1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_wlan.h" 31 #include "opt_iwn.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/priv.h> 49 #include <sys/queue.h> 50 #include <sys/taskqueue.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <machine/clock.h> 55 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 #include <dev/iwn/if_iwn_devid.h> 75 #include <dev/iwn/if_iwn_chip_cfg.h> 76 #include <dev/iwn/if_iwn_debug.h> 77 #include <dev/iwn/if_iwn_ioctl.h> 78 79 struct iwn_ident { 80 uint16_t vendor; 81 uint16_t device; 82 const char *name; 83 }; 84 85 static const struct iwn_ident iwn_ident_table[] = { 86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 129 { 0, 0, NULL } 130 }; 131 132 static int iwn_probe(device_t); 133 static int iwn_attach(device_t); 134 static int iwn4965_attach(struct iwn_softc *, uint16_t); 135 static int iwn5000_attach(struct iwn_softc *, uint16_t); 136 static int iwn_config_specific(struct iwn_softc *, uint16_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static void iwn_sysctlattach(struct iwn_softc *); 139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 141 const uint8_t [IEEE80211_ADDR_LEN], 142 const uint8_t [IEEE80211_ADDR_LEN]); 143 static void iwn_vap_delete(struct ieee80211vap *); 144 static int iwn_detach(device_t); 145 static int iwn_shutdown(device_t); 146 static int iwn_suspend(device_t); 147 static int iwn_resume(device_t); 148 static int iwn_nic_lock(struct iwn_softc *); 149 static int iwn_eeprom_lock(struct iwn_softc *); 150 static int iwn_init_otprom(struct iwn_softc *); 151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 154 void **, bus_size_t, bus_size_t); 155 static void iwn_dma_contig_free(struct iwn_dma_info *); 156 static int iwn_alloc_sched(struct iwn_softc *); 157 static void iwn_free_sched(struct iwn_softc *); 158 static int iwn_alloc_kw(struct iwn_softc *); 159 static void iwn_free_kw(struct iwn_softc *); 160 static int iwn_alloc_ict(struct iwn_softc *); 161 static void iwn_free_ict(struct iwn_softc *); 162 static int iwn_alloc_fwmem(struct iwn_softc *); 163 static void iwn_free_fwmem(struct iwn_softc *); 164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 168 int); 169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 171 static void iwn5000_ict_reset(struct iwn_softc *); 172 static int iwn_read_eeprom(struct iwn_softc *, 173 uint8_t macaddr[IEEE80211_ADDR_LEN]); 174 static void iwn4965_read_eeprom(struct iwn_softc *); 175 #ifdef IWN_DEBUG 176 static void iwn4965_print_power_group(struct iwn_softc *, int); 177 #endif 178 static void iwn5000_read_eeprom(struct iwn_softc *); 179 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 180 static void iwn_read_eeprom_band(struct iwn_softc *, int); 181 static void iwn_read_eeprom_ht40(struct iwn_softc *, int); 182 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 183 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 184 struct ieee80211_channel *); 185 static int iwn_setregdomain(struct ieee80211com *, 186 struct ieee80211_regdomain *, int, 187 struct ieee80211_channel[]); 188 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 189 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 190 const uint8_t mac[IEEE80211_ADDR_LEN]); 191 static void iwn_newassoc(struct ieee80211_node *, int); 192 static int iwn_media_change(struct ifnet *); 193 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 194 static void iwn_calib_timeout(void *); 195 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 196 struct iwn_rx_data *); 197 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 198 struct iwn_rx_data *); 199 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 200 struct iwn_rx_data *); 201 static void iwn5000_rx_calib_results(struct iwn_softc *, 202 struct iwn_rx_desc *, struct iwn_rx_data *); 203 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 204 struct iwn_rx_data *); 205 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 206 struct iwn_rx_data *); 207 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 208 struct iwn_rx_data *); 209 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 210 uint8_t); 211 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *); 212 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 213 static void iwn_notif_intr(struct iwn_softc *); 214 static void iwn_wakeup_intr(struct iwn_softc *); 215 static void iwn_rftoggle_intr(struct iwn_softc *); 216 static void iwn_fatal_intr(struct iwn_softc *); 217 static void iwn_intr(void *); 218 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 219 uint16_t); 220 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 221 uint16_t); 222 #ifdef notyet 223 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 224 #endif 225 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 226 struct ieee80211_node *); 227 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 228 struct ieee80211_node *, 229 const struct ieee80211_bpf_params *params); 230 static void iwn_xmit_task(void *arg0, int pending); 231 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 232 const struct ieee80211_bpf_params *); 233 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 234 static void iwn_watchdog(void *); 235 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 236 static void iwn_parent(struct ieee80211com *); 237 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 238 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 239 int); 240 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 241 int); 242 static int iwn_set_link_quality(struct iwn_softc *, 243 struct ieee80211_node *); 244 static int iwn_add_broadcast_node(struct iwn_softc *, int); 245 static int iwn_updateedca(struct ieee80211com *); 246 static void iwn_update_mcast(struct ieee80211com *); 247 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 248 static int iwn_set_critical_temp(struct iwn_softc *); 249 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 250 static void iwn4965_power_calibration(struct iwn_softc *, int); 251 static int iwn4965_set_txpower(struct iwn_softc *, 252 struct ieee80211_channel *, int); 253 static int iwn5000_set_txpower(struct iwn_softc *, 254 struct ieee80211_channel *, int); 255 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 256 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 257 static int iwn_get_noise(const struct iwn_rx_general_stats *); 258 static int iwn4965_get_temperature(struct iwn_softc *); 259 static int iwn5000_get_temperature(struct iwn_softc *); 260 static int iwn_init_sensitivity(struct iwn_softc *); 261 static void iwn_collect_noise(struct iwn_softc *, 262 const struct iwn_rx_general_stats *); 263 static int iwn4965_init_gains(struct iwn_softc *); 264 static int iwn5000_init_gains(struct iwn_softc *); 265 static int iwn4965_set_gains(struct iwn_softc *); 266 static int iwn5000_set_gains(struct iwn_softc *); 267 static void iwn_tune_sensitivity(struct iwn_softc *, 268 const struct iwn_rx_stats *); 269 static void iwn_save_stats_counters(struct iwn_softc *, 270 const struct iwn_stats *); 271 static int iwn_send_sensitivity(struct iwn_softc *); 272 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 273 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 274 static int iwn_send_btcoex(struct iwn_softc *); 275 static int iwn_send_advanced_btcoex(struct iwn_softc *); 276 static int iwn5000_runtime_calib(struct iwn_softc *); 277 static int iwn_config(struct iwn_softc *); 278 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 279 struct ieee80211_scan_state *, struct ieee80211_channel *); 280 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 281 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 282 static int iwn_ampdu_rx_start(struct ieee80211_node *, 283 struct ieee80211_rx_ampdu *, int, int, int); 284 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 285 struct ieee80211_rx_ampdu *); 286 static int iwn_addba_request(struct ieee80211_node *, 287 struct ieee80211_tx_ampdu *, int, int, int); 288 static int iwn_addba_response(struct ieee80211_node *, 289 struct ieee80211_tx_ampdu *, int, int, int); 290 static int iwn_ampdu_tx_start(struct ieee80211com *, 291 struct ieee80211_node *, uint8_t); 292 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 293 struct ieee80211_tx_ampdu *); 294 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 295 struct ieee80211_node *, int, uint8_t, uint16_t); 296 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 297 uint8_t, uint16_t); 298 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 299 struct ieee80211_node *, int, uint8_t, uint16_t); 300 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 301 uint8_t, uint16_t); 302 static int iwn5000_query_calibration(struct iwn_softc *); 303 static int iwn5000_send_calibration(struct iwn_softc *); 304 static int iwn5000_send_wimax_coex(struct iwn_softc *); 305 static int iwn5000_crystal_calib(struct iwn_softc *); 306 static int iwn5000_temp_offset_calib(struct iwn_softc *); 307 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 308 static int iwn4965_post_alive(struct iwn_softc *); 309 static int iwn5000_post_alive(struct iwn_softc *); 310 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 311 int); 312 static int iwn4965_load_firmware(struct iwn_softc *); 313 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 314 const uint8_t *, int); 315 static int iwn5000_load_firmware(struct iwn_softc *); 316 static int iwn_read_firmware_leg(struct iwn_softc *, 317 struct iwn_fw_info *); 318 static int iwn_read_firmware_tlv(struct iwn_softc *, 319 struct iwn_fw_info *, uint16_t); 320 static int iwn_read_firmware(struct iwn_softc *); 321 static void iwn_unload_firmware(struct iwn_softc *); 322 static int iwn_clock_wait(struct iwn_softc *); 323 static int iwn_apm_init(struct iwn_softc *); 324 static void iwn_apm_stop_master(struct iwn_softc *); 325 static void iwn_apm_stop(struct iwn_softc *); 326 static int iwn4965_nic_config(struct iwn_softc *); 327 static int iwn5000_nic_config(struct iwn_softc *); 328 static int iwn_hw_prepare(struct iwn_softc *); 329 static int iwn_hw_init(struct iwn_softc *); 330 static void iwn_hw_stop(struct iwn_softc *); 331 static void iwn_radio_on(void *, int); 332 static void iwn_radio_off(void *, int); 333 static void iwn_panicked(void *, int); 334 static void iwn_init_locked(struct iwn_softc *); 335 static void iwn_init(struct iwn_softc *); 336 static void iwn_stop_locked(struct iwn_softc *); 337 static void iwn_stop(struct iwn_softc *); 338 static void iwn_scan_start(struct ieee80211com *); 339 static void iwn_scan_end(struct ieee80211com *); 340 static void iwn_set_channel(struct ieee80211com *); 341 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 342 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 343 static void iwn_hw_reset(void *, int); 344 #ifdef IWN_DEBUG 345 static char *iwn_get_csr_string(int); 346 static void iwn_debug_register(struct iwn_softc *); 347 #endif 348 349 static device_method_t iwn_methods[] = { 350 /* Device interface */ 351 DEVMETHOD(device_probe, iwn_probe), 352 DEVMETHOD(device_attach, iwn_attach), 353 DEVMETHOD(device_detach, iwn_detach), 354 DEVMETHOD(device_shutdown, iwn_shutdown), 355 DEVMETHOD(device_suspend, iwn_suspend), 356 DEVMETHOD(device_resume, iwn_resume), 357 358 DEVMETHOD_END 359 }; 360 361 static driver_t iwn_driver = { 362 "iwn", 363 iwn_methods, 364 sizeof(struct iwn_softc) 365 }; 366 static devclass_t iwn_devclass; 367 368 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); 369 370 MODULE_VERSION(iwn, 1); 371 372 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 373 MODULE_DEPEND(iwn, pci, 1, 1, 1); 374 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 375 376 static d_ioctl_t iwn_cdev_ioctl; 377 static d_open_t iwn_cdev_open; 378 static d_close_t iwn_cdev_close; 379 380 static struct cdevsw iwn_cdevsw = { 381 .d_version = D_VERSION, 382 .d_flags = 0, 383 .d_open = iwn_cdev_open, 384 .d_close = iwn_cdev_close, 385 .d_ioctl = iwn_cdev_ioctl, 386 .d_name = "iwn", 387 }; 388 389 static int 390 iwn_probe(device_t dev) 391 { 392 const struct iwn_ident *ident; 393 394 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 395 if (pci_get_vendor(dev) == ident->vendor && 396 pci_get_device(dev) == ident->device) { 397 device_set_desc(dev, ident->name); 398 return (BUS_PROBE_DEFAULT); 399 } 400 } 401 return ENXIO; 402 } 403 404 static int 405 iwn_is_3stream_device(struct iwn_softc *sc) 406 { 407 /* XXX for now only 5300, until the 5350 can be tested */ 408 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 409 return (1); 410 return (0); 411 } 412 413 static int 414 iwn_attach(device_t dev) 415 { 416 struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); 417 struct ieee80211com *ic; 418 int i, error, rid; 419 420 sc->sc_dev = dev; 421 422 #ifdef IWN_DEBUG 423 error = resource_int_value(device_get_name(sc->sc_dev), 424 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 425 if (error != 0) 426 sc->sc_debug = 0; 427 #else 428 sc->sc_debug = 0; 429 #endif 430 431 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 432 433 /* 434 * Get the offset of the PCI Express Capability Structure in PCI 435 * Configuration Space. 436 */ 437 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 438 if (error != 0) { 439 device_printf(dev, "PCIe capability structure not found!\n"); 440 return error; 441 } 442 443 /* Clear device-specific "PCI retry timeout" register (41h). */ 444 pci_write_config(dev, 0x41, 0, 1); 445 446 /* Enable bus-mastering. */ 447 pci_enable_busmaster(dev); 448 449 rid = PCIR_BAR(0); 450 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 451 RF_ACTIVE); 452 if (sc->mem == NULL) { 453 device_printf(dev, "can't map mem space\n"); 454 error = ENOMEM; 455 return error; 456 } 457 sc->sc_st = rman_get_bustag(sc->mem); 458 sc->sc_sh = rman_get_bushandle(sc->mem); 459 460 i = 1; 461 rid = 0; 462 if (pci_alloc_msi(dev, &i) == 0) 463 rid = 1; 464 /* Install interrupt handler. */ 465 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 466 (rid != 0 ? 0 : RF_SHAREABLE)); 467 if (sc->irq == NULL) { 468 device_printf(dev, "can't map interrupt\n"); 469 error = ENOMEM; 470 goto fail; 471 } 472 473 IWN_LOCK_INIT(sc); 474 475 /* Read hardware revision and attach. */ 476 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 477 & IWN_HW_REV_TYPE_MASK; 478 sc->subdevice_id = pci_get_subdevice(dev); 479 480 /* 481 * 4965 versus 5000 and later have different methods. 482 * Let's set those up first. 483 */ 484 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 485 error = iwn4965_attach(sc, pci_get_device(dev)); 486 else 487 error = iwn5000_attach(sc, pci_get_device(dev)); 488 if (error != 0) { 489 device_printf(dev, "could not attach device, error %d\n", 490 error); 491 goto fail; 492 } 493 494 /* 495 * Next, let's setup the various parameters of each NIC. 496 */ 497 error = iwn_config_specific(sc, pci_get_device(dev)); 498 if (error != 0) { 499 device_printf(dev, "could not attach device, error %d\n", 500 error); 501 goto fail; 502 } 503 504 if ((error = iwn_hw_prepare(sc)) != 0) { 505 device_printf(dev, "hardware not ready, error %d\n", error); 506 goto fail; 507 } 508 509 /* Allocate DMA memory for firmware transfers. */ 510 if ((error = iwn_alloc_fwmem(sc)) != 0) { 511 device_printf(dev, 512 "could not allocate memory for firmware, error %d\n", 513 error); 514 goto fail; 515 } 516 517 /* Allocate "Keep Warm" page. */ 518 if ((error = iwn_alloc_kw(sc)) != 0) { 519 device_printf(dev, 520 "could not allocate keep warm page, error %d\n", error); 521 goto fail; 522 } 523 524 /* Allocate ICT table for 5000 Series. */ 525 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 526 (error = iwn_alloc_ict(sc)) != 0) { 527 device_printf(dev, "could not allocate ICT table, error %d\n", 528 error); 529 goto fail; 530 } 531 532 /* Allocate TX scheduler "rings". */ 533 if ((error = iwn_alloc_sched(sc)) != 0) { 534 device_printf(dev, 535 "could not allocate TX scheduler rings, error %d\n", error); 536 goto fail; 537 } 538 539 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 540 for (i = 0; i < sc->ntxqs; i++) { 541 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 542 device_printf(dev, 543 "could not allocate TX ring %d, error %d\n", i, 544 error); 545 goto fail; 546 } 547 } 548 549 /* Allocate RX ring. */ 550 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 551 device_printf(dev, "could not allocate RX ring, error %d\n", 552 error); 553 goto fail; 554 } 555 556 /* Clear pending interrupts. */ 557 IWN_WRITE(sc, IWN_INT, 0xffffffff); 558 559 ic = &sc->sc_ic; 560 ic->ic_softc = sc; 561 ic->ic_name = device_get_nameunit(dev); 562 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 563 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 564 565 /* Set device capabilities. */ 566 ic->ic_caps = 567 IEEE80211_C_STA /* station mode supported */ 568 | IEEE80211_C_MONITOR /* monitor mode supported */ 569 #if 0 570 | IEEE80211_C_BGSCAN /* background scanning */ 571 #endif 572 | IEEE80211_C_TXPMGT /* tx power management */ 573 | IEEE80211_C_SHSLOT /* short slot time supported */ 574 | IEEE80211_C_WPA 575 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 576 #if 0 577 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 578 #endif 579 | IEEE80211_C_WME /* WME */ 580 | IEEE80211_C_PMGT /* Station-side power mgmt */ 581 ; 582 583 /* Read MAC address, channels, etc from EEPROM. */ 584 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 585 device_printf(dev, "could not read EEPROM, error %d\n", 586 error); 587 goto fail; 588 } 589 590 /* Count the number of available chains. */ 591 sc->ntxchains = 592 ((sc->txchainmask >> 2) & 1) + 593 ((sc->txchainmask >> 1) & 1) + 594 ((sc->txchainmask >> 0) & 1); 595 sc->nrxchains = 596 ((sc->rxchainmask >> 2) & 1) + 597 ((sc->rxchainmask >> 1) & 1) + 598 ((sc->rxchainmask >> 0) & 1); 599 if (bootverbose) { 600 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 601 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 602 ic->ic_macaddr, ":"); 603 } 604 605 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 606 ic->ic_rxstream = sc->nrxchains; 607 ic->ic_txstream = sc->ntxchains; 608 609 /* 610 * Some of the 3 antenna devices (ie, the 4965) only supports 611 * 2x2 operation. So correct the number of streams if 612 * it's not a 3-stream device. 613 */ 614 if (! iwn_is_3stream_device(sc)) { 615 if (ic->ic_rxstream > 2) 616 ic->ic_rxstream = 2; 617 if (ic->ic_txstream > 2) 618 ic->ic_txstream = 2; 619 } 620 621 ic->ic_htcaps = 622 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 623 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 624 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 625 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 626 #ifdef notyet 627 | IEEE80211_HTCAP_GREENFIELD 628 #if IWN_RBUF_SIZE == 8192 629 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 630 #else 631 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 632 #endif 633 #endif 634 /* s/w capabilities */ 635 | IEEE80211_HTC_HT /* HT operation */ 636 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 637 #ifdef notyet 638 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 639 #endif 640 ; 641 } 642 643 ieee80211_ifattach(ic); 644 ic->ic_vap_create = iwn_vap_create; 645 ic->ic_ioctl = iwn_ioctl; 646 ic->ic_parent = iwn_parent; 647 ic->ic_vap_delete = iwn_vap_delete; 648 ic->ic_transmit = iwn_transmit; 649 ic->ic_raw_xmit = iwn_raw_xmit; 650 ic->ic_node_alloc = iwn_node_alloc; 651 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 652 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 653 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 654 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 655 sc->sc_addba_request = ic->ic_addba_request; 656 ic->ic_addba_request = iwn_addba_request; 657 sc->sc_addba_response = ic->ic_addba_response; 658 ic->ic_addba_response = iwn_addba_response; 659 sc->sc_addba_stop = ic->ic_addba_stop; 660 ic->ic_addba_stop = iwn_ampdu_tx_stop; 661 ic->ic_newassoc = iwn_newassoc; 662 ic->ic_wme.wme_update = iwn_updateedca; 663 ic->ic_update_mcast = iwn_update_mcast; 664 ic->ic_scan_start = iwn_scan_start; 665 ic->ic_scan_end = iwn_scan_end; 666 ic->ic_set_channel = iwn_set_channel; 667 ic->ic_scan_curchan = iwn_scan_curchan; 668 ic->ic_scan_mindwell = iwn_scan_mindwell; 669 ic->ic_setregdomain = iwn_setregdomain; 670 671 iwn_radiotap_attach(sc); 672 673 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 674 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 675 TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc); 676 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); 677 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); 678 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 679 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 680 681 mbufq_init(&sc->sc_xmit_queue, 1024); 682 683 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 684 taskqueue_thread_enqueue, &sc->sc_tq); 685 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 686 if (error != 0) { 687 device_printf(dev, "can't start threads, error %d\n", error); 688 goto fail; 689 } 690 691 iwn_sysctlattach(sc); 692 693 /* 694 * Hook our interrupt after all initialization is complete. 695 */ 696 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 697 NULL, iwn_intr, sc, &sc->sc_ih); 698 if (error != 0) { 699 device_printf(dev, "can't establish interrupt, error %d\n", 700 error); 701 goto fail; 702 } 703 704 #if 0 705 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 706 __func__, 707 sizeof(struct iwn_stats), 708 sizeof(struct iwn_stats_bt)); 709 #endif 710 711 if (bootverbose) 712 ieee80211_announce(ic); 713 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 714 715 /* Add debug ioctl right at the end */ 716 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 717 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 718 if (sc->sc_cdev == NULL) { 719 device_printf(dev, "failed to create debug character device\n"); 720 } else { 721 sc->sc_cdev->si_drv1 = sc; 722 } 723 return 0; 724 fail: 725 iwn_detach(dev); 726 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 727 return error; 728 } 729 730 /* 731 * Define specific configuration based on device id and subdevice id 732 * pid : PCI device id 733 */ 734 static int 735 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 736 { 737 738 switch (pid) { 739 /* 4965 series */ 740 case IWN_DID_4965_1: 741 case IWN_DID_4965_2: 742 case IWN_DID_4965_3: 743 case IWN_DID_4965_4: 744 sc->base_params = &iwn4965_base_params; 745 sc->limits = &iwn4965_sensitivity_limits; 746 sc->fwname = "iwn4965fw"; 747 /* Override chains masks, ROM is known to be broken. */ 748 sc->txchainmask = IWN_ANT_AB; 749 sc->rxchainmask = IWN_ANT_ABC; 750 /* Enable normal btcoex */ 751 sc->sc_flags |= IWN_FLAG_BTCOEX; 752 break; 753 /* 1000 Series */ 754 case IWN_DID_1000_1: 755 case IWN_DID_1000_2: 756 switch(sc->subdevice_id) { 757 case IWN_SDID_1000_1: 758 case IWN_SDID_1000_2: 759 case IWN_SDID_1000_3: 760 case IWN_SDID_1000_4: 761 case IWN_SDID_1000_5: 762 case IWN_SDID_1000_6: 763 case IWN_SDID_1000_7: 764 case IWN_SDID_1000_8: 765 case IWN_SDID_1000_9: 766 case IWN_SDID_1000_10: 767 case IWN_SDID_1000_11: 768 case IWN_SDID_1000_12: 769 sc->limits = &iwn1000_sensitivity_limits; 770 sc->base_params = &iwn1000_base_params; 771 sc->fwname = "iwn1000fw"; 772 break; 773 default: 774 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 775 "0x%04x rev %d not supported (subdevice)\n", pid, 776 sc->subdevice_id,sc->hw_type); 777 return ENOTSUP; 778 } 779 break; 780 /* 6x00 Series */ 781 case IWN_DID_6x00_2: 782 case IWN_DID_6x00_4: 783 case IWN_DID_6x00_1: 784 case IWN_DID_6x00_3: 785 sc->fwname = "iwn6000fw"; 786 sc->limits = &iwn6000_sensitivity_limits; 787 switch(sc->subdevice_id) { 788 case IWN_SDID_6x00_1: 789 case IWN_SDID_6x00_2: 790 case IWN_SDID_6x00_8: 791 //iwl6000_3agn_cfg 792 sc->base_params = &iwn_6000_base_params; 793 break; 794 case IWN_SDID_6x00_3: 795 case IWN_SDID_6x00_6: 796 case IWN_SDID_6x00_9: 797 ////iwl6000i_2agn 798 case IWN_SDID_6x00_4: 799 case IWN_SDID_6x00_7: 800 case IWN_SDID_6x00_10: 801 //iwl6000i_2abg_cfg 802 case IWN_SDID_6x00_5: 803 //iwl6000i_2bg_cfg 804 sc->base_params = &iwn_6000i_base_params; 805 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 806 sc->txchainmask = IWN_ANT_BC; 807 sc->rxchainmask = IWN_ANT_BC; 808 break; 809 default: 810 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 811 "0x%04x rev %d not supported (subdevice)\n", pid, 812 sc->subdevice_id,sc->hw_type); 813 return ENOTSUP; 814 } 815 break; 816 /* 6x05 Series */ 817 case IWN_DID_6x05_1: 818 case IWN_DID_6x05_2: 819 switch(sc->subdevice_id) { 820 case IWN_SDID_6x05_1: 821 case IWN_SDID_6x05_4: 822 case IWN_SDID_6x05_6: 823 //iwl6005_2agn_cfg 824 case IWN_SDID_6x05_2: 825 case IWN_SDID_6x05_5: 826 case IWN_SDID_6x05_7: 827 //iwl6005_2abg_cfg 828 case IWN_SDID_6x05_3: 829 //iwl6005_2bg_cfg 830 case IWN_SDID_6x05_8: 831 case IWN_SDID_6x05_9: 832 //iwl6005_2agn_sff_cfg 833 case IWN_SDID_6x05_10: 834 //iwl6005_2agn_d_cfg 835 case IWN_SDID_6x05_11: 836 //iwl6005_2agn_mow1_cfg 837 case IWN_SDID_6x05_12: 838 //iwl6005_2agn_mow2_cfg 839 sc->fwname = "iwn6000g2afw"; 840 sc->limits = &iwn6000_sensitivity_limits; 841 sc->base_params = &iwn_6000g2_base_params; 842 break; 843 default: 844 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 845 "0x%04x rev %d not supported (subdevice)\n", pid, 846 sc->subdevice_id,sc->hw_type); 847 return ENOTSUP; 848 } 849 break; 850 /* 6x35 Series */ 851 case IWN_DID_6035_1: 852 case IWN_DID_6035_2: 853 switch(sc->subdevice_id) { 854 case IWN_SDID_6035_1: 855 case IWN_SDID_6035_2: 856 case IWN_SDID_6035_3: 857 case IWN_SDID_6035_4: 858 sc->fwname = "iwn6000g2bfw"; 859 sc->limits = &iwn6235_sensitivity_limits; 860 sc->base_params = &iwn_6235_base_params; 861 break; 862 default: 863 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 864 "0x%04x rev %d not supported (subdevice)\n", pid, 865 sc->subdevice_id,sc->hw_type); 866 return ENOTSUP; 867 } 868 break; 869 /* 6x50 WiFi/WiMax Series */ 870 case IWN_DID_6050_1: 871 case IWN_DID_6050_2: 872 switch(sc->subdevice_id) { 873 case IWN_SDID_6050_1: 874 case IWN_SDID_6050_3: 875 case IWN_SDID_6050_5: 876 //iwl6050_2agn_cfg 877 case IWN_SDID_6050_2: 878 case IWN_SDID_6050_4: 879 case IWN_SDID_6050_6: 880 //iwl6050_2abg_cfg 881 sc->fwname = "iwn6050fw"; 882 sc->txchainmask = IWN_ANT_AB; 883 sc->rxchainmask = IWN_ANT_AB; 884 sc->limits = &iwn6000_sensitivity_limits; 885 sc->base_params = &iwn_6050_base_params; 886 break; 887 default: 888 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 889 "0x%04x rev %d not supported (subdevice)\n", pid, 890 sc->subdevice_id,sc->hw_type); 891 return ENOTSUP; 892 } 893 break; 894 /* 6150 WiFi/WiMax Series */ 895 case IWN_DID_6150_1: 896 case IWN_DID_6150_2: 897 switch(sc->subdevice_id) { 898 case IWN_SDID_6150_1: 899 case IWN_SDID_6150_3: 900 case IWN_SDID_6150_5: 901 // iwl6150_bgn_cfg 902 case IWN_SDID_6150_2: 903 case IWN_SDID_6150_4: 904 case IWN_SDID_6150_6: 905 //iwl6150_bg_cfg 906 sc->fwname = "iwn6050fw"; 907 sc->limits = &iwn6000_sensitivity_limits; 908 sc->base_params = &iwn_6150_base_params; 909 break; 910 default: 911 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 912 "0x%04x rev %d not supported (subdevice)\n", pid, 913 sc->subdevice_id,sc->hw_type); 914 return ENOTSUP; 915 } 916 break; 917 /* 6030 Series and 1030 Series */ 918 case IWN_DID_x030_1: 919 case IWN_DID_x030_2: 920 case IWN_DID_x030_3: 921 case IWN_DID_x030_4: 922 switch(sc->subdevice_id) { 923 case IWN_SDID_x030_1: 924 case IWN_SDID_x030_3: 925 case IWN_SDID_x030_5: 926 // iwl1030_bgn_cfg 927 case IWN_SDID_x030_2: 928 case IWN_SDID_x030_4: 929 case IWN_SDID_x030_6: 930 //iwl1030_bg_cfg 931 case IWN_SDID_x030_7: 932 case IWN_SDID_x030_10: 933 case IWN_SDID_x030_14: 934 //iwl6030_2agn_cfg 935 case IWN_SDID_x030_8: 936 case IWN_SDID_x030_11: 937 case IWN_SDID_x030_15: 938 // iwl6030_2bgn_cfg 939 case IWN_SDID_x030_9: 940 case IWN_SDID_x030_12: 941 case IWN_SDID_x030_16: 942 // iwl6030_2abg_cfg 943 case IWN_SDID_x030_13: 944 //iwl6030_2bg_cfg 945 sc->fwname = "iwn6000g2bfw"; 946 sc->limits = &iwn6000_sensitivity_limits; 947 sc->base_params = &iwn_6000g2b_base_params; 948 break; 949 default: 950 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 951 "0x%04x rev %d not supported (subdevice)\n", pid, 952 sc->subdevice_id,sc->hw_type); 953 return ENOTSUP; 954 } 955 break; 956 /* 130 Series WiFi */ 957 /* XXX: This series will need adjustment for rate. 958 * see rx_with_siso_diversity in linux kernel 959 */ 960 case IWN_DID_130_1: 961 case IWN_DID_130_2: 962 switch(sc->subdevice_id) { 963 case IWN_SDID_130_1: 964 case IWN_SDID_130_3: 965 case IWN_SDID_130_5: 966 //iwl130_bgn_cfg 967 case IWN_SDID_130_2: 968 case IWN_SDID_130_4: 969 case IWN_SDID_130_6: 970 //iwl130_bg_cfg 971 sc->fwname = "iwn6000g2bfw"; 972 sc->limits = &iwn6000_sensitivity_limits; 973 sc->base_params = &iwn_6000g2b_base_params; 974 break; 975 default: 976 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 977 "0x%04x rev %d not supported (subdevice)\n", pid, 978 sc->subdevice_id,sc->hw_type); 979 return ENOTSUP; 980 } 981 break; 982 /* 100 Series WiFi */ 983 case IWN_DID_100_1: 984 case IWN_DID_100_2: 985 switch(sc->subdevice_id) { 986 case IWN_SDID_100_1: 987 case IWN_SDID_100_2: 988 case IWN_SDID_100_3: 989 case IWN_SDID_100_4: 990 case IWN_SDID_100_5: 991 case IWN_SDID_100_6: 992 sc->limits = &iwn1000_sensitivity_limits; 993 sc->base_params = &iwn1000_base_params; 994 sc->fwname = "iwn100fw"; 995 break; 996 default: 997 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 998 "0x%04x rev %d not supported (subdevice)\n", pid, 999 sc->subdevice_id,sc->hw_type); 1000 return ENOTSUP; 1001 } 1002 break; 1003 1004 /* 105 Series */ 1005 /* XXX: This series will need adjustment for rate. 1006 * see rx_with_siso_diversity in linux kernel 1007 */ 1008 case IWN_DID_105_1: 1009 case IWN_DID_105_2: 1010 switch(sc->subdevice_id) { 1011 case IWN_SDID_105_1: 1012 case IWN_SDID_105_2: 1013 case IWN_SDID_105_3: 1014 //iwl105_bgn_cfg 1015 case IWN_SDID_105_4: 1016 //iwl105_bgn_d_cfg 1017 sc->limits = &iwn2030_sensitivity_limits; 1018 sc->base_params = &iwn2000_base_params; 1019 sc->fwname = "iwn105fw"; 1020 break; 1021 default: 1022 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1023 "0x%04x rev %d not supported (subdevice)\n", pid, 1024 sc->subdevice_id,sc->hw_type); 1025 return ENOTSUP; 1026 } 1027 break; 1028 1029 /* 135 Series */ 1030 /* XXX: This series will need adjustment for rate. 1031 * see rx_with_siso_diversity in linux kernel 1032 */ 1033 case IWN_DID_135_1: 1034 case IWN_DID_135_2: 1035 switch(sc->subdevice_id) { 1036 case IWN_SDID_135_1: 1037 case IWN_SDID_135_2: 1038 case IWN_SDID_135_3: 1039 sc->limits = &iwn2030_sensitivity_limits; 1040 sc->base_params = &iwn2030_base_params; 1041 sc->fwname = "iwn135fw"; 1042 break; 1043 default: 1044 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1045 "0x%04x rev %d not supported (subdevice)\n", pid, 1046 sc->subdevice_id,sc->hw_type); 1047 return ENOTSUP; 1048 } 1049 break; 1050 1051 /* 2x00 Series */ 1052 case IWN_DID_2x00_1: 1053 case IWN_DID_2x00_2: 1054 switch(sc->subdevice_id) { 1055 case IWN_SDID_2x00_1: 1056 case IWN_SDID_2x00_2: 1057 case IWN_SDID_2x00_3: 1058 //iwl2000_2bgn_cfg 1059 case IWN_SDID_2x00_4: 1060 //iwl2000_2bgn_d_cfg 1061 sc->limits = &iwn2030_sensitivity_limits; 1062 sc->base_params = &iwn2000_base_params; 1063 sc->fwname = "iwn2000fw"; 1064 break; 1065 default: 1066 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1067 "0x%04x rev %d not supported (subdevice) \n", 1068 pid, sc->subdevice_id, sc->hw_type); 1069 return ENOTSUP; 1070 } 1071 break; 1072 /* 2x30 Series */ 1073 case IWN_DID_2x30_1: 1074 case IWN_DID_2x30_2: 1075 switch(sc->subdevice_id) { 1076 case IWN_SDID_2x30_1: 1077 case IWN_SDID_2x30_3: 1078 case IWN_SDID_2x30_5: 1079 //iwl100_bgn_cfg 1080 case IWN_SDID_2x30_2: 1081 case IWN_SDID_2x30_4: 1082 case IWN_SDID_2x30_6: 1083 //iwl100_bg_cfg 1084 sc->limits = &iwn2030_sensitivity_limits; 1085 sc->base_params = &iwn2030_base_params; 1086 sc->fwname = "iwn2030fw"; 1087 break; 1088 default: 1089 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1090 "0x%04x rev %d not supported (subdevice)\n", pid, 1091 sc->subdevice_id,sc->hw_type); 1092 return ENOTSUP; 1093 } 1094 break; 1095 /* 5x00 Series */ 1096 case IWN_DID_5x00_1: 1097 case IWN_DID_5x00_2: 1098 case IWN_DID_5x00_3: 1099 case IWN_DID_5x00_4: 1100 sc->limits = &iwn5000_sensitivity_limits; 1101 sc->base_params = &iwn5000_base_params; 1102 sc->fwname = "iwn5000fw"; 1103 switch(sc->subdevice_id) { 1104 case IWN_SDID_5x00_1: 1105 case IWN_SDID_5x00_2: 1106 case IWN_SDID_5x00_3: 1107 case IWN_SDID_5x00_4: 1108 case IWN_SDID_5x00_9: 1109 case IWN_SDID_5x00_10: 1110 case IWN_SDID_5x00_11: 1111 case IWN_SDID_5x00_12: 1112 case IWN_SDID_5x00_17: 1113 case IWN_SDID_5x00_18: 1114 case IWN_SDID_5x00_19: 1115 case IWN_SDID_5x00_20: 1116 //iwl5100_agn_cfg 1117 sc->txchainmask = IWN_ANT_B; 1118 sc->rxchainmask = IWN_ANT_AB; 1119 break; 1120 case IWN_SDID_5x00_5: 1121 case IWN_SDID_5x00_6: 1122 case IWN_SDID_5x00_13: 1123 case IWN_SDID_5x00_14: 1124 case IWN_SDID_5x00_21: 1125 case IWN_SDID_5x00_22: 1126 //iwl5100_bgn_cfg 1127 sc->txchainmask = IWN_ANT_B; 1128 sc->rxchainmask = IWN_ANT_AB; 1129 break; 1130 case IWN_SDID_5x00_7: 1131 case IWN_SDID_5x00_8: 1132 case IWN_SDID_5x00_15: 1133 case IWN_SDID_5x00_16: 1134 case IWN_SDID_5x00_23: 1135 case IWN_SDID_5x00_24: 1136 //iwl5100_abg_cfg 1137 sc->txchainmask = IWN_ANT_B; 1138 sc->rxchainmask = IWN_ANT_AB; 1139 break; 1140 case IWN_SDID_5x00_25: 1141 case IWN_SDID_5x00_26: 1142 case IWN_SDID_5x00_27: 1143 case IWN_SDID_5x00_28: 1144 case IWN_SDID_5x00_29: 1145 case IWN_SDID_5x00_30: 1146 case IWN_SDID_5x00_31: 1147 case IWN_SDID_5x00_32: 1148 case IWN_SDID_5x00_33: 1149 case IWN_SDID_5x00_34: 1150 case IWN_SDID_5x00_35: 1151 case IWN_SDID_5x00_36: 1152 //iwl5300_agn_cfg 1153 sc->txchainmask = IWN_ANT_ABC; 1154 sc->rxchainmask = IWN_ANT_ABC; 1155 break; 1156 default: 1157 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1158 "0x%04x rev %d not supported (subdevice)\n", pid, 1159 sc->subdevice_id,sc->hw_type); 1160 return ENOTSUP; 1161 } 1162 break; 1163 /* 5x50 Series */ 1164 case IWN_DID_5x50_1: 1165 case IWN_DID_5x50_2: 1166 case IWN_DID_5x50_3: 1167 case IWN_DID_5x50_4: 1168 sc->limits = &iwn5000_sensitivity_limits; 1169 sc->base_params = &iwn5000_base_params; 1170 sc->fwname = "iwn5000fw"; 1171 switch(sc->subdevice_id) { 1172 case IWN_SDID_5x50_1: 1173 case IWN_SDID_5x50_2: 1174 case IWN_SDID_5x50_3: 1175 //iwl5350_agn_cfg 1176 sc->limits = &iwn5000_sensitivity_limits; 1177 sc->base_params = &iwn5000_base_params; 1178 sc->fwname = "iwn5000fw"; 1179 break; 1180 case IWN_SDID_5x50_4: 1181 case IWN_SDID_5x50_5: 1182 case IWN_SDID_5x50_8: 1183 case IWN_SDID_5x50_9: 1184 case IWN_SDID_5x50_10: 1185 case IWN_SDID_5x50_11: 1186 //iwl5150_agn_cfg 1187 case IWN_SDID_5x50_6: 1188 case IWN_SDID_5x50_7: 1189 case IWN_SDID_5x50_12: 1190 case IWN_SDID_5x50_13: 1191 //iwl5150_abg_cfg 1192 sc->limits = &iwn5000_sensitivity_limits; 1193 sc->fwname = "iwn5150fw"; 1194 sc->base_params = &iwn_5x50_base_params; 1195 break; 1196 default: 1197 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1198 "0x%04x rev %d not supported (subdevice)\n", pid, 1199 sc->subdevice_id,sc->hw_type); 1200 return ENOTSUP; 1201 } 1202 break; 1203 default: 1204 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1205 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1206 sc->hw_type); 1207 return ENOTSUP; 1208 } 1209 return 0; 1210 } 1211 1212 static int 1213 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1214 { 1215 struct iwn_ops *ops = &sc->ops; 1216 1217 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1218 ops->load_firmware = iwn4965_load_firmware; 1219 ops->read_eeprom = iwn4965_read_eeprom; 1220 ops->post_alive = iwn4965_post_alive; 1221 ops->nic_config = iwn4965_nic_config; 1222 ops->update_sched = iwn4965_update_sched; 1223 ops->get_temperature = iwn4965_get_temperature; 1224 ops->get_rssi = iwn4965_get_rssi; 1225 ops->set_txpower = iwn4965_set_txpower; 1226 ops->init_gains = iwn4965_init_gains; 1227 ops->set_gains = iwn4965_set_gains; 1228 ops->add_node = iwn4965_add_node; 1229 ops->tx_done = iwn4965_tx_done; 1230 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1231 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1232 sc->ntxqs = IWN4965_NTXQUEUES; 1233 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1234 sc->ndmachnls = IWN4965_NDMACHNLS; 1235 sc->broadcast_id = IWN4965_ID_BROADCAST; 1236 sc->rxonsz = IWN4965_RXONSZ; 1237 sc->schedsz = IWN4965_SCHEDSZ; 1238 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1239 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1240 sc->fwsz = IWN4965_FWSZ; 1241 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1242 sc->limits = &iwn4965_sensitivity_limits; 1243 sc->fwname = "iwn4965fw"; 1244 /* Override chains masks, ROM is known to be broken. */ 1245 sc->txchainmask = IWN_ANT_AB; 1246 sc->rxchainmask = IWN_ANT_ABC; 1247 /* Enable normal btcoex */ 1248 sc->sc_flags |= IWN_FLAG_BTCOEX; 1249 1250 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1251 1252 return 0; 1253 } 1254 1255 static int 1256 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1257 { 1258 struct iwn_ops *ops = &sc->ops; 1259 1260 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1261 1262 ops->load_firmware = iwn5000_load_firmware; 1263 ops->read_eeprom = iwn5000_read_eeprom; 1264 ops->post_alive = iwn5000_post_alive; 1265 ops->nic_config = iwn5000_nic_config; 1266 ops->update_sched = iwn5000_update_sched; 1267 ops->get_temperature = iwn5000_get_temperature; 1268 ops->get_rssi = iwn5000_get_rssi; 1269 ops->set_txpower = iwn5000_set_txpower; 1270 ops->init_gains = iwn5000_init_gains; 1271 ops->set_gains = iwn5000_set_gains; 1272 ops->add_node = iwn5000_add_node; 1273 ops->tx_done = iwn5000_tx_done; 1274 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1275 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1276 sc->ntxqs = IWN5000_NTXQUEUES; 1277 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1278 sc->ndmachnls = IWN5000_NDMACHNLS; 1279 sc->broadcast_id = IWN5000_ID_BROADCAST; 1280 sc->rxonsz = IWN5000_RXONSZ; 1281 sc->schedsz = IWN5000_SCHEDSZ; 1282 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1283 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1284 sc->fwsz = IWN5000_FWSZ; 1285 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1286 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1287 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1288 1289 return 0; 1290 } 1291 1292 /* 1293 * Attach the interface to 802.11 radiotap. 1294 */ 1295 static void 1296 iwn_radiotap_attach(struct iwn_softc *sc) 1297 { 1298 1299 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1300 ieee80211_radiotap_attach(&sc->sc_ic, 1301 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1302 IWN_TX_RADIOTAP_PRESENT, 1303 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1304 IWN_RX_RADIOTAP_PRESENT); 1305 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1306 } 1307 1308 static void 1309 iwn_sysctlattach(struct iwn_softc *sc) 1310 { 1311 #ifdef IWN_DEBUG 1312 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1313 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1314 1315 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1316 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1317 "control debugging printfs"); 1318 #endif 1319 } 1320 1321 static struct ieee80211vap * 1322 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1323 enum ieee80211_opmode opmode, int flags, 1324 const uint8_t bssid[IEEE80211_ADDR_LEN], 1325 const uint8_t mac[IEEE80211_ADDR_LEN]) 1326 { 1327 struct iwn_softc *sc = ic->ic_softc; 1328 struct iwn_vap *ivp; 1329 struct ieee80211vap *vap; 1330 1331 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1332 return NULL; 1333 1334 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1335 vap = &ivp->iv_vap; 1336 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1337 ivp->ctx = IWN_RXON_BSS_CTX; 1338 vap->iv_bmissthreshold = 10; /* override default */ 1339 /* Override with driver methods. */ 1340 ivp->iv_newstate = vap->iv_newstate; 1341 vap->iv_newstate = iwn_newstate; 1342 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1343 1344 ieee80211_ratectl_init(vap); 1345 /* Complete setup. */ 1346 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status, 1347 mac); 1348 ic->ic_opmode = opmode; 1349 return vap; 1350 } 1351 1352 static void 1353 iwn_vap_delete(struct ieee80211vap *vap) 1354 { 1355 struct iwn_vap *ivp = IWN_VAP(vap); 1356 1357 ieee80211_ratectl_deinit(vap); 1358 ieee80211_vap_detach(vap); 1359 free(ivp, M_80211_VAP); 1360 } 1361 1362 static void 1363 iwn_xmit_queue_drain(struct iwn_softc *sc) 1364 { 1365 struct mbuf *m; 1366 struct ieee80211_node *ni; 1367 1368 IWN_LOCK_ASSERT(sc); 1369 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1370 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1371 ieee80211_free_node(ni); 1372 m_freem(m); 1373 } 1374 } 1375 1376 static int 1377 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1378 { 1379 1380 IWN_LOCK_ASSERT(sc); 1381 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1382 } 1383 1384 static int 1385 iwn_detach(device_t dev) 1386 { 1387 struct iwn_softc *sc = device_get_softc(dev); 1388 int qid; 1389 1390 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1391 1392 if (sc->sc_ic.ic_softc != NULL) { 1393 /* Free the mbuf queue and node references */ 1394 IWN_LOCK(sc); 1395 iwn_xmit_queue_drain(sc); 1396 IWN_UNLOCK(sc); 1397 1398 ieee80211_draintask(&sc->sc_ic, &sc->sc_reinit_task); 1399 ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task); 1400 ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task); 1401 iwn_stop(sc); 1402 1403 taskqueue_drain_all(sc->sc_tq); 1404 taskqueue_free(sc->sc_tq); 1405 1406 callout_drain(&sc->watchdog_to); 1407 callout_drain(&sc->calib_to); 1408 ieee80211_ifdetach(&sc->sc_ic); 1409 } 1410 1411 /* Uninstall interrupt handler. */ 1412 if (sc->irq != NULL) { 1413 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1414 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1415 sc->irq); 1416 pci_release_msi(dev); 1417 } 1418 1419 /* Free DMA resources. */ 1420 iwn_free_rx_ring(sc, &sc->rxq); 1421 for (qid = 0; qid < sc->ntxqs; qid++) 1422 iwn_free_tx_ring(sc, &sc->txq[qid]); 1423 iwn_free_sched(sc); 1424 iwn_free_kw(sc); 1425 if (sc->ict != NULL) 1426 iwn_free_ict(sc); 1427 iwn_free_fwmem(sc); 1428 1429 if (sc->mem != NULL) 1430 bus_release_resource(dev, SYS_RES_MEMORY, 1431 rman_get_rid(sc->mem), sc->mem); 1432 1433 if (sc->sc_cdev) { 1434 destroy_dev(sc->sc_cdev); 1435 sc->sc_cdev = NULL; 1436 } 1437 1438 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1439 IWN_LOCK_DESTROY(sc); 1440 return 0; 1441 } 1442 1443 static int 1444 iwn_shutdown(device_t dev) 1445 { 1446 struct iwn_softc *sc = device_get_softc(dev); 1447 1448 iwn_stop(sc); 1449 return 0; 1450 } 1451 1452 static int 1453 iwn_suspend(device_t dev) 1454 { 1455 struct iwn_softc *sc = device_get_softc(dev); 1456 1457 ieee80211_suspend_all(&sc->sc_ic); 1458 return 0; 1459 } 1460 1461 static int 1462 iwn_resume(device_t dev) 1463 { 1464 struct iwn_softc *sc = device_get_softc(dev); 1465 1466 /* Clear device-specific "PCI retry timeout" register (41h). */ 1467 pci_write_config(dev, 0x41, 0, 1); 1468 1469 ieee80211_resume_all(&sc->sc_ic); 1470 return 0; 1471 } 1472 1473 static int 1474 iwn_nic_lock(struct iwn_softc *sc) 1475 { 1476 int ntries; 1477 1478 /* Request exclusive access to NIC. */ 1479 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1480 1481 /* Spin until we actually get the lock. */ 1482 for (ntries = 0; ntries < 1000; ntries++) { 1483 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1484 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1485 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1486 return 0; 1487 DELAY(10); 1488 } 1489 return ETIMEDOUT; 1490 } 1491 1492 static __inline void 1493 iwn_nic_unlock(struct iwn_softc *sc) 1494 { 1495 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1496 } 1497 1498 static __inline uint32_t 1499 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1500 { 1501 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1502 IWN_BARRIER_READ_WRITE(sc); 1503 return IWN_READ(sc, IWN_PRPH_RDATA); 1504 } 1505 1506 static __inline void 1507 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1508 { 1509 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1510 IWN_BARRIER_WRITE(sc); 1511 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1512 } 1513 1514 static __inline void 1515 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1516 { 1517 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1518 } 1519 1520 static __inline void 1521 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1522 { 1523 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1524 } 1525 1526 static __inline void 1527 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1528 const uint32_t *data, int count) 1529 { 1530 for (; count > 0; count--, data++, addr += 4) 1531 iwn_prph_write(sc, addr, *data); 1532 } 1533 1534 static __inline uint32_t 1535 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1536 { 1537 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1538 IWN_BARRIER_READ_WRITE(sc); 1539 return IWN_READ(sc, IWN_MEM_RDATA); 1540 } 1541 1542 static __inline void 1543 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1544 { 1545 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1546 IWN_BARRIER_WRITE(sc); 1547 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1548 } 1549 1550 static __inline void 1551 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1552 { 1553 uint32_t tmp; 1554 1555 tmp = iwn_mem_read(sc, addr & ~3); 1556 if (addr & 3) 1557 tmp = (tmp & 0x0000ffff) | data << 16; 1558 else 1559 tmp = (tmp & 0xffff0000) | data; 1560 iwn_mem_write(sc, addr & ~3, tmp); 1561 } 1562 1563 static __inline void 1564 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1565 int count) 1566 { 1567 for (; count > 0; count--, addr += 4) 1568 *data++ = iwn_mem_read(sc, addr); 1569 } 1570 1571 static __inline void 1572 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1573 int count) 1574 { 1575 for (; count > 0; count--, addr += 4) 1576 iwn_mem_write(sc, addr, val); 1577 } 1578 1579 static int 1580 iwn_eeprom_lock(struct iwn_softc *sc) 1581 { 1582 int i, ntries; 1583 1584 for (i = 0; i < 100; i++) { 1585 /* Request exclusive access to EEPROM. */ 1586 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1587 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1588 1589 /* Spin until we actually get the lock. */ 1590 for (ntries = 0; ntries < 100; ntries++) { 1591 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1592 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1593 return 0; 1594 DELAY(10); 1595 } 1596 } 1597 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1598 return ETIMEDOUT; 1599 } 1600 1601 static __inline void 1602 iwn_eeprom_unlock(struct iwn_softc *sc) 1603 { 1604 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1605 } 1606 1607 /* 1608 * Initialize access by host to One Time Programmable ROM. 1609 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1610 */ 1611 static int 1612 iwn_init_otprom(struct iwn_softc *sc) 1613 { 1614 uint16_t prev, base, next; 1615 int count, error; 1616 1617 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1618 1619 /* Wait for clock stabilization before accessing prph. */ 1620 if ((error = iwn_clock_wait(sc)) != 0) 1621 return error; 1622 1623 if ((error = iwn_nic_lock(sc)) != 0) 1624 return error; 1625 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1626 DELAY(5); 1627 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1628 iwn_nic_unlock(sc); 1629 1630 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1631 if (sc->base_params->shadow_ram_support) { 1632 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1633 IWN_RESET_LINK_PWR_MGMT_DIS); 1634 } 1635 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1636 /* Clear ECC status. */ 1637 IWN_SETBITS(sc, IWN_OTP_GP, 1638 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1639 1640 /* 1641 * Find the block before last block (contains the EEPROM image) 1642 * for HW without OTP shadow RAM. 1643 */ 1644 if (! sc->base_params->shadow_ram_support) { 1645 /* Switch to absolute addressing mode. */ 1646 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1647 base = prev = 0; 1648 for (count = 0; count < sc->base_params->max_ll_items; 1649 count++) { 1650 error = iwn_read_prom_data(sc, base, &next, 2); 1651 if (error != 0) 1652 return error; 1653 if (next == 0) /* End of linked-list. */ 1654 break; 1655 prev = base; 1656 base = le16toh(next); 1657 } 1658 if (count == 0 || count == sc->base_params->max_ll_items) 1659 return EIO; 1660 /* Skip "next" word. */ 1661 sc->prom_base = prev + 1; 1662 } 1663 1664 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1665 1666 return 0; 1667 } 1668 1669 static int 1670 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1671 { 1672 uint8_t *out = data; 1673 uint32_t val, tmp; 1674 int ntries; 1675 1676 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1677 1678 addr += sc->prom_base; 1679 for (; count > 0; count -= 2, addr++) { 1680 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1681 for (ntries = 0; ntries < 10; ntries++) { 1682 val = IWN_READ(sc, IWN_EEPROM); 1683 if (val & IWN_EEPROM_READ_VALID) 1684 break; 1685 DELAY(5); 1686 } 1687 if (ntries == 10) { 1688 device_printf(sc->sc_dev, 1689 "timeout reading ROM at 0x%x\n", addr); 1690 return ETIMEDOUT; 1691 } 1692 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1693 /* OTPROM, check for ECC errors. */ 1694 tmp = IWN_READ(sc, IWN_OTP_GP); 1695 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1696 device_printf(sc->sc_dev, 1697 "OTPROM ECC error at 0x%x\n", addr); 1698 return EIO; 1699 } 1700 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1701 /* Correctable ECC error, clear bit. */ 1702 IWN_SETBITS(sc, IWN_OTP_GP, 1703 IWN_OTP_GP_ECC_CORR_STTS); 1704 } 1705 } 1706 *out++ = val >> 16; 1707 if (count > 1) 1708 *out++ = val >> 24; 1709 } 1710 1711 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1712 1713 return 0; 1714 } 1715 1716 static void 1717 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1718 { 1719 if (error != 0) 1720 return; 1721 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1722 *(bus_addr_t *)arg = segs[0].ds_addr; 1723 } 1724 1725 static int 1726 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1727 void **kvap, bus_size_t size, bus_size_t alignment) 1728 { 1729 int error; 1730 1731 dma->tag = NULL; 1732 dma->size = size; 1733 1734 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1735 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1736 1, size, 0, NULL, NULL, &dma->tag); 1737 if (error != 0) 1738 goto fail; 1739 1740 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1741 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1742 if (error != 0) 1743 goto fail; 1744 1745 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1746 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1747 if (error != 0) 1748 goto fail; 1749 1750 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1751 1752 if (kvap != NULL) 1753 *kvap = dma->vaddr; 1754 1755 return 0; 1756 1757 fail: iwn_dma_contig_free(dma); 1758 return error; 1759 } 1760 1761 static void 1762 iwn_dma_contig_free(struct iwn_dma_info *dma) 1763 { 1764 if (dma->vaddr != NULL) { 1765 bus_dmamap_sync(dma->tag, dma->map, 1766 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1767 bus_dmamap_unload(dma->tag, dma->map); 1768 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1769 dma->vaddr = NULL; 1770 } 1771 if (dma->tag != NULL) { 1772 bus_dma_tag_destroy(dma->tag); 1773 dma->tag = NULL; 1774 } 1775 } 1776 1777 static int 1778 iwn_alloc_sched(struct iwn_softc *sc) 1779 { 1780 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1781 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1782 sc->schedsz, 1024); 1783 } 1784 1785 static void 1786 iwn_free_sched(struct iwn_softc *sc) 1787 { 1788 iwn_dma_contig_free(&sc->sched_dma); 1789 } 1790 1791 static int 1792 iwn_alloc_kw(struct iwn_softc *sc) 1793 { 1794 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1795 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1796 } 1797 1798 static void 1799 iwn_free_kw(struct iwn_softc *sc) 1800 { 1801 iwn_dma_contig_free(&sc->kw_dma); 1802 } 1803 1804 static int 1805 iwn_alloc_ict(struct iwn_softc *sc) 1806 { 1807 /* ICT table must be aligned on a 4KB boundary. */ 1808 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1809 IWN_ICT_SIZE, 4096); 1810 } 1811 1812 static void 1813 iwn_free_ict(struct iwn_softc *sc) 1814 { 1815 iwn_dma_contig_free(&sc->ict_dma); 1816 } 1817 1818 static int 1819 iwn_alloc_fwmem(struct iwn_softc *sc) 1820 { 1821 /* Must be aligned on a 16-byte boundary. */ 1822 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1823 } 1824 1825 static void 1826 iwn_free_fwmem(struct iwn_softc *sc) 1827 { 1828 iwn_dma_contig_free(&sc->fw_dma); 1829 } 1830 1831 static int 1832 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1833 { 1834 bus_size_t size; 1835 int i, error; 1836 1837 ring->cur = 0; 1838 1839 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1840 1841 /* Allocate RX descriptors (256-byte aligned). */ 1842 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1843 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1844 size, 256); 1845 if (error != 0) { 1846 device_printf(sc->sc_dev, 1847 "%s: could not allocate RX ring DMA memory, error %d\n", 1848 __func__, error); 1849 goto fail; 1850 } 1851 1852 /* Allocate RX status area (16-byte aligned). */ 1853 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1854 sizeof (struct iwn_rx_status), 16); 1855 if (error != 0) { 1856 device_printf(sc->sc_dev, 1857 "%s: could not allocate RX status DMA memory, error %d\n", 1858 __func__, error); 1859 goto fail; 1860 } 1861 1862 /* Create RX buffer DMA tag. */ 1863 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1864 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1865 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1866 if (error != 0) { 1867 device_printf(sc->sc_dev, 1868 "%s: could not create RX buf DMA tag, error %d\n", 1869 __func__, error); 1870 goto fail; 1871 } 1872 1873 /* 1874 * Allocate and map RX buffers. 1875 */ 1876 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1877 struct iwn_rx_data *data = &ring->data[i]; 1878 bus_addr_t paddr; 1879 1880 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1881 if (error != 0) { 1882 device_printf(sc->sc_dev, 1883 "%s: could not create RX buf DMA map, error %d\n", 1884 __func__, error); 1885 goto fail; 1886 } 1887 1888 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1889 IWN_RBUF_SIZE); 1890 if (data->m == NULL) { 1891 device_printf(sc->sc_dev, 1892 "%s: could not allocate RX mbuf\n", __func__); 1893 error = ENOBUFS; 1894 goto fail; 1895 } 1896 1897 error = bus_dmamap_load(ring->data_dmat, data->map, 1898 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1899 &paddr, BUS_DMA_NOWAIT); 1900 if (error != 0 && error != EFBIG) { 1901 device_printf(sc->sc_dev, 1902 "%s: can't map mbuf, error %d\n", __func__, 1903 error); 1904 goto fail; 1905 } 1906 1907 /* Set physical address of RX buffer (256-byte aligned). */ 1908 ring->desc[i] = htole32(paddr >> 8); 1909 } 1910 1911 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1912 BUS_DMASYNC_PREWRITE); 1913 1914 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1915 1916 return 0; 1917 1918 fail: iwn_free_rx_ring(sc, ring); 1919 1920 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1921 1922 return error; 1923 } 1924 1925 static void 1926 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1927 { 1928 int ntries; 1929 1930 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1931 1932 if (iwn_nic_lock(sc) == 0) { 1933 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1934 for (ntries = 0; ntries < 1000; ntries++) { 1935 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1936 IWN_FH_RX_STATUS_IDLE) 1937 break; 1938 DELAY(10); 1939 } 1940 iwn_nic_unlock(sc); 1941 } 1942 ring->cur = 0; 1943 sc->last_rx_valid = 0; 1944 } 1945 1946 static void 1947 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1948 { 1949 int i; 1950 1951 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1952 1953 iwn_dma_contig_free(&ring->desc_dma); 1954 iwn_dma_contig_free(&ring->stat_dma); 1955 1956 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1957 struct iwn_rx_data *data = &ring->data[i]; 1958 1959 if (data->m != NULL) { 1960 bus_dmamap_sync(ring->data_dmat, data->map, 1961 BUS_DMASYNC_POSTREAD); 1962 bus_dmamap_unload(ring->data_dmat, data->map); 1963 m_freem(data->m); 1964 data->m = NULL; 1965 } 1966 if (data->map != NULL) 1967 bus_dmamap_destroy(ring->data_dmat, data->map); 1968 } 1969 if (ring->data_dmat != NULL) { 1970 bus_dma_tag_destroy(ring->data_dmat); 1971 ring->data_dmat = NULL; 1972 } 1973 } 1974 1975 static int 1976 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1977 { 1978 bus_addr_t paddr; 1979 bus_size_t size; 1980 int i, error; 1981 1982 ring->qid = qid; 1983 ring->queued = 0; 1984 ring->cur = 0; 1985 1986 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1987 1988 /* Allocate TX descriptors (256-byte aligned). */ 1989 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1990 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1991 size, 256); 1992 if (error != 0) { 1993 device_printf(sc->sc_dev, 1994 "%s: could not allocate TX ring DMA memory, error %d\n", 1995 __func__, error); 1996 goto fail; 1997 } 1998 1999 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2000 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2001 size, 4); 2002 if (error != 0) { 2003 device_printf(sc->sc_dev, 2004 "%s: could not allocate TX cmd DMA memory, error %d\n", 2005 __func__, error); 2006 goto fail; 2007 } 2008 2009 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2010 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2011 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2012 if (error != 0) { 2013 device_printf(sc->sc_dev, 2014 "%s: could not create TX buf DMA tag, error %d\n", 2015 __func__, error); 2016 goto fail; 2017 } 2018 2019 paddr = ring->cmd_dma.paddr; 2020 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2021 struct iwn_tx_data *data = &ring->data[i]; 2022 2023 data->cmd_paddr = paddr; 2024 data->scratch_paddr = paddr + 12; 2025 paddr += sizeof (struct iwn_tx_cmd); 2026 2027 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2028 if (error != 0) { 2029 device_printf(sc->sc_dev, 2030 "%s: could not create TX buf DMA map, error %d\n", 2031 __func__, error); 2032 goto fail; 2033 } 2034 } 2035 2036 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2037 2038 return 0; 2039 2040 fail: iwn_free_tx_ring(sc, ring); 2041 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2042 return error; 2043 } 2044 2045 static void 2046 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2047 { 2048 int i; 2049 2050 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2051 2052 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2053 struct iwn_tx_data *data = &ring->data[i]; 2054 2055 if (data->m != NULL) { 2056 bus_dmamap_sync(ring->data_dmat, data->map, 2057 BUS_DMASYNC_POSTWRITE); 2058 bus_dmamap_unload(ring->data_dmat, data->map); 2059 m_freem(data->m); 2060 data->m = NULL; 2061 } 2062 if (data->ni != NULL) { 2063 ieee80211_free_node(data->ni); 2064 data->ni = NULL; 2065 } 2066 } 2067 /* Clear TX descriptors. */ 2068 memset(ring->desc, 0, ring->desc_dma.size); 2069 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2070 BUS_DMASYNC_PREWRITE); 2071 sc->qfullmsk &= ~(1 << ring->qid); 2072 ring->queued = 0; 2073 ring->cur = 0; 2074 } 2075 2076 static void 2077 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2078 { 2079 int i; 2080 2081 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2082 2083 iwn_dma_contig_free(&ring->desc_dma); 2084 iwn_dma_contig_free(&ring->cmd_dma); 2085 2086 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2087 struct iwn_tx_data *data = &ring->data[i]; 2088 2089 if (data->m != NULL) { 2090 bus_dmamap_sync(ring->data_dmat, data->map, 2091 BUS_DMASYNC_POSTWRITE); 2092 bus_dmamap_unload(ring->data_dmat, data->map); 2093 m_freem(data->m); 2094 } 2095 if (data->map != NULL) 2096 bus_dmamap_destroy(ring->data_dmat, data->map); 2097 } 2098 if (ring->data_dmat != NULL) { 2099 bus_dma_tag_destroy(ring->data_dmat); 2100 ring->data_dmat = NULL; 2101 } 2102 } 2103 2104 static void 2105 iwn5000_ict_reset(struct iwn_softc *sc) 2106 { 2107 /* Disable interrupts. */ 2108 IWN_WRITE(sc, IWN_INT_MASK, 0); 2109 2110 /* Reset ICT table. */ 2111 memset(sc->ict, 0, IWN_ICT_SIZE); 2112 sc->ict_cur = 0; 2113 2114 /* Set physical address of ICT table (4KB aligned). */ 2115 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2116 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2117 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2118 2119 /* Enable periodic RX interrupt. */ 2120 sc->int_mask |= IWN_INT_RX_PERIODIC; 2121 /* Switch to ICT interrupt mode in driver. */ 2122 sc->sc_flags |= IWN_FLAG_USE_ICT; 2123 2124 /* Re-enable interrupts. */ 2125 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2126 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2127 } 2128 2129 static int 2130 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2131 { 2132 struct iwn_ops *ops = &sc->ops; 2133 uint16_t val; 2134 int error; 2135 2136 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2137 2138 /* Check whether adapter has an EEPROM or an OTPROM. */ 2139 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2140 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2141 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2142 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2143 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2144 2145 /* Adapter has to be powered on for EEPROM access to work. */ 2146 if ((error = iwn_apm_init(sc)) != 0) { 2147 device_printf(sc->sc_dev, 2148 "%s: could not power ON adapter, error %d\n", __func__, 2149 error); 2150 return error; 2151 } 2152 2153 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2154 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2155 return EIO; 2156 } 2157 if ((error = iwn_eeprom_lock(sc)) != 0) { 2158 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2159 __func__, error); 2160 return error; 2161 } 2162 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2163 if ((error = iwn_init_otprom(sc)) != 0) { 2164 device_printf(sc->sc_dev, 2165 "%s: could not initialize OTPROM, error %d\n", 2166 __func__, error); 2167 return error; 2168 } 2169 } 2170 2171 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2172 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2173 /* Check if HT support is bonded out. */ 2174 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2175 sc->sc_flags |= IWN_FLAG_HAS_11N; 2176 2177 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2178 sc->rfcfg = le16toh(val); 2179 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2180 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2181 if (sc->txchainmask == 0) 2182 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2183 if (sc->rxchainmask == 0) 2184 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2185 2186 /* Read MAC address. */ 2187 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2188 2189 /* Read adapter-specific information from EEPROM. */ 2190 ops->read_eeprom(sc); 2191 2192 iwn_apm_stop(sc); /* Power OFF adapter. */ 2193 2194 iwn_eeprom_unlock(sc); 2195 2196 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2197 2198 return 0; 2199 } 2200 2201 static void 2202 iwn4965_read_eeprom(struct iwn_softc *sc) 2203 { 2204 uint32_t addr; 2205 uint16_t val; 2206 int i; 2207 2208 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2209 2210 /* Read regulatory domain (4 ASCII characters). */ 2211 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2212 2213 /* Read the list of authorized channels (20MHz ones only). */ 2214 for (i = 0; i < IWN_NBANDS - 1; i++) { 2215 addr = iwn4965_regulatory_bands[i]; 2216 iwn_read_eeprom_channels(sc, i, addr); 2217 } 2218 2219 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2220 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2221 sc->maxpwr2GHz = val & 0xff; 2222 sc->maxpwr5GHz = val >> 8; 2223 /* Check that EEPROM values are within valid range. */ 2224 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2225 sc->maxpwr5GHz = 38; 2226 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2227 sc->maxpwr2GHz = 38; 2228 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2229 sc->maxpwr2GHz, sc->maxpwr5GHz); 2230 2231 /* Read samples for each TX power group. */ 2232 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2233 sizeof sc->bands); 2234 2235 /* Read voltage at which samples were taken. */ 2236 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2237 sc->eeprom_voltage = (int16_t)le16toh(val); 2238 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2239 sc->eeprom_voltage); 2240 2241 #ifdef IWN_DEBUG 2242 /* Print samples. */ 2243 if (sc->sc_debug & IWN_DEBUG_ANY) { 2244 for (i = 0; i < IWN_NBANDS - 1; i++) 2245 iwn4965_print_power_group(sc, i); 2246 } 2247 #endif 2248 2249 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2250 } 2251 2252 #ifdef IWN_DEBUG 2253 static void 2254 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2255 { 2256 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2257 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2258 int j, c; 2259 2260 printf("===band %d===\n", i); 2261 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2262 printf("chan1 num=%d\n", chans[0].num); 2263 for (c = 0; c < 2; c++) { 2264 for (j = 0; j < IWN_NSAMPLES; j++) { 2265 printf("chain %d, sample %d: temp=%d gain=%d " 2266 "power=%d pa_det=%d\n", c, j, 2267 chans[0].samples[c][j].temp, 2268 chans[0].samples[c][j].gain, 2269 chans[0].samples[c][j].power, 2270 chans[0].samples[c][j].pa_det); 2271 } 2272 } 2273 printf("chan2 num=%d\n", chans[1].num); 2274 for (c = 0; c < 2; c++) { 2275 for (j = 0; j < IWN_NSAMPLES; j++) { 2276 printf("chain %d, sample %d: temp=%d gain=%d " 2277 "power=%d pa_det=%d\n", c, j, 2278 chans[1].samples[c][j].temp, 2279 chans[1].samples[c][j].gain, 2280 chans[1].samples[c][j].power, 2281 chans[1].samples[c][j].pa_det); 2282 } 2283 } 2284 } 2285 #endif 2286 2287 static void 2288 iwn5000_read_eeprom(struct iwn_softc *sc) 2289 { 2290 struct iwn5000_eeprom_calib_hdr hdr; 2291 int32_t volt; 2292 uint32_t base, addr; 2293 uint16_t val; 2294 int i; 2295 2296 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2297 2298 /* Read regulatory domain (4 ASCII characters). */ 2299 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2300 base = le16toh(val); 2301 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2302 sc->eeprom_domain, 4); 2303 2304 /* Read the list of authorized channels (20MHz ones only). */ 2305 for (i = 0; i < IWN_NBANDS - 1; i++) { 2306 addr = base + sc->base_params->regulatory_bands[i]; 2307 iwn_read_eeprom_channels(sc, i, addr); 2308 } 2309 2310 /* Read enhanced TX power information for 6000 Series. */ 2311 if (sc->base_params->enhanced_TX_power) 2312 iwn_read_eeprom_enhinfo(sc); 2313 2314 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2315 base = le16toh(val); 2316 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2317 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2318 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2319 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2320 sc->calib_ver = hdr.version; 2321 2322 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2323 sc->eeprom_voltage = le16toh(hdr.volt); 2324 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2325 sc->eeprom_temp_high=le16toh(val); 2326 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2327 sc->eeprom_temp = le16toh(val); 2328 } 2329 2330 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2331 /* Compute temperature offset. */ 2332 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2333 sc->eeprom_temp = le16toh(val); 2334 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2335 volt = le16toh(val); 2336 sc->temp_off = sc->eeprom_temp - (volt / -5); 2337 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2338 sc->eeprom_temp, volt, sc->temp_off); 2339 } else { 2340 /* Read crystal calibration. */ 2341 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2342 &sc->eeprom_crystal, sizeof (uint32_t)); 2343 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2344 le32toh(sc->eeprom_crystal)); 2345 } 2346 2347 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2348 2349 } 2350 2351 /* 2352 * Translate EEPROM flags to net80211. 2353 */ 2354 static uint32_t 2355 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2356 { 2357 uint32_t nflags; 2358 2359 nflags = 0; 2360 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2361 nflags |= IEEE80211_CHAN_PASSIVE; 2362 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2363 nflags |= IEEE80211_CHAN_NOADHOC; 2364 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2365 nflags |= IEEE80211_CHAN_DFS; 2366 /* XXX apparently IBSS may still be marked */ 2367 nflags |= IEEE80211_CHAN_NOADHOC; 2368 } 2369 2370 return nflags; 2371 } 2372 2373 static void 2374 iwn_read_eeprom_band(struct iwn_softc *sc, int n) 2375 { 2376 struct ieee80211com *ic = &sc->sc_ic; 2377 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2378 const struct iwn_chan_band *band = &iwn_bands[n]; 2379 struct ieee80211_channel *c; 2380 uint8_t chan; 2381 int i, nflags; 2382 2383 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2384 2385 for (i = 0; i < band->nchan; i++) { 2386 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2387 DPRINTF(sc, IWN_DEBUG_RESET, 2388 "skip chan %d flags 0x%x maxpwr %d\n", 2389 band->chan[i], channels[i].flags, 2390 channels[i].maxpwr); 2391 continue; 2392 } 2393 chan = band->chan[i]; 2394 nflags = iwn_eeprom_channel_flags(&channels[i]); 2395 2396 c = &ic->ic_channels[ic->ic_nchans++]; 2397 c->ic_ieee = chan; 2398 c->ic_maxregpower = channels[i].maxpwr; 2399 c->ic_maxpower = 2*c->ic_maxregpower; 2400 2401 if (n == 0) { /* 2GHz band */ 2402 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); 2403 /* G =>'s B is supported */ 2404 c->ic_flags = IEEE80211_CHAN_B | nflags; 2405 c = &ic->ic_channels[ic->ic_nchans++]; 2406 c[0] = c[-1]; 2407 c->ic_flags = IEEE80211_CHAN_G | nflags; 2408 } else { /* 5GHz band */ 2409 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 2410 c->ic_flags = IEEE80211_CHAN_A | nflags; 2411 } 2412 2413 /* Save maximum allowed TX power for this channel. */ 2414 sc->maxpwr[chan] = channels[i].maxpwr; 2415 2416 DPRINTF(sc, IWN_DEBUG_RESET, 2417 "add chan %d flags 0x%x maxpwr %d\n", chan, 2418 channels[i].flags, channels[i].maxpwr); 2419 2420 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 2421 /* add HT20, HT40 added separately */ 2422 c = &ic->ic_channels[ic->ic_nchans++]; 2423 c[0] = c[-1]; 2424 c->ic_flags |= IEEE80211_CHAN_HT20; 2425 } 2426 } 2427 2428 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2429 2430 } 2431 2432 static void 2433 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n) 2434 { 2435 struct ieee80211com *ic = &sc->sc_ic; 2436 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2437 const struct iwn_chan_band *band = &iwn_bands[n]; 2438 struct ieee80211_channel *c, *cent, *extc; 2439 uint8_t chan; 2440 int i, nflags; 2441 2442 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2443 2444 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2445 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2446 return; 2447 } 2448 2449 for (i = 0; i < band->nchan; i++) { 2450 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2451 DPRINTF(sc, IWN_DEBUG_RESET, 2452 "skip chan %d flags 0x%x maxpwr %d\n", 2453 band->chan[i], channels[i].flags, 2454 channels[i].maxpwr); 2455 continue; 2456 } 2457 chan = band->chan[i]; 2458 nflags = iwn_eeprom_channel_flags(&channels[i]); 2459 2460 /* 2461 * Each entry defines an HT40 channel pair; find the 2462 * center channel, then the extension channel above. 2463 */ 2464 cent = ieee80211_find_channel_byieee(ic, chan, 2465 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2466 if (cent == NULL) { /* XXX shouldn't happen */ 2467 device_printf(sc->sc_dev, 2468 "%s: no entry for channel %d\n", __func__, chan); 2469 continue; 2470 } 2471 extc = ieee80211_find_channel(ic, cent->ic_freq+20, 2472 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2473 if (extc == NULL) { 2474 DPRINTF(sc, IWN_DEBUG_RESET, 2475 "%s: skip chan %d, extension channel not found\n", 2476 __func__, chan); 2477 continue; 2478 } 2479 2480 DPRINTF(sc, IWN_DEBUG_RESET, 2481 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2482 chan, channels[i].flags, channels[i].maxpwr); 2483 2484 c = &ic->ic_channels[ic->ic_nchans++]; 2485 c[0] = cent[0]; 2486 c->ic_extieee = extc->ic_ieee; 2487 c->ic_flags &= ~IEEE80211_CHAN_HT; 2488 c->ic_flags |= IEEE80211_CHAN_HT40U | nflags; 2489 c = &ic->ic_channels[ic->ic_nchans++]; 2490 c[0] = extc[0]; 2491 c->ic_extieee = cent->ic_ieee; 2492 c->ic_flags &= ~IEEE80211_CHAN_HT; 2493 c->ic_flags |= IEEE80211_CHAN_HT40D | nflags; 2494 } 2495 2496 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2497 2498 } 2499 2500 static void 2501 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2502 { 2503 struct ieee80211com *ic = &sc->sc_ic; 2504 2505 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2506 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2507 2508 if (n < 5) 2509 iwn_read_eeprom_band(sc, n); 2510 else 2511 iwn_read_eeprom_ht40(sc, n); 2512 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2513 } 2514 2515 static struct iwn_eeprom_chan * 2516 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2517 { 2518 int band, chan, i, j; 2519 2520 if (IEEE80211_IS_CHAN_HT40(c)) { 2521 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2522 if (IEEE80211_IS_CHAN_HT40D(c)) 2523 chan = c->ic_extieee; 2524 else 2525 chan = c->ic_ieee; 2526 for (i = 0; i < iwn_bands[band].nchan; i++) { 2527 if (iwn_bands[band].chan[i] == chan) 2528 return &sc->eeprom_channels[band][i]; 2529 } 2530 } else { 2531 for (j = 0; j < 5; j++) { 2532 for (i = 0; i < iwn_bands[j].nchan; i++) { 2533 if (iwn_bands[j].chan[i] == c->ic_ieee) 2534 return &sc->eeprom_channels[j][i]; 2535 } 2536 } 2537 } 2538 return NULL; 2539 } 2540 2541 /* 2542 * Enforce flags read from EEPROM. 2543 */ 2544 static int 2545 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2546 int nchan, struct ieee80211_channel chans[]) 2547 { 2548 struct iwn_softc *sc = ic->ic_softc; 2549 int i; 2550 2551 for (i = 0; i < nchan; i++) { 2552 struct ieee80211_channel *c = &chans[i]; 2553 struct iwn_eeprom_chan *channel; 2554 2555 channel = iwn_find_eeprom_channel(sc, c); 2556 if (channel == NULL) { 2557 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2558 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2559 return EINVAL; 2560 } 2561 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2562 } 2563 2564 return 0; 2565 } 2566 2567 static void 2568 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2569 { 2570 struct iwn_eeprom_enhinfo enhinfo[35]; 2571 struct ieee80211com *ic = &sc->sc_ic; 2572 struct ieee80211_channel *c; 2573 uint16_t val, base; 2574 int8_t maxpwr; 2575 uint8_t flags; 2576 int i, j; 2577 2578 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2579 2580 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2581 base = le16toh(val); 2582 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2583 enhinfo, sizeof enhinfo); 2584 2585 for (i = 0; i < nitems(enhinfo); i++) { 2586 flags = enhinfo[i].flags; 2587 if (!(flags & IWN_ENHINFO_VALID)) 2588 continue; /* Skip invalid entries. */ 2589 2590 maxpwr = 0; 2591 if (sc->txchainmask & IWN_ANT_A) 2592 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2593 if (sc->txchainmask & IWN_ANT_B) 2594 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2595 if (sc->txchainmask & IWN_ANT_C) 2596 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2597 if (sc->ntxchains == 2) 2598 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2599 else if (sc->ntxchains == 3) 2600 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2601 2602 for (j = 0; j < ic->ic_nchans; j++) { 2603 c = &ic->ic_channels[j]; 2604 if ((flags & IWN_ENHINFO_5GHZ)) { 2605 if (!IEEE80211_IS_CHAN_A(c)) 2606 continue; 2607 } else if ((flags & IWN_ENHINFO_OFDM)) { 2608 if (!IEEE80211_IS_CHAN_G(c)) 2609 continue; 2610 } else if (!IEEE80211_IS_CHAN_B(c)) 2611 continue; 2612 if ((flags & IWN_ENHINFO_HT40)) { 2613 if (!IEEE80211_IS_CHAN_HT40(c)) 2614 continue; 2615 } else { 2616 if (IEEE80211_IS_CHAN_HT40(c)) 2617 continue; 2618 } 2619 if (enhinfo[i].chan != 0 && 2620 enhinfo[i].chan != c->ic_ieee) 2621 continue; 2622 2623 DPRINTF(sc, IWN_DEBUG_RESET, 2624 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2625 c->ic_flags, maxpwr / 2); 2626 c->ic_maxregpower = maxpwr / 2; 2627 c->ic_maxpower = maxpwr; 2628 } 2629 } 2630 2631 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2632 2633 } 2634 2635 static struct ieee80211_node * 2636 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2637 { 2638 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2639 } 2640 2641 static __inline int 2642 rate2plcp(int rate) 2643 { 2644 switch (rate & 0xff) { 2645 case 12: return 0xd; 2646 case 18: return 0xf; 2647 case 24: return 0x5; 2648 case 36: return 0x7; 2649 case 48: return 0x9; 2650 case 72: return 0xb; 2651 case 96: return 0x1; 2652 case 108: return 0x3; 2653 case 2: return 10; 2654 case 4: return 20; 2655 case 11: return 55; 2656 case 22: return 110; 2657 } 2658 return 0; 2659 } 2660 2661 static int 2662 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2663 { 2664 2665 return IWN_LSB(sc->txchainmask); 2666 } 2667 2668 static int 2669 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2670 { 2671 int tx; 2672 2673 /* 2674 * The '2 stream' setup is a bit .. odd. 2675 * 2676 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2677 * the firmware panics (eg Intel 5100.) 2678 * 2679 * For NICs that support two antennas, we use ANT_AB. 2680 * 2681 * For NICs that support three antennas, we use the two that 2682 * wasn't the default one. 2683 * 2684 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2685 * this to only one antenna. 2686 */ 2687 2688 /* Default - transmit on the other antennas */ 2689 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2690 2691 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2692 if (tx == 0) 2693 tx = IWN_ANT_AB; 2694 2695 /* 2696 * If the NIC is a two-stream TX NIC, configure the TX mask to 2697 * the default chainmask 2698 */ 2699 else if (sc->ntxchains == 2) 2700 tx = sc->txchainmask; 2701 2702 return (tx); 2703 } 2704 2705 2706 2707 /* 2708 * Calculate the required PLCP value from the given rate, 2709 * to the given node. 2710 * 2711 * This will take the node configuration (eg 11n, rate table 2712 * setup, etc) into consideration. 2713 */ 2714 static uint32_t 2715 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2716 uint8_t rate) 2717 { 2718 struct ieee80211com *ic = ni->ni_ic; 2719 uint32_t plcp = 0; 2720 int ridx; 2721 2722 /* 2723 * If it's an MCS rate, let's set the plcp correctly 2724 * and set the relevant flags based on the node config. 2725 */ 2726 if (rate & IEEE80211_RATE_MCS) { 2727 /* 2728 * Set the initial PLCP value to be between 0->31 for 2729 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2730 * flag. 2731 */ 2732 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2733 2734 /* 2735 * XXX the following should only occur if both 2736 * the local configuration _and_ the remote node 2737 * advertise these capabilities. Thus this code 2738 * may need fixing! 2739 */ 2740 2741 /* 2742 * Set the channel width and guard interval. 2743 */ 2744 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2745 plcp |= IWN_RFLAG_HT40; 2746 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2747 plcp |= IWN_RFLAG_SGI; 2748 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2749 plcp |= IWN_RFLAG_SGI; 2750 } 2751 2752 /* 2753 * Ensure the selected rate matches the link quality 2754 * table entries being used. 2755 */ 2756 if (rate > 0x8f) 2757 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2758 else if (rate > 0x87) 2759 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2760 else 2761 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2762 } else { 2763 /* 2764 * Set the initial PLCP - fine for both 2765 * OFDM and CCK rates. 2766 */ 2767 plcp = rate2plcp(rate); 2768 2769 /* Set CCK flag if it's CCK */ 2770 2771 /* XXX It would be nice to have a method 2772 * to map the ridx -> phy table entry 2773 * so we could just query that, rather than 2774 * this hack to check against IWN_RIDX_OFDM6. 2775 */ 2776 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2777 rate & IEEE80211_RATE_VAL); 2778 if (ridx < IWN_RIDX_OFDM6 && 2779 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2780 plcp |= IWN_RFLAG_CCK; 2781 2782 /* Set antenna configuration */ 2783 /* XXX TODO: is this the right antenna to use for legacy? */ 2784 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2785 } 2786 2787 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2788 __func__, 2789 rate, 2790 plcp); 2791 2792 return (htole32(plcp)); 2793 } 2794 2795 static void 2796 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2797 { 2798 /* Doesn't do anything at the moment */ 2799 } 2800 2801 static int 2802 iwn_media_change(struct ifnet *ifp) 2803 { 2804 int error; 2805 2806 error = ieee80211_media_change(ifp); 2807 /* NB: only the fixed rate can change and that doesn't need a reset */ 2808 return (error == ENETRESET ? 0 : error); 2809 } 2810 2811 static int 2812 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2813 { 2814 struct iwn_vap *ivp = IWN_VAP(vap); 2815 struct ieee80211com *ic = vap->iv_ic; 2816 struct iwn_softc *sc = ic->ic_softc; 2817 int error = 0; 2818 2819 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2820 2821 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2822 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2823 2824 IEEE80211_UNLOCK(ic); 2825 IWN_LOCK(sc); 2826 callout_stop(&sc->calib_to); 2827 2828 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2829 2830 switch (nstate) { 2831 case IEEE80211_S_ASSOC: 2832 if (vap->iv_state != IEEE80211_S_RUN) 2833 break; 2834 /* FALLTHROUGH */ 2835 case IEEE80211_S_AUTH: 2836 if (vap->iv_state == IEEE80211_S_AUTH) 2837 break; 2838 2839 /* 2840 * !AUTH -> AUTH transition requires state reset to handle 2841 * reassociations correctly. 2842 */ 2843 sc->rxon->associd = 0; 2844 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2845 sc->calib.state = IWN_CALIB_STATE_INIT; 2846 2847 /* Wait until we hear a beacon before we transmit */ 2848 sc->sc_beacon_wait = 1; 2849 2850 if ((error = iwn_auth(sc, vap)) != 0) { 2851 device_printf(sc->sc_dev, 2852 "%s: could not move to auth state\n", __func__); 2853 } 2854 break; 2855 2856 case IEEE80211_S_RUN: 2857 /* 2858 * RUN -> RUN transition; Just restart the timers. 2859 */ 2860 if (vap->iv_state == IEEE80211_S_RUN) { 2861 sc->calib_cnt = 0; 2862 break; 2863 } 2864 2865 /* Wait until we hear a beacon before we transmit */ 2866 sc->sc_beacon_wait = 1; 2867 2868 /* 2869 * !RUN -> RUN requires setting the association id 2870 * which is done with a firmware cmd. We also defer 2871 * starting the timers until that work is done. 2872 */ 2873 if ((error = iwn_run(sc, vap)) != 0) { 2874 device_printf(sc->sc_dev, 2875 "%s: could not move to run state\n", __func__); 2876 } 2877 break; 2878 2879 case IEEE80211_S_INIT: 2880 sc->calib.state = IWN_CALIB_STATE_INIT; 2881 /* 2882 * Purge the xmit queue so we don't have old frames 2883 * during a new association attempt. 2884 */ 2885 sc->sc_beacon_wait = 0; 2886 iwn_xmit_queue_drain(sc); 2887 break; 2888 2889 default: 2890 break; 2891 } 2892 IWN_UNLOCK(sc); 2893 IEEE80211_LOCK(ic); 2894 if (error != 0){ 2895 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2896 return error; 2897 } 2898 2899 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2900 2901 return ivp->iv_newstate(vap, nstate, arg); 2902 } 2903 2904 static void 2905 iwn_calib_timeout(void *arg) 2906 { 2907 struct iwn_softc *sc = arg; 2908 2909 IWN_LOCK_ASSERT(sc); 2910 2911 /* Force automatic TX power calibration every 60 secs. */ 2912 if (++sc->calib_cnt >= 120) { 2913 uint32_t flags = 0; 2914 2915 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2916 "sending request for statistics"); 2917 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2918 sizeof flags, 1); 2919 sc->calib_cnt = 0; 2920 } 2921 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2922 sc); 2923 } 2924 2925 /* 2926 * Process an RX_PHY firmware notification. This is usually immediately 2927 * followed by an MPDU_RX_DONE notification. 2928 */ 2929 static void 2930 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2931 struct iwn_rx_data *data) 2932 { 2933 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2934 2935 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2936 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2937 2938 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2939 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2940 sc->last_rx_valid = 1; 2941 } 2942 2943 /* 2944 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2945 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2946 */ 2947 static void 2948 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2949 struct iwn_rx_data *data) 2950 { 2951 struct iwn_ops *ops = &sc->ops; 2952 struct ieee80211com *ic = &sc->sc_ic; 2953 struct iwn_rx_ring *ring = &sc->rxq; 2954 struct ieee80211_frame *wh; 2955 struct ieee80211_node *ni; 2956 struct mbuf *m, *m1; 2957 struct iwn_rx_stat *stat; 2958 caddr_t head; 2959 bus_addr_t paddr; 2960 uint32_t flags; 2961 int error, len, rssi, nf; 2962 2963 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2964 2965 if (desc->type == IWN_MPDU_RX_DONE) { 2966 /* Check for prior RX_PHY notification. */ 2967 if (!sc->last_rx_valid) { 2968 DPRINTF(sc, IWN_DEBUG_ANY, 2969 "%s: missing RX_PHY\n", __func__); 2970 return; 2971 } 2972 stat = &sc->last_rx_stat; 2973 } else 2974 stat = (struct iwn_rx_stat *)(desc + 1); 2975 2976 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2977 2978 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2979 device_printf(sc->sc_dev, 2980 "%s: invalid RX statistic header, len %d\n", __func__, 2981 stat->cfg_phy_len); 2982 return; 2983 } 2984 if (desc->type == IWN_MPDU_RX_DONE) { 2985 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2986 head = (caddr_t)(mpdu + 1); 2987 len = le16toh(mpdu->len); 2988 } else { 2989 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2990 len = le16toh(stat->len); 2991 } 2992 2993 flags = le32toh(*(uint32_t *)(head + len)); 2994 2995 /* Discard frames with a bad FCS early. */ 2996 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2997 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 2998 __func__, flags); 2999 counter_u64_add(ic->ic_ierrors, 1); 3000 return; 3001 } 3002 /* Discard frames that are too short. */ 3003 if (len < sizeof (struct ieee80211_frame_ack)) { 3004 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3005 __func__, len); 3006 counter_u64_add(ic->ic_ierrors, 1); 3007 return; 3008 } 3009 3010 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3011 if (m1 == NULL) { 3012 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3013 __func__); 3014 counter_u64_add(ic->ic_ierrors, 1); 3015 return; 3016 } 3017 bus_dmamap_unload(ring->data_dmat, data->map); 3018 3019 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3020 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3021 if (error != 0 && error != EFBIG) { 3022 device_printf(sc->sc_dev, 3023 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3024 m_freem(m1); 3025 3026 /* Try to reload the old mbuf. */ 3027 error = bus_dmamap_load(ring->data_dmat, data->map, 3028 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3029 &paddr, BUS_DMA_NOWAIT); 3030 if (error != 0 && error != EFBIG) { 3031 panic("%s: could not load old RX mbuf", __func__); 3032 } 3033 /* Physical address may have changed. */ 3034 ring->desc[ring->cur] = htole32(paddr >> 8); 3035 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 3036 BUS_DMASYNC_PREWRITE); 3037 counter_u64_add(ic->ic_ierrors, 1); 3038 return; 3039 } 3040 3041 m = data->m; 3042 data->m = m1; 3043 /* Update RX descriptor. */ 3044 ring->desc[ring->cur] = htole32(paddr >> 8); 3045 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3046 BUS_DMASYNC_PREWRITE); 3047 3048 /* Finalize mbuf. */ 3049 m->m_data = head; 3050 m->m_pkthdr.len = m->m_len = len; 3051 3052 /* Grab a reference to the source node. */ 3053 wh = mtod(m, struct ieee80211_frame *); 3054 if (len >= sizeof(struct ieee80211_frame_min)) 3055 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3056 else 3057 ni = NULL; 3058 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3059 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3060 3061 rssi = ops->get_rssi(sc, stat); 3062 3063 if (ieee80211_radiotap_active(ic)) { 3064 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3065 3066 tap->wr_flags = 0; 3067 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3068 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3069 tap->wr_dbm_antsignal = (int8_t)rssi; 3070 tap->wr_dbm_antnoise = (int8_t)nf; 3071 tap->wr_tsft = stat->tstamp; 3072 switch (stat->rate) { 3073 /* CCK rates. */ 3074 case 10: tap->wr_rate = 2; break; 3075 case 20: tap->wr_rate = 4; break; 3076 case 55: tap->wr_rate = 11; break; 3077 case 110: tap->wr_rate = 22; break; 3078 /* OFDM rates. */ 3079 case 0xd: tap->wr_rate = 12; break; 3080 case 0xf: tap->wr_rate = 18; break; 3081 case 0x5: tap->wr_rate = 24; break; 3082 case 0x7: tap->wr_rate = 36; break; 3083 case 0x9: tap->wr_rate = 48; break; 3084 case 0xb: tap->wr_rate = 72; break; 3085 case 0x1: tap->wr_rate = 96; break; 3086 case 0x3: tap->wr_rate = 108; break; 3087 /* Unknown rate: should not happen. */ 3088 default: tap->wr_rate = 0; 3089 } 3090 } 3091 3092 /* 3093 * If it's a beacon and we're waiting, then do the 3094 * wakeup. This should unblock raw_xmit/start. 3095 */ 3096 if (sc->sc_beacon_wait) { 3097 uint8_t type, subtype; 3098 /* NB: Re-assign wh */ 3099 wh = mtod(m, struct ieee80211_frame *); 3100 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3101 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3102 /* 3103 * This assumes at this point we've received our own 3104 * beacon. 3105 */ 3106 DPRINTF(sc, IWN_DEBUG_TRACE, 3107 "%s: beacon_wait, type=%d, subtype=%d\n", 3108 __func__, type, subtype); 3109 if (type == IEEE80211_FC0_TYPE_MGT && 3110 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3111 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3112 "%s: waking things up\n", __func__); 3113 /* queue taskqueue to transmit! */ 3114 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3115 } 3116 } 3117 3118 IWN_UNLOCK(sc); 3119 3120 /* Send the frame to the 802.11 layer. */ 3121 if (ni != NULL) { 3122 if (ni->ni_flags & IEEE80211_NODE_HT) 3123 m->m_flags |= M_AMPDU; 3124 (void)ieee80211_input(ni, m, rssi - nf, nf); 3125 /* Node is no longer needed. */ 3126 ieee80211_free_node(ni); 3127 } else 3128 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3129 3130 IWN_LOCK(sc); 3131 3132 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3133 3134 } 3135 3136 /* Process an incoming Compressed BlockAck. */ 3137 static void 3138 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3139 struct iwn_rx_data *data) 3140 { 3141 struct iwn_ops *ops = &sc->ops; 3142 struct iwn_node *wn; 3143 struct ieee80211_node *ni; 3144 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3145 struct iwn_tx_ring *txq; 3146 struct iwn_tx_data *txdata; 3147 struct ieee80211_tx_ampdu *tap; 3148 struct mbuf *m; 3149 uint64_t bitmap; 3150 uint16_t ssn; 3151 uint8_t tid; 3152 int ackfailcnt = 0, i, lastidx, qid, *res, shift; 3153 int tx_ok = 0, tx_err = 0; 3154 3155 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__); 3156 3157 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3158 3159 qid = le16toh(ba->qid); 3160 txq = &sc->txq[ba->qid]; 3161 tap = sc->qid2tap[ba->qid]; 3162 tid = tap->txa_tid; 3163 wn = (void *)tap->txa_ni; 3164 3165 res = NULL; 3166 ssn = 0; 3167 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3168 res = tap->txa_private; 3169 ssn = tap->txa_start & 0xfff; 3170 } 3171 3172 for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) { 3173 txdata = &txq->data[txq->read]; 3174 3175 /* Unmap and free mbuf. */ 3176 bus_dmamap_sync(txq->data_dmat, txdata->map, 3177 BUS_DMASYNC_POSTWRITE); 3178 bus_dmamap_unload(txq->data_dmat, txdata->map); 3179 m = txdata->m, txdata->m = NULL; 3180 ni = txdata->ni, txdata->ni = NULL; 3181 3182 KASSERT(ni != NULL, ("no node")); 3183 KASSERT(m != NULL, ("no mbuf")); 3184 3185 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3186 ieee80211_tx_complete(ni, m, 1); 3187 3188 txq->queued--; 3189 txq->read = (txq->read + 1) % IWN_TX_RING_COUNT; 3190 } 3191 3192 if (txq->queued == 0 && res != NULL) { 3193 iwn_nic_lock(sc); 3194 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3195 iwn_nic_unlock(sc); 3196 sc->qid2tap[qid] = NULL; 3197 free(res, M_DEVBUF); 3198 return; 3199 } 3200 3201 if (wn->agg[tid].bitmap == 0) 3202 return; 3203 3204 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3205 if (shift < 0) 3206 shift += 0x100; 3207 3208 if (wn->agg[tid].nframes > (64 - shift)) 3209 return; 3210 3211 /* 3212 * Walk the bitmap and calculate how many successful and failed 3213 * attempts are made. 3214 * 3215 * Yes, the rate control code doesn't know these are A-MPDU 3216 * subframes and that it's okay to fail some of these. 3217 */ 3218 ni = tap->txa_ni; 3219 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 3220 for (i = 0; bitmap; i++) { 3221 if ((bitmap & 1) == 0) { 3222 tx_err ++; 3223 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3224 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3225 } else { 3226 tx_ok ++; 3227 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3228 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3229 } 3230 bitmap >>= 1; 3231 } 3232 3233 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3234 "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err); 3235 3236 } 3237 3238 /* 3239 * Process a CALIBRATION_RESULT notification sent by the initialization 3240 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3241 */ 3242 static void 3243 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3244 struct iwn_rx_data *data) 3245 { 3246 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3247 int len, idx = -1; 3248 3249 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3250 3251 /* Runtime firmware should not send such a notification. */ 3252 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3253 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n", 3254 __func__); 3255 return; 3256 } 3257 len = (le32toh(desc->len) & 0x3fff) - 4; 3258 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3259 3260 switch (calib->code) { 3261 case IWN5000_PHY_CALIB_DC: 3262 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3263 idx = 0; 3264 break; 3265 case IWN5000_PHY_CALIB_LO: 3266 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3267 idx = 1; 3268 break; 3269 case IWN5000_PHY_CALIB_TX_IQ: 3270 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3271 idx = 2; 3272 break; 3273 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3274 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3275 idx = 3; 3276 break; 3277 case IWN5000_PHY_CALIB_BASE_BAND: 3278 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3279 idx = 4; 3280 break; 3281 } 3282 if (idx == -1) /* Ignore other results. */ 3283 return; 3284 3285 /* Save calibration result. */ 3286 if (sc->calibcmd[idx].buf != NULL) 3287 free(sc->calibcmd[idx].buf, M_DEVBUF); 3288 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3289 if (sc->calibcmd[idx].buf == NULL) { 3290 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3291 "not enough memory for calibration result %d\n", 3292 calib->code); 3293 return; 3294 } 3295 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3296 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3297 sc->calibcmd[idx].len = len; 3298 memcpy(sc->calibcmd[idx].buf, calib, len); 3299 } 3300 3301 static void 3302 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3303 struct iwn_stats *stats, int len) 3304 { 3305 struct iwn_stats_bt *stats_bt; 3306 struct iwn_stats *lstats; 3307 3308 /* 3309 * First - check whether the length is the bluetooth or normal. 3310 * 3311 * If it's normal - just copy it and bump out. 3312 * Otherwise we have to convert things. 3313 */ 3314 3315 if (len == sizeof(struct iwn_stats) + 4) { 3316 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3317 sc->last_stat_valid = 1; 3318 return; 3319 } 3320 3321 /* 3322 * If it's not the bluetooth size - log, then just copy. 3323 */ 3324 if (len != sizeof(struct iwn_stats_bt) + 4) { 3325 DPRINTF(sc, IWN_DEBUG_STATS, 3326 "%s: size of rx statistics (%d) not an expected size!\n", 3327 __func__, 3328 len); 3329 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3330 sc->last_stat_valid = 1; 3331 return; 3332 } 3333 3334 /* 3335 * Ok. Time to copy. 3336 */ 3337 stats_bt = (struct iwn_stats_bt *) stats; 3338 lstats = &sc->last_stat; 3339 3340 /* flags */ 3341 lstats->flags = stats_bt->flags; 3342 /* rx_bt */ 3343 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3344 sizeof(struct iwn_rx_phy_stats)); 3345 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3346 sizeof(struct iwn_rx_phy_stats)); 3347 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3348 sizeof(struct iwn_rx_general_stats)); 3349 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3350 sizeof(struct iwn_rx_ht_phy_stats)); 3351 /* tx */ 3352 memcpy(&lstats->tx, &stats_bt->tx, 3353 sizeof(struct iwn_tx_stats)); 3354 /* general */ 3355 memcpy(&lstats->general, &stats_bt->general, 3356 sizeof(struct iwn_general_stats)); 3357 3358 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3359 sc->last_stat_valid = 1; 3360 } 3361 3362 /* 3363 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3364 * The latter is sent by the firmware after each received beacon. 3365 */ 3366 static void 3367 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3368 struct iwn_rx_data *data) 3369 { 3370 struct iwn_ops *ops = &sc->ops; 3371 struct ieee80211com *ic = &sc->sc_ic; 3372 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3373 struct iwn_calib_state *calib = &sc->calib; 3374 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3375 struct iwn_stats *lstats; 3376 int temp; 3377 3378 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3379 3380 /* Ignore statistics received during a scan. */ 3381 if (vap->iv_state != IEEE80211_S_RUN || 3382 (ic->ic_flags & IEEE80211_F_SCAN)){ 3383 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3384 __func__); 3385 return; 3386 } 3387 3388 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3389 3390 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3391 "%s: received statistics, cmd %d, len %d\n", 3392 __func__, desc->type, le16toh(desc->len)); 3393 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3394 3395 /* 3396 * Collect/track general statistics for reporting. 3397 * 3398 * This takes care of ensuring that the bluetooth sized message 3399 * will be correctly converted to the legacy sized message. 3400 */ 3401 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3402 3403 /* 3404 * And now, let's take a reference of it to use! 3405 */ 3406 lstats = &sc->last_stat; 3407 3408 /* Test if temperature has changed. */ 3409 if (lstats->general.temp != sc->rawtemp) { 3410 /* Convert "raw" temperature to degC. */ 3411 sc->rawtemp = stats->general.temp; 3412 temp = ops->get_temperature(sc); 3413 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3414 __func__, temp); 3415 3416 /* Update TX power if need be (4965AGN only). */ 3417 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3418 iwn4965_power_calibration(sc, temp); 3419 } 3420 3421 if (desc->type != IWN_BEACON_STATISTICS) 3422 return; /* Reply to a statistics request. */ 3423 3424 sc->noise = iwn_get_noise(&lstats->rx.general); 3425 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3426 3427 /* Test that RSSI and noise are present in stats report. */ 3428 if (le32toh(lstats->rx.general.flags) != 1) { 3429 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3430 "received statistics without RSSI"); 3431 return; 3432 } 3433 3434 if (calib->state == IWN_CALIB_STATE_ASSOC) 3435 iwn_collect_noise(sc, &lstats->rx.general); 3436 else if (calib->state == IWN_CALIB_STATE_RUN) { 3437 iwn_tune_sensitivity(sc, &lstats->rx); 3438 /* 3439 * XXX TODO: Only run the RX recovery if we're associated! 3440 */ 3441 iwn_check_rx_recovery(sc, lstats); 3442 iwn_save_stats_counters(sc, lstats); 3443 } 3444 3445 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3446 } 3447 3448 /* 3449 * Save the relevant statistic counters for the next calibration 3450 * pass. 3451 */ 3452 static void 3453 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3454 { 3455 struct iwn_calib_state *calib = &sc->calib; 3456 3457 /* Save counters values for next call. */ 3458 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3459 calib->fa_cck = le32toh(rs->rx.cck.fa); 3460 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3461 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3462 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3463 3464 /* Last time we received these tick values */ 3465 sc->last_calib_ticks = ticks; 3466 } 3467 3468 /* 3469 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3470 * and 5000 adapters have different incompatible TX status formats. 3471 */ 3472 static void 3473 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3474 struct iwn_rx_data *data) 3475 { 3476 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3477 struct iwn_tx_ring *ring; 3478 int qid; 3479 3480 qid = desc->qid & 0xf; 3481 ring = &sc->txq[qid]; 3482 3483 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3484 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3485 __func__, desc->qid, desc->idx, 3486 stat->rtsfailcnt, 3487 stat->ackfailcnt, 3488 stat->btkillcnt, 3489 stat->rate, le16toh(stat->duration), 3490 le32toh(stat->status)); 3491 3492 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3493 if (qid >= sc->firstaggqueue) { 3494 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3495 stat->ackfailcnt, &stat->status); 3496 } else { 3497 iwn_tx_done(sc, desc, stat->ackfailcnt, 3498 le32toh(stat->status) & 0xff); 3499 } 3500 } 3501 3502 static void 3503 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3504 struct iwn_rx_data *data) 3505 { 3506 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3507 struct iwn_tx_ring *ring; 3508 int qid; 3509 3510 qid = desc->qid & 0xf; 3511 ring = &sc->txq[qid]; 3512 3513 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3514 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3515 __func__, desc->qid, desc->idx, 3516 stat->rtsfailcnt, 3517 stat->ackfailcnt, 3518 stat->btkillcnt, 3519 stat->rate, le16toh(stat->duration), 3520 le32toh(stat->status)); 3521 3522 #ifdef notyet 3523 /* Reset TX scheduler slot. */ 3524 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 3525 #endif 3526 3527 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3528 if (qid >= sc->firstaggqueue) { 3529 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3530 stat->ackfailcnt, &stat->status); 3531 } else { 3532 iwn_tx_done(sc, desc, stat->ackfailcnt, 3533 le16toh(stat->status) & 0xff); 3534 } 3535 } 3536 3537 /* 3538 * Adapter-independent backend for TX_DONE firmware notifications. 3539 */ 3540 static void 3541 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 3542 uint8_t status) 3543 { 3544 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 3545 struct iwn_tx_data *data = &ring->data[desc->idx]; 3546 struct mbuf *m; 3547 struct ieee80211_node *ni; 3548 struct ieee80211vap *vap; 3549 3550 KASSERT(data->ni != NULL, ("no node")); 3551 3552 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3553 3554 /* Unmap and free mbuf. */ 3555 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3556 bus_dmamap_unload(ring->data_dmat, data->map); 3557 m = data->m, data->m = NULL; 3558 ni = data->ni, data->ni = NULL; 3559 vap = ni->ni_vap; 3560 3561 /* 3562 * Update rate control statistics for the node. 3563 */ 3564 if (status & IWN_TX_FAIL) 3565 ieee80211_ratectl_tx_complete(vap, ni, 3566 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3567 else 3568 ieee80211_ratectl_tx_complete(vap, ni, 3569 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3570 3571 /* 3572 * Channels marked for "radar" require traffic to be received 3573 * to unlock before we can transmit. Until traffic is seen 3574 * any attempt to transmit is returned immediately with status 3575 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3576 * happen on first authenticate after scanning. To workaround 3577 * this we ignore a failure of this sort in AUTH state so the 3578 * 802.11 layer will fall back to using a timeout to wait for 3579 * the AUTH reply. This allows the firmware time to see 3580 * traffic so a subsequent retry of AUTH succeeds. It's 3581 * unclear why the firmware does not maintain state for 3582 * channels recently visited as this would allow immediate 3583 * use of the channel after a scan (where we see traffic). 3584 */ 3585 if (status == IWN_TX_FAIL_TX_LOCKED && 3586 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3587 ieee80211_tx_complete(ni, m, 0); 3588 else 3589 ieee80211_tx_complete(ni, m, 3590 (status & IWN_TX_FAIL) != 0); 3591 3592 sc->sc_tx_timer = 0; 3593 if (--ring->queued < IWN_TX_RING_LOMARK) 3594 sc->qfullmsk &= ~(1 << ring->qid); 3595 3596 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3597 } 3598 3599 /* 3600 * Process a "command done" firmware notification. This is where we wakeup 3601 * processes waiting for a synchronous command completion. 3602 */ 3603 static void 3604 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3605 { 3606 struct iwn_tx_ring *ring; 3607 struct iwn_tx_data *data; 3608 int cmd_queue_num; 3609 3610 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3611 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3612 else 3613 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3614 3615 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3616 return; /* Not a command ack. */ 3617 3618 ring = &sc->txq[cmd_queue_num]; 3619 data = &ring->data[desc->idx]; 3620 3621 /* If the command was mapped in an mbuf, free it. */ 3622 if (data->m != NULL) { 3623 bus_dmamap_sync(ring->data_dmat, data->map, 3624 BUS_DMASYNC_POSTWRITE); 3625 bus_dmamap_unload(ring->data_dmat, data->map); 3626 m_freem(data->m); 3627 data->m = NULL; 3628 } 3629 wakeup(&ring->desc[desc->idx]); 3630 } 3631 3632 static void 3633 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 3634 int ackfailcnt, void *stat) 3635 { 3636 struct iwn_ops *ops = &sc->ops; 3637 struct iwn_tx_ring *ring = &sc->txq[qid]; 3638 struct iwn_tx_data *data; 3639 struct mbuf *m; 3640 struct iwn_node *wn; 3641 struct ieee80211_node *ni; 3642 struct ieee80211_tx_ampdu *tap; 3643 uint64_t bitmap; 3644 uint32_t *status = stat; 3645 uint16_t *aggstatus = stat; 3646 uint16_t ssn; 3647 uint8_t tid; 3648 int bit, i, lastidx, *res, seqno, shift, start; 3649 3650 /* XXX TODO: status is le16 field! Grr */ 3651 3652 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3653 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n", 3654 __func__, 3655 nframes, 3656 *status); 3657 3658 tap = sc->qid2tap[qid]; 3659 tid = tap->txa_tid; 3660 wn = (void *)tap->txa_ni; 3661 ni = tap->txa_ni; 3662 3663 /* 3664 * XXX TODO: ACK and RTS failures would be nice here! 3665 */ 3666 3667 /* 3668 * A-MPDU single frame status - if we failed to transmit it 3669 * in A-MPDU, then it may be a permanent failure. 3670 * 3671 * XXX TODO: check what the Linux iwlwifi driver does here; 3672 * there's some permanent and temporary failures that may be 3673 * handled differently. 3674 */ 3675 if (nframes == 1) { 3676 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) { 3677 #ifdef NOT_YET 3678 printf("ieee80211_send_bar()\n"); 3679 #endif 3680 /* 3681 * If we completely fail a transmit, make sure a 3682 * notification is pushed up to the rate control 3683 * layer. 3684 */ 3685 ieee80211_ratectl_tx_complete(ni->ni_vap, 3686 ni, 3687 IEEE80211_RATECTL_TX_FAILURE, 3688 &ackfailcnt, 3689 NULL); 3690 } else { 3691 /* 3692 * If nframes=1, then we won't be getting a BA for 3693 * this frame. Ensure that we correctly update the 3694 * rate control code with how many retries were 3695 * needed to send it. 3696 */ 3697 ieee80211_ratectl_tx_complete(ni->ni_vap, 3698 ni, 3699 IEEE80211_RATECTL_TX_SUCCESS, 3700 &ackfailcnt, 3701 NULL); 3702 } 3703 } 3704 3705 bitmap = 0; 3706 start = idx; 3707 for (i = 0; i < nframes; i++) { 3708 if (le16toh(aggstatus[i * 2]) & 0xc) 3709 continue; 3710 3711 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 3712 bit = idx - start; 3713 shift = 0; 3714 if (bit >= 64) { 3715 shift = 0x100 - idx + start; 3716 bit = 0; 3717 start = idx; 3718 } else if (bit <= -64) 3719 bit = 0x100 - start + idx; 3720 else if (bit < 0) { 3721 shift = start - idx; 3722 start = idx; 3723 bit = 0; 3724 } 3725 bitmap = bitmap << shift; 3726 bitmap |= 1ULL << bit; 3727 } 3728 tap = sc->qid2tap[qid]; 3729 tid = tap->txa_tid; 3730 wn = (void *)tap->txa_ni; 3731 wn->agg[tid].bitmap = bitmap; 3732 wn->agg[tid].startidx = start; 3733 wn->agg[tid].nframes = nframes; 3734 3735 res = NULL; 3736 ssn = 0; 3737 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3738 res = tap->txa_private; 3739 ssn = tap->txa_start & 0xfff; 3740 } 3741 3742 /* This is going nframes DWORDS into the descriptor? */ 3743 seqno = le32toh(*(status + nframes)) & 0xfff; 3744 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 3745 data = &ring->data[ring->read]; 3746 3747 /* Unmap and free mbuf. */ 3748 bus_dmamap_sync(ring->data_dmat, data->map, 3749 BUS_DMASYNC_POSTWRITE); 3750 bus_dmamap_unload(ring->data_dmat, data->map); 3751 m = data->m, data->m = NULL; 3752 ni = data->ni, data->ni = NULL; 3753 3754 KASSERT(ni != NULL, ("no node")); 3755 KASSERT(m != NULL, ("no mbuf")); 3756 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3757 ieee80211_tx_complete(ni, m, 1); 3758 3759 ring->queued--; 3760 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 3761 } 3762 3763 if (ring->queued == 0 && res != NULL) { 3764 iwn_nic_lock(sc); 3765 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3766 iwn_nic_unlock(sc); 3767 sc->qid2tap[qid] = NULL; 3768 free(res, M_DEVBUF); 3769 return; 3770 } 3771 3772 sc->sc_tx_timer = 0; 3773 if (ring->queued < IWN_TX_RING_LOMARK) 3774 sc->qfullmsk &= ~(1 << ring->qid); 3775 3776 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3777 } 3778 3779 /* 3780 * Process an INT_FH_RX or INT_SW_RX interrupt. 3781 */ 3782 static void 3783 iwn_notif_intr(struct iwn_softc *sc) 3784 { 3785 struct iwn_ops *ops = &sc->ops; 3786 struct ieee80211com *ic = &sc->sc_ic; 3787 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3788 uint16_t hw; 3789 3790 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3791 BUS_DMASYNC_POSTREAD); 3792 3793 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3794 while (sc->rxq.cur != hw) { 3795 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3796 struct iwn_rx_desc *desc; 3797 3798 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3799 BUS_DMASYNC_POSTREAD); 3800 desc = mtod(data->m, struct iwn_rx_desc *); 3801 3802 DPRINTF(sc, IWN_DEBUG_RECV, 3803 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 3804 __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags, 3805 desc->type, iwn_intr_str(desc->type), 3806 le16toh(desc->len)); 3807 3808 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 3809 iwn_cmd_done(sc, desc); 3810 3811 switch (desc->type) { 3812 case IWN_RX_PHY: 3813 iwn_rx_phy(sc, desc, data); 3814 break; 3815 3816 case IWN_RX_DONE: /* 4965AGN only. */ 3817 case IWN_MPDU_RX_DONE: 3818 /* An 802.11 frame has been received. */ 3819 iwn_rx_done(sc, desc, data); 3820 break; 3821 3822 case IWN_RX_COMPRESSED_BA: 3823 /* A Compressed BlockAck has been received. */ 3824 iwn_rx_compressed_ba(sc, desc, data); 3825 break; 3826 3827 case IWN_TX_DONE: 3828 /* An 802.11 frame has been transmitted. */ 3829 ops->tx_done(sc, desc, data); 3830 break; 3831 3832 case IWN_RX_STATISTICS: 3833 case IWN_BEACON_STATISTICS: 3834 iwn_rx_statistics(sc, desc, data); 3835 break; 3836 3837 case IWN_BEACON_MISSED: 3838 { 3839 struct iwn_beacon_missed *miss = 3840 (struct iwn_beacon_missed *)(desc + 1); 3841 int misses; 3842 3843 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3844 BUS_DMASYNC_POSTREAD); 3845 misses = le32toh(miss->consecutive); 3846 3847 DPRINTF(sc, IWN_DEBUG_STATE, 3848 "%s: beacons missed %d/%d\n", __func__, 3849 misses, le32toh(miss->total)); 3850 /* 3851 * If more than 5 consecutive beacons are missed, 3852 * reinitialize the sensitivity state machine. 3853 */ 3854 if (vap->iv_state == IEEE80211_S_RUN && 3855 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3856 if (misses > 5) 3857 (void)iwn_init_sensitivity(sc); 3858 if (misses >= vap->iv_bmissthreshold) { 3859 IWN_UNLOCK(sc); 3860 ieee80211_beacon_miss(ic); 3861 IWN_LOCK(sc); 3862 } 3863 } 3864 break; 3865 } 3866 case IWN_UC_READY: 3867 { 3868 struct iwn_ucode_info *uc = 3869 (struct iwn_ucode_info *)(desc + 1); 3870 3871 /* The microcontroller is ready. */ 3872 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3873 BUS_DMASYNC_POSTREAD); 3874 DPRINTF(sc, IWN_DEBUG_RESET, 3875 "microcode alive notification version=%d.%d " 3876 "subtype=%x alive=%x\n", uc->major, uc->minor, 3877 uc->subtype, le32toh(uc->valid)); 3878 3879 if (le32toh(uc->valid) != 1) { 3880 device_printf(sc->sc_dev, 3881 "microcontroller initialization failed"); 3882 break; 3883 } 3884 if (uc->subtype == IWN_UCODE_INIT) { 3885 /* Save microcontroller report. */ 3886 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3887 } 3888 /* Save the address of the error log in SRAM. */ 3889 sc->errptr = le32toh(uc->errptr); 3890 break; 3891 } 3892 case IWN_STATE_CHANGED: 3893 { 3894 /* 3895 * State change allows hardware switch change to be 3896 * noted. However, we handle this in iwn_intr as we 3897 * get both the enable/disble intr. 3898 */ 3899 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3900 BUS_DMASYNC_POSTREAD); 3901 #ifdef IWN_DEBUG 3902 uint32_t *status = (uint32_t *)(desc + 1); 3903 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 3904 "state changed to %x\n", 3905 le32toh(*status)); 3906 #endif 3907 break; 3908 } 3909 case IWN_START_SCAN: 3910 { 3911 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3912 BUS_DMASYNC_POSTREAD); 3913 #ifdef IWN_DEBUG 3914 struct iwn_start_scan *scan = 3915 (struct iwn_start_scan *)(desc + 1); 3916 DPRINTF(sc, IWN_DEBUG_ANY, 3917 "%s: scanning channel %d status %x\n", 3918 __func__, scan->chan, le32toh(scan->status)); 3919 #endif 3920 break; 3921 } 3922 case IWN_STOP_SCAN: 3923 { 3924 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3925 BUS_DMASYNC_POSTREAD); 3926 #ifdef IWN_DEBUG 3927 struct iwn_stop_scan *scan = 3928 (struct iwn_stop_scan *)(desc + 1); 3929 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 3930 "scan finished nchan=%d status=%d chan=%d\n", 3931 scan->nchan, scan->status, scan->chan); 3932 #endif 3933 sc->sc_is_scanning = 0; 3934 IWN_UNLOCK(sc); 3935 ieee80211_scan_next(vap); 3936 IWN_LOCK(sc); 3937 break; 3938 } 3939 case IWN5000_CALIBRATION_RESULT: 3940 iwn5000_rx_calib_results(sc, desc, data); 3941 break; 3942 3943 case IWN5000_CALIBRATION_DONE: 3944 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3945 wakeup(sc); 3946 break; 3947 } 3948 3949 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3950 } 3951 3952 /* Tell the firmware what we have processed. */ 3953 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3954 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3955 } 3956 3957 /* 3958 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3959 * from power-down sleep mode. 3960 */ 3961 static void 3962 iwn_wakeup_intr(struct iwn_softc *sc) 3963 { 3964 int qid; 3965 3966 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 3967 __func__); 3968 3969 /* Wakeup RX and TX rings. */ 3970 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3971 for (qid = 0; qid < sc->ntxqs; qid++) { 3972 struct iwn_tx_ring *ring = &sc->txq[qid]; 3973 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3974 } 3975 } 3976 3977 static void 3978 iwn_rftoggle_intr(struct iwn_softc *sc) 3979 { 3980 struct ieee80211com *ic = &sc->sc_ic; 3981 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 3982 3983 IWN_LOCK_ASSERT(sc); 3984 3985 device_printf(sc->sc_dev, "RF switch: radio %s\n", 3986 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3987 if (tmp & IWN_GP_CNTRL_RFKILL) 3988 ieee80211_runtask(ic, &sc->sc_radioon_task); 3989 else 3990 ieee80211_runtask(ic, &sc->sc_radiooff_task); 3991 } 3992 3993 /* 3994 * Dump the error log of the firmware when a firmware panic occurs. Although 3995 * we can't debug the firmware because it is neither open source nor free, it 3996 * can help us to identify certain classes of problems. 3997 */ 3998 static void 3999 iwn_fatal_intr(struct iwn_softc *sc) 4000 { 4001 struct iwn_fw_dump dump; 4002 int i; 4003 4004 IWN_LOCK_ASSERT(sc); 4005 4006 /* Force a complete recalibration on next init. */ 4007 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4008 4009 /* Check that the error log address is valid. */ 4010 if (sc->errptr < IWN_FW_DATA_BASE || 4011 sc->errptr + sizeof (dump) > 4012 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4013 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4014 sc->errptr); 4015 return; 4016 } 4017 if (iwn_nic_lock(sc) != 0) { 4018 printf("%s: could not read firmware error log\n", __func__); 4019 return; 4020 } 4021 /* Read firmware error log from SRAM. */ 4022 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4023 sizeof (dump) / sizeof (uint32_t)); 4024 iwn_nic_unlock(sc); 4025 4026 if (dump.valid == 0) { 4027 printf("%s: firmware error log is empty\n", __func__); 4028 return; 4029 } 4030 printf("firmware error log:\n"); 4031 printf(" error type = \"%s\" (0x%08X)\n", 4032 (dump.id < nitems(iwn_fw_errmsg)) ? 4033 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4034 dump.id); 4035 printf(" program counter = 0x%08X\n", dump.pc); 4036 printf(" source line = 0x%08X\n", dump.src_line); 4037 printf(" error data = 0x%08X%08X\n", 4038 dump.error_data[0], dump.error_data[1]); 4039 printf(" branch link = 0x%08X%08X\n", 4040 dump.branch_link[0], dump.branch_link[1]); 4041 printf(" interrupt link = 0x%08X%08X\n", 4042 dump.interrupt_link[0], dump.interrupt_link[1]); 4043 printf(" time = %u\n", dump.time[0]); 4044 4045 /* Dump driver status (TX and RX rings) while we're here. */ 4046 printf("driver status:\n"); 4047 for (i = 0; i < sc->ntxqs; i++) { 4048 struct iwn_tx_ring *ring = &sc->txq[i]; 4049 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4050 i, ring->qid, ring->cur, ring->queued); 4051 } 4052 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4053 } 4054 4055 static void 4056 iwn_intr(void *arg) 4057 { 4058 struct iwn_softc *sc = arg; 4059 uint32_t r1, r2, tmp; 4060 4061 IWN_LOCK(sc); 4062 4063 /* Disable interrupts. */ 4064 IWN_WRITE(sc, IWN_INT_MASK, 0); 4065 4066 /* Read interrupts from ICT (fast) or from registers (slow). */ 4067 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4068 tmp = 0; 4069 while (sc->ict[sc->ict_cur] != 0) { 4070 tmp |= sc->ict[sc->ict_cur]; 4071 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4072 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4073 } 4074 tmp = le32toh(tmp); 4075 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4076 tmp = 0; 4077 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4078 tmp |= 0x8000; 4079 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4080 r2 = 0; /* Unused. */ 4081 } else { 4082 r1 = IWN_READ(sc, IWN_INT); 4083 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4084 IWN_UNLOCK(sc); 4085 return; /* Hardware gone! */ 4086 } 4087 r2 = IWN_READ(sc, IWN_FH_INT); 4088 } 4089 4090 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4091 , r1, r2); 4092 4093 if (r1 == 0 && r2 == 0) 4094 goto done; /* Interrupt not for us. */ 4095 4096 /* Acknowledge interrupts. */ 4097 IWN_WRITE(sc, IWN_INT, r1); 4098 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4099 IWN_WRITE(sc, IWN_FH_INT, r2); 4100 4101 if (r1 & IWN_INT_RF_TOGGLED) { 4102 iwn_rftoggle_intr(sc); 4103 goto done; 4104 } 4105 if (r1 & IWN_INT_CT_REACHED) { 4106 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4107 __func__); 4108 } 4109 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4110 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4111 __func__); 4112 #ifdef IWN_DEBUG 4113 iwn_debug_register(sc); 4114 #endif 4115 /* Dump firmware error log and stop. */ 4116 iwn_fatal_intr(sc); 4117 4118 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4119 goto done; 4120 } 4121 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4122 (r2 & IWN_FH_INT_RX)) { 4123 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4124 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4125 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4126 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4127 IWN_INT_PERIODIC_DIS); 4128 iwn_notif_intr(sc); 4129 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4130 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4131 IWN_INT_PERIODIC_ENA); 4132 } 4133 } else 4134 iwn_notif_intr(sc); 4135 } 4136 4137 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4138 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4139 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4140 wakeup(sc); /* FH DMA transfer completed. */ 4141 } 4142 4143 if (r1 & IWN_INT_ALIVE) 4144 wakeup(sc); /* Firmware is alive. */ 4145 4146 if (r1 & IWN_INT_WAKEUP) 4147 iwn_wakeup_intr(sc); 4148 4149 done: 4150 /* Re-enable interrupts. */ 4151 if (sc->sc_flags & IWN_FLAG_RUNNING) 4152 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4153 4154 IWN_UNLOCK(sc); 4155 } 4156 4157 /* 4158 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4159 * 5000 adapters use a slightly different format). 4160 */ 4161 static void 4162 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4163 uint16_t len) 4164 { 4165 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4166 4167 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4168 4169 *w = htole16(len + 8); 4170 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4171 BUS_DMASYNC_PREWRITE); 4172 if (idx < IWN_SCHED_WINSZ) { 4173 *(w + IWN_TX_RING_COUNT) = *w; 4174 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4175 BUS_DMASYNC_PREWRITE); 4176 } 4177 } 4178 4179 static void 4180 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4181 uint16_t len) 4182 { 4183 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4184 4185 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4186 4187 *w = htole16(id << 12 | (len + 8)); 4188 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4189 BUS_DMASYNC_PREWRITE); 4190 if (idx < IWN_SCHED_WINSZ) { 4191 *(w + IWN_TX_RING_COUNT) = *w; 4192 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4193 BUS_DMASYNC_PREWRITE); 4194 } 4195 } 4196 4197 #ifdef notyet 4198 static void 4199 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4200 { 4201 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4202 4203 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4204 4205 *w = (*w & htole16(0xf000)) | htole16(1); 4206 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4207 BUS_DMASYNC_PREWRITE); 4208 if (idx < IWN_SCHED_WINSZ) { 4209 *(w + IWN_TX_RING_COUNT) = *w; 4210 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4211 BUS_DMASYNC_PREWRITE); 4212 } 4213 } 4214 #endif 4215 4216 /* 4217 * Check whether OFDM 11g protection will be enabled for the given rate. 4218 * 4219 * The original driver code only enabled protection for OFDM rates. 4220 * It didn't check to see whether it was operating in 11a or 11bg mode. 4221 */ 4222 static int 4223 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4224 struct ieee80211vap *vap, uint8_t rate) 4225 { 4226 struct ieee80211com *ic = vap->iv_ic; 4227 4228 /* 4229 * Not in 2GHz mode? Then there's no need to enable OFDM 4230 * 11bg protection. 4231 */ 4232 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4233 return (0); 4234 } 4235 4236 /* 4237 * 11bg protection not enabled? Then don't use it. 4238 */ 4239 if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) 4240 return (0); 4241 4242 /* 4243 * If it's an 11n rate - no protection. 4244 * We'll do it via a specific 11n check. 4245 */ 4246 if (rate & IEEE80211_RATE_MCS) { 4247 return (0); 4248 } 4249 4250 /* 4251 * Do a rate table lookup. If the PHY is CCK, 4252 * don't do protection. 4253 */ 4254 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4255 return (0); 4256 4257 /* 4258 * Yup, enable protection. 4259 */ 4260 return (1); 4261 } 4262 4263 /* 4264 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4265 * the link quality table that reflects this particular entry. 4266 */ 4267 static int 4268 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4269 uint8_t rate) 4270 { 4271 struct ieee80211_rateset *rs; 4272 int is_11n; 4273 int nr; 4274 int i; 4275 uint8_t cmp_rate; 4276 4277 /* 4278 * Figure out if we're using 11n or not here. 4279 */ 4280 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4281 is_11n = 1; 4282 else 4283 is_11n = 0; 4284 4285 /* 4286 * Use the correct rate table. 4287 */ 4288 if (is_11n) { 4289 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4290 nr = ni->ni_htrates.rs_nrates; 4291 } else { 4292 rs = &ni->ni_rates; 4293 nr = rs->rs_nrates; 4294 } 4295 4296 /* 4297 * Find the relevant link quality entry in the table. 4298 */ 4299 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4300 /* 4301 * The link quality table index starts at 0 == highest 4302 * rate, so we walk the rate table backwards. 4303 */ 4304 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4305 if (rate & IEEE80211_RATE_MCS) 4306 cmp_rate |= IEEE80211_RATE_MCS; 4307 4308 #if 0 4309 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4310 __func__, 4311 i, 4312 nr, 4313 rate, 4314 cmp_rate); 4315 #endif 4316 4317 if (cmp_rate == rate) 4318 return (i); 4319 } 4320 4321 /* Failed? Start at the end */ 4322 return (IWN_MAX_TX_RETRIES - 1); 4323 } 4324 4325 static int 4326 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4327 { 4328 struct iwn_ops *ops = &sc->ops; 4329 const struct ieee80211_txparam *tp; 4330 struct ieee80211vap *vap = ni->ni_vap; 4331 struct ieee80211com *ic = ni->ni_ic; 4332 struct iwn_node *wn = (void *)ni; 4333 struct iwn_tx_ring *ring; 4334 struct iwn_tx_desc *desc; 4335 struct iwn_tx_data *data; 4336 struct iwn_tx_cmd *cmd; 4337 struct iwn_cmd_data *tx; 4338 struct ieee80211_frame *wh; 4339 struct ieee80211_key *k = NULL; 4340 struct mbuf *m1; 4341 uint32_t flags; 4342 uint16_t qos; 4343 u_int hdrlen; 4344 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4345 uint8_t tid, type; 4346 int ac, i, totlen, error, pad, nsegs = 0, rate; 4347 4348 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4349 4350 IWN_LOCK_ASSERT(sc); 4351 4352 wh = mtod(m, struct ieee80211_frame *); 4353 hdrlen = ieee80211_anyhdrsize(wh); 4354 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4355 4356 /* Select EDCA Access Category and TX ring for this frame. */ 4357 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4358 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4359 tid = qos & IEEE80211_QOS_TID; 4360 } else { 4361 qos = 0; 4362 tid = 0; 4363 } 4364 ac = M_WME_GETAC(m); 4365 if (m->m_flags & M_AMPDU_MPDU) { 4366 uint16_t seqno; 4367 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4368 4369 if (!IEEE80211_AMPDU_RUNNING(tap)) { 4370 return EINVAL; 4371 } 4372 4373 /* 4374 * Queue this frame to the hardware ring that we've 4375 * negotiated AMPDU TX on. 4376 * 4377 * Note that the sequence number must match the TX slot 4378 * being used! 4379 */ 4380 ac = *(int *)tap->txa_private; 4381 seqno = ni->ni_txseqs[tid]; 4382 *(uint16_t *)wh->i_seq = 4383 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4384 ring = &sc->txq[ac]; 4385 if ((seqno % 256) != ring->cur) { 4386 device_printf(sc->sc_dev, 4387 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4388 __func__, 4389 m, 4390 seqno, 4391 seqno % 256, 4392 ring->cur); 4393 } 4394 ni->ni_txseqs[tid]++; 4395 } 4396 ring = &sc->txq[ac]; 4397 desc = &ring->desc[ring->cur]; 4398 data = &ring->data[ring->cur]; 4399 4400 /* Choose a TX rate index. */ 4401 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 4402 if (type == IEEE80211_FC0_TYPE_MGT) 4403 rate = tp->mgmtrate; 4404 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4405 rate = tp->mcastrate; 4406 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4407 rate = tp->ucastrate; 4408 else if (m->m_flags & M_EAPOL) 4409 rate = tp->mgmtrate; 4410 else { 4411 /* XXX pass pktlen */ 4412 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4413 rate = ni->ni_txrate; 4414 } 4415 4416 /* Encrypt the frame if need be. */ 4417 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4418 /* Retrieve key for TX. */ 4419 k = ieee80211_crypto_encap(ni, m); 4420 if (k == NULL) { 4421 return ENOBUFS; 4422 } 4423 /* 802.11 header may have moved. */ 4424 wh = mtod(m, struct ieee80211_frame *); 4425 } 4426 totlen = m->m_pkthdr.len; 4427 4428 if (ieee80211_radiotap_active_vap(vap)) { 4429 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4430 4431 tap->wt_flags = 0; 4432 tap->wt_rate = rate; 4433 if (k != NULL) 4434 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4435 4436 ieee80211_radiotap_tx(vap, m); 4437 } 4438 4439 /* Prepare TX firmware command. */ 4440 cmd = &ring->cmd[ring->cur]; 4441 cmd->code = IWN_CMD_TX_DATA; 4442 cmd->flags = 0; 4443 cmd->qid = ring->qid; 4444 cmd->idx = ring->cur; 4445 4446 tx = (struct iwn_cmd_data *)cmd->data; 4447 /* NB: No need to clear tx, all fields are reinitialized here. */ 4448 tx->scratch = 0; /* clear "scratch" area */ 4449 4450 flags = 0; 4451 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4452 /* Unicast frame, check if an ACK is expected. */ 4453 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4454 IEEE80211_QOS_ACKPOLICY_NOACK) 4455 flags |= IWN_TX_NEED_ACK; 4456 } 4457 if ((wh->i_fc[0] & 4458 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4459 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4460 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4461 4462 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4463 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4464 4465 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4466 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4467 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4468 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4469 flags |= IWN_TX_NEED_RTS; 4470 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4471 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4472 flags |= IWN_TX_NEED_CTS; 4473 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4474 flags |= IWN_TX_NEED_RTS; 4475 } else if ((rate & IEEE80211_RATE_MCS) && 4476 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4477 flags |= IWN_TX_NEED_RTS; 4478 } 4479 4480 /* XXX HT protection? */ 4481 4482 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4483 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4484 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4485 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4486 flags |= IWN_TX_NEED_PROTECTION; 4487 } else 4488 flags |= IWN_TX_FULL_TXOP; 4489 } 4490 } 4491 4492 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4493 type != IEEE80211_FC0_TYPE_DATA) 4494 tx->id = sc->broadcast_id; 4495 else 4496 tx->id = wn->id; 4497 4498 if (type == IEEE80211_FC0_TYPE_MGT) { 4499 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4500 4501 /* Tell HW to set timestamp in probe responses. */ 4502 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4503 flags |= IWN_TX_INSERT_TSTAMP; 4504 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4505 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4506 tx->timeout = htole16(3); 4507 else 4508 tx->timeout = htole16(2); 4509 } else 4510 tx->timeout = htole16(0); 4511 4512 if (hdrlen & 3) { 4513 /* First segment length must be a multiple of 4. */ 4514 flags |= IWN_TX_NEED_PADDING; 4515 pad = 4 - (hdrlen & 3); 4516 } else 4517 pad = 0; 4518 4519 tx->len = htole16(totlen); 4520 tx->tid = tid; 4521 tx->rts_ntries = 60; 4522 tx->data_ntries = 15; 4523 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4524 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4525 if (tx->id == sc->broadcast_id) { 4526 /* Group or management frame. */ 4527 tx->linkq = 0; 4528 } else { 4529 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4530 flags |= IWN_TX_LINKQ; /* enable MRR */ 4531 } 4532 4533 /* Set physical address of "scratch area". */ 4534 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4535 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4536 4537 /* Copy 802.11 header in TX command. */ 4538 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4539 4540 /* Trim 802.11 header. */ 4541 m_adj(m, hdrlen); 4542 tx->security = 0; 4543 tx->flags = htole32(flags); 4544 4545 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4546 &nsegs, BUS_DMA_NOWAIT); 4547 if (error != 0) { 4548 if (error != EFBIG) { 4549 device_printf(sc->sc_dev, 4550 "%s: can't map mbuf (error %d)\n", __func__, error); 4551 return error; 4552 } 4553 /* Too many DMA segments, linearize mbuf. */ 4554 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4555 if (m1 == NULL) { 4556 device_printf(sc->sc_dev, 4557 "%s: could not defrag mbuf\n", __func__); 4558 return ENOBUFS; 4559 } 4560 m = m1; 4561 4562 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4563 segs, &nsegs, BUS_DMA_NOWAIT); 4564 if (error != 0) { 4565 device_printf(sc->sc_dev, 4566 "%s: can't map mbuf (error %d)\n", __func__, error); 4567 return error; 4568 } 4569 } 4570 4571 data->m = m; 4572 data->ni = ni; 4573 4574 DPRINTF(sc, IWN_DEBUG_XMIT, 4575 "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n", 4576 __func__, 4577 ring->qid, 4578 ring->cur, 4579 m->m_pkthdr.len, 4580 nsegs, 4581 flags, 4582 rate, 4583 tx->rate); 4584 4585 /* Fill TX descriptor. */ 4586 desc->nsegs = 1; 4587 if (m->m_len != 0) 4588 desc->nsegs += nsegs; 4589 /* First DMA segment is used by the TX command. */ 4590 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4591 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4592 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4593 /* Other DMA segments are for data payload. */ 4594 seg = &segs[0]; 4595 for (i = 1; i <= nsegs; i++) { 4596 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4597 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4598 seg->ds_len << 4); 4599 seg++; 4600 } 4601 4602 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4603 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4604 BUS_DMASYNC_PREWRITE); 4605 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4606 BUS_DMASYNC_PREWRITE); 4607 4608 /* Update TX scheduler. */ 4609 if (ring->qid >= sc->firstaggqueue) 4610 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4611 4612 /* Kick TX ring. */ 4613 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4614 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4615 4616 /* Mark TX ring as full if we reach a certain threshold. */ 4617 if (++ring->queued > IWN_TX_RING_HIMARK) 4618 sc->qfullmsk |= 1 << ring->qid; 4619 4620 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4621 4622 return 0; 4623 } 4624 4625 static int 4626 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4627 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4628 { 4629 struct iwn_ops *ops = &sc->ops; 4630 struct ieee80211vap *vap = ni->ni_vap; 4631 struct iwn_tx_cmd *cmd; 4632 struct iwn_cmd_data *tx; 4633 struct ieee80211_frame *wh; 4634 struct iwn_tx_ring *ring; 4635 struct iwn_tx_desc *desc; 4636 struct iwn_tx_data *data; 4637 struct mbuf *m1; 4638 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4639 uint32_t flags; 4640 u_int hdrlen; 4641 int ac, totlen, error, pad, nsegs = 0, i, rate; 4642 uint8_t type; 4643 4644 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4645 4646 IWN_LOCK_ASSERT(sc); 4647 4648 wh = mtod(m, struct ieee80211_frame *); 4649 hdrlen = ieee80211_anyhdrsize(wh); 4650 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4651 4652 ac = params->ibp_pri & 3; 4653 4654 ring = &sc->txq[ac]; 4655 desc = &ring->desc[ring->cur]; 4656 data = &ring->data[ring->cur]; 4657 4658 /* Choose a TX rate. */ 4659 rate = params->ibp_rate0; 4660 totlen = m->m_pkthdr.len; 4661 4662 /* Prepare TX firmware command. */ 4663 cmd = &ring->cmd[ring->cur]; 4664 cmd->code = IWN_CMD_TX_DATA; 4665 cmd->flags = 0; 4666 cmd->qid = ring->qid; 4667 cmd->idx = ring->cur; 4668 4669 tx = (struct iwn_cmd_data *)cmd->data; 4670 /* NB: No need to clear tx, all fields are reinitialized here. */ 4671 tx->scratch = 0; /* clear "scratch" area */ 4672 4673 flags = 0; 4674 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4675 flags |= IWN_TX_NEED_ACK; 4676 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4677 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4678 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4679 flags &= ~IWN_TX_NEED_RTS; 4680 flags |= IWN_TX_NEED_PROTECTION; 4681 } else 4682 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4683 } 4684 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4685 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4686 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4687 flags &= ~IWN_TX_NEED_CTS; 4688 flags |= IWN_TX_NEED_PROTECTION; 4689 } else 4690 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4691 } 4692 if (type == IEEE80211_FC0_TYPE_MGT) { 4693 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4694 4695 /* Tell HW to set timestamp in probe responses. */ 4696 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4697 flags |= IWN_TX_INSERT_TSTAMP; 4698 4699 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4700 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4701 tx->timeout = htole16(3); 4702 else 4703 tx->timeout = htole16(2); 4704 } else 4705 tx->timeout = htole16(0); 4706 4707 if (hdrlen & 3) { 4708 /* First segment length must be a multiple of 4. */ 4709 flags |= IWN_TX_NEED_PADDING; 4710 pad = 4 - (hdrlen & 3); 4711 } else 4712 pad = 0; 4713 4714 if (ieee80211_radiotap_active_vap(vap)) { 4715 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4716 4717 tap->wt_flags = 0; 4718 tap->wt_rate = rate; 4719 4720 ieee80211_radiotap_tx(vap, m); 4721 } 4722 4723 tx->len = htole16(totlen); 4724 tx->tid = 0; 4725 tx->id = sc->broadcast_id; 4726 tx->rts_ntries = params->ibp_try1; 4727 tx->data_ntries = params->ibp_try0; 4728 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4729 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4730 4731 /* Group or management frame. */ 4732 tx->linkq = 0; 4733 4734 /* Set physical address of "scratch area". */ 4735 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4736 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4737 4738 /* Copy 802.11 header in TX command. */ 4739 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4740 4741 /* Trim 802.11 header. */ 4742 m_adj(m, hdrlen); 4743 tx->security = 0; 4744 tx->flags = htole32(flags); 4745 4746 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4747 &nsegs, BUS_DMA_NOWAIT); 4748 if (error != 0) { 4749 if (error != EFBIG) { 4750 device_printf(sc->sc_dev, 4751 "%s: can't map mbuf (error %d)\n", __func__, error); 4752 return error; 4753 } 4754 /* Too many DMA segments, linearize mbuf. */ 4755 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4756 if (m1 == NULL) { 4757 device_printf(sc->sc_dev, 4758 "%s: could not defrag mbuf\n", __func__); 4759 return ENOBUFS; 4760 } 4761 m = m1; 4762 4763 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4764 segs, &nsegs, BUS_DMA_NOWAIT); 4765 if (error != 0) { 4766 device_printf(sc->sc_dev, 4767 "%s: can't map mbuf (error %d)\n", __func__, error); 4768 return error; 4769 } 4770 } 4771 4772 data->m = m; 4773 data->ni = ni; 4774 4775 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 4776 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 4777 4778 /* Fill TX descriptor. */ 4779 desc->nsegs = 1; 4780 if (m->m_len != 0) 4781 desc->nsegs += nsegs; 4782 /* First DMA segment is used by the TX command. */ 4783 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4784 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4785 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4786 /* Other DMA segments are for data payload. */ 4787 seg = &segs[0]; 4788 for (i = 1; i <= nsegs; i++) { 4789 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4790 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4791 seg->ds_len << 4); 4792 seg++; 4793 } 4794 4795 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4796 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4797 BUS_DMASYNC_PREWRITE); 4798 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4799 BUS_DMASYNC_PREWRITE); 4800 4801 /* Update TX scheduler. */ 4802 if (ring->qid >= sc->firstaggqueue) 4803 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4804 4805 /* Kick TX ring. */ 4806 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4807 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4808 4809 /* Mark TX ring as full if we reach a certain threshold. */ 4810 if (++ring->queued > IWN_TX_RING_HIMARK) 4811 sc->qfullmsk |= 1 << ring->qid; 4812 4813 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4814 4815 return 0; 4816 } 4817 4818 static void 4819 iwn_xmit_task(void *arg0, int pending) 4820 { 4821 struct iwn_softc *sc = arg0; 4822 struct ieee80211_node *ni; 4823 struct mbuf *m; 4824 int error; 4825 struct ieee80211_bpf_params p; 4826 int have_p; 4827 4828 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4829 4830 IWN_LOCK(sc); 4831 /* 4832 * Dequeue frames, attempt to transmit, 4833 * then disable beaconwait when we're done. 4834 */ 4835 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 4836 have_p = 0; 4837 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4838 4839 /* Get xmit params if appropriate */ 4840 if (ieee80211_get_xmit_params(m, &p) == 0) 4841 have_p = 1; 4842 4843 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 4844 __func__, m, have_p); 4845 4846 /* If we have xmit params, use them */ 4847 if (have_p) 4848 error = iwn_tx_data_raw(sc, m, ni, &p); 4849 else 4850 error = iwn_tx_data(sc, m, ni); 4851 4852 if (error != 0) { 4853 if_inc_counter(ni->ni_vap->iv_ifp, 4854 IFCOUNTER_OERRORS, 1); 4855 ieee80211_free_node(ni); 4856 m_freem(m); 4857 } 4858 } 4859 4860 sc->sc_beacon_wait = 0; 4861 IWN_UNLOCK(sc); 4862 } 4863 4864 /* 4865 * raw frame xmit - free node/reference if failed. 4866 */ 4867 static int 4868 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4869 const struct ieee80211_bpf_params *params) 4870 { 4871 struct ieee80211com *ic = ni->ni_ic; 4872 struct iwn_softc *sc = ic->ic_softc; 4873 int error = 0; 4874 4875 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4876 4877 IWN_LOCK(sc); 4878 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 4879 m_freem(m); 4880 IWN_UNLOCK(sc); 4881 return (ENETDOWN); 4882 } 4883 4884 /* queue frame if we have to */ 4885 if (sc->sc_beacon_wait) { 4886 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 4887 m_freem(m); 4888 IWN_UNLOCK(sc); 4889 return (ENOBUFS); 4890 } 4891 /* Queued, so just return OK */ 4892 IWN_UNLOCK(sc); 4893 return (0); 4894 } 4895 4896 if (params == NULL) { 4897 /* 4898 * Legacy path; interpret frame contents to decide 4899 * precisely how to send the frame. 4900 */ 4901 error = iwn_tx_data(sc, m, ni); 4902 } else { 4903 /* 4904 * Caller supplied explicit parameters to use in 4905 * sending the frame. 4906 */ 4907 error = iwn_tx_data_raw(sc, m, ni, params); 4908 } 4909 if (error == 0) 4910 sc->sc_tx_timer = 5; 4911 else 4912 m_freem(m); 4913 4914 IWN_UNLOCK(sc); 4915 4916 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 4917 4918 return (error); 4919 } 4920 4921 /* 4922 * transmit - don't free mbuf if failed; don't free node ref if failed. 4923 */ 4924 static int 4925 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 4926 { 4927 struct iwn_softc *sc = ic->ic_softc; 4928 struct ieee80211_node *ni; 4929 int error; 4930 4931 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4932 4933 IWN_LOCK(sc); 4934 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 4935 IWN_UNLOCK(sc); 4936 return (ENXIO); 4937 } 4938 4939 if (sc->qfullmsk) { 4940 IWN_UNLOCK(sc); 4941 return (ENOBUFS); 4942 } 4943 4944 error = iwn_tx_data(sc, m, ni); 4945 if (!error) 4946 sc->sc_tx_timer = 5; 4947 IWN_UNLOCK(sc); 4948 return (error); 4949 } 4950 4951 static void 4952 iwn_watchdog(void *arg) 4953 { 4954 struct iwn_softc *sc = arg; 4955 struct ieee80211com *ic = &sc->sc_ic; 4956 4957 IWN_LOCK_ASSERT(sc); 4958 4959 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 4960 4961 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4962 4963 if (sc->sc_tx_timer > 0) { 4964 if (--sc->sc_tx_timer == 0) { 4965 ic_printf(ic, "device timeout\n"); 4966 ieee80211_runtask(ic, &sc->sc_reinit_task); 4967 return; 4968 } 4969 } 4970 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 4971 } 4972 4973 static int 4974 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 4975 { 4976 4977 return (0); 4978 } 4979 4980 static int 4981 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 4982 { 4983 4984 return (0); 4985 } 4986 4987 static int 4988 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 4989 struct thread *td) 4990 { 4991 int rc; 4992 struct iwn_softc *sc = dev->si_drv1; 4993 struct iwn_ioctl_data *d; 4994 4995 rc = priv_check(td, PRIV_DRIVER); 4996 if (rc != 0) 4997 return (0); 4998 4999 switch (cmd) { 5000 case SIOCGIWNSTATS: 5001 d = (struct iwn_ioctl_data *) data; 5002 IWN_LOCK(sc); 5003 /* XXX validate permissions/memory/etc? */ 5004 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5005 IWN_UNLOCK(sc); 5006 break; 5007 case SIOCZIWNSTATS: 5008 IWN_LOCK(sc); 5009 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5010 IWN_UNLOCK(sc); 5011 break; 5012 default: 5013 rc = EINVAL; 5014 break; 5015 } 5016 return (rc); 5017 } 5018 5019 static int 5020 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5021 { 5022 5023 return (ENOTTY); 5024 } 5025 5026 static void 5027 iwn_parent(struct ieee80211com *ic) 5028 { 5029 struct iwn_softc *sc = ic->ic_softc; 5030 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5031 int startall = 0, stop = 0; 5032 5033 IWN_LOCK(sc); 5034 if (ic->ic_nrunning > 0) { 5035 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5036 iwn_init_locked(sc); 5037 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 5038 startall = 1; 5039 else 5040 stop = 1; 5041 } 5042 } else if (sc->sc_flags & IWN_FLAG_RUNNING) 5043 iwn_stop_locked(sc); 5044 IWN_UNLOCK(sc); 5045 if (startall) 5046 ieee80211_start_all(ic); 5047 else if (vap != NULL && stop) 5048 ieee80211_stop(vap); 5049 } 5050 5051 /* 5052 * Send a command to the firmware. 5053 */ 5054 static int 5055 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5056 { 5057 struct iwn_tx_ring *ring; 5058 struct iwn_tx_desc *desc; 5059 struct iwn_tx_data *data; 5060 struct iwn_tx_cmd *cmd; 5061 struct mbuf *m; 5062 bus_addr_t paddr; 5063 int totlen, error; 5064 int cmd_queue_num; 5065 5066 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5067 5068 if (async == 0) 5069 IWN_LOCK_ASSERT(sc); 5070 5071 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5072 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5073 else 5074 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5075 5076 ring = &sc->txq[cmd_queue_num]; 5077 desc = &ring->desc[ring->cur]; 5078 data = &ring->data[ring->cur]; 5079 totlen = 4 + size; 5080 5081 if (size > sizeof cmd->data) { 5082 /* Command is too large to fit in a descriptor. */ 5083 if (totlen > MCLBYTES) 5084 return EINVAL; 5085 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5086 if (m == NULL) 5087 return ENOMEM; 5088 cmd = mtod(m, struct iwn_tx_cmd *); 5089 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5090 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5091 if (error != 0) { 5092 m_freem(m); 5093 return error; 5094 } 5095 data->m = m; 5096 } else { 5097 cmd = &ring->cmd[ring->cur]; 5098 paddr = data->cmd_paddr; 5099 } 5100 5101 cmd->code = code; 5102 cmd->flags = 0; 5103 cmd->qid = ring->qid; 5104 cmd->idx = ring->cur; 5105 memcpy(cmd->data, buf, size); 5106 5107 desc->nsegs = 1; 5108 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5109 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5110 5111 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5112 __func__, iwn_intr_str(cmd->code), cmd->code, 5113 cmd->flags, cmd->qid, cmd->idx); 5114 5115 if (size > sizeof cmd->data) { 5116 bus_dmamap_sync(ring->data_dmat, data->map, 5117 BUS_DMASYNC_PREWRITE); 5118 } else { 5119 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 5120 BUS_DMASYNC_PREWRITE); 5121 } 5122 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5123 BUS_DMASYNC_PREWRITE); 5124 5125 /* Kick command ring. */ 5126 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5127 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5128 5129 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5130 5131 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5132 } 5133 5134 static int 5135 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5136 { 5137 struct iwn4965_node_info hnode; 5138 caddr_t src, dst; 5139 5140 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5141 5142 /* 5143 * We use the node structure for 5000 Series internally (it is 5144 * a superset of the one for 4965AGN). We thus copy the common 5145 * fields before sending the command. 5146 */ 5147 src = (caddr_t)node; 5148 dst = (caddr_t)&hnode; 5149 memcpy(dst, src, 48); 5150 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5151 memcpy(dst + 48, src + 72, 20); 5152 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5153 } 5154 5155 static int 5156 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5157 { 5158 5159 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5160 5161 /* Direct mapping. */ 5162 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5163 } 5164 5165 static int 5166 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5167 { 5168 struct iwn_node *wn = (void *)ni; 5169 struct ieee80211_rateset *rs; 5170 struct iwn_cmd_link_quality linkq; 5171 int i, rate, txrate; 5172 int is_11n; 5173 5174 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5175 5176 memset(&linkq, 0, sizeof linkq); 5177 linkq.id = wn->id; 5178 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5179 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5180 5181 linkq.ampdu_max = 32; /* XXX negotiated? */ 5182 linkq.ampdu_threshold = 3; 5183 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5184 5185 DPRINTF(sc, IWN_DEBUG_XMIT, 5186 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5187 __func__, 5188 linkq.antmsk_1stream, 5189 linkq.antmsk_2stream, 5190 sc->ntxchains); 5191 5192 /* 5193 * Are we using 11n rates? Ensure the channel is 5194 * 11n _and_ we have some 11n rates, or don't 5195 * try. 5196 */ 5197 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5198 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5199 is_11n = 1; 5200 } else { 5201 rs = &ni->ni_rates; 5202 is_11n = 0; 5203 } 5204 5205 /* Start at highest available bit-rate. */ 5206 /* 5207 * XXX this is all very dirty! 5208 */ 5209 if (is_11n) 5210 txrate = ni->ni_htrates.rs_nrates - 1; 5211 else 5212 txrate = rs->rs_nrates - 1; 5213 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5214 uint32_t plcp; 5215 5216 /* 5217 * XXX TODO: ensure the last two slots are the two lowest 5218 * rate entries, just for now. 5219 */ 5220 if (i == 14 || i == 15) 5221 txrate = 0; 5222 5223 if (is_11n) 5224 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5225 else 5226 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5227 5228 /* Do rate -> PLCP config mapping */ 5229 plcp = iwn_rate_to_plcp(sc, ni, rate); 5230 linkq.retry[i] = plcp; 5231 DPRINTF(sc, IWN_DEBUG_XMIT, 5232 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5233 __func__, 5234 i, 5235 txrate, 5236 rate, 5237 le32toh(plcp)); 5238 5239 /* 5240 * The mimo field is an index into the table which 5241 * indicates the first index where it and subsequent entries 5242 * will not be using MIMO. 5243 * 5244 * Since we're filling linkq from 0..15 and we're filling 5245 * from the higest MCS rates to the lowest rates, if we 5246 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5247 * the next entry.) That way if the next entry is a non-MIMO 5248 * entry, we're already pointing at it. 5249 */ 5250 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5251 IEEE80211_RV(le32toh(plcp)) > 7) 5252 linkq.mimo = i + 1; 5253 5254 /* Next retry at immediate lower bit-rate. */ 5255 if (txrate > 0) 5256 txrate--; 5257 } 5258 /* 5259 * If we reached the end of the list and indeed we hit 5260 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5261 * set mimo to 15. Setting it to 16 panics the firmware. 5262 */ 5263 if (linkq.mimo > 15) 5264 linkq.mimo = 15; 5265 5266 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5267 5268 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5269 5270 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5271 } 5272 5273 /* 5274 * Broadcast node is used to send group-addressed and management frames. 5275 */ 5276 static int 5277 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5278 { 5279 struct iwn_ops *ops = &sc->ops; 5280 struct ieee80211com *ic = &sc->sc_ic; 5281 struct iwn_node_info node; 5282 struct iwn_cmd_link_quality linkq; 5283 uint8_t txant; 5284 int i, error; 5285 5286 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5287 5288 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5289 5290 memset(&node, 0, sizeof node); 5291 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5292 node.id = sc->broadcast_id; 5293 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5294 if ((error = ops->add_node(sc, &node, async)) != 0) 5295 return error; 5296 5297 /* Use the first valid TX antenna. */ 5298 txant = IWN_LSB(sc->txchainmask); 5299 5300 memset(&linkq, 0, sizeof linkq); 5301 linkq.id = sc->broadcast_id; 5302 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5303 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5304 linkq.ampdu_max = 64; 5305 linkq.ampdu_threshold = 3; 5306 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5307 5308 /* Use lowest mandatory bit-rate. */ 5309 /* XXX rate table lookup? */ 5310 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5311 linkq.retry[0] = htole32(0xd); 5312 else 5313 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5314 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5315 /* Use same bit-rate for all TX retries. */ 5316 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5317 linkq.retry[i] = linkq.retry[0]; 5318 } 5319 5320 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5321 5322 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5323 } 5324 5325 static int 5326 iwn_updateedca(struct ieee80211com *ic) 5327 { 5328 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5329 struct iwn_softc *sc = ic->ic_softc; 5330 struct iwn_edca_params cmd; 5331 int aci; 5332 5333 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5334 5335 memset(&cmd, 0, sizeof cmd); 5336 cmd.flags = htole32(IWN_EDCA_UPDATE); 5337 5338 IEEE80211_LOCK(ic); 5339 for (aci = 0; aci < WME_NUM_AC; aci++) { 5340 const struct wmeParams *ac = 5341 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 5342 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5343 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5344 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5345 cmd.ac[aci].txoplimit = 5346 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5347 } 5348 IEEE80211_UNLOCK(ic); 5349 5350 IWN_LOCK(sc); 5351 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5352 IWN_UNLOCK(sc); 5353 5354 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5355 5356 return 0; 5357 #undef IWN_EXP2 5358 } 5359 5360 static void 5361 iwn_update_mcast(struct ieee80211com *ic) 5362 { 5363 /* Ignore */ 5364 } 5365 5366 static void 5367 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5368 { 5369 struct iwn_cmd_led led; 5370 5371 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5372 5373 #if 0 5374 /* XXX don't set LEDs during scan? */ 5375 if (sc->sc_is_scanning) 5376 return; 5377 #endif 5378 5379 /* Clear microcode LED ownership. */ 5380 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5381 5382 led.which = which; 5383 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5384 led.off = off; 5385 led.on = on; 5386 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5387 } 5388 5389 /* 5390 * Set the critical temperature at which the firmware will stop the radio 5391 * and notify us. 5392 */ 5393 static int 5394 iwn_set_critical_temp(struct iwn_softc *sc) 5395 { 5396 struct iwn_critical_temp crit; 5397 int32_t temp; 5398 5399 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5400 5401 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5402 5403 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5404 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5405 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5406 temp = IWN_CTOK(110); 5407 else 5408 temp = 110; 5409 memset(&crit, 0, sizeof crit); 5410 crit.tempR = htole32(temp); 5411 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5412 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5413 } 5414 5415 static int 5416 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5417 { 5418 struct iwn_cmd_timing cmd; 5419 uint64_t val, mod; 5420 5421 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5422 5423 memset(&cmd, 0, sizeof cmd); 5424 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5425 cmd.bintval = htole16(ni->ni_intval); 5426 cmd.lintval = htole16(10); 5427 5428 /* Compute remaining time until next beacon. */ 5429 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5430 mod = le64toh(cmd.tstamp) % val; 5431 cmd.binitval = htole32((uint32_t)(val - mod)); 5432 5433 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5434 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5435 5436 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5437 } 5438 5439 static void 5440 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5441 { 5442 struct ieee80211com *ic = &sc->sc_ic; 5443 5444 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5445 5446 /* Adjust TX power if need be (delta >= 3 degC). */ 5447 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5448 __func__, sc->temp, temp); 5449 if (abs(temp - sc->temp) >= 3) { 5450 /* Record temperature of last calibration. */ 5451 sc->temp = temp; 5452 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 5453 } 5454 } 5455 5456 /* 5457 * Set TX power for current channel (each rate has its own power settings). 5458 * This function takes into account the regulatory information from EEPROM, 5459 * the current temperature and the current voltage. 5460 */ 5461 static int 5462 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5463 int async) 5464 { 5465 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5466 #define fdivround(a, b, n) \ 5467 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5468 /* Linear interpolation. */ 5469 #define interpolate(x, x1, y1, x2, y2, n) \ 5470 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5471 5472 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5473 struct iwn_ucode_info *uc = &sc->ucode_info; 5474 struct iwn4965_cmd_txpower cmd; 5475 struct iwn4965_eeprom_chan_samples *chans; 5476 const uint8_t *rf_gain, *dsp_gain; 5477 int32_t vdiff, tdiff; 5478 int i, c, grp, maxpwr; 5479 uint8_t chan; 5480 5481 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5482 /* Retrieve current channel from last RXON. */ 5483 chan = sc->rxon->chan; 5484 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5485 chan); 5486 5487 memset(&cmd, 0, sizeof cmd); 5488 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 5489 cmd.chan = chan; 5490 5491 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 5492 maxpwr = sc->maxpwr5GHz; 5493 rf_gain = iwn4965_rf_gain_5ghz; 5494 dsp_gain = iwn4965_dsp_gain_5ghz; 5495 } else { 5496 maxpwr = sc->maxpwr2GHz; 5497 rf_gain = iwn4965_rf_gain_2ghz; 5498 dsp_gain = iwn4965_dsp_gain_2ghz; 5499 } 5500 5501 /* Compute voltage compensation. */ 5502 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5503 if (vdiff > 0) 5504 vdiff *= 2; 5505 if (abs(vdiff) > 2) 5506 vdiff = 0; 5507 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5508 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5509 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5510 5511 /* Get channel attenuation group. */ 5512 if (chan <= 20) /* 1-20 */ 5513 grp = 4; 5514 else if (chan <= 43) /* 34-43 */ 5515 grp = 0; 5516 else if (chan <= 70) /* 44-70 */ 5517 grp = 1; 5518 else if (chan <= 124) /* 71-124 */ 5519 grp = 2; 5520 else /* 125-200 */ 5521 grp = 3; 5522 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5523 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5524 5525 /* Get channel sub-band. */ 5526 for (i = 0; i < IWN_NBANDS; i++) 5527 if (sc->bands[i].lo != 0 && 5528 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5529 break; 5530 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5531 return EINVAL; 5532 chans = sc->bands[i].chans; 5533 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5534 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5535 5536 for (c = 0; c < 2; c++) { 5537 uint8_t power, gain, temp; 5538 int maxchpwr, pwr, ridx, idx; 5539 5540 power = interpolate(chan, 5541 chans[0].num, chans[0].samples[c][1].power, 5542 chans[1].num, chans[1].samples[c][1].power, 1); 5543 gain = interpolate(chan, 5544 chans[0].num, chans[0].samples[c][1].gain, 5545 chans[1].num, chans[1].samples[c][1].gain, 1); 5546 temp = interpolate(chan, 5547 chans[0].num, chans[0].samples[c][1].temp, 5548 chans[1].num, chans[1].samples[c][1].temp, 1); 5549 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5550 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5551 __func__, c, power, gain, temp); 5552 5553 /* Compute temperature compensation. */ 5554 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5555 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5556 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5557 __func__, tdiff, sc->temp, temp); 5558 5559 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5560 /* Convert dBm to half-dBm. */ 5561 maxchpwr = sc->maxpwr[chan] * 2; 5562 if ((ridx / 8) & 1) 5563 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5564 5565 pwr = maxpwr; 5566 5567 /* Adjust TX power based on rate. */ 5568 if ((ridx % 8) == 5) 5569 pwr -= 15; /* OFDM48: -7.5dB */ 5570 else if ((ridx % 8) == 6) 5571 pwr -= 17; /* OFDM54: -8.5dB */ 5572 else if ((ridx % 8) == 7) 5573 pwr -= 20; /* OFDM60: -10dB */ 5574 else 5575 pwr -= 10; /* Others: -5dB */ 5576 5577 /* Do not exceed channel max TX power. */ 5578 if (pwr > maxchpwr) 5579 pwr = maxchpwr; 5580 5581 idx = gain - (pwr - power) - tdiff - vdiff; 5582 if ((ridx / 8) & 1) /* MIMO */ 5583 idx += (int32_t)le32toh(uc->atten[grp][c]); 5584 5585 if (cmd.band == 0) 5586 idx += 9; /* 5GHz */ 5587 if (ridx == IWN_RIDX_MAX) 5588 idx += 5; /* CCK */ 5589 5590 /* Make sure idx stays in a valid range. */ 5591 if (idx < 0) 5592 idx = 0; 5593 else if (idx > IWN4965_MAX_PWR_INDEX) 5594 idx = IWN4965_MAX_PWR_INDEX; 5595 5596 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5597 "%s: Tx chain %d, rate idx %d: power=%d\n", 5598 __func__, c, ridx, idx); 5599 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5600 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5601 } 5602 } 5603 5604 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5605 "%s: set tx power for chan %d\n", __func__, chan); 5606 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5607 5608 #undef interpolate 5609 #undef fdivround 5610 } 5611 5612 static int 5613 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5614 int async) 5615 { 5616 struct iwn5000_cmd_txpower cmd; 5617 int cmdid; 5618 5619 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5620 5621 /* 5622 * TX power calibration is handled automatically by the firmware 5623 * for 5000 Series. 5624 */ 5625 memset(&cmd, 0, sizeof cmd); 5626 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5627 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5628 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5629 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5630 "%s: setting TX power; rev=%d\n", 5631 __func__, 5632 IWN_UCODE_API(sc->ucode_rev)); 5633 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5634 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5635 else 5636 cmdid = IWN_CMD_TXPOWER_DBM; 5637 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5638 } 5639 5640 /* 5641 * Retrieve the maximum RSSI (in dBm) among receivers. 5642 */ 5643 static int 5644 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5645 { 5646 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5647 uint8_t mask, agc; 5648 int rssi; 5649 5650 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5651 5652 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5653 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5654 5655 rssi = 0; 5656 if (mask & IWN_ANT_A) 5657 rssi = MAX(rssi, phy->rssi[0]); 5658 if (mask & IWN_ANT_B) 5659 rssi = MAX(rssi, phy->rssi[2]); 5660 if (mask & IWN_ANT_C) 5661 rssi = MAX(rssi, phy->rssi[4]); 5662 5663 DPRINTF(sc, IWN_DEBUG_RECV, 5664 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5665 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5666 rssi - agc - IWN_RSSI_TO_DBM); 5667 return rssi - agc - IWN_RSSI_TO_DBM; 5668 } 5669 5670 static int 5671 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5672 { 5673 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5674 uint8_t agc; 5675 int rssi; 5676 5677 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5678 5679 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5680 5681 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5682 le16toh(phy->rssi[1]) & 0xff); 5683 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5684 5685 DPRINTF(sc, IWN_DEBUG_RECV, 5686 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5687 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5688 rssi - agc - IWN_RSSI_TO_DBM); 5689 return rssi - agc - IWN_RSSI_TO_DBM; 5690 } 5691 5692 /* 5693 * Retrieve the average noise (in dBm) among receivers. 5694 */ 5695 static int 5696 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5697 { 5698 int i, total, nbant, noise; 5699 5700 total = nbant = 0; 5701 for (i = 0; i < 3; i++) { 5702 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5703 continue; 5704 total += noise; 5705 nbant++; 5706 } 5707 /* There should be at least one antenna but check anyway. */ 5708 return (nbant == 0) ? -127 : (total / nbant) - 107; 5709 } 5710 5711 /* 5712 * Compute temperature (in degC) from last received statistics. 5713 */ 5714 static int 5715 iwn4965_get_temperature(struct iwn_softc *sc) 5716 { 5717 struct iwn_ucode_info *uc = &sc->ucode_info; 5718 int32_t r1, r2, r3, r4, temp; 5719 5720 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5721 5722 r1 = le32toh(uc->temp[0].chan20MHz); 5723 r2 = le32toh(uc->temp[1].chan20MHz); 5724 r3 = le32toh(uc->temp[2].chan20MHz); 5725 r4 = le32toh(sc->rawtemp); 5726 5727 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5728 return 0; 5729 5730 /* Sign-extend 23-bit R4 value to 32-bit. */ 5731 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5732 /* Compute temperature in Kelvin. */ 5733 temp = (259 * (r4 - r2)) / (r3 - r1); 5734 temp = (temp * 97) / 100 + 8; 5735 5736 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5737 IWN_KTOC(temp)); 5738 return IWN_KTOC(temp); 5739 } 5740 5741 static int 5742 iwn5000_get_temperature(struct iwn_softc *sc) 5743 { 5744 int32_t temp; 5745 5746 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5747 5748 /* 5749 * Temperature is not used by the driver for 5000 Series because 5750 * TX power calibration is handled by firmware. 5751 */ 5752 temp = le32toh(sc->rawtemp); 5753 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5754 temp = (temp / -5) + sc->temp_off; 5755 temp = IWN_KTOC(temp); 5756 } 5757 return temp; 5758 } 5759 5760 /* 5761 * Initialize sensitivity calibration state machine. 5762 */ 5763 static int 5764 iwn_init_sensitivity(struct iwn_softc *sc) 5765 { 5766 struct iwn_ops *ops = &sc->ops; 5767 struct iwn_calib_state *calib = &sc->calib; 5768 uint32_t flags; 5769 int error; 5770 5771 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5772 5773 /* Reset calibration state machine. */ 5774 memset(calib, 0, sizeof (*calib)); 5775 calib->state = IWN_CALIB_STATE_INIT; 5776 calib->cck_state = IWN_CCK_STATE_HIFA; 5777 /* Set initial correlation values. */ 5778 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5779 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5780 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5781 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5782 calib->cck_x4 = 125; 5783 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5784 calib->energy_cck = sc->limits->energy_cck; 5785 5786 /* Write initial sensitivity. */ 5787 if ((error = iwn_send_sensitivity(sc)) != 0) 5788 return error; 5789 5790 /* Write initial gains. */ 5791 if ((error = ops->init_gains(sc)) != 0) 5792 return error; 5793 5794 /* Request statistics at each beacon interval. */ 5795 flags = 0; 5796 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 5797 __func__); 5798 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 5799 } 5800 5801 /* 5802 * Collect noise and RSSI statistics for the first 20 beacons received 5803 * after association and use them to determine connected antennas and 5804 * to set differential gains. 5805 */ 5806 static void 5807 iwn_collect_noise(struct iwn_softc *sc, 5808 const struct iwn_rx_general_stats *stats) 5809 { 5810 struct iwn_ops *ops = &sc->ops; 5811 struct iwn_calib_state *calib = &sc->calib; 5812 struct ieee80211com *ic = &sc->sc_ic; 5813 uint32_t val; 5814 int i; 5815 5816 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5817 5818 /* Accumulate RSSI and noise for all 3 antennas. */ 5819 for (i = 0; i < 3; i++) { 5820 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 5821 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 5822 } 5823 /* NB: We update differential gains only once after 20 beacons. */ 5824 if (++calib->nbeacons < 20) 5825 return; 5826 5827 /* Determine highest average RSSI. */ 5828 val = MAX(calib->rssi[0], calib->rssi[1]); 5829 val = MAX(calib->rssi[2], val); 5830 5831 /* Determine which antennas are connected. */ 5832 sc->chainmask = sc->rxchainmask; 5833 for (i = 0; i < 3; i++) 5834 if (val - calib->rssi[i] > 15 * 20) 5835 sc->chainmask &= ~(1 << i); 5836 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5837 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 5838 __func__, sc->rxchainmask, sc->chainmask); 5839 5840 /* If none of the TX antennas are connected, keep at least one. */ 5841 if ((sc->chainmask & sc->txchainmask) == 0) 5842 sc->chainmask |= IWN_LSB(sc->txchainmask); 5843 5844 (void)ops->set_gains(sc); 5845 calib->state = IWN_CALIB_STATE_RUN; 5846 5847 #ifdef notyet 5848 /* XXX Disable RX chains with no antennas connected. */ 5849 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5850 if (sc->sc_is_scanning) 5851 device_printf(sc->sc_dev, 5852 "%s: is_scanning set, before RXON\n", 5853 __func__); 5854 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5855 #endif 5856 5857 /* Enable power-saving mode if requested by user. */ 5858 if (ic->ic_flags & IEEE80211_F_PMGTON) 5859 (void)iwn_set_pslevel(sc, 0, 3, 1); 5860 5861 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5862 5863 } 5864 5865 static int 5866 iwn4965_init_gains(struct iwn_softc *sc) 5867 { 5868 struct iwn_phy_calib_gain cmd; 5869 5870 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5871 5872 memset(&cmd, 0, sizeof cmd); 5873 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5874 /* Differential gains initially set to 0 for all 3 antennas. */ 5875 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5876 "%s: setting initial differential gains\n", __func__); 5877 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5878 } 5879 5880 static int 5881 iwn5000_init_gains(struct iwn_softc *sc) 5882 { 5883 struct iwn_phy_calib cmd; 5884 5885 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5886 5887 memset(&cmd, 0, sizeof cmd); 5888 cmd.code = sc->reset_noise_gain; 5889 cmd.ngroups = 1; 5890 cmd.isvalid = 1; 5891 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5892 "%s: setting initial differential gains\n", __func__); 5893 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5894 } 5895 5896 static int 5897 iwn4965_set_gains(struct iwn_softc *sc) 5898 { 5899 struct iwn_calib_state *calib = &sc->calib; 5900 struct iwn_phy_calib_gain cmd; 5901 int i, delta, noise; 5902 5903 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5904 5905 /* Get minimal noise among connected antennas. */ 5906 noise = INT_MAX; /* NB: There's at least one antenna. */ 5907 for (i = 0; i < 3; i++) 5908 if (sc->chainmask & (1 << i)) 5909 noise = MIN(calib->noise[i], noise); 5910 5911 memset(&cmd, 0, sizeof cmd); 5912 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5913 /* Set differential gains for connected antennas. */ 5914 for (i = 0; i < 3; i++) { 5915 if (sc->chainmask & (1 << i)) { 5916 /* Compute attenuation (in unit of 1.5dB). */ 5917 delta = (noise - (int32_t)calib->noise[i]) / 30; 5918 /* NB: delta <= 0 */ 5919 /* Limit to [-4.5dB,0]. */ 5920 cmd.gain[i] = MIN(abs(delta), 3); 5921 if (delta < 0) 5922 cmd.gain[i] |= 1 << 2; /* sign bit */ 5923 } 5924 } 5925 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5926 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 5927 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 5928 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5929 } 5930 5931 static int 5932 iwn5000_set_gains(struct iwn_softc *sc) 5933 { 5934 struct iwn_calib_state *calib = &sc->calib; 5935 struct iwn_phy_calib_gain cmd; 5936 int i, ant, div, delta; 5937 5938 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5939 5940 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5941 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5942 5943 memset(&cmd, 0, sizeof cmd); 5944 cmd.code = sc->noise_gain; 5945 cmd.ngroups = 1; 5946 cmd.isvalid = 1; 5947 /* Get first available RX antenna as referential. */ 5948 ant = IWN_LSB(sc->rxchainmask); 5949 /* Set differential gains for other antennas. */ 5950 for (i = ant + 1; i < 3; i++) { 5951 if (sc->chainmask & (1 << i)) { 5952 /* The delta is relative to antenna "ant". */ 5953 delta = ((int32_t)calib->noise[ant] - 5954 (int32_t)calib->noise[i]) / div; 5955 /* Limit to [-4.5dB,+4.5dB]. */ 5956 cmd.gain[i - 1] = MIN(abs(delta), 3); 5957 if (delta < 0) 5958 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5959 } 5960 } 5961 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5962 "setting differential gains Ant B/C: %x/%x (%x)\n", 5963 cmd.gain[0], cmd.gain[1], sc->chainmask); 5964 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5965 } 5966 5967 /* 5968 * Tune RF RX sensitivity based on the number of false alarms detected 5969 * during the last beacon period. 5970 */ 5971 static void 5972 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 5973 { 5974 #define inc(val, inc, max) \ 5975 if ((val) < (max)) { \ 5976 if ((val) < (max) - (inc)) \ 5977 (val) += (inc); \ 5978 else \ 5979 (val) = (max); \ 5980 needs_update = 1; \ 5981 } 5982 #define dec(val, dec, min) \ 5983 if ((val) > (min)) { \ 5984 if ((val) > (min) + (dec)) \ 5985 (val) -= (dec); \ 5986 else \ 5987 (val) = (min); \ 5988 needs_update = 1; \ 5989 } 5990 5991 const struct iwn_sensitivity_limits *limits = sc->limits; 5992 struct iwn_calib_state *calib = &sc->calib; 5993 uint32_t val, rxena, fa; 5994 uint32_t energy[3], energy_min; 5995 uint8_t noise[3], noise_ref; 5996 int i, needs_update = 0; 5997 5998 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5999 6000 /* Check that we've been enabled long enough. */ 6001 if ((rxena = le32toh(stats->general.load)) == 0){ 6002 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6003 return; 6004 } 6005 6006 /* Compute number of false alarms since last call for OFDM. */ 6007 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6008 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6009 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6010 6011 if (fa > 50 * rxena) { 6012 /* High false alarm count, decrease sensitivity. */ 6013 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6014 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6015 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6016 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6017 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6018 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6019 6020 } else if (fa < 5 * rxena) { 6021 /* Low false alarm count, increase sensitivity. */ 6022 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6023 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6024 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6025 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6026 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6027 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6028 } 6029 6030 /* Compute maximum noise among 3 receivers. */ 6031 for (i = 0; i < 3; i++) 6032 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6033 val = MAX(noise[0], noise[1]); 6034 val = MAX(noise[2], val); 6035 /* Insert it into our samples table. */ 6036 calib->noise_samples[calib->cur_noise_sample] = val; 6037 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6038 6039 /* Compute maximum noise among last 20 samples. */ 6040 noise_ref = calib->noise_samples[0]; 6041 for (i = 1; i < 20; i++) 6042 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6043 6044 /* Compute maximum energy among 3 receivers. */ 6045 for (i = 0; i < 3; i++) 6046 energy[i] = le32toh(stats->general.energy[i]); 6047 val = MIN(energy[0], energy[1]); 6048 val = MIN(energy[2], val); 6049 /* Insert it into our samples table. */ 6050 calib->energy_samples[calib->cur_energy_sample] = val; 6051 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6052 6053 /* Compute minimum energy among last 10 samples. */ 6054 energy_min = calib->energy_samples[0]; 6055 for (i = 1; i < 10; i++) 6056 energy_min = MAX(energy_min, calib->energy_samples[i]); 6057 energy_min += 6; 6058 6059 /* Compute number of false alarms since last call for CCK. */ 6060 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6061 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6062 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6063 6064 if (fa > 50 * rxena) { 6065 /* High false alarm count, decrease sensitivity. */ 6066 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6067 "%s: CCK high false alarm count: %u\n", __func__, fa); 6068 calib->cck_state = IWN_CCK_STATE_HIFA; 6069 calib->low_fa = 0; 6070 6071 if (calib->cck_x4 > 160) { 6072 calib->noise_ref = noise_ref; 6073 if (calib->energy_cck > 2) 6074 dec(calib->energy_cck, 2, energy_min); 6075 } 6076 if (calib->cck_x4 < 160) { 6077 calib->cck_x4 = 161; 6078 needs_update = 1; 6079 } else 6080 inc(calib->cck_x4, 3, limits->max_cck_x4); 6081 6082 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6083 6084 } else if (fa < 5 * rxena) { 6085 /* Low false alarm count, increase sensitivity. */ 6086 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6087 "%s: CCK low false alarm count: %u\n", __func__, fa); 6088 calib->cck_state = IWN_CCK_STATE_LOFA; 6089 calib->low_fa++; 6090 6091 if (calib->cck_state != IWN_CCK_STATE_INIT && 6092 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6093 calib->low_fa > 100)) { 6094 inc(calib->energy_cck, 2, limits->min_energy_cck); 6095 dec(calib->cck_x4, 3, limits->min_cck_x4); 6096 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6097 } 6098 } else { 6099 /* Not worth to increase or decrease sensitivity. */ 6100 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6101 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6102 calib->low_fa = 0; 6103 calib->noise_ref = noise_ref; 6104 6105 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6106 /* Previous interval had many false alarms. */ 6107 dec(calib->energy_cck, 8, energy_min); 6108 } 6109 calib->cck_state = IWN_CCK_STATE_INIT; 6110 } 6111 6112 if (needs_update) 6113 (void)iwn_send_sensitivity(sc); 6114 6115 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6116 6117 #undef dec 6118 #undef inc 6119 } 6120 6121 static int 6122 iwn_send_sensitivity(struct iwn_softc *sc) 6123 { 6124 struct iwn_calib_state *calib = &sc->calib; 6125 struct iwn_enhanced_sensitivity_cmd cmd; 6126 int len; 6127 6128 memset(&cmd, 0, sizeof cmd); 6129 len = sizeof (struct iwn_sensitivity_cmd); 6130 cmd.which = IWN_SENSITIVITY_WORKTBL; 6131 /* OFDM modulation. */ 6132 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6133 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6134 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6135 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6136 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6137 cmd.energy_ofdm_th = htole16(62); 6138 /* CCK modulation. */ 6139 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6140 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6141 cmd.energy_cck = htole16(calib->energy_cck); 6142 /* Barker modulation: use default values. */ 6143 cmd.corr_barker = htole16(190); 6144 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6145 6146 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6147 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6148 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6149 calib->ofdm_mrc_x4, calib->cck_x4, 6150 calib->cck_mrc_x4, calib->energy_cck); 6151 6152 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6153 goto send; 6154 /* Enhanced sensitivity settings. */ 6155 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6156 cmd.ofdm_det_slope_mrc = htole16(668); 6157 cmd.ofdm_det_icept_mrc = htole16(4); 6158 cmd.ofdm_det_slope = htole16(486); 6159 cmd.ofdm_det_icept = htole16(37); 6160 cmd.cck_det_slope_mrc = htole16(853); 6161 cmd.cck_det_icept_mrc = htole16(4); 6162 cmd.cck_det_slope = htole16(476); 6163 cmd.cck_det_icept = htole16(99); 6164 send: 6165 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6166 } 6167 6168 /* 6169 * Look at the increase of PLCP errors over time; if it exceeds 6170 * a programmed threshold then trigger an RF retune. 6171 */ 6172 static void 6173 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6174 { 6175 int32_t delta_ofdm, delta_ht, delta_cck; 6176 struct iwn_calib_state *calib = &sc->calib; 6177 int delta_ticks, cur_ticks; 6178 int delta_msec; 6179 int thresh; 6180 6181 /* 6182 * Calculate the difference between the current and 6183 * previous statistics. 6184 */ 6185 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6186 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6187 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6188 6189 /* 6190 * Calculate the delta in time between successive statistics 6191 * messages. Yes, it can roll over; so we make sure that 6192 * this doesn't happen. 6193 * 6194 * XXX go figure out what to do about rollover 6195 * XXX go figure out what to do if ticks rolls over to -ve instead! 6196 * XXX go stab signed integer overflow undefined-ness in the face. 6197 */ 6198 cur_ticks = ticks; 6199 delta_ticks = cur_ticks - sc->last_calib_ticks; 6200 6201 /* 6202 * If any are negative, then the firmware likely reset; so just 6203 * bail. We'll pick this up next time. 6204 */ 6205 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6206 return; 6207 6208 /* 6209 * delta_ticks is in ticks; we need to convert it up to milliseconds 6210 * so we can do some useful math with it. 6211 */ 6212 delta_msec = ticks_to_msecs(delta_ticks); 6213 6214 /* 6215 * Calculate what our threshold is given the current delta_msec. 6216 */ 6217 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6218 6219 DPRINTF(sc, IWN_DEBUG_STATE, 6220 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6221 __func__, 6222 delta_msec, 6223 delta_cck, 6224 delta_ofdm, 6225 delta_ht, 6226 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6227 thresh); 6228 6229 /* 6230 * If we need a retune, then schedule a single channel scan 6231 * to a channel that isn't the currently active one! 6232 * 6233 * The math from linux iwlwifi: 6234 * 6235 * if ((delta * 100 / msecs) > threshold) 6236 */ 6237 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6238 DPRINTF(sc, IWN_DEBUG_ANY, 6239 "%s: PLCP error threshold raw (%d) comparison (%d) " 6240 "over limit (%d); retune!\n", 6241 __func__, 6242 (delta_cck + delta_ofdm + delta_ht), 6243 (delta_cck + delta_ofdm + delta_ht) * 100, 6244 thresh); 6245 } 6246 } 6247 6248 /* 6249 * Set STA mode power saving level (between 0 and 5). 6250 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6251 */ 6252 static int 6253 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6254 { 6255 struct iwn_pmgt_cmd cmd; 6256 const struct iwn_pmgt *pmgt; 6257 uint32_t max, skip_dtim; 6258 uint32_t reg; 6259 int i; 6260 6261 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6262 "%s: dtim=%d, level=%d, async=%d\n", 6263 __func__, 6264 dtim, 6265 level, 6266 async); 6267 6268 /* Select which PS parameters to use. */ 6269 if (dtim <= 2) 6270 pmgt = &iwn_pmgt[0][level]; 6271 else if (dtim <= 10) 6272 pmgt = &iwn_pmgt[1][level]; 6273 else 6274 pmgt = &iwn_pmgt[2][level]; 6275 6276 memset(&cmd, 0, sizeof cmd); 6277 if (level != 0) /* not CAM */ 6278 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6279 if (level == 5) 6280 cmd.flags |= htole16(IWN_PS_FAST_PD); 6281 /* Retrieve PCIe Active State Power Management (ASPM). */ 6282 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6283 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6284 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6285 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6286 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6287 6288 if (dtim == 0) { 6289 dtim = 1; 6290 skip_dtim = 0; 6291 } else 6292 skip_dtim = pmgt->skip_dtim; 6293 if (skip_dtim != 0) { 6294 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6295 max = pmgt->intval[4]; 6296 if (max == (uint32_t)-1) 6297 max = dtim * (skip_dtim + 1); 6298 else if (max > dtim) 6299 max = (max / dtim) * dtim; 6300 } else 6301 max = dtim; 6302 for (i = 0; i < 5; i++) 6303 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6304 6305 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6306 level); 6307 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6308 } 6309 6310 static int 6311 iwn_send_btcoex(struct iwn_softc *sc) 6312 { 6313 struct iwn_bluetooth cmd; 6314 6315 memset(&cmd, 0, sizeof cmd); 6316 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6317 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6318 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6319 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6320 __func__); 6321 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6322 } 6323 6324 static int 6325 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6326 { 6327 static const uint32_t btcoex_3wire[12] = { 6328 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6329 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6330 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6331 }; 6332 struct iwn6000_btcoex_config btconfig; 6333 struct iwn2000_btcoex_config btconfig2k; 6334 struct iwn_btcoex_priotable btprio; 6335 struct iwn_btcoex_prot btprot; 6336 int error, i; 6337 uint8_t flags; 6338 6339 memset(&btconfig, 0, sizeof btconfig); 6340 memset(&btconfig2k, 0, sizeof btconfig2k); 6341 6342 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6343 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6344 6345 if (sc->base_params->bt_sco_disable) 6346 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6347 else 6348 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6349 6350 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6351 6352 /* Default flags result is 145 as old value */ 6353 6354 /* 6355 * Flags value has to be review. Values must change if we 6356 * which to disable it 6357 */ 6358 if (sc->base_params->bt_session_2) { 6359 btconfig2k.flags = flags; 6360 btconfig2k.max_kill = 5; 6361 btconfig2k.bt3_t7_timer = 1; 6362 btconfig2k.kill_ack = htole32(0xffff0000); 6363 btconfig2k.kill_cts = htole32(0xffff0000); 6364 btconfig2k.sample_time = 2; 6365 btconfig2k.bt3_t2_timer = 0xc; 6366 6367 for (i = 0; i < 12; i++) 6368 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6369 btconfig2k.valid = htole16(0xff); 6370 btconfig2k.prio_boost = htole32(0xf0); 6371 DPRINTF(sc, IWN_DEBUG_RESET, 6372 "%s: configuring advanced bluetooth coexistence" 6373 " session 2, flags : 0x%x\n", 6374 __func__, 6375 flags); 6376 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6377 sizeof(btconfig2k), 1); 6378 } else { 6379 btconfig.flags = flags; 6380 btconfig.max_kill = 5; 6381 btconfig.bt3_t7_timer = 1; 6382 btconfig.kill_ack = htole32(0xffff0000); 6383 btconfig.kill_cts = htole32(0xffff0000); 6384 btconfig.sample_time = 2; 6385 btconfig.bt3_t2_timer = 0xc; 6386 6387 for (i = 0; i < 12; i++) 6388 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6389 btconfig.valid = htole16(0xff); 6390 btconfig.prio_boost = 0xf0; 6391 DPRINTF(sc, IWN_DEBUG_RESET, 6392 "%s: configuring advanced bluetooth coexistence," 6393 " flags : 0x%x\n", 6394 __func__, 6395 flags); 6396 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6397 sizeof(btconfig), 1); 6398 } 6399 6400 if (error != 0) 6401 return error; 6402 6403 memset(&btprio, 0, sizeof btprio); 6404 btprio.calib_init1 = 0x6; 6405 btprio.calib_init2 = 0x7; 6406 btprio.calib_periodic_low1 = 0x2; 6407 btprio.calib_periodic_low2 = 0x3; 6408 btprio.calib_periodic_high1 = 0x4; 6409 btprio.calib_periodic_high2 = 0x5; 6410 btprio.dtim = 0x6; 6411 btprio.scan52 = 0x8; 6412 btprio.scan24 = 0xa; 6413 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6414 1); 6415 if (error != 0) 6416 return error; 6417 6418 /* Force BT state machine change. */ 6419 memset(&btprot, 0, sizeof btprot); 6420 btprot.open = 1; 6421 btprot.type = 1; 6422 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6423 if (error != 0) 6424 return error; 6425 btprot.open = 0; 6426 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6427 } 6428 6429 static int 6430 iwn5000_runtime_calib(struct iwn_softc *sc) 6431 { 6432 struct iwn5000_calib_config cmd; 6433 6434 memset(&cmd, 0, sizeof cmd); 6435 cmd.ucode.once.enable = 0xffffffff; 6436 cmd.ucode.once.start = IWN5000_CALIB_DC; 6437 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6438 "%s: configuring runtime calibration\n", __func__); 6439 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6440 } 6441 6442 static uint32_t 6443 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) 6444 { 6445 struct ieee80211com *ic = &sc->sc_ic; 6446 uint32_t htflags = 0; 6447 6448 if (! IEEE80211_IS_CHAN_HT(c)) 6449 return (0); 6450 6451 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 6452 6453 if (IEEE80211_IS_CHAN_HT40(c)) { 6454 switch (ic->ic_curhtprotmode) { 6455 case IEEE80211_HTINFO_OPMODE_HT20PR: 6456 htflags |= IWN_RXON_HT_MODEPURE40; 6457 break; 6458 default: 6459 htflags |= IWN_RXON_HT_MODEMIXED; 6460 break; 6461 } 6462 } 6463 if (IEEE80211_IS_CHAN_HT40D(c)) 6464 htflags |= IWN_RXON_HT_HT40MINUS; 6465 6466 return (htflags); 6467 } 6468 6469 static int 6470 iwn_config(struct iwn_softc *sc) 6471 { 6472 struct iwn_ops *ops = &sc->ops; 6473 struct ieee80211com *ic = &sc->sc_ic; 6474 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6475 const uint8_t *macaddr; 6476 uint32_t txmask; 6477 uint16_t rxchain; 6478 int error; 6479 6480 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6481 6482 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6483 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6484 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6485 " exclusive each together. Review NIC config file. Conf" 6486 " : 0x%08x Flags : 0x%08x \n", __func__, 6487 sc->base_params->calib_need, 6488 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6489 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6490 return (EINVAL); 6491 } 6492 6493 /* Compute temperature calib if needed. Will be send by send calib */ 6494 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6495 error = iwn5000_temp_offset_calib(sc); 6496 if (error != 0) { 6497 device_printf(sc->sc_dev, 6498 "%s: could not set temperature offset\n", __func__); 6499 return (error); 6500 } 6501 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6502 error = iwn5000_temp_offset_calibv2(sc); 6503 if (error != 0) { 6504 device_printf(sc->sc_dev, 6505 "%s: could not compute temperature offset v2\n", 6506 __func__); 6507 return (error); 6508 } 6509 } 6510 6511 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6512 /* Configure runtime DC calibration. */ 6513 error = iwn5000_runtime_calib(sc); 6514 if (error != 0) { 6515 device_printf(sc->sc_dev, 6516 "%s: could not configure runtime calibration\n", 6517 __func__); 6518 return error; 6519 } 6520 } 6521 6522 /* Configure valid TX chains for >=5000 Series. */ 6523 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6524 IWN_UCODE_API(sc->ucode_rev) > 1) { 6525 txmask = htole32(sc->txchainmask); 6526 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6527 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6528 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6529 sizeof txmask, 0); 6530 if (error != 0) { 6531 device_printf(sc->sc_dev, 6532 "%s: could not configure valid TX chains, " 6533 "error %d\n", __func__, error); 6534 return error; 6535 } 6536 } 6537 6538 /* Configure bluetooth coexistence. */ 6539 error = 0; 6540 6541 /* Configure bluetooth coexistence if needed. */ 6542 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6543 error = iwn_send_advanced_btcoex(sc); 6544 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6545 error = iwn_send_btcoex(sc); 6546 6547 if (error != 0) { 6548 device_printf(sc->sc_dev, 6549 "%s: could not configure bluetooth coexistence, error %d\n", 6550 __func__, error); 6551 return error; 6552 } 6553 6554 /* Set mode, channel, RX filter and enable RX. */ 6555 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6556 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6557 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6558 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6559 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6560 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6561 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6562 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6563 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6564 switch (ic->ic_opmode) { 6565 case IEEE80211_M_STA: 6566 sc->rxon->mode = IWN_MODE_STA; 6567 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6568 break; 6569 case IEEE80211_M_MONITOR: 6570 sc->rxon->mode = IWN_MODE_MONITOR; 6571 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST | 6572 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 6573 break; 6574 default: 6575 /* Should not get there. */ 6576 break; 6577 } 6578 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6579 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6580 sc->rxon->ht_single_mask = 0xff; 6581 sc->rxon->ht_dual_mask = 0xff; 6582 sc->rxon->ht_triple_mask = 0xff; 6583 /* 6584 * In active association mode, ensure that 6585 * all the receive chains are enabled. 6586 * 6587 * Since we're not yet doing SMPS, don't allow the 6588 * number of idle RX chains to be less than the active 6589 * number. 6590 */ 6591 rxchain = 6592 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6593 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6594 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6595 sc->rxon->rxchain = htole16(rxchain); 6596 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6597 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6598 __func__, 6599 sc->rxchainmask, 6600 sc->nrxchains); 6601 6602 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 6603 6604 DPRINTF(sc, IWN_DEBUG_RESET, 6605 "%s: setting configuration; flags=0x%08x\n", 6606 __func__, le32toh(sc->rxon->flags)); 6607 if (sc->sc_is_scanning) 6608 device_printf(sc->sc_dev, 6609 "%s: is_scanning set, before RXON\n", 6610 __func__); 6611 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0); 6612 if (error != 0) { 6613 device_printf(sc->sc_dev, "%s: RXON command failed\n", 6614 __func__); 6615 return error; 6616 } 6617 6618 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 6619 device_printf(sc->sc_dev, "%s: could not add broadcast node\n", 6620 __func__); 6621 return error; 6622 } 6623 6624 /* Configuration has changed, set TX power accordingly. */ 6625 if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { 6626 device_printf(sc->sc_dev, "%s: could not set TX power\n", 6627 __func__); 6628 return error; 6629 } 6630 6631 if ((error = iwn_set_critical_temp(sc)) != 0) { 6632 device_printf(sc->sc_dev, 6633 "%s: could not set critical temperature\n", __func__); 6634 return error; 6635 } 6636 6637 /* Set power saving level to CAM during initialization. */ 6638 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6639 device_printf(sc->sc_dev, 6640 "%s: could not set power saving level\n", __func__); 6641 return error; 6642 } 6643 6644 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6645 6646 return 0; 6647 } 6648 6649 static uint16_t 6650 iwn_get_active_dwell_time(struct iwn_softc *sc, 6651 struct ieee80211_channel *c, uint8_t n_probes) 6652 { 6653 /* No channel? Default to 2GHz settings */ 6654 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6655 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6656 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6657 } 6658 6659 /* 5GHz dwell time */ 6660 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6661 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6662 } 6663 6664 /* 6665 * Limit the total dwell time to 85% of the beacon interval. 6666 * 6667 * Returns the dwell time in milliseconds. 6668 */ 6669 static uint16_t 6670 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6671 { 6672 struct ieee80211com *ic = &sc->sc_ic; 6673 struct ieee80211vap *vap = NULL; 6674 int bintval = 0; 6675 6676 /* bintval is in TU (1.024mS) */ 6677 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6678 vap = TAILQ_FIRST(&ic->ic_vaps); 6679 bintval = vap->iv_bss->ni_intval; 6680 } 6681 6682 /* 6683 * If it's non-zero, we should calculate the minimum of 6684 * it and the DWELL_BASE. 6685 * 6686 * XXX Yes, the math should take into account that bintval 6687 * is 1.024mS, not 1mS.. 6688 */ 6689 if (bintval > 0) { 6690 DPRINTF(sc, IWN_DEBUG_SCAN, 6691 "%s: bintval=%d\n", 6692 __func__, 6693 bintval); 6694 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6695 } 6696 6697 /* No association context? Default */ 6698 return (IWN_PASSIVE_DWELL_BASE); 6699 } 6700 6701 static uint16_t 6702 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6703 { 6704 uint16_t passive; 6705 6706 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6707 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 6708 } else { 6709 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 6710 } 6711 6712 /* Clamp to the beacon interval if we're associated */ 6713 return (iwn_limit_dwell(sc, passive)); 6714 } 6715 6716 static int 6717 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 6718 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 6719 { 6720 struct ieee80211com *ic = &sc->sc_ic; 6721 struct ieee80211_node *ni = vap->iv_bss; 6722 struct iwn_scan_hdr *hdr; 6723 struct iwn_cmd_data *tx; 6724 struct iwn_scan_essid *essid; 6725 struct iwn_scan_chan *chan; 6726 struct ieee80211_frame *wh; 6727 struct ieee80211_rateset *rs; 6728 uint8_t *buf, *frm; 6729 uint16_t rxchain; 6730 uint8_t txant; 6731 int buflen, error; 6732 int is_active; 6733 uint16_t dwell_active, dwell_passive; 6734 uint32_t extra, scan_service_time; 6735 6736 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6737 6738 /* 6739 * We are absolutely not allowed to send a scan command when another 6740 * scan command is pending. 6741 */ 6742 if (sc->sc_is_scanning) { 6743 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 6744 __func__); 6745 return (EAGAIN); 6746 } 6747 6748 /* Assign the scan channel */ 6749 c = ic->ic_curchan; 6750 6751 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6752 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 6753 if (buf == NULL) { 6754 device_printf(sc->sc_dev, 6755 "%s: could not allocate buffer for scan command\n", 6756 __func__); 6757 return ENOMEM; 6758 } 6759 hdr = (struct iwn_scan_hdr *)buf; 6760 /* 6761 * Move to the next channel if no frames are received within 10ms 6762 * after sending the probe request. 6763 */ 6764 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 6765 hdr->quiet_threshold = htole16(1); /* min # of packets */ 6766 /* 6767 * Max needs to be greater than active and passive and quiet! 6768 * It's also in microseconds! 6769 */ 6770 hdr->max_svc = htole32(250 * 1024); 6771 6772 /* 6773 * Reset scan: interval=100 6774 * Normal scan: interval=becaon interval 6775 * suspend_time: 100 (TU) 6776 * 6777 */ 6778 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 6779 //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 6780 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 6781 hdr->pause_svc = htole32(scan_service_time); 6782 6783 /* Select antennas for scanning. */ 6784 rxchain = 6785 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6786 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 6787 IWN_RXCHAIN_DRIVER_FORCE; 6788 if (IEEE80211_IS_CHAN_A(c) && 6789 sc->hw_type == IWN_HW_REV_TYPE_4965) { 6790 /* Ant A must be avoided in 5GHz because of an HW bug. */ 6791 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 6792 } else /* Use all available RX antennas. */ 6793 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 6794 hdr->rxchain = htole16(rxchain); 6795 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 6796 6797 tx = (struct iwn_cmd_data *)(hdr + 1); 6798 tx->flags = htole32(IWN_TX_AUTO_SEQ); 6799 tx->id = sc->broadcast_id; 6800 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 6801 6802 if (IEEE80211_IS_CHAN_5GHZ(c)) { 6803 /* Send probe requests at 6Mbps. */ 6804 tx->rate = htole32(0xd); 6805 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 6806 } else { 6807 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 6808 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 6809 sc->rxon->associd && sc->rxon->chan > 14) 6810 tx->rate = htole32(0xd); 6811 else { 6812 /* Send probe requests at 1Mbps. */ 6813 tx->rate = htole32(10 | IWN_RFLAG_CCK); 6814 } 6815 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 6816 } 6817 /* Use the first valid TX antenna. */ 6818 txant = IWN_LSB(sc->txchainmask); 6819 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 6820 6821 /* 6822 * Only do active scanning if we're announcing a probe request 6823 * for a given SSID (or more, if we ever add it to the driver.) 6824 */ 6825 is_active = 0; 6826 6827 /* 6828 * If we're scanning for a specific SSID, add it to the command. 6829 * 6830 * XXX maybe look at adding support for scanning multiple SSIDs? 6831 */ 6832 essid = (struct iwn_scan_essid *)(tx + 1); 6833 if (ss != NULL) { 6834 if (ss->ss_ssid[0].len != 0) { 6835 essid[0].id = IEEE80211_ELEMID_SSID; 6836 essid[0].len = ss->ss_ssid[0].len; 6837 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 6838 } 6839 6840 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 6841 __func__, 6842 ss->ss_ssid[0].len, 6843 ss->ss_ssid[0].len, 6844 ss->ss_ssid[0].ssid); 6845 6846 if (ss->ss_nssid > 0) 6847 is_active = 1; 6848 } 6849 6850 /* 6851 * Build a probe request frame. Most of the following code is a 6852 * copy & paste of what is done in net80211. 6853 */ 6854 wh = (struct ieee80211_frame *)(essid + 20); 6855 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 6856 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 6857 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 6858 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); 6859 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); 6860 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); 6861 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 6862 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 6863 6864 frm = (uint8_t *)(wh + 1); 6865 frm = ieee80211_add_ssid(frm, NULL, 0); 6866 frm = ieee80211_add_rates(frm, rs); 6867 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 6868 frm = ieee80211_add_xrates(frm, rs); 6869 if (ic->ic_htcaps & IEEE80211_HTC_HT) 6870 frm = ieee80211_add_htcap(frm, ni); 6871 6872 /* Set length of probe request. */ 6873 tx->len = htole16(frm - (uint8_t *)wh); 6874 6875 /* 6876 * If active scanning is requested but a certain channel is 6877 * marked passive, we can do active scanning if we detect 6878 * transmissions. 6879 * 6880 * There is an issue with some firmware versions that triggers 6881 * a sysassert on a "good CRC threshold" of zero (== disabled), 6882 * on a radar channel even though this means that we should NOT 6883 * send probes. 6884 * 6885 * The "good CRC threshold" is the number of frames that we 6886 * need to receive during our dwell time on a channel before 6887 * sending out probes -- setting this to a huge value will 6888 * mean we never reach it, but at the same time work around 6889 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 6890 * here instead of IWL_GOOD_CRC_TH_DISABLED. 6891 * 6892 * This was fixed in later versions along with some other 6893 * scan changes, and the threshold behaves as a flag in those 6894 * versions. 6895 */ 6896 6897 /* 6898 * If we're doing active scanning, set the crc_threshold 6899 * to a suitable value. This is different to active veruss 6900 * passive scanning depending upon the channel flags; the 6901 * firmware will obey that particular check for us. 6902 */ 6903 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 6904 hdr->crc_threshold = is_active ? 6905 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 6906 else 6907 hdr->crc_threshold = is_active ? 6908 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 6909 6910 chan = (struct iwn_scan_chan *)frm; 6911 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 6912 chan->flags = 0; 6913 if (ss->ss_nssid > 0) 6914 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 6915 chan->dsp_gain = 0x6e; 6916 6917 /* 6918 * Set the passive/active flag depending upon the channel mode. 6919 * XXX TODO: take the is_active flag into account as well? 6920 */ 6921 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 6922 chan->flags |= htole32(IWN_CHAN_PASSIVE); 6923 else 6924 chan->flags |= htole32(IWN_CHAN_ACTIVE); 6925 6926 /* 6927 * Calculate the active/passive dwell times. 6928 */ 6929 6930 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 6931 dwell_passive = iwn_get_passive_dwell_time(sc, c); 6932 6933 /* Make sure they're valid */ 6934 if (dwell_passive <= dwell_active) 6935 dwell_passive = dwell_active + 1; 6936 6937 chan->active = htole16(dwell_active); 6938 chan->passive = htole16(dwell_passive); 6939 6940 if (IEEE80211_IS_CHAN_5GHZ(c)) 6941 chan->rf_gain = 0x3b; 6942 else 6943 chan->rf_gain = 0x28; 6944 6945 DPRINTF(sc, IWN_DEBUG_STATE, 6946 "%s: chan %u flags 0x%x rf_gain 0x%x " 6947 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 6948 "isactive=%d numssid=%d\n", __func__, 6949 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 6950 dwell_active, dwell_passive, scan_service_time, 6951 hdr->crc_threshold, is_active, ss->ss_nssid); 6952 6953 hdr->nchan++; 6954 chan++; 6955 buflen = (uint8_t *)chan - buf; 6956 hdr->len = htole16(buflen); 6957 6958 if (sc->sc_is_scanning) { 6959 device_printf(sc->sc_dev, 6960 "%s: called with is_scanning set!\n", 6961 __func__); 6962 } 6963 sc->sc_is_scanning = 1; 6964 6965 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 6966 hdr->nchan); 6967 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 6968 free(buf, M_DEVBUF); 6969 6970 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6971 6972 return error; 6973 } 6974 6975 static int 6976 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 6977 { 6978 struct iwn_ops *ops = &sc->ops; 6979 struct ieee80211com *ic = &sc->sc_ic; 6980 struct ieee80211_node *ni = vap->iv_bss; 6981 int error; 6982 6983 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6984 6985 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6986 /* Update adapter configuration. */ 6987 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 6988 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 6989 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6990 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 6991 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6992 if (ic->ic_flags & IEEE80211_F_SHSLOT) 6993 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 6994 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 6995 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 6996 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 6997 sc->rxon->cck_mask = 0; 6998 sc->rxon->ofdm_mask = 0x15; 6999 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7000 sc->rxon->cck_mask = 0x03; 7001 sc->rxon->ofdm_mask = 0; 7002 } else { 7003 /* Assume 802.11b/g. */ 7004 sc->rxon->cck_mask = 0x03; 7005 sc->rxon->ofdm_mask = 0x15; 7006 } 7007 7008 /* try HT */ 7009 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 7010 7011 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7012 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7013 sc->rxon->ofdm_mask); 7014 if (sc->sc_is_scanning) 7015 device_printf(sc->sc_dev, 7016 "%s: is_scanning set, before RXON\n", 7017 __func__); 7018 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7019 if (error != 0) { 7020 device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", 7021 __func__, error); 7022 return error; 7023 } 7024 7025 /* Configuration has changed, set TX power accordingly. */ 7026 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7027 device_printf(sc->sc_dev, 7028 "%s: could not set TX power, error %d\n", __func__, error); 7029 return error; 7030 } 7031 /* 7032 * Reconfiguring RXON clears the firmware nodes table so we must 7033 * add the broadcast node again. 7034 */ 7035 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 7036 device_printf(sc->sc_dev, 7037 "%s: could not add broadcast node, error %d\n", __func__, 7038 error); 7039 return error; 7040 } 7041 7042 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7043 7044 return 0; 7045 } 7046 7047 static int 7048 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7049 { 7050 struct iwn_ops *ops = &sc->ops; 7051 struct ieee80211com *ic = &sc->sc_ic; 7052 struct ieee80211_node *ni = vap->iv_bss; 7053 struct iwn_node_info node; 7054 int error; 7055 7056 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7057 7058 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7059 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7060 /* Link LED blinks while monitoring. */ 7061 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7062 return 0; 7063 } 7064 if ((error = iwn_set_timing(sc, ni)) != 0) { 7065 device_printf(sc->sc_dev, 7066 "%s: could not set timing, error %d\n", __func__, error); 7067 return error; 7068 } 7069 7070 /* Update adapter configuration. */ 7071 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7072 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7073 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7074 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7075 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7076 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7077 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7078 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7079 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7080 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7081 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7082 sc->rxon->cck_mask = 0; 7083 sc->rxon->ofdm_mask = 0x15; 7084 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7085 sc->rxon->cck_mask = 0x03; 7086 sc->rxon->ofdm_mask = 0; 7087 } else { 7088 /* Assume 802.11b/g. */ 7089 sc->rxon->cck_mask = 0x0f; 7090 sc->rxon->ofdm_mask = 0x15; 7091 } 7092 /* try HT */ 7093 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); 7094 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7095 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7096 sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); 7097 if (sc->sc_is_scanning) 7098 device_printf(sc->sc_dev, 7099 "%s: is_scanning set, before RXON\n", 7100 __func__); 7101 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7102 if (error != 0) { 7103 device_printf(sc->sc_dev, 7104 "%s: could not update configuration, error %d\n", __func__, 7105 error); 7106 return error; 7107 } 7108 7109 /* Configuration has changed, set TX power accordingly. */ 7110 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7111 device_printf(sc->sc_dev, 7112 "%s: could not set TX power, error %d\n", __func__, error); 7113 return error; 7114 } 7115 7116 /* Fake a join to initialize the TX rate. */ 7117 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7118 iwn_newassoc(ni, 1); 7119 7120 /* Add BSS node. */ 7121 memset(&node, 0, sizeof node); 7122 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7123 node.id = IWN_ID_BSS; 7124 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7125 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7126 case IEEE80211_HTCAP_SMPS_ENA: 7127 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7128 break; 7129 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7130 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7131 break; 7132 } 7133 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7134 IWN_AMDPU_DENSITY(5)); /* 4us */ 7135 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7136 node.htflags |= htole32(IWN_NODE_HT40); 7137 } 7138 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7139 error = ops->add_node(sc, &node, 1); 7140 if (error != 0) { 7141 device_printf(sc->sc_dev, 7142 "%s: could not add BSS node, error %d\n", __func__, error); 7143 return error; 7144 } 7145 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7146 __func__, node.id); 7147 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7148 device_printf(sc->sc_dev, 7149 "%s: could not setup link quality for node %d, error %d\n", 7150 __func__, node.id, error); 7151 return error; 7152 } 7153 7154 if ((error = iwn_init_sensitivity(sc)) != 0) { 7155 device_printf(sc->sc_dev, 7156 "%s: could not set sensitivity, error %d\n", __func__, 7157 error); 7158 return error; 7159 } 7160 /* Start periodic calibration timer. */ 7161 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7162 sc->calib_cnt = 0; 7163 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7164 sc); 7165 7166 /* Link LED always on while associated. */ 7167 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7168 7169 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7170 7171 return 0; 7172 } 7173 7174 /* 7175 * This function is called by upper layer when an ADDBA request is received 7176 * from another STA and before the ADDBA response is sent. 7177 */ 7178 static int 7179 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7180 int baparamset, int batimeout, int baseqctl) 7181 { 7182 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 7183 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7184 struct iwn_ops *ops = &sc->ops; 7185 struct iwn_node *wn = (void *)ni; 7186 struct iwn_node_info node; 7187 uint16_t ssn; 7188 uint8_t tid; 7189 int error; 7190 7191 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7192 7193 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 7194 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 7195 7196 memset(&node, 0, sizeof node); 7197 node.id = wn->id; 7198 node.control = IWN_NODE_UPDATE; 7199 node.flags = IWN_FLAG_SET_ADDBA; 7200 node.addba_tid = tid; 7201 node.addba_ssn = htole16(ssn); 7202 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7203 wn->id, tid, ssn); 7204 error = ops->add_node(sc, &node, 1); 7205 if (error != 0) 7206 return error; 7207 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7208 #undef MS 7209 } 7210 7211 /* 7212 * This function is called by upper layer on teardown of an HT-immediate 7213 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7214 */ 7215 static void 7216 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7217 { 7218 struct ieee80211com *ic = ni->ni_ic; 7219 struct iwn_softc *sc = ic->ic_softc; 7220 struct iwn_ops *ops = &sc->ops; 7221 struct iwn_node *wn = (void *)ni; 7222 struct iwn_node_info node; 7223 uint8_t tid; 7224 7225 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7226 7227 /* XXX: tid as an argument */ 7228 for (tid = 0; tid < WME_NUM_TID; tid++) { 7229 if (&ni->ni_rx_ampdu[tid] == rap) 7230 break; 7231 } 7232 7233 memset(&node, 0, sizeof node); 7234 node.id = wn->id; 7235 node.control = IWN_NODE_UPDATE; 7236 node.flags = IWN_FLAG_SET_DELBA; 7237 node.delba_tid = tid; 7238 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7239 (void)ops->add_node(sc, &node, 1); 7240 sc->sc_ampdu_rx_stop(ni, rap); 7241 } 7242 7243 static int 7244 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7245 int dialogtoken, int baparamset, int batimeout) 7246 { 7247 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7248 int qid; 7249 7250 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7251 7252 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7253 if (sc->qid2tap[qid] == NULL) 7254 break; 7255 } 7256 if (qid == sc->ntxqs) { 7257 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 7258 __func__); 7259 return 0; 7260 } 7261 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7262 if (tap->txa_private == NULL) { 7263 device_printf(sc->sc_dev, 7264 "%s: failed to alloc TX aggregation structure\n", __func__); 7265 return 0; 7266 } 7267 sc->qid2tap[qid] = tap; 7268 *(int *)tap->txa_private = qid; 7269 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7270 batimeout); 7271 } 7272 7273 static int 7274 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7275 int code, int baparamset, int batimeout) 7276 { 7277 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7278 int qid = *(int *)tap->txa_private; 7279 uint8_t tid = tap->txa_tid; 7280 int ret; 7281 7282 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7283 7284 if (code == IEEE80211_STATUS_SUCCESS) { 7285 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7286 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7287 if (ret != 1) 7288 return ret; 7289 } else { 7290 sc->qid2tap[qid] = NULL; 7291 free(tap->txa_private, M_DEVBUF); 7292 tap->txa_private = NULL; 7293 } 7294 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7295 } 7296 7297 /* 7298 * This function is called by upper layer when an ADDBA response is received 7299 * from another STA. 7300 */ 7301 static int 7302 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7303 uint8_t tid) 7304 { 7305 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7306 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7307 struct iwn_ops *ops = &sc->ops; 7308 struct iwn_node *wn = (void *)ni; 7309 struct iwn_node_info node; 7310 int error, qid; 7311 7312 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7313 7314 /* Enable TX for the specified RA/TID. */ 7315 wn->disable_tid &= ~(1 << tid); 7316 memset(&node, 0, sizeof node); 7317 node.id = wn->id; 7318 node.control = IWN_NODE_UPDATE; 7319 node.flags = IWN_FLAG_SET_DISABLE_TID; 7320 node.disable_tid = htole16(wn->disable_tid); 7321 error = ops->add_node(sc, &node, 1); 7322 if (error != 0) 7323 return 0; 7324 7325 if ((error = iwn_nic_lock(sc)) != 0) 7326 return 0; 7327 qid = *(int *)tap->txa_private; 7328 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7329 __func__, wn->id, tid, tap->txa_start, qid); 7330 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7331 iwn_nic_unlock(sc); 7332 7333 iwn_set_link_quality(sc, ni); 7334 return 1; 7335 } 7336 7337 static void 7338 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7339 { 7340 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7341 struct iwn_ops *ops = &sc->ops; 7342 uint8_t tid = tap->txa_tid; 7343 int qid; 7344 7345 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7346 7347 sc->sc_addba_stop(ni, tap); 7348 7349 if (tap->txa_private == NULL) 7350 return; 7351 7352 qid = *(int *)tap->txa_private; 7353 if (sc->txq[qid].queued != 0) 7354 return; 7355 if (iwn_nic_lock(sc) != 0) 7356 return; 7357 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7358 iwn_nic_unlock(sc); 7359 sc->qid2tap[qid] = NULL; 7360 free(tap->txa_private, M_DEVBUF); 7361 tap->txa_private = NULL; 7362 } 7363 7364 static void 7365 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7366 int qid, uint8_t tid, uint16_t ssn) 7367 { 7368 struct iwn_node *wn = (void *)ni; 7369 7370 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7371 7372 /* Stop TX scheduler while we're changing its configuration. */ 7373 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7374 IWN4965_TXQ_STATUS_CHGACT); 7375 7376 /* Assign RA/TID translation to the queue. */ 7377 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7378 wn->id << 4 | tid); 7379 7380 /* Enable chain-building mode for the queue. */ 7381 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7382 7383 /* Set starting sequence number from the ADDBA request. */ 7384 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7385 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7386 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7387 7388 /* Set scheduler window size. */ 7389 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7390 IWN_SCHED_WINSZ); 7391 /* Set scheduler frame limit. */ 7392 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7393 IWN_SCHED_LIMIT << 16); 7394 7395 /* Enable interrupts for the queue. */ 7396 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7397 7398 /* Mark the queue as active. */ 7399 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7400 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7401 iwn_tid2fifo[tid] << 1); 7402 } 7403 7404 static void 7405 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7406 { 7407 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7408 7409 /* Stop TX scheduler while we're changing its configuration. */ 7410 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7411 IWN4965_TXQ_STATUS_CHGACT); 7412 7413 /* Set starting sequence number from the ADDBA request. */ 7414 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7415 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7416 7417 /* Disable interrupts for the queue. */ 7418 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7419 7420 /* Mark the queue as inactive. */ 7421 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7422 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7423 } 7424 7425 static void 7426 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7427 int qid, uint8_t tid, uint16_t ssn) 7428 { 7429 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7430 7431 struct iwn_node *wn = (void *)ni; 7432 7433 /* Stop TX scheduler while we're changing its configuration. */ 7434 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7435 IWN5000_TXQ_STATUS_CHGACT); 7436 7437 /* Assign RA/TID translation to the queue. */ 7438 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7439 wn->id << 4 | tid); 7440 7441 /* Enable chain-building mode for the queue. */ 7442 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7443 7444 /* Enable aggregation for the queue. */ 7445 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7446 7447 /* Set starting sequence number from the ADDBA request. */ 7448 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7449 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7450 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7451 7452 /* Set scheduler window size and frame limit. */ 7453 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7454 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7455 7456 /* Enable interrupts for the queue. */ 7457 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7458 7459 /* Mark the queue as active. */ 7460 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7461 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7462 } 7463 7464 static void 7465 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7466 { 7467 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7468 7469 /* Stop TX scheduler while we're changing its configuration. */ 7470 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7471 IWN5000_TXQ_STATUS_CHGACT); 7472 7473 /* Disable aggregation for the queue. */ 7474 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7475 7476 /* Set starting sequence number from the ADDBA request. */ 7477 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7478 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7479 7480 /* Disable interrupts for the queue. */ 7481 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7482 7483 /* Mark the queue as inactive. */ 7484 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7485 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7486 } 7487 7488 /* 7489 * Query calibration tables from the initialization firmware. We do this 7490 * only once at first boot. Called from a process context. 7491 */ 7492 static int 7493 iwn5000_query_calibration(struct iwn_softc *sc) 7494 { 7495 struct iwn5000_calib_config cmd; 7496 int error; 7497 7498 memset(&cmd, 0, sizeof cmd); 7499 cmd.ucode.once.enable = htole32(0xffffffff); 7500 cmd.ucode.once.start = htole32(0xffffffff); 7501 cmd.ucode.once.send = htole32(0xffffffff); 7502 cmd.ucode.flags = htole32(0xffffffff); 7503 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7504 __func__); 7505 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7506 if (error != 0) 7507 return error; 7508 7509 /* Wait at most two seconds for calibration to complete. */ 7510 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7511 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7512 return error; 7513 } 7514 7515 /* 7516 * Send calibration results to the runtime firmware. These results were 7517 * obtained on first boot from the initialization firmware. 7518 */ 7519 static int 7520 iwn5000_send_calibration(struct iwn_softc *sc) 7521 { 7522 int idx, error; 7523 7524 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7525 if (!(sc->base_params->calib_need & (1<<idx))) { 7526 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7527 "No need of calib %d\n", 7528 idx); 7529 continue; /* no need for this calib */ 7530 } 7531 if (sc->calibcmd[idx].buf == NULL) { 7532 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7533 "Need calib idx : %d but no available data\n", 7534 idx); 7535 continue; 7536 } 7537 7538 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7539 "send calibration result idx=%d len=%d\n", idx, 7540 sc->calibcmd[idx].len); 7541 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7542 sc->calibcmd[idx].len, 0); 7543 if (error != 0) { 7544 device_printf(sc->sc_dev, 7545 "%s: could not send calibration result, error %d\n", 7546 __func__, error); 7547 return error; 7548 } 7549 } 7550 return 0; 7551 } 7552 7553 static int 7554 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7555 { 7556 struct iwn5000_wimax_coex wimax; 7557 7558 #if 0 7559 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7560 /* Enable WiMAX coexistence for combo adapters. */ 7561 wimax.flags = 7562 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7563 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7564 IWN_WIMAX_COEX_STA_TABLE_VALID | 7565 IWN_WIMAX_COEX_ENABLE; 7566 memcpy(wimax.events, iwn6050_wimax_events, 7567 sizeof iwn6050_wimax_events); 7568 } else 7569 #endif 7570 { 7571 /* Disable WiMAX coexistence. */ 7572 wimax.flags = 0; 7573 memset(wimax.events, 0, sizeof wimax.events); 7574 } 7575 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7576 __func__); 7577 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7578 } 7579 7580 static int 7581 iwn5000_crystal_calib(struct iwn_softc *sc) 7582 { 7583 struct iwn5000_phy_calib_crystal cmd; 7584 7585 memset(&cmd, 0, sizeof cmd); 7586 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7587 cmd.ngroups = 1; 7588 cmd.isvalid = 1; 7589 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7590 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7591 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7592 cmd.cap_pin[0], cmd.cap_pin[1]); 7593 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7594 } 7595 7596 static int 7597 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7598 { 7599 struct iwn5000_phy_calib_temp_offset cmd; 7600 7601 memset(&cmd, 0, sizeof cmd); 7602 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7603 cmd.ngroups = 1; 7604 cmd.isvalid = 1; 7605 if (sc->eeprom_temp != 0) 7606 cmd.offset = htole16(sc->eeprom_temp); 7607 else 7608 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7609 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7610 le16toh(cmd.offset)); 7611 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7612 } 7613 7614 static int 7615 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7616 { 7617 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7618 7619 memset(&cmd, 0, sizeof cmd); 7620 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7621 cmd.ngroups = 1; 7622 cmd.isvalid = 1; 7623 if (sc->eeprom_temp != 0) { 7624 cmd.offset_low = htole16(sc->eeprom_temp); 7625 cmd.offset_high = htole16(sc->eeprom_temp_high); 7626 } else { 7627 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7628 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7629 } 7630 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7631 7632 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7633 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7634 le16toh(cmd.offset_low), 7635 le16toh(cmd.offset_high), 7636 le16toh(cmd.burnt_voltage_ref)); 7637 7638 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7639 } 7640 7641 /* 7642 * This function is called after the runtime firmware notifies us of its 7643 * readiness (called in a process context). 7644 */ 7645 static int 7646 iwn4965_post_alive(struct iwn_softc *sc) 7647 { 7648 int error, qid; 7649 7650 if ((error = iwn_nic_lock(sc)) != 0) 7651 return error; 7652 7653 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7654 7655 /* Clear TX scheduler state in SRAM. */ 7656 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7657 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7658 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7659 7660 /* Set physical address of TX scheduler rings (1KB aligned). */ 7661 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7662 7663 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7664 7665 /* Disable chain mode for all our 16 queues. */ 7666 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7667 7668 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7669 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7670 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7671 7672 /* Set scheduler window size. */ 7673 iwn_mem_write(sc, sc->sched_base + 7674 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7675 /* Set scheduler frame limit. */ 7676 iwn_mem_write(sc, sc->sched_base + 7677 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7678 IWN_SCHED_LIMIT << 16); 7679 } 7680 7681 /* Enable interrupts for all our 16 queues. */ 7682 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7683 /* Identify TX FIFO rings (0-7). */ 7684 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7685 7686 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7687 for (qid = 0; qid < 7; qid++) { 7688 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7689 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7690 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7691 } 7692 iwn_nic_unlock(sc); 7693 return 0; 7694 } 7695 7696 /* 7697 * This function is called after the initialization or runtime firmware 7698 * notifies us of its readiness (called in a process context). 7699 */ 7700 static int 7701 iwn5000_post_alive(struct iwn_softc *sc) 7702 { 7703 int error, qid; 7704 7705 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7706 7707 /* Switch to using ICT interrupt mode. */ 7708 iwn5000_ict_reset(sc); 7709 7710 if ((error = iwn_nic_lock(sc)) != 0){ 7711 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7712 return error; 7713 } 7714 7715 /* Clear TX scheduler state in SRAM. */ 7716 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7717 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7718 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 7719 7720 /* Set physical address of TX scheduler rings (1KB aligned). */ 7721 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7722 7723 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7724 7725 /* Enable chain mode for all queues, except command queue. */ 7726 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 7727 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 7728 else 7729 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 7730 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 7731 7732 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 7733 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 7734 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7735 7736 iwn_mem_write(sc, sc->sched_base + 7737 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 7738 /* Set scheduler window size and frame limit. */ 7739 iwn_mem_write(sc, sc->sched_base + 7740 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7741 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7742 } 7743 7744 /* Enable interrupts for all our 20 queues. */ 7745 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 7746 /* Identify TX FIFO rings (0-7). */ 7747 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 7748 7749 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7750 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 7751 /* Mark TX rings as active. */ 7752 for (qid = 0; qid < 11; qid++) { 7753 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 7754 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7755 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7756 } 7757 } else { 7758 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7759 for (qid = 0; qid < 7; qid++) { 7760 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 7761 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7762 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7763 } 7764 } 7765 iwn_nic_unlock(sc); 7766 7767 /* Configure WiMAX coexistence for combo adapters. */ 7768 error = iwn5000_send_wimax_coex(sc); 7769 if (error != 0) { 7770 device_printf(sc->sc_dev, 7771 "%s: could not configure WiMAX coexistence, error %d\n", 7772 __func__, error); 7773 return error; 7774 } 7775 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 7776 /* Perform crystal calibration. */ 7777 error = iwn5000_crystal_calib(sc); 7778 if (error != 0) { 7779 device_printf(sc->sc_dev, 7780 "%s: crystal calibration failed, error %d\n", 7781 __func__, error); 7782 return error; 7783 } 7784 } 7785 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 7786 /* Query calibration from the initialization firmware. */ 7787 if ((error = iwn5000_query_calibration(sc)) != 0) { 7788 device_printf(sc->sc_dev, 7789 "%s: could not query calibration, error %d\n", 7790 __func__, error); 7791 return error; 7792 } 7793 /* 7794 * We have the calibration results now, reboot with the 7795 * runtime firmware (call ourselves recursively!) 7796 */ 7797 iwn_hw_stop(sc); 7798 error = iwn_hw_init(sc); 7799 } else { 7800 /* Send calibration results to runtime firmware. */ 7801 error = iwn5000_send_calibration(sc); 7802 } 7803 7804 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7805 7806 return error; 7807 } 7808 7809 /* 7810 * The firmware boot code is small and is intended to be copied directly into 7811 * the NIC internal memory (no DMA transfer). 7812 */ 7813 static int 7814 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 7815 { 7816 int error, ntries; 7817 7818 size /= sizeof (uint32_t); 7819 7820 if ((error = iwn_nic_lock(sc)) != 0) 7821 return error; 7822 7823 /* Copy microcode image into NIC memory. */ 7824 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 7825 (const uint32_t *)ucode, size); 7826 7827 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 7828 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 7829 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 7830 7831 /* Start boot load now. */ 7832 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 7833 7834 /* Wait for transfer to complete. */ 7835 for (ntries = 0; ntries < 1000; ntries++) { 7836 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 7837 IWN_BSM_WR_CTRL_START)) 7838 break; 7839 DELAY(10); 7840 } 7841 if (ntries == 1000) { 7842 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7843 __func__); 7844 iwn_nic_unlock(sc); 7845 return ETIMEDOUT; 7846 } 7847 7848 /* Enable boot after power up. */ 7849 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 7850 7851 iwn_nic_unlock(sc); 7852 return 0; 7853 } 7854 7855 static int 7856 iwn4965_load_firmware(struct iwn_softc *sc) 7857 { 7858 struct iwn_fw_info *fw = &sc->fw; 7859 struct iwn_dma_info *dma = &sc->fw_dma; 7860 int error; 7861 7862 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 7863 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 7864 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7865 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7866 fw->init.text, fw->init.textsz); 7867 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7868 7869 /* Tell adapter where to find initialization sections. */ 7870 if ((error = iwn_nic_lock(sc)) != 0) 7871 return error; 7872 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7873 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 7874 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7875 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7876 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 7877 iwn_nic_unlock(sc); 7878 7879 /* Load firmware boot code. */ 7880 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 7881 if (error != 0) { 7882 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7883 __func__); 7884 return error; 7885 } 7886 /* Now press "execute". */ 7887 IWN_WRITE(sc, IWN_RESET, 0); 7888 7889 /* Wait at most one second for first alive notification. */ 7890 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 7891 device_printf(sc->sc_dev, 7892 "%s: timeout waiting for adapter to initialize, error %d\n", 7893 __func__, error); 7894 return error; 7895 } 7896 7897 /* Retrieve current temperature for initial TX power calibration. */ 7898 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 7899 sc->temp = iwn4965_get_temperature(sc); 7900 7901 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 7902 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 7903 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7904 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7905 fw->main.text, fw->main.textsz); 7906 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7907 7908 /* Tell adapter where to find runtime sections. */ 7909 if ((error = iwn_nic_lock(sc)) != 0) 7910 return error; 7911 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7912 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 7913 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7914 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7915 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 7916 IWN_FW_UPDATED | fw->main.textsz); 7917 iwn_nic_unlock(sc); 7918 7919 return 0; 7920 } 7921 7922 static int 7923 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 7924 const uint8_t *section, int size) 7925 { 7926 struct iwn_dma_info *dma = &sc->fw_dma; 7927 int error; 7928 7929 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7930 7931 /* Copy firmware section into pre-allocated DMA-safe memory. */ 7932 memcpy(dma->vaddr, section, size); 7933 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7934 7935 if ((error = iwn_nic_lock(sc)) != 0) 7936 return error; 7937 7938 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7939 IWN_FH_TX_CONFIG_DMA_PAUSE); 7940 7941 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 7942 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 7943 IWN_LOADDR(dma->paddr)); 7944 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 7945 IWN_HIADDR(dma->paddr) << 28 | size); 7946 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 7947 IWN_FH_TXBUF_STATUS_TBNUM(1) | 7948 IWN_FH_TXBUF_STATUS_TBIDX(1) | 7949 IWN_FH_TXBUF_STATUS_TFBD_VALID); 7950 7951 /* Kick Flow Handler to start DMA transfer. */ 7952 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7953 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 7954 7955 iwn_nic_unlock(sc); 7956 7957 /* Wait at most five seconds for FH DMA transfer to complete. */ 7958 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 7959 } 7960 7961 static int 7962 iwn5000_load_firmware(struct iwn_softc *sc) 7963 { 7964 struct iwn_fw_part *fw; 7965 int error; 7966 7967 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7968 7969 /* Load the initialization firmware on first boot only. */ 7970 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 7971 &sc->fw.main : &sc->fw.init; 7972 7973 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 7974 fw->text, fw->textsz); 7975 if (error != 0) { 7976 device_printf(sc->sc_dev, 7977 "%s: could not load firmware %s section, error %d\n", 7978 __func__, ".text", error); 7979 return error; 7980 } 7981 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 7982 fw->data, fw->datasz); 7983 if (error != 0) { 7984 device_printf(sc->sc_dev, 7985 "%s: could not load firmware %s section, error %d\n", 7986 __func__, ".data", error); 7987 return error; 7988 } 7989 7990 /* Now press "execute". */ 7991 IWN_WRITE(sc, IWN_RESET, 0); 7992 return 0; 7993 } 7994 7995 /* 7996 * Extract text and data sections from a legacy firmware image. 7997 */ 7998 static int 7999 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8000 { 8001 const uint32_t *ptr; 8002 size_t hdrlen = 24; 8003 uint32_t rev; 8004 8005 ptr = (const uint32_t *)fw->data; 8006 rev = le32toh(*ptr++); 8007 8008 sc->ucode_rev = rev; 8009 8010 /* Check firmware API version. */ 8011 if (IWN_FW_API(rev) <= 1) { 8012 device_printf(sc->sc_dev, 8013 "%s: bad firmware, need API version >=2\n", __func__); 8014 return EINVAL; 8015 } 8016 if (IWN_FW_API(rev) >= 3) { 8017 /* Skip build number (version 2 header). */ 8018 hdrlen += 4; 8019 ptr++; 8020 } 8021 if (fw->size < hdrlen) { 8022 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8023 __func__, fw->size); 8024 return EINVAL; 8025 } 8026 fw->main.textsz = le32toh(*ptr++); 8027 fw->main.datasz = le32toh(*ptr++); 8028 fw->init.textsz = le32toh(*ptr++); 8029 fw->init.datasz = le32toh(*ptr++); 8030 fw->boot.textsz = le32toh(*ptr++); 8031 8032 /* Check that all firmware sections fit. */ 8033 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8034 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8035 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8036 __func__, fw->size); 8037 return EINVAL; 8038 } 8039 8040 /* Get pointers to firmware sections. */ 8041 fw->main.text = (const uint8_t *)ptr; 8042 fw->main.data = fw->main.text + fw->main.textsz; 8043 fw->init.text = fw->main.data + fw->main.datasz; 8044 fw->init.data = fw->init.text + fw->init.textsz; 8045 fw->boot.text = fw->init.data + fw->init.datasz; 8046 return 0; 8047 } 8048 8049 /* 8050 * Extract text and data sections from a TLV firmware image. 8051 */ 8052 static int 8053 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8054 uint16_t alt) 8055 { 8056 const struct iwn_fw_tlv_hdr *hdr; 8057 const struct iwn_fw_tlv *tlv; 8058 const uint8_t *ptr, *end; 8059 uint64_t altmask; 8060 uint32_t len, tmp; 8061 8062 if (fw->size < sizeof (*hdr)) { 8063 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8064 __func__, fw->size); 8065 return EINVAL; 8066 } 8067 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8068 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8069 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8070 __func__, le32toh(hdr->signature)); 8071 return EINVAL; 8072 } 8073 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8074 le32toh(hdr->build)); 8075 sc->ucode_rev = le32toh(hdr->rev); 8076 8077 /* 8078 * Select the closest supported alternative that is less than 8079 * or equal to the specified one. 8080 */ 8081 altmask = le64toh(hdr->altmask); 8082 while (alt > 0 && !(altmask & (1ULL << alt))) 8083 alt--; /* Downgrade. */ 8084 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8085 8086 ptr = (const uint8_t *)(hdr + 1); 8087 end = (const uint8_t *)(fw->data + fw->size); 8088 8089 /* Parse type-length-value fields. */ 8090 while (ptr + sizeof (*tlv) <= end) { 8091 tlv = (const struct iwn_fw_tlv *)ptr; 8092 len = le32toh(tlv->len); 8093 8094 ptr += sizeof (*tlv); 8095 if (ptr + len > end) { 8096 device_printf(sc->sc_dev, 8097 "%s: firmware too short: %zu bytes\n", __func__, 8098 fw->size); 8099 return EINVAL; 8100 } 8101 /* Skip other alternatives. */ 8102 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8103 goto next; 8104 8105 switch (le16toh(tlv->type)) { 8106 case IWN_FW_TLV_MAIN_TEXT: 8107 fw->main.text = ptr; 8108 fw->main.textsz = len; 8109 break; 8110 case IWN_FW_TLV_MAIN_DATA: 8111 fw->main.data = ptr; 8112 fw->main.datasz = len; 8113 break; 8114 case IWN_FW_TLV_INIT_TEXT: 8115 fw->init.text = ptr; 8116 fw->init.textsz = len; 8117 break; 8118 case IWN_FW_TLV_INIT_DATA: 8119 fw->init.data = ptr; 8120 fw->init.datasz = len; 8121 break; 8122 case IWN_FW_TLV_BOOT_TEXT: 8123 fw->boot.text = ptr; 8124 fw->boot.textsz = len; 8125 break; 8126 case IWN_FW_TLV_ENH_SENS: 8127 if (!len) 8128 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8129 break; 8130 case IWN_FW_TLV_PHY_CALIB: 8131 tmp = le32toh(*ptr); 8132 if (tmp < 253) { 8133 sc->reset_noise_gain = tmp; 8134 sc->noise_gain = tmp + 1; 8135 } 8136 break; 8137 case IWN_FW_TLV_PAN: 8138 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8139 DPRINTF(sc, IWN_DEBUG_RESET, 8140 "PAN Support found: %d\n", 1); 8141 break; 8142 case IWN_FW_TLV_FLAGS: 8143 if (len < sizeof(uint32_t)) 8144 break; 8145 if (len % sizeof(uint32_t)) 8146 break; 8147 sc->tlv_feature_flags = le32toh(*ptr); 8148 DPRINTF(sc, IWN_DEBUG_RESET, 8149 "%s: feature: 0x%08x\n", 8150 __func__, 8151 sc->tlv_feature_flags); 8152 break; 8153 case IWN_FW_TLV_PBREQ_MAXLEN: 8154 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8155 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8156 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8157 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8158 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8159 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8160 case IWN_FW_TLV_WOWLAN_INST: 8161 case IWN_FW_TLV_WOWLAN_DATA: 8162 DPRINTF(sc, IWN_DEBUG_RESET, 8163 "TLV type %d recognized but not handled\n", 8164 le16toh(tlv->type)); 8165 break; 8166 default: 8167 DPRINTF(sc, IWN_DEBUG_RESET, 8168 "TLV type %d not handled\n", le16toh(tlv->type)); 8169 break; 8170 } 8171 next: /* TLV fields are 32-bit aligned. */ 8172 ptr += (len + 3) & ~3; 8173 } 8174 return 0; 8175 } 8176 8177 static int 8178 iwn_read_firmware(struct iwn_softc *sc) 8179 { 8180 struct iwn_fw_info *fw = &sc->fw; 8181 int error; 8182 8183 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8184 8185 IWN_UNLOCK(sc); 8186 8187 memset(fw, 0, sizeof (*fw)); 8188 8189 /* Read firmware image from filesystem. */ 8190 sc->fw_fp = firmware_get(sc->fwname); 8191 if (sc->fw_fp == NULL) { 8192 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8193 __func__, sc->fwname); 8194 IWN_LOCK(sc); 8195 return EINVAL; 8196 } 8197 IWN_LOCK(sc); 8198 8199 fw->size = sc->fw_fp->datasize; 8200 fw->data = (const uint8_t *)sc->fw_fp->data; 8201 if (fw->size < sizeof (uint32_t)) { 8202 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8203 __func__, fw->size); 8204 error = EINVAL; 8205 goto fail; 8206 } 8207 8208 /* Retrieve text and data sections. */ 8209 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8210 error = iwn_read_firmware_leg(sc, fw); 8211 else 8212 error = iwn_read_firmware_tlv(sc, fw, 1); 8213 if (error != 0) { 8214 device_printf(sc->sc_dev, 8215 "%s: could not read firmware sections, error %d\n", 8216 __func__, error); 8217 goto fail; 8218 } 8219 8220 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8221 8222 /* Make sure text and data sections fit in hardware memory. */ 8223 if (fw->main.textsz > sc->fw_text_maxsz || 8224 fw->main.datasz > sc->fw_data_maxsz || 8225 fw->init.textsz > sc->fw_text_maxsz || 8226 fw->init.datasz > sc->fw_data_maxsz || 8227 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8228 (fw->boot.textsz & 3) != 0) { 8229 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8230 __func__); 8231 error = EINVAL; 8232 goto fail; 8233 } 8234 8235 /* We can proceed with loading the firmware. */ 8236 return 0; 8237 8238 fail: iwn_unload_firmware(sc); 8239 return error; 8240 } 8241 8242 static void 8243 iwn_unload_firmware(struct iwn_softc *sc) 8244 { 8245 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8246 sc->fw_fp = NULL; 8247 } 8248 8249 static int 8250 iwn_clock_wait(struct iwn_softc *sc) 8251 { 8252 int ntries; 8253 8254 /* Set "initialization complete" bit. */ 8255 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8256 8257 /* Wait for clock stabilization. */ 8258 for (ntries = 0; ntries < 2500; ntries++) { 8259 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8260 return 0; 8261 DELAY(10); 8262 } 8263 device_printf(sc->sc_dev, 8264 "%s: timeout waiting for clock stabilization\n", __func__); 8265 return ETIMEDOUT; 8266 } 8267 8268 static int 8269 iwn_apm_init(struct iwn_softc *sc) 8270 { 8271 uint32_t reg; 8272 int error; 8273 8274 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8275 8276 /* Disable L0s exit timer (NMI bug workaround). */ 8277 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8278 /* Don't wait for ICH L0s (ICH bug workaround). */ 8279 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8280 8281 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8282 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8283 8284 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8285 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8286 8287 /* Retrieve PCIe Active State Power Management (ASPM). */ 8288 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8289 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8290 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8291 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8292 else 8293 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8294 8295 if (sc->base_params->pll_cfg_val) 8296 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8297 8298 /* Wait for clock stabilization before accessing prph. */ 8299 if ((error = iwn_clock_wait(sc)) != 0) 8300 return error; 8301 8302 if ((error = iwn_nic_lock(sc)) != 0) 8303 return error; 8304 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8305 /* Enable DMA and BSM (Bootstrap State Machine). */ 8306 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8307 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8308 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8309 } else { 8310 /* Enable DMA. */ 8311 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8312 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8313 } 8314 DELAY(20); 8315 /* Disable L1-Active. */ 8316 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8317 iwn_nic_unlock(sc); 8318 8319 return 0; 8320 } 8321 8322 static void 8323 iwn_apm_stop_master(struct iwn_softc *sc) 8324 { 8325 int ntries; 8326 8327 /* Stop busmaster DMA activity. */ 8328 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8329 for (ntries = 0; ntries < 100; ntries++) { 8330 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8331 return; 8332 DELAY(10); 8333 } 8334 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8335 } 8336 8337 static void 8338 iwn_apm_stop(struct iwn_softc *sc) 8339 { 8340 iwn_apm_stop_master(sc); 8341 8342 /* Reset the entire device. */ 8343 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8344 DELAY(10); 8345 /* Clear "initialization complete" bit. */ 8346 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8347 } 8348 8349 static int 8350 iwn4965_nic_config(struct iwn_softc *sc) 8351 { 8352 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8353 8354 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8355 /* 8356 * I don't believe this to be correct but this is what the 8357 * vendor driver is doing. Probably the bits should not be 8358 * shifted in IWN_RFCFG_*. 8359 */ 8360 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8361 IWN_RFCFG_TYPE(sc->rfcfg) | 8362 IWN_RFCFG_STEP(sc->rfcfg) | 8363 IWN_RFCFG_DASH(sc->rfcfg)); 8364 } 8365 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8366 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8367 return 0; 8368 } 8369 8370 static int 8371 iwn5000_nic_config(struct iwn_softc *sc) 8372 { 8373 uint32_t tmp; 8374 int error; 8375 8376 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8377 8378 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8379 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8380 IWN_RFCFG_TYPE(sc->rfcfg) | 8381 IWN_RFCFG_STEP(sc->rfcfg) | 8382 IWN_RFCFG_DASH(sc->rfcfg)); 8383 } 8384 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8385 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8386 8387 if ((error = iwn_nic_lock(sc)) != 0) 8388 return error; 8389 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8390 8391 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8392 /* 8393 * Select first Switching Voltage Regulator (1.32V) to 8394 * solve a stability issue related to noisy DC2DC line 8395 * in the silicon of 1000 Series. 8396 */ 8397 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8398 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8399 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8400 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8401 } 8402 iwn_nic_unlock(sc); 8403 8404 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8405 /* Use internal power amplifier only. */ 8406 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8407 } 8408 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8409 /* Indicate that ROM calibration version is >=6. */ 8410 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8411 } 8412 if (sc->base_params->additional_gp_drv_bit) 8413 IWN_SETBITS(sc, IWN_GP_DRIVER, 8414 sc->base_params->additional_gp_drv_bit); 8415 return 0; 8416 } 8417 8418 /* 8419 * Take NIC ownership over Intel Active Management Technology (AMT). 8420 */ 8421 static int 8422 iwn_hw_prepare(struct iwn_softc *sc) 8423 { 8424 int ntries; 8425 8426 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8427 8428 /* Check if hardware is ready. */ 8429 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8430 for (ntries = 0; ntries < 5; ntries++) { 8431 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8432 IWN_HW_IF_CONFIG_NIC_READY) 8433 return 0; 8434 DELAY(10); 8435 } 8436 8437 /* Hardware not ready, force into ready state. */ 8438 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8439 for (ntries = 0; ntries < 15000; ntries++) { 8440 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8441 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8442 break; 8443 DELAY(10); 8444 } 8445 if (ntries == 15000) 8446 return ETIMEDOUT; 8447 8448 /* Hardware should be ready now. */ 8449 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8450 for (ntries = 0; ntries < 5; ntries++) { 8451 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8452 IWN_HW_IF_CONFIG_NIC_READY) 8453 return 0; 8454 DELAY(10); 8455 } 8456 return ETIMEDOUT; 8457 } 8458 8459 static int 8460 iwn_hw_init(struct iwn_softc *sc) 8461 { 8462 struct iwn_ops *ops = &sc->ops; 8463 int error, chnl, qid; 8464 8465 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8466 8467 /* Clear pending interrupts. */ 8468 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8469 8470 if ((error = iwn_apm_init(sc)) != 0) { 8471 device_printf(sc->sc_dev, 8472 "%s: could not power ON adapter, error %d\n", __func__, 8473 error); 8474 return error; 8475 } 8476 8477 /* Select VMAIN power source. */ 8478 if ((error = iwn_nic_lock(sc)) != 0) 8479 return error; 8480 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8481 iwn_nic_unlock(sc); 8482 8483 /* Perform adapter-specific initialization. */ 8484 if ((error = ops->nic_config(sc)) != 0) 8485 return error; 8486 8487 /* Initialize RX ring. */ 8488 if ((error = iwn_nic_lock(sc)) != 0) 8489 return error; 8490 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8491 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8492 /* Set physical address of RX ring (256-byte aligned). */ 8493 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8494 /* Set physical address of RX status (16-byte aligned). */ 8495 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8496 /* Enable RX. */ 8497 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8498 IWN_FH_RX_CONFIG_ENA | 8499 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8500 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8501 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8502 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8503 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8504 iwn_nic_unlock(sc); 8505 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8506 8507 if ((error = iwn_nic_lock(sc)) != 0) 8508 return error; 8509 8510 /* Initialize TX scheduler. */ 8511 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8512 8513 /* Set physical address of "keep warm" page (16-byte aligned). */ 8514 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8515 8516 /* Initialize TX rings. */ 8517 for (qid = 0; qid < sc->ntxqs; qid++) { 8518 struct iwn_tx_ring *txq = &sc->txq[qid]; 8519 8520 /* Set physical address of TX ring (256-byte aligned). */ 8521 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8522 txq->desc_dma.paddr >> 8); 8523 } 8524 iwn_nic_unlock(sc); 8525 8526 /* Enable DMA channels. */ 8527 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8528 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8529 IWN_FH_TX_CONFIG_DMA_ENA | 8530 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8531 } 8532 8533 /* Clear "radio off" and "commands blocked" bits. */ 8534 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8535 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8536 8537 /* Clear pending interrupts. */ 8538 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8539 /* Enable interrupt coalescing. */ 8540 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8541 /* Enable interrupts. */ 8542 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8543 8544 /* _Really_ make sure "radio off" bit is cleared! */ 8545 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8546 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8547 8548 /* Enable shadow registers. */ 8549 if (sc->base_params->shadow_reg_enable) 8550 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8551 8552 if ((error = ops->load_firmware(sc)) != 0) { 8553 device_printf(sc->sc_dev, 8554 "%s: could not load firmware, error %d\n", __func__, 8555 error); 8556 return error; 8557 } 8558 /* Wait at most one second for firmware alive notification. */ 8559 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8560 device_printf(sc->sc_dev, 8561 "%s: timeout waiting for adapter to initialize, error %d\n", 8562 __func__, error); 8563 return error; 8564 } 8565 /* Do post-firmware initialization. */ 8566 8567 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8568 8569 return ops->post_alive(sc); 8570 } 8571 8572 static void 8573 iwn_hw_stop(struct iwn_softc *sc) 8574 { 8575 int chnl, qid, ntries; 8576 8577 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8578 8579 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8580 8581 /* Disable interrupts. */ 8582 IWN_WRITE(sc, IWN_INT_MASK, 0); 8583 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8584 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8585 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8586 8587 /* Make sure we no longer hold the NIC lock. */ 8588 iwn_nic_unlock(sc); 8589 8590 /* Stop TX scheduler. */ 8591 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8592 8593 /* Stop all DMA channels. */ 8594 if (iwn_nic_lock(sc) == 0) { 8595 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8596 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8597 for (ntries = 0; ntries < 200; ntries++) { 8598 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8599 IWN_FH_TX_STATUS_IDLE(chnl)) 8600 break; 8601 DELAY(10); 8602 } 8603 } 8604 iwn_nic_unlock(sc); 8605 } 8606 8607 /* Stop RX ring. */ 8608 iwn_reset_rx_ring(sc, &sc->rxq); 8609 8610 /* Reset all TX rings. */ 8611 for (qid = 0; qid < sc->ntxqs; qid++) 8612 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8613 8614 if (iwn_nic_lock(sc) == 0) { 8615 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8616 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8617 iwn_nic_unlock(sc); 8618 } 8619 DELAY(5); 8620 /* Power OFF adapter. */ 8621 iwn_apm_stop(sc); 8622 } 8623 8624 static void 8625 iwn_radio_on(void *arg0, int pending) 8626 { 8627 struct iwn_softc *sc = arg0; 8628 struct ieee80211com *ic = &sc->sc_ic; 8629 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8630 8631 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8632 8633 if (vap != NULL) { 8634 iwn_init(sc); 8635 ieee80211_init(vap); 8636 } 8637 } 8638 8639 static void 8640 iwn_radio_off(void *arg0, int pending) 8641 { 8642 struct iwn_softc *sc = arg0; 8643 struct ieee80211com *ic = &sc->sc_ic; 8644 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8645 8646 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8647 8648 iwn_stop(sc); 8649 if (vap != NULL) 8650 ieee80211_stop(vap); 8651 8652 /* Enable interrupts to get RF toggle notification. */ 8653 IWN_LOCK(sc); 8654 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8655 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8656 IWN_UNLOCK(sc); 8657 } 8658 8659 static void 8660 iwn_panicked(void *arg0, int pending) 8661 { 8662 struct iwn_softc *sc = arg0; 8663 struct ieee80211com *ic = &sc->sc_ic; 8664 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8665 int error; 8666 8667 if (vap == NULL) { 8668 printf("%s: null vap\n", __func__); 8669 return; 8670 } 8671 8672 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8673 "resetting...\n", __func__, vap->iv_state); 8674 8675 IWN_LOCK(sc); 8676 8677 iwn_stop_locked(sc); 8678 iwn_init_locked(sc); 8679 if (vap->iv_state >= IEEE80211_S_AUTH && 8680 (error = iwn_auth(sc, vap)) != 0) { 8681 device_printf(sc->sc_dev, 8682 "%s: could not move to auth state\n", __func__); 8683 } 8684 if (vap->iv_state >= IEEE80211_S_RUN && 8685 (error = iwn_run(sc, vap)) != 0) { 8686 device_printf(sc->sc_dev, 8687 "%s: could not move to run state\n", __func__); 8688 } 8689 8690 IWN_UNLOCK(sc); 8691 } 8692 8693 static void 8694 iwn_init_locked(struct iwn_softc *sc) 8695 { 8696 int error; 8697 8698 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8699 8700 IWN_LOCK_ASSERT(sc); 8701 8702 sc->sc_flags |= IWN_FLAG_RUNNING; 8703 8704 if ((error = iwn_hw_prepare(sc)) != 0) { 8705 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8706 __func__, error); 8707 goto fail; 8708 } 8709 8710 /* Initialize interrupt mask to default value. */ 8711 sc->int_mask = IWN_INT_MASK_DEF; 8712 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8713 8714 /* Check that the radio is not disabled by hardware switch. */ 8715 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8716 device_printf(sc->sc_dev, 8717 "radio is disabled by hardware switch\n"); 8718 /* Enable interrupts to get RF toggle notifications. */ 8719 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8720 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8721 return; 8722 } 8723 8724 /* Read firmware images from the filesystem. */ 8725 if ((error = iwn_read_firmware(sc)) != 0) { 8726 device_printf(sc->sc_dev, 8727 "%s: could not read firmware, error %d\n", __func__, 8728 error); 8729 goto fail; 8730 } 8731 8732 /* Initialize hardware and upload firmware. */ 8733 error = iwn_hw_init(sc); 8734 iwn_unload_firmware(sc); 8735 if (error != 0) { 8736 device_printf(sc->sc_dev, 8737 "%s: could not initialize hardware, error %d\n", __func__, 8738 error); 8739 goto fail; 8740 } 8741 8742 /* Configure adapter now that it is ready. */ 8743 if ((error = iwn_config(sc)) != 0) { 8744 device_printf(sc->sc_dev, 8745 "%s: could not configure device, error %d\n", __func__, 8746 error); 8747 goto fail; 8748 } 8749 8750 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 8751 8752 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8753 8754 return; 8755 8756 fail: 8757 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8758 iwn_stop_locked(sc); 8759 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 8760 } 8761 8762 static void 8763 iwn_init(struct iwn_softc *sc) 8764 { 8765 8766 IWN_LOCK(sc); 8767 iwn_init_locked(sc); 8768 IWN_UNLOCK(sc); 8769 8770 if (sc->sc_flags & IWN_FLAG_RUNNING) 8771 ieee80211_start_all(&sc->sc_ic); 8772 } 8773 8774 static void 8775 iwn_stop_locked(struct iwn_softc *sc) 8776 { 8777 8778 IWN_LOCK_ASSERT(sc); 8779 8780 sc->sc_is_scanning = 0; 8781 sc->sc_tx_timer = 0; 8782 callout_stop(&sc->watchdog_to); 8783 callout_stop(&sc->calib_to); 8784 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8785 8786 /* Power OFF hardware. */ 8787 iwn_hw_stop(sc); 8788 } 8789 8790 static void 8791 iwn_stop(struct iwn_softc *sc) 8792 { 8793 IWN_LOCK(sc); 8794 iwn_stop_locked(sc); 8795 IWN_UNLOCK(sc); 8796 } 8797 8798 /* 8799 * Callback from net80211 to start a scan. 8800 */ 8801 static void 8802 iwn_scan_start(struct ieee80211com *ic) 8803 { 8804 struct iwn_softc *sc = ic->ic_softc; 8805 8806 IWN_LOCK(sc); 8807 /* make the link LED blink while we're scanning */ 8808 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 8809 IWN_UNLOCK(sc); 8810 } 8811 8812 /* 8813 * Callback from net80211 to terminate a scan. 8814 */ 8815 static void 8816 iwn_scan_end(struct ieee80211com *ic) 8817 { 8818 struct iwn_softc *sc = ic->ic_softc; 8819 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8820 8821 IWN_LOCK(sc); 8822 if (vap->iv_state == IEEE80211_S_RUN) { 8823 /* Set link LED to ON status if we are associated */ 8824 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 8825 } 8826 IWN_UNLOCK(sc); 8827 } 8828 8829 /* 8830 * Callback from net80211 to force a channel change. 8831 */ 8832 static void 8833 iwn_set_channel(struct ieee80211com *ic) 8834 { 8835 const struct ieee80211_channel *c = ic->ic_curchan; 8836 struct iwn_softc *sc = ic->ic_softc; 8837 int error; 8838 8839 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8840 8841 IWN_LOCK(sc); 8842 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 8843 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 8844 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 8845 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 8846 8847 /* 8848 * Only need to set the channel in Monitor mode. AP scanning and auth 8849 * are already taken care of by their respective firmware commands. 8850 */ 8851 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 8852 error = iwn_config(sc); 8853 if (error != 0) 8854 device_printf(sc->sc_dev, 8855 "%s: error %d settting channel\n", __func__, error); 8856 } 8857 IWN_UNLOCK(sc); 8858 } 8859 8860 /* 8861 * Callback from net80211 to start scanning of the current channel. 8862 */ 8863 static void 8864 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 8865 { 8866 struct ieee80211vap *vap = ss->ss_vap; 8867 struct ieee80211com *ic = vap->iv_ic; 8868 struct iwn_softc *sc = ic->ic_softc; 8869 int error; 8870 8871 IWN_LOCK(sc); 8872 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 8873 IWN_UNLOCK(sc); 8874 if (error != 0) 8875 ieee80211_cancel_scan(vap); 8876 } 8877 8878 /* 8879 * Callback from net80211 to handle the minimum dwell time being met. 8880 * The intent is to terminate the scan but we just let the firmware 8881 * notify us when it's finished as we have no safe way to abort it. 8882 */ 8883 static void 8884 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 8885 { 8886 /* NB: don't try to abort scan; wait for firmware to finish */ 8887 } 8888 8889 static void 8890 iwn_hw_reset(void *arg0, int pending) 8891 { 8892 struct iwn_softc *sc = arg0; 8893 struct ieee80211com *ic = &sc->sc_ic; 8894 8895 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8896 8897 iwn_stop(sc); 8898 iwn_init(sc); 8899 ieee80211_notify_radio(ic, 1); 8900 } 8901 #ifdef IWN_DEBUG 8902 #define IWN_DESC(x) case x: return #x 8903 8904 /* 8905 * Translate CSR code to string 8906 */ 8907 static char *iwn_get_csr_string(int csr) 8908 { 8909 switch (csr) { 8910 IWN_DESC(IWN_HW_IF_CONFIG); 8911 IWN_DESC(IWN_INT_COALESCING); 8912 IWN_DESC(IWN_INT); 8913 IWN_DESC(IWN_INT_MASK); 8914 IWN_DESC(IWN_FH_INT); 8915 IWN_DESC(IWN_GPIO_IN); 8916 IWN_DESC(IWN_RESET); 8917 IWN_DESC(IWN_GP_CNTRL); 8918 IWN_DESC(IWN_HW_REV); 8919 IWN_DESC(IWN_EEPROM); 8920 IWN_DESC(IWN_EEPROM_GP); 8921 IWN_DESC(IWN_OTP_GP); 8922 IWN_DESC(IWN_GIO); 8923 IWN_DESC(IWN_GP_UCODE); 8924 IWN_DESC(IWN_GP_DRIVER); 8925 IWN_DESC(IWN_UCODE_GP1); 8926 IWN_DESC(IWN_UCODE_GP2); 8927 IWN_DESC(IWN_LED); 8928 IWN_DESC(IWN_DRAM_INT_TBL); 8929 IWN_DESC(IWN_GIO_CHICKEN); 8930 IWN_DESC(IWN_ANA_PLL); 8931 IWN_DESC(IWN_HW_REV_WA); 8932 IWN_DESC(IWN_DBG_HPET_MEM); 8933 default: 8934 return "UNKNOWN CSR"; 8935 } 8936 } 8937 8938 /* 8939 * This function print firmware register 8940 */ 8941 static void 8942 iwn_debug_register(struct iwn_softc *sc) 8943 { 8944 int i; 8945 static const uint32_t csr_tbl[] = { 8946 IWN_HW_IF_CONFIG, 8947 IWN_INT_COALESCING, 8948 IWN_INT, 8949 IWN_INT_MASK, 8950 IWN_FH_INT, 8951 IWN_GPIO_IN, 8952 IWN_RESET, 8953 IWN_GP_CNTRL, 8954 IWN_HW_REV, 8955 IWN_EEPROM, 8956 IWN_EEPROM_GP, 8957 IWN_OTP_GP, 8958 IWN_GIO, 8959 IWN_GP_UCODE, 8960 IWN_GP_DRIVER, 8961 IWN_UCODE_GP1, 8962 IWN_UCODE_GP2, 8963 IWN_LED, 8964 IWN_DRAM_INT_TBL, 8965 IWN_GIO_CHICKEN, 8966 IWN_ANA_PLL, 8967 IWN_HW_REV_WA, 8968 IWN_DBG_HPET_MEM, 8969 }; 8970 DPRINTF(sc, IWN_DEBUG_REGISTER, 8971 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 8972 "\n"); 8973 for (i = 0; i < nitems(csr_tbl); i++){ 8974 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 8975 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 8976 if ((i+1) % 3 == 0) 8977 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 8978 } 8979 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 8980 } 8981 #endif 8982 8983 8984