1 /*- 2 * Copyright (c) 2007-2009 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Copyright (c) 2008 5 * Benjamin Close <benjsc@FreeBSD.org> 6 * Copyright (c) 2008 Sam Leffler, Errno Consulting 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 23 * adapters. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/bus.h> 38 #include <sys/rman.h> 39 #include <sys/endian.h> 40 #include <sys/firmware.h> 41 #include <sys/limits.h> 42 #include <sys/module.h> 43 #include <sys/queue.h> 44 #include <sys/taskqueue.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <machine/clock.h> 49 50 #include <dev/pci/pcireg.h> 51 #include <dev/pci/pcivar.h> 52 53 #include <net/bpf.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/ethernet.h> 57 #include <net/if_dl.h> 58 #include <net/if_media.h> 59 #include <net/if_types.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/if_ether.h> 65 #include <netinet/ip.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 75 struct iwn_ident { 76 uint16_t vendor; 77 uint16_t device; 78 const char *name; 79 }; 80 81 static const struct iwn_ident iwn_ident_table[] = { 82 { 0x8086, 0x0082, "Intel(R) Centrino(R) Advanced-N 6205" }, 83 { 0x8086, 0x0083, "Intel(R) Centrino(R) Wireless-N 1000" }, 84 { 0x8086, 0x0084, "Intel(R) Centrino(R) Wireless-N 1000" }, 85 { 0x8086, 0x0085, "Intel(R) Centrino(R) Advanced-N 6205" }, 86 { 0x8086, 0x0087, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" }, 87 { 0x8086, 0x0089, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" }, 88 { 0x8086, 0x008a, "Intel(R) Centrino(R) Wireless-N 1030" }, 89 { 0x8086, 0x008b, "Intel(R) Centrino(R) Wireless-N 1030" }, 90 { 0x8086, 0x0090, "Intel(R) Centrino(R) Advanced-N 6230" }, 91 { 0x8086, 0x0091, "Intel(R) Centrino(R) Advanced-N 6230" }, 92 { 0x8086, 0x0896, "Intel(R) Centrino(R) Wireless-N 130" }, 93 { 0x8086, 0x4229, "Intel(R) Wireless WiFi Link 4965" }, 94 { 0x8086, 0x422b, "Intel(R) Centrino(R) Ultimate-N 6300" }, 95 { 0x8086, 0x422c, "Intel(R) Centrino(R) Advanced-N 6200" }, 96 { 0x8086, 0x422d, "Intel(R) Wireless WiFi Link 4965" }, 97 { 0x8086, 0x4230, "Intel(R) Wireless WiFi Link 4965" }, 98 { 0x8086, 0x4232, "Intel(R) WiFi Link 5100" }, 99 { 0x8086, 0x4233, "Intel(R) Wireless WiFi Link 4965" }, 100 { 0x8086, 0x4235, "Intel(R) Ultimate N WiFi Link 5300" }, 101 { 0x8086, 0x4236, "Intel(R) Ultimate N WiFi Link 5300" }, 102 { 0x8086, 0x4237, "Intel(R) WiFi Link 5100" }, 103 { 0x8086, 0x4238, "Intel(R) Centrino(R) Ultimate-N 6300" }, 104 { 0x8086, 0x4239, "Intel(R) Centrino(R) Advanced-N 6200" }, 105 { 0x8086, 0x423a, "Intel(R) WiMAX/WiFi Link 5350" }, 106 { 0x8086, 0x423b, "Intel(R) WiMAX/WiFi Link 5350" }, 107 { 0x8086, 0x423c, "Intel(R) WiMAX/WiFi Link 5150" }, 108 { 0x8086, 0x423d, "Intel(R) WiMAX/WiFi Link 5150" }, 109 { 0, 0, NULL } 110 }; 111 112 static int iwn_probe(device_t); 113 static int iwn_attach(device_t); 114 static int iwn4965_attach(struct iwn_softc *, uint16_t); 115 static int iwn5000_attach(struct iwn_softc *, uint16_t); 116 static void iwn_radiotap_attach(struct iwn_softc *); 117 static void iwn_sysctlattach(struct iwn_softc *); 118 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 119 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 120 const uint8_t [IEEE80211_ADDR_LEN], 121 const uint8_t [IEEE80211_ADDR_LEN]); 122 static void iwn_vap_delete(struct ieee80211vap *); 123 static int iwn_detach(device_t); 124 static int iwn_shutdown(device_t); 125 static int iwn_suspend(device_t); 126 static int iwn_resume(device_t); 127 static int iwn_nic_lock(struct iwn_softc *); 128 static int iwn_eeprom_lock(struct iwn_softc *); 129 static int iwn_init_otprom(struct iwn_softc *); 130 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 131 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 132 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 133 void **, bus_size_t, bus_size_t); 134 static void iwn_dma_contig_free(struct iwn_dma_info *); 135 static int iwn_alloc_sched(struct iwn_softc *); 136 static void iwn_free_sched(struct iwn_softc *); 137 static int iwn_alloc_kw(struct iwn_softc *); 138 static void iwn_free_kw(struct iwn_softc *); 139 static int iwn_alloc_ict(struct iwn_softc *); 140 static void iwn_free_ict(struct iwn_softc *); 141 static int iwn_alloc_fwmem(struct iwn_softc *); 142 static void iwn_free_fwmem(struct iwn_softc *); 143 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 144 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 145 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 146 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 147 int); 148 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 149 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 150 static void iwn5000_ict_reset(struct iwn_softc *); 151 static int iwn_read_eeprom(struct iwn_softc *, 152 uint8_t macaddr[IEEE80211_ADDR_LEN]); 153 static void iwn4965_read_eeprom(struct iwn_softc *); 154 static void iwn4965_print_power_group(struct iwn_softc *, int); 155 static void iwn5000_read_eeprom(struct iwn_softc *); 156 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 157 static void iwn_read_eeprom_band(struct iwn_softc *, int); 158 static void iwn_read_eeprom_ht40(struct iwn_softc *, int); 159 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 160 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 161 struct ieee80211_channel *); 162 static int iwn_setregdomain(struct ieee80211com *, 163 struct ieee80211_regdomain *, int, 164 struct ieee80211_channel[]); 165 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 166 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 167 const uint8_t mac[IEEE80211_ADDR_LEN]); 168 static void iwn_newassoc(struct ieee80211_node *, int); 169 static int iwn_media_change(struct ifnet *); 170 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 171 static void iwn_calib_timeout(void *); 172 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 173 struct iwn_rx_data *); 174 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 175 struct iwn_rx_data *); 176 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 177 struct iwn_rx_data *); 178 static void iwn5000_rx_calib_results(struct iwn_softc *, 179 struct iwn_rx_desc *, struct iwn_rx_data *); 180 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 181 struct iwn_rx_data *); 182 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 183 struct iwn_rx_data *); 184 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 185 struct iwn_rx_data *); 186 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 187 uint8_t); 188 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); 189 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 190 static void iwn_notif_intr(struct iwn_softc *); 191 static void iwn_wakeup_intr(struct iwn_softc *); 192 static void iwn_rftoggle_intr(struct iwn_softc *); 193 static void iwn_fatal_intr(struct iwn_softc *); 194 static void iwn_intr(void *); 195 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 196 uint16_t); 197 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 198 uint16_t); 199 #ifdef notyet 200 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 201 #endif 202 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 203 struct ieee80211_node *); 204 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 205 struct ieee80211_node *, 206 const struct ieee80211_bpf_params *params); 207 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void iwn_start(struct ifnet *); 210 static void iwn_start_locked(struct ifnet *); 211 static void iwn_watchdog(void *); 212 static int iwn_ioctl(struct ifnet *, u_long, caddr_t); 213 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 214 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 215 int); 216 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 217 int); 218 static int iwn_set_link_quality(struct iwn_softc *, 219 struct ieee80211_node *); 220 static int iwn_add_broadcast_node(struct iwn_softc *, int); 221 static int iwn_updateedca(struct ieee80211com *); 222 static void iwn_update_mcast(struct ifnet *); 223 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 224 static int iwn_set_critical_temp(struct iwn_softc *); 225 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 226 static void iwn4965_power_calibration(struct iwn_softc *, int); 227 static int iwn4965_set_txpower(struct iwn_softc *, 228 struct ieee80211_channel *, int); 229 static int iwn5000_set_txpower(struct iwn_softc *, 230 struct ieee80211_channel *, int); 231 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 232 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 233 static int iwn_get_noise(const struct iwn_rx_general_stats *); 234 static int iwn4965_get_temperature(struct iwn_softc *); 235 static int iwn5000_get_temperature(struct iwn_softc *); 236 static int iwn_init_sensitivity(struct iwn_softc *); 237 static void iwn_collect_noise(struct iwn_softc *, 238 const struct iwn_rx_general_stats *); 239 static int iwn4965_init_gains(struct iwn_softc *); 240 static int iwn5000_init_gains(struct iwn_softc *); 241 static int iwn4965_set_gains(struct iwn_softc *); 242 static int iwn5000_set_gains(struct iwn_softc *); 243 static void iwn_tune_sensitivity(struct iwn_softc *, 244 const struct iwn_rx_stats *); 245 static int iwn_send_sensitivity(struct iwn_softc *); 246 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 247 static int iwn_send_btcoex(struct iwn_softc *); 248 static int iwn_send_advanced_btcoex(struct iwn_softc *); 249 static int iwn5000_runtime_calib(struct iwn_softc *); 250 static int iwn_config(struct iwn_softc *); 251 static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int); 252 static int iwn_scan(struct iwn_softc *); 253 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 254 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 255 static int iwn_ampdu_rx_start(struct ieee80211_node *, 256 struct ieee80211_rx_ampdu *, int, int, int); 257 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 258 struct ieee80211_rx_ampdu *); 259 static int iwn_addba_request(struct ieee80211_node *, 260 struct ieee80211_tx_ampdu *, int, int, int); 261 static int iwn_addba_response(struct ieee80211_node *, 262 struct ieee80211_tx_ampdu *, int, int, int); 263 static int iwn_ampdu_tx_start(struct ieee80211com *, 264 struct ieee80211_node *, uint8_t); 265 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 266 struct ieee80211_tx_ampdu *); 267 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 268 struct ieee80211_node *, int, uint8_t, uint16_t); 269 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 270 uint8_t, uint16_t); 271 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 272 struct ieee80211_node *, int, uint8_t, uint16_t); 273 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 274 uint8_t, uint16_t); 275 static int iwn5000_query_calibration(struct iwn_softc *); 276 static int iwn5000_send_calibration(struct iwn_softc *); 277 static int iwn5000_send_wimax_coex(struct iwn_softc *); 278 static int iwn5000_crystal_calib(struct iwn_softc *); 279 static int iwn5000_temp_offset_calib(struct iwn_softc *); 280 static int iwn4965_post_alive(struct iwn_softc *); 281 static int iwn5000_post_alive(struct iwn_softc *); 282 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 283 int); 284 static int iwn4965_load_firmware(struct iwn_softc *); 285 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 286 const uint8_t *, int); 287 static int iwn5000_load_firmware(struct iwn_softc *); 288 static int iwn_read_firmware_leg(struct iwn_softc *, 289 struct iwn_fw_info *); 290 static int iwn_read_firmware_tlv(struct iwn_softc *, 291 struct iwn_fw_info *, uint16_t); 292 static int iwn_read_firmware(struct iwn_softc *); 293 static int iwn_clock_wait(struct iwn_softc *); 294 static int iwn_apm_init(struct iwn_softc *); 295 static void iwn_apm_stop_master(struct iwn_softc *); 296 static void iwn_apm_stop(struct iwn_softc *); 297 static int iwn4965_nic_config(struct iwn_softc *); 298 static int iwn5000_nic_config(struct iwn_softc *); 299 static int iwn_hw_prepare(struct iwn_softc *); 300 static int iwn_hw_init(struct iwn_softc *); 301 static void iwn_hw_stop(struct iwn_softc *); 302 static void iwn_radio_on(void *, int); 303 static void iwn_radio_off(void *, int); 304 static void iwn_init_locked(struct iwn_softc *); 305 static void iwn_init(void *); 306 static void iwn_stop_locked(struct iwn_softc *); 307 static void iwn_stop(struct iwn_softc *); 308 static void iwn_scan_start(struct ieee80211com *); 309 static void iwn_scan_end(struct ieee80211com *); 310 static void iwn_set_channel(struct ieee80211com *); 311 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 312 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 313 static void iwn_hw_reset(void *, int); 314 315 #define IWN_DEBUG 316 #ifdef IWN_DEBUG 317 enum { 318 IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 319 IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ 320 IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ 321 IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */ 322 IWN_DEBUG_RESET = 0x00000010, /* reset processing */ 323 IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */ 324 IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ 325 IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ 326 IWN_DEBUG_INTR = 0x00000100, /* ISR */ 327 IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */ 328 IWN_DEBUG_NODE = 0x00000400, /* node management */ 329 IWN_DEBUG_LED = 0x00000800, /* led management */ 330 IWN_DEBUG_CMD = 0x00001000, /* cmd submission */ 331 IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */ 332 IWN_DEBUG_ANY = 0xffffffff 333 }; 334 335 #define DPRINTF(sc, m, fmt, ...) do { \ 336 if (sc->sc_debug & (m)) \ 337 printf(fmt, __VA_ARGS__); \ 338 } while (0) 339 340 static const char * 341 iwn_intr_str(uint8_t cmd) 342 { 343 switch (cmd) { 344 /* Notifications */ 345 case IWN_UC_READY: return "UC_READY"; 346 case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE"; 347 case IWN_TX_DONE: return "TX_DONE"; 348 case IWN_START_SCAN: return "START_SCAN"; 349 case IWN_STOP_SCAN: return "STOP_SCAN"; 350 case IWN_RX_STATISTICS: return "RX_STATS"; 351 case IWN_BEACON_STATISTICS: return "BEACON_STATS"; 352 case IWN_STATE_CHANGED: return "STATE_CHANGED"; 353 case IWN_BEACON_MISSED: return "BEACON_MISSED"; 354 case IWN_RX_PHY: return "RX_PHY"; 355 case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE"; 356 case IWN_RX_DONE: return "RX_DONE"; 357 358 /* Command Notifications */ 359 case IWN_CMD_RXON: return "IWN_CMD_RXON"; 360 case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC"; 361 case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS"; 362 case IWN_CMD_TIMING: return "IWN_CMD_TIMING"; 363 case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY"; 364 case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED"; 365 case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX"; 366 case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG"; 367 case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT"; 368 case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE"; 369 case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE"; 370 case IWN_CMD_SCAN: return "IWN_CMD_SCAN"; 371 case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS"; 372 case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER"; 373 case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM"; 374 case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG"; 375 case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX"; 376 case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP"; 377 case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY"; 378 case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB"; 379 } 380 return "UNKNOWN INTR NOTIF/CMD"; 381 } 382 #else 383 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0) 384 #endif 385 386 static device_method_t iwn_methods[] = { 387 /* Device interface */ 388 DEVMETHOD(device_probe, iwn_probe), 389 DEVMETHOD(device_attach, iwn_attach), 390 DEVMETHOD(device_detach, iwn_detach), 391 DEVMETHOD(device_shutdown, iwn_shutdown), 392 DEVMETHOD(device_suspend, iwn_suspend), 393 DEVMETHOD(device_resume, iwn_resume), 394 { 0, 0 } 395 }; 396 397 static driver_t iwn_driver = { 398 "iwn", 399 iwn_methods, 400 sizeof(struct iwn_softc) 401 }; 402 static devclass_t iwn_devclass; 403 404 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0); 405 406 MODULE_VERSION(iwn, 1); 407 408 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 409 MODULE_DEPEND(iwn, pci, 1, 1, 1); 410 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 411 412 static int 413 iwn_probe(device_t dev) 414 { 415 const struct iwn_ident *ident; 416 417 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 418 if (pci_get_vendor(dev) == ident->vendor && 419 pci_get_device(dev) == ident->device) { 420 device_set_desc(dev, ident->name); 421 return 0; 422 } 423 } 424 return ENXIO; 425 } 426 427 static int 428 iwn_attach(device_t dev) 429 { 430 struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); 431 struct ieee80211com *ic; 432 struct ifnet *ifp; 433 uint32_t reg; 434 int i, error, result; 435 uint8_t macaddr[IEEE80211_ADDR_LEN]; 436 437 sc->sc_dev = dev; 438 439 /* 440 * Get the offset of the PCI Express Capability Structure in PCI 441 * Configuration Space. 442 */ 443 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 444 if (error != 0) { 445 device_printf(dev, "PCIe capability structure not found!\n"); 446 return error; 447 } 448 449 /* Clear device-specific "PCI retry timeout" register (41h). */ 450 pci_write_config(dev, 0x41, 0, 1); 451 452 /* Hardware bug workaround. */ 453 reg = pci_read_config(dev, PCIR_COMMAND, 1); 454 if (reg & PCIM_CMD_INTxDIS) { 455 DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n", 456 __func__); 457 reg &= ~PCIM_CMD_INTxDIS; 458 pci_write_config(dev, PCIR_COMMAND, reg, 1); 459 } 460 461 /* Enable bus-mastering. */ 462 pci_enable_busmaster(dev); 463 464 sc->mem_rid = PCIR_BAR(0); 465 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 466 RF_ACTIVE); 467 if (sc->mem == NULL) { 468 device_printf(dev, "can't map mem space\n"); 469 error = ENOMEM; 470 return error; 471 } 472 sc->sc_st = rman_get_bustag(sc->mem); 473 sc->sc_sh = rman_get_bushandle(sc->mem); 474 475 sc->irq_rid = 0; 476 if ((result = pci_msi_count(dev)) == 1 && 477 pci_alloc_msi(dev, &result) == 0) 478 sc->irq_rid = 1; 479 /* Install interrupt handler. */ 480 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 481 RF_ACTIVE | RF_SHAREABLE); 482 if (sc->irq == NULL) { 483 device_printf(dev, "can't map interrupt\n"); 484 error = ENOMEM; 485 goto fail; 486 } 487 488 IWN_LOCK_INIT(sc); 489 490 /* Read hardware revision and attach. */ 491 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 492 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 493 error = iwn4965_attach(sc, pci_get_device(dev)); 494 else 495 error = iwn5000_attach(sc, pci_get_device(dev)); 496 if (error != 0) { 497 device_printf(dev, "could not attach device, error %d\n", 498 error); 499 goto fail; 500 } 501 502 if ((error = iwn_hw_prepare(sc)) != 0) { 503 device_printf(dev, "hardware not ready, error %d\n", error); 504 goto fail; 505 } 506 507 /* Allocate DMA memory for firmware transfers. */ 508 if ((error = iwn_alloc_fwmem(sc)) != 0) { 509 device_printf(dev, 510 "could not allocate memory for firmware, error %d\n", 511 error); 512 goto fail; 513 } 514 515 /* Allocate "Keep Warm" page. */ 516 if ((error = iwn_alloc_kw(sc)) != 0) { 517 device_printf(dev, 518 "could not allocate keep warm page, error %d\n", error); 519 goto fail; 520 } 521 522 /* Allocate ICT table for 5000 Series. */ 523 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 524 (error = iwn_alloc_ict(sc)) != 0) { 525 device_printf(dev, "could not allocate ICT table, error %d\n", 526 error); 527 goto fail; 528 } 529 530 /* Allocate TX scheduler "rings". */ 531 if ((error = iwn_alloc_sched(sc)) != 0) { 532 device_printf(dev, 533 "could not allocate TX scheduler rings, error %d\n", error); 534 goto fail; 535 } 536 537 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 538 for (i = 0; i < sc->ntxqs; i++) { 539 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 540 device_printf(dev, 541 "could not allocate TX ring %d, error %d\n", i, 542 error); 543 goto fail; 544 } 545 } 546 547 /* Allocate RX ring. */ 548 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 549 device_printf(dev, "could not allocate RX ring, error %d\n", 550 error); 551 goto fail; 552 } 553 554 /* Clear pending interrupts. */ 555 IWN_WRITE(sc, IWN_INT, 0xffffffff); 556 557 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 558 if (ifp == NULL) { 559 device_printf(dev, "can not allocate ifnet structure\n"); 560 goto fail; 561 } 562 563 ic = ifp->if_l2com; 564 ic->ic_ifp = ifp; 565 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 566 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 567 568 /* Set device capabilities. */ 569 ic->ic_caps = 570 IEEE80211_C_STA /* station mode supported */ 571 | IEEE80211_C_MONITOR /* monitor mode supported */ 572 | IEEE80211_C_BGSCAN /* background scanning */ 573 | IEEE80211_C_TXPMGT /* tx power management */ 574 | IEEE80211_C_SHSLOT /* short slot time supported */ 575 | IEEE80211_C_WPA 576 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 577 #if 0 578 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 579 #endif 580 | IEEE80211_C_WME /* WME */ 581 ; 582 583 /* Read MAC address, channels, etc from EEPROM. */ 584 if ((error = iwn_read_eeprom(sc, macaddr)) != 0) { 585 device_printf(dev, "could not read EEPROM, error %d\n", 586 error); 587 goto fail; 588 } 589 590 /* Count the number of available chains. */ 591 sc->ntxchains = 592 ((sc->txchainmask >> 2) & 1) + 593 ((sc->txchainmask >> 1) & 1) + 594 ((sc->txchainmask >> 0) & 1); 595 sc->nrxchains = 596 ((sc->rxchainmask >> 2) & 1) + 597 ((sc->rxchainmask >> 1) & 1) + 598 ((sc->rxchainmask >> 0) & 1); 599 if (bootverbose) { 600 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 601 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 602 macaddr, ":"); 603 } 604 605 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 606 ic->ic_rxstream = sc->nrxchains; 607 ic->ic_txstream = sc->ntxchains; 608 ic->ic_htcaps = 609 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 610 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 611 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 612 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 613 #ifdef notyet 614 | IEEE80211_HTCAP_GREENFIELD 615 #if IWN_RBUF_SIZE == 8192 616 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 617 #else 618 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 619 #endif 620 #endif 621 /* s/w capabilities */ 622 | IEEE80211_HTC_HT /* HT operation */ 623 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 624 #ifdef notyet 625 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 626 #endif 627 ; 628 } 629 630 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 631 ifp->if_softc = sc; 632 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 633 ifp->if_init = iwn_init; 634 ifp->if_ioctl = iwn_ioctl; 635 ifp->if_start = iwn_start; 636 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 637 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 638 IFQ_SET_READY(&ifp->if_snd); 639 640 ieee80211_ifattach(ic, macaddr); 641 ic->ic_vap_create = iwn_vap_create; 642 ic->ic_vap_delete = iwn_vap_delete; 643 ic->ic_raw_xmit = iwn_raw_xmit; 644 ic->ic_node_alloc = iwn_node_alloc; 645 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 646 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 647 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 648 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 649 sc->sc_addba_request = ic->ic_addba_request; 650 ic->ic_addba_request = iwn_addba_request; 651 sc->sc_addba_response = ic->ic_addba_response; 652 ic->ic_addba_response = iwn_addba_response; 653 sc->sc_addba_stop = ic->ic_addba_stop; 654 ic->ic_addba_stop = iwn_ampdu_tx_stop; 655 ic->ic_newassoc = iwn_newassoc; 656 ic->ic_wme.wme_update = iwn_updateedca; 657 ic->ic_update_mcast = iwn_update_mcast; 658 ic->ic_scan_start = iwn_scan_start; 659 ic->ic_scan_end = iwn_scan_end; 660 ic->ic_set_channel = iwn_set_channel; 661 ic->ic_scan_curchan = iwn_scan_curchan; 662 ic->ic_scan_mindwell = iwn_scan_mindwell; 663 ic->ic_setregdomain = iwn_setregdomain; 664 665 iwn_radiotap_attach(sc); 666 667 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 668 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 669 TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc); 670 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); 671 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); 672 673 iwn_sysctlattach(sc); 674 675 /* 676 * Hook our interrupt after all initialization is complete. 677 */ 678 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 679 NULL, iwn_intr, sc, &sc->sc_ih); 680 if (error != 0) { 681 device_printf(dev, "can't establish interrupt, error %d\n", 682 error); 683 goto fail; 684 } 685 686 if (bootverbose) 687 ieee80211_announce(ic); 688 return 0; 689 fail: 690 iwn_detach(dev); 691 return error; 692 } 693 694 static int 695 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 696 { 697 struct iwn_ops *ops = &sc->ops; 698 699 ops->load_firmware = iwn4965_load_firmware; 700 ops->read_eeprom = iwn4965_read_eeprom; 701 ops->post_alive = iwn4965_post_alive; 702 ops->nic_config = iwn4965_nic_config; 703 ops->update_sched = iwn4965_update_sched; 704 ops->get_temperature = iwn4965_get_temperature; 705 ops->get_rssi = iwn4965_get_rssi; 706 ops->set_txpower = iwn4965_set_txpower; 707 ops->init_gains = iwn4965_init_gains; 708 ops->set_gains = iwn4965_set_gains; 709 ops->add_node = iwn4965_add_node; 710 ops->tx_done = iwn4965_tx_done; 711 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 712 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 713 sc->ntxqs = IWN4965_NTXQUEUES; 714 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 715 sc->ndmachnls = IWN4965_NDMACHNLS; 716 sc->broadcast_id = IWN4965_ID_BROADCAST; 717 sc->rxonsz = IWN4965_RXONSZ; 718 sc->schedsz = IWN4965_SCHEDSZ; 719 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 720 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 721 sc->fwsz = IWN4965_FWSZ; 722 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 723 sc->limits = &iwn4965_sensitivity_limits; 724 sc->fwname = "iwn4965fw"; 725 /* Override chains masks, ROM is known to be broken. */ 726 sc->txchainmask = IWN_ANT_AB; 727 sc->rxchainmask = IWN_ANT_ABC; 728 729 return 0; 730 } 731 732 static int 733 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 734 { 735 struct iwn_ops *ops = &sc->ops; 736 737 ops->load_firmware = iwn5000_load_firmware; 738 ops->read_eeprom = iwn5000_read_eeprom; 739 ops->post_alive = iwn5000_post_alive; 740 ops->nic_config = iwn5000_nic_config; 741 ops->update_sched = iwn5000_update_sched; 742 ops->get_temperature = iwn5000_get_temperature; 743 ops->get_rssi = iwn5000_get_rssi; 744 ops->set_txpower = iwn5000_set_txpower; 745 ops->init_gains = iwn5000_init_gains; 746 ops->set_gains = iwn5000_set_gains; 747 ops->add_node = iwn5000_add_node; 748 ops->tx_done = iwn5000_tx_done; 749 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 750 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 751 sc->ntxqs = IWN5000_NTXQUEUES; 752 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 753 sc->ndmachnls = IWN5000_NDMACHNLS; 754 sc->broadcast_id = IWN5000_ID_BROADCAST; 755 sc->rxonsz = IWN5000_RXONSZ; 756 sc->schedsz = IWN5000_SCHEDSZ; 757 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 758 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 759 sc->fwsz = IWN5000_FWSZ; 760 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 761 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 762 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 763 764 switch (sc->hw_type) { 765 case IWN_HW_REV_TYPE_5100: 766 sc->limits = &iwn5000_sensitivity_limits; 767 sc->fwname = "iwn5000fw"; 768 /* Override chains masks, ROM is known to be broken. */ 769 sc->txchainmask = IWN_ANT_B; 770 sc->rxchainmask = IWN_ANT_AB; 771 break; 772 case IWN_HW_REV_TYPE_5150: 773 sc->limits = &iwn5150_sensitivity_limits; 774 sc->fwname = "iwn5150fw"; 775 break; 776 case IWN_HW_REV_TYPE_5300: 777 case IWN_HW_REV_TYPE_5350: 778 sc->limits = &iwn5000_sensitivity_limits; 779 sc->fwname = "iwn5000fw"; 780 break; 781 case IWN_HW_REV_TYPE_1000: 782 sc->limits = &iwn1000_sensitivity_limits; 783 sc->fwname = "iwn1000fw"; 784 break; 785 case IWN_HW_REV_TYPE_6000: 786 sc->limits = &iwn6000_sensitivity_limits; 787 sc->fwname = "iwn6000fw"; 788 if (pid == 0x422c || pid == 0x4239) { 789 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 790 /* Override chains masks, ROM is known to be broken. */ 791 sc->txchainmask = IWN_ANT_BC; 792 sc->rxchainmask = IWN_ANT_BC; 793 } 794 break; 795 case IWN_HW_REV_TYPE_6050: 796 sc->limits = &iwn6000_sensitivity_limits; 797 sc->fwname = "iwn6050fw"; 798 /* Override chains masks, ROM is known to be broken. */ 799 sc->txchainmask = IWN_ANT_AB; 800 sc->rxchainmask = IWN_ANT_AB; 801 break; 802 case IWN_HW_REV_TYPE_6005: 803 sc->limits = &iwn6000_sensitivity_limits; 804 if (pid != 0x0082 && pid != 0x0085) { 805 sc->fwname = "iwn6000g2bfw"; 806 sc->sc_flags |= IWN_FLAG_ADV_BTCOEX; 807 } else 808 sc->fwname = "iwn6000g2afw"; 809 break; 810 default: 811 device_printf(sc->sc_dev, "adapter type %d not supported\n", 812 sc->hw_type); 813 return ENOTSUP; 814 } 815 return 0; 816 } 817 818 /* 819 * Attach the interface to 802.11 radiotap. 820 */ 821 static void 822 iwn_radiotap_attach(struct iwn_softc *sc) 823 { 824 struct ifnet *ifp = sc->sc_ifp; 825 struct ieee80211com *ic = ifp->if_l2com; 826 827 ieee80211_radiotap_attach(ic, 828 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 829 IWN_TX_RADIOTAP_PRESENT, 830 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 831 IWN_RX_RADIOTAP_PRESENT); 832 } 833 834 static void 835 iwn_sysctlattach(struct iwn_softc *sc) 836 { 837 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 838 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 839 840 #ifdef IWN_DEBUG 841 sc->sc_debug = 0; 842 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 843 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs"); 844 #endif 845 } 846 847 static struct ieee80211vap * 848 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 849 enum ieee80211_opmode opmode, int flags, 850 const uint8_t bssid[IEEE80211_ADDR_LEN], 851 const uint8_t mac[IEEE80211_ADDR_LEN]) 852 { 853 struct iwn_vap *ivp; 854 struct ieee80211vap *vap; 855 856 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 857 return NULL; 858 ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap), 859 M_80211_VAP, M_NOWAIT | M_ZERO); 860 if (ivp == NULL) 861 return NULL; 862 vap = &ivp->iv_vap; 863 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 864 vap->iv_bmissthreshold = 10; /* override default */ 865 /* Override with driver methods. */ 866 ivp->iv_newstate = vap->iv_newstate; 867 vap->iv_newstate = iwn_newstate; 868 869 ieee80211_ratectl_init(vap); 870 /* Complete setup. */ 871 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status); 872 ic->ic_opmode = opmode; 873 return vap; 874 } 875 876 static void 877 iwn_vap_delete(struct ieee80211vap *vap) 878 { 879 struct iwn_vap *ivp = IWN_VAP(vap); 880 881 ieee80211_ratectl_deinit(vap); 882 ieee80211_vap_detach(vap); 883 free(ivp, M_80211_VAP); 884 } 885 886 static int 887 iwn_detach(device_t dev) 888 { 889 struct iwn_softc *sc = device_get_softc(dev); 890 struct ifnet *ifp = sc->sc_ifp; 891 struct ieee80211com *ic; 892 int qid; 893 894 if (ifp != NULL) { 895 ic = ifp->if_l2com; 896 897 ieee80211_draintask(ic, &sc->sc_reinit_task); 898 ieee80211_draintask(ic, &sc->sc_radioon_task); 899 ieee80211_draintask(ic, &sc->sc_radiooff_task); 900 901 iwn_stop(sc); 902 callout_drain(&sc->watchdog_to); 903 callout_drain(&sc->calib_to); 904 ieee80211_ifdetach(ic); 905 } 906 907 /* Uninstall interrupt handler. */ 908 if (sc->irq != NULL) { 909 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 910 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 911 if (sc->irq_rid == 1) 912 pci_release_msi(dev); 913 } 914 915 /* Free DMA resources. */ 916 iwn_free_rx_ring(sc, &sc->rxq); 917 for (qid = 0; qid < sc->ntxqs; qid++) 918 iwn_free_tx_ring(sc, &sc->txq[qid]); 919 iwn_free_sched(sc); 920 iwn_free_kw(sc); 921 if (sc->ict != NULL) 922 iwn_free_ict(sc); 923 iwn_free_fwmem(sc); 924 925 if (sc->mem != NULL) 926 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 927 928 if (ifp != NULL) 929 if_free(ifp); 930 931 IWN_LOCK_DESTROY(sc); 932 return 0; 933 } 934 935 static int 936 iwn_shutdown(device_t dev) 937 { 938 struct iwn_softc *sc = device_get_softc(dev); 939 940 iwn_stop(sc); 941 return 0; 942 } 943 944 static int 945 iwn_suspend(device_t dev) 946 { 947 struct iwn_softc *sc = device_get_softc(dev); 948 struct ifnet *ifp = sc->sc_ifp; 949 struct ieee80211com *ic = ifp->if_l2com; 950 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 951 952 iwn_stop(sc); 953 if (vap != NULL) 954 ieee80211_stop(vap); 955 return 0; 956 } 957 958 static int 959 iwn_resume(device_t dev) 960 { 961 struct iwn_softc *sc = device_get_softc(dev); 962 struct ifnet *ifp = sc->sc_ifp; 963 struct ieee80211com *ic = ifp->if_l2com; 964 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 965 966 /* Clear device-specific "PCI retry timeout" register (41h). */ 967 pci_write_config(dev, 0x41, 0, 1); 968 969 if (ifp->if_flags & IFF_UP) { 970 iwn_init(sc); 971 if (vap != NULL) 972 ieee80211_init(vap); 973 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 974 iwn_start(ifp); 975 } 976 return 0; 977 } 978 979 static int 980 iwn_nic_lock(struct iwn_softc *sc) 981 { 982 int ntries; 983 984 /* Request exclusive access to NIC. */ 985 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 986 987 /* Spin until we actually get the lock. */ 988 for (ntries = 0; ntries < 1000; ntries++) { 989 if ((IWN_READ(sc, IWN_GP_CNTRL) & 990 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 991 IWN_GP_CNTRL_MAC_ACCESS_ENA) 992 return 0; 993 DELAY(10); 994 } 995 return ETIMEDOUT; 996 } 997 998 static __inline void 999 iwn_nic_unlock(struct iwn_softc *sc) 1000 { 1001 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1002 } 1003 1004 static __inline uint32_t 1005 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1006 { 1007 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1008 IWN_BARRIER_READ_WRITE(sc); 1009 return IWN_READ(sc, IWN_PRPH_RDATA); 1010 } 1011 1012 static __inline void 1013 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1014 { 1015 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1016 IWN_BARRIER_WRITE(sc); 1017 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1018 } 1019 1020 static __inline void 1021 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1022 { 1023 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1024 } 1025 1026 static __inline void 1027 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1028 { 1029 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1030 } 1031 1032 static __inline void 1033 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1034 const uint32_t *data, int count) 1035 { 1036 for (; count > 0; count--, data++, addr += 4) 1037 iwn_prph_write(sc, addr, *data); 1038 } 1039 1040 static __inline uint32_t 1041 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1042 { 1043 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1044 IWN_BARRIER_READ_WRITE(sc); 1045 return IWN_READ(sc, IWN_MEM_RDATA); 1046 } 1047 1048 static __inline void 1049 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1050 { 1051 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1052 IWN_BARRIER_WRITE(sc); 1053 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1054 } 1055 1056 static __inline void 1057 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1058 { 1059 uint32_t tmp; 1060 1061 tmp = iwn_mem_read(sc, addr & ~3); 1062 if (addr & 3) 1063 tmp = (tmp & 0x0000ffff) | data << 16; 1064 else 1065 tmp = (tmp & 0xffff0000) | data; 1066 iwn_mem_write(sc, addr & ~3, tmp); 1067 } 1068 1069 static __inline void 1070 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1071 int count) 1072 { 1073 for (; count > 0; count--, addr += 4) 1074 *data++ = iwn_mem_read(sc, addr); 1075 } 1076 1077 static __inline void 1078 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1079 int count) 1080 { 1081 for (; count > 0; count--, addr += 4) 1082 iwn_mem_write(sc, addr, val); 1083 } 1084 1085 static int 1086 iwn_eeprom_lock(struct iwn_softc *sc) 1087 { 1088 int i, ntries; 1089 1090 for (i = 0; i < 100; i++) { 1091 /* Request exclusive access to EEPROM. */ 1092 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1093 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1094 1095 /* Spin until we actually get the lock. */ 1096 for (ntries = 0; ntries < 100; ntries++) { 1097 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1098 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1099 return 0; 1100 DELAY(10); 1101 } 1102 } 1103 return ETIMEDOUT; 1104 } 1105 1106 static __inline void 1107 iwn_eeprom_unlock(struct iwn_softc *sc) 1108 { 1109 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1110 } 1111 1112 /* 1113 * Initialize access by host to One Time Programmable ROM. 1114 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1115 */ 1116 static int 1117 iwn_init_otprom(struct iwn_softc *sc) 1118 { 1119 uint16_t prev, base, next; 1120 int count, error; 1121 1122 /* Wait for clock stabilization before accessing prph. */ 1123 if ((error = iwn_clock_wait(sc)) != 0) 1124 return error; 1125 1126 if ((error = iwn_nic_lock(sc)) != 0) 1127 return error; 1128 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1129 DELAY(5); 1130 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1131 iwn_nic_unlock(sc); 1132 1133 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1134 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1135 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1136 IWN_RESET_LINK_PWR_MGMT_DIS); 1137 } 1138 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1139 /* Clear ECC status. */ 1140 IWN_SETBITS(sc, IWN_OTP_GP, 1141 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1142 1143 /* 1144 * Find the block before last block (contains the EEPROM image) 1145 * for HW without OTP shadow RAM. 1146 */ 1147 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1148 /* Switch to absolute addressing mode. */ 1149 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1150 base = prev = 0; 1151 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1152 error = iwn_read_prom_data(sc, base, &next, 2); 1153 if (error != 0) 1154 return error; 1155 if (next == 0) /* End of linked-list. */ 1156 break; 1157 prev = base; 1158 base = le16toh(next); 1159 } 1160 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1161 return EIO; 1162 /* Skip "next" word. */ 1163 sc->prom_base = prev + 1; 1164 } 1165 return 0; 1166 } 1167 1168 static int 1169 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1170 { 1171 uint8_t *out = data; 1172 uint32_t val, tmp; 1173 int ntries; 1174 1175 addr += sc->prom_base; 1176 for (; count > 0; count -= 2, addr++) { 1177 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1178 for (ntries = 0; ntries < 10; ntries++) { 1179 val = IWN_READ(sc, IWN_EEPROM); 1180 if (val & IWN_EEPROM_READ_VALID) 1181 break; 1182 DELAY(5); 1183 } 1184 if (ntries == 10) { 1185 device_printf(sc->sc_dev, 1186 "timeout reading ROM at 0x%x\n", addr); 1187 return ETIMEDOUT; 1188 } 1189 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1190 /* OTPROM, check for ECC errors. */ 1191 tmp = IWN_READ(sc, IWN_OTP_GP); 1192 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1193 device_printf(sc->sc_dev, 1194 "OTPROM ECC error at 0x%x\n", addr); 1195 return EIO; 1196 } 1197 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1198 /* Correctable ECC error, clear bit. */ 1199 IWN_SETBITS(sc, IWN_OTP_GP, 1200 IWN_OTP_GP_ECC_CORR_STTS); 1201 } 1202 } 1203 *out++ = val >> 16; 1204 if (count > 1) 1205 *out++ = val >> 24; 1206 } 1207 return 0; 1208 } 1209 1210 static void 1211 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1212 { 1213 if (error != 0) 1214 return; 1215 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1216 *(bus_addr_t *)arg = segs[0].ds_addr; 1217 } 1218 1219 static int 1220 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1221 void **kvap, bus_size_t size, bus_size_t alignment) 1222 { 1223 int error; 1224 1225 dma->tag = NULL; 1226 dma->size = size; 1227 1228 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1229 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1230 1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag); 1231 if (error != 0) 1232 goto fail; 1233 1234 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1235 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1236 if (error != 0) 1237 goto fail; 1238 1239 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1240 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1241 if (error != 0) 1242 goto fail; 1243 1244 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1245 1246 if (kvap != NULL) 1247 *kvap = dma->vaddr; 1248 1249 return 0; 1250 1251 fail: iwn_dma_contig_free(dma); 1252 return error; 1253 } 1254 1255 static void 1256 iwn_dma_contig_free(struct iwn_dma_info *dma) 1257 { 1258 if (dma->map != NULL) { 1259 if (dma->vaddr != NULL) { 1260 bus_dmamap_sync(dma->tag, dma->map, 1261 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1262 bus_dmamap_unload(dma->tag, dma->map); 1263 bus_dmamem_free(dma->tag, &dma->vaddr, dma->map); 1264 dma->vaddr = NULL; 1265 } 1266 bus_dmamap_destroy(dma->tag, dma->map); 1267 dma->map = NULL; 1268 } 1269 if (dma->tag != NULL) { 1270 bus_dma_tag_destroy(dma->tag); 1271 dma->tag = NULL; 1272 } 1273 } 1274 1275 static int 1276 iwn_alloc_sched(struct iwn_softc *sc) 1277 { 1278 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1279 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1280 sc->schedsz, 1024); 1281 } 1282 1283 static void 1284 iwn_free_sched(struct iwn_softc *sc) 1285 { 1286 iwn_dma_contig_free(&sc->sched_dma); 1287 } 1288 1289 static int 1290 iwn_alloc_kw(struct iwn_softc *sc) 1291 { 1292 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1293 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1294 } 1295 1296 static void 1297 iwn_free_kw(struct iwn_softc *sc) 1298 { 1299 iwn_dma_contig_free(&sc->kw_dma); 1300 } 1301 1302 static int 1303 iwn_alloc_ict(struct iwn_softc *sc) 1304 { 1305 /* ICT table must be aligned on a 4KB boundary. */ 1306 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1307 IWN_ICT_SIZE, 4096); 1308 } 1309 1310 static void 1311 iwn_free_ict(struct iwn_softc *sc) 1312 { 1313 iwn_dma_contig_free(&sc->ict_dma); 1314 } 1315 1316 static int 1317 iwn_alloc_fwmem(struct iwn_softc *sc) 1318 { 1319 /* Must be aligned on a 16-byte boundary. */ 1320 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1321 } 1322 1323 static void 1324 iwn_free_fwmem(struct iwn_softc *sc) 1325 { 1326 iwn_dma_contig_free(&sc->fw_dma); 1327 } 1328 1329 static int 1330 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1331 { 1332 bus_size_t size; 1333 int i, error; 1334 1335 ring->cur = 0; 1336 1337 /* Allocate RX descriptors (256-byte aligned). */ 1338 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1339 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1340 size, 256); 1341 if (error != 0) { 1342 device_printf(sc->sc_dev, 1343 "%s: could not allocate RX ring DMA memory, error %d\n", 1344 __func__, error); 1345 goto fail; 1346 } 1347 1348 /* Allocate RX status area (16-byte aligned). */ 1349 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1350 sizeof (struct iwn_rx_status), 16); 1351 if (error != 0) { 1352 device_printf(sc->sc_dev, 1353 "%s: could not allocate RX status DMA memory, error %d\n", 1354 __func__, error); 1355 goto fail; 1356 } 1357 1358 /* Create RX buffer DMA tag. */ 1359 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1360 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1361 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL, 1362 &ring->data_dmat); 1363 if (error != 0) { 1364 device_printf(sc->sc_dev, 1365 "%s: could not create RX buf DMA tag, error %d\n", 1366 __func__, error); 1367 goto fail; 1368 } 1369 1370 /* 1371 * Allocate and map RX buffers. 1372 */ 1373 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1374 struct iwn_rx_data *data = &ring->data[i]; 1375 bus_addr_t paddr; 1376 1377 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1378 if (error != 0) { 1379 device_printf(sc->sc_dev, 1380 "%s: could not create RX buf DMA map, error %d\n", 1381 __func__, error); 1382 goto fail; 1383 } 1384 1385 data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, 1386 IWN_RBUF_SIZE); 1387 if (data->m == NULL) { 1388 device_printf(sc->sc_dev, 1389 "%s: could not allocate RX mbuf\n", __func__); 1390 error = ENOBUFS; 1391 goto fail; 1392 } 1393 1394 error = bus_dmamap_load(ring->data_dmat, data->map, 1395 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1396 &paddr, BUS_DMA_NOWAIT); 1397 if (error != 0 && error != EFBIG) { 1398 device_printf(sc->sc_dev, 1399 "%s: can't not map mbuf, error %d\n", __func__, 1400 error); 1401 goto fail; 1402 } 1403 1404 /* Set physical address of RX buffer (256-byte aligned). */ 1405 ring->desc[i] = htole32(paddr >> 8); 1406 } 1407 1408 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1409 BUS_DMASYNC_PREWRITE); 1410 1411 return 0; 1412 1413 fail: iwn_free_rx_ring(sc, ring); 1414 return error; 1415 } 1416 1417 static void 1418 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1419 { 1420 int ntries; 1421 1422 if (iwn_nic_lock(sc) == 0) { 1423 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1424 for (ntries = 0; ntries < 1000; ntries++) { 1425 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1426 IWN_FH_RX_STATUS_IDLE) 1427 break; 1428 DELAY(10); 1429 } 1430 iwn_nic_unlock(sc); 1431 } 1432 ring->cur = 0; 1433 sc->last_rx_valid = 0; 1434 } 1435 1436 static void 1437 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1438 { 1439 int i; 1440 1441 iwn_dma_contig_free(&ring->desc_dma); 1442 iwn_dma_contig_free(&ring->stat_dma); 1443 1444 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1445 struct iwn_rx_data *data = &ring->data[i]; 1446 1447 if (data->m != NULL) { 1448 bus_dmamap_sync(ring->data_dmat, data->map, 1449 BUS_DMASYNC_POSTREAD); 1450 bus_dmamap_unload(ring->data_dmat, data->map); 1451 m_freem(data->m); 1452 data->m = NULL; 1453 } 1454 if (data->map != NULL) 1455 bus_dmamap_destroy(ring->data_dmat, data->map); 1456 } 1457 if (ring->data_dmat != NULL) { 1458 bus_dma_tag_destroy(ring->data_dmat); 1459 ring->data_dmat = NULL; 1460 } 1461 } 1462 1463 static int 1464 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1465 { 1466 bus_addr_t paddr; 1467 bus_size_t size; 1468 int i, error; 1469 1470 ring->qid = qid; 1471 ring->queued = 0; 1472 ring->cur = 0; 1473 1474 /* Allocate TX descriptors (256-byte aligned). */ 1475 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1476 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1477 size, 256); 1478 if (error != 0) { 1479 device_printf(sc->sc_dev, 1480 "%s: could not allocate TX ring DMA memory, error %d\n", 1481 __func__, error); 1482 goto fail; 1483 } 1484 1485 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1486 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1487 size, 4); 1488 if (error != 0) { 1489 device_printf(sc->sc_dev, 1490 "%s: could not allocate TX cmd DMA memory, error %d\n", 1491 __func__, error); 1492 goto fail; 1493 } 1494 1495 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1496 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1497 IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1498 &ring->data_dmat); 1499 if (error != 0) { 1500 device_printf(sc->sc_dev, 1501 "%s: could not create TX buf DMA tag, error %d\n", 1502 __func__, error); 1503 goto fail; 1504 } 1505 1506 paddr = ring->cmd_dma.paddr; 1507 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1508 struct iwn_tx_data *data = &ring->data[i]; 1509 1510 data->cmd_paddr = paddr; 1511 data->scratch_paddr = paddr + 12; 1512 paddr += sizeof (struct iwn_tx_cmd); 1513 1514 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1515 if (error != 0) { 1516 device_printf(sc->sc_dev, 1517 "%s: could not create TX buf DMA map, error %d\n", 1518 __func__, error); 1519 goto fail; 1520 } 1521 } 1522 return 0; 1523 1524 fail: iwn_free_tx_ring(sc, ring); 1525 return error; 1526 } 1527 1528 static void 1529 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1530 { 1531 int i; 1532 1533 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1534 struct iwn_tx_data *data = &ring->data[i]; 1535 1536 if (data->m != NULL) { 1537 bus_dmamap_sync(ring->data_dmat, data->map, 1538 BUS_DMASYNC_POSTWRITE); 1539 bus_dmamap_unload(ring->data_dmat, data->map); 1540 m_freem(data->m); 1541 data->m = NULL; 1542 } 1543 } 1544 /* Clear TX descriptors. */ 1545 memset(ring->desc, 0, ring->desc_dma.size); 1546 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1547 BUS_DMASYNC_PREWRITE); 1548 sc->qfullmsk &= ~(1 << ring->qid); 1549 ring->queued = 0; 1550 ring->cur = 0; 1551 } 1552 1553 static void 1554 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1555 { 1556 int i; 1557 1558 iwn_dma_contig_free(&ring->desc_dma); 1559 iwn_dma_contig_free(&ring->cmd_dma); 1560 1561 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1562 struct iwn_tx_data *data = &ring->data[i]; 1563 1564 if (data->m != NULL) { 1565 bus_dmamap_sync(ring->data_dmat, data->map, 1566 BUS_DMASYNC_POSTWRITE); 1567 bus_dmamap_unload(ring->data_dmat, data->map); 1568 m_freem(data->m); 1569 } 1570 if (data->map != NULL) 1571 bus_dmamap_destroy(ring->data_dmat, data->map); 1572 } 1573 if (ring->data_dmat != NULL) { 1574 bus_dma_tag_destroy(ring->data_dmat); 1575 ring->data_dmat = NULL; 1576 } 1577 } 1578 1579 static void 1580 iwn5000_ict_reset(struct iwn_softc *sc) 1581 { 1582 /* Disable interrupts. */ 1583 IWN_WRITE(sc, IWN_INT_MASK, 0); 1584 1585 /* Reset ICT table. */ 1586 memset(sc->ict, 0, IWN_ICT_SIZE); 1587 sc->ict_cur = 0; 1588 1589 /* Set physical address of ICT table (4KB aligned). */ 1590 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 1591 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1592 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1593 1594 /* Enable periodic RX interrupt. */ 1595 sc->int_mask |= IWN_INT_RX_PERIODIC; 1596 /* Switch to ICT interrupt mode in driver. */ 1597 sc->sc_flags |= IWN_FLAG_USE_ICT; 1598 1599 /* Re-enable interrupts. */ 1600 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1601 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1602 } 1603 1604 static int 1605 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1606 { 1607 struct iwn_ops *ops = &sc->ops; 1608 uint16_t val; 1609 int error; 1610 1611 /* Check whether adapter has an EEPROM or an OTPROM. */ 1612 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1613 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1614 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1615 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 1616 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 1617 1618 /* Adapter has to be powered on for EEPROM access to work. */ 1619 if ((error = iwn_apm_init(sc)) != 0) { 1620 device_printf(sc->sc_dev, 1621 "%s: could not power ON adapter, error %d\n", __func__, 1622 error); 1623 return error; 1624 } 1625 1626 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1627 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 1628 return EIO; 1629 } 1630 if ((error = iwn_eeprom_lock(sc)) != 0) { 1631 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 1632 __func__, error); 1633 return error; 1634 } 1635 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1636 if ((error = iwn_init_otprom(sc)) != 0) { 1637 device_printf(sc->sc_dev, 1638 "%s: could not initialize OTPROM, error %d\n", 1639 __func__, error); 1640 return error; 1641 } 1642 } 1643 1644 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1645 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 1646 /* Check if HT support is bonded out. */ 1647 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1648 sc->sc_flags |= IWN_FLAG_HAS_11N; 1649 1650 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1651 sc->rfcfg = le16toh(val); 1652 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 1653 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1654 if (sc->txchainmask == 0) 1655 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1656 if (sc->rxchainmask == 0) 1657 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1658 1659 /* Read MAC address. */ 1660 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 1661 1662 /* Read adapter-specific information from EEPROM. */ 1663 ops->read_eeprom(sc); 1664 1665 iwn_apm_stop(sc); /* Power OFF adapter. */ 1666 1667 iwn_eeprom_unlock(sc); 1668 return 0; 1669 } 1670 1671 static void 1672 iwn4965_read_eeprom(struct iwn_softc *sc) 1673 { 1674 uint32_t addr; 1675 uint16_t val; 1676 int i; 1677 1678 /* Read regulatory domain (4 ASCII characters). */ 1679 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1680 1681 /* Read the list of authorized channels (20MHz ones only). */ 1682 for (i = 0; i < 7; i++) { 1683 addr = iwn4965_regulatory_bands[i]; 1684 iwn_read_eeprom_channels(sc, i, addr); 1685 } 1686 1687 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1688 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1689 sc->maxpwr2GHz = val & 0xff; 1690 sc->maxpwr5GHz = val >> 8; 1691 /* Check that EEPROM values are within valid range. */ 1692 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1693 sc->maxpwr5GHz = 38; 1694 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1695 sc->maxpwr2GHz = 38; 1696 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 1697 sc->maxpwr2GHz, sc->maxpwr5GHz); 1698 1699 /* Read samples for each TX power group. */ 1700 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1701 sizeof sc->bands); 1702 1703 /* Read voltage at which samples were taken. */ 1704 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1705 sc->eeprom_voltage = (int16_t)le16toh(val); 1706 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 1707 sc->eeprom_voltage); 1708 1709 #ifdef IWN_DEBUG 1710 /* Print samples. */ 1711 if (sc->sc_debug & IWN_DEBUG_ANY) { 1712 for (i = 0; i < IWN_NBANDS; i++) 1713 iwn4965_print_power_group(sc, i); 1714 } 1715 #endif 1716 } 1717 1718 #ifdef IWN_DEBUG 1719 static void 1720 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1721 { 1722 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1723 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1724 int j, c; 1725 1726 printf("===band %d===\n", i); 1727 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1728 printf("chan1 num=%d\n", chans[0].num); 1729 for (c = 0; c < 2; c++) { 1730 for (j = 0; j < IWN_NSAMPLES; j++) { 1731 printf("chain %d, sample %d: temp=%d gain=%d " 1732 "power=%d pa_det=%d\n", c, j, 1733 chans[0].samples[c][j].temp, 1734 chans[0].samples[c][j].gain, 1735 chans[0].samples[c][j].power, 1736 chans[0].samples[c][j].pa_det); 1737 } 1738 } 1739 printf("chan2 num=%d\n", chans[1].num); 1740 for (c = 0; c < 2; c++) { 1741 for (j = 0; j < IWN_NSAMPLES; j++) { 1742 printf("chain %d, sample %d: temp=%d gain=%d " 1743 "power=%d pa_det=%d\n", c, j, 1744 chans[1].samples[c][j].temp, 1745 chans[1].samples[c][j].gain, 1746 chans[1].samples[c][j].power, 1747 chans[1].samples[c][j].pa_det); 1748 } 1749 } 1750 } 1751 #endif 1752 1753 static void 1754 iwn5000_read_eeprom(struct iwn_softc *sc) 1755 { 1756 struct iwn5000_eeprom_calib_hdr hdr; 1757 int32_t volt; 1758 uint32_t base, addr; 1759 uint16_t val; 1760 int i; 1761 1762 /* Read regulatory domain (4 ASCII characters). */ 1763 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1764 base = le16toh(val); 1765 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1766 sc->eeprom_domain, 4); 1767 1768 /* Read the list of authorized channels (20MHz ones only). */ 1769 for (i = 0; i < 7; i++) { 1770 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1771 addr = base + iwn6000_regulatory_bands[i]; 1772 else 1773 addr = base + iwn5000_regulatory_bands[i]; 1774 iwn_read_eeprom_channels(sc, i, addr); 1775 } 1776 1777 /* Read enhanced TX power information for 6000 Series. */ 1778 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1779 iwn_read_eeprom_enhinfo(sc); 1780 1781 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1782 base = le16toh(val); 1783 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1784 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 1785 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 1786 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 1787 sc->calib_ver = hdr.version; 1788 1789 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1790 /* Compute temperature offset. */ 1791 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1792 sc->eeprom_temp = le16toh(val); 1793 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1794 volt = le16toh(val); 1795 sc->temp_off = sc->eeprom_temp - (volt / -5); 1796 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 1797 sc->eeprom_temp, volt, sc->temp_off); 1798 } else { 1799 /* Read crystal calibration. */ 1800 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1801 &sc->eeprom_crystal, sizeof (uint32_t)); 1802 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 1803 le32toh(sc->eeprom_crystal)); 1804 } 1805 } 1806 1807 /* 1808 * Translate EEPROM flags to net80211. 1809 */ 1810 static uint32_t 1811 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 1812 { 1813 uint32_t nflags; 1814 1815 nflags = 0; 1816 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 1817 nflags |= IEEE80211_CHAN_PASSIVE; 1818 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 1819 nflags |= IEEE80211_CHAN_NOADHOC; 1820 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 1821 nflags |= IEEE80211_CHAN_DFS; 1822 /* XXX apparently IBSS may still be marked */ 1823 nflags |= IEEE80211_CHAN_NOADHOC; 1824 } 1825 1826 return nflags; 1827 } 1828 1829 static void 1830 iwn_read_eeprom_band(struct iwn_softc *sc, int n) 1831 { 1832 struct ifnet *ifp = sc->sc_ifp; 1833 struct ieee80211com *ic = ifp->if_l2com; 1834 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1835 const struct iwn_chan_band *band = &iwn_bands[n]; 1836 struct ieee80211_channel *c; 1837 uint8_t chan; 1838 int i, nflags; 1839 1840 for (i = 0; i < band->nchan; i++) { 1841 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 1842 DPRINTF(sc, IWN_DEBUG_RESET, 1843 "skip chan %d flags 0x%x maxpwr %d\n", 1844 band->chan[i], channels[i].flags, 1845 channels[i].maxpwr); 1846 continue; 1847 } 1848 chan = band->chan[i]; 1849 nflags = iwn_eeprom_channel_flags(&channels[i]); 1850 1851 c = &ic->ic_channels[ic->ic_nchans++]; 1852 c->ic_ieee = chan; 1853 c->ic_maxregpower = channels[i].maxpwr; 1854 c->ic_maxpower = 2*c->ic_maxregpower; 1855 1856 if (n == 0) { /* 2GHz band */ 1857 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); 1858 /* G =>'s B is supported */ 1859 c->ic_flags = IEEE80211_CHAN_B | nflags; 1860 c = &ic->ic_channels[ic->ic_nchans++]; 1861 c[0] = c[-1]; 1862 c->ic_flags = IEEE80211_CHAN_G | nflags; 1863 } else { /* 5GHz band */ 1864 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 1865 c->ic_flags = IEEE80211_CHAN_A | nflags; 1866 } 1867 1868 /* Save maximum allowed TX power for this channel. */ 1869 sc->maxpwr[chan] = channels[i].maxpwr; 1870 1871 DPRINTF(sc, IWN_DEBUG_RESET, 1872 "add chan %d flags 0x%x maxpwr %d\n", chan, 1873 channels[i].flags, channels[i].maxpwr); 1874 1875 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 1876 /* add HT20, HT40 added separately */ 1877 c = &ic->ic_channels[ic->ic_nchans++]; 1878 c[0] = c[-1]; 1879 c->ic_flags |= IEEE80211_CHAN_HT20; 1880 } 1881 } 1882 } 1883 1884 static void 1885 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n) 1886 { 1887 struct ifnet *ifp = sc->sc_ifp; 1888 struct ieee80211com *ic = ifp->if_l2com; 1889 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1890 const struct iwn_chan_band *band = &iwn_bands[n]; 1891 struct ieee80211_channel *c, *cent, *extc; 1892 uint8_t chan; 1893 int i, nflags; 1894 1895 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) 1896 return; 1897 1898 for (i = 0; i < band->nchan; i++) { 1899 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 1900 DPRINTF(sc, IWN_DEBUG_RESET, 1901 "skip chan %d flags 0x%x maxpwr %d\n", 1902 band->chan[i], channels[i].flags, 1903 channels[i].maxpwr); 1904 continue; 1905 } 1906 chan = band->chan[i]; 1907 nflags = iwn_eeprom_channel_flags(&channels[i]); 1908 1909 /* 1910 * Each entry defines an HT40 channel pair; find the 1911 * center channel, then the extension channel above. 1912 */ 1913 cent = ieee80211_find_channel_byieee(ic, chan, 1914 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 1915 if (cent == NULL) { /* XXX shouldn't happen */ 1916 device_printf(sc->sc_dev, 1917 "%s: no entry for channel %d\n", __func__, chan); 1918 continue; 1919 } 1920 extc = ieee80211_find_channel(ic, cent->ic_freq+20, 1921 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 1922 if (extc == NULL) { 1923 DPRINTF(sc, IWN_DEBUG_RESET, 1924 "%s: skip chan %d, extension channel not found\n", 1925 __func__, chan); 1926 continue; 1927 } 1928 1929 DPRINTF(sc, IWN_DEBUG_RESET, 1930 "add ht40 chan %d flags 0x%x maxpwr %d\n", 1931 chan, channels[i].flags, channels[i].maxpwr); 1932 1933 c = &ic->ic_channels[ic->ic_nchans++]; 1934 c[0] = cent[0]; 1935 c->ic_extieee = extc->ic_ieee; 1936 c->ic_flags &= ~IEEE80211_CHAN_HT; 1937 c->ic_flags |= IEEE80211_CHAN_HT40U | nflags; 1938 c = &ic->ic_channels[ic->ic_nchans++]; 1939 c[0] = extc[0]; 1940 c->ic_extieee = cent->ic_ieee; 1941 c->ic_flags &= ~IEEE80211_CHAN_HT; 1942 c->ic_flags |= IEEE80211_CHAN_HT40D | nflags; 1943 } 1944 } 1945 1946 static void 1947 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1948 { 1949 struct ifnet *ifp = sc->sc_ifp; 1950 struct ieee80211com *ic = ifp->if_l2com; 1951 1952 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 1953 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 1954 1955 if (n < 5) 1956 iwn_read_eeprom_band(sc, n); 1957 else 1958 iwn_read_eeprom_ht40(sc, n); 1959 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1960 } 1961 1962 static struct iwn_eeprom_chan * 1963 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 1964 { 1965 int band, chan, i, j; 1966 1967 if (IEEE80211_IS_CHAN_HT40(c)) { 1968 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 1969 if (IEEE80211_IS_CHAN_HT40D(c)) 1970 chan = c->ic_extieee; 1971 else 1972 chan = c->ic_ieee; 1973 for (i = 0; i < iwn_bands[band].nchan; i++) { 1974 if (iwn_bands[band].chan[i] == chan) 1975 return &sc->eeprom_channels[band][i]; 1976 } 1977 } else { 1978 for (j = 0; j < 5; j++) { 1979 for (i = 0; i < iwn_bands[j].nchan; i++) { 1980 if (iwn_bands[j].chan[i] == c->ic_ieee) 1981 return &sc->eeprom_channels[j][i]; 1982 } 1983 } 1984 } 1985 return NULL; 1986 } 1987 1988 /* 1989 * Enforce flags read from EEPROM. 1990 */ 1991 static int 1992 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 1993 int nchan, struct ieee80211_channel chans[]) 1994 { 1995 struct iwn_softc *sc = ic->ic_ifp->if_softc; 1996 int i; 1997 1998 for (i = 0; i < nchan; i++) { 1999 struct ieee80211_channel *c = &chans[i]; 2000 struct iwn_eeprom_chan *channel; 2001 2002 channel = iwn_find_eeprom_channel(sc, c); 2003 if (channel == NULL) { 2004 if_printf(ic->ic_ifp, 2005 "%s: invalid channel %u freq %u/0x%x\n", 2006 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2007 return EINVAL; 2008 } 2009 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2010 } 2011 2012 return 0; 2013 } 2014 2015 #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) 2016 2017 static void 2018 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2019 { 2020 struct iwn_eeprom_enhinfo enhinfo[35]; 2021 struct ifnet *ifp = sc->sc_ifp; 2022 struct ieee80211com *ic = ifp->if_l2com; 2023 struct ieee80211_channel *c; 2024 uint16_t val, base; 2025 int8_t maxpwr; 2026 uint8_t flags; 2027 int i, j; 2028 2029 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2030 base = le16toh(val); 2031 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2032 enhinfo, sizeof enhinfo); 2033 2034 for (i = 0; i < nitems(enhinfo); i++) { 2035 flags = enhinfo[i].flags; 2036 if (!(flags & IWN_ENHINFO_VALID)) 2037 continue; /* Skip invalid entries. */ 2038 2039 maxpwr = 0; 2040 if (sc->txchainmask & IWN_ANT_A) 2041 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2042 if (sc->txchainmask & IWN_ANT_B) 2043 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2044 if (sc->txchainmask & IWN_ANT_C) 2045 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2046 if (sc->ntxchains == 2) 2047 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2048 else if (sc->ntxchains == 3) 2049 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2050 2051 for (j = 0; j < ic->ic_nchans; j++) { 2052 c = &ic->ic_channels[j]; 2053 if ((flags & IWN_ENHINFO_5GHZ)) { 2054 if (!IEEE80211_IS_CHAN_A(c)) 2055 continue; 2056 } else if ((flags & IWN_ENHINFO_OFDM)) { 2057 if (!IEEE80211_IS_CHAN_G(c)) 2058 continue; 2059 } else if (!IEEE80211_IS_CHAN_B(c)) 2060 continue; 2061 if ((flags & IWN_ENHINFO_HT40)) { 2062 if (!IEEE80211_IS_CHAN_HT40(c)) 2063 continue; 2064 } else { 2065 if (IEEE80211_IS_CHAN_HT40(c)) 2066 continue; 2067 } 2068 if (enhinfo[i].chan != 0 && 2069 enhinfo[i].chan != c->ic_ieee) 2070 continue; 2071 2072 DPRINTF(sc, IWN_DEBUG_RESET, 2073 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2074 c->ic_flags, maxpwr / 2); 2075 c->ic_maxregpower = maxpwr / 2; 2076 c->ic_maxpower = maxpwr; 2077 } 2078 } 2079 } 2080 2081 static struct ieee80211_node * 2082 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2083 { 2084 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2085 } 2086 2087 static __inline int 2088 rate2plcp(int rate) 2089 { 2090 switch (rate & 0xff) { 2091 case 12: return 0xd; 2092 case 18: return 0xf; 2093 case 24: return 0x5; 2094 case 36: return 0x7; 2095 case 48: return 0x9; 2096 case 72: return 0xb; 2097 case 96: return 0x1; 2098 case 108: return 0x3; 2099 case 2: return 10; 2100 case 4: return 20; 2101 case 11: return 55; 2102 case 22: return 110; 2103 } 2104 return 0; 2105 } 2106 2107 static void 2108 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2109 { 2110 #define RV(v) ((v) & IEEE80211_RATE_VAL) 2111 struct ieee80211com *ic = ni->ni_ic; 2112 struct iwn_softc *sc = ic->ic_ifp->if_softc; 2113 struct iwn_node *wn = (void *)ni; 2114 uint8_t txant1, txant2; 2115 int i, plcp, rate, ridx; 2116 2117 /* Use the first valid TX antenna. */ 2118 txant1 = IWN_LSB(sc->txchainmask); 2119 txant2 = IWN_LSB(sc->txchainmask & ~txant1); 2120 2121 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2122 ridx = ni->ni_rates.rs_nrates - 1; 2123 for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) { 2124 plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS; 2125 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2126 plcp |= IWN_RFLAG_HT40; 2127 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2128 plcp |= IWN_RFLAG_SGI; 2129 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) 2130 plcp |= IWN_RFLAG_SGI; 2131 if (i > 7) 2132 plcp |= IWN_RFLAG_ANT(txant1 | txant2); 2133 else 2134 plcp |= IWN_RFLAG_ANT(txant1); 2135 if (ridx >= 0) { 2136 rate = RV(ni->ni_rates.rs_rates[ridx]); 2137 wn->ridx[rate] = plcp; 2138 } 2139 wn->ridx[IEEE80211_RATE_MCS | i] = plcp; 2140 ridx--; 2141 } 2142 } else { 2143 for (i = 0; i < ni->ni_rates.rs_nrates; i++) { 2144 rate = RV(ni->ni_rates.rs_rates[i]); 2145 plcp = rate2plcp(rate); 2146 ridx = ic->ic_rt->rateCodeToIndex[rate]; 2147 if (ridx < IWN_RIDX_OFDM6 && 2148 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2149 plcp |= IWN_RFLAG_CCK; 2150 plcp |= IWN_RFLAG_ANT(txant1); 2151 wn->ridx[rate] = htole32(plcp); 2152 } 2153 } 2154 #undef RV 2155 } 2156 2157 static int 2158 iwn_media_change(struct ifnet *ifp) 2159 { 2160 int error; 2161 2162 error = ieee80211_media_change(ifp); 2163 /* NB: only the fixed rate can change and that doesn't need a reset */ 2164 return (error == ENETRESET ? 0 : error); 2165 } 2166 2167 static int 2168 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2169 { 2170 struct iwn_vap *ivp = IWN_VAP(vap); 2171 struct ieee80211com *ic = vap->iv_ic; 2172 struct iwn_softc *sc = ic->ic_ifp->if_softc; 2173 int error = 0; 2174 2175 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2176 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2177 2178 IEEE80211_UNLOCK(ic); 2179 IWN_LOCK(sc); 2180 callout_stop(&sc->calib_to); 2181 2182 switch (nstate) { 2183 case IEEE80211_S_ASSOC: 2184 if (vap->iv_state != IEEE80211_S_RUN) 2185 break; 2186 /* FALLTHROUGH */ 2187 case IEEE80211_S_AUTH: 2188 if (vap->iv_state == IEEE80211_S_AUTH) 2189 break; 2190 2191 /* 2192 * !AUTH -> AUTH transition requires state reset to handle 2193 * reassociations correctly. 2194 */ 2195 sc->rxon.associd = 0; 2196 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 2197 sc->calib.state = IWN_CALIB_STATE_INIT; 2198 2199 if ((error = iwn_auth(sc, vap)) != 0) { 2200 device_printf(sc->sc_dev, 2201 "%s: could not move to auth state\n", __func__); 2202 } 2203 break; 2204 2205 case IEEE80211_S_RUN: 2206 /* 2207 * RUN -> RUN transition; Just restart the timers. 2208 */ 2209 if (vap->iv_state == IEEE80211_S_RUN) { 2210 sc->calib_cnt = 0; 2211 break; 2212 } 2213 2214 /* 2215 * !RUN -> RUN requires setting the association id 2216 * which is done with a firmware cmd. We also defer 2217 * starting the timers until that work is done. 2218 */ 2219 if ((error = iwn_run(sc, vap)) != 0) { 2220 device_printf(sc->sc_dev, 2221 "%s: could not move to run state\n", __func__); 2222 } 2223 break; 2224 2225 case IEEE80211_S_INIT: 2226 sc->calib.state = IWN_CALIB_STATE_INIT; 2227 break; 2228 2229 default: 2230 break; 2231 } 2232 IWN_UNLOCK(sc); 2233 IEEE80211_LOCK(ic); 2234 if (error != 0) 2235 return error; 2236 return ivp->iv_newstate(vap, nstate, arg); 2237 } 2238 2239 static void 2240 iwn_calib_timeout(void *arg) 2241 { 2242 struct iwn_softc *sc = arg; 2243 2244 IWN_LOCK_ASSERT(sc); 2245 2246 /* Force automatic TX power calibration every 60 secs. */ 2247 if (++sc->calib_cnt >= 120) { 2248 uint32_t flags = 0; 2249 2250 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2251 "sending request for statistics"); 2252 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2253 sizeof flags, 1); 2254 sc->calib_cnt = 0; 2255 } 2256 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2257 sc); 2258 } 2259 2260 /* 2261 * Process an RX_PHY firmware notification. This is usually immediately 2262 * followed by an MPDU_RX_DONE notification. 2263 */ 2264 static void 2265 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2266 struct iwn_rx_data *data) 2267 { 2268 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2269 2270 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2271 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2272 2273 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2274 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2275 sc->last_rx_valid = 1; 2276 } 2277 2278 /* 2279 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2280 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2281 */ 2282 static void 2283 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2284 struct iwn_rx_data *data) 2285 { 2286 struct iwn_ops *ops = &sc->ops; 2287 struct ifnet *ifp = sc->sc_ifp; 2288 struct ieee80211com *ic = ifp->if_l2com; 2289 struct iwn_rx_ring *ring = &sc->rxq; 2290 struct ieee80211_frame *wh; 2291 struct ieee80211_node *ni; 2292 struct mbuf *m, *m1; 2293 struct iwn_rx_stat *stat; 2294 caddr_t head; 2295 bus_addr_t paddr; 2296 uint32_t flags; 2297 int error, len, rssi, nf; 2298 2299 if (desc->type == IWN_MPDU_RX_DONE) { 2300 /* Check for prior RX_PHY notification. */ 2301 if (!sc->last_rx_valid) { 2302 DPRINTF(sc, IWN_DEBUG_ANY, 2303 "%s: missing RX_PHY\n", __func__); 2304 return; 2305 } 2306 stat = &sc->last_rx_stat; 2307 } else 2308 stat = (struct iwn_rx_stat *)(desc + 1); 2309 2310 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2311 2312 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2313 device_printf(sc->sc_dev, 2314 "%s: invalid RX statistic header, len %d\n", __func__, 2315 stat->cfg_phy_len); 2316 return; 2317 } 2318 if (desc->type == IWN_MPDU_RX_DONE) { 2319 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2320 head = (caddr_t)(mpdu + 1); 2321 len = le16toh(mpdu->len); 2322 } else { 2323 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2324 len = le16toh(stat->len); 2325 } 2326 2327 flags = le32toh(*(uint32_t *)(head + len)); 2328 2329 /* Discard frames with a bad FCS early. */ 2330 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2331 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 2332 __func__, flags); 2333 ifp->if_ierrors++; 2334 return; 2335 } 2336 /* Discard frames that are too short. */ 2337 if (len < sizeof (*wh)) { 2338 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 2339 __func__, len); 2340 ifp->if_ierrors++; 2341 return; 2342 } 2343 2344 m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 2345 if (m1 == NULL) { 2346 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 2347 __func__); 2348 ifp->if_ierrors++; 2349 return; 2350 } 2351 bus_dmamap_unload(ring->data_dmat, data->map); 2352 2353 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 2354 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 2355 if (error != 0 && error != EFBIG) { 2356 device_printf(sc->sc_dev, 2357 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 2358 m_freem(m1); 2359 2360 /* Try to reload the old mbuf. */ 2361 error = bus_dmamap_load(ring->data_dmat, data->map, 2362 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 2363 &paddr, BUS_DMA_NOWAIT); 2364 if (error != 0 && error != EFBIG) { 2365 panic("%s: could not load old RX mbuf", __func__); 2366 } 2367 /* Physical address may have changed. */ 2368 ring->desc[ring->cur] = htole32(paddr >> 8); 2369 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 2370 BUS_DMASYNC_PREWRITE); 2371 ifp->if_ierrors++; 2372 return; 2373 } 2374 2375 m = data->m; 2376 data->m = m1; 2377 /* Update RX descriptor. */ 2378 ring->desc[ring->cur] = htole32(paddr >> 8); 2379 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2380 BUS_DMASYNC_PREWRITE); 2381 2382 /* Finalize mbuf. */ 2383 m->m_pkthdr.rcvif = ifp; 2384 m->m_data = head; 2385 m->m_pkthdr.len = m->m_len = len; 2386 2387 /* Grab a reference to the source node. */ 2388 wh = mtod(m, struct ieee80211_frame *); 2389 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2390 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 2391 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 2392 2393 rssi = ops->get_rssi(sc, stat); 2394 2395 if (ieee80211_radiotap_active(ic)) { 2396 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2397 2398 tap->wr_flags = 0; 2399 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2400 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2401 tap->wr_dbm_antsignal = (int8_t)rssi; 2402 tap->wr_dbm_antnoise = (int8_t)nf; 2403 tap->wr_tsft = stat->tstamp; 2404 switch (stat->rate) { 2405 /* CCK rates. */ 2406 case 10: tap->wr_rate = 2; break; 2407 case 20: tap->wr_rate = 4; break; 2408 case 55: tap->wr_rate = 11; break; 2409 case 110: tap->wr_rate = 22; break; 2410 /* OFDM rates. */ 2411 case 0xd: tap->wr_rate = 12; break; 2412 case 0xf: tap->wr_rate = 18; break; 2413 case 0x5: tap->wr_rate = 24; break; 2414 case 0x7: tap->wr_rate = 36; break; 2415 case 0x9: tap->wr_rate = 48; break; 2416 case 0xb: tap->wr_rate = 72; break; 2417 case 0x1: tap->wr_rate = 96; break; 2418 case 0x3: tap->wr_rate = 108; break; 2419 /* Unknown rate: should not happen. */ 2420 default: tap->wr_rate = 0; 2421 } 2422 } 2423 2424 IWN_UNLOCK(sc); 2425 2426 /* Send the frame to the 802.11 layer. */ 2427 if (ni != NULL) { 2428 if (ni->ni_flags & IEEE80211_NODE_HT) 2429 m->m_flags |= M_AMPDU; 2430 (void)ieee80211_input(ni, m, rssi - nf, nf); 2431 /* Node is no longer needed. */ 2432 ieee80211_free_node(ni); 2433 } else 2434 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 2435 2436 IWN_LOCK(sc); 2437 } 2438 2439 /* Process an incoming Compressed BlockAck. */ 2440 static void 2441 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2442 struct iwn_rx_data *data) 2443 { 2444 struct ifnet *ifp = sc->sc_ifp; 2445 struct iwn_node *wn; 2446 struct ieee80211_node *ni; 2447 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2448 struct iwn_tx_ring *txq; 2449 struct ieee80211_tx_ampdu *tap; 2450 uint64_t bitmap; 2451 uint8_t tid; 2452 int ackfailcnt = 0, i, shift; 2453 2454 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2455 2456 txq = &sc->txq[le16toh(ba->qid)]; 2457 tap = sc->qid2tap[le16toh(ba->qid)]; 2458 tid = WME_AC_TO_TID(tap->txa_ac); 2459 ni = tap->txa_ni; 2460 wn = (void *)ni; 2461 2462 if (wn->agg[tid].bitmap == 0) 2463 return; 2464 2465 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 2466 if (shift < 0) 2467 shift += 0x100; 2468 2469 if (wn->agg[tid].nframes > (64 - shift)) 2470 return; 2471 2472 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 2473 for (i = 0; bitmap; i++) { 2474 if ((bitmap & 1) == 0) { 2475 ifp->if_oerrors++; 2476 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2477 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2478 } else { 2479 ifp->if_opackets++; 2480 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2481 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2482 } 2483 bitmap >>= 1; 2484 } 2485 } 2486 2487 /* 2488 * Process a CALIBRATION_RESULT notification sent by the initialization 2489 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2490 */ 2491 static void 2492 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2493 struct iwn_rx_data *data) 2494 { 2495 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2496 int len, idx = -1; 2497 2498 /* Runtime firmware should not send such a notification. */ 2499 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2500 return; 2501 2502 len = (le32toh(desc->len) & 0x3fff) - 4; 2503 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2504 2505 switch (calib->code) { 2506 case IWN5000_PHY_CALIB_DC: 2507 if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 && 2508 (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2509 sc->hw_type >= IWN_HW_REV_TYPE_6000) && 2510 sc->hw_type != IWN_HW_REV_TYPE_6050) 2511 idx = 0; 2512 break; 2513 case IWN5000_PHY_CALIB_LO: 2514 idx = 1; 2515 break; 2516 case IWN5000_PHY_CALIB_TX_IQ: 2517 idx = 2; 2518 break; 2519 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2520 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2521 sc->hw_type != IWN_HW_REV_TYPE_5150) 2522 idx = 3; 2523 break; 2524 case IWN5000_PHY_CALIB_BASE_BAND: 2525 idx = 4; 2526 break; 2527 } 2528 if (idx == -1) /* Ignore other results. */ 2529 return; 2530 2531 /* Save calibration result. */ 2532 if (sc->calibcmd[idx].buf != NULL) 2533 free(sc->calibcmd[idx].buf, M_DEVBUF); 2534 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2535 if (sc->calibcmd[idx].buf == NULL) { 2536 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2537 "not enough memory for calibration result %d\n", 2538 calib->code); 2539 return; 2540 } 2541 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2542 "saving calibration result code=%d len=%d\n", calib->code, len); 2543 sc->calibcmd[idx].len = len; 2544 memcpy(sc->calibcmd[idx].buf, calib, len); 2545 } 2546 2547 /* 2548 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2549 * The latter is sent by the firmware after each received beacon. 2550 */ 2551 static void 2552 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2553 struct iwn_rx_data *data) 2554 { 2555 struct iwn_ops *ops = &sc->ops; 2556 struct ifnet *ifp = sc->sc_ifp; 2557 struct ieee80211com *ic = ifp->if_l2com; 2558 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2559 struct iwn_calib_state *calib = &sc->calib; 2560 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2561 int temp; 2562 2563 /* Ignore statistics received during a scan. */ 2564 if (vap->iv_state != IEEE80211_S_RUN || 2565 (ic->ic_flags & IEEE80211_F_SCAN)) 2566 return; 2567 2568 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2569 2570 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n", 2571 __func__, desc->type); 2572 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2573 2574 /* Test if temperature has changed. */ 2575 if (stats->general.temp != sc->rawtemp) { 2576 /* Convert "raw" temperature to degC. */ 2577 sc->rawtemp = stats->general.temp; 2578 temp = ops->get_temperature(sc); 2579 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 2580 __func__, temp); 2581 2582 /* Update TX power if need be (4965AGN only). */ 2583 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2584 iwn4965_power_calibration(sc, temp); 2585 } 2586 2587 if (desc->type != IWN_BEACON_STATISTICS) 2588 return; /* Reply to a statistics request. */ 2589 2590 sc->noise = iwn_get_noise(&stats->rx.general); 2591 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 2592 2593 /* Test that RSSI and noise are present in stats report. */ 2594 if (le32toh(stats->rx.general.flags) != 1) { 2595 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 2596 "received statistics without RSSI"); 2597 return; 2598 } 2599 2600 if (calib->state == IWN_CALIB_STATE_ASSOC) 2601 iwn_collect_noise(sc, &stats->rx.general); 2602 else if (calib->state == IWN_CALIB_STATE_RUN) 2603 iwn_tune_sensitivity(sc, &stats->rx); 2604 } 2605 2606 /* 2607 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2608 * and 5000 adapters have different incompatible TX status formats. 2609 */ 2610 static void 2611 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2612 struct iwn_rx_data *data) 2613 { 2614 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2615 struct iwn_tx_ring *ring; 2616 int qid; 2617 2618 qid = desc->qid & 0xf; 2619 ring = &sc->txq[qid]; 2620 2621 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2622 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2623 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2624 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2625 le32toh(stat->status)); 2626 2627 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2628 if (qid >= sc->firstaggqueue) { 2629 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 2630 &stat->status); 2631 } else { 2632 iwn_tx_done(sc, desc, stat->ackfailcnt, 2633 le32toh(stat->status) & 0xff); 2634 } 2635 } 2636 2637 static void 2638 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2639 struct iwn_rx_data *data) 2640 { 2641 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2642 struct iwn_tx_ring *ring; 2643 int qid; 2644 2645 qid = desc->qid & 0xf; 2646 ring = &sc->txq[qid]; 2647 2648 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2649 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2650 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2651 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2652 le32toh(stat->status)); 2653 2654 #ifdef notyet 2655 /* Reset TX scheduler slot. */ 2656 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2657 #endif 2658 2659 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2660 if (qid >= sc->firstaggqueue) { 2661 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 2662 &stat->status); 2663 } else { 2664 iwn_tx_done(sc, desc, stat->ackfailcnt, 2665 le16toh(stat->status) & 0xff); 2666 } 2667 } 2668 2669 /* 2670 * Adapter-independent backend for TX_DONE firmware notifications. 2671 */ 2672 static void 2673 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2674 uint8_t status) 2675 { 2676 struct ifnet *ifp = sc->sc_ifp; 2677 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2678 struct iwn_tx_data *data = &ring->data[desc->idx]; 2679 struct mbuf *m; 2680 struct ieee80211_node *ni; 2681 struct ieee80211vap *vap; 2682 2683 KASSERT(data->ni != NULL, ("no node")); 2684 2685 /* Unmap and free mbuf. */ 2686 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2687 bus_dmamap_unload(ring->data_dmat, data->map); 2688 m = data->m, data->m = NULL; 2689 ni = data->ni, data->ni = NULL; 2690 vap = ni->ni_vap; 2691 2692 if (m->m_flags & M_TXCB) { 2693 /* 2694 * Channels marked for "radar" require traffic to be received 2695 * to unlock before we can transmit. Until traffic is seen 2696 * any attempt to transmit is returned immediately with status 2697 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 2698 * happen on first authenticate after scanning. To workaround 2699 * this we ignore a failure of this sort in AUTH state so the 2700 * 802.11 layer will fall back to using a timeout to wait for 2701 * the AUTH reply. This allows the firmware time to see 2702 * traffic so a subsequent retry of AUTH succeeds. It's 2703 * unclear why the firmware does not maintain state for 2704 * channels recently visited as this would allow immediate 2705 * use of the channel after a scan (where we see traffic). 2706 */ 2707 if (status == IWN_TX_FAIL_TX_LOCKED && 2708 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 2709 ieee80211_process_callback(ni, m, 0); 2710 else 2711 ieee80211_process_callback(ni, m, 2712 (status & IWN_TX_FAIL) != 0); 2713 } 2714 2715 /* 2716 * Update rate control statistics for the node. 2717 */ 2718 if (status & IWN_TX_FAIL) { 2719 ifp->if_oerrors++; 2720 ieee80211_ratectl_tx_complete(vap, ni, 2721 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2722 } else { 2723 ifp->if_opackets++; 2724 ieee80211_ratectl_tx_complete(vap, ni, 2725 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2726 } 2727 m_freem(m); 2728 ieee80211_free_node(ni); 2729 2730 sc->sc_tx_timer = 0; 2731 if (--ring->queued < IWN_TX_RING_LOMARK) { 2732 sc->qfullmsk &= ~(1 << ring->qid); 2733 if (sc->qfullmsk == 0 && 2734 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { 2735 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2736 iwn_start_locked(ifp); 2737 } 2738 } 2739 } 2740 2741 /* 2742 * Process a "command done" firmware notification. This is where we wakeup 2743 * processes waiting for a synchronous command completion. 2744 */ 2745 static void 2746 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2747 { 2748 struct iwn_tx_ring *ring = &sc->txq[4]; 2749 struct iwn_tx_data *data; 2750 2751 if ((desc->qid & 0xf) != 4) 2752 return; /* Not a command ack. */ 2753 2754 data = &ring->data[desc->idx]; 2755 2756 /* If the command was mapped in an mbuf, free it. */ 2757 if (data->m != NULL) { 2758 bus_dmamap_sync(ring->data_dmat, data->map, 2759 BUS_DMASYNC_POSTWRITE); 2760 bus_dmamap_unload(ring->data_dmat, data->map); 2761 m_freem(data->m); 2762 data->m = NULL; 2763 } 2764 wakeup(&ring->desc[desc->idx]); 2765 } 2766 2767 static void 2768 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 2769 void *stat) 2770 { 2771 struct ifnet *ifp = sc->sc_ifp; 2772 struct iwn_tx_ring *ring = &sc->txq[qid]; 2773 struct iwn_tx_data *data; 2774 struct mbuf *m; 2775 struct iwn_node *wn; 2776 struct ieee80211_node *ni; 2777 struct ieee80211vap *vap; 2778 struct ieee80211_tx_ampdu *tap; 2779 uint64_t bitmap; 2780 uint32_t *status = stat; 2781 uint16_t *aggstatus = stat; 2782 uint8_t tid; 2783 int bit, i, lastidx, seqno, shift, start; 2784 2785 #ifdef NOT_YET 2786 if (nframes == 1) { 2787 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) 2788 printf("ieee80211_send_bar()\n"); 2789 } 2790 #endif 2791 2792 bitmap = 0; 2793 start = idx; 2794 for (i = 0; i < nframes; i++) { 2795 if (le16toh(aggstatus[i * 2]) & 0xc) 2796 continue; 2797 2798 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 2799 bit = idx - start; 2800 shift = 0; 2801 if (bit >= 64) { 2802 shift = 0x100 - idx + start; 2803 bit = 0; 2804 start = idx; 2805 } else if (bit <= -64) 2806 bit = 0x100 - start + idx; 2807 else if (bit < 0) { 2808 shift = start - idx; 2809 start = idx; 2810 bit = 0; 2811 } 2812 bitmap = bitmap << shift; 2813 bitmap |= 1ULL << bit; 2814 } 2815 tap = sc->qid2tap[qid]; 2816 tid = WME_AC_TO_TID(tap->txa_ac); 2817 wn = (void *)tap->txa_ni; 2818 wn->agg[tid].bitmap = bitmap; 2819 wn->agg[tid].startidx = start; 2820 wn->agg[tid].nframes = nframes; 2821 2822 seqno = le32toh(*(status + nframes)) & 0xfff; 2823 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 2824 data = &ring->data[ring->read]; 2825 2826 KASSERT(data->ni != NULL, ("no node")); 2827 2828 /* Unmap and free mbuf. */ 2829 bus_dmamap_sync(ring->data_dmat, data->map, 2830 BUS_DMASYNC_POSTWRITE); 2831 bus_dmamap_unload(ring->data_dmat, data->map); 2832 m = data->m, data->m = NULL; 2833 ni = data->ni, data->ni = NULL; 2834 vap = ni->ni_vap; 2835 2836 if (m->m_flags & M_TXCB) 2837 ieee80211_process_callback(ni, m, 1); 2838 2839 m_freem(m); 2840 ieee80211_free_node(ni); 2841 2842 ring->queued--; 2843 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 2844 } 2845 2846 sc->sc_tx_timer = 0; 2847 if (ring->queued < IWN_TX_RING_LOMARK) { 2848 sc->qfullmsk &= ~(1 << ring->qid); 2849 if (sc->qfullmsk == 0 && 2850 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { 2851 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2852 iwn_start_locked(ifp); 2853 } 2854 } 2855 } 2856 2857 /* 2858 * Process an INT_FH_RX or INT_SW_RX interrupt. 2859 */ 2860 static void 2861 iwn_notif_intr(struct iwn_softc *sc) 2862 { 2863 struct iwn_ops *ops = &sc->ops; 2864 struct ifnet *ifp = sc->sc_ifp; 2865 struct ieee80211com *ic = ifp->if_l2com; 2866 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2867 uint16_t hw; 2868 2869 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 2870 BUS_DMASYNC_POSTREAD); 2871 2872 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2873 while (sc->rxq.cur != hw) { 2874 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2875 struct iwn_rx_desc *desc; 2876 2877 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2878 BUS_DMASYNC_POSTREAD); 2879 desc = mtod(data->m, struct iwn_rx_desc *); 2880 2881 DPRINTF(sc, IWN_DEBUG_RECV, 2882 "%s: qid %x idx %d flags %x type %d(%s) len %d\n", 2883 __func__, desc->qid & 0xf, desc->idx, desc->flags, 2884 desc->type, iwn_intr_str(desc->type), 2885 le16toh(desc->len)); 2886 2887 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2888 iwn_cmd_done(sc, desc); 2889 2890 switch (desc->type) { 2891 case IWN_RX_PHY: 2892 iwn_rx_phy(sc, desc, data); 2893 break; 2894 2895 case IWN_RX_DONE: /* 4965AGN only. */ 2896 case IWN_MPDU_RX_DONE: 2897 /* An 802.11 frame has been received. */ 2898 iwn_rx_done(sc, desc, data); 2899 break; 2900 2901 case IWN_RX_COMPRESSED_BA: 2902 /* A Compressed BlockAck has been received. */ 2903 iwn_rx_compressed_ba(sc, desc, data); 2904 break; 2905 2906 case IWN_TX_DONE: 2907 /* An 802.11 frame has been transmitted. */ 2908 ops->tx_done(sc, desc, data); 2909 break; 2910 2911 case IWN_RX_STATISTICS: 2912 case IWN_BEACON_STATISTICS: 2913 iwn_rx_statistics(sc, desc, data); 2914 break; 2915 2916 case IWN_BEACON_MISSED: 2917 { 2918 struct iwn_beacon_missed *miss = 2919 (struct iwn_beacon_missed *)(desc + 1); 2920 int misses; 2921 2922 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2923 BUS_DMASYNC_POSTREAD); 2924 misses = le32toh(miss->consecutive); 2925 2926 DPRINTF(sc, IWN_DEBUG_STATE, 2927 "%s: beacons missed %d/%d\n", __func__, 2928 misses, le32toh(miss->total)); 2929 /* 2930 * If more than 5 consecutive beacons are missed, 2931 * reinitialize the sensitivity state machine. 2932 */ 2933 if (vap->iv_state == IEEE80211_S_RUN && 2934 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2935 if (misses > 5) 2936 (void)iwn_init_sensitivity(sc); 2937 if (misses >= vap->iv_bmissthreshold) { 2938 IWN_UNLOCK(sc); 2939 ieee80211_beacon_miss(ic); 2940 IWN_LOCK(sc); 2941 } 2942 } 2943 break; 2944 } 2945 case IWN_UC_READY: 2946 { 2947 struct iwn_ucode_info *uc = 2948 (struct iwn_ucode_info *)(desc + 1); 2949 2950 /* The microcontroller is ready. */ 2951 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2952 BUS_DMASYNC_POSTREAD); 2953 DPRINTF(sc, IWN_DEBUG_RESET, 2954 "microcode alive notification version=%d.%d " 2955 "subtype=%x alive=%x\n", uc->major, uc->minor, 2956 uc->subtype, le32toh(uc->valid)); 2957 2958 if (le32toh(uc->valid) != 1) { 2959 device_printf(sc->sc_dev, 2960 "microcontroller initialization failed"); 2961 break; 2962 } 2963 if (uc->subtype == IWN_UCODE_INIT) { 2964 /* Save microcontroller report. */ 2965 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2966 } 2967 /* Save the address of the error log in SRAM. */ 2968 sc->errptr = le32toh(uc->errptr); 2969 break; 2970 } 2971 case IWN_STATE_CHANGED: 2972 { 2973 uint32_t *status = (uint32_t *)(desc + 1); 2974 2975 /* 2976 * State change allows hardware switch change to be 2977 * noted. However, we handle this in iwn_intr as we 2978 * get both the enable/disble intr. 2979 */ 2980 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2981 BUS_DMASYNC_POSTREAD); 2982 DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n", 2983 le32toh(*status)); 2984 break; 2985 } 2986 case IWN_START_SCAN: 2987 { 2988 struct iwn_start_scan *scan = 2989 (struct iwn_start_scan *)(desc + 1); 2990 2991 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2992 BUS_DMASYNC_POSTREAD); 2993 DPRINTF(sc, IWN_DEBUG_ANY, 2994 "%s: scanning channel %d status %x\n", 2995 __func__, scan->chan, le32toh(scan->status)); 2996 break; 2997 } 2998 case IWN_STOP_SCAN: 2999 { 3000 struct iwn_stop_scan *scan = 3001 (struct iwn_stop_scan *)(desc + 1); 3002 3003 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3004 BUS_DMASYNC_POSTREAD); 3005 DPRINTF(sc, IWN_DEBUG_STATE, 3006 "scan finished nchan=%d status=%d chan=%d\n", 3007 scan->nchan, scan->status, scan->chan); 3008 3009 IWN_UNLOCK(sc); 3010 ieee80211_scan_next(vap); 3011 IWN_LOCK(sc); 3012 break; 3013 } 3014 case IWN5000_CALIBRATION_RESULT: 3015 iwn5000_rx_calib_results(sc, desc, data); 3016 break; 3017 3018 case IWN5000_CALIBRATION_DONE: 3019 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3020 wakeup(sc); 3021 break; 3022 } 3023 3024 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3025 } 3026 3027 /* Tell the firmware what we have processed. */ 3028 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3029 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3030 } 3031 3032 /* 3033 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3034 * from power-down sleep mode. 3035 */ 3036 static void 3037 iwn_wakeup_intr(struct iwn_softc *sc) 3038 { 3039 int qid; 3040 3041 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 3042 __func__); 3043 3044 /* Wakeup RX and TX rings. */ 3045 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3046 for (qid = 0; qid < sc->ntxqs; qid++) { 3047 struct iwn_tx_ring *ring = &sc->txq[qid]; 3048 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3049 } 3050 } 3051 3052 static void 3053 iwn_rftoggle_intr(struct iwn_softc *sc) 3054 { 3055 struct ifnet *ifp = sc->sc_ifp; 3056 struct ieee80211com *ic = ifp->if_l2com; 3057 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 3058 3059 IWN_LOCK_ASSERT(sc); 3060 3061 device_printf(sc->sc_dev, "RF switch: radio %s\n", 3062 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3063 if (tmp & IWN_GP_CNTRL_RFKILL) 3064 ieee80211_runtask(ic, &sc->sc_radioon_task); 3065 else 3066 ieee80211_runtask(ic, &sc->sc_radiooff_task); 3067 } 3068 3069 /* 3070 * Dump the error log of the firmware when a firmware panic occurs. Although 3071 * we can't debug the firmware because it is neither open source nor free, it 3072 * can help us to identify certain classes of problems. 3073 */ 3074 static void 3075 iwn_fatal_intr(struct iwn_softc *sc) 3076 { 3077 struct iwn_fw_dump dump; 3078 int i; 3079 3080 IWN_LOCK_ASSERT(sc); 3081 3082 /* Force a complete recalibration on next init. */ 3083 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 3084 3085 /* Check that the error log address is valid. */ 3086 if (sc->errptr < IWN_FW_DATA_BASE || 3087 sc->errptr + sizeof (dump) > 3088 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 3089 printf("%s: bad firmware error log address 0x%08x\n", __func__, 3090 sc->errptr); 3091 return; 3092 } 3093 if (iwn_nic_lock(sc) != 0) { 3094 printf("%s: could not read firmware error log\n", __func__); 3095 return; 3096 } 3097 /* Read firmware error log from SRAM. */ 3098 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 3099 sizeof (dump) / sizeof (uint32_t)); 3100 iwn_nic_unlock(sc); 3101 3102 if (dump.valid == 0) { 3103 printf("%s: firmware error log is empty\n", __func__); 3104 return; 3105 } 3106 printf("firmware error log:\n"); 3107 printf(" error type = \"%s\" (0x%08X)\n", 3108 (dump.id < nitems(iwn_fw_errmsg)) ? 3109 iwn_fw_errmsg[dump.id] : "UNKNOWN", 3110 dump.id); 3111 printf(" program counter = 0x%08X\n", dump.pc); 3112 printf(" source line = 0x%08X\n", dump.src_line); 3113 printf(" error data = 0x%08X%08X\n", 3114 dump.error_data[0], dump.error_data[1]); 3115 printf(" branch link = 0x%08X%08X\n", 3116 dump.branch_link[0], dump.branch_link[1]); 3117 printf(" interrupt link = 0x%08X%08X\n", 3118 dump.interrupt_link[0], dump.interrupt_link[1]); 3119 printf(" time = %u\n", dump.time[0]); 3120 3121 /* Dump driver status (TX and RX rings) while we're here. */ 3122 printf("driver status:\n"); 3123 for (i = 0; i < sc->ntxqs; i++) { 3124 struct iwn_tx_ring *ring = &sc->txq[i]; 3125 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 3126 i, ring->qid, ring->cur, ring->queued); 3127 } 3128 printf(" rx ring: cur=%d\n", sc->rxq.cur); 3129 } 3130 3131 static void 3132 iwn_intr(void *arg) 3133 { 3134 struct iwn_softc *sc = arg; 3135 struct ifnet *ifp = sc->sc_ifp; 3136 uint32_t r1, r2, tmp; 3137 3138 IWN_LOCK(sc); 3139 3140 /* Disable interrupts. */ 3141 IWN_WRITE(sc, IWN_INT_MASK, 0); 3142 3143 /* Read interrupts from ICT (fast) or from registers (slow). */ 3144 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3145 tmp = 0; 3146 while (sc->ict[sc->ict_cur] != 0) { 3147 tmp |= sc->ict[sc->ict_cur]; 3148 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 3149 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 3150 } 3151 tmp = le32toh(tmp); 3152 if (tmp == 0xffffffff) /* Shouldn't happen. */ 3153 tmp = 0; 3154 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 3155 tmp |= 0x8000; 3156 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 3157 r2 = 0; /* Unused. */ 3158 } else { 3159 r1 = IWN_READ(sc, IWN_INT); 3160 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 3161 return; /* Hardware gone! */ 3162 r2 = IWN_READ(sc, IWN_FH_INT); 3163 } 3164 3165 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2); 3166 3167 if (r1 == 0 && r2 == 0) 3168 goto done; /* Interrupt not for us. */ 3169 3170 /* Acknowledge interrupts. */ 3171 IWN_WRITE(sc, IWN_INT, r1); 3172 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 3173 IWN_WRITE(sc, IWN_FH_INT, r2); 3174 3175 if (r1 & IWN_INT_RF_TOGGLED) { 3176 iwn_rftoggle_intr(sc); 3177 goto done; 3178 } 3179 if (r1 & IWN_INT_CT_REACHED) { 3180 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 3181 __func__); 3182 } 3183 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 3184 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 3185 __func__); 3186 /* Dump firmware error log and stop. */ 3187 iwn_fatal_intr(sc); 3188 ifp->if_flags &= ~IFF_UP; 3189 iwn_stop_locked(sc); 3190 goto done; 3191 } 3192 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 3193 (r2 & IWN_FH_INT_RX)) { 3194 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3195 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 3196 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 3197 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3198 IWN_INT_PERIODIC_DIS); 3199 iwn_notif_intr(sc); 3200 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 3201 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3202 IWN_INT_PERIODIC_ENA); 3203 } 3204 } else 3205 iwn_notif_intr(sc); 3206 } 3207 3208 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 3209 if (sc->sc_flags & IWN_FLAG_USE_ICT) 3210 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 3211 wakeup(sc); /* FH DMA transfer completed. */ 3212 } 3213 3214 if (r1 & IWN_INT_ALIVE) 3215 wakeup(sc); /* Firmware is alive. */ 3216 3217 if (r1 & IWN_INT_WAKEUP) 3218 iwn_wakeup_intr(sc); 3219 3220 done: 3221 /* Re-enable interrupts. */ 3222 if (ifp->if_flags & IFF_UP) 3223 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3224 3225 IWN_UNLOCK(sc); 3226 } 3227 3228 /* 3229 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 3230 * 5000 adapters use a slightly different format). 3231 */ 3232 static void 3233 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3234 uint16_t len) 3235 { 3236 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 3237 3238 *w = htole16(len + 8); 3239 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3240 BUS_DMASYNC_PREWRITE); 3241 if (idx < IWN_SCHED_WINSZ) { 3242 *(w + IWN_TX_RING_COUNT) = *w; 3243 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3244 BUS_DMASYNC_PREWRITE); 3245 } 3246 } 3247 3248 static void 3249 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3250 uint16_t len) 3251 { 3252 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 3253 3254 *w = htole16(id << 12 | (len + 8)); 3255 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3256 BUS_DMASYNC_PREWRITE); 3257 if (idx < IWN_SCHED_WINSZ) { 3258 *(w + IWN_TX_RING_COUNT) = *w; 3259 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3260 BUS_DMASYNC_PREWRITE); 3261 } 3262 } 3263 3264 #ifdef notyet 3265 static void 3266 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 3267 { 3268 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 3269 3270 *w = (*w & htole16(0xf000)) | htole16(1); 3271 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3272 BUS_DMASYNC_PREWRITE); 3273 if (idx < IWN_SCHED_WINSZ) { 3274 *(w + IWN_TX_RING_COUNT) = *w; 3275 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3276 BUS_DMASYNC_PREWRITE); 3277 } 3278 } 3279 #endif 3280 3281 static int 3282 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 3283 { 3284 struct iwn_ops *ops = &sc->ops; 3285 const struct ieee80211_txparam *tp; 3286 struct ieee80211vap *vap = ni->ni_vap; 3287 struct ieee80211com *ic = ni->ni_ic; 3288 struct iwn_node *wn = (void *)ni; 3289 struct iwn_tx_ring *ring; 3290 struct iwn_tx_desc *desc; 3291 struct iwn_tx_data *data; 3292 struct iwn_tx_cmd *cmd; 3293 struct iwn_cmd_data *tx; 3294 struct ieee80211_frame *wh; 3295 struct ieee80211_key *k = NULL; 3296 struct mbuf *m1; 3297 uint32_t flags; 3298 uint16_t qos; 3299 u_int hdrlen; 3300 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 3301 uint8_t tid, ridx, txant, type; 3302 int ac, i, totlen, error, pad, nsegs = 0, rate; 3303 3304 IWN_LOCK_ASSERT(sc); 3305 3306 wh = mtod(m, struct ieee80211_frame *); 3307 hdrlen = ieee80211_anyhdrsize(wh); 3308 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3309 3310 /* Select EDCA Access Category and TX ring for this frame. */ 3311 if (IEEE80211_QOS_HAS_SEQ(wh)) { 3312 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 3313 tid = qos & IEEE80211_QOS_TID; 3314 } else { 3315 qos = 0; 3316 tid = 0; 3317 } 3318 ac = M_WME_GETAC(m); 3319 3320 if (IEEE80211_QOS_HAS_SEQ(wh) && 3321 IEEE80211_AMPDU_RUNNING(&ni->ni_tx_ampdu[ac])) { 3322 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 3323 3324 ring = &sc->txq[*(int *)tap->txa_private]; 3325 *(uint16_t *)wh->i_seq = 3326 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 3327 ni->ni_txseqs[tid]++; 3328 } else { 3329 ring = &sc->txq[ac]; 3330 } 3331 desc = &ring->desc[ring->cur]; 3332 data = &ring->data[ring->cur]; 3333 3334 /* Choose a TX rate index. */ 3335 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 3336 if (type == IEEE80211_FC0_TYPE_MGT) 3337 rate = tp->mgmtrate; 3338 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 3339 rate = tp->mcastrate; 3340 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 3341 rate = tp->ucastrate; 3342 else { 3343 /* XXX pass pktlen */ 3344 (void) ieee80211_ratectl_rate(ni, NULL, 0); 3345 rate = ni->ni_txrate; 3346 } 3347 ridx = ic->ic_rt->rateCodeToIndex[rate]; 3348 3349 /* Encrypt the frame if need be. */ 3350 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3351 /* Retrieve key for TX. */ 3352 k = ieee80211_crypto_encap(ni, m); 3353 if (k == NULL) { 3354 m_freem(m); 3355 return ENOBUFS; 3356 } 3357 /* 802.11 header may have moved. */ 3358 wh = mtod(m, struct ieee80211_frame *); 3359 } 3360 totlen = m->m_pkthdr.len; 3361 3362 if (ieee80211_radiotap_active_vap(vap)) { 3363 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3364 3365 tap->wt_flags = 0; 3366 tap->wt_rate = rate; 3367 if (k != NULL) 3368 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3369 3370 ieee80211_radiotap_tx(vap, m); 3371 } 3372 3373 /* Prepare TX firmware command. */ 3374 cmd = &ring->cmd[ring->cur]; 3375 cmd->code = IWN_CMD_TX_DATA; 3376 cmd->flags = 0; 3377 cmd->qid = ring->qid; 3378 cmd->idx = ring->cur; 3379 3380 tx = (struct iwn_cmd_data *)cmd->data; 3381 /* NB: No need to clear tx, all fields are reinitialized here. */ 3382 tx->scratch = 0; /* clear "scratch" area */ 3383 3384 flags = 0; 3385 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3386 /* Unicast frame, check if an ACK is expected. */ 3387 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 3388 IEEE80211_QOS_ACKPOLICY_NOACK) 3389 flags |= IWN_TX_NEED_ACK; 3390 } 3391 if ((wh->i_fc[0] & 3392 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3393 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3394 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3395 3396 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3397 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3398 3399 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3400 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3401 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3402 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 3403 flags |= IWN_TX_NEED_RTS; 3404 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3405 ridx >= IWN_RIDX_OFDM6) { 3406 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3407 flags |= IWN_TX_NEED_CTS; 3408 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3409 flags |= IWN_TX_NEED_RTS; 3410 } 3411 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3412 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3413 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3414 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3415 flags |= IWN_TX_NEED_PROTECTION; 3416 } else 3417 flags |= IWN_TX_FULL_TXOP; 3418 } 3419 } 3420 3421 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3422 type != IEEE80211_FC0_TYPE_DATA) 3423 tx->id = sc->broadcast_id; 3424 else 3425 tx->id = wn->id; 3426 3427 if (type == IEEE80211_FC0_TYPE_MGT) { 3428 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3429 3430 /* Tell HW to set timestamp in probe responses. */ 3431 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3432 flags |= IWN_TX_INSERT_TSTAMP; 3433 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3434 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3435 tx->timeout = htole16(3); 3436 else 3437 tx->timeout = htole16(2); 3438 } else 3439 tx->timeout = htole16(0); 3440 3441 if (hdrlen & 3) { 3442 /* First segment length must be a multiple of 4. */ 3443 flags |= IWN_TX_NEED_PADDING; 3444 pad = 4 - (hdrlen & 3); 3445 } else 3446 pad = 0; 3447 3448 tx->len = htole16(totlen); 3449 tx->tid = tid; 3450 tx->rts_ntries = 60; 3451 tx->data_ntries = 15; 3452 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3453 tx->rate = wn->ridx[rate]; 3454 if (tx->id == sc->broadcast_id) { 3455 /* Group or management frame. */ 3456 tx->linkq = 0; 3457 /* XXX Alternate between antenna A and B? */ 3458 txant = IWN_LSB(sc->txchainmask); 3459 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 3460 } else { 3461 tx->linkq = ni->ni_rates.rs_nrates - ridx - 1; 3462 flags |= IWN_TX_LINKQ; /* enable MRR */ 3463 } 3464 /* Set physical address of "scratch area". */ 3465 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3466 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3467 3468 /* Copy 802.11 header in TX command. */ 3469 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3470 3471 /* Trim 802.11 header. */ 3472 m_adj(m, hdrlen); 3473 tx->security = 0; 3474 tx->flags = htole32(flags); 3475 3476 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 3477 &nsegs, BUS_DMA_NOWAIT); 3478 if (error != 0) { 3479 if (error != EFBIG) { 3480 device_printf(sc->sc_dev, 3481 "%s: can't map mbuf (error %d)\n", __func__, error); 3482 m_freem(m); 3483 return error; 3484 } 3485 /* Too many DMA segments, linearize mbuf. */ 3486 m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); 3487 if (m1 == NULL) { 3488 device_printf(sc->sc_dev, 3489 "%s: could not defrag mbuf\n", __func__); 3490 m_freem(m); 3491 return ENOBUFS; 3492 } 3493 m = m1; 3494 3495 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3496 segs, &nsegs, BUS_DMA_NOWAIT); 3497 if (error != 0) { 3498 device_printf(sc->sc_dev, 3499 "%s: can't map mbuf (error %d)\n", __func__, error); 3500 m_freem(m); 3501 return error; 3502 } 3503 } 3504 3505 data->m = m; 3506 data->ni = ni; 3507 3508 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3509 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3510 3511 /* Fill TX descriptor. */ 3512 desc->nsegs = 1; 3513 if (m->m_len != 0) 3514 desc->nsegs += nsegs; 3515 /* First DMA segment is used by the TX command. */ 3516 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3517 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3518 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3519 /* Other DMA segments are for data payload. */ 3520 seg = &segs[0]; 3521 for (i = 1; i <= nsegs; i++) { 3522 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3523 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3524 seg->ds_len << 4); 3525 seg++; 3526 } 3527 3528 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 3529 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3530 BUS_DMASYNC_PREWRITE); 3531 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3532 BUS_DMASYNC_PREWRITE); 3533 3534 /* Update TX scheduler. */ 3535 if (ring->qid >= sc->firstaggqueue) 3536 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3537 3538 /* Kick TX ring. */ 3539 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3540 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3541 3542 /* Mark TX ring as full if we reach a certain threshold. */ 3543 if (++ring->queued > IWN_TX_RING_HIMARK) 3544 sc->qfullmsk |= 1 << ring->qid; 3545 3546 return 0; 3547 } 3548 3549 static int 3550 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 3551 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 3552 { 3553 struct iwn_ops *ops = &sc->ops; 3554 struct ifnet *ifp = sc->sc_ifp; 3555 struct ieee80211vap *vap = ni->ni_vap; 3556 struct ieee80211com *ic = ifp->if_l2com; 3557 struct iwn_tx_cmd *cmd; 3558 struct iwn_cmd_data *tx; 3559 struct ieee80211_frame *wh; 3560 struct iwn_tx_ring *ring; 3561 struct iwn_tx_desc *desc; 3562 struct iwn_tx_data *data; 3563 struct mbuf *m1; 3564 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 3565 uint32_t flags; 3566 u_int hdrlen; 3567 int ac, totlen, error, pad, nsegs = 0, i, rate; 3568 uint8_t ridx, type, txant; 3569 3570 IWN_LOCK_ASSERT(sc); 3571 3572 wh = mtod(m, struct ieee80211_frame *); 3573 hdrlen = ieee80211_anyhdrsize(wh); 3574 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3575 3576 ac = params->ibp_pri & 3; 3577 3578 ring = &sc->txq[ac]; 3579 desc = &ring->desc[ring->cur]; 3580 data = &ring->data[ring->cur]; 3581 3582 /* Choose a TX rate index. */ 3583 rate = params->ibp_rate0; 3584 ridx = ic->ic_rt->rateCodeToIndex[rate]; 3585 if (ridx == (uint8_t)-1) { 3586 /* XXX fall back to mcast/mgmt rate? */ 3587 m_freem(m); 3588 return EINVAL; 3589 } 3590 3591 totlen = m->m_pkthdr.len; 3592 3593 /* Prepare TX firmware command. */ 3594 cmd = &ring->cmd[ring->cur]; 3595 cmd->code = IWN_CMD_TX_DATA; 3596 cmd->flags = 0; 3597 cmd->qid = ring->qid; 3598 cmd->idx = ring->cur; 3599 3600 tx = (struct iwn_cmd_data *)cmd->data; 3601 /* NB: No need to clear tx, all fields are reinitialized here. */ 3602 tx->scratch = 0; /* clear "scratch" area */ 3603 3604 flags = 0; 3605 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 3606 flags |= IWN_TX_NEED_ACK; 3607 if (params->ibp_flags & IEEE80211_BPF_RTS) { 3608 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3609 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3610 flags &= ~IWN_TX_NEED_RTS; 3611 flags |= IWN_TX_NEED_PROTECTION; 3612 } else 3613 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 3614 } 3615 if (params->ibp_flags & IEEE80211_BPF_CTS) { 3616 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3617 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3618 flags &= ~IWN_TX_NEED_CTS; 3619 flags |= IWN_TX_NEED_PROTECTION; 3620 } else 3621 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 3622 } 3623 if (type == IEEE80211_FC0_TYPE_MGT) { 3624 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3625 3626 /* Tell HW to set timestamp in probe responses. */ 3627 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3628 flags |= IWN_TX_INSERT_TSTAMP; 3629 3630 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3631 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3632 tx->timeout = htole16(3); 3633 else 3634 tx->timeout = htole16(2); 3635 } else 3636 tx->timeout = htole16(0); 3637 3638 if (hdrlen & 3) { 3639 /* First segment length must be a multiple of 4. */ 3640 flags |= IWN_TX_NEED_PADDING; 3641 pad = 4 - (hdrlen & 3); 3642 } else 3643 pad = 0; 3644 3645 if (ieee80211_radiotap_active_vap(vap)) { 3646 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3647 3648 tap->wt_flags = 0; 3649 tap->wt_rate = rate; 3650 3651 ieee80211_radiotap_tx(vap, m); 3652 } 3653 3654 tx->len = htole16(totlen); 3655 tx->tid = 0; 3656 tx->id = sc->broadcast_id; 3657 tx->rts_ntries = params->ibp_try1; 3658 tx->data_ntries = params->ibp_try0; 3659 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3660 tx->rate = htole32(rate2plcp(rate)); 3661 if (ridx < IWN_RIDX_OFDM6 && 3662 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 3663 tx->rate |= htole32(IWN_RFLAG_CCK); 3664 /* Group or management frame. */ 3665 tx->linkq = 0; 3666 txant = IWN_LSB(sc->txchainmask); 3667 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 3668 /* Set physical address of "scratch area". */ 3669 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3670 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3671 3672 /* Copy 802.11 header in TX command. */ 3673 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3674 3675 /* Trim 802.11 header. */ 3676 m_adj(m, hdrlen); 3677 tx->security = 0; 3678 tx->flags = htole32(flags); 3679 3680 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 3681 &nsegs, BUS_DMA_NOWAIT); 3682 if (error != 0) { 3683 if (error != EFBIG) { 3684 device_printf(sc->sc_dev, 3685 "%s: can't map mbuf (error %d)\n", __func__, error); 3686 m_freem(m); 3687 return error; 3688 } 3689 /* Too many DMA segments, linearize mbuf. */ 3690 m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); 3691 if (m1 == NULL) { 3692 device_printf(sc->sc_dev, 3693 "%s: could not defrag mbuf\n", __func__); 3694 m_freem(m); 3695 return ENOBUFS; 3696 } 3697 m = m1; 3698 3699 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3700 segs, &nsegs, BUS_DMA_NOWAIT); 3701 if (error != 0) { 3702 device_printf(sc->sc_dev, 3703 "%s: can't map mbuf (error %d)\n", __func__, error); 3704 m_freem(m); 3705 return error; 3706 } 3707 } 3708 3709 data->m = m; 3710 data->ni = ni; 3711 3712 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3713 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3714 3715 /* Fill TX descriptor. */ 3716 desc->nsegs = 1; 3717 if (m->m_len != 0) 3718 desc->nsegs += nsegs; 3719 /* First DMA segment is used by the TX command. */ 3720 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3721 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3722 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3723 /* Other DMA segments are for data payload. */ 3724 seg = &segs[0]; 3725 for (i = 1; i <= nsegs; i++) { 3726 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3727 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3728 seg->ds_len << 4); 3729 seg++; 3730 } 3731 3732 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 3733 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3734 BUS_DMASYNC_PREWRITE); 3735 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3736 BUS_DMASYNC_PREWRITE); 3737 3738 /* Update TX scheduler. */ 3739 if (ring->qid >= sc->firstaggqueue) 3740 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3741 3742 /* Kick TX ring. */ 3743 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3744 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3745 3746 /* Mark TX ring as full if we reach a certain threshold. */ 3747 if (++ring->queued > IWN_TX_RING_HIMARK) 3748 sc->qfullmsk |= 1 << ring->qid; 3749 3750 return 0; 3751 } 3752 3753 static int 3754 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3755 const struct ieee80211_bpf_params *params) 3756 { 3757 struct ieee80211com *ic = ni->ni_ic; 3758 struct ifnet *ifp = ic->ic_ifp; 3759 struct iwn_softc *sc = ifp->if_softc; 3760 int error = 0; 3761 3762 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3763 ieee80211_free_node(ni); 3764 m_freem(m); 3765 return ENETDOWN; 3766 } 3767 3768 IWN_LOCK(sc); 3769 if (params == NULL) { 3770 /* 3771 * Legacy path; interpret frame contents to decide 3772 * precisely how to send the frame. 3773 */ 3774 error = iwn_tx_data(sc, m, ni); 3775 } else { 3776 /* 3777 * Caller supplied explicit parameters to use in 3778 * sending the frame. 3779 */ 3780 error = iwn_tx_data_raw(sc, m, ni, params); 3781 } 3782 if (error != 0) { 3783 /* NB: m is reclaimed on tx failure */ 3784 ieee80211_free_node(ni); 3785 ifp->if_oerrors++; 3786 } 3787 sc->sc_tx_timer = 5; 3788 3789 IWN_UNLOCK(sc); 3790 return error; 3791 } 3792 3793 static void 3794 iwn_start(struct ifnet *ifp) 3795 { 3796 struct iwn_softc *sc = ifp->if_softc; 3797 3798 IWN_LOCK(sc); 3799 iwn_start_locked(ifp); 3800 IWN_UNLOCK(sc); 3801 } 3802 3803 static void 3804 iwn_start_locked(struct ifnet *ifp) 3805 { 3806 struct iwn_softc *sc = ifp->if_softc; 3807 struct ieee80211_node *ni; 3808 struct mbuf *m; 3809 3810 IWN_LOCK_ASSERT(sc); 3811 3812 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 3813 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) 3814 return; 3815 3816 for (;;) { 3817 if (sc->qfullmsk != 0) { 3818 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3819 break; 3820 } 3821 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 3822 if (m == NULL) 3823 break; 3824 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3825 if (iwn_tx_data(sc, m, ni) != 0) { 3826 ieee80211_free_node(ni); 3827 ifp->if_oerrors++; 3828 continue; 3829 } 3830 sc->sc_tx_timer = 5; 3831 } 3832 } 3833 3834 static void 3835 iwn_watchdog(void *arg) 3836 { 3837 struct iwn_softc *sc = arg; 3838 struct ifnet *ifp = sc->sc_ifp; 3839 struct ieee80211com *ic = ifp->if_l2com; 3840 3841 IWN_LOCK_ASSERT(sc); 3842 3843 KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running")); 3844 3845 if (sc->sc_tx_timer > 0) { 3846 if (--sc->sc_tx_timer == 0) { 3847 if_printf(ifp, "device timeout\n"); 3848 ieee80211_runtask(ic, &sc->sc_reinit_task); 3849 return; 3850 } 3851 } 3852 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 3853 } 3854 3855 static int 3856 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 3857 { 3858 struct iwn_softc *sc = ifp->if_softc; 3859 struct ieee80211com *ic = ifp->if_l2com; 3860 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3861 struct ifreq *ifr = (struct ifreq *) data; 3862 int error = 0, startall = 0, stop = 0; 3863 3864 switch (cmd) { 3865 case SIOCGIFADDR: 3866 error = ether_ioctl(ifp, cmd, data); 3867 break; 3868 case SIOCSIFFLAGS: 3869 IWN_LOCK(sc); 3870 if (ifp->if_flags & IFF_UP) { 3871 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3872 iwn_init_locked(sc); 3873 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 3874 startall = 1; 3875 else 3876 stop = 1; 3877 } 3878 } else { 3879 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3880 iwn_stop_locked(sc); 3881 } 3882 IWN_UNLOCK(sc); 3883 if (startall) 3884 ieee80211_start_all(ic); 3885 else if (vap != NULL && stop) 3886 ieee80211_stop(vap); 3887 break; 3888 case SIOCGIFMEDIA: 3889 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 3890 break; 3891 default: 3892 error = EINVAL; 3893 break; 3894 } 3895 return error; 3896 } 3897 3898 /* 3899 * Send a command to the firmware. 3900 */ 3901 static int 3902 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3903 { 3904 struct iwn_tx_ring *ring = &sc->txq[4]; 3905 struct iwn_tx_desc *desc; 3906 struct iwn_tx_data *data; 3907 struct iwn_tx_cmd *cmd; 3908 struct mbuf *m; 3909 bus_addr_t paddr; 3910 int totlen, error; 3911 3912 if (async == 0) 3913 IWN_LOCK_ASSERT(sc); 3914 3915 desc = &ring->desc[ring->cur]; 3916 data = &ring->data[ring->cur]; 3917 totlen = 4 + size; 3918 3919 if (size > sizeof cmd->data) { 3920 /* Command is too large to fit in a descriptor. */ 3921 if (totlen > MCLBYTES) 3922 return EINVAL; 3923 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3924 if (m == NULL) 3925 return ENOMEM; 3926 cmd = mtod(m, struct iwn_tx_cmd *); 3927 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3928 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3929 if (error != 0) { 3930 m_freem(m); 3931 return error; 3932 } 3933 data->m = m; 3934 } else { 3935 cmd = &ring->cmd[ring->cur]; 3936 paddr = data->cmd_paddr; 3937 } 3938 3939 cmd->code = code; 3940 cmd->flags = 0; 3941 cmd->qid = ring->qid; 3942 cmd->idx = ring->cur; 3943 memcpy(cmd->data, buf, size); 3944 3945 desc->nsegs = 1; 3946 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3947 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3948 3949 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 3950 __func__, iwn_intr_str(cmd->code), cmd->code, 3951 cmd->flags, cmd->qid, cmd->idx); 3952 3953 if (size > sizeof cmd->data) { 3954 bus_dmamap_sync(ring->data_dmat, data->map, 3955 BUS_DMASYNC_PREWRITE); 3956 } else { 3957 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3958 BUS_DMASYNC_PREWRITE); 3959 } 3960 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3961 BUS_DMASYNC_PREWRITE); 3962 3963 /* Kick command ring. */ 3964 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3965 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3966 3967 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 3968 } 3969 3970 static int 3971 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3972 { 3973 struct iwn4965_node_info hnode; 3974 caddr_t src, dst; 3975 3976 /* 3977 * We use the node structure for 5000 Series internally (it is 3978 * a superset of the one for 4965AGN). We thus copy the common 3979 * fields before sending the command. 3980 */ 3981 src = (caddr_t)node; 3982 dst = (caddr_t)&hnode; 3983 memcpy(dst, src, 48); 3984 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3985 memcpy(dst + 48, src + 72, 20); 3986 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3987 } 3988 3989 static int 3990 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3991 { 3992 /* Direct mapping. */ 3993 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3994 } 3995 3996 static int 3997 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 3998 { 3999 #define RV(v) ((v) & IEEE80211_RATE_VAL) 4000 struct iwn_node *wn = (void *)ni; 4001 struct ieee80211_rateset *rs = &ni->ni_rates; 4002 struct iwn_cmd_link_quality linkq; 4003 uint8_t txant; 4004 int i, rate, txrate; 4005 4006 /* Use the first valid TX antenna. */ 4007 txant = IWN_LSB(sc->txchainmask); 4008 4009 memset(&linkq, 0, sizeof linkq); 4010 linkq.id = wn->id; 4011 linkq.antmsk_1stream = txant; 4012 linkq.antmsk_2stream = IWN_ANT_AB; 4013 linkq.ampdu_max = 64; 4014 linkq.ampdu_threshold = 3; 4015 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4016 4017 /* Start at highest available bit-rate. */ 4018 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) 4019 txrate = ni->ni_htrates.rs_nrates - 1; 4020 else 4021 txrate = rs->rs_nrates - 1; 4022 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 4023 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) 4024 rate = IEEE80211_RATE_MCS | txrate; 4025 else 4026 rate = RV(rs->rs_rates[txrate]); 4027 linkq.retry[i] = wn->ridx[rate]; 4028 4029 if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) && 4030 RV(le32toh(wn->ridx[rate])) > 7) 4031 linkq.mimo = i + 1; 4032 4033 /* Next retry at immediate lower bit-rate. */ 4034 if (txrate > 0) 4035 txrate--; 4036 } 4037 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 4038 #undef RV 4039 } 4040 4041 /* 4042 * Broadcast node is used to send group-addressed and management frames. 4043 */ 4044 static int 4045 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 4046 { 4047 struct iwn_ops *ops = &sc->ops; 4048 struct ifnet *ifp = sc->sc_ifp; 4049 struct ieee80211com *ic = ifp->if_l2com; 4050 struct iwn_node_info node; 4051 struct iwn_cmd_link_quality linkq; 4052 uint8_t txant; 4053 int i, error; 4054 4055 memset(&node, 0, sizeof node); 4056 IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr); 4057 node.id = sc->broadcast_id; 4058 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 4059 if ((error = ops->add_node(sc, &node, async)) != 0) 4060 return error; 4061 4062 /* Use the first valid TX antenna. */ 4063 txant = IWN_LSB(sc->txchainmask); 4064 4065 memset(&linkq, 0, sizeof linkq); 4066 linkq.id = sc->broadcast_id; 4067 linkq.antmsk_1stream = txant; 4068 linkq.antmsk_2stream = IWN_ANT_AB; 4069 linkq.ampdu_max = 64; 4070 linkq.ampdu_threshold = 3; 4071 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4072 4073 /* Use lowest mandatory bit-rate. */ 4074 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 4075 linkq.retry[0] = htole32(0xd); 4076 else 4077 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 4078 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 4079 /* Use same bit-rate for all TX retries. */ 4080 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 4081 linkq.retry[i] = linkq.retry[0]; 4082 } 4083 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 4084 } 4085 4086 static int 4087 iwn_updateedca(struct ieee80211com *ic) 4088 { 4089 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 4090 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4091 struct iwn_edca_params cmd; 4092 int aci; 4093 4094 memset(&cmd, 0, sizeof cmd); 4095 cmd.flags = htole32(IWN_EDCA_UPDATE); 4096 for (aci = 0; aci < WME_NUM_AC; aci++) { 4097 const struct wmeParams *ac = 4098 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 4099 cmd.ac[aci].aifsn = ac->wmep_aifsn; 4100 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 4101 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 4102 cmd.ac[aci].txoplimit = 4103 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 4104 } 4105 IEEE80211_UNLOCK(ic); 4106 IWN_LOCK(sc); 4107 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4108 IWN_UNLOCK(sc); 4109 IEEE80211_LOCK(ic); 4110 return 0; 4111 #undef IWN_EXP2 4112 } 4113 4114 static void 4115 iwn_update_mcast(struct ifnet *ifp) 4116 { 4117 /* Ignore */ 4118 } 4119 4120 static void 4121 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 4122 { 4123 struct iwn_cmd_led led; 4124 4125 /* Clear microcode LED ownership. */ 4126 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 4127 4128 led.which = which; 4129 led.unit = htole32(10000); /* on/off in unit of 100ms */ 4130 led.off = off; 4131 led.on = on; 4132 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 4133 } 4134 4135 /* 4136 * Set the critical temperature at which the firmware will stop the radio 4137 * and notify us. 4138 */ 4139 static int 4140 iwn_set_critical_temp(struct iwn_softc *sc) 4141 { 4142 struct iwn_critical_temp crit; 4143 int32_t temp; 4144 4145 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 4146 4147 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 4148 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 4149 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 4150 temp = IWN_CTOK(110); 4151 else 4152 temp = 110; 4153 memset(&crit, 0, sizeof crit); 4154 crit.tempR = htole32(temp); 4155 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 4156 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 4157 } 4158 4159 static int 4160 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 4161 { 4162 struct iwn_cmd_timing cmd; 4163 uint64_t val, mod; 4164 4165 memset(&cmd, 0, sizeof cmd); 4166 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 4167 cmd.bintval = htole16(ni->ni_intval); 4168 cmd.lintval = htole16(10); 4169 4170 /* Compute remaining time until next beacon. */ 4171 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 4172 mod = le64toh(cmd.tstamp) % val; 4173 cmd.binitval = htole32((uint32_t)(val - mod)); 4174 4175 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 4176 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 4177 4178 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 4179 } 4180 4181 static void 4182 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 4183 { 4184 struct ifnet *ifp = sc->sc_ifp; 4185 struct ieee80211com *ic = ifp->if_l2com; 4186 4187 /* Adjust TX power if need be (delta >= 3 degC). */ 4188 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 4189 __func__, sc->temp, temp); 4190 if (abs(temp - sc->temp) >= 3) { 4191 /* Record temperature of last calibration. */ 4192 sc->temp = temp; 4193 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 4194 } 4195 } 4196 4197 /* 4198 * Set TX power for current channel (each rate has its own power settings). 4199 * This function takes into account the regulatory information from EEPROM, 4200 * the current temperature and the current voltage. 4201 */ 4202 static int 4203 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 4204 int async) 4205 { 4206 /* Fixed-point arithmetic division using a n-bit fractional part. */ 4207 #define fdivround(a, b, n) \ 4208 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 4209 /* Linear interpolation. */ 4210 #define interpolate(x, x1, y1, x2, y2, n) \ 4211 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 4212 4213 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 4214 struct iwn_ucode_info *uc = &sc->ucode_info; 4215 struct iwn4965_cmd_txpower cmd; 4216 struct iwn4965_eeprom_chan_samples *chans; 4217 const uint8_t *rf_gain, *dsp_gain; 4218 int32_t vdiff, tdiff; 4219 int i, c, grp, maxpwr; 4220 uint8_t chan; 4221 4222 /* Retrieve current channel from last RXON. */ 4223 chan = sc->rxon.chan; 4224 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 4225 chan); 4226 4227 memset(&cmd, 0, sizeof cmd); 4228 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 4229 cmd.chan = chan; 4230 4231 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 4232 maxpwr = sc->maxpwr5GHz; 4233 rf_gain = iwn4965_rf_gain_5ghz; 4234 dsp_gain = iwn4965_dsp_gain_5ghz; 4235 } else { 4236 maxpwr = sc->maxpwr2GHz; 4237 rf_gain = iwn4965_rf_gain_2ghz; 4238 dsp_gain = iwn4965_dsp_gain_2ghz; 4239 } 4240 4241 /* Compute voltage compensation. */ 4242 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 4243 if (vdiff > 0) 4244 vdiff *= 2; 4245 if (abs(vdiff) > 2) 4246 vdiff = 0; 4247 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4248 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 4249 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 4250 4251 /* Get channel attenuation group. */ 4252 if (chan <= 20) /* 1-20 */ 4253 grp = 4; 4254 else if (chan <= 43) /* 34-43 */ 4255 grp = 0; 4256 else if (chan <= 70) /* 44-70 */ 4257 grp = 1; 4258 else if (chan <= 124) /* 71-124 */ 4259 grp = 2; 4260 else /* 125-200 */ 4261 grp = 3; 4262 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4263 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 4264 4265 /* Get channel sub-band. */ 4266 for (i = 0; i < IWN_NBANDS; i++) 4267 if (sc->bands[i].lo != 0 && 4268 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 4269 break; 4270 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 4271 return EINVAL; 4272 chans = sc->bands[i].chans; 4273 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4274 "%s: chan %d sub-band=%d\n", __func__, chan, i); 4275 4276 for (c = 0; c < 2; c++) { 4277 uint8_t power, gain, temp; 4278 int maxchpwr, pwr, ridx, idx; 4279 4280 power = interpolate(chan, 4281 chans[0].num, chans[0].samples[c][1].power, 4282 chans[1].num, chans[1].samples[c][1].power, 1); 4283 gain = interpolate(chan, 4284 chans[0].num, chans[0].samples[c][1].gain, 4285 chans[1].num, chans[1].samples[c][1].gain, 1); 4286 temp = interpolate(chan, 4287 chans[0].num, chans[0].samples[c][1].temp, 4288 chans[1].num, chans[1].samples[c][1].temp, 1); 4289 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4290 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 4291 __func__, c, power, gain, temp); 4292 4293 /* Compute temperature compensation. */ 4294 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 4295 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4296 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 4297 __func__, tdiff, sc->temp, temp); 4298 4299 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 4300 /* Convert dBm to half-dBm. */ 4301 maxchpwr = sc->maxpwr[chan] * 2; 4302 if ((ridx / 8) & 1) 4303 maxchpwr -= 6; /* MIMO 2T: -3dB */ 4304 4305 pwr = maxpwr; 4306 4307 /* Adjust TX power based on rate. */ 4308 if ((ridx % 8) == 5) 4309 pwr -= 15; /* OFDM48: -7.5dB */ 4310 else if ((ridx % 8) == 6) 4311 pwr -= 17; /* OFDM54: -8.5dB */ 4312 else if ((ridx % 8) == 7) 4313 pwr -= 20; /* OFDM60: -10dB */ 4314 else 4315 pwr -= 10; /* Others: -5dB */ 4316 4317 /* Do not exceed channel max TX power. */ 4318 if (pwr > maxchpwr) 4319 pwr = maxchpwr; 4320 4321 idx = gain - (pwr - power) - tdiff - vdiff; 4322 if ((ridx / 8) & 1) /* MIMO */ 4323 idx += (int32_t)le32toh(uc->atten[grp][c]); 4324 4325 if (cmd.band == 0) 4326 idx += 9; /* 5GHz */ 4327 if (ridx == IWN_RIDX_MAX) 4328 idx += 5; /* CCK */ 4329 4330 /* Make sure idx stays in a valid range. */ 4331 if (idx < 0) 4332 idx = 0; 4333 else if (idx > IWN4965_MAX_PWR_INDEX) 4334 idx = IWN4965_MAX_PWR_INDEX; 4335 4336 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4337 "%s: Tx chain %d, rate idx %d: power=%d\n", 4338 __func__, c, ridx, idx); 4339 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 4340 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 4341 } 4342 } 4343 4344 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4345 "%s: set tx power for chan %d\n", __func__, chan); 4346 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 4347 4348 #undef interpolate 4349 #undef fdivround 4350 } 4351 4352 static int 4353 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 4354 int async) 4355 { 4356 struct iwn5000_cmd_txpower cmd; 4357 4358 /* 4359 * TX power calibration is handled automatically by the firmware 4360 * for 5000 Series. 4361 */ 4362 memset(&cmd, 0, sizeof cmd); 4363 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 4364 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 4365 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 4366 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__); 4367 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 4368 } 4369 4370 /* 4371 * Retrieve the maximum RSSI (in dBm) among receivers. 4372 */ 4373 static int 4374 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 4375 { 4376 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 4377 uint8_t mask, agc; 4378 int rssi; 4379 4380 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 4381 agc = (le16toh(phy->agc) >> 7) & 0x7f; 4382 4383 rssi = 0; 4384 if (mask & IWN_ANT_A) 4385 rssi = MAX(rssi, phy->rssi[0]); 4386 if (mask & IWN_ANT_B) 4387 rssi = MAX(rssi, phy->rssi[2]); 4388 if (mask & IWN_ANT_C) 4389 rssi = MAX(rssi, phy->rssi[4]); 4390 4391 DPRINTF(sc, IWN_DEBUG_RECV, 4392 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 4393 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 4394 rssi - agc - IWN_RSSI_TO_DBM); 4395 return rssi - agc - IWN_RSSI_TO_DBM; 4396 } 4397 4398 static int 4399 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 4400 { 4401 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 4402 uint8_t agc; 4403 int rssi; 4404 4405 agc = (le32toh(phy->agc) >> 9) & 0x7f; 4406 4407 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 4408 le16toh(phy->rssi[1]) & 0xff); 4409 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 4410 4411 DPRINTF(sc, IWN_DEBUG_RECV, 4412 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 4413 phy->rssi[0], phy->rssi[1], phy->rssi[2], 4414 rssi - agc - IWN_RSSI_TO_DBM); 4415 return rssi - agc - IWN_RSSI_TO_DBM; 4416 } 4417 4418 /* 4419 * Retrieve the average noise (in dBm) among receivers. 4420 */ 4421 static int 4422 iwn_get_noise(const struct iwn_rx_general_stats *stats) 4423 { 4424 int i, total, nbant, noise; 4425 4426 total = nbant = 0; 4427 for (i = 0; i < 3; i++) { 4428 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 4429 continue; 4430 total += noise; 4431 nbant++; 4432 } 4433 /* There should be at least one antenna but check anyway. */ 4434 return (nbant == 0) ? -127 : (total / nbant) - 107; 4435 } 4436 4437 /* 4438 * Compute temperature (in degC) from last received statistics. 4439 */ 4440 static int 4441 iwn4965_get_temperature(struct iwn_softc *sc) 4442 { 4443 struct iwn_ucode_info *uc = &sc->ucode_info; 4444 int32_t r1, r2, r3, r4, temp; 4445 4446 r1 = le32toh(uc->temp[0].chan20MHz); 4447 r2 = le32toh(uc->temp[1].chan20MHz); 4448 r3 = le32toh(uc->temp[2].chan20MHz); 4449 r4 = le32toh(sc->rawtemp); 4450 4451 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 4452 return 0; 4453 4454 /* Sign-extend 23-bit R4 value to 32-bit. */ 4455 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 4456 /* Compute temperature in Kelvin. */ 4457 temp = (259 * (r4 - r2)) / (r3 - r1); 4458 temp = (temp * 97) / 100 + 8; 4459 4460 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 4461 IWN_KTOC(temp)); 4462 return IWN_KTOC(temp); 4463 } 4464 4465 static int 4466 iwn5000_get_temperature(struct iwn_softc *sc) 4467 { 4468 int32_t temp; 4469 4470 /* 4471 * Temperature is not used by the driver for 5000 Series because 4472 * TX power calibration is handled by firmware. 4473 */ 4474 temp = le32toh(sc->rawtemp); 4475 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 4476 temp = (temp / -5) + sc->temp_off; 4477 temp = IWN_KTOC(temp); 4478 } 4479 return temp; 4480 } 4481 4482 /* 4483 * Initialize sensitivity calibration state machine. 4484 */ 4485 static int 4486 iwn_init_sensitivity(struct iwn_softc *sc) 4487 { 4488 struct iwn_ops *ops = &sc->ops; 4489 struct iwn_calib_state *calib = &sc->calib; 4490 uint32_t flags; 4491 int error; 4492 4493 /* Reset calibration state machine. */ 4494 memset(calib, 0, sizeof (*calib)); 4495 calib->state = IWN_CALIB_STATE_INIT; 4496 calib->cck_state = IWN_CCK_STATE_HIFA; 4497 /* Set initial correlation values. */ 4498 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 4499 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 4500 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 4501 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 4502 calib->cck_x4 = 125; 4503 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 4504 calib->energy_cck = sc->limits->energy_cck; 4505 4506 /* Write initial sensitivity. */ 4507 if ((error = iwn_send_sensitivity(sc)) != 0) 4508 return error; 4509 4510 /* Write initial gains. */ 4511 if ((error = ops->init_gains(sc)) != 0) 4512 return error; 4513 4514 /* Request statistics at each beacon interval. */ 4515 flags = 0; 4516 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 4517 __func__); 4518 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4519 } 4520 4521 /* 4522 * Collect noise and RSSI statistics for the first 20 beacons received 4523 * after association and use them to determine connected antennas and 4524 * to set differential gains. 4525 */ 4526 static void 4527 iwn_collect_noise(struct iwn_softc *sc, 4528 const struct iwn_rx_general_stats *stats) 4529 { 4530 struct iwn_ops *ops = &sc->ops; 4531 struct iwn_calib_state *calib = &sc->calib; 4532 uint32_t val; 4533 int i; 4534 4535 /* Accumulate RSSI and noise for all 3 antennas. */ 4536 for (i = 0; i < 3; i++) { 4537 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4538 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4539 } 4540 /* NB: We update differential gains only once after 20 beacons. */ 4541 if (++calib->nbeacons < 20) 4542 return; 4543 4544 /* Determine highest average RSSI. */ 4545 val = MAX(calib->rssi[0], calib->rssi[1]); 4546 val = MAX(calib->rssi[2], val); 4547 4548 /* Determine which antennas are connected. */ 4549 sc->chainmask = sc->rxchainmask; 4550 for (i = 0; i < 3; i++) 4551 if (val - calib->rssi[i] > 15 * 20) 4552 sc->chainmask &= ~(1 << i); 4553 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4554 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 4555 __func__, sc->rxchainmask, sc->chainmask); 4556 4557 /* If none of the TX antennas are connected, keep at least one. */ 4558 if ((sc->chainmask & sc->txchainmask) == 0) 4559 sc->chainmask |= IWN_LSB(sc->txchainmask); 4560 4561 (void)ops->set_gains(sc); 4562 calib->state = IWN_CALIB_STATE_RUN; 4563 4564 #ifdef notyet 4565 /* XXX Disable RX chains with no antennas connected. */ 4566 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4567 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 4568 #endif 4569 4570 #if 0 4571 /* XXX: not yet */ 4572 /* Enable power-saving mode if requested by user. */ 4573 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4574 (void)iwn_set_pslevel(sc, 0, 3, 1); 4575 #endif 4576 } 4577 4578 static int 4579 iwn4965_init_gains(struct iwn_softc *sc) 4580 { 4581 struct iwn_phy_calib_gain cmd; 4582 4583 memset(&cmd, 0, sizeof cmd); 4584 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4585 /* Differential gains initially set to 0 for all 3 antennas. */ 4586 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4587 "%s: setting initial differential gains\n", __func__); 4588 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4589 } 4590 4591 static int 4592 iwn5000_init_gains(struct iwn_softc *sc) 4593 { 4594 struct iwn_phy_calib cmd; 4595 4596 memset(&cmd, 0, sizeof cmd); 4597 cmd.code = sc->reset_noise_gain; 4598 cmd.ngroups = 1; 4599 cmd.isvalid = 1; 4600 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4601 "%s: setting initial differential gains\n", __func__); 4602 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4603 } 4604 4605 static int 4606 iwn4965_set_gains(struct iwn_softc *sc) 4607 { 4608 struct iwn_calib_state *calib = &sc->calib; 4609 struct iwn_phy_calib_gain cmd; 4610 int i, delta, noise; 4611 4612 /* Get minimal noise among connected antennas. */ 4613 noise = INT_MAX; /* NB: There's at least one antenna. */ 4614 for (i = 0; i < 3; i++) 4615 if (sc->chainmask & (1 << i)) 4616 noise = MIN(calib->noise[i], noise); 4617 4618 memset(&cmd, 0, sizeof cmd); 4619 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4620 /* Set differential gains for connected antennas. */ 4621 for (i = 0; i < 3; i++) { 4622 if (sc->chainmask & (1 << i)) { 4623 /* Compute attenuation (in unit of 1.5dB). */ 4624 delta = (noise - (int32_t)calib->noise[i]) / 30; 4625 /* NB: delta <= 0 */ 4626 /* Limit to [-4.5dB,0]. */ 4627 cmd.gain[i] = MIN(abs(delta), 3); 4628 if (delta < 0) 4629 cmd.gain[i] |= 1 << 2; /* sign bit */ 4630 } 4631 } 4632 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4633 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4634 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 4635 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4636 } 4637 4638 static int 4639 iwn5000_set_gains(struct iwn_softc *sc) 4640 { 4641 struct iwn_calib_state *calib = &sc->calib; 4642 struct iwn_phy_calib_gain cmd; 4643 int i, ant, div, delta; 4644 4645 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4646 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4647 4648 memset(&cmd, 0, sizeof cmd); 4649 cmd.code = sc->noise_gain; 4650 cmd.ngroups = 1; 4651 cmd.isvalid = 1; 4652 /* Get first available RX antenna as referential. */ 4653 ant = IWN_LSB(sc->rxchainmask); 4654 /* Set differential gains for other antennas. */ 4655 for (i = ant + 1; i < 3; i++) { 4656 if (sc->chainmask & (1 << i)) { 4657 /* The delta is relative to antenna "ant". */ 4658 delta = ((int32_t)calib->noise[ant] - 4659 (int32_t)calib->noise[i]) / div; 4660 /* Limit to [-4.5dB,+4.5dB]. */ 4661 cmd.gain[i - 1] = MIN(abs(delta), 3); 4662 if (delta < 0) 4663 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4664 } 4665 } 4666 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4667 "setting differential gains Ant B/C: %x/%x (%x)\n", 4668 cmd.gain[0], cmd.gain[1], sc->chainmask); 4669 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4670 } 4671 4672 /* 4673 * Tune RF RX sensitivity based on the number of false alarms detected 4674 * during the last beacon period. 4675 */ 4676 static void 4677 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4678 { 4679 #define inc(val, inc, max) \ 4680 if ((val) < (max)) { \ 4681 if ((val) < (max) - (inc)) \ 4682 (val) += (inc); \ 4683 else \ 4684 (val) = (max); \ 4685 needs_update = 1; \ 4686 } 4687 #define dec(val, dec, min) \ 4688 if ((val) > (min)) { \ 4689 if ((val) > (min) + (dec)) \ 4690 (val) -= (dec); \ 4691 else \ 4692 (val) = (min); \ 4693 needs_update = 1; \ 4694 } 4695 4696 const struct iwn_sensitivity_limits *limits = sc->limits; 4697 struct iwn_calib_state *calib = &sc->calib; 4698 uint32_t val, rxena, fa; 4699 uint32_t energy[3], energy_min; 4700 uint8_t noise[3], noise_ref; 4701 int i, needs_update = 0; 4702 4703 /* Check that we've been enabled long enough. */ 4704 if ((rxena = le32toh(stats->general.load)) == 0) 4705 return; 4706 4707 /* Compute number of false alarms since last call for OFDM. */ 4708 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4709 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 4710 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 4711 4712 /* Save counters values for next call. */ 4713 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 4714 calib->fa_ofdm = le32toh(stats->ofdm.fa); 4715 4716 if (fa > 50 * rxena) { 4717 /* High false alarm count, decrease sensitivity. */ 4718 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4719 "%s: OFDM high false alarm count: %u\n", __func__, fa); 4720 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4721 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4722 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4723 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4724 4725 } else if (fa < 5 * rxena) { 4726 /* Low false alarm count, increase sensitivity. */ 4727 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4728 "%s: OFDM low false alarm count: %u\n", __func__, fa); 4729 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4730 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4731 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4732 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4733 } 4734 4735 /* Compute maximum noise among 3 receivers. */ 4736 for (i = 0; i < 3; i++) 4737 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4738 val = MAX(noise[0], noise[1]); 4739 val = MAX(noise[2], val); 4740 /* Insert it into our samples table. */ 4741 calib->noise_samples[calib->cur_noise_sample] = val; 4742 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4743 4744 /* Compute maximum noise among last 20 samples. */ 4745 noise_ref = calib->noise_samples[0]; 4746 for (i = 1; i < 20; i++) 4747 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4748 4749 /* Compute maximum energy among 3 receivers. */ 4750 for (i = 0; i < 3; i++) 4751 energy[i] = le32toh(stats->general.energy[i]); 4752 val = MIN(energy[0], energy[1]); 4753 val = MIN(energy[2], val); 4754 /* Insert it into our samples table. */ 4755 calib->energy_samples[calib->cur_energy_sample] = val; 4756 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4757 4758 /* Compute minimum energy among last 10 samples. */ 4759 energy_min = calib->energy_samples[0]; 4760 for (i = 1; i < 10; i++) 4761 energy_min = MAX(energy_min, calib->energy_samples[i]); 4762 energy_min += 6; 4763 4764 /* Compute number of false alarms since last call for CCK. */ 4765 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4766 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4767 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 4768 4769 /* Save counters values for next call. */ 4770 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4771 calib->fa_cck = le32toh(stats->cck.fa); 4772 4773 if (fa > 50 * rxena) { 4774 /* High false alarm count, decrease sensitivity. */ 4775 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4776 "%s: CCK high false alarm count: %u\n", __func__, fa); 4777 calib->cck_state = IWN_CCK_STATE_HIFA; 4778 calib->low_fa = 0; 4779 4780 if (calib->cck_x4 > 160) { 4781 calib->noise_ref = noise_ref; 4782 if (calib->energy_cck > 2) 4783 dec(calib->energy_cck, 2, energy_min); 4784 } 4785 if (calib->cck_x4 < 160) { 4786 calib->cck_x4 = 161; 4787 needs_update = 1; 4788 } else 4789 inc(calib->cck_x4, 3, limits->max_cck_x4); 4790 4791 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4792 4793 } else if (fa < 5 * rxena) { 4794 /* Low false alarm count, increase sensitivity. */ 4795 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4796 "%s: CCK low false alarm count: %u\n", __func__, fa); 4797 calib->cck_state = IWN_CCK_STATE_LOFA; 4798 calib->low_fa++; 4799 4800 if (calib->cck_state != IWN_CCK_STATE_INIT && 4801 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4802 calib->low_fa > 100)) { 4803 inc(calib->energy_cck, 2, limits->min_energy_cck); 4804 dec(calib->cck_x4, 3, limits->min_cck_x4); 4805 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4806 } 4807 } else { 4808 /* Not worth to increase or decrease sensitivity. */ 4809 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4810 "%s: CCK normal false alarm count: %u\n", __func__, fa); 4811 calib->low_fa = 0; 4812 calib->noise_ref = noise_ref; 4813 4814 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4815 /* Previous interval had many false alarms. */ 4816 dec(calib->energy_cck, 8, energy_min); 4817 } 4818 calib->cck_state = IWN_CCK_STATE_INIT; 4819 } 4820 4821 if (needs_update) 4822 (void)iwn_send_sensitivity(sc); 4823 #undef dec 4824 #undef inc 4825 } 4826 4827 static int 4828 iwn_send_sensitivity(struct iwn_softc *sc) 4829 { 4830 struct iwn_calib_state *calib = &sc->calib; 4831 struct iwn_enhanced_sensitivity_cmd cmd; 4832 int len; 4833 4834 memset(&cmd, 0, sizeof cmd); 4835 len = sizeof (struct iwn_sensitivity_cmd); 4836 cmd.which = IWN_SENSITIVITY_WORKTBL; 4837 /* OFDM modulation. */ 4838 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4839 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4840 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4841 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4842 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4843 cmd.energy_ofdm_th = htole16(62); 4844 /* CCK modulation. */ 4845 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4846 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4847 cmd.energy_cck = htole16(calib->energy_cck); 4848 /* Barker modulation: use default values. */ 4849 cmd.corr_barker = htole16(190); 4850 cmd.corr_barker_mrc = htole16(390); 4851 4852 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4853 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 4854 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4855 calib->ofdm_mrc_x4, calib->cck_x4, 4856 calib->cck_mrc_x4, calib->energy_cck); 4857 4858 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 4859 goto send; 4860 /* Enhanced sensitivity settings. */ 4861 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 4862 cmd.ofdm_det_slope_mrc = htole16(668); 4863 cmd.ofdm_det_icept_mrc = htole16(4); 4864 cmd.ofdm_det_slope = htole16(486); 4865 cmd.ofdm_det_icept = htole16(37); 4866 cmd.cck_det_slope_mrc = htole16(853); 4867 cmd.cck_det_icept_mrc = htole16(4); 4868 cmd.cck_det_slope = htole16(476); 4869 cmd.cck_det_icept = htole16(99); 4870 send: 4871 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 4872 } 4873 4874 /* 4875 * Set STA mode power saving level (between 0 and 5). 4876 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4877 */ 4878 static int 4879 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4880 { 4881 struct iwn_pmgt_cmd cmd; 4882 const struct iwn_pmgt *pmgt; 4883 uint32_t max, skip_dtim; 4884 uint32_t reg; 4885 int i; 4886 4887 /* Select which PS parameters to use. */ 4888 if (dtim <= 2) 4889 pmgt = &iwn_pmgt[0][level]; 4890 else if (dtim <= 10) 4891 pmgt = &iwn_pmgt[1][level]; 4892 else 4893 pmgt = &iwn_pmgt[2][level]; 4894 4895 memset(&cmd, 0, sizeof cmd); 4896 if (level != 0) /* not CAM */ 4897 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4898 if (level == 5) 4899 cmd.flags |= htole16(IWN_PS_FAST_PD); 4900 /* Retrieve PCIe Active State Power Management (ASPM). */ 4901 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 4902 if (!(reg & 0x1)) /* L0s Entry disabled. */ 4903 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4904 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4905 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4906 4907 if (dtim == 0) { 4908 dtim = 1; 4909 skip_dtim = 0; 4910 } else 4911 skip_dtim = pmgt->skip_dtim; 4912 if (skip_dtim != 0) { 4913 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4914 max = pmgt->intval[4]; 4915 if (max == (uint32_t)-1) 4916 max = dtim * (skip_dtim + 1); 4917 else if (max > dtim) 4918 max = (max / dtim) * dtim; 4919 } else 4920 max = dtim; 4921 for (i = 0; i < 5; i++) 4922 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 4923 4924 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 4925 level); 4926 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4927 } 4928 4929 static int 4930 iwn_send_btcoex(struct iwn_softc *sc) 4931 { 4932 struct iwn_bluetooth cmd; 4933 4934 memset(&cmd, 0, sizeof cmd); 4935 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4936 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 4937 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 4938 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 4939 __func__); 4940 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 4941 } 4942 4943 static int 4944 iwn_send_advanced_btcoex(struct iwn_softc *sc) 4945 { 4946 static const uint32_t btcoex_3wire[12] = { 4947 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 4948 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 4949 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 4950 }; 4951 struct iwn6000_btcoex_config btconfig; 4952 struct iwn_btcoex_priotable btprio; 4953 struct iwn_btcoex_prot btprot; 4954 int error, i; 4955 4956 memset(&btconfig, 0, sizeof btconfig); 4957 btconfig.flags = 145; 4958 btconfig.max_kill = 5; 4959 btconfig.bt3_t7_timer = 1; 4960 btconfig.kill_ack = htole32(0xffff0000); 4961 btconfig.kill_cts = htole32(0xffff0000); 4962 btconfig.sample_time = 2; 4963 btconfig.bt3_t2_timer = 0xc; 4964 for (i = 0; i < 12; i++) 4965 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 4966 btconfig.valid = htole16(0xff); 4967 btconfig.prio_boost = 0xf0; 4968 DPRINTF(sc, IWN_DEBUG_RESET, 4969 "%s: configuring advanced bluetooth coexistence\n", __func__); 4970 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1); 4971 if (error != 0) 4972 return error; 4973 4974 memset(&btprio, 0, sizeof btprio); 4975 btprio.calib_init1 = 0x6; 4976 btprio.calib_init2 = 0x7; 4977 btprio.calib_periodic_low1 = 0x2; 4978 btprio.calib_periodic_low2 = 0x3; 4979 btprio.calib_periodic_high1 = 0x4; 4980 btprio.calib_periodic_high2 = 0x5; 4981 btprio.dtim = 0x6; 4982 btprio.scan52 = 0x8; 4983 btprio.scan24 = 0xa; 4984 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 4985 1); 4986 if (error != 0) 4987 return error; 4988 4989 /* Force BT state machine change. */ 4990 memset(&btprot, 0, sizeof btprio); 4991 btprot.open = 1; 4992 btprot.type = 1; 4993 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 4994 if (error != 0) 4995 return error; 4996 btprot.open = 0; 4997 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 4998 } 4999 5000 static int 5001 iwn5000_runtime_calib(struct iwn_softc *sc) 5002 { 5003 struct iwn5000_calib_config cmd; 5004 5005 memset(&cmd, 0, sizeof cmd); 5006 cmd.ucode.once.enable = 0xffffffff; 5007 cmd.ucode.once.start = IWN5000_CALIB_DC; 5008 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5009 "%s: configuring runtime calibration\n", __func__); 5010 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 5011 } 5012 5013 static int 5014 iwn_config(struct iwn_softc *sc) 5015 { 5016 struct iwn_ops *ops = &sc->ops; 5017 struct ifnet *ifp = sc->sc_ifp; 5018 struct ieee80211com *ic = ifp->if_l2com; 5019 uint32_t txmask; 5020 uint16_t rxchain; 5021 int error; 5022 5023 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 5024 /* Set radio temperature sensor offset. */ 5025 error = iwn5000_temp_offset_calib(sc); 5026 if (error != 0) { 5027 device_printf(sc->sc_dev, 5028 "%s: could not set temperature offset\n", __func__); 5029 return error; 5030 } 5031 } 5032 5033 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5034 /* Configure runtime DC calibration. */ 5035 error = iwn5000_runtime_calib(sc); 5036 if (error != 0) { 5037 device_printf(sc->sc_dev, 5038 "%s: could not configure runtime calibration\n", 5039 __func__); 5040 return error; 5041 } 5042 } 5043 5044 /* Configure valid TX chains for >=5000 Series. */ 5045 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 5046 txmask = htole32(sc->txchainmask); 5047 DPRINTF(sc, IWN_DEBUG_RESET, 5048 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 5049 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 5050 sizeof txmask, 0); 5051 if (error != 0) { 5052 device_printf(sc->sc_dev, 5053 "%s: could not configure valid TX chains, " 5054 "error %d\n", __func__, error); 5055 return error; 5056 } 5057 } 5058 5059 /* Configure bluetooth coexistence. */ 5060 if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX) 5061 error = iwn_send_advanced_btcoex(sc); 5062 else 5063 error = iwn_send_btcoex(sc); 5064 if (error != 0) { 5065 device_printf(sc->sc_dev, 5066 "%s: could not configure bluetooth coexistence, error %d\n", 5067 __func__, error); 5068 return error; 5069 } 5070 5071 /* Set mode, channel, RX filter and enable RX. */ 5072 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 5073 IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp)); 5074 IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp)); 5075 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 5076 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5077 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 5078 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5079 switch (ic->ic_opmode) { 5080 case IEEE80211_M_STA: 5081 sc->rxon.mode = IWN_MODE_STA; 5082 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 5083 break; 5084 case IEEE80211_M_MONITOR: 5085 sc->rxon.mode = IWN_MODE_MONITOR; 5086 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 5087 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 5088 break; 5089 default: 5090 /* Should not get there. */ 5091 break; 5092 } 5093 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 5094 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 5095 sc->rxon.ht_single_mask = 0xff; 5096 sc->rxon.ht_dual_mask = 0xff; 5097 sc->rxon.ht_triple_mask = 0xff; 5098 rxchain = 5099 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5100 IWN_RXCHAIN_MIMO_COUNT(2) | 5101 IWN_RXCHAIN_IDLE_COUNT(2); 5102 sc->rxon.rxchain = htole16(rxchain); 5103 DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__); 5104 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0); 5105 if (error != 0) { 5106 device_printf(sc->sc_dev, "%s: RXON command failed\n", 5107 __func__); 5108 return error; 5109 } 5110 5111 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 5112 device_printf(sc->sc_dev, "%s: could not add broadcast node\n", 5113 __func__); 5114 return error; 5115 } 5116 5117 /* Configuration has changed, set TX power accordingly. */ 5118 if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { 5119 device_printf(sc->sc_dev, "%s: could not set TX power\n", 5120 __func__); 5121 return error; 5122 } 5123 5124 if ((error = iwn_set_critical_temp(sc)) != 0) { 5125 device_printf(sc->sc_dev, 5126 "%s: could not set critical temperature\n", __func__); 5127 return error; 5128 } 5129 5130 /* Set power saving level to CAM during initialization. */ 5131 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 5132 device_printf(sc->sc_dev, 5133 "%s: could not set power saving level\n", __func__); 5134 return error; 5135 } 5136 return 0; 5137 } 5138 5139 /* 5140 * Add an ssid element to a frame. 5141 */ 5142 static uint8_t * 5143 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 5144 { 5145 *frm++ = IEEE80211_ELEMID_SSID; 5146 *frm++ = len; 5147 memcpy(frm, ssid, len); 5148 return frm + len; 5149 } 5150 5151 static int 5152 iwn_scan(struct iwn_softc *sc) 5153 { 5154 struct ifnet *ifp = sc->sc_ifp; 5155 struct ieee80211com *ic = ifp->if_l2com; 5156 struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/ 5157 struct ieee80211_node *ni = ss->ss_vap->iv_bss; 5158 struct iwn_scan_hdr *hdr; 5159 struct iwn_cmd_data *tx; 5160 struct iwn_scan_essid *essid; 5161 struct iwn_scan_chan *chan; 5162 struct ieee80211_frame *wh; 5163 struct ieee80211_rateset *rs; 5164 struct ieee80211_channel *c; 5165 uint8_t *buf, *frm; 5166 uint16_t rxchain; 5167 uint8_t txant; 5168 int buflen, error; 5169 5170 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 5171 if (buf == NULL) { 5172 device_printf(sc->sc_dev, 5173 "%s: could not allocate buffer for scan command\n", 5174 __func__); 5175 return ENOMEM; 5176 } 5177 hdr = (struct iwn_scan_hdr *)buf; 5178 /* 5179 * Move to the next channel if no frames are received within 10ms 5180 * after sending the probe request. 5181 */ 5182 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 5183 hdr->quiet_threshold = htole16(1); /* min # of packets */ 5184 5185 /* Select antennas for scanning. */ 5186 rxchain = 5187 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5188 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 5189 IWN_RXCHAIN_DRIVER_FORCE; 5190 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) && 5191 sc->hw_type == IWN_HW_REV_TYPE_4965) { 5192 /* Ant A must be avoided in 5GHz because of an HW bug. */ 5193 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 5194 } else /* Use all available RX antennas. */ 5195 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 5196 hdr->rxchain = htole16(rxchain); 5197 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 5198 5199 tx = (struct iwn_cmd_data *)(hdr + 1); 5200 tx->flags = htole32(IWN_TX_AUTO_SEQ); 5201 tx->id = sc->broadcast_id; 5202 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 5203 5204 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 5205 /* Send probe requests at 6Mbps. */ 5206 tx->rate = htole32(0xd); 5207 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 5208 } else { 5209 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 5210 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 5211 sc->rxon.associd && sc->rxon.chan > 14) 5212 tx->rate = htole32(0xd); 5213 else { 5214 /* Send probe requests at 1Mbps. */ 5215 tx->rate = htole32(10 | IWN_RFLAG_CCK); 5216 } 5217 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 5218 } 5219 /* Use the first valid TX antenna. */ 5220 txant = IWN_LSB(sc->txchainmask); 5221 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 5222 5223 essid = (struct iwn_scan_essid *)(tx + 1); 5224 if (ss->ss_ssid[0].len != 0) { 5225 essid[0].id = IEEE80211_ELEMID_SSID; 5226 essid[0].len = ss->ss_ssid[0].len; 5227 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 5228 } 5229 /* 5230 * Build a probe request frame. Most of the following code is a 5231 * copy & paste of what is done in net80211. 5232 */ 5233 wh = (struct ieee80211_frame *)(essid + 20); 5234 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 5235 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 5236 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 5237 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 5238 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 5239 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 5240 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 5241 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 5242 5243 frm = (uint8_t *)(wh + 1); 5244 frm = ieee80211_add_ssid(frm, NULL, 0); 5245 frm = ieee80211_add_rates(frm, rs); 5246 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 5247 frm = ieee80211_add_xrates(frm, rs); 5248 if (ic->ic_htcaps & IEEE80211_HTC_HT) 5249 frm = ieee80211_add_htcap(frm, ni); 5250 5251 /* Set length of probe request. */ 5252 tx->len = htole16(frm - (uint8_t *)wh); 5253 5254 c = ic->ic_curchan; 5255 chan = (struct iwn_scan_chan *)frm; 5256 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 5257 chan->flags = 0; 5258 if (ss->ss_nssid > 0) 5259 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 5260 chan->dsp_gain = 0x6e; 5261 if (IEEE80211_IS_CHAN_5GHZ(c) && 5262 !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 5263 chan->rf_gain = 0x3b; 5264 chan->active = htole16(24); 5265 chan->passive = htole16(110); 5266 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5267 } else if (IEEE80211_IS_CHAN_5GHZ(c)) { 5268 chan->rf_gain = 0x3b; 5269 chan->active = htole16(24); 5270 if (sc->rxon.associd) 5271 chan->passive = htole16(78); 5272 else 5273 chan->passive = htole16(110); 5274 hdr->crc_threshold = 0xffff; 5275 } else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 5276 chan->rf_gain = 0x28; 5277 chan->active = htole16(36); 5278 chan->passive = htole16(120); 5279 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5280 } else { 5281 chan->rf_gain = 0x28; 5282 chan->active = htole16(36); 5283 if (sc->rxon.associd) 5284 chan->passive = htole16(88); 5285 else 5286 chan->passive = htole16(120); 5287 hdr->crc_threshold = 0xffff; 5288 } 5289 5290 DPRINTF(sc, IWN_DEBUG_STATE, 5291 "%s: chan %u flags 0x%x rf_gain 0x%x " 5292 "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__, 5293 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 5294 chan->active, chan->passive); 5295 5296 hdr->nchan++; 5297 chan++; 5298 buflen = (uint8_t *)chan - buf; 5299 hdr->len = htole16(buflen); 5300 5301 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 5302 hdr->nchan); 5303 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 5304 free(buf, M_DEVBUF); 5305 return error; 5306 } 5307 5308 static int 5309 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 5310 { 5311 struct iwn_ops *ops = &sc->ops; 5312 struct ifnet *ifp = sc->sc_ifp; 5313 struct ieee80211com *ic = ifp->if_l2com; 5314 struct ieee80211_node *ni = vap->iv_bss; 5315 int error; 5316 5317 /* Update adapter configuration. */ 5318 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 5319 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 5320 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5321 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 5322 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5323 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5324 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5325 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5326 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5327 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 5328 sc->rxon.cck_mask = 0; 5329 sc->rxon.ofdm_mask = 0x15; 5330 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 5331 sc->rxon.cck_mask = 0x03; 5332 sc->rxon.ofdm_mask = 0; 5333 } else { 5334 /* Assume 802.11b/g. */ 5335 sc->rxon.cck_mask = 0x0f; 5336 sc->rxon.ofdm_mask = 0x15; 5337 } 5338 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 5339 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, 5340 sc->rxon.ofdm_mask); 5341 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5342 if (error != 0) { 5343 device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", 5344 __func__, error); 5345 return error; 5346 } 5347 5348 /* Configuration has changed, set TX power accordingly. */ 5349 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 5350 device_printf(sc->sc_dev, 5351 "%s: could not set TX power, error %d\n", __func__, error); 5352 return error; 5353 } 5354 /* 5355 * Reconfiguring RXON clears the firmware nodes table so we must 5356 * add the broadcast node again. 5357 */ 5358 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 5359 device_printf(sc->sc_dev, 5360 "%s: could not add broadcast node, error %d\n", __func__, 5361 error); 5362 return error; 5363 } 5364 return 0; 5365 } 5366 5367 static int 5368 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 5369 { 5370 struct iwn_ops *ops = &sc->ops; 5371 struct ifnet *ifp = sc->sc_ifp; 5372 struct ieee80211com *ic = ifp->if_l2com; 5373 struct ieee80211_node *ni = vap->iv_bss; 5374 struct iwn_node_info node; 5375 uint32_t htflags = 0; 5376 int error; 5377 5378 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5379 /* Link LED blinks while monitoring. */ 5380 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 5381 return 0; 5382 } 5383 if ((error = iwn_set_timing(sc, ni)) != 0) { 5384 device_printf(sc->sc_dev, 5385 "%s: could not set timing, error %d\n", __func__, error); 5386 return error; 5387 } 5388 5389 /* Update adapter configuration. */ 5390 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 5391 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 5392 sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 5393 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5394 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 5395 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5396 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5397 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 5398 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5399 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 5400 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 5401 sc->rxon.cck_mask = 0; 5402 sc->rxon.ofdm_mask = 0x15; 5403 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 5404 sc->rxon.cck_mask = 0x03; 5405 sc->rxon.ofdm_mask = 0; 5406 } else { 5407 /* Assume 802.11b/g. */ 5408 sc->rxon.cck_mask = 0x0f; 5409 sc->rxon.ofdm_mask = 0x15; 5410 } 5411 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 5412 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 5413 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 5414 switch (ic->ic_curhtprotmode) { 5415 case IEEE80211_HTINFO_OPMODE_HT20PR: 5416 htflags |= IWN_RXON_HT_MODEPURE40; 5417 break; 5418 default: 5419 htflags |= IWN_RXON_HT_MODEMIXED; 5420 break; 5421 } 5422 } 5423 if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 5424 htflags |= IWN_RXON_HT_HT40MINUS; 5425 } 5426 sc->rxon.flags |= htole32(htflags); 5427 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 5428 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n", 5429 sc->rxon.chan, sc->rxon.flags); 5430 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1); 5431 if (error != 0) { 5432 device_printf(sc->sc_dev, 5433 "%s: could not update configuration, error %d\n", __func__, 5434 error); 5435 return error; 5436 } 5437 5438 /* Configuration has changed, set TX power accordingly. */ 5439 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 5440 device_printf(sc->sc_dev, 5441 "%s: could not set TX power, error %d\n", __func__, error); 5442 return error; 5443 } 5444 5445 /* Fake a join to initialize the TX rate. */ 5446 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 5447 iwn_newassoc(ni, 1); 5448 5449 /* Add BSS node. */ 5450 memset(&node, 0, sizeof node); 5451 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5452 node.id = IWN_ID_BSS; 5453 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 5454 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 5455 case IEEE80211_HTCAP_SMPS_ENA: 5456 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 5457 break; 5458 case IEEE80211_HTCAP_SMPS_DYNAMIC: 5459 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 5460 break; 5461 } 5462 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 5463 IWN_AMDPU_DENSITY(5)); /* 4us */ 5464 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 5465 node.htflags |= htole32(IWN_NODE_HT40); 5466 } 5467 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 5468 error = ops->add_node(sc, &node, 1); 5469 if (error != 0) { 5470 device_printf(sc->sc_dev, 5471 "%s: could not add BSS node, error %d\n", __func__, error); 5472 return error; 5473 } 5474 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 5475 __func__, node.id); 5476 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5477 device_printf(sc->sc_dev, 5478 "%s: could not setup link quality for node %d, error %d\n", 5479 __func__, node.id, error); 5480 return error; 5481 } 5482 5483 if ((error = iwn_init_sensitivity(sc)) != 0) { 5484 device_printf(sc->sc_dev, 5485 "%s: could not set sensitivity, error %d\n", __func__, 5486 error); 5487 return error; 5488 } 5489 /* Start periodic calibration timer. */ 5490 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5491 sc->calib_cnt = 0; 5492 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 5493 sc); 5494 5495 /* Link LED always on while associated. */ 5496 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5497 return 0; 5498 } 5499 5500 /* 5501 * This function is called by upper layer when an ADDBA request is received 5502 * from another STA and before the ADDBA response is sent. 5503 */ 5504 static int 5505 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 5506 int baparamset, int batimeout, int baseqctl) 5507 { 5508 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 5509 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5510 struct iwn_ops *ops = &sc->ops; 5511 struct iwn_node *wn = (void *)ni; 5512 struct iwn_node_info node; 5513 uint16_t ssn; 5514 uint8_t tid; 5515 int error; 5516 5517 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 5518 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 5519 5520 memset(&node, 0, sizeof node); 5521 node.id = wn->id; 5522 node.control = IWN_NODE_UPDATE; 5523 node.flags = IWN_FLAG_SET_ADDBA; 5524 node.addba_tid = tid; 5525 node.addba_ssn = htole16(ssn); 5526 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 5527 wn->id, tid, ssn); 5528 error = ops->add_node(sc, &node, 1); 5529 if (error != 0) 5530 return error; 5531 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 5532 #undef MS 5533 } 5534 5535 /* 5536 * This function is called by upper layer on teardown of an HT-immediate 5537 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5538 */ 5539 static void 5540 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 5541 { 5542 struct ieee80211com *ic = ni->ni_ic; 5543 struct iwn_softc *sc = ic->ic_ifp->if_softc; 5544 struct iwn_ops *ops = &sc->ops; 5545 struct iwn_node *wn = (void *)ni; 5546 struct iwn_node_info node; 5547 uint8_t tid; 5548 5549 /* XXX: tid as an argument */ 5550 for (tid = 0; tid < WME_NUM_TID; tid++) { 5551 if (&ni->ni_rx_ampdu[tid] == rap) 5552 break; 5553 } 5554 5555 memset(&node, 0, sizeof node); 5556 node.id = wn->id; 5557 node.control = IWN_NODE_UPDATE; 5558 node.flags = IWN_FLAG_SET_DELBA; 5559 node.delba_tid = tid; 5560 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 5561 (void)ops->add_node(sc, &node, 1); 5562 sc->sc_ampdu_rx_stop(ni, rap); 5563 } 5564 5565 static int 5566 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5567 int dialogtoken, int baparamset, int batimeout) 5568 { 5569 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5570 int qid; 5571 5572 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 5573 if (sc->qid2tap[qid] == NULL) 5574 break; 5575 } 5576 if (qid == sc->ntxqs) { 5577 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 5578 __func__); 5579 return 0; 5580 } 5581 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 5582 if (tap->txa_private == NULL) { 5583 device_printf(sc->sc_dev, 5584 "%s: failed to alloc TX aggregation structure\n", __func__); 5585 return 0; 5586 } 5587 sc->qid2tap[qid] = tap; 5588 *(int *)tap->txa_private = qid; 5589 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5590 batimeout); 5591 } 5592 5593 static int 5594 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5595 int code, int baparamset, int batimeout) 5596 { 5597 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5598 int qid = *(int *)tap->txa_private; 5599 uint8_t tid = WME_AC_TO_TID(tap->txa_ac); 5600 int ret; 5601 5602 if (code == IEEE80211_STATUS_SUCCESS) { 5603 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 5604 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 5605 if (ret != 1) 5606 return ret; 5607 } else { 5608 sc->qid2tap[qid] = NULL; 5609 free(tap->txa_private, M_DEVBUF); 5610 tap->txa_private = NULL; 5611 } 5612 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 5613 } 5614 5615 /* 5616 * This function is called by upper layer when an ADDBA response is received 5617 * from another STA. 5618 */ 5619 static int 5620 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5621 uint8_t tid) 5622 { 5623 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)]; 5624 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5625 struct iwn_ops *ops = &sc->ops; 5626 struct iwn_node *wn = (void *)ni; 5627 struct iwn_node_info node; 5628 int error, qid; 5629 5630 /* Enable TX for the specified RA/TID. */ 5631 wn->disable_tid &= ~(1 << tid); 5632 memset(&node, 0, sizeof node); 5633 node.id = wn->id; 5634 node.control = IWN_NODE_UPDATE; 5635 node.flags = IWN_FLAG_SET_DISABLE_TID; 5636 node.disable_tid = htole16(wn->disable_tid); 5637 error = ops->add_node(sc, &node, 1); 5638 if (error != 0) 5639 return 0; 5640 5641 if ((error = iwn_nic_lock(sc)) != 0) 5642 return 0; 5643 qid = *(int *)tap->txa_private; 5644 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 5645 iwn_nic_unlock(sc); 5646 5647 iwn_set_link_quality(sc, ni); 5648 return 1; 5649 } 5650 5651 static void 5652 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 5653 { 5654 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5655 struct iwn_ops *ops = &sc->ops; 5656 uint8_t tid = WME_AC_TO_TID(tap->txa_ac); 5657 int qid; 5658 5659 if (tap->txa_private == NULL) 5660 return; 5661 5662 qid = *(int *)tap->txa_private; 5663 if (iwn_nic_lock(sc) != 0) 5664 return; 5665 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 5666 iwn_nic_unlock(sc); 5667 sc->qid2tap[qid] = NULL; 5668 free(tap->txa_private, M_DEVBUF); 5669 tap->txa_private = NULL; 5670 sc->sc_addba_stop(ni, tap); 5671 } 5672 5673 static void 5674 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5675 int qid, uint8_t tid, uint16_t ssn) 5676 { 5677 struct iwn_node *wn = (void *)ni; 5678 5679 /* Stop TX scheduler while we're changing its configuration. */ 5680 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5681 IWN4965_TXQ_STATUS_CHGACT); 5682 5683 /* Assign RA/TID translation to the queue. */ 5684 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5685 wn->id << 4 | tid); 5686 5687 /* Enable chain-building mode for the queue. */ 5688 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5689 5690 /* Set starting sequence number from the ADDBA request. */ 5691 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 5692 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5693 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5694 5695 /* Set scheduler window size. */ 5696 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5697 IWN_SCHED_WINSZ); 5698 /* Set scheduler frame limit. */ 5699 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5700 IWN_SCHED_LIMIT << 16); 5701 5702 /* Enable interrupts for the queue. */ 5703 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5704 5705 /* Mark the queue as active. */ 5706 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5707 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5708 iwn_tid2fifo[tid] << 1); 5709 } 5710 5711 static void 5712 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 5713 { 5714 /* Stop TX scheduler while we're changing its configuration. */ 5715 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5716 IWN4965_TXQ_STATUS_CHGACT); 5717 5718 /* Set starting sequence number from the ADDBA request. */ 5719 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5720 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5721 5722 /* Disable interrupts for the queue. */ 5723 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5724 5725 /* Mark the queue as inactive. */ 5726 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5727 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5728 } 5729 5730 static void 5731 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5732 int qid, uint8_t tid, uint16_t ssn) 5733 { 5734 struct iwn_node *wn = (void *)ni; 5735 5736 /* Stop TX scheduler while we're changing its configuration. */ 5737 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5738 IWN5000_TXQ_STATUS_CHGACT); 5739 5740 /* Assign RA/TID translation to the queue. */ 5741 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5742 wn->id << 4 | tid); 5743 5744 /* Enable chain-building mode for the queue. */ 5745 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5746 5747 /* Enable aggregation for the queue. */ 5748 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5749 5750 /* Set starting sequence number from the ADDBA request. */ 5751 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 5752 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5753 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5754 5755 /* Set scheduler window size and frame limit. */ 5756 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5757 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5758 5759 /* Enable interrupts for the queue. */ 5760 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5761 5762 /* Mark the queue as active. */ 5763 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5764 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5765 } 5766 5767 static void 5768 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 5769 { 5770 /* Stop TX scheduler while we're changing its configuration. */ 5771 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5772 IWN5000_TXQ_STATUS_CHGACT); 5773 5774 /* Disable aggregation for the queue. */ 5775 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5776 5777 /* Set starting sequence number from the ADDBA request. */ 5778 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5779 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5780 5781 /* Disable interrupts for the queue. */ 5782 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5783 5784 /* Mark the queue as inactive. */ 5785 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5786 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5787 } 5788 5789 /* 5790 * Query calibration tables from the initialization firmware. We do this 5791 * only once at first boot. Called from a process context. 5792 */ 5793 static int 5794 iwn5000_query_calibration(struct iwn_softc *sc) 5795 { 5796 struct iwn5000_calib_config cmd; 5797 int error; 5798 5799 memset(&cmd, 0, sizeof cmd); 5800 cmd.ucode.once.enable = 0xffffffff; 5801 cmd.ucode.once.start = 0xffffffff; 5802 cmd.ucode.once.send = 0xffffffff; 5803 cmd.ucode.flags = 0xffffffff; 5804 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 5805 __func__); 5806 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5807 if (error != 0) 5808 return error; 5809 5810 /* Wait at most two seconds for calibration to complete. */ 5811 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5812 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 5813 return error; 5814 } 5815 5816 /* 5817 * Send calibration results to the runtime firmware. These results were 5818 * obtained on first boot from the initialization firmware. 5819 */ 5820 static int 5821 iwn5000_send_calibration(struct iwn_softc *sc) 5822 { 5823 int idx, error; 5824 5825 for (idx = 0; idx < 5; idx++) { 5826 if (sc->calibcmd[idx].buf == NULL) 5827 continue; /* No results available. */ 5828 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5829 "send calibration result idx=%d len=%d\n", idx, 5830 sc->calibcmd[idx].len); 5831 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5832 sc->calibcmd[idx].len, 0); 5833 if (error != 0) { 5834 device_printf(sc->sc_dev, 5835 "%s: could not send calibration result, error %d\n", 5836 __func__, error); 5837 return error; 5838 } 5839 } 5840 return 0; 5841 } 5842 5843 static int 5844 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5845 { 5846 struct iwn5000_wimax_coex wimax; 5847 5848 #ifdef notyet 5849 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5850 /* Enable WiMAX coexistence for combo adapters. */ 5851 wimax.flags = 5852 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5853 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5854 IWN_WIMAX_COEX_STA_TABLE_VALID | 5855 IWN_WIMAX_COEX_ENABLE; 5856 memcpy(wimax.events, iwn6050_wimax_events, 5857 sizeof iwn6050_wimax_events); 5858 } else 5859 #endif 5860 { 5861 /* Disable WiMAX coexistence. */ 5862 wimax.flags = 0; 5863 memset(wimax.events, 0, sizeof wimax.events); 5864 } 5865 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 5866 __func__); 5867 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5868 } 5869 5870 static int 5871 iwn5000_crystal_calib(struct iwn_softc *sc) 5872 { 5873 struct iwn5000_phy_calib_crystal cmd; 5874 5875 memset(&cmd, 0, sizeof cmd); 5876 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5877 cmd.ngroups = 1; 5878 cmd.isvalid = 1; 5879 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5880 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5881 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 5882 cmd.cap_pin[0], cmd.cap_pin[1]); 5883 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5884 } 5885 5886 static int 5887 iwn5000_temp_offset_calib(struct iwn_softc *sc) 5888 { 5889 struct iwn5000_phy_calib_temp_offset cmd; 5890 5891 memset(&cmd, 0, sizeof cmd); 5892 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 5893 cmd.ngroups = 1; 5894 cmd.isvalid = 1; 5895 if (sc->eeprom_temp != 0) 5896 cmd.offset = htole16(sc->eeprom_temp); 5897 else 5898 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 5899 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 5900 le16toh(cmd.offset)); 5901 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5902 } 5903 5904 /* 5905 * This function is called after the runtime firmware notifies us of its 5906 * readiness (called in a process context). 5907 */ 5908 static int 5909 iwn4965_post_alive(struct iwn_softc *sc) 5910 { 5911 int error, qid; 5912 5913 if ((error = iwn_nic_lock(sc)) != 0) 5914 return error; 5915 5916 /* Clear TX scheduler state in SRAM. */ 5917 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5918 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5919 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5920 5921 /* Set physical address of TX scheduler rings (1KB aligned). */ 5922 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5923 5924 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5925 5926 /* Disable chain mode for all our 16 queues. */ 5927 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5928 5929 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5930 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5931 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5932 5933 /* Set scheduler window size. */ 5934 iwn_mem_write(sc, sc->sched_base + 5935 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5936 /* Set scheduler frame limit. */ 5937 iwn_mem_write(sc, sc->sched_base + 5938 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5939 IWN_SCHED_LIMIT << 16); 5940 } 5941 5942 /* Enable interrupts for all our 16 queues. */ 5943 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5944 /* Identify TX FIFO rings (0-7). */ 5945 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5946 5947 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5948 for (qid = 0; qid < 7; qid++) { 5949 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5950 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5951 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5952 } 5953 iwn_nic_unlock(sc); 5954 return 0; 5955 } 5956 5957 /* 5958 * This function is called after the initialization or runtime firmware 5959 * notifies us of its readiness (called in a process context). 5960 */ 5961 static int 5962 iwn5000_post_alive(struct iwn_softc *sc) 5963 { 5964 int error, qid; 5965 5966 /* Switch to using ICT interrupt mode. */ 5967 iwn5000_ict_reset(sc); 5968 5969 if ((error = iwn_nic_lock(sc)) != 0) 5970 return error; 5971 5972 /* Clear TX scheduler state in SRAM. */ 5973 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5974 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5975 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5976 5977 /* Set physical address of TX scheduler rings (1KB aligned). */ 5978 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5979 5980 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5981 5982 /* Enable chain mode for all queues, except command queue. */ 5983 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5984 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5985 5986 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5987 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5988 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5989 5990 iwn_mem_write(sc, sc->sched_base + 5991 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5992 /* Set scheduler window size and frame limit. */ 5993 iwn_mem_write(sc, sc->sched_base + 5994 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5995 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5996 } 5997 5998 /* Enable interrupts for all our 20 queues. */ 5999 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 6000 /* Identify TX FIFO rings (0-7). */ 6001 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 6002 6003 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6004 for (qid = 0; qid < 7; qid++) { 6005 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 6006 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6007 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 6008 } 6009 iwn_nic_unlock(sc); 6010 6011 /* Configure WiMAX coexistence for combo adapters. */ 6012 error = iwn5000_send_wimax_coex(sc); 6013 if (error != 0) { 6014 device_printf(sc->sc_dev, 6015 "%s: could not configure WiMAX coexistence, error %d\n", 6016 __func__, error); 6017 return error; 6018 } 6019 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 6020 /* Perform crystal calibration. */ 6021 error = iwn5000_crystal_calib(sc); 6022 if (error != 0) { 6023 device_printf(sc->sc_dev, 6024 "%s: crystal calibration failed, error %d\n", 6025 __func__, error); 6026 return error; 6027 } 6028 } 6029 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 6030 /* Query calibration from the initialization firmware. */ 6031 if ((error = iwn5000_query_calibration(sc)) != 0) { 6032 device_printf(sc->sc_dev, 6033 "%s: could not query calibration, error %d\n", 6034 __func__, error); 6035 return error; 6036 } 6037 /* 6038 * We have the calibration results now, reboot with the 6039 * runtime firmware (call ourselves recursively!) 6040 */ 6041 iwn_hw_stop(sc); 6042 error = iwn_hw_init(sc); 6043 } else { 6044 /* Send calibration results to runtime firmware. */ 6045 error = iwn5000_send_calibration(sc); 6046 } 6047 return error; 6048 } 6049 6050 /* 6051 * The firmware boot code is small and is intended to be copied directly into 6052 * the NIC internal memory (no DMA transfer). 6053 */ 6054 static int 6055 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 6056 { 6057 int error, ntries; 6058 6059 size /= sizeof (uint32_t); 6060 6061 if ((error = iwn_nic_lock(sc)) != 0) 6062 return error; 6063 6064 /* Copy microcode image into NIC memory. */ 6065 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 6066 (const uint32_t *)ucode, size); 6067 6068 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 6069 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 6070 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 6071 6072 /* Start boot load now. */ 6073 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 6074 6075 /* Wait for transfer to complete. */ 6076 for (ntries = 0; ntries < 1000; ntries++) { 6077 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 6078 IWN_BSM_WR_CTRL_START)) 6079 break; 6080 DELAY(10); 6081 } 6082 if (ntries == 1000) { 6083 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 6084 __func__); 6085 iwn_nic_unlock(sc); 6086 return ETIMEDOUT; 6087 } 6088 6089 /* Enable boot after power up. */ 6090 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 6091 6092 iwn_nic_unlock(sc); 6093 return 0; 6094 } 6095 6096 static int 6097 iwn4965_load_firmware(struct iwn_softc *sc) 6098 { 6099 struct iwn_fw_info *fw = &sc->fw; 6100 struct iwn_dma_info *dma = &sc->fw_dma; 6101 int error; 6102 6103 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 6104 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 6105 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6106 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6107 fw->init.text, fw->init.textsz); 6108 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6109 6110 /* Tell adapter where to find initialization sections. */ 6111 if ((error = iwn_nic_lock(sc)) != 0) 6112 return error; 6113 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6114 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 6115 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6116 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6117 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 6118 iwn_nic_unlock(sc); 6119 6120 /* Load firmware boot code. */ 6121 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 6122 if (error != 0) { 6123 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 6124 __func__); 6125 return error; 6126 } 6127 /* Now press "execute". */ 6128 IWN_WRITE(sc, IWN_RESET, 0); 6129 6130 /* Wait at most one second for first alive notification. */ 6131 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 6132 device_printf(sc->sc_dev, 6133 "%s: timeout waiting for adapter to initialize, error %d\n", 6134 __func__, error); 6135 return error; 6136 } 6137 6138 /* Retrieve current temperature for initial TX power calibration. */ 6139 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 6140 sc->temp = iwn4965_get_temperature(sc); 6141 6142 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 6143 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 6144 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6145 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6146 fw->main.text, fw->main.textsz); 6147 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6148 6149 /* Tell adapter where to find runtime sections. */ 6150 if ((error = iwn_nic_lock(sc)) != 0) 6151 return error; 6152 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6153 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 6154 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6155 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6156 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 6157 IWN_FW_UPDATED | fw->main.textsz); 6158 iwn_nic_unlock(sc); 6159 6160 return 0; 6161 } 6162 6163 static int 6164 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 6165 const uint8_t *section, int size) 6166 { 6167 struct iwn_dma_info *dma = &sc->fw_dma; 6168 int error; 6169 6170 /* Copy firmware section into pre-allocated DMA-safe memory. */ 6171 memcpy(dma->vaddr, section, size); 6172 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6173 6174 if ((error = iwn_nic_lock(sc)) != 0) 6175 return error; 6176 6177 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6178 IWN_FH_TX_CONFIG_DMA_PAUSE); 6179 6180 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 6181 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 6182 IWN_LOADDR(dma->paddr)); 6183 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 6184 IWN_HIADDR(dma->paddr) << 28 | size); 6185 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 6186 IWN_FH_TXBUF_STATUS_TBNUM(1) | 6187 IWN_FH_TXBUF_STATUS_TBIDX(1) | 6188 IWN_FH_TXBUF_STATUS_TFBD_VALID); 6189 6190 /* Kick Flow Handler to start DMA transfer. */ 6191 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6192 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 6193 6194 iwn_nic_unlock(sc); 6195 6196 /* Wait at most five seconds for FH DMA transfer to complete. */ 6197 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 6198 } 6199 6200 static int 6201 iwn5000_load_firmware(struct iwn_softc *sc) 6202 { 6203 struct iwn_fw_part *fw; 6204 int error; 6205 6206 /* Load the initialization firmware on first boot only. */ 6207 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 6208 &sc->fw.main : &sc->fw.init; 6209 6210 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 6211 fw->text, fw->textsz); 6212 if (error != 0) { 6213 device_printf(sc->sc_dev, 6214 "%s: could not load firmware %s section, error %d\n", 6215 __func__, ".text", error); 6216 return error; 6217 } 6218 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 6219 fw->data, fw->datasz); 6220 if (error != 0) { 6221 device_printf(sc->sc_dev, 6222 "%s: could not load firmware %s section, error %d\n", 6223 __func__, ".data", error); 6224 return error; 6225 } 6226 6227 /* Now press "execute". */ 6228 IWN_WRITE(sc, IWN_RESET, 0); 6229 return 0; 6230 } 6231 6232 /* 6233 * Extract text and data sections from a legacy firmware image. 6234 */ 6235 static int 6236 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 6237 { 6238 const uint32_t *ptr; 6239 size_t hdrlen = 24; 6240 uint32_t rev; 6241 6242 ptr = (const uint32_t *)fw->data; 6243 rev = le32toh(*ptr++); 6244 6245 /* Check firmware API version. */ 6246 if (IWN_FW_API(rev) <= 1) { 6247 device_printf(sc->sc_dev, 6248 "%s: bad firmware, need API version >=2\n", __func__); 6249 return EINVAL; 6250 } 6251 if (IWN_FW_API(rev) >= 3) { 6252 /* Skip build number (version 2 header). */ 6253 hdrlen += 4; 6254 ptr++; 6255 } 6256 if (fw->size < hdrlen) { 6257 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6258 __func__, fw->size); 6259 return EINVAL; 6260 } 6261 fw->main.textsz = le32toh(*ptr++); 6262 fw->main.datasz = le32toh(*ptr++); 6263 fw->init.textsz = le32toh(*ptr++); 6264 fw->init.datasz = le32toh(*ptr++); 6265 fw->boot.textsz = le32toh(*ptr++); 6266 6267 /* Check that all firmware sections fit. */ 6268 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 6269 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 6270 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6271 __func__, fw->size); 6272 return EINVAL; 6273 } 6274 6275 /* Get pointers to firmware sections. */ 6276 fw->main.text = (const uint8_t *)ptr; 6277 fw->main.data = fw->main.text + fw->main.textsz; 6278 fw->init.text = fw->main.data + fw->main.datasz; 6279 fw->init.data = fw->init.text + fw->init.textsz; 6280 fw->boot.text = fw->init.data + fw->init.datasz; 6281 return 0; 6282 } 6283 6284 /* 6285 * Extract text and data sections from a TLV firmware image. 6286 */ 6287 static int 6288 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 6289 uint16_t alt) 6290 { 6291 const struct iwn_fw_tlv_hdr *hdr; 6292 const struct iwn_fw_tlv *tlv; 6293 const uint8_t *ptr, *end; 6294 uint64_t altmask; 6295 uint32_t len, tmp; 6296 6297 if (fw->size < sizeof (*hdr)) { 6298 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6299 __func__, fw->size); 6300 return EINVAL; 6301 } 6302 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 6303 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 6304 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 6305 __func__, le32toh(hdr->signature)); 6306 return EINVAL; 6307 } 6308 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 6309 le32toh(hdr->build)); 6310 6311 /* 6312 * Select the closest supported alternative that is less than 6313 * or equal to the specified one. 6314 */ 6315 altmask = le64toh(hdr->altmask); 6316 while (alt > 0 && !(altmask & (1ULL << alt))) 6317 alt--; /* Downgrade. */ 6318 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 6319 6320 ptr = (const uint8_t *)(hdr + 1); 6321 end = (const uint8_t *)(fw->data + fw->size); 6322 6323 /* Parse type-length-value fields. */ 6324 while (ptr + sizeof (*tlv) <= end) { 6325 tlv = (const struct iwn_fw_tlv *)ptr; 6326 len = le32toh(tlv->len); 6327 6328 ptr += sizeof (*tlv); 6329 if (ptr + len > end) { 6330 device_printf(sc->sc_dev, 6331 "%s: firmware too short: %zu bytes\n", __func__, 6332 fw->size); 6333 return EINVAL; 6334 } 6335 /* Skip other alternatives. */ 6336 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 6337 goto next; 6338 6339 switch (le16toh(tlv->type)) { 6340 case IWN_FW_TLV_MAIN_TEXT: 6341 fw->main.text = ptr; 6342 fw->main.textsz = len; 6343 break; 6344 case IWN_FW_TLV_MAIN_DATA: 6345 fw->main.data = ptr; 6346 fw->main.datasz = len; 6347 break; 6348 case IWN_FW_TLV_INIT_TEXT: 6349 fw->init.text = ptr; 6350 fw->init.textsz = len; 6351 break; 6352 case IWN_FW_TLV_INIT_DATA: 6353 fw->init.data = ptr; 6354 fw->init.datasz = len; 6355 break; 6356 case IWN_FW_TLV_BOOT_TEXT: 6357 fw->boot.text = ptr; 6358 fw->boot.textsz = len; 6359 break; 6360 case IWN_FW_TLV_ENH_SENS: 6361 if (!len) 6362 sc->sc_flags |= IWN_FLAG_ENH_SENS; 6363 break; 6364 case IWN_FW_TLV_PHY_CALIB: 6365 tmp = htole32(*ptr); 6366 if (tmp < 253) { 6367 sc->reset_noise_gain = tmp; 6368 sc->noise_gain = tmp + 1; 6369 } 6370 break; 6371 default: 6372 DPRINTF(sc, IWN_DEBUG_RESET, 6373 "TLV type %d not handled\n", le16toh(tlv->type)); 6374 break; 6375 } 6376 next: /* TLV fields are 32-bit aligned. */ 6377 ptr += (len + 3) & ~3; 6378 } 6379 return 0; 6380 } 6381 6382 static int 6383 iwn_read_firmware(struct iwn_softc *sc) 6384 { 6385 struct iwn_fw_info *fw = &sc->fw; 6386 int error; 6387 6388 IWN_UNLOCK(sc); 6389 6390 memset(fw, 0, sizeof (*fw)); 6391 6392 /* Read firmware image from filesystem. */ 6393 sc->fw_fp = firmware_get(sc->fwname); 6394 if (sc->fw_fp == NULL) { 6395 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 6396 __func__, sc->fwname); 6397 IWN_LOCK(sc); 6398 return EINVAL; 6399 } 6400 IWN_LOCK(sc); 6401 6402 fw->size = sc->fw_fp->datasize; 6403 fw->data = (const uint8_t *)sc->fw_fp->data; 6404 if (fw->size < sizeof (uint32_t)) { 6405 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6406 __func__, fw->size); 6407 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6408 sc->fw_fp = NULL; 6409 return EINVAL; 6410 } 6411 6412 /* Retrieve text and data sections. */ 6413 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6414 error = iwn_read_firmware_leg(sc, fw); 6415 else 6416 error = iwn_read_firmware_tlv(sc, fw, 1); 6417 if (error != 0) { 6418 device_printf(sc->sc_dev, 6419 "%s: could not read firmware sections, error %d\n", 6420 __func__, error); 6421 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6422 sc->fw_fp = NULL; 6423 return error; 6424 } 6425 6426 /* Make sure text and data sections fit in hardware memory. */ 6427 if (fw->main.textsz > sc->fw_text_maxsz || 6428 fw->main.datasz > sc->fw_data_maxsz || 6429 fw->init.textsz > sc->fw_text_maxsz || 6430 fw->init.datasz > sc->fw_data_maxsz || 6431 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6432 (fw->boot.textsz & 3) != 0) { 6433 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 6434 __func__); 6435 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6436 sc->fw_fp = NULL; 6437 return EINVAL; 6438 } 6439 6440 /* We can proceed with loading the firmware. */ 6441 return 0; 6442 } 6443 6444 static int 6445 iwn_clock_wait(struct iwn_softc *sc) 6446 { 6447 int ntries; 6448 6449 /* Set "initialization complete" bit. */ 6450 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6451 6452 /* Wait for clock stabilization. */ 6453 for (ntries = 0; ntries < 2500; ntries++) { 6454 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6455 return 0; 6456 DELAY(10); 6457 } 6458 device_printf(sc->sc_dev, 6459 "%s: timeout waiting for clock stabilization\n", __func__); 6460 return ETIMEDOUT; 6461 } 6462 6463 static int 6464 iwn_apm_init(struct iwn_softc *sc) 6465 { 6466 uint32_t reg; 6467 int error; 6468 6469 /* Disable L0s exit timer (NMI bug workaround). */ 6470 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6471 /* Don't wait for ICH L0s (ICH bug workaround). */ 6472 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6473 6474 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6475 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6476 6477 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6478 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6479 6480 /* Retrieve PCIe Active State Power Management (ASPM). */ 6481 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 6482 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6483 if (reg & 0x02) /* L1 Entry enabled. */ 6484 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6485 else 6486 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6487 6488 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6489 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6490 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6491 6492 /* Wait for clock stabilization before accessing prph. */ 6493 if ((error = iwn_clock_wait(sc)) != 0) 6494 return error; 6495 6496 if ((error = iwn_nic_lock(sc)) != 0) 6497 return error; 6498 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6499 /* Enable DMA and BSM (Bootstrap State Machine). */ 6500 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6501 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6502 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6503 } else { 6504 /* Enable DMA. */ 6505 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6506 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6507 } 6508 DELAY(20); 6509 /* Disable L1-Active. */ 6510 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6511 iwn_nic_unlock(sc); 6512 6513 return 0; 6514 } 6515 6516 static void 6517 iwn_apm_stop_master(struct iwn_softc *sc) 6518 { 6519 int ntries; 6520 6521 /* Stop busmaster DMA activity. */ 6522 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6523 for (ntries = 0; ntries < 100; ntries++) { 6524 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6525 return; 6526 DELAY(10); 6527 } 6528 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 6529 } 6530 6531 static void 6532 iwn_apm_stop(struct iwn_softc *sc) 6533 { 6534 iwn_apm_stop_master(sc); 6535 6536 /* Reset the entire device. */ 6537 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6538 DELAY(10); 6539 /* Clear "initialization complete" bit. */ 6540 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6541 } 6542 6543 static int 6544 iwn4965_nic_config(struct iwn_softc *sc) 6545 { 6546 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 6547 /* 6548 * I don't believe this to be correct but this is what the 6549 * vendor driver is doing. Probably the bits should not be 6550 * shifted in IWN_RFCFG_*. 6551 */ 6552 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6553 IWN_RFCFG_TYPE(sc->rfcfg) | 6554 IWN_RFCFG_STEP(sc->rfcfg) | 6555 IWN_RFCFG_DASH(sc->rfcfg)); 6556 } 6557 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6558 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6559 return 0; 6560 } 6561 6562 static int 6563 iwn5000_nic_config(struct iwn_softc *sc) 6564 { 6565 uint32_t tmp; 6566 int error; 6567 6568 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 6569 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6570 IWN_RFCFG_TYPE(sc->rfcfg) | 6571 IWN_RFCFG_STEP(sc->rfcfg) | 6572 IWN_RFCFG_DASH(sc->rfcfg)); 6573 } 6574 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 6575 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 6576 6577 if ((error = iwn_nic_lock(sc)) != 0) 6578 return error; 6579 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 6580 6581 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 6582 /* 6583 * Select first Switching Voltage Regulator (1.32V) to 6584 * solve a stability issue related to noisy DC2DC line 6585 * in the silicon of 1000 Series. 6586 */ 6587 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 6588 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 6589 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 6590 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 6591 } 6592 iwn_nic_unlock(sc); 6593 6594 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 6595 /* Use internal power amplifier only. */ 6596 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 6597 } 6598 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 6599 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 6600 /* Indicate that ROM calibration version is >=6. */ 6601 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 6602 } 6603 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 6604 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 6605 return 0; 6606 } 6607 6608 /* 6609 * Take NIC ownership over Intel Active Management Technology (AMT). 6610 */ 6611 static int 6612 iwn_hw_prepare(struct iwn_softc *sc) 6613 { 6614 int ntries; 6615 6616 /* Check if hardware is ready. */ 6617 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6618 for (ntries = 0; ntries < 5; ntries++) { 6619 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6620 IWN_HW_IF_CONFIG_NIC_READY) 6621 return 0; 6622 DELAY(10); 6623 } 6624 6625 /* Hardware not ready, force into ready state. */ 6626 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 6627 for (ntries = 0; ntries < 15000; ntries++) { 6628 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 6629 IWN_HW_IF_CONFIG_PREPARE_DONE)) 6630 break; 6631 DELAY(10); 6632 } 6633 if (ntries == 15000) 6634 return ETIMEDOUT; 6635 6636 /* Hardware should be ready now. */ 6637 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 6638 for (ntries = 0; ntries < 5; ntries++) { 6639 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 6640 IWN_HW_IF_CONFIG_NIC_READY) 6641 return 0; 6642 DELAY(10); 6643 } 6644 return ETIMEDOUT; 6645 } 6646 6647 static int 6648 iwn_hw_init(struct iwn_softc *sc) 6649 { 6650 struct iwn_ops *ops = &sc->ops; 6651 int error, chnl, qid; 6652 6653 /* Clear pending interrupts. */ 6654 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6655 6656 if ((error = iwn_apm_init(sc)) != 0) { 6657 device_printf(sc->sc_dev, 6658 "%s: could not power ON adapter, error %d\n", __func__, 6659 error); 6660 return error; 6661 } 6662 6663 /* Select VMAIN power source. */ 6664 if ((error = iwn_nic_lock(sc)) != 0) 6665 return error; 6666 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 6667 iwn_nic_unlock(sc); 6668 6669 /* Perform adapter-specific initialization. */ 6670 if ((error = ops->nic_config(sc)) != 0) 6671 return error; 6672 6673 /* Initialize RX ring. */ 6674 if ((error = iwn_nic_lock(sc)) != 0) 6675 return error; 6676 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 6677 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 6678 /* Set physical address of RX ring (256-byte aligned). */ 6679 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 6680 /* Set physical address of RX status (16-byte aligned). */ 6681 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 6682 /* Enable RX. */ 6683 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 6684 IWN_FH_RX_CONFIG_ENA | 6685 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 6686 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 6687 IWN_FH_RX_CONFIG_SINGLE_FRAME | 6688 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 6689 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 6690 iwn_nic_unlock(sc); 6691 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 6692 6693 if ((error = iwn_nic_lock(sc)) != 0) 6694 return error; 6695 6696 /* Initialize TX scheduler. */ 6697 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6698 6699 /* Set physical address of "keep warm" page (16-byte aligned). */ 6700 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 6701 6702 /* Initialize TX rings. */ 6703 for (qid = 0; qid < sc->ntxqs; qid++) { 6704 struct iwn_tx_ring *txq = &sc->txq[qid]; 6705 6706 /* Set physical address of TX ring (256-byte aligned). */ 6707 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 6708 txq->desc_dma.paddr >> 8); 6709 } 6710 iwn_nic_unlock(sc); 6711 6712 /* Enable DMA channels. */ 6713 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6714 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 6715 IWN_FH_TX_CONFIG_DMA_ENA | 6716 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 6717 } 6718 6719 /* Clear "radio off" and "commands blocked" bits. */ 6720 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6721 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 6722 6723 /* Clear pending interrupts. */ 6724 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6725 /* Enable interrupt coalescing. */ 6726 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6727 /* Enable interrupts. */ 6728 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6729 6730 /* _Really_ make sure "radio off" bit is cleared! */ 6731 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6732 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6733 6734 /* Enable shadow registers. */ 6735 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 6736 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 6737 6738 if ((error = ops->load_firmware(sc)) != 0) { 6739 device_printf(sc->sc_dev, 6740 "%s: could not load firmware, error %d\n", __func__, 6741 error); 6742 return error; 6743 } 6744 /* Wait at most one second for firmware alive notification. */ 6745 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 6746 device_printf(sc->sc_dev, 6747 "%s: timeout waiting for adapter to initialize, error %d\n", 6748 __func__, error); 6749 return error; 6750 } 6751 /* Do post-firmware initialization. */ 6752 return ops->post_alive(sc); 6753 } 6754 6755 static void 6756 iwn_hw_stop(struct iwn_softc *sc) 6757 { 6758 int chnl, qid, ntries; 6759 6760 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6761 6762 /* Disable interrupts. */ 6763 IWN_WRITE(sc, IWN_INT_MASK, 0); 6764 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6765 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6766 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6767 6768 /* Make sure we no longer hold the NIC lock. */ 6769 iwn_nic_unlock(sc); 6770 6771 /* Stop TX scheduler. */ 6772 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 6773 6774 /* Stop all DMA channels. */ 6775 if (iwn_nic_lock(sc) == 0) { 6776 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 6777 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6778 for (ntries = 0; ntries < 200; ntries++) { 6779 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 6780 IWN_FH_TX_STATUS_IDLE(chnl)) 6781 break; 6782 DELAY(10); 6783 } 6784 } 6785 iwn_nic_unlock(sc); 6786 } 6787 6788 /* Stop RX ring. */ 6789 iwn_reset_rx_ring(sc, &sc->rxq); 6790 6791 /* Reset all TX rings. */ 6792 for (qid = 0; qid < sc->ntxqs; qid++) 6793 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6794 6795 if (iwn_nic_lock(sc) == 0) { 6796 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6797 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6798 iwn_nic_unlock(sc); 6799 } 6800 DELAY(5); 6801 /* Power OFF adapter. */ 6802 iwn_apm_stop(sc); 6803 } 6804 6805 static void 6806 iwn_radio_on(void *arg0, int pending) 6807 { 6808 struct iwn_softc *sc = arg0; 6809 struct ifnet *ifp = sc->sc_ifp; 6810 struct ieee80211com *ic = ifp->if_l2com; 6811 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6812 6813 if (vap != NULL) { 6814 iwn_init(sc); 6815 ieee80211_init(vap); 6816 } 6817 } 6818 6819 static void 6820 iwn_radio_off(void *arg0, int pending) 6821 { 6822 struct iwn_softc *sc = arg0; 6823 struct ifnet *ifp = sc->sc_ifp; 6824 struct ieee80211com *ic = ifp->if_l2com; 6825 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6826 6827 iwn_stop(sc); 6828 if (vap != NULL) 6829 ieee80211_stop(vap); 6830 6831 /* Enable interrupts to get RF toggle notification. */ 6832 IWN_LOCK(sc); 6833 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6834 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6835 IWN_UNLOCK(sc); 6836 } 6837 6838 static void 6839 iwn_init_locked(struct iwn_softc *sc) 6840 { 6841 struct ifnet *ifp = sc->sc_ifp; 6842 int error; 6843 6844 IWN_LOCK_ASSERT(sc); 6845 6846 if ((error = iwn_hw_prepare(sc)) != 0) { 6847 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 6848 __func__, error); 6849 goto fail; 6850 } 6851 6852 /* Initialize interrupt mask to default value. */ 6853 sc->int_mask = IWN_INT_MASK_DEF; 6854 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6855 6856 /* Check that the radio is not disabled by hardware switch. */ 6857 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6858 device_printf(sc->sc_dev, 6859 "radio is disabled by hardware switch\n"); 6860 /* Enable interrupts to get RF toggle notifications. */ 6861 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6862 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6863 return; 6864 } 6865 6866 /* Read firmware images from the filesystem. */ 6867 if ((error = iwn_read_firmware(sc)) != 0) { 6868 device_printf(sc->sc_dev, 6869 "%s: could not read firmware, error %d\n", __func__, 6870 error); 6871 goto fail; 6872 } 6873 6874 /* Initialize hardware and upload firmware. */ 6875 error = iwn_hw_init(sc); 6876 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6877 sc->fw_fp = NULL; 6878 if (error != 0) { 6879 device_printf(sc->sc_dev, 6880 "%s: could not initialize hardware, error %d\n", __func__, 6881 error); 6882 goto fail; 6883 } 6884 6885 /* Configure adapter now that it is ready. */ 6886 if ((error = iwn_config(sc)) != 0) { 6887 device_printf(sc->sc_dev, 6888 "%s: could not configure device, error %d\n", __func__, 6889 error); 6890 goto fail; 6891 } 6892 6893 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6894 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6895 6896 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 6897 return; 6898 6899 fail: iwn_stop_locked(sc); 6900 } 6901 6902 static void 6903 iwn_init(void *arg) 6904 { 6905 struct iwn_softc *sc = arg; 6906 struct ifnet *ifp = sc->sc_ifp; 6907 struct ieee80211com *ic = ifp->if_l2com; 6908 6909 IWN_LOCK(sc); 6910 iwn_init_locked(sc); 6911 IWN_UNLOCK(sc); 6912 6913 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6914 ieee80211_start_all(ic); 6915 } 6916 6917 static void 6918 iwn_stop_locked(struct iwn_softc *sc) 6919 { 6920 struct ifnet *ifp = sc->sc_ifp; 6921 6922 IWN_LOCK_ASSERT(sc); 6923 6924 sc->sc_tx_timer = 0; 6925 callout_stop(&sc->watchdog_to); 6926 callout_stop(&sc->calib_to); 6927 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 6928 6929 /* Power OFF hardware. */ 6930 iwn_hw_stop(sc); 6931 } 6932 6933 static void 6934 iwn_stop(struct iwn_softc *sc) 6935 { 6936 IWN_LOCK(sc); 6937 iwn_stop_locked(sc); 6938 IWN_UNLOCK(sc); 6939 } 6940 6941 /* 6942 * Callback from net80211 to start a scan. 6943 */ 6944 static void 6945 iwn_scan_start(struct ieee80211com *ic) 6946 { 6947 struct ifnet *ifp = ic->ic_ifp; 6948 struct iwn_softc *sc = ifp->if_softc; 6949 6950 IWN_LOCK(sc); 6951 /* make the link LED blink while we're scanning */ 6952 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 6953 IWN_UNLOCK(sc); 6954 } 6955 6956 /* 6957 * Callback from net80211 to terminate a scan. 6958 */ 6959 static void 6960 iwn_scan_end(struct ieee80211com *ic) 6961 { 6962 struct ifnet *ifp = ic->ic_ifp; 6963 struct iwn_softc *sc = ifp->if_softc; 6964 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6965 6966 IWN_LOCK(sc); 6967 if (vap->iv_state == IEEE80211_S_RUN) { 6968 /* Set link LED to ON status if we are associated */ 6969 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 6970 } 6971 IWN_UNLOCK(sc); 6972 } 6973 6974 /* 6975 * Callback from net80211 to force a channel change. 6976 */ 6977 static void 6978 iwn_set_channel(struct ieee80211com *ic) 6979 { 6980 const struct ieee80211_channel *c = ic->ic_curchan; 6981 struct ifnet *ifp = ic->ic_ifp; 6982 struct iwn_softc *sc = ifp->if_softc; 6983 int error; 6984 6985 IWN_LOCK(sc); 6986 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 6987 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 6988 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 6989 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 6990 6991 /* 6992 * Only need to set the channel in Monitor mode. AP scanning and auth 6993 * are already taken care of by their respective firmware commands. 6994 */ 6995 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 6996 error = iwn_config(sc); 6997 if (error != 0) 6998 device_printf(sc->sc_dev, 6999 "%s: error %d settting channel\n", __func__, error); 7000 } 7001 IWN_UNLOCK(sc); 7002 } 7003 7004 /* 7005 * Callback from net80211 to start scanning of the current channel. 7006 */ 7007 static void 7008 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 7009 { 7010 struct ieee80211vap *vap = ss->ss_vap; 7011 struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc; 7012 int error; 7013 7014 IWN_LOCK(sc); 7015 error = iwn_scan(sc); 7016 IWN_UNLOCK(sc); 7017 if (error != 0) 7018 ieee80211_cancel_scan(vap); 7019 } 7020 7021 /* 7022 * Callback from net80211 to handle the minimum dwell time being met. 7023 * The intent is to terminate the scan but we just let the firmware 7024 * notify us when it's finished as we have no safe way to abort it. 7025 */ 7026 static void 7027 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 7028 { 7029 /* NB: don't try to abort scan; wait for firmware to finish */ 7030 } 7031 7032 static void 7033 iwn_hw_reset(void *arg0, int pending) 7034 { 7035 struct iwn_softc *sc = arg0; 7036 struct ifnet *ifp = sc->sc_ifp; 7037 struct ieee80211com *ic = ifp->if_l2com; 7038 7039 iwn_stop(sc); 7040 iwn_init(sc); 7041 ieee80211_notify_radio(ic, 1); 7042 } 7043