l2com;
5065 	struct ieee80211_node *ni = vap->iv_bss;
5066 	int error;
5067 
5068 	/* Update adapter configuration. */
5069 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5070 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5071 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5072 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5073 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5074 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5075 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5076 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5077 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5078 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5079 		sc->rxon.cck_mask  = 0;
5080 		sc->rxon.ofdm_mask = 0x15;
5081 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5082 		sc->rxon.cck_mask  = 0x03;
5083 		sc->rxon.ofdm_mask = 0;
5084 	} else {
5085 		/* Assume 802.11b/g. */
5086 		sc->rxon.cck_mask  = 0x0f;
5087 		sc->rxon.ofdm_mask = 0x15;
5088 	}
5089 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5090 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5091 	    sc->rxon.ofdm_mask);
5092 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5093 	if (error != 0) {
5094 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5095 		    __func__, error);
5096 		return error;
5097 	}
5098 
5099 	/* Configuration has changed, set TX power accordingly. */
5100 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5101 		device_printf(sc->sc_dev,
5102 		    "%s: could not set TX power, error %d\n", __func__, error);
5103 		return error;
5104 	}
5105 	/*
5106 	 * Reconfiguring RXON clears the firmware nodes table so we must
5107 	 * add the broadcast node again.
5108 	 */
5109 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5110 		device_printf(sc->sc_dev,
5111 		    "%s: could not add broadcast node, error %d\n", __func__,
5112 		    error);
5113 		return error;
5114 	}
5115 	return 0;
5116 }
5117 
5118 static int
5119 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5120 {
5121 #define	MS(v,x)	(((v) & x) >> x##_S)
5122 	struct iwn_ops *ops = &sc->ops;
5123 	struct ifnet *ifp = sc->sc_ifp;
5124 	struct ieee80211com *ic = ifp->if_l2com;
5125 	struct ieee80211_node *ni = vap->iv_bss;
5126 	struct iwn_node_info node;
5127 	int error;
5128 
5129 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5130 		/* Link LED blinks while monitoring. */
5131 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5132 		return 0;
5133 	}
5134 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5135 		device_printf(sc->sc_dev,
5136 		    "%s: could not set timing, error %d\n", __func__, error);
5137 		return error;
5138 	}
5139 
5140 	/* Update adapter configuration. */
5141 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5142 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5143 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5144 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5145 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5146 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5147 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5148 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5149 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5150 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5151 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5152 		sc->rxon.cck_mask  = 0;
5153 		sc->rxon.ofdm_mask = 0x15;
5154 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5155 		sc->rxon.cck_mask  = 0x03;
5156 		sc->rxon.ofdm_mask = 0;
5157 	} else {
5158 		/* Assume 802.11b/g. */
5159 		sc->rxon.cck_mask  = 0x0f;
5160 		sc->rxon.ofdm_mask = 0x15;
5161 	}
5162 #if 0	/* HT */
5163 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5164 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
5165 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
5166 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
5167 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5168 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
5169 		else
5170 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
5171 		sc->rxon.rxchain = htole16(
5172 			  IWN_RXCHAIN_VALID(3)
5173 			| IWN_RXCHAIN_MIMO_COUNT(3)
5174 			| IWN_RXCHAIN_IDLE_COUNT(1)
5175 			| IWN_RXCHAIN_MIMO_FORCE);
5176 
5177 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
5178 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
5179 	} else
5180 		maxrxampdu = ampdudensity = 0;
5181 #endif
5182 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5183 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5184 	    sc->rxon.chan, sc->rxon.flags);
5185 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5186 	if (error != 0) {
5187 		device_printf(sc->sc_dev,
5188 		    "%s: could not update configuration, error %d\n", __func__,
5189 		    error);
5190 		return error;
5191 	}
5192 
5193 	/* Configuration has changed, set TX power accordingly. */
5194 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5195 		device_printf(sc->sc_dev,
5196 		    "%s: could not set TX power, error %d\n", __func__, error);
5197 		return error;
5198 	}
5199 
5200 	/* Fake a join to initialize the TX rate. */
5201 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5202 	iwn_newassoc(ni, 1);
5203 
5204 	/* Add BSS node. */
5205 	memset(&node, 0, sizeof node);
5206 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5207 	node.id = IWN_ID_BSS;
5208 #ifdef notyet
5209 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5210 	    IWN_AMDPU_DENSITY(5));	/* 2us */
5211 #endif
5212 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5213 	error = ops->add_node(sc, &node, 1);
5214 	if (error != 0) {
5215 		device_printf(sc->sc_dev,
5216 		    "%s: could not add BSS node, error %d\n", __func__, error);
5217 		return error;
5218 	}
5219 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5220 	    __func__, node.id);
5221 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5222 		device_printf(sc->sc_dev,
5223 		    "%s: could not setup link quality for node %d, error %d\n",
5224 		    __func__, node.id, error);
5225 		return error;
5226 	}
5227 
5228 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5229 		device_printf(sc->sc_dev,
5230 		    "%s: could not set sensitivity, error %d\n", __func__,
5231 		    error);
5232 		return error;
5233 	}
5234 	/* Start periodic calibration timer. */
5235 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5236 	sc->calib_cnt = 0;
5237 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5238 	    sc);
5239 
5240 	/* Link LED always on while associated. */
5241 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5242 	return 0;
5243 #undef MS
5244 }
5245 
5246 #if 0	/* HT */
5247 /*
5248  * This function is called by upper layer when an ADDBA request is received
5249  * from another STA and before the ADDBA response is sent.
5250  */
5251 static int
5252 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5253     uint8_t tid)
5254 {
5255 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5256 	struct iwn_softc *sc = ic->ic_softc;
5257 	struct iwn_ops *ops = &sc->ops;
5258 	struct iwn_node *wn = (void *)ni;
5259 	struct iwn_node_info node;
5260 
5261 	memset(&node, 0, sizeof node);
5262 	node.id = wn->id;
5263 	node.control = IWN_NODE_UPDATE;
5264 	node.flags = IWN_FLAG_SET_ADDBA;
5265 	node.addba_tid = tid;
5266 	node.addba_ssn = htole16(ba->ba_winstart);
5267 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5268 	    wn->id, tid, ba->ba_winstart);
5269 	return ops->add_node(sc, &node, 1);
5270 }
5271 
5272 /*
5273  * This function is called by upper layer on teardown of an HT-immediate
5274  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5275  */
5276 static void
5277 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5278     uint8_t tid)
5279 {
5280 	struct iwn_softc *sc = ic->ic_softc;
5281 	struct iwn_ops *ops = &sc->ops;
5282 	struct iwn_node *wn = (void *)ni;
5283 	struct iwn_node_info node;
5284 
5285 	memset(&node, 0, sizeof node);
5286 	node.id = wn->id;
5287 	node.control = IWN_NODE_UPDATE;
5288 	node.flags = IWN_FLAG_SET_DELBA;
5289 	node.delba_tid = tid;
5290 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5291 	(void)ops->add_node(sc, &node, 1);
5292 }
5293 
5294 /*
5295  * This function is called by upper layer when an ADDBA response is received
5296  * from another STA.
5297  */
5298 static int
5299 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5300     uint8_t tid)
5301 {
5302 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5303 	struct iwn_softc *sc = ic->ic_softc;
5304 	struct iwn_ops *ops = &sc->ops;
5305 	struct iwn_node *wn = (void *)ni;
5306 	struct iwn_node_info node;
5307 	int error;
5308 
5309 	/* Enable TX for the specified RA/TID. */
5310 	wn->disable_tid &= ~(1 << tid);
5311 	memset(&node, 0, sizeof node);
5312 	node.id = wn->id;
5313 	node.control = IWN_NODE_UPDATE;
5314 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5315 	node.disable_tid = htole16(wn->disable_tid);
5316 	error = ops->add_node(sc, &node, 1);
5317 	if (error != 0)
5318 		return error;
5319 
5320 	if ((error = iwn_nic_lock(sc)) != 0)
5321 		return error;
5322 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5323 	iwn_nic_unlock(sc);
5324 	return 0;
5325 }
5326 
5327 static void
5328 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5329     uint8_t tid)
5330 {
5331 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5332 	struct iwn_softc *sc = ic->ic_softc;
5333 	struct iwn_ops *ops = &sc->ops;
5334 
5335 	if (iwn_nic_lock(sc) != 0)
5336 		return;
5337 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5338 	iwn_nic_unlock(sc);
5339 }
5340 
5341 static void
5342 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5343     uint8_t tid, uint16_t ssn)
5344 {
5345 	struct iwn_node *wn = (void *)ni;
5346 	int qid = 7 + tid;
5347 
5348 	/* Stop TX scheduler while we're changing its configuration. */
5349 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5350 	    IWN4965_TXQ_STATUS_CHGACT);
5351 
5352 	/* Assign RA/TID translation to the queue. */
5353 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5354 	    wn->id << 4 | tid);
5355 
5356 	/* Enable chain-building mode for the queue. */
5357 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5358 
5359 	/* Set starting sequence number from the ADDBA request. */
5360 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5361 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5362 
5363 	/* Set scheduler window size. */
5364 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5365 	    IWN_SCHED_WINSZ);
5366 	/* Set scheduler frame limit. */
5367 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5368 	    IWN_SCHED_LIMIT << 16);
5369 
5370 	/* Enable interrupts for the queue. */
5371 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5372 
5373 	/* Mark the queue as active. */
5374 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5375 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5376 	    iwn_tid2fifo[tid] << 1);
5377 }
5378 
5379 static void
5380 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5381 {
5382 	int qid = 7 + tid;
5383 
5384 	/* Stop TX scheduler while we're changing its configuration. */
5385 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5386 	    IWN4965_TXQ_STATUS_CHGACT);
5387 
5388 	/* Set starting sequence number from the ADDBA request. */
5389 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5390 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5391 
5392 	/* Disable interrupts for the queue. */
5393 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5394 
5395 	/* Mark the queue as inactive. */
5396 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5397 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5398 }
5399 
5400 static void
5401 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5402     uint8_t tid, uint16_t ssn)
5403 {
5404 	struct iwn_node *wn = (void *)ni;
5405 	int qid = 10 + tid;
5406 
5407 	/* Stop TX scheduler while we're changing its configuration. */
5408 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5409 	    IWN5000_TXQ_STATUS_CHGACT);
5410 
5411 	/* Assign RA/TID translation to the queue. */
5412 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5413 	    wn->id << 4 | tid);
5414 
5415 	/* Enable chain-building mode for the queue. */
5416 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5417 
5418 	/* Enable aggregation for the queue. */
5419 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5420 
5421 	/* Set starting sequence number from the ADDBA request. */
5422 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5423 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5424 
5425 	/* Set scheduler window size and frame limit. */
5426 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5427 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5428 
5429 	/* Enable interrupts for the queue. */
5430 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5431 
5432 	/* Mark the queue as active. */
5433 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5434 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5435 }
5436 
5437 static void
5438 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5439 {
5440 	int qid = 10 + tid;
5441 
5442 	/* Stop TX scheduler while we're changing its configuration. */
5443 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5444 	    IWN5000_TXQ_STATUS_CHGACT);
5445 
5446 	/* Disable aggregation for the queue. */
5447 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5448 
5449 	/* Set starting sequence number from the ADDBA request. */
5450 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5451 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5452 
5453 	/* Disable interrupts for the queue. */
5454 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5455 
5456 	/* Mark the queue as inactive. */
5457 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5458 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5459 }
5460 #endif
5461 
5462 /*
5463  * Query calibration tables from the initialization firmware.  We do this
5464  * only once at first boot.  Called from a process context.
5465  */
5466 static int
5467 iwn5000_query_calibration(struct iwn_softc *sc)
5468 {
5469 	struct iwn5000_calib_config cmd;
5470 	int error;
5471 
5472 	memset(&cmd, 0, sizeof cmd);
5473 	cmd.ucode.once.enable = 0xffffffff;
5474 	cmd.ucode.once.start  = 0xffffffff;
5475 	cmd.ucode.once.send   = 0xffffffff;
5476 	cmd.ucode.flags       = 0xffffffff;
5477 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5478 	    __func__);
5479 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5480 	if (error != 0)
5481 		return error;
5482 
5483 	/* Wait at most two seconds for calibration to complete. */
5484 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5485 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5486 	return error;
5487 }
5488 
5489 /*
5490  * Send calibration results to the runtime firmware.  These results were
5491  * obtained on first boot from the initialization firmware.
5492  */
5493 static int
5494 iwn5000_send_calibration(struct iwn_softc *sc)
5495 {
5496 	int idx, error;
5497 
5498 	for (idx = 0; idx < 5; idx++) {
5499 		if (sc->calibcmd[idx].buf == NULL)
5500 			continue;	/* No results available. */
5501 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5502 		    "send calibration result idx=%d len=%d\n", idx,
5503 		    sc->calibcmd[idx].len);
5504 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5505 		    sc->calibcmd[idx].len, 0);
5506 		if (error != 0) {
5507 			device_printf(sc->sc_dev,
5508 			    "%s: could not send calibration result, error %d\n",
5509 			    __func__, error);
5510 			return error;
5511 		}
5512 	}
5513 	return 0;
5514 }
5515 
5516 static int
5517 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5518 {
5519 	struct iwn5000_wimax_coex wimax;
5520 
5521 #ifdef notyet
5522 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5523 		/* Enable WiMAX coexistence for combo adapters. */
5524 		wimax.flags =
5525 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5526 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5527 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5528 		    IWN_WIMAX_COEX_ENABLE;
5529 		memcpy(wimax.events, iwn6050_wimax_events,
5530 		    sizeof iwn6050_wimax_events);
5531 	} else
5532 #endif
5533 	{
5534 		/* Disable WiMAX coexistence. */
5535 		wimax.flags = 0;
5536 		memset(wimax.events, 0, sizeof wimax.events);
5537 	}
5538 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5539 	    __func__);
5540 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5541 }
5542 
5543 static int
5544 iwn5000_crystal_calib(struct iwn_softc *sc)
5545 {
5546 	struct iwn5000_phy_calib_crystal cmd;
5547 
5548 	memset(&cmd, 0, sizeof cmd);
5549 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5550 	cmd.ngroups = 1;
5551 	cmd.isvalid = 1;
5552 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5553 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5554 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
5555 	    cmd.cap_pin[0], cmd.cap_pin[1]);
5556 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5557 }
5558 
5559 static int
5560 iwn5000_temp_offset_calib(struct iwn_softc *sc)
5561 {
5562 	struct iwn5000_phy_calib_temp_offset cmd;
5563 
5564 	memset(&cmd, 0, sizeof cmd);
5565 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
5566 	cmd.ngroups = 1;
5567 	cmd.isvalid = 1;
5568 	if (sc->eeprom_temp != 0)
5569 		cmd.offset = htole16(sc->eeprom_temp);
5570 	else
5571 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5572 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
5573 	    le16toh(cmd.offset));
5574 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5575 }
5576 
5577 /*
5578  * This function is called after the runtime firmware notifies us of its
5579  * readiness (called in a process context).
5580  */
5581 static int
5582 iwn4965_post_alive(struct iwn_softc *sc)
5583 {
5584 	int error, qid;
5585 
5586 	if ((error = iwn_nic_lock(sc)) != 0)
5587 		return error;
5588 
5589 	/* Clear TX scheduler state in SRAM. */
5590 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5591 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5592 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5593 
5594 	/* Set physical address of TX scheduler rings (1KB aligned). */
5595 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5596 
5597 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5598 
5599 	/* Disable chain mode for all our 16 queues. */
5600 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5601 
5602 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5603 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5604 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5605 
5606 		/* Set scheduler window size. */
5607 		iwn_mem_write(sc, sc->sched_base +
5608 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5609 		/* Set scheduler frame limit. */
5610 		iwn_mem_write(sc, sc->sched_base +
5611 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5612 		    IWN_SCHED_LIMIT << 16);
5613 	}
5614 
5615 	/* Enable interrupts for all our 16 queues. */
5616 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5617 	/* Identify TX FIFO rings (0-7). */
5618 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5619 
5620 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5621 	for (qid = 0; qid < 7; qid++) {
5622 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5623 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5624 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5625 	}
5626 	iwn_nic_unlock(sc);
5627 	return 0;
5628 }
5629 
5630 /*
5631  * This function is called after the initialization or runtime firmware
5632  * notifies us of its readiness (called in a process context).
5633  */
5634 static int
5635 iwn5000_post_alive(struct iwn_softc *sc)
5636 {
5637 	int error, qid;
5638 
5639 	/* Switch to using ICT interrupt mode. */
5640 	iwn5000_ict_reset(sc);
5641 
5642 	if ((error = iwn_nic_lock(sc)) != 0)
5643 		return error;
5644 
5645 	/* Clear TX scheduler state in SRAM. */
5646 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5647 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5648 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5649 
5650 	/* Set physical address of TX scheduler rings (1KB aligned). */
5651 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5652 
5653 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5654 
5655 	/* Enable chain mode for all queues, except command queue. */
5656 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5657 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5658 
5659 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5660 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5661 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5662 
5663 		iwn_mem_write(sc, sc->sched_base +
5664 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5665 		/* Set scheduler window size and frame limit. */
5666 		iwn_mem_write(sc, sc->sched_base +
5667 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5668 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5669 	}
5670 
5671 	/* Enable interrupts for all our 20 queues. */
5672 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5673 	/* Identify TX FIFO rings (0-7). */
5674 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5675 
5676 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5677 	for (qid = 0; qid < 7; qid++) {
5678 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5679 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5680 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5681 	}
5682 	iwn_nic_unlock(sc);
5683 
5684 	/* Configure WiMAX coexistence for combo adapters. */
5685 	error = iwn5000_send_wimax_coex(sc);
5686 	if (error != 0) {
5687 		device_printf(sc->sc_dev,
5688 		    "%s: could not configure WiMAX coexistence, error %d\n",
5689 		    __func__, error);
5690 		return error;
5691 	}
5692 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5693 		/* Perform crystal calibration. */
5694 		error = iwn5000_crystal_calib(sc);
5695 		if (error != 0) {
5696 			device_printf(sc->sc_dev,
5697 			    "%s: crystal calibration failed, error %d\n",
5698 			    __func__, error);
5699 			return error;
5700 		}
5701 	}
5702 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5703 		/* Query calibration from the initialization firmware. */
5704 		if ((error = iwn5000_query_calibration(sc)) != 0) {
5705 			device_printf(sc->sc_dev,
5706 			    "%s: could not query calibration, error %d\n",
5707 			    __func__, error);
5708 			return error;
5709 		}
5710 		/*
5711 		 * We have the calibration results now, reboot with the
5712 		 * runtime firmware (call ourselves recursively!)
5713 		 */
5714 		iwn_hw_stop(sc);
5715 		error = iwn_hw_init(sc);
5716 	} else {
5717 		/* Send calibration results to runtime firmware. */
5718 		error = iwn5000_send_calibration(sc);
5719 	}
5720 	return error;
5721 }
5722 
5723 /*
5724  * The firmware boot code is small and is intended to be copied directly into
5725  * the NIC internal memory (no DMA transfer).
5726  */
5727 static int
5728 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5729 {
5730 	int error, ntries;
5731 
5732 	size /= sizeof (uint32_t);
5733 
5734 	if ((error = iwn_nic_lock(sc)) != 0)
5735 		return error;
5736 
5737 	/* Copy microcode image into NIC memory. */
5738 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5739 	    (const uint32_t *)ucode, size);
5740 
5741 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5742 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5743 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5744 
5745 	/* Start boot load now. */
5746 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5747 
5748 	/* Wait for transfer to complete. */
5749 	for (ntries = 0; ntries < 1000; ntries++) {
5750 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5751 		    IWN_BSM_WR_CTRL_START))
5752 			break;
5753 		DELAY(10);
5754 	}
5755 	if (ntries == 1000) {
5756 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5757 		    __func__);
5758 		iwn_nic_unlock(sc);
5759 		return ETIMEDOUT;
5760 	}
5761 
5762 	/* Enable boot after power up. */
5763 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5764 
5765 	iwn_nic_unlock(sc);
5766 	return 0;
5767 }
5768 
5769 static int
5770 iwn4965_load_firmware(struct iwn_softc *sc)
5771 {
5772 	struct iwn_fw_info *fw = &sc->fw;
5773 	struct iwn_dma_info *dma = &sc->fw_dma;
5774 	int error;
5775 
5776 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5777 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5778 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5779 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5780 	    fw->init.text, fw->init.textsz);
5781 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5782 
5783 	/* Tell adapter where to find initialization sections. */
5784 	if ((error = iwn_nic_lock(sc)) != 0)
5785 		return error;
5786 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5787 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5788 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5789 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5790 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5791 	iwn_nic_unlock(sc);
5792 
5793 	/* Load firmware boot code. */
5794 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5795 	if (error != 0) {
5796 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5797 		    __func__);
5798 		return error;
5799 	}
5800 	/* Now press "execute". */
5801 	IWN_WRITE(sc, IWN_RESET, 0);
5802 
5803 	/* Wait at most one second for first alive notification. */
5804 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
5805 		device_printf(sc->sc_dev,
5806 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5807 		    __func__, error);
5808 		return error;
5809 	}
5810 
5811 	/* Retrieve current temperature for initial TX power calibration. */
5812 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5813 	sc->temp = iwn4965_get_temperature(sc);
5814 
5815 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5816 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5817 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5818 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5819 	    fw->main.text, fw->main.textsz);
5820 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5821 
5822 	/* Tell adapter where to find runtime sections. */
5823 	if ((error = iwn_nic_lock(sc)) != 0)
5824 		return error;
5825 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5826 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5827 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5828 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5829 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5830 	    IWN_FW_UPDATED | fw->main.textsz);
5831 	iwn_nic_unlock(sc);
5832 
5833 	return 0;
5834 }
5835 
5836 static int
5837 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5838     const uint8_t *section, int size)
5839 {
5840 	struct iwn_dma_info *dma = &sc->fw_dma;
5841 	int error;
5842 
5843 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5844 	memcpy(dma->vaddr, section, size);
5845 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5846 
5847 	if ((error = iwn_nic_lock(sc)) != 0)
5848 		return error;
5849 
5850 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5851 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5852 
5853 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5854 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5855 	    IWN_LOADDR(dma->paddr));
5856 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5857 	    IWN_HIADDR(dma->paddr) << 28 | size);
5858 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5859 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5860 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5861 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5862 
5863 	/* Kick Flow Handler to start DMA transfer. */
5864 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5865 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5866 
5867 	iwn_nic_unlock(sc);
5868 
5869 	/* Wait at most five seconds for FH DMA transfer to complete. */
5870 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
5871 }
5872 
5873 static int
5874 iwn5000_load_firmware(struct iwn_softc *sc)
5875 {
5876 	struct iwn_fw_part *fw;
5877 	int error;
5878 
5879 	/* Load the initialization firmware on first boot only. */
5880 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5881 	    &sc->fw.main : &sc->fw.init;
5882 
5883 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5884 	    fw->text, fw->textsz);
5885 	if (error != 0) {
5886 		device_printf(sc->sc_dev,
5887 		    "%s: could not load firmware %s section, error %d\n",
5888 		    __func__, ".text", error);
5889 		return error;
5890 	}
5891 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5892 	    fw->data, fw->datasz);
5893 	if (error != 0) {
5894 		device_printf(sc->sc_dev,
5895 		    "%s: could not load firmware %s section, error %d\n",
5896 		    __func__, ".data", error);
5897 		return error;
5898 	}
5899 
5900 	/* Now press "execute". */
5901 	IWN_WRITE(sc, IWN_RESET, 0);
5902 	return 0;
5903 }
5904 
5905 /*
5906  * Extract text and data sections from a legacy firmware image.
5907  */
5908 static int
5909 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5910 {
5911 	const uint32_t *ptr;
5912 	size_t hdrlen = 24;
5913 	uint32_t rev;
5914 
5915 	ptr = (const uint32_t *)fw->data;
5916 	rev = le32toh(*ptr++);
5917 
5918 	/* Check firmware API version. */
5919 	if (IWN_FW_API(rev) <= 1) {
5920 		device_printf(sc->sc_dev,
5921 		    "%s: bad firmware, need API version >=2\n", __func__);
5922 		return EINVAL;
5923 	}
5924 	if (IWN_FW_API(rev) >= 3) {
5925 		/* Skip build number (version 2 header). */
5926 		hdrlen += 4;
5927 		ptr++;
5928 	}
5929 	if (fw->size < hdrlen) {
5930 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
5931 		    __func__, fw->size);
5932 		return EINVAL;
5933 	}
5934 	fw->main.textsz = le32toh(*ptr++);
5935 	fw->main.datasz = le32toh(*ptr++);
5936 	fw->init.textsz = le32toh(*ptr++);
5937 	fw->init.datasz = le32toh(*ptr++);
5938 	fw->boot.textsz = le32toh(*ptr++);
5939 
5940 	/* Check that all firmware sections fit. */
5941 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5942 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5943 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
5944 		    __func__, fw->size);
5945 		return EINVAL;
5946 	}
5947 
5948 	/* Get pointers to firmware sections. */
5949 	fw->main.text = (const uint8_t *)ptr;
5950 	fw->main.data = fw->main.text + fw->main.textsz;
5951 	fw->init.text = fw->main.data + fw->main.datasz;
5952 	fw->init.data = fw->init.text + fw->init.textsz;
5953 	fw->boot.text = fw->init.data + fw->init.datasz;
5954 	return 0;
5955 }
5956 
5957 /*
5958  * Extract text and data sections from a TLV firmware image.
5959  */
5960 static int
5961 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5962     uint16_t alt)
5963 {
5964 	const struct iwn_fw_tlv_hdr *hdr;
5965 	const struct iwn_fw_tlv *tlv;
5966 	const uint8_t *ptr, *end;
5967 	uint64_t altmask;
5968 	uint32_t len, tmp;
5969 
5970 	if (fw->size < sizeof (*hdr)) {
5971 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
5972 		    __func__, fw->size);
5973 		return EINVAL;
5974 	}
5975 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5976 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5977 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
5978 		    __func__, le32toh(hdr->signature));
5979 		return EINVAL;
5980 	}
5981 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
5982 	    le32toh(hdr->build));
5983 
5984 	/*
5985 	 * Select the closest supported alternative that is less than
5986 	 * or equal to the specified one.
5987 	 */
5988 	altmask = le64toh(hdr->altmask);
5989 	while (alt > 0 && !(altmask & (1ULL << alt)))
5990 		alt--;	/* Downgrade. */
5991 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
5992 
5993 	ptr = (const uint8_t *)(hdr + 1);
5994 	end = (const uint8_t *)(fw->data + fw->size);
5995 
5996 	/* Parse type-length-value fields. */
5997 	while (ptr + sizeof (*tlv) <= end) {
5998 		tlv = (const struct iwn_fw_tlv *)ptr;
5999 		len = le32toh(tlv->len);
6000 
6001 		ptr += sizeof (*tlv);
6002 		if (ptr + len > end) {
6003 			device_printf(sc->sc_dev,
6004 			    "%s: firmware too short: %zu bytes\n", __func__,
6005 			    fw->size);
6006 			return EINVAL;
6007 		}
6008 		/* Skip other alternatives. */
6009 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6010 			goto next;
6011 
6012 		switch (le16toh(tlv->type)) {
6013 		case IWN_FW_TLV_MAIN_TEXT:
6014 			fw->main.text = ptr;
6015 			fw->main.textsz = len;
6016 			break;
6017 		case IWN_FW_TLV_MAIN_DATA:
6018 			fw->main.data = ptr;
6019 			fw->main.datasz = len;
6020 			break;
6021 		case IWN_FW_TLV_INIT_TEXT:
6022 			fw->init.text = ptr;
6023 			fw->init.textsz = len;
6024 			break;
6025 		case IWN_FW_TLV_INIT_DATA:
6026 			fw->init.data = ptr;
6027 			fw->init.datasz = len;
6028 			break;
6029 		case IWN_FW_TLV_BOOT_TEXT:
6030 			fw->boot.text = ptr;
6031 			fw->boot.textsz = len;
6032 			break;
6033 		case IWN_FW_TLV_ENH_SENS:
6034 			if (!len)
6035 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6036 			break;
6037 		case IWN_FW_TLV_PHY_CALIB:
6038 			tmp = htole32(*ptr);
6039 			if (tmp < 253) {
6040 				sc->reset_noise_gain = tmp;
6041 				sc->noise_gain = tmp + 1;
6042 			}
6043 			break;
6044 		default:
6045 			DPRINTF(sc, IWN_DEBUG_RESET,
6046 			    "TLV type %d not handled\n", le16toh(tlv->type));
6047 			break;
6048 		}
6049  next:		/* TLV fields are 32-bit aligned. */
6050 		ptr += (len + 3) & ~3;
6051 	}
6052 	return 0;
6053 }
6054 
6055 static int
6056 iwn_read_firmware(struct iwn_softc *sc)
6057 {
6058 	struct iwn_fw_info *fw = &sc->fw;
6059 	int error;
6060 
6061 	IWN_UNLOCK(sc);
6062 
6063 	memset(fw, 0, sizeof (*fw));
6064 
6065 	/* Read firmware image from filesystem. */
6066 	sc->fw_fp = firmware_get(sc->fwname);
6067 	if (sc->fw_fp == NULL) {
6068 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6069 		    __func__, sc->fwname);
6070 		IWN_LOCK(sc);
6071 		return EINVAL;
6072 	}
6073 	IWN_LOCK(sc);
6074 
6075 	fw->size = sc->fw_fp->datasize;
6076 	fw->data = (const uint8_t *)sc->fw_fp->data;
6077 	if (fw->size < sizeof (uint32_t)) {
6078 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6079 		    __func__, fw->size);
6080 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6081 		sc->fw_fp = NULL;
6082 		return EINVAL;
6083 	}
6084 
6085 	/* Retrieve text and data sections. */
6086 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6087 		error = iwn_read_firmware_leg(sc, fw);
6088 	else
6089 		error = iwn_read_firmware_tlv(sc, fw, 1);
6090 	if (error != 0) {
6091 		device_printf(sc->sc_dev,
6092 		    "%s: could not read firmware sections, error %d\n",
6093 		    __func__, error);
6094 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6095 		sc->fw_fp = NULL;
6096 		return error;
6097 	}
6098 
6099 	/* Make sure text and data sections fit in hardware memory. */
6100 	if (fw->main.textsz > sc->fw_text_maxsz ||
6101 	    fw->main.datasz > sc->fw_data_maxsz ||
6102 	    fw->init.textsz > sc->fw_text_maxsz ||
6103 	    fw->init.datasz > sc->fw_data_maxsz ||
6104 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6105 	    (fw->boot.textsz & 3) != 0) {
6106 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6107 		    __func__);
6108 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6109 		sc->fw_fp = NULL;
6110 		return EINVAL;
6111 	}
6112 
6113 	/* We can proceed with loading the firmware. */
6114 	return 0;
6115 }
6116 
6117 static int
6118 iwn_clock_wait(struct iwn_softc *sc)
6119 {
6120 	int ntries;
6121 
6122 	/* Set "initialization complete" bit. */
6123 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6124 
6125 	/* Wait for clock stabilization. */
6126 	for (ntries = 0; ntries < 2500; ntries++) {
6127 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6128 			return 0;
6129 		DELAY(10);
6130 	}
6131 	device_printf(sc->sc_dev,
6132 	    "%s: timeout waiting for clock stabilization\n", __func__);
6133 	return ETIMEDOUT;
6134 }
6135 
6136 static int
6137 iwn_apm_init(struct iwn_softc *sc)
6138 {
6139 	uint32_t reg;
6140 	int error;
6141 
6142 	/* Disable L0s exit timer (NMI bug workaround). */
6143 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6144 	/* Don't wait for ICH L0s (ICH bug workaround). */
6145 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6146 
6147 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6148 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6149 
6150 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6151 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6152 
6153 	/* Retrieve PCIe Active State Power Management (ASPM). */
6154 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6155 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6156 	if (reg & 0x02)	/* L1 Entry enabled. */
6157 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6158 	else
6159 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6160 
6161 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6162 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6163 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6164 
6165 	/* Wait for clock stabilization before accessing prph. */
6166 	if ((error = iwn_clock_wait(sc)) != 0)
6167 		return error;
6168 
6169 	if ((error = iwn_nic_lock(sc)) != 0)
6170 		return error;
6171 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6172 		/* Enable DMA and BSM (Bootstrap State Machine). */
6173 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6174 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6175 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6176 	} else {
6177 		/* Enable DMA. */
6178 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6179 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6180 	}
6181 	DELAY(20);
6182 	/* Disable L1-Active. */
6183 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6184 	iwn_nic_unlock(sc);
6185 
6186 	return 0;
6187 }
6188 
6189 static void
6190 iwn_apm_stop_master(struct iwn_softc *sc)
6191 {
6192 	int ntries;
6193 
6194 	/* Stop busmaster DMA activity. */
6195 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6196 	for (ntries = 0; ntries < 100; ntries++) {
6197 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6198 			return;
6199 		DELAY(10);
6200 	}
6201 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6202 }
6203 
6204 static void
6205 iwn_apm_stop(struct iwn_softc *sc)
6206 {
6207 	iwn_apm_stop_master(sc);
6208 
6209 	/* Reset the entire device. */
6210 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6211 	DELAY(10);
6212 	/* Clear "initialization complete" bit. */
6213 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6214 }
6215 
6216 static int
6217 iwn4965_nic_config(struct iwn_softc *sc)
6218 {
6219 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6220 		/*
6221 		 * I don't believe this to be correct but this is what the
6222 		 * vendor driver is doing. Probably the bits should not be
6223 		 * shifted in IWN_RFCFG_*.
6224 		 */
6225 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6226 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6227 		    IWN_RFCFG_STEP(sc->rfcfg) |
6228 		    IWN_RFCFG_DASH(sc->rfcfg));
6229 	}
6230 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6231 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6232 	return 0;
6233 }
6234 
6235 static int
6236 iwn5000_nic_config(struct iwn_softc *sc)
6237 {
6238 	uint32_t tmp;
6239 	int error;
6240 
6241 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6242 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6243 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6244 		    IWN_RFCFG_STEP(sc->rfcfg) |
6245 		    IWN_RFCFG_DASH(sc->rfcfg));
6246 	}
6247 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6248 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6249 
6250 	if ((error = iwn_nic_lock(sc)) != 0)
6251 		return error;
6252 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6253 
6254 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6255 		/*
6256 		 * Select first Switching Voltage Regulator (1.32V) to
6257 		 * solve a stability issue related to noisy DC2DC line
6258 		 * in the silicon of 1000 Series.
6259 		 */
6260 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6261 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6262 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6263 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6264 	}
6265 	iwn_nic_unlock(sc);
6266 
6267 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6268 		/* Use internal power amplifier only. */
6269 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6270 	}
6271 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6272 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6273 		/* Indicate that ROM calibration version is >=6. */
6274 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6275 	}
6276 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6277 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6278 	return 0;
6279 }
6280 
6281 /*
6282  * Take NIC ownership over Intel Active Management Technology (AMT).
6283  */
6284 static int
6285 iwn_hw_prepare(struct iwn_softc *sc)
6286 {
6287 	int ntries;
6288 
6289 	/* Check if hardware is ready. */
6290 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6291 	for (ntries = 0; ntries < 5; ntries++) {
6292 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6293 		    IWN_HW_IF_CONFIG_NIC_READY)
6294 			return 0;
6295 		DELAY(10);
6296 	}
6297 
6298 	/* Hardware not ready, force into ready state. */
6299 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6300 	for (ntries = 0; ntries < 15000; ntries++) {
6301 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6302 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6303 			break;
6304 		DELAY(10);
6305 	}
6306 	if (ntries == 15000)
6307 		return ETIMEDOUT;
6308 
6309 	/* Hardware should be ready now. */
6310 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6311 	for (ntries = 0; ntries < 5; ntries++) {
6312 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6313 		    IWN_HW_IF_CONFIG_NIC_READY)
6314 			return 0;
6315 		DELAY(10);
6316 	}
6317 	return ETIMEDOUT;
6318 }
6319 
6320 static int
6321 iwn_hw_init(struct iwn_softc *sc)
6322 {
6323 	struct iwn_ops *ops = &sc->ops;
6324 	int error, chnl, qid;
6325 
6326 	/* Clear pending interrupts. */
6327 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6328 
6329 	if ((error = iwn_apm_init(sc)) != 0) {
6330 		device_printf(sc->sc_dev,
6331 		    "%s: could not power ON adapter, error %d\n", __func__,
6332 		    error);
6333 		return error;
6334 	}
6335 
6336 	/* Select VMAIN power source. */
6337 	if ((error = iwn_nic_lock(sc)) != 0)
6338 		return error;
6339 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6340 	iwn_nic_unlock(sc);
6341 
6342 	/* Perform adapter-specific initialization. */
6343 	if ((error = ops->nic_config(sc)) != 0)
6344 		return error;
6345 
6346 	/* Initialize RX ring. */
6347 	if ((error = iwn_nic_lock(sc)) != 0)
6348 		return error;
6349 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6350 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6351 	/* Set physical address of RX ring (256-byte aligned). */
6352 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6353 	/* Set physical address of RX status (16-byte aligned). */
6354 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6355 	/* Enable RX. */
6356 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6357 	    IWN_FH_RX_CONFIG_ENA           |
6358 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6359 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6360 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6361 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6362 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6363 	iwn_nic_unlock(sc);
6364 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6365 
6366 	if ((error = iwn_nic_lock(sc)) != 0)
6367 		return error;
6368 
6369 	/* Initialize TX scheduler. */
6370 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6371 
6372 	/* Set physical address of "keep warm" page (16-byte aligned). */
6373 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6374 
6375 	/* Initialize TX rings. */
6376 	for (qid = 0; qid < sc->ntxqs; qid++) {
6377 		struct iwn_tx_ring *txq = &sc->txq[qid];
6378 
6379 		/* Set physical address of TX ring (256-byte aligned). */
6380 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6381 		    txq->desc_dma.paddr >> 8);
6382 	}
6383 	iwn_nic_unlock(sc);
6384 
6385 	/* Enable DMA channels. */
6386 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6387 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6388 		    IWN_FH_TX_CONFIG_DMA_ENA |
6389 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6390 	}
6391 
6392 	/* Clear "radio off" and "commands blocked" bits. */
6393 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6394 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6395 
6396 	/* Clear pending interrupts. */
6397 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6398 	/* Enable interrupt coalescing. */
6399 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6400 	/* Enable interrupts. */
6401 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6402 
6403 	/* _Really_ make sure "radio off" bit is cleared! */
6404 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6405 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6406 
6407 	/* Enable shadow registers. */
6408 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6409 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6410 
6411 	if ((error = ops->load_firmware(sc)) != 0) {
6412 		device_printf(sc->sc_dev,
6413 		    "%s: could not load firmware, error %d\n", __func__,
6414 		    error);
6415 		return error;
6416 	}
6417 	/* Wait at most one second for firmware alive notification. */
6418 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6419 		device_printf(sc->sc_dev,
6420 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6421 		    __func__, error);
6422 		return error;
6423 	}
6424 	/* Do post-firmware initialization. */
6425 	return ops->post_alive(sc);
6426 }
6427 
6428 static void
6429 iwn_hw_stop(struct iwn_softc *sc)
6430 {
6431 	int chnl, qid, ntries;
6432 
6433 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6434 
6435 	/* Disable interrupts. */
6436 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6437 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6438 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6439 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6440 
6441 	/* Make sure we no longer hold the NIC lock. */
6442 	iwn_nic_unlock(sc);
6443 
6444 	/* Stop TX scheduler. */
6445 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6446 
6447 	/* Stop all DMA channels. */
6448 	if (iwn_nic_lock(sc) == 0) {
6449 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6450 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6451 			for (ntries = 0; ntries < 200; ntries++) {
6452 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6453 				    IWN_FH_TX_STATUS_IDLE(chnl))
6454 					break;
6455 				DELAY(10);
6456 			}
6457 		}
6458 		iwn_nic_unlock(sc);
6459 	}
6460 
6461 	/* Stop RX ring. */
6462 	iwn_reset_rx_ring(sc, &sc->rxq);
6463 
6464 	/* Reset all TX rings. */
6465 	for (qid = 0; qid < sc->ntxqs; qid++)
6466 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6467 
6468 	if (iwn_nic_lock(sc) == 0) {
6469 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6470 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6471 		iwn_nic_unlock(sc);
6472 	}
6473 	DELAY(5);
6474 	/* Power OFF adapter. */
6475 	iwn_apm_stop(sc);
6476 }
6477 
6478 static void
6479 iwn_radio_on(void *arg0, int pending)
6480 {
6481 	struct iwn_softc *sc = arg0;
6482 	struct ifnet *ifp = sc->sc_ifp;
6483 	struct ieee80211com *ic = ifp->if_l2com;
6484 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6485 
6486 	if (vap != NULL) {
6487 		iwn_init(sc);
6488 		ieee80211_init(vap);
6489 	}
6490 }
6491 
6492 static void
6493 iwn_radio_off(void *arg0, int pending)
6494 {
6495 	struct iwn_softc *sc = arg0;
6496 	struct ifnet *ifp = sc->sc_ifp;
6497 	struct ieee80211com *ic = ifp->if_l2com;
6498 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6499 
6500 	iwn_stop(sc);
6501 	if (vap != NULL)
6502 		ieee80211_stop(vap);
6503 
6504 	/* Enable interrupts to get RF toggle notification. */
6505 	IWN_LOCK(sc);
6506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6507 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6508 	IWN_UNLOCK(sc);
6509 }
6510 
6511 static void
6512 iwn_init_locked(struct iwn_softc *sc)
6513 {
6514 	struct ifnet *ifp = sc->sc_ifp;
6515 	int error;
6516 
6517 	IWN_LOCK_ASSERT(sc);
6518 
6519 	if ((error = iwn_hw_prepare(sc)) != 0) {
6520 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6521 		    __func__, error);
6522 		goto fail;
6523 	}
6524 
6525 	/* Initialize interrupt mask to default value. */
6526 	sc->int_mask = IWN_INT_MASK_DEF;
6527 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6528 
6529 	/* Check that the radio is not disabled by hardware switch. */
6530 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6531 		device_printf(sc->sc_dev,
6532 		    "radio is disabled by hardware switch\n");
6533 		/* Enable interrupts to get RF toggle notifications. */
6534 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6535 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6536 		return;
6537 	}
6538 
6539 	/* Read firmware images from the filesystem. */
6540 	if ((error = iwn_read_firmware(sc)) != 0) {
6541 		device_printf(sc->sc_dev,
6542 		    "%s: could not read firmware, error %d\n", __func__,
6543 		    error);
6544 		goto fail;
6545 	}
6546 
6547 	/* Initialize hardware and upload firmware. */
6548 	error = iwn_hw_init(sc);
6549 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6550 	sc->fw_fp = NULL;
6551 	if (error != 0) {
6552 		device_printf(sc->sc_dev,
6553 		    "%s: could not initialize hardware, error %d\n", __func__,
6554 		    error);
6555 		goto fail;
6556 	}
6557 
6558 	/* Configure adapter now that it is ready. */
6559 	if ((error = iwn_config(sc)) != 0) {
6560 		device_printf(sc->sc_dev,
6561 		    "%s: could not configure device, error %d\n", __func__,
6562 		    error);
6563 		goto fail;
6564 	}
6565 
6566 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6567 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6568 
6569 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
6570 	return;
6571 
6572 fail:	iwn_stop_locked(sc);
6573 }
6574 
6575 static void
6576 iwn_init(void *arg)
6577 {
6578 	struct iwn_softc *sc = arg;
6579 	struct ifnet *ifp = sc->sc_ifp;
6580 	struct ieee80211com *ic = ifp->if_l2com;
6581 
6582 	IWN_LOCK(sc);
6583 	iwn_init_locked(sc);
6584 	IWN_UNLOCK(sc);
6585 
6586 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6587 		ieee80211_start_all(ic);
6588 }
6589 
6590 static void
6591 iwn_stop_locked(struct iwn_softc *sc)
6592 {
6593 	struct ifnet *ifp = sc->sc_ifp;
6594 
6595 	IWN_LOCK_ASSERT(sc);
6596 
6597 	sc->sc_tx_timer = 0;
6598 	callout_stop(&sc->watchdog_to);
6599 	callout_stop(&sc->calib_to);
6600 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6601 
6602 	/* Power OFF hardware. */
6603 	iwn_hw_stop(sc);
6604 }
6605 
6606 static void
6607 iwn_stop(struct iwn_softc *sc)
6608 {
6609 	IWN_LOCK(sc);
6610 	iwn_stop_locked(sc);
6611 	IWN_UNLOCK(sc);
6612 }
6613 
6614 /*
6615  * Callback from net80211 to start a scan.
6616  */
6617 static void
6618 iwn_scan_start(struct ieee80211com *ic)
6619 {
6620 	struct ifnet *ifp = ic->ic_ifp;
6621 	struct iwn_softc *sc = ifp->if_softc;
6622 
6623 	IWN_LOCK(sc);
6624 	/* make the link LED blink while we're scanning */
6625 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6626 	IWN_UNLOCK(sc);
6627 }
6628 
6629 /*
6630  * Callback from net80211 to terminate a scan.
6631  */
6632 static void
6633 iwn_scan_end(struct ieee80211com *ic)
6634 {
6635 	struct ifnet *ifp = ic->ic_ifp;
6636 	struct iwn_softc *sc = ifp->if_softc;
6637 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6638 
6639 	IWN_LOCK(sc);
6640 	if (vap->iv_state == IEEE80211_S_RUN) {
6641 		/* Set link LED to ON status if we are associated */
6642 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6643 	}
6644 	IWN_UNLOCK(sc);
6645 }
6646 
6647 /*
6648  * Callback from net80211 to force a channel change.
6649  */
6650 static void
6651 iwn_set_channel(struct ieee80211com *ic)
6652 {
6653 	const struct ieee80211_channel *c = ic->ic_curchan;
6654 	struct ifnet *ifp = ic->ic_ifp;
6655 	struct iwn_softc *sc = ifp->if_softc;
6656 
6657 	IWN_LOCK(sc);
6658 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6659 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6660 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6661 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6662 	IWN_UNLOCK(sc);
6663 }
6664 
6665 /*
6666  * Callback from net80211 to start scanning of the current channel.
6667  */
6668 static void
6669 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6670 {
6671 	struct ieee80211vap *vap = ss->ss_vap;
6672 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6673 	int error;
6674 
6675 	IWN_LOCK(sc);
6676 	error = iwn_scan(sc);
6677 	IWN_UNLOCK(sc);
6678 	if (error != 0)
6679 		ieee80211_cancel_scan(vap);
6680 }
6681 
6682 /*
6683  * Callback from net80211 to handle the minimum dwell time being met.
6684  * The intent is to terminate the scan but we just let the firmware
6685  * notify us when it's finished as we have no safe way to abort it.
6686  */
6687 static void
6688 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6689 {
6690 	/* NB: don't try to abort scan; wait for firmware to finish */
6691 }
6692 
6693 static void
6694 iwn_hw_reset(void *arg0, int pending)
6695 {
6696 	struct iwn_softc *sc = arg0;
6697 	struct ifnet *ifp = sc->sc_ifp;
6698 	struct ieee80211com *ic = ifp->if_l2com;
6699 
6700 	iwn_stop(sc);
6701 	iwn_init(sc);
6702 	ieee80211_notify_radio(ic, 1);
6703 }
6704