xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 #include "opt_wlan.h"
29 #include "opt_iwn.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/bus.h>
40 #include <sys/conf.h>
41 #include <sys/rman.h>
42 #include <sys/endian.h>
43 #include <sys/firmware.h>
44 #include <sys/limits.h>
45 #include <sys/module.h>
46 #include <sys/priv.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/clock.h>
53 
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/iwn/if_iwnreg.h>
71 #include <dev/iwn/if_iwnvar.h>
72 #include <dev/iwn/if_iwn_devid.h>
73 #include <dev/iwn/if_iwn_chip_cfg.h>
74 #include <dev/iwn/if_iwn_debug.h>
75 #include <dev/iwn/if_iwn_ioctl.h>
76 
77 struct iwn_ident {
78 	uint16_t	vendor;
79 	uint16_t	device;
80 	const char	*name;
81 };
82 
83 static const struct iwn_ident iwn_ident_table[] = {
84 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
85 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
86 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
87 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
88 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
89 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
90 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
91 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
92 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
93 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
94 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
95 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
96 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
97 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
98 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
99 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
100 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
101 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
102 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
103 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
104 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
105 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
106 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
107 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
108 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
109 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
110 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
111 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
112 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
113 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
114 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
115 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
117 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
118 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
119 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
120 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
121 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
122 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
123 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
124 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
125 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
126 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
127 	{ 0, 0, NULL }
128 };
129 
130 static int	iwn_probe(device_t);
131 static int	iwn_attach(device_t);
132 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
133 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
134 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
135 static void	iwn_radiotap_attach(struct iwn_softc *);
136 static void	iwn_sysctlattach(struct iwn_softc *);
137 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
138 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139 		    const uint8_t [IEEE80211_ADDR_LEN],
140 		    const uint8_t [IEEE80211_ADDR_LEN]);
141 static void	iwn_vap_delete(struct ieee80211vap *);
142 static int	iwn_detach(device_t);
143 static int	iwn_shutdown(device_t);
144 static int	iwn_suspend(device_t);
145 static int	iwn_resume(device_t);
146 static int	iwn_nic_lock(struct iwn_softc *);
147 static int	iwn_eeprom_lock(struct iwn_softc *);
148 static int	iwn_init_otprom(struct iwn_softc *);
149 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
150 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
152 		    void **, bus_size_t, bus_size_t);
153 static void	iwn_dma_contig_free(struct iwn_dma_info *);
154 static int	iwn_alloc_sched(struct iwn_softc *);
155 static void	iwn_free_sched(struct iwn_softc *);
156 static int	iwn_alloc_kw(struct iwn_softc *);
157 static void	iwn_free_kw(struct iwn_softc *);
158 static int	iwn_alloc_ict(struct iwn_softc *);
159 static void	iwn_free_ict(struct iwn_softc *);
160 static int	iwn_alloc_fwmem(struct iwn_softc *);
161 static void	iwn_free_fwmem(struct iwn_softc *);
162 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
163 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
164 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
166 		    int);
167 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
168 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
169 static void	iwn_check_tx_ring(struct iwn_softc *, int);
170 static void	iwn5000_ict_reset(struct iwn_softc *);
171 static int	iwn_read_eeprom(struct iwn_softc *,
172 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
173 static void	iwn4965_read_eeprom(struct iwn_softc *);
174 #ifdef	IWN_DEBUG
175 static void	iwn4965_print_power_group(struct iwn_softc *, int);
176 #endif
177 static void	iwn5000_read_eeprom(struct iwn_softc *);
178 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
179 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
180 		    struct ieee80211_channel[]);
181 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
184 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
185 		    struct ieee80211_channel *);
186 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
187 		    struct ieee80211_channel[]);
188 static int	iwn_setregdomain(struct ieee80211com *,
189 		    struct ieee80211_regdomain *, int,
190 		    struct ieee80211_channel[]);
191 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
192 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
193 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
194 static void	iwn_newassoc(struct ieee80211_node *, int);
195 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
196 static void	iwn_calib_timeout(void *);
197 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
198 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
199 		    struct iwn_rx_data *);
200 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
201 		    int, int, int);
202 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
211 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
212 		    uint8_t);
213 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
214 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
215 		    uint64_t, int, int);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_task(void *, int);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *, struct iwn_tx_ring *);
237 static void	iwn_xmit_task(void *arg0, int pending);
238 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
239 		    const struct ieee80211_bpf_params *);
240 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
241 static void	iwn_scan_timeout(void *);
242 static void	iwn_watchdog(void *);
243 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
244 static void	iwn_parent(struct ieee80211com *);
245 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
246 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn_set_link_quality(struct iwn_softc *,
251 		    struct ieee80211_node *);
252 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
253 static int	iwn_updateedca(struct ieee80211com *);
254 static void	iwn_set_promisc(struct iwn_softc *);
255 static void	iwn_update_promisc(struct ieee80211com *);
256 static void	iwn_update_mcast(struct ieee80211com *);
257 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
258 static int	iwn_set_critical_temp(struct iwn_softc *);
259 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
260 static void	iwn4965_power_calibration(struct iwn_softc *, int);
261 static int	iwn4965_set_txpower(struct iwn_softc *, int);
262 static int	iwn5000_set_txpower(struct iwn_softc *, int);
263 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
264 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
266 static int	iwn4965_get_temperature(struct iwn_softc *);
267 static int	iwn5000_get_temperature(struct iwn_softc *);
268 static int	iwn_init_sensitivity(struct iwn_softc *);
269 static void	iwn_collect_noise(struct iwn_softc *,
270 		    const struct iwn_rx_general_stats *);
271 static int	iwn4965_init_gains(struct iwn_softc *);
272 static int	iwn5000_init_gains(struct iwn_softc *);
273 static int	iwn4965_set_gains(struct iwn_softc *);
274 static int	iwn5000_set_gains(struct iwn_softc *);
275 static void	iwn_tune_sensitivity(struct iwn_softc *,
276 		    const struct iwn_rx_stats *);
277 static void	iwn_save_stats_counters(struct iwn_softc *,
278 		    const struct iwn_stats *);
279 static int	iwn_send_sensitivity(struct iwn_softc *);
280 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
281 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
282 static int	iwn_send_btcoex(struct iwn_softc *);
283 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
284 static int	iwn5000_runtime_calib(struct iwn_softc *);
285 static int	iwn_check_bss_filter(struct iwn_softc *);
286 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
287 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
288 static int	iwn_send_rxon(struct iwn_softc *, int, int);
289 static int	iwn_config(struct iwn_softc *);
290 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
291 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
292 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
294 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *, int, int, int);
296 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *);
298 static int	iwn_addba_request(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_addba_response(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_ampdu_tx_start(struct ieee80211com *,
303 		    struct ieee80211_node *, uint8_t);
304 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *);
306 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
307 		    struct ieee80211_node *, int, uint8_t, uint16_t);
308 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
309 		    uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static int	iwn5000_query_calibration(struct iwn_softc *);
315 static int	iwn5000_send_calibration(struct iwn_softc *);
316 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
317 static int	iwn5000_crystal_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
319 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
320 static int	iwn4965_post_alive(struct iwn_softc *);
321 static int	iwn5000_post_alive(struct iwn_softc *);
322 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
323 		    int);
324 static int	iwn4965_load_firmware(struct iwn_softc *);
325 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
326 		    const uint8_t *, int);
327 static int	iwn5000_load_firmware(struct iwn_softc *);
328 static int	iwn_read_firmware_leg(struct iwn_softc *,
329 		    struct iwn_fw_info *);
330 static int	iwn_read_firmware_tlv(struct iwn_softc *,
331 		    struct iwn_fw_info *, uint16_t);
332 static int	iwn_read_firmware(struct iwn_softc *);
333 static void	iwn_unload_firmware(struct iwn_softc *);
334 static int	iwn_clock_wait(struct iwn_softc *);
335 static int	iwn_apm_init(struct iwn_softc *);
336 static void	iwn_apm_stop_master(struct iwn_softc *);
337 static void	iwn_apm_stop(struct iwn_softc *);
338 static int	iwn4965_nic_config(struct iwn_softc *);
339 static int	iwn5000_nic_config(struct iwn_softc *);
340 static int	iwn_hw_prepare(struct iwn_softc *);
341 static int	iwn_hw_init(struct iwn_softc *);
342 static void	iwn_hw_stop(struct iwn_softc *);
343 static void	iwn_panicked(void *, int);
344 static int	iwn_init_locked(struct iwn_softc *);
345 static int	iwn_init(struct iwn_softc *);
346 static void	iwn_stop_locked(struct iwn_softc *);
347 static void	iwn_stop(struct iwn_softc *);
348 static void	iwn_scan_start(struct ieee80211com *);
349 static void	iwn_scan_end(struct ieee80211com *);
350 static void	iwn_set_channel(struct ieee80211com *);
351 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
352 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
353 #ifdef	IWN_DEBUG
354 static char	*iwn_get_csr_string(int);
355 static void	iwn_debug_register(struct iwn_softc *);
356 #endif
357 
358 static device_method_t iwn_methods[] = {
359 	/* Device interface */
360 	DEVMETHOD(device_probe,		iwn_probe),
361 	DEVMETHOD(device_attach,	iwn_attach),
362 	DEVMETHOD(device_detach,	iwn_detach),
363 	DEVMETHOD(device_shutdown,	iwn_shutdown),
364 	DEVMETHOD(device_suspend,	iwn_suspend),
365 	DEVMETHOD(device_resume,	iwn_resume),
366 
367 	DEVMETHOD_END
368 };
369 
370 static driver_t iwn_driver = {
371 	"iwn",
372 	iwn_methods,
373 	sizeof(struct iwn_softc)
374 };
375 
376 DRIVER_MODULE(iwn, pci, iwn_driver, NULL, NULL);
377 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
378     nitems(iwn_ident_table) - 1);
379 MODULE_VERSION(iwn, 1);
380 
381 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
382 MODULE_DEPEND(iwn, pci, 1, 1, 1);
383 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
384 
385 static d_ioctl_t iwn_cdev_ioctl;
386 static d_open_t iwn_cdev_open;
387 static d_close_t iwn_cdev_close;
388 
389 static struct cdevsw iwn_cdevsw = {
390 	.d_version = D_VERSION,
391 	.d_flags = 0,
392 	.d_open = iwn_cdev_open,
393 	.d_close = iwn_cdev_close,
394 	.d_ioctl = iwn_cdev_ioctl,
395 	.d_name = "iwn",
396 };
397 
398 static int
399 iwn_probe(device_t dev)
400 {
401 	const struct iwn_ident *ident;
402 
403 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
404 		if (pci_get_vendor(dev) == ident->vendor &&
405 		    pci_get_device(dev) == ident->device) {
406 			device_set_desc(dev, ident->name);
407 			return (BUS_PROBE_DEFAULT);
408 		}
409 	}
410 	return ENXIO;
411 }
412 
413 static int
414 iwn_is_3stream_device(struct iwn_softc *sc)
415 {
416 	/* XXX for now only 5300, until the 5350 can be tested */
417 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
418 		return (1);
419 	return (0);
420 }
421 
422 static int
423 iwn_attach(device_t dev)
424 {
425 	struct iwn_softc *sc = device_get_softc(dev);
426 	struct ieee80211com *ic;
427 	int i, error, rid;
428 
429 	sc->sc_dev = dev;
430 
431 #ifdef	IWN_DEBUG
432 	error = resource_int_value(device_get_name(sc->sc_dev),
433 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
434 	if (error != 0)
435 		sc->sc_debug = 0;
436 #else
437 	sc->sc_debug = 0;
438 #endif
439 
440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
441 
442 	/*
443 	 * Get the offset of the PCI Express Capability Structure in PCI
444 	 * Configuration Space.
445 	 */
446 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		return error;
450 	}
451 
452 	/* Clear device-specific "PCI retry timeout" register (41h). */
453 	pci_write_config(dev, 0x41, 0, 1);
454 
455 	/* Enable bus-mastering. */
456 	pci_enable_busmaster(dev);
457 
458 	rid = PCIR_BAR(0);
459 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
460 	    RF_ACTIVE);
461 	if (sc->mem == NULL) {
462 		device_printf(dev, "can't map mem space\n");
463 		error = ENOMEM;
464 		return error;
465 	}
466 	sc->sc_st = rman_get_bustag(sc->mem);
467 	sc->sc_sh = rman_get_bushandle(sc->mem);
468 
469 	i = 1;
470 	rid = 0;
471 	if (pci_alloc_msi(dev, &i) == 0)
472 		rid = 1;
473 	/* Install interrupt handler. */
474 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
475 	    (rid != 0 ? 0 : RF_SHAREABLE));
476 	if (sc->irq == NULL) {
477 		device_printf(dev, "can't map interrupt\n");
478 		error = ENOMEM;
479 		goto fail;
480 	}
481 
482 	IWN_LOCK_INIT(sc);
483 
484 	/* Read hardware revision and attach. */
485 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
486 	    & IWN_HW_REV_TYPE_MASK;
487 	sc->subdevice_id = pci_get_subdevice(dev);
488 
489 	/*
490 	 * 4965 versus 5000 and later have different methods.
491 	 * Let's set those up first.
492 	 */
493 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
494 		iwn4965_attach(sc, pci_get_device(dev));
495 	else
496 		iwn5000_attach(sc, pci_get_device(dev));
497 
498 	/*
499 	 * Next, let's setup the various parameters of each NIC.
500 	 */
501 	error = iwn_config_specific(sc, pci_get_device(dev));
502 	if (error != 0) {
503 		device_printf(dev, "could not attach device, error %d\n",
504 		    error);
505 		goto fail;
506 	}
507 
508 	if ((error = iwn_hw_prepare(sc)) != 0) {
509 		device_printf(dev, "hardware not ready, error %d\n", error);
510 		goto fail;
511 	}
512 
513 	/* Allocate DMA memory for firmware transfers. */
514 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
515 		device_printf(dev,
516 		    "could not allocate memory for firmware, error %d\n",
517 		    error);
518 		goto fail;
519 	}
520 
521 	/* Allocate "Keep Warm" page. */
522 	if ((error = iwn_alloc_kw(sc)) != 0) {
523 		device_printf(dev,
524 		    "could not allocate keep warm page, error %d\n", error);
525 		goto fail;
526 	}
527 
528 	/* Allocate ICT table for 5000 Series. */
529 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
530 	    (error = iwn_alloc_ict(sc)) != 0) {
531 		device_printf(dev, "could not allocate ICT table, error %d\n",
532 		    error);
533 		goto fail;
534 	}
535 
536 	/* Allocate TX scheduler "rings". */
537 	if ((error = iwn_alloc_sched(sc)) != 0) {
538 		device_printf(dev,
539 		    "could not allocate TX scheduler rings, error %d\n", error);
540 		goto fail;
541 	}
542 
543 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
544 	for (i = 0; i < sc->ntxqs; i++) {
545 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
546 			device_printf(dev,
547 			    "could not allocate TX ring %d, error %d\n", i,
548 			    error);
549 			goto fail;
550 		}
551 	}
552 
553 	/* Allocate RX ring. */
554 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
555 		device_printf(dev, "could not allocate RX ring, error %d\n",
556 		    error);
557 		goto fail;
558 	}
559 
560 	/* Clear pending interrupts. */
561 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
562 
563 	ic = &sc->sc_ic;
564 	ic->ic_softc = sc;
565 	ic->ic_name = device_get_nameunit(dev);
566 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
567 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
568 
569 	/* Set device capabilities. */
570 	ic->ic_caps =
571 		  IEEE80211_C_STA		/* station mode supported */
572 		| IEEE80211_C_MONITOR		/* monitor mode supported */
573 #if 0
574 		| IEEE80211_C_BGSCAN		/* background scanning */
575 #endif
576 		| IEEE80211_C_TXPMGT		/* tx power management */
577 		| IEEE80211_C_SHSLOT		/* short slot time supported */
578 		| IEEE80211_C_WPA
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 #if 0
581 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
582 #endif
583 		| IEEE80211_C_WME		/* WME */
584 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
585 		;
586 
587 	/* Read MAC address, channels, etc from EEPROM. */
588 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
589 		device_printf(dev, "could not read EEPROM, error %d\n",
590 		    error);
591 		goto fail;
592 	}
593 
594 	/* Count the number of available chains. */
595 	sc->ntxchains =
596 	    ((sc->txchainmask >> 2) & 1) +
597 	    ((sc->txchainmask >> 1) & 1) +
598 	    ((sc->txchainmask >> 0) & 1);
599 	sc->nrxchains =
600 	    ((sc->rxchainmask >> 2) & 1) +
601 	    ((sc->rxchainmask >> 1) & 1) +
602 	    ((sc->rxchainmask >> 0) & 1);
603 	if (bootverbose) {
604 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
605 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
606 		    ic->ic_macaddr, ":");
607 	}
608 
609 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
610 		ic->ic_rxstream = sc->nrxchains;
611 		ic->ic_txstream = sc->ntxchains;
612 
613 		/*
614 		 * Some of the 3 antenna devices (ie, the 4965) only supports
615 		 * 2x2 operation.  So correct the number of streams if
616 		 * it's not a 3-stream device.
617 		 */
618 		if (! iwn_is_3stream_device(sc)) {
619 			if (ic->ic_rxstream > 2)
620 				ic->ic_rxstream = 2;
621 			if (ic->ic_txstream > 2)
622 				ic->ic_txstream = 2;
623 		}
624 
625 		ic->ic_htcaps =
626 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
627 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
628 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
629 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
630 #ifdef notyet
631 			| IEEE80211_HTCAP_GREENFIELD
632 #if IWN_RBUF_SIZE == 8192
633 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
634 #else
635 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
636 #endif
637 #endif
638 			/* s/w capabilities */
639 			| IEEE80211_HTC_HT		/* HT operation */
640 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
641 #ifdef notyet
642 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
643 #endif
644 			;
645 	}
646 
647 	ieee80211_ifattach(ic);
648 	ic->ic_vap_create = iwn_vap_create;
649 	ic->ic_ioctl = iwn_ioctl;
650 	ic->ic_parent = iwn_parent;
651 	ic->ic_vap_delete = iwn_vap_delete;
652 	ic->ic_transmit = iwn_transmit;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
656 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
658 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
659 	sc->sc_addba_request = ic->ic_addba_request;
660 	ic->ic_addba_request = iwn_addba_request;
661 	sc->sc_addba_response = ic->ic_addba_response;
662 	ic->ic_addba_response = iwn_addba_response;
663 	sc->sc_addba_stop = ic->ic_addba_stop;
664 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
665 	ic->ic_newassoc = iwn_newassoc;
666 	ic->ic_wme.wme_update = iwn_updateedca;
667 	ic->ic_update_promisc = iwn_update_promisc;
668 	ic->ic_update_mcast = iwn_update_mcast;
669 	ic->ic_scan_start = iwn_scan_start;
670 	ic->ic_scan_end = iwn_scan_end;
671 	ic->ic_set_channel = iwn_set_channel;
672 	ic->ic_scan_curchan = iwn_scan_curchan;
673 	ic->ic_scan_mindwell = iwn_scan_mindwell;
674 	ic->ic_getradiocaps = iwn_getradiocaps;
675 	ic->ic_setregdomain = iwn_setregdomain;
676 
677 	iwn_radiotap_attach(sc);
678 
679 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
680 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
681 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
682 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
683 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
684 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
685 
686 	mbufq_init(&sc->sc_xmit_queue, 1024);
687 
688 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
689 	    taskqueue_thread_enqueue, &sc->sc_tq);
690 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
691 	if (error != 0) {
692 		device_printf(dev, "can't start threads, error %d\n", error);
693 		goto fail;
694 	}
695 
696 	iwn_sysctlattach(sc);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
702 	    NULL, iwn_intr, sc, &sc->sc_ih);
703 	if (error != 0) {
704 		device_printf(dev, "can't establish interrupt, error %d\n",
705 		    error);
706 		goto fail;
707 	}
708 
709 #if 0
710 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
711 	    __func__,
712 	    sizeof(struct iwn_stats),
713 	    sizeof(struct iwn_stats_bt));
714 #endif
715 
716 	if (bootverbose)
717 		ieee80211_announce(ic);
718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
719 
720 	/* Add debug ioctl right at the end */
721 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
722 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
723 	if (sc->sc_cdev == NULL) {
724 		device_printf(dev, "failed to create debug character device\n");
725 	} else {
726 		sc->sc_cdev->si_drv1 = sc;
727 	}
728 	return 0;
729 fail:
730 	iwn_detach(dev);
731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
732 	return error;
733 }
734 
735 /*
736  * Define specific configuration based on device id and subdevice id
737  * pid : PCI device id
738  */
739 static int
740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
741 {
742 
743 	switch (pid) {
744 /* 4965 series */
745 	case IWN_DID_4965_1:
746 	case IWN_DID_4965_2:
747 	case IWN_DID_4965_3:
748 	case IWN_DID_4965_4:
749 		sc->base_params = &iwn4965_base_params;
750 		sc->limits = &iwn4965_sensitivity_limits;
751 		sc->fwname = "iwn4965fw";
752 		/* Override chains masks, ROM is known to be broken. */
753 		sc->txchainmask = IWN_ANT_AB;
754 		sc->rxchainmask = IWN_ANT_ABC;
755 		/* Enable normal btcoex */
756 		sc->sc_flags |= IWN_FLAG_BTCOEX;
757 		break;
758 /* 1000 Series */
759 	case IWN_DID_1000_1:
760 	case IWN_DID_1000_2:
761 		switch(sc->subdevice_id) {
762 			case	IWN_SDID_1000_1:
763 			case	IWN_SDID_1000_2:
764 			case	IWN_SDID_1000_3:
765 			case	IWN_SDID_1000_4:
766 			case	IWN_SDID_1000_5:
767 			case	IWN_SDID_1000_6:
768 			case	IWN_SDID_1000_7:
769 			case	IWN_SDID_1000_8:
770 			case	IWN_SDID_1000_9:
771 			case	IWN_SDID_1000_10:
772 			case	IWN_SDID_1000_11:
773 			case	IWN_SDID_1000_12:
774 				sc->limits = &iwn1000_sensitivity_limits;
775 				sc->base_params = &iwn1000_base_params;
776 				sc->fwname = "iwn1000fw";
777 				break;
778 			default:
779 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
780 				    "0x%04x rev %d not supported (subdevice)\n", pid,
781 				    sc->subdevice_id,sc->hw_type);
782 				return ENOTSUP;
783 		}
784 		break;
785 /* 6x00 Series */
786 	case IWN_DID_6x00_2:
787 	case IWN_DID_6x00_4:
788 	case IWN_DID_6x00_1:
789 	case IWN_DID_6x00_3:
790 		sc->fwname = "iwn6000fw";
791 		sc->limits = &iwn6000_sensitivity_limits;
792 		switch(sc->subdevice_id) {
793 			case IWN_SDID_6x00_1:
794 			case IWN_SDID_6x00_2:
795 			case IWN_SDID_6x00_8:
796 				//iwl6000_3agn_cfg
797 				sc->base_params = &iwn_6000_base_params;
798 				break;
799 			case IWN_SDID_6x00_3:
800 			case IWN_SDID_6x00_6:
801 			case IWN_SDID_6x00_9:
802 				////iwl6000i_2agn
803 			case IWN_SDID_6x00_4:
804 			case IWN_SDID_6x00_7:
805 			case IWN_SDID_6x00_10:
806 				//iwl6000i_2abg_cfg
807 			case IWN_SDID_6x00_5:
808 				//iwl6000i_2bg_cfg
809 				sc->base_params = &iwn_6000i_base_params;
810 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
811 				sc->txchainmask = IWN_ANT_BC;
812 				sc->rxchainmask = IWN_ANT_BC;
813 				break;
814 			default:
815 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
816 				    "0x%04x rev %d not supported (subdevice)\n", pid,
817 				    sc->subdevice_id,sc->hw_type);
818 				return ENOTSUP;
819 		}
820 		break;
821 /* 6x05 Series */
822 	case IWN_DID_6x05_1:
823 	case IWN_DID_6x05_2:
824 		switch(sc->subdevice_id) {
825 			case IWN_SDID_6x05_1:
826 			case IWN_SDID_6x05_4:
827 			case IWN_SDID_6x05_6:
828 				//iwl6005_2agn_cfg
829 			case IWN_SDID_6x05_2:
830 			case IWN_SDID_6x05_5:
831 			case IWN_SDID_6x05_7:
832 				//iwl6005_2abg_cfg
833 			case IWN_SDID_6x05_3:
834 				//iwl6005_2bg_cfg
835 			case IWN_SDID_6x05_8:
836 			case IWN_SDID_6x05_9:
837 				//iwl6005_2agn_sff_cfg
838 			case IWN_SDID_6x05_10:
839 				//iwl6005_2agn_d_cfg
840 			case IWN_SDID_6x05_11:
841 				//iwl6005_2agn_mow1_cfg
842 			case IWN_SDID_6x05_12:
843 				//iwl6005_2agn_mow2_cfg
844 				sc->fwname = "iwn6000g2afw";
845 				sc->limits = &iwn6000_sensitivity_limits;
846 				sc->base_params = &iwn_6000g2_base_params;
847 				break;
848 			default:
849 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
850 				    "0x%04x rev %d not supported (subdevice)\n", pid,
851 				    sc->subdevice_id,sc->hw_type);
852 				return ENOTSUP;
853 		}
854 		break;
855 /* 6x35 Series */
856 	case IWN_DID_6035_1:
857 	case IWN_DID_6035_2:
858 		switch(sc->subdevice_id) {
859 			case IWN_SDID_6035_1:
860 			case IWN_SDID_6035_2:
861 			case IWN_SDID_6035_3:
862 			case IWN_SDID_6035_4:
863 			case IWN_SDID_6035_5:
864 				sc->fwname = "iwn6000g2bfw";
865 				sc->limits = &iwn6235_sensitivity_limits;
866 				sc->base_params = &iwn_6235_base_params;
867 				break;
868 			default:
869 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
870 				    "0x%04x rev %d not supported (subdevice)\n", pid,
871 				    sc->subdevice_id,sc->hw_type);
872 				return ENOTSUP;
873 		}
874 		break;
875 /* 6x50 WiFi/WiMax Series */
876 	case IWN_DID_6050_1:
877 	case IWN_DID_6050_2:
878 		switch(sc->subdevice_id) {
879 			case IWN_SDID_6050_1:
880 			case IWN_SDID_6050_3:
881 			case IWN_SDID_6050_5:
882 				//iwl6050_2agn_cfg
883 			case IWN_SDID_6050_2:
884 			case IWN_SDID_6050_4:
885 			case IWN_SDID_6050_6:
886 				//iwl6050_2abg_cfg
887 				sc->fwname = "iwn6050fw";
888 				sc->txchainmask = IWN_ANT_AB;
889 				sc->rxchainmask = IWN_ANT_AB;
890 				sc->limits = &iwn6000_sensitivity_limits;
891 				sc->base_params = &iwn_6050_base_params;
892 				break;
893 			default:
894 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
895 				    "0x%04x rev %d not supported (subdevice)\n", pid,
896 				    sc->subdevice_id,sc->hw_type);
897 				return ENOTSUP;
898 		}
899 		break;
900 /* 6150 WiFi/WiMax Series */
901 	case IWN_DID_6150_1:
902 	case IWN_DID_6150_2:
903 		switch(sc->subdevice_id) {
904 			case IWN_SDID_6150_1:
905 			case IWN_SDID_6150_3:
906 			case IWN_SDID_6150_5:
907 				// iwl6150_bgn_cfg
908 			case IWN_SDID_6150_2:
909 			case IWN_SDID_6150_4:
910 			case IWN_SDID_6150_6:
911 				//iwl6150_bg_cfg
912 				sc->fwname = "iwn6050fw";
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6150_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6030 Series and 1030 Series */
924 	case IWN_DID_x030_1:
925 	case IWN_DID_x030_2:
926 	case IWN_DID_x030_3:
927 	case IWN_DID_x030_4:
928 		switch(sc->subdevice_id) {
929 			case IWN_SDID_x030_1:
930 			case IWN_SDID_x030_3:
931 			case IWN_SDID_x030_5:
932 			// iwl1030_bgn_cfg
933 			case IWN_SDID_x030_2:
934 			case IWN_SDID_x030_4:
935 			case IWN_SDID_x030_6:
936 			//iwl1030_bg_cfg
937 			case IWN_SDID_x030_7:
938 			case IWN_SDID_x030_10:
939 			case IWN_SDID_x030_14:
940 			//iwl6030_2agn_cfg
941 			case IWN_SDID_x030_8:
942 			case IWN_SDID_x030_11:
943 			case IWN_SDID_x030_15:
944 			// iwl6030_2bgn_cfg
945 			case IWN_SDID_x030_9:
946 			case IWN_SDID_x030_12:
947 			case IWN_SDID_x030_16:
948 			// iwl6030_2abg_cfg
949 			case IWN_SDID_x030_13:
950 			//iwl6030_2bg_cfg
951 				sc->fwname = "iwn6000g2bfw";
952 				sc->limits = &iwn6000_sensitivity_limits;
953 				sc->base_params = &iwn_6000g2b_base_params;
954 				break;
955 			default:
956 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
957 				    "0x%04x rev %d not supported (subdevice)\n", pid,
958 				    sc->subdevice_id,sc->hw_type);
959 				return ENOTSUP;
960 		}
961 		break;
962 /* 130 Series WiFi */
963 /* XXX: This series will need adjustment for rate.
964  * see rx_with_siso_diversity in linux kernel
965  */
966 	case IWN_DID_130_1:
967 	case IWN_DID_130_2:
968 		switch(sc->subdevice_id) {
969 			case IWN_SDID_130_1:
970 			case IWN_SDID_130_3:
971 			case IWN_SDID_130_5:
972 			//iwl130_bgn_cfg
973 			case IWN_SDID_130_2:
974 			case IWN_SDID_130_4:
975 			case IWN_SDID_130_6:
976 			//iwl130_bg_cfg
977 				sc->fwname = "iwn6000g2bfw";
978 				sc->limits = &iwn6000_sensitivity_limits;
979 				sc->base_params = &iwn_6000g2b_base_params;
980 				break;
981 			default:
982 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
983 				    "0x%04x rev %d not supported (subdevice)\n", pid,
984 				    sc->subdevice_id,sc->hw_type);
985 				return ENOTSUP;
986 		}
987 		break;
988 /* 100 Series WiFi */
989 	case IWN_DID_100_1:
990 	case IWN_DID_100_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_100_1:
993 			case IWN_SDID_100_2:
994 			case IWN_SDID_100_3:
995 			case IWN_SDID_100_4:
996 			case IWN_SDID_100_5:
997 			case IWN_SDID_100_6:
998 				sc->limits = &iwn1000_sensitivity_limits;
999 				sc->base_params = &iwn1000_base_params;
1000 				sc->fwname = "iwn100fw";
1001 				break;
1002 			default:
1003 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1004 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1005 				    sc->subdevice_id,sc->hw_type);
1006 				return ENOTSUP;
1007 		}
1008 		break;
1009 
1010 /* 105 Series */
1011 /* XXX: This series will need adjustment for rate.
1012  * see rx_with_siso_diversity in linux kernel
1013  */
1014 	case IWN_DID_105_1:
1015 	case IWN_DID_105_2:
1016 		switch(sc->subdevice_id) {
1017 			case IWN_SDID_105_1:
1018 			case IWN_SDID_105_2:
1019 			case IWN_SDID_105_3:
1020 			//iwl105_bgn_cfg
1021 			case IWN_SDID_105_4:
1022 			//iwl105_bgn_d_cfg
1023 				sc->limits = &iwn2030_sensitivity_limits;
1024 				sc->base_params = &iwn2000_base_params;
1025 				sc->fwname = "iwn105fw";
1026 				break;
1027 			default:
1028 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1029 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1030 				    sc->subdevice_id,sc->hw_type);
1031 				return ENOTSUP;
1032 		}
1033 		break;
1034 
1035 /* 135 Series */
1036 /* XXX: This series will need adjustment for rate.
1037  * see rx_with_siso_diversity in linux kernel
1038  */
1039 	case IWN_DID_135_1:
1040 	case IWN_DID_135_2:
1041 		switch(sc->subdevice_id) {
1042 			case IWN_SDID_135_1:
1043 			case IWN_SDID_135_2:
1044 			case IWN_SDID_135_3:
1045 				sc->limits = &iwn2030_sensitivity_limits;
1046 				sc->base_params = &iwn2030_base_params;
1047 				sc->fwname = "iwn135fw";
1048 				break;
1049 			default:
1050 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1051 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1052 				    sc->subdevice_id,sc->hw_type);
1053 				return ENOTSUP;
1054 		}
1055 		break;
1056 
1057 /* 2x00 Series */
1058 	case IWN_DID_2x00_1:
1059 	case IWN_DID_2x00_2:
1060 		switch(sc->subdevice_id) {
1061 			case IWN_SDID_2x00_1:
1062 			case IWN_SDID_2x00_2:
1063 			case IWN_SDID_2x00_3:
1064 			//iwl2000_2bgn_cfg
1065 			case IWN_SDID_2x00_4:
1066 			//iwl2000_2bgn_d_cfg
1067 				sc->limits = &iwn2030_sensitivity_limits;
1068 				sc->base_params = &iwn2000_base_params;
1069 				sc->fwname = "iwn2000fw";
1070 				break;
1071 			default:
1072 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1073 				    "0x%04x rev %d not supported (subdevice) \n",
1074 				    pid, sc->subdevice_id, sc->hw_type);
1075 				return ENOTSUP;
1076 		}
1077 		break;
1078 /* 2x30 Series */
1079 	case IWN_DID_2x30_1:
1080 	case IWN_DID_2x30_2:
1081 		switch(sc->subdevice_id) {
1082 			case IWN_SDID_2x30_1:
1083 			case IWN_SDID_2x30_3:
1084 			case IWN_SDID_2x30_5:
1085 			//iwl100_bgn_cfg
1086 			case IWN_SDID_2x30_2:
1087 			case IWN_SDID_2x30_4:
1088 			case IWN_SDID_2x30_6:
1089 			//iwl100_bg_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2030_base_params;
1092 				sc->fwname = "iwn2030fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1097 				    sc->subdevice_id,sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 5x00 Series */
1102 	case IWN_DID_5x00_1:
1103 	case IWN_DID_5x00_2:
1104 	case IWN_DID_5x00_3:
1105 	case IWN_DID_5x00_4:
1106 		sc->limits = &iwn5000_sensitivity_limits;
1107 		sc->base_params = &iwn5000_base_params;
1108 		sc->fwname = "iwn5000fw";
1109 		switch(sc->subdevice_id) {
1110 			case IWN_SDID_5x00_1:
1111 			case IWN_SDID_5x00_2:
1112 			case IWN_SDID_5x00_3:
1113 			case IWN_SDID_5x00_4:
1114 			case IWN_SDID_5x00_9:
1115 			case IWN_SDID_5x00_10:
1116 			case IWN_SDID_5x00_11:
1117 			case IWN_SDID_5x00_12:
1118 			case IWN_SDID_5x00_17:
1119 			case IWN_SDID_5x00_18:
1120 			case IWN_SDID_5x00_19:
1121 			case IWN_SDID_5x00_20:
1122 			//iwl5100_agn_cfg
1123 				sc->txchainmask = IWN_ANT_B;
1124 				sc->rxchainmask = IWN_ANT_AB;
1125 				break;
1126 			case IWN_SDID_5x00_5:
1127 			case IWN_SDID_5x00_6:
1128 			case IWN_SDID_5x00_13:
1129 			case IWN_SDID_5x00_14:
1130 			case IWN_SDID_5x00_21:
1131 			case IWN_SDID_5x00_22:
1132 			//iwl5100_bgn_cfg
1133 				sc->txchainmask = IWN_ANT_B;
1134 				sc->rxchainmask = IWN_ANT_AB;
1135 				break;
1136 			case IWN_SDID_5x00_7:
1137 			case IWN_SDID_5x00_8:
1138 			case IWN_SDID_5x00_15:
1139 			case IWN_SDID_5x00_16:
1140 			case IWN_SDID_5x00_23:
1141 			case IWN_SDID_5x00_24:
1142 			//iwl5100_abg_cfg
1143 				sc->txchainmask = IWN_ANT_B;
1144 				sc->rxchainmask = IWN_ANT_AB;
1145 				break;
1146 			case IWN_SDID_5x00_25:
1147 			case IWN_SDID_5x00_26:
1148 			case IWN_SDID_5x00_27:
1149 			case IWN_SDID_5x00_28:
1150 			case IWN_SDID_5x00_29:
1151 			case IWN_SDID_5x00_30:
1152 			case IWN_SDID_5x00_31:
1153 			case IWN_SDID_5x00_32:
1154 			case IWN_SDID_5x00_33:
1155 			case IWN_SDID_5x00_34:
1156 			case IWN_SDID_5x00_35:
1157 			case IWN_SDID_5x00_36:
1158 			//iwl5300_agn_cfg
1159 				sc->txchainmask = IWN_ANT_ABC;
1160 				sc->rxchainmask = IWN_ANT_ABC;
1161 				break;
1162 			default:
1163 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1164 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1165 				    sc->subdevice_id,sc->hw_type);
1166 				return ENOTSUP;
1167 		}
1168 		break;
1169 /* 5x50 Series */
1170 	case IWN_DID_5x50_1:
1171 	case IWN_DID_5x50_2:
1172 	case IWN_DID_5x50_3:
1173 	case IWN_DID_5x50_4:
1174 		sc->limits = &iwn5000_sensitivity_limits;
1175 		sc->base_params = &iwn5000_base_params;
1176 		sc->fwname = "iwn5000fw";
1177 		switch(sc->subdevice_id) {
1178 			case IWN_SDID_5x50_1:
1179 			case IWN_SDID_5x50_2:
1180 			case IWN_SDID_5x50_3:
1181 			//iwl5350_agn_cfg
1182 				sc->limits = &iwn5000_sensitivity_limits;
1183 				sc->base_params = &iwn5000_base_params;
1184 				sc->fwname = "iwn5000fw";
1185 				break;
1186 			case IWN_SDID_5x50_4:
1187 			case IWN_SDID_5x50_5:
1188 			case IWN_SDID_5x50_8:
1189 			case IWN_SDID_5x50_9:
1190 			case IWN_SDID_5x50_10:
1191 			case IWN_SDID_5x50_11:
1192 			//iwl5150_agn_cfg
1193 			case IWN_SDID_5x50_6:
1194 			case IWN_SDID_5x50_7:
1195 			case IWN_SDID_5x50_12:
1196 			case IWN_SDID_5x50_13:
1197 			//iwl5150_abg_cfg
1198 				sc->limits = &iwn5000_sensitivity_limits;
1199 				sc->fwname = "iwn5150fw";
1200 				sc->base_params = &iwn_5x50_base_params;
1201 				break;
1202 			default:
1203 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1204 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1205 				    sc->subdevice_id,sc->hw_type);
1206 				return ENOTSUP;
1207 		}
1208 		break;
1209 	default:
1210 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1211 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1212 		     sc->hw_type);
1213 		return ENOTSUP;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static void
1219 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1220 {
1221 	struct iwn_ops *ops = &sc->ops;
1222 
1223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1224 
1225 	ops->load_firmware = iwn4965_load_firmware;
1226 	ops->read_eeprom = iwn4965_read_eeprom;
1227 	ops->post_alive = iwn4965_post_alive;
1228 	ops->nic_config = iwn4965_nic_config;
1229 	ops->update_sched = iwn4965_update_sched;
1230 	ops->get_temperature = iwn4965_get_temperature;
1231 	ops->get_rssi = iwn4965_get_rssi;
1232 	ops->set_txpower = iwn4965_set_txpower;
1233 	ops->init_gains = iwn4965_init_gains;
1234 	ops->set_gains = iwn4965_set_gains;
1235 	ops->rxon_assoc = iwn4965_rxon_assoc;
1236 	ops->add_node = iwn4965_add_node;
1237 	ops->tx_done = iwn4965_tx_done;
1238 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1239 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1240 	sc->ntxqs = IWN4965_NTXQUEUES;
1241 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1242 	sc->ndmachnls = IWN4965_NDMACHNLS;
1243 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1244 	sc->rxonsz = IWN4965_RXONSZ;
1245 	sc->schedsz = IWN4965_SCHEDSZ;
1246 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1247 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1248 	sc->fwsz = IWN4965_FWSZ;
1249 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1250 	sc->limits = &iwn4965_sensitivity_limits;
1251 	sc->fwname = "iwn4965fw";
1252 	/* Override chains masks, ROM is known to be broken. */
1253 	sc->txchainmask = IWN_ANT_AB;
1254 	sc->rxchainmask = IWN_ANT_ABC;
1255 	/* Enable normal btcoex */
1256 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1257 
1258 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1259 }
1260 
1261 static void
1262 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1263 {
1264 	struct iwn_ops *ops = &sc->ops;
1265 
1266 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1267 
1268 	ops->load_firmware = iwn5000_load_firmware;
1269 	ops->read_eeprom = iwn5000_read_eeprom;
1270 	ops->post_alive = iwn5000_post_alive;
1271 	ops->nic_config = iwn5000_nic_config;
1272 	ops->update_sched = iwn5000_update_sched;
1273 	ops->get_temperature = iwn5000_get_temperature;
1274 	ops->get_rssi = iwn5000_get_rssi;
1275 	ops->set_txpower = iwn5000_set_txpower;
1276 	ops->init_gains = iwn5000_init_gains;
1277 	ops->set_gains = iwn5000_set_gains;
1278 	ops->rxon_assoc = iwn5000_rxon_assoc;
1279 	ops->add_node = iwn5000_add_node;
1280 	ops->tx_done = iwn5000_tx_done;
1281 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1282 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1283 	sc->ntxqs = IWN5000_NTXQUEUES;
1284 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1285 	sc->ndmachnls = IWN5000_NDMACHNLS;
1286 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1287 	sc->rxonsz = IWN5000_RXONSZ;
1288 	sc->schedsz = IWN5000_SCHEDSZ;
1289 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1290 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1291 	sc->fwsz = IWN5000_FWSZ;
1292 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1293 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1294 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1295 
1296 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1297 }
1298 
1299 /*
1300  * Attach the interface to 802.11 radiotap.
1301  */
1302 static void
1303 iwn_radiotap_attach(struct iwn_softc *sc)
1304 {
1305 
1306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1307 	ieee80211_radiotap_attach(&sc->sc_ic,
1308 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1309 		IWN_TX_RADIOTAP_PRESENT,
1310 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1311 		IWN_RX_RADIOTAP_PRESENT);
1312 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1313 }
1314 
1315 static void
1316 iwn_sysctlattach(struct iwn_softc *sc)
1317 {
1318 #ifdef	IWN_DEBUG
1319 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1320 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1321 
1322 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1323 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1324 		"control debugging printfs");
1325 #endif
1326 }
1327 
1328 static struct ieee80211vap *
1329 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1330     enum ieee80211_opmode opmode, int flags,
1331     const uint8_t bssid[IEEE80211_ADDR_LEN],
1332     const uint8_t mac[IEEE80211_ADDR_LEN])
1333 {
1334 	struct iwn_softc *sc = ic->ic_softc;
1335 	struct iwn_vap *ivp;
1336 	struct ieee80211vap *vap;
1337 
1338 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1339 		return NULL;
1340 
1341 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1342 	vap = &ivp->iv_vap;
1343 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1344 	ivp->ctx = IWN_RXON_BSS_CTX;
1345 	vap->iv_bmissthreshold = 10;		/* override default */
1346 	/* Override with driver methods. */
1347 	ivp->iv_newstate = vap->iv_newstate;
1348 	vap->iv_newstate = iwn_newstate;
1349 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1350 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1351 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1352 
1353 	ieee80211_ratectl_init(vap);
1354 	/* Complete setup. */
1355 	ieee80211_vap_attach(vap, ieee80211_media_change,
1356 	    ieee80211_media_status, mac);
1357 	ic->ic_opmode = opmode;
1358 	return vap;
1359 }
1360 
1361 static void
1362 iwn_vap_delete(struct ieee80211vap *vap)
1363 {
1364 	struct iwn_vap *ivp = IWN_VAP(vap);
1365 
1366 	ieee80211_ratectl_deinit(vap);
1367 	ieee80211_vap_detach(vap);
1368 	free(ivp, M_80211_VAP);
1369 }
1370 
1371 static void
1372 iwn_xmit_queue_drain(struct iwn_softc *sc)
1373 {
1374 	struct mbuf *m;
1375 	struct ieee80211_node *ni;
1376 
1377 	IWN_LOCK_ASSERT(sc);
1378 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1379 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1380 		ieee80211_free_node(ni);
1381 		m_freem(m);
1382 	}
1383 }
1384 
1385 static int
1386 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1387 {
1388 
1389 	IWN_LOCK_ASSERT(sc);
1390 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1391 }
1392 
1393 static int
1394 iwn_detach(device_t dev)
1395 {
1396 	struct iwn_softc *sc = device_get_softc(dev);
1397 	int qid;
1398 
1399 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1400 
1401 	if (sc->sc_ic.ic_softc != NULL) {
1402 		/* Free the mbuf queue and node references */
1403 		IWN_LOCK(sc);
1404 		iwn_xmit_queue_drain(sc);
1405 		IWN_UNLOCK(sc);
1406 
1407 		iwn_stop(sc);
1408 
1409 		taskqueue_drain_all(sc->sc_tq);
1410 		taskqueue_free(sc->sc_tq);
1411 
1412 		callout_drain(&sc->watchdog_to);
1413 		callout_drain(&sc->scan_timeout);
1414 		callout_drain(&sc->calib_to);
1415 		ieee80211_ifdetach(&sc->sc_ic);
1416 	}
1417 
1418 	/* Uninstall interrupt handler. */
1419 	if (sc->irq != NULL) {
1420 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1421 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1422 		    sc->irq);
1423 		pci_release_msi(dev);
1424 	}
1425 
1426 	/* Free DMA resources. */
1427 	iwn_free_rx_ring(sc, &sc->rxq);
1428 	for (qid = 0; qid < sc->ntxqs; qid++)
1429 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1430 	iwn_free_sched(sc);
1431 	iwn_free_kw(sc);
1432 	if (sc->ict != NULL)
1433 		iwn_free_ict(sc);
1434 	iwn_free_fwmem(sc);
1435 
1436 	if (sc->mem != NULL)
1437 		bus_release_resource(dev, SYS_RES_MEMORY,
1438 		    rman_get_rid(sc->mem), sc->mem);
1439 
1440 	if (sc->sc_cdev) {
1441 		destroy_dev(sc->sc_cdev);
1442 		sc->sc_cdev = NULL;
1443 	}
1444 
1445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1446 	IWN_LOCK_DESTROY(sc);
1447 	return 0;
1448 }
1449 
1450 static int
1451 iwn_shutdown(device_t dev)
1452 {
1453 	struct iwn_softc *sc = device_get_softc(dev);
1454 
1455 	iwn_stop(sc);
1456 	return 0;
1457 }
1458 
1459 static int
1460 iwn_suspend(device_t dev)
1461 {
1462 	struct iwn_softc *sc = device_get_softc(dev);
1463 
1464 	ieee80211_suspend_all(&sc->sc_ic);
1465 	return 0;
1466 }
1467 
1468 static int
1469 iwn_resume(device_t dev)
1470 {
1471 	struct iwn_softc *sc = device_get_softc(dev);
1472 
1473 	/* Clear device-specific "PCI retry timeout" register (41h). */
1474 	pci_write_config(dev, 0x41, 0, 1);
1475 
1476 	ieee80211_resume_all(&sc->sc_ic);
1477 	return 0;
1478 }
1479 
1480 static int
1481 iwn_nic_lock(struct iwn_softc *sc)
1482 {
1483 	int ntries;
1484 
1485 	/* Request exclusive access to NIC. */
1486 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1487 
1488 	/* Spin until we actually get the lock. */
1489 	for (ntries = 0; ntries < 1000; ntries++) {
1490 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1491 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1492 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1493 			return 0;
1494 		DELAY(10);
1495 	}
1496 	return ETIMEDOUT;
1497 }
1498 
1499 static __inline void
1500 iwn_nic_unlock(struct iwn_softc *sc)
1501 {
1502 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1503 }
1504 
1505 static __inline uint32_t
1506 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1507 {
1508 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1509 	IWN_BARRIER_READ_WRITE(sc);
1510 	return IWN_READ(sc, IWN_PRPH_RDATA);
1511 }
1512 
1513 static __inline void
1514 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1515 {
1516 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1517 	IWN_BARRIER_WRITE(sc);
1518 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1519 }
1520 
1521 static __inline void
1522 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1523 {
1524 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1525 }
1526 
1527 static __inline void
1528 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1529 {
1530 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1531 }
1532 
1533 static __inline void
1534 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1535     const uint32_t *data, int count)
1536 {
1537 	for (; count > 0; count--, data++, addr += 4)
1538 		iwn_prph_write(sc, addr, *data);
1539 }
1540 
1541 static __inline uint32_t
1542 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1543 {
1544 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1545 	IWN_BARRIER_READ_WRITE(sc);
1546 	return IWN_READ(sc, IWN_MEM_RDATA);
1547 }
1548 
1549 static __inline void
1550 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1551 {
1552 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1553 	IWN_BARRIER_WRITE(sc);
1554 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1555 }
1556 
1557 static __inline void
1558 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1559 {
1560 	uint32_t tmp;
1561 
1562 	tmp = iwn_mem_read(sc, addr & ~3);
1563 	if (addr & 3)
1564 		tmp = (tmp & 0x0000ffff) | data << 16;
1565 	else
1566 		tmp = (tmp & 0xffff0000) | data;
1567 	iwn_mem_write(sc, addr & ~3, tmp);
1568 }
1569 
1570 static __inline void
1571 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1572     int count)
1573 {
1574 	for (; count > 0; count--, addr += 4)
1575 		*data++ = iwn_mem_read(sc, addr);
1576 }
1577 
1578 static __inline void
1579 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1580     int count)
1581 {
1582 	for (; count > 0; count--, addr += 4)
1583 		iwn_mem_write(sc, addr, val);
1584 }
1585 
1586 static int
1587 iwn_eeprom_lock(struct iwn_softc *sc)
1588 {
1589 	int i, ntries;
1590 
1591 	for (i = 0; i < 100; i++) {
1592 		/* Request exclusive access to EEPROM. */
1593 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1594 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1595 
1596 		/* Spin until we actually get the lock. */
1597 		for (ntries = 0; ntries < 100; ntries++) {
1598 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1599 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1600 				return 0;
1601 			DELAY(10);
1602 		}
1603 	}
1604 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1605 	return ETIMEDOUT;
1606 }
1607 
1608 static __inline void
1609 iwn_eeprom_unlock(struct iwn_softc *sc)
1610 {
1611 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1612 }
1613 
1614 /*
1615  * Initialize access by host to One Time Programmable ROM.
1616  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1617  */
1618 static int
1619 iwn_init_otprom(struct iwn_softc *sc)
1620 {
1621 	uint16_t prev, base, next;
1622 	int count, error;
1623 
1624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1625 
1626 	/* Wait for clock stabilization before accessing prph. */
1627 	if ((error = iwn_clock_wait(sc)) != 0)
1628 		return error;
1629 
1630 	if ((error = iwn_nic_lock(sc)) != 0)
1631 		return error;
1632 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1633 	DELAY(5);
1634 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	iwn_nic_unlock(sc);
1636 
1637 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1638 	if (sc->base_params->shadow_ram_support) {
1639 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1640 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1641 	}
1642 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1643 	/* Clear ECC status. */
1644 	IWN_SETBITS(sc, IWN_OTP_GP,
1645 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1646 
1647 	/*
1648 	 * Find the block before last block (contains the EEPROM image)
1649 	 * for HW without OTP shadow RAM.
1650 	 */
1651 	if (! sc->base_params->shadow_ram_support) {
1652 		/* Switch to absolute addressing mode. */
1653 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1654 		base = prev = 0;
1655 		for (count = 0; count < sc->base_params->max_ll_items;
1656 		    count++) {
1657 			error = iwn_read_prom_data(sc, base, &next, 2);
1658 			if (error != 0)
1659 				return error;
1660 			if (next == 0)	/* End of linked-list. */
1661 				break;
1662 			prev = base;
1663 			base = le16toh(next);
1664 		}
1665 		if (count == 0 || count == sc->base_params->max_ll_items)
1666 			return EIO;
1667 		/* Skip "next" word. */
1668 		sc->prom_base = prev + 1;
1669 	}
1670 
1671 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1672 
1673 	return 0;
1674 }
1675 
1676 static int
1677 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1678 {
1679 	uint8_t *out = data;
1680 	uint32_t val, tmp;
1681 	int ntries;
1682 
1683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1684 
1685 	addr += sc->prom_base;
1686 	for (; count > 0; count -= 2, addr++) {
1687 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1688 		for (ntries = 0; ntries < 20; ntries++) {
1689 			val = IWN_READ(sc, IWN_EEPROM);
1690 			if (val & IWN_EEPROM_READ_VALID)
1691 				break;
1692 			DELAY(5);
1693 		}
1694 		if (ntries == 20) {
1695 			device_printf(sc->sc_dev,
1696 			    "timeout reading ROM at 0x%x\n", addr);
1697 			return ETIMEDOUT;
1698 		}
1699 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1700 			/* OTPROM, check for ECC errors. */
1701 			tmp = IWN_READ(sc, IWN_OTP_GP);
1702 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1703 				device_printf(sc->sc_dev,
1704 				    "OTPROM ECC error at 0x%x\n", addr);
1705 				return EIO;
1706 			}
1707 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1708 				/* Correctable ECC error, clear bit. */
1709 				IWN_SETBITS(sc, IWN_OTP_GP,
1710 				    IWN_OTP_GP_ECC_CORR_STTS);
1711 			}
1712 		}
1713 		*out++ = val >> 16;
1714 		if (count > 1)
1715 			*out++ = val >> 24;
1716 	}
1717 
1718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1719 
1720 	return 0;
1721 }
1722 
1723 static void
1724 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1725 {
1726 	if (error != 0)
1727 		return;
1728 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1729 	*(bus_addr_t *)arg = segs[0].ds_addr;
1730 }
1731 
1732 static int
1733 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1734     void **kvap, bus_size_t size, bus_size_t alignment)
1735 {
1736 	int error;
1737 
1738 	dma->tag = NULL;
1739 	dma->size = size;
1740 
1741 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1742 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1743 	    1, size, 0, NULL, NULL, &dma->tag);
1744 	if (error != 0)
1745 		goto fail;
1746 
1747 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1748 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1749 	if (error != 0)
1750 		goto fail;
1751 
1752 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1753 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1754 	if (error != 0)
1755 		goto fail;
1756 
1757 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1758 
1759 	if (kvap != NULL)
1760 		*kvap = dma->vaddr;
1761 
1762 	return 0;
1763 
1764 fail:	iwn_dma_contig_free(dma);
1765 	return error;
1766 }
1767 
1768 static void
1769 iwn_dma_contig_free(struct iwn_dma_info *dma)
1770 {
1771 	if (dma->vaddr != NULL) {
1772 		bus_dmamap_sync(dma->tag, dma->map,
1773 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774 		bus_dmamap_unload(dma->tag, dma->map);
1775 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1776 		dma->vaddr = NULL;
1777 	}
1778 	if (dma->tag != NULL) {
1779 		bus_dma_tag_destroy(dma->tag);
1780 		dma->tag = NULL;
1781 	}
1782 }
1783 
1784 static int
1785 iwn_alloc_sched(struct iwn_softc *sc)
1786 {
1787 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1788 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1789 	    sc->schedsz, 1024);
1790 }
1791 
1792 static void
1793 iwn_free_sched(struct iwn_softc *sc)
1794 {
1795 	iwn_dma_contig_free(&sc->sched_dma);
1796 }
1797 
1798 static int
1799 iwn_alloc_kw(struct iwn_softc *sc)
1800 {
1801 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1802 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1803 }
1804 
1805 static void
1806 iwn_free_kw(struct iwn_softc *sc)
1807 {
1808 	iwn_dma_contig_free(&sc->kw_dma);
1809 }
1810 
1811 static int
1812 iwn_alloc_ict(struct iwn_softc *sc)
1813 {
1814 	/* ICT table must be aligned on a 4KB boundary. */
1815 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1816 	    IWN_ICT_SIZE, 4096);
1817 }
1818 
1819 static void
1820 iwn_free_ict(struct iwn_softc *sc)
1821 {
1822 	iwn_dma_contig_free(&sc->ict_dma);
1823 }
1824 
1825 static int
1826 iwn_alloc_fwmem(struct iwn_softc *sc)
1827 {
1828 	/* Must be aligned on a 16-byte boundary. */
1829 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1830 }
1831 
1832 static void
1833 iwn_free_fwmem(struct iwn_softc *sc)
1834 {
1835 	iwn_dma_contig_free(&sc->fw_dma);
1836 }
1837 
1838 static int
1839 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1840 {
1841 	bus_size_t size;
1842 	int i, error;
1843 
1844 	ring->cur = 0;
1845 
1846 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1847 
1848 	/* Allocate RX descriptors (256-byte aligned). */
1849 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1850 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1851 	    size, 256);
1852 	if (error != 0) {
1853 		device_printf(sc->sc_dev,
1854 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1855 		    __func__, error);
1856 		goto fail;
1857 	}
1858 
1859 	/* Allocate RX status area (16-byte aligned). */
1860 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1861 	    sizeof (struct iwn_rx_status), 16);
1862 	if (error != 0) {
1863 		device_printf(sc->sc_dev,
1864 		    "%s: could not allocate RX status DMA memory, error %d\n",
1865 		    __func__, error);
1866 		goto fail;
1867 	}
1868 
1869 	/* Create RX buffer DMA tag. */
1870 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1871 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1872 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1873 	if (error != 0) {
1874 		device_printf(sc->sc_dev,
1875 		    "%s: could not create RX buf DMA tag, error %d\n",
1876 		    __func__, error);
1877 		goto fail;
1878 	}
1879 
1880 	/*
1881 	 * Allocate and map RX buffers.
1882 	 */
1883 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1884 		struct iwn_rx_data *data = &ring->data[i];
1885 		bus_addr_t paddr;
1886 
1887 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1888 		if (error != 0) {
1889 			device_printf(sc->sc_dev,
1890 			    "%s: could not create RX buf DMA map, error %d\n",
1891 			    __func__, error);
1892 			goto fail;
1893 		}
1894 
1895 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1896 		    IWN_RBUF_SIZE);
1897 		if (data->m == NULL) {
1898 			device_printf(sc->sc_dev,
1899 			    "%s: could not allocate RX mbuf\n", __func__);
1900 			error = ENOBUFS;
1901 			goto fail;
1902 		}
1903 
1904 		error = bus_dmamap_load(ring->data_dmat, data->map,
1905 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1906 		    &paddr, BUS_DMA_NOWAIT);
1907 		if (error != 0 && error != EFBIG) {
1908 			device_printf(sc->sc_dev,
1909 			    "%s: can't map mbuf, error %d\n", __func__,
1910 			    error);
1911 			goto fail;
1912 		}
1913 
1914 		bus_dmamap_sync(ring->data_dmat, data->map,
1915 		    BUS_DMASYNC_PREREAD);
1916 
1917 		/* Set physical address of RX buffer (256-byte aligned). */
1918 		ring->desc[i] = htole32(paddr >> 8);
1919 	}
1920 
1921 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1922 	    BUS_DMASYNC_PREWRITE);
1923 
1924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1925 
1926 	return 0;
1927 
1928 fail:	iwn_free_rx_ring(sc, ring);
1929 
1930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1931 
1932 	return error;
1933 }
1934 
1935 static void
1936 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1937 {
1938 	int ntries;
1939 
1940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1941 
1942 	if (iwn_nic_lock(sc) == 0) {
1943 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1944 		for (ntries = 0; ntries < 1000; ntries++) {
1945 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1946 			    IWN_FH_RX_STATUS_IDLE)
1947 				break;
1948 			DELAY(10);
1949 		}
1950 		iwn_nic_unlock(sc);
1951 	}
1952 	ring->cur = 0;
1953 	sc->last_rx_valid = 0;
1954 }
1955 
1956 static void
1957 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1958 {
1959 	int i;
1960 
1961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1962 
1963 	iwn_dma_contig_free(&ring->desc_dma);
1964 	iwn_dma_contig_free(&ring->stat_dma);
1965 
1966 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1967 		struct iwn_rx_data *data = &ring->data[i];
1968 
1969 		if (data->m != NULL) {
1970 			bus_dmamap_sync(ring->data_dmat, data->map,
1971 			    BUS_DMASYNC_POSTREAD);
1972 			bus_dmamap_unload(ring->data_dmat, data->map);
1973 			m_freem(data->m);
1974 			data->m = NULL;
1975 		}
1976 		if (data->map != NULL)
1977 			bus_dmamap_destroy(ring->data_dmat, data->map);
1978 	}
1979 	if (ring->data_dmat != NULL) {
1980 		bus_dma_tag_destroy(ring->data_dmat);
1981 		ring->data_dmat = NULL;
1982 	}
1983 }
1984 
1985 static int
1986 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1987 {
1988 	bus_addr_t paddr;
1989 	bus_size_t size;
1990 	int i, error;
1991 
1992 	ring->qid = qid;
1993 	ring->queued = 0;
1994 	ring->cur = 0;
1995 
1996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1997 
1998 	/* Allocate TX descriptors (256-byte aligned). */
1999 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2000 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2001 	    size, 256);
2002 	if (error != 0) {
2003 		device_printf(sc->sc_dev,
2004 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2005 		    __func__, error);
2006 		goto fail;
2007 	}
2008 
2009 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2010 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2011 	    size, 4);
2012 	if (error != 0) {
2013 		device_printf(sc->sc_dev,
2014 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2015 		    __func__, error);
2016 		goto fail;
2017 	}
2018 
2019 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2020 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2021 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2022 	if (error != 0) {
2023 		device_printf(sc->sc_dev,
2024 		    "%s: could not create TX buf DMA tag, error %d\n",
2025 		    __func__, error);
2026 		goto fail;
2027 	}
2028 
2029 	paddr = ring->cmd_dma.paddr;
2030 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2031 		struct iwn_tx_data *data = &ring->data[i];
2032 
2033 		data->cmd_paddr = paddr;
2034 		data->scratch_paddr = paddr + 12;
2035 		paddr += sizeof (struct iwn_tx_cmd);
2036 
2037 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2038 		if (error != 0) {
2039 			device_printf(sc->sc_dev,
2040 			    "%s: could not create TX buf DMA map, error %d\n",
2041 			    __func__, error);
2042 			goto fail;
2043 		}
2044 	}
2045 
2046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2047 
2048 	return 0;
2049 
2050 fail:	iwn_free_tx_ring(sc, ring);
2051 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2052 	return error;
2053 }
2054 
2055 static void
2056 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2057 {
2058 	int i;
2059 
2060 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2061 
2062 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2063 		struct iwn_tx_data *data = &ring->data[i];
2064 
2065 		if (data->m != NULL) {
2066 			bus_dmamap_sync(ring->data_dmat, data->map,
2067 			    BUS_DMASYNC_POSTWRITE);
2068 			bus_dmamap_unload(ring->data_dmat, data->map);
2069 			m_freem(data->m);
2070 			data->m = NULL;
2071 		}
2072 		if (data->ni != NULL) {
2073 			ieee80211_free_node(data->ni);
2074 			data->ni = NULL;
2075 		}
2076 		data->remapped = 0;
2077 		data->long_retries = 0;
2078 	}
2079 	/* Clear TX descriptors. */
2080 	memset(ring->desc, 0, ring->desc_dma.size);
2081 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2082 	    BUS_DMASYNC_PREWRITE);
2083 	sc->qfullmsk &= ~(1 << ring->qid);
2084 	ring->queued = 0;
2085 	ring->cur = 0;
2086 }
2087 
2088 static void
2089 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2090 {
2091 	int i;
2092 
2093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2094 
2095 	iwn_dma_contig_free(&ring->desc_dma);
2096 	iwn_dma_contig_free(&ring->cmd_dma);
2097 
2098 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2099 		struct iwn_tx_data *data = &ring->data[i];
2100 
2101 		if (data->m != NULL) {
2102 			bus_dmamap_sync(ring->data_dmat, data->map,
2103 			    BUS_DMASYNC_POSTWRITE);
2104 			bus_dmamap_unload(ring->data_dmat, data->map);
2105 			m_freem(data->m);
2106 		}
2107 		if (data->map != NULL)
2108 			bus_dmamap_destroy(ring->data_dmat, data->map);
2109 	}
2110 	if (ring->data_dmat != NULL) {
2111 		bus_dma_tag_destroy(ring->data_dmat);
2112 		ring->data_dmat = NULL;
2113 	}
2114 }
2115 
2116 static void
2117 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2118 {
2119 	struct iwn_tx_ring *ring = &sc->txq[qid];
2120 
2121 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2122 	    __func__, ring->queued, qid));
2123 
2124 	if (qid >= sc->firstaggqueue) {
2125 		struct iwn_ops *ops = &sc->ops;
2126 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2127 
2128 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2129 			uint16_t ssn = tap->txa_start & 0xfff;
2130 			uint8_t tid = tap->txa_tid;
2131 			int *res = tap->txa_private;
2132 
2133 			iwn_nic_lock(sc);
2134 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2135 			iwn_nic_unlock(sc);
2136 
2137 			sc->qid2tap[qid] = NULL;
2138 			free(res, M_DEVBUF);
2139 		}
2140 	}
2141 
2142 	if (ring->queued < IWN_TX_RING_LOMARK) {
2143 		sc->qfullmsk &= ~(1 << qid);
2144 
2145 		if (ring->queued == 0)
2146 			sc->sc_tx_timer = 0;
2147 		else
2148 			sc->sc_tx_timer = 5;
2149 	}
2150 }
2151 
2152 static void
2153 iwn5000_ict_reset(struct iwn_softc *sc)
2154 {
2155 	/* Disable interrupts. */
2156 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2157 
2158 	/* Reset ICT table. */
2159 	memset(sc->ict, 0, IWN_ICT_SIZE);
2160 	sc->ict_cur = 0;
2161 
2162 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2163 	    BUS_DMASYNC_PREWRITE);
2164 
2165 	/* Set physical address of ICT table (4KB aligned). */
2166 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2167 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2168 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2169 
2170 	/* Enable periodic RX interrupt. */
2171 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2172 	/* Switch to ICT interrupt mode in driver. */
2173 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2174 
2175 	/* Re-enable interrupts. */
2176 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2177 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2178 }
2179 
2180 static int
2181 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2182 {
2183 	struct iwn_ops *ops = &sc->ops;
2184 	uint16_t val;
2185 	int error;
2186 
2187 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2188 
2189 	/* Check whether adapter has an EEPROM or an OTPROM. */
2190 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2191 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2192 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2193 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2194 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2195 
2196 	/* Adapter has to be powered on for EEPROM access to work. */
2197 	if ((error = iwn_apm_init(sc)) != 0) {
2198 		device_printf(sc->sc_dev,
2199 		    "%s: could not power ON adapter, error %d\n", __func__,
2200 		    error);
2201 		return error;
2202 	}
2203 
2204 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2205 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2206 		return EIO;
2207 	}
2208 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2209 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2210 		    __func__, error);
2211 		return error;
2212 	}
2213 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2214 		if ((error = iwn_init_otprom(sc)) != 0) {
2215 			device_printf(sc->sc_dev,
2216 			    "%s: could not initialize OTPROM, error %d\n",
2217 			    __func__, error);
2218 			return error;
2219 		}
2220 	}
2221 
2222 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2223 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2224 	/* Check if HT support is bonded out. */
2225 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2226 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2227 
2228 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2229 	sc->rfcfg = le16toh(val);
2230 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2231 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2232 	if (sc->txchainmask == 0)
2233 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2234 	if (sc->rxchainmask == 0)
2235 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2236 
2237 	/* Read MAC address. */
2238 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2239 
2240 	/* Read adapter-specific information from EEPROM. */
2241 	ops->read_eeprom(sc);
2242 
2243 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2244 
2245 	iwn_eeprom_unlock(sc);
2246 
2247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2248 
2249 	return 0;
2250 }
2251 
2252 static void
2253 iwn4965_read_eeprom(struct iwn_softc *sc)
2254 {
2255 	uint32_t addr;
2256 	uint16_t val;
2257 	int i;
2258 
2259 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2260 
2261 	/* Read regulatory domain (4 ASCII characters). */
2262 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2263 
2264 	/* Read the list of authorized channels (20MHz & 40MHz). */
2265 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2266 		addr = iwn4965_regulatory_bands[i];
2267 		iwn_read_eeprom_channels(sc, i, addr);
2268 	}
2269 
2270 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2271 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2272 	sc->maxpwr2GHz = val & 0xff;
2273 	sc->maxpwr5GHz = val >> 8;
2274 	/* Check that EEPROM values are within valid range. */
2275 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2276 		sc->maxpwr5GHz = 38;
2277 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2278 		sc->maxpwr2GHz = 38;
2279 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2280 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2281 
2282 	/* Read samples for each TX power group. */
2283 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2284 	    sizeof sc->bands);
2285 
2286 	/* Read voltage at which samples were taken. */
2287 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2288 	sc->eeprom_voltage = (int16_t)le16toh(val);
2289 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2290 	    sc->eeprom_voltage);
2291 
2292 #ifdef IWN_DEBUG
2293 	/* Print samples. */
2294 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2295 		for (i = 0; i < IWN_NBANDS - 1; i++)
2296 			iwn4965_print_power_group(sc, i);
2297 	}
2298 #endif
2299 
2300 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2301 }
2302 
2303 #ifdef IWN_DEBUG
2304 static void
2305 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2306 {
2307 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2308 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2309 	int j, c;
2310 
2311 	printf("===band %d===\n", i);
2312 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2313 	printf("chan1 num=%d\n", chans[0].num);
2314 	for (c = 0; c < 2; c++) {
2315 		for (j = 0; j < IWN_NSAMPLES; j++) {
2316 			printf("chain %d, sample %d: temp=%d gain=%d "
2317 			    "power=%d pa_det=%d\n", c, j,
2318 			    chans[0].samples[c][j].temp,
2319 			    chans[0].samples[c][j].gain,
2320 			    chans[0].samples[c][j].power,
2321 			    chans[0].samples[c][j].pa_det);
2322 		}
2323 	}
2324 	printf("chan2 num=%d\n", chans[1].num);
2325 	for (c = 0; c < 2; c++) {
2326 		for (j = 0; j < IWN_NSAMPLES; j++) {
2327 			printf("chain %d, sample %d: temp=%d gain=%d "
2328 			    "power=%d pa_det=%d\n", c, j,
2329 			    chans[1].samples[c][j].temp,
2330 			    chans[1].samples[c][j].gain,
2331 			    chans[1].samples[c][j].power,
2332 			    chans[1].samples[c][j].pa_det);
2333 		}
2334 	}
2335 }
2336 #endif
2337 
2338 static void
2339 iwn5000_read_eeprom(struct iwn_softc *sc)
2340 {
2341 	struct iwn5000_eeprom_calib_hdr hdr;
2342 	int32_t volt;
2343 	uint32_t base, addr;
2344 	uint16_t val;
2345 	int i;
2346 
2347 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2348 
2349 	/* Read regulatory domain (4 ASCII characters). */
2350 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2351 	base = le16toh(val);
2352 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2353 	    sc->eeprom_domain, 4);
2354 
2355 	/* Read the list of authorized channels (20MHz & 40MHz). */
2356 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2357 		addr =  base + sc->base_params->regulatory_bands[i];
2358 		iwn_read_eeprom_channels(sc, i, addr);
2359 	}
2360 
2361 	/* Read enhanced TX power information for 6000 Series. */
2362 	if (sc->base_params->enhanced_TX_power)
2363 		iwn_read_eeprom_enhinfo(sc);
2364 
2365 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2366 	base = le16toh(val);
2367 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2368 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2369 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2370 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2371 	sc->calib_ver = hdr.version;
2372 
2373 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2374 		sc->eeprom_voltage = le16toh(hdr.volt);
2375 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2376 		sc->eeprom_temp_high=le16toh(val);
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2378 		sc->eeprom_temp = le16toh(val);
2379 	}
2380 
2381 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2382 		/* Compute temperature offset. */
2383 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2384 		sc->eeprom_temp = le16toh(val);
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2386 		volt = le16toh(val);
2387 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2388 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2389 		    sc->eeprom_temp, volt, sc->temp_off);
2390 	} else {
2391 		/* Read crystal calibration. */
2392 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2393 		    &sc->eeprom_crystal, sizeof (uint32_t));
2394 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2395 		    le32toh(sc->eeprom_crystal));
2396 	}
2397 
2398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2399 
2400 }
2401 
2402 /*
2403  * Translate EEPROM flags to net80211.
2404  */
2405 static uint32_t
2406 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2407 {
2408 	uint32_t nflags;
2409 
2410 	nflags = 0;
2411 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2412 		nflags |= IEEE80211_CHAN_PASSIVE;
2413 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2414 		nflags |= IEEE80211_CHAN_NOADHOC;
2415 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2416 		nflags |= IEEE80211_CHAN_DFS;
2417 		/* XXX apparently IBSS may still be marked */
2418 		nflags |= IEEE80211_CHAN_NOADHOC;
2419 	}
2420 
2421 	return nflags;
2422 }
2423 
2424 static void
2425 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2426     struct ieee80211_channel chans[])
2427 {
2428 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2429 	const struct iwn_chan_band *band = &iwn_bands[n];
2430 	uint8_t bands[IEEE80211_MODE_BYTES];
2431 	uint8_t chan;
2432 	int i, error, nflags;
2433 
2434 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2435 
2436 	memset(bands, 0, sizeof(bands));
2437 	if (n == 0) {
2438 		setbit(bands, IEEE80211_MODE_11B);
2439 		setbit(bands, IEEE80211_MODE_11G);
2440 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2441 			setbit(bands, IEEE80211_MODE_11NG);
2442 	} else {
2443 		setbit(bands, IEEE80211_MODE_11A);
2444 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2445 			setbit(bands, IEEE80211_MODE_11NA);
2446 	}
2447 
2448 	for (i = 0; i < band->nchan; i++) {
2449 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2450 			DPRINTF(sc, IWN_DEBUG_RESET,
2451 			    "skip chan %d flags 0x%x maxpwr %d\n",
2452 			    band->chan[i], channels[i].flags,
2453 			    channels[i].maxpwr);
2454 			continue;
2455 		}
2456 
2457 		chan = band->chan[i];
2458 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2459 		error = ieee80211_add_channel(chans, maxchans, nchans,
2460 		    chan, 0, channels[i].maxpwr, nflags, bands);
2461 		if (error != 0)
2462 			break;
2463 
2464 		/* Save maximum allowed TX power for this channel. */
2465 		/* XXX wrong */
2466 		sc->maxpwr[chan] = channels[i].maxpwr;
2467 
2468 		DPRINTF(sc, IWN_DEBUG_RESET,
2469 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2470 		    channels[i].flags, channels[i].maxpwr);
2471 	}
2472 
2473 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2474 
2475 }
2476 
2477 static void
2478 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2479     struct ieee80211_channel chans[])
2480 {
2481 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2482 	const struct iwn_chan_band *band = &iwn_bands[n];
2483 	uint8_t chan;
2484 	int i, error, nflags;
2485 
2486 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2487 
2488 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2489 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2490 		return;
2491 	}
2492 
2493 	for (i = 0; i < band->nchan; i++) {
2494 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2495 			DPRINTF(sc, IWN_DEBUG_RESET,
2496 			    "skip chan %d flags 0x%x maxpwr %d\n",
2497 			    band->chan[i], channels[i].flags,
2498 			    channels[i].maxpwr);
2499 			continue;
2500 		}
2501 
2502 		chan = band->chan[i];
2503 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2504 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2505 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2506 		    chan, channels[i].maxpwr, nflags);
2507 		switch (error) {
2508 		case EINVAL:
2509 			device_printf(sc->sc_dev,
2510 			    "%s: no entry for channel %d\n", __func__, chan);
2511 			continue;
2512 		case ENOENT:
2513 			DPRINTF(sc, IWN_DEBUG_RESET,
2514 			    "%s: skip chan %d, extension channel not found\n",
2515 			    __func__, chan);
2516 			continue;
2517 		case ENOBUFS:
2518 			device_printf(sc->sc_dev,
2519 			    "%s: channel table is full!\n", __func__);
2520 			break;
2521 		case 0:
2522 			DPRINTF(sc, IWN_DEBUG_RESET,
2523 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2524 			    chan, channels[i].flags, channels[i].maxpwr);
2525 			/* FALLTHROUGH */
2526 		default:
2527 			break;
2528 		}
2529 	}
2530 
2531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2532 
2533 }
2534 
2535 static void
2536 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2537 {
2538 	struct ieee80211com *ic = &sc->sc_ic;
2539 
2540 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2541 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2542 
2543 	if (n < 5) {
2544 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2545 		    ic->ic_channels);
2546 	} else {
2547 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2548 		    ic->ic_channels);
2549 	}
2550 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2551 }
2552 
2553 static struct iwn_eeprom_chan *
2554 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2555 {
2556 	int band, chan, i, j;
2557 
2558 	if (IEEE80211_IS_CHAN_HT40(c)) {
2559 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2560 		if (IEEE80211_IS_CHAN_HT40D(c))
2561 			chan = c->ic_extieee;
2562 		else
2563 			chan = c->ic_ieee;
2564 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2565 			if (iwn_bands[band].chan[i] == chan)
2566 				return &sc->eeprom_channels[band][i];
2567 		}
2568 	} else {
2569 		for (j = 0; j < 5; j++) {
2570 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2571 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2572 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2573 					return &sc->eeprom_channels[j][i];
2574 			}
2575 		}
2576 	}
2577 	return NULL;
2578 }
2579 
2580 static void
2581 iwn_getradiocaps(struct ieee80211com *ic,
2582     int maxchans, int *nchans, struct ieee80211_channel chans[])
2583 {
2584 	struct iwn_softc *sc = ic->ic_softc;
2585 	int i;
2586 
2587 	/* Parse the list of authorized channels. */
2588 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2589 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2590 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2591 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2592 }
2593 
2594 /*
2595  * Enforce flags read from EEPROM.
2596  */
2597 static int
2598 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2599     int nchan, struct ieee80211_channel chans[])
2600 {
2601 	struct iwn_softc *sc = ic->ic_softc;
2602 	int i;
2603 
2604 	for (i = 0; i < nchan; i++) {
2605 		struct ieee80211_channel *c = &chans[i];
2606 		struct iwn_eeprom_chan *channel;
2607 
2608 		channel = iwn_find_eeprom_channel(sc, c);
2609 		if (channel == NULL) {
2610 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2611 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2612 			return EINVAL;
2613 		}
2614 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void
2621 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2622 {
2623 	struct iwn_eeprom_enhinfo enhinfo[35];
2624 	struct ieee80211com *ic = &sc->sc_ic;
2625 	struct ieee80211_channel *c;
2626 	uint16_t val, base;
2627 	int8_t maxpwr;
2628 	uint8_t flags;
2629 	int i, j;
2630 
2631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2632 
2633 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2634 	base = le16toh(val);
2635 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2636 	    enhinfo, sizeof enhinfo);
2637 
2638 	for (i = 0; i < nitems(enhinfo); i++) {
2639 		flags = enhinfo[i].flags;
2640 		if (!(flags & IWN_ENHINFO_VALID))
2641 			continue;	/* Skip invalid entries. */
2642 
2643 		maxpwr = 0;
2644 		if (sc->txchainmask & IWN_ANT_A)
2645 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2646 		if (sc->txchainmask & IWN_ANT_B)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2648 		if (sc->txchainmask & IWN_ANT_C)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2650 		if (sc->ntxchains == 2)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2652 		else if (sc->ntxchains == 3)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2654 
2655 		for (j = 0; j < ic->ic_nchans; j++) {
2656 			c = &ic->ic_channels[j];
2657 			if ((flags & IWN_ENHINFO_5GHZ)) {
2658 				if (!IEEE80211_IS_CHAN_A(c))
2659 					continue;
2660 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2661 				if (!IEEE80211_IS_CHAN_G(c))
2662 					continue;
2663 			} else if (!IEEE80211_IS_CHAN_B(c))
2664 				continue;
2665 			if ((flags & IWN_ENHINFO_HT40)) {
2666 				if (!IEEE80211_IS_CHAN_HT40(c))
2667 					continue;
2668 			} else {
2669 				if (IEEE80211_IS_CHAN_HT40(c))
2670 					continue;
2671 			}
2672 			if (enhinfo[i].chan != 0 &&
2673 			    enhinfo[i].chan != c->ic_ieee)
2674 				continue;
2675 
2676 			DPRINTF(sc, IWN_DEBUG_RESET,
2677 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2678 			    c->ic_flags, maxpwr / 2);
2679 			c->ic_maxregpower = maxpwr / 2;
2680 			c->ic_maxpower = maxpwr;
2681 		}
2682 	}
2683 
2684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2685 
2686 }
2687 
2688 static struct ieee80211_node *
2689 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2690 {
2691 	struct iwn_node *wn;
2692 
2693 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2694 	if (wn == NULL)
2695 		return (NULL);
2696 
2697 	wn->id = IWN_ID_UNDEFINED;
2698 
2699 	return (&wn->ni);
2700 }
2701 
2702 static __inline int
2703 rate2plcp(int rate)
2704 {
2705 	switch (rate & 0xff) {
2706 	case 12:	return 0xd;
2707 	case 18:	return 0xf;
2708 	case 24:	return 0x5;
2709 	case 36:	return 0x7;
2710 	case 48:	return 0x9;
2711 	case 72:	return 0xb;
2712 	case 96:	return 0x1;
2713 	case 108:	return 0x3;
2714 	case 2:		return 10;
2715 	case 4:		return 20;
2716 	case 11:	return 55;
2717 	case 22:	return 110;
2718 	}
2719 	return 0;
2720 }
2721 
2722 static __inline uint8_t
2723 plcp2rate(const uint8_t rate_plcp)
2724 {
2725 	switch (rate_plcp) {
2726 	case 0xd:	return 12;
2727 	case 0xf:	return 18;
2728 	case 0x5:	return 24;
2729 	case 0x7:	return 36;
2730 	case 0x9:	return 48;
2731 	case 0xb:	return 72;
2732 	case 0x1:	return 96;
2733 	case 0x3:	return 108;
2734 	case 10:	return 2;
2735 	case 20:	return 4;
2736 	case 55:	return 11;
2737 	case 110:	return 22;
2738 	default:	return 0;
2739 	}
2740 }
2741 
2742 static int
2743 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2744 {
2745 
2746 	return IWN_LSB(sc->txchainmask);
2747 }
2748 
2749 static int
2750 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2751 {
2752 	int tx;
2753 
2754 	/*
2755 	 * The '2 stream' setup is a bit .. odd.
2756 	 *
2757 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2758 	 * the firmware panics (eg Intel 5100.)
2759 	 *
2760 	 * For NICs that support two antennas, we use ANT_AB.
2761 	 *
2762 	 * For NICs that support three antennas, we use the two that
2763 	 * wasn't the default one.
2764 	 *
2765 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2766 	 * this to only one antenna.
2767 	 */
2768 
2769 	/* Default - transmit on the other antennas */
2770 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2771 
2772 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2773 	if (tx == 0)
2774 		tx = IWN_ANT_AB;
2775 
2776 	/*
2777 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2778 	 * the default chainmask
2779 	 */
2780 	else if (sc->ntxchains == 2)
2781 		tx = sc->txchainmask;
2782 
2783 	return (tx);
2784 }
2785 
2786 
2787 
2788 /*
2789  * Calculate the required PLCP value from the given rate,
2790  * to the given node.
2791  *
2792  * This will take the node configuration (eg 11n, rate table
2793  * setup, etc) into consideration.
2794  */
2795 static uint32_t
2796 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2797     uint8_t rate)
2798 {
2799 	struct ieee80211com *ic = ni->ni_ic;
2800 	uint32_t plcp = 0;
2801 	int ridx;
2802 
2803 	/*
2804 	 * If it's an MCS rate, let's set the plcp correctly
2805 	 * and set the relevant flags based on the node config.
2806 	 */
2807 	if (rate & IEEE80211_RATE_MCS) {
2808 		/*
2809 		 * Set the initial PLCP value to be between 0->31 for
2810 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2811 		 * flag.
2812 		 */
2813 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2814 
2815 		/*
2816 		 * Set the channel width and guard interval.
2817 		 *
2818 		 * Take into account the local configuration and
2819 		 * the node/peer advertised abilities.
2820 		 */
2821 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2822 			plcp |= IWN_RFLAG_HT40;
2823 			if (ieee80211_ht_check_tx_shortgi_40(ni))
2824 				plcp |= IWN_RFLAG_SGI;
2825 		} else if (ieee80211_ht_check_tx_shortgi_20(ni))
2826 			plcp |= IWN_RFLAG_SGI;
2827 
2828 		/*
2829 		 * Ensure the selected rate matches the link quality
2830 		 * table entries being used.
2831 		 */
2832 		if (rate > 0x8f)
2833 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2834 		else if (rate > 0x87)
2835 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2836 		else
2837 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2838 	} else {
2839 		/*
2840 		 * Set the initial PLCP - fine for both
2841 		 * OFDM and CCK rates.
2842 		 */
2843 		plcp = rate2plcp(rate);
2844 
2845 		/* Set CCK flag if it's CCK */
2846 
2847 		/* XXX It would be nice to have a method
2848 		 * to map the ridx -> phy table entry
2849 		 * so we could just query that, rather than
2850 		 * this hack to check against IWN_RIDX_OFDM6.
2851 		 */
2852 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2853 		    rate & IEEE80211_RATE_VAL);
2854 		if (ridx < IWN_RIDX_OFDM6 &&
2855 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2856 			plcp |= IWN_RFLAG_CCK;
2857 
2858 		/* Set antenna configuration */
2859 		/* XXX TODO: is this the right antenna to use for legacy? */
2860 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2861 	}
2862 
2863 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2864 	    __func__,
2865 	    rate,
2866 	    plcp);
2867 
2868 	return (htole32(plcp));
2869 }
2870 
2871 static void
2872 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2873 {
2874 	/* Doesn't do anything at the moment */
2875 }
2876 
2877 static int
2878 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2879 {
2880 	struct iwn_vap *ivp = IWN_VAP(vap);
2881 	struct ieee80211com *ic = vap->iv_ic;
2882 	struct iwn_softc *sc = ic->ic_softc;
2883 	int error = 0;
2884 
2885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2886 
2887 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2888 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2889 
2890 	IEEE80211_UNLOCK(ic);
2891 	IWN_LOCK(sc);
2892 	callout_stop(&sc->calib_to);
2893 
2894 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2895 
2896 	switch (nstate) {
2897 	case IEEE80211_S_ASSOC:
2898 		if (vap->iv_state != IEEE80211_S_RUN)
2899 			break;
2900 		/* FALLTHROUGH */
2901 	case IEEE80211_S_AUTH:
2902 		if (vap->iv_state == IEEE80211_S_AUTH)
2903 			break;
2904 
2905 		/*
2906 		 * !AUTH -> AUTH transition requires state reset to handle
2907 		 * reassociations correctly.
2908 		 */
2909 		sc->rxon->associd = 0;
2910 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2911 		sc->calib.state = IWN_CALIB_STATE_INIT;
2912 
2913 		/* Wait until we hear a beacon before we transmit */
2914 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2915 			sc->sc_beacon_wait = 1;
2916 
2917 		if ((error = iwn_auth(sc, vap)) != 0) {
2918 			device_printf(sc->sc_dev,
2919 			    "%s: could not move to auth state\n", __func__);
2920 		}
2921 		break;
2922 
2923 	case IEEE80211_S_RUN:
2924 		/*
2925 		 * RUN -> RUN transition; Just restart the timers.
2926 		 */
2927 		if (vap->iv_state == IEEE80211_S_RUN) {
2928 			sc->calib_cnt = 0;
2929 			break;
2930 		}
2931 
2932 		/* Wait until we hear a beacon before we transmit */
2933 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2934 			sc->sc_beacon_wait = 1;
2935 
2936 		/*
2937 		 * !RUN -> RUN requires setting the association id
2938 		 * which is done with a firmware cmd.  We also defer
2939 		 * starting the timers until that work is done.
2940 		 */
2941 		if ((error = iwn_run(sc, vap)) != 0) {
2942 			device_printf(sc->sc_dev,
2943 			    "%s: could not move to run state\n", __func__);
2944 		}
2945 		break;
2946 
2947 	case IEEE80211_S_INIT:
2948 		sc->calib.state = IWN_CALIB_STATE_INIT;
2949 		/*
2950 		 * Purge the xmit queue so we don't have old frames
2951 		 * during a new association attempt.
2952 		 */
2953 		sc->sc_beacon_wait = 0;
2954 		iwn_xmit_queue_drain(sc);
2955 		break;
2956 
2957 	default:
2958 		break;
2959 	}
2960 	IWN_UNLOCK(sc);
2961 	IEEE80211_LOCK(ic);
2962 	if (error != 0){
2963 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2964 		return error;
2965 	}
2966 
2967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2968 
2969 	return ivp->iv_newstate(vap, nstate, arg);
2970 }
2971 
2972 static void
2973 iwn_calib_timeout(void *arg)
2974 {
2975 	struct iwn_softc *sc = arg;
2976 
2977 	IWN_LOCK_ASSERT(sc);
2978 
2979 	/* Force automatic TX power calibration every 60 secs. */
2980 	if (++sc->calib_cnt >= 120) {
2981 		uint32_t flags = 0;
2982 
2983 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2984 		    "sending request for statistics");
2985 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2986 		    sizeof flags, 1);
2987 		sc->calib_cnt = 0;
2988 	}
2989 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2990 	    sc);
2991 }
2992 
2993 /*
2994  * Process an RX_PHY firmware notification.  This is usually immediately
2995  * followed by an MPDU_RX_DONE notification.
2996  */
2997 static void
2998 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2999 {
3000 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3001 
3002 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3003 
3004 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3005 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3006 	sc->last_rx_valid = 1;
3007 }
3008 
3009 /*
3010  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3011  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3012  */
3013 static void
3014 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3015     struct iwn_rx_data *data)
3016 {
3017 	struct iwn_ops *ops = &sc->ops;
3018 	struct ieee80211com *ic = &sc->sc_ic;
3019 	struct iwn_rx_ring *ring = &sc->rxq;
3020 	struct ieee80211_frame_min *wh;
3021 	struct ieee80211_node *ni;
3022 	struct mbuf *m, *m1;
3023 	struct iwn_rx_stat *stat;
3024 	caddr_t head;
3025 	bus_addr_t paddr;
3026 	uint32_t flags;
3027 	int error, len, rssi, nf;
3028 
3029 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3030 
3031 	if (desc->type == IWN_MPDU_RX_DONE) {
3032 		/* Check for prior RX_PHY notification. */
3033 		if (!sc->last_rx_valid) {
3034 			DPRINTF(sc, IWN_DEBUG_ANY,
3035 			    "%s: missing RX_PHY\n", __func__);
3036 			return;
3037 		}
3038 		stat = &sc->last_rx_stat;
3039 	} else
3040 		stat = (struct iwn_rx_stat *)(desc + 1);
3041 
3042 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3043 		device_printf(sc->sc_dev,
3044 		    "%s: invalid RX statistic header, len %d\n", __func__,
3045 		    stat->cfg_phy_len);
3046 		return;
3047 	}
3048 	if (desc->type == IWN_MPDU_RX_DONE) {
3049 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3050 		head = (caddr_t)(mpdu + 1);
3051 		len = le16toh(mpdu->len);
3052 	} else {
3053 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3054 		len = le16toh(stat->len);
3055 	}
3056 
3057 	flags = le32toh(*(uint32_t *)(head + len));
3058 
3059 	/* Discard frames with a bad FCS early. */
3060 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3061 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3062 		    __func__, flags);
3063 		counter_u64_add(ic->ic_ierrors, 1);
3064 		return;
3065 	}
3066 	/* Discard frames that are too short. */
3067 	if (len < sizeof (struct ieee80211_frame_ack)) {
3068 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3069 		    __func__, len);
3070 		counter_u64_add(ic->ic_ierrors, 1);
3071 		return;
3072 	}
3073 
3074 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3075 	if (m1 == NULL) {
3076 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3077 		    __func__);
3078 		counter_u64_add(ic->ic_ierrors, 1);
3079 		return;
3080 	}
3081 	bus_dmamap_unload(ring->data_dmat, data->map);
3082 
3083 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3084 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3085 	if (error != 0 && error != EFBIG) {
3086 		device_printf(sc->sc_dev,
3087 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3088 		m_freem(m1);
3089 
3090 		/* Try to reload the old mbuf. */
3091 		error = bus_dmamap_load(ring->data_dmat, data->map,
3092 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3093 		    &paddr, BUS_DMA_NOWAIT);
3094 		if (error != 0 && error != EFBIG) {
3095 			panic("%s: could not load old RX mbuf", __func__);
3096 		}
3097 		bus_dmamap_sync(ring->data_dmat, data->map,
3098 		    BUS_DMASYNC_PREREAD);
3099 		/* Physical address may have changed. */
3100 		ring->desc[ring->cur] = htole32(paddr >> 8);
3101 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3102 		    BUS_DMASYNC_PREWRITE);
3103 		counter_u64_add(ic->ic_ierrors, 1);
3104 		return;
3105 	}
3106 
3107 	bus_dmamap_sync(ring->data_dmat, data->map,
3108 	    BUS_DMASYNC_PREREAD);
3109 
3110 	m = data->m;
3111 	data->m = m1;
3112 	/* Update RX descriptor. */
3113 	ring->desc[ring->cur] = htole32(paddr >> 8);
3114 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3115 	    BUS_DMASYNC_PREWRITE);
3116 
3117 	/* Finalize mbuf. */
3118 	m->m_data = head;
3119 	m->m_pkthdr.len = m->m_len = len;
3120 
3121 	/* Grab a reference to the source node. */
3122 	wh = mtod(m, struct ieee80211_frame_min *);
3123 	if (len >= sizeof(struct ieee80211_frame_min))
3124 		ni = ieee80211_find_rxnode(ic, wh);
3125 	else
3126 		ni = NULL;
3127 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3128 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3129 
3130 	rssi = ops->get_rssi(sc, stat);
3131 
3132 	if (ieee80211_radiotap_active(ic)) {
3133 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3134 		uint32_t rate = le32toh(stat->rate);
3135 
3136 		tap->wr_flags = 0;
3137 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3138 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3139 		tap->wr_dbm_antsignal = (int8_t)rssi;
3140 		tap->wr_dbm_antnoise = (int8_t)nf;
3141 		tap->wr_tsft = stat->tstamp;
3142 		if (rate & IWN_RFLAG_MCS) {
3143 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3144 			tap->wr_rate |= IEEE80211_RATE_MCS;
3145 		} else
3146 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3147 	}
3148 
3149 	/*
3150 	 * If it's a beacon and we're waiting, then do the
3151 	 * wakeup.  This should unblock raw_xmit/start.
3152 	 */
3153 	if (sc->sc_beacon_wait) {
3154 		uint8_t type, subtype;
3155 		/* NB: Re-assign wh */
3156 		wh = mtod(m, struct ieee80211_frame_min *);
3157 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3158 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3159 		/*
3160 		 * This assumes at this point we've received our own
3161 		 * beacon.
3162 		 */
3163 		DPRINTF(sc, IWN_DEBUG_TRACE,
3164 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3165 		    __func__, type, subtype);
3166 		if (type == IEEE80211_FC0_TYPE_MGT &&
3167 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3168 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3169 			    "%s: waking things up\n", __func__);
3170 			/* queue taskqueue to transmit! */
3171 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3172 		}
3173 	}
3174 
3175 	IWN_UNLOCK(sc);
3176 
3177 	/* Send the frame to the 802.11 layer. */
3178 	if (ni != NULL) {
3179 		if (ni->ni_flags & IEEE80211_NODE_HT)
3180 			m->m_flags |= M_AMPDU;
3181 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3182 		/* Node is no longer needed. */
3183 		ieee80211_free_node(ni);
3184 	} else
3185 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3186 
3187 	IWN_LOCK(sc);
3188 
3189 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3190 
3191 }
3192 
3193 static void
3194 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3195     int idx, int success)
3196 {
3197 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3198 	struct iwn_tx_data *data = &ring->data[idx];
3199 	struct iwn_node *wn;
3200 	struct mbuf *m;
3201 	struct ieee80211_node *ni;
3202 
3203 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3204 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3205 
3206 	/* Unmap and free mbuf. */
3207 	bus_dmamap_sync(ring->data_dmat, data->map,
3208 	    BUS_DMASYNC_POSTWRITE);
3209 	bus_dmamap_unload(ring->data_dmat, data->map);
3210 	m = data->m, data->m = NULL;
3211 	ni = data->ni, data->ni = NULL;
3212 	wn = (void *)ni;
3213 
3214 #if 0
3215 	/* XXX causes significant performance degradation. */
3216 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3217 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3218 	txs->long_retries = data->long_retries - 1;
3219 #else
3220 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3221 #endif
3222 	txs->short_retries = wn->agg[tid].short_retries;
3223 	if (success)
3224 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3225 	else
3226 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3227 
3228 	wn->agg[tid].short_retries = 0;
3229 	data->long_retries = 0;
3230 
3231 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3232 	    __func__, m, ni, idx, ring->qid);
3233 	ieee80211_ratectl_tx_complete(ni, txs);
3234 	ieee80211_tx_complete(ni, m, !success);
3235 }
3236 
3237 /* Process an incoming Compressed BlockAck. */
3238 static void
3239 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3240 {
3241 	struct iwn_tx_ring *ring;
3242 	struct iwn_tx_data *data;
3243 	struct iwn_node *wn;
3244 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3245 	struct ieee80211_tx_ampdu *tap;
3246 	uint64_t bitmap;
3247 	uint8_t tid;
3248 	int i, qid, shift;
3249 	int tx_ok = 0;
3250 
3251 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3252 
3253 	qid = le16toh(ba->qid);
3254 	tap = sc->qid2tap[qid];
3255 	ring = &sc->txq[qid];
3256 	tid = tap->txa_tid;
3257 	wn = (void *)tap->txa_ni;
3258 
3259 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3260 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3261 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3262 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3263 	    wn->agg[tid].startidx);
3264 
3265 	if (wn->agg[tid].bitmap == 0)
3266 		return;
3267 
3268 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3269 	if (shift <= -64)
3270 		shift += 0x100;
3271 
3272 	/*
3273 	 * Walk the bitmap and calculate how many successful attempts
3274 	 * are made.
3275 	 *
3276 	 * Yes, the rate control code doesn't know these are A-MPDU
3277 	 * subframes; due to that long_retries stats are not used here.
3278 	 */
3279 	bitmap = le64toh(ba->bitmap);
3280 	if (shift >= 0)
3281 		bitmap >>= shift;
3282 	else
3283 		bitmap <<= -shift;
3284 	bitmap &= wn->agg[tid].bitmap;
3285 	wn->agg[tid].bitmap = 0;
3286 
3287 	for (i = wn->agg[tid].startidx;
3288 	     bitmap;
3289 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3290 		if ((bitmap & 1) == 0)
3291 			continue;
3292 
3293 		data = &ring->data[i];
3294 		if (__predict_false(data->m == NULL)) {
3295 			/*
3296 			 * There is no frame; skip this entry.
3297 			 *
3298 			 * NB: it is "ok" to have both
3299 			 * 'tx done' + 'compressed BA' replies for frame
3300 			 * with STATE_SCD_QUERY status.
3301 			 */
3302 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3303 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3304 			continue;
3305 		}
3306 
3307 		tx_ok++;
3308 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3309 	}
3310 
3311 	ring->queued -= tx_ok;
3312 	iwn_check_tx_ring(sc, qid);
3313 
3314 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3315 	    "->%s: end; %d ok\n",__func__, tx_ok);
3316 }
3317 
3318 /*
3319  * Process a CALIBRATION_RESULT notification sent by the initialization
3320  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3321  */
3322 static void
3323 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3324 {
3325 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3326 	int len, idx = -1;
3327 
3328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3329 
3330 	/* Runtime firmware should not send such a notification. */
3331 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3332 		DPRINTF(sc, IWN_DEBUG_TRACE,
3333 		    "->%s received after calib done\n", __func__);
3334 		return;
3335 	}
3336 	len = (le32toh(desc->len) & 0x3fff) - 4;
3337 
3338 	switch (calib->code) {
3339 	case IWN5000_PHY_CALIB_DC:
3340 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3341 			idx = 0;
3342 		break;
3343 	case IWN5000_PHY_CALIB_LO:
3344 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3345 			idx = 1;
3346 		break;
3347 	case IWN5000_PHY_CALIB_TX_IQ:
3348 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3349 			idx = 2;
3350 		break;
3351 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3352 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3353 			idx = 3;
3354 		break;
3355 	case IWN5000_PHY_CALIB_BASE_BAND:
3356 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3357 			idx = 4;
3358 		break;
3359 	}
3360 	if (idx == -1)	/* Ignore other results. */
3361 		return;
3362 
3363 	/* Save calibration result. */
3364 	if (sc->calibcmd[idx].buf != NULL)
3365 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3366 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3367 	if (sc->calibcmd[idx].buf == NULL) {
3368 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3369 		    "not enough memory for calibration result %d\n",
3370 		    calib->code);
3371 		return;
3372 	}
3373 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3374 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3375 	sc->calibcmd[idx].len = len;
3376 	memcpy(sc->calibcmd[idx].buf, calib, len);
3377 }
3378 
3379 static void
3380 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3381     struct iwn_stats *stats, int len)
3382 {
3383 	struct iwn_stats_bt *stats_bt;
3384 	struct iwn_stats *lstats;
3385 
3386 	/*
3387 	 * First - check whether the length is the bluetooth or normal.
3388 	 *
3389 	 * If it's normal - just copy it and bump out.
3390 	 * Otherwise we have to convert things.
3391 	 */
3392 
3393 	if (len == sizeof(struct iwn_stats) + 4) {
3394 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3395 		sc->last_stat_valid = 1;
3396 		return;
3397 	}
3398 
3399 	/*
3400 	 * If it's not the bluetooth size - log, then just copy.
3401 	 */
3402 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3403 		DPRINTF(sc, IWN_DEBUG_STATS,
3404 		    "%s: size of rx statistics (%d) not an expected size!\n",
3405 		    __func__,
3406 		    len);
3407 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3408 		sc->last_stat_valid = 1;
3409 		return;
3410 	}
3411 
3412 	/*
3413 	 * Ok. Time to copy.
3414 	 */
3415 	stats_bt = (struct iwn_stats_bt *) stats;
3416 	lstats = &sc->last_stat;
3417 
3418 	/* flags */
3419 	lstats->flags = stats_bt->flags;
3420 	/* rx_bt */
3421 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3422 	    sizeof(struct iwn_rx_phy_stats));
3423 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3424 	    sizeof(struct iwn_rx_phy_stats));
3425 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3426 	    sizeof(struct iwn_rx_general_stats));
3427 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3428 	    sizeof(struct iwn_rx_ht_phy_stats));
3429 	/* tx */
3430 	memcpy(&lstats->tx, &stats_bt->tx,
3431 	    sizeof(struct iwn_tx_stats));
3432 	/* general */
3433 	memcpy(&lstats->general, &stats_bt->general,
3434 	    sizeof(struct iwn_general_stats));
3435 
3436 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3437 	sc->last_stat_valid = 1;
3438 }
3439 
3440 /*
3441  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3442  * The latter is sent by the firmware after each received beacon.
3443  */
3444 static void
3445 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3446 {
3447 	struct iwn_ops *ops = &sc->ops;
3448 	struct ieee80211com *ic = &sc->sc_ic;
3449 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3450 	struct iwn_calib_state *calib = &sc->calib;
3451 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3452 	struct iwn_stats *lstats;
3453 	int temp;
3454 
3455 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3456 
3457 	/* Ignore statistics received during a scan. */
3458 	if (vap->iv_state != IEEE80211_S_RUN ||
3459 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3460 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3461 	    __func__);
3462 		return;
3463 	}
3464 
3465 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3466 	    "%s: received statistics, cmd %d, len %d\n",
3467 	    __func__, desc->type, le16toh(desc->len));
3468 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3469 
3470 	/*
3471 	 * Collect/track general statistics for reporting.
3472 	 *
3473 	 * This takes care of ensuring that the bluetooth sized message
3474 	 * will be correctly converted to the legacy sized message.
3475 	 */
3476 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3477 
3478 	/*
3479 	 * And now, let's take a reference of it to use!
3480 	 */
3481 	lstats = &sc->last_stat;
3482 
3483 	/* Test if temperature has changed. */
3484 	if (lstats->general.temp != sc->rawtemp) {
3485 		/* Convert "raw" temperature to degC. */
3486 		sc->rawtemp = stats->general.temp;
3487 		temp = ops->get_temperature(sc);
3488 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3489 		    __func__, temp);
3490 
3491 		/* Update TX power if need be (4965AGN only). */
3492 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3493 			iwn4965_power_calibration(sc, temp);
3494 	}
3495 
3496 	if (desc->type != IWN_BEACON_STATISTICS)
3497 		return;	/* Reply to a statistics request. */
3498 
3499 	sc->noise = iwn_get_noise(&lstats->rx.general);
3500 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3501 
3502 	/* Test that RSSI and noise are present in stats report. */
3503 	if (le32toh(lstats->rx.general.flags) != 1) {
3504 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3505 		    "received statistics without RSSI");
3506 		return;
3507 	}
3508 
3509 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3510 		iwn_collect_noise(sc, &lstats->rx.general);
3511 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3512 		iwn_tune_sensitivity(sc, &lstats->rx);
3513 		/*
3514 		 * XXX TODO: Only run the RX recovery if we're associated!
3515 		 */
3516 		iwn_check_rx_recovery(sc, lstats);
3517 		iwn_save_stats_counters(sc, lstats);
3518 	}
3519 
3520 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3521 }
3522 
3523 /*
3524  * Save the relevant statistic counters for the next calibration
3525  * pass.
3526  */
3527 static void
3528 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3529 {
3530 	struct iwn_calib_state *calib = &sc->calib;
3531 
3532 	/* Save counters values for next call. */
3533 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3534 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3535 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3536 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3537 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3538 
3539 	/* Last time we received these tick values */
3540 	sc->last_calib_ticks = ticks;
3541 }
3542 
3543 /*
3544  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3545  * and 5000 adapters have different incompatible TX status formats.
3546  */
3547 static void
3548 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3549     struct iwn_rx_data *data)
3550 {
3551 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3552 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3553 
3554 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3555 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3556 	    __func__, desc->qid, desc->idx,
3557 	    stat->rtsfailcnt,
3558 	    stat->ackfailcnt,
3559 	    stat->btkillcnt,
3560 	    stat->rate, le16toh(stat->duration),
3561 	    le32toh(stat->status));
3562 
3563 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3564 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3565 		    &stat->status);
3566 	} else {
3567 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3568 		    le32toh(stat->status) & 0xff);
3569 	}
3570 }
3571 
3572 static void
3573 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3574     struct iwn_rx_data *data)
3575 {
3576 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3577 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3578 
3579 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3580 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3581 	    __func__, desc->qid, desc->idx,
3582 	    stat->rtsfailcnt,
3583 	    stat->ackfailcnt,
3584 	    stat->btkillcnt,
3585 	    stat->rate, le16toh(stat->duration),
3586 	    le32toh(stat->status));
3587 
3588 #ifdef notyet
3589 	/* Reset TX scheduler slot. */
3590 	iwn5000_reset_sched(sc, qid, desc->idx);
3591 #endif
3592 
3593 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3594 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3595 		    &stat->status);
3596 	} else {
3597 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3598 		    le16toh(stat->status) & 0xff);
3599 	}
3600 }
3601 
3602 static void
3603 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3604 {
3605 	int i;
3606 
3607 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3608 		struct iwn_tx_data *data = &ring->data[i];
3609 
3610 		if (data->m != NULL)
3611 			break;
3612 
3613 		data->remapped = 0;
3614 	}
3615 
3616 	ring->read = i;
3617 }
3618 
3619 /*
3620  * Adapter-independent backend for TX_DONE firmware notifications.
3621  */
3622 static void
3623 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3624     int ackfailcnt, uint8_t status)
3625 {
3626 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3627 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3628 	struct iwn_tx_data *data = &ring->data[desc->idx];
3629 	struct mbuf *m;
3630 	struct ieee80211_node *ni;
3631 
3632 	if (__predict_false(data->m == NULL &&
3633 	    ring->qid >= sc->firstaggqueue)) {
3634 		/*
3635 		 * There is no frame; skip this entry.
3636 		 */
3637 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3638 		    __func__, ring->qid, desc->idx);
3639 		return;
3640 	}
3641 
3642 	KASSERT(data->ni != NULL, ("no node"));
3643 	KASSERT(data->m != NULL, ("no mbuf"));
3644 
3645 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3646 
3647 	/* Unmap and free mbuf. */
3648 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3649 	bus_dmamap_unload(ring->data_dmat, data->map);
3650 	m = data->m, data->m = NULL;
3651 	ni = data->ni, data->ni = NULL;
3652 
3653 	data->long_retries = 0;
3654 
3655 	if (ring->qid >= sc->firstaggqueue)
3656 		iwn_adj_ampdu_ptr(sc, ring);
3657 
3658 	/*
3659 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3660 	 * (aggregation queues only).
3661 	 */
3662 
3663 	ring->queued--;
3664 	iwn_check_tx_ring(sc, ring->qid);
3665 
3666 	/*
3667 	 * Update rate control statistics for the node.
3668 	 */
3669 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3670 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3671 	txs->short_retries = rtsfailcnt;
3672 	txs->long_retries = ackfailcnt;
3673 	if (!(status & IWN_TX_FAIL))
3674 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3675 	else {
3676 		switch (status) {
3677 		case IWN_TX_FAIL_SHORT_LIMIT:
3678 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3679 			break;
3680 		case IWN_TX_FAIL_LONG_LIMIT:
3681 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3682 			break;
3683 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3684 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3685 			break;
3686 		default:
3687 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3688 			break;
3689 		}
3690 	}
3691 	ieee80211_ratectl_tx_complete(ni, txs);
3692 
3693 	/*
3694 	 * Channels marked for "radar" require traffic to be received
3695 	 * to unlock before we can transmit.  Until traffic is seen
3696 	 * any attempt to transmit is returned immediately with status
3697 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3698 	 * happen on first authenticate after scanning.  To workaround
3699 	 * this we ignore a failure of this sort in AUTH state so the
3700 	 * 802.11 layer will fall back to using a timeout to wait for
3701 	 * the AUTH reply.  This allows the firmware time to see
3702 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3703 	 * unclear why the firmware does not maintain state for
3704 	 * channels recently visited as this would allow immediate
3705 	 * use of the channel after a scan (where we see traffic).
3706 	 */
3707 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3708 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3709 		ieee80211_tx_complete(ni, m, 0);
3710 	else
3711 		ieee80211_tx_complete(ni, m,
3712 		    (status & IWN_TX_FAIL) != 0);
3713 
3714 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3715 }
3716 
3717 /*
3718  * Process a "command done" firmware notification.  This is where we wakeup
3719  * processes waiting for a synchronous command completion.
3720  */
3721 static void
3722 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3723 {
3724 	struct iwn_tx_ring *ring;
3725 	struct iwn_tx_data *data;
3726 	int cmd_queue_num;
3727 
3728 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3729 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3730 	else
3731 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3732 
3733 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3734 		return;	/* Not a command ack. */
3735 
3736 	ring = &sc->txq[cmd_queue_num];
3737 	data = &ring->data[desc->idx];
3738 
3739 	/* If the command was mapped in an mbuf, free it. */
3740 	if (data->m != NULL) {
3741 		bus_dmamap_sync(ring->data_dmat, data->map,
3742 		    BUS_DMASYNC_POSTWRITE);
3743 		bus_dmamap_unload(ring->data_dmat, data->map);
3744 		m_freem(data->m);
3745 		data->m = NULL;
3746 	}
3747 	wakeup(&ring->desc[desc->idx]);
3748 }
3749 
3750 static int
3751 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3752 {
3753 	int bit, shift;
3754 
3755 	bit = idx - start;
3756 	shift = 0;
3757 	if (bit >= 64) {
3758 		shift = 0x100 - bit;
3759 		bit = 0;
3760 	} else if (bit <= -64)
3761 		bit = 0x100 + bit;
3762 	else if (bit < 0) {
3763 		shift = -bit;
3764 		bit = 0;
3765 	}
3766 
3767 	if (bit - shift >= 64)
3768 		return (0);
3769 
3770 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3771 }
3772 
3773 /*
3774  * Firmware bug workaround: in case if 'retries' counter
3775  * overflows 'seqno' field will be incremented:
3776  *    status|sequence|status|sequence|status|sequence
3777  *     0000    0A48    0001    0A49    0000    0A6A
3778  *     1000    0A48    1000    0A49    1000    0A6A
3779  *     2000    0A48    2000    0A49    2000    0A6A
3780  * ...
3781  *     E000    0A48    E000    0A49    E000    0A6A
3782  *     F000    0A48    F000    0A49    F000    0A6A
3783  *     0000    0A49    0000    0A49    0000    0A6B
3784  *     1000    0A49    1000    0A49    1000    0A6B
3785  * ...
3786  *     D000    0A49    D000    0A49    D000    0A6B
3787  *     E000    0A49    E001    0A49    E000    0A6B
3788  *     F000    0A49    F001    0A49    F000    0A6B
3789  *     0000    0A4A    0000    0A4B    0000    0A6A
3790  *     1000    0A4A    1000    0A4B    1000    0A6A
3791  * ...
3792  *
3793  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3794  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3795  * Not checked with nretries >= 64.
3796  *
3797  */
3798 static int
3799 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3800     uint64_t bitmap, int start, int idx)
3801 {
3802 	struct ieee80211com *ic = &sc->sc_ic;
3803 	struct iwn_tx_data *data;
3804 	int diff, min_retries, max_retries, new_idx, loop_end;
3805 
3806 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3807 	if (new_idx < 0)
3808 		new_idx += IWN_TX_RING_COUNT;
3809 
3810 	/*
3811 	 * Corner case: check if retry count is not too big;
3812 	 * reset device otherwise.
3813 	 */
3814 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3815 		data = &ring->data[new_idx];
3816 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3817 			device_printf(sc->sc_dev,
3818 			    "%s: retry count (%d) for idx %d/%d overflow, "
3819 			    "resetting...\n", __func__, data->long_retries,
3820 			    ring->qid, new_idx);
3821 			ieee80211_restart_all(ic);
3822 			return (-1);
3823 		}
3824 	}
3825 
3826 	/* Correct index if needed. */
3827 	loop_end = idx;
3828 	do {
3829 		data = &ring->data[new_idx];
3830 		diff = idx - new_idx;
3831 		if (diff < 0)
3832 			diff += IWN_TX_RING_COUNT;
3833 
3834 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3835 		if ((new_idx % 2) == 0)
3836 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3837 		else
3838 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3839 
3840 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3841 		    ((data->long_retries >= min_retries &&
3842 		      data->long_retries < max_retries) ||
3843 		     (diff == 1 &&
3844 		      (new_idx & 0x03) == 0x02 &&
3845 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3846 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3847 			    "%s: correcting index %d -> %d in queue %d"
3848 			    " (retries %d)\n", __func__, idx, new_idx,
3849 			    ring->qid, data->long_retries);
3850 			return (new_idx);
3851 		}
3852 
3853 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3854 	} while (new_idx != loop_end);
3855 
3856 	return (idx);
3857 }
3858 
3859 static void
3860 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3861     void *stat)
3862 {
3863 	struct iwn_tx_ring *ring = &sc->txq[qid];
3864 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3865 	struct iwn_node *wn = (void *)tap->txa_ni;
3866 	struct iwn_tx_data *data;
3867 	uint64_t bitmap = 0;
3868 	uint16_t *aggstatus = stat;
3869 	uint8_t tid = tap->txa_tid;
3870 	int bit, i, idx, shift, start, tx_err;
3871 
3872 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3873 
3874 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3875 
3876 	for (i = 0; i < nframes; i++) {
3877 		uint16_t status = le16toh(aggstatus[i * 2]);
3878 
3879 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3880 			continue;
3881 
3882 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3883 		data = &ring->data[idx];
3884 		if (data->remapped) {
3885 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3886 			if (idx == -1) {
3887 				/* skip error (device will be restarted anyway). */
3888 				continue;
3889 			}
3890 
3891 			/* Index may have changed. */
3892 			data = &ring->data[idx];
3893 		}
3894 
3895 		/*
3896 		 * XXX Sometimes (rarely) some frames are excluded from events.
3897 		 * XXX Due to that long_retries counter may be wrong.
3898 		 */
3899 		data->long_retries &= ~0x0f;
3900 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3901 
3902 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3903 			int diff, wrong_idx;
3904 
3905 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3906 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3907 
3908 			/*
3909 			 * Mark the entry so the above code will check it
3910 			 * next time.
3911 			 */
3912 			ring->data[wrong_idx].remapped = 1;
3913 		}
3914 
3915 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3916 			/*
3917 			 * NB: count retries but postpone - it was not
3918 			 * transmitted.
3919 			 */
3920 			continue;
3921 		}
3922 
3923 		bit = idx - start;
3924 		shift = 0;
3925 		if (bit >= 64) {
3926 			shift = 0x100 - bit;
3927 			bit = 0;
3928 		} else if (bit <= -64)
3929 			bit = 0x100 + bit;
3930 		else if (bit < 0) {
3931 			shift = -bit;
3932 			bit = 0;
3933 		}
3934 		bitmap = bitmap << shift;
3935 		bitmap |= 1ULL << bit;
3936 	}
3937 	wn->agg[tid].startidx = start;
3938 	wn->agg[tid].bitmap = bitmap;
3939 	wn->agg[tid].short_retries = rtsfailcnt;
3940 
3941 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3942 	    __func__, nframes, start, (uintmax_t)bitmap);
3943 
3944 	i = ring->read;
3945 
3946 	for (tx_err = 0;
3947 	     i != wn->agg[tid].startidx;
3948 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3949 		data = &ring->data[i];
3950 		data->remapped = 0;
3951 		if (data->m == NULL)
3952 			continue;
3953 
3954 		tx_err++;
3955 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3956 	}
3957 
3958 	ring->read = wn->agg[tid].startidx;
3959 	ring->queued -= tx_err;
3960 
3961 	iwn_check_tx_ring(sc, qid);
3962 
3963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3964 }
3965 
3966 /*
3967  * Process an INT_FH_RX or INT_SW_RX interrupt.
3968  */
3969 static void
3970 iwn_notif_intr(struct iwn_softc *sc)
3971 {
3972 	struct iwn_ops *ops = &sc->ops;
3973 	struct ieee80211com *ic = &sc->sc_ic;
3974 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3975 	uint16_t hw;
3976 	int is_stopped;
3977 
3978 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3979 	    BUS_DMASYNC_POSTREAD);
3980 
3981 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3982 	while (sc->rxq.cur != hw) {
3983 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3984 		struct iwn_rx_desc *desc;
3985 
3986 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3987 		    BUS_DMASYNC_POSTREAD);
3988 		desc = mtod(data->m, struct iwn_rx_desc *);
3989 
3990 		DPRINTF(sc, IWN_DEBUG_RECV,
3991 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3992 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
3993 		    desc->idx, desc->flags, desc->type,
3994 		    iwn_intr_str(desc->type), le16toh(desc->len));
3995 
3996 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3997 			iwn_cmd_done(sc, desc);
3998 
3999 		switch (desc->type) {
4000 		case IWN_RX_PHY:
4001 			iwn_rx_phy(sc, desc);
4002 			break;
4003 
4004 		case IWN_RX_DONE:		/* 4965AGN only. */
4005 		case IWN_MPDU_RX_DONE:
4006 			/* An 802.11 frame has been received. */
4007 			iwn_rx_done(sc, desc, data);
4008 
4009 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4010 			if (__predict_false(is_stopped))
4011 				return;
4012 
4013 			break;
4014 
4015 		case IWN_RX_COMPRESSED_BA:
4016 			/* A Compressed BlockAck has been received. */
4017 			iwn_rx_compressed_ba(sc, desc);
4018 			break;
4019 
4020 		case IWN_TX_DONE:
4021 			/* An 802.11 frame has been transmitted. */
4022 			ops->tx_done(sc, desc, data);
4023 			break;
4024 
4025 		case IWN_RX_STATISTICS:
4026 		case IWN_BEACON_STATISTICS:
4027 			iwn_rx_statistics(sc, desc);
4028 			break;
4029 
4030 		case IWN_BEACON_MISSED:
4031 		{
4032 			struct iwn_beacon_missed *miss =
4033 			    (struct iwn_beacon_missed *)(desc + 1);
4034 			int misses;
4035 
4036 			misses = le32toh(miss->consecutive);
4037 
4038 			DPRINTF(sc, IWN_DEBUG_STATE,
4039 			    "%s: beacons missed %d/%d\n", __func__,
4040 			    misses, le32toh(miss->total));
4041 			/*
4042 			 * If more than 5 consecutive beacons are missed,
4043 			 * reinitialize the sensitivity state machine.
4044 			 */
4045 			if (vap->iv_state == IEEE80211_S_RUN &&
4046 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4047 				if (misses > 5)
4048 					(void)iwn_init_sensitivity(sc);
4049 				if (misses >= vap->iv_bmissthreshold) {
4050 					IWN_UNLOCK(sc);
4051 					ieee80211_beacon_miss(ic);
4052 					IWN_LOCK(sc);
4053 
4054 					is_stopped = (sc->sc_flags &
4055 					    IWN_FLAG_RUNNING) == 0;
4056 					if (__predict_false(is_stopped))
4057 						return;
4058 				}
4059 			}
4060 			break;
4061 		}
4062 		case IWN_UC_READY:
4063 		{
4064 			struct iwn_ucode_info *uc =
4065 			    (struct iwn_ucode_info *)(desc + 1);
4066 
4067 			/* The microcontroller is ready. */
4068 			DPRINTF(sc, IWN_DEBUG_RESET,
4069 			    "microcode alive notification version=%d.%d "
4070 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4071 			    uc->subtype, le32toh(uc->valid));
4072 
4073 			if (le32toh(uc->valid) != 1) {
4074 				device_printf(sc->sc_dev,
4075 				    "microcontroller initialization failed");
4076 				break;
4077 			}
4078 			if (uc->subtype == IWN_UCODE_INIT) {
4079 				/* Save microcontroller report. */
4080 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4081 			}
4082 			/* Save the address of the error log in SRAM. */
4083 			sc->errptr = le32toh(uc->errptr);
4084 			break;
4085 		}
4086 #ifdef IWN_DEBUG
4087 		case IWN_STATE_CHANGED:
4088 		{
4089 			/*
4090 			 * State change allows hardware switch change to be
4091 			 * noted. However, we handle this in iwn_intr as we
4092 			 * get both the enable/disble intr.
4093 			 */
4094 			uint32_t *status = (uint32_t *)(desc + 1);
4095 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4096 			    "state changed to %x\n",
4097 			    le32toh(*status));
4098 			break;
4099 		}
4100 		case IWN_START_SCAN:
4101 		{
4102 			struct iwn_start_scan *scan =
4103 			    (struct iwn_start_scan *)(desc + 1);
4104 			DPRINTF(sc, IWN_DEBUG_ANY,
4105 			    "%s: scanning channel %d status %x\n",
4106 			    __func__, scan->chan, le32toh(scan->status));
4107 			break;
4108 		}
4109 #endif
4110 		case IWN_STOP_SCAN:
4111 		{
4112 #ifdef	IWN_DEBUG
4113 			struct iwn_stop_scan *scan =
4114 			    (struct iwn_stop_scan *)(desc + 1);
4115 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4116 			    "scan finished nchan=%d status=%d chan=%d\n",
4117 			    scan->nchan, scan->status, scan->chan);
4118 #endif
4119 			sc->sc_is_scanning = 0;
4120 			callout_stop(&sc->scan_timeout);
4121 			IWN_UNLOCK(sc);
4122 			ieee80211_scan_next(vap);
4123 			IWN_LOCK(sc);
4124 
4125 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4126 			if (__predict_false(is_stopped))
4127 				return;
4128 
4129 			break;
4130 		}
4131 		case IWN5000_CALIBRATION_RESULT:
4132 			iwn5000_rx_calib_results(sc, desc);
4133 			break;
4134 
4135 		case IWN5000_CALIBRATION_DONE:
4136 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4137 			wakeup(sc);
4138 			break;
4139 		}
4140 
4141 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4142 	}
4143 
4144 	/* Tell the firmware what we have processed. */
4145 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4146 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4147 }
4148 
4149 /*
4150  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4151  * from power-down sleep mode.
4152  */
4153 static void
4154 iwn_wakeup_intr(struct iwn_softc *sc)
4155 {
4156 	int qid;
4157 
4158 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4159 	    __func__);
4160 
4161 	/* Wakeup RX and TX rings. */
4162 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4163 	for (qid = 0; qid < sc->ntxqs; qid++) {
4164 		struct iwn_tx_ring *ring = &sc->txq[qid];
4165 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4166 	}
4167 }
4168 
4169 static void
4170 iwn_rftoggle_task(void *arg, int npending)
4171 {
4172 	struct iwn_softc *sc = arg;
4173 	struct ieee80211com *ic = &sc->sc_ic;
4174 	uint32_t tmp;
4175 
4176 	IWN_LOCK(sc);
4177 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4178 	IWN_UNLOCK(sc);
4179 
4180 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4181 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4182 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4183 		ieee80211_suspend_all(ic);
4184 
4185 		/* Enable interrupts to get RF toggle notification. */
4186 		IWN_LOCK(sc);
4187 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4188 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4189 		IWN_UNLOCK(sc);
4190 	} else
4191 		ieee80211_resume_all(ic);
4192 }
4193 
4194 /*
4195  * Dump the error log of the firmware when a firmware panic occurs.  Although
4196  * we can't debug the firmware because it is neither open source nor free, it
4197  * can help us to identify certain classes of problems.
4198  */
4199 static void
4200 iwn_fatal_intr(struct iwn_softc *sc)
4201 {
4202 	struct iwn_fw_dump dump;
4203 	int i;
4204 
4205 	IWN_LOCK_ASSERT(sc);
4206 
4207 	/* Force a complete recalibration on next init. */
4208 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4209 
4210 	/* Check that the error log address is valid. */
4211 	if (sc->errptr < IWN_FW_DATA_BASE ||
4212 	    sc->errptr + sizeof (dump) >
4213 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4214 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4215 		    sc->errptr);
4216 		return;
4217 	}
4218 	if (iwn_nic_lock(sc) != 0) {
4219 		printf("%s: could not read firmware error log\n", __func__);
4220 		return;
4221 	}
4222 	/* Read firmware error log from SRAM. */
4223 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4224 	    sizeof (dump) / sizeof (uint32_t));
4225 	iwn_nic_unlock(sc);
4226 
4227 	if (dump.valid == 0) {
4228 		printf("%s: firmware error log is empty\n", __func__);
4229 		return;
4230 	}
4231 	printf("firmware error log:\n");
4232 	printf("  error type      = \"%s\" (0x%08X)\n",
4233 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4234 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4235 	    dump.id);
4236 	printf("  program counter = 0x%08X\n", dump.pc);
4237 	printf("  source line     = 0x%08X\n", dump.src_line);
4238 	printf("  error data      = 0x%08X%08X\n",
4239 	    dump.error_data[0], dump.error_data[1]);
4240 	printf("  branch link     = 0x%08X%08X\n",
4241 	    dump.branch_link[0], dump.branch_link[1]);
4242 	printf("  interrupt link  = 0x%08X%08X\n",
4243 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4244 	printf("  time            = %u\n", dump.time[0]);
4245 
4246 	/* Dump driver status (TX and RX rings) while we're here. */
4247 	printf("driver status:\n");
4248 	for (i = 0; i < sc->ntxqs; i++) {
4249 		struct iwn_tx_ring *ring = &sc->txq[i];
4250 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4251 		    i, ring->qid, ring->cur, ring->queued);
4252 	}
4253 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4254 }
4255 
4256 static void
4257 iwn_intr(void *arg)
4258 {
4259 	struct iwn_softc *sc = arg;
4260 	uint32_t r1, r2, tmp;
4261 
4262 	IWN_LOCK(sc);
4263 
4264 	/* Disable interrupts. */
4265 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4266 
4267 	/* Read interrupts from ICT (fast) or from registers (slow). */
4268 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4269 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4270 		    BUS_DMASYNC_POSTREAD);
4271 		tmp = 0;
4272 		while (sc->ict[sc->ict_cur] != 0) {
4273 			tmp |= sc->ict[sc->ict_cur];
4274 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4275 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4276 		}
4277 		tmp = le32toh(tmp);
4278 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4279 			tmp = 0;
4280 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4281 			tmp |= 0x8000;
4282 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4283 		r2 = 0;	/* Unused. */
4284 	} else {
4285 		r1 = IWN_READ(sc, IWN_INT);
4286 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4287 			IWN_UNLOCK(sc);
4288 			return;	/* Hardware gone! */
4289 		}
4290 		r2 = IWN_READ(sc, IWN_FH_INT);
4291 	}
4292 
4293 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4294     , r1, r2);
4295 
4296 	if (r1 == 0 && r2 == 0)
4297 		goto done;	/* Interrupt not for us. */
4298 
4299 	/* Acknowledge interrupts. */
4300 	IWN_WRITE(sc, IWN_INT, r1);
4301 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4302 		IWN_WRITE(sc, IWN_FH_INT, r2);
4303 
4304 	if (r1 & IWN_INT_RF_TOGGLED) {
4305 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4306 		goto done;
4307 	}
4308 	if (r1 & IWN_INT_CT_REACHED) {
4309 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4310 		    __func__);
4311 	}
4312 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4313 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4314 		    __func__);
4315 #ifdef	IWN_DEBUG
4316 		iwn_debug_register(sc);
4317 #endif
4318 		/* Dump firmware error log and stop. */
4319 		iwn_fatal_intr(sc);
4320 
4321 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4322 		goto done;
4323 	}
4324 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4325 	    (r2 & IWN_FH_INT_RX)) {
4326 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4327 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4328 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4329 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4330 			    IWN_INT_PERIODIC_DIS);
4331 			iwn_notif_intr(sc);
4332 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4333 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4334 				    IWN_INT_PERIODIC_ENA);
4335 			}
4336 		} else
4337 			iwn_notif_intr(sc);
4338 	}
4339 
4340 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4341 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4342 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4343 		wakeup(sc);	/* FH DMA transfer completed. */
4344 	}
4345 
4346 	if (r1 & IWN_INT_ALIVE)
4347 		wakeup(sc);	/* Firmware is alive. */
4348 
4349 	if (r1 & IWN_INT_WAKEUP)
4350 		iwn_wakeup_intr(sc);
4351 
4352 done:
4353 	/* Re-enable interrupts. */
4354 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4355 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4356 
4357 	IWN_UNLOCK(sc);
4358 }
4359 
4360 /*
4361  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4362  * 5000 adapters use a slightly different format).
4363  */
4364 static void
4365 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4366     uint16_t len)
4367 {
4368 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4369 
4370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4371 
4372 	*w = htole16(len + 8);
4373 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4374 	    BUS_DMASYNC_PREWRITE);
4375 	if (idx < IWN_SCHED_WINSZ) {
4376 		*(w + IWN_TX_RING_COUNT) = *w;
4377 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4378 		    BUS_DMASYNC_PREWRITE);
4379 	}
4380 }
4381 
4382 static void
4383 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4384     uint16_t len)
4385 {
4386 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4387 
4388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4389 
4390 	*w = htole16(id << 12 | (len + 8));
4391 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4392 	    BUS_DMASYNC_PREWRITE);
4393 	if (idx < IWN_SCHED_WINSZ) {
4394 		*(w + IWN_TX_RING_COUNT) = *w;
4395 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4396 		    BUS_DMASYNC_PREWRITE);
4397 	}
4398 }
4399 
4400 #ifdef notyet
4401 static void
4402 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4403 {
4404 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4405 
4406 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4407 
4408 	*w = (*w & htole16(0xf000)) | htole16(1);
4409 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4410 	    BUS_DMASYNC_PREWRITE);
4411 	if (idx < IWN_SCHED_WINSZ) {
4412 		*(w + IWN_TX_RING_COUNT) = *w;
4413 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4414 		    BUS_DMASYNC_PREWRITE);
4415 	}
4416 }
4417 #endif
4418 
4419 /*
4420  * Check whether OFDM 11g protection will be enabled for the given rate.
4421  *
4422  * The original driver code only enabled protection for OFDM rates.
4423  * It didn't check to see whether it was operating in 11a or 11bg mode.
4424  */
4425 static int
4426 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4427     struct ieee80211vap *vap, uint8_t rate)
4428 {
4429 	struct ieee80211com *ic = vap->iv_ic;
4430 
4431 	/*
4432 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4433 	 * 11bg protection.
4434 	 */
4435 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4436 		return (0);
4437 	}
4438 
4439 	/*
4440 	 * 11bg protection not enabled? Then don't use it.
4441 	 */
4442 	if ((vap->iv_flags & IEEE80211_F_USEPROT) == 0)
4443 		return (0);
4444 
4445 	/*
4446 	 * If it's an 11n rate - no protection.
4447 	 * We'll do it via a specific 11n check.
4448 	 */
4449 	if (rate & IEEE80211_RATE_MCS) {
4450 		return (0);
4451 	}
4452 
4453 	/*
4454 	 * Do a rate table lookup.  If the PHY is CCK,
4455 	 * don't do protection.
4456 	 */
4457 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4458 		return (0);
4459 
4460 	/*
4461 	 * Yup, enable protection.
4462 	 */
4463 	return (1);
4464 }
4465 
4466 /*
4467  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4468  * the link quality table that reflects this particular entry.
4469  */
4470 static int
4471 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4472     uint8_t rate)
4473 {
4474 	struct ieee80211_rateset *rs;
4475 	int is_11n;
4476 	int nr;
4477 	int i;
4478 	uint8_t cmp_rate;
4479 
4480 	/*
4481 	 * Figure out if we're using 11n or not here.
4482 	 */
4483 	if (ieee80211_ht_check_tx_ht(ni))
4484 		is_11n = 1;
4485 	else
4486 		is_11n = 0;
4487 
4488 	/*
4489 	 * Use the correct rate table.
4490 	 */
4491 	if (is_11n) {
4492 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4493 		nr = ni->ni_htrates.rs_nrates;
4494 	} else {
4495 		rs = &ni->ni_rates;
4496 		nr = rs->rs_nrates;
4497 	}
4498 
4499 	/*
4500 	 * Find the relevant link quality entry in the table.
4501 	 */
4502 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4503 		/*
4504 		 * The link quality table index starts at 0 == highest
4505 		 * rate, so we walk the rate table backwards.
4506 		 */
4507 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4508 		if (rate & IEEE80211_RATE_MCS)
4509 			cmp_rate |= IEEE80211_RATE_MCS;
4510 
4511 #if 0
4512 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4513 		    __func__,
4514 		    i,
4515 		    nr,
4516 		    rate,
4517 		    cmp_rate);
4518 #endif
4519 
4520 		if (cmp_rate == rate)
4521 			return (i);
4522 	}
4523 
4524 	/* Failed? Start at the end */
4525 	return (IWN_MAX_TX_RETRIES - 1);
4526 }
4527 
4528 static int
4529 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4530 {
4531 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4532 	struct ieee80211vap *vap = ni->ni_vap;
4533 	struct ieee80211com *ic = ni->ni_ic;
4534 	struct iwn_node *wn = (void *)ni;
4535 	struct iwn_tx_ring *ring;
4536 	struct iwn_tx_cmd *cmd;
4537 	struct iwn_cmd_data *tx;
4538 	struct ieee80211_frame *wh;
4539 	struct ieee80211_key *k = NULL;
4540 	uint32_t flags;
4541 	uint16_t qos;
4542 	uint8_t tid, type;
4543 	int ac, totlen, rate;
4544 
4545 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4546 
4547 	IWN_LOCK_ASSERT(sc);
4548 
4549 	wh = mtod(m, struct ieee80211_frame *);
4550 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4551 
4552 	/* Select EDCA Access Category and TX ring for this frame. */
4553 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4554 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4555 		tid = qos & IEEE80211_QOS_TID;
4556 	} else {
4557 		qos = 0;
4558 		tid = 0;
4559 	}
4560 
4561 	/* Choose a TX rate index. */
4562 	if (type == IEEE80211_FC0_TYPE_MGT ||
4563 	    type == IEEE80211_FC0_TYPE_CTL ||
4564 	    (m->m_flags & M_EAPOL) != 0)
4565 		rate = tp->mgmtrate;
4566 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4567 		rate = tp->mcastrate;
4568 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4569 		rate = tp->ucastrate;
4570 	else {
4571 		/* XXX pass pktlen */
4572 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4573 		rate = ni->ni_txrate;
4574 	}
4575 
4576 	/*
4577 	 * XXX TODO: Group addressed frames aren't aggregated and must
4578 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4579 	 * assigned from net80211.
4580 	 */
4581 
4582 	ac = M_WME_GETAC(m);
4583 	if (m->m_flags & M_AMPDU_MPDU) {
4584 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4585 
4586 		if (!IEEE80211_AMPDU_RUNNING(tap))
4587 			return (EINVAL);
4588 
4589 		ac = *(int *)tap->txa_private;
4590 	}
4591 
4592 	/* Encrypt the frame if need be. */
4593 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4594 		/* Retrieve key for TX. */
4595 		k = ieee80211_crypto_encap(ni, m);
4596 		if (k == NULL) {
4597 			return ENOBUFS;
4598 		}
4599 		/* 802.11 header may have moved. */
4600 		wh = mtod(m, struct ieee80211_frame *);
4601 	}
4602 	totlen = m->m_pkthdr.len;
4603 
4604 	if (ieee80211_radiotap_active_vap(vap)) {
4605 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4606 
4607 		tap->wt_flags = 0;
4608 		tap->wt_rate = rate;
4609 		if (k != NULL)
4610 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4611 
4612 		ieee80211_radiotap_tx(vap, m);
4613 	}
4614 
4615 	flags = 0;
4616 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4617 		/* Unicast frame, check if an ACK is expected. */
4618 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4619 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4620 			flags |= IWN_TX_NEED_ACK;
4621 	}
4622 	if (IEEE80211_IS_CTL_BAR(wh))
4623 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4624 
4625 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4626 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4627 
4628 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4629 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4630 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4631 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4632 			flags |= IWN_TX_NEED_RTS;
4633 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4634 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4635 				flags |= IWN_TX_NEED_CTS;
4636 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4637 				flags |= IWN_TX_NEED_RTS;
4638 		} else if ((rate & IEEE80211_RATE_MCS) &&
4639 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4640 			flags |= IWN_TX_NEED_RTS;
4641 		}
4642 
4643 		/* XXX HT protection? */
4644 
4645 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4646 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4647 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4648 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4649 				flags |= IWN_TX_NEED_PROTECTION;
4650 			} else
4651 				flags |= IWN_TX_FULL_TXOP;
4652 		}
4653 	}
4654 
4655 	ring = &sc->txq[ac];
4656 	if (m->m_flags & M_AMPDU_MPDU) {
4657 		uint16_t seqno = ni->ni_txseqs[tid];
4658 
4659 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4660 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4661 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4662 			    "(queued %d) left in %d queue!\n",
4663 			    __func__, ring->queued, ac);
4664 			return (ENOBUFS);
4665 		}
4666 
4667 		/*
4668 		 * Queue this frame to the hardware ring that we've
4669 		 * negotiated AMPDU TX on.
4670 		 *
4671 		 * Note that the sequence number must match the TX slot
4672 		 * being used!
4673 		 */
4674 		if ((seqno % 256) != ring->cur) {
4675 			device_printf(sc->sc_dev,
4676 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4677 			    __func__,
4678 			    m,
4679 			    seqno,
4680 			    seqno % 256,
4681 			    ring->cur);
4682 
4683 			/* XXX until D9195 will not be committed */
4684 			ni->ni_txseqs[tid] &= ~0xff;
4685 			ni->ni_txseqs[tid] += ring->cur;
4686 			seqno = ni->ni_txseqs[tid];
4687 		}
4688 
4689 		*(uint16_t *)wh->i_seq =
4690 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4691 		ni->ni_txseqs[tid]++;
4692 	}
4693 
4694 	/* Prepare TX firmware command. */
4695 	cmd = &ring->cmd[ring->cur];
4696 	tx = (struct iwn_cmd_data *)cmd->data;
4697 
4698 	/* NB: No need to clear tx, all fields are reinitialized here. */
4699 	tx->scratch = 0;	/* clear "scratch" area */
4700 
4701 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4702 	    type != IEEE80211_FC0_TYPE_DATA)
4703 		tx->id = sc->broadcast_id;
4704 	else
4705 		tx->id = wn->id;
4706 
4707 	if (type == IEEE80211_FC0_TYPE_MGT) {
4708 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4709 
4710 		/* Tell HW to set timestamp in probe responses. */
4711 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4712 			flags |= IWN_TX_INSERT_TSTAMP;
4713 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4714 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4715 			tx->timeout = htole16(3);
4716 		else
4717 			tx->timeout = htole16(2);
4718 	} else
4719 		tx->timeout = htole16(0);
4720 
4721 	if (tx->id == sc->broadcast_id) {
4722 		/* Group or management frame. */
4723 		tx->linkq = 0;
4724 	} else {
4725 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4726 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4727 	}
4728 
4729 	tx->tid = tid;
4730 	tx->rts_ntries = 60;
4731 	tx->data_ntries = 15;
4732 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4733 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4734 	tx->security = 0;
4735 	tx->flags = htole32(flags);
4736 
4737 	return (iwn_tx_cmd(sc, m, ni, ring));
4738 }
4739 
4740 static int
4741 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4742     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4743 {
4744 	struct ieee80211vap *vap = ni->ni_vap;
4745 	struct iwn_tx_cmd *cmd;
4746 	struct iwn_cmd_data *tx;
4747 	struct ieee80211_frame *wh;
4748 	struct iwn_tx_ring *ring;
4749 	uint32_t flags;
4750 	int ac, rate;
4751 	uint8_t type;
4752 
4753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4754 
4755 	IWN_LOCK_ASSERT(sc);
4756 
4757 	wh = mtod(m, struct ieee80211_frame *);
4758 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4759 
4760 	ac = params->ibp_pri & 3;
4761 
4762 	/* Choose a TX rate. */
4763 	rate = params->ibp_rate0;
4764 
4765 	flags = 0;
4766 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4767 		flags |= IWN_TX_NEED_ACK;
4768 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4769 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4770 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4771 			flags &= ~IWN_TX_NEED_RTS;
4772 			flags |= IWN_TX_NEED_PROTECTION;
4773 		} else
4774 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4775 	}
4776 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4777 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4778 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4779 			flags &= ~IWN_TX_NEED_CTS;
4780 			flags |= IWN_TX_NEED_PROTECTION;
4781 		} else
4782 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4783 	}
4784 
4785 	if (ieee80211_radiotap_active_vap(vap)) {
4786 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4787 
4788 		tap->wt_flags = 0;
4789 		tap->wt_rate = rate;
4790 
4791 		ieee80211_radiotap_tx(vap, m);
4792 	}
4793 
4794 	ring = &sc->txq[ac];
4795 	cmd = &ring->cmd[ring->cur];
4796 
4797 	tx = (struct iwn_cmd_data *)cmd->data;
4798 	/* NB: No need to clear tx, all fields are reinitialized here. */
4799 	tx->scratch = 0;	/* clear "scratch" area */
4800 
4801 	if (type == IEEE80211_FC0_TYPE_MGT) {
4802 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4803 
4804 		/* Tell HW to set timestamp in probe responses. */
4805 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4806 			flags |= IWN_TX_INSERT_TSTAMP;
4807 
4808 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4809 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4810 			tx->timeout = htole16(3);
4811 		else
4812 			tx->timeout = htole16(2);
4813 	} else
4814 		tx->timeout = htole16(0);
4815 
4816 	tx->tid = 0;
4817 	tx->id = sc->broadcast_id;
4818 	tx->rts_ntries = params->ibp_try1;
4819 	tx->data_ntries = params->ibp_try0;
4820 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4821 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4822 	tx->security = 0;
4823 	tx->flags = htole32(flags);
4824 
4825 	/* Group or management frame. */
4826 	tx->linkq = 0;
4827 
4828 	return (iwn_tx_cmd(sc, m, ni, ring));
4829 }
4830 
4831 static int
4832 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4833     struct iwn_tx_ring *ring)
4834 {
4835 	struct iwn_ops *ops = &sc->ops;
4836 	struct iwn_tx_cmd *cmd;
4837 	struct iwn_cmd_data *tx;
4838 	struct ieee80211_frame *wh;
4839 	struct iwn_tx_desc *desc;
4840 	struct iwn_tx_data *data;
4841 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4842 	struct mbuf *m1;
4843 	u_int hdrlen;
4844 	int totlen, error, pad, nsegs = 0, i;
4845 
4846 	wh = mtod(m, struct ieee80211_frame *);
4847 	hdrlen = ieee80211_anyhdrsize(wh);
4848 	totlen = m->m_pkthdr.len;
4849 
4850 	desc = &ring->desc[ring->cur];
4851 	data = &ring->data[ring->cur];
4852 
4853 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4854 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4855 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4856 		    ring->cur, ring->qid);
4857 		return EIO;
4858 	}
4859 
4860 	/* Prepare TX firmware command. */
4861 	cmd = &ring->cmd[ring->cur];
4862 	cmd->code = IWN_CMD_TX_DATA;
4863 	cmd->flags = 0;
4864 	cmd->qid = ring->qid;
4865 	cmd->idx = ring->cur;
4866 
4867 	tx = (struct iwn_cmd_data *)cmd->data;
4868 	tx->len = htole16(totlen);
4869 
4870 	/* Set physical address of "scratch area". */
4871 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4872 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4873 	if (hdrlen & 3) {
4874 		/* First segment length must be a multiple of 4. */
4875 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4876 		pad = 4 - (hdrlen & 3);
4877 	} else
4878 		pad = 0;
4879 
4880 	/* Copy 802.11 header in TX command. */
4881 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4882 
4883 	/* Trim 802.11 header. */
4884 	m_adj(m, hdrlen);
4885 
4886 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4887 	    &nsegs, BUS_DMA_NOWAIT);
4888 	if (error != 0) {
4889 		if (error != EFBIG) {
4890 			device_printf(sc->sc_dev,
4891 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4892 			return error;
4893 		}
4894 		/* Too many DMA segments, linearize mbuf. */
4895 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4896 		if (m1 == NULL) {
4897 			device_printf(sc->sc_dev,
4898 			    "%s: could not defrag mbuf\n", __func__);
4899 			return ENOBUFS;
4900 		}
4901 		m = m1;
4902 
4903 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4904 		    segs, &nsegs, BUS_DMA_NOWAIT);
4905 		if (error != 0) {
4906 			/* XXX fix this */
4907 			/*
4908 			 * NB: Do not return error;
4909 			 * original mbuf does not exist anymore.
4910 			 */
4911 			device_printf(sc->sc_dev,
4912 			    "%s: can't map mbuf (error %d)\n",
4913 			    __func__, error);
4914 			if_inc_counter(ni->ni_vap->iv_ifp,
4915 			    IFCOUNTER_OERRORS, 1);
4916 			ieee80211_free_node(ni);
4917 			m_freem(m);
4918 			return 0;
4919 		}
4920 	}
4921 
4922 	data->m = m;
4923 	data->ni = ni;
4924 
4925 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4926 	    "plcp 0x%x\n",
4927 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4928 
4929 	/* Fill TX descriptor. */
4930 	desc->nsegs = 1;
4931 	if (m->m_len != 0)
4932 		desc->nsegs += nsegs;
4933 	/* First DMA segment is used by the TX command. */
4934 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4935 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4936 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4937 	/* Other DMA segments are for data payload. */
4938 	seg = &segs[0];
4939 	for (i = 1; i <= nsegs; i++) {
4940 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4941 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4942 		    seg->ds_len << 4);
4943 		seg++;
4944 	}
4945 
4946 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4947 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4948 	    BUS_DMASYNC_PREWRITE);
4949 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4950 	    BUS_DMASYNC_PREWRITE);
4951 
4952 	/* Update TX scheduler. */
4953 	if (ring->qid >= sc->firstaggqueue)
4954 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4955 
4956 	/* Kick TX ring. */
4957 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4958 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4959 
4960 	/* Mark TX ring as full if we reach a certain threshold. */
4961 	if (++ring->queued > IWN_TX_RING_HIMARK)
4962 		sc->qfullmsk |= 1 << ring->qid;
4963 
4964 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4965 
4966 	return 0;
4967 }
4968 
4969 static void
4970 iwn_xmit_task(void *arg0, int pending)
4971 {
4972 	struct iwn_softc *sc = arg0;
4973 	struct ieee80211_node *ni;
4974 	struct mbuf *m;
4975 	int error;
4976 	struct ieee80211_bpf_params p;
4977 	int have_p;
4978 
4979 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4980 
4981 	IWN_LOCK(sc);
4982 	/*
4983 	 * Dequeue frames, attempt to transmit,
4984 	 * then disable beaconwait when we're done.
4985 	 */
4986 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4987 		have_p = 0;
4988 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4989 
4990 		/* Get xmit params if appropriate */
4991 		if (ieee80211_get_xmit_params(m, &p) == 0)
4992 			have_p = 1;
4993 
4994 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4995 		    __func__, m, have_p);
4996 
4997 		/* If we have xmit params, use them */
4998 		if (have_p)
4999 			error = iwn_tx_data_raw(sc, m, ni, &p);
5000 		else
5001 			error = iwn_tx_data(sc, m, ni);
5002 
5003 		if (error != 0) {
5004 			if_inc_counter(ni->ni_vap->iv_ifp,
5005 			    IFCOUNTER_OERRORS, 1);
5006 			ieee80211_free_node(ni);
5007 			m_freem(m);
5008 		}
5009 	}
5010 
5011 	sc->sc_beacon_wait = 0;
5012 	IWN_UNLOCK(sc);
5013 }
5014 
5015 /*
5016  * raw frame xmit - free node/reference if failed.
5017  */
5018 static int
5019 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5020     const struct ieee80211_bpf_params *params)
5021 {
5022 	struct ieee80211com *ic = ni->ni_ic;
5023 	struct iwn_softc *sc = ic->ic_softc;
5024 	int error = 0;
5025 
5026 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5027 
5028 	IWN_LOCK(sc);
5029 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5030 		m_freem(m);
5031 		IWN_UNLOCK(sc);
5032 		return (ENETDOWN);
5033 	}
5034 
5035 	/* queue frame if we have to */
5036 	if (sc->sc_beacon_wait) {
5037 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5038 			m_freem(m);
5039 			IWN_UNLOCK(sc);
5040 			return (ENOBUFS);
5041 		}
5042 		/* Queued, so just return OK */
5043 		IWN_UNLOCK(sc);
5044 		return (0);
5045 	}
5046 
5047 	if (params == NULL) {
5048 		/*
5049 		 * Legacy path; interpret frame contents to decide
5050 		 * precisely how to send the frame.
5051 		 */
5052 		error = iwn_tx_data(sc, m, ni);
5053 	} else {
5054 		/*
5055 		 * Caller supplied explicit parameters to use in
5056 		 * sending the frame.
5057 		 */
5058 		error = iwn_tx_data_raw(sc, m, ni, params);
5059 	}
5060 	if (error == 0)
5061 		sc->sc_tx_timer = 5;
5062 	else
5063 		m_freem(m);
5064 
5065 	IWN_UNLOCK(sc);
5066 
5067 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5068 
5069 	return (error);
5070 }
5071 
5072 /*
5073  * transmit - don't free mbuf if failed; don't free node ref if failed.
5074  */
5075 static int
5076 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5077 {
5078 	struct iwn_softc *sc = ic->ic_softc;
5079 	struct ieee80211_node *ni;
5080 	int error;
5081 
5082 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5083 
5084 	IWN_LOCK(sc);
5085 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5086 		IWN_UNLOCK(sc);
5087 		return (ENXIO);
5088 	}
5089 
5090 	if (sc->qfullmsk) {
5091 		IWN_UNLOCK(sc);
5092 		return (ENOBUFS);
5093 	}
5094 
5095 	error = iwn_tx_data(sc, m, ni);
5096 	if (!error)
5097 		sc->sc_tx_timer = 5;
5098 	IWN_UNLOCK(sc);
5099 	return (error);
5100 }
5101 
5102 static void
5103 iwn_scan_timeout(void *arg)
5104 {
5105 	struct iwn_softc *sc = arg;
5106 	struct ieee80211com *ic = &sc->sc_ic;
5107 
5108 	ic_printf(ic, "scan timeout\n");
5109 	ieee80211_restart_all(ic);
5110 }
5111 
5112 static void
5113 iwn_watchdog(void *arg)
5114 {
5115 	struct iwn_softc *sc = arg;
5116 	struct ieee80211com *ic = &sc->sc_ic;
5117 
5118 	IWN_LOCK_ASSERT(sc);
5119 
5120 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5121 
5122 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5123 
5124 	if (sc->sc_tx_timer > 0) {
5125 		if (--sc->sc_tx_timer == 0) {
5126 			ic_printf(ic, "device timeout\n");
5127 			ieee80211_restart_all(ic);
5128 			return;
5129 		}
5130 	}
5131 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5132 }
5133 
5134 static int
5135 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5136 {
5137 
5138 	return (0);
5139 }
5140 
5141 static int
5142 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5143 {
5144 
5145 	return (0);
5146 }
5147 
5148 static int
5149 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5150     struct thread *td)
5151 {
5152 	int rc;
5153 	struct iwn_softc *sc = dev->si_drv1;
5154 	struct iwn_ioctl_data *d;
5155 
5156 	rc = priv_check(td, PRIV_DRIVER);
5157 	if (rc != 0)
5158 		return (0);
5159 
5160 	switch (cmd) {
5161 	case SIOCGIWNSTATS:
5162 		d = (struct iwn_ioctl_data *) data;
5163 		IWN_LOCK(sc);
5164 		/* XXX validate permissions/memory/etc? */
5165 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5166 		IWN_UNLOCK(sc);
5167 		break;
5168 	case SIOCZIWNSTATS:
5169 		IWN_LOCK(sc);
5170 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5171 		IWN_UNLOCK(sc);
5172 		break;
5173 	default:
5174 		rc = EINVAL;
5175 		break;
5176 	}
5177 	return (rc);
5178 }
5179 
5180 static int
5181 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5182 {
5183 
5184 	return (ENOTTY);
5185 }
5186 
5187 static void
5188 iwn_parent(struct ieee80211com *ic)
5189 {
5190 	struct iwn_softc *sc = ic->ic_softc;
5191 	struct ieee80211vap *vap;
5192 	int error;
5193 
5194 	if (ic->ic_nrunning > 0) {
5195 		error = iwn_init(sc);
5196 
5197 		switch (error) {
5198 		case 0:
5199 			ieee80211_start_all(ic);
5200 			break;
5201 		case 1:
5202 			/* radio is disabled via RFkill switch */
5203 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5204 			break;
5205 		default:
5206 			vap = TAILQ_FIRST(&ic->ic_vaps);
5207 			if (vap != NULL)
5208 				ieee80211_stop(vap);
5209 			break;
5210 		}
5211 	} else
5212 		iwn_stop(sc);
5213 }
5214 
5215 /*
5216  * Send a command to the firmware.
5217  */
5218 static int
5219 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5220 {
5221 	struct iwn_tx_ring *ring;
5222 	struct iwn_tx_desc *desc;
5223 	struct iwn_tx_data *data;
5224 	struct iwn_tx_cmd *cmd;
5225 	struct mbuf *m;
5226 	bus_addr_t paddr;
5227 	int totlen, error;
5228 	int cmd_queue_num;
5229 
5230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5231 
5232 	if (async == 0)
5233 		IWN_LOCK_ASSERT(sc);
5234 
5235 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5236 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5237 	else
5238 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5239 
5240 	ring = &sc->txq[cmd_queue_num];
5241 	desc = &ring->desc[ring->cur];
5242 	data = &ring->data[ring->cur];
5243 	totlen = 4 + size;
5244 
5245 	if (size > sizeof cmd->data) {
5246 		/* Command is too large to fit in a descriptor. */
5247 		if (totlen > MCLBYTES)
5248 			return EINVAL;
5249 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5250 		if (m == NULL)
5251 			return ENOMEM;
5252 		cmd = mtod(m, struct iwn_tx_cmd *);
5253 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5254 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5255 		if (error != 0) {
5256 			m_freem(m);
5257 			return error;
5258 		}
5259 		data->m = m;
5260 	} else {
5261 		cmd = &ring->cmd[ring->cur];
5262 		paddr = data->cmd_paddr;
5263 	}
5264 
5265 	cmd->code = code;
5266 	cmd->flags = 0;
5267 	cmd->qid = ring->qid;
5268 	cmd->idx = ring->cur;
5269 	memcpy(cmd->data, buf, size);
5270 
5271 	desc->nsegs = 1;
5272 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5273 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5274 
5275 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5276 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5277 	    cmd->flags, cmd->qid, cmd->idx);
5278 
5279 	if (size > sizeof cmd->data) {
5280 		bus_dmamap_sync(ring->data_dmat, data->map,
5281 		    BUS_DMASYNC_PREWRITE);
5282 	} else {
5283 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5284 		    BUS_DMASYNC_PREWRITE);
5285 	}
5286 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5287 	    BUS_DMASYNC_PREWRITE);
5288 
5289 	/* Kick command ring. */
5290 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5291 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5292 
5293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5294 
5295 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5296 }
5297 
5298 static int
5299 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5300 {
5301 	struct iwn4965_node_info hnode;
5302 	caddr_t src, dst;
5303 
5304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5305 
5306 	/*
5307 	 * We use the node structure for 5000 Series internally (it is
5308 	 * a superset of the one for 4965AGN). We thus copy the common
5309 	 * fields before sending the command.
5310 	 */
5311 	src = (caddr_t)node;
5312 	dst = (caddr_t)&hnode;
5313 	memcpy(dst, src, 48);
5314 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5315 	memcpy(dst + 48, src + 72, 20);
5316 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5317 }
5318 
5319 static int
5320 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5321 {
5322 
5323 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5324 
5325 	/* Direct mapping. */
5326 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5327 }
5328 
5329 static int
5330 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5331 {
5332 	struct iwn_node *wn = (void *)ni;
5333 	struct ieee80211_rateset *rs;
5334 	struct iwn_cmd_link_quality linkq;
5335 	int i, rate, txrate;
5336 	int is_11n;
5337 
5338 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5339 
5340 	memset(&linkq, 0, sizeof linkq);
5341 	linkq.id = wn->id;
5342 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5343 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5344 
5345 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5346 	linkq.ampdu_threshold = 3;
5347 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5348 
5349 	DPRINTF(sc, IWN_DEBUG_XMIT,
5350 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5351 	    __func__,
5352 	    linkq.antmsk_1stream,
5353 	    linkq.antmsk_2stream,
5354 	    sc->ntxchains);
5355 
5356 	/*
5357 	 * Are we using 11n rates? Ensure the channel is
5358 	 * 11n _and_ we have some 11n rates, or don't
5359 	 * try.
5360 	 */
5361 	if (ieee80211_ht_check_tx_ht(ni)) {
5362 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5363 		is_11n = 1;
5364 	} else {
5365 		rs = &ni->ni_rates;
5366 		is_11n = 0;
5367 	}
5368 
5369 	/* Start at highest available bit-rate. */
5370 	/*
5371 	 * XXX this is all very dirty!
5372 	 */
5373 	if (is_11n)
5374 		txrate = ni->ni_htrates.rs_nrates - 1;
5375 	else
5376 		txrate = rs->rs_nrates - 1;
5377 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5378 		uint32_t plcp;
5379 
5380 		/*
5381 		 * XXX TODO: ensure the last two slots are the two lowest
5382 		 * rate entries, just for now.
5383 		 */
5384 		if (i == 14 || i == 15)
5385 			txrate = 0;
5386 
5387 		if (is_11n)
5388 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5389 		else
5390 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5391 
5392 		/* Do rate -> PLCP config mapping */
5393 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5394 		linkq.retry[i] = plcp;
5395 		DPRINTF(sc, IWN_DEBUG_XMIT,
5396 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5397 		    __func__,
5398 		    i,
5399 		    txrate,
5400 		    rate,
5401 		    le32toh(plcp));
5402 
5403 		/*
5404 		 * The mimo field is an index into the table which
5405 		 * indicates the first index where it and subsequent entries
5406 		 * will not be using MIMO.
5407 		 *
5408 		 * Since we're filling linkq from 0..15 and we're filling
5409 		 * from the highest MCS rates to the lowest rates, if we
5410 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5411 		 * the next entry.)  That way if the next entry is a non-MIMO
5412 		 * entry, we're already pointing at it.
5413 		 */
5414 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5415 		    IEEE80211_RV(le32toh(plcp)) > 7)
5416 			linkq.mimo = i + 1;
5417 
5418 		/* Next retry at immediate lower bit-rate. */
5419 		if (txrate > 0)
5420 			txrate--;
5421 	}
5422 	/*
5423 	 * If we reached the end of the list and indeed we hit
5424 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5425 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5426 	 */
5427 	if (linkq.mimo > 15)
5428 		linkq.mimo = 15;
5429 
5430 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5431 
5432 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5433 
5434 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5435 }
5436 
5437 /*
5438  * Broadcast node is used to send group-addressed and management frames.
5439  */
5440 static int
5441 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5442 {
5443 	struct iwn_ops *ops = &sc->ops;
5444 	struct ieee80211com *ic = &sc->sc_ic;
5445 	struct iwn_node_info node;
5446 	struct iwn_cmd_link_quality linkq;
5447 	uint8_t txant;
5448 	int i, error;
5449 
5450 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5451 
5452 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5453 
5454 	memset(&node, 0, sizeof node);
5455 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5456 	node.id = sc->broadcast_id;
5457 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5458 	if ((error = ops->add_node(sc, &node, async)) != 0)
5459 		return error;
5460 
5461 	/* Use the first valid TX antenna. */
5462 	txant = IWN_LSB(sc->txchainmask);
5463 
5464 	memset(&linkq, 0, sizeof linkq);
5465 	linkq.id = sc->broadcast_id;
5466 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5467 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5468 	linkq.ampdu_max = 64;
5469 	linkq.ampdu_threshold = 3;
5470 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5471 
5472 	/* Use lowest mandatory bit-rate. */
5473 	/* XXX rate table lookup? */
5474 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5475 		linkq.retry[0] = htole32(0xd);
5476 	else
5477 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5478 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5479 	/* Use same bit-rate for all TX retries. */
5480 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5481 		linkq.retry[i] = linkq.retry[0];
5482 	}
5483 
5484 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5485 
5486 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5487 }
5488 
5489 static int
5490 iwn_updateedca(struct ieee80211com *ic)
5491 {
5492 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5493 	struct iwn_softc *sc = ic->ic_softc;
5494 	struct iwn_edca_params cmd;
5495 	struct chanAccParams chp;
5496 	int aci;
5497 
5498 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5499 
5500 	ieee80211_wme_ic_getparams(ic, &chp);
5501 
5502 	memset(&cmd, 0, sizeof cmd);
5503 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5504 
5505 	IEEE80211_LOCK(ic);
5506 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5507 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5508 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5509 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5510 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5511 		cmd.ac[aci].txoplimit =
5512 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5513 	}
5514 	IEEE80211_UNLOCK(ic);
5515 
5516 	IWN_LOCK(sc);
5517 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5518 	IWN_UNLOCK(sc);
5519 
5520 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5521 
5522 	return 0;
5523 #undef IWN_EXP2
5524 }
5525 
5526 static void
5527 iwn_set_promisc(struct iwn_softc *sc)
5528 {
5529 	struct ieee80211com *ic = &sc->sc_ic;
5530 	uint32_t promisc_filter;
5531 
5532 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5533 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5534 		sc->rxon->filter |= htole32(promisc_filter);
5535 	else
5536 		sc->rxon->filter &= ~htole32(promisc_filter);
5537 }
5538 
5539 static void
5540 iwn_update_promisc(struct ieee80211com *ic)
5541 {
5542 	struct iwn_softc *sc = ic->ic_softc;
5543 	int error;
5544 
5545 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5546 		return;		/* nothing to do */
5547 
5548 	IWN_LOCK(sc);
5549 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5550 		IWN_UNLOCK(sc);
5551 		return;
5552 	}
5553 
5554 	iwn_set_promisc(sc);
5555 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5556 		device_printf(sc->sc_dev,
5557 		    "%s: could not send RXON, error %d\n",
5558 		    __func__, error);
5559 	}
5560 	IWN_UNLOCK(sc);
5561 }
5562 
5563 static void
5564 iwn_update_mcast(struct ieee80211com *ic)
5565 {
5566 	/* Ignore */
5567 }
5568 
5569 static void
5570 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5571 {
5572 	struct iwn_cmd_led led;
5573 
5574 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5575 
5576 #if 0
5577 	/* XXX don't set LEDs during scan? */
5578 	if (sc->sc_is_scanning)
5579 		return;
5580 #endif
5581 
5582 	/* Clear microcode LED ownership. */
5583 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5584 
5585 	led.which = which;
5586 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5587 	led.off = off;
5588 	led.on = on;
5589 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5590 }
5591 
5592 /*
5593  * Set the critical temperature at which the firmware will stop the radio
5594  * and notify us.
5595  */
5596 static int
5597 iwn_set_critical_temp(struct iwn_softc *sc)
5598 {
5599 	struct iwn_critical_temp crit;
5600 	int32_t temp;
5601 
5602 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5603 
5604 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5605 
5606 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5607 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5608 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5609 		temp = IWN_CTOK(110);
5610 	else
5611 		temp = 110;
5612 	memset(&crit, 0, sizeof crit);
5613 	crit.tempR = htole32(temp);
5614 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5615 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5616 }
5617 
5618 static int
5619 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5620 {
5621 	struct iwn_cmd_timing cmd;
5622 	uint64_t val, mod;
5623 
5624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5625 
5626 	memset(&cmd, 0, sizeof cmd);
5627 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5628 	cmd.bintval = htole16(ni->ni_intval);
5629 	cmd.lintval = htole16(10);
5630 
5631 	/* Compute remaining time until next beacon. */
5632 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5633 	mod = le64toh(cmd.tstamp) % val;
5634 	cmd.binitval = htole32((uint32_t)(val - mod));
5635 
5636 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5637 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5638 
5639 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5640 }
5641 
5642 static void
5643 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5644 {
5645 
5646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5647 
5648 	/* Adjust TX power if need be (delta >= 3 degC). */
5649 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5650 	    __func__, sc->temp, temp);
5651 	if (abs(temp - sc->temp) >= 3) {
5652 		/* Record temperature of last calibration. */
5653 		sc->temp = temp;
5654 		(void)iwn4965_set_txpower(sc, 1);
5655 	}
5656 }
5657 
5658 /*
5659  * Set TX power for current channel (each rate has its own power settings).
5660  * This function takes into account the regulatory information from EEPROM,
5661  * the current temperature and the current voltage.
5662  */
5663 static int
5664 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5665 {
5666 /* Fixed-point arithmetic division using a n-bit fractional part. */
5667 #define fdivround(a, b, n)	\
5668 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5669 /* Linear interpolation. */
5670 #define interpolate(x, x1, y1, x2, y2, n)	\
5671 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5672 
5673 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5674 	struct iwn_ucode_info *uc = &sc->ucode_info;
5675 	struct iwn4965_cmd_txpower cmd;
5676 	struct iwn4965_eeprom_chan_samples *chans;
5677 	const uint8_t *rf_gain, *dsp_gain;
5678 	int32_t vdiff, tdiff;
5679 	int i, is_chan_5ghz, c, grp, maxpwr;
5680 	uint8_t chan;
5681 
5682 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5683 	/* Retrieve current channel from last RXON. */
5684 	chan = sc->rxon->chan;
5685 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5686 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5687 	    chan);
5688 
5689 	memset(&cmd, 0, sizeof cmd);
5690 	cmd.band = is_chan_5ghz ? 0 : 1;
5691 	cmd.chan = chan;
5692 
5693 	if (is_chan_5ghz) {
5694 		maxpwr   = sc->maxpwr5GHz;
5695 		rf_gain  = iwn4965_rf_gain_5ghz;
5696 		dsp_gain = iwn4965_dsp_gain_5ghz;
5697 	} else {
5698 		maxpwr   = sc->maxpwr2GHz;
5699 		rf_gain  = iwn4965_rf_gain_2ghz;
5700 		dsp_gain = iwn4965_dsp_gain_2ghz;
5701 	}
5702 
5703 	/* Compute voltage compensation. */
5704 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5705 	if (vdiff > 0)
5706 		vdiff *= 2;
5707 	if (abs(vdiff) > 2)
5708 		vdiff = 0;
5709 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5710 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5711 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5712 
5713 	/* Get channel attenuation group. */
5714 	if (chan <= 20)		/* 1-20 */
5715 		grp = 4;
5716 	else if (chan <= 43)	/* 34-43 */
5717 		grp = 0;
5718 	else if (chan <= 70)	/* 44-70 */
5719 		grp = 1;
5720 	else if (chan <= 124)	/* 71-124 */
5721 		grp = 2;
5722 	else			/* 125-200 */
5723 		grp = 3;
5724 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5725 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5726 
5727 	/* Get channel sub-band. */
5728 	for (i = 0; i < IWN_NBANDS; i++)
5729 		if (sc->bands[i].lo != 0 &&
5730 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5731 			break;
5732 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5733 		return EINVAL;
5734 	chans = sc->bands[i].chans;
5735 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5736 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5737 
5738 	for (c = 0; c < 2; c++) {
5739 		uint8_t power, gain, temp;
5740 		int maxchpwr, pwr, ridx, idx;
5741 
5742 		power = interpolate(chan,
5743 		    chans[0].num, chans[0].samples[c][1].power,
5744 		    chans[1].num, chans[1].samples[c][1].power, 1);
5745 		gain  = interpolate(chan,
5746 		    chans[0].num, chans[0].samples[c][1].gain,
5747 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5748 		temp  = interpolate(chan,
5749 		    chans[0].num, chans[0].samples[c][1].temp,
5750 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5751 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5752 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5753 		    __func__, c, power, gain, temp);
5754 
5755 		/* Compute temperature compensation. */
5756 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5757 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5758 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5759 		    __func__, tdiff, sc->temp, temp);
5760 
5761 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5762 			/* Convert dBm to half-dBm. */
5763 			maxchpwr = sc->maxpwr[chan] * 2;
5764 			if ((ridx / 8) & 1)
5765 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5766 
5767 			pwr = maxpwr;
5768 
5769 			/* Adjust TX power based on rate. */
5770 			if ((ridx % 8) == 5)
5771 				pwr -= 15;	/* OFDM48: -7.5dB */
5772 			else if ((ridx % 8) == 6)
5773 				pwr -= 17;	/* OFDM54: -8.5dB */
5774 			else if ((ridx % 8) == 7)
5775 				pwr -= 20;	/* OFDM60: -10dB */
5776 			else
5777 				pwr -= 10;	/* Others: -5dB */
5778 
5779 			/* Do not exceed channel max TX power. */
5780 			if (pwr > maxchpwr)
5781 				pwr = maxchpwr;
5782 
5783 			idx = gain - (pwr - power) - tdiff - vdiff;
5784 			if ((ridx / 8) & 1)	/* MIMO */
5785 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5786 
5787 			if (cmd.band == 0)
5788 				idx += 9;	/* 5GHz */
5789 			if (ridx == IWN_RIDX_MAX)
5790 				idx += 5;	/* CCK */
5791 
5792 			/* Make sure idx stays in a valid range. */
5793 			if (idx < 0)
5794 				idx = 0;
5795 			else if (idx > IWN4965_MAX_PWR_INDEX)
5796 				idx = IWN4965_MAX_PWR_INDEX;
5797 
5798 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5799 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5800 			    __func__, c, ridx, idx);
5801 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5802 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5803 		}
5804 	}
5805 
5806 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5807 	    "%s: set tx power for chan %d\n", __func__, chan);
5808 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5809 
5810 #undef interpolate
5811 #undef fdivround
5812 }
5813 
5814 static int
5815 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5816 {
5817 	struct iwn5000_cmd_txpower cmd;
5818 	int cmdid;
5819 
5820 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5821 
5822 	/*
5823 	 * TX power calibration is handled automatically by the firmware
5824 	 * for 5000 Series.
5825 	 */
5826 	memset(&cmd, 0, sizeof cmd);
5827 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5828 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5829 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5830 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5831 	    "%s: setting TX power; rev=%d\n",
5832 	    __func__,
5833 	    IWN_UCODE_API(sc->ucode_rev));
5834 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5835 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5836 	else
5837 		cmdid = IWN_CMD_TXPOWER_DBM;
5838 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5839 }
5840 
5841 /*
5842  * Retrieve the maximum RSSI (in dBm) among receivers.
5843  */
5844 static int
5845 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5846 {
5847 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5848 	uint8_t mask, agc;
5849 	int rssi;
5850 
5851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5852 
5853 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5854 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5855 
5856 	rssi = 0;
5857 	if (mask & IWN_ANT_A)
5858 		rssi = MAX(rssi, phy->rssi[0]);
5859 	if (mask & IWN_ANT_B)
5860 		rssi = MAX(rssi, phy->rssi[2]);
5861 	if (mask & IWN_ANT_C)
5862 		rssi = MAX(rssi, phy->rssi[4]);
5863 
5864 	DPRINTF(sc, IWN_DEBUG_RECV,
5865 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5866 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5867 	    rssi - agc - IWN_RSSI_TO_DBM);
5868 	return rssi - agc - IWN_RSSI_TO_DBM;
5869 }
5870 
5871 static int
5872 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5873 {
5874 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5875 	uint8_t agc;
5876 	int rssi;
5877 
5878 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5879 
5880 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5881 
5882 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5883 		   le16toh(phy->rssi[1]) & 0xff);
5884 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5885 
5886 	DPRINTF(sc, IWN_DEBUG_RECV,
5887 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5888 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5889 	    rssi - agc - IWN_RSSI_TO_DBM);
5890 	return rssi - agc - IWN_RSSI_TO_DBM;
5891 }
5892 
5893 /*
5894  * Retrieve the average noise (in dBm) among receivers.
5895  */
5896 static int
5897 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5898 {
5899 	int i, total, nbant, noise;
5900 
5901 	total = nbant = 0;
5902 	for (i = 0; i < 3; i++) {
5903 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5904 			continue;
5905 		total += noise;
5906 		nbant++;
5907 	}
5908 	/* There should be at least one antenna but check anyway. */
5909 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5910 }
5911 
5912 /*
5913  * Compute temperature (in degC) from last received statistics.
5914  */
5915 static int
5916 iwn4965_get_temperature(struct iwn_softc *sc)
5917 {
5918 	struct iwn_ucode_info *uc = &sc->ucode_info;
5919 	int32_t r1, r2, r3, r4, temp;
5920 
5921 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5922 
5923 	r1 = le32toh(uc->temp[0].chan20MHz);
5924 	r2 = le32toh(uc->temp[1].chan20MHz);
5925 	r3 = le32toh(uc->temp[2].chan20MHz);
5926 	r4 = le32toh(sc->rawtemp);
5927 
5928 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5929 		return 0;
5930 
5931 	/* Sign-extend 23-bit R4 value to 32-bit. */
5932 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5933 	/* Compute temperature in Kelvin. */
5934 	temp = (259 * (r4 - r2)) / (r3 - r1);
5935 	temp = (temp * 97) / 100 + 8;
5936 
5937 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5938 	    IWN_KTOC(temp));
5939 	return IWN_KTOC(temp);
5940 }
5941 
5942 static int
5943 iwn5000_get_temperature(struct iwn_softc *sc)
5944 {
5945 	int32_t temp;
5946 
5947 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5948 
5949 	/*
5950 	 * Temperature is not used by the driver for 5000 Series because
5951 	 * TX power calibration is handled by firmware.
5952 	 */
5953 	temp = le32toh(sc->rawtemp);
5954 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5955 		temp = (temp / -5) + sc->temp_off;
5956 		temp = IWN_KTOC(temp);
5957 	}
5958 	return temp;
5959 }
5960 
5961 /*
5962  * Initialize sensitivity calibration state machine.
5963  */
5964 static int
5965 iwn_init_sensitivity(struct iwn_softc *sc)
5966 {
5967 	struct iwn_ops *ops = &sc->ops;
5968 	struct iwn_calib_state *calib = &sc->calib;
5969 	uint32_t flags;
5970 	int error;
5971 
5972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5973 
5974 	/* Reset calibration state machine. */
5975 	memset(calib, 0, sizeof (*calib));
5976 	calib->state = IWN_CALIB_STATE_INIT;
5977 	calib->cck_state = IWN_CCK_STATE_HIFA;
5978 	/* Set initial correlation values. */
5979 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5980 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5981 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5982 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5983 	calib->cck_x4      = 125;
5984 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5985 	calib->energy_cck  = sc->limits->energy_cck;
5986 
5987 	/* Write initial sensitivity. */
5988 	if ((error = iwn_send_sensitivity(sc)) != 0)
5989 		return error;
5990 
5991 	/* Write initial gains. */
5992 	if ((error = ops->init_gains(sc)) != 0)
5993 		return error;
5994 
5995 	/* Request statistics at each beacon interval. */
5996 	flags = 0;
5997 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5998 	    __func__);
5999 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6000 }
6001 
6002 /*
6003  * Collect noise and RSSI statistics for the first 20 beacons received
6004  * after association and use them to determine connected antennas and
6005  * to set differential gains.
6006  */
6007 static void
6008 iwn_collect_noise(struct iwn_softc *sc,
6009     const struct iwn_rx_general_stats *stats)
6010 {
6011 	struct iwn_ops *ops = &sc->ops;
6012 	struct iwn_calib_state *calib = &sc->calib;
6013 	struct ieee80211com *ic = &sc->sc_ic;
6014 	uint32_t val;
6015 	int i;
6016 
6017 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6018 
6019 	/* Accumulate RSSI and noise for all 3 antennas. */
6020 	for (i = 0; i < 3; i++) {
6021 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6022 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6023 	}
6024 	/* NB: We update differential gains only once after 20 beacons. */
6025 	if (++calib->nbeacons < 20)
6026 		return;
6027 
6028 	/* Determine highest average RSSI. */
6029 	val = MAX(calib->rssi[0], calib->rssi[1]);
6030 	val = MAX(calib->rssi[2], val);
6031 
6032 	/* Determine which antennas are connected. */
6033 	sc->chainmask = sc->rxchainmask;
6034 	for (i = 0; i < 3; i++)
6035 		if (val - calib->rssi[i] > 15 * 20)
6036 			sc->chainmask &= ~(1 << i);
6037 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6038 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6039 	    __func__, sc->rxchainmask, sc->chainmask);
6040 
6041 	/* If none of the TX antennas are connected, keep at least one. */
6042 	if ((sc->chainmask & sc->txchainmask) == 0)
6043 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6044 
6045 	(void)ops->set_gains(sc);
6046 	calib->state = IWN_CALIB_STATE_RUN;
6047 
6048 #ifdef notyet
6049 	/* XXX Disable RX chains with no antennas connected. */
6050 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6051 	if (sc->sc_is_scanning)
6052 		device_printf(sc->sc_dev,
6053 		    "%s: is_scanning set, before RXON\n",
6054 		    __func__);
6055 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6056 #endif
6057 
6058 	/* Enable power-saving mode if requested by user. */
6059 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6060 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6061 
6062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6063 
6064 }
6065 
6066 static int
6067 iwn4965_init_gains(struct iwn_softc *sc)
6068 {
6069 	struct iwn_phy_calib_gain cmd;
6070 
6071 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6072 
6073 	memset(&cmd, 0, sizeof cmd);
6074 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6075 	/* Differential gains initially set to 0 for all 3 antennas. */
6076 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6077 	    "%s: setting initial differential gains\n", __func__);
6078 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6079 }
6080 
6081 static int
6082 iwn5000_init_gains(struct iwn_softc *sc)
6083 {
6084 	struct iwn_phy_calib cmd;
6085 
6086 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6087 
6088 	memset(&cmd, 0, sizeof cmd);
6089 	cmd.code = sc->reset_noise_gain;
6090 	cmd.ngroups = 1;
6091 	cmd.isvalid = 1;
6092 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6093 	    "%s: setting initial differential gains\n", __func__);
6094 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6095 }
6096 
6097 static int
6098 iwn4965_set_gains(struct iwn_softc *sc)
6099 {
6100 	struct iwn_calib_state *calib = &sc->calib;
6101 	struct iwn_phy_calib_gain cmd;
6102 	int i, delta, noise;
6103 
6104 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6105 
6106 	/* Get minimal noise among connected antennas. */
6107 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6108 	for (i = 0; i < 3; i++)
6109 		if (sc->chainmask & (1 << i))
6110 			noise = MIN(calib->noise[i], noise);
6111 
6112 	memset(&cmd, 0, sizeof cmd);
6113 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6114 	/* Set differential gains for connected antennas. */
6115 	for (i = 0; i < 3; i++) {
6116 		if (sc->chainmask & (1 << i)) {
6117 			/* Compute attenuation (in unit of 1.5dB). */
6118 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6119 			/* NB: delta <= 0 */
6120 			/* Limit to [-4.5dB,0]. */
6121 			cmd.gain[i] = MIN(abs(delta), 3);
6122 			if (delta < 0)
6123 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6124 		}
6125 	}
6126 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6127 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6128 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6129 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6130 }
6131 
6132 static int
6133 iwn5000_set_gains(struct iwn_softc *sc)
6134 {
6135 	struct iwn_calib_state *calib = &sc->calib;
6136 	struct iwn_phy_calib_gain cmd;
6137 	int i, ant, div, delta;
6138 
6139 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6140 
6141 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6142 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6143 
6144 	memset(&cmd, 0, sizeof cmd);
6145 	cmd.code = sc->noise_gain;
6146 	cmd.ngroups = 1;
6147 	cmd.isvalid = 1;
6148 	/* Get first available RX antenna as referential. */
6149 	ant = IWN_LSB(sc->rxchainmask);
6150 	/* Set differential gains for other antennas. */
6151 	for (i = ant + 1; i < 3; i++) {
6152 		if (sc->chainmask & (1 << i)) {
6153 			/* The delta is relative to antenna "ant". */
6154 			delta = ((int32_t)calib->noise[ant] -
6155 			    (int32_t)calib->noise[i]) / div;
6156 			/* Limit to [-4.5dB,+4.5dB]. */
6157 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6158 			if (delta < 0)
6159 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6160 		}
6161 	}
6162 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6163 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6164 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6165 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6166 }
6167 
6168 /*
6169  * Tune RF RX sensitivity based on the number of false alarms detected
6170  * during the last beacon period.
6171  */
6172 static void
6173 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6174 {
6175 #define inc(val, inc, max)			\
6176 	if ((val) < (max)) {			\
6177 		if ((val) < (max) - (inc))	\
6178 			(val) += (inc);		\
6179 		else				\
6180 			(val) = (max);		\
6181 		needs_update = 1;		\
6182 	}
6183 #define dec(val, dec, min)			\
6184 	if ((val) > (min)) {			\
6185 		if ((val) > (min) + (dec))	\
6186 			(val) -= (dec);		\
6187 		else				\
6188 			(val) = (min);		\
6189 		needs_update = 1;		\
6190 	}
6191 
6192 	const struct iwn_sensitivity_limits *limits = sc->limits;
6193 	struct iwn_calib_state *calib = &sc->calib;
6194 	uint32_t val, rxena, fa;
6195 	uint32_t energy[3], energy_min;
6196 	uint8_t noise[3], noise_ref;
6197 	int i, needs_update = 0;
6198 
6199 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6200 
6201 	/* Check that we've been enabled long enough. */
6202 	if ((rxena = le32toh(stats->general.load)) == 0){
6203 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6204 		return;
6205 	}
6206 
6207 	/* Compute number of false alarms since last call for OFDM. */
6208 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6209 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6210 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6211 
6212 	if (fa > 50 * rxena) {
6213 		/* High false alarm count, decrease sensitivity. */
6214 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6215 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6216 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6217 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6218 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6219 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6220 
6221 	} else if (fa < 5 * rxena) {
6222 		/* Low false alarm count, increase sensitivity. */
6223 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6224 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6225 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6226 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6227 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6228 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6229 	}
6230 
6231 	/* Compute maximum noise among 3 receivers. */
6232 	for (i = 0; i < 3; i++)
6233 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6234 	val = MAX(noise[0], noise[1]);
6235 	val = MAX(noise[2], val);
6236 	/* Insert it into our samples table. */
6237 	calib->noise_samples[calib->cur_noise_sample] = val;
6238 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6239 
6240 	/* Compute maximum noise among last 20 samples. */
6241 	noise_ref = calib->noise_samples[0];
6242 	for (i = 1; i < 20; i++)
6243 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6244 
6245 	/* Compute maximum energy among 3 receivers. */
6246 	for (i = 0; i < 3; i++)
6247 		energy[i] = le32toh(stats->general.energy[i]);
6248 	val = MIN(energy[0], energy[1]);
6249 	val = MIN(energy[2], val);
6250 	/* Insert it into our samples table. */
6251 	calib->energy_samples[calib->cur_energy_sample] = val;
6252 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6253 
6254 	/* Compute minimum energy among last 10 samples. */
6255 	energy_min = calib->energy_samples[0];
6256 	for (i = 1; i < 10; i++)
6257 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6258 	energy_min += 6;
6259 
6260 	/* Compute number of false alarms since last call for CCK. */
6261 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6262 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6263 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6264 
6265 	if (fa > 50 * rxena) {
6266 		/* High false alarm count, decrease sensitivity. */
6267 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6268 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6269 		calib->cck_state = IWN_CCK_STATE_HIFA;
6270 		calib->low_fa = 0;
6271 
6272 		if (calib->cck_x4 > 160) {
6273 			calib->noise_ref = noise_ref;
6274 			if (calib->energy_cck > 2)
6275 				dec(calib->energy_cck, 2, energy_min);
6276 		}
6277 		if (calib->cck_x4 < 160) {
6278 			calib->cck_x4 = 161;
6279 			needs_update = 1;
6280 		} else
6281 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6282 
6283 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6284 
6285 	} else if (fa < 5 * rxena) {
6286 		/* Low false alarm count, increase sensitivity. */
6287 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6288 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6289 		calib->cck_state = IWN_CCK_STATE_LOFA;
6290 		calib->low_fa++;
6291 
6292 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6293 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6294 		     calib->low_fa > 100)) {
6295 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6296 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6297 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6298 		}
6299 	} else {
6300 		/* Not worth to increase or decrease sensitivity. */
6301 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6302 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6303 		calib->low_fa = 0;
6304 		calib->noise_ref = noise_ref;
6305 
6306 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6307 			/* Previous interval had many false alarms. */
6308 			dec(calib->energy_cck, 8, energy_min);
6309 		}
6310 		calib->cck_state = IWN_CCK_STATE_INIT;
6311 	}
6312 
6313 	if (needs_update)
6314 		(void)iwn_send_sensitivity(sc);
6315 
6316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6317 
6318 #undef dec
6319 #undef inc
6320 }
6321 
6322 static int
6323 iwn_send_sensitivity(struct iwn_softc *sc)
6324 {
6325 	struct iwn_calib_state *calib = &sc->calib;
6326 	struct iwn_enhanced_sensitivity_cmd cmd;
6327 	int len;
6328 
6329 	memset(&cmd, 0, sizeof cmd);
6330 	len = sizeof (struct iwn_sensitivity_cmd);
6331 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6332 	/* OFDM modulation. */
6333 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6334 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6335 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6336 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6337 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6338 	cmd.energy_ofdm_th     = htole16(62);
6339 	/* CCK modulation. */
6340 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6341 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6342 	cmd.energy_cck         = htole16(calib->energy_cck);
6343 	/* Barker modulation: use default values. */
6344 	cmd.corr_barker        = htole16(190);
6345 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6346 
6347 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6348 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6349 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6350 	    calib->ofdm_mrc_x4, calib->cck_x4,
6351 	    calib->cck_mrc_x4, calib->energy_cck);
6352 
6353 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6354 		goto send;
6355 	/* Enhanced sensitivity settings. */
6356 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6357 	cmd.ofdm_det_slope_mrc = htole16(668);
6358 	cmd.ofdm_det_icept_mrc = htole16(4);
6359 	cmd.ofdm_det_slope     = htole16(486);
6360 	cmd.ofdm_det_icept     = htole16(37);
6361 	cmd.cck_det_slope_mrc  = htole16(853);
6362 	cmd.cck_det_icept_mrc  = htole16(4);
6363 	cmd.cck_det_slope      = htole16(476);
6364 	cmd.cck_det_icept      = htole16(99);
6365 send:
6366 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6367 }
6368 
6369 /*
6370  * Look at the increase of PLCP errors over time; if it exceeds
6371  * a programmed threshold then trigger an RF retune.
6372  */
6373 static void
6374 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6375 {
6376 	int32_t delta_ofdm, delta_ht, delta_cck;
6377 	struct iwn_calib_state *calib = &sc->calib;
6378 	int delta_ticks, cur_ticks;
6379 	int delta_msec;
6380 	int thresh;
6381 
6382 	/*
6383 	 * Calculate the difference between the current and
6384 	 * previous statistics.
6385 	 */
6386 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6387 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6388 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6389 
6390 	/*
6391 	 * Calculate the delta in time between successive statistics
6392 	 * messages.  Yes, it can roll over; so we make sure that
6393 	 * this doesn't happen.
6394 	 *
6395 	 * XXX go figure out what to do about rollover
6396 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6397 	 * XXX go stab signed integer overflow undefined-ness in the face.
6398 	 */
6399 	cur_ticks = ticks;
6400 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6401 
6402 	/*
6403 	 * If any are negative, then the firmware likely reset; so just
6404 	 * bail.  We'll pick this up next time.
6405 	 */
6406 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6407 		return;
6408 
6409 	/*
6410 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6411 	 * so we can do some useful math with it.
6412 	 */
6413 	delta_msec = ticks_to_msecs(delta_ticks);
6414 
6415 	/*
6416 	 * Calculate what our threshold is given the current delta_msec.
6417 	 */
6418 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6419 
6420 	DPRINTF(sc, IWN_DEBUG_STATE,
6421 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6422 	    __func__,
6423 	    delta_msec,
6424 	    delta_cck,
6425 	    delta_ofdm,
6426 	    delta_ht,
6427 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6428 	    thresh);
6429 
6430 	/*
6431 	 * If we need a retune, then schedule a single channel scan
6432 	 * to a channel that isn't the currently active one!
6433 	 *
6434 	 * The math from linux iwlwifi:
6435 	 *
6436 	 * if ((delta * 100 / msecs) > threshold)
6437 	 */
6438 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6439 		DPRINTF(sc, IWN_DEBUG_ANY,
6440 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6441 		    "over limit (%d); retune!\n",
6442 		    __func__,
6443 		    (delta_cck + delta_ofdm + delta_ht),
6444 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6445 		    thresh);
6446 	}
6447 }
6448 
6449 /*
6450  * Set STA mode power saving level (between 0 and 5).
6451  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6452  */
6453 static int
6454 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6455 {
6456 	struct iwn_pmgt_cmd cmd;
6457 	const struct iwn_pmgt *pmgt;
6458 	uint32_t max, skip_dtim;
6459 	uint32_t reg;
6460 	int i;
6461 
6462 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6463 	    "%s: dtim=%d, level=%d, async=%d\n",
6464 	    __func__,
6465 	    dtim,
6466 	    level,
6467 	    async);
6468 
6469 	/* Select which PS parameters to use. */
6470 	if (dtim <= 2)
6471 		pmgt = &iwn_pmgt[0][level];
6472 	else if (dtim <= 10)
6473 		pmgt = &iwn_pmgt[1][level];
6474 	else
6475 		pmgt = &iwn_pmgt[2][level];
6476 
6477 	memset(&cmd, 0, sizeof cmd);
6478 	if (level != 0)	/* not CAM */
6479 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6480 	if (level == 5)
6481 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6482 	/* Retrieve PCIe Active State Power Management (ASPM). */
6483 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6484 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6485 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6486 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6487 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6488 
6489 	if (dtim == 0) {
6490 		dtim = 1;
6491 		skip_dtim = 0;
6492 	} else
6493 		skip_dtim = pmgt->skip_dtim;
6494 	if (skip_dtim != 0) {
6495 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6496 		max = pmgt->intval[4];
6497 		if (max == (uint32_t)-1)
6498 			max = dtim * (skip_dtim + 1);
6499 		else if (max > dtim)
6500 			max = rounddown(max, dtim);
6501 	} else
6502 		max = dtim;
6503 	for (i = 0; i < 5; i++)
6504 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6505 
6506 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6507 	    level);
6508 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6509 }
6510 
6511 static int
6512 iwn_send_btcoex(struct iwn_softc *sc)
6513 {
6514 	struct iwn_bluetooth cmd;
6515 
6516 	memset(&cmd, 0, sizeof cmd);
6517 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6518 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6519 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6520 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6521 	    __func__);
6522 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6523 }
6524 
6525 static int
6526 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6527 {
6528 	static const uint32_t btcoex_3wire[12] = {
6529 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6530 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6531 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6532 	};
6533 	struct iwn6000_btcoex_config btconfig;
6534 	struct iwn2000_btcoex_config btconfig2k;
6535 	struct iwn_btcoex_priotable btprio;
6536 	struct iwn_btcoex_prot btprot;
6537 	int error, i;
6538 	uint8_t flags;
6539 
6540 	memset(&btconfig, 0, sizeof btconfig);
6541 	memset(&btconfig2k, 0, sizeof btconfig2k);
6542 
6543 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6544 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6545 
6546 	if (sc->base_params->bt_sco_disable)
6547 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6548 	else
6549 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6550 
6551 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6552 
6553 	/* Default flags result is 145 as old value */
6554 
6555 	/*
6556 	 * Flags value has to be review. Values must change if we
6557 	 * which to disable it
6558 	 */
6559 	if (sc->base_params->bt_session_2) {
6560 		btconfig2k.flags = flags;
6561 		btconfig2k.max_kill = 5;
6562 		btconfig2k.bt3_t7_timer = 1;
6563 		btconfig2k.kill_ack = htole32(0xffff0000);
6564 		btconfig2k.kill_cts = htole32(0xffff0000);
6565 		btconfig2k.sample_time = 2;
6566 		btconfig2k.bt3_t2_timer = 0xc;
6567 
6568 		for (i = 0; i < 12; i++)
6569 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6570 		btconfig2k.valid = htole16(0xff);
6571 		btconfig2k.prio_boost = htole32(0xf0);
6572 		DPRINTF(sc, IWN_DEBUG_RESET,
6573 		    "%s: configuring advanced bluetooth coexistence"
6574 		    " session 2, flags : 0x%x\n",
6575 		    __func__,
6576 		    flags);
6577 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6578 		    sizeof(btconfig2k), 1);
6579 	} else {
6580 		btconfig.flags = flags;
6581 		btconfig.max_kill = 5;
6582 		btconfig.bt3_t7_timer = 1;
6583 		btconfig.kill_ack = htole32(0xffff0000);
6584 		btconfig.kill_cts = htole32(0xffff0000);
6585 		btconfig.sample_time = 2;
6586 		btconfig.bt3_t2_timer = 0xc;
6587 
6588 		for (i = 0; i < 12; i++)
6589 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6590 		btconfig.valid = htole16(0xff);
6591 		btconfig.prio_boost = 0xf0;
6592 		DPRINTF(sc, IWN_DEBUG_RESET,
6593 		    "%s: configuring advanced bluetooth coexistence,"
6594 		    " flags : 0x%x\n",
6595 		    __func__,
6596 		    flags);
6597 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6598 		    sizeof(btconfig), 1);
6599 	}
6600 
6601 	if (error != 0)
6602 		return error;
6603 
6604 	memset(&btprio, 0, sizeof btprio);
6605 	btprio.calib_init1 = 0x6;
6606 	btprio.calib_init2 = 0x7;
6607 	btprio.calib_periodic_low1 = 0x2;
6608 	btprio.calib_periodic_low2 = 0x3;
6609 	btprio.calib_periodic_high1 = 0x4;
6610 	btprio.calib_periodic_high2 = 0x5;
6611 	btprio.dtim = 0x6;
6612 	btprio.scan52 = 0x8;
6613 	btprio.scan24 = 0xa;
6614 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6615 	    1);
6616 	if (error != 0)
6617 		return error;
6618 
6619 	/* Force BT state machine change. */
6620 	memset(&btprot, 0, sizeof btprot);
6621 	btprot.open = 1;
6622 	btprot.type = 1;
6623 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6624 	if (error != 0)
6625 		return error;
6626 	btprot.open = 0;
6627 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6628 }
6629 
6630 static int
6631 iwn5000_runtime_calib(struct iwn_softc *sc)
6632 {
6633 	struct iwn5000_calib_config cmd;
6634 
6635 	memset(&cmd, 0, sizeof cmd);
6636 	cmd.ucode.once.enable = 0xffffffff;
6637 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6638 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6639 	    "%s: configuring runtime calibration\n", __func__);
6640 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6641 }
6642 
6643 static uint32_t
6644 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211vap *vap,
6645     struct ieee80211_channel *c)
6646 {
6647 	uint32_t htflags = 0;
6648 
6649 	if (! IEEE80211_IS_CHAN_HT(c))
6650 		return (0);
6651 
6652 	htflags |= IWN_RXON_HT_PROTMODE(vap->iv_curhtprotmode);
6653 
6654 	if (IEEE80211_IS_CHAN_HT40(c)) {
6655 		switch (vap->iv_curhtprotmode) {
6656 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6657 			htflags |= IWN_RXON_HT_MODEPURE40;
6658 			break;
6659 		default:
6660 			htflags |= IWN_RXON_HT_MODEMIXED;
6661 			break;
6662 		}
6663 	}
6664 	if (IEEE80211_IS_CHAN_HT40D(c))
6665 		htflags |= IWN_RXON_HT_HT40MINUS;
6666 
6667 	return (htflags);
6668 }
6669 
6670 static int
6671 iwn_check_bss_filter(struct iwn_softc *sc)
6672 {
6673 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6674 }
6675 
6676 static int
6677 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6678 {
6679 	struct iwn4965_rxon_assoc cmd;
6680 	struct iwn_rxon *rxon = sc->rxon;
6681 
6682 	cmd.flags = rxon->flags;
6683 	cmd.filter = rxon->filter;
6684 	cmd.ofdm_mask = rxon->ofdm_mask;
6685 	cmd.cck_mask = rxon->cck_mask;
6686 	cmd.ht_single_mask = rxon->ht_single_mask;
6687 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6688 	cmd.rxchain = rxon->rxchain;
6689 	cmd.reserved = 0;
6690 
6691 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6692 }
6693 
6694 static int
6695 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6696 {
6697 	struct iwn5000_rxon_assoc cmd;
6698 	struct iwn_rxon *rxon = sc->rxon;
6699 
6700 	cmd.flags = rxon->flags;
6701 	cmd.filter = rxon->filter;
6702 	cmd.ofdm_mask = rxon->ofdm_mask;
6703 	cmd.cck_mask = rxon->cck_mask;
6704 	cmd.reserved1 = 0;
6705 	cmd.ht_single_mask = rxon->ht_single_mask;
6706 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6707 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6708 	cmd.reserved2 = 0;
6709 	cmd.rxchain = rxon->rxchain;
6710 	cmd.acquisition = rxon->acquisition;
6711 	cmd.reserved3 = 0;
6712 
6713 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6714 }
6715 
6716 static int
6717 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6718 {
6719 	struct iwn_ops *ops = &sc->ops;
6720 	int error;
6721 
6722 	IWN_LOCK_ASSERT(sc);
6723 
6724 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6725 		error = ops->rxon_assoc(sc, async);
6726 		if (error != 0) {
6727 			device_printf(sc->sc_dev,
6728 			    "%s: RXON_ASSOC command failed, error %d\n",
6729 			    __func__, error);
6730 			return (error);
6731 		}
6732 	} else {
6733 		if (sc->sc_is_scanning)
6734 			device_printf(sc->sc_dev,
6735 			    "%s: is_scanning set, before RXON\n",
6736 			    __func__);
6737 
6738 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6739 		if (error != 0) {
6740 			device_printf(sc->sc_dev,
6741 			    "%s: RXON command failed, error %d\n",
6742 			    __func__, error);
6743 			return (error);
6744 		}
6745 
6746 		/*
6747 		 * Reconfiguring RXON clears the firmware nodes table so
6748 		 * we must add the broadcast node again.
6749 		 */
6750 		if (iwn_check_bss_filter(sc) == 0 &&
6751 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6752 			device_printf(sc->sc_dev,
6753 			    "%s: could not add broadcast node, error %d\n",
6754 			    __func__, error);
6755 			return (error);
6756 		}
6757 	}
6758 
6759 	/* Configuration has changed, set TX power accordingly. */
6760 	if ((error = ops->set_txpower(sc, async)) != 0) {
6761 		device_printf(sc->sc_dev,
6762 		    "%s: could not set TX power, error %d\n",
6763 		    __func__, error);
6764 		return (error);
6765 	}
6766 
6767 	return (0);
6768 }
6769 
6770 static int
6771 iwn_config(struct iwn_softc *sc)
6772 {
6773 	struct ieee80211com *ic = &sc->sc_ic;
6774 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6775 	const uint8_t *macaddr;
6776 	uint32_t txmask;
6777 	uint16_t rxchain;
6778 	int error;
6779 
6780 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6781 
6782 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6783 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6784 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6785 		    " exclusive each together. Review NIC config file. Conf"
6786 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6787 		    sc->base_params->calib_need,
6788 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6789 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6790 		return (EINVAL);
6791 	}
6792 
6793 	/* Compute temperature calib if needed. Will be send by send calib */
6794 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6795 		error = iwn5000_temp_offset_calib(sc);
6796 		if (error != 0) {
6797 			device_printf(sc->sc_dev,
6798 			    "%s: could not set temperature offset\n", __func__);
6799 			return (error);
6800 		}
6801 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6802 		error = iwn5000_temp_offset_calibv2(sc);
6803 		if (error != 0) {
6804 			device_printf(sc->sc_dev,
6805 			    "%s: could not compute temperature offset v2\n",
6806 			    __func__);
6807 			return (error);
6808 		}
6809 	}
6810 
6811 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6812 		/* Configure runtime DC calibration. */
6813 		error = iwn5000_runtime_calib(sc);
6814 		if (error != 0) {
6815 			device_printf(sc->sc_dev,
6816 			    "%s: could not configure runtime calibration\n",
6817 			    __func__);
6818 			return error;
6819 		}
6820 	}
6821 
6822 	/* Configure valid TX chains for >=5000 Series. */
6823 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6824 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6825 		txmask = htole32(sc->txchainmask);
6826 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6827 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6828 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6829 		    sizeof txmask, 0);
6830 		if (error != 0) {
6831 			device_printf(sc->sc_dev,
6832 			    "%s: could not configure valid TX chains, "
6833 			    "error %d\n", __func__, error);
6834 			return error;
6835 		}
6836 	}
6837 
6838 	/* Configure bluetooth coexistence. */
6839 	error = 0;
6840 
6841 	/* Configure bluetooth coexistence if needed. */
6842 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6843 		error = iwn_send_advanced_btcoex(sc);
6844 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6845 		error = iwn_send_btcoex(sc);
6846 
6847 	if (error != 0) {
6848 		device_printf(sc->sc_dev,
6849 		    "%s: could not configure bluetooth coexistence, error %d\n",
6850 		    __func__, error);
6851 		return error;
6852 	}
6853 
6854 	/* Set mode, channel, RX filter and enable RX. */
6855 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6856 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6857 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6858 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6859 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6860 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6861 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6862 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6863 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6864 
6865 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6866 	switch (ic->ic_opmode) {
6867 	case IEEE80211_M_STA:
6868 		sc->rxon->mode = IWN_MODE_STA;
6869 		break;
6870 	case IEEE80211_M_MONITOR:
6871 		sc->rxon->mode = IWN_MODE_MONITOR;
6872 		break;
6873 	default:
6874 		/* Should not get there. */
6875 		break;
6876 	}
6877 	iwn_set_promisc(sc);
6878 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6879 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6880 	sc->rxon->ht_single_mask = 0xff;
6881 	sc->rxon->ht_dual_mask = 0xff;
6882 	sc->rxon->ht_triple_mask = 0xff;
6883 	/*
6884 	 * In active association mode, ensure that
6885 	 * all the receive chains are enabled.
6886 	 *
6887 	 * Since we're not yet doing SMPS, don't allow the
6888 	 * number of idle RX chains to be less than the active
6889 	 * number.
6890 	 */
6891 	rxchain =
6892 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6893 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6894 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6895 	sc->rxon->rxchain = htole16(rxchain);
6896 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6897 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6898 	    __func__,
6899 	    sc->rxchainmask,
6900 	    sc->nrxchains);
6901 
6902 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
6903 
6904 	DPRINTF(sc, IWN_DEBUG_RESET,
6905 	    "%s: setting configuration; flags=0x%08x\n",
6906 	    __func__, le32toh(sc->rxon->flags));
6907 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6908 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6909 		    __func__);
6910 		return error;
6911 	}
6912 
6913 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6914 		device_printf(sc->sc_dev,
6915 		    "%s: could not set critical temperature\n", __func__);
6916 		return error;
6917 	}
6918 
6919 	/* Set power saving level to CAM during initialization. */
6920 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6921 		device_printf(sc->sc_dev,
6922 		    "%s: could not set power saving level\n", __func__);
6923 		return error;
6924 	}
6925 
6926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6927 
6928 	return 0;
6929 }
6930 
6931 static uint16_t
6932 iwn_get_active_dwell_time(struct iwn_softc *sc,
6933     struct ieee80211_channel *c, uint8_t n_probes)
6934 {
6935 	/* No channel? Default to 2GHz settings */
6936 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6937 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6938 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6939 	}
6940 
6941 	/* 5GHz dwell time */
6942 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6943 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6944 }
6945 
6946 /*
6947  * Limit the total dwell time to 85% of the beacon interval.
6948  *
6949  * Returns the dwell time in milliseconds.
6950  */
6951 static uint16_t
6952 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6953 {
6954 	struct ieee80211com *ic = &sc->sc_ic;
6955 	struct ieee80211vap *vap = NULL;
6956 	int bintval = 0;
6957 
6958 	/* bintval is in TU (1.024mS) */
6959 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6960 		vap = TAILQ_FIRST(&ic->ic_vaps);
6961 		bintval = vap->iv_bss->ni_intval;
6962 	}
6963 
6964 	/*
6965 	 * If it's non-zero, we should calculate the minimum of
6966 	 * it and the DWELL_BASE.
6967 	 *
6968 	 * XXX Yes, the math should take into account that bintval
6969 	 * is 1.024mS, not 1mS..
6970 	 */
6971 	if (bintval > 0) {
6972 		DPRINTF(sc, IWN_DEBUG_SCAN,
6973 		    "%s: bintval=%d\n",
6974 		    __func__,
6975 		    bintval);
6976 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6977 	}
6978 
6979 	/* No association context? Default */
6980 	return (IWN_PASSIVE_DWELL_BASE);
6981 }
6982 
6983 static uint16_t
6984 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6985 {
6986 	uint16_t passive;
6987 
6988 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6989 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6990 	} else {
6991 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6992 	}
6993 
6994 	/* Clamp to the beacon interval if we're associated */
6995 	return (iwn_limit_dwell(sc, passive));
6996 }
6997 
6998 static int
6999 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7000     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7001 {
7002 	struct ieee80211com *ic = &sc->sc_ic;
7003 	struct ieee80211_node *ni = vap->iv_bss;
7004 	struct iwn_scan_hdr *hdr;
7005 	struct iwn_cmd_data *tx;
7006 	struct iwn_scan_essid *essid;
7007 	struct iwn_scan_chan *chan;
7008 	struct ieee80211_frame *wh;
7009 	struct ieee80211_rateset *rs;
7010 	uint8_t *buf, *frm;
7011 	uint16_t rxchain;
7012 	uint8_t txant;
7013 	int buflen, error;
7014 	int is_active;
7015 	uint16_t dwell_active, dwell_passive;
7016 	uint32_t scan_service_time;
7017 
7018 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7019 
7020 	/*
7021 	 * We are absolutely not allowed to send a scan command when another
7022 	 * scan command is pending.
7023 	 */
7024 	if (sc->sc_is_scanning) {
7025 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7026 		    __func__);
7027 		return (EAGAIN);
7028 	}
7029 
7030 	/* Assign the scan channel */
7031 	c = ic->ic_curchan;
7032 
7033 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7034 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7035 	if (buf == NULL) {
7036 		device_printf(sc->sc_dev,
7037 		    "%s: could not allocate buffer for scan command\n",
7038 		    __func__);
7039 		return ENOMEM;
7040 	}
7041 	hdr = (struct iwn_scan_hdr *)buf;
7042 	/*
7043 	 * Move to the next channel if no frames are received within 10ms
7044 	 * after sending the probe request.
7045 	 */
7046 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7047 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7048 	/*
7049 	 * Max needs to be greater than active and passive and quiet!
7050 	 * It's also in microseconds!
7051 	 */
7052 	hdr->max_svc = htole32(250 * 1024);
7053 
7054 	/*
7055 	 * Reset scan: interval=100
7056 	 * Normal scan: interval=becaon interval
7057 	 * suspend_time: 100 (TU)
7058 	 *
7059 	 */
7060 #if 0
7061 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7062 	scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7063 #else
7064 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7065 #endif
7066 	hdr->pause_svc = htole32(scan_service_time);
7067 
7068 	/* Select antennas for scanning. */
7069 	rxchain =
7070 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7071 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7072 	    IWN_RXCHAIN_DRIVER_FORCE;
7073 	if (IEEE80211_IS_CHAN_A(c) &&
7074 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7075 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7076 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7077 	} else	/* Use all available RX antennas. */
7078 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7079 	hdr->rxchain = htole16(rxchain);
7080 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7081 
7082 	tx = (struct iwn_cmd_data *)(hdr + 1);
7083 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7084 	tx->id = sc->broadcast_id;
7085 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7086 
7087 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7088 		/* Send probe requests at 6Mbps. */
7089 		tx->rate = htole32(0xd);
7090 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7091 	} else {
7092 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7093 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7094 		    sc->rxon->associd && sc->rxon->chan > 14)
7095 			tx->rate = htole32(0xd);
7096 		else {
7097 			/* Send probe requests at 1Mbps. */
7098 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7099 		}
7100 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7101 	}
7102 	/* Use the first valid TX antenna. */
7103 	txant = IWN_LSB(sc->txchainmask);
7104 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7105 
7106 	/*
7107 	 * Only do active scanning if we're announcing a probe request
7108 	 * for a given SSID (or more, if we ever add it to the driver.)
7109 	 */
7110 	is_active = 0;
7111 
7112 	/*
7113 	 * If we're scanning for a specific SSID, add it to the command.
7114 	 *
7115 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7116 	 */
7117 	essid = (struct iwn_scan_essid *)(tx + 1);
7118 	if (ss != NULL) {
7119 		if (ss->ss_ssid[0].len != 0) {
7120 			essid[0].id = IEEE80211_ELEMID_SSID;
7121 			essid[0].len = ss->ss_ssid[0].len;
7122 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7123 		}
7124 
7125 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7126 		    __func__,
7127 		    ss->ss_ssid[0].len,
7128 		    ss->ss_ssid[0].len,
7129 		    ss->ss_ssid[0].ssid);
7130 
7131 		if (ss->ss_nssid > 0)
7132 			is_active = 1;
7133 	}
7134 
7135 	/*
7136 	 * Build a probe request frame.  Most of the following code is a
7137 	 * copy & paste of what is done in net80211.
7138 	 */
7139 	wh = (struct ieee80211_frame *)(essid + 20);
7140 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7141 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7142 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7143 	IEEE80211_ADDR_COPY(wh->i_addr1, if_getbroadcastaddr(vap->iv_ifp));
7144 	IEEE80211_ADDR_COPY(wh->i_addr2, if_getlladdr(vap->iv_ifp));
7145 	IEEE80211_ADDR_COPY(wh->i_addr3, if_getbroadcastaddr(vap->iv_ifp));
7146 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7147 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7148 
7149 	frm = (uint8_t *)(wh + 1);
7150 	frm = ieee80211_add_ssid(frm, NULL, 0);
7151 	frm = ieee80211_add_rates(frm, rs);
7152 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7153 		frm = ieee80211_add_xrates(frm, rs);
7154 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7155 		frm = ieee80211_add_htcap(frm, ni);
7156 
7157 	/* Set length of probe request. */
7158 	tx->len = htole16(frm - (uint8_t *)wh);
7159 
7160 	/*
7161 	 * If active scanning is requested but a certain channel is
7162 	 * marked passive, we can do active scanning if we detect
7163 	 * transmissions.
7164 	 *
7165 	 * There is an issue with some firmware versions that triggers
7166 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7167 	 * on a radar channel even though this means that we should NOT
7168 	 * send probes.
7169 	 *
7170 	 * The "good CRC threshold" is the number of frames that we
7171 	 * need to receive during our dwell time on a channel before
7172 	 * sending out probes -- setting this to a huge value will
7173 	 * mean we never reach it, but at the same time work around
7174 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7175 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7176 	 *
7177 	 * This was fixed in later versions along with some other
7178 	 * scan changes, and the threshold behaves as a flag in those
7179 	 * versions.
7180 	 */
7181 
7182 	/*
7183 	 * If we're doing active scanning, set the crc_threshold
7184 	 * to a suitable value.  This is different to active veruss
7185 	 * passive scanning depending upon the channel flags; the
7186 	 * firmware will obey that particular check for us.
7187 	 */
7188 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7189 		hdr->crc_threshold = is_active ?
7190 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7191 	else
7192 		hdr->crc_threshold = is_active ?
7193 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7194 
7195 	chan = (struct iwn_scan_chan *)frm;
7196 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7197 	chan->flags = 0;
7198 	if (ss->ss_nssid > 0)
7199 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7200 	chan->dsp_gain = 0x6e;
7201 
7202 	/*
7203 	 * Set the passive/active flag depending upon the channel mode.
7204 	 * XXX TODO: take the is_active flag into account as well?
7205 	 */
7206 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7207 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7208 	else
7209 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7210 
7211 	/*
7212 	 * Calculate the active/passive dwell times.
7213 	 */
7214 
7215 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7216 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7217 
7218 	/* Make sure they're valid */
7219 	if (dwell_passive <= dwell_active)
7220 		dwell_passive = dwell_active + 1;
7221 
7222 	chan->active = htole16(dwell_active);
7223 	chan->passive = htole16(dwell_passive);
7224 
7225 	if (IEEE80211_IS_CHAN_5GHZ(c))
7226 		chan->rf_gain = 0x3b;
7227 	else
7228 		chan->rf_gain = 0x28;
7229 
7230 	DPRINTF(sc, IWN_DEBUG_STATE,
7231 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7232 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7233 	    "isactive=%d numssid=%d\n", __func__,
7234 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7235 	    dwell_active, dwell_passive, scan_service_time,
7236 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7237 
7238 	hdr->nchan++;
7239 	chan++;
7240 	buflen = (uint8_t *)chan - buf;
7241 	hdr->len = htole16(buflen);
7242 
7243 	if (sc->sc_is_scanning) {
7244 		device_printf(sc->sc_dev,
7245 		    "%s: called with is_scanning set!\n",
7246 		    __func__);
7247 	}
7248 	sc->sc_is_scanning = 1;
7249 
7250 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7251 	    hdr->nchan);
7252 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7253 	free(buf, M_DEVBUF);
7254 	if (error == 0)
7255 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7256 
7257 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7258 
7259 	return error;
7260 }
7261 
7262 static int
7263 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7264 {
7265 	struct ieee80211com *ic = &sc->sc_ic;
7266 	struct ieee80211_node *ni = vap->iv_bss;
7267 	int error;
7268 
7269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7270 
7271 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7272 	/* Update adapter configuration. */
7273 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7274 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7275 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7276 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7277 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7278 
7279 	/*
7280 	 * We always set short slot on 5GHz channels.
7281 	 * We optionally set it for 2.4GHz channels.
7282 	 */
7283 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7284 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7285 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7286 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7287 
7288 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7289 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7290 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7291 		sc->rxon->cck_mask  = 0;
7292 		sc->rxon->ofdm_mask = 0x15;
7293 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7294 		sc->rxon->cck_mask  = 0x03;
7295 		sc->rxon->ofdm_mask = 0;
7296 	} else {
7297 		/* Assume 802.11b/g. */
7298 		sc->rxon->cck_mask  = 0x03;
7299 		sc->rxon->ofdm_mask = 0x15;
7300 	}
7301 
7302 	/* try HT */
7303 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
7304 
7305 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7306 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7307 	    sc->rxon->ofdm_mask);
7308 
7309 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7310 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7311 		    __func__);
7312 		return (error);
7313 	}
7314 
7315 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7316 
7317 	return (0);
7318 }
7319 
7320 static int
7321 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7322 {
7323 	struct iwn_ops *ops = &sc->ops;
7324 	struct ieee80211com *ic = &sc->sc_ic;
7325 	struct ieee80211_node *ni = vap->iv_bss;
7326 	struct iwn_node_info node;
7327 	int error;
7328 
7329 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7330 
7331 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7332 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7333 		/* Link LED blinks while monitoring. */
7334 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7335 		return 0;
7336 	}
7337 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7338 		device_printf(sc->sc_dev,
7339 		    "%s: could not set timing, error %d\n", __func__, error);
7340 		return error;
7341 	}
7342 
7343 	/* Update adapter configuration. */
7344 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7345 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7346 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7347 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7348 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7349 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7350 
7351 	/* As previously - short slot only on 5GHz */
7352 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7353 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7354 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7355 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7356 
7357 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7358 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7359 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7360 		sc->rxon->cck_mask  = 0;
7361 		sc->rxon->ofdm_mask = 0x15;
7362 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7363 		sc->rxon->cck_mask  = 0x03;
7364 		sc->rxon->ofdm_mask = 0;
7365 	} else {
7366 		/* Assume 802.11b/g. */
7367 		sc->rxon->cck_mask  = 0x0f;
7368 		sc->rxon->ofdm_mask = 0x15;
7369 	}
7370 	/* try HT */
7371 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ni->ni_chan));
7372 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7373 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7374 	    sc->rxon->chan, le32toh(sc->rxon->flags), vap->iv_curhtprotmode);
7375 
7376 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7377 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7378 		    __func__);
7379 		return error;
7380 	}
7381 
7382 	/* Fake a join to initialize the TX rate. */
7383 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7384 	iwn_newassoc(ni, 1);
7385 
7386 	/* Add BSS node. */
7387 	memset(&node, 0, sizeof node);
7388 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7389 	node.id = IWN_ID_BSS;
7390 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7391 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7392 		case IEEE80211_HTCAP_SMPS_ENA:
7393 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7394 			break;
7395 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7396 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7397 			break;
7398 		}
7399 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7400 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7401 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7402 			node.htflags |= htole32(IWN_NODE_HT40);
7403 	}
7404 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7405 	error = ops->add_node(sc, &node, 1);
7406 	if (error != 0) {
7407 		device_printf(sc->sc_dev,
7408 		    "%s: could not add BSS node, error %d\n", __func__, error);
7409 		return error;
7410 	}
7411 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7412 	    __func__, node.id);
7413 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7414 		device_printf(sc->sc_dev,
7415 		    "%s: could not setup link quality for node %d, error %d\n",
7416 		    __func__, node.id, error);
7417 		return error;
7418 	}
7419 
7420 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7421 		device_printf(sc->sc_dev,
7422 		    "%s: could not set sensitivity, error %d\n", __func__,
7423 		    error);
7424 		return error;
7425 	}
7426 	/* Start periodic calibration timer. */
7427 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7428 	sc->calib_cnt = 0;
7429 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7430 	    sc);
7431 
7432 	/* Link LED always on while associated. */
7433 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7434 
7435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7436 
7437 	return 0;
7438 }
7439 
7440 /*
7441  * This function is called by upper layer when an ADDBA request is received
7442  * from another STA and before the ADDBA response is sent.
7443  */
7444 static int
7445 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7446     int baparamset, int batimeout, int baseqctl)
7447 {
7448 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7449 	struct iwn_ops *ops = &sc->ops;
7450 	struct iwn_node *wn = (void *)ni;
7451 	struct iwn_node_info node;
7452 	uint16_t ssn;
7453 	uint8_t tid;
7454 	int error;
7455 
7456 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7457 
7458 	tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID);
7459 	ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START);
7460 
7461 	if (wn->id == IWN_ID_UNDEFINED)
7462 		return (ENOENT);
7463 
7464 	memset(&node, 0, sizeof node);
7465 	node.id = wn->id;
7466 	node.control = IWN_NODE_UPDATE;
7467 	node.flags = IWN_FLAG_SET_ADDBA;
7468 	node.addba_tid = tid;
7469 	node.addba_ssn = htole16(ssn);
7470 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7471 	    wn->id, tid, ssn);
7472 	error = ops->add_node(sc, &node, 1);
7473 	if (error != 0)
7474 		return error;
7475 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7476 }
7477 
7478 /*
7479  * This function is called by upper layer on teardown of an HT-immediate
7480  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7481  */
7482 static void
7483 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7484 {
7485 	struct ieee80211com *ic = ni->ni_ic;
7486 	struct iwn_softc *sc = ic->ic_softc;
7487 	struct iwn_ops *ops = &sc->ops;
7488 	struct iwn_node *wn = (void *)ni;
7489 	struct iwn_node_info node;
7490 	uint8_t tid;
7491 
7492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7493 
7494 	if (wn->id == IWN_ID_UNDEFINED)
7495 		goto end;
7496 
7497 	/* XXX: tid as an argument */
7498 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7499 		if (&ni->ni_rx_ampdu[tid] == rap)
7500 			break;
7501 	}
7502 
7503 	memset(&node, 0, sizeof node);
7504 	node.id = wn->id;
7505 	node.control = IWN_NODE_UPDATE;
7506 	node.flags = IWN_FLAG_SET_DELBA;
7507 	node.delba_tid = tid;
7508 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7509 	(void)ops->add_node(sc, &node, 1);
7510 end:
7511 	sc->sc_ampdu_rx_stop(ni, rap);
7512 }
7513 
7514 static int
7515 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7516     int dialogtoken, int baparamset, int batimeout)
7517 {
7518 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7519 	int qid;
7520 
7521 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7522 
7523 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7524 		if (sc->qid2tap[qid] == NULL)
7525 			break;
7526 	}
7527 	if (qid == sc->ntxqs) {
7528 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: no free aggregation queue\n",
7529 		    __func__);
7530 		return 0;
7531 	}
7532 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7533 	if (tap->txa_private == NULL) {
7534 		device_printf(sc->sc_dev,
7535 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7536 		return 0;
7537 	}
7538 	sc->qid2tap[qid] = tap;
7539 	*(int *)tap->txa_private = qid;
7540 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7541 	    batimeout);
7542 }
7543 
7544 static int
7545 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7546     int code, int baparamset, int batimeout)
7547 {
7548 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7549 	int qid = *(int *)tap->txa_private;
7550 	uint8_t tid = tap->txa_tid;
7551 	int ret;
7552 
7553 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7554 
7555 	if (code == IEEE80211_STATUS_SUCCESS) {
7556 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7557 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7558 		if (ret != 1)
7559 			return ret;
7560 	} else {
7561 		sc->qid2tap[qid] = NULL;
7562 		free(tap->txa_private, M_DEVBUF);
7563 		tap->txa_private = NULL;
7564 	}
7565 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7566 }
7567 
7568 /*
7569  * This function is called by upper layer when an ADDBA response is received
7570  * from another STA.
7571  */
7572 static int
7573 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7574     uint8_t tid)
7575 {
7576 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7577 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7578 	struct iwn_ops *ops = &sc->ops;
7579 	struct iwn_node *wn = (void *)ni;
7580 	struct iwn_node_info node;
7581 	int error, qid;
7582 
7583 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7584 
7585 	if (wn->id == IWN_ID_UNDEFINED)
7586 		return (0);
7587 
7588 	/* Enable TX for the specified RA/TID. */
7589 	wn->disable_tid &= ~(1 << tid);
7590 	memset(&node, 0, sizeof node);
7591 	node.id = wn->id;
7592 	node.control = IWN_NODE_UPDATE;
7593 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7594 	node.disable_tid = htole16(wn->disable_tid);
7595 	error = ops->add_node(sc, &node, 1);
7596 	if (error != 0)
7597 		return 0;
7598 
7599 	if ((error = iwn_nic_lock(sc)) != 0)
7600 		return 0;
7601 	qid = *(int *)tap->txa_private;
7602 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7603 	    __func__, wn->id, tid, tap->txa_start, qid);
7604 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7605 	iwn_nic_unlock(sc);
7606 
7607 	iwn_set_link_quality(sc, ni);
7608 	return 1;
7609 }
7610 
7611 static void
7612 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7613 {
7614 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7615 	struct iwn_ops *ops = &sc->ops;
7616 	uint8_t tid = tap->txa_tid;
7617 	int qid;
7618 
7619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7620 
7621 	sc->sc_addba_stop(ni, tap);
7622 
7623 	if (tap->txa_private == NULL)
7624 		return;
7625 
7626 	qid = *(int *)tap->txa_private;
7627 	if (sc->txq[qid].queued != 0)
7628 		return;
7629 	if (iwn_nic_lock(sc) != 0)
7630 		return;
7631 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7632 	iwn_nic_unlock(sc);
7633 	sc->qid2tap[qid] = NULL;
7634 	free(tap->txa_private, M_DEVBUF);
7635 	tap->txa_private = NULL;
7636 }
7637 
7638 static void
7639 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7640     int qid, uint8_t tid, uint16_t ssn)
7641 {
7642 	struct iwn_node *wn = (void *)ni;
7643 
7644 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7645 
7646 	/* Stop TX scheduler while we're changing its configuration. */
7647 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7648 	    IWN4965_TXQ_STATUS_CHGACT);
7649 
7650 	/* Assign RA/TID translation to the queue. */
7651 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7652 	    wn->id << 4 | tid);
7653 
7654 	/* Enable chain-building mode for the queue. */
7655 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7656 
7657 	/* Set starting sequence number from the ADDBA request. */
7658 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7659 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7660 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7661 
7662 	/* Set scheduler window size. */
7663 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7664 	    IWN_SCHED_WINSZ);
7665 	/* Set scheduler frame limit. */
7666 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7667 	    IWN_SCHED_LIMIT << 16);
7668 
7669 	/* Enable interrupts for the queue. */
7670 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7671 
7672 	/* Mark the queue as active. */
7673 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7674 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7675 	    iwn_tid2fifo[tid] << 1);
7676 }
7677 
7678 static void
7679 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7680 {
7681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7682 
7683 	/* Stop TX scheduler while we're changing its configuration. */
7684 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7685 	    IWN4965_TXQ_STATUS_CHGACT);
7686 
7687 	/* Set starting sequence number from the ADDBA request. */
7688 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7689 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7690 
7691 	/* Disable interrupts for the queue. */
7692 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7693 
7694 	/* Mark the queue as inactive. */
7695 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7696 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7697 }
7698 
7699 static void
7700 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7701     int qid, uint8_t tid, uint16_t ssn)
7702 {
7703 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7704 
7705 	struct iwn_node *wn = (void *)ni;
7706 
7707 	/* Stop TX scheduler while we're changing its configuration. */
7708 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7709 	    IWN5000_TXQ_STATUS_CHGACT);
7710 
7711 	/* Assign RA/TID translation to the queue. */
7712 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7713 	    wn->id << 4 | tid);
7714 
7715 	/* Enable chain-building mode for the queue. */
7716 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7717 
7718 	/* Enable aggregation for the queue. */
7719 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7720 
7721 	/* Set starting sequence number from the ADDBA request. */
7722 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7723 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7724 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7725 
7726 	/* Set scheduler window size and frame limit. */
7727 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7728 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7729 
7730 	/* Enable interrupts for the queue. */
7731 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7732 
7733 	/* Mark the queue as active. */
7734 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7735 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7736 }
7737 
7738 static void
7739 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7740 {
7741 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7742 
7743 	/* Stop TX scheduler while we're changing its configuration. */
7744 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7745 	    IWN5000_TXQ_STATUS_CHGACT);
7746 
7747 	/* Disable aggregation for the queue. */
7748 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7749 
7750 	/* Set starting sequence number from the ADDBA request. */
7751 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7752 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7753 
7754 	/* Disable interrupts for the queue. */
7755 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7756 
7757 	/* Mark the queue as inactive. */
7758 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7759 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7760 }
7761 
7762 /*
7763  * Query calibration tables from the initialization firmware.  We do this
7764  * only once at first boot.  Called from a process context.
7765  */
7766 static int
7767 iwn5000_query_calibration(struct iwn_softc *sc)
7768 {
7769 	struct iwn5000_calib_config cmd;
7770 	int error;
7771 
7772 	memset(&cmd, 0, sizeof cmd);
7773 	cmd.ucode.once.enable = htole32(0xffffffff);
7774 	cmd.ucode.once.start  = htole32(0xffffffff);
7775 	cmd.ucode.once.send   = htole32(0xffffffff);
7776 	cmd.ucode.flags       = htole32(0xffffffff);
7777 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7778 	    __func__);
7779 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7780 	if (error != 0)
7781 		return error;
7782 
7783 	/* Wait at most two seconds for calibration to complete. */
7784 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7785 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7786 	return error;
7787 }
7788 
7789 /*
7790  * Send calibration results to the runtime firmware.  These results were
7791  * obtained on first boot from the initialization firmware.
7792  */
7793 static int
7794 iwn5000_send_calibration(struct iwn_softc *sc)
7795 {
7796 	int idx, error;
7797 
7798 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7799 		if (!(sc->base_params->calib_need & (1<<idx))) {
7800 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7801 			    "No need of calib %d\n",
7802 			    idx);
7803 			continue; /* no need for this calib */
7804 		}
7805 		if (sc->calibcmd[idx].buf == NULL) {
7806 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7807 			    "Need calib idx : %d but no available data\n",
7808 			    idx);
7809 			continue;
7810 		}
7811 
7812 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7813 		    "send calibration result idx=%d len=%d\n", idx,
7814 		    sc->calibcmd[idx].len);
7815 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7816 		    sc->calibcmd[idx].len, 0);
7817 		if (error != 0) {
7818 			device_printf(sc->sc_dev,
7819 			    "%s: could not send calibration result, error %d\n",
7820 			    __func__, error);
7821 			return error;
7822 		}
7823 	}
7824 	return 0;
7825 }
7826 
7827 static int
7828 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7829 {
7830 	struct iwn5000_wimax_coex wimax;
7831 
7832 #if 0
7833 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7834 		/* Enable WiMAX coexistence for combo adapters. */
7835 		wimax.flags =
7836 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7837 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7838 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7839 		    IWN_WIMAX_COEX_ENABLE;
7840 		memcpy(wimax.events, iwn6050_wimax_events,
7841 		    sizeof iwn6050_wimax_events);
7842 	} else
7843 #endif
7844 	{
7845 		/* Disable WiMAX coexistence. */
7846 		wimax.flags = 0;
7847 		memset(wimax.events, 0, sizeof wimax.events);
7848 	}
7849 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7850 	    __func__);
7851 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7852 }
7853 
7854 static int
7855 iwn5000_crystal_calib(struct iwn_softc *sc)
7856 {
7857 	struct iwn5000_phy_calib_crystal cmd;
7858 
7859 	memset(&cmd, 0, sizeof cmd);
7860 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7861 	cmd.ngroups = 1;
7862 	cmd.isvalid = 1;
7863 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7864 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7865 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7866 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7867 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7868 }
7869 
7870 static int
7871 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7872 {
7873 	struct iwn5000_phy_calib_temp_offset cmd;
7874 
7875 	memset(&cmd, 0, sizeof cmd);
7876 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7877 	cmd.ngroups = 1;
7878 	cmd.isvalid = 1;
7879 	if (sc->eeprom_temp != 0)
7880 		cmd.offset = htole16(sc->eeprom_temp);
7881 	else
7882 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7883 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7884 	    le16toh(cmd.offset));
7885 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7886 }
7887 
7888 static int
7889 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7890 {
7891 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7892 
7893 	memset(&cmd, 0, sizeof cmd);
7894 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7895 	cmd.ngroups = 1;
7896 	cmd.isvalid = 1;
7897 	if (sc->eeprom_temp != 0) {
7898 		cmd.offset_low = htole16(sc->eeprom_temp);
7899 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7900 	} else {
7901 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7902 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7903 	}
7904 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7905 
7906 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7907 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7908 	    le16toh(cmd.offset_low),
7909 	    le16toh(cmd.offset_high),
7910 	    le16toh(cmd.burnt_voltage_ref));
7911 
7912 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7913 }
7914 
7915 /*
7916  * This function is called after the runtime firmware notifies us of its
7917  * readiness (called in a process context).
7918  */
7919 static int
7920 iwn4965_post_alive(struct iwn_softc *sc)
7921 {
7922 	int error, qid;
7923 
7924 	if ((error = iwn_nic_lock(sc)) != 0)
7925 		return error;
7926 
7927 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7928 
7929 	/* Clear TX scheduler state in SRAM. */
7930 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7931 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7932 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7933 
7934 	/* Set physical address of TX scheduler rings (1KB aligned). */
7935 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7936 
7937 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7938 
7939 	/* Disable chain mode for all our 16 queues. */
7940 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7941 
7942 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7943 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7944 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7945 
7946 		/* Set scheduler window size. */
7947 		iwn_mem_write(sc, sc->sched_base +
7948 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7949 		/* Set scheduler frame limit. */
7950 		iwn_mem_write(sc, sc->sched_base +
7951 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7952 		    IWN_SCHED_LIMIT << 16);
7953 	}
7954 
7955 	/* Enable interrupts for all our 16 queues. */
7956 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7957 	/* Identify TX FIFO rings (0-7). */
7958 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7959 
7960 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7961 	for (qid = 0; qid < 7; qid++) {
7962 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7963 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7964 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7965 	}
7966 	iwn_nic_unlock(sc);
7967 	return 0;
7968 }
7969 
7970 /*
7971  * This function is called after the initialization or runtime firmware
7972  * notifies us of its readiness (called in a process context).
7973  */
7974 static int
7975 iwn5000_post_alive(struct iwn_softc *sc)
7976 {
7977 	int error, qid;
7978 
7979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7980 
7981 	/* Switch to using ICT interrupt mode. */
7982 	iwn5000_ict_reset(sc);
7983 
7984 	if ((error = iwn_nic_lock(sc)) != 0){
7985 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7986 		return error;
7987 	}
7988 
7989 	/* Clear TX scheduler state in SRAM. */
7990 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7991 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7992 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7993 
7994 	/* Set physical address of TX scheduler rings (1KB aligned). */
7995 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7996 
7997 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7998 
7999 	/* Enable chain mode for all queues, except command queue. */
8000 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8001 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8002 	else
8003 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8004 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8005 
8006 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8007 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8008 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8009 
8010 		iwn_mem_write(sc, sc->sched_base +
8011 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8012 		/* Set scheduler window size and frame limit. */
8013 		iwn_mem_write(sc, sc->sched_base +
8014 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8015 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8016 	}
8017 
8018 	/* Enable interrupts for all our 20 queues. */
8019 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8020 	/* Identify TX FIFO rings (0-7). */
8021 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8022 
8023 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8024 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8025 		/* Mark TX rings as active. */
8026 		for (qid = 0; qid < 11; qid++) {
8027 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8028 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8029 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8030 		}
8031 	} else {
8032 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8033 		for (qid = 0; qid < 7; qid++) {
8034 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8035 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8036 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8037 		}
8038 	}
8039 	iwn_nic_unlock(sc);
8040 
8041 	/* Configure WiMAX coexistence for combo adapters. */
8042 	error = iwn5000_send_wimax_coex(sc);
8043 	if (error != 0) {
8044 		device_printf(sc->sc_dev,
8045 		    "%s: could not configure WiMAX coexistence, error %d\n",
8046 		    __func__, error);
8047 		return error;
8048 	}
8049 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8050 		/* Perform crystal calibration. */
8051 		error = iwn5000_crystal_calib(sc);
8052 		if (error != 0) {
8053 			device_printf(sc->sc_dev,
8054 			    "%s: crystal calibration failed, error %d\n",
8055 			    __func__, error);
8056 			return error;
8057 		}
8058 	}
8059 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8060 		/* Query calibration from the initialization firmware. */
8061 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8062 			device_printf(sc->sc_dev,
8063 			    "%s: could not query calibration, error %d\n",
8064 			    __func__, error);
8065 			return error;
8066 		}
8067 		/*
8068 		 * We have the calibration results now, reboot with the
8069 		 * runtime firmware (call ourselves recursively!)
8070 		 */
8071 		iwn_hw_stop(sc);
8072 		error = iwn_hw_init(sc);
8073 	} else {
8074 		/* Send calibration results to runtime firmware. */
8075 		error = iwn5000_send_calibration(sc);
8076 	}
8077 
8078 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8079 
8080 	return error;
8081 }
8082 
8083 /*
8084  * The firmware boot code is small and is intended to be copied directly into
8085  * the NIC internal memory (no DMA transfer).
8086  */
8087 static int
8088 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8089 {
8090 	int error, ntries;
8091 
8092 	size /= sizeof (uint32_t);
8093 
8094 	if ((error = iwn_nic_lock(sc)) != 0)
8095 		return error;
8096 
8097 	/* Copy microcode image into NIC memory. */
8098 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8099 	    (const uint32_t *)ucode, size);
8100 
8101 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8102 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8103 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8104 
8105 	/* Start boot load now. */
8106 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8107 
8108 	/* Wait for transfer to complete. */
8109 	for (ntries = 0; ntries < 1000; ntries++) {
8110 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8111 		    IWN_BSM_WR_CTRL_START))
8112 			break;
8113 		DELAY(10);
8114 	}
8115 	if (ntries == 1000) {
8116 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8117 		    __func__);
8118 		iwn_nic_unlock(sc);
8119 		return ETIMEDOUT;
8120 	}
8121 
8122 	/* Enable boot after power up. */
8123 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8124 
8125 	iwn_nic_unlock(sc);
8126 	return 0;
8127 }
8128 
8129 static int
8130 iwn4965_load_firmware(struct iwn_softc *sc)
8131 {
8132 	struct iwn_fw_info *fw = &sc->fw;
8133 	struct iwn_dma_info *dma = &sc->fw_dma;
8134 	int error;
8135 
8136 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8137 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8138 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8139 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8140 	    fw->init.text, fw->init.textsz);
8141 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8142 
8143 	/* Tell adapter where to find initialization sections. */
8144 	if ((error = iwn_nic_lock(sc)) != 0)
8145 		return error;
8146 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8147 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8148 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8149 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8150 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8151 	iwn_nic_unlock(sc);
8152 
8153 	/* Load firmware boot code. */
8154 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8155 	if (error != 0) {
8156 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8157 		    __func__);
8158 		return error;
8159 	}
8160 	/* Now press "execute". */
8161 	IWN_WRITE(sc, IWN_RESET, 0);
8162 
8163 	/* Wait at most one second for first alive notification. */
8164 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8165 		device_printf(sc->sc_dev,
8166 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8167 		    __func__, error);
8168 		return error;
8169 	}
8170 
8171 	/* Retrieve current temperature for initial TX power calibration. */
8172 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8173 	sc->temp = iwn4965_get_temperature(sc);
8174 
8175 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8176 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8177 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8178 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8179 	    fw->main.text, fw->main.textsz);
8180 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8181 
8182 	/* Tell adapter where to find runtime sections. */
8183 	if ((error = iwn_nic_lock(sc)) != 0)
8184 		return error;
8185 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8186 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8187 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8188 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8189 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8190 	    IWN_FW_UPDATED | fw->main.textsz);
8191 	iwn_nic_unlock(sc);
8192 
8193 	return 0;
8194 }
8195 
8196 static int
8197 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8198     const uint8_t *section, int size)
8199 {
8200 	struct iwn_dma_info *dma = &sc->fw_dma;
8201 	int error;
8202 
8203 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8204 
8205 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8206 	memcpy(dma->vaddr, section, size);
8207 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8208 
8209 	if ((error = iwn_nic_lock(sc)) != 0)
8210 		return error;
8211 
8212 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8213 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8214 
8215 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8216 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8217 	    IWN_LOADDR(dma->paddr));
8218 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8219 	    IWN_HIADDR(dma->paddr) << 28 | size);
8220 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8221 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8222 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8223 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8224 
8225 	/* Kick Flow Handler to start DMA transfer. */
8226 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8227 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8228 
8229 	iwn_nic_unlock(sc);
8230 
8231 	/* Wait at most five seconds for FH DMA transfer to complete. */
8232 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8233 }
8234 
8235 static int
8236 iwn5000_load_firmware(struct iwn_softc *sc)
8237 {
8238 	struct iwn_fw_part *fw;
8239 	int error;
8240 
8241 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8242 
8243 	/* Load the initialization firmware on first boot only. */
8244 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8245 	    &sc->fw.main : &sc->fw.init;
8246 
8247 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8248 	    fw->text, fw->textsz);
8249 	if (error != 0) {
8250 		device_printf(sc->sc_dev,
8251 		    "%s: could not load firmware %s section, error %d\n",
8252 		    __func__, ".text", error);
8253 		return error;
8254 	}
8255 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8256 	    fw->data, fw->datasz);
8257 	if (error != 0) {
8258 		device_printf(sc->sc_dev,
8259 		    "%s: could not load firmware %s section, error %d\n",
8260 		    __func__, ".data", error);
8261 		return error;
8262 	}
8263 
8264 	/* Now press "execute". */
8265 	IWN_WRITE(sc, IWN_RESET, 0);
8266 	return 0;
8267 }
8268 
8269 /*
8270  * Extract text and data sections from a legacy firmware image.
8271  */
8272 static int
8273 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8274 {
8275 	const uint32_t *ptr;
8276 	size_t hdrlen = 24;
8277 	uint32_t rev;
8278 
8279 	ptr = (const uint32_t *)fw->data;
8280 	rev = le32toh(*ptr++);
8281 
8282 	sc->ucode_rev = rev;
8283 
8284 	/* Check firmware API version. */
8285 	if (IWN_FW_API(rev) <= 1) {
8286 		device_printf(sc->sc_dev,
8287 		    "%s: bad firmware, need API version >=2\n", __func__);
8288 		return EINVAL;
8289 	}
8290 	if (IWN_FW_API(rev) >= 3) {
8291 		/* Skip build number (version 2 header). */
8292 		hdrlen += 4;
8293 		ptr++;
8294 	}
8295 	if (fw->size < hdrlen) {
8296 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8297 		    __func__, fw->size);
8298 		return EINVAL;
8299 	}
8300 	fw->main.textsz = le32toh(*ptr++);
8301 	fw->main.datasz = le32toh(*ptr++);
8302 	fw->init.textsz = le32toh(*ptr++);
8303 	fw->init.datasz = le32toh(*ptr++);
8304 	fw->boot.textsz = le32toh(*ptr++);
8305 
8306 	/* Check that all firmware sections fit. */
8307 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8308 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8309 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8310 		    __func__, fw->size);
8311 		return EINVAL;
8312 	}
8313 
8314 	/* Get pointers to firmware sections. */
8315 	fw->main.text = (const uint8_t *)ptr;
8316 	fw->main.data = fw->main.text + fw->main.textsz;
8317 	fw->init.text = fw->main.data + fw->main.datasz;
8318 	fw->init.data = fw->init.text + fw->init.textsz;
8319 	fw->boot.text = fw->init.data + fw->init.datasz;
8320 	return 0;
8321 }
8322 
8323 /*
8324  * Extract text and data sections from a TLV firmware image.
8325  */
8326 static int
8327 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8328     uint16_t alt)
8329 {
8330 	const struct iwn_fw_tlv_hdr *hdr;
8331 	const struct iwn_fw_tlv *tlv;
8332 	const uint8_t *ptr, *end;
8333 	uint64_t altmask;
8334 	uint32_t len, tmp;
8335 
8336 	if (fw->size < sizeof (*hdr)) {
8337 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8338 		    __func__, fw->size);
8339 		return EINVAL;
8340 	}
8341 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8342 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8343 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8344 		    __func__, le32toh(hdr->signature));
8345 		return EINVAL;
8346 	}
8347 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8348 	    le32toh(hdr->build));
8349 	sc->ucode_rev = le32toh(hdr->rev);
8350 
8351 	/*
8352 	 * Select the closest supported alternative that is less than
8353 	 * or equal to the specified one.
8354 	 */
8355 	altmask = le64toh(hdr->altmask);
8356 	while (alt > 0 && !(altmask & (1ULL << alt)))
8357 		alt--;	/* Downgrade. */
8358 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8359 
8360 	ptr = (const uint8_t *)(hdr + 1);
8361 	end = (const uint8_t *)(fw->data + fw->size);
8362 
8363 	/* Parse type-length-value fields. */
8364 	while (ptr + sizeof (*tlv) <= end) {
8365 		tlv = (const struct iwn_fw_tlv *)ptr;
8366 		len = le32toh(tlv->len);
8367 
8368 		ptr += sizeof (*tlv);
8369 		if (ptr + len > end) {
8370 			device_printf(sc->sc_dev,
8371 			    "%s: firmware too short: %zu bytes\n", __func__,
8372 			    fw->size);
8373 			return EINVAL;
8374 		}
8375 		/* Skip other alternatives. */
8376 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8377 			goto next;
8378 
8379 		switch (le16toh(tlv->type)) {
8380 		case IWN_FW_TLV_MAIN_TEXT:
8381 			fw->main.text = ptr;
8382 			fw->main.textsz = len;
8383 			break;
8384 		case IWN_FW_TLV_MAIN_DATA:
8385 			fw->main.data = ptr;
8386 			fw->main.datasz = len;
8387 			break;
8388 		case IWN_FW_TLV_INIT_TEXT:
8389 			fw->init.text = ptr;
8390 			fw->init.textsz = len;
8391 			break;
8392 		case IWN_FW_TLV_INIT_DATA:
8393 			fw->init.data = ptr;
8394 			fw->init.datasz = len;
8395 			break;
8396 		case IWN_FW_TLV_BOOT_TEXT:
8397 			fw->boot.text = ptr;
8398 			fw->boot.textsz = len;
8399 			break;
8400 		case IWN_FW_TLV_ENH_SENS:
8401 			if (!len)
8402 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8403 			break;
8404 		case IWN_FW_TLV_PHY_CALIB:
8405 			tmp = le32toh(*ptr);
8406 			if (tmp < 253) {
8407 				sc->reset_noise_gain = tmp;
8408 				sc->noise_gain = tmp + 1;
8409 			}
8410 			break;
8411 		case IWN_FW_TLV_PAN:
8412 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8413 			DPRINTF(sc, IWN_DEBUG_RESET,
8414 			    "PAN Support found: %d\n", 1);
8415 			break;
8416 		case IWN_FW_TLV_FLAGS:
8417 			if (len < sizeof(uint32_t))
8418 				break;
8419 			if (len % sizeof(uint32_t))
8420 				break;
8421 			sc->tlv_feature_flags = le32toh(*ptr);
8422 			DPRINTF(sc, IWN_DEBUG_RESET,
8423 			    "%s: feature: 0x%08x\n",
8424 			    __func__,
8425 			    sc->tlv_feature_flags);
8426 			break;
8427 		case IWN_FW_TLV_PBREQ_MAXLEN:
8428 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8429 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8430 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8431 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8432 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8433 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8434 		case IWN_FW_TLV_WOWLAN_INST:
8435 		case IWN_FW_TLV_WOWLAN_DATA:
8436 			DPRINTF(sc, IWN_DEBUG_RESET,
8437 			    "TLV type %d recognized but not handled\n",
8438 			    le16toh(tlv->type));
8439 			break;
8440 		default:
8441 			DPRINTF(sc, IWN_DEBUG_RESET,
8442 			    "TLV type %d not handled\n", le16toh(tlv->type));
8443 			break;
8444 		}
8445  next:		/* TLV fields are 32-bit aligned. */
8446 		ptr += (len + 3) & ~3;
8447 	}
8448 	return 0;
8449 }
8450 
8451 static int
8452 iwn_read_firmware(struct iwn_softc *sc)
8453 {
8454 	struct iwn_fw_info *fw = &sc->fw;
8455 	int error;
8456 
8457 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8458 
8459 	IWN_UNLOCK(sc);
8460 
8461 	memset(fw, 0, sizeof (*fw));
8462 
8463 	/* Read firmware image from filesystem. */
8464 	sc->fw_fp = firmware_get(sc->fwname);
8465 	if (sc->fw_fp == NULL) {
8466 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8467 		    __func__, sc->fwname);
8468 		IWN_LOCK(sc);
8469 		return EINVAL;
8470 	}
8471 	IWN_LOCK(sc);
8472 
8473 	fw->size = sc->fw_fp->datasize;
8474 	fw->data = (const uint8_t *)sc->fw_fp->data;
8475 	if (fw->size < sizeof (uint32_t)) {
8476 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8477 		    __func__, fw->size);
8478 		error = EINVAL;
8479 		goto fail;
8480 	}
8481 
8482 	/* Retrieve text and data sections. */
8483 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8484 		error = iwn_read_firmware_leg(sc, fw);
8485 	else
8486 		error = iwn_read_firmware_tlv(sc, fw, 1);
8487 	if (error != 0) {
8488 		device_printf(sc->sc_dev,
8489 		    "%s: could not read firmware sections, error %d\n",
8490 		    __func__, error);
8491 		goto fail;
8492 	}
8493 
8494 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8495 
8496 	/* Make sure text and data sections fit in hardware memory. */
8497 	if (fw->main.textsz > sc->fw_text_maxsz ||
8498 	    fw->main.datasz > sc->fw_data_maxsz ||
8499 	    fw->init.textsz > sc->fw_text_maxsz ||
8500 	    fw->init.datasz > sc->fw_data_maxsz ||
8501 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8502 	    (fw->boot.textsz & 3) != 0) {
8503 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8504 		    __func__);
8505 		error = EINVAL;
8506 		goto fail;
8507 	}
8508 
8509 	/* We can proceed with loading the firmware. */
8510 	return 0;
8511 
8512 fail:	iwn_unload_firmware(sc);
8513 	return error;
8514 }
8515 
8516 static void
8517 iwn_unload_firmware(struct iwn_softc *sc)
8518 {
8519 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8520 	sc->fw_fp = NULL;
8521 }
8522 
8523 static int
8524 iwn_clock_wait(struct iwn_softc *sc)
8525 {
8526 	int ntries;
8527 
8528 	/* Set "initialization complete" bit. */
8529 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8530 
8531 	/* Wait for clock stabilization. */
8532 	for (ntries = 0; ntries < 2500; ntries++) {
8533 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8534 			return 0;
8535 		DELAY(10);
8536 	}
8537 	device_printf(sc->sc_dev,
8538 	    "%s: timeout waiting for clock stabilization\n", __func__);
8539 	return ETIMEDOUT;
8540 }
8541 
8542 static int
8543 iwn_apm_init(struct iwn_softc *sc)
8544 {
8545 	uint32_t reg;
8546 	int error;
8547 
8548 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8549 
8550 	/* Disable L0s exit timer (NMI bug workaround). */
8551 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8552 	/* Don't wait for ICH L0s (ICH bug workaround). */
8553 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8554 
8555 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8556 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8557 
8558 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8559 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8560 
8561 	/* Retrieve PCIe Active State Power Management (ASPM). */
8562 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8563 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8564 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8565 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8566 	else
8567 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8568 
8569 	if (sc->base_params->pll_cfg_val)
8570 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8571 
8572 	/* Wait for clock stabilization before accessing prph. */
8573 	if ((error = iwn_clock_wait(sc)) != 0)
8574 		return error;
8575 
8576 	if ((error = iwn_nic_lock(sc)) != 0)
8577 		return error;
8578 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8579 		/* Enable DMA and BSM (Bootstrap State Machine). */
8580 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8581 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8582 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8583 	} else {
8584 		/* Enable DMA. */
8585 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8586 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8587 	}
8588 	DELAY(20);
8589 	/* Disable L1-Active. */
8590 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8591 	iwn_nic_unlock(sc);
8592 
8593 	return 0;
8594 }
8595 
8596 static void
8597 iwn_apm_stop_master(struct iwn_softc *sc)
8598 {
8599 	int ntries;
8600 
8601 	/* Stop busmaster DMA activity. */
8602 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8603 	for (ntries = 0; ntries < 100; ntries++) {
8604 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8605 			return;
8606 		DELAY(10);
8607 	}
8608 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8609 }
8610 
8611 static void
8612 iwn_apm_stop(struct iwn_softc *sc)
8613 {
8614 	iwn_apm_stop_master(sc);
8615 
8616 	/* Reset the entire device. */
8617 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8618 	DELAY(10);
8619 	/* Clear "initialization complete" bit. */
8620 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8621 }
8622 
8623 static int
8624 iwn4965_nic_config(struct iwn_softc *sc)
8625 {
8626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8627 
8628 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8629 		/*
8630 		 * I don't believe this to be correct but this is what the
8631 		 * vendor driver is doing. Probably the bits should not be
8632 		 * shifted in IWN_RFCFG_*.
8633 		 */
8634 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8635 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8636 		    IWN_RFCFG_STEP(sc->rfcfg) |
8637 		    IWN_RFCFG_DASH(sc->rfcfg));
8638 	}
8639 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8640 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8641 	return 0;
8642 }
8643 
8644 static int
8645 iwn5000_nic_config(struct iwn_softc *sc)
8646 {
8647 	uint32_t tmp;
8648 	int error;
8649 
8650 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8651 
8652 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8653 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8654 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8655 		    IWN_RFCFG_STEP(sc->rfcfg) |
8656 		    IWN_RFCFG_DASH(sc->rfcfg));
8657 	}
8658 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8659 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8660 
8661 	if ((error = iwn_nic_lock(sc)) != 0)
8662 		return error;
8663 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8664 
8665 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8666 		/*
8667 		 * Select first Switching Voltage Regulator (1.32V) to
8668 		 * solve a stability issue related to noisy DC2DC line
8669 		 * in the silicon of 1000 Series.
8670 		 */
8671 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8672 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8673 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8674 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8675 	}
8676 	iwn_nic_unlock(sc);
8677 
8678 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8679 		/* Use internal power amplifier only. */
8680 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8681 	}
8682 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8683 		/* Indicate that ROM calibration version is >=6. */
8684 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8685 	}
8686 	if (sc->base_params->additional_gp_drv_bit)
8687 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8688 		    sc->base_params->additional_gp_drv_bit);
8689 	return 0;
8690 }
8691 
8692 /*
8693  * Take NIC ownership over Intel Active Management Technology (AMT).
8694  */
8695 static int
8696 iwn_hw_prepare(struct iwn_softc *sc)
8697 {
8698 	int ntries;
8699 
8700 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8701 
8702 	/* Check if hardware is ready. */
8703 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8704 	for (ntries = 0; ntries < 5; ntries++) {
8705 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8706 		    IWN_HW_IF_CONFIG_NIC_READY)
8707 			return 0;
8708 		DELAY(10);
8709 	}
8710 
8711 	/* Hardware not ready, force into ready state. */
8712 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8713 	for (ntries = 0; ntries < 15000; ntries++) {
8714 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8715 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8716 			break;
8717 		DELAY(10);
8718 	}
8719 	if (ntries == 15000)
8720 		return ETIMEDOUT;
8721 
8722 	/* Hardware should be ready now. */
8723 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8724 	for (ntries = 0; ntries < 5; ntries++) {
8725 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8726 		    IWN_HW_IF_CONFIG_NIC_READY)
8727 			return 0;
8728 		DELAY(10);
8729 	}
8730 	return ETIMEDOUT;
8731 }
8732 
8733 static int
8734 iwn_hw_init(struct iwn_softc *sc)
8735 {
8736 	struct iwn_ops *ops = &sc->ops;
8737 	int error, chnl, qid;
8738 
8739 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8740 
8741 	/* Clear pending interrupts. */
8742 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8743 
8744 	if ((error = iwn_apm_init(sc)) != 0) {
8745 		device_printf(sc->sc_dev,
8746 		    "%s: could not power ON adapter, error %d\n", __func__,
8747 		    error);
8748 		return error;
8749 	}
8750 
8751 	/* Select VMAIN power source. */
8752 	if ((error = iwn_nic_lock(sc)) != 0)
8753 		return error;
8754 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8755 	iwn_nic_unlock(sc);
8756 
8757 	/* Perform adapter-specific initialization. */
8758 	if ((error = ops->nic_config(sc)) != 0)
8759 		return error;
8760 
8761 	/* Initialize RX ring. */
8762 	if ((error = iwn_nic_lock(sc)) != 0)
8763 		return error;
8764 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8765 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8766 	/* Set physical address of RX ring (256-byte aligned). */
8767 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8768 	/* Set physical address of RX status (16-byte aligned). */
8769 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8770 	/* Enable RX. */
8771 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8772 	    IWN_FH_RX_CONFIG_ENA           |
8773 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8774 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8775 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8776 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8777 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8778 	iwn_nic_unlock(sc);
8779 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8780 
8781 	if ((error = iwn_nic_lock(sc)) != 0)
8782 		return error;
8783 
8784 	/* Initialize TX scheduler. */
8785 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8786 
8787 	/* Set physical address of "keep warm" page (16-byte aligned). */
8788 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8789 
8790 	/* Initialize TX rings. */
8791 	for (qid = 0; qid < sc->ntxqs; qid++) {
8792 		struct iwn_tx_ring *txq = &sc->txq[qid];
8793 
8794 		/* Set physical address of TX ring (256-byte aligned). */
8795 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8796 		    txq->desc_dma.paddr >> 8);
8797 	}
8798 	iwn_nic_unlock(sc);
8799 
8800 	/* Enable DMA channels. */
8801 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8802 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8803 		    IWN_FH_TX_CONFIG_DMA_ENA |
8804 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8805 	}
8806 
8807 	/* Clear "radio off" and "commands blocked" bits. */
8808 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8809 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8810 
8811 	/* Clear pending interrupts. */
8812 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8813 	/* Enable interrupt coalescing. */
8814 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8815 	/* Enable interrupts. */
8816 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8817 
8818 	/* _Really_ make sure "radio off" bit is cleared! */
8819 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8820 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8821 
8822 	/* Enable shadow registers. */
8823 	if (sc->base_params->shadow_reg_enable)
8824 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8825 
8826 	if ((error = ops->load_firmware(sc)) != 0) {
8827 		device_printf(sc->sc_dev,
8828 		    "%s: could not load firmware, error %d\n", __func__,
8829 		    error);
8830 		return error;
8831 	}
8832 	/* Wait at most one second for firmware alive notification. */
8833 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8834 		device_printf(sc->sc_dev,
8835 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8836 		    __func__, error);
8837 		return error;
8838 	}
8839 	/* Do post-firmware initialization. */
8840 
8841 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8842 
8843 	return ops->post_alive(sc);
8844 }
8845 
8846 static void
8847 iwn_hw_stop(struct iwn_softc *sc)
8848 {
8849 	int chnl, qid, ntries;
8850 
8851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8852 
8853 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8854 
8855 	/* Disable interrupts. */
8856 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8857 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8858 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8859 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8860 
8861 	/* Make sure we no longer hold the NIC lock. */
8862 	iwn_nic_unlock(sc);
8863 
8864 	/* Stop TX scheduler. */
8865 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8866 
8867 	/* Stop all DMA channels. */
8868 	if (iwn_nic_lock(sc) == 0) {
8869 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8870 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8871 			for (ntries = 0; ntries < 200; ntries++) {
8872 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8873 				    IWN_FH_TX_STATUS_IDLE(chnl))
8874 					break;
8875 				DELAY(10);
8876 			}
8877 		}
8878 		iwn_nic_unlock(sc);
8879 	}
8880 
8881 	/* Stop RX ring. */
8882 	iwn_reset_rx_ring(sc, &sc->rxq);
8883 
8884 	/* Reset all TX rings. */
8885 	for (qid = 0; qid < sc->ntxqs; qid++)
8886 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8887 
8888 	if (iwn_nic_lock(sc) == 0) {
8889 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8890 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8891 		iwn_nic_unlock(sc);
8892 	}
8893 	DELAY(5);
8894 	/* Power OFF adapter. */
8895 	iwn_apm_stop(sc);
8896 }
8897 
8898 static void
8899 iwn_panicked(void *arg0, int pending)
8900 {
8901 	struct iwn_softc *sc = arg0;
8902 	struct ieee80211com *ic = &sc->sc_ic;
8903 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8904 #if 0
8905 	int error;
8906 #endif
8907 
8908 	if (vap == NULL) {
8909 		printf("%s: null vap\n", __func__);
8910 		return;
8911 	}
8912 
8913 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8914 	    "restarting\n", __func__, vap->iv_state);
8915 
8916 	/*
8917 	 * This is not enough work. We need to also reinitialise
8918 	 * the correct transmit state for aggregation enabled queues,
8919 	 * which has a very specific requirement of
8920 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8921 	 * we definitely don't!) then the firmware will just panic again.
8922 	 */
8923 #if 1
8924 	ieee80211_restart_all(ic);
8925 #else
8926 	IWN_LOCK(sc);
8927 
8928 	iwn_stop_locked(sc);
8929 	if ((error = iwn_init_locked(sc)) != 0) {
8930 		device_printf(sc->sc_dev,
8931 		    "%s: could not init hardware\n", __func__);
8932 		goto unlock;
8933 	}
8934 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8935 	    (error = iwn_auth(sc, vap)) != 0) {
8936 		device_printf(sc->sc_dev,
8937 		    "%s: could not move to auth state\n", __func__);
8938 	}
8939 	if (vap->iv_state >= IEEE80211_S_RUN &&
8940 	    (error = iwn_run(sc, vap)) != 0) {
8941 		device_printf(sc->sc_dev,
8942 		    "%s: could not move to run state\n", __func__);
8943 	}
8944 
8945 unlock:
8946 	IWN_UNLOCK(sc);
8947 #endif
8948 }
8949 
8950 static int
8951 iwn_init_locked(struct iwn_softc *sc)
8952 {
8953 	int error;
8954 
8955 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8956 
8957 	IWN_LOCK_ASSERT(sc);
8958 
8959 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8960 		goto end;
8961 
8962 	sc->sc_flags |= IWN_FLAG_RUNNING;
8963 
8964 	if ((error = iwn_hw_prepare(sc)) != 0) {
8965 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8966 		    __func__, error);
8967 		goto fail;
8968 	}
8969 
8970 	/* Initialize interrupt mask to default value. */
8971 	sc->int_mask = IWN_INT_MASK_DEF;
8972 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8973 
8974 	/* Check that the radio is not disabled by hardware switch. */
8975 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8976 		iwn_stop_locked(sc);
8977 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8978 
8979 		return (1);
8980 	}
8981 
8982 	/* Read firmware images from the filesystem. */
8983 	if ((error = iwn_read_firmware(sc)) != 0) {
8984 		device_printf(sc->sc_dev,
8985 		    "%s: could not read firmware, error %d\n", __func__,
8986 		    error);
8987 		goto fail;
8988 	}
8989 
8990 	/* Initialize hardware and upload firmware. */
8991 	error = iwn_hw_init(sc);
8992 	iwn_unload_firmware(sc);
8993 	if (error != 0) {
8994 		device_printf(sc->sc_dev,
8995 		    "%s: could not initialize hardware, error %d\n", __func__,
8996 		    error);
8997 		goto fail;
8998 	}
8999 
9000 	/* Configure adapter now that it is ready. */
9001 	if ((error = iwn_config(sc)) != 0) {
9002 		device_printf(sc->sc_dev,
9003 		    "%s: could not configure device, error %d\n", __func__,
9004 		    error);
9005 		goto fail;
9006 	}
9007 
9008 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9009 
9010 end:
9011 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9012 
9013 	return (0);
9014 
9015 fail:
9016 	iwn_stop_locked(sc);
9017 
9018 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9019 
9020 	return (-1);
9021 }
9022 
9023 static int
9024 iwn_init(struct iwn_softc *sc)
9025 {
9026 	int error;
9027 
9028 	IWN_LOCK(sc);
9029 	error = iwn_init_locked(sc);
9030 	IWN_UNLOCK(sc);
9031 
9032 	return (error);
9033 }
9034 
9035 static void
9036 iwn_stop_locked(struct iwn_softc *sc)
9037 {
9038 
9039 	IWN_LOCK_ASSERT(sc);
9040 
9041 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9042 		return;
9043 
9044 	sc->sc_is_scanning = 0;
9045 	sc->sc_tx_timer = 0;
9046 	callout_stop(&sc->watchdog_to);
9047 	callout_stop(&sc->scan_timeout);
9048 	callout_stop(&sc->calib_to);
9049 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9050 
9051 	/* Power OFF hardware. */
9052 	iwn_hw_stop(sc);
9053 }
9054 
9055 static void
9056 iwn_stop(struct iwn_softc *sc)
9057 {
9058 	IWN_LOCK(sc);
9059 	iwn_stop_locked(sc);
9060 	IWN_UNLOCK(sc);
9061 }
9062 
9063 /*
9064  * Callback from net80211 to start a scan.
9065  */
9066 static void
9067 iwn_scan_start(struct ieee80211com *ic)
9068 {
9069 	struct iwn_softc *sc = ic->ic_softc;
9070 
9071 	IWN_LOCK(sc);
9072 	/* make the link LED blink while we're scanning */
9073 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9074 	IWN_UNLOCK(sc);
9075 }
9076 
9077 /*
9078  * Callback from net80211 to terminate a scan.
9079  */
9080 static void
9081 iwn_scan_end(struct ieee80211com *ic)
9082 {
9083 	struct iwn_softc *sc = ic->ic_softc;
9084 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9085 
9086 	IWN_LOCK(sc);
9087 	if (vap->iv_state == IEEE80211_S_RUN) {
9088 		/* Set link LED to ON status if we are associated */
9089 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9090 	}
9091 	IWN_UNLOCK(sc);
9092 }
9093 
9094 /*
9095  * Callback from net80211 to force a channel change.
9096  */
9097 static void
9098 iwn_set_channel(struct ieee80211com *ic)
9099 {
9100 	struct iwn_softc *sc = ic->ic_softc;
9101 	int error;
9102 
9103 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9104 
9105 	IWN_LOCK(sc);
9106 	/*
9107 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9108 	 * are already taken care of by their respective firmware commands.
9109 	 */
9110 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9111 		error = iwn_config(sc);
9112 		if (error != 0)
9113 		device_printf(sc->sc_dev,
9114 		    "%s: error %d setting channel\n", __func__, error);
9115 	}
9116 	IWN_UNLOCK(sc);
9117 }
9118 
9119 /*
9120  * Callback from net80211 to start scanning of the current channel.
9121  */
9122 static void
9123 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9124 {
9125 	struct ieee80211vap *vap = ss->ss_vap;
9126 	struct ieee80211com *ic = vap->iv_ic;
9127 	struct iwn_softc *sc = ic->ic_softc;
9128 	int error;
9129 
9130 	IWN_LOCK(sc);
9131 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9132 	IWN_UNLOCK(sc);
9133 	if (error != 0)
9134 		ieee80211_cancel_scan(vap);
9135 }
9136 
9137 /*
9138  * Callback from net80211 to handle the minimum dwell time being met.
9139  * The intent is to terminate the scan but we just let the firmware
9140  * notify us when it's finished as we have no safe way to abort it.
9141  */
9142 static void
9143 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9144 {
9145 	/* NB: don't try to abort scan; wait for firmware to finish */
9146 }
9147 #ifdef	IWN_DEBUG
9148 #define	IWN_DESC(x) case x:	return #x
9149 
9150 /*
9151  * Translate CSR code to string
9152  */
9153 static char *iwn_get_csr_string(int csr)
9154 {
9155 	switch (csr) {
9156 		IWN_DESC(IWN_HW_IF_CONFIG);
9157 		IWN_DESC(IWN_INT_COALESCING);
9158 		IWN_DESC(IWN_INT);
9159 		IWN_DESC(IWN_INT_MASK);
9160 		IWN_DESC(IWN_FH_INT);
9161 		IWN_DESC(IWN_GPIO_IN);
9162 		IWN_DESC(IWN_RESET);
9163 		IWN_DESC(IWN_GP_CNTRL);
9164 		IWN_DESC(IWN_HW_REV);
9165 		IWN_DESC(IWN_EEPROM);
9166 		IWN_DESC(IWN_EEPROM_GP);
9167 		IWN_DESC(IWN_OTP_GP);
9168 		IWN_DESC(IWN_GIO);
9169 		IWN_DESC(IWN_GP_UCODE);
9170 		IWN_DESC(IWN_GP_DRIVER);
9171 		IWN_DESC(IWN_UCODE_GP1);
9172 		IWN_DESC(IWN_UCODE_GP2);
9173 		IWN_DESC(IWN_LED);
9174 		IWN_DESC(IWN_DRAM_INT_TBL);
9175 		IWN_DESC(IWN_GIO_CHICKEN);
9176 		IWN_DESC(IWN_ANA_PLL);
9177 		IWN_DESC(IWN_HW_REV_WA);
9178 		IWN_DESC(IWN_DBG_HPET_MEM);
9179 	default:
9180 		return "UNKNOWN CSR";
9181 	}
9182 }
9183 
9184 /*
9185  * This function print firmware register
9186  */
9187 static void
9188 iwn_debug_register(struct iwn_softc *sc)
9189 {
9190 	int i;
9191 	static const uint32_t csr_tbl[] = {
9192 		IWN_HW_IF_CONFIG,
9193 		IWN_INT_COALESCING,
9194 		IWN_INT,
9195 		IWN_INT_MASK,
9196 		IWN_FH_INT,
9197 		IWN_GPIO_IN,
9198 		IWN_RESET,
9199 		IWN_GP_CNTRL,
9200 		IWN_HW_REV,
9201 		IWN_EEPROM,
9202 		IWN_EEPROM_GP,
9203 		IWN_OTP_GP,
9204 		IWN_GIO,
9205 		IWN_GP_UCODE,
9206 		IWN_GP_DRIVER,
9207 		IWN_UCODE_GP1,
9208 		IWN_UCODE_GP2,
9209 		IWN_LED,
9210 		IWN_DRAM_INT_TBL,
9211 		IWN_GIO_CHICKEN,
9212 		IWN_ANA_PLL,
9213 		IWN_HW_REV_WA,
9214 		IWN_DBG_HPET_MEM,
9215 	};
9216 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9217 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9218 	    "\n");
9219 	for (i = 0; i <  nitems(csr_tbl); i++){
9220 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9221 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9222 		if ((i+1) % 3 == 0)
9223 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9224 	}
9225 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9226 }
9227 #endif
9228 
9229 
9230