xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 3311ff84eac3b7e82f28e331df0586036c6d361c)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
181 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
182 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
183 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
184 		    struct ieee80211_channel *);
185 static int	iwn_setregdomain(struct ieee80211com *,
186 		    struct ieee80211_regdomain *, int,
187 		    struct ieee80211_channel[]);
188 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
189 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
190 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
191 static void	iwn_newassoc(struct ieee80211_node *, int);
192 static int	iwn_media_change(struct ifnet *);
193 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
194 static void	iwn_calib_timeout(void *);
195 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
198 		    struct iwn_rx_data *);
199 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn5000_rx_calib_results(struct iwn_softc *,
202 		    struct iwn_rx_desc *, struct iwn_rx_data *);
203 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
206 		    struct iwn_rx_data *);
207 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
210 		    uint8_t);
211 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
212 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
213 static void	iwn_notif_intr(struct iwn_softc *);
214 static void	iwn_wakeup_intr(struct iwn_softc *);
215 static void	iwn_rftoggle_intr(struct iwn_softc *);
216 static void	iwn_fatal_intr(struct iwn_softc *);
217 static void	iwn_intr(void *);
218 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
219 		    uint16_t);
220 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
221 		    uint16_t);
222 #ifdef notyet
223 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
224 #endif
225 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
226 		    struct ieee80211_node *);
227 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
228 		    struct ieee80211_node *,
229 		    const struct ieee80211_bpf_params *params);
230 static void	iwn_xmit_task(void *arg0, int pending);
231 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
232 		    const struct ieee80211_bpf_params *);
233 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
234 static void	iwn_watchdog(void *);
235 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
236 static void	iwn_parent(struct ieee80211com *);
237 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
238 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
239 		    int);
240 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
241 		    int);
242 static int	iwn_set_link_quality(struct iwn_softc *,
243 		    struct ieee80211_node *);
244 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
245 static int	iwn_updateedca(struct ieee80211com *);
246 static void	iwn_update_mcast(struct ieee80211com *);
247 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
248 static int	iwn_set_critical_temp(struct iwn_softc *);
249 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
250 static void	iwn4965_power_calibration(struct iwn_softc *, int);
251 static int	iwn4965_set_txpower(struct iwn_softc *,
252 		    struct ieee80211_channel *, int);
253 static int	iwn5000_set_txpower(struct iwn_softc *,
254 		    struct ieee80211_channel *, int);
255 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
256 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
257 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
258 static int	iwn4965_get_temperature(struct iwn_softc *);
259 static int	iwn5000_get_temperature(struct iwn_softc *);
260 static int	iwn_init_sensitivity(struct iwn_softc *);
261 static void	iwn_collect_noise(struct iwn_softc *,
262 		    const struct iwn_rx_general_stats *);
263 static int	iwn4965_init_gains(struct iwn_softc *);
264 static int	iwn5000_init_gains(struct iwn_softc *);
265 static int	iwn4965_set_gains(struct iwn_softc *);
266 static int	iwn5000_set_gains(struct iwn_softc *);
267 static void	iwn_tune_sensitivity(struct iwn_softc *,
268 		    const struct iwn_rx_stats *);
269 static void	iwn_save_stats_counters(struct iwn_softc *,
270 		    const struct iwn_stats *);
271 static int	iwn_send_sensitivity(struct iwn_softc *);
272 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
273 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
274 static int	iwn_send_btcoex(struct iwn_softc *);
275 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
276 static int	iwn5000_runtime_calib(struct iwn_softc *);
277 static int	iwn_config(struct iwn_softc *);
278 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
279 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
280 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
281 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
282 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
283 		    struct ieee80211_rx_ampdu *, int, int, int);
284 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
285 		    struct ieee80211_rx_ampdu *);
286 static int	iwn_addba_request(struct ieee80211_node *,
287 		    struct ieee80211_tx_ampdu *, int, int, int);
288 static int	iwn_addba_response(struct ieee80211_node *,
289 		    struct ieee80211_tx_ampdu *, int, int, int);
290 static int	iwn_ampdu_tx_start(struct ieee80211com *,
291 		    struct ieee80211_node *, uint8_t);
292 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *);
294 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
295 		    struct ieee80211_node *, int, uint8_t, uint16_t);
296 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
297 		    uint8_t, uint16_t);
298 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
299 		    struct ieee80211_node *, int, uint8_t, uint16_t);
300 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
301 		    uint8_t, uint16_t);
302 static int	iwn5000_query_calibration(struct iwn_softc *);
303 static int	iwn5000_send_calibration(struct iwn_softc *);
304 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
305 static int	iwn5000_crystal_calib(struct iwn_softc *);
306 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
307 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
308 static int	iwn4965_post_alive(struct iwn_softc *);
309 static int	iwn5000_post_alive(struct iwn_softc *);
310 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
311 		    int);
312 static int	iwn4965_load_firmware(struct iwn_softc *);
313 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
314 		    const uint8_t *, int);
315 static int	iwn5000_load_firmware(struct iwn_softc *);
316 static int	iwn_read_firmware_leg(struct iwn_softc *,
317 		    struct iwn_fw_info *);
318 static int	iwn_read_firmware_tlv(struct iwn_softc *,
319 		    struct iwn_fw_info *, uint16_t);
320 static int	iwn_read_firmware(struct iwn_softc *);
321 static void	iwn_unload_firmware(struct iwn_softc *);
322 static int	iwn_clock_wait(struct iwn_softc *);
323 static int	iwn_apm_init(struct iwn_softc *);
324 static void	iwn_apm_stop_master(struct iwn_softc *);
325 static void	iwn_apm_stop(struct iwn_softc *);
326 static int	iwn4965_nic_config(struct iwn_softc *);
327 static int	iwn5000_nic_config(struct iwn_softc *);
328 static int	iwn_hw_prepare(struct iwn_softc *);
329 static int	iwn_hw_init(struct iwn_softc *);
330 static void	iwn_hw_stop(struct iwn_softc *);
331 static void	iwn_radio_on(void *, int);
332 static void	iwn_radio_off(void *, int);
333 static void	iwn_panicked(void *, int);
334 static void	iwn_init_locked(struct iwn_softc *);
335 static void	iwn_init(struct iwn_softc *);
336 static void	iwn_stop_locked(struct iwn_softc *);
337 static void	iwn_stop(struct iwn_softc *);
338 static void	iwn_scan_start(struct ieee80211com *);
339 static void	iwn_scan_end(struct ieee80211com *);
340 static void	iwn_set_channel(struct ieee80211com *);
341 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
342 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
343 static void	iwn_hw_reset(void *, int);
344 #ifdef	IWN_DEBUG
345 static char	*iwn_get_csr_string(int);
346 static void	iwn_debug_register(struct iwn_softc *);
347 #endif
348 
349 static device_method_t iwn_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		iwn_probe),
352 	DEVMETHOD(device_attach,	iwn_attach),
353 	DEVMETHOD(device_detach,	iwn_detach),
354 	DEVMETHOD(device_shutdown,	iwn_shutdown),
355 	DEVMETHOD(device_suspend,	iwn_suspend),
356 	DEVMETHOD(device_resume,	iwn_resume),
357 
358 	DEVMETHOD_END
359 };
360 
361 static driver_t iwn_driver = {
362 	"iwn",
363 	iwn_methods,
364 	sizeof(struct iwn_softc)
365 };
366 static devclass_t iwn_devclass;
367 
368 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
369 
370 MODULE_VERSION(iwn, 1);
371 
372 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
373 MODULE_DEPEND(iwn, pci, 1, 1, 1);
374 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
375 
376 static d_ioctl_t iwn_cdev_ioctl;
377 static d_open_t iwn_cdev_open;
378 static d_close_t iwn_cdev_close;
379 
380 static struct cdevsw iwn_cdevsw = {
381 	.d_version = D_VERSION,
382 	.d_flags = 0,
383 	.d_open = iwn_cdev_open,
384 	.d_close = iwn_cdev_close,
385 	.d_ioctl = iwn_cdev_ioctl,
386 	.d_name = "iwn",
387 };
388 
389 static int
390 iwn_probe(device_t dev)
391 {
392 	const struct iwn_ident *ident;
393 
394 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
395 		if (pci_get_vendor(dev) == ident->vendor &&
396 		    pci_get_device(dev) == ident->device) {
397 			device_set_desc(dev, ident->name);
398 			return (BUS_PROBE_DEFAULT);
399 		}
400 	}
401 	return ENXIO;
402 }
403 
404 static int
405 iwn_is_3stream_device(struct iwn_softc *sc)
406 {
407 	/* XXX for now only 5300, until the 5350 can be tested */
408 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
409 		return (1);
410 	return (0);
411 }
412 
413 static int
414 iwn_attach(device_t dev)
415 {
416 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
417 	struct ieee80211com *ic;
418 	int i, error, rid;
419 
420 	sc->sc_dev = dev;
421 
422 #ifdef	IWN_DEBUG
423 	error = resource_int_value(device_get_name(sc->sc_dev),
424 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
425 	if (error != 0)
426 		sc->sc_debug = 0;
427 #else
428 	sc->sc_debug = 0;
429 #endif
430 
431 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
432 
433 	/*
434 	 * Get the offset of the PCI Express Capability Structure in PCI
435 	 * Configuration Space.
436 	 */
437 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
438 	if (error != 0) {
439 		device_printf(dev, "PCIe capability structure not found!\n");
440 		return error;
441 	}
442 
443 	/* Clear device-specific "PCI retry timeout" register (41h). */
444 	pci_write_config(dev, 0x41, 0, 1);
445 
446 	/* Enable bus-mastering. */
447 	pci_enable_busmaster(dev);
448 
449 	rid = PCIR_BAR(0);
450 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
451 	    RF_ACTIVE);
452 	if (sc->mem == NULL) {
453 		device_printf(dev, "can't map mem space\n");
454 		error = ENOMEM;
455 		return error;
456 	}
457 	sc->sc_st = rman_get_bustag(sc->mem);
458 	sc->sc_sh = rman_get_bushandle(sc->mem);
459 
460 	i = 1;
461 	rid = 0;
462 	if (pci_alloc_msi(dev, &i) == 0)
463 		rid = 1;
464 	/* Install interrupt handler. */
465 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
466 	    (rid != 0 ? 0 : RF_SHAREABLE));
467 	if (sc->irq == NULL) {
468 		device_printf(dev, "can't map interrupt\n");
469 		error = ENOMEM;
470 		goto fail;
471 	}
472 
473 	IWN_LOCK_INIT(sc);
474 
475 	/* Read hardware revision and attach. */
476 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
477 	    & IWN_HW_REV_TYPE_MASK;
478 	sc->subdevice_id = pci_get_subdevice(dev);
479 
480 	/*
481 	 * 4965 versus 5000 and later have different methods.
482 	 * Let's set those up first.
483 	 */
484 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
485 		error = iwn4965_attach(sc, pci_get_device(dev));
486 	else
487 		error = iwn5000_attach(sc, pci_get_device(dev));
488 	if (error != 0) {
489 		device_printf(dev, "could not attach device, error %d\n",
490 		    error);
491 		goto fail;
492 	}
493 
494 	/*
495 	 * Next, let's setup the various parameters of each NIC.
496 	 */
497 	error = iwn_config_specific(sc, pci_get_device(dev));
498 	if (error != 0) {
499 		device_printf(dev, "could not attach device, error %d\n",
500 		    error);
501 		goto fail;
502 	}
503 
504 	if ((error = iwn_hw_prepare(sc)) != 0) {
505 		device_printf(dev, "hardware not ready, error %d\n", error);
506 		goto fail;
507 	}
508 
509 	/* Allocate DMA memory for firmware transfers. */
510 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
511 		device_printf(dev,
512 		    "could not allocate memory for firmware, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	/* Allocate "Keep Warm" page. */
518 	if ((error = iwn_alloc_kw(sc)) != 0) {
519 		device_printf(dev,
520 		    "could not allocate keep warm page, error %d\n", error);
521 		goto fail;
522 	}
523 
524 	/* Allocate ICT table for 5000 Series. */
525 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
526 	    (error = iwn_alloc_ict(sc)) != 0) {
527 		device_printf(dev, "could not allocate ICT table, error %d\n",
528 		    error);
529 		goto fail;
530 	}
531 
532 	/* Allocate TX scheduler "rings". */
533 	if ((error = iwn_alloc_sched(sc)) != 0) {
534 		device_printf(dev,
535 		    "could not allocate TX scheduler rings, error %d\n", error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
540 	for (i = 0; i < sc->ntxqs; i++) {
541 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
542 			device_printf(dev,
543 			    "could not allocate TX ring %d, error %d\n", i,
544 			    error);
545 			goto fail;
546 		}
547 	}
548 
549 	/* Allocate RX ring. */
550 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
551 		device_printf(dev, "could not allocate RX ring, error %d\n",
552 		    error);
553 		goto fail;
554 	}
555 
556 	/* Clear pending interrupts. */
557 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
558 
559 	ic = &sc->sc_ic;
560 	ic->ic_softc = sc;
561 	ic->ic_name = device_get_nameunit(dev);
562 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
563 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
564 
565 	/* Set device capabilities. */
566 	ic->ic_caps =
567 		  IEEE80211_C_STA		/* station mode supported */
568 		| IEEE80211_C_MONITOR		/* monitor mode supported */
569 #if 0
570 		| IEEE80211_C_BGSCAN		/* background scanning */
571 #endif
572 		| IEEE80211_C_TXPMGT		/* tx power management */
573 		| IEEE80211_C_SHSLOT		/* short slot time supported */
574 		| IEEE80211_C_WPA
575 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
576 #if 0
577 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
578 #endif
579 		| IEEE80211_C_WME		/* WME */
580 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
581 		;
582 
583 	/* Read MAC address, channels, etc from EEPROM. */
584 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
585 		device_printf(dev, "could not read EEPROM, error %d\n",
586 		    error);
587 		goto fail;
588 	}
589 
590 	/* Count the number of available chains. */
591 	sc->ntxchains =
592 	    ((sc->txchainmask >> 2) & 1) +
593 	    ((sc->txchainmask >> 1) & 1) +
594 	    ((sc->txchainmask >> 0) & 1);
595 	sc->nrxchains =
596 	    ((sc->rxchainmask >> 2) & 1) +
597 	    ((sc->rxchainmask >> 1) & 1) +
598 	    ((sc->rxchainmask >> 0) & 1);
599 	if (bootverbose) {
600 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
601 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
602 		    ic->ic_macaddr, ":");
603 	}
604 
605 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
606 		ic->ic_rxstream = sc->nrxchains;
607 		ic->ic_txstream = sc->ntxchains;
608 
609 		/*
610 		 * Some of the 3 antenna devices (ie, the 4965) only supports
611 		 * 2x2 operation.  So correct the number of streams if
612 		 * it's not a 3-stream device.
613 		 */
614 		if (! iwn_is_3stream_device(sc)) {
615 			if (ic->ic_rxstream > 2)
616 				ic->ic_rxstream = 2;
617 			if (ic->ic_txstream > 2)
618 				ic->ic_txstream = 2;
619 		}
620 
621 		ic->ic_htcaps =
622 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
623 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
624 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
625 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
626 #ifdef notyet
627 			| IEEE80211_HTCAP_GREENFIELD
628 #if IWN_RBUF_SIZE == 8192
629 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
630 #else
631 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
632 #endif
633 #endif
634 			/* s/w capabilities */
635 			| IEEE80211_HTC_HT		/* HT operation */
636 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
637 #ifdef notyet
638 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
639 #endif
640 			;
641 	}
642 
643 	ieee80211_ifattach(ic);
644 	ic->ic_vap_create = iwn_vap_create;
645 	ic->ic_ioctl = iwn_ioctl;
646 	ic->ic_parent = iwn_parent;
647 	ic->ic_vap_delete = iwn_vap_delete;
648 	ic->ic_transmit = iwn_transmit;
649 	ic->ic_raw_xmit = iwn_raw_xmit;
650 	ic->ic_node_alloc = iwn_node_alloc;
651 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
652 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
653 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
654 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
655 	sc->sc_addba_request = ic->ic_addba_request;
656 	ic->ic_addba_request = iwn_addba_request;
657 	sc->sc_addba_response = ic->ic_addba_response;
658 	ic->ic_addba_response = iwn_addba_response;
659 	sc->sc_addba_stop = ic->ic_addba_stop;
660 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
661 	ic->ic_newassoc = iwn_newassoc;
662 	ic->ic_wme.wme_update = iwn_updateedca;
663 	ic->ic_update_mcast = iwn_update_mcast;
664 	ic->ic_scan_start = iwn_scan_start;
665 	ic->ic_scan_end = iwn_scan_end;
666 	ic->ic_set_channel = iwn_set_channel;
667 	ic->ic_scan_curchan = iwn_scan_curchan;
668 	ic->ic_scan_mindwell = iwn_scan_mindwell;
669 	ic->ic_setregdomain = iwn_setregdomain;
670 
671 	iwn_radiotap_attach(sc);
672 
673 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
674 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
675 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
676 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
677 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
678 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
679 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
680 
681 	mbufq_init(&sc->sc_xmit_queue, 1024);
682 
683 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
684 	    taskqueue_thread_enqueue, &sc->sc_tq);
685 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
686 	if (error != 0) {
687 		device_printf(dev, "can't start threads, error %d\n", error);
688 		goto fail;
689 	}
690 
691 	iwn_sysctlattach(sc);
692 
693 	/*
694 	 * Hook our interrupt after all initialization is complete.
695 	 */
696 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
697 	    NULL, iwn_intr, sc, &sc->sc_ih);
698 	if (error != 0) {
699 		device_printf(dev, "can't establish interrupt, error %d\n",
700 		    error);
701 		goto fail;
702 	}
703 
704 #if 0
705 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
706 	    __func__,
707 	    sizeof(struct iwn_stats),
708 	    sizeof(struct iwn_stats_bt));
709 #endif
710 
711 	if (bootverbose)
712 		ieee80211_announce(ic);
713 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
714 
715 	/* Add debug ioctl right at the end */
716 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
717 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
718 	if (sc->sc_cdev == NULL) {
719 		device_printf(dev, "failed to create debug character device\n");
720 	} else {
721 		sc->sc_cdev->si_drv1 = sc;
722 	}
723 	return 0;
724 fail:
725 	iwn_detach(dev);
726 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
727 	return error;
728 }
729 
730 /*
731  * Define specific configuration based on device id and subdevice id
732  * pid : PCI device id
733  */
734 static int
735 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
736 {
737 
738 	switch (pid) {
739 /* 4965 series */
740 	case IWN_DID_4965_1:
741 	case IWN_DID_4965_2:
742 	case IWN_DID_4965_3:
743 	case IWN_DID_4965_4:
744 		sc->base_params = &iwn4965_base_params;
745 		sc->limits = &iwn4965_sensitivity_limits;
746 		sc->fwname = "iwn4965fw";
747 		/* Override chains masks, ROM is known to be broken. */
748 		sc->txchainmask = IWN_ANT_AB;
749 		sc->rxchainmask = IWN_ANT_ABC;
750 		/* Enable normal btcoex */
751 		sc->sc_flags |= IWN_FLAG_BTCOEX;
752 		break;
753 /* 1000 Series */
754 	case IWN_DID_1000_1:
755 	case IWN_DID_1000_2:
756 		switch(sc->subdevice_id) {
757 			case	IWN_SDID_1000_1:
758 			case	IWN_SDID_1000_2:
759 			case	IWN_SDID_1000_3:
760 			case	IWN_SDID_1000_4:
761 			case	IWN_SDID_1000_5:
762 			case	IWN_SDID_1000_6:
763 			case	IWN_SDID_1000_7:
764 			case	IWN_SDID_1000_8:
765 			case	IWN_SDID_1000_9:
766 			case	IWN_SDID_1000_10:
767 			case	IWN_SDID_1000_11:
768 			case	IWN_SDID_1000_12:
769 				sc->limits = &iwn1000_sensitivity_limits;
770 				sc->base_params = &iwn1000_base_params;
771 				sc->fwname = "iwn1000fw";
772 				break;
773 			default:
774 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
775 				    "0x%04x rev %d not supported (subdevice)\n", pid,
776 				    sc->subdevice_id,sc->hw_type);
777 				return ENOTSUP;
778 		}
779 		break;
780 /* 6x00 Series */
781 	case IWN_DID_6x00_2:
782 	case IWN_DID_6x00_4:
783 	case IWN_DID_6x00_1:
784 	case IWN_DID_6x00_3:
785 		sc->fwname = "iwn6000fw";
786 		sc->limits = &iwn6000_sensitivity_limits;
787 		switch(sc->subdevice_id) {
788 			case IWN_SDID_6x00_1:
789 			case IWN_SDID_6x00_2:
790 			case IWN_SDID_6x00_8:
791 				//iwl6000_3agn_cfg
792 				sc->base_params = &iwn_6000_base_params;
793 				break;
794 			case IWN_SDID_6x00_3:
795 			case IWN_SDID_6x00_6:
796 			case IWN_SDID_6x00_9:
797 				////iwl6000i_2agn
798 			case IWN_SDID_6x00_4:
799 			case IWN_SDID_6x00_7:
800 			case IWN_SDID_6x00_10:
801 				//iwl6000i_2abg_cfg
802 			case IWN_SDID_6x00_5:
803 				//iwl6000i_2bg_cfg
804 				sc->base_params = &iwn_6000i_base_params;
805 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
806 				sc->txchainmask = IWN_ANT_BC;
807 				sc->rxchainmask = IWN_ANT_BC;
808 				break;
809 			default:
810 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
811 				    "0x%04x rev %d not supported (subdevice)\n", pid,
812 				    sc->subdevice_id,sc->hw_type);
813 				return ENOTSUP;
814 		}
815 		break;
816 /* 6x05 Series */
817 	case IWN_DID_6x05_1:
818 	case IWN_DID_6x05_2:
819 		switch(sc->subdevice_id) {
820 			case IWN_SDID_6x05_1:
821 			case IWN_SDID_6x05_4:
822 			case IWN_SDID_6x05_6:
823 				//iwl6005_2agn_cfg
824 			case IWN_SDID_6x05_2:
825 			case IWN_SDID_6x05_5:
826 			case IWN_SDID_6x05_7:
827 				//iwl6005_2abg_cfg
828 			case IWN_SDID_6x05_3:
829 				//iwl6005_2bg_cfg
830 			case IWN_SDID_6x05_8:
831 			case IWN_SDID_6x05_9:
832 				//iwl6005_2agn_sff_cfg
833 			case IWN_SDID_6x05_10:
834 				//iwl6005_2agn_d_cfg
835 			case IWN_SDID_6x05_11:
836 				//iwl6005_2agn_mow1_cfg
837 			case IWN_SDID_6x05_12:
838 				//iwl6005_2agn_mow2_cfg
839 				sc->fwname = "iwn6000g2afw";
840 				sc->limits = &iwn6000_sensitivity_limits;
841 				sc->base_params = &iwn_6000g2_base_params;
842 				break;
843 			default:
844 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
845 				    "0x%04x rev %d not supported (subdevice)\n", pid,
846 				    sc->subdevice_id,sc->hw_type);
847 				return ENOTSUP;
848 		}
849 		break;
850 /* 6x35 Series */
851 	case IWN_DID_6035_1:
852 	case IWN_DID_6035_2:
853 		switch(sc->subdevice_id) {
854 			case IWN_SDID_6035_1:
855 			case IWN_SDID_6035_2:
856 			case IWN_SDID_6035_3:
857 			case IWN_SDID_6035_4:
858 				sc->fwname = "iwn6000g2bfw";
859 				sc->limits = &iwn6235_sensitivity_limits;
860 				sc->base_params = &iwn_6235_base_params;
861 				break;
862 			default:
863 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
864 				    "0x%04x rev %d not supported (subdevice)\n", pid,
865 				    sc->subdevice_id,sc->hw_type);
866 				return ENOTSUP;
867 		}
868 		break;
869 /* 6x50 WiFi/WiMax Series */
870 	case IWN_DID_6050_1:
871 	case IWN_DID_6050_2:
872 		switch(sc->subdevice_id) {
873 			case IWN_SDID_6050_1:
874 			case IWN_SDID_6050_3:
875 			case IWN_SDID_6050_5:
876 				//iwl6050_2agn_cfg
877 			case IWN_SDID_6050_2:
878 			case IWN_SDID_6050_4:
879 			case IWN_SDID_6050_6:
880 				//iwl6050_2abg_cfg
881 				sc->fwname = "iwn6050fw";
882 				sc->txchainmask = IWN_ANT_AB;
883 				sc->rxchainmask = IWN_ANT_AB;
884 				sc->limits = &iwn6000_sensitivity_limits;
885 				sc->base_params = &iwn_6050_base_params;
886 				break;
887 			default:
888 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
889 				    "0x%04x rev %d not supported (subdevice)\n", pid,
890 				    sc->subdevice_id,sc->hw_type);
891 				return ENOTSUP;
892 		}
893 		break;
894 /* 6150 WiFi/WiMax Series */
895 	case IWN_DID_6150_1:
896 	case IWN_DID_6150_2:
897 		switch(sc->subdevice_id) {
898 			case IWN_SDID_6150_1:
899 			case IWN_SDID_6150_3:
900 			case IWN_SDID_6150_5:
901 				// iwl6150_bgn_cfg
902 			case IWN_SDID_6150_2:
903 			case IWN_SDID_6150_4:
904 			case IWN_SDID_6150_6:
905 				//iwl6150_bg_cfg
906 				sc->fwname = "iwn6050fw";
907 				sc->limits = &iwn6000_sensitivity_limits;
908 				sc->base_params = &iwn_6150_base_params;
909 				break;
910 			default:
911 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
912 				    "0x%04x rev %d not supported (subdevice)\n", pid,
913 				    sc->subdevice_id,sc->hw_type);
914 				return ENOTSUP;
915 		}
916 		break;
917 /* 6030 Series and 1030 Series */
918 	case IWN_DID_x030_1:
919 	case IWN_DID_x030_2:
920 	case IWN_DID_x030_3:
921 	case IWN_DID_x030_4:
922 		switch(sc->subdevice_id) {
923 			case IWN_SDID_x030_1:
924 			case IWN_SDID_x030_3:
925 			case IWN_SDID_x030_5:
926 			// iwl1030_bgn_cfg
927 			case IWN_SDID_x030_2:
928 			case IWN_SDID_x030_4:
929 			case IWN_SDID_x030_6:
930 			//iwl1030_bg_cfg
931 			case IWN_SDID_x030_7:
932 			case IWN_SDID_x030_10:
933 			case IWN_SDID_x030_14:
934 			//iwl6030_2agn_cfg
935 			case IWN_SDID_x030_8:
936 			case IWN_SDID_x030_11:
937 			case IWN_SDID_x030_15:
938 			// iwl6030_2bgn_cfg
939 			case IWN_SDID_x030_9:
940 			case IWN_SDID_x030_12:
941 			case IWN_SDID_x030_16:
942 			// iwl6030_2abg_cfg
943 			case IWN_SDID_x030_13:
944 			//iwl6030_2bg_cfg
945 				sc->fwname = "iwn6000g2bfw";
946 				sc->limits = &iwn6000_sensitivity_limits;
947 				sc->base_params = &iwn_6000g2b_base_params;
948 				break;
949 			default:
950 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
951 				    "0x%04x rev %d not supported (subdevice)\n", pid,
952 				    sc->subdevice_id,sc->hw_type);
953 				return ENOTSUP;
954 		}
955 		break;
956 /* 130 Series WiFi */
957 /* XXX: This series will need adjustment for rate.
958  * see rx_with_siso_diversity in linux kernel
959  */
960 	case IWN_DID_130_1:
961 	case IWN_DID_130_2:
962 		switch(sc->subdevice_id) {
963 			case IWN_SDID_130_1:
964 			case IWN_SDID_130_3:
965 			case IWN_SDID_130_5:
966 			//iwl130_bgn_cfg
967 			case IWN_SDID_130_2:
968 			case IWN_SDID_130_4:
969 			case IWN_SDID_130_6:
970 			//iwl130_bg_cfg
971 				sc->fwname = "iwn6000g2bfw";
972 				sc->limits = &iwn6000_sensitivity_limits;
973 				sc->base_params = &iwn_6000g2b_base_params;
974 				break;
975 			default:
976 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
977 				    "0x%04x rev %d not supported (subdevice)\n", pid,
978 				    sc->subdevice_id,sc->hw_type);
979 				return ENOTSUP;
980 		}
981 		break;
982 /* 100 Series WiFi */
983 	case IWN_DID_100_1:
984 	case IWN_DID_100_2:
985 		switch(sc->subdevice_id) {
986 			case IWN_SDID_100_1:
987 			case IWN_SDID_100_2:
988 			case IWN_SDID_100_3:
989 			case IWN_SDID_100_4:
990 			case IWN_SDID_100_5:
991 			case IWN_SDID_100_6:
992 				sc->limits = &iwn1000_sensitivity_limits;
993 				sc->base_params = &iwn1000_base_params;
994 				sc->fwname = "iwn100fw";
995 				break;
996 			default:
997 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
998 				    "0x%04x rev %d not supported (subdevice)\n", pid,
999 				    sc->subdevice_id,sc->hw_type);
1000 				return ENOTSUP;
1001 		}
1002 		break;
1003 
1004 /* 105 Series */
1005 /* XXX: This series will need adjustment for rate.
1006  * see rx_with_siso_diversity in linux kernel
1007  */
1008 	case IWN_DID_105_1:
1009 	case IWN_DID_105_2:
1010 		switch(sc->subdevice_id) {
1011 			case IWN_SDID_105_1:
1012 			case IWN_SDID_105_2:
1013 			case IWN_SDID_105_3:
1014 			//iwl105_bgn_cfg
1015 			case IWN_SDID_105_4:
1016 			//iwl105_bgn_d_cfg
1017 				sc->limits = &iwn2030_sensitivity_limits;
1018 				sc->base_params = &iwn2000_base_params;
1019 				sc->fwname = "iwn105fw";
1020 				break;
1021 			default:
1022 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1023 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1024 				    sc->subdevice_id,sc->hw_type);
1025 				return ENOTSUP;
1026 		}
1027 		break;
1028 
1029 /* 135 Series */
1030 /* XXX: This series will need adjustment for rate.
1031  * see rx_with_siso_diversity in linux kernel
1032  */
1033 	case IWN_DID_135_1:
1034 	case IWN_DID_135_2:
1035 		switch(sc->subdevice_id) {
1036 			case IWN_SDID_135_1:
1037 			case IWN_SDID_135_2:
1038 			case IWN_SDID_135_3:
1039 				sc->limits = &iwn2030_sensitivity_limits;
1040 				sc->base_params = &iwn2030_base_params;
1041 				sc->fwname = "iwn135fw";
1042 				break;
1043 			default:
1044 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1045 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1046 				    sc->subdevice_id,sc->hw_type);
1047 				return ENOTSUP;
1048 		}
1049 		break;
1050 
1051 /* 2x00 Series */
1052 	case IWN_DID_2x00_1:
1053 	case IWN_DID_2x00_2:
1054 		switch(sc->subdevice_id) {
1055 			case IWN_SDID_2x00_1:
1056 			case IWN_SDID_2x00_2:
1057 			case IWN_SDID_2x00_3:
1058 			//iwl2000_2bgn_cfg
1059 			case IWN_SDID_2x00_4:
1060 			//iwl2000_2bgn_d_cfg
1061 				sc->limits = &iwn2030_sensitivity_limits;
1062 				sc->base_params = &iwn2000_base_params;
1063 				sc->fwname = "iwn2000fw";
1064 				break;
1065 			default:
1066 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1067 				    "0x%04x rev %d not supported (subdevice) \n",
1068 				    pid, sc->subdevice_id, sc->hw_type);
1069 				return ENOTSUP;
1070 		}
1071 		break;
1072 /* 2x30 Series */
1073 	case IWN_DID_2x30_1:
1074 	case IWN_DID_2x30_2:
1075 		switch(sc->subdevice_id) {
1076 			case IWN_SDID_2x30_1:
1077 			case IWN_SDID_2x30_3:
1078 			case IWN_SDID_2x30_5:
1079 			//iwl100_bgn_cfg
1080 			case IWN_SDID_2x30_2:
1081 			case IWN_SDID_2x30_4:
1082 			case IWN_SDID_2x30_6:
1083 			//iwl100_bg_cfg
1084 				sc->limits = &iwn2030_sensitivity_limits;
1085 				sc->base_params = &iwn2030_base_params;
1086 				sc->fwname = "iwn2030fw";
1087 				break;
1088 			default:
1089 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1090 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1091 				    sc->subdevice_id,sc->hw_type);
1092 				return ENOTSUP;
1093 		}
1094 		break;
1095 /* 5x00 Series */
1096 	case IWN_DID_5x00_1:
1097 	case IWN_DID_5x00_2:
1098 	case IWN_DID_5x00_3:
1099 	case IWN_DID_5x00_4:
1100 		sc->limits = &iwn5000_sensitivity_limits;
1101 		sc->base_params = &iwn5000_base_params;
1102 		sc->fwname = "iwn5000fw";
1103 		switch(sc->subdevice_id) {
1104 			case IWN_SDID_5x00_1:
1105 			case IWN_SDID_5x00_2:
1106 			case IWN_SDID_5x00_3:
1107 			case IWN_SDID_5x00_4:
1108 			case IWN_SDID_5x00_9:
1109 			case IWN_SDID_5x00_10:
1110 			case IWN_SDID_5x00_11:
1111 			case IWN_SDID_5x00_12:
1112 			case IWN_SDID_5x00_17:
1113 			case IWN_SDID_5x00_18:
1114 			case IWN_SDID_5x00_19:
1115 			case IWN_SDID_5x00_20:
1116 			//iwl5100_agn_cfg
1117 				sc->txchainmask = IWN_ANT_B;
1118 				sc->rxchainmask = IWN_ANT_AB;
1119 				break;
1120 			case IWN_SDID_5x00_5:
1121 			case IWN_SDID_5x00_6:
1122 			case IWN_SDID_5x00_13:
1123 			case IWN_SDID_5x00_14:
1124 			case IWN_SDID_5x00_21:
1125 			case IWN_SDID_5x00_22:
1126 			//iwl5100_bgn_cfg
1127 				sc->txchainmask = IWN_ANT_B;
1128 				sc->rxchainmask = IWN_ANT_AB;
1129 				break;
1130 			case IWN_SDID_5x00_7:
1131 			case IWN_SDID_5x00_8:
1132 			case IWN_SDID_5x00_15:
1133 			case IWN_SDID_5x00_16:
1134 			case IWN_SDID_5x00_23:
1135 			case IWN_SDID_5x00_24:
1136 			//iwl5100_abg_cfg
1137 				sc->txchainmask = IWN_ANT_B;
1138 				sc->rxchainmask = IWN_ANT_AB;
1139 				break;
1140 			case IWN_SDID_5x00_25:
1141 			case IWN_SDID_5x00_26:
1142 			case IWN_SDID_5x00_27:
1143 			case IWN_SDID_5x00_28:
1144 			case IWN_SDID_5x00_29:
1145 			case IWN_SDID_5x00_30:
1146 			case IWN_SDID_5x00_31:
1147 			case IWN_SDID_5x00_32:
1148 			case IWN_SDID_5x00_33:
1149 			case IWN_SDID_5x00_34:
1150 			case IWN_SDID_5x00_35:
1151 			case IWN_SDID_5x00_36:
1152 			//iwl5300_agn_cfg
1153 				sc->txchainmask = IWN_ANT_ABC;
1154 				sc->rxchainmask = IWN_ANT_ABC;
1155 				break;
1156 			default:
1157 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1158 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1159 				    sc->subdevice_id,sc->hw_type);
1160 				return ENOTSUP;
1161 		}
1162 		break;
1163 /* 5x50 Series */
1164 	case IWN_DID_5x50_1:
1165 	case IWN_DID_5x50_2:
1166 	case IWN_DID_5x50_3:
1167 	case IWN_DID_5x50_4:
1168 		sc->limits = &iwn5000_sensitivity_limits;
1169 		sc->base_params = &iwn5000_base_params;
1170 		sc->fwname = "iwn5000fw";
1171 		switch(sc->subdevice_id) {
1172 			case IWN_SDID_5x50_1:
1173 			case IWN_SDID_5x50_2:
1174 			case IWN_SDID_5x50_3:
1175 			//iwl5350_agn_cfg
1176 				sc->limits = &iwn5000_sensitivity_limits;
1177 				sc->base_params = &iwn5000_base_params;
1178 				sc->fwname = "iwn5000fw";
1179 				break;
1180 			case IWN_SDID_5x50_4:
1181 			case IWN_SDID_5x50_5:
1182 			case IWN_SDID_5x50_8:
1183 			case IWN_SDID_5x50_9:
1184 			case IWN_SDID_5x50_10:
1185 			case IWN_SDID_5x50_11:
1186 			//iwl5150_agn_cfg
1187 			case IWN_SDID_5x50_6:
1188 			case IWN_SDID_5x50_7:
1189 			case IWN_SDID_5x50_12:
1190 			case IWN_SDID_5x50_13:
1191 			//iwl5150_abg_cfg
1192 				sc->limits = &iwn5000_sensitivity_limits;
1193 				sc->fwname = "iwn5150fw";
1194 				sc->base_params = &iwn_5x50_base_params;
1195 				break;
1196 			default:
1197 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1198 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1199 				    sc->subdevice_id,sc->hw_type);
1200 				return ENOTSUP;
1201 		}
1202 		break;
1203 	default:
1204 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1205 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1206 		     sc->hw_type);
1207 		return ENOTSUP;
1208 	}
1209 	return 0;
1210 }
1211 
1212 static int
1213 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1214 {
1215 	struct iwn_ops *ops = &sc->ops;
1216 
1217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1218 	ops->load_firmware = iwn4965_load_firmware;
1219 	ops->read_eeprom = iwn4965_read_eeprom;
1220 	ops->post_alive = iwn4965_post_alive;
1221 	ops->nic_config = iwn4965_nic_config;
1222 	ops->update_sched = iwn4965_update_sched;
1223 	ops->get_temperature = iwn4965_get_temperature;
1224 	ops->get_rssi = iwn4965_get_rssi;
1225 	ops->set_txpower = iwn4965_set_txpower;
1226 	ops->init_gains = iwn4965_init_gains;
1227 	ops->set_gains = iwn4965_set_gains;
1228 	ops->add_node = iwn4965_add_node;
1229 	ops->tx_done = iwn4965_tx_done;
1230 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1231 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1232 	sc->ntxqs = IWN4965_NTXQUEUES;
1233 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1234 	sc->ndmachnls = IWN4965_NDMACHNLS;
1235 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1236 	sc->rxonsz = IWN4965_RXONSZ;
1237 	sc->schedsz = IWN4965_SCHEDSZ;
1238 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1239 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1240 	sc->fwsz = IWN4965_FWSZ;
1241 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1242 	sc->limits = &iwn4965_sensitivity_limits;
1243 	sc->fwname = "iwn4965fw";
1244 	/* Override chains masks, ROM is known to be broken. */
1245 	sc->txchainmask = IWN_ANT_AB;
1246 	sc->rxchainmask = IWN_ANT_ABC;
1247 	/* Enable normal btcoex */
1248 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1249 
1250 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1251 
1252 	return 0;
1253 }
1254 
1255 static int
1256 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1257 {
1258 	struct iwn_ops *ops = &sc->ops;
1259 
1260 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1261 
1262 	ops->load_firmware = iwn5000_load_firmware;
1263 	ops->read_eeprom = iwn5000_read_eeprom;
1264 	ops->post_alive = iwn5000_post_alive;
1265 	ops->nic_config = iwn5000_nic_config;
1266 	ops->update_sched = iwn5000_update_sched;
1267 	ops->get_temperature = iwn5000_get_temperature;
1268 	ops->get_rssi = iwn5000_get_rssi;
1269 	ops->set_txpower = iwn5000_set_txpower;
1270 	ops->init_gains = iwn5000_init_gains;
1271 	ops->set_gains = iwn5000_set_gains;
1272 	ops->add_node = iwn5000_add_node;
1273 	ops->tx_done = iwn5000_tx_done;
1274 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1275 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1276 	sc->ntxqs = IWN5000_NTXQUEUES;
1277 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1278 	sc->ndmachnls = IWN5000_NDMACHNLS;
1279 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1280 	sc->rxonsz = IWN5000_RXONSZ;
1281 	sc->schedsz = IWN5000_SCHEDSZ;
1282 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1283 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1284 	sc->fwsz = IWN5000_FWSZ;
1285 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1286 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1287 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Attach the interface to 802.11 radiotap.
1294  */
1295 static void
1296 iwn_radiotap_attach(struct iwn_softc *sc)
1297 {
1298 
1299 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1300 	ieee80211_radiotap_attach(&sc->sc_ic,
1301 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1302 		IWN_TX_RADIOTAP_PRESENT,
1303 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1304 		IWN_RX_RADIOTAP_PRESENT);
1305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1306 }
1307 
1308 static void
1309 iwn_sysctlattach(struct iwn_softc *sc)
1310 {
1311 #ifdef	IWN_DEBUG
1312 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1313 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1314 
1315 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1316 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1317 		"control debugging printfs");
1318 #endif
1319 }
1320 
1321 static struct ieee80211vap *
1322 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1323     enum ieee80211_opmode opmode, int flags,
1324     const uint8_t bssid[IEEE80211_ADDR_LEN],
1325     const uint8_t mac[IEEE80211_ADDR_LEN])
1326 {
1327 	struct iwn_softc *sc = ic->ic_softc;
1328 	struct iwn_vap *ivp;
1329 	struct ieee80211vap *vap;
1330 
1331 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1332 		return NULL;
1333 
1334 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1335 	vap = &ivp->iv_vap;
1336 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1337 	ivp->ctx = IWN_RXON_BSS_CTX;
1338 	vap->iv_bmissthreshold = 10;		/* override default */
1339 	/* Override with driver methods. */
1340 	ivp->iv_newstate = vap->iv_newstate;
1341 	vap->iv_newstate = iwn_newstate;
1342 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1343 
1344 	ieee80211_ratectl_init(vap);
1345 	/* Complete setup. */
1346 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1347 	    mac);
1348 	ic->ic_opmode = opmode;
1349 	return vap;
1350 }
1351 
1352 static void
1353 iwn_vap_delete(struct ieee80211vap *vap)
1354 {
1355 	struct iwn_vap *ivp = IWN_VAP(vap);
1356 
1357 	ieee80211_ratectl_deinit(vap);
1358 	ieee80211_vap_detach(vap);
1359 	free(ivp, M_80211_VAP);
1360 }
1361 
1362 static void
1363 iwn_xmit_queue_drain(struct iwn_softc *sc)
1364 {
1365 	struct mbuf *m;
1366 	struct ieee80211_node *ni;
1367 
1368 	IWN_LOCK_ASSERT(sc);
1369 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1370 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1371 		ieee80211_free_node(ni);
1372 		m_freem(m);
1373 	}
1374 }
1375 
1376 static int
1377 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1378 {
1379 
1380 	IWN_LOCK_ASSERT(sc);
1381 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1382 }
1383 
1384 static int
1385 iwn_detach(device_t dev)
1386 {
1387 	struct iwn_softc *sc = device_get_softc(dev);
1388 	int qid;
1389 
1390 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1391 
1392 	if (sc->sc_ic.ic_softc != NULL) {
1393 		/* Free the mbuf queue and node references */
1394 		IWN_LOCK(sc);
1395 		iwn_xmit_queue_drain(sc);
1396 		IWN_UNLOCK(sc);
1397 
1398 		ieee80211_draintask(&sc->sc_ic, &sc->sc_reinit_task);
1399 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1400 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1401 		iwn_stop(sc);
1402 
1403 		taskqueue_drain_all(sc->sc_tq);
1404 		taskqueue_free(sc->sc_tq);
1405 
1406 		callout_drain(&sc->watchdog_to);
1407 		callout_drain(&sc->calib_to);
1408 		ieee80211_ifdetach(&sc->sc_ic);
1409 	}
1410 
1411 	/* Uninstall interrupt handler. */
1412 	if (sc->irq != NULL) {
1413 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1414 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1415 		    sc->irq);
1416 		pci_release_msi(dev);
1417 	}
1418 
1419 	/* Free DMA resources. */
1420 	iwn_free_rx_ring(sc, &sc->rxq);
1421 	for (qid = 0; qid < sc->ntxqs; qid++)
1422 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1423 	iwn_free_sched(sc);
1424 	iwn_free_kw(sc);
1425 	if (sc->ict != NULL)
1426 		iwn_free_ict(sc);
1427 	iwn_free_fwmem(sc);
1428 
1429 	if (sc->mem != NULL)
1430 		bus_release_resource(dev, SYS_RES_MEMORY,
1431 		    rman_get_rid(sc->mem), sc->mem);
1432 
1433 	if (sc->sc_cdev) {
1434 		destroy_dev(sc->sc_cdev);
1435 		sc->sc_cdev = NULL;
1436 	}
1437 
1438 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1439 	IWN_LOCK_DESTROY(sc);
1440 	return 0;
1441 }
1442 
1443 static int
1444 iwn_shutdown(device_t dev)
1445 {
1446 	struct iwn_softc *sc = device_get_softc(dev);
1447 
1448 	iwn_stop(sc);
1449 	return 0;
1450 }
1451 
1452 static int
1453 iwn_suspend(device_t dev)
1454 {
1455 	struct iwn_softc *sc = device_get_softc(dev);
1456 
1457 	ieee80211_suspend_all(&sc->sc_ic);
1458 	return 0;
1459 }
1460 
1461 static int
1462 iwn_resume(device_t dev)
1463 {
1464 	struct iwn_softc *sc = device_get_softc(dev);
1465 
1466 	/* Clear device-specific "PCI retry timeout" register (41h). */
1467 	pci_write_config(dev, 0x41, 0, 1);
1468 
1469 	ieee80211_resume_all(&sc->sc_ic);
1470 	return 0;
1471 }
1472 
1473 static int
1474 iwn_nic_lock(struct iwn_softc *sc)
1475 {
1476 	int ntries;
1477 
1478 	/* Request exclusive access to NIC. */
1479 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1480 
1481 	/* Spin until we actually get the lock. */
1482 	for (ntries = 0; ntries < 1000; ntries++) {
1483 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1484 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1485 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1486 			return 0;
1487 		DELAY(10);
1488 	}
1489 	return ETIMEDOUT;
1490 }
1491 
1492 static __inline void
1493 iwn_nic_unlock(struct iwn_softc *sc)
1494 {
1495 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1496 }
1497 
1498 static __inline uint32_t
1499 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1500 {
1501 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1502 	IWN_BARRIER_READ_WRITE(sc);
1503 	return IWN_READ(sc, IWN_PRPH_RDATA);
1504 }
1505 
1506 static __inline void
1507 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1508 {
1509 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1510 	IWN_BARRIER_WRITE(sc);
1511 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1512 }
1513 
1514 static __inline void
1515 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1516 {
1517 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1518 }
1519 
1520 static __inline void
1521 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1522 {
1523 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1524 }
1525 
1526 static __inline void
1527 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1528     const uint32_t *data, int count)
1529 {
1530 	for (; count > 0; count--, data++, addr += 4)
1531 		iwn_prph_write(sc, addr, *data);
1532 }
1533 
1534 static __inline uint32_t
1535 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1536 {
1537 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1538 	IWN_BARRIER_READ_WRITE(sc);
1539 	return IWN_READ(sc, IWN_MEM_RDATA);
1540 }
1541 
1542 static __inline void
1543 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1544 {
1545 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1546 	IWN_BARRIER_WRITE(sc);
1547 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1548 }
1549 
1550 static __inline void
1551 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1552 {
1553 	uint32_t tmp;
1554 
1555 	tmp = iwn_mem_read(sc, addr & ~3);
1556 	if (addr & 3)
1557 		tmp = (tmp & 0x0000ffff) | data << 16;
1558 	else
1559 		tmp = (tmp & 0xffff0000) | data;
1560 	iwn_mem_write(sc, addr & ~3, tmp);
1561 }
1562 
1563 static __inline void
1564 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1565     int count)
1566 {
1567 	for (; count > 0; count--, addr += 4)
1568 		*data++ = iwn_mem_read(sc, addr);
1569 }
1570 
1571 static __inline void
1572 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1573     int count)
1574 {
1575 	for (; count > 0; count--, addr += 4)
1576 		iwn_mem_write(sc, addr, val);
1577 }
1578 
1579 static int
1580 iwn_eeprom_lock(struct iwn_softc *sc)
1581 {
1582 	int i, ntries;
1583 
1584 	for (i = 0; i < 100; i++) {
1585 		/* Request exclusive access to EEPROM. */
1586 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1587 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1588 
1589 		/* Spin until we actually get the lock. */
1590 		for (ntries = 0; ntries < 100; ntries++) {
1591 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1592 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1593 				return 0;
1594 			DELAY(10);
1595 		}
1596 	}
1597 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1598 	return ETIMEDOUT;
1599 }
1600 
1601 static __inline void
1602 iwn_eeprom_unlock(struct iwn_softc *sc)
1603 {
1604 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1605 }
1606 
1607 /*
1608  * Initialize access by host to One Time Programmable ROM.
1609  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1610  */
1611 static int
1612 iwn_init_otprom(struct iwn_softc *sc)
1613 {
1614 	uint16_t prev, base, next;
1615 	int count, error;
1616 
1617 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1618 
1619 	/* Wait for clock stabilization before accessing prph. */
1620 	if ((error = iwn_clock_wait(sc)) != 0)
1621 		return error;
1622 
1623 	if ((error = iwn_nic_lock(sc)) != 0)
1624 		return error;
1625 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1626 	DELAY(5);
1627 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1628 	iwn_nic_unlock(sc);
1629 
1630 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1631 	if (sc->base_params->shadow_ram_support) {
1632 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1633 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1634 	}
1635 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1636 	/* Clear ECC status. */
1637 	IWN_SETBITS(sc, IWN_OTP_GP,
1638 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1639 
1640 	/*
1641 	 * Find the block before last block (contains the EEPROM image)
1642 	 * for HW without OTP shadow RAM.
1643 	 */
1644 	if (! sc->base_params->shadow_ram_support) {
1645 		/* Switch to absolute addressing mode. */
1646 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1647 		base = prev = 0;
1648 		for (count = 0; count < sc->base_params->max_ll_items;
1649 		    count++) {
1650 			error = iwn_read_prom_data(sc, base, &next, 2);
1651 			if (error != 0)
1652 				return error;
1653 			if (next == 0)	/* End of linked-list. */
1654 				break;
1655 			prev = base;
1656 			base = le16toh(next);
1657 		}
1658 		if (count == 0 || count == sc->base_params->max_ll_items)
1659 			return EIO;
1660 		/* Skip "next" word. */
1661 		sc->prom_base = prev + 1;
1662 	}
1663 
1664 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1665 
1666 	return 0;
1667 }
1668 
1669 static int
1670 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1671 {
1672 	uint8_t *out = data;
1673 	uint32_t val, tmp;
1674 	int ntries;
1675 
1676 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1677 
1678 	addr += sc->prom_base;
1679 	for (; count > 0; count -= 2, addr++) {
1680 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1681 		for (ntries = 0; ntries < 10; ntries++) {
1682 			val = IWN_READ(sc, IWN_EEPROM);
1683 			if (val & IWN_EEPROM_READ_VALID)
1684 				break;
1685 			DELAY(5);
1686 		}
1687 		if (ntries == 10) {
1688 			device_printf(sc->sc_dev,
1689 			    "timeout reading ROM at 0x%x\n", addr);
1690 			return ETIMEDOUT;
1691 		}
1692 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1693 			/* OTPROM, check for ECC errors. */
1694 			tmp = IWN_READ(sc, IWN_OTP_GP);
1695 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1696 				device_printf(sc->sc_dev,
1697 				    "OTPROM ECC error at 0x%x\n", addr);
1698 				return EIO;
1699 			}
1700 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1701 				/* Correctable ECC error, clear bit. */
1702 				IWN_SETBITS(sc, IWN_OTP_GP,
1703 				    IWN_OTP_GP_ECC_CORR_STTS);
1704 			}
1705 		}
1706 		*out++ = val >> 16;
1707 		if (count > 1)
1708 			*out++ = val >> 24;
1709 	}
1710 
1711 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1712 
1713 	return 0;
1714 }
1715 
1716 static void
1717 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1718 {
1719 	if (error != 0)
1720 		return;
1721 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1722 	*(bus_addr_t *)arg = segs[0].ds_addr;
1723 }
1724 
1725 static int
1726 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1727     void **kvap, bus_size_t size, bus_size_t alignment)
1728 {
1729 	int error;
1730 
1731 	dma->tag = NULL;
1732 	dma->size = size;
1733 
1734 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1735 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1736 	    1, size, 0, NULL, NULL, &dma->tag);
1737 	if (error != 0)
1738 		goto fail;
1739 
1740 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1741 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1742 	if (error != 0)
1743 		goto fail;
1744 
1745 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1746 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1747 	if (error != 0)
1748 		goto fail;
1749 
1750 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1751 
1752 	if (kvap != NULL)
1753 		*kvap = dma->vaddr;
1754 
1755 	return 0;
1756 
1757 fail:	iwn_dma_contig_free(dma);
1758 	return error;
1759 }
1760 
1761 static void
1762 iwn_dma_contig_free(struct iwn_dma_info *dma)
1763 {
1764 	if (dma->vaddr != NULL) {
1765 		bus_dmamap_sync(dma->tag, dma->map,
1766 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1767 		bus_dmamap_unload(dma->tag, dma->map);
1768 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1769 		dma->vaddr = NULL;
1770 	}
1771 	if (dma->tag != NULL) {
1772 		bus_dma_tag_destroy(dma->tag);
1773 		dma->tag = NULL;
1774 	}
1775 }
1776 
1777 static int
1778 iwn_alloc_sched(struct iwn_softc *sc)
1779 {
1780 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1781 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1782 	    sc->schedsz, 1024);
1783 }
1784 
1785 static void
1786 iwn_free_sched(struct iwn_softc *sc)
1787 {
1788 	iwn_dma_contig_free(&sc->sched_dma);
1789 }
1790 
1791 static int
1792 iwn_alloc_kw(struct iwn_softc *sc)
1793 {
1794 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1795 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1796 }
1797 
1798 static void
1799 iwn_free_kw(struct iwn_softc *sc)
1800 {
1801 	iwn_dma_contig_free(&sc->kw_dma);
1802 }
1803 
1804 static int
1805 iwn_alloc_ict(struct iwn_softc *sc)
1806 {
1807 	/* ICT table must be aligned on a 4KB boundary. */
1808 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1809 	    IWN_ICT_SIZE, 4096);
1810 }
1811 
1812 static void
1813 iwn_free_ict(struct iwn_softc *sc)
1814 {
1815 	iwn_dma_contig_free(&sc->ict_dma);
1816 }
1817 
1818 static int
1819 iwn_alloc_fwmem(struct iwn_softc *sc)
1820 {
1821 	/* Must be aligned on a 16-byte boundary. */
1822 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1823 }
1824 
1825 static void
1826 iwn_free_fwmem(struct iwn_softc *sc)
1827 {
1828 	iwn_dma_contig_free(&sc->fw_dma);
1829 }
1830 
1831 static int
1832 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1833 {
1834 	bus_size_t size;
1835 	int i, error;
1836 
1837 	ring->cur = 0;
1838 
1839 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1840 
1841 	/* Allocate RX descriptors (256-byte aligned). */
1842 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1843 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1844 	    size, 256);
1845 	if (error != 0) {
1846 		device_printf(sc->sc_dev,
1847 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1848 		    __func__, error);
1849 		goto fail;
1850 	}
1851 
1852 	/* Allocate RX status area (16-byte aligned). */
1853 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1854 	    sizeof (struct iwn_rx_status), 16);
1855 	if (error != 0) {
1856 		device_printf(sc->sc_dev,
1857 		    "%s: could not allocate RX status DMA memory, error %d\n",
1858 		    __func__, error);
1859 		goto fail;
1860 	}
1861 
1862 	/* Create RX buffer DMA tag. */
1863 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1864 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1865 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1866 	if (error != 0) {
1867 		device_printf(sc->sc_dev,
1868 		    "%s: could not create RX buf DMA tag, error %d\n",
1869 		    __func__, error);
1870 		goto fail;
1871 	}
1872 
1873 	/*
1874 	 * Allocate and map RX buffers.
1875 	 */
1876 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1877 		struct iwn_rx_data *data = &ring->data[i];
1878 		bus_addr_t paddr;
1879 
1880 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1881 		if (error != 0) {
1882 			device_printf(sc->sc_dev,
1883 			    "%s: could not create RX buf DMA map, error %d\n",
1884 			    __func__, error);
1885 			goto fail;
1886 		}
1887 
1888 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1889 		    IWN_RBUF_SIZE);
1890 		if (data->m == NULL) {
1891 			device_printf(sc->sc_dev,
1892 			    "%s: could not allocate RX mbuf\n", __func__);
1893 			error = ENOBUFS;
1894 			goto fail;
1895 		}
1896 
1897 		error = bus_dmamap_load(ring->data_dmat, data->map,
1898 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1899 		    &paddr, BUS_DMA_NOWAIT);
1900 		if (error != 0 && error != EFBIG) {
1901 			device_printf(sc->sc_dev,
1902 			    "%s: can't map mbuf, error %d\n", __func__,
1903 			    error);
1904 			goto fail;
1905 		}
1906 
1907 		/* Set physical address of RX buffer (256-byte aligned). */
1908 		ring->desc[i] = htole32(paddr >> 8);
1909 	}
1910 
1911 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1912 	    BUS_DMASYNC_PREWRITE);
1913 
1914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1915 
1916 	return 0;
1917 
1918 fail:	iwn_free_rx_ring(sc, ring);
1919 
1920 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1921 
1922 	return error;
1923 }
1924 
1925 static void
1926 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1927 {
1928 	int ntries;
1929 
1930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1931 
1932 	if (iwn_nic_lock(sc) == 0) {
1933 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1934 		for (ntries = 0; ntries < 1000; ntries++) {
1935 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1936 			    IWN_FH_RX_STATUS_IDLE)
1937 				break;
1938 			DELAY(10);
1939 		}
1940 		iwn_nic_unlock(sc);
1941 	}
1942 	ring->cur = 0;
1943 	sc->last_rx_valid = 0;
1944 }
1945 
1946 static void
1947 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1948 {
1949 	int i;
1950 
1951 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1952 
1953 	iwn_dma_contig_free(&ring->desc_dma);
1954 	iwn_dma_contig_free(&ring->stat_dma);
1955 
1956 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1957 		struct iwn_rx_data *data = &ring->data[i];
1958 
1959 		if (data->m != NULL) {
1960 			bus_dmamap_sync(ring->data_dmat, data->map,
1961 			    BUS_DMASYNC_POSTREAD);
1962 			bus_dmamap_unload(ring->data_dmat, data->map);
1963 			m_freem(data->m);
1964 			data->m = NULL;
1965 		}
1966 		if (data->map != NULL)
1967 			bus_dmamap_destroy(ring->data_dmat, data->map);
1968 	}
1969 	if (ring->data_dmat != NULL) {
1970 		bus_dma_tag_destroy(ring->data_dmat);
1971 		ring->data_dmat = NULL;
1972 	}
1973 }
1974 
1975 static int
1976 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1977 {
1978 	bus_addr_t paddr;
1979 	bus_size_t size;
1980 	int i, error;
1981 
1982 	ring->qid = qid;
1983 	ring->queued = 0;
1984 	ring->cur = 0;
1985 
1986 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1987 
1988 	/* Allocate TX descriptors (256-byte aligned). */
1989 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1990 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1991 	    size, 256);
1992 	if (error != 0) {
1993 		device_printf(sc->sc_dev,
1994 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1995 		    __func__, error);
1996 		goto fail;
1997 	}
1998 
1999 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2000 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2001 	    size, 4);
2002 	if (error != 0) {
2003 		device_printf(sc->sc_dev,
2004 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2005 		    __func__, error);
2006 		goto fail;
2007 	}
2008 
2009 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2010 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2011 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2012 	if (error != 0) {
2013 		device_printf(sc->sc_dev,
2014 		    "%s: could not create TX buf DMA tag, error %d\n",
2015 		    __func__, error);
2016 		goto fail;
2017 	}
2018 
2019 	paddr = ring->cmd_dma.paddr;
2020 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2021 		struct iwn_tx_data *data = &ring->data[i];
2022 
2023 		data->cmd_paddr = paddr;
2024 		data->scratch_paddr = paddr + 12;
2025 		paddr += sizeof (struct iwn_tx_cmd);
2026 
2027 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2028 		if (error != 0) {
2029 			device_printf(sc->sc_dev,
2030 			    "%s: could not create TX buf DMA map, error %d\n",
2031 			    __func__, error);
2032 			goto fail;
2033 		}
2034 	}
2035 
2036 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2037 
2038 	return 0;
2039 
2040 fail:	iwn_free_tx_ring(sc, ring);
2041 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2042 	return error;
2043 }
2044 
2045 static void
2046 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2047 {
2048 	int i;
2049 
2050 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2051 
2052 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2053 		struct iwn_tx_data *data = &ring->data[i];
2054 
2055 		if (data->m != NULL) {
2056 			bus_dmamap_sync(ring->data_dmat, data->map,
2057 			    BUS_DMASYNC_POSTWRITE);
2058 			bus_dmamap_unload(ring->data_dmat, data->map);
2059 			m_freem(data->m);
2060 			data->m = NULL;
2061 		}
2062 		if (data->ni != NULL) {
2063 			ieee80211_free_node(data->ni);
2064 			data->ni = NULL;
2065 		}
2066 	}
2067 	/* Clear TX descriptors. */
2068 	memset(ring->desc, 0, ring->desc_dma.size);
2069 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2070 	    BUS_DMASYNC_PREWRITE);
2071 	sc->qfullmsk &= ~(1 << ring->qid);
2072 	ring->queued = 0;
2073 	ring->cur = 0;
2074 }
2075 
2076 static void
2077 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2078 {
2079 	int i;
2080 
2081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2082 
2083 	iwn_dma_contig_free(&ring->desc_dma);
2084 	iwn_dma_contig_free(&ring->cmd_dma);
2085 
2086 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2087 		struct iwn_tx_data *data = &ring->data[i];
2088 
2089 		if (data->m != NULL) {
2090 			bus_dmamap_sync(ring->data_dmat, data->map,
2091 			    BUS_DMASYNC_POSTWRITE);
2092 			bus_dmamap_unload(ring->data_dmat, data->map);
2093 			m_freem(data->m);
2094 		}
2095 		if (data->map != NULL)
2096 			bus_dmamap_destroy(ring->data_dmat, data->map);
2097 	}
2098 	if (ring->data_dmat != NULL) {
2099 		bus_dma_tag_destroy(ring->data_dmat);
2100 		ring->data_dmat = NULL;
2101 	}
2102 }
2103 
2104 static void
2105 iwn5000_ict_reset(struct iwn_softc *sc)
2106 {
2107 	/* Disable interrupts. */
2108 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2109 
2110 	/* Reset ICT table. */
2111 	memset(sc->ict, 0, IWN_ICT_SIZE);
2112 	sc->ict_cur = 0;
2113 
2114 	/* Set physical address of ICT table (4KB aligned). */
2115 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2116 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2117 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2118 
2119 	/* Enable periodic RX interrupt. */
2120 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2121 	/* Switch to ICT interrupt mode in driver. */
2122 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2123 
2124 	/* Re-enable interrupts. */
2125 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2126 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2127 }
2128 
2129 static int
2130 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2131 {
2132 	struct iwn_ops *ops = &sc->ops;
2133 	uint16_t val;
2134 	int error;
2135 
2136 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2137 
2138 	/* Check whether adapter has an EEPROM or an OTPROM. */
2139 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2140 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2141 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2142 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2143 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2144 
2145 	/* Adapter has to be powered on for EEPROM access to work. */
2146 	if ((error = iwn_apm_init(sc)) != 0) {
2147 		device_printf(sc->sc_dev,
2148 		    "%s: could not power ON adapter, error %d\n", __func__,
2149 		    error);
2150 		return error;
2151 	}
2152 
2153 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2154 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2155 		return EIO;
2156 	}
2157 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2158 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2159 		    __func__, error);
2160 		return error;
2161 	}
2162 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2163 		if ((error = iwn_init_otprom(sc)) != 0) {
2164 			device_printf(sc->sc_dev,
2165 			    "%s: could not initialize OTPROM, error %d\n",
2166 			    __func__, error);
2167 			return error;
2168 		}
2169 	}
2170 
2171 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2172 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2173 	/* Check if HT support is bonded out. */
2174 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2175 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2176 
2177 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2178 	sc->rfcfg = le16toh(val);
2179 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2180 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2181 	if (sc->txchainmask == 0)
2182 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2183 	if (sc->rxchainmask == 0)
2184 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2185 
2186 	/* Read MAC address. */
2187 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2188 
2189 	/* Read adapter-specific information from EEPROM. */
2190 	ops->read_eeprom(sc);
2191 
2192 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2193 
2194 	iwn_eeprom_unlock(sc);
2195 
2196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2197 
2198 	return 0;
2199 }
2200 
2201 static void
2202 iwn4965_read_eeprom(struct iwn_softc *sc)
2203 {
2204 	uint32_t addr;
2205 	uint16_t val;
2206 	int i;
2207 
2208 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2209 
2210 	/* Read regulatory domain (4 ASCII characters). */
2211 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2212 
2213 	/* Read the list of authorized channels (20MHz ones only). */
2214 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2215 		addr = iwn4965_regulatory_bands[i];
2216 		iwn_read_eeprom_channels(sc, i, addr);
2217 	}
2218 
2219 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2220 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2221 	sc->maxpwr2GHz = val & 0xff;
2222 	sc->maxpwr5GHz = val >> 8;
2223 	/* Check that EEPROM values are within valid range. */
2224 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2225 		sc->maxpwr5GHz = 38;
2226 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2227 		sc->maxpwr2GHz = 38;
2228 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2229 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2230 
2231 	/* Read samples for each TX power group. */
2232 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2233 	    sizeof sc->bands);
2234 
2235 	/* Read voltage at which samples were taken. */
2236 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2237 	sc->eeprom_voltage = (int16_t)le16toh(val);
2238 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2239 	    sc->eeprom_voltage);
2240 
2241 #ifdef IWN_DEBUG
2242 	/* Print samples. */
2243 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2244 		for (i = 0; i < IWN_NBANDS - 1; i++)
2245 			iwn4965_print_power_group(sc, i);
2246 	}
2247 #endif
2248 
2249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2250 }
2251 
2252 #ifdef IWN_DEBUG
2253 static void
2254 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2255 {
2256 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2257 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2258 	int j, c;
2259 
2260 	printf("===band %d===\n", i);
2261 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2262 	printf("chan1 num=%d\n", chans[0].num);
2263 	for (c = 0; c < 2; c++) {
2264 		for (j = 0; j < IWN_NSAMPLES; j++) {
2265 			printf("chain %d, sample %d: temp=%d gain=%d "
2266 			    "power=%d pa_det=%d\n", c, j,
2267 			    chans[0].samples[c][j].temp,
2268 			    chans[0].samples[c][j].gain,
2269 			    chans[0].samples[c][j].power,
2270 			    chans[0].samples[c][j].pa_det);
2271 		}
2272 	}
2273 	printf("chan2 num=%d\n", chans[1].num);
2274 	for (c = 0; c < 2; c++) {
2275 		for (j = 0; j < IWN_NSAMPLES; j++) {
2276 			printf("chain %d, sample %d: temp=%d gain=%d "
2277 			    "power=%d pa_det=%d\n", c, j,
2278 			    chans[1].samples[c][j].temp,
2279 			    chans[1].samples[c][j].gain,
2280 			    chans[1].samples[c][j].power,
2281 			    chans[1].samples[c][j].pa_det);
2282 		}
2283 	}
2284 }
2285 #endif
2286 
2287 static void
2288 iwn5000_read_eeprom(struct iwn_softc *sc)
2289 {
2290 	struct iwn5000_eeprom_calib_hdr hdr;
2291 	int32_t volt;
2292 	uint32_t base, addr;
2293 	uint16_t val;
2294 	int i;
2295 
2296 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2297 
2298 	/* Read regulatory domain (4 ASCII characters). */
2299 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2300 	base = le16toh(val);
2301 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2302 	    sc->eeprom_domain, 4);
2303 
2304 	/* Read the list of authorized channels (20MHz ones only). */
2305 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2306 		addr =  base + sc->base_params->regulatory_bands[i];
2307 		iwn_read_eeprom_channels(sc, i, addr);
2308 	}
2309 
2310 	/* Read enhanced TX power information for 6000 Series. */
2311 	if (sc->base_params->enhanced_TX_power)
2312 		iwn_read_eeprom_enhinfo(sc);
2313 
2314 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2315 	base = le16toh(val);
2316 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2317 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2318 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2319 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2320 	sc->calib_ver = hdr.version;
2321 
2322 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2323 		sc->eeprom_voltage = le16toh(hdr.volt);
2324 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2325 		sc->eeprom_temp_high=le16toh(val);
2326 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2327 		sc->eeprom_temp = le16toh(val);
2328 	}
2329 
2330 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2331 		/* Compute temperature offset. */
2332 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2333 		sc->eeprom_temp = le16toh(val);
2334 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2335 		volt = le16toh(val);
2336 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2337 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2338 		    sc->eeprom_temp, volt, sc->temp_off);
2339 	} else {
2340 		/* Read crystal calibration. */
2341 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2342 		    &sc->eeprom_crystal, sizeof (uint32_t));
2343 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2344 		    le32toh(sc->eeprom_crystal));
2345 	}
2346 
2347 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2348 
2349 }
2350 
2351 /*
2352  * Translate EEPROM flags to net80211.
2353  */
2354 static uint32_t
2355 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2356 {
2357 	uint32_t nflags;
2358 
2359 	nflags = 0;
2360 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2361 		nflags |= IEEE80211_CHAN_PASSIVE;
2362 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2363 		nflags |= IEEE80211_CHAN_NOADHOC;
2364 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2365 		nflags |= IEEE80211_CHAN_DFS;
2366 		/* XXX apparently IBSS may still be marked */
2367 		nflags |= IEEE80211_CHAN_NOADHOC;
2368 	}
2369 
2370 	return nflags;
2371 }
2372 
2373 static void
2374 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2375 {
2376 	struct ieee80211com *ic = &sc->sc_ic;
2377 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2378 	const struct iwn_chan_band *band = &iwn_bands[n];
2379 	struct ieee80211_channel *c;
2380 	uint8_t chan;
2381 	int i, nflags;
2382 
2383 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2384 
2385 	for (i = 0; i < band->nchan; i++) {
2386 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2387 			DPRINTF(sc, IWN_DEBUG_RESET,
2388 			    "skip chan %d flags 0x%x maxpwr %d\n",
2389 			    band->chan[i], channels[i].flags,
2390 			    channels[i].maxpwr);
2391 			continue;
2392 		}
2393 		chan = band->chan[i];
2394 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2395 
2396 		c = &ic->ic_channels[ic->ic_nchans++];
2397 		c->ic_ieee = chan;
2398 		c->ic_maxregpower = channels[i].maxpwr;
2399 		c->ic_maxpower = 2*c->ic_maxregpower;
2400 
2401 		if (n == 0) {	/* 2GHz band */
2402 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2403 			/* G =>'s B is supported */
2404 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2405 			c = &ic->ic_channels[ic->ic_nchans++];
2406 			c[0] = c[-1];
2407 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2408 		} else {	/* 5GHz band */
2409 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2410 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2411 		}
2412 
2413 		/* Save maximum allowed TX power for this channel. */
2414 		sc->maxpwr[chan] = channels[i].maxpwr;
2415 
2416 		DPRINTF(sc, IWN_DEBUG_RESET,
2417 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2418 		    channels[i].flags, channels[i].maxpwr);
2419 
2420 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2421 			/* add HT20, HT40 added separately */
2422 			c = &ic->ic_channels[ic->ic_nchans++];
2423 			c[0] = c[-1];
2424 			c->ic_flags |= IEEE80211_CHAN_HT20;
2425 		}
2426 	}
2427 
2428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2429 
2430 }
2431 
2432 static void
2433 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2434 {
2435 	struct ieee80211com *ic = &sc->sc_ic;
2436 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2437 	const struct iwn_chan_band *band = &iwn_bands[n];
2438 	struct ieee80211_channel *c, *cent, *extc;
2439 	uint8_t chan;
2440 	int i, nflags;
2441 
2442 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2443 
2444 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2445 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2446 		return;
2447 	}
2448 
2449 	for (i = 0; i < band->nchan; i++) {
2450 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2451 			DPRINTF(sc, IWN_DEBUG_RESET,
2452 			    "skip chan %d flags 0x%x maxpwr %d\n",
2453 			    band->chan[i], channels[i].flags,
2454 			    channels[i].maxpwr);
2455 			continue;
2456 		}
2457 		chan = band->chan[i];
2458 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2459 
2460 		/*
2461 		 * Each entry defines an HT40 channel pair; find the
2462 		 * center channel, then the extension channel above.
2463 		 */
2464 		cent = ieee80211_find_channel_byieee(ic, chan,
2465 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2466 		if (cent == NULL) {	/* XXX shouldn't happen */
2467 			device_printf(sc->sc_dev,
2468 			    "%s: no entry for channel %d\n", __func__, chan);
2469 			continue;
2470 		}
2471 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2472 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2473 		if (extc == NULL) {
2474 			DPRINTF(sc, IWN_DEBUG_RESET,
2475 			    "%s: skip chan %d, extension channel not found\n",
2476 			    __func__, chan);
2477 			continue;
2478 		}
2479 
2480 		DPRINTF(sc, IWN_DEBUG_RESET,
2481 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2482 		    chan, channels[i].flags, channels[i].maxpwr);
2483 
2484 		c = &ic->ic_channels[ic->ic_nchans++];
2485 		c[0] = cent[0];
2486 		c->ic_extieee = extc->ic_ieee;
2487 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2488 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2489 		c = &ic->ic_channels[ic->ic_nchans++];
2490 		c[0] = extc[0];
2491 		c->ic_extieee = cent->ic_ieee;
2492 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2493 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2494 	}
2495 
2496 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2497 
2498 }
2499 
2500 static void
2501 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2502 {
2503 	struct ieee80211com *ic = &sc->sc_ic;
2504 
2505 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2506 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2507 
2508 	if (n < 5)
2509 		iwn_read_eeprom_band(sc, n);
2510 	else
2511 		iwn_read_eeprom_ht40(sc, n);
2512 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2513 }
2514 
2515 static struct iwn_eeprom_chan *
2516 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2517 {
2518 	int band, chan, i, j;
2519 
2520 	if (IEEE80211_IS_CHAN_HT40(c)) {
2521 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2522 		if (IEEE80211_IS_CHAN_HT40D(c))
2523 			chan = c->ic_extieee;
2524 		else
2525 			chan = c->ic_ieee;
2526 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2527 			if (iwn_bands[band].chan[i] == chan)
2528 				return &sc->eeprom_channels[band][i];
2529 		}
2530 	} else {
2531 		for (j = 0; j < 5; j++) {
2532 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2533 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2534 					return &sc->eeprom_channels[j][i];
2535 			}
2536 		}
2537 	}
2538 	return NULL;
2539 }
2540 
2541 /*
2542  * Enforce flags read from EEPROM.
2543  */
2544 static int
2545 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2546     int nchan, struct ieee80211_channel chans[])
2547 {
2548 	struct iwn_softc *sc = ic->ic_softc;
2549 	int i;
2550 
2551 	for (i = 0; i < nchan; i++) {
2552 		struct ieee80211_channel *c = &chans[i];
2553 		struct iwn_eeprom_chan *channel;
2554 
2555 		channel = iwn_find_eeprom_channel(sc, c);
2556 		if (channel == NULL) {
2557 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2558 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2559 			return EINVAL;
2560 		}
2561 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static void
2568 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2569 {
2570 	struct iwn_eeprom_enhinfo enhinfo[35];
2571 	struct ieee80211com *ic = &sc->sc_ic;
2572 	struct ieee80211_channel *c;
2573 	uint16_t val, base;
2574 	int8_t maxpwr;
2575 	uint8_t flags;
2576 	int i, j;
2577 
2578 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2579 
2580 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2581 	base = le16toh(val);
2582 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2583 	    enhinfo, sizeof enhinfo);
2584 
2585 	for (i = 0; i < nitems(enhinfo); i++) {
2586 		flags = enhinfo[i].flags;
2587 		if (!(flags & IWN_ENHINFO_VALID))
2588 			continue;	/* Skip invalid entries. */
2589 
2590 		maxpwr = 0;
2591 		if (sc->txchainmask & IWN_ANT_A)
2592 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2593 		if (sc->txchainmask & IWN_ANT_B)
2594 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2595 		if (sc->txchainmask & IWN_ANT_C)
2596 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2597 		if (sc->ntxchains == 2)
2598 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2599 		else if (sc->ntxchains == 3)
2600 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2601 
2602 		for (j = 0; j < ic->ic_nchans; j++) {
2603 			c = &ic->ic_channels[j];
2604 			if ((flags & IWN_ENHINFO_5GHZ)) {
2605 				if (!IEEE80211_IS_CHAN_A(c))
2606 					continue;
2607 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2608 				if (!IEEE80211_IS_CHAN_G(c))
2609 					continue;
2610 			} else if (!IEEE80211_IS_CHAN_B(c))
2611 				continue;
2612 			if ((flags & IWN_ENHINFO_HT40)) {
2613 				if (!IEEE80211_IS_CHAN_HT40(c))
2614 					continue;
2615 			} else {
2616 				if (IEEE80211_IS_CHAN_HT40(c))
2617 					continue;
2618 			}
2619 			if (enhinfo[i].chan != 0 &&
2620 			    enhinfo[i].chan != c->ic_ieee)
2621 				continue;
2622 
2623 			DPRINTF(sc, IWN_DEBUG_RESET,
2624 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2625 			    c->ic_flags, maxpwr / 2);
2626 			c->ic_maxregpower = maxpwr / 2;
2627 			c->ic_maxpower = maxpwr;
2628 		}
2629 	}
2630 
2631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2632 
2633 }
2634 
2635 static struct ieee80211_node *
2636 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2637 {
2638 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2639 }
2640 
2641 static __inline int
2642 rate2plcp(int rate)
2643 {
2644 	switch (rate & 0xff) {
2645 	case 12:	return 0xd;
2646 	case 18:	return 0xf;
2647 	case 24:	return 0x5;
2648 	case 36:	return 0x7;
2649 	case 48:	return 0x9;
2650 	case 72:	return 0xb;
2651 	case 96:	return 0x1;
2652 	case 108:	return 0x3;
2653 	case 2:		return 10;
2654 	case 4:		return 20;
2655 	case 11:	return 55;
2656 	case 22:	return 110;
2657 	}
2658 	return 0;
2659 }
2660 
2661 static int
2662 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2663 {
2664 
2665 	return IWN_LSB(sc->txchainmask);
2666 }
2667 
2668 static int
2669 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2670 {
2671 	int tx;
2672 
2673 	/*
2674 	 * The '2 stream' setup is a bit .. odd.
2675 	 *
2676 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2677 	 * the firmware panics (eg Intel 5100.)
2678 	 *
2679 	 * For NICs that support two antennas, we use ANT_AB.
2680 	 *
2681 	 * For NICs that support three antennas, we use the two that
2682 	 * wasn't the default one.
2683 	 *
2684 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2685 	 * this to only one antenna.
2686 	 */
2687 
2688 	/* Default - transmit on the other antennas */
2689 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2690 
2691 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2692 	if (tx == 0)
2693 		tx = IWN_ANT_AB;
2694 
2695 	/*
2696 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2697 	 * the default chainmask
2698 	 */
2699 	else if (sc->ntxchains == 2)
2700 		tx = sc->txchainmask;
2701 
2702 	return (tx);
2703 }
2704 
2705 
2706 
2707 /*
2708  * Calculate the required PLCP value from the given rate,
2709  * to the given node.
2710  *
2711  * This will take the node configuration (eg 11n, rate table
2712  * setup, etc) into consideration.
2713  */
2714 static uint32_t
2715 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2716     uint8_t rate)
2717 {
2718 	struct ieee80211com *ic = ni->ni_ic;
2719 	uint32_t plcp = 0;
2720 	int ridx;
2721 
2722 	/*
2723 	 * If it's an MCS rate, let's set the plcp correctly
2724 	 * and set the relevant flags based on the node config.
2725 	 */
2726 	if (rate & IEEE80211_RATE_MCS) {
2727 		/*
2728 		 * Set the initial PLCP value to be between 0->31 for
2729 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2730 		 * flag.
2731 		 */
2732 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2733 
2734 		/*
2735 		 * XXX the following should only occur if both
2736 		 * the local configuration _and_ the remote node
2737 		 * advertise these capabilities.  Thus this code
2738 		 * may need fixing!
2739 		 */
2740 
2741 		/*
2742 		 * Set the channel width and guard interval.
2743 		 */
2744 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2745 			plcp |= IWN_RFLAG_HT40;
2746 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2747 				plcp |= IWN_RFLAG_SGI;
2748 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2749 			plcp |= IWN_RFLAG_SGI;
2750 		}
2751 
2752 		/*
2753 		 * Ensure the selected rate matches the link quality
2754 		 * table entries being used.
2755 		 */
2756 		if (rate > 0x8f)
2757 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2758 		else if (rate > 0x87)
2759 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2760 		else
2761 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2762 	} else {
2763 		/*
2764 		 * Set the initial PLCP - fine for both
2765 		 * OFDM and CCK rates.
2766 		 */
2767 		plcp = rate2plcp(rate);
2768 
2769 		/* Set CCK flag if it's CCK */
2770 
2771 		/* XXX It would be nice to have a method
2772 		 * to map the ridx -> phy table entry
2773 		 * so we could just query that, rather than
2774 		 * this hack to check against IWN_RIDX_OFDM6.
2775 		 */
2776 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2777 		    rate & IEEE80211_RATE_VAL);
2778 		if (ridx < IWN_RIDX_OFDM6 &&
2779 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2780 			plcp |= IWN_RFLAG_CCK;
2781 
2782 		/* Set antenna configuration */
2783 		/* XXX TODO: is this the right antenna to use for legacy? */
2784 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2785 	}
2786 
2787 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2788 	    __func__,
2789 	    rate,
2790 	    plcp);
2791 
2792 	return (htole32(plcp));
2793 }
2794 
2795 static void
2796 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2797 {
2798 	/* Doesn't do anything at the moment */
2799 }
2800 
2801 static int
2802 iwn_media_change(struct ifnet *ifp)
2803 {
2804 	int error;
2805 
2806 	error = ieee80211_media_change(ifp);
2807 	/* NB: only the fixed rate can change and that doesn't need a reset */
2808 	return (error == ENETRESET ? 0 : error);
2809 }
2810 
2811 static int
2812 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2813 {
2814 	struct iwn_vap *ivp = IWN_VAP(vap);
2815 	struct ieee80211com *ic = vap->iv_ic;
2816 	struct iwn_softc *sc = ic->ic_softc;
2817 	int error = 0;
2818 
2819 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2820 
2821 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2822 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2823 
2824 	IEEE80211_UNLOCK(ic);
2825 	IWN_LOCK(sc);
2826 	callout_stop(&sc->calib_to);
2827 
2828 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2829 
2830 	switch (nstate) {
2831 	case IEEE80211_S_ASSOC:
2832 		if (vap->iv_state != IEEE80211_S_RUN)
2833 			break;
2834 		/* FALLTHROUGH */
2835 	case IEEE80211_S_AUTH:
2836 		if (vap->iv_state == IEEE80211_S_AUTH)
2837 			break;
2838 
2839 		/*
2840 		 * !AUTH -> AUTH transition requires state reset to handle
2841 		 * reassociations correctly.
2842 		 */
2843 		sc->rxon->associd = 0;
2844 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2845 		sc->calib.state = IWN_CALIB_STATE_INIT;
2846 
2847 		/* Wait until we hear a beacon before we transmit */
2848 		sc->sc_beacon_wait = 1;
2849 
2850 		if ((error = iwn_auth(sc, vap)) != 0) {
2851 			device_printf(sc->sc_dev,
2852 			    "%s: could not move to auth state\n", __func__);
2853 		}
2854 		break;
2855 
2856 	case IEEE80211_S_RUN:
2857 		/*
2858 		 * RUN -> RUN transition; Just restart the timers.
2859 		 */
2860 		if (vap->iv_state == IEEE80211_S_RUN) {
2861 			sc->calib_cnt = 0;
2862 			break;
2863 		}
2864 
2865 		/* Wait until we hear a beacon before we transmit */
2866 		sc->sc_beacon_wait = 1;
2867 
2868 		/*
2869 		 * !RUN -> RUN requires setting the association id
2870 		 * which is done with a firmware cmd.  We also defer
2871 		 * starting the timers until that work is done.
2872 		 */
2873 		if ((error = iwn_run(sc, vap)) != 0) {
2874 			device_printf(sc->sc_dev,
2875 			    "%s: could not move to run state\n", __func__);
2876 		}
2877 		break;
2878 
2879 	case IEEE80211_S_INIT:
2880 		sc->calib.state = IWN_CALIB_STATE_INIT;
2881 		/*
2882 		 * Purge the xmit queue so we don't have old frames
2883 		 * during a new association attempt.
2884 		 */
2885 		sc->sc_beacon_wait = 0;
2886 		iwn_xmit_queue_drain(sc);
2887 		break;
2888 
2889 	default:
2890 		break;
2891 	}
2892 	IWN_UNLOCK(sc);
2893 	IEEE80211_LOCK(ic);
2894 	if (error != 0){
2895 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2896 		return error;
2897 	}
2898 
2899 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2900 
2901 	return ivp->iv_newstate(vap, nstate, arg);
2902 }
2903 
2904 static void
2905 iwn_calib_timeout(void *arg)
2906 {
2907 	struct iwn_softc *sc = arg;
2908 
2909 	IWN_LOCK_ASSERT(sc);
2910 
2911 	/* Force automatic TX power calibration every 60 secs. */
2912 	if (++sc->calib_cnt >= 120) {
2913 		uint32_t flags = 0;
2914 
2915 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2916 		    "sending request for statistics");
2917 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2918 		    sizeof flags, 1);
2919 		sc->calib_cnt = 0;
2920 	}
2921 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2922 	    sc);
2923 }
2924 
2925 /*
2926  * Process an RX_PHY firmware notification.  This is usually immediately
2927  * followed by an MPDU_RX_DONE notification.
2928  */
2929 static void
2930 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2931     struct iwn_rx_data *data)
2932 {
2933 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2934 
2935 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2936 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2937 
2938 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2939 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2940 	sc->last_rx_valid = 1;
2941 }
2942 
2943 /*
2944  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2945  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2946  */
2947 static void
2948 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2949     struct iwn_rx_data *data)
2950 {
2951 	struct iwn_ops *ops = &sc->ops;
2952 	struct ieee80211com *ic = &sc->sc_ic;
2953 	struct iwn_rx_ring *ring = &sc->rxq;
2954 	struct ieee80211_frame *wh;
2955 	struct ieee80211_node *ni;
2956 	struct mbuf *m, *m1;
2957 	struct iwn_rx_stat *stat;
2958 	caddr_t head;
2959 	bus_addr_t paddr;
2960 	uint32_t flags;
2961 	int error, len, rssi, nf;
2962 
2963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2964 
2965 	if (desc->type == IWN_MPDU_RX_DONE) {
2966 		/* Check for prior RX_PHY notification. */
2967 		if (!sc->last_rx_valid) {
2968 			DPRINTF(sc, IWN_DEBUG_ANY,
2969 			    "%s: missing RX_PHY\n", __func__);
2970 			return;
2971 		}
2972 		stat = &sc->last_rx_stat;
2973 	} else
2974 		stat = (struct iwn_rx_stat *)(desc + 1);
2975 
2976 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2977 
2978 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2979 		device_printf(sc->sc_dev,
2980 		    "%s: invalid RX statistic header, len %d\n", __func__,
2981 		    stat->cfg_phy_len);
2982 		return;
2983 	}
2984 	if (desc->type == IWN_MPDU_RX_DONE) {
2985 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2986 		head = (caddr_t)(mpdu + 1);
2987 		len = le16toh(mpdu->len);
2988 	} else {
2989 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2990 		len = le16toh(stat->len);
2991 	}
2992 
2993 	flags = le32toh(*(uint32_t *)(head + len));
2994 
2995 	/* Discard frames with a bad FCS early. */
2996 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2997 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2998 		    __func__, flags);
2999 		counter_u64_add(ic->ic_ierrors, 1);
3000 		return;
3001 	}
3002 	/* Discard frames that are too short. */
3003 	if (len < sizeof (struct ieee80211_frame_ack)) {
3004 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3005 		    __func__, len);
3006 		counter_u64_add(ic->ic_ierrors, 1);
3007 		return;
3008 	}
3009 
3010 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3011 	if (m1 == NULL) {
3012 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3013 		    __func__);
3014 		counter_u64_add(ic->ic_ierrors, 1);
3015 		return;
3016 	}
3017 	bus_dmamap_unload(ring->data_dmat, data->map);
3018 
3019 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3020 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3021 	if (error != 0 && error != EFBIG) {
3022 		device_printf(sc->sc_dev,
3023 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3024 		m_freem(m1);
3025 
3026 		/* Try to reload the old mbuf. */
3027 		error = bus_dmamap_load(ring->data_dmat, data->map,
3028 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3029 		    &paddr, BUS_DMA_NOWAIT);
3030 		if (error != 0 && error != EFBIG) {
3031 			panic("%s: could not load old RX mbuf", __func__);
3032 		}
3033 		/* Physical address may have changed. */
3034 		ring->desc[ring->cur] = htole32(paddr >> 8);
3035 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3036 		    BUS_DMASYNC_PREWRITE);
3037 		counter_u64_add(ic->ic_ierrors, 1);
3038 		return;
3039 	}
3040 
3041 	m = data->m;
3042 	data->m = m1;
3043 	/* Update RX descriptor. */
3044 	ring->desc[ring->cur] = htole32(paddr >> 8);
3045 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3046 	    BUS_DMASYNC_PREWRITE);
3047 
3048 	/* Finalize mbuf. */
3049 	m->m_data = head;
3050 	m->m_pkthdr.len = m->m_len = len;
3051 
3052 	/* Grab a reference to the source node. */
3053 	wh = mtod(m, struct ieee80211_frame *);
3054 	if (len >= sizeof(struct ieee80211_frame_min))
3055 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3056 	else
3057 		ni = NULL;
3058 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3059 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3060 
3061 	rssi = ops->get_rssi(sc, stat);
3062 
3063 	if (ieee80211_radiotap_active(ic)) {
3064 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3065 
3066 		tap->wr_flags = 0;
3067 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3068 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3069 		tap->wr_dbm_antsignal = (int8_t)rssi;
3070 		tap->wr_dbm_antnoise = (int8_t)nf;
3071 		tap->wr_tsft = stat->tstamp;
3072 		switch (stat->rate) {
3073 		/* CCK rates. */
3074 		case  10: tap->wr_rate =   2; break;
3075 		case  20: tap->wr_rate =   4; break;
3076 		case  55: tap->wr_rate =  11; break;
3077 		case 110: tap->wr_rate =  22; break;
3078 		/* OFDM rates. */
3079 		case 0xd: tap->wr_rate =  12; break;
3080 		case 0xf: tap->wr_rate =  18; break;
3081 		case 0x5: tap->wr_rate =  24; break;
3082 		case 0x7: tap->wr_rate =  36; break;
3083 		case 0x9: tap->wr_rate =  48; break;
3084 		case 0xb: tap->wr_rate =  72; break;
3085 		case 0x1: tap->wr_rate =  96; break;
3086 		case 0x3: tap->wr_rate = 108; break;
3087 		/* Unknown rate: should not happen. */
3088 		default:  tap->wr_rate =   0;
3089 		}
3090 	}
3091 
3092 	/*
3093 	 * If it's a beacon and we're waiting, then do the
3094 	 * wakeup.  This should unblock raw_xmit/start.
3095 	 */
3096 	if (sc->sc_beacon_wait) {
3097 		uint8_t type, subtype;
3098 		/* NB: Re-assign wh */
3099 		wh = mtod(m, struct ieee80211_frame *);
3100 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3101 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3102 		/*
3103 		 * This assumes at this point we've received our own
3104 		 * beacon.
3105 		 */
3106 		DPRINTF(sc, IWN_DEBUG_TRACE,
3107 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3108 		    __func__, type, subtype);
3109 		if (type == IEEE80211_FC0_TYPE_MGT &&
3110 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3111 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3112 			    "%s: waking things up\n", __func__);
3113 			/* queue taskqueue to transmit! */
3114 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3115 		}
3116 	}
3117 
3118 	IWN_UNLOCK(sc);
3119 
3120 	/* Send the frame to the 802.11 layer. */
3121 	if (ni != NULL) {
3122 		if (ni->ni_flags & IEEE80211_NODE_HT)
3123 			m->m_flags |= M_AMPDU;
3124 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3125 		/* Node is no longer needed. */
3126 		ieee80211_free_node(ni);
3127 	} else
3128 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3129 
3130 	IWN_LOCK(sc);
3131 
3132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3133 
3134 }
3135 
3136 /* Process an incoming Compressed BlockAck. */
3137 static void
3138 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3139     struct iwn_rx_data *data)
3140 {
3141 	struct iwn_ops *ops = &sc->ops;
3142 	struct iwn_node *wn;
3143 	struct ieee80211_node *ni;
3144 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3145 	struct iwn_tx_ring *txq;
3146 	struct iwn_tx_data *txdata;
3147 	struct ieee80211_tx_ampdu *tap;
3148 	struct mbuf *m;
3149 	uint64_t bitmap;
3150 	uint16_t ssn;
3151 	uint8_t tid;
3152 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3153 	int tx_ok = 0, tx_err = 0;
3154 
3155 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3156 
3157 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3158 
3159 	qid = le16toh(ba->qid);
3160 	txq = &sc->txq[ba->qid];
3161 	tap = sc->qid2tap[ba->qid];
3162 	tid = tap->txa_tid;
3163 	wn = (void *)tap->txa_ni;
3164 
3165 	res = NULL;
3166 	ssn = 0;
3167 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3168 		res = tap->txa_private;
3169 		ssn = tap->txa_start & 0xfff;
3170 	}
3171 
3172 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3173 		txdata = &txq->data[txq->read];
3174 
3175 		/* Unmap and free mbuf. */
3176 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3177 		    BUS_DMASYNC_POSTWRITE);
3178 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3179 		m = txdata->m, txdata->m = NULL;
3180 		ni = txdata->ni, txdata->ni = NULL;
3181 
3182 		KASSERT(ni != NULL, ("no node"));
3183 		KASSERT(m != NULL, ("no mbuf"));
3184 
3185 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3186 		ieee80211_tx_complete(ni, m, 1);
3187 
3188 		txq->queued--;
3189 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3190 	}
3191 
3192 	if (txq->queued == 0 && res != NULL) {
3193 		iwn_nic_lock(sc);
3194 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3195 		iwn_nic_unlock(sc);
3196 		sc->qid2tap[qid] = NULL;
3197 		free(res, M_DEVBUF);
3198 		return;
3199 	}
3200 
3201 	if (wn->agg[tid].bitmap == 0)
3202 		return;
3203 
3204 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3205 	if (shift < 0)
3206 		shift += 0x100;
3207 
3208 	if (wn->agg[tid].nframes > (64 - shift))
3209 		return;
3210 
3211 	/*
3212 	 * Walk the bitmap and calculate how many successful and failed
3213 	 * attempts are made.
3214 	 *
3215 	 * Yes, the rate control code doesn't know these are A-MPDU
3216 	 * subframes and that it's okay to fail some of these.
3217 	 */
3218 	ni = tap->txa_ni;
3219 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3220 	for (i = 0; bitmap; i++) {
3221 		if ((bitmap & 1) == 0) {
3222 			tx_err ++;
3223 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3224 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3225 		} else {
3226 			tx_ok ++;
3227 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3228 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3229 		}
3230 		bitmap >>= 1;
3231 	}
3232 
3233 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3234 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3235 
3236 }
3237 
3238 /*
3239  * Process a CALIBRATION_RESULT notification sent by the initialization
3240  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3241  */
3242 static void
3243 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3244     struct iwn_rx_data *data)
3245 {
3246 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3247 	int len, idx = -1;
3248 
3249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3250 
3251 	/* Runtime firmware should not send such a notification. */
3252 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3253 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3254 	    __func__);
3255 		return;
3256 	}
3257 	len = (le32toh(desc->len) & 0x3fff) - 4;
3258 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3259 
3260 	switch (calib->code) {
3261 	case IWN5000_PHY_CALIB_DC:
3262 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3263 			idx = 0;
3264 		break;
3265 	case IWN5000_PHY_CALIB_LO:
3266 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3267 			idx = 1;
3268 		break;
3269 	case IWN5000_PHY_CALIB_TX_IQ:
3270 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3271 			idx = 2;
3272 		break;
3273 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3274 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3275 			idx = 3;
3276 		break;
3277 	case IWN5000_PHY_CALIB_BASE_BAND:
3278 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3279 			idx = 4;
3280 		break;
3281 	}
3282 	if (idx == -1)	/* Ignore other results. */
3283 		return;
3284 
3285 	/* Save calibration result. */
3286 	if (sc->calibcmd[idx].buf != NULL)
3287 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3288 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3289 	if (sc->calibcmd[idx].buf == NULL) {
3290 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3291 		    "not enough memory for calibration result %d\n",
3292 		    calib->code);
3293 		return;
3294 	}
3295 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3296 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3297 	sc->calibcmd[idx].len = len;
3298 	memcpy(sc->calibcmd[idx].buf, calib, len);
3299 }
3300 
3301 static void
3302 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3303     struct iwn_stats *stats, int len)
3304 {
3305 	struct iwn_stats_bt *stats_bt;
3306 	struct iwn_stats *lstats;
3307 
3308 	/*
3309 	 * First - check whether the length is the bluetooth or normal.
3310 	 *
3311 	 * If it's normal - just copy it and bump out.
3312 	 * Otherwise we have to convert things.
3313 	 */
3314 
3315 	if (len == sizeof(struct iwn_stats) + 4) {
3316 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3317 		sc->last_stat_valid = 1;
3318 		return;
3319 	}
3320 
3321 	/*
3322 	 * If it's not the bluetooth size - log, then just copy.
3323 	 */
3324 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3325 		DPRINTF(sc, IWN_DEBUG_STATS,
3326 		    "%s: size of rx statistics (%d) not an expected size!\n",
3327 		    __func__,
3328 		    len);
3329 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3330 		sc->last_stat_valid = 1;
3331 		return;
3332 	}
3333 
3334 	/*
3335 	 * Ok. Time to copy.
3336 	 */
3337 	stats_bt = (struct iwn_stats_bt *) stats;
3338 	lstats = &sc->last_stat;
3339 
3340 	/* flags */
3341 	lstats->flags = stats_bt->flags;
3342 	/* rx_bt */
3343 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3344 	    sizeof(struct iwn_rx_phy_stats));
3345 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3346 	    sizeof(struct iwn_rx_phy_stats));
3347 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3348 	    sizeof(struct iwn_rx_general_stats));
3349 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3350 	    sizeof(struct iwn_rx_ht_phy_stats));
3351 	/* tx */
3352 	memcpy(&lstats->tx, &stats_bt->tx,
3353 	    sizeof(struct iwn_tx_stats));
3354 	/* general */
3355 	memcpy(&lstats->general, &stats_bt->general,
3356 	    sizeof(struct iwn_general_stats));
3357 
3358 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3359 	sc->last_stat_valid = 1;
3360 }
3361 
3362 /*
3363  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3364  * The latter is sent by the firmware after each received beacon.
3365  */
3366 static void
3367 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3368     struct iwn_rx_data *data)
3369 {
3370 	struct iwn_ops *ops = &sc->ops;
3371 	struct ieee80211com *ic = &sc->sc_ic;
3372 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3373 	struct iwn_calib_state *calib = &sc->calib;
3374 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3375 	struct iwn_stats *lstats;
3376 	int temp;
3377 
3378 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3379 
3380 	/* Ignore statistics received during a scan. */
3381 	if (vap->iv_state != IEEE80211_S_RUN ||
3382 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3383 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3384 	    __func__);
3385 		return;
3386 	}
3387 
3388 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3389 
3390 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3391 	    "%s: received statistics, cmd %d, len %d\n",
3392 	    __func__, desc->type, le16toh(desc->len));
3393 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3394 
3395 	/*
3396 	 * Collect/track general statistics for reporting.
3397 	 *
3398 	 * This takes care of ensuring that the bluetooth sized message
3399 	 * will be correctly converted to the legacy sized message.
3400 	 */
3401 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3402 
3403 	/*
3404 	 * And now, let's take a reference of it to use!
3405 	 */
3406 	lstats = &sc->last_stat;
3407 
3408 	/* Test if temperature has changed. */
3409 	if (lstats->general.temp != sc->rawtemp) {
3410 		/* Convert "raw" temperature to degC. */
3411 		sc->rawtemp = stats->general.temp;
3412 		temp = ops->get_temperature(sc);
3413 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3414 		    __func__, temp);
3415 
3416 		/* Update TX power if need be (4965AGN only). */
3417 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3418 			iwn4965_power_calibration(sc, temp);
3419 	}
3420 
3421 	if (desc->type != IWN_BEACON_STATISTICS)
3422 		return;	/* Reply to a statistics request. */
3423 
3424 	sc->noise = iwn_get_noise(&lstats->rx.general);
3425 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3426 
3427 	/* Test that RSSI and noise are present in stats report. */
3428 	if (le32toh(lstats->rx.general.flags) != 1) {
3429 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3430 		    "received statistics without RSSI");
3431 		return;
3432 	}
3433 
3434 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3435 		iwn_collect_noise(sc, &lstats->rx.general);
3436 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3437 		iwn_tune_sensitivity(sc, &lstats->rx);
3438 		/*
3439 		 * XXX TODO: Only run the RX recovery if we're associated!
3440 		 */
3441 		iwn_check_rx_recovery(sc, lstats);
3442 		iwn_save_stats_counters(sc, lstats);
3443 	}
3444 
3445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3446 }
3447 
3448 /*
3449  * Save the relevant statistic counters for the next calibration
3450  * pass.
3451  */
3452 static void
3453 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3454 {
3455 	struct iwn_calib_state *calib = &sc->calib;
3456 
3457 	/* Save counters values for next call. */
3458 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3459 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3460 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3461 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3462 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3463 
3464 	/* Last time we received these tick values */
3465 	sc->last_calib_ticks = ticks;
3466 }
3467 
3468 /*
3469  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3470  * and 5000 adapters have different incompatible TX status formats.
3471  */
3472 static void
3473 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3474     struct iwn_rx_data *data)
3475 {
3476 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3477 	struct iwn_tx_ring *ring;
3478 	int qid;
3479 
3480 	qid = desc->qid & 0xf;
3481 	ring = &sc->txq[qid];
3482 
3483 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3484 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3485 	    __func__, desc->qid, desc->idx,
3486 	    stat->rtsfailcnt,
3487 	    stat->ackfailcnt,
3488 	    stat->btkillcnt,
3489 	    stat->rate, le16toh(stat->duration),
3490 	    le32toh(stat->status));
3491 
3492 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3493 	if (qid >= sc->firstaggqueue) {
3494 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3495 		    stat->ackfailcnt, &stat->status);
3496 	} else {
3497 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3498 		    le32toh(stat->status) & 0xff);
3499 	}
3500 }
3501 
3502 static void
3503 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3504     struct iwn_rx_data *data)
3505 {
3506 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3507 	struct iwn_tx_ring *ring;
3508 	int qid;
3509 
3510 	qid = desc->qid & 0xf;
3511 	ring = &sc->txq[qid];
3512 
3513 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3514 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3515 	    __func__, desc->qid, desc->idx,
3516 	    stat->rtsfailcnt,
3517 	    stat->ackfailcnt,
3518 	    stat->btkillcnt,
3519 	    stat->rate, le16toh(stat->duration),
3520 	    le32toh(stat->status));
3521 
3522 #ifdef notyet
3523 	/* Reset TX scheduler slot. */
3524 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3525 #endif
3526 
3527 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3528 	if (qid >= sc->firstaggqueue) {
3529 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3530 		    stat->ackfailcnt, &stat->status);
3531 	} else {
3532 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3533 		    le16toh(stat->status) & 0xff);
3534 	}
3535 }
3536 
3537 /*
3538  * Adapter-independent backend for TX_DONE firmware notifications.
3539  */
3540 static void
3541 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3542     uint8_t status)
3543 {
3544 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3545 	struct iwn_tx_data *data = &ring->data[desc->idx];
3546 	struct mbuf *m;
3547 	struct ieee80211_node *ni;
3548 	struct ieee80211vap *vap;
3549 
3550 	KASSERT(data->ni != NULL, ("no node"));
3551 
3552 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3553 
3554 	/* Unmap and free mbuf. */
3555 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3556 	bus_dmamap_unload(ring->data_dmat, data->map);
3557 	m = data->m, data->m = NULL;
3558 	ni = data->ni, data->ni = NULL;
3559 	vap = ni->ni_vap;
3560 
3561 	/*
3562 	 * Update rate control statistics for the node.
3563 	 */
3564 	if (status & IWN_TX_FAIL)
3565 		ieee80211_ratectl_tx_complete(vap, ni,
3566 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3567 	else
3568 		ieee80211_ratectl_tx_complete(vap, ni,
3569 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3570 
3571 	/*
3572 	 * Channels marked for "radar" require traffic to be received
3573 	 * to unlock before we can transmit.  Until traffic is seen
3574 	 * any attempt to transmit is returned immediately with status
3575 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3576 	 * happen on first authenticate after scanning.  To workaround
3577 	 * this we ignore a failure of this sort in AUTH state so the
3578 	 * 802.11 layer will fall back to using a timeout to wait for
3579 	 * the AUTH reply.  This allows the firmware time to see
3580 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3581 	 * unclear why the firmware does not maintain state for
3582 	 * channels recently visited as this would allow immediate
3583 	 * use of the channel after a scan (where we see traffic).
3584 	 */
3585 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3586 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3587 		ieee80211_tx_complete(ni, m, 0);
3588 	else
3589 		ieee80211_tx_complete(ni, m,
3590 		    (status & IWN_TX_FAIL) != 0);
3591 
3592 	sc->sc_tx_timer = 0;
3593 	if (--ring->queued < IWN_TX_RING_LOMARK)
3594 		sc->qfullmsk &= ~(1 << ring->qid);
3595 
3596 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3597 }
3598 
3599 /*
3600  * Process a "command done" firmware notification.  This is where we wakeup
3601  * processes waiting for a synchronous command completion.
3602  */
3603 static void
3604 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3605 {
3606 	struct iwn_tx_ring *ring;
3607 	struct iwn_tx_data *data;
3608 	int cmd_queue_num;
3609 
3610 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3611 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3612 	else
3613 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3614 
3615 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3616 		return;	/* Not a command ack. */
3617 
3618 	ring = &sc->txq[cmd_queue_num];
3619 	data = &ring->data[desc->idx];
3620 
3621 	/* If the command was mapped in an mbuf, free it. */
3622 	if (data->m != NULL) {
3623 		bus_dmamap_sync(ring->data_dmat, data->map,
3624 		    BUS_DMASYNC_POSTWRITE);
3625 		bus_dmamap_unload(ring->data_dmat, data->map);
3626 		m_freem(data->m);
3627 		data->m = NULL;
3628 	}
3629 	wakeup(&ring->desc[desc->idx]);
3630 }
3631 
3632 static void
3633 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3634     int ackfailcnt, void *stat)
3635 {
3636 	struct iwn_ops *ops = &sc->ops;
3637 	struct iwn_tx_ring *ring = &sc->txq[qid];
3638 	struct iwn_tx_data *data;
3639 	struct mbuf *m;
3640 	struct iwn_node *wn;
3641 	struct ieee80211_node *ni;
3642 	struct ieee80211_tx_ampdu *tap;
3643 	uint64_t bitmap;
3644 	uint32_t *status = stat;
3645 	uint16_t *aggstatus = stat;
3646 	uint16_t ssn;
3647 	uint8_t tid;
3648 	int bit, i, lastidx, *res, seqno, shift, start;
3649 
3650 	/* XXX TODO: status is le16 field! Grr */
3651 
3652 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3653 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3654 	    __func__,
3655 	    nframes,
3656 	    *status);
3657 
3658 	tap = sc->qid2tap[qid];
3659 	tid = tap->txa_tid;
3660 	wn = (void *)tap->txa_ni;
3661 	ni = tap->txa_ni;
3662 
3663 	/*
3664 	 * XXX TODO: ACK and RTS failures would be nice here!
3665 	 */
3666 
3667 	/*
3668 	 * A-MPDU single frame status - if we failed to transmit it
3669 	 * in A-MPDU, then it may be a permanent failure.
3670 	 *
3671 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3672 	 * there's some permanent and temporary failures that may be
3673 	 * handled differently.
3674 	 */
3675 	if (nframes == 1) {
3676 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3677 #ifdef	NOT_YET
3678 			printf("ieee80211_send_bar()\n");
3679 #endif
3680 			/*
3681 			 * If we completely fail a transmit, make sure a
3682 			 * notification is pushed up to the rate control
3683 			 * layer.
3684 			 */
3685 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3686 			    ni,
3687 			    IEEE80211_RATECTL_TX_FAILURE,
3688 			    &ackfailcnt,
3689 			    NULL);
3690 		} else {
3691 			/*
3692 			 * If nframes=1, then we won't be getting a BA for
3693 			 * this frame.  Ensure that we correctly update the
3694 			 * rate control code with how many retries were
3695 			 * needed to send it.
3696 			 */
3697 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3698 			    ni,
3699 			    IEEE80211_RATECTL_TX_SUCCESS,
3700 			    &ackfailcnt,
3701 			    NULL);
3702 		}
3703 	}
3704 
3705 	bitmap = 0;
3706 	start = idx;
3707 	for (i = 0; i < nframes; i++) {
3708 		if (le16toh(aggstatus[i * 2]) & 0xc)
3709 			continue;
3710 
3711 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3712 		bit = idx - start;
3713 		shift = 0;
3714 		if (bit >= 64) {
3715 			shift = 0x100 - idx + start;
3716 			bit = 0;
3717 			start = idx;
3718 		} else if (bit <= -64)
3719 			bit = 0x100 - start + idx;
3720 		else if (bit < 0) {
3721 			shift = start - idx;
3722 			start = idx;
3723 			bit = 0;
3724 		}
3725 		bitmap = bitmap << shift;
3726 		bitmap |= 1ULL << bit;
3727 	}
3728 	tap = sc->qid2tap[qid];
3729 	tid = tap->txa_tid;
3730 	wn = (void *)tap->txa_ni;
3731 	wn->agg[tid].bitmap = bitmap;
3732 	wn->agg[tid].startidx = start;
3733 	wn->agg[tid].nframes = nframes;
3734 
3735 	res = NULL;
3736 	ssn = 0;
3737 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3738 		res = tap->txa_private;
3739 		ssn = tap->txa_start & 0xfff;
3740 	}
3741 
3742 	/* This is going nframes DWORDS into the descriptor? */
3743 	seqno = le32toh(*(status + nframes)) & 0xfff;
3744 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3745 		data = &ring->data[ring->read];
3746 
3747 		/* Unmap and free mbuf. */
3748 		bus_dmamap_sync(ring->data_dmat, data->map,
3749 		    BUS_DMASYNC_POSTWRITE);
3750 		bus_dmamap_unload(ring->data_dmat, data->map);
3751 		m = data->m, data->m = NULL;
3752 		ni = data->ni, data->ni = NULL;
3753 
3754 		KASSERT(ni != NULL, ("no node"));
3755 		KASSERT(m != NULL, ("no mbuf"));
3756 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3757 		ieee80211_tx_complete(ni, m, 1);
3758 
3759 		ring->queued--;
3760 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3761 	}
3762 
3763 	if (ring->queued == 0 && res != NULL) {
3764 		iwn_nic_lock(sc);
3765 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3766 		iwn_nic_unlock(sc);
3767 		sc->qid2tap[qid] = NULL;
3768 		free(res, M_DEVBUF);
3769 		return;
3770 	}
3771 
3772 	sc->sc_tx_timer = 0;
3773 	if (ring->queued < IWN_TX_RING_LOMARK)
3774 		sc->qfullmsk &= ~(1 << ring->qid);
3775 
3776 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3777 }
3778 
3779 /*
3780  * Process an INT_FH_RX or INT_SW_RX interrupt.
3781  */
3782 static void
3783 iwn_notif_intr(struct iwn_softc *sc)
3784 {
3785 	struct iwn_ops *ops = &sc->ops;
3786 	struct ieee80211com *ic = &sc->sc_ic;
3787 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3788 	uint16_t hw;
3789 
3790 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3791 	    BUS_DMASYNC_POSTREAD);
3792 
3793 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3794 	while (sc->rxq.cur != hw) {
3795 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3796 		struct iwn_rx_desc *desc;
3797 
3798 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3799 		    BUS_DMASYNC_POSTREAD);
3800 		desc = mtod(data->m, struct iwn_rx_desc *);
3801 
3802 		DPRINTF(sc, IWN_DEBUG_RECV,
3803 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3804 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3805 		    desc->type, iwn_intr_str(desc->type),
3806 		    le16toh(desc->len));
3807 
3808 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3809 			iwn_cmd_done(sc, desc);
3810 
3811 		switch (desc->type) {
3812 		case IWN_RX_PHY:
3813 			iwn_rx_phy(sc, desc, data);
3814 			break;
3815 
3816 		case IWN_RX_DONE:		/* 4965AGN only. */
3817 		case IWN_MPDU_RX_DONE:
3818 			/* An 802.11 frame has been received. */
3819 			iwn_rx_done(sc, desc, data);
3820 			break;
3821 
3822 		case IWN_RX_COMPRESSED_BA:
3823 			/* A Compressed BlockAck has been received. */
3824 			iwn_rx_compressed_ba(sc, desc, data);
3825 			break;
3826 
3827 		case IWN_TX_DONE:
3828 			/* An 802.11 frame has been transmitted. */
3829 			ops->tx_done(sc, desc, data);
3830 			break;
3831 
3832 		case IWN_RX_STATISTICS:
3833 		case IWN_BEACON_STATISTICS:
3834 			iwn_rx_statistics(sc, desc, data);
3835 			break;
3836 
3837 		case IWN_BEACON_MISSED:
3838 		{
3839 			struct iwn_beacon_missed *miss =
3840 			    (struct iwn_beacon_missed *)(desc + 1);
3841 			int misses;
3842 
3843 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3844 			    BUS_DMASYNC_POSTREAD);
3845 			misses = le32toh(miss->consecutive);
3846 
3847 			DPRINTF(sc, IWN_DEBUG_STATE,
3848 			    "%s: beacons missed %d/%d\n", __func__,
3849 			    misses, le32toh(miss->total));
3850 			/*
3851 			 * If more than 5 consecutive beacons are missed,
3852 			 * reinitialize the sensitivity state machine.
3853 			 */
3854 			if (vap->iv_state == IEEE80211_S_RUN &&
3855 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3856 				if (misses > 5)
3857 					(void)iwn_init_sensitivity(sc);
3858 				if (misses >= vap->iv_bmissthreshold) {
3859 					IWN_UNLOCK(sc);
3860 					ieee80211_beacon_miss(ic);
3861 					IWN_LOCK(sc);
3862 				}
3863 			}
3864 			break;
3865 		}
3866 		case IWN_UC_READY:
3867 		{
3868 			struct iwn_ucode_info *uc =
3869 			    (struct iwn_ucode_info *)(desc + 1);
3870 
3871 			/* The microcontroller is ready. */
3872 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3873 			    BUS_DMASYNC_POSTREAD);
3874 			DPRINTF(sc, IWN_DEBUG_RESET,
3875 			    "microcode alive notification version=%d.%d "
3876 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3877 			    uc->subtype, le32toh(uc->valid));
3878 
3879 			if (le32toh(uc->valid) != 1) {
3880 				device_printf(sc->sc_dev,
3881 				    "microcontroller initialization failed");
3882 				break;
3883 			}
3884 			if (uc->subtype == IWN_UCODE_INIT) {
3885 				/* Save microcontroller report. */
3886 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3887 			}
3888 			/* Save the address of the error log in SRAM. */
3889 			sc->errptr = le32toh(uc->errptr);
3890 			break;
3891 		}
3892 		case IWN_STATE_CHANGED:
3893 		{
3894 			/*
3895 			 * State change allows hardware switch change to be
3896 			 * noted. However, we handle this in iwn_intr as we
3897 			 * get both the enable/disble intr.
3898 			 */
3899 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3900 			    BUS_DMASYNC_POSTREAD);
3901 #ifdef	IWN_DEBUG
3902 			uint32_t *status = (uint32_t *)(desc + 1);
3903 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3904 			    "state changed to %x\n",
3905 			    le32toh(*status));
3906 #endif
3907 			break;
3908 		}
3909 		case IWN_START_SCAN:
3910 		{
3911 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3912 			    BUS_DMASYNC_POSTREAD);
3913 #ifdef	IWN_DEBUG
3914 			struct iwn_start_scan *scan =
3915 			    (struct iwn_start_scan *)(desc + 1);
3916 			DPRINTF(sc, IWN_DEBUG_ANY,
3917 			    "%s: scanning channel %d status %x\n",
3918 			    __func__, scan->chan, le32toh(scan->status));
3919 #endif
3920 			break;
3921 		}
3922 		case IWN_STOP_SCAN:
3923 		{
3924 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3925 			    BUS_DMASYNC_POSTREAD);
3926 #ifdef	IWN_DEBUG
3927 			struct iwn_stop_scan *scan =
3928 			    (struct iwn_stop_scan *)(desc + 1);
3929 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3930 			    "scan finished nchan=%d status=%d chan=%d\n",
3931 			    scan->nchan, scan->status, scan->chan);
3932 #endif
3933 			sc->sc_is_scanning = 0;
3934 			IWN_UNLOCK(sc);
3935 			ieee80211_scan_next(vap);
3936 			IWN_LOCK(sc);
3937 			break;
3938 		}
3939 		case IWN5000_CALIBRATION_RESULT:
3940 			iwn5000_rx_calib_results(sc, desc, data);
3941 			break;
3942 
3943 		case IWN5000_CALIBRATION_DONE:
3944 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3945 			wakeup(sc);
3946 			break;
3947 		}
3948 
3949 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3950 	}
3951 
3952 	/* Tell the firmware what we have processed. */
3953 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3954 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3955 }
3956 
3957 /*
3958  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3959  * from power-down sleep mode.
3960  */
3961 static void
3962 iwn_wakeup_intr(struct iwn_softc *sc)
3963 {
3964 	int qid;
3965 
3966 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3967 	    __func__);
3968 
3969 	/* Wakeup RX and TX rings. */
3970 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3971 	for (qid = 0; qid < sc->ntxqs; qid++) {
3972 		struct iwn_tx_ring *ring = &sc->txq[qid];
3973 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3974 	}
3975 }
3976 
3977 static void
3978 iwn_rftoggle_intr(struct iwn_softc *sc)
3979 {
3980 	struct ieee80211com *ic = &sc->sc_ic;
3981 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3982 
3983 	IWN_LOCK_ASSERT(sc);
3984 
3985 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3986 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3987 	if (tmp & IWN_GP_CNTRL_RFKILL)
3988 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3989 	else
3990 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3991 }
3992 
3993 /*
3994  * Dump the error log of the firmware when a firmware panic occurs.  Although
3995  * we can't debug the firmware because it is neither open source nor free, it
3996  * can help us to identify certain classes of problems.
3997  */
3998 static void
3999 iwn_fatal_intr(struct iwn_softc *sc)
4000 {
4001 	struct iwn_fw_dump dump;
4002 	int i;
4003 
4004 	IWN_LOCK_ASSERT(sc);
4005 
4006 	/* Force a complete recalibration on next init. */
4007 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4008 
4009 	/* Check that the error log address is valid. */
4010 	if (sc->errptr < IWN_FW_DATA_BASE ||
4011 	    sc->errptr + sizeof (dump) >
4012 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4013 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4014 		    sc->errptr);
4015 		return;
4016 	}
4017 	if (iwn_nic_lock(sc) != 0) {
4018 		printf("%s: could not read firmware error log\n", __func__);
4019 		return;
4020 	}
4021 	/* Read firmware error log from SRAM. */
4022 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4023 	    sizeof (dump) / sizeof (uint32_t));
4024 	iwn_nic_unlock(sc);
4025 
4026 	if (dump.valid == 0) {
4027 		printf("%s: firmware error log is empty\n", __func__);
4028 		return;
4029 	}
4030 	printf("firmware error log:\n");
4031 	printf("  error type      = \"%s\" (0x%08X)\n",
4032 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4033 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4034 	    dump.id);
4035 	printf("  program counter = 0x%08X\n", dump.pc);
4036 	printf("  source line     = 0x%08X\n", dump.src_line);
4037 	printf("  error data      = 0x%08X%08X\n",
4038 	    dump.error_data[0], dump.error_data[1]);
4039 	printf("  branch link     = 0x%08X%08X\n",
4040 	    dump.branch_link[0], dump.branch_link[1]);
4041 	printf("  interrupt link  = 0x%08X%08X\n",
4042 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4043 	printf("  time            = %u\n", dump.time[0]);
4044 
4045 	/* Dump driver status (TX and RX rings) while we're here. */
4046 	printf("driver status:\n");
4047 	for (i = 0; i < sc->ntxqs; i++) {
4048 		struct iwn_tx_ring *ring = &sc->txq[i];
4049 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4050 		    i, ring->qid, ring->cur, ring->queued);
4051 	}
4052 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4053 }
4054 
4055 static void
4056 iwn_intr(void *arg)
4057 {
4058 	struct iwn_softc *sc = arg;
4059 	uint32_t r1, r2, tmp;
4060 
4061 	IWN_LOCK(sc);
4062 
4063 	/* Disable interrupts. */
4064 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4065 
4066 	/* Read interrupts from ICT (fast) or from registers (slow). */
4067 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4068 		tmp = 0;
4069 		while (sc->ict[sc->ict_cur] != 0) {
4070 			tmp |= sc->ict[sc->ict_cur];
4071 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4072 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4073 		}
4074 		tmp = le32toh(tmp);
4075 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4076 			tmp = 0;
4077 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4078 			tmp |= 0x8000;
4079 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4080 		r2 = 0;	/* Unused. */
4081 	} else {
4082 		r1 = IWN_READ(sc, IWN_INT);
4083 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4084 			IWN_UNLOCK(sc);
4085 			return;	/* Hardware gone! */
4086 		}
4087 		r2 = IWN_READ(sc, IWN_FH_INT);
4088 	}
4089 
4090 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4091     , r1, r2);
4092 
4093 	if (r1 == 0 && r2 == 0)
4094 		goto done;	/* Interrupt not for us. */
4095 
4096 	/* Acknowledge interrupts. */
4097 	IWN_WRITE(sc, IWN_INT, r1);
4098 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4099 		IWN_WRITE(sc, IWN_FH_INT, r2);
4100 
4101 	if (r1 & IWN_INT_RF_TOGGLED) {
4102 		iwn_rftoggle_intr(sc);
4103 		goto done;
4104 	}
4105 	if (r1 & IWN_INT_CT_REACHED) {
4106 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4107 		    __func__);
4108 	}
4109 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4110 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4111 		    __func__);
4112 #ifdef	IWN_DEBUG
4113 		iwn_debug_register(sc);
4114 #endif
4115 		/* Dump firmware error log and stop. */
4116 		iwn_fatal_intr(sc);
4117 
4118 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4119 		goto done;
4120 	}
4121 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4122 	    (r2 & IWN_FH_INT_RX)) {
4123 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4124 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4125 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4126 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4127 			    IWN_INT_PERIODIC_DIS);
4128 			iwn_notif_intr(sc);
4129 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4130 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4131 				    IWN_INT_PERIODIC_ENA);
4132 			}
4133 		} else
4134 			iwn_notif_intr(sc);
4135 	}
4136 
4137 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4138 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4139 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4140 		wakeup(sc);	/* FH DMA transfer completed. */
4141 	}
4142 
4143 	if (r1 & IWN_INT_ALIVE)
4144 		wakeup(sc);	/* Firmware is alive. */
4145 
4146 	if (r1 & IWN_INT_WAKEUP)
4147 		iwn_wakeup_intr(sc);
4148 
4149 done:
4150 	/* Re-enable interrupts. */
4151 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4152 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4153 
4154 	IWN_UNLOCK(sc);
4155 }
4156 
4157 /*
4158  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4159  * 5000 adapters use a slightly different format).
4160  */
4161 static void
4162 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4163     uint16_t len)
4164 {
4165 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4166 
4167 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4168 
4169 	*w = htole16(len + 8);
4170 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4171 	    BUS_DMASYNC_PREWRITE);
4172 	if (idx < IWN_SCHED_WINSZ) {
4173 		*(w + IWN_TX_RING_COUNT) = *w;
4174 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4175 		    BUS_DMASYNC_PREWRITE);
4176 	}
4177 }
4178 
4179 static void
4180 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4181     uint16_t len)
4182 {
4183 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4184 
4185 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4186 
4187 	*w = htole16(id << 12 | (len + 8));
4188 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4189 	    BUS_DMASYNC_PREWRITE);
4190 	if (idx < IWN_SCHED_WINSZ) {
4191 		*(w + IWN_TX_RING_COUNT) = *w;
4192 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4193 		    BUS_DMASYNC_PREWRITE);
4194 	}
4195 }
4196 
4197 #ifdef notyet
4198 static void
4199 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4200 {
4201 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4202 
4203 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4204 
4205 	*w = (*w & htole16(0xf000)) | htole16(1);
4206 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4207 	    BUS_DMASYNC_PREWRITE);
4208 	if (idx < IWN_SCHED_WINSZ) {
4209 		*(w + IWN_TX_RING_COUNT) = *w;
4210 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4211 		    BUS_DMASYNC_PREWRITE);
4212 	}
4213 }
4214 #endif
4215 
4216 /*
4217  * Check whether OFDM 11g protection will be enabled for the given rate.
4218  *
4219  * The original driver code only enabled protection for OFDM rates.
4220  * It didn't check to see whether it was operating in 11a or 11bg mode.
4221  */
4222 static int
4223 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4224     struct ieee80211vap *vap, uint8_t rate)
4225 {
4226 	struct ieee80211com *ic = vap->iv_ic;
4227 
4228 	/*
4229 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4230 	 * 11bg protection.
4231 	 */
4232 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4233 		return (0);
4234 	}
4235 
4236 	/*
4237 	 * 11bg protection not enabled? Then don't use it.
4238 	 */
4239 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4240 		return (0);
4241 
4242 	/*
4243 	 * If it's an 11n rate - no protection.
4244 	 * We'll do it via a specific 11n check.
4245 	 */
4246 	if (rate & IEEE80211_RATE_MCS) {
4247 		return (0);
4248 	}
4249 
4250 	/*
4251 	 * Do a rate table lookup.  If the PHY is CCK,
4252 	 * don't do protection.
4253 	 */
4254 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4255 		return (0);
4256 
4257 	/*
4258 	 * Yup, enable protection.
4259 	 */
4260 	return (1);
4261 }
4262 
4263 /*
4264  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4265  * the link quality table that reflects this particular entry.
4266  */
4267 static int
4268 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4269     uint8_t rate)
4270 {
4271 	struct ieee80211_rateset *rs;
4272 	int is_11n;
4273 	int nr;
4274 	int i;
4275 	uint8_t cmp_rate;
4276 
4277 	/*
4278 	 * Figure out if we're using 11n or not here.
4279 	 */
4280 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4281 		is_11n = 1;
4282 	else
4283 		is_11n = 0;
4284 
4285 	/*
4286 	 * Use the correct rate table.
4287 	 */
4288 	if (is_11n) {
4289 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4290 		nr = ni->ni_htrates.rs_nrates;
4291 	} else {
4292 		rs = &ni->ni_rates;
4293 		nr = rs->rs_nrates;
4294 	}
4295 
4296 	/*
4297 	 * Find the relevant link quality entry in the table.
4298 	 */
4299 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4300 		/*
4301 		 * The link quality table index starts at 0 == highest
4302 		 * rate, so we walk the rate table backwards.
4303 		 */
4304 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4305 		if (rate & IEEE80211_RATE_MCS)
4306 			cmp_rate |= IEEE80211_RATE_MCS;
4307 
4308 #if 0
4309 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4310 		    __func__,
4311 		    i,
4312 		    nr,
4313 		    rate,
4314 		    cmp_rate);
4315 #endif
4316 
4317 		if (cmp_rate == rate)
4318 			return (i);
4319 	}
4320 
4321 	/* Failed? Start at the end */
4322 	return (IWN_MAX_TX_RETRIES - 1);
4323 }
4324 
4325 static int
4326 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4327 {
4328 	struct iwn_ops *ops = &sc->ops;
4329 	const struct ieee80211_txparam *tp;
4330 	struct ieee80211vap *vap = ni->ni_vap;
4331 	struct ieee80211com *ic = ni->ni_ic;
4332 	struct iwn_node *wn = (void *)ni;
4333 	struct iwn_tx_ring *ring;
4334 	struct iwn_tx_desc *desc;
4335 	struct iwn_tx_data *data;
4336 	struct iwn_tx_cmd *cmd;
4337 	struct iwn_cmd_data *tx;
4338 	struct ieee80211_frame *wh;
4339 	struct ieee80211_key *k = NULL;
4340 	struct mbuf *m1;
4341 	uint32_t flags;
4342 	uint16_t qos;
4343 	u_int hdrlen;
4344 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4345 	uint8_t tid, type;
4346 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4347 
4348 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4349 
4350 	IWN_LOCK_ASSERT(sc);
4351 
4352 	wh = mtod(m, struct ieee80211_frame *);
4353 	hdrlen = ieee80211_anyhdrsize(wh);
4354 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4355 
4356 	/* Select EDCA Access Category and TX ring for this frame. */
4357 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4358 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4359 		tid = qos & IEEE80211_QOS_TID;
4360 	} else {
4361 		qos = 0;
4362 		tid = 0;
4363 	}
4364 	ac = M_WME_GETAC(m);
4365 	if (m->m_flags & M_AMPDU_MPDU) {
4366 		uint16_t seqno;
4367 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4368 
4369 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4370 			return EINVAL;
4371 		}
4372 
4373 		/*
4374 		 * Queue this frame to the hardware ring that we've
4375 		 * negotiated AMPDU TX on.
4376 		 *
4377 		 * Note that the sequence number must match the TX slot
4378 		 * being used!
4379 		 */
4380 		ac = *(int *)tap->txa_private;
4381 		seqno = ni->ni_txseqs[tid];
4382 		*(uint16_t *)wh->i_seq =
4383 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4384 		ring = &sc->txq[ac];
4385 		if ((seqno % 256) != ring->cur) {
4386 			device_printf(sc->sc_dev,
4387 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4388 			    __func__,
4389 			    m,
4390 			    seqno,
4391 			    seqno % 256,
4392 			    ring->cur);
4393 		}
4394 		ni->ni_txseqs[tid]++;
4395 	}
4396 	ring = &sc->txq[ac];
4397 	desc = &ring->desc[ring->cur];
4398 	data = &ring->data[ring->cur];
4399 
4400 	/* Choose a TX rate index. */
4401 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4402 	if (type == IEEE80211_FC0_TYPE_MGT)
4403 		rate = tp->mgmtrate;
4404 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4405 		rate = tp->mcastrate;
4406 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4407 		rate = tp->ucastrate;
4408 	else if (m->m_flags & M_EAPOL)
4409 		rate = tp->mgmtrate;
4410 	else {
4411 		/* XXX pass pktlen */
4412 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4413 		rate = ni->ni_txrate;
4414 	}
4415 
4416 	/* Encrypt the frame if need be. */
4417 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4418 		/* Retrieve key for TX. */
4419 		k = ieee80211_crypto_encap(ni, m);
4420 		if (k == NULL) {
4421 			return ENOBUFS;
4422 		}
4423 		/* 802.11 header may have moved. */
4424 		wh = mtod(m, struct ieee80211_frame *);
4425 	}
4426 	totlen = m->m_pkthdr.len;
4427 
4428 	if (ieee80211_radiotap_active_vap(vap)) {
4429 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4430 
4431 		tap->wt_flags = 0;
4432 		tap->wt_rate = rate;
4433 		if (k != NULL)
4434 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4435 
4436 		ieee80211_radiotap_tx(vap, m);
4437 	}
4438 
4439 	/* Prepare TX firmware command. */
4440 	cmd = &ring->cmd[ring->cur];
4441 	cmd->code = IWN_CMD_TX_DATA;
4442 	cmd->flags = 0;
4443 	cmd->qid = ring->qid;
4444 	cmd->idx = ring->cur;
4445 
4446 	tx = (struct iwn_cmd_data *)cmd->data;
4447 	/* NB: No need to clear tx, all fields are reinitialized here. */
4448 	tx->scratch = 0;	/* clear "scratch" area */
4449 
4450 	flags = 0;
4451 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4452 		/* Unicast frame, check if an ACK is expected. */
4453 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4454 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4455 			flags |= IWN_TX_NEED_ACK;
4456 	}
4457 	if ((wh->i_fc[0] &
4458 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4459 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4460 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4461 
4462 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4463 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4464 
4465 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4466 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4467 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4468 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4469 			flags |= IWN_TX_NEED_RTS;
4470 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4471 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4472 				flags |= IWN_TX_NEED_CTS;
4473 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4474 				flags |= IWN_TX_NEED_RTS;
4475 		} else if ((rate & IEEE80211_RATE_MCS) &&
4476 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4477 			flags |= IWN_TX_NEED_RTS;
4478 		}
4479 
4480 		/* XXX HT protection? */
4481 
4482 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4483 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4484 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4485 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4486 				flags |= IWN_TX_NEED_PROTECTION;
4487 			} else
4488 				flags |= IWN_TX_FULL_TXOP;
4489 		}
4490 	}
4491 
4492 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4493 	    type != IEEE80211_FC0_TYPE_DATA)
4494 		tx->id = sc->broadcast_id;
4495 	else
4496 		tx->id = wn->id;
4497 
4498 	if (type == IEEE80211_FC0_TYPE_MGT) {
4499 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4500 
4501 		/* Tell HW to set timestamp in probe responses. */
4502 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4503 			flags |= IWN_TX_INSERT_TSTAMP;
4504 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4505 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4506 			tx->timeout = htole16(3);
4507 		else
4508 			tx->timeout = htole16(2);
4509 	} else
4510 		tx->timeout = htole16(0);
4511 
4512 	if (hdrlen & 3) {
4513 		/* First segment length must be a multiple of 4. */
4514 		flags |= IWN_TX_NEED_PADDING;
4515 		pad = 4 - (hdrlen & 3);
4516 	} else
4517 		pad = 0;
4518 
4519 	tx->len = htole16(totlen);
4520 	tx->tid = tid;
4521 	tx->rts_ntries = 60;
4522 	tx->data_ntries = 15;
4523 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4524 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4525 	if (tx->id == sc->broadcast_id) {
4526 		/* Group or management frame. */
4527 		tx->linkq = 0;
4528 	} else {
4529 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4530 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4531 	}
4532 
4533 	/* Set physical address of "scratch area". */
4534 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4535 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4536 
4537 	/* Copy 802.11 header in TX command. */
4538 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4539 
4540 	/* Trim 802.11 header. */
4541 	m_adj(m, hdrlen);
4542 	tx->security = 0;
4543 	tx->flags = htole32(flags);
4544 
4545 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4546 	    &nsegs, BUS_DMA_NOWAIT);
4547 	if (error != 0) {
4548 		if (error != EFBIG) {
4549 			device_printf(sc->sc_dev,
4550 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4551 			return error;
4552 		}
4553 		/* Too many DMA segments, linearize mbuf. */
4554 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4555 		if (m1 == NULL) {
4556 			device_printf(sc->sc_dev,
4557 			    "%s: could not defrag mbuf\n", __func__);
4558 			return ENOBUFS;
4559 		}
4560 		m = m1;
4561 
4562 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4563 		    segs, &nsegs, BUS_DMA_NOWAIT);
4564 		if (error != 0) {
4565 			device_printf(sc->sc_dev,
4566 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4567 			return error;
4568 		}
4569 	}
4570 
4571 	data->m = m;
4572 	data->ni = ni;
4573 
4574 	DPRINTF(sc, IWN_DEBUG_XMIT,
4575 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4576 	    __func__,
4577 	    ring->qid,
4578 	    ring->cur,
4579 	    m->m_pkthdr.len,
4580 	    nsegs,
4581 	    flags,
4582 	    rate,
4583 	    tx->rate);
4584 
4585 	/* Fill TX descriptor. */
4586 	desc->nsegs = 1;
4587 	if (m->m_len != 0)
4588 		desc->nsegs += nsegs;
4589 	/* First DMA segment is used by the TX command. */
4590 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4591 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4592 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4593 	/* Other DMA segments are for data payload. */
4594 	seg = &segs[0];
4595 	for (i = 1; i <= nsegs; i++) {
4596 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4597 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4598 		    seg->ds_len << 4);
4599 		seg++;
4600 	}
4601 
4602 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4603 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4604 	    BUS_DMASYNC_PREWRITE);
4605 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4606 	    BUS_DMASYNC_PREWRITE);
4607 
4608 	/* Update TX scheduler. */
4609 	if (ring->qid >= sc->firstaggqueue)
4610 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4611 
4612 	/* Kick TX ring. */
4613 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4614 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4615 
4616 	/* Mark TX ring as full if we reach a certain threshold. */
4617 	if (++ring->queued > IWN_TX_RING_HIMARK)
4618 		sc->qfullmsk |= 1 << ring->qid;
4619 
4620 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4621 
4622 	return 0;
4623 }
4624 
4625 static int
4626 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4627     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4628 {
4629 	struct iwn_ops *ops = &sc->ops;
4630 	struct ieee80211vap *vap = ni->ni_vap;
4631 	struct iwn_tx_cmd *cmd;
4632 	struct iwn_cmd_data *tx;
4633 	struct ieee80211_frame *wh;
4634 	struct iwn_tx_ring *ring;
4635 	struct iwn_tx_desc *desc;
4636 	struct iwn_tx_data *data;
4637 	struct mbuf *m1;
4638 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4639 	uint32_t flags;
4640 	u_int hdrlen;
4641 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4642 	uint8_t type;
4643 
4644 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4645 
4646 	IWN_LOCK_ASSERT(sc);
4647 
4648 	wh = mtod(m, struct ieee80211_frame *);
4649 	hdrlen = ieee80211_anyhdrsize(wh);
4650 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4651 
4652 	ac = params->ibp_pri & 3;
4653 
4654 	ring = &sc->txq[ac];
4655 	desc = &ring->desc[ring->cur];
4656 	data = &ring->data[ring->cur];
4657 
4658 	/* Choose a TX rate. */
4659 	rate = params->ibp_rate0;
4660 	totlen = m->m_pkthdr.len;
4661 
4662 	/* Prepare TX firmware command. */
4663 	cmd = &ring->cmd[ring->cur];
4664 	cmd->code = IWN_CMD_TX_DATA;
4665 	cmd->flags = 0;
4666 	cmd->qid = ring->qid;
4667 	cmd->idx = ring->cur;
4668 
4669 	tx = (struct iwn_cmd_data *)cmd->data;
4670 	/* NB: No need to clear tx, all fields are reinitialized here. */
4671 	tx->scratch = 0;	/* clear "scratch" area */
4672 
4673 	flags = 0;
4674 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4675 		flags |= IWN_TX_NEED_ACK;
4676 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4677 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4678 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4679 			flags &= ~IWN_TX_NEED_RTS;
4680 			flags |= IWN_TX_NEED_PROTECTION;
4681 		} else
4682 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4683 	}
4684 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4685 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4686 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4687 			flags &= ~IWN_TX_NEED_CTS;
4688 			flags |= IWN_TX_NEED_PROTECTION;
4689 		} else
4690 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4691 	}
4692 	if (type == IEEE80211_FC0_TYPE_MGT) {
4693 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4694 
4695 		/* Tell HW to set timestamp in probe responses. */
4696 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4697 			flags |= IWN_TX_INSERT_TSTAMP;
4698 
4699 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4700 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4701 			tx->timeout = htole16(3);
4702 		else
4703 			tx->timeout = htole16(2);
4704 	} else
4705 		tx->timeout = htole16(0);
4706 
4707 	if (hdrlen & 3) {
4708 		/* First segment length must be a multiple of 4. */
4709 		flags |= IWN_TX_NEED_PADDING;
4710 		pad = 4 - (hdrlen & 3);
4711 	} else
4712 		pad = 0;
4713 
4714 	if (ieee80211_radiotap_active_vap(vap)) {
4715 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4716 
4717 		tap->wt_flags = 0;
4718 		tap->wt_rate = rate;
4719 
4720 		ieee80211_radiotap_tx(vap, m);
4721 	}
4722 
4723 	tx->len = htole16(totlen);
4724 	tx->tid = 0;
4725 	tx->id = sc->broadcast_id;
4726 	tx->rts_ntries = params->ibp_try1;
4727 	tx->data_ntries = params->ibp_try0;
4728 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4729 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4730 
4731 	/* Group or management frame. */
4732 	tx->linkq = 0;
4733 
4734 	/* Set physical address of "scratch area". */
4735 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4736 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4737 
4738 	/* Copy 802.11 header in TX command. */
4739 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4740 
4741 	/* Trim 802.11 header. */
4742 	m_adj(m, hdrlen);
4743 	tx->security = 0;
4744 	tx->flags = htole32(flags);
4745 
4746 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4747 	    &nsegs, BUS_DMA_NOWAIT);
4748 	if (error != 0) {
4749 		if (error != EFBIG) {
4750 			device_printf(sc->sc_dev,
4751 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4752 			return error;
4753 		}
4754 		/* Too many DMA segments, linearize mbuf. */
4755 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4756 		if (m1 == NULL) {
4757 			device_printf(sc->sc_dev,
4758 			    "%s: could not defrag mbuf\n", __func__);
4759 			return ENOBUFS;
4760 		}
4761 		m = m1;
4762 
4763 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4764 		    segs, &nsegs, BUS_DMA_NOWAIT);
4765 		if (error != 0) {
4766 			device_printf(sc->sc_dev,
4767 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4768 			return error;
4769 		}
4770 	}
4771 
4772 	data->m = m;
4773 	data->ni = ni;
4774 
4775 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4776 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4777 
4778 	/* Fill TX descriptor. */
4779 	desc->nsegs = 1;
4780 	if (m->m_len != 0)
4781 		desc->nsegs += nsegs;
4782 	/* First DMA segment is used by the TX command. */
4783 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4784 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4785 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4786 	/* Other DMA segments are for data payload. */
4787 	seg = &segs[0];
4788 	for (i = 1; i <= nsegs; i++) {
4789 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4790 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4791 		    seg->ds_len << 4);
4792 		seg++;
4793 	}
4794 
4795 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4796 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4797 	    BUS_DMASYNC_PREWRITE);
4798 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4799 	    BUS_DMASYNC_PREWRITE);
4800 
4801 	/* Update TX scheduler. */
4802 	if (ring->qid >= sc->firstaggqueue)
4803 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4804 
4805 	/* Kick TX ring. */
4806 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4807 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4808 
4809 	/* Mark TX ring as full if we reach a certain threshold. */
4810 	if (++ring->queued > IWN_TX_RING_HIMARK)
4811 		sc->qfullmsk |= 1 << ring->qid;
4812 
4813 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4814 
4815 	return 0;
4816 }
4817 
4818 static void
4819 iwn_xmit_task(void *arg0, int pending)
4820 {
4821 	struct iwn_softc *sc = arg0;
4822 	struct ieee80211_node *ni;
4823 	struct mbuf *m;
4824 	int error;
4825 	struct ieee80211_bpf_params p;
4826 	int have_p;
4827 
4828 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4829 
4830 	IWN_LOCK(sc);
4831 	/*
4832 	 * Dequeue frames, attempt to transmit,
4833 	 * then disable beaconwait when we're done.
4834 	 */
4835 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4836 		have_p = 0;
4837 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4838 
4839 		/* Get xmit params if appropriate */
4840 		if (ieee80211_get_xmit_params(m, &p) == 0)
4841 			have_p = 1;
4842 
4843 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4844 		    __func__, m, have_p);
4845 
4846 		/* If we have xmit params, use them */
4847 		if (have_p)
4848 			error = iwn_tx_data_raw(sc, m, ni, &p);
4849 		else
4850 			error = iwn_tx_data(sc, m, ni);
4851 
4852 		if (error != 0) {
4853 			if_inc_counter(ni->ni_vap->iv_ifp,
4854 			    IFCOUNTER_OERRORS, 1);
4855 			ieee80211_free_node(ni);
4856 			m_freem(m);
4857 		}
4858 	}
4859 
4860 	sc->sc_beacon_wait = 0;
4861 	IWN_UNLOCK(sc);
4862 }
4863 
4864 /*
4865  * raw frame xmit - free node/reference if failed.
4866  */
4867 static int
4868 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4869     const struct ieee80211_bpf_params *params)
4870 {
4871 	struct ieee80211com *ic = ni->ni_ic;
4872 	struct iwn_softc *sc = ic->ic_softc;
4873 	int error = 0;
4874 
4875 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4876 
4877 	IWN_LOCK(sc);
4878 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4879 		m_freem(m);
4880 		IWN_UNLOCK(sc);
4881 		return (ENETDOWN);
4882 	}
4883 
4884 	/* queue frame if we have to */
4885 	if (sc->sc_beacon_wait) {
4886 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4887 			m_freem(m);
4888 			IWN_UNLOCK(sc);
4889 			return (ENOBUFS);
4890 		}
4891 		/* Queued, so just return OK */
4892 		IWN_UNLOCK(sc);
4893 		return (0);
4894 	}
4895 
4896 	if (params == NULL) {
4897 		/*
4898 		 * Legacy path; interpret frame contents to decide
4899 		 * precisely how to send the frame.
4900 		 */
4901 		error = iwn_tx_data(sc, m, ni);
4902 	} else {
4903 		/*
4904 		 * Caller supplied explicit parameters to use in
4905 		 * sending the frame.
4906 		 */
4907 		error = iwn_tx_data_raw(sc, m, ni, params);
4908 	}
4909 	if (error == 0)
4910 		sc->sc_tx_timer = 5;
4911 	else
4912 		m_freem(m);
4913 
4914 	IWN_UNLOCK(sc);
4915 
4916 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4917 
4918 	return (error);
4919 }
4920 
4921 /*
4922  * transmit - don't free mbuf if failed; don't free node ref if failed.
4923  */
4924 static int
4925 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4926 {
4927 	struct iwn_softc *sc = ic->ic_softc;
4928 	struct ieee80211_node *ni;
4929 	int error;
4930 
4931 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4932 
4933 	IWN_LOCK(sc);
4934 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4935 		IWN_UNLOCK(sc);
4936 		return (ENXIO);
4937 	}
4938 
4939 	if (sc->qfullmsk) {
4940 		IWN_UNLOCK(sc);
4941 		return (ENOBUFS);
4942 	}
4943 
4944 	error = iwn_tx_data(sc, m, ni);
4945 	if (!error)
4946 		sc->sc_tx_timer = 5;
4947 	IWN_UNLOCK(sc);
4948 	return (error);
4949 }
4950 
4951 static void
4952 iwn_watchdog(void *arg)
4953 {
4954 	struct iwn_softc *sc = arg;
4955 	struct ieee80211com *ic = &sc->sc_ic;
4956 
4957 	IWN_LOCK_ASSERT(sc);
4958 
4959 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4960 
4961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4962 
4963 	if (sc->sc_tx_timer > 0) {
4964 		if (--sc->sc_tx_timer == 0) {
4965 			ic_printf(ic, "device timeout\n");
4966 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4967 			return;
4968 		}
4969 	}
4970 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4971 }
4972 
4973 static int
4974 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
4975 {
4976 
4977 	return (0);
4978 }
4979 
4980 static int
4981 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
4982 {
4983 
4984 	return (0);
4985 }
4986 
4987 static int
4988 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
4989     struct thread *td)
4990 {
4991 	int rc;
4992 	struct iwn_softc *sc = dev->si_drv1;
4993 	struct iwn_ioctl_data *d;
4994 
4995 	rc = priv_check(td, PRIV_DRIVER);
4996 	if (rc != 0)
4997 		return (0);
4998 
4999 	switch (cmd) {
5000 	case SIOCGIWNSTATS:
5001 		d = (struct iwn_ioctl_data *) data;
5002 		IWN_LOCK(sc);
5003 		/* XXX validate permissions/memory/etc? */
5004 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5005 		IWN_UNLOCK(sc);
5006 		break;
5007 	case SIOCZIWNSTATS:
5008 		IWN_LOCK(sc);
5009 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5010 		IWN_UNLOCK(sc);
5011 		break;
5012 	default:
5013 		rc = EINVAL;
5014 		break;
5015 	}
5016 	return (rc);
5017 }
5018 
5019 static int
5020 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5021 {
5022 
5023 	return (ENOTTY);
5024 }
5025 
5026 static void
5027 iwn_parent(struct ieee80211com *ic)
5028 {
5029 	struct iwn_softc *sc = ic->ic_softc;
5030 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5031 	int startall = 0, stop = 0;
5032 
5033 	IWN_LOCK(sc);
5034 	if (ic->ic_nrunning > 0) {
5035 		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5036 			iwn_init_locked(sc);
5037 			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5038 				startall = 1;
5039 			else
5040 				stop = 1;
5041 		}
5042 	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5043 		iwn_stop_locked(sc);
5044 	IWN_UNLOCK(sc);
5045 	if (startall)
5046 		ieee80211_start_all(ic);
5047 	else if (vap != NULL && stop)
5048 		ieee80211_stop(vap);
5049 }
5050 
5051 /*
5052  * Send a command to the firmware.
5053  */
5054 static int
5055 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5056 {
5057 	struct iwn_tx_ring *ring;
5058 	struct iwn_tx_desc *desc;
5059 	struct iwn_tx_data *data;
5060 	struct iwn_tx_cmd *cmd;
5061 	struct mbuf *m;
5062 	bus_addr_t paddr;
5063 	int totlen, error;
5064 	int cmd_queue_num;
5065 
5066 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5067 
5068 	if (async == 0)
5069 		IWN_LOCK_ASSERT(sc);
5070 
5071 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5072 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5073 	else
5074 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5075 
5076 	ring = &sc->txq[cmd_queue_num];
5077 	desc = &ring->desc[ring->cur];
5078 	data = &ring->data[ring->cur];
5079 	totlen = 4 + size;
5080 
5081 	if (size > sizeof cmd->data) {
5082 		/* Command is too large to fit in a descriptor. */
5083 		if (totlen > MCLBYTES)
5084 			return EINVAL;
5085 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5086 		if (m == NULL)
5087 			return ENOMEM;
5088 		cmd = mtod(m, struct iwn_tx_cmd *);
5089 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5090 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5091 		if (error != 0) {
5092 			m_freem(m);
5093 			return error;
5094 		}
5095 		data->m = m;
5096 	} else {
5097 		cmd = &ring->cmd[ring->cur];
5098 		paddr = data->cmd_paddr;
5099 	}
5100 
5101 	cmd->code = code;
5102 	cmd->flags = 0;
5103 	cmd->qid = ring->qid;
5104 	cmd->idx = ring->cur;
5105 	memcpy(cmd->data, buf, size);
5106 
5107 	desc->nsegs = 1;
5108 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5109 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5110 
5111 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5112 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5113 	    cmd->flags, cmd->qid, cmd->idx);
5114 
5115 	if (size > sizeof cmd->data) {
5116 		bus_dmamap_sync(ring->data_dmat, data->map,
5117 		    BUS_DMASYNC_PREWRITE);
5118 	} else {
5119 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5120 		    BUS_DMASYNC_PREWRITE);
5121 	}
5122 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5123 	    BUS_DMASYNC_PREWRITE);
5124 
5125 	/* Kick command ring. */
5126 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5127 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5128 
5129 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5130 
5131 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5132 }
5133 
5134 static int
5135 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5136 {
5137 	struct iwn4965_node_info hnode;
5138 	caddr_t src, dst;
5139 
5140 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5141 
5142 	/*
5143 	 * We use the node structure for 5000 Series internally (it is
5144 	 * a superset of the one for 4965AGN). We thus copy the common
5145 	 * fields before sending the command.
5146 	 */
5147 	src = (caddr_t)node;
5148 	dst = (caddr_t)&hnode;
5149 	memcpy(dst, src, 48);
5150 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5151 	memcpy(dst + 48, src + 72, 20);
5152 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5153 }
5154 
5155 static int
5156 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5157 {
5158 
5159 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5160 
5161 	/* Direct mapping. */
5162 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5163 }
5164 
5165 static int
5166 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5167 {
5168 	struct iwn_node *wn = (void *)ni;
5169 	struct ieee80211_rateset *rs;
5170 	struct iwn_cmd_link_quality linkq;
5171 	int i, rate, txrate;
5172 	int is_11n;
5173 
5174 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5175 
5176 	memset(&linkq, 0, sizeof linkq);
5177 	linkq.id = wn->id;
5178 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5179 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5180 
5181 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5182 	linkq.ampdu_threshold = 3;
5183 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5184 
5185 	DPRINTF(sc, IWN_DEBUG_XMIT,
5186 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5187 	    __func__,
5188 	    linkq.antmsk_1stream,
5189 	    linkq.antmsk_2stream,
5190 	    sc->ntxchains);
5191 
5192 	/*
5193 	 * Are we using 11n rates? Ensure the channel is
5194 	 * 11n _and_ we have some 11n rates, or don't
5195 	 * try.
5196 	 */
5197 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5198 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5199 		is_11n = 1;
5200 	} else {
5201 		rs = &ni->ni_rates;
5202 		is_11n = 0;
5203 	}
5204 
5205 	/* Start at highest available bit-rate. */
5206 	/*
5207 	 * XXX this is all very dirty!
5208 	 */
5209 	if (is_11n)
5210 		txrate = ni->ni_htrates.rs_nrates - 1;
5211 	else
5212 		txrate = rs->rs_nrates - 1;
5213 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5214 		uint32_t plcp;
5215 
5216 		/*
5217 		 * XXX TODO: ensure the last two slots are the two lowest
5218 		 * rate entries, just for now.
5219 		 */
5220 		if (i == 14 || i == 15)
5221 			txrate = 0;
5222 
5223 		if (is_11n)
5224 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5225 		else
5226 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5227 
5228 		/* Do rate -> PLCP config mapping */
5229 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5230 		linkq.retry[i] = plcp;
5231 		DPRINTF(sc, IWN_DEBUG_XMIT,
5232 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5233 		    __func__,
5234 		    i,
5235 		    txrate,
5236 		    rate,
5237 		    le32toh(plcp));
5238 
5239 		/*
5240 		 * The mimo field is an index into the table which
5241 		 * indicates the first index where it and subsequent entries
5242 		 * will not be using MIMO.
5243 		 *
5244 		 * Since we're filling linkq from 0..15 and we're filling
5245 		 * from the higest MCS rates to the lowest rates, if we
5246 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5247 		 * the next entry.)  That way if the next entry is a non-MIMO
5248 		 * entry, we're already pointing at it.
5249 		 */
5250 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5251 		    IEEE80211_RV(le32toh(plcp)) > 7)
5252 			linkq.mimo = i + 1;
5253 
5254 		/* Next retry at immediate lower bit-rate. */
5255 		if (txrate > 0)
5256 			txrate--;
5257 	}
5258 	/*
5259 	 * If we reached the end of the list and indeed we hit
5260 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5261 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5262 	 */
5263 	if (linkq.mimo > 15)
5264 		linkq.mimo = 15;
5265 
5266 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5267 
5268 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5269 
5270 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5271 }
5272 
5273 /*
5274  * Broadcast node is used to send group-addressed and management frames.
5275  */
5276 static int
5277 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5278 {
5279 	struct iwn_ops *ops = &sc->ops;
5280 	struct ieee80211com *ic = &sc->sc_ic;
5281 	struct iwn_node_info node;
5282 	struct iwn_cmd_link_quality linkq;
5283 	uint8_t txant;
5284 	int i, error;
5285 
5286 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5287 
5288 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5289 
5290 	memset(&node, 0, sizeof node);
5291 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5292 	node.id = sc->broadcast_id;
5293 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5294 	if ((error = ops->add_node(sc, &node, async)) != 0)
5295 		return error;
5296 
5297 	/* Use the first valid TX antenna. */
5298 	txant = IWN_LSB(sc->txchainmask);
5299 
5300 	memset(&linkq, 0, sizeof linkq);
5301 	linkq.id = sc->broadcast_id;
5302 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5303 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5304 	linkq.ampdu_max = 64;
5305 	linkq.ampdu_threshold = 3;
5306 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5307 
5308 	/* Use lowest mandatory bit-rate. */
5309 	/* XXX rate table lookup? */
5310 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5311 		linkq.retry[0] = htole32(0xd);
5312 	else
5313 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5314 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5315 	/* Use same bit-rate for all TX retries. */
5316 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5317 		linkq.retry[i] = linkq.retry[0];
5318 	}
5319 
5320 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5321 
5322 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5323 }
5324 
5325 static int
5326 iwn_updateedca(struct ieee80211com *ic)
5327 {
5328 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5329 	struct iwn_softc *sc = ic->ic_softc;
5330 	struct iwn_edca_params cmd;
5331 	int aci;
5332 
5333 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5334 
5335 	memset(&cmd, 0, sizeof cmd);
5336 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5337 
5338 	IEEE80211_LOCK(ic);
5339 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5340 		const struct wmeParams *ac =
5341 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5342 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5343 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5344 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5345 		cmd.ac[aci].txoplimit =
5346 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5347 	}
5348 	IEEE80211_UNLOCK(ic);
5349 
5350 	IWN_LOCK(sc);
5351 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5352 	IWN_UNLOCK(sc);
5353 
5354 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5355 
5356 	return 0;
5357 #undef IWN_EXP2
5358 }
5359 
5360 static void
5361 iwn_update_mcast(struct ieee80211com *ic)
5362 {
5363 	/* Ignore */
5364 }
5365 
5366 static void
5367 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5368 {
5369 	struct iwn_cmd_led led;
5370 
5371 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5372 
5373 #if 0
5374 	/* XXX don't set LEDs during scan? */
5375 	if (sc->sc_is_scanning)
5376 		return;
5377 #endif
5378 
5379 	/* Clear microcode LED ownership. */
5380 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5381 
5382 	led.which = which;
5383 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5384 	led.off = off;
5385 	led.on = on;
5386 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5387 }
5388 
5389 /*
5390  * Set the critical temperature at which the firmware will stop the radio
5391  * and notify us.
5392  */
5393 static int
5394 iwn_set_critical_temp(struct iwn_softc *sc)
5395 {
5396 	struct iwn_critical_temp crit;
5397 	int32_t temp;
5398 
5399 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5400 
5401 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5402 
5403 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5404 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5405 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5406 		temp = IWN_CTOK(110);
5407 	else
5408 		temp = 110;
5409 	memset(&crit, 0, sizeof crit);
5410 	crit.tempR = htole32(temp);
5411 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5412 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5413 }
5414 
5415 static int
5416 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5417 {
5418 	struct iwn_cmd_timing cmd;
5419 	uint64_t val, mod;
5420 
5421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5422 
5423 	memset(&cmd, 0, sizeof cmd);
5424 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5425 	cmd.bintval = htole16(ni->ni_intval);
5426 	cmd.lintval = htole16(10);
5427 
5428 	/* Compute remaining time until next beacon. */
5429 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5430 	mod = le64toh(cmd.tstamp) % val;
5431 	cmd.binitval = htole32((uint32_t)(val - mod));
5432 
5433 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5434 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5435 
5436 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5437 }
5438 
5439 static void
5440 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5441 {
5442 	struct ieee80211com *ic = &sc->sc_ic;
5443 
5444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5445 
5446 	/* Adjust TX power if need be (delta >= 3 degC). */
5447 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5448 	    __func__, sc->temp, temp);
5449 	if (abs(temp - sc->temp) >= 3) {
5450 		/* Record temperature of last calibration. */
5451 		sc->temp = temp;
5452 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5453 	}
5454 }
5455 
5456 /*
5457  * Set TX power for current channel (each rate has its own power settings).
5458  * This function takes into account the regulatory information from EEPROM,
5459  * the current temperature and the current voltage.
5460  */
5461 static int
5462 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5463     int async)
5464 {
5465 /* Fixed-point arithmetic division using a n-bit fractional part. */
5466 #define fdivround(a, b, n)	\
5467 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5468 /* Linear interpolation. */
5469 #define interpolate(x, x1, y1, x2, y2, n)	\
5470 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5471 
5472 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5473 	struct iwn_ucode_info *uc = &sc->ucode_info;
5474 	struct iwn4965_cmd_txpower cmd;
5475 	struct iwn4965_eeprom_chan_samples *chans;
5476 	const uint8_t *rf_gain, *dsp_gain;
5477 	int32_t vdiff, tdiff;
5478 	int i, c, grp, maxpwr;
5479 	uint8_t chan;
5480 
5481 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5482 	/* Retrieve current channel from last RXON. */
5483 	chan = sc->rxon->chan;
5484 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5485 	    chan);
5486 
5487 	memset(&cmd, 0, sizeof cmd);
5488 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5489 	cmd.chan = chan;
5490 
5491 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5492 		maxpwr   = sc->maxpwr5GHz;
5493 		rf_gain  = iwn4965_rf_gain_5ghz;
5494 		dsp_gain = iwn4965_dsp_gain_5ghz;
5495 	} else {
5496 		maxpwr   = sc->maxpwr2GHz;
5497 		rf_gain  = iwn4965_rf_gain_2ghz;
5498 		dsp_gain = iwn4965_dsp_gain_2ghz;
5499 	}
5500 
5501 	/* Compute voltage compensation. */
5502 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5503 	if (vdiff > 0)
5504 		vdiff *= 2;
5505 	if (abs(vdiff) > 2)
5506 		vdiff = 0;
5507 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5508 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5509 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5510 
5511 	/* Get channel attenuation group. */
5512 	if (chan <= 20)		/* 1-20 */
5513 		grp = 4;
5514 	else if (chan <= 43)	/* 34-43 */
5515 		grp = 0;
5516 	else if (chan <= 70)	/* 44-70 */
5517 		grp = 1;
5518 	else if (chan <= 124)	/* 71-124 */
5519 		grp = 2;
5520 	else			/* 125-200 */
5521 		grp = 3;
5522 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5523 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5524 
5525 	/* Get channel sub-band. */
5526 	for (i = 0; i < IWN_NBANDS; i++)
5527 		if (sc->bands[i].lo != 0 &&
5528 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5529 			break;
5530 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5531 		return EINVAL;
5532 	chans = sc->bands[i].chans;
5533 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5534 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5535 
5536 	for (c = 0; c < 2; c++) {
5537 		uint8_t power, gain, temp;
5538 		int maxchpwr, pwr, ridx, idx;
5539 
5540 		power = interpolate(chan,
5541 		    chans[0].num, chans[0].samples[c][1].power,
5542 		    chans[1].num, chans[1].samples[c][1].power, 1);
5543 		gain  = interpolate(chan,
5544 		    chans[0].num, chans[0].samples[c][1].gain,
5545 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5546 		temp  = interpolate(chan,
5547 		    chans[0].num, chans[0].samples[c][1].temp,
5548 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5549 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5550 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5551 		    __func__, c, power, gain, temp);
5552 
5553 		/* Compute temperature compensation. */
5554 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5555 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5556 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5557 		    __func__, tdiff, sc->temp, temp);
5558 
5559 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5560 			/* Convert dBm to half-dBm. */
5561 			maxchpwr = sc->maxpwr[chan] * 2;
5562 			if ((ridx / 8) & 1)
5563 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5564 
5565 			pwr = maxpwr;
5566 
5567 			/* Adjust TX power based on rate. */
5568 			if ((ridx % 8) == 5)
5569 				pwr -= 15;	/* OFDM48: -7.5dB */
5570 			else if ((ridx % 8) == 6)
5571 				pwr -= 17;	/* OFDM54: -8.5dB */
5572 			else if ((ridx % 8) == 7)
5573 				pwr -= 20;	/* OFDM60: -10dB */
5574 			else
5575 				pwr -= 10;	/* Others: -5dB */
5576 
5577 			/* Do not exceed channel max TX power. */
5578 			if (pwr > maxchpwr)
5579 				pwr = maxchpwr;
5580 
5581 			idx = gain - (pwr - power) - tdiff - vdiff;
5582 			if ((ridx / 8) & 1)	/* MIMO */
5583 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5584 
5585 			if (cmd.band == 0)
5586 				idx += 9;	/* 5GHz */
5587 			if (ridx == IWN_RIDX_MAX)
5588 				idx += 5;	/* CCK */
5589 
5590 			/* Make sure idx stays in a valid range. */
5591 			if (idx < 0)
5592 				idx = 0;
5593 			else if (idx > IWN4965_MAX_PWR_INDEX)
5594 				idx = IWN4965_MAX_PWR_INDEX;
5595 
5596 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5597 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5598 			    __func__, c, ridx, idx);
5599 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5600 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5601 		}
5602 	}
5603 
5604 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5605 	    "%s: set tx power for chan %d\n", __func__, chan);
5606 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5607 
5608 #undef interpolate
5609 #undef fdivround
5610 }
5611 
5612 static int
5613 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5614     int async)
5615 {
5616 	struct iwn5000_cmd_txpower cmd;
5617 	int cmdid;
5618 
5619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5620 
5621 	/*
5622 	 * TX power calibration is handled automatically by the firmware
5623 	 * for 5000 Series.
5624 	 */
5625 	memset(&cmd, 0, sizeof cmd);
5626 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5627 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5628 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5629 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5630 	    "%s: setting TX power; rev=%d\n",
5631 	    __func__,
5632 	    IWN_UCODE_API(sc->ucode_rev));
5633 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5634 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5635 	else
5636 		cmdid = IWN_CMD_TXPOWER_DBM;
5637 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5638 }
5639 
5640 /*
5641  * Retrieve the maximum RSSI (in dBm) among receivers.
5642  */
5643 static int
5644 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5645 {
5646 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5647 	uint8_t mask, agc;
5648 	int rssi;
5649 
5650 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5651 
5652 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5653 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5654 
5655 	rssi = 0;
5656 	if (mask & IWN_ANT_A)
5657 		rssi = MAX(rssi, phy->rssi[0]);
5658 	if (mask & IWN_ANT_B)
5659 		rssi = MAX(rssi, phy->rssi[2]);
5660 	if (mask & IWN_ANT_C)
5661 		rssi = MAX(rssi, phy->rssi[4]);
5662 
5663 	DPRINTF(sc, IWN_DEBUG_RECV,
5664 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5665 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5666 	    rssi - agc - IWN_RSSI_TO_DBM);
5667 	return rssi - agc - IWN_RSSI_TO_DBM;
5668 }
5669 
5670 static int
5671 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5672 {
5673 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5674 	uint8_t agc;
5675 	int rssi;
5676 
5677 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5678 
5679 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5680 
5681 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5682 		   le16toh(phy->rssi[1]) & 0xff);
5683 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5684 
5685 	DPRINTF(sc, IWN_DEBUG_RECV,
5686 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5687 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5688 	    rssi - agc - IWN_RSSI_TO_DBM);
5689 	return rssi - agc - IWN_RSSI_TO_DBM;
5690 }
5691 
5692 /*
5693  * Retrieve the average noise (in dBm) among receivers.
5694  */
5695 static int
5696 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5697 {
5698 	int i, total, nbant, noise;
5699 
5700 	total = nbant = 0;
5701 	for (i = 0; i < 3; i++) {
5702 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5703 			continue;
5704 		total += noise;
5705 		nbant++;
5706 	}
5707 	/* There should be at least one antenna but check anyway. */
5708 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5709 }
5710 
5711 /*
5712  * Compute temperature (in degC) from last received statistics.
5713  */
5714 static int
5715 iwn4965_get_temperature(struct iwn_softc *sc)
5716 {
5717 	struct iwn_ucode_info *uc = &sc->ucode_info;
5718 	int32_t r1, r2, r3, r4, temp;
5719 
5720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5721 
5722 	r1 = le32toh(uc->temp[0].chan20MHz);
5723 	r2 = le32toh(uc->temp[1].chan20MHz);
5724 	r3 = le32toh(uc->temp[2].chan20MHz);
5725 	r4 = le32toh(sc->rawtemp);
5726 
5727 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5728 		return 0;
5729 
5730 	/* Sign-extend 23-bit R4 value to 32-bit. */
5731 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5732 	/* Compute temperature in Kelvin. */
5733 	temp = (259 * (r4 - r2)) / (r3 - r1);
5734 	temp = (temp * 97) / 100 + 8;
5735 
5736 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5737 	    IWN_KTOC(temp));
5738 	return IWN_KTOC(temp);
5739 }
5740 
5741 static int
5742 iwn5000_get_temperature(struct iwn_softc *sc)
5743 {
5744 	int32_t temp;
5745 
5746 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5747 
5748 	/*
5749 	 * Temperature is not used by the driver for 5000 Series because
5750 	 * TX power calibration is handled by firmware.
5751 	 */
5752 	temp = le32toh(sc->rawtemp);
5753 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5754 		temp = (temp / -5) + sc->temp_off;
5755 		temp = IWN_KTOC(temp);
5756 	}
5757 	return temp;
5758 }
5759 
5760 /*
5761  * Initialize sensitivity calibration state machine.
5762  */
5763 static int
5764 iwn_init_sensitivity(struct iwn_softc *sc)
5765 {
5766 	struct iwn_ops *ops = &sc->ops;
5767 	struct iwn_calib_state *calib = &sc->calib;
5768 	uint32_t flags;
5769 	int error;
5770 
5771 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5772 
5773 	/* Reset calibration state machine. */
5774 	memset(calib, 0, sizeof (*calib));
5775 	calib->state = IWN_CALIB_STATE_INIT;
5776 	calib->cck_state = IWN_CCK_STATE_HIFA;
5777 	/* Set initial correlation values. */
5778 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5779 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5780 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5781 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5782 	calib->cck_x4      = 125;
5783 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5784 	calib->energy_cck  = sc->limits->energy_cck;
5785 
5786 	/* Write initial sensitivity. */
5787 	if ((error = iwn_send_sensitivity(sc)) != 0)
5788 		return error;
5789 
5790 	/* Write initial gains. */
5791 	if ((error = ops->init_gains(sc)) != 0)
5792 		return error;
5793 
5794 	/* Request statistics at each beacon interval. */
5795 	flags = 0;
5796 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5797 	    __func__);
5798 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5799 }
5800 
5801 /*
5802  * Collect noise and RSSI statistics for the first 20 beacons received
5803  * after association and use them to determine connected antennas and
5804  * to set differential gains.
5805  */
5806 static void
5807 iwn_collect_noise(struct iwn_softc *sc,
5808     const struct iwn_rx_general_stats *stats)
5809 {
5810 	struct iwn_ops *ops = &sc->ops;
5811 	struct iwn_calib_state *calib = &sc->calib;
5812 	struct ieee80211com *ic = &sc->sc_ic;
5813 	uint32_t val;
5814 	int i;
5815 
5816 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5817 
5818 	/* Accumulate RSSI and noise for all 3 antennas. */
5819 	for (i = 0; i < 3; i++) {
5820 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5821 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5822 	}
5823 	/* NB: We update differential gains only once after 20 beacons. */
5824 	if (++calib->nbeacons < 20)
5825 		return;
5826 
5827 	/* Determine highest average RSSI. */
5828 	val = MAX(calib->rssi[0], calib->rssi[1]);
5829 	val = MAX(calib->rssi[2], val);
5830 
5831 	/* Determine which antennas are connected. */
5832 	sc->chainmask = sc->rxchainmask;
5833 	for (i = 0; i < 3; i++)
5834 		if (val - calib->rssi[i] > 15 * 20)
5835 			sc->chainmask &= ~(1 << i);
5836 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5837 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5838 	    __func__, sc->rxchainmask, sc->chainmask);
5839 
5840 	/* If none of the TX antennas are connected, keep at least one. */
5841 	if ((sc->chainmask & sc->txchainmask) == 0)
5842 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5843 
5844 	(void)ops->set_gains(sc);
5845 	calib->state = IWN_CALIB_STATE_RUN;
5846 
5847 #ifdef notyet
5848 	/* XXX Disable RX chains with no antennas connected. */
5849 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5850 	if (sc->sc_is_scanning)
5851 		device_printf(sc->sc_dev,
5852 		    "%s: is_scanning set, before RXON\n",
5853 		    __func__);
5854 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5855 #endif
5856 
5857 	/* Enable power-saving mode if requested by user. */
5858 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5859 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5860 
5861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5862 
5863 }
5864 
5865 static int
5866 iwn4965_init_gains(struct iwn_softc *sc)
5867 {
5868 	struct iwn_phy_calib_gain cmd;
5869 
5870 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5871 
5872 	memset(&cmd, 0, sizeof cmd);
5873 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5874 	/* Differential gains initially set to 0 for all 3 antennas. */
5875 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5876 	    "%s: setting initial differential gains\n", __func__);
5877 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5878 }
5879 
5880 static int
5881 iwn5000_init_gains(struct iwn_softc *sc)
5882 {
5883 	struct iwn_phy_calib cmd;
5884 
5885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5886 
5887 	memset(&cmd, 0, sizeof cmd);
5888 	cmd.code = sc->reset_noise_gain;
5889 	cmd.ngroups = 1;
5890 	cmd.isvalid = 1;
5891 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5892 	    "%s: setting initial differential gains\n", __func__);
5893 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5894 }
5895 
5896 static int
5897 iwn4965_set_gains(struct iwn_softc *sc)
5898 {
5899 	struct iwn_calib_state *calib = &sc->calib;
5900 	struct iwn_phy_calib_gain cmd;
5901 	int i, delta, noise;
5902 
5903 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5904 
5905 	/* Get minimal noise among connected antennas. */
5906 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5907 	for (i = 0; i < 3; i++)
5908 		if (sc->chainmask & (1 << i))
5909 			noise = MIN(calib->noise[i], noise);
5910 
5911 	memset(&cmd, 0, sizeof cmd);
5912 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5913 	/* Set differential gains for connected antennas. */
5914 	for (i = 0; i < 3; i++) {
5915 		if (sc->chainmask & (1 << i)) {
5916 			/* Compute attenuation (in unit of 1.5dB). */
5917 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5918 			/* NB: delta <= 0 */
5919 			/* Limit to [-4.5dB,0]. */
5920 			cmd.gain[i] = MIN(abs(delta), 3);
5921 			if (delta < 0)
5922 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5923 		}
5924 	}
5925 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5926 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5927 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5928 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5929 }
5930 
5931 static int
5932 iwn5000_set_gains(struct iwn_softc *sc)
5933 {
5934 	struct iwn_calib_state *calib = &sc->calib;
5935 	struct iwn_phy_calib_gain cmd;
5936 	int i, ant, div, delta;
5937 
5938 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5939 
5940 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5941 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5942 
5943 	memset(&cmd, 0, sizeof cmd);
5944 	cmd.code = sc->noise_gain;
5945 	cmd.ngroups = 1;
5946 	cmd.isvalid = 1;
5947 	/* Get first available RX antenna as referential. */
5948 	ant = IWN_LSB(sc->rxchainmask);
5949 	/* Set differential gains for other antennas. */
5950 	for (i = ant + 1; i < 3; i++) {
5951 		if (sc->chainmask & (1 << i)) {
5952 			/* The delta is relative to antenna "ant". */
5953 			delta = ((int32_t)calib->noise[ant] -
5954 			    (int32_t)calib->noise[i]) / div;
5955 			/* Limit to [-4.5dB,+4.5dB]. */
5956 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5957 			if (delta < 0)
5958 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5959 		}
5960 	}
5961 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5962 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5963 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5964 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5965 }
5966 
5967 /*
5968  * Tune RF RX sensitivity based on the number of false alarms detected
5969  * during the last beacon period.
5970  */
5971 static void
5972 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5973 {
5974 #define inc(val, inc, max)			\
5975 	if ((val) < (max)) {			\
5976 		if ((val) < (max) - (inc))	\
5977 			(val) += (inc);		\
5978 		else				\
5979 			(val) = (max);		\
5980 		needs_update = 1;		\
5981 	}
5982 #define dec(val, dec, min)			\
5983 	if ((val) > (min)) {			\
5984 		if ((val) > (min) + (dec))	\
5985 			(val) -= (dec);		\
5986 		else				\
5987 			(val) = (min);		\
5988 		needs_update = 1;		\
5989 	}
5990 
5991 	const struct iwn_sensitivity_limits *limits = sc->limits;
5992 	struct iwn_calib_state *calib = &sc->calib;
5993 	uint32_t val, rxena, fa;
5994 	uint32_t energy[3], energy_min;
5995 	uint8_t noise[3], noise_ref;
5996 	int i, needs_update = 0;
5997 
5998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5999 
6000 	/* Check that we've been enabled long enough. */
6001 	if ((rxena = le32toh(stats->general.load)) == 0){
6002 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6003 		return;
6004 	}
6005 
6006 	/* Compute number of false alarms since last call for OFDM. */
6007 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6008 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6009 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6010 
6011 	if (fa > 50 * rxena) {
6012 		/* High false alarm count, decrease sensitivity. */
6013 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6014 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6015 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6016 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6017 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6018 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6019 
6020 	} else if (fa < 5 * rxena) {
6021 		/* Low false alarm count, increase sensitivity. */
6022 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6023 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6024 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6025 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6026 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6027 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6028 	}
6029 
6030 	/* Compute maximum noise among 3 receivers. */
6031 	for (i = 0; i < 3; i++)
6032 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6033 	val = MAX(noise[0], noise[1]);
6034 	val = MAX(noise[2], val);
6035 	/* Insert it into our samples table. */
6036 	calib->noise_samples[calib->cur_noise_sample] = val;
6037 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6038 
6039 	/* Compute maximum noise among last 20 samples. */
6040 	noise_ref = calib->noise_samples[0];
6041 	for (i = 1; i < 20; i++)
6042 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6043 
6044 	/* Compute maximum energy among 3 receivers. */
6045 	for (i = 0; i < 3; i++)
6046 		energy[i] = le32toh(stats->general.energy[i]);
6047 	val = MIN(energy[0], energy[1]);
6048 	val = MIN(energy[2], val);
6049 	/* Insert it into our samples table. */
6050 	calib->energy_samples[calib->cur_energy_sample] = val;
6051 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6052 
6053 	/* Compute minimum energy among last 10 samples. */
6054 	energy_min = calib->energy_samples[0];
6055 	for (i = 1; i < 10; i++)
6056 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6057 	energy_min += 6;
6058 
6059 	/* Compute number of false alarms since last call for CCK. */
6060 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6061 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6062 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6063 
6064 	if (fa > 50 * rxena) {
6065 		/* High false alarm count, decrease sensitivity. */
6066 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6067 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6068 		calib->cck_state = IWN_CCK_STATE_HIFA;
6069 		calib->low_fa = 0;
6070 
6071 		if (calib->cck_x4 > 160) {
6072 			calib->noise_ref = noise_ref;
6073 			if (calib->energy_cck > 2)
6074 				dec(calib->energy_cck, 2, energy_min);
6075 		}
6076 		if (calib->cck_x4 < 160) {
6077 			calib->cck_x4 = 161;
6078 			needs_update = 1;
6079 		} else
6080 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6081 
6082 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6083 
6084 	} else if (fa < 5 * rxena) {
6085 		/* Low false alarm count, increase sensitivity. */
6086 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6087 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6088 		calib->cck_state = IWN_CCK_STATE_LOFA;
6089 		calib->low_fa++;
6090 
6091 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6092 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6093 		     calib->low_fa > 100)) {
6094 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6095 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6096 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6097 		}
6098 	} else {
6099 		/* Not worth to increase or decrease sensitivity. */
6100 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6101 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6102 		calib->low_fa = 0;
6103 		calib->noise_ref = noise_ref;
6104 
6105 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6106 			/* Previous interval had many false alarms. */
6107 			dec(calib->energy_cck, 8, energy_min);
6108 		}
6109 		calib->cck_state = IWN_CCK_STATE_INIT;
6110 	}
6111 
6112 	if (needs_update)
6113 		(void)iwn_send_sensitivity(sc);
6114 
6115 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6116 
6117 #undef dec
6118 #undef inc
6119 }
6120 
6121 static int
6122 iwn_send_sensitivity(struct iwn_softc *sc)
6123 {
6124 	struct iwn_calib_state *calib = &sc->calib;
6125 	struct iwn_enhanced_sensitivity_cmd cmd;
6126 	int len;
6127 
6128 	memset(&cmd, 0, sizeof cmd);
6129 	len = sizeof (struct iwn_sensitivity_cmd);
6130 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6131 	/* OFDM modulation. */
6132 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6133 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6134 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6135 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6136 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6137 	cmd.energy_ofdm_th     = htole16(62);
6138 	/* CCK modulation. */
6139 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6140 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6141 	cmd.energy_cck         = htole16(calib->energy_cck);
6142 	/* Barker modulation: use default values. */
6143 	cmd.corr_barker        = htole16(190);
6144 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6145 
6146 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6147 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6148 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6149 	    calib->ofdm_mrc_x4, calib->cck_x4,
6150 	    calib->cck_mrc_x4, calib->energy_cck);
6151 
6152 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6153 		goto send;
6154 	/* Enhanced sensitivity settings. */
6155 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6156 	cmd.ofdm_det_slope_mrc = htole16(668);
6157 	cmd.ofdm_det_icept_mrc = htole16(4);
6158 	cmd.ofdm_det_slope     = htole16(486);
6159 	cmd.ofdm_det_icept     = htole16(37);
6160 	cmd.cck_det_slope_mrc  = htole16(853);
6161 	cmd.cck_det_icept_mrc  = htole16(4);
6162 	cmd.cck_det_slope      = htole16(476);
6163 	cmd.cck_det_icept      = htole16(99);
6164 send:
6165 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6166 }
6167 
6168 /*
6169  * Look at the increase of PLCP errors over time; if it exceeds
6170  * a programmed threshold then trigger an RF retune.
6171  */
6172 static void
6173 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6174 {
6175 	int32_t delta_ofdm, delta_ht, delta_cck;
6176 	struct iwn_calib_state *calib = &sc->calib;
6177 	int delta_ticks, cur_ticks;
6178 	int delta_msec;
6179 	int thresh;
6180 
6181 	/*
6182 	 * Calculate the difference between the current and
6183 	 * previous statistics.
6184 	 */
6185 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6186 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6187 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6188 
6189 	/*
6190 	 * Calculate the delta in time between successive statistics
6191 	 * messages.  Yes, it can roll over; so we make sure that
6192 	 * this doesn't happen.
6193 	 *
6194 	 * XXX go figure out what to do about rollover
6195 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6196 	 * XXX go stab signed integer overflow undefined-ness in the face.
6197 	 */
6198 	cur_ticks = ticks;
6199 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6200 
6201 	/*
6202 	 * If any are negative, then the firmware likely reset; so just
6203 	 * bail.  We'll pick this up next time.
6204 	 */
6205 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6206 		return;
6207 
6208 	/*
6209 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6210 	 * so we can do some useful math with it.
6211 	 */
6212 	delta_msec = ticks_to_msecs(delta_ticks);
6213 
6214 	/*
6215 	 * Calculate what our threshold is given the current delta_msec.
6216 	 */
6217 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6218 
6219 	DPRINTF(sc, IWN_DEBUG_STATE,
6220 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6221 	    __func__,
6222 	    delta_msec,
6223 	    delta_cck,
6224 	    delta_ofdm,
6225 	    delta_ht,
6226 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6227 	    thresh);
6228 
6229 	/*
6230 	 * If we need a retune, then schedule a single channel scan
6231 	 * to a channel that isn't the currently active one!
6232 	 *
6233 	 * The math from linux iwlwifi:
6234 	 *
6235 	 * if ((delta * 100 / msecs) > threshold)
6236 	 */
6237 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6238 		DPRINTF(sc, IWN_DEBUG_ANY,
6239 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6240 		    "over limit (%d); retune!\n",
6241 		    __func__,
6242 		    (delta_cck + delta_ofdm + delta_ht),
6243 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6244 		    thresh);
6245 	}
6246 }
6247 
6248 /*
6249  * Set STA mode power saving level (between 0 and 5).
6250  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6251  */
6252 static int
6253 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6254 {
6255 	struct iwn_pmgt_cmd cmd;
6256 	const struct iwn_pmgt *pmgt;
6257 	uint32_t max, skip_dtim;
6258 	uint32_t reg;
6259 	int i;
6260 
6261 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6262 	    "%s: dtim=%d, level=%d, async=%d\n",
6263 	    __func__,
6264 	    dtim,
6265 	    level,
6266 	    async);
6267 
6268 	/* Select which PS parameters to use. */
6269 	if (dtim <= 2)
6270 		pmgt = &iwn_pmgt[0][level];
6271 	else if (dtim <= 10)
6272 		pmgt = &iwn_pmgt[1][level];
6273 	else
6274 		pmgt = &iwn_pmgt[2][level];
6275 
6276 	memset(&cmd, 0, sizeof cmd);
6277 	if (level != 0)	/* not CAM */
6278 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6279 	if (level == 5)
6280 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6281 	/* Retrieve PCIe Active State Power Management (ASPM). */
6282 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6283 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6284 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6285 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6286 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6287 
6288 	if (dtim == 0) {
6289 		dtim = 1;
6290 		skip_dtim = 0;
6291 	} else
6292 		skip_dtim = pmgt->skip_dtim;
6293 	if (skip_dtim != 0) {
6294 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6295 		max = pmgt->intval[4];
6296 		if (max == (uint32_t)-1)
6297 			max = dtim * (skip_dtim + 1);
6298 		else if (max > dtim)
6299 			max = (max / dtim) * dtim;
6300 	} else
6301 		max = dtim;
6302 	for (i = 0; i < 5; i++)
6303 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6304 
6305 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6306 	    level);
6307 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6308 }
6309 
6310 static int
6311 iwn_send_btcoex(struct iwn_softc *sc)
6312 {
6313 	struct iwn_bluetooth cmd;
6314 
6315 	memset(&cmd, 0, sizeof cmd);
6316 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6317 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6318 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6319 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6320 	    __func__);
6321 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6322 }
6323 
6324 static int
6325 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6326 {
6327 	static const uint32_t btcoex_3wire[12] = {
6328 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6329 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6330 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6331 	};
6332 	struct iwn6000_btcoex_config btconfig;
6333 	struct iwn2000_btcoex_config btconfig2k;
6334 	struct iwn_btcoex_priotable btprio;
6335 	struct iwn_btcoex_prot btprot;
6336 	int error, i;
6337 	uint8_t flags;
6338 
6339 	memset(&btconfig, 0, sizeof btconfig);
6340 	memset(&btconfig2k, 0, sizeof btconfig2k);
6341 
6342 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6343 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6344 
6345 	if (sc->base_params->bt_sco_disable)
6346 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6347 	else
6348 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6349 
6350 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6351 
6352 	/* Default flags result is 145 as old value */
6353 
6354 	/*
6355 	 * Flags value has to be review. Values must change if we
6356 	 * which to disable it
6357 	 */
6358 	if (sc->base_params->bt_session_2) {
6359 		btconfig2k.flags = flags;
6360 		btconfig2k.max_kill = 5;
6361 		btconfig2k.bt3_t7_timer = 1;
6362 		btconfig2k.kill_ack = htole32(0xffff0000);
6363 		btconfig2k.kill_cts = htole32(0xffff0000);
6364 		btconfig2k.sample_time = 2;
6365 		btconfig2k.bt3_t2_timer = 0xc;
6366 
6367 		for (i = 0; i < 12; i++)
6368 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6369 		btconfig2k.valid = htole16(0xff);
6370 		btconfig2k.prio_boost = htole32(0xf0);
6371 		DPRINTF(sc, IWN_DEBUG_RESET,
6372 		    "%s: configuring advanced bluetooth coexistence"
6373 		    " session 2, flags : 0x%x\n",
6374 		    __func__,
6375 		    flags);
6376 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6377 		    sizeof(btconfig2k), 1);
6378 	} else {
6379 		btconfig.flags = flags;
6380 		btconfig.max_kill = 5;
6381 		btconfig.bt3_t7_timer = 1;
6382 		btconfig.kill_ack = htole32(0xffff0000);
6383 		btconfig.kill_cts = htole32(0xffff0000);
6384 		btconfig.sample_time = 2;
6385 		btconfig.bt3_t2_timer = 0xc;
6386 
6387 		for (i = 0; i < 12; i++)
6388 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6389 		btconfig.valid = htole16(0xff);
6390 		btconfig.prio_boost = 0xf0;
6391 		DPRINTF(sc, IWN_DEBUG_RESET,
6392 		    "%s: configuring advanced bluetooth coexistence,"
6393 		    " flags : 0x%x\n",
6394 		    __func__,
6395 		    flags);
6396 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6397 		    sizeof(btconfig), 1);
6398 	}
6399 
6400 	if (error != 0)
6401 		return error;
6402 
6403 	memset(&btprio, 0, sizeof btprio);
6404 	btprio.calib_init1 = 0x6;
6405 	btprio.calib_init2 = 0x7;
6406 	btprio.calib_periodic_low1 = 0x2;
6407 	btprio.calib_periodic_low2 = 0x3;
6408 	btprio.calib_periodic_high1 = 0x4;
6409 	btprio.calib_periodic_high2 = 0x5;
6410 	btprio.dtim = 0x6;
6411 	btprio.scan52 = 0x8;
6412 	btprio.scan24 = 0xa;
6413 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6414 	    1);
6415 	if (error != 0)
6416 		return error;
6417 
6418 	/* Force BT state machine change. */
6419 	memset(&btprot, 0, sizeof btprot);
6420 	btprot.open = 1;
6421 	btprot.type = 1;
6422 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6423 	if (error != 0)
6424 		return error;
6425 	btprot.open = 0;
6426 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6427 }
6428 
6429 static int
6430 iwn5000_runtime_calib(struct iwn_softc *sc)
6431 {
6432 	struct iwn5000_calib_config cmd;
6433 
6434 	memset(&cmd, 0, sizeof cmd);
6435 	cmd.ucode.once.enable = 0xffffffff;
6436 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6437 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6438 	    "%s: configuring runtime calibration\n", __func__);
6439 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6440 }
6441 
6442 static uint32_t
6443 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6444 {
6445 	struct ieee80211com *ic = &sc->sc_ic;
6446 	uint32_t htflags = 0;
6447 
6448 	if (! IEEE80211_IS_CHAN_HT(c))
6449 		return (0);
6450 
6451 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6452 
6453 	if (IEEE80211_IS_CHAN_HT40(c)) {
6454 		switch (ic->ic_curhtprotmode) {
6455 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6456 			htflags |= IWN_RXON_HT_MODEPURE40;
6457 			break;
6458 		default:
6459 			htflags |= IWN_RXON_HT_MODEMIXED;
6460 			break;
6461 		}
6462 	}
6463 	if (IEEE80211_IS_CHAN_HT40D(c))
6464 		htflags |= IWN_RXON_HT_HT40MINUS;
6465 
6466 	return (htflags);
6467 }
6468 
6469 static int
6470 iwn_config(struct iwn_softc *sc)
6471 {
6472 	struct iwn_ops *ops = &sc->ops;
6473 	struct ieee80211com *ic = &sc->sc_ic;
6474 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6475 	const uint8_t *macaddr;
6476 	uint32_t txmask;
6477 	uint16_t rxchain;
6478 	int error;
6479 
6480 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6481 
6482 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6483 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6484 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6485 		    " exclusive each together. Review NIC config file. Conf"
6486 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6487 		    sc->base_params->calib_need,
6488 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6489 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6490 		return (EINVAL);
6491 	}
6492 
6493 	/* Compute temperature calib if needed. Will be send by send calib */
6494 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6495 		error = iwn5000_temp_offset_calib(sc);
6496 		if (error != 0) {
6497 			device_printf(sc->sc_dev,
6498 			    "%s: could not set temperature offset\n", __func__);
6499 			return (error);
6500 		}
6501 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6502 		error = iwn5000_temp_offset_calibv2(sc);
6503 		if (error != 0) {
6504 			device_printf(sc->sc_dev,
6505 			    "%s: could not compute temperature offset v2\n",
6506 			    __func__);
6507 			return (error);
6508 		}
6509 	}
6510 
6511 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6512 		/* Configure runtime DC calibration. */
6513 		error = iwn5000_runtime_calib(sc);
6514 		if (error != 0) {
6515 			device_printf(sc->sc_dev,
6516 			    "%s: could not configure runtime calibration\n",
6517 			    __func__);
6518 			return error;
6519 		}
6520 	}
6521 
6522 	/* Configure valid TX chains for >=5000 Series. */
6523 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6524 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6525 		txmask = htole32(sc->txchainmask);
6526 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6527 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6528 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6529 		    sizeof txmask, 0);
6530 		if (error != 0) {
6531 			device_printf(sc->sc_dev,
6532 			    "%s: could not configure valid TX chains, "
6533 			    "error %d\n", __func__, error);
6534 			return error;
6535 		}
6536 	}
6537 
6538 	/* Configure bluetooth coexistence. */
6539 	error = 0;
6540 
6541 	/* Configure bluetooth coexistence if needed. */
6542 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6543 		error = iwn_send_advanced_btcoex(sc);
6544 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6545 		error = iwn_send_btcoex(sc);
6546 
6547 	if (error != 0) {
6548 		device_printf(sc->sc_dev,
6549 		    "%s: could not configure bluetooth coexistence, error %d\n",
6550 		    __func__, error);
6551 		return error;
6552 	}
6553 
6554 	/* Set mode, channel, RX filter and enable RX. */
6555 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6556 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6557 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6558 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6559 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6560 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6561 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6562 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6563 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6564 	switch (ic->ic_opmode) {
6565 	case IEEE80211_M_STA:
6566 		sc->rxon->mode = IWN_MODE_STA;
6567 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6568 		break;
6569 	case IEEE80211_M_MONITOR:
6570 		sc->rxon->mode = IWN_MODE_MONITOR;
6571 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6572 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6573 		break;
6574 	default:
6575 		/* Should not get there. */
6576 		break;
6577 	}
6578 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6579 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6580 	sc->rxon->ht_single_mask = 0xff;
6581 	sc->rxon->ht_dual_mask = 0xff;
6582 	sc->rxon->ht_triple_mask = 0xff;
6583 	/*
6584 	 * In active association mode, ensure that
6585 	 * all the receive chains are enabled.
6586 	 *
6587 	 * Since we're not yet doing SMPS, don't allow the
6588 	 * number of idle RX chains to be less than the active
6589 	 * number.
6590 	 */
6591 	rxchain =
6592 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6593 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6594 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6595 	sc->rxon->rxchain = htole16(rxchain);
6596 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6597 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6598 	    __func__,
6599 	    sc->rxchainmask,
6600 	    sc->nrxchains);
6601 
6602 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6603 
6604 	DPRINTF(sc, IWN_DEBUG_RESET,
6605 	    "%s: setting configuration; flags=0x%08x\n",
6606 	    __func__, le32toh(sc->rxon->flags));
6607 	if (sc->sc_is_scanning)
6608 		device_printf(sc->sc_dev,
6609 		    "%s: is_scanning set, before RXON\n",
6610 		    __func__);
6611 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6612 	if (error != 0) {
6613 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6614 		    __func__);
6615 		return error;
6616 	}
6617 
6618 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6619 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6620 		    __func__);
6621 		return error;
6622 	}
6623 
6624 	/* Configuration has changed, set TX power accordingly. */
6625 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6626 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6627 		    __func__);
6628 		return error;
6629 	}
6630 
6631 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6632 		device_printf(sc->sc_dev,
6633 		    "%s: could not set critical temperature\n", __func__);
6634 		return error;
6635 	}
6636 
6637 	/* Set power saving level to CAM during initialization. */
6638 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6639 		device_printf(sc->sc_dev,
6640 		    "%s: could not set power saving level\n", __func__);
6641 		return error;
6642 	}
6643 
6644 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6645 
6646 	return 0;
6647 }
6648 
6649 static uint16_t
6650 iwn_get_active_dwell_time(struct iwn_softc *sc,
6651     struct ieee80211_channel *c, uint8_t n_probes)
6652 {
6653 	/* No channel? Default to 2GHz settings */
6654 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6655 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6656 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6657 	}
6658 
6659 	/* 5GHz dwell time */
6660 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6661 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6662 }
6663 
6664 /*
6665  * Limit the total dwell time to 85% of the beacon interval.
6666  *
6667  * Returns the dwell time in milliseconds.
6668  */
6669 static uint16_t
6670 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6671 {
6672 	struct ieee80211com *ic = &sc->sc_ic;
6673 	struct ieee80211vap *vap = NULL;
6674 	int bintval = 0;
6675 
6676 	/* bintval is in TU (1.024mS) */
6677 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6678 		vap = TAILQ_FIRST(&ic->ic_vaps);
6679 		bintval = vap->iv_bss->ni_intval;
6680 	}
6681 
6682 	/*
6683 	 * If it's non-zero, we should calculate the minimum of
6684 	 * it and the DWELL_BASE.
6685 	 *
6686 	 * XXX Yes, the math should take into account that bintval
6687 	 * is 1.024mS, not 1mS..
6688 	 */
6689 	if (bintval > 0) {
6690 		DPRINTF(sc, IWN_DEBUG_SCAN,
6691 		    "%s: bintval=%d\n",
6692 		    __func__,
6693 		    bintval);
6694 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6695 	}
6696 
6697 	/* No association context? Default */
6698 	return (IWN_PASSIVE_DWELL_BASE);
6699 }
6700 
6701 static uint16_t
6702 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6703 {
6704 	uint16_t passive;
6705 
6706 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6707 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6708 	} else {
6709 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6710 	}
6711 
6712 	/* Clamp to the beacon interval if we're associated */
6713 	return (iwn_limit_dwell(sc, passive));
6714 }
6715 
6716 static int
6717 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6718     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6719 {
6720 	struct ieee80211com *ic = &sc->sc_ic;
6721 	struct ieee80211_node *ni = vap->iv_bss;
6722 	struct iwn_scan_hdr *hdr;
6723 	struct iwn_cmd_data *tx;
6724 	struct iwn_scan_essid *essid;
6725 	struct iwn_scan_chan *chan;
6726 	struct ieee80211_frame *wh;
6727 	struct ieee80211_rateset *rs;
6728 	uint8_t *buf, *frm;
6729 	uint16_t rxchain;
6730 	uint8_t txant;
6731 	int buflen, error;
6732 	int is_active;
6733 	uint16_t dwell_active, dwell_passive;
6734 	uint32_t extra, scan_service_time;
6735 
6736 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6737 
6738 	/*
6739 	 * We are absolutely not allowed to send a scan command when another
6740 	 * scan command is pending.
6741 	 */
6742 	if (sc->sc_is_scanning) {
6743 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6744 		    __func__);
6745 		return (EAGAIN);
6746 	}
6747 
6748 	/* Assign the scan channel */
6749 	c = ic->ic_curchan;
6750 
6751 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6752 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6753 	if (buf == NULL) {
6754 		device_printf(sc->sc_dev,
6755 		    "%s: could not allocate buffer for scan command\n",
6756 		    __func__);
6757 		return ENOMEM;
6758 	}
6759 	hdr = (struct iwn_scan_hdr *)buf;
6760 	/*
6761 	 * Move to the next channel if no frames are received within 10ms
6762 	 * after sending the probe request.
6763 	 */
6764 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6765 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6766 	/*
6767 	 * Max needs to be greater than active and passive and quiet!
6768 	 * It's also in microseconds!
6769 	 */
6770 	hdr->max_svc = htole32(250 * 1024);
6771 
6772 	/*
6773 	 * Reset scan: interval=100
6774 	 * Normal scan: interval=becaon interval
6775 	 * suspend_time: 100 (TU)
6776 	 *
6777 	 */
6778 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6779 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6780 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6781 	hdr->pause_svc = htole32(scan_service_time);
6782 
6783 	/* Select antennas for scanning. */
6784 	rxchain =
6785 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6786 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6787 	    IWN_RXCHAIN_DRIVER_FORCE;
6788 	if (IEEE80211_IS_CHAN_A(c) &&
6789 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6790 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6791 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6792 	} else	/* Use all available RX antennas. */
6793 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6794 	hdr->rxchain = htole16(rxchain);
6795 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6796 
6797 	tx = (struct iwn_cmd_data *)(hdr + 1);
6798 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6799 	tx->id = sc->broadcast_id;
6800 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6801 
6802 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6803 		/* Send probe requests at 6Mbps. */
6804 		tx->rate = htole32(0xd);
6805 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6806 	} else {
6807 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6808 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6809 		    sc->rxon->associd && sc->rxon->chan > 14)
6810 			tx->rate = htole32(0xd);
6811 		else {
6812 			/* Send probe requests at 1Mbps. */
6813 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6814 		}
6815 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6816 	}
6817 	/* Use the first valid TX antenna. */
6818 	txant = IWN_LSB(sc->txchainmask);
6819 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6820 
6821 	/*
6822 	 * Only do active scanning if we're announcing a probe request
6823 	 * for a given SSID (or more, if we ever add it to the driver.)
6824 	 */
6825 	is_active = 0;
6826 
6827 	/*
6828 	 * If we're scanning for a specific SSID, add it to the command.
6829 	 *
6830 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6831 	 */
6832 	essid = (struct iwn_scan_essid *)(tx + 1);
6833 	if (ss != NULL) {
6834 		if (ss->ss_ssid[0].len != 0) {
6835 			essid[0].id = IEEE80211_ELEMID_SSID;
6836 			essid[0].len = ss->ss_ssid[0].len;
6837 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6838 		}
6839 
6840 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6841 		    __func__,
6842 		    ss->ss_ssid[0].len,
6843 		    ss->ss_ssid[0].len,
6844 		    ss->ss_ssid[0].ssid);
6845 
6846 		if (ss->ss_nssid > 0)
6847 			is_active = 1;
6848 	}
6849 
6850 	/*
6851 	 * Build a probe request frame.  Most of the following code is a
6852 	 * copy & paste of what is done in net80211.
6853 	 */
6854 	wh = (struct ieee80211_frame *)(essid + 20);
6855 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6856 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6857 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6858 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6859 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6860 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6861 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6862 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6863 
6864 	frm = (uint8_t *)(wh + 1);
6865 	frm = ieee80211_add_ssid(frm, NULL, 0);
6866 	frm = ieee80211_add_rates(frm, rs);
6867 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6868 		frm = ieee80211_add_xrates(frm, rs);
6869 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6870 		frm = ieee80211_add_htcap(frm, ni);
6871 
6872 	/* Set length of probe request. */
6873 	tx->len = htole16(frm - (uint8_t *)wh);
6874 
6875 	/*
6876 	 * If active scanning is requested but a certain channel is
6877 	 * marked passive, we can do active scanning if we detect
6878 	 * transmissions.
6879 	 *
6880 	 * There is an issue with some firmware versions that triggers
6881 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6882 	 * on a radar channel even though this means that we should NOT
6883 	 * send probes.
6884 	 *
6885 	 * The "good CRC threshold" is the number of frames that we
6886 	 * need to receive during our dwell time on a channel before
6887 	 * sending out probes -- setting this to a huge value will
6888 	 * mean we never reach it, but at the same time work around
6889 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6890 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6891 	 *
6892 	 * This was fixed in later versions along with some other
6893 	 * scan changes, and the threshold behaves as a flag in those
6894 	 * versions.
6895 	 */
6896 
6897 	/*
6898 	 * If we're doing active scanning, set the crc_threshold
6899 	 * to a suitable value.  This is different to active veruss
6900 	 * passive scanning depending upon the channel flags; the
6901 	 * firmware will obey that particular check for us.
6902 	 */
6903 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6904 		hdr->crc_threshold = is_active ?
6905 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6906 	else
6907 		hdr->crc_threshold = is_active ?
6908 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6909 
6910 	chan = (struct iwn_scan_chan *)frm;
6911 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6912 	chan->flags = 0;
6913 	if (ss->ss_nssid > 0)
6914 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6915 	chan->dsp_gain = 0x6e;
6916 
6917 	/*
6918 	 * Set the passive/active flag depending upon the channel mode.
6919 	 * XXX TODO: take the is_active flag into account as well?
6920 	 */
6921 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6922 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6923 	else
6924 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6925 
6926 	/*
6927 	 * Calculate the active/passive dwell times.
6928 	 */
6929 
6930 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6931 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6932 
6933 	/* Make sure they're valid */
6934 	if (dwell_passive <= dwell_active)
6935 		dwell_passive = dwell_active + 1;
6936 
6937 	chan->active = htole16(dwell_active);
6938 	chan->passive = htole16(dwell_passive);
6939 
6940 	if (IEEE80211_IS_CHAN_5GHZ(c))
6941 		chan->rf_gain = 0x3b;
6942 	else
6943 		chan->rf_gain = 0x28;
6944 
6945 	DPRINTF(sc, IWN_DEBUG_STATE,
6946 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6947 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6948 	    "isactive=%d numssid=%d\n", __func__,
6949 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6950 	    dwell_active, dwell_passive, scan_service_time,
6951 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6952 
6953 	hdr->nchan++;
6954 	chan++;
6955 	buflen = (uint8_t *)chan - buf;
6956 	hdr->len = htole16(buflen);
6957 
6958 	if (sc->sc_is_scanning) {
6959 		device_printf(sc->sc_dev,
6960 		    "%s: called with is_scanning set!\n",
6961 		    __func__);
6962 	}
6963 	sc->sc_is_scanning = 1;
6964 
6965 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6966 	    hdr->nchan);
6967 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6968 	free(buf, M_DEVBUF);
6969 
6970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6971 
6972 	return error;
6973 }
6974 
6975 static int
6976 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6977 {
6978 	struct iwn_ops *ops = &sc->ops;
6979 	struct ieee80211com *ic = &sc->sc_ic;
6980 	struct ieee80211_node *ni = vap->iv_bss;
6981 	int error;
6982 
6983 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6984 
6985 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6986 	/* Update adapter configuration. */
6987 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6988 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6989 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6990 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6991 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6992 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6993 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6994 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6995 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6996 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6997 		sc->rxon->cck_mask  = 0;
6998 		sc->rxon->ofdm_mask = 0x15;
6999 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7000 		sc->rxon->cck_mask  = 0x03;
7001 		sc->rxon->ofdm_mask = 0;
7002 	} else {
7003 		/* Assume 802.11b/g. */
7004 		sc->rxon->cck_mask  = 0x03;
7005 		sc->rxon->ofdm_mask = 0x15;
7006 	}
7007 
7008 	/* try HT */
7009 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7010 
7011 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7012 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7013 	    sc->rxon->ofdm_mask);
7014 	if (sc->sc_is_scanning)
7015 		device_printf(sc->sc_dev,
7016 		    "%s: is_scanning set, before RXON\n",
7017 		    __func__);
7018 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7019 	if (error != 0) {
7020 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7021 		    __func__, error);
7022 		return error;
7023 	}
7024 
7025 	/* Configuration has changed, set TX power accordingly. */
7026 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7027 		device_printf(sc->sc_dev,
7028 		    "%s: could not set TX power, error %d\n", __func__, error);
7029 		return error;
7030 	}
7031 	/*
7032 	 * Reconfiguring RXON clears the firmware nodes table so we must
7033 	 * add the broadcast node again.
7034 	 */
7035 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7036 		device_printf(sc->sc_dev,
7037 		    "%s: could not add broadcast node, error %d\n", __func__,
7038 		    error);
7039 		return error;
7040 	}
7041 
7042 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7043 
7044 	return 0;
7045 }
7046 
7047 static int
7048 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7049 {
7050 	struct iwn_ops *ops = &sc->ops;
7051 	struct ieee80211com *ic = &sc->sc_ic;
7052 	struct ieee80211_node *ni = vap->iv_bss;
7053 	struct iwn_node_info node;
7054 	int error;
7055 
7056 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7057 
7058 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7059 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7060 		/* Link LED blinks while monitoring. */
7061 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7062 		return 0;
7063 	}
7064 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7065 		device_printf(sc->sc_dev,
7066 		    "%s: could not set timing, error %d\n", __func__, error);
7067 		return error;
7068 	}
7069 
7070 	/* Update adapter configuration. */
7071 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7072 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7073 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7074 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7075 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7076 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7077 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7078 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7079 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7080 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7081 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7082 		sc->rxon->cck_mask  = 0;
7083 		sc->rxon->ofdm_mask = 0x15;
7084 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7085 		sc->rxon->cck_mask  = 0x03;
7086 		sc->rxon->ofdm_mask = 0;
7087 	} else {
7088 		/* Assume 802.11b/g. */
7089 		sc->rxon->cck_mask  = 0x0f;
7090 		sc->rxon->ofdm_mask = 0x15;
7091 	}
7092 	/* try HT */
7093 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7094 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7095 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7096 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7097 	if (sc->sc_is_scanning)
7098 		device_printf(sc->sc_dev,
7099 		    "%s: is_scanning set, before RXON\n",
7100 		    __func__);
7101 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7102 	if (error != 0) {
7103 		device_printf(sc->sc_dev,
7104 		    "%s: could not update configuration, error %d\n", __func__,
7105 		    error);
7106 		return error;
7107 	}
7108 
7109 	/* Configuration has changed, set TX power accordingly. */
7110 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7111 		device_printf(sc->sc_dev,
7112 		    "%s: could not set TX power, error %d\n", __func__, error);
7113 		return error;
7114 	}
7115 
7116 	/* Fake a join to initialize the TX rate. */
7117 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7118 	iwn_newassoc(ni, 1);
7119 
7120 	/* Add BSS node. */
7121 	memset(&node, 0, sizeof node);
7122 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7123 	node.id = IWN_ID_BSS;
7124 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7125 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7126 		case IEEE80211_HTCAP_SMPS_ENA:
7127 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7128 			break;
7129 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7130 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7131 			break;
7132 		}
7133 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7134 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7135 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7136 			node.htflags |= htole32(IWN_NODE_HT40);
7137 	}
7138 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7139 	error = ops->add_node(sc, &node, 1);
7140 	if (error != 0) {
7141 		device_printf(sc->sc_dev,
7142 		    "%s: could not add BSS node, error %d\n", __func__, error);
7143 		return error;
7144 	}
7145 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7146 	    __func__, node.id);
7147 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7148 		device_printf(sc->sc_dev,
7149 		    "%s: could not setup link quality for node %d, error %d\n",
7150 		    __func__, node.id, error);
7151 		return error;
7152 	}
7153 
7154 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7155 		device_printf(sc->sc_dev,
7156 		    "%s: could not set sensitivity, error %d\n", __func__,
7157 		    error);
7158 		return error;
7159 	}
7160 	/* Start periodic calibration timer. */
7161 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7162 	sc->calib_cnt = 0;
7163 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7164 	    sc);
7165 
7166 	/* Link LED always on while associated. */
7167 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7168 
7169 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7170 
7171 	return 0;
7172 }
7173 
7174 /*
7175  * This function is called by upper layer when an ADDBA request is received
7176  * from another STA and before the ADDBA response is sent.
7177  */
7178 static int
7179 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7180     int baparamset, int batimeout, int baseqctl)
7181 {
7182 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7183 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7184 	struct iwn_ops *ops = &sc->ops;
7185 	struct iwn_node *wn = (void *)ni;
7186 	struct iwn_node_info node;
7187 	uint16_t ssn;
7188 	uint8_t tid;
7189 	int error;
7190 
7191 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7192 
7193 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7194 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7195 
7196 	memset(&node, 0, sizeof node);
7197 	node.id = wn->id;
7198 	node.control = IWN_NODE_UPDATE;
7199 	node.flags = IWN_FLAG_SET_ADDBA;
7200 	node.addba_tid = tid;
7201 	node.addba_ssn = htole16(ssn);
7202 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7203 	    wn->id, tid, ssn);
7204 	error = ops->add_node(sc, &node, 1);
7205 	if (error != 0)
7206 		return error;
7207 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7208 #undef MS
7209 }
7210 
7211 /*
7212  * This function is called by upper layer on teardown of an HT-immediate
7213  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7214  */
7215 static void
7216 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7217 {
7218 	struct ieee80211com *ic = ni->ni_ic;
7219 	struct iwn_softc *sc = ic->ic_softc;
7220 	struct iwn_ops *ops = &sc->ops;
7221 	struct iwn_node *wn = (void *)ni;
7222 	struct iwn_node_info node;
7223 	uint8_t tid;
7224 
7225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7226 
7227 	/* XXX: tid as an argument */
7228 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7229 		if (&ni->ni_rx_ampdu[tid] == rap)
7230 			break;
7231 	}
7232 
7233 	memset(&node, 0, sizeof node);
7234 	node.id = wn->id;
7235 	node.control = IWN_NODE_UPDATE;
7236 	node.flags = IWN_FLAG_SET_DELBA;
7237 	node.delba_tid = tid;
7238 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7239 	(void)ops->add_node(sc, &node, 1);
7240 	sc->sc_ampdu_rx_stop(ni, rap);
7241 }
7242 
7243 static int
7244 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7245     int dialogtoken, int baparamset, int batimeout)
7246 {
7247 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7248 	int qid;
7249 
7250 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7251 
7252 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7253 		if (sc->qid2tap[qid] == NULL)
7254 			break;
7255 	}
7256 	if (qid == sc->ntxqs) {
7257 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7258 		    __func__);
7259 		return 0;
7260 	}
7261 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7262 	if (tap->txa_private == NULL) {
7263 		device_printf(sc->sc_dev,
7264 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7265 		return 0;
7266 	}
7267 	sc->qid2tap[qid] = tap;
7268 	*(int *)tap->txa_private = qid;
7269 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7270 	    batimeout);
7271 }
7272 
7273 static int
7274 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7275     int code, int baparamset, int batimeout)
7276 {
7277 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7278 	int qid = *(int *)tap->txa_private;
7279 	uint8_t tid = tap->txa_tid;
7280 	int ret;
7281 
7282 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7283 
7284 	if (code == IEEE80211_STATUS_SUCCESS) {
7285 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7286 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7287 		if (ret != 1)
7288 			return ret;
7289 	} else {
7290 		sc->qid2tap[qid] = NULL;
7291 		free(tap->txa_private, M_DEVBUF);
7292 		tap->txa_private = NULL;
7293 	}
7294 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7295 }
7296 
7297 /*
7298  * This function is called by upper layer when an ADDBA response is received
7299  * from another STA.
7300  */
7301 static int
7302 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7303     uint8_t tid)
7304 {
7305 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7306 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7307 	struct iwn_ops *ops = &sc->ops;
7308 	struct iwn_node *wn = (void *)ni;
7309 	struct iwn_node_info node;
7310 	int error, qid;
7311 
7312 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7313 
7314 	/* Enable TX for the specified RA/TID. */
7315 	wn->disable_tid &= ~(1 << tid);
7316 	memset(&node, 0, sizeof node);
7317 	node.id = wn->id;
7318 	node.control = IWN_NODE_UPDATE;
7319 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7320 	node.disable_tid = htole16(wn->disable_tid);
7321 	error = ops->add_node(sc, &node, 1);
7322 	if (error != 0)
7323 		return 0;
7324 
7325 	if ((error = iwn_nic_lock(sc)) != 0)
7326 		return 0;
7327 	qid = *(int *)tap->txa_private;
7328 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7329 	    __func__, wn->id, tid, tap->txa_start, qid);
7330 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7331 	iwn_nic_unlock(sc);
7332 
7333 	iwn_set_link_quality(sc, ni);
7334 	return 1;
7335 }
7336 
7337 static void
7338 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7339 {
7340 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7341 	struct iwn_ops *ops = &sc->ops;
7342 	uint8_t tid = tap->txa_tid;
7343 	int qid;
7344 
7345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7346 
7347 	sc->sc_addba_stop(ni, tap);
7348 
7349 	if (tap->txa_private == NULL)
7350 		return;
7351 
7352 	qid = *(int *)tap->txa_private;
7353 	if (sc->txq[qid].queued != 0)
7354 		return;
7355 	if (iwn_nic_lock(sc) != 0)
7356 		return;
7357 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7358 	iwn_nic_unlock(sc);
7359 	sc->qid2tap[qid] = NULL;
7360 	free(tap->txa_private, M_DEVBUF);
7361 	tap->txa_private = NULL;
7362 }
7363 
7364 static void
7365 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7366     int qid, uint8_t tid, uint16_t ssn)
7367 {
7368 	struct iwn_node *wn = (void *)ni;
7369 
7370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7371 
7372 	/* Stop TX scheduler while we're changing its configuration. */
7373 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7374 	    IWN4965_TXQ_STATUS_CHGACT);
7375 
7376 	/* Assign RA/TID translation to the queue. */
7377 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7378 	    wn->id << 4 | tid);
7379 
7380 	/* Enable chain-building mode for the queue. */
7381 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7382 
7383 	/* Set starting sequence number from the ADDBA request. */
7384 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7385 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7386 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7387 
7388 	/* Set scheduler window size. */
7389 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7390 	    IWN_SCHED_WINSZ);
7391 	/* Set scheduler frame limit. */
7392 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7393 	    IWN_SCHED_LIMIT << 16);
7394 
7395 	/* Enable interrupts for the queue. */
7396 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7397 
7398 	/* Mark the queue as active. */
7399 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7400 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7401 	    iwn_tid2fifo[tid] << 1);
7402 }
7403 
7404 static void
7405 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7406 {
7407 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7408 
7409 	/* Stop TX scheduler while we're changing its configuration. */
7410 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7411 	    IWN4965_TXQ_STATUS_CHGACT);
7412 
7413 	/* Set starting sequence number from the ADDBA request. */
7414 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7415 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7416 
7417 	/* Disable interrupts for the queue. */
7418 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7419 
7420 	/* Mark the queue as inactive. */
7421 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7422 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7423 }
7424 
7425 static void
7426 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7427     int qid, uint8_t tid, uint16_t ssn)
7428 {
7429 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7430 
7431 	struct iwn_node *wn = (void *)ni;
7432 
7433 	/* Stop TX scheduler while we're changing its configuration. */
7434 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7435 	    IWN5000_TXQ_STATUS_CHGACT);
7436 
7437 	/* Assign RA/TID translation to the queue. */
7438 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7439 	    wn->id << 4 | tid);
7440 
7441 	/* Enable chain-building mode for the queue. */
7442 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7443 
7444 	/* Enable aggregation for the queue. */
7445 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7446 
7447 	/* Set starting sequence number from the ADDBA request. */
7448 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7449 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7450 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7451 
7452 	/* Set scheduler window size and frame limit. */
7453 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7454 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7455 
7456 	/* Enable interrupts for the queue. */
7457 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7458 
7459 	/* Mark the queue as active. */
7460 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7461 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7462 }
7463 
7464 static void
7465 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7466 {
7467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7468 
7469 	/* Stop TX scheduler while we're changing its configuration. */
7470 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7471 	    IWN5000_TXQ_STATUS_CHGACT);
7472 
7473 	/* Disable aggregation for the queue. */
7474 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7475 
7476 	/* Set starting sequence number from the ADDBA request. */
7477 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7478 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7479 
7480 	/* Disable interrupts for the queue. */
7481 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7482 
7483 	/* Mark the queue as inactive. */
7484 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7485 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7486 }
7487 
7488 /*
7489  * Query calibration tables from the initialization firmware.  We do this
7490  * only once at first boot.  Called from a process context.
7491  */
7492 static int
7493 iwn5000_query_calibration(struct iwn_softc *sc)
7494 {
7495 	struct iwn5000_calib_config cmd;
7496 	int error;
7497 
7498 	memset(&cmd, 0, sizeof cmd);
7499 	cmd.ucode.once.enable = htole32(0xffffffff);
7500 	cmd.ucode.once.start  = htole32(0xffffffff);
7501 	cmd.ucode.once.send   = htole32(0xffffffff);
7502 	cmd.ucode.flags       = htole32(0xffffffff);
7503 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7504 	    __func__);
7505 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7506 	if (error != 0)
7507 		return error;
7508 
7509 	/* Wait at most two seconds for calibration to complete. */
7510 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7511 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7512 	return error;
7513 }
7514 
7515 /*
7516  * Send calibration results to the runtime firmware.  These results were
7517  * obtained on first boot from the initialization firmware.
7518  */
7519 static int
7520 iwn5000_send_calibration(struct iwn_softc *sc)
7521 {
7522 	int idx, error;
7523 
7524 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7525 		if (!(sc->base_params->calib_need & (1<<idx))) {
7526 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7527 			    "No need of calib %d\n",
7528 			    idx);
7529 			continue; /* no need for this calib */
7530 		}
7531 		if (sc->calibcmd[idx].buf == NULL) {
7532 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7533 			    "Need calib idx : %d but no available data\n",
7534 			    idx);
7535 			continue;
7536 		}
7537 
7538 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7539 		    "send calibration result idx=%d len=%d\n", idx,
7540 		    sc->calibcmd[idx].len);
7541 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7542 		    sc->calibcmd[idx].len, 0);
7543 		if (error != 0) {
7544 			device_printf(sc->sc_dev,
7545 			    "%s: could not send calibration result, error %d\n",
7546 			    __func__, error);
7547 			return error;
7548 		}
7549 	}
7550 	return 0;
7551 }
7552 
7553 static int
7554 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7555 {
7556 	struct iwn5000_wimax_coex wimax;
7557 
7558 #if 0
7559 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7560 		/* Enable WiMAX coexistence for combo adapters. */
7561 		wimax.flags =
7562 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7563 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7564 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7565 		    IWN_WIMAX_COEX_ENABLE;
7566 		memcpy(wimax.events, iwn6050_wimax_events,
7567 		    sizeof iwn6050_wimax_events);
7568 	} else
7569 #endif
7570 	{
7571 		/* Disable WiMAX coexistence. */
7572 		wimax.flags = 0;
7573 		memset(wimax.events, 0, sizeof wimax.events);
7574 	}
7575 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7576 	    __func__);
7577 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7578 }
7579 
7580 static int
7581 iwn5000_crystal_calib(struct iwn_softc *sc)
7582 {
7583 	struct iwn5000_phy_calib_crystal cmd;
7584 
7585 	memset(&cmd, 0, sizeof cmd);
7586 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7587 	cmd.ngroups = 1;
7588 	cmd.isvalid = 1;
7589 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7590 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7591 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7592 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7593 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7594 }
7595 
7596 static int
7597 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7598 {
7599 	struct iwn5000_phy_calib_temp_offset cmd;
7600 
7601 	memset(&cmd, 0, sizeof cmd);
7602 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7603 	cmd.ngroups = 1;
7604 	cmd.isvalid = 1;
7605 	if (sc->eeprom_temp != 0)
7606 		cmd.offset = htole16(sc->eeprom_temp);
7607 	else
7608 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7609 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7610 	    le16toh(cmd.offset));
7611 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7612 }
7613 
7614 static int
7615 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7616 {
7617 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7618 
7619 	memset(&cmd, 0, sizeof cmd);
7620 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7621 	cmd.ngroups = 1;
7622 	cmd.isvalid = 1;
7623 	if (sc->eeprom_temp != 0) {
7624 		cmd.offset_low = htole16(sc->eeprom_temp);
7625 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7626 	} else {
7627 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7628 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7629 	}
7630 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7631 
7632 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7633 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7634 	    le16toh(cmd.offset_low),
7635 	    le16toh(cmd.offset_high),
7636 	    le16toh(cmd.burnt_voltage_ref));
7637 
7638 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7639 }
7640 
7641 /*
7642  * This function is called after the runtime firmware notifies us of its
7643  * readiness (called in a process context).
7644  */
7645 static int
7646 iwn4965_post_alive(struct iwn_softc *sc)
7647 {
7648 	int error, qid;
7649 
7650 	if ((error = iwn_nic_lock(sc)) != 0)
7651 		return error;
7652 
7653 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7654 
7655 	/* Clear TX scheduler state in SRAM. */
7656 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7657 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7658 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7659 
7660 	/* Set physical address of TX scheduler rings (1KB aligned). */
7661 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7662 
7663 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7664 
7665 	/* Disable chain mode for all our 16 queues. */
7666 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7667 
7668 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7669 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7670 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7671 
7672 		/* Set scheduler window size. */
7673 		iwn_mem_write(sc, sc->sched_base +
7674 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7675 		/* Set scheduler frame limit. */
7676 		iwn_mem_write(sc, sc->sched_base +
7677 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7678 		    IWN_SCHED_LIMIT << 16);
7679 	}
7680 
7681 	/* Enable interrupts for all our 16 queues. */
7682 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7683 	/* Identify TX FIFO rings (0-7). */
7684 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7685 
7686 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7687 	for (qid = 0; qid < 7; qid++) {
7688 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7689 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7690 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7691 	}
7692 	iwn_nic_unlock(sc);
7693 	return 0;
7694 }
7695 
7696 /*
7697  * This function is called after the initialization or runtime firmware
7698  * notifies us of its readiness (called in a process context).
7699  */
7700 static int
7701 iwn5000_post_alive(struct iwn_softc *sc)
7702 {
7703 	int error, qid;
7704 
7705 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7706 
7707 	/* Switch to using ICT interrupt mode. */
7708 	iwn5000_ict_reset(sc);
7709 
7710 	if ((error = iwn_nic_lock(sc)) != 0){
7711 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7712 		return error;
7713 	}
7714 
7715 	/* Clear TX scheduler state in SRAM. */
7716 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7717 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7718 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7719 
7720 	/* Set physical address of TX scheduler rings (1KB aligned). */
7721 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7722 
7723 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7724 
7725 	/* Enable chain mode for all queues, except command queue. */
7726 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7727 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7728 	else
7729 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7730 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7731 
7732 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7733 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7734 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7735 
7736 		iwn_mem_write(sc, sc->sched_base +
7737 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7738 		/* Set scheduler window size and frame limit. */
7739 		iwn_mem_write(sc, sc->sched_base +
7740 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7741 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7742 	}
7743 
7744 	/* Enable interrupts for all our 20 queues. */
7745 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7746 	/* Identify TX FIFO rings (0-7). */
7747 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7748 
7749 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7750 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7751 		/* Mark TX rings as active. */
7752 		for (qid = 0; qid < 11; qid++) {
7753 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7754 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7755 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7756 		}
7757 	} else {
7758 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7759 		for (qid = 0; qid < 7; qid++) {
7760 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7761 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7762 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7763 		}
7764 	}
7765 	iwn_nic_unlock(sc);
7766 
7767 	/* Configure WiMAX coexistence for combo adapters. */
7768 	error = iwn5000_send_wimax_coex(sc);
7769 	if (error != 0) {
7770 		device_printf(sc->sc_dev,
7771 		    "%s: could not configure WiMAX coexistence, error %d\n",
7772 		    __func__, error);
7773 		return error;
7774 	}
7775 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7776 		/* Perform crystal calibration. */
7777 		error = iwn5000_crystal_calib(sc);
7778 		if (error != 0) {
7779 			device_printf(sc->sc_dev,
7780 			    "%s: crystal calibration failed, error %d\n",
7781 			    __func__, error);
7782 			return error;
7783 		}
7784 	}
7785 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7786 		/* Query calibration from the initialization firmware. */
7787 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7788 			device_printf(sc->sc_dev,
7789 			    "%s: could not query calibration, error %d\n",
7790 			    __func__, error);
7791 			return error;
7792 		}
7793 		/*
7794 		 * We have the calibration results now, reboot with the
7795 		 * runtime firmware (call ourselves recursively!)
7796 		 */
7797 		iwn_hw_stop(sc);
7798 		error = iwn_hw_init(sc);
7799 	} else {
7800 		/* Send calibration results to runtime firmware. */
7801 		error = iwn5000_send_calibration(sc);
7802 	}
7803 
7804 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7805 
7806 	return error;
7807 }
7808 
7809 /*
7810  * The firmware boot code is small and is intended to be copied directly into
7811  * the NIC internal memory (no DMA transfer).
7812  */
7813 static int
7814 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7815 {
7816 	int error, ntries;
7817 
7818 	size /= sizeof (uint32_t);
7819 
7820 	if ((error = iwn_nic_lock(sc)) != 0)
7821 		return error;
7822 
7823 	/* Copy microcode image into NIC memory. */
7824 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7825 	    (const uint32_t *)ucode, size);
7826 
7827 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7828 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7829 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7830 
7831 	/* Start boot load now. */
7832 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7833 
7834 	/* Wait for transfer to complete. */
7835 	for (ntries = 0; ntries < 1000; ntries++) {
7836 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7837 		    IWN_BSM_WR_CTRL_START))
7838 			break;
7839 		DELAY(10);
7840 	}
7841 	if (ntries == 1000) {
7842 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7843 		    __func__);
7844 		iwn_nic_unlock(sc);
7845 		return ETIMEDOUT;
7846 	}
7847 
7848 	/* Enable boot after power up. */
7849 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7850 
7851 	iwn_nic_unlock(sc);
7852 	return 0;
7853 }
7854 
7855 static int
7856 iwn4965_load_firmware(struct iwn_softc *sc)
7857 {
7858 	struct iwn_fw_info *fw = &sc->fw;
7859 	struct iwn_dma_info *dma = &sc->fw_dma;
7860 	int error;
7861 
7862 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7863 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7864 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7865 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7866 	    fw->init.text, fw->init.textsz);
7867 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7868 
7869 	/* Tell adapter where to find initialization sections. */
7870 	if ((error = iwn_nic_lock(sc)) != 0)
7871 		return error;
7872 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7873 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7874 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7875 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7876 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7877 	iwn_nic_unlock(sc);
7878 
7879 	/* Load firmware boot code. */
7880 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7881 	if (error != 0) {
7882 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7883 		    __func__);
7884 		return error;
7885 	}
7886 	/* Now press "execute". */
7887 	IWN_WRITE(sc, IWN_RESET, 0);
7888 
7889 	/* Wait at most one second for first alive notification. */
7890 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7891 		device_printf(sc->sc_dev,
7892 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7893 		    __func__, error);
7894 		return error;
7895 	}
7896 
7897 	/* Retrieve current temperature for initial TX power calibration. */
7898 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7899 	sc->temp = iwn4965_get_temperature(sc);
7900 
7901 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7902 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7903 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7904 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7905 	    fw->main.text, fw->main.textsz);
7906 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7907 
7908 	/* Tell adapter where to find runtime sections. */
7909 	if ((error = iwn_nic_lock(sc)) != 0)
7910 		return error;
7911 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7912 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7913 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7914 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7915 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7916 	    IWN_FW_UPDATED | fw->main.textsz);
7917 	iwn_nic_unlock(sc);
7918 
7919 	return 0;
7920 }
7921 
7922 static int
7923 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7924     const uint8_t *section, int size)
7925 {
7926 	struct iwn_dma_info *dma = &sc->fw_dma;
7927 	int error;
7928 
7929 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7930 
7931 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7932 	memcpy(dma->vaddr, section, size);
7933 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7934 
7935 	if ((error = iwn_nic_lock(sc)) != 0)
7936 		return error;
7937 
7938 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7939 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7940 
7941 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7942 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7943 	    IWN_LOADDR(dma->paddr));
7944 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7945 	    IWN_HIADDR(dma->paddr) << 28 | size);
7946 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7947 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7948 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7949 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7950 
7951 	/* Kick Flow Handler to start DMA transfer. */
7952 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7953 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7954 
7955 	iwn_nic_unlock(sc);
7956 
7957 	/* Wait at most five seconds for FH DMA transfer to complete. */
7958 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7959 }
7960 
7961 static int
7962 iwn5000_load_firmware(struct iwn_softc *sc)
7963 {
7964 	struct iwn_fw_part *fw;
7965 	int error;
7966 
7967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7968 
7969 	/* Load the initialization firmware on first boot only. */
7970 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7971 	    &sc->fw.main : &sc->fw.init;
7972 
7973 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7974 	    fw->text, fw->textsz);
7975 	if (error != 0) {
7976 		device_printf(sc->sc_dev,
7977 		    "%s: could not load firmware %s section, error %d\n",
7978 		    __func__, ".text", error);
7979 		return error;
7980 	}
7981 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7982 	    fw->data, fw->datasz);
7983 	if (error != 0) {
7984 		device_printf(sc->sc_dev,
7985 		    "%s: could not load firmware %s section, error %d\n",
7986 		    __func__, ".data", error);
7987 		return error;
7988 	}
7989 
7990 	/* Now press "execute". */
7991 	IWN_WRITE(sc, IWN_RESET, 0);
7992 	return 0;
7993 }
7994 
7995 /*
7996  * Extract text and data sections from a legacy firmware image.
7997  */
7998 static int
7999 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8000 {
8001 	const uint32_t *ptr;
8002 	size_t hdrlen = 24;
8003 	uint32_t rev;
8004 
8005 	ptr = (const uint32_t *)fw->data;
8006 	rev = le32toh(*ptr++);
8007 
8008 	sc->ucode_rev = rev;
8009 
8010 	/* Check firmware API version. */
8011 	if (IWN_FW_API(rev) <= 1) {
8012 		device_printf(sc->sc_dev,
8013 		    "%s: bad firmware, need API version >=2\n", __func__);
8014 		return EINVAL;
8015 	}
8016 	if (IWN_FW_API(rev) >= 3) {
8017 		/* Skip build number (version 2 header). */
8018 		hdrlen += 4;
8019 		ptr++;
8020 	}
8021 	if (fw->size < hdrlen) {
8022 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8023 		    __func__, fw->size);
8024 		return EINVAL;
8025 	}
8026 	fw->main.textsz = le32toh(*ptr++);
8027 	fw->main.datasz = le32toh(*ptr++);
8028 	fw->init.textsz = le32toh(*ptr++);
8029 	fw->init.datasz = le32toh(*ptr++);
8030 	fw->boot.textsz = le32toh(*ptr++);
8031 
8032 	/* Check that all firmware sections fit. */
8033 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8034 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8035 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8036 		    __func__, fw->size);
8037 		return EINVAL;
8038 	}
8039 
8040 	/* Get pointers to firmware sections. */
8041 	fw->main.text = (const uint8_t *)ptr;
8042 	fw->main.data = fw->main.text + fw->main.textsz;
8043 	fw->init.text = fw->main.data + fw->main.datasz;
8044 	fw->init.data = fw->init.text + fw->init.textsz;
8045 	fw->boot.text = fw->init.data + fw->init.datasz;
8046 	return 0;
8047 }
8048 
8049 /*
8050  * Extract text and data sections from a TLV firmware image.
8051  */
8052 static int
8053 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8054     uint16_t alt)
8055 {
8056 	const struct iwn_fw_tlv_hdr *hdr;
8057 	const struct iwn_fw_tlv *tlv;
8058 	const uint8_t *ptr, *end;
8059 	uint64_t altmask;
8060 	uint32_t len, tmp;
8061 
8062 	if (fw->size < sizeof (*hdr)) {
8063 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8064 		    __func__, fw->size);
8065 		return EINVAL;
8066 	}
8067 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8068 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8069 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8070 		    __func__, le32toh(hdr->signature));
8071 		return EINVAL;
8072 	}
8073 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8074 	    le32toh(hdr->build));
8075 	sc->ucode_rev = le32toh(hdr->rev);
8076 
8077 	/*
8078 	 * Select the closest supported alternative that is less than
8079 	 * or equal to the specified one.
8080 	 */
8081 	altmask = le64toh(hdr->altmask);
8082 	while (alt > 0 && !(altmask & (1ULL << alt)))
8083 		alt--;	/* Downgrade. */
8084 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8085 
8086 	ptr = (const uint8_t *)(hdr + 1);
8087 	end = (const uint8_t *)(fw->data + fw->size);
8088 
8089 	/* Parse type-length-value fields. */
8090 	while (ptr + sizeof (*tlv) <= end) {
8091 		tlv = (const struct iwn_fw_tlv *)ptr;
8092 		len = le32toh(tlv->len);
8093 
8094 		ptr += sizeof (*tlv);
8095 		if (ptr + len > end) {
8096 			device_printf(sc->sc_dev,
8097 			    "%s: firmware too short: %zu bytes\n", __func__,
8098 			    fw->size);
8099 			return EINVAL;
8100 		}
8101 		/* Skip other alternatives. */
8102 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8103 			goto next;
8104 
8105 		switch (le16toh(tlv->type)) {
8106 		case IWN_FW_TLV_MAIN_TEXT:
8107 			fw->main.text = ptr;
8108 			fw->main.textsz = len;
8109 			break;
8110 		case IWN_FW_TLV_MAIN_DATA:
8111 			fw->main.data = ptr;
8112 			fw->main.datasz = len;
8113 			break;
8114 		case IWN_FW_TLV_INIT_TEXT:
8115 			fw->init.text = ptr;
8116 			fw->init.textsz = len;
8117 			break;
8118 		case IWN_FW_TLV_INIT_DATA:
8119 			fw->init.data = ptr;
8120 			fw->init.datasz = len;
8121 			break;
8122 		case IWN_FW_TLV_BOOT_TEXT:
8123 			fw->boot.text = ptr;
8124 			fw->boot.textsz = len;
8125 			break;
8126 		case IWN_FW_TLV_ENH_SENS:
8127 			if (!len)
8128 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8129 			break;
8130 		case IWN_FW_TLV_PHY_CALIB:
8131 			tmp = le32toh(*ptr);
8132 			if (tmp < 253) {
8133 				sc->reset_noise_gain = tmp;
8134 				sc->noise_gain = tmp + 1;
8135 			}
8136 			break;
8137 		case IWN_FW_TLV_PAN:
8138 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8139 			DPRINTF(sc, IWN_DEBUG_RESET,
8140 			    "PAN Support found: %d\n", 1);
8141 			break;
8142 		case IWN_FW_TLV_FLAGS:
8143 			if (len < sizeof(uint32_t))
8144 				break;
8145 			if (len % sizeof(uint32_t))
8146 				break;
8147 			sc->tlv_feature_flags = le32toh(*ptr);
8148 			DPRINTF(sc, IWN_DEBUG_RESET,
8149 			    "%s: feature: 0x%08x\n",
8150 			    __func__,
8151 			    sc->tlv_feature_flags);
8152 			break;
8153 		case IWN_FW_TLV_PBREQ_MAXLEN:
8154 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8155 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8156 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8157 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8158 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8159 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8160 		case IWN_FW_TLV_WOWLAN_INST:
8161 		case IWN_FW_TLV_WOWLAN_DATA:
8162 			DPRINTF(sc, IWN_DEBUG_RESET,
8163 			    "TLV type %d recognized but not handled\n",
8164 			    le16toh(tlv->type));
8165 			break;
8166 		default:
8167 			DPRINTF(sc, IWN_DEBUG_RESET,
8168 			    "TLV type %d not handled\n", le16toh(tlv->type));
8169 			break;
8170 		}
8171  next:		/* TLV fields are 32-bit aligned. */
8172 		ptr += (len + 3) & ~3;
8173 	}
8174 	return 0;
8175 }
8176 
8177 static int
8178 iwn_read_firmware(struct iwn_softc *sc)
8179 {
8180 	struct iwn_fw_info *fw = &sc->fw;
8181 	int error;
8182 
8183 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8184 
8185 	IWN_UNLOCK(sc);
8186 
8187 	memset(fw, 0, sizeof (*fw));
8188 
8189 	/* Read firmware image from filesystem. */
8190 	sc->fw_fp = firmware_get(sc->fwname);
8191 	if (sc->fw_fp == NULL) {
8192 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8193 		    __func__, sc->fwname);
8194 		IWN_LOCK(sc);
8195 		return EINVAL;
8196 	}
8197 	IWN_LOCK(sc);
8198 
8199 	fw->size = sc->fw_fp->datasize;
8200 	fw->data = (const uint8_t *)sc->fw_fp->data;
8201 	if (fw->size < sizeof (uint32_t)) {
8202 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8203 		    __func__, fw->size);
8204 		error = EINVAL;
8205 		goto fail;
8206 	}
8207 
8208 	/* Retrieve text and data sections. */
8209 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8210 		error = iwn_read_firmware_leg(sc, fw);
8211 	else
8212 		error = iwn_read_firmware_tlv(sc, fw, 1);
8213 	if (error != 0) {
8214 		device_printf(sc->sc_dev,
8215 		    "%s: could not read firmware sections, error %d\n",
8216 		    __func__, error);
8217 		goto fail;
8218 	}
8219 
8220 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8221 
8222 	/* Make sure text and data sections fit in hardware memory. */
8223 	if (fw->main.textsz > sc->fw_text_maxsz ||
8224 	    fw->main.datasz > sc->fw_data_maxsz ||
8225 	    fw->init.textsz > sc->fw_text_maxsz ||
8226 	    fw->init.datasz > sc->fw_data_maxsz ||
8227 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8228 	    (fw->boot.textsz & 3) != 0) {
8229 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8230 		    __func__);
8231 		error = EINVAL;
8232 		goto fail;
8233 	}
8234 
8235 	/* We can proceed with loading the firmware. */
8236 	return 0;
8237 
8238 fail:	iwn_unload_firmware(sc);
8239 	return error;
8240 }
8241 
8242 static void
8243 iwn_unload_firmware(struct iwn_softc *sc)
8244 {
8245 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8246 	sc->fw_fp = NULL;
8247 }
8248 
8249 static int
8250 iwn_clock_wait(struct iwn_softc *sc)
8251 {
8252 	int ntries;
8253 
8254 	/* Set "initialization complete" bit. */
8255 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8256 
8257 	/* Wait for clock stabilization. */
8258 	for (ntries = 0; ntries < 2500; ntries++) {
8259 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8260 			return 0;
8261 		DELAY(10);
8262 	}
8263 	device_printf(sc->sc_dev,
8264 	    "%s: timeout waiting for clock stabilization\n", __func__);
8265 	return ETIMEDOUT;
8266 }
8267 
8268 static int
8269 iwn_apm_init(struct iwn_softc *sc)
8270 {
8271 	uint32_t reg;
8272 	int error;
8273 
8274 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8275 
8276 	/* Disable L0s exit timer (NMI bug workaround). */
8277 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8278 	/* Don't wait for ICH L0s (ICH bug workaround). */
8279 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8280 
8281 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8282 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8283 
8284 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8285 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8286 
8287 	/* Retrieve PCIe Active State Power Management (ASPM). */
8288 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8289 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8290 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8291 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8292 	else
8293 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8294 
8295 	if (sc->base_params->pll_cfg_val)
8296 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8297 
8298 	/* Wait for clock stabilization before accessing prph. */
8299 	if ((error = iwn_clock_wait(sc)) != 0)
8300 		return error;
8301 
8302 	if ((error = iwn_nic_lock(sc)) != 0)
8303 		return error;
8304 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8305 		/* Enable DMA and BSM (Bootstrap State Machine). */
8306 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8307 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8308 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8309 	} else {
8310 		/* Enable DMA. */
8311 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8312 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8313 	}
8314 	DELAY(20);
8315 	/* Disable L1-Active. */
8316 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8317 	iwn_nic_unlock(sc);
8318 
8319 	return 0;
8320 }
8321 
8322 static void
8323 iwn_apm_stop_master(struct iwn_softc *sc)
8324 {
8325 	int ntries;
8326 
8327 	/* Stop busmaster DMA activity. */
8328 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8329 	for (ntries = 0; ntries < 100; ntries++) {
8330 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8331 			return;
8332 		DELAY(10);
8333 	}
8334 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8335 }
8336 
8337 static void
8338 iwn_apm_stop(struct iwn_softc *sc)
8339 {
8340 	iwn_apm_stop_master(sc);
8341 
8342 	/* Reset the entire device. */
8343 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8344 	DELAY(10);
8345 	/* Clear "initialization complete" bit. */
8346 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8347 }
8348 
8349 static int
8350 iwn4965_nic_config(struct iwn_softc *sc)
8351 {
8352 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8353 
8354 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8355 		/*
8356 		 * I don't believe this to be correct but this is what the
8357 		 * vendor driver is doing. Probably the bits should not be
8358 		 * shifted in IWN_RFCFG_*.
8359 		 */
8360 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8361 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8362 		    IWN_RFCFG_STEP(sc->rfcfg) |
8363 		    IWN_RFCFG_DASH(sc->rfcfg));
8364 	}
8365 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8366 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8367 	return 0;
8368 }
8369 
8370 static int
8371 iwn5000_nic_config(struct iwn_softc *sc)
8372 {
8373 	uint32_t tmp;
8374 	int error;
8375 
8376 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8377 
8378 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8379 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8380 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8381 		    IWN_RFCFG_STEP(sc->rfcfg) |
8382 		    IWN_RFCFG_DASH(sc->rfcfg));
8383 	}
8384 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8385 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8386 
8387 	if ((error = iwn_nic_lock(sc)) != 0)
8388 		return error;
8389 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8390 
8391 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8392 		/*
8393 		 * Select first Switching Voltage Regulator (1.32V) to
8394 		 * solve a stability issue related to noisy DC2DC line
8395 		 * in the silicon of 1000 Series.
8396 		 */
8397 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8398 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8399 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8400 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8401 	}
8402 	iwn_nic_unlock(sc);
8403 
8404 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8405 		/* Use internal power amplifier only. */
8406 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8407 	}
8408 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8409 		/* Indicate that ROM calibration version is >=6. */
8410 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8411 	}
8412 	if (sc->base_params->additional_gp_drv_bit)
8413 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8414 		    sc->base_params->additional_gp_drv_bit);
8415 	return 0;
8416 }
8417 
8418 /*
8419  * Take NIC ownership over Intel Active Management Technology (AMT).
8420  */
8421 static int
8422 iwn_hw_prepare(struct iwn_softc *sc)
8423 {
8424 	int ntries;
8425 
8426 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8427 
8428 	/* Check if hardware is ready. */
8429 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8430 	for (ntries = 0; ntries < 5; ntries++) {
8431 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8432 		    IWN_HW_IF_CONFIG_NIC_READY)
8433 			return 0;
8434 		DELAY(10);
8435 	}
8436 
8437 	/* Hardware not ready, force into ready state. */
8438 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8439 	for (ntries = 0; ntries < 15000; ntries++) {
8440 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8441 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8442 			break;
8443 		DELAY(10);
8444 	}
8445 	if (ntries == 15000)
8446 		return ETIMEDOUT;
8447 
8448 	/* Hardware should be ready now. */
8449 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8450 	for (ntries = 0; ntries < 5; ntries++) {
8451 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8452 		    IWN_HW_IF_CONFIG_NIC_READY)
8453 			return 0;
8454 		DELAY(10);
8455 	}
8456 	return ETIMEDOUT;
8457 }
8458 
8459 static int
8460 iwn_hw_init(struct iwn_softc *sc)
8461 {
8462 	struct iwn_ops *ops = &sc->ops;
8463 	int error, chnl, qid;
8464 
8465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8466 
8467 	/* Clear pending interrupts. */
8468 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8469 
8470 	if ((error = iwn_apm_init(sc)) != 0) {
8471 		device_printf(sc->sc_dev,
8472 		    "%s: could not power ON adapter, error %d\n", __func__,
8473 		    error);
8474 		return error;
8475 	}
8476 
8477 	/* Select VMAIN power source. */
8478 	if ((error = iwn_nic_lock(sc)) != 0)
8479 		return error;
8480 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8481 	iwn_nic_unlock(sc);
8482 
8483 	/* Perform adapter-specific initialization. */
8484 	if ((error = ops->nic_config(sc)) != 0)
8485 		return error;
8486 
8487 	/* Initialize RX ring. */
8488 	if ((error = iwn_nic_lock(sc)) != 0)
8489 		return error;
8490 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8491 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8492 	/* Set physical address of RX ring (256-byte aligned). */
8493 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8494 	/* Set physical address of RX status (16-byte aligned). */
8495 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8496 	/* Enable RX. */
8497 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8498 	    IWN_FH_RX_CONFIG_ENA           |
8499 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8500 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8501 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8502 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8503 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8504 	iwn_nic_unlock(sc);
8505 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8506 
8507 	if ((error = iwn_nic_lock(sc)) != 0)
8508 		return error;
8509 
8510 	/* Initialize TX scheduler. */
8511 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8512 
8513 	/* Set physical address of "keep warm" page (16-byte aligned). */
8514 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8515 
8516 	/* Initialize TX rings. */
8517 	for (qid = 0; qid < sc->ntxqs; qid++) {
8518 		struct iwn_tx_ring *txq = &sc->txq[qid];
8519 
8520 		/* Set physical address of TX ring (256-byte aligned). */
8521 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8522 		    txq->desc_dma.paddr >> 8);
8523 	}
8524 	iwn_nic_unlock(sc);
8525 
8526 	/* Enable DMA channels. */
8527 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8528 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8529 		    IWN_FH_TX_CONFIG_DMA_ENA |
8530 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8531 	}
8532 
8533 	/* Clear "radio off" and "commands blocked" bits. */
8534 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8535 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8536 
8537 	/* Clear pending interrupts. */
8538 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8539 	/* Enable interrupt coalescing. */
8540 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8541 	/* Enable interrupts. */
8542 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8543 
8544 	/* _Really_ make sure "radio off" bit is cleared! */
8545 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8546 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8547 
8548 	/* Enable shadow registers. */
8549 	if (sc->base_params->shadow_reg_enable)
8550 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8551 
8552 	if ((error = ops->load_firmware(sc)) != 0) {
8553 		device_printf(sc->sc_dev,
8554 		    "%s: could not load firmware, error %d\n", __func__,
8555 		    error);
8556 		return error;
8557 	}
8558 	/* Wait at most one second for firmware alive notification. */
8559 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8560 		device_printf(sc->sc_dev,
8561 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8562 		    __func__, error);
8563 		return error;
8564 	}
8565 	/* Do post-firmware initialization. */
8566 
8567 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8568 
8569 	return ops->post_alive(sc);
8570 }
8571 
8572 static void
8573 iwn_hw_stop(struct iwn_softc *sc)
8574 {
8575 	int chnl, qid, ntries;
8576 
8577 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8578 
8579 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8580 
8581 	/* Disable interrupts. */
8582 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8583 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8584 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8585 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8586 
8587 	/* Make sure we no longer hold the NIC lock. */
8588 	iwn_nic_unlock(sc);
8589 
8590 	/* Stop TX scheduler. */
8591 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8592 
8593 	/* Stop all DMA channels. */
8594 	if (iwn_nic_lock(sc) == 0) {
8595 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8596 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8597 			for (ntries = 0; ntries < 200; ntries++) {
8598 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8599 				    IWN_FH_TX_STATUS_IDLE(chnl))
8600 					break;
8601 				DELAY(10);
8602 			}
8603 		}
8604 		iwn_nic_unlock(sc);
8605 	}
8606 
8607 	/* Stop RX ring. */
8608 	iwn_reset_rx_ring(sc, &sc->rxq);
8609 
8610 	/* Reset all TX rings. */
8611 	for (qid = 0; qid < sc->ntxqs; qid++)
8612 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8613 
8614 	if (iwn_nic_lock(sc) == 0) {
8615 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8616 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8617 		iwn_nic_unlock(sc);
8618 	}
8619 	DELAY(5);
8620 	/* Power OFF adapter. */
8621 	iwn_apm_stop(sc);
8622 }
8623 
8624 static void
8625 iwn_radio_on(void *arg0, int pending)
8626 {
8627 	struct iwn_softc *sc = arg0;
8628 	struct ieee80211com *ic = &sc->sc_ic;
8629 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8630 
8631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8632 
8633 	if (vap != NULL) {
8634 		iwn_init(sc);
8635 		ieee80211_init(vap);
8636 	}
8637 }
8638 
8639 static void
8640 iwn_radio_off(void *arg0, int pending)
8641 {
8642 	struct iwn_softc *sc = arg0;
8643 	struct ieee80211com *ic = &sc->sc_ic;
8644 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8645 
8646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8647 
8648 	iwn_stop(sc);
8649 	if (vap != NULL)
8650 		ieee80211_stop(vap);
8651 
8652 	/* Enable interrupts to get RF toggle notification. */
8653 	IWN_LOCK(sc);
8654 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8655 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8656 	IWN_UNLOCK(sc);
8657 }
8658 
8659 static void
8660 iwn_panicked(void *arg0, int pending)
8661 {
8662 	struct iwn_softc *sc = arg0;
8663 	struct ieee80211com *ic = &sc->sc_ic;
8664 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8665 	int error;
8666 
8667 	if (vap == NULL) {
8668 		printf("%s: null vap\n", __func__);
8669 		return;
8670 	}
8671 
8672 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8673 	    "resetting...\n", __func__, vap->iv_state);
8674 
8675 	IWN_LOCK(sc);
8676 
8677 	iwn_stop_locked(sc);
8678 	iwn_init_locked(sc);
8679 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8680 	    (error = iwn_auth(sc, vap)) != 0) {
8681 		device_printf(sc->sc_dev,
8682 		    "%s: could not move to auth state\n", __func__);
8683 	}
8684 	if (vap->iv_state >= IEEE80211_S_RUN &&
8685 	    (error = iwn_run(sc, vap)) != 0) {
8686 		device_printf(sc->sc_dev,
8687 		    "%s: could not move to run state\n", __func__);
8688 	}
8689 
8690 	IWN_UNLOCK(sc);
8691 }
8692 
8693 static void
8694 iwn_init_locked(struct iwn_softc *sc)
8695 {
8696 	int error;
8697 
8698 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8699 
8700 	IWN_LOCK_ASSERT(sc);
8701 
8702 	sc->sc_flags |= IWN_FLAG_RUNNING;
8703 
8704 	if ((error = iwn_hw_prepare(sc)) != 0) {
8705 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8706 		    __func__, error);
8707 		goto fail;
8708 	}
8709 
8710 	/* Initialize interrupt mask to default value. */
8711 	sc->int_mask = IWN_INT_MASK_DEF;
8712 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8713 
8714 	/* Check that the radio is not disabled by hardware switch. */
8715 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8716 		device_printf(sc->sc_dev,
8717 		    "radio is disabled by hardware switch\n");
8718 		/* Enable interrupts to get RF toggle notifications. */
8719 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8720 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8721 		return;
8722 	}
8723 
8724 	/* Read firmware images from the filesystem. */
8725 	if ((error = iwn_read_firmware(sc)) != 0) {
8726 		device_printf(sc->sc_dev,
8727 		    "%s: could not read firmware, error %d\n", __func__,
8728 		    error);
8729 		goto fail;
8730 	}
8731 
8732 	/* Initialize hardware and upload firmware. */
8733 	error = iwn_hw_init(sc);
8734 	iwn_unload_firmware(sc);
8735 	if (error != 0) {
8736 		device_printf(sc->sc_dev,
8737 		    "%s: could not initialize hardware, error %d\n", __func__,
8738 		    error);
8739 		goto fail;
8740 	}
8741 
8742 	/* Configure adapter now that it is ready. */
8743 	if ((error = iwn_config(sc)) != 0) {
8744 		device_printf(sc->sc_dev,
8745 		    "%s: could not configure device, error %d\n", __func__,
8746 		    error);
8747 		goto fail;
8748 	}
8749 
8750 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8751 
8752 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8753 
8754 	return;
8755 
8756 fail:
8757 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8758 	iwn_stop_locked(sc);
8759 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8760 }
8761 
8762 static void
8763 iwn_init(struct iwn_softc *sc)
8764 {
8765 
8766 	IWN_LOCK(sc);
8767 	iwn_init_locked(sc);
8768 	IWN_UNLOCK(sc);
8769 
8770 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8771 		ieee80211_start_all(&sc->sc_ic);
8772 }
8773 
8774 static void
8775 iwn_stop_locked(struct iwn_softc *sc)
8776 {
8777 
8778 	IWN_LOCK_ASSERT(sc);
8779 
8780 	sc->sc_is_scanning = 0;
8781 	sc->sc_tx_timer = 0;
8782 	callout_stop(&sc->watchdog_to);
8783 	callout_stop(&sc->calib_to);
8784 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8785 
8786 	/* Power OFF hardware. */
8787 	iwn_hw_stop(sc);
8788 }
8789 
8790 static void
8791 iwn_stop(struct iwn_softc *sc)
8792 {
8793 	IWN_LOCK(sc);
8794 	iwn_stop_locked(sc);
8795 	IWN_UNLOCK(sc);
8796 }
8797 
8798 /*
8799  * Callback from net80211 to start a scan.
8800  */
8801 static void
8802 iwn_scan_start(struct ieee80211com *ic)
8803 {
8804 	struct iwn_softc *sc = ic->ic_softc;
8805 
8806 	IWN_LOCK(sc);
8807 	/* make the link LED blink while we're scanning */
8808 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8809 	IWN_UNLOCK(sc);
8810 }
8811 
8812 /*
8813  * Callback from net80211 to terminate a scan.
8814  */
8815 static void
8816 iwn_scan_end(struct ieee80211com *ic)
8817 {
8818 	struct iwn_softc *sc = ic->ic_softc;
8819 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8820 
8821 	IWN_LOCK(sc);
8822 	if (vap->iv_state == IEEE80211_S_RUN) {
8823 		/* Set link LED to ON status if we are associated */
8824 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8825 	}
8826 	IWN_UNLOCK(sc);
8827 }
8828 
8829 /*
8830  * Callback from net80211 to force a channel change.
8831  */
8832 static void
8833 iwn_set_channel(struct ieee80211com *ic)
8834 {
8835 	const struct ieee80211_channel *c = ic->ic_curchan;
8836 	struct iwn_softc *sc = ic->ic_softc;
8837 	int error;
8838 
8839 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8840 
8841 	IWN_LOCK(sc);
8842 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8843 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8844 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8845 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8846 
8847 	/*
8848 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8849 	 * are already taken care of by their respective firmware commands.
8850 	 */
8851 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8852 		error = iwn_config(sc);
8853 		if (error != 0)
8854 		device_printf(sc->sc_dev,
8855 		    "%s: error %d settting channel\n", __func__, error);
8856 	}
8857 	IWN_UNLOCK(sc);
8858 }
8859 
8860 /*
8861  * Callback from net80211 to start scanning of the current channel.
8862  */
8863 static void
8864 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8865 {
8866 	struct ieee80211vap *vap = ss->ss_vap;
8867 	struct ieee80211com *ic = vap->iv_ic;
8868 	struct iwn_softc *sc = ic->ic_softc;
8869 	int error;
8870 
8871 	IWN_LOCK(sc);
8872 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8873 	IWN_UNLOCK(sc);
8874 	if (error != 0)
8875 		ieee80211_cancel_scan(vap);
8876 }
8877 
8878 /*
8879  * Callback from net80211 to handle the minimum dwell time being met.
8880  * The intent is to terminate the scan but we just let the firmware
8881  * notify us when it's finished as we have no safe way to abort it.
8882  */
8883 static void
8884 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8885 {
8886 	/* NB: don't try to abort scan; wait for firmware to finish */
8887 }
8888 
8889 static void
8890 iwn_hw_reset(void *arg0, int pending)
8891 {
8892 	struct iwn_softc *sc = arg0;
8893 	struct ieee80211com *ic = &sc->sc_ic;
8894 
8895 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8896 
8897 	iwn_stop(sc);
8898 	iwn_init(sc);
8899 	ieee80211_notify_radio(ic, 1);
8900 }
8901 #ifdef	IWN_DEBUG
8902 #define	IWN_DESC(x) case x:	return #x
8903 
8904 /*
8905  * Translate CSR code to string
8906  */
8907 static char *iwn_get_csr_string(int csr)
8908 {
8909 	switch (csr) {
8910 		IWN_DESC(IWN_HW_IF_CONFIG);
8911 		IWN_DESC(IWN_INT_COALESCING);
8912 		IWN_DESC(IWN_INT);
8913 		IWN_DESC(IWN_INT_MASK);
8914 		IWN_DESC(IWN_FH_INT);
8915 		IWN_DESC(IWN_GPIO_IN);
8916 		IWN_DESC(IWN_RESET);
8917 		IWN_DESC(IWN_GP_CNTRL);
8918 		IWN_DESC(IWN_HW_REV);
8919 		IWN_DESC(IWN_EEPROM);
8920 		IWN_DESC(IWN_EEPROM_GP);
8921 		IWN_DESC(IWN_OTP_GP);
8922 		IWN_DESC(IWN_GIO);
8923 		IWN_DESC(IWN_GP_UCODE);
8924 		IWN_DESC(IWN_GP_DRIVER);
8925 		IWN_DESC(IWN_UCODE_GP1);
8926 		IWN_DESC(IWN_UCODE_GP2);
8927 		IWN_DESC(IWN_LED);
8928 		IWN_DESC(IWN_DRAM_INT_TBL);
8929 		IWN_DESC(IWN_GIO_CHICKEN);
8930 		IWN_DESC(IWN_ANA_PLL);
8931 		IWN_DESC(IWN_HW_REV_WA);
8932 		IWN_DESC(IWN_DBG_HPET_MEM);
8933 	default:
8934 		return "UNKNOWN CSR";
8935 	}
8936 }
8937 
8938 /*
8939  * This function print firmware register
8940  */
8941 static void
8942 iwn_debug_register(struct iwn_softc *sc)
8943 {
8944 	int i;
8945 	static const uint32_t csr_tbl[] = {
8946 		IWN_HW_IF_CONFIG,
8947 		IWN_INT_COALESCING,
8948 		IWN_INT,
8949 		IWN_INT_MASK,
8950 		IWN_FH_INT,
8951 		IWN_GPIO_IN,
8952 		IWN_RESET,
8953 		IWN_GP_CNTRL,
8954 		IWN_HW_REV,
8955 		IWN_EEPROM,
8956 		IWN_EEPROM_GP,
8957 		IWN_OTP_GP,
8958 		IWN_GIO,
8959 		IWN_GP_UCODE,
8960 		IWN_GP_DRIVER,
8961 		IWN_UCODE_GP1,
8962 		IWN_UCODE_GP2,
8963 		IWN_LED,
8964 		IWN_DRAM_INT_TBL,
8965 		IWN_GIO_CHICKEN,
8966 		IWN_ANA_PLL,
8967 		IWN_HW_REV_WA,
8968 		IWN_DBG_HPET_MEM,
8969 	};
8970 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8971 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8972 	    "\n");
8973 	for (i = 0; i <  nitems(csr_tbl); i++){
8974 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8975 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8976 		if ((i+1) % 3 == 0)
8977 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8978 	}
8979 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8980 }
8981 #endif
8982 
8983 
8984