xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 2da0fcde21e0b90384f61fd50b87ea7dbd820233)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
211 		    uint8_t);
212 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
213 		    void *);
214 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
215 static void	iwn_notif_intr(struct iwn_softc *);
216 static void	iwn_wakeup_intr(struct iwn_softc *);
217 static void	iwn_rftoggle_task(void *, int);
218 static void	iwn_fatal_intr(struct iwn_softc *);
219 static void	iwn_intr(void *);
220 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
221 		    uint16_t);
222 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
223 		    uint16_t);
224 #ifdef notyet
225 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
226 #endif
227 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
230 		    struct ieee80211_node *,
231 		    const struct ieee80211_bpf_params *params);
232 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *, struct iwn_tx_ring *);
234 static void	iwn_xmit_task(void *arg0, int pending);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
238 static void	iwn_scan_timeout(void *);
239 static void	iwn_watchdog(void *);
240 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
241 static void	iwn_parent(struct ieee80211com *);
242 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
243 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
244 		    int);
245 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
246 		    int);
247 static int	iwn_set_link_quality(struct iwn_softc *,
248 		    struct ieee80211_node *);
249 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
250 static int	iwn_updateedca(struct ieee80211com *);
251 static void	iwn_set_promisc(struct iwn_softc *);
252 static void	iwn_update_promisc(struct ieee80211com *);
253 static void	iwn_update_mcast(struct ieee80211com *);
254 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
255 static int	iwn_set_critical_temp(struct iwn_softc *);
256 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
257 static void	iwn4965_power_calibration(struct iwn_softc *, int);
258 static int	iwn4965_set_txpower(struct iwn_softc *, int);
259 static int	iwn5000_set_txpower(struct iwn_softc *, int);
260 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
263 static int	iwn4965_get_temperature(struct iwn_softc *);
264 static int	iwn5000_get_temperature(struct iwn_softc *);
265 static int	iwn_init_sensitivity(struct iwn_softc *);
266 static void	iwn_collect_noise(struct iwn_softc *,
267 		    const struct iwn_rx_general_stats *);
268 static int	iwn4965_init_gains(struct iwn_softc *);
269 static int	iwn5000_init_gains(struct iwn_softc *);
270 static int	iwn4965_set_gains(struct iwn_softc *);
271 static int	iwn5000_set_gains(struct iwn_softc *);
272 static void	iwn_tune_sensitivity(struct iwn_softc *,
273 		    const struct iwn_rx_stats *);
274 static void	iwn_save_stats_counters(struct iwn_softc *,
275 		    const struct iwn_stats *);
276 static int	iwn_send_sensitivity(struct iwn_softc *);
277 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
278 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
279 static int	iwn_send_btcoex(struct iwn_softc *);
280 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
281 static int	iwn5000_runtime_calib(struct iwn_softc *);
282 static int	iwn_check_bss_filter(struct iwn_softc *);
283 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
284 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
285 static int	iwn_send_rxon(struct iwn_softc *, int, int);
286 static int	iwn_config(struct iwn_softc *);
287 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
288 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
289 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
290 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
292 		    struct ieee80211_rx_ampdu *, int, int, int);
293 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *);
295 static int	iwn_addba_request(struct ieee80211_node *,
296 		    struct ieee80211_tx_ampdu *, int, int, int);
297 static int	iwn_addba_response(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_ampdu_tx_start(struct ieee80211com *,
300 		    struct ieee80211_node *, uint8_t);
301 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *);
303 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
308 		    struct ieee80211_node *, int, uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
310 		    uint8_t, uint16_t);
311 static int	iwn5000_query_calibration(struct iwn_softc *);
312 static int	iwn5000_send_calibration(struct iwn_softc *);
313 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
314 static int	iwn5000_crystal_calib(struct iwn_softc *);
315 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
317 static int	iwn4965_post_alive(struct iwn_softc *);
318 static int	iwn5000_post_alive(struct iwn_softc *);
319 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
320 		    int);
321 static int	iwn4965_load_firmware(struct iwn_softc *);
322 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
323 		    const uint8_t *, int);
324 static int	iwn5000_load_firmware(struct iwn_softc *);
325 static int	iwn_read_firmware_leg(struct iwn_softc *,
326 		    struct iwn_fw_info *);
327 static int	iwn_read_firmware_tlv(struct iwn_softc *,
328 		    struct iwn_fw_info *, uint16_t);
329 static int	iwn_read_firmware(struct iwn_softc *);
330 static void	iwn_unload_firmware(struct iwn_softc *);
331 static int	iwn_clock_wait(struct iwn_softc *);
332 static int	iwn_apm_init(struct iwn_softc *);
333 static void	iwn_apm_stop_master(struct iwn_softc *);
334 static void	iwn_apm_stop(struct iwn_softc *);
335 static int	iwn4965_nic_config(struct iwn_softc *);
336 static int	iwn5000_nic_config(struct iwn_softc *);
337 static int	iwn_hw_prepare(struct iwn_softc *);
338 static int	iwn_hw_init(struct iwn_softc *);
339 static void	iwn_hw_stop(struct iwn_softc *);
340 static void	iwn_panicked(void *, int);
341 static int	iwn_init_locked(struct iwn_softc *);
342 static int	iwn_init(struct iwn_softc *);
343 static void	iwn_stop_locked(struct iwn_softc *);
344 static void	iwn_stop(struct iwn_softc *);
345 static void	iwn_scan_start(struct ieee80211com *);
346 static void	iwn_scan_end(struct ieee80211com *);
347 static void	iwn_set_channel(struct ieee80211com *);
348 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
349 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
350 #ifdef	IWN_DEBUG
351 static char	*iwn_get_csr_string(int);
352 static void	iwn_debug_register(struct iwn_softc *);
353 #endif
354 
355 static device_method_t iwn_methods[] = {
356 	/* Device interface */
357 	DEVMETHOD(device_probe,		iwn_probe),
358 	DEVMETHOD(device_attach,	iwn_attach),
359 	DEVMETHOD(device_detach,	iwn_detach),
360 	DEVMETHOD(device_shutdown,	iwn_shutdown),
361 	DEVMETHOD(device_suspend,	iwn_suspend),
362 	DEVMETHOD(device_resume,	iwn_resume),
363 
364 	DEVMETHOD_END
365 };
366 
367 static driver_t iwn_driver = {
368 	"iwn",
369 	iwn_methods,
370 	sizeof(struct iwn_softc)
371 };
372 static devclass_t iwn_devclass;
373 
374 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
375 
376 MODULE_VERSION(iwn, 1);
377 
378 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
379 MODULE_DEPEND(iwn, pci, 1, 1, 1);
380 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
381 
382 static d_ioctl_t iwn_cdev_ioctl;
383 static d_open_t iwn_cdev_open;
384 static d_close_t iwn_cdev_close;
385 
386 static struct cdevsw iwn_cdevsw = {
387 	.d_version = D_VERSION,
388 	.d_flags = 0,
389 	.d_open = iwn_cdev_open,
390 	.d_close = iwn_cdev_close,
391 	.d_ioctl = iwn_cdev_ioctl,
392 	.d_name = "iwn",
393 };
394 
395 static int
396 iwn_probe(device_t dev)
397 {
398 	const struct iwn_ident *ident;
399 
400 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
401 		if (pci_get_vendor(dev) == ident->vendor &&
402 		    pci_get_device(dev) == ident->device) {
403 			device_set_desc(dev, ident->name);
404 			return (BUS_PROBE_DEFAULT);
405 		}
406 	}
407 	return ENXIO;
408 }
409 
410 static int
411 iwn_is_3stream_device(struct iwn_softc *sc)
412 {
413 	/* XXX for now only 5300, until the 5350 can be tested */
414 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
415 		return (1);
416 	return (0);
417 }
418 
419 static int
420 iwn_attach(device_t dev)
421 {
422 	struct iwn_softc *sc = device_get_softc(dev);
423 	struct ieee80211com *ic;
424 	int i, error, rid;
425 
426 	sc->sc_dev = dev;
427 
428 #ifdef	IWN_DEBUG
429 	error = resource_int_value(device_get_name(sc->sc_dev),
430 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
431 	if (error != 0)
432 		sc->sc_debug = 0;
433 #else
434 	sc->sc_debug = 0;
435 #endif
436 
437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
438 
439 	/*
440 	 * Get the offset of the PCI Express Capability Structure in PCI
441 	 * Configuration Space.
442 	 */
443 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 	if (error != 0) {
445 		device_printf(dev, "PCIe capability structure not found!\n");
446 		return error;
447 	}
448 
449 	/* Clear device-specific "PCI retry timeout" register (41h). */
450 	pci_write_config(dev, 0x41, 0, 1);
451 
452 	/* Enable bus-mastering. */
453 	pci_enable_busmaster(dev);
454 
455 	rid = PCIR_BAR(0);
456 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
457 	    RF_ACTIVE);
458 	if (sc->mem == NULL) {
459 		device_printf(dev, "can't map mem space\n");
460 		error = ENOMEM;
461 		return error;
462 	}
463 	sc->sc_st = rman_get_bustag(sc->mem);
464 	sc->sc_sh = rman_get_bushandle(sc->mem);
465 
466 	i = 1;
467 	rid = 0;
468 	if (pci_alloc_msi(dev, &i) == 0)
469 		rid = 1;
470 	/* Install interrupt handler. */
471 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
472 	    (rid != 0 ? 0 : RF_SHAREABLE));
473 	if (sc->irq == NULL) {
474 		device_printf(dev, "can't map interrupt\n");
475 		error = ENOMEM;
476 		goto fail;
477 	}
478 
479 	IWN_LOCK_INIT(sc);
480 
481 	/* Read hardware revision and attach. */
482 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
483 	    & IWN_HW_REV_TYPE_MASK;
484 	sc->subdevice_id = pci_get_subdevice(dev);
485 
486 	/*
487 	 * 4965 versus 5000 and later have different methods.
488 	 * Let's set those up first.
489 	 */
490 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
491 		error = iwn4965_attach(sc, pci_get_device(dev));
492 	else
493 		error = iwn5000_attach(sc, pci_get_device(dev));
494 	if (error != 0) {
495 		device_printf(dev, "could not attach device, error %d\n",
496 		    error);
497 		goto fail;
498 	}
499 
500 	/*
501 	 * Next, let's setup the various parameters of each NIC.
502 	 */
503 	error = iwn_config_specific(sc, pci_get_device(dev));
504 	if (error != 0) {
505 		device_printf(dev, "could not attach device, error %d\n",
506 		    error);
507 		goto fail;
508 	}
509 
510 	if ((error = iwn_hw_prepare(sc)) != 0) {
511 		device_printf(dev, "hardware not ready, error %d\n", error);
512 		goto fail;
513 	}
514 
515 	/* Allocate DMA memory for firmware transfers. */
516 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
517 		device_printf(dev,
518 		    "could not allocate memory for firmware, error %d\n",
519 		    error);
520 		goto fail;
521 	}
522 
523 	/* Allocate "Keep Warm" page. */
524 	if ((error = iwn_alloc_kw(sc)) != 0) {
525 		device_printf(dev,
526 		    "could not allocate keep warm page, error %d\n", error);
527 		goto fail;
528 	}
529 
530 	/* Allocate ICT table for 5000 Series. */
531 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532 	    (error = iwn_alloc_ict(sc)) != 0) {
533 		device_printf(dev, "could not allocate ICT table, error %d\n",
534 		    error);
535 		goto fail;
536 	}
537 
538 	/* Allocate TX scheduler "rings". */
539 	if ((error = iwn_alloc_sched(sc)) != 0) {
540 		device_printf(dev,
541 		    "could not allocate TX scheduler rings, error %d\n", error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
546 	for (i = 0; i < sc->ntxqs; i++) {
547 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
548 			device_printf(dev,
549 			    "could not allocate TX ring %d, error %d\n", i,
550 			    error);
551 			goto fail;
552 		}
553 	}
554 
555 	/* Allocate RX ring. */
556 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
557 		device_printf(dev, "could not allocate RX ring, error %d\n",
558 		    error);
559 		goto fail;
560 	}
561 
562 	/* Clear pending interrupts. */
563 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
564 
565 	ic = &sc->sc_ic;
566 	ic->ic_softc = sc;
567 	ic->ic_name = device_get_nameunit(dev);
568 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
569 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
570 
571 	/* Set device capabilities. */
572 	ic->ic_caps =
573 		  IEEE80211_C_STA		/* station mode supported */
574 		| IEEE80211_C_MONITOR		/* monitor mode supported */
575 #if 0
576 		| IEEE80211_C_BGSCAN		/* background scanning */
577 #endif
578 		| IEEE80211_C_TXPMGT		/* tx power management */
579 		| IEEE80211_C_SHSLOT		/* short slot time supported */
580 		| IEEE80211_C_WPA
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 #if 0
583 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584 #endif
585 		| IEEE80211_C_WME		/* WME */
586 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
587 		;
588 
589 	/* Read MAC address, channels, etc from EEPROM. */
590 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
591 		device_printf(dev, "could not read EEPROM, error %d\n",
592 		    error);
593 		goto fail;
594 	}
595 
596 	/* Count the number of available chains. */
597 	sc->ntxchains =
598 	    ((sc->txchainmask >> 2) & 1) +
599 	    ((sc->txchainmask >> 1) & 1) +
600 	    ((sc->txchainmask >> 0) & 1);
601 	sc->nrxchains =
602 	    ((sc->rxchainmask >> 2) & 1) +
603 	    ((sc->rxchainmask >> 1) & 1) +
604 	    ((sc->rxchainmask >> 0) & 1);
605 	if (bootverbose) {
606 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
607 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
608 		    ic->ic_macaddr, ":");
609 	}
610 
611 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
612 		ic->ic_rxstream = sc->nrxchains;
613 		ic->ic_txstream = sc->ntxchains;
614 
615 		/*
616 		 * Some of the 3 antenna devices (ie, the 4965) only supports
617 		 * 2x2 operation.  So correct the number of streams if
618 		 * it's not a 3-stream device.
619 		 */
620 		if (! iwn_is_3stream_device(sc)) {
621 			if (ic->ic_rxstream > 2)
622 				ic->ic_rxstream = 2;
623 			if (ic->ic_txstream > 2)
624 				ic->ic_txstream = 2;
625 		}
626 
627 		ic->ic_htcaps =
628 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
629 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
630 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
631 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
632 #ifdef notyet
633 			| IEEE80211_HTCAP_GREENFIELD
634 #if IWN_RBUF_SIZE == 8192
635 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
636 #else
637 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
638 #endif
639 #endif
640 			/* s/w capabilities */
641 			| IEEE80211_HTC_HT		/* HT operation */
642 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
643 #ifdef notyet
644 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
645 #endif
646 			;
647 	}
648 
649 	ieee80211_ifattach(ic);
650 	ic->ic_vap_create = iwn_vap_create;
651 	ic->ic_ioctl = iwn_ioctl;
652 	ic->ic_parent = iwn_parent;
653 	ic->ic_vap_delete = iwn_vap_delete;
654 	ic->ic_transmit = iwn_transmit;
655 	ic->ic_raw_xmit = iwn_raw_xmit;
656 	ic->ic_node_alloc = iwn_node_alloc;
657 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
658 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
659 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
660 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
661 	sc->sc_addba_request = ic->ic_addba_request;
662 	ic->ic_addba_request = iwn_addba_request;
663 	sc->sc_addba_response = ic->ic_addba_response;
664 	ic->ic_addba_response = iwn_addba_response;
665 	sc->sc_addba_stop = ic->ic_addba_stop;
666 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
667 	ic->ic_newassoc = iwn_newassoc;
668 	ic->ic_wme.wme_update = iwn_updateedca;
669 	ic->ic_update_promisc = iwn_update_promisc;
670 	ic->ic_update_mcast = iwn_update_mcast;
671 	ic->ic_scan_start = iwn_scan_start;
672 	ic->ic_scan_end = iwn_scan_end;
673 	ic->ic_set_channel = iwn_set_channel;
674 	ic->ic_scan_curchan = iwn_scan_curchan;
675 	ic->ic_scan_mindwell = iwn_scan_mindwell;
676 	ic->ic_getradiocaps = iwn_getradiocaps;
677 	ic->ic_setregdomain = iwn_setregdomain;
678 
679 	iwn_radiotap_attach(sc);
680 
681 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
682 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
683 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
684 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
685 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
686 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
687 
688 	mbufq_init(&sc->sc_xmit_queue, 1024);
689 
690 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
691 	    taskqueue_thread_enqueue, &sc->sc_tq);
692 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
693 	if (error != 0) {
694 		device_printf(dev, "can't start threads, error %d\n", error);
695 		goto fail;
696 	}
697 
698 	iwn_sysctlattach(sc);
699 
700 	/*
701 	 * Hook our interrupt after all initialization is complete.
702 	 */
703 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
704 	    NULL, iwn_intr, sc, &sc->sc_ih);
705 	if (error != 0) {
706 		device_printf(dev, "can't establish interrupt, error %d\n",
707 		    error);
708 		goto fail;
709 	}
710 
711 #if 0
712 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
713 	    __func__,
714 	    sizeof(struct iwn_stats),
715 	    sizeof(struct iwn_stats_bt));
716 #endif
717 
718 	if (bootverbose)
719 		ieee80211_announce(ic);
720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
721 
722 	/* Add debug ioctl right at the end */
723 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
724 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
725 	if (sc->sc_cdev == NULL) {
726 		device_printf(dev, "failed to create debug character device\n");
727 	} else {
728 		sc->sc_cdev->si_drv1 = sc;
729 	}
730 	return 0;
731 fail:
732 	iwn_detach(dev);
733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
734 	return error;
735 }
736 
737 /*
738  * Define specific configuration based on device id and subdevice id
739  * pid : PCI device id
740  */
741 static int
742 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
743 {
744 
745 	switch (pid) {
746 /* 4965 series */
747 	case IWN_DID_4965_1:
748 	case IWN_DID_4965_2:
749 	case IWN_DID_4965_3:
750 	case IWN_DID_4965_4:
751 		sc->base_params = &iwn4965_base_params;
752 		sc->limits = &iwn4965_sensitivity_limits;
753 		sc->fwname = "iwn4965fw";
754 		/* Override chains masks, ROM is known to be broken. */
755 		sc->txchainmask = IWN_ANT_AB;
756 		sc->rxchainmask = IWN_ANT_ABC;
757 		/* Enable normal btcoex */
758 		sc->sc_flags |= IWN_FLAG_BTCOEX;
759 		break;
760 /* 1000 Series */
761 	case IWN_DID_1000_1:
762 	case IWN_DID_1000_2:
763 		switch(sc->subdevice_id) {
764 			case	IWN_SDID_1000_1:
765 			case	IWN_SDID_1000_2:
766 			case	IWN_SDID_1000_3:
767 			case	IWN_SDID_1000_4:
768 			case	IWN_SDID_1000_5:
769 			case	IWN_SDID_1000_6:
770 			case	IWN_SDID_1000_7:
771 			case	IWN_SDID_1000_8:
772 			case	IWN_SDID_1000_9:
773 			case	IWN_SDID_1000_10:
774 			case	IWN_SDID_1000_11:
775 			case	IWN_SDID_1000_12:
776 				sc->limits = &iwn1000_sensitivity_limits;
777 				sc->base_params = &iwn1000_base_params;
778 				sc->fwname = "iwn1000fw";
779 				break;
780 			default:
781 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
782 				    "0x%04x rev %d not supported (subdevice)\n", pid,
783 				    sc->subdevice_id,sc->hw_type);
784 				return ENOTSUP;
785 		}
786 		break;
787 /* 6x00 Series */
788 	case IWN_DID_6x00_2:
789 	case IWN_DID_6x00_4:
790 	case IWN_DID_6x00_1:
791 	case IWN_DID_6x00_3:
792 		sc->fwname = "iwn6000fw";
793 		sc->limits = &iwn6000_sensitivity_limits;
794 		switch(sc->subdevice_id) {
795 			case IWN_SDID_6x00_1:
796 			case IWN_SDID_6x00_2:
797 			case IWN_SDID_6x00_8:
798 				//iwl6000_3agn_cfg
799 				sc->base_params = &iwn_6000_base_params;
800 				break;
801 			case IWN_SDID_6x00_3:
802 			case IWN_SDID_6x00_6:
803 			case IWN_SDID_6x00_9:
804 				////iwl6000i_2agn
805 			case IWN_SDID_6x00_4:
806 			case IWN_SDID_6x00_7:
807 			case IWN_SDID_6x00_10:
808 				//iwl6000i_2abg_cfg
809 			case IWN_SDID_6x00_5:
810 				//iwl6000i_2bg_cfg
811 				sc->base_params = &iwn_6000i_base_params;
812 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
813 				sc->txchainmask = IWN_ANT_BC;
814 				sc->rxchainmask = IWN_ANT_BC;
815 				break;
816 			default:
817 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
818 				    "0x%04x rev %d not supported (subdevice)\n", pid,
819 				    sc->subdevice_id,sc->hw_type);
820 				return ENOTSUP;
821 		}
822 		break;
823 /* 6x05 Series */
824 	case IWN_DID_6x05_1:
825 	case IWN_DID_6x05_2:
826 		switch(sc->subdevice_id) {
827 			case IWN_SDID_6x05_1:
828 			case IWN_SDID_6x05_4:
829 			case IWN_SDID_6x05_6:
830 				//iwl6005_2agn_cfg
831 			case IWN_SDID_6x05_2:
832 			case IWN_SDID_6x05_5:
833 			case IWN_SDID_6x05_7:
834 				//iwl6005_2abg_cfg
835 			case IWN_SDID_6x05_3:
836 				//iwl6005_2bg_cfg
837 			case IWN_SDID_6x05_8:
838 			case IWN_SDID_6x05_9:
839 				//iwl6005_2agn_sff_cfg
840 			case IWN_SDID_6x05_10:
841 				//iwl6005_2agn_d_cfg
842 			case IWN_SDID_6x05_11:
843 				//iwl6005_2agn_mow1_cfg
844 			case IWN_SDID_6x05_12:
845 				//iwl6005_2agn_mow2_cfg
846 				sc->fwname = "iwn6000g2afw";
847 				sc->limits = &iwn6000_sensitivity_limits;
848 				sc->base_params = &iwn_6000g2_base_params;
849 				break;
850 			default:
851 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
852 				    "0x%04x rev %d not supported (subdevice)\n", pid,
853 				    sc->subdevice_id,sc->hw_type);
854 				return ENOTSUP;
855 		}
856 		break;
857 /* 6x35 Series */
858 	case IWN_DID_6035_1:
859 	case IWN_DID_6035_2:
860 		switch(sc->subdevice_id) {
861 			case IWN_SDID_6035_1:
862 			case IWN_SDID_6035_2:
863 			case IWN_SDID_6035_3:
864 			case IWN_SDID_6035_4:
865 			case IWN_SDID_6035_5:
866 				sc->fwname = "iwn6000g2bfw";
867 				sc->limits = &iwn6235_sensitivity_limits;
868 				sc->base_params = &iwn_6235_base_params;
869 				break;
870 			default:
871 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
872 				    "0x%04x rev %d not supported (subdevice)\n", pid,
873 				    sc->subdevice_id,sc->hw_type);
874 				return ENOTSUP;
875 		}
876 		break;
877 /* 6x50 WiFi/WiMax Series */
878 	case IWN_DID_6050_1:
879 	case IWN_DID_6050_2:
880 		switch(sc->subdevice_id) {
881 			case IWN_SDID_6050_1:
882 			case IWN_SDID_6050_3:
883 			case IWN_SDID_6050_5:
884 				//iwl6050_2agn_cfg
885 			case IWN_SDID_6050_2:
886 			case IWN_SDID_6050_4:
887 			case IWN_SDID_6050_6:
888 				//iwl6050_2abg_cfg
889 				sc->fwname = "iwn6050fw";
890 				sc->txchainmask = IWN_ANT_AB;
891 				sc->rxchainmask = IWN_ANT_AB;
892 				sc->limits = &iwn6000_sensitivity_limits;
893 				sc->base_params = &iwn_6050_base_params;
894 				break;
895 			default:
896 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
897 				    "0x%04x rev %d not supported (subdevice)\n", pid,
898 				    sc->subdevice_id,sc->hw_type);
899 				return ENOTSUP;
900 		}
901 		break;
902 /* 6150 WiFi/WiMax Series */
903 	case IWN_DID_6150_1:
904 	case IWN_DID_6150_2:
905 		switch(sc->subdevice_id) {
906 			case IWN_SDID_6150_1:
907 			case IWN_SDID_6150_3:
908 			case IWN_SDID_6150_5:
909 				// iwl6150_bgn_cfg
910 			case IWN_SDID_6150_2:
911 			case IWN_SDID_6150_4:
912 			case IWN_SDID_6150_6:
913 				//iwl6150_bg_cfg
914 				sc->fwname = "iwn6050fw";
915 				sc->limits = &iwn6000_sensitivity_limits;
916 				sc->base_params = &iwn_6150_base_params;
917 				break;
918 			default:
919 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
920 				    "0x%04x rev %d not supported (subdevice)\n", pid,
921 				    sc->subdevice_id,sc->hw_type);
922 				return ENOTSUP;
923 		}
924 		break;
925 /* 6030 Series and 1030 Series */
926 	case IWN_DID_x030_1:
927 	case IWN_DID_x030_2:
928 	case IWN_DID_x030_3:
929 	case IWN_DID_x030_4:
930 		switch(sc->subdevice_id) {
931 			case IWN_SDID_x030_1:
932 			case IWN_SDID_x030_3:
933 			case IWN_SDID_x030_5:
934 			// iwl1030_bgn_cfg
935 			case IWN_SDID_x030_2:
936 			case IWN_SDID_x030_4:
937 			case IWN_SDID_x030_6:
938 			//iwl1030_bg_cfg
939 			case IWN_SDID_x030_7:
940 			case IWN_SDID_x030_10:
941 			case IWN_SDID_x030_14:
942 			//iwl6030_2agn_cfg
943 			case IWN_SDID_x030_8:
944 			case IWN_SDID_x030_11:
945 			case IWN_SDID_x030_15:
946 			// iwl6030_2bgn_cfg
947 			case IWN_SDID_x030_9:
948 			case IWN_SDID_x030_12:
949 			case IWN_SDID_x030_16:
950 			// iwl6030_2abg_cfg
951 			case IWN_SDID_x030_13:
952 			//iwl6030_2bg_cfg
953 				sc->fwname = "iwn6000g2bfw";
954 				sc->limits = &iwn6000_sensitivity_limits;
955 				sc->base_params = &iwn_6000g2b_base_params;
956 				break;
957 			default:
958 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
959 				    "0x%04x rev %d not supported (subdevice)\n", pid,
960 				    sc->subdevice_id,sc->hw_type);
961 				return ENOTSUP;
962 		}
963 		break;
964 /* 130 Series WiFi */
965 /* XXX: This series will need adjustment for rate.
966  * see rx_with_siso_diversity in linux kernel
967  */
968 	case IWN_DID_130_1:
969 	case IWN_DID_130_2:
970 		switch(sc->subdevice_id) {
971 			case IWN_SDID_130_1:
972 			case IWN_SDID_130_3:
973 			case IWN_SDID_130_5:
974 			//iwl130_bgn_cfg
975 			case IWN_SDID_130_2:
976 			case IWN_SDID_130_4:
977 			case IWN_SDID_130_6:
978 			//iwl130_bg_cfg
979 				sc->fwname = "iwn6000g2bfw";
980 				sc->limits = &iwn6000_sensitivity_limits;
981 				sc->base_params = &iwn_6000g2b_base_params;
982 				break;
983 			default:
984 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
985 				    "0x%04x rev %d not supported (subdevice)\n", pid,
986 				    sc->subdevice_id,sc->hw_type);
987 				return ENOTSUP;
988 		}
989 		break;
990 /* 100 Series WiFi */
991 	case IWN_DID_100_1:
992 	case IWN_DID_100_2:
993 		switch(sc->subdevice_id) {
994 			case IWN_SDID_100_1:
995 			case IWN_SDID_100_2:
996 			case IWN_SDID_100_3:
997 			case IWN_SDID_100_4:
998 			case IWN_SDID_100_5:
999 			case IWN_SDID_100_6:
1000 				sc->limits = &iwn1000_sensitivity_limits;
1001 				sc->base_params = &iwn1000_base_params;
1002 				sc->fwname = "iwn100fw";
1003 				break;
1004 			default:
1005 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1007 				    sc->subdevice_id,sc->hw_type);
1008 				return ENOTSUP;
1009 		}
1010 		break;
1011 
1012 /* 105 Series */
1013 /* XXX: This series will need adjustment for rate.
1014  * see rx_with_siso_diversity in linux kernel
1015  */
1016 	case IWN_DID_105_1:
1017 	case IWN_DID_105_2:
1018 		switch(sc->subdevice_id) {
1019 			case IWN_SDID_105_1:
1020 			case IWN_SDID_105_2:
1021 			case IWN_SDID_105_3:
1022 			//iwl105_bgn_cfg
1023 			case IWN_SDID_105_4:
1024 			//iwl105_bgn_d_cfg
1025 				sc->limits = &iwn2030_sensitivity_limits;
1026 				sc->base_params = &iwn2000_base_params;
1027 				sc->fwname = "iwn105fw";
1028 				break;
1029 			default:
1030 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1031 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1032 				    sc->subdevice_id,sc->hw_type);
1033 				return ENOTSUP;
1034 		}
1035 		break;
1036 
1037 /* 135 Series */
1038 /* XXX: This series will need adjustment for rate.
1039  * see rx_with_siso_diversity in linux kernel
1040  */
1041 	case IWN_DID_135_1:
1042 	case IWN_DID_135_2:
1043 		switch(sc->subdevice_id) {
1044 			case IWN_SDID_135_1:
1045 			case IWN_SDID_135_2:
1046 			case IWN_SDID_135_3:
1047 				sc->limits = &iwn2030_sensitivity_limits;
1048 				sc->base_params = &iwn2030_base_params;
1049 				sc->fwname = "iwn135fw";
1050 				break;
1051 			default:
1052 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1053 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1054 				    sc->subdevice_id,sc->hw_type);
1055 				return ENOTSUP;
1056 		}
1057 		break;
1058 
1059 /* 2x00 Series */
1060 	case IWN_DID_2x00_1:
1061 	case IWN_DID_2x00_2:
1062 		switch(sc->subdevice_id) {
1063 			case IWN_SDID_2x00_1:
1064 			case IWN_SDID_2x00_2:
1065 			case IWN_SDID_2x00_3:
1066 			//iwl2000_2bgn_cfg
1067 			case IWN_SDID_2x00_4:
1068 			//iwl2000_2bgn_d_cfg
1069 				sc->limits = &iwn2030_sensitivity_limits;
1070 				sc->base_params = &iwn2000_base_params;
1071 				sc->fwname = "iwn2000fw";
1072 				break;
1073 			default:
1074 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1075 				    "0x%04x rev %d not supported (subdevice) \n",
1076 				    pid, sc->subdevice_id, sc->hw_type);
1077 				return ENOTSUP;
1078 		}
1079 		break;
1080 /* 2x30 Series */
1081 	case IWN_DID_2x30_1:
1082 	case IWN_DID_2x30_2:
1083 		switch(sc->subdevice_id) {
1084 			case IWN_SDID_2x30_1:
1085 			case IWN_SDID_2x30_3:
1086 			case IWN_SDID_2x30_5:
1087 			//iwl100_bgn_cfg
1088 			case IWN_SDID_2x30_2:
1089 			case IWN_SDID_2x30_4:
1090 			case IWN_SDID_2x30_6:
1091 			//iwl100_bg_cfg
1092 				sc->limits = &iwn2030_sensitivity_limits;
1093 				sc->base_params = &iwn2030_base_params;
1094 				sc->fwname = "iwn2030fw";
1095 				break;
1096 			default:
1097 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1098 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1099 				    sc->subdevice_id,sc->hw_type);
1100 				return ENOTSUP;
1101 		}
1102 		break;
1103 /* 5x00 Series */
1104 	case IWN_DID_5x00_1:
1105 	case IWN_DID_5x00_2:
1106 	case IWN_DID_5x00_3:
1107 	case IWN_DID_5x00_4:
1108 		sc->limits = &iwn5000_sensitivity_limits;
1109 		sc->base_params = &iwn5000_base_params;
1110 		sc->fwname = "iwn5000fw";
1111 		switch(sc->subdevice_id) {
1112 			case IWN_SDID_5x00_1:
1113 			case IWN_SDID_5x00_2:
1114 			case IWN_SDID_5x00_3:
1115 			case IWN_SDID_5x00_4:
1116 			case IWN_SDID_5x00_9:
1117 			case IWN_SDID_5x00_10:
1118 			case IWN_SDID_5x00_11:
1119 			case IWN_SDID_5x00_12:
1120 			case IWN_SDID_5x00_17:
1121 			case IWN_SDID_5x00_18:
1122 			case IWN_SDID_5x00_19:
1123 			case IWN_SDID_5x00_20:
1124 			//iwl5100_agn_cfg
1125 				sc->txchainmask = IWN_ANT_B;
1126 				sc->rxchainmask = IWN_ANT_AB;
1127 				break;
1128 			case IWN_SDID_5x00_5:
1129 			case IWN_SDID_5x00_6:
1130 			case IWN_SDID_5x00_13:
1131 			case IWN_SDID_5x00_14:
1132 			case IWN_SDID_5x00_21:
1133 			case IWN_SDID_5x00_22:
1134 			//iwl5100_bgn_cfg
1135 				sc->txchainmask = IWN_ANT_B;
1136 				sc->rxchainmask = IWN_ANT_AB;
1137 				break;
1138 			case IWN_SDID_5x00_7:
1139 			case IWN_SDID_5x00_8:
1140 			case IWN_SDID_5x00_15:
1141 			case IWN_SDID_5x00_16:
1142 			case IWN_SDID_5x00_23:
1143 			case IWN_SDID_5x00_24:
1144 			//iwl5100_abg_cfg
1145 				sc->txchainmask = IWN_ANT_B;
1146 				sc->rxchainmask = IWN_ANT_AB;
1147 				break;
1148 			case IWN_SDID_5x00_25:
1149 			case IWN_SDID_5x00_26:
1150 			case IWN_SDID_5x00_27:
1151 			case IWN_SDID_5x00_28:
1152 			case IWN_SDID_5x00_29:
1153 			case IWN_SDID_5x00_30:
1154 			case IWN_SDID_5x00_31:
1155 			case IWN_SDID_5x00_32:
1156 			case IWN_SDID_5x00_33:
1157 			case IWN_SDID_5x00_34:
1158 			case IWN_SDID_5x00_35:
1159 			case IWN_SDID_5x00_36:
1160 			//iwl5300_agn_cfg
1161 				sc->txchainmask = IWN_ANT_ABC;
1162 				sc->rxchainmask = IWN_ANT_ABC;
1163 				break;
1164 			default:
1165 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1166 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1167 				    sc->subdevice_id,sc->hw_type);
1168 				return ENOTSUP;
1169 		}
1170 		break;
1171 /* 5x50 Series */
1172 	case IWN_DID_5x50_1:
1173 	case IWN_DID_5x50_2:
1174 	case IWN_DID_5x50_3:
1175 	case IWN_DID_5x50_4:
1176 		sc->limits = &iwn5000_sensitivity_limits;
1177 		sc->base_params = &iwn5000_base_params;
1178 		sc->fwname = "iwn5000fw";
1179 		switch(sc->subdevice_id) {
1180 			case IWN_SDID_5x50_1:
1181 			case IWN_SDID_5x50_2:
1182 			case IWN_SDID_5x50_3:
1183 			//iwl5350_agn_cfg
1184 				sc->limits = &iwn5000_sensitivity_limits;
1185 				sc->base_params = &iwn5000_base_params;
1186 				sc->fwname = "iwn5000fw";
1187 				break;
1188 			case IWN_SDID_5x50_4:
1189 			case IWN_SDID_5x50_5:
1190 			case IWN_SDID_5x50_8:
1191 			case IWN_SDID_5x50_9:
1192 			case IWN_SDID_5x50_10:
1193 			case IWN_SDID_5x50_11:
1194 			//iwl5150_agn_cfg
1195 			case IWN_SDID_5x50_6:
1196 			case IWN_SDID_5x50_7:
1197 			case IWN_SDID_5x50_12:
1198 			case IWN_SDID_5x50_13:
1199 			//iwl5150_abg_cfg
1200 				sc->limits = &iwn5000_sensitivity_limits;
1201 				sc->fwname = "iwn5150fw";
1202 				sc->base_params = &iwn_5x50_base_params;
1203 				break;
1204 			default:
1205 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1206 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1207 				    sc->subdevice_id,sc->hw_type);
1208 				return ENOTSUP;
1209 		}
1210 		break;
1211 	default:
1212 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1213 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1214 		     sc->hw_type);
1215 		return ENOTSUP;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static int
1221 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1222 {
1223 	struct iwn_ops *ops = &sc->ops;
1224 
1225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1226 	ops->load_firmware = iwn4965_load_firmware;
1227 	ops->read_eeprom = iwn4965_read_eeprom;
1228 	ops->post_alive = iwn4965_post_alive;
1229 	ops->nic_config = iwn4965_nic_config;
1230 	ops->update_sched = iwn4965_update_sched;
1231 	ops->get_temperature = iwn4965_get_temperature;
1232 	ops->get_rssi = iwn4965_get_rssi;
1233 	ops->set_txpower = iwn4965_set_txpower;
1234 	ops->init_gains = iwn4965_init_gains;
1235 	ops->set_gains = iwn4965_set_gains;
1236 	ops->rxon_assoc = iwn4965_rxon_assoc;
1237 	ops->add_node = iwn4965_add_node;
1238 	ops->tx_done = iwn4965_tx_done;
1239 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1240 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1241 	sc->ntxqs = IWN4965_NTXQUEUES;
1242 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1243 	sc->ndmachnls = IWN4965_NDMACHNLS;
1244 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1245 	sc->rxonsz = IWN4965_RXONSZ;
1246 	sc->schedsz = IWN4965_SCHEDSZ;
1247 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1248 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1249 	sc->fwsz = IWN4965_FWSZ;
1250 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1251 	sc->limits = &iwn4965_sensitivity_limits;
1252 	sc->fwname = "iwn4965fw";
1253 	/* Override chains masks, ROM is known to be broken. */
1254 	sc->txchainmask = IWN_ANT_AB;
1255 	sc->rxchainmask = IWN_ANT_ABC;
1256 	/* Enable normal btcoex */
1257 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1258 
1259 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1266 {
1267 	struct iwn_ops *ops = &sc->ops;
1268 
1269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1270 
1271 	ops->load_firmware = iwn5000_load_firmware;
1272 	ops->read_eeprom = iwn5000_read_eeprom;
1273 	ops->post_alive = iwn5000_post_alive;
1274 	ops->nic_config = iwn5000_nic_config;
1275 	ops->update_sched = iwn5000_update_sched;
1276 	ops->get_temperature = iwn5000_get_temperature;
1277 	ops->get_rssi = iwn5000_get_rssi;
1278 	ops->set_txpower = iwn5000_set_txpower;
1279 	ops->init_gains = iwn5000_init_gains;
1280 	ops->set_gains = iwn5000_set_gains;
1281 	ops->rxon_assoc = iwn5000_rxon_assoc;
1282 	ops->add_node = iwn5000_add_node;
1283 	ops->tx_done = iwn5000_tx_done;
1284 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1285 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1286 	sc->ntxqs = IWN5000_NTXQUEUES;
1287 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1288 	sc->ndmachnls = IWN5000_NDMACHNLS;
1289 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1290 	sc->rxonsz = IWN5000_RXONSZ;
1291 	sc->schedsz = IWN5000_SCHEDSZ;
1292 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1293 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1294 	sc->fwsz = IWN5000_FWSZ;
1295 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1296 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1297 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1298 
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Attach the interface to 802.11 radiotap.
1304  */
1305 static void
1306 iwn_radiotap_attach(struct iwn_softc *sc)
1307 {
1308 
1309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1310 	ieee80211_radiotap_attach(&sc->sc_ic,
1311 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1312 		IWN_TX_RADIOTAP_PRESENT,
1313 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1314 		IWN_RX_RADIOTAP_PRESENT);
1315 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1316 }
1317 
1318 static void
1319 iwn_sysctlattach(struct iwn_softc *sc)
1320 {
1321 #ifdef	IWN_DEBUG
1322 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1323 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1324 
1325 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1326 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1327 		"control debugging printfs");
1328 #endif
1329 }
1330 
1331 static struct ieee80211vap *
1332 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1333     enum ieee80211_opmode opmode, int flags,
1334     const uint8_t bssid[IEEE80211_ADDR_LEN],
1335     const uint8_t mac[IEEE80211_ADDR_LEN])
1336 {
1337 	struct iwn_softc *sc = ic->ic_softc;
1338 	struct iwn_vap *ivp;
1339 	struct ieee80211vap *vap;
1340 
1341 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1342 		return NULL;
1343 
1344 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1345 	vap = &ivp->iv_vap;
1346 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1347 	ivp->ctx = IWN_RXON_BSS_CTX;
1348 	vap->iv_bmissthreshold = 10;		/* override default */
1349 	/* Override with driver methods. */
1350 	ivp->iv_newstate = vap->iv_newstate;
1351 	vap->iv_newstate = iwn_newstate;
1352 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1353 
1354 	ieee80211_ratectl_init(vap);
1355 	/* Complete setup. */
1356 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1357 	    mac);
1358 	ic->ic_opmode = opmode;
1359 	return vap;
1360 }
1361 
1362 static void
1363 iwn_vap_delete(struct ieee80211vap *vap)
1364 {
1365 	struct iwn_vap *ivp = IWN_VAP(vap);
1366 
1367 	ieee80211_ratectl_deinit(vap);
1368 	ieee80211_vap_detach(vap);
1369 	free(ivp, M_80211_VAP);
1370 }
1371 
1372 static void
1373 iwn_xmit_queue_drain(struct iwn_softc *sc)
1374 {
1375 	struct mbuf *m;
1376 	struct ieee80211_node *ni;
1377 
1378 	IWN_LOCK_ASSERT(sc);
1379 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1380 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1381 		ieee80211_free_node(ni);
1382 		m_freem(m);
1383 	}
1384 }
1385 
1386 static int
1387 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1388 {
1389 
1390 	IWN_LOCK_ASSERT(sc);
1391 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1392 }
1393 
1394 static int
1395 iwn_detach(device_t dev)
1396 {
1397 	struct iwn_softc *sc = device_get_softc(dev);
1398 	int qid;
1399 
1400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1401 
1402 	if (sc->sc_ic.ic_softc != NULL) {
1403 		/* Free the mbuf queue and node references */
1404 		IWN_LOCK(sc);
1405 		iwn_xmit_queue_drain(sc);
1406 		IWN_UNLOCK(sc);
1407 
1408 		iwn_stop(sc);
1409 
1410 		taskqueue_drain_all(sc->sc_tq);
1411 		taskqueue_free(sc->sc_tq);
1412 
1413 		callout_drain(&sc->watchdog_to);
1414 		callout_drain(&sc->scan_timeout);
1415 		callout_drain(&sc->calib_to);
1416 		ieee80211_ifdetach(&sc->sc_ic);
1417 	}
1418 
1419 	/* Uninstall interrupt handler. */
1420 	if (sc->irq != NULL) {
1421 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1422 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1423 		    sc->irq);
1424 		pci_release_msi(dev);
1425 	}
1426 
1427 	/* Free DMA resources. */
1428 	iwn_free_rx_ring(sc, &sc->rxq);
1429 	for (qid = 0; qid < sc->ntxqs; qid++)
1430 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1431 	iwn_free_sched(sc);
1432 	iwn_free_kw(sc);
1433 	if (sc->ict != NULL)
1434 		iwn_free_ict(sc);
1435 	iwn_free_fwmem(sc);
1436 
1437 	if (sc->mem != NULL)
1438 		bus_release_resource(dev, SYS_RES_MEMORY,
1439 		    rman_get_rid(sc->mem), sc->mem);
1440 
1441 	if (sc->sc_cdev) {
1442 		destroy_dev(sc->sc_cdev);
1443 		sc->sc_cdev = NULL;
1444 	}
1445 
1446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1447 	IWN_LOCK_DESTROY(sc);
1448 	return 0;
1449 }
1450 
1451 static int
1452 iwn_shutdown(device_t dev)
1453 {
1454 	struct iwn_softc *sc = device_get_softc(dev);
1455 
1456 	iwn_stop(sc);
1457 	return 0;
1458 }
1459 
1460 static int
1461 iwn_suspend(device_t dev)
1462 {
1463 	struct iwn_softc *sc = device_get_softc(dev);
1464 
1465 	ieee80211_suspend_all(&sc->sc_ic);
1466 	return 0;
1467 }
1468 
1469 static int
1470 iwn_resume(device_t dev)
1471 {
1472 	struct iwn_softc *sc = device_get_softc(dev);
1473 
1474 	/* Clear device-specific "PCI retry timeout" register (41h). */
1475 	pci_write_config(dev, 0x41, 0, 1);
1476 
1477 	ieee80211_resume_all(&sc->sc_ic);
1478 	return 0;
1479 }
1480 
1481 static int
1482 iwn_nic_lock(struct iwn_softc *sc)
1483 {
1484 	int ntries;
1485 
1486 	/* Request exclusive access to NIC. */
1487 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1488 
1489 	/* Spin until we actually get the lock. */
1490 	for (ntries = 0; ntries < 1000; ntries++) {
1491 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1492 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1493 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1494 			return 0;
1495 		DELAY(10);
1496 	}
1497 	return ETIMEDOUT;
1498 }
1499 
1500 static __inline void
1501 iwn_nic_unlock(struct iwn_softc *sc)
1502 {
1503 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1504 }
1505 
1506 static __inline uint32_t
1507 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1508 {
1509 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1510 	IWN_BARRIER_READ_WRITE(sc);
1511 	return IWN_READ(sc, IWN_PRPH_RDATA);
1512 }
1513 
1514 static __inline void
1515 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1516 {
1517 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1518 	IWN_BARRIER_WRITE(sc);
1519 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1520 }
1521 
1522 static __inline void
1523 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1524 {
1525 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1526 }
1527 
1528 static __inline void
1529 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1530 {
1531 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1532 }
1533 
1534 static __inline void
1535 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1536     const uint32_t *data, int count)
1537 {
1538 	for (; count > 0; count--, data++, addr += 4)
1539 		iwn_prph_write(sc, addr, *data);
1540 }
1541 
1542 static __inline uint32_t
1543 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1544 {
1545 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1546 	IWN_BARRIER_READ_WRITE(sc);
1547 	return IWN_READ(sc, IWN_MEM_RDATA);
1548 }
1549 
1550 static __inline void
1551 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1552 {
1553 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1554 	IWN_BARRIER_WRITE(sc);
1555 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1556 }
1557 
1558 static __inline void
1559 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1560 {
1561 	uint32_t tmp;
1562 
1563 	tmp = iwn_mem_read(sc, addr & ~3);
1564 	if (addr & 3)
1565 		tmp = (tmp & 0x0000ffff) | data << 16;
1566 	else
1567 		tmp = (tmp & 0xffff0000) | data;
1568 	iwn_mem_write(sc, addr & ~3, tmp);
1569 }
1570 
1571 static __inline void
1572 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1573     int count)
1574 {
1575 	for (; count > 0; count--, addr += 4)
1576 		*data++ = iwn_mem_read(sc, addr);
1577 }
1578 
1579 static __inline void
1580 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1581     int count)
1582 {
1583 	for (; count > 0; count--, addr += 4)
1584 		iwn_mem_write(sc, addr, val);
1585 }
1586 
1587 static int
1588 iwn_eeprom_lock(struct iwn_softc *sc)
1589 {
1590 	int i, ntries;
1591 
1592 	for (i = 0; i < 100; i++) {
1593 		/* Request exclusive access to EEPROM. */
1594 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1595 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1596 
1597 		/* Spin until we actually get the lock. */
1598 		for (ntries = 0; ntries < 100; ntries++) {
1599 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1600 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1601 				return 0;
1602 			DELAY(10);
1603 		}
1604 	}
1605 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1606 	return ETIMEDOUT;
1607 }
1608 
1609 static __inline void
1610 iwn_eeprom_unlock(struct iwn_softc *sc)
1611 {
1612 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1613 }
1614 
1615 /*
1616  * Initialize access by host to One Time Programmable ROM.
1617  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1618  */
1619 static int
1620 iwn_init_otprom(struct iwn_softc *sc)
1621 {
1622 	uint16_t prev, base, next;
1623 	int count, error;
1624 
1625 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1626 
1627 	/* Wait for clock stabilization before accessing prph. */
1628 	if ((error = iwn_clock_wait(sc)) != 0)
1629 		return error;
1630 
1631 	if ((error = iwn_nic_lock(sc)) != 0)
1632 		return error;
1633 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1634 	DELAY(5);
1635 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1636 	iwn_nic_unlock(sc);
1637 
1638 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1639 	if (sc->base_params->shadow_ram_support) {
1640 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1641 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1642 	}
1643 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1644 	/* Clear ECC status. */
1645 	IWN_SETBITS(sc, IWN_OTP_GP,
1646 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1647 
1648 	/*
1649 	 * Find the block before last block (contains the EEPROM image)
1650 	 * for HW without OTP shadow RAM.
1651 	 */
1652 	if (! sc->base_params->shadow_ram_support) {
1653 		/* Switch to absolute addressing mode. */
1654 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1655 		base = prev = 0;
1656 		for (count = 0; count < sc->base_params->max_ll_items;
1657 		    count++) {
1658 			error = iwn_read_prom_data(sc, base, &next, 2);
1659 			if (error != 0)
1660 				return error;
1661 			if (next == 0)	/* End of linked-list. */
1662 				break;
1663 			prev = base;
1664 			base = le16toh(next);
1665 		}
1666 		if (count == 0 || count == sc->base_params->max_ll_items)
1667 			return EIO;
1668 		/* Skip "next" word. */
1669 		sc->prom_base = prev + 1;
1670 	}
1671 
1672 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1673 
1674 	return 0;
1675 }
1676 
1677 static int
1678 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1679 {
1680 	uint8_t *out = data;
1681 	uint32_t val, tmp;
1682 	int ntries;
1683 
1684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1685 
1686 	addr += sc->prom_base;
1687 	for (; count > 0; count -= 2, addr++) {
1688 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1689 		for (ntries = 0; ntries < 10; ntries++) {
1690 			val = IWN_READ(sc, IWN_EEPROM);
1691 			if (val & IWN_EEPROM_READ_VALID)
1692 				break;
1693 			DELAY(5);
1694 		}
1695 		if (ntries == 10) {
1696 			device_printf(sc->sc_dev,
1697 			    "timeout reading ROM at 0x%x\n", addr);
1698 			return ETIMEDOUT;
1699 		}
1700 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1701 			/* OTPROM, check for ECC errors. */
1702 			tmp = IWN_READ(sc, IWN_OTP_GP);
1703 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1704 				device_printf(sc->sc_dev,
1705 				    "OTPROM ECC error at 0x%x\n", addr);
1706 				return EIO;
1707 			}
1708 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1709 				/* Correctable ECC error, clear bit. */
1710 				IWN_SETBITS(sc, IWN_OTP_GP,
1711 				    IWN_OTP_GP_ECC_CORR_STTS);
1712 			}
1713 		}
1714 		*out++ = val >> 16;
1715 		if (count > 1)
1716 			*out++ = val >> 24;
1717 	}
1718 
1719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1720 
1721 	return 0;
1722 }
1723 
1724 static void
1725 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1726 {
1727 	if (error != 0)
1728 		return;
1729 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1730 	*(bus_addr_t *)arg = segs[0].ds_addr;
1731 }
1732 
1733 static int
1734 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1735     void **kvap, bus_size_t size, bus_size_t alignment)
1736 {
1737 	int error;
1738 
1739 	dma->tag = NULL;
1740 	dma->size = size;
1741 
1742 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1743 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1744 	    1, size, 0, NULL, NULL, &dma->tag);
1745 	if (error != 0)
1746 		goto fail;
1747 
1748 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1749 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1750 	if (error != 0)
1751 		goto fail;
1752 
1753 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1754 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1755 	if (error != 0)
1756 		goto fail;
1757 
1758 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1759 
1760 	if (kvap != NULL)
1761 		*kvap = dma->vaddr;
1762 
1763 	return 0;
1764 
1765 fail:	iwn_dma_contig_free(dma);
1766 	return error;
1767 }
1768 
1769 static void
1770 iwn_dma_contig_free(struct iwn_dma_info *dma)
1771 {
1772 	if (dma->vaddr != NULL) {
1773 		bus_dmamap_sync(dma->tag, dma->map,
1774 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1775 		bus_dmamap_unload(dma->tag, dma->map);
1776 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1777 		dma->vaddr = NULL;
1778 	}
1779 	if (dma->tag != NULL) {
1780 		bus_dma_tag_destroy(dma->tag);
1781 		dma->tag = NULL;
1782 	}
1783 }
1784 
1785 static int
1786 iwn_alloc_sched(struct iwn_softc *sc)
1787 {
1788 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1789 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1790 	    sc->schedsz, 1024);
1791 }
1792 
1793 static void
1794 iwn_free_sched(struct iwn_softc *sc)
1795 {
1796 	iwn_dma_contig_free(&sc->sched_dma);
1797 }
1798 
1799 static int
1800 iwn_alloc_kw(struct iwn_softc *sc)
1801 {
1802 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1803 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1804 }
1805 
1806 static void
1807 iwn_free_kw(struct iwn_softc *sc)
1808 {
1809 	iwn_dma_contig_free(&sc->kw_dma);
1810 }
1811 
1812 static int
1813 iwn_alloc_ict(struct iwn_softc *sc)
1814 {
1815 	/* ICT table must be aligned on a 4KB boundary. */
1816 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1817 	    IWN_ICT_SIZE, 4096);
1818 }
1819 
1820 static void
1821 iwn_free_ict(struct iwn_softc *sc)
1822 {
1823 	iwn_dma_contig_free(&sc->ict_dma);
1824 }
1825 
1826 static int
1827 iwn_alloc_fwmem(struct iwn_softc *sc)
1828 {
1829 	/* Must be aligned on a 16-byte boundary. */
1830 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1831 }
1832 
1833 static void
1834 iwn_free_fwmem(struct iwn_softc *sc)
1835 {
1836 	iwn_dma_contig_free(&sc->fw_dma);
1837 }
1838 
1839 static int
1840 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1841 {
1842 	bus_size_t size;
1843 	int i, error;
1844 
1845 	ring->cur = 0;
1846 
1847 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1848 
1849 	/* Allocate RX descriptors (256-byte aligned). */
1850 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1851 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1852 	    size, 256);
1853 	if (error != 0) {
1854 		device_printf(sc->sc_dev,
1855 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1856 		    __func__, error);
1857 		goto fail;
1858 	}
1859 
1860 	/* Allocate RX status area (16-byte aligned). */
1861 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1862 	    sizeof (struct iwn_rx_status), 16);
1863 	if (error != 0) {
1864 		device_printf(sc->sc_dev,
1865 		    "%s: could not allocate RX status DMA memory, error %d\n",
1866 		    __func__, error);
1867 		goto fail;
1868 	}
1869 
1870 	/* Create RX buffer DMA tag. */
1871 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1872 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1873 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1874 	if (error != 0) {
1875 		device_printf(sc->sc_dev,
1876 		    "%s: could not create RX buf DMA tag, error %d\n",
1877 		    __func__, error);
1878 		goto fail;
1879 	}
1880 
1881 	/*
1882 	 * Allocate and map RX buffers.
1883 	 */
1884 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1885 		struct iwn_rx_data *data = &ring->data[i];
1886 		bus_addr_t paddr;
1887 
1888 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1889 		if (error != 0) {
1890 			device_printf(sc->sc_dev,
1891 			    "%s: could not create RX buf DMA map, error %d\n",
1892 			    __func__, error);
1893 			goto fail;
1894 		}
1895 
1896 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1897 		    IWN_RBUF_SIZE);
1898 		if (data->m == NULL) {
1899 			device_printf(sc->sc_dev,
1900 			    "%s: could not allocate RX mbuf\n", __func__);
1901 			error = ENOBUFS;
1902 			goto fail;
1903 		}
1904 
1905 		error = bus_dmamap_load(ring->data_dmat, data->map,
1906 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1907 		    &paddr, BUS_DMA_NOWAIT);
1908 		if (error != 0 && error != EFBIG) {
1909 			device_printf(sc->sc_dev,
1910 			    "%s: can't map mbuf, error %d\n", __func__,
1911 			    error);
1912 			goto fail;
1913 		}
1914 
1915 		bus_dmamap_sync(ring->data_dmat, data->map,
1916 		    BUS_DMASYNC_PREREAD);
1917 
1918 		/* Set physical address of RX buffer (256-byte aligned). */
1919 		ring->desc[i] = htole32(paddr >> 8);
1920 	}
1921 
1922 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1923 	    BUS_DMASYNC_PREWRITE);
1924 
1925 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1926 
1927 	return 0;
1928 
1929 fail:	iwn_free_rx_ring(sc, ring);
1930 
1931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1932 
1933 	return error;
1934 }
1935 
1936 static void
1937 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1938 {
1939 	int ntries;
1940 
1941 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1942 
1943 	if (iwn_nic_lock(sc) == 0) {
1944 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1945 		for (ntries = 0; ntries < 1000; ntries++) {
1946 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1947 			    IWN_FH_RX_STATUS_IDLE)
1948 				break;
1949 			DELAY(10);
1950 		}
1951 		iwn_nic_unlock(sc);
1952 	}
1953 	ring->cur = 0;
1954 	sc->last_rx_valid = 0;
1955 }
1956 
1957 static void
1958 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1959 {
1960 	int i;
1961 
1962 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1963 
1964 	iwn_dma_contig_free(&ring->desc_dma);
1965 	iwn_dma_contig_free(&ring->stat_dma);
1966 
1967 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1968 		struct iwn_rx_data *data = &ring->data[i];
1969 
1970 		if (data->m != NULL) {
1971 			bus_dmamap_sync(ring->data_dmat, data->map,
1972 			    BUS_DMASYNC_POSTREAD);
1973 			bus_dmamap_unload(ring->data_dmat, data->map);
1974 			m_freem(data->m);
1975 			data->m = NULL;
1976 		}
1977 		if (data->map != NULL)
1978 			bus_dmamap_destroy(ring->data_dmat, data->map);
1979 	}
1980 	if (ring->data_dmat != NULL) {
1981 		bus_dma_tag_destroy(ring->data_dmat);
1982 		ring->data_dmat = NULL;
1983 	}
1984 }
1985 
1986 static int
1987 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1988 {
1989 	bus_addr_t paddr;
1990 	bus_size_t size;
1991 	int i, error;
1992 
1993 	ring->qid = qid;
1994 	ring->queued = 0;
1995 	ring->cur = 0;
1996 
1997 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1998 
1999 	/* Allocate TX descriptors (256-byte aligned). */
2000 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2001 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2002 	    size, 256);
2003 	if (error != 0) {
2004 		device_printf(sc->sc_dev,
2005 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2006 		    __func__, error);
2007 		goto fail;
2008 	}
2009 
2010 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2011 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2012 	    size, 4);
2013 	if (error != 0) {
2014 		device_printf(sc->sc_dev,
2015 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2016 		    __func__, error);
2017 		goto fail;
2018 	}
2019 
2020 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2021 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2022 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2023 	if (error != 0) {
2024 		device_printf(sc->sc_dev,
2025 		    "%s: could not create TX buf DMA tag, error %d\n",
2026 		    __func__, error);
2027 		goto fail;
2028 	}
2029 
2030 	paddr = ring->cmd_dma.paddr;
2031 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2032 		struct iwn_tx_data *data = &ring->data[i];
2033 
2034 		data->cmd_paddr = paddr;
2035 		data->scratch_paddr = paddr + 12;
2036 		paddr += sizeof (struct iwn_tx_cmd);
2037 
2038 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2039 		if (error != 0) {
2040 			device_printf(sc->sc_dev,
2041 			    "%s: could not create TX buf DMA map, error %d\n",
2042 			    __func__, error);
2043 			goto fail;
2044 		}
2045 	}
2046 
2047 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2048 
2049 	return 0;
2050 
2051 fail:	iwn_free_tx_ring(sc, ring);
2052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2053 	return error;
2054 }
2055 
2056 static void
2057 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2058 {
2059 	int i;
2060 
2061 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2062 
2063 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2064 		struct iwn_tx_data *data = &ring->data[i];
2065 
2066 		if (data->m != NULL) {
2067 			bus_dmamap_sync(ring->data_dmat, data->map,
2068 			    BUS_DMASYNC_POSTWRITE);
2069 			bus_dmamap_unload(ring->data_dmat, data->map);
2070 			m_freem(data->m);
2071 			data->m = NULL;
2072 		}
2073 		if (data->ni != NULL) {
2074 			ieee80211_free_node(data->ni);
2075 			data->ni = NULL;
2076 		}
2077 	}
2078 	/* Clear TX descriptors. */
2079 	memset(ring->desc, 0, ring->desc_dma.size);
2080 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2081 	    BUS_DMASYNC_PREWRITE);
2082 	sc->qfullmsk &= ~(1 << ring->qid);
2083 	ring->queued = 0;
2084 	ring->cur = 0;
2085 }
2086 
2087 static void
2088 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2089 {
2090 	int i;
2091 
2092 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2093 
2094 	iwn_dma_contig_free(&ring->desc_dma);
2095 	iwn_dma_contig_free(&ring->cmd_dma);
2096 
2097 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2098 		struct iwn_tx_data *data = &ring->data[i];
2099 
2100 		if (data->m != NULL) {
2101 			bus_dmamap_sync(ring->data_dmat, data->map,
2102 			    BUS_DMASYNC_POSTWRITE);
2103 			bus_dmamap_unload(ring->data_dmat, data->map);
2104 			m_freem(data->m);
2105 		}
2106 		if (data->map != NULL)
2107 			bus_dmamap_destroy(ring->data_dmat, data->map);
2108 	}
2109 	if (ring->data_dmat != NULL) {
2110 		bus_dma_tag_destroy(ring->data_dmat);
2111 		ring->data_dmat = NULL;
2112 	}
2113 }
2114 
2115 static void
2116 iwn5000_ict_reset(struct iwn_softc *sc)
2117 {
2118 	/* Disable interrupts. */
2119 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2120 
2121 	/* Reset ICT table. */
2122 	memset(sc->ict, 0, IWN_ICT_SIZE);
2123 	sc->ict_cur = 0;
2124 
2125 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2126 	    BUS_DMASYNC_PREWRITE);
2127 
2128 	/* Set physical address of ICT table (4KB aligned). */
2129 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2130 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2131 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2132 
2133 	/* Enable periodic RX interrupt. */
2134 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2135 	/* Switch to ICT interrupt mode in driver. */
2136 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2137 
2138 	/* Re-enable interrupts. */
2139 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2140 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2141 }
2142 
2143 static int
2144 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2145 {
2146 	struct iwn_ops *ops = &sc->ops;
2147 	uint16_t val;
2148 	int error;
2149 
2150 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2151 
2152 	/* Check whether adapter has an EEPROM or an OTPROM. */
2153 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2154 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2155 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2156 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2157 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2158 
2159 	/* Adapter has to be powered on for EEPROM access to work. */
2160 	if ((error = iwn_apm_init(sc)) != 0) {
2161 		device_printf(sc->sc_dev,
2162 		    "%s: could not power ON adapter, error %d\n", __func__,
2163 		    error);
2164 		return error;
2165 	}
2166 
2167 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2168 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2169 		return EIO;
2170 	}
2171 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2172 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2173 		    __func__, error);
2174 		return error;
2175 	}
2176 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2177 		if ((error = iwn_init_otprom(sc)) != 0) {
2178 			device_printf(sc->sc_dev,
2179 			    "%s: could not initialize OTPROM, error %d\n",
2180 			    __func__, error);
2181 			return error;
2182 		}
2183 	}
2184 
2185 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2186 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2187 	/* Check if HT support is bonded out. */
2188 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2189 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2190 
2191 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2192 	sc->rfcfg = le16toh(val);
2193 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2194 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2195 	if (sc->txchainmask == 0)
2196 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2197 	if (sc->rxchainmask == 0)
2198 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2199 
2200 	/* Read MAC address. */
2201 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2202 
2203 	/* Read adapter-specific information from EEPROM. */
2204 	ops->read_eeprom(sc);
2205 
2206 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2207 
2208 	iwn_eeprom_unlock(sc);
2209 
2210 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2211 
2212 	return 0;
2213 }
2214 
2215 static void
2216 iwn4965_read_eeprom(struct iwn_softc *sc)
2217 {
2218 	uint32_t addr;
2219 	uint16_t val;
2220 	int i;
2221 
2222 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2223 
2224 	/* Read regulatory domain (4 ASCII characters). */
2225 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2226 
2227 	/* Read the list of authorized channels (20MHz & 40MHz). */
2228 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2229 		addr = iwn4965_regulatory_bands[i];
2230 		iwn_read_eeprom_channels(sc, i, addr);
2231 	}
2232 
2233 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2234 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2235 	sc->maxpwr2GHz = val & 0xff;
2236 	sc->maxpwr5GHz = val >> 8;
2237 	/* Check that EEPROM values are within valid range. */
2238 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2239 		sc->maxpwr5GHz = 38;
2240 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2241 		sc->maxpwr2GHz = 38;
2242 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2243 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2244 
2245 	/* Read samples for each TX power group. */
2246 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2247 	    sizeof sc->bands);
2248 
2249 	/* Read voltage at which samples were taken. */
2250 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2251 	sc->eeprom_voltage = (int16_t)le16toh(val);
2252 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2253 	    sc->eeprom_voltage);
2254 
2255 #ifdef IWN_DEBUG
2256 	/* Print samples. */
2257 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2258 		for (i = 0; i < IWN_NBANDS - 1; i++)
2259 			iwn4965_print_power_group(sc, i);
2260 	}
2261 #endif
2262 
2263 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2264 }
2265 
2266 #ifdef IWN_DEBUG
2267 static void
2268 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2269 {
2270 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2271 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2272 	int j, c;
2273 
2274 	printf("===band %d===\n", i);
2275 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2276 	printf("chan1 num=%d\n", chans[0].num);
2277 	for (c = 0; c < 2; c++) {
2278 		for (j = 0; j < IWN_NSAMPLES; j++) {
2279 			printf("chain %d, sample %d: temp=%d gain=%d "
2280 			    "power=%d pa_det=%d\n", c, j,
2281 			    chans[0].samples[c][j].temp,
2282 			    chans[0].samples[c][j].gain,
2283 			    chans[0].samples[c][j].power,
2284 			    chans[0].samples[c][j].pa_det);
2285 		}
2286 	}
2287 	printf("chan2 num=%d\n", chans[1].num);
2288 	for (c = 0; c < 2; c++) {
2289 		for (j = 0; j < IWN_NSAMPLES; j++) {
2290 			printf("chain %d, sample %d: temp=%d gain=%d "
2291 			    "power=%d pa_det=%d\n", c, j,
2292 			    chans[1].samples[c][j].temp,
2293 			    chans[1].samples[c][j].gain,
2294 			    chans[1].samples[c][j].power,
2295 			    chans[1].samples[c][j].pa_det);
2296 		}
2297 	}
2298 }
2299 #endif
2300 
2301 static void
2302 iwn5000_read_eeprom(struct iwn_softc *sc)
2303 {
2304 	struct iwn5000_eeprom_calib_hdr hdr;
2305 	int32_t volt;
2306 	uint32_t base, addr;
2307 	uint16_t val;
2308 	int i;
2309 
2310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2311 
2312 	/* Read regulatory domain (4 ASCII characters). */
2313 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2314 	base = le16toh(val);
2315 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2316 	    sc->eeprom_domain, 4);
2317 
2318 	/* Read the list of authorized channels (20MHz & 40MHz). */
2319 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2320 		addr =  base + sc->base_params->regulatory_bands[i];
2321 		iwn_read_eeprom_channels(sc, i, addr);
2322 	}
2323 
2324 	/* Read enhanced TX power information for 6000 Series. */
2325 	if (sc->base_params->enhanced_TX_power)
2326 		iwn_read_eeprom_enhinfo(sc);
2327 
2328 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2329 	base = le16toh(val);
2330 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2331 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2332 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2333 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2334 	sc->calib_ver = hdr.version;
2335 
2336 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2337 		sc->eeprom_voltage = le16toh(hdr.volt);
2338 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2339 		sc->eeprom_temp_high=le16toh(val);
2340 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2341 		sc->eeprom_temp = le16toh(val);
2342 	}
2343 
2344 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2345 		/* Compute temperature offset. */
2346 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2347 		sc->eeprom_temp = le16toh(val);
2348 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2349 		volt = le16toh(val);
2350 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2351 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2352 		    sc->eeprom_temp, volt, sc->temp_off);
2353 	} else {
2354 		/* Read crystal calibration. */
2355 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2356 		    &sc->eeprom_crystal, sizeof (uint32_t));
2357 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2358 		    le32toh(sc->eeprom_crystal));
2359 	}
2360 
2361 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2362 
2363 }
2364 
2365 /*
2366  * Translate EEPROM flags to net80211.
2367  */
2368 static uint32_t
2369 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2370 {
2371 	uint32_t nflags;
2372 
2373 	nflags = 0;
2374 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2375 		nflags |= IEEE80211_CHAN_PASSIVE;
2376 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2377 		nflags |= IEEE80211_CHAN_NOADHOC;
2378 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2379 		nflags |= IEEE80211_CHAN_DFS;
2380 		/* XXX apparently IBSS may still be marked */
2381 		nflags |= IEEE80211_CHAN_NOADHOC;
2382 	}
2383 
2384 	return nflags;
2385 }
2386 
2387 static void
2388 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2389     struct ieee80211_channel chans[])
2390 {
2391 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2392 	const struct iwn_chan_band *band = &iwn_bands[n];
2393 	uint8_t bands[IEEE80211_MODE_BYTES];
2394 	uint8_t chan;
2395 	int i, error, nflags;
2396 
2397 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2398 
2399 	memset(bands, 0, sizeof(bands));
2400 	if (n == 0) {
2401 		setbit(bands, IEEE80211_MODE_11B);
2402 		setbit(bands, IEEE80211_MODE_11G);
2403 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2404 			setbit(bands, IEEE80211_MODE_11NG);
2405 	} else {
2406 		setbit(bands, IEEE80211_MODE_11A);
2407 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2408 			setbit(bands, IEEE80211_MODE_11NA);
2409 	}
2410 
2411 	for (i = 0; i < band->nchan; i++) {
2412 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2413 			DPRINTF(sc, IWN_DEBUG_RESET,
2414 			    "skip chan %d flags 0x%x maxpwr %d\n",
2415 			    band->chan[i], channels[i].flags,
2416 			    channels[i].maxpwr);
2417 			continue;
2418 		}
2419 
2420 		chan = band->chan[i];
2421 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2422 		error = ieee80211_add_channel(chans, maxchans, nchans,
2423 		    chan, 0, channels[i].maxpwr, nflags, bands);
2424 		if (error != 0)
2425 			break;
2426 
2427 		/* Save maximum allowed TX power for this channel. */
2428 		/* XXX wrong */
2429 		sc->maxpwr[chan] = channels[i].maxpwr;
2430 
2431 		DPRINTF(sc, IWN_DEBUG_RESET,
2432 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2433 		    channels[i].flags, channels[i].maxpwr);
2434 	}
2435 
2436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2437 
2438 }
2439 
2440 static void
2441 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2442     struct ieee80211_channel chans[])
2443 {
2444 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2445 	const struct iwn_chan_band *band = &iwn_bands[n];
2446 	uint8_t chan;
2447 	int i, error, nflags;
2448 
2449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2450 
2451 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2452 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2453 		return;
2454 	}
2455 
2456 	for (i = 0; i < band->nchan; i++) {
2457 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2458 			DPRINTF(sc, IWN_DEBUG_RESET,
2459 			    "skip chan %d flags 0x%x maxpwr %d\n",
2460 			    band->chan[i], channels[i].flags,
2461 			    channels[i].maxpwr);
2462 			continue;
2463 		}
2464 
2465 		chan = band->chan[i];
2466 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2467 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2468 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2469 		    chan, channels[i].maxpwr, nflags);
2470 		switch (error) {
2471 		case EINVAL:
2472 			device_printf(sc->sc_dev,
2473 			    "%s: no entry for channel %d\n", __func__, chan);
2474 			continue;
2475 		case ENOENT:
2476 			DPRINTF(sc, IWN_DEBUG_RESET,
2477 			    "%s: skip chan %d, extension channel not found\n",
2478 			    __func__, chan);
2479 			continue;
2480 		case ENOBUFS:
2481 			device_printf(sc->sc_dev,
2482 			    "%s: channel table is full!\n", __func__);
2483 			break;
2484 		case 0:
2485 			DPRINTF(sc, IWN_DEBUG_RESET,
2486 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2487 			    chan, channels[i].flags, channels[i].maxpwr);
2488 			/* FALLTHROUGH */
2489 		default:
2490 			break;
2491 		}
2492 	}
2493 
2494 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2495 
2496 }
2497 
2498 static void
2499 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2500 {
2501 	struct ieee80211com *ic = &sc->sc_ic;
2502 
2503 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2504 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2505 
2506 	if (n < 5) {
2507 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2508 		    ic->ic_channels);
2509 	} else {
2510 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2511 		    ic->ic_channels);
2512 	}
2513 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2514 }
2515 
2516 static struct iwn_eeprom_chan *
2517 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2518 {
2519 	int band, chan, i, j;
2520 
2521 	if (IEEE80211_IS_CHAN_HT40(c)) {
2522 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2523 		if (IEEE80211_IS_CHAN_HT40D(c))
2524 			chan = c->ic_extieee;
2525 		else
2526 			chan = c->ic_ieee;
2527 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2528 			if (iwn_bands[band].chan[i] == chan)
2529 				return &sc->eeprom_channels[band][i];
2530 		}
2531 	} else {
2532 		for (j = 0; j < 5; j++) {
2533 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2534 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2535 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2536 					return &sc->eeprom_channels[j][i];
2537 			}
2538 		}
2539 	}
2540 	return NULL;
2541 }
2542 
2543 static void
2544 iwn_getradiocaps(struct ieee80211com *ic,
2545     int maxchans, int *nchans, struct ieee80211_channel chans[])
2546 {
2547 	struct iwn_softc *sc = ic->ic_softc;
2548 	int i;
2549 
2550 	/* Parse the list of authorized channels. */
2551 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2552 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2553 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2554 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2555 }
2556 
2557 /*
2558  * Enforce flags read from EEPROM.
2559  */
2560 static int
2561 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2562     int nchan, struct ieee80211_channel chans[])
2563 {
2564 	struct iwn_softc *sc = ic->ic_softc;
2565 	int i;
2566 
2567 	for (i = 0; i < nchan; i++) {
2568 		struct ieee80211_channel *c = &chans[i];
2569 		struct iwn_eeprom_chan *channel;
2570 
2571 		channel = iwn_find_eeprom_channel(sc, c);
2572 		if (channel == NULL) {
2573 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2574 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2575 			return EINVAL;
2576 		}
2577 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static void
2584 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2585 {
2586 	struct iwn_eeprom_enhinfo enhinfo[35];
2587 	struct ieee80211com *ic = &sc->sc_ic;
2588 	struct ieee80211_channel *c;
2589 	uint16_t val, base;
2590 	int8_t maxpwr;
2591 	uint8_t flags;
2592 	int i, j;
2593 
2594 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2595 
2596 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2597 	base = le16toh(val);
2598 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2599 	    enhinfo, sizeof enhinfo);
2600 
2601 	for (i = 0; i < nitems(enhinfo); i++) {
2602 		flags = enhinfo[i].flags;
2603 		if (!(flags & IWN_ENHINFO_VALID))
2604 			continue;	/* Skip invalid entries. */
2605 
2606 		maxpwr = 0;
2607 		if (sc->txchainmask & IWN_ANT_A)
2608 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2609 		if (sc->txchainmask & IWN_ANT_B)
2610 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2611 		if (sc->txchainmask & IWN_ANT_C)
2612 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2613 		if (sc->ntxchains == 2)
2614 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2615 		else if (sc->ntxchains == 3)
2616 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2617 
2618 		for (j = 0; j < ic->ic_nchans; j++) {
2619 			c = &ic->ic_channels[j];
2620 			if ((flags & IWN_ENHINFO_5GHZ)) {
2621 				if (!IEEE80211_IS_CHAN_A(c))
2622 					continue;
2623 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2624 				if (!IEEE80211_IS_CHAN_G(c))
2625 					continue;
2626 			} else if (!IEEE80211_IS_CHAN_B(c))
2627 				continue;
2628 			if ((flags & IWN_ENHINFO_HT40)) {
2629 				if (!IEEE80211_IS_CHAN_HT40(c))
2630 					continue;
2631 			} else {
2632 				if (IEEE80211_IS_CHAN_HT40(c))
2633 					continue;
2634 			}
2635 			if (enhinfo[i].chan != 0 &&
2636 			    enhinfo[i].chan != c->ic_ieee)
2637 				continue;
2638 
2639 			DPRINTF(sc, IWN_DEBUG_RESET,
2640 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2641 			    c->ic_flags, maxpwr / 2);
2642 			c->ic_maxregpower = maxpwr / 2;
2643 			c->ic_maxpower = maxpwr;
2644 		}
2645 	}
2646 
2647 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2648 
2649 }
2650 
2651 static struct ieee80211_node *
2652 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2653 {
2654 	struct iwn_node *wn;
2655 
2656 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2657 	if (wn == NULL)
2658 		return (NULL);
2659 
2660 	wn->id = IWN_ID_UNDEFINED;
2661 
2662 	return (&wn->ni);
2663 }
2664 
2665 static __inline int
2666 rate2plcp(int rate)
2667 {
2668 	switch (rate & 0xff) {
2669 	case 12:	return 0xd;
2670 	case 18:	return 0xf;
2671 	case 24:	return 0x5;
2672 	case 36:	return 0x7;
2673 	case 48:	return 0x9;
2674 	case 72:	return 0xb;
2675 	case 96:	return 0x1;
2676 	case 108:	return 0x3;
2677 	case 2:		return 10;
2678 	case 4:		return 20;
2679 	case 11:	return 55;
2680 	case 22:	return 110;
2681 	}
2682 	return 0;
2683 }
2684 
2685 static __inline uint8_t
2686 plcp2rate(const uint8_t rate_plcp)
2687 {
2688 	switch (rate_plcp) {
2689 	case 0xd:	return 12;
2690 	case 0xf:	return 18;
2691 	case 0x5:	return 24;
2692 	case 0x7:	return 36;
2693 	case 0x9:	return 48;
2694 	case 0xb:	return 72;
2695 	case 0x1:	return 96;
2696 	case 0x3:	return 108;
2697 	case 10:	return 2;
2698 	case 20:	return 4;
2699 	case 55:	return 11;
2700 	case 110:	return 22;
2701 	default:	return 0;
2702 	}
2703 }
2704 
2705 static int
2706 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2707 {
2708 
2709 	return IWN_LSB(sc->txchainmask);
2710 }
2711 
2712 static int
2713 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2714 {
2715 	int tx;
2716 
2717 	/*
2718 	 * The '2 stream' setup is a bit .. odd.
2719 	 *
2720 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2721 	 * the firmware panics (eg Intel 5100.)
2722 	 *
2723 	 * For NICs that support two antennas, we use ANT_AB.
2724 	 *
2725 	 * For NICs that support three antennas, we use the two that
2726 	 * wasn't the default one.
2727 	 *
2728 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2729 	 * this to only one antenna.
2730 	 */
2731 
2732 	/* Default - transmit on the other antennas */
2733 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2734 
2735 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2736 	if (tx == 0)
2737 		tx = IWN_ANT_AB;
2738 
2739 	/*
2740 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2741 	 * the default chainmask
2742 	 */
2743 	else if (sc->ntxchains == 2)
2744 		tx = sc->txchainmask;
2745 
2746 	return (tx);
2747 }
2748 
2749 
2750 
2751 /*
2752  * Calculate the required PLCP value from the given rate,
2753  * to the given node.
2754  *
2755  * This will take the node configuration (eg 11n, rate table
2756  * setup, etc) into consideration.
2757  */
2758 static uint32_t
2759 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2760     uint8_t rate)
2761 {
2762 	struct ieee80211com *ic = ni->ni_ic;
2763 	uint32_t plcp = 0;
2764 	int ridx;
2765 
2766 	/*
2767 	 * If it's an MCS rate, let's set the plcp correctly
2768 	 * and set the relevant flags based on the node config.
2769 	 */
2770 	if (rate & IEEE80211_RATE_MCS) {
2771 		/*
2772 		 * Set the initial PLCP value to be between 0->31 for
2773 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2774 		 * flag.
2775 		 */
2776 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2777 
2778 		/*
2779 		 * XXX the following should only occur if both
2780 		 * the local configuration _and_ the remote node
2781 		 * advertise these capabilities.  Thus this code
2782 		 * may need fixing!
2783 		 */
2784 
2785 		/*
2786 		 * Set the channel width and guard interval.
2787 		 */
2788 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2789 			plcp |= IWN_RFLAG_HT40;
2790 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2791 				plcp |= IWN_RFLAG_SGI;
2792 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2793 			plcp |= IWN_RFLAG_SGI;
2794 		}
2795 
2796 		/*
2797 		 * Ensure the selected rate matches the link quality
2798 		 * table entries being used.
2799 		 */
2800 		if (rate > 0x8f)
2801 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2802 		else if (rate > 0x87)
2803 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2804 		else
2805 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2806 	} else {
2807 		/*
2808 		 * Set the initial PLCP - fine for both
2809 		 * OFDM and CCK rates.
2810 		 */
2811 		plcp = rate2plcp(rate);
2812 
2813 		/* Set CCK flag if it's CCK */
2814 
2815 		/* XXX It would be nice to have a method
2816 		 * to map the ridx -> phy table entry
2817 		 * so we could just query that, rather than
2818 		 * this hack to check against IWN_RIDX_OFDM6.
2819 		 */
2820 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2821 		    rate & IEEE80211_RATE_VAL);
2822 		if (ridx < IWN_RIDX_OFDM6 &&
2823 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2824 			plcp |= IWN_RFLAG_CCK;
2825 
2826 		/* Set antenna configuration */
2827 		/* XXX TODO: is this the right antenna to use for legacy? */
2828 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2829 	}
2830 
2831 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2832 	    __func__,
2833 	    rate,
2834 	    plcp);
2835 
2836 	return (htole32(plcp));
2837 }
2838 
2839 static void
2840 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2841 {
2842 	/* Doesn't do anything at the moment */
2843 }
2844 
2845 static int
2846 iwn_media_change(struct ifnet *ifp)
2847 {
2848 	int error;
2849 
2850 	error = ieee80211_media_change(ifp);
2851 	/* NB: only the fixed rate can change and that doesn't need a reset */
2852 	return (error == ENETRESET ? 0 : error);
2853 }
2854 
2855 static int
2856 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2857 {
2858 	struct iwn_vap *ivp = IWN_VAP(vap);
2859 	struct ieee80211com *ic = vap->iv_ic;
2860 	struct iwn_softc *sc = ic->ic_softc;
2861 	int error = 0;
2862 
2863 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2864 
2865 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2866 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2867 
2868 	IEEE80211_UNLOCK(ic);
2869 	IWN_LOCK(sc);
2870 	callout_stop(&sc->calib_to);
2871 
2872 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2873 
2874 	switch (nstate) {
2875 	case IEEE80211_S_ASSOC:
2876 		if (vap->iv_state != IEEE80211_S_RUN)
2877 			break;
2878 		/* FALLTHROUGH */
2879 	case IEEE80211_S_AUTH:
2880 		if (vap->iv_state == IEEE80211_S_AUTH)
2881 			break;
2882 
2883 		/*
2884 		 * !AUTH -> AUTH transition requires state reset to handle
2885 		 * reassociations correctly.
2886 		 */
2887 		sc->rxon->associd = 0;
2888 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2889 		sc->calib.state = IWN_CALIB_STATE_INIT;
2890 
2891 		/* Wait until we hear a beacon before we transmit */
2892 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2893 			sc->sc_beacon_wait = 1;
2894 
2895 		if ((error = iwn_auth(sc, vap)) != 0) {
2896 			device_printf(sc->sc_dev,
2897 			    "%s: could not move to auth state\n", __func__);
2898 		}
2899 		break;
2900 
2901 	case IEEE80211_S_RUN:
2902 		/*
2903 		 * RUN -> RUN transition; Just restart the timers.
2904 		 */
2905 		if (vap->iv_state == IEEE80211_S_RUN) {
2906 			sc->calib_cnt = 0;
2907 			break;
2908 		}
2909 
2910 		/* Wait until we hear a beacon before we transmit */
2911 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2912 			sc->sc_beacon_wait = 1;
2913 
2914 		/*
2915 		 * !RUN -> RUN requires setting the association id
2916 		 * which is done with a firmware cmd.  We also defer
2917 		 * starting the timers until that work is done.
2918 		 */
2919 		if ((error = iwn_run(sc, vap)) != 0) {
2920 			device_printf(sc->sc_dev,
2921 			    "%s: could not move to run state\n", __func__);
2922 		}
2923 		break;
2924 
2925 	case IEEE80211_S_INIT:
2926 		sc->calib.state = IWN_CALIB_STATE_INIT;
2927 		/*
2928 		 * Purge the xmit queue so we don't have old frames
2929 		 * during a new association attempt.
2930 		 */
2931 		sc->sc_beacon_wait = 0;
2932 		iwn_xmit_queue_drain(sc);
2933 		break;
2934 
2935 	default:
2936 		break;
2937 	}
2938 	IWN_UNLOCK(sc);
2939 	IEEE80211_LOCK(ic);
2940 	if (error != 0){
2941 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2942 		return error;
2943 	}
2944 
2945 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2946 
2947 	return ivp->iv_newstate(vap, nstate, arg);
2948 }
2949 
2950 static void
2951 iwn_calib_timeout(void *arg)
2952 {
2953 	struct iwn_softc *sc = arg;
2954 
2955 	IWN_LOCK_ASSERT(sc);
2956 
2957 	/* Force automatic TX power calibration every 60 secs. */
2958 	if (++sc->calib_cnt >= 120) {
2959 		uint32_t flags = 0;
2960 
2961 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2962 		    "sending request for statistics");
2963 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2964 		    sizeof flags, 1);
2965 		sc->calib_cnt = 0;
2966 	}
2967 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2968 	    sc);
2969 }
2970 
2971 /*
2972  * Process an RX_PHY firmware notification.  This is usually immediately
2973  * followed by an MPDU_RX_DONE notification.
2974  */
2975 static void
2976 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2977 {
2978 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2979 
2980 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2981 
2982 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2983 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2984 	sc->last_rx_valid = 1;
2985 }
2986 
2987 /*
2988  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2989  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2990  */
2991 static void
2992 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2993     struct iwn_rx_data *data)
2994 {
2995 	struct iwn_ops *ops = &sc->ops;
2996 	struct ieee80211com *ic = &sc->sc_ic;
2997 	struct iwn_rx_ring *ring = &sc->rxq;
2998 	struct ieee80211_frame_min *wh;
2999 	struct ieee80211_node *ni;
3000 	struct mbuf *m, *m1;
3001 	struct iwn_rx_stat *stat;
3002 	caddr_t head;
3003 	bus_addr_t paddr;
3004 	uint32_t flags;
3005 	int error, len, rssi, nf;
3006 
3007 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3008 
3009 	if (desc->type == IWN_MPDU_RX_DONE) {
3010 		/* Check for prior RX_PHY notification. */
3011 		if (!sc->last_rx_valid) {
3012 			DPRINTF(sc, IWN_DEBUG_ANY,
3013 			    "%s: missing RX_PHY\n", __func__);
3014 			return;
3015 		}
3016 		stat = &sc->last_rx_stat;
3017 	} else
3018 		stat = (struct iwn_rx_stat *)(desc + 1);
3019 
3020 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3021 		device_printf(sc->sc_dev,
3022 		    "%s: invalid RX statistic header, len %d\n", __func__,
3023 		    stat->cfg_phy_len);
3024 		return;
3025 	}
3026 	if (desc->type == IWN_MPDU_RX_DONE) {
3027 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3028 		head = (caddr_t)(mpdu + 1);
3029 		len = le16toh(mpdu->len);
3030 	} else {
3031 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3032 		len = le16toh(stat->len);
3033 	}
3034 
3035 	flags = le32toh(*(uint32_t *)(head + len));
3036 
3037 	/* Discard frames with a bad FCS early. */
3038 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3039 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3040 		    __func__, flags);
3041 		counter_u64_add(ic->ic_ierrors, 1);
3042 		return;
3043 	}
3044 	/* Discard frames that are too short. */
3045 	if (len < sizeof (struct ieee80211_frame_ack)) {
3046 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3047 		    __func__, len);
3048 		counter_u64_add(ic->ic_ierrors, 1);
3049 		return;
3050 	}
3051 
3052 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3053 	if (m1 == NULL) {
3054 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3055 		    __func__);
3056 		counter_u64_add(ic->ic_ierrors, 1);
3057 		return;
3058 	}
3059 	bus_dmamap_unload(ring->data_dmat, data->map);
3060 
3061 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3062 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3063 	if (error != 0 && error != EFBIG) {
3064 		device_printf(sc->sc_dev,
3065 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3066 		m_freem(m1);
3067 
3068 		/* Try to reload the old mbuf. */
3069 		error = bus_dmamap_load(ring->data_dmat, data->map,
3070 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3071 		    &paddr, BUS_DMA_NOWAIT);
3072 		if (error != 0 && error != EFBIG) {
3073 			panic("%s: could not load old RX mbuf", __func__);
3074 		}
3075 		bus_dmamap_sync(ring->data_dmat, data->map,
3076 		    BUS_DMASYNC_PREREAD);
3077 		/* Physical address may have changed. */
3078 		ring->desc[ring->cur] = htole32(paddr >> 8);
3079 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3080 		    BUS_DMASYNC_PREWRITE);
3081 		counter_u64_add(ic->ic_ierrors, 1);
3082 		return;
3083 	}
3084 
3085 	bus_dmamap_sync(ring->data_dmat, data->map,
3086 	    BUS_DMASYNC_PREREAD);
3087 
3088 	m = data->m;
3089 	data->m = m1;
3090 	/* Update RX descriptor. */
3091 	ring->desc[ring->cur] = htole32(paddr >> 8);
3092 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3093 	    BUS_DMASYNC_PREWRITE);
3094 
3095 	/* Finalize mbuf. */
3096 	m->m_data = head;
3097 	m->m_pkthdr.len = m->m_len = len;
3098 
3099 	/* Grab a reference to the source node. */
3100 	wh = mtod(m, struct ieee80211_frame_min *);
3101 	if (len >= sizeof(struct ieee80211_frame_min))
3102 		ni = ieee80211_find_rxnode(ic, wh);
3103 	else
3104 		ni = NULL;
3105 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3106 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3107 
3108 	rssi = ops->get_rssi(sc, stat);
3109 
3110 	if (ieee80211_radiotap_active(ic)) {
3111 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3112 		uint32_t rate = le32toh(stat->rate);
3113 
3114 		tap->wr_flags = 0;
3115 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3116 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3117 		tap->wr_dbm_antsignal = (int8_t)rssi;
3118 		tap->wr_dbm_antnoise = (int8_t)nf;
3119 		tap->wr_tsft = stat->tstamp;
3120 		if (rate & IWN_RFLAG_MCS) {
3121 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3122 			tap->wr_rate |= IEEE80211_RATE_MCS;
3123 		} else
3124 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3125 	}
3126 
3127 	/*
3128 	 * If it's a beacon and we're waiting, then do the
3129 	 * wakeup.  This should unblock raw_xmit/start.
3130 	 */
3131 	if (sc->sc_beacon_wait) {
3132 		uint8_t type, subtype;
3133 		/* NB: Re-assign wh */
3134 		wh = mtod(m, struct ieee80211_frame_min *);
3135 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3136 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3137 		/*
3138 		 * This assumes at this point we've received our own
3139 		 * beacon.
3140 		 */
3141 		DPRINTF(sc, IWN_DEBUG_TRACE,
3142 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3143 		    __func__, type, subtype);
3144 		if (type == IEEE80211_FC0_TYPE_MGT &&
3145 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3146 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3147 			    "%s: waking things up\n", __func__);
3148 			/* queue taskqueue to transmit! */
3149 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3150 		}
3151 	}
3152 
3153 	IWN_UNLOCK(sc);
3154 
3155 	/* Send the frame to the 802.11 layer. */
3156 	if (ni != NULL) {
3157 		if (ni->ni_flags & IEEE80211_NODE_HT)
3158 			m->m_flags |= M_AMPDU;
3159 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3160 		/* Node is no longer needed. */
3161 		ieee80211_free_node(ni);
3162 	} else
3163 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3164 
3165 	IWN_LOCK(sc);
3166 
3167 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3168 
3169 }
3170 
3171 /* Process an incoming Compressed BlockAck. */
3172 static void
3173 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3174 {
3175 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3176 	struct iwn_ops *ops = &sc->ops;
3177 	struct iwn_node *wn;
3178 	struct ieee80211_node *ni;
3179 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3180 	struct iwn_tx_ring *txq;
3181 	struct iwn_tx_data *txdata;
3182 	struct ieee80211_tx_ampdu *tap;
3183 	struct mbuf *m;
3184 	uint64_t bitmap;
3185 	uint16_t ssn;
3186 	uint8_t tid;
3187 	int i, lastidx, qid, *res, shift;
3188 	int tx_ok = 0, tx_err = 0;
3189 
3190 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3191 
3192 	qid = le16toh(ba->qid);
3193 	txq = &sc->txq[ba->qid];
3194 	tap = sc->qid2tap[ba->qid];
3195 	tid = tap->txa_tid;
3196 	wn = (void *)tap->txa_ni;
3197 
3198 	res = NULL;
3199 	ssn = 0;
3200 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3201 		res = tap->txa_private;
3202 		ssn = tap->txa_start & 0xfff;
3203 	}
3204 
3205 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3206 		txdata = &txq->data[txq->read];
3207 
3208 		/* Unmap and free mbuf. */
3209 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3210 		    BUS_DMASYNC_POSTWRITE);
3211 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3212 		m = txdata->m, txdata->m = NULL;
3213 		ni = txdata->ni, txdata->ni = NULL;
3214 
3215 		KASSERT(ni != NULL, ("no node"));
3216 		KASSERT(m != NULL, ("no mbuf"));
3217 
3218 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3219 		ieee80211_tx_complete(ni, m, 1);
3220 
3221 		txq->queued--;
3222 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3223 	}
3224 
3225 	if (txq->queued == 0 && res != NULL) {
3226 		iwn_nic_lock(sc);
3227 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3228 		iwn_nic_unlock(sc);
3229 		sc->qid2tap[qid] = NULL;
3230 		free(res, M_DEVBUF);
3231 		return;
3232 	}
3233 
3234 	if (wn->agg[tid].bitmap == 0)
3235 		return;
3236 
3237 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3238 	if (shift < 0)
3239 		shift += 0x100;
3240 
3241 	if (wn->agg[tid].nframes > (64 - shift))
3242 		return;
3243 
3244 	/*
3245 	 * Walk the bitmap and calculate how many successful and failed
3246 	 * attempts are made.
3247 	 *
3248 	 * Yes, the rate control code doesn't know these are A-MPDU
3249 	 * subframes and that it's okay to fail some of these.
3250 	 */
3251 	ni = tap->txa_ni;
3252 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3253 	for (i = 0; bitmap; i++) {
3254 		txs->flags = 0;		/* XXX TODO */
3255 		if ((bitmap & 1) == 0) {
3256 			tx_err ++;
3257 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3258 		} else {
3259 			tx_ok ++;
3260 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3261 		}
3262 		ieee80211_ratectl_tx_complete(ni, txs);
3263 		bitmap >>= 1;
3264 	}
3265 
3266 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3267 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3268 
3269 }
3270 
3271 /*
3272  * Process a CALIBRATION_RESULT notification sent by the initialization
3273  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3274  */
3275 static void
3276 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3277 {
3278 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3279 	int len, idx = -1;
3280 
3281 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3282 
3283 	/* Runtime firmware should not send such a notification. */
3284 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3285 		DPRINTF(sc, IWN_DEBUG_TRACE,
3286 		    "->%s received after calib done\n", __func__);
3287 		return;
3288 	}
3289 	len = (le32toh(desc->len) & 0x3fff) - 4;
3290 
3291 	switch (calib->code) {
3292 	case IWN5000_PHY_CALIB_DC:
3293 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3294 			idx = 0;
3295 		break;
3296 	case IWN5000_PHY_CALIB_LO:
3297 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3298 			idx = 1;
3299 		break;
3300 	case IWN5000_PHY_CALIB_TX_IQ:
3301 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3302 			idx = 2;
3303 		break;
3304 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3305 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3306 			idx = 3;
3307 		break;
3308 	case IWN5000_PHY_CALIB_BASE_BAND:
3309 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3310 			idx = 4;
3311 		break;
3312 	}
3313 	if (idx == -1)	/* Ignore other results. */
3314 		return;
3315 
3316 	/* Save calibration result. */
3317 	if (sc->calibcmd[idx].buf != NULL)
3318 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3319 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3320 	if (sc->calibcmd[idx].buf == NULL) {
3321 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3322 		    "not enough memory for calibration result %d\n",
3323 		    calib->code);
3324 		return;
3325 	}
3326 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3327 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3328 	sc->calibcmd[idx].len = len;
3329 	memcpy(sc->calibcmd[idx].buf, calib, len);
3330 }
3331 
3332 static void
3333 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3334     struct iwn_stats *stats, int len)
3335 {
3336 	struct iwn_stats_bt *stats_bt;
3337 	struct iwn_stats *lstats;
3338 
3339 	/*
3340 	 * First - check whether the length is the bluetooth or normal.
3341 	 *
3342 	 * If it's normal - just copy it and bump out.
3343 	 * Otherwise we have to convert things.
3344 	 */
3345 
3346 	if (len == sizeof(struct iwn_stats) + 4) {
3347 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3348 		sc->last_stat_valid = 1;
3349 		return;
3350 	}
3351 
3352 	/*
3353 	 * If it's not the bluetooth size - log, then just copy.
3354 	 */
3355 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3356 		DPRINTF(sc, IWN_DEBUG_STATS,
3357 		    "%s: size of rx statistics (%d) not an expected size!\n",
3358 		    __func__,
3359 		    len);
3360 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3361 		sc->last_stat_valid = 1;
3362 		return;
3363 	}
3364 
3365 	/*
3366 	 * Ok. Time to copy.
3367 	 */
3368 	stats_bt = (struct iwn_stats_bt *) stats;
3369 	lstats = &sc->last_stat;
3370 
3371 	/* flags */
3372 	lstats->flags = stats_bt->flags;
3373 	/* rx_bt */
3374 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3375 	    sizeof(struct iwn_rx_phy_stats));
3376 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3377 	    sizeof(struct iwn_rx_phy_stats));
3378 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3379 	    sizeof(struct iwn_rx_general_stats));
3380 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3381 	    sizeof(struct iwn_rx_ht_phy_stats));
3382 	/* tx */
3383 	memcpy(&lstats->tx, &stats_bt->tx,
3384 	    sizeof(struct iwn_tx_stats));
3385 	/* general */
3386 	memcpy(&lstats->general, &stats_bt->general,
3387 	    sizeof(struct iwn_general_stats));
3388 
3389 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3390 	sc->last_stat_valid = 1;
3391 }
3392 
3393 /*
3394  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3395  * The latter is sent by the firmware after each received beacon.
3396  */
3397 static void
3398 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3399 {
3400 	struct iwn_ops *ops = &sc->ops;
3401 	struct ieee80211com *ic = &sc->sc_ic;
3402 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3403 	struct iwn_calib_state *calib = &sc->calib;
3404 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3405 	struct iwn_stats *lstats;
3406 	int temp;
3407 
3408 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3409 
3410 	/* Ignore statistics received during a scan. */
3411 	if (vap->iv_state != IEEE80211_S_RUN ||
3412 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3413 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3414 	    __func__);
3415 		return;
3416 	}
3417 
3418 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3419 	    "%s: received statistics, cmd %d, len %d\n",
3420 	    __func__, desc->type, le16toh(desc->len));
3421 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3422 
3423 	/*
3424 	 * Collect/track general statistics for reporting.
3425 	 *
3426 	 * This takes care of ensuring that the bluetooth sized message
3427 	 * will be correctly converted to the legacy sized message.
3428 	 */
3429 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3430 
3431 	/*
3432 	 * And now, let's take a reference of it to use!
3433 	 */
3434 	lstats = &sc->last_stat;
3435 
3436 	/* Test if temperature has changed. */
3437 	if (lstats->general.temp != sc->rawtemp) {
3438 		/* Convert "raw" temperature to degC. */
3439 		sc->rawtemp = stats->general.temp;
3440 		temp = ops->get_temperature(sc);
3441 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3442 		    __func__, temp);
3443 
3444 		/* Update TX power if need be (4965AGN only). */
3445 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3446 			iwn4965_power_calibration(sc, temp);
3447 	}
3448 
3449 	if (desc->type != IWN_BEACON_STATISTICS)
3450 		return;	/* Reply to a statistics request. */
3451 
3452 	sc->noise = iwn_get_noise(&lstats->rx.general);
3453 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3454 
3455 	/* Test that RSSI and noise are present in stats report. */
3456 	if (le32toh(lstats->rx.general.flags) != 1) {
3457 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3458 		    "received statistics without RSSI");
3459 		return;
3460 	}
3461 
3462 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3463 		iwn_collect_noise(sc, &lstats->rx.general);
3464 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3465 		iwn_tune_sensitivity(sc, &lstats->rx);
3466 		/*
3467 		 * XXX TODO: Only run the RX recovery if we're associated!
3468 		 */
3469 		iwn_check_rx_recovery(sc, lstats);
3470 		iwn_save_stats_counters(sc, lstats);
3471 	}
3472 
3473 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3474 }
3475 
3476 /*
3477  * Save the relevant statistic counters for the next calibration
3478  * pass.
3479  */
3480 static void
3481 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3482 {
3483 	struct iwn_calib_state *calib = &sc->calib;
3484 
3485 	/* Save counters values for next call. */
3486 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3487 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3488 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3489 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3490 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3491 
3492 	/* Last time we received these tick values */
3493 	sc->last_calib_ticks = ticks;
3494 }
3495 
3496 /*
3497  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3498  * and 5000 adapters have different incompatible TX status formats.
3499  */
3500 static void
3501 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3502     struct iwn_rx_data *data)
3503 {
3504 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3505 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3506 
3507 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3508 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3509 	    __func__, desc->qid, desc->idx,
3510 	    stat->rtsfailcnt,
3511 	    stat->ackfailcnt,
3512 	    stat->btkillcnt,
3513 	    stat->rate, le16toh(stat->duration),
3514 	    le32toh(stat->status));
3515 
3516 	if (qid >= sc->firstaggqueue) {
3517 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3518 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3519 	} else {
3520 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3521 		    le32toh(stat->status) & 0xff);
3522 	}
3523 }
3524 
3525 static void
3526 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3527     struct iwn_rx_data *data)
3528 {
3529 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3530 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3531 
3532 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3533 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3534 	    __func__, desc->qid, desc->idx,
3535 	    stat->rtsfailcnt,
3536 	    stat->ackfailcnt,
3537 	    stat->btkillcnt,
3538 	    stat->rate, le16toh(stat->duration),
3539 	    le32toh(stat->status));
3540 
3541 #ifdef notyet
3542 	/* Reset TX scheduler slot. */
3543 	iwn5000_reset_sched(sc, qid, desc->idx);
3544 #endif
3545 
3546 	if (qid >= sc->firstaggqueue) {
3547 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3548 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3549 	} else {
3550 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3551 		    le16toh(stat->status) & 0xff);
3552 	}
3553 }
3554 
3555 /*
3556  * Adapter-independent backend for TX_DONE firmware notifications.
3557  */
3558 static void
3559 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3560     int ackfailcnt, uint8_t status)
3561 {
3562 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3563 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3564 	struct iwn_tx_data *data = &ring->data[desc->idx];
3565 	struct mbuf *m;
3566 	struct ieee80211_node *ni;
3567 
3568 	KASSERT(data->ni != NULL, ("no node"));
3569 
3570 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3571 
3572 	/* Unmap and free mbuf. */
3573 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3574 	bus_dmamap_unload(ring->data_dmat, data->map);
3575 	m = data->m, data->m = NULL;
3576 	ni = data->ni, data->ni = NULL;
3577 
3578 	/*
3579 	 * Update rate control statistics for the node.
3580 	 */
3581 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3582 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3583 	txs->short_retries = rtsfailcnt;
3584 	txs->long_retries = ackfailcnt;
3585 	if (!(status & IWN_TX_FAIL))
3586 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3587 	else {
3588 		switch (status) {
3589 		case IWN_TX_FAIL_SHORT_LIMIT:
3590 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3591 			break;
3592 		case IWN_TX_FAIL_LONG_LIMIT:
3593 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3594 			break;
3595 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3596 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3597 			break;
3598 		default:
3599 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3600 			break;
3601 		}
3602 	}
3603 	ieee80211_ratectl_tx_complete(ni, txs);
3604 
3605 	/*
3606 	 * Channels marked for "radar" require traffic to be received
3607 	 * to unlock before we can transmit.  Until traffic is seen
3608 	 * any attempt to transmit is returned immediately with status
3609 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3610 	 * happen on first authenticate after scanning.  To workaround
3611 	 * this we ignore a failure of this sort in AUTH state so the
3612 	 * 802.11 layer will fall back to using a timeout to wait for
3613 	 * the AUTH reply.  This allows the firmware time to see
3614 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3615 	 * unclear why the firmware does not maintain state for
3616 	 * channels recently visited as this would allow immediate
3617 	 * use of the channel after a scan (where we see traffic).
3618 	 */
3619 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3620 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3621 		ieee80211_tx_complete(ni, m, 0);
3622 	else
3623 		ieee80211_tx_complete(ni, m,
3624 		    (status & IWN_TX_FAIL) != 0);
3625 
3626 	sc->sc_tx_timer = 0;
3627 	if (--ring->queued < IWN_TX_RING_LOMARK)
3628 		sc->qfullmsk &= ~(1 << ring->qid);
3629 
3630 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3631 }
3632 
3633 /*
3634  * Process a "command done" firmware notification.  This is where we wakeup
3635  * processes waiting for a synchronous command completion.
3636  */
3637 static void
3638 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3639 {
3640 	struct iwn_tx_ring *ring;
3641 	struct iwn_tx_data *data;
3642 	int cmd_queue_num;
3643 
3644 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3645 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3646 	else
3647 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3648 
3649 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3650 		return;	/* Not a command ack. */
3651 
3652 	ring = &sc->txq[cmd_queue_num];
3653 	data = &ring->data[desc->idx];
3654 
3655 	/* If the command was mapped in an mbuf, free it. */
3656 	if (data->m != NULL) {
3657 		bus_dmamap_sync(ring->data_dmat, data->map,
3658 		    BUS_DMASYNC_POSTWRITE);
3659 		bus_dmamap_unload(ring->data_dmat, data->map);
3660 		m_freem(data->m);
3661 		data->m = NULL;
3662 	}
3663 	wakeup(&ring->desc[desc->idx]);
3664 }
3665 
3666 static void
3667 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3668     int rtsfailcnt, int ackfailcnt, void *stat)
3669 {
3670 	struct iwn_ops *ops = &sc->ops;
3671 	struct iwn_tx_ring *ring = &sc->txq[qid];
3672 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3673 	struct iwn_tx_data *data;
3674 	struct mbuf *m;
3675 	struct iwn_node *wn;
3676 	struct ieee80211_node *ni;
3677 	struct ieee80211_tx_ampdu *tap;
3678 	uint64_t bitmap;
3679 	uint32_t *status = stat;
3680 	uint16_t *aggstatus = stat;
3681 	uint16_t ssn;
3682 	uint8_t tid;
3683 	int bit, i, lastidx, *res, seqno, shift, start;
3684 
3685 	/* XXX TODO: status is le16 field! Grr */
3686 
3687 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3688 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3689 	    __func__,
3690 	    nframes,
3691 	    *status);
3692 
3693 	tap = sc->qid2tap[qid];
3694 	tid = tap->txa_tid;
3695 	wn = (void *)tap->txa_ni;
3696 	ni = tap->txa_ni;
3697 
3698 	/*
3699 	 * XXX TODO: ACK and RTS failures would be nice here!
3700 	 */
3701 
3702 	/*
3703 	 * A-MPDU single frame status - if we failed to transmit it
3704 	 * in A-MPDU, then it may be a permanent failure.
3705 	 *
3706 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3707 	 * there's some permanent and temporary failures that may be
3708 	 * handled differently.
3709 	 */
3710 	if (nframes == 1) {
3711 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3712 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3713 		txs->short_retries = rtsfailcnt;
3714 		txs->long_retries = ackfailcnt;
3715 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3716 #ifdef	NOT_YET
3717 			printf("ieee80211_send_bar()\n");
3718 #endif
3719 			/*
3720 			 * If we completely fail a transmit, make sure a
3721 			 * notification is pushed up to the rate control
3722 			 * layer.
3723 			 */
3724 			/* XXX */
3725 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3726 		} else {
3727 			/*
3728 			 * If nframes=1, then we won't be getting a BA for
3729 			 * this frame.  Ensure that we correctly update the
3730 			 * rate control code with how many retries were
3731 			 * needed to send it.
3732 			 */
3733 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3734 		}
3735 		ieee80211_ratectl_tx_complete(ni, txs);
3736 	}
3737 
3738 	bitmap = 0;
3739 	start = idx;
3740 	for (i = 0; i < nframes; i++) {
3741 		if (le16toh(aggstatus[i * 2]) & 0xc)
3742 			continue;
3743 
3744 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3745 		bit = idx - start;
3746 		shift = 0;
3747 		if (bit >= 64) {
3748 			shift = 0x100 - idx + start;
3749 			bit = 0;
3750 			start = idx;
3751 		} else if (bit <= -64)
3752 			bit = 0x100 - start + idx;
3753 		else if (bit < 0) {
3754 			shift = start - idx;
3755 			start = idx;
3756 			bit = 0;
3757 		}
3758 		bitmap = bitmap << shift;
3759 		bitmap |= 1ULL << bit;
3760 	}
3761 	tap = sc->qid2tap[qid];
3762 	tid = tap->txa_tid;
3763 	wn = (void *)tap->txa_ni;
3764 	wn->agg[tid].bitmap = bitmap;
3765 	wn->agg[tid].startidx = start;
3766 	wn->agg[tid].nframes = nframes;
3767 
3768 	res = NULL;
3769 	ssn = 0;
3770 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3771 		res = tap->txa_private;
3772 		ssn = tap->txa_start & 0xfff;
3773 	}
3774 
3775 	/* This is going nframes DWORDS into the descriptor? */
3776 	seqno = le32toh(*(status + nframes)) & 0xfff;
3777 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3778 		data = &ring->data[ring->read];
3779 
3780 		/* Unmap and free mbuf. */
3781 		bus_dmamap_sync(ring->data_dmat, data->map,
3782 		    BUS_DMASYNC_POSTWRITE);
3783 		bus_dmamap_unload(ring->data_dmat, data->map);
3784 		m = data->m, data->m = NULL;
3785 		ni = data->ni, data->ni = NULL;
3786 
3787 		KASSERT(ni != NULL, ("no node"));
3788 		KASSERT(m != NULL, ("no mbuf"));
3789 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3790 		ieee80211_tx_complete(ni, m, 1);
3791 
3792 		ring->queued--;
3793 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3794 	}
3795 
3796 	if (ring->queued == 0 && res != NULL) {
3797 		iwn_nic_lock(sc);
3798 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3799 		iwn_nic_unlock(sc);
3800 		sc->qid2tap[qid] = NULL;
3801 		free(res, M_DEVBUF);
3802 		return;
3803 	}
3804 
3805 	sc->sc_tx_timer = 0;
3806 	if (ring->queued < IWN_TX_RING_LOMARK)
3807 		sc->qfullmsk &= ~(1 << ring->qid);
3808 
3809 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3810 }
3811 
3812 /*
3813  * Process an INT_FH_RX or INT_SW_RX interrupt.
3814  */
3815 static void
3816 iwn_notif_intr(struct iwn_softc *sc)
3817 {
3818 	struct iwn_ops *ops = &sc->ops;
3819 	struct ieee80211com *ic = &sc->sc_ic;
3820 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3821 	uint16_t hw;
3822 
3823 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3824 	    BUS_DMASYNC_POSTREAD);
3825 
3826 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3827 	while (sc->rxq.cur != hw) {
3828 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3829 		struct iwn_rx_desc *desc;
3830 
3831 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3832 		    BUS_DMASYNC_POSTREAD);
3833 		desc = mtod(data->m, struct iwn_rx_desc *);
3834 
3835 		DPRINTF(sc, IWN_DEBUG_RECV,
3836 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3837 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
3838 		    desc->idx, desc->flags, desc->type,
3839 		    iwn_intr_str(desc->type), le16toh(desc->len));
3840 
3841 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3842 			iwn_cmd_done(sc, desc);
3843 
3844 		switch (desc->type) {
3845 		case IWN_RX_PHY:
3846 			iwn_rx_phy(sc, desc);
3847 			break;
3848 
3849 		case IWN_RX_DONE:		/* 4965AGN only. */
3850 		case IWN_MPDU_RX_DONE:
3851 			/* An 802.11 frame has been received. */
3852 			iwn_rx_done(sc, desc, data);
3853 			break;
3854 
3855 		case IWN_RX_COMPRESSED_BA:
3856 			/* A Compressed BlockAck has been received. */
3857 			iwn_rx_compressed_ba(sc, desc);
3858 			break;
3859 
3860 		case IWN_TX_DONE:
3861 			/* An 802.11 frame has been transmitted. */
3862 			ops->tx_done(sc, desc, data);
3863 			break;
3864 
3865 		case IWN_RX_STATISTICS:
3866 		case IWN_BEACON_STATISTICS:
3867 			iwn_rx_statistics(sc, desc);
3868 			break;
3869 
3870 		case IWN_BEACON_MISSED:
3871 		{
3872 			struct iwn_beacon_missed *miss =
3873 			    (struct iwn_beacon_missed *)(desc + 1);
3874 			int misses;
3875 
3876 			misses = le32toh(miss->consecutive);
3877 
3878 			DPRINTF(sc, IWN_DEBUG_STATE,
3879 			    "%s: beacons missed %d/%d\n", __func__,
3880 			    misses, le32toh(miss->total));
3881 			/*
3882 			 * If more than 5 consecutive beacons are missed,
3883 			 * reinitialize the sensitivity state machine.
3884 			 */
3885 			if (vap->iv_state == IEEE80211_S_RUN &&
3886 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3887 				if (misses > 5)
3888 					(void)iwn_init_sensitivity(sc);
3889 				if (misses >= vap->iv_bmissthreshold) {
3890 					IWN_UNLOCK(sc);
3891 					ieee80211_beacon_miss(ic);
3892 					IWN_LOCK(sc);
3893 				}
3894 			}
3895 			break;
3896 		}
3897 		case IWN_UC_READY:
3898 		{
3899 			struct iwn_ucode_info *uc =
3900 			    (struct iwn_ucode_info *)(desc + 1);
3901 
3902 			/* The microcontroller is ready. */
3903 			DPRINTF(sc, IWN_DEBUG_RESET,
3904 			    "microcode alive notification version=%d.%d "
3905 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3906 			    uc->subtype, le32toh(uc->valid));
3907 
3908 			if (le32toh(uc->valid) != 1) {
3909 				device_printf(sc->sc_dev,
3910 				    "microcontroller initialization failed");
3911 				break;
3912 			}
3913 			if (uc->subtype == IWN_UCODE_INIT) {
3914 				/* Save microcontroller report. */
3915 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3916 			}
3917 			/* Save the address of the error log in SRAM. */
3918 			sc->errptr = le32toh(uc->errptr);
3919 			break;
3920 		}
3921 #ifdef IWN_DEBUG
3922 		case IWN_STATE_CHANGED:
3923 		{
3924 			/*
3925 			 * State change allows hardware switch change to be
3926 			 * noted. However, we handle this in iwn_intr as we
3927 			 * get both the enable/disble intr.
3928 			 */
3929 			uint32_t *status = (uint32_t *)(desc + 1);
3930 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3931 			    "state changed to %x\n",
3932 			    le32toh(*status));
3933 			break;
3934 		}
3935 		case IWN_START_SCAN:
3936 		{
3937 			struct iwn_start_scan *scan =
3938 			    (struct iwn_start_scan *)(desc + 1);
3939 			DPRINTF(sc, IWN_DEBUG_ANY,
3940 			    "%s: scanning channel %d status %x\n",
3941 			    __func__, scan->chan, le32toh(scan->status));
3942 			break;
3943 		}
3944 #endif
3945 		case IWN_STOP_SCAN:
3946 		{
3947 #ifdef	IWN_DEBUG
3948 			struct iwn_stop_scan *scan =
3949 			    (struct iwn_stop_scan *)(desc + 1);
3950 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3951 			    "scan finished nchan=%d status=%d chan=%d\n",
3952 			    scan->nchan, scan->status, scan->chan);
3953 #endif
3954 			sc->sc_is_scanning = 0;
3955 			callout_stop(&sc->scan_timeout);
3956 			IWN_UNLOCK(sc);
3957 			ieee80211_scan_next(vap);
3958 			IWN_LOCK(sc);
3959 			break;
3960 		}
3961 		case IWN5000_CALIBRATION_RESULT:
3962 			iwn5000_rx_calib_results(sc, desc);
3963 			break;
3964 
3965 		case IWN5000_CALIBRATION_DONE:
3966 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3967 			wakeup(sc);
3968 			break;
3969 		}
3970 
3971 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3972 	}
3973 
3974 	/* Tell the firmware what we have processed. */
3975 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3976 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3977 }
3978 
3979 /*
3980  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3981  * from power-down sleep mode.
3982  */
3983 static void
3984 iwn_wakeup_intr(struct iwn_softc *sc)
3985 {
3986 	int qid;
3987 
3988 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3989 	    __func__);
3990 
3991 	/* Wakeup RX and TX rings. */
3992 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3993 	for (qid = 0; qid < sc->ntxqs; qid++) {
3994 		struct iwn_tx_ring *ring = &sc->txq[qid];
3995 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3996 	}
3997 }
3998 
3999 static void
4000 iwn_rftoggle_task(void *arg, int npending)
4001 {
4002 	struct iwn_softc *sc = arg;
4003 	struct ieee80211com *ic = &sc->sc_ic;
4004 	uint32_t tmp;
4005 
4006 	IWN_LOCK(sc);
4007 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4008 	IWN_UNLOCK(sc);
4009 
4010 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4011 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4012 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4013 		ieee80211_suspend_all(ic);
4014 
4015 		/* Enable interrupts to get RF toggle notification. */
4016 		IWN_LOCK(sc);
4017 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4018 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4019 		IWN_UNLOCK(sc);
4020 	} else
4021 		ieee80211_resume_all(ic);
4022 }
4023 
4024 /*
4025  * Dump the error log of the firmware when a firmware panic occurs.  Although
4026  * we can't debug the firmware because it is neither open source nor free, it
4027  * can help us to identify certain classes of problems.
4028  */
4029 static void
4030 iwn_fatal_intr(struct iwn_softc *sc)
4031 {
4032 	struct iwn_fw_dump dump;
4033 	int i;
4034 
4035 	IWN_LOCK_ASSERT(sc);
4036 
4037 	/* Force a complete recalibration on next init. */
4038 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4039 
4040 	/* Check that the error log address is valid. */
4041 	if (sc->errptr < IWN_FW_DATA_BASE ||
4042 	    sc->errptr + sizeof (dump) >
4043 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4044 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4045 		    sc->errptr);
4046 		return;
4047 	}
4048 	if (iwn_nic_lock(sc) != 0) {
4049 		printf("%s: could not read firmware error log\n", __func__);
4050 		return;
4051 	}
4052 	/* Read firmware error log from SRAM. */
4053 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4054 	    sizeof (dump) / sizeof (uint32_t));
4055 	iwn_nic_unlock(sc);
4056 
4057 	if (dump.valid == 0) {
4058 		printf("%s: firmware error log is empty\n", __func__);
4059 		return;
4060 	}
4061 	printf("firmware error log:\n");
4062 	printf("  error type      = \"%s\" (0x%08X)\n",
4063 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4064 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4065 	    dump.id);
4066 	printf("  program counter = 0x%08X\n", dump.pc);
4067 	printf("  source line     = 0x%08X\n", dump.src_line);
4068 	printf("  error data      = 0x%08X%08X\n",
4069 	    dump.error_data[0], dump.error_data[1]);
4070 	printf("  branch link     = 0x%08X%08X\n",
4071 	    dump.branch_link[0], dump.branch_link[1]);
4072 	printf("  interrupt link  = 0x%08X%08X\n",
4073 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4074 	printf("  time            = %u\n", dump.time[0]);
4075 
4076 	/* Dump driver status (TX and RX rings) while we're here. */
4077 	printf("driver status:\n");
4078 	for (i = 0; i < sc->ntxqs; i++) {
4079 		struct iwn_tx_ring *ring = &sc->txq[i];
4080 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4081 		    i, ring->qid, ring->cur, ring->queued);
4082 	}
4083 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4084 }
4085 
4086 static void
4087 iwn_intr(void *arg)
4088 {
4089 	struct iwn_softc *sc = arg;
4090 	uint32_t r1, r2, tmp;
4091 
4092 	IWN_LOCK(sc);
4093 
4094 	/* Disable interrupts. */
4095 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4096 
4097 	/* Read interrupts from ICT (fast) or from registers (slow). */
4098 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4099 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4100 		    BUS_DMASYNC_POSTREAD);
4101 		tmp = 0;
4102 		while (sc->ict[sc->ict_cur] != 0) {
4103 			tmp |= sc->ict[sc->ict_cur];
4104 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4105 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4106 		}
4107 		tmp = le32toh(tmp);
4108 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4109 			tmp = 0;
4110 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4111 			tmp |= 0x8000;
4112 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4113 		r2 = 0;	/* Unused. */
4114 	} else {
4115 		r1 = IWN_READ(sc, IWN_INT);
4116 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4117 			IWN_UNLOCK(sc);
4118 			return;	/* Hardware gone! */
4119 		}
4120 		r2 = IWN_READ(sc, IWN_FH_INT);
4121 	}
4122 
4123 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4124     , r1, r2);
4125 
4126 	if (r1 == 0 && r2 == 0)
4127 		goto done;	/* Interrupt not for us. */
4128 
4129 	/* Acknowledge interrupts. */
4130 	IWN_WRITE(sc, IWN_INT, r1);
4131 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4132 		IWN_WRITE(sc, IWN_FH_INT, r2);
4133 
4134 	if (r1 & IWN_INT_RF_TOGGLED) {
4135 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4136 		goto done;
4137 	}
4138 	if (r1 & IWN_INT_CT_REACHED) {
4139 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4140 		    __func__);
4141 	}
4142 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4143 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4144 		    __func__);
4145 #ifdef	IWN_DEBUG
4146 		iwn_debug_register(sc);
4147 #endif
4148 		/* Dump firmware error log and stop. */
4149 		iwn_fatal_intr(sc);
4150 
4151 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4152 		goto done;
4153 	}
4154 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4155 	    (r2 & IWN_FH_INT_RX)) {
4156 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4157 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4158 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4159 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4160 			    IWN_INT_PERIODIC_DIS);
4161 			iwn_notif_intr(sc);
4162 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4163 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4164 				    IWN_INT_PERIODIC_ENA);
4165 			}
4166 		} else
4167 			iwn_notif_intr(sc);
4168 	}
4169 
4170 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4171 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4172 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4173 		wakeup(sc);	/* FH DMA transfer completed. */
4174 	}
4175 
4176 	if (r1 & IWN_INT_ALIVE)
4177 		wakeup(sc);	/* Firmware is alive. */
4178 
4179 	if (r1 & IWN_INT_WAKEUP)
4180 		iwn_wakeup_intr(sc);
4181 
4182 done:
4183 	/* Re-enable interrupts. */
4184 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4185 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4186 
4187 	IWN_UNLOCK(sc);
4188 }
4189 
4190 /*
4191  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4192  * 5000 adapters use a slightly different format).
4193  */
4194 static void
4195 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4196     uint16_t len)
4197 {
4198 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4199 
4200 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4201 
4202 	*w = htole16(len + 8);
4203 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4204 	    BUS_DMASYNC_PREWRITE);
4205 	if (idx < IWN_SCHED_WINSZ) {
4206 		*(w + IWN_TX_RING_COUNT) = *w;
4207 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4208 		    BUS_DMASYNC_PREWRITE);
4209 	}
4210 }
4211 
4212 static void
4213 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4214     uint16_t len)
4215 {
4216 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4217 
4218 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4219 
4220 	*w = htole16(id << 12 | (len + 8));
4221 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4222 	    BUS_DMASYNC_PREWRITE);
4223 	if (idx < IWN_SCHED_WINSZ) {
4224 		*(w + IWN_TX_RING_COUNT) = *w;
4225 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4226 		    BUS_DMASYNC_PREWRITE);
4227 	}
4228 }
4229 
4230 #ifdef notyet
4231 static void
4232 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4233 {
4234 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4235 
4236 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4237 
4238 	*w = (*w & htole16(0xf000)) | htole16(1);
4239 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4240 	    BUS_DMASYNC_PREWRITE);
4241 	if (idx < IWN_SCHED_WINSZ) {
4242 		*(w + IWN_TX_RING_COUNT) = *w;
4243 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4244 		    BUS_DMASYNC_PREWRITE);
4245 	}
4246 }
4247 #endif
4248 
4249 /*
4250  * Check whether OFDM 11g protection will be enabled for the given rate.
4251  *
4252  * The original driver code only enabled protection for OFDM rates.
4253  * It didn't check to see whether it was operating in 11a or 11bg mode.
4254  */
4255 static int
4256 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4257     struct ieee80211vap *vap, uint8_t rate)
4258 {
4259 	struct ieee80211com *ic = vap->iv_ic;
4260 
4261 	/*
4262 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4263 	 * 11bg protection.
4264 	 */
4265 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4266 		return (0);
4267 	}
4268 
4269 	/*
4270 	 * 11bg protection not enabled? Then don't use it.
4271 	 */
4272 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4273 		return (0);
4274 
4275 	/*
4276 	 * If it's an 11n rate - no protection.
4277 	 * We'll do it via a specific 11n check.
4278 	 */
4279 	if (rate & IEEE80211_RATE_MCS) {
4280 		return (0);
4281 	}
4282 
4283 	/*
4284 	 * Do a rate table lookup.  If the PHY is CCK,
4285 	 * don't do protection.
4286 	 */
4287 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4288 		return (0);
4289 
4290 	/*
4291 	 * Yup, enable protection.
4292 	 */
4293 	return (1);
4294 }
4295 
4296 /*
4297  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4298  * the link quality table that reflects this particular entry.
4299  */
4300 static int
4301 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4302     uint8_t rate)
4303 {
4304 	struct ieee80211_rateset *rs;
4305 	int is_11n;
4306 	int nr;
4307 	int i;
4308 	uint8_t cmp_rate;
4309 
4310 	/*
4311 	 * Figure out if we're using 11n or not here.
4312 	 */
4313 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4314 		is_11n = 1;
4315 	else
4316 		is_11n = 0;
4317 
4318 	/*
4319 	 * Use the correct rate table.
4320 	 */
4321 	if (is_11n) {
4322 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4323 		nr = ni->ni_htrates.rs_nrates;
4324 	} else {
4325 		rs = &ni->ni_rates;
4326 		nr = rs->rs_nrates;
4327 	}
4328 
4329 	/*
4330 	 * Find the relevant link quality entry in the table.
4331 	 */
4332 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4333 		/*
4334 		 * The link quality table index starts at 0 == highest
4335 		 * rate, so we walk the rate table backwards.
4336 		 */
4337 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4338 		if (rate & IEEE80211_RATE_MCS)
4339 			cmp_rate |= IEEE80211_RATE_MCS;
4340 
4341 #if 0
4342 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4343 		    __func__,
4344 		    i,
4345 		    nr,
4346 		    rate,
4347 		    cmp_rate);
4348 #endif
4349 
4350 		if (cmp_rate == rate)
4351 			return (i);
4352 	}
4353 
4354 	/* Failed? Start at the end */
4355 	return (IWN_MAX_TX_RETRIES - 1);
4356 }
4357 
4358 static int
4359 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4360 {
4361 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4362 	struct ieee80211vap *vap = ni->ni_vap;
4363 	struct ieee80211com *ic = ni->ni_ic;
4364 	struct iwn_node *wn = (void *)ni;
4365 	struct iwn_tx_ring *ring;
4366 	struct iwn_tx_cmd *cmd;
4367 	struct iwn_cmd_data *tx;
4368 	struct ieee80211_frame *wh;
4369 	struct ieee80211_key *k = NULL;
4370 	uint32_t flags;
4371 	uint16_t seqno, qos;
4372 	uint8_t tid, type;
4373 	int ac, totlen, rate;
4374 
4375 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4376 
4377 	IWN_LOCK_ASSERT(sc);
4378 
4379 	wh = mtod(m, struct ieee80211_frame *);
4380 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4381 
4382 	/* Select EDCA Access Category and TX ring for this frame. */
4383 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4384 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4385 		tid = qos & IEEE80211_QOS_TID;
4386 	} else {
4387 		qos = 0;
4388 		tid = 0;
4389 	}
4390 
4391 	/* Choose a TX rate index. */
4392 	if (type == IEEE80211_FC0_TYPE_MGT ||
4393 	    type == IEEE80211_FC0_TYPE_CTL ||
4394 	    (m->m_flags & M_EAPOL) != 0)
4395 		rate = tp->mgmtrate;
4396 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4397 		rate = tp->mcastrate;
4398 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4399 		rate = tp->ucastrate;
4400 	else {
4401 		/* XXX pass pktlen */
4402 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4403 		rate = ni->ni_txrate;
4404 	}
4405 
4406 	/*
4407 	 * XXX TODO: Group addressed frames aren't aggregated and must
4408 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4409 	 * assigned from net80211.
4410 	 */
4411 
4412 	ac = M_WME_GETAC(m);
4413 	seqno = ni->ni_txseqs[tid];
4414 	if (m->m_flags & M_AMPDU_MPDU) {
4415 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4416 
4417 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4418 			return (EINVAL);
4419 		}
4420 
4421 		/*
4422 		 * Queue this frame to the hardware ring that we've
4423 		 * negotiated AMPDU TX on.
4424 		 *
4425 		 * Note that the sequence number must match the TX slot
4426 		 * being used!
4427 		 */
4428 		ac = *(int *)tap->txa_private;
4429 		*(uint16_t *)wh->i_seq =
4430 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4431 		ni->ni_txseqs[tid]++;
4432 	}
4433 
4434 	/* Encrypt the frame if need be. */
4435 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4436 		/* Retrieve key for TX. */
4437 		k = ieee80211_crypto_encap(ni, m);
4438 		if (k == NULL) {
4439 			return ENOBUFS;
4440 		}
4441 		/* 802.11 header may have moved. */
4442 		wh = mtod(m, struct ieee80211_frame *);
4443 	}
4444 	totlen = m->m_pkthdr.len;
4445 
4446 	if (ieee80211_radiotap_active_vap(vap)) {
4447 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4448 
4449 		tap->wt_flags = 0;
4450 		tap->wt_rate = rate;
4451 		if (k != NULL)
4452 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4453 
4454 		ieee80211_radiotap_tx(vap, m);
4455 	}
4456 
4457 	flags = 0;
4458 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4459 		/* Unicast frame, check if an ACK is expected. */
4460 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4461 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4462 			flags |= IWN_TX_NEED_ACK;
4463 	}
4464 	if ((wh->i_fc[0] &
4465 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4466 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4467 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4468 
4469 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4470 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4471 
4472 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4473 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4474 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4475 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4476 			flags |= IWN_TX_NEED_RTS;
4477 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4478 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4479 				flags |= IWN_TX_NEED_CTS;
4480 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4481 				flags |= IWN_TX_NEED_RTS;
4482 		} else if ((rate & IEEE80211_RATE_MCS) &&
4483 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4484 			flags |= IWN_TX_NEED_RTS;
4485 		}
4486 
4487 		/* XXX HT protection? */
4488 
4489 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4490 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4491 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4492 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4493 				flags |= IWN_TX_NEED_PROTECTION;
4494 			} else
4495 				flags |= IWN_TX_FULL_TXOP;
4496 		}
4497 	}
4498 
4499 	ring = &sc->txq[ac];
4500 	if ((m->m_flags & M_AMPDU_MPDU) != 0 &&
4501 	    (seqno % 256) != ring->cur) {
4502 		device_printf(sc->sc_dev,
4503 		    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4504 		    __func__,
4505 		    m,
4506 		    seqno,
4507 		    seqno % 256,
4508 		    ring->cur);
4509 	}
4510 
4511 	/* Prepare TX firmware command. */
4512 	cmd = &ring->cmd[ring->cur];
4513 	tx = (struct iwn_cmd_data *)cmd->data;
4514 
4515 	/* NB: No need to clear tx, all fields are reinitialized here. */
4516 	tx->scratch = 0;	/* clear "scratch" area */
4517 
4518 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4519 	    type != IEEE80211_FC0_TYPE_DATA)
4520 		tx->id = sc->broadcast_id;
4521 	else
4522 		tx->id = wn->id;
4523 
4524 	if (type == IEEE80211_FC0_TYPE_MGT) {
4525 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4526 
4527 		/* Tell HW to set timestamp in probe responses. */
4528 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4529 			flags |= IWN_TX_INSERT_TSTAMP;
4530 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4531 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4532 			tx->timeout = htole16(3);
4533 		else
4534 			tx->timeout = htole16(2);
4535 	} else
4536 		tx->timeout = htole16(0);
4537 
4538 	if (tx->id == sc->broadcast_id) {
4539 		/* Group or management frame. */
4540 		tx->linkq = 0;
4541 	} else {
4542 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4543 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4544 	}
4545 
4546 	tx->tid = tid;
4547 	tx->rts_ntries = 60;
4548 	tx->data_ntries = 15;
4549 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4550 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4551 	tx->security = 0;
4552 	tx->flags = htole32(flags);
4553 
4554 	return (iwn_tx_cmd(sc, m, ni, ring));
4555 }
4556 
4557 static int
4558 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4559     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4560 {
4561 	struct ieee80211vap *vap = ni->ni_vap;
4562 	struct iwn_tx_cmd *cmd;
4563 	struct iwn_cmd_data *tx;
4564 	struct ieee80211_frame *wh;
4565 	struct iwn_tx_ring *ring;
4566 	uint32_t flags;
4567 	int ac, rate;
4568 	uint8_t type;
4569 
4570 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4571 
4572 	IWN_LOCK_ASSERT(sc);
4573 
4574 	wh = mtod(m, struct ieee80211_frame *);
4575 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4576 
4577 	ac = params->ibp_pri & 3;
4578 
4579 	/* Choose a TX rate. */
4580 	rate = params->ibp_rate0;
4581 
4582 	flags = 0;
4583 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4584 		flags |= IWN_TX_NEED_ACK;
4585 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4586 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4587 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4588 			flags &= ~IWN_TX_NEED_RTS;
4589 			flags |= IWN_TX_NEED_PROTECTION;
4590 		} else
4591 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4592 	}
4593 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4594 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4595 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4596 			flags &= ~IWN_TX_NEED_CTS;
4597 			flags |= IWN_TX_NEED_PROTECTION;
4598 		} else
4599 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4600 	}
4601 
4602 	if (ieee80211_radiotap_active_vap(vap)) {
4603 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4604 
4605 		tap->wt_flags = 0;
4606 		tap->wt_rate = rate;
4607 
4608 		ieee80211_radiotap_tx(vap, m);
4609 	}
4610 
4611 	ring = &sc->txq[ac];
4612 	cmd = &ring->cmd[ring->cur];
4613 
4614 	tx = (struct iwn_cmd_data *)cmd->data;
4615 	/* NB: No need to clear tx, all fields are reinitialized here. */
4616 	tx->scratch = 0;	/* clear "scratch" area */
4617 
4618 	if (type == IEEE80211_FC0_TYPE_MGT) {
4619 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4620 
4621 		/* Tell HW to set timestamp in probe responses. */
4622 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4623 			flags |= IWN_TX_INSERT_TSTAMP;
4624 
4625 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4626 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4627 			tx->timeout = htole16(3);
4628 		else
4629 			tx->timeout = htole16(2);
4630 	} else
4631 		tx->timeout = htole16(0);
4632 
4633 	tx->tid = 0;
4634 	tx->id = sc->broadcast_id;
4635 	tx->rts_ntries = params->ibp_try1;
4636 	tx->data_ntries = params->ibp_try0;
4637 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4638 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4639 	tx->security = 0;
4640 	tx->flags = htole32(flags);
4641 
4642 	/* Group or management frame. */
4643 	tx->linkq = 0;
4644 
4645 	return (iwn_tx_cmd(sc, m, ni, ring));
4646 }
4647 
4648 static int
4649 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4650     struct iwn_tx_ring *ring)
4651 {
4652 	struct iwn_ops *ops = &sc->ops;
4653 	struct iwn_tx_cmd *cmd;
4654 	struct iwn_cmd_data *tx;
4655 	struct ieee80211_frame *wh;
4656 	struct iwn_tx_desc *desc;
4657 	struct iwn_tx_data *data;
4658 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4659 	struct mbuf *m1;
4660 	u_int hdrlen;
4661 	int totlen, error, pad, nsegs = 0, i;
4662 
4663 	wh = mtod(m, struct ieee80211_frame *);
4664 	hdrlen = ieee80211_anyhdrsize(wh);
4665 	totlen = m->m_pkthdr.len;
4666 
4667 	desc = &ring->desc[ring->cur];
4668 	data = &ring->data[ring->cur];
4669 
4670 	/* Prepare TX firmware command. */
4671 	cmd = &ring->cmd[ring->cur];
4672 	cmd->code = IWN_CMD_TX_DATA;
4673 	cmd->flags = 0;
4674 	cmd->qid = ring->qid;
4675 	cmd->idx = ring->cur;
4676 
4677 	tx = (struct iwn_cmd_data *)cmd->data;
4678 	tx->len = htole16(totlen);
4679 
4680 	/* Set physical address of "scratch area". */
4681 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4682 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4683 	if (hdrlen & 3) {
4684 		/* First segment length must be a multiple of 4. */
4685 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4686 		pad = 4 - (hdrlen & 3);
4687 	} else
4688 		pad = 0;
4689 
4690 	/* Copy 802.11 header in TX command. */
4691 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4692 
4693 	/* Trim 802.11 header. */
4694 	m_adj(m, hdrlen);
4695 
4696 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4697 	    &nsegs, BUS_DMA_NOWAIT);
4698 	if (error != 0) {
4699 		if (error != EFBIG) {
4700 			device_printf(sc->sc_dev,
4701 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4702 			return error;
4703 		}
4704 		/* Too many DMA segments, linearize mbuf. */
4705 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4706 		if (m1 == NULL) {
4707 			device_printf(sc->sc_dev,
4708 			    "%s: could not defrag mbuf\n", __func__);
4709 			return ENOBUFS;
4710 		}
4711 		m = m1;
4712 
4713 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4714 		    segs, &nsegs, BUS_DMA_NOWAIT);
4715 		if (error != 0) {
4716 			/* XXX fix this */
4717 			/*
4718 			 * NB: Do not return error;
4719 			 * original mbuf does not exist anymore.
4720 			 */
4721 			device_printf(sc->sc_dev,
4722 			    "%s: can't map mbuf (error %d)\n",
4723 			    __func__, error);
4724 			if_inc_counter(ni->ni_vap->iv_ifp,
4725 			    IFCOUNTER_OERRORS, 1);
4726 			ieee80211_free_node(ni);
4727 			m_freem(m);
4728 			return 0;
4729 		}
4730 	}
4731 
4732 	data->m = m;
4733 	data->ni = ni;
4734 
4735 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4736 	    "plcp %d\n",
4737 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4738 
4739 	/* Fill TX descriptor. */
4740 	desc->nsegs = 1;
4741 	if (m->m_len != 0)
4742 		desc->nsegs += nsegs;
4743 	/* First DMA segment is used by the TX command. */
4744 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4745 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4746 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4747 	/* Other DMA segments are for data payload. */
4748 	seg = &segs[0];
4749 	for (i = 1; i <= nsegs; i++) {
4750 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4751 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4752 		    seg->ds_len << 4);
4753 		seg++;
4754 	}
4755 
4756 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4757 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4758 	    BUS_DMASYNC_PREWRITE);
4759 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4760 	    BUS_DMASYNC_PREWRITE);
4761 
4762 	/* Update TX scheduler. */
4763 	if (ring->qid >= sc->firstaggqueue)
4764 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4765 
4766 	/* Kick TX ring. */
4767 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4768 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4769 
4770 	/* Mark TX ring as full if we reach a certain threshold. */
4771 	if (++ring->queued > IWN_TX_RING_HIMARK)
4772 		sc->qfullmsk |= 1 << ring->qid;
4773 
4774 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4775 
4776 	return 0;
4777 }
4778 
4779 static void
4780 iwn_xmit_task(void *arg0, int pending)
4781 {
4782 	struct iwn_softc *sc = arg0;
4783 	struct ieee80211_node *ni;
4784 	struct mbuf *m;
4785 	int error;
4786 	struct ieee80211_bpf_params p;
4787 	int have_p;
4788 
4789 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4790 
4791 	IWN_LOCK(sc);
4792 	/*
4793 	 * Dequeue frames, attempt to transmit,
4794 	 * then disable beaconwait when we're done.
4795 	 */
4796 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4797 		have_p = 0;
4798 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4799 
4800 		/* Get xmit params if appropriate */
4801 		if (ieee80211_get_xmit_params(m, &p) == 0)
4802 			have_p = 1;
4803 
4804 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4805 		    __func__, m, have_p);
4806 
4807 		/* If we have xmit params, use them */
4808 		if (have_p)
4809 			error = iwn_tx_data_raw(sc, m, ni, &p);
4810 		else
4811 			error = iwn_tx_data(sc, m, ni);
4812 
4813 		if (error != 0) {
4814 			if_inc_counter(ni->ni_vap->iv_ifp,
4815 			    IFCOUNTER_OERRORS, 1);
4816 			ieee80211_free_node(ni);
4817 			m_freem(m);
4818 		}
4819 	}
4820 
4821 	sc->sc_beacon_wait = 0;
4822 	IWN_UNLOCK(sc);
4823 }
4824 
4825 /*
4826  * raw frame xmit - free node/reference if failed.
4827  */
4828 static int
4829 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4830     const struct ieee80211_bpf_params *params)
4831 {
4832 	struct ieee80211com *ic = ni->ni_ic;
4833 	struct iwn_softc *sc = ic->ic_softc;
4834 	int error = 0;
4835 
4836 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4837 
4838 	IWN_LOCK(sc);
4839 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4840 		m_freem(m);
4841 		IWN_UNLOCK(sc);
4842 		return (ENETDOWN);
4843 	}
4844 
4845 	/* queue frame if we have to */
4846 	if (sc->sc_beacon_wait) {
4847 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4848 			m_freem(m);
4849 			IWN_UNLOCK(sc);
4850 			return (ENOBUFS);
4851 		}
4852 		/* Queued, so just return OK */
4853 		IWN_UNLOCK(sc);
4854 		return (0);
4855 	}
4856 
4857 	if (params == NULL) {
4858 		/*
4859 		 * Legacy path; interpret frame contents to decide
4860 		 * precisely how to send the frame.
4861 		 */
4862 		error = iwn_tx_data(sc, m, ni);
4863 	} else {
4864 		/*
4865 		 * Caller supplied explicit parameters to use in
4866 		 * sending the frame.
4867 		 */
4868 		error = iwn_tx_data_raw(sc, m, ni, params);
4869 	}
4870 	if (error == 0)
4871 		sc->sc_tx_timer = 5;
4872 	else
4873 		m_freem(m);
4874 
4875 	IWN_UNLOCK(sc);
4876 
4877 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4878 
4879 	return (error);
4880 }
4881 
4882 /*
4883  * transmit - don't free mbuf if failed; don't free node ref if failed.
4884  */
4885 static int
4886 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4887 {
4888 	struct iwn_softc *sc = ic->ic_softc;
4889 	struct ieee80211_node *ni;
4890 	int error;
4891 
4892 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4893 
4894 	IWN_LOCK(sc);
4895 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4896 		IWN_UNLOCK(sc);
4897 		return (ENXIO);
4898 	}
4899 
4900 	if (sc->qfullmsk) {
4901 		IWN_UNLOCK(sc);
4902 		return (ENOBUFS);
4903 	}
4904 
4905 	error = iwn_tx_data(sc, m, ni);
4906 	if (!error)
4907 		sc->sc_tx_timer = 5;
4908 	IWN_UNLOCK(sc);
4909 	return (error);
4910 }
4911 
4912 static void
4913 iwn_scan_timeout(void *arg)
4914 {
4915 	struct iwn_softc *sc = arg;
4916 	struct ieee80211com *ic = &sc->sc_ic;
4917 
4918 	ic_printf(ic, "scan timeout\n");
4919 	ieee80211_restart_all(ic);
4920 }
4921 
4922 static void
4923 iwn_watchdog(void *arg)
4924 {
4925 	struct iwn_softc *sc = arg;
4926 	struct ieee80211com *ic = &sc->sc_ic;
4927 
4928 	IWN_LOCK_ASSERT(sc);
4929 
4930 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4931 
4932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4933 
4934 	if (sc->sc_tx_timer > 0) {
4935 		if (--sc->sc_tx_timer == 0) {
4936 			ic_printf(ic, "device timeout\n");
4937 			ieee80211_restart_all(ic);
4938 			return;
4939 		}
4940 	}
4941 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4942 }
4943 
4944 static int
4945 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
4946 {
4947 
4948 	return (0);
4949 }
4950 
4951 static int
4952 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
4953 {
4954 
4955 	return (0);
4956 }
4957 
4958 static int
4959 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
4960     struct thread *td)
4961 {
4962 	int rc;
4963 	struct iwn_softc *sc = dev->si_drv1;
4964 	struct iwn_ioctl_data *d;
4965 
4966 	rc = priv_check(td, PRIV_DRIVER);
4967 	if (rc != 0)
4968 		return (0);
4969 
4970 	switch (cmd) {
4971 	case SIOCGIWNSTATS:
4972 		d = (struct iwn_ioctl_data *) data;
4973 		IWN_LOCK(sc);
4974 		/* XXX validate permissions/memory/etc? */
4975 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
4976 		IWN_UNLOCK(sc);
4977 		break;
4978 	case SIOCZIWNSTATS:
4979 		IWN_LOCK(sc);
4980 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4981 		IWN_UNLOCK(sc);
4982 		break;
4983 	default:
4984 		rc = EINVAL;
4985 		break;
4986 	}
4987 	return (rc);
4988 }
4989 
4990 static int
4991 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4992 {
4993 
4994 	return (ENOTTY);
4995 }
4996 
4997 static void
4998 iwn_parent(struct ieee80211com *ic)
4999 {
5000 	struct iwn_softc *sc = ic->ic_softc;
5001 	struct ieee80211vap *vap;
5002 	int error;
5003 
5004 	if (ic->ic_nrunning > 0) {
5005 		error = iwn_init(sc);
5006 
5007 		switch (error) {
5008 		case 0:
5009 			ieee80211_start_all(ic);
5010 			break;
5011 		case 1:
5012 			/* radio is disabled via RFkill switch */
5013 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5014 			break;
5015 		default:
5016 			vap = TAILQ_FIRST(&ic->ic_vaps);
5017 			if (vap != NULL)
5018 				ieee80211_stop(vap);
5019 			break;
5020 		}
5021 	} else
5022 		iwn_stop(sc);
5023 }
5024 
5025 /*
5026  * Send a command to the firmware.
5027  */
5028 static int
5029 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5030 {
5031 	struct iwn_tx_ring *ring;
5032 	struct iwn_tx_desc *desc;
5033 	struct iwn_tx_data *data;
5034 	struct iwn_tx_cmd *cmd;
5035 	struct mbuf *m;
5036 	bus_addr_t paddr;
5037 	int totlen, error;
5038 	int cmd_queue_num;
5039 
5040 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5041 
5042 	if (async == 0)
5043 		IWN_LOCK_ASSERT(sc);
5044 
5045 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5046 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5047 	else
5048 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5049 
5050 	ring = &sc->txq[cmd_queue_num];
5051 	desc = &ring->desc[ring->cur];
5052 	data = &ring->data[ring->cur];
5053 	totlen = 4 + size;
5054 
5055 	if (size > sizeof cmd->data) {
5056 		/* Command is too large to fit in a descriptor. */
5057 		if (totlen > MCLBYTES)
5058 			return EINVAL;
5059 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5060 		if (m == NULL)
5061 			return ENOMEM;
5062 		cmd = mtod(m, struct iwn_tx_cmd *);
5063 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5064 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5065 		if (error != 0) {
5066 			m_freem(m);
5067 			return error;
5068 		}
5069 		data->m = m;
5070 	} else {
5071 		cmd = &ring->cmd[ring->cur];
5072 		paddr = data->cmd_paddr;
5073 	}
5074 
5075 	cmd->code = code;
5076 	cmd->flags = 0;
5077 	cmd->qid = ring->qid;
5078 	cmd->idx = ring->cur;
5079 	memcpy(cmd->data, buf, size);
5080 
5081 	desc->nsegs = 1;
5082 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5083 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5084 
5085 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5086 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5087 	    cmd->flags, cmd->qid, cmd->idx);
5088 
5089 	if (size > sizeof cmd->data) {
5090 		bus_dmamap_sync(ring->data_dmat, data->map,
5091 		    BUS_DMASYNC_PREWRITE);
5092 	} else {
5093 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5094 		    BUS_DMASYNC_PREWRITE);
5095 	}
5096 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5097 	    BUS_DMASYNC_PREWRITE);
5098 
5099 	/* Kick command ring. */
5100 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5101 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5102 
5103 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5104 
5105 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5106 }
5107 
5108 static int
5109 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5110 {
5111 	struct iwn4965_node_info hnode;
5112 	caddr_t src, dst;
5113 
5114 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5115 
5116 	/*
5117 	 * We use the node structure for 5000 Series internally (it is
5118 	 * a superset of the one for 4965AGN). We thus copy the common
5119 	 * fields before sending the command.
5120 	 */
5121 	src = (caddr_t)node;
5122 	dst = (caddr_t)&hnode;
5123 	memcpy(dst, src, 48);
5124 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5125 	memcpy(dst + 48, src + 72, 20);
5126 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5127 }
5128 
5129 static int
5130 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5131 {
5132 
5133 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5134 
5135 	/* Direct mapping. */
5136 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5137 }
5138 
5139 static int
5140 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5141 {
5142 	struct iwn_node *wn = (void *)ni;
5143 	struct ieee80211_rateset *rs;
5144 	struct iwn_cmd_link_quality linkq;
5145 	int i, rate, txrate;
5146 	int is_11n;
5147 
5148 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5149 
5150 	memset(&linkq, 0, sizeof linkq);
5151 	linkq.id = wn->id;
5152 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5153 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5154 
5155 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5156 	linkq.ampdu_threshold = 3;
5157 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5158 
5159 	DPRINTF(sc, IWN_DEBUG_XMIT,
5160 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5161 	    __func__,
5162 	    linkq.antmsk_1stream,
5163 	    linkq.antmsk_2stream,
5164 	    sc->ntxchains);
5165 
5166 	/*
5167 	 * Are we using 11n rates? Ensure the channel is
5168 	 * 11n _and_ we have some 11n rates, or don't
5169 	 * try.
5170 	 */
5171 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5172 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5173 		is_11n = 1;
5174 	} else {
5175 		rs = &ni->ni_rates;
5176 		is_11n = 0;
5177 	}
5178 
5179 	/* Start at highest available bit-rate. */
5180 	/*
5181 	 * XXX this is all very dirty!
5182 	 */
5183 	if (is_11n)
5184 		txrate = ni->ni_htrates.rs_nrates - 1;
5185 	else
5186 		txrate = rs->rs_nrates - 1;
5187 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5188 		uint32_t plcp;
5189 
5190 		/*
5191 		 * XXX TODO: ensure the last two slots are the two lowest
5192 		 * rate entries, just for now.
5193 		 */
5194 		if (i == 14 || i == 15)
5195 			txrate = 0;
5196 
5197 		if (is_11n)
5198 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5199 		else
5200 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5201 
5202 		/* Do rate -> PLCP config mapping */
5203 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5204 		linkq.retry[i] = plcp;
5205 		DPRINTF(sc, IWN_DEBUG_XMIT,
5206 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5207 		    __func__,
5208 		    i,
5209 		    txrate,
5210 		    rate,
5211 		    le32toh(plcp));
5212 
5213 		/*
5214 		 * The mimo field is an index into the table which
5215 		 * indicates the first index where it and subsequent entries
5216 		 * will not be using MIMO.
5217 		 *
5218 		 * Since we're filling linkq from 0..15 and we're filling
5219 		 * from the highest MCS rates to the lowest rates, if we
5220 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5221 		 * the next entry.)  That way if the next entry is a non-MIMO
5222 		 * entry, we're already pointing at it.
5223 		 */
5224 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5225 		    IEEE80211_RV(le32toh(plcp)) > 7)
5226 			linkq.mimo = i + 1;
5227 
5228 		/* Next retry at immediate lower bit-rate. */
5229 		if (txrate > 0)
5230 			txrate--;
5231 	}
5232 	/*
5233 	 * If we reached the end of the list and indeed we hit
5234 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5235 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5236 	 */
5237 	if (linkq.mimo > 15)
5238 		linkq.mimo = 15;
5239 
5240 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5241 
5242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5243 
5244 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5245 }
5246 
5247 /*
5248  * Broadcast node is used to send group-addressed and management frames.
5249  */
5250 static int
5251 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5252 {
5253 	struct iwn_ops *ops = &sc->ops;
5254 	struct ieee80211com *ic = &sc->sc_ic;
5255 	struct iwn_node_info node;
5256 	struct iwn_cmd_link_quality linkq;
5257 	uint8_t txant;
5258 	int i, error;
5259 
5260 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5261 
5262 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5263 
5264 	memset(&node, 0, sizeof node);
5265 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5266 	node.id = sc->broadcast_id;
5267 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5268 	if ((error = ops->add_node(sc, &node, async)) != 0)
5269 		return error;
5270 
5271 	/* Use the first valid TX antenna. */
5272 	txant = IWN_LSB(sc->txchainmask);
5273 
5274 	memset(&linkq, 0, sizeof linkq);
5275 	linkq.id = sc->broadcast_id;
5276 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5277 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5278 	linkq.ampdu_max = 64;
5279 	linkq.ampdu_threshold = 3;
5280 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5281 
5282 	/* Use lowest mandatory bit-rate. */
5283 	/* XXX rate table lookup? */
5284 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5285 		linkq.retry[0] = htole32(0xd);
5286 	else
5287 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5288 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5289 	/* Use same bit-rate for all TX retries. */
5290 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5291 		linkq.retry[i] = linkq.retry[0];
5292 	}
5293 
5294 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5295 
5296 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5297 }
5298 
5299 static int
5300 iwn_updateedca(struct ieee80211com *ic)
5301 {
5302 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5303 	struct iwn_softc *sc = ic->ic_softc;
5304 	struct iwn_edca_params cmd;
5305 	struct chanAccParams chp;
5306 	int aci;
5307 
5308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5309 
5310 	ieee80211_wme_ic_getparams(ic, &chp);
5311 
5312 	memset(&cmd, 0, sizeof cmd);
5313 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5314 
5315 	IEEE80211_LOCK(ic);
5316 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5317 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5318 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5319 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5320 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5321 		cmd.ac[aci].txoplimit =
5322 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5323 	}
5324 	IEEE80211_UNLOCK(ic);
5325 
5326 	IWN_LOCK(sc);
5327 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5328 	IWN_UNLOCK(sc);
5329 
5330 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5331 
5332 	return 0;
5333 #undef IWN_EXP2
5334 }
5335 
5336 static void
5337 iwn_set_promisc(struct iwn_softc *sc)
5338 {
5339 	struct ieee80211com *ic = &sc->sc_ic;
5340 	uint32_t promisc_filter;
5341 
5342 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5343 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5344 		sc->rxon->filter |= htole32(promisc_filter);
5345 	else
5346 		sc->rxon->filter &= ~htole32(promisc_filter);
5347 }
5348 
5349 static void
5350 iwn_update_promisc(struct ieee80211com *ic)
5351 {
5352 	struct iwn_softc *sc = ic->ic_softc;
5353 	int error;
5354 
5355 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5356 		return;		/* nothing to do */
5357 
5358 	IWN_LOCK(sc);
5359 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5360 		IWN_UNLOCK(sc);
5361 		return;
5362 	}
5363 
5364 	iwn_set_promisc(sc);
5365 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5366 		device_printf(sc->sc_dev,
5367 		    "%s: could not send RXON, error %d\n",
5368 		    __func__, error);
5369 	}
5370 	IWN_UNLOCK(sc);
5371 }
5372 
5373 static void
5374 iwn_update_mcast(struct ieee80211com *ic)
5375 {
5376 	/* Ignore */
5377 }
5378 
5379 static void
5380 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5381 {
5382 	struct iwn_cmd_led led;
5383 
5384 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5385 
5386 #if 0
5387 	/* XXX don't set LEDs during scan? */
5388 	if (sc->sc_is_scanning)
5389 		return;
5390 #endif
5391 
5392 	/* Clear microcode LED ownership. */
5393 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5394 
5395 	led.which = which;
5396 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5397 	led.off = off;
5398 	led.on = on;
5399 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5400 }
5401 
5402 /*
5403  * Set the critical temperature at which the firmware will stop the radio
5404  * and notify us.
5405  */
5406 static int
5407 iwn_set_critical_temp(struct iwn_softc *sc)
5408 {
5409 	struct iwn_critical_temp crit;
5410 	int32_t temp;
5411 
5412 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5413 
5414 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5415 
5416 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5417 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5418 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5419 		temp = IWN_CTOK(110);
5420 	else
5421 		temp = 110;
5422 	memset(&crit, 0, sizeof crit);
5423 	crit.tempR = htole32(temp);
5424 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5425 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5426 }
5427 
5428 static int
5429 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5430 {
5431 	struct iwn_cmd_timing cmd;
5432 	uint64_t val, mod;
5433 
5434 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5435 
5436 	memset(&cmd, 0, sizeof cmd);
5437 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5438 	cmd.bintval = htole16(ni->ni_intval);
5439 	cmd.lintval = htole16(10);
5440 
5441 	/* Compute remaining time until next beacon. */
5442 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5443 	mod = le64toh(cmd.tstamp) % val;
5444 	cmd.binitval = htole32((uint32_t)(val - mod));
5445 
5446 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5447 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5448 
5449 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5450 }
5451 
5452 static void
5453 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5454 {
5455 
5456 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5457 
5458 	/* Adjust TX power if need be (delta >= 3 degC). */
5459 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5460 	    __func__, sc->temp, temp);
5461 	if (abs(temp - sc->temp) >= 3) {
5462 		/* Record temperature of last calibration. */
5463 		sc->temp = temp;
5464 		(void)iwn4965_set_txpower(sc, 1);
5465 	}
5466 }
5467 
5468 /*
5469  * Set TX power for current channel (each rate has its own power settings).
5470  * This function takes into account the regulatory information from EEPROM,
5471  * the current temperature and the current voltage.
5472  */
5473 static int
5474 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5475 {
5476 /* Fixed-point arithmetic division using a n-bit fractional part. */
5477 #define fdivround(a, b, n)	\
5478 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5479 /* Linear interpolation. */
5480 #define interpolate(x, x1, y1, x2, y2, n)	\
5481 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5482 
5483 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5484 	struct iwn_ucode_info *uc = &sc->ucode_info;
5485 	struct iwn4965_cmd_txpower cmd;
5486 	struct iwn4965_eeprom_chan_samples *chans;
5487 	const uint8_t *rf_gain, *dsp_gain;
5488 	int32_t vdiff, tdiff;
5489 	int i, is_chan_5ghz, c, grp, maxpwr;
5490 	uint8_t chan;
5491 
5492 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5493 	/* Retrieve current channel from last RXON. */
5494 	chan = sc->rxon->chan;
5495 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5496 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5497 	    chan);
5498 
5499 	memset(&cmd, 0, sizeof cmd);
5500 	cmd.band = is_chan_5ghz ? 0 : 1;
5501 	cmd.chan = chan;
5502 
5503 	if (is_chan_5ghz) {
5504 		maxpwr   = sc->maxpwr5GHz;
5505 		rf_gain  = iwn4965_rf_gain_5ghz;
5506 		dsp_gain = iwn4965_dsp_gain_5ghz;
5507 	} else {
5508 		maxpwr   = sc->maxpwr2GHz;
5509 		rf_gain  = iwn4965_rf_gain_2ghz;
5510 		dsp_gain = iwn4965_dsp_gain_2ghz;
5511 	}
5512 
5513 	/* Compute voltage compensation. */
5514 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5515 	if (vdiff > 0)
5516 		vdiff *= 2;
5517 	if (abs(vdiff) > 2)
5518 		vdiff = 0;
5519 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5520 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5521 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5522 
5523 	/* Get channel attenuation group. */
5524 	if (chan <= 20)		/* 1-20 */
5525 		grp = 4;
5526 	else if (chan <= 43)	/* 34-43 */
5527 		grp = 0;
5528 	else if (chan <= 70)	/* 44-70 */
5529 		grp = 1;
5530 	else if (chan <= 124)	/* 71-124 */
5531 		grp = 2;
5532 	else			/* 125-200 */
5533 		grp = 3;
5534 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5535 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5536 
5537 	/* Get channel sub-band. */
5538 	for (i = 0; i < IWN_NBANDS; i++)
5539 		if (sc->bands[i].lo != 0 &&
5540 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5541 			break;
5542 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5543 		return EINVAL;
5544 	chans = sc->bands[i].chans;
5545 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5546 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5547 
5548 	for (c = 0; c < 2; c++) {
5549 		uint8_t power, gain, temp;
5550 		int maxchpwr, pwr, ridx, idx;
5551 
5552 		power = interpolate(chan,
5553 		    chans[0].num, chans[0].samples[c][1].power,
5554 		    chans[1].num, chans[1].samples[c][1].power, 1);
5555 		gain  = interpolate(chan,
5556 		    chans[0].num, chans[0].samples[c][1].gain,
5557 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5558 		temp  = interpolate(chan,
5559 		    chans[0].num, chans[0].samples[c][1].temp,
5560 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5561 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5562 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5563 		    __func__, c, power, gain, temp);
5564 
5565 		/* Compute temperature compensation. */
5566 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5567 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5568 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5569 		    __func__, tdiff, sc->temp, temp);
5570 
5571 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5572 			/* Convert dBm to half-dBm. */
5573 			maxchpwr = sc->maxpwr[chan] * 2;
5574 			if ((ridx / 8) & 1)
5575 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5576 
5577 			pwr = maxpwr;
5578 
5579 			/* Adjust TX power based on rate. */
5580 			if ((ridx % 8) == 5)
5581 				pwr -= 15;	/* OFDM48: -7.5dB */
5582 			else if ((ridx % 8) == 6)
5583 				pwr -= 17;	/* OFDM54: -8.5dB */
5584 			else if ((ridx % 8) == 7)
5585 				pwr -= 20;	/* OFDM60: -10dB */
5586 			else
5587 				pwr -= 10;	/* Others: -5dB */
5588 
5589 			/* Do not exceed channel max TX power. */
5590 			if (pwr > maxchpwr)
5591 				pwr = maxchpwr;
5592 
5593 			idx = gain - (pwr - power) - tdiff - vdiff;
5594 			if ((ridx / 8) & 1)	/* MIMO */
5595 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5596 
5597 			if (cmd.band == 0)
5598 				idx += 9;	/* 5GHz */
5599 			if (ridx == IWN_RIDX_MAX)
5600 				idx += 5;	/* CCK */
5601 
5602 			/* Make sure idx stays in a valid range. */
5603 			if (idx < 0)
5604 				idx = 0;
5605 			else if (idx > IWN4965_MAX_PWR_INDEX)
5606 				idx = IWN4965_MAX_PWR_INDEX;
5607 
5608 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5609 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5610 			    __func__, c, ridx, idx);
5611 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5612 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5613 		}
5614 	}
5615 
5616 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5617 	    "%s: set tx power for chan %d\n", __func__, chan);
5618 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5619 
5620 #undef interpolate
5621 #undef fdivround
5622 }
5623 
5624 static int
5625 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5626 {
5627 	struct iwn5000_cmd_txpower cmd;
5628 	int cmdid;
5629 
5630 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5631 
5632 	/*
5633 	 * TX power calibration is handled automatically by the firmware
5634 	 * for 5000 Series.
5635 	 */
5636 	memset(&cmd, 0, sizeof cmd);
5637 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5638 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5639 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5640 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5641 	    "%s: setting TX power; rev=%d\n",
5642 	    __func__,
5643 	    IWN_UCODE_API(sc->ucode_rev));
5644 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5645 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5646 	else
5647 		cmdid = IWN_CMD_TXPOWER_DBM;
5648 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5649 }
5650 
5651 /*
5652  * Retrieve the maximum RSSI (in dBm) among receivers.
5653  */
5654 static int
5655 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5656 {
5657 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5658 	uint8_t mask, agc;
5659 	int rssi;
5660 
5661 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5662 
5663 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5664 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5665 
5666 	rssi = 0;
5667 	if (mask & IWN_ANT_A)
5668 		rssi = MAX(rssi, phy->rssi[0]);
5669 	if (mask & IWN_ANT_B)
5670 		rssi = MAX(rssi, phy->rssi[2]);
5671 	if (mask & IWN_ANT_C)
5672 		rssi = MAX(rssi, phy->rssi[4]);
5673 
5674 	DPRINTF(sc, IWN_DEBUG_RECV,
5675 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5676 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5677 	    rssi - agc - IWN_RSSI_TO_DBM);
5678 	return rssi - agc - IWN_RSSI_TO_DBM;
5679 }
5680 
5681 static int
5682 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5683 {
5684 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5685 	uint8_t agc;
5686 	int rssi;
5687 
5688 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5689 
5690 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5691 
5692 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5693 		   le16toh(phy->rssi[1]) & 0xff);
5694 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5695 
5696 	DPRINTF(sc, IWN_DEBUG_RECV,
5697 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5698 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5699 	    rssi - agc - IWN_RSSI_TO_DBM);
5700 	return rssi - agc - IWN_RSSI_TO_DBM;
5701 }
5702 
5703 /*
5704  * Retrieve the average noise (in dBm) among receivers.
5705  */
5706 static int
5707 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5708 {
5709 	int i, total, nbant, noise;
5710 
5711 	total = nbant = 0;
5712 	for (i = 0; i < 3; i++) {
5713 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5714 			continue;
5715 		total += noise;
5716 		nbant++;
5717 	}
5718 	/* There should be at least one antenna but check anyway. */
5719 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5720 }
5721 
5722 /*
5723  * Compute temperature (in degC) from last received statistics.
5724  */
5725 static int
5726 iwn4965_get_temperature(struct iwn_softc *sc)
5727 {
5728 	struct iwn_ucode_info *uc = &sc->ucode_info;
5729 	int32_t r1, r2, r3, r4, temp;
5730 
5731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5732 
5733 	r1 = le32toh(uc->temp[0].chan20MHz);
5734 	r2 = le32toh(uc->temp[1].chan20MHz);
5735 	r3 = le32toh(uc->temp[2].chan20MHz);
5736 	r4 = le32toh(sc->rawtemp);
5737 
5738 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5739 		return 0;
5740 
5741 	/* Sign-extend 23-bit R4 value to 32-bit. */
5742 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5743 	/* Compute temperature in Kelvin. */
5744 	temp = (259 * (r4 - r2)) / (r3 - r1);
5745 	temp = (temp * 97) / 100 + 8;
5746 
5747 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5748 	    IWN_KTOC(temp));
5749 	return IWN_KTOC(temp);
5750 }
5751 
5752 static int
5753 iwn5000_get_temperature(struct iwn_softc *sc)
5754 {
5755 	int32_t temp;
5756 
5757 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5758 
5759 	/*
5760 	 * Temperature is not used by the driver for 5000 Series because
5761 	 * TX power calibration is handled by firmware.
5762 	 */
5763 	temp = le32toh(sc->rawtemp);
5764 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5765 		temp = (temp / -5) + sc->temp_off;
5766 		temp = IWN_KTOC(temp);
5767 	}
5768 	return temp;
5769 }
5770 
5771 /*
5772  * Initialize sensitivity calibration state machine.
5773  */
5774 static int
5775 iwn_init_sensitivity(struct iwn_softc *sc)
5776 {
5777 	struct iwn_ops *ops = &sc->ops;
5778 	struct iwn_calib_state *calib = &sc->calib;
5779 	uint32_t flags;
5780 	int error;
5781 
5782 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5783 
5784 	/* Reset calibration state machine. */
5785 	memset(calib, 0, sizeof (*calib));
5786 	calib->state = IWN_CALIB_STATE_INIT;
5787 	calib->cck_state = IWN_CCK_STATE_HIFA;
5788 	/* Set initial correlation values. */
5789 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5790 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5791 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5792 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5793 	calib->cck_x4      = 125;
5794 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5795 	calib->energy_cck  = sc->limits->energy_cck;
5796 
5797 	/* Write initial sensitivity. */
5798 	if ((error = iwn_send_sensitivity(sc)) != 0)
5799 		return error;
5800 
5801 	/* Write initial gains. */
5802 	if ((error = ops->init_gains(sc)) != 0)
5803 		return error;
5804 
5805 	/* Request statistics at each beacon interval. */
5806 	flags = 0;
5807 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5808 	    __func__);
5809 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5810 }
5811 
5812 /*
5813  * Collect noise and RSSI statistics for the first 20 beacons received
5814  * after association and use them to determine connected antennas and
5815  * to set differential gains.
5816  */
5817 static void
5818 iwn_collect_noise(struct iwn_softc *sc,
5819     const struct iwn_rx_general_stats *stats)
5820 {
5821 	struct iwn_ops *ops = &sc->ops;
5822 	struct iwn_calib_state *calib = &sc->calib;
5823 	struct ieee80211com *ic = &sc->sc_ic;
5824 	uint32_t val;
5825 	int i;
5826 
5827 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5828 
5829 	/* Accumulate RSSI and noise for all 3 antennas. */
5830 	for (i = 0; i < 3; i++) {
5831 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5832 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5833 	}
5834 	/* NB: We update differential gains only once after 20 beacons. */
5835 	if (++calib->nbeacons < 20)
5836 		return;
5837 
5838 	/* Determine highest average RSSI. */
5839 	val = MAX(calib->rssi[0], calib->rssi[1]);
5840 	val = MAX(calib->rssi[2], val);
5841 
5842 	/* Determine which antennas are connected. */
5843 	sc->chainmask = sc->rxchainmask;
5844 	for (i = 0; i < 3; i++)
5845 		if (val - calib->rssi[i] > 15 * 20)
5846 			sc->chainmask &= ~(1 << i);
5847 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5848 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5849 	    __func__, sc->rxchainmask, sc->chainmask);
5850 
5851 	/* If none of the TX antennas are connected, keep at least one. */
5852 	if ((sc->chainmask & sc->txchainmask) == 0)
5853 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5854 
5855 	(void)ops->set_gains(sc);
5856 	calib->state = IWN_CALIB_STATE_RUN;
5857 
5858 #ifdef notyet
5859 	/* XXX Disable RX chains with no antennas connected. */
5860 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5861 	if (sc->sc_is_scanning)
5862 		device_printf(sc->sc_dev,
5863 		    "%s: is_scanning set, before RXON\n",
5864 		    __func__);
5865 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5866 #endif
5867 
5868 	/* Enable power-saving mode if requested by user. */
5869 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5870 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5871 
5872 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5873 
5874 }
5875 
5876 static int
5877 iwn4965_init_gains(struct iwn_softc *sc)
5878 {
5879 	struct iwn_phy_calib_gain cmd;
5880 
5881 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5882 
5883 	memset(&cmd, 0, sizeof cmd);
5884 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5885 	/* Differential gains initially set to 0 for all 3 antennas. */
5886 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5887 	    "%s: setting initial differential gains\n", __func__);
5888 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5889 }
5890 
5891 static int
5892 iwn5000_init_gains(struct iwn_softc *sc)
5893 {
5894 	struct iwn_phy_calib cmd;
5895 
5896 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5897 
5898 	memset(&cmd, 0, sizeof cmd);
5899 	cmd.code = sc->reset_noise_gain;
5900 	cmd.ngroups = 1;
5901 	cmd.isvalid = 1;
5902 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5903 	    "%s: setting initial differential gains\n", __func__);
5904 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5905 }
5906 
5907 static int
5908 iwn4965_set_gains(struct iwn_softc *sc)
5909 {
5910 	struct iwn_calib_state *calib = &sc->calib;
5911 	struct iwn_phy_calib_gain cmd;
5912 	int i, delta, noise;
5913 
5914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5915 
5916 	/* Get minimal noise among connected antennas. */
5917 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5918 	for (i = 0; i < 3; i++)
5919 		if (sc->chainmask & (1 << i))
5920 			noise = MIN(calib->noise[i], noise);
5921 
5922 	memset(&cmd, 0, sizeof cmd);
5923 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5924 	/* Set differential gains for connected antennas. */
5925 	for (i = 0; i < 3; i++) {
5926 		if (sc->chainmask & (1 << i)) {
5927 			/* Compute attenuation (in unit of 1.5dB). */
5928 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5929 			/* NB: delta <= 0 */
5930 			/* Limit to [-4.5dB,0]. */
5931 			cmd.gain[i] = MIN(abs(delta), 3);
5932 			if (delta < 0)
5933 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5934 		}
5935 	}
5936 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5937 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5938 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5939 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5940 }
5941 
5942 static int
5943 iwn5000_set_gains(struct iwn_softc *sc)
5944 {
5945 	struct iwn_calib_state *calib = &sc->calib;
5946 	struct iwn_phy_calib_gain cmd;
5947 	int i, ant, div, delta;
5948 
5949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5950 
5951 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5952 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5953 
5954 	memset(&cmd, 0, sizeof cmd);
5955 	cmd.code = sc->noise_gain;
5956 	cmd.ngroups = 1;
5957 	cmd.isvalid = 1;
5958 	/* Get first available RX antenna as referential. */
5959 	ant = IWN_LSB(sc->rxchainmask);
5960 	/* Set differential gains for other antennas. */
5961 	for (i = ant + 1; i < 3; i++) {
5962 		if (sc->chainmask & (1 << i)) {
5963 			/* The delta is relative to antenna "ant". */
5964 			delta = ((int32_t)calib->noise[ant] -
5965 			    (int32_t)calib->noise[i]) / div;
5966 			/* Limit to [-4.5dB,+4.5dB]. */
5967 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5968 			if (delta < 0)
5969 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5970 		}
5971 	}
5972 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5973 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5974 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5975 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5976 }
5977 
5978 /*
5979  * Tune RF RX sensitivity based on the number of false alarms detected
5980  * during the last beacon period.
5981  */
5982 static void
5983 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5984 {
5985 #define inc(val, inc, max)			\
5986 	if ((val) < (max)) {			\
5987 		if ((val) < (max) - (inc))	\
5988 			(val) += (inc);		\
5989 		else				\
5990 			(val) = (max);		\
5991 		needs_update = 1;		\
5992 	}
5993 #define dec(val, dec, min)			\
5994 	if ((val) > (min)) {			\
5995 		if ((val) > (min) + (dec))	\
5996 			(val) -= (dec);		\
5997 		else				\
5998 			(val) = (min);		\
5999 		needs_update = 1;		\
6000 	}
6001 
6002 	const struct iwn_sensitivity_limits *limits = sc->limits;
6003 	struct iwn_calib_state *calib = &sc->calib;
6004 	uint32_t val, rxena, fa;
6005 	uint32_t energy[3], energy_min;
6006 	uint8_t noise[3], noise_ref;
6007 	int i, needs_update = 0;
6008 
6009 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6010 
6011 	/* Check that we've been enabled long enough. */
6012 	if ((rxena = le32toh(stats->general.load)) == 0){
6013 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6014 		return;
6015 	}
6016 
6017 	/* Compute number of false alarms since last call for OFDM. */
6018 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6019 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6020 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6021 
6022 	if (fa > 50 * rxena) {
6023 		/* High false alarm count, decrease sensitivity. */
6024 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6025 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6026 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6027 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6028 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6029 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6030 
6031 	} else if (fa < 5 * rxena) {
6032 		/* Low false alarm count, increase sensitivity. */
6033 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6034 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6035 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6036 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6037 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6038 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6039 	}
6040 
6041 	/* Compute maximum noise among 3 receivers. */
6042 	for (i = 0; i < 3; i++)
6043 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6044 	val = MAX(noise[0], noise[1]);
6045 	val = MAX(noise[2], val);
6046 	/* Insert it into our samples table. */
6047 	calib->noise_samples[calib->cur_noise_sample] = val;
6048 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6049 
6050 	/* Compute maximum noise among last 20 samples. */
6051 	noise_ref = calib->noise_samples[0];
6052 	for (i = 1; i < 20; i++)
6053 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6054 
6055 	/* Compute maximum energy among 3 receivers. */
6056 	for (i = 0; i < 3; i++)
6057 		energy[i] = le32toh(stats->general.energy[i]);
6058 	val = MIN(energy[0], energy[1]);
6059 	val = MIN(energy[2], val);
6060 	/* Insert it into our samples table. */
6061 	calib->energy_samples[calib->cur_energy_sample] = val;
6062 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6063 
6064 	/* Compute minimum energy among last 10 samples. */
6065 	energy_min = calib->energy_samples[0];
6066 	for (i = 1; i < 10; i++)
6067 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6068 	energy_min += 6;
6069 
6070 	/* Compute number of false alarms since last call for CCK. */
6071 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6072 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6073 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6074 
6075 	if (fa > 50 * rxena) {
6076 		/* High false alarm count, decrease sensitivity. */
6077 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6078 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6079 		calib->cck_state = IWN_CCK_STATE_HIFA;
6080 		calib->low_fa = 0;
6081 
6082 		if (calib->cck_x4 > 160) {
6083 			calib->noise_ref = noise_ref;
6084 			if (calib->energy_cck > 2)
6085 				dec(calib->energy_cck, 2, energy_min);
6086 		}
6087 		if (calib->cck_x4 < 160) {
6088 			calib->cck_x4 = 161;
6089 			needs_update = 1;
6090 		} else
6091 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6092 
6093 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6094 
6095 	} else if (fa < 5 * rxena) {
6096 		/* Low false alarm count, increase sensitivity. */
6097 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6098 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6099 		calib->cck_state = IWN_CCK_STATE_LOFA;
6100 		calib->low_fa++;
6101 
6102 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6103 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6104 		     calib->low_fa > 100)) {
6105 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6106 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6107 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6108 		}
6109 	} else {
6110 		/* Not worth to increase or decrease sensitivity. */
6111 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6112 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6113 		calib->low_fa = 0;
6114 		calib->noise_ref = noise_ref;
6115 
6116 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6117 			/* Previous interval had many false alarms. */
6118 			dec(calib->energy_cck, 8, energy_min);
6119 		}
6120 		calib->cck_state = IWN_CCK_STATE_INIT;
6121 	}
6122 
6123 	if (needs_update)
6124 		(void)iwn_send_sensitivity(sc);
6125 
6126 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6127 
6128 #undef dec
6129 #undef inc
6130 }
6131 
6132 static int
6133 iwn_send_sensitivity(struct iwn_softc *sc)
6134 {
6135 	struct iwn_calib_state *calib = &sc->calib;
6136 	struct iwn_enhanced_sensitivity_cmd cmd;
6137 	int len;
6138 
6139 	memset(&cmd, 0, sizeof cmd);
6140 	len = sizeof (struct iwn_sensitivity_cmd);
6141 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6142 	/* OFDM modulation. */
6143 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6144 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6145 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6146 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6147 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6148 	cmd.energy_ofdm_th     = htole16(62);
6149 	/* CCK modulation. */
6150 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6151 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6152 	cmd.energy_cck         = htole16(calib->energy_cck);
6153 	/* Barker modulation: use default values. */
6154 	cmd.corr_barker        = htole16(190);
6155 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6156 
6157 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6158 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6159 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6160 	    calib->ofdm_mrc_x4, calib->cck_x4,
6161 	    calib->cck_mrc_x4, calib->energy_cck);
6162 
6163 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6164 		goto send;
6165 	/* Enhanced sensitivity settings. */
6166 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6167 	cmd.ofdm_det_slope_mrc = htole16(668);
6168 	cmd.ofdm_det_icept_mrc = htole16(4);
6169 	cmd.ofdm_det_slope     = htole16(486);
6170 	cmd.ofdm_det_icept     = htole16(37);
6171 	cmd.cck_det_slope_mrc  = htole16(853);
6172 	cmd.cck_det_icept_mrc  = htole16(4);
6173 	cmd.cck_det_slope      = htole16(476);
6174 	cmd.cck_det_icept      = htole16(99);
6175 send:
6176 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6177 }
6178 
6179 /*
6180  * Look at the increase of PLCP errors over time; if it exceeds
6181  * a programmed threshold then trigger an RF retune.
6182  */
6183 static void
6184 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6185 {
6186 	int32_t delta_ofdm, delta_ht, delta_cck;
6187 	struct iwn_calib_state *calib = &sc->calib;
6188 	int delta_ticks, cur_ticks;
6189 	int delta_msec;
6190 	int thresh;
6191 
6192 	/*
6193 	 * Calculate the difference between the current and
6194 	 * previous statistics.
6195 	 */
6196 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6197 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6198 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6199 
6200 	/*
6201 	 * Calculate the delta in time between successive statistics
6202 	 * messages.  Yes, it can roll over; so we make sure that
6203 	 * this doesn't happen.
6204 	 *
6205 	 * XXX go figure out what to do about rollover
6206 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6207 	 * XXX go stab signed integer overflow undefined-ness in the face.
6208 	 */
6209 	cur_ticks = ticks;
6210 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6211 
6212 	/*
6213 	 * If any are negative, then the firmware likely reset; so just
6214 	 * bail.  We'll pick this up next time.
6215 	 */
6216 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6217 		return;
6218 
6219 	/*
6220 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6221 	 * so we can do some useful math with it.
6222 	 */
6223 	delta_msec = ticks_to_msecs(delta_ticks);
6224 
6225 	/*
6226 	 * Calculate what our threshold is given the current delta_msec.
6227 	 */
6228 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6229 
6230 	DPRINTF(sc, IWN_DEBUG_STATE,
6231 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6232 	    __func__,
6233 	    delta_msec,
6234 	    delta_cck,
6235 	    delta_ofdm,
6236 	    delta_ht,
6237 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6238 	    thresh);
6239 
6240 	/*
6241 	 * If we need a retune, then schedule a single channel scan
6242 	 * to a channel that isn't the currently active one!
6243 	 *
6244 	 * The math from linux iwlwifi:
6245 	 *
6246 	 * if ((delta * 100 / msecs) > threshold)
6247 	 */
6248 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6249 		DPRINTF(sc, IWN_DEBUG_ANY,
6250 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6251 		    "over limit (%d); retune!\n",
6252 		    __func__,
6253 		    (delta_cck + delta_ofdm + delta_ht),
6254 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6255 		    thresh);
6256 	}
6257 }
6258 
6259 /*
6260  * Set STA mode power saving level (between 0 and 5).
6261  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6262  */
6263 static int
6264 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6265 {
6266 	struct iwn_pmgt_cmd cmd;
6267 	const struct iwn_pmgt *pmgt;
6268 	uint32_t max, skip_dtim;
6269 	uint32_t reg;
6270 	int i;
6271 
6272 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6273 	    "%s: dtim=%d, level=%d, async=%d\n",
6274 	    __func__,
6275 	    dtim,
6276 	    level,
6277 	    async);
6278 
6279 	/* Select which PS parameters to use. */
6280 	if (dtim <= 2)
6281 		pmgt = &iwn_pmgt[0][level];
6282 	else if (dtim <= 10)
6283 		pmgt = &iwn_pmgt[1][level];
6284 	else
6285 		pmgt = &iwn_pmgt[2][level];
6286 
6287 	memset(&cmd, 0, sizeof cmd);
6288 	if (level != 0)	/* not CAM */
6289 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6290 	if (level == 5)
6291 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6292 	/* Retrieve PCIe Active State Power Management (ASPM). */
6293 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6294 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6295 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6296 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6297 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6298 
6299 	if (dtim == 0) {
6300 		dtim = 1;
6301 		skip_dtim = 0;
6302 	} else
6303 		skip_dtim = pmgt->skip_dtim;
6304 	if (skip_dtim != 0) {
6305 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6306 		max = pmgt->intval[4];
6307 		if (max == (uint32_t)-1)
6308 			max = dtim * (skip_dtim + 1);
6309 		else if (max > dtim)
6310 			max = rounddown(max, dtim);
6311 	} else
6312 		max = dtim;
6313 	for (i = 0; i < 5; i++)
6314 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6315 
6316 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6317 	    level);
6318 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6319 }
6320 
6321 static int
6322 iwn_send_btcoex(struct iwn_softc *sc)
6323 {
6324 	struct iwn_bluetooth cmd;
6325 
6326 	memset(&cmd, 0, sizeof cmd);
6327 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6328 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6329 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6330 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6331 	    __func__);
6332 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6333 }
6334 
6335 static int
6336 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6337 {
6338 	static const uint32_t btcoex_3wire[12] = {
6339 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6340 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6341 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6342 	};
6343 	struct iwn6000_btcoex_config btconfig;
6344 	struct iwn2000_btcoex_config btconfig2k;
6345 	struct iwn_btcoex_priotable btprio;
6346 	struct iwn_btcoex_prot btprot;
6347 	int error, i;
6348 	uint8_t flags;
6349 
6350 	memset(&btconfig, 0, sizeof btconfig);
6351 	memset(&btconfig2k, 0, sizeof btconfig2k);
6352 
6353 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6354 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6355 
6356 	if (sc->base_params->bt_sco_disable)
6357 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6358 	else
6359 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6360 
6361 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6362 
6363 	/* Default flags result is 145 as old value */
6364 
6365 	/*
6366 	 * Flags value has to be review. Values must change if we
6367 	 * which to disable it
6368 	 */
6369 	if (sc->base_params->bt_session_2) {
6370 		btconfig2k.flags = flags;
6371 		btconfig2k.max_kill = 5;
6372 		btconfig2k.bt3_t7_timer = 1;
6373 		btconfig2k.kill_ack = htole32(0xffff0000);
6374 		btconfig2k.kill_cts = htole32(0xffff0000);
6375 		btconfig2k.sample_time = 2;
6376 		btconfig2k.bt3_t2_timer = 0xc;
6377 
6378 		for (i = 0; i < 12; i++)
6379 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6380 		btconfig2k.valid = htole16(0xff);
6381 		btconfig2k.prio_boost = htole32(0xf0);
6382 		DPRINTF(sc, IWN_DEBUG_RESET,
6383 		    "%s: configuring advanced bluetooth coexistence"
6384 		    " session 2, flags : 0x%x\n",
6385 		    __func__,
6386 		    flags);
6387 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6388 		    sizeof(btconfig2k), 1);
6389 	} else {
6390 		btconfig.flags = flags;
6391 		btconfig.max_kill = 5;
6392 		btconfig.bt3_t7_timer = 1;
6393 		btconfig.kill_ack = htole32(0xffff0000);
6394 		btconfig.kill_cts = htole32(0xffff0000);
6395 		btconfig.sample_time = 2;
6396 		btconfig.bt3_t2_timer = 0xc;
6397 
6398 		for (i = 0; i < 12; i++)
6399 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6400 		btconfig.valid = htole16(0xff);
6401 		btconfig.prio_boost = 0xf0;
6402 		DPRINTF(sc, IWN_DEBUG_RESET,
6403 		    "%s: configuring advanced bluetooth coexistence,"
6404 		    " flags : 0x%x\n",
6405 		    __func__,
6406 		    flags);
6407 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6408 		    sizeof(btconfig), 1);
6409 	}
6410 
6411 	if (error != 0)
6412 		return error;
6413 
6414 	memset(&btprio, 0, sizeof btprio);
6415 	btprio.calib_init1 = 0x6;
6416 	btprio.calib_init2 = 0x7;
6417 	btprio.calib_periodic_low1 = 0x2;
6418 	btprio.calib_periodic_low2 = 0x3;
6419 	btprio.calib_periodic_high1 = 0x4;
6420 	btprio.calib_periodic_high2 = 0x5;
6421 	btprio.dtim = 0x6;
6422 	btprio.scan52 = 0x8;
6423 	btprio.scan24 = 0xa;
6424 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6425 	    1);
6426 	if (error != 0)
6427 		return error;
6428 
6429 	/* Force BT state machine change. */
6430 	memset(&btprot, 0, sizeof btprot);
6431 	btprot.open = 1;
6432 	btprot.type = 1;
6433 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6434 	if (error != 0)
6435 		return error;
6436 	btprot.open = 0;
6437 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6438 }
6439 
6440 static int
6441 iwn5000_runtime_calib(struct iwn_softc *sc)
6442 {
6443 	struct iwn5000_calib_config cmd;
6444 
6445 	memset(&cmd, 0, sizeof cmd);
6446 	cmd.ucode.once.enable = 0xffffffff;
6447 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6448 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6449 	    "%s: configuring runtime calibration\n", __func__);
6450 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6451 }
6452 
6453 static uint32_t
6454 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6455 {
6456 	struct ieee80211com *ic = &sc->sc_ic;
6457 	uint32_t htflags = 0;
6458 
6459 	if (! IEEE80211_IS_CHAN_HT(c))
6460 		return (0);
6461 
6462 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6463 
6464 	if (IEEE80211_IS_CHAN_HT40(c)) {
6465 		switch (ic->ic_curhtprotmode) {
6466 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6467 			htflags |= IWN_RXON_HT_MODEPURE40;
6468 			break;
6469 		default:
6470 			htflags |= IWN_RXON_HT_MODEMIXED;
6471 			break;
6472 		}
6473 	}
6474 	if (IEEE80211_IS_CHAN_HT40D(c))
6475 		htflags |= IWN_RXON_HT_HT40MINUS;
6476 
6477 	return (htflags);
6478 }
6479 
6480 static int
6481 iwn_check_bss_filter(struct iwn_softc *sc)
6482 {
6483 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6484 }
6485 
6486 static int
6487 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6488 {
6489 	struct iwn4965_rxon_assoc cmd;
6490 	struct iwn_rxon *rxon = sc->rxon;
6491 
6492 	cmd.flags = rxon->flags;
6493 	cmd.filter = rxon->filter;
6494 	cmd.ofdm_mask = rxon->ofdm_mask;
6495 	cmd.cck_mask = rxon->cck_mask;
6496 	cmd.ht_single_mask = rxon->ht_single_mask;
6497 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6498 	cmd.rxchain = rxon->rxchain;
6499 	cmd.reserved = 0;
6500 
6501 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6502 }
6503 
6504 static int
6505 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6506 {
6507 	struct iwn5000_rxon_assoc cmd;
6508 	struct iwn_rxon *rxon = sc->rxon;
6509 
6510 	cmd.flags = rxon->flags;
6511 	cmd.filter = rxon->filter;
6512 	cmd.ofdm_mask = rxon->ofdm_mask;
6513 	cmd.cck_mask = rxon->cck_mask;
6514 	cmd.reserved1 = 0;
6515 	cmd.ht_single_mask = rxon->ht_single_mask;
6516 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6517 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6518 	cmd.reserved2 = 0;
6519 	cmd.rxchain = rxon->rxchain;
6520 	cmd.acquisition = rxon->acquisition;
6521 	cmd.reserved3 = 0;
6522 
6523 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6524 }
6525 
6526 static int
6527 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6528 {
6529 	struct iwn_ops *ops = &sc->ops;
6530 	int error;
6531 
6532 	IWN_LOCK_ASSERT(sc);
6533 
6534 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6535 		error = ops->rxon_assoc(sc, async);
6536 		if (error != 0) {
6537 			device_printf(sc->sc_dev,
6538 			    "%s: RXON_ASSOC command failed, error %d\n",
6539 			    __func__, error);
6540 			return (error);
6541 		}
6542 	} else {
6543 		if (sc->sc_is_scanning)
6544 			device_printf(sc->sc_dev,
6545 			    "%s: is_scanning set, before RXON\n",
6546 			    __func__);
6547 
6548 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6549 		if (error != 0) {
6550 			device_printf(sc->sc_dev,
6551 			    "%s: RXON command failed, error %d\n",
6552 			    __func__, error);
6553 			return (error);
6554 		}
6555 
6556 		/*
6557 		 * Reconfiguring RXON clears the firmware nodes table so
6558 		 * we must add the broadcast node again.
6559 		 */
6560 		if (iwn_check_bss_filter(sc) == 0 &&
6561 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6562 			device_printf(sc->sc_dev,
6563 			    "%s: could not add broadcast node, error %d\n",
6564 			    __func__, error);
6565 			return (error);
6566 		}
6567 	}
6568 
6569 	/* Configuration has changed, set TX power accordingly. */
6570 	if ((error = ops->set_txpower(sc, async)) != 0) {
6571 		device_printf(sc->sc_dev,
6572 		    "%s: could not set TX power, error %d\n",
6573 		    __func__, error);
6574 		return (error);
6575 	}
6576 
6577 	return (0);
6578 }
6579 
6580 static int
6581 iwn_config(struct iwn_softc *sc)
6582 {
6583 	struct ieee80211com *ic = &sc->sc_ic;
6584 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6585 	const uint8_t *macaddr;
6586 	uint32_t txmask;
6587 	uint16_t rxchain;
6588 	int error;
6589 
6590 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6591 
6592 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6593 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6594 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6595 		    " exclusive each together. Review NIC config file. Conf"
6596 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6597 		    sc->base_params->calib_need,
6598 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6599 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6600 		return (EINVAL);
6601 	}
6602 
6603 	/* Compute temperature calib if needed. Will be send by send calib */
6604 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6605 		error = iwn5000_temp_offset_calib(sc);
6606 		if (error != 0) {
6607 			device_printf(sc->sc_dev,
6608 			    "%s: could not set temperature offset\n", __func__);
6609 			return (error);
6610 		}
6611 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6612 		error = iwn5000_temp_offset_calibv2(sc);
6613 		if (error != 0) {
6614 			device_printf(sc->sc_dev,
6615 			    "%s: could not compute temperature offset v2\n",
6616 			    __func__);
6617 			return (error);
6618 		}
6619 	}
6620 
6621 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6622 		/* Configure runtime DC calibration. */
6623 		error = iwn5000_runtime_calib(sc);
6624 		if (error != 0) {
6625 			device_printf(sc->sc_dev,
6626 			    "%s: could not configure runtime calibration\n",
6627 			    __func__);
6628 			return error;
6629 		}
6630 	}
6631 
6632 	/* Configure valid TX chains for >=5000 Series. */
6633 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6634 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6635 		txmask = htole32(sc->txchainmask);
6636 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6637 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6638 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6639 		    sizeof txmask, 0);
6640 		if (error != 0) {
6641 			device_printf(sc->sc_dev,
6642 			    "%s: could not configure valid TX chains, "
6643 			    "error %d\n", __func__, error);
6644 			return error;
6645 		}
6646 	}
6647 
6648 	/* Configure bluetooth coexistence. */
6649 	error = 0;
6650 
6651 	/* Configure bluetooth coexistence if needed. */
6652 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6653 		error = iwn_send_advanced_btcoex(sc);
6654 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6655 		error = iwn_send_btcoex(sc);
6656 
6657 	if (error != 0) {
6658 		device_printf(sc->sc_dev,
6659 		    "%s: could not configure bluetooth coexistence, error %d\n",
6660 		    __func__, error);
6661 		return error;
6662 	}
6663 
6664 	/* Set mode, channel, RX filter and enable RX. */
6665 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6666 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6667 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6668 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6669 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6670 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6671 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6672 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6673 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6674 
6675 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6676 	switch (ic->ic_opmode) {
6677 	case IEEE80211_M_STA:
6678 		sc->rxon->mode = IWN_MODE_STA;
6679 		break;
6680 	case IEEE80211_M_MONITOR:
6681 		sc->rxon->mode = IWN_MODE_MONITOR;
6682 		break;
6683 	default:
6684 		/* Should not get there. */
6685 		break;
6686 	}
6687 	iwn_set_promisc(sc);
6688 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6689 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6690 	sc->rxon->ht_single_mask = 0xff;
6691 	sc->rxon->ht_dual_mask = 0xff;
6692 	sc->rxon->ht_triple_mask = 0xff;
6693 	/*
6694 	 * In active association mode, ensure that
6695 	 * all the receive chains are enabled.
6696 	 *
6697 	 * Since we're not yet doing SMPS, don't allow the
6698 	 * number of idle RX chains to be less than the active
6699 	 * number.
6700 	 */
6701 	rxchain =
6702 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6703 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6704 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6705 	sc->rxon->rxchain = htole16(rxchain);
6706 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6707 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6708 	    __func__,
6709 	    sc->rxchainmask,
6710 	    sc->nrxchains);
6711 
6712 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6713 
6714 	DPRINTF(sc, IWN_DEBUG_RESET,
6715 	    "%s: setting configuration; flags=0x%08x\n",
6716 	    __func__, le32toh(sc->rxon->flags));
6717 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6718 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6719 		    __func__);
6720 		return error;
6721 	}
6722 
6723 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6724 		device_printf(sc->sc_dev,
6725 		    "%s: could not set critical temperature\n", __func__);
6726 		return error;
6727 	}
6728 
6729 	/* Set power saving level to CAM during initialization. */
6730 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6731 		device_printf(sc->sc_dev,
6732 		    "%s: could not set power saving level\n", __func__);
6733 		return error;
6734 	}
6735 
6736 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6737 
6738 	return 0;
6739 }
6740 
6741 static uint16_t
6742 iwn_get_active_dwell_time(struct iwn_softc *sc,
6743     struct ieee80211_channel *c, uint8_t n_probes)
6744 {
6745 	/* No channel? Default to 2GHz settings */
6746 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6747 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6748 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6749 	}
6750 
6751 	/* 5GHz dwell time */
6752 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6753 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6754 }
6755 
6756 /*
6757  * Limit the total dwell time to 85% of the beacon interval.
6758  *
6759  * Returns the dwell time in milliseconds.
6760  */
6761 static uint16_t
6762 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6763 {
6764 	struct ieee80211com *ic = &sc->sc_ic;
6765 	struct ieee80211vap *vap = NULL;
6766 	int bintval = 0;
6767 
6768 	/* bintval is in TU (1.024mS) */
6769 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6770 		vap = TAILQ_FIRST(&ic->ic_vaps);
6771 		bintval = vap->iv_bss->ni_intval;
6772 	}
6773 
6774 	/*
6775 	 * If it's non-zero, we should calculate the minimum of
6776 	 * it and the DWELL_BASE.
6777 	 *
6778 	 * XXX Yes, the math should take into account that bintval
6779 	 * is 1.024mS, not 1mS..
6780 	 */
6781 	if (bintval > 0) {
6782 		DPRINTF(sc, IWN_DEBUG_SCAN,
6783 		    "%s: bintval=%d\n",
6784 		    __func__,
6785 		    bintval);
6786 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6787 	}
6788 
6789 	/* No association context? Default */
6790 	return (IWN_PASSIVE_DWELL_BASE);
6791 }
6792 
6793 static uint16_t
6794 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6795 {
6796 	uint16_t passive;
6797 
6798 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6799 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6800 	} else {
6801 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6802 	}
6803 
6804 	/* Clamp to the beacon interval if we're associated */
6805 	return (iwn_limit_dwell(sc, passive));
6806 }
6807 
6808 static int
6809 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6810     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6811 {
6812 	struct ieee80211com *ic = &sc->sc_ic;
6813 	struct ieee80211_node *ni = vap->iv_bss;
6814 	struct iwn_scan_hdr *hdr;
6815 	struct iwn_cmd_data *tx;
6816 	struct iwn_scan_essid *essid;
6817 	struct iwn_scan_chan *chan;
6818 	struct ieee80211_frame *wh;
6819 	struct ieee80211_rateset *rs;
6820 	uint8_t *buf, *frm;
6821 	uint16_t rxchain;
6822 	uint8_t txant;
6823 	int buflen, error;
6824 	int is_active;
6825 	uint16_t dwell_active, dwell_passive;
6826 	uint32_t extra, scan_service_time;
6827 
6828 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6829 
6830 	/*
6831 	 * We are absolutely not allowed to send a scan command when another
6832 	 * scan command is pending.
6833 	 */
6834 	if (sc->sc_is_scanning) {
6835 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6836 		    __func__);
6837 		return (EAGAIN);
6838 	}
6839 
6840 	/* Assign the scan channel */
6841 	c = ic->ic_curchan;
6842 
6843 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6844 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6845 	if (buf == NULL) {
6846 		device_printf(sc->sc_dev,
6847 		    "%s: could not allocate buffer for scan command\n",
6848 		    __func__);
6849 		return ENOMEM;
6850 	}
6851 	hdr = (struct iwn_scan_hdr *)buf;
6852 	/*
6853 	 * Move to the next channel if no frames are received within 10ms
6854 	 * after sending the probe request.
6855 	 */
6856 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6857 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6858 	/*
6859 	 * Max needs to be greater than active and passive and quiet!
6860 	 * It's also in microseconds!
6861 	 */
6862 	hdr->max_svc = htole32(250 * 1024);
6863 
6864 	/*
6865 	 * Reset scan: interval=100
6866 	 * Normal scan: interval=becaon interval
6867 	 * suspend_time: 100 (TU)
6868 	 *
6869 	 */
6870 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6871 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6872 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6873 	hdr->pause_svc = htole32(scan_service_time);
6874 
6875 	/* Select antennas for scanning. */
6876 	rxchain =
6877 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6878 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6879 	    IWN_RXCHAIN_DRIVER_FORCE;
6880 	if (IEEE80211_IS_CHAN_A(c) &&
6881 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6882 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6883 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6884 	} else	/* Use all available RX antennas. */
6885 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6886 	hdr->rxchain = htole16(rxchain);
6887 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6888 
6889 	tx = (struct iwn_cmd_data *)(hdr + 1);
6890 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6891 	tx->id = sc->broadcast_id;
6892 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6893 
6894 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6895 		/* Send probe requests at 6Mbps. */
6896 		tx->rate = htole32(0xd);
6897 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6898 	} else {
6899 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6900 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6901 		    sc->rxon->associd && sc->rxon->chan > 14)
6902 			tx->rate = htole32(0xd);
6903 		else {
6904 			/* Send probe requests at 1Mbps. */
6905 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6906 		}
6907 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6908 	}
6909 	/* Use the first valid TX antenna. */
6910 	txant = IWN_LSB(sc->txchainmask);
6911 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6912 
6913 	/*
6914 	 * Only do active scanning if we're announcing a probe request
6915 	 * for a given SSID (or more, if we ever add it to the driver.)
6916 	 */
6917 	is_active = 0;
6918 
6919 	/*
6920 	 * If we're scanning for a specific SSID, add it to the command.
6921 	 *
6922 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6923 	 */
6924 	essid = (struct iwn_scan_essid *)(tx + 1);
6925 	if (ss != NULL) {
6926 		if (ss->ss_ssid[0].len != 0) {
6927 			essid[0].id = IEEE80211_ELEMID_SSID;
6928 			essid[0].len = ss->ss_ssid[0].len;
6929 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6930 		}
6931 
6932 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6933 		    __func__,
6934 		    ss->ss_ssid[0].len,
6935 		    ss->ss_ssid[0].len,
6936 		    ss->ss_ssid[0].ssid);
6937 
6938 		if (ss->ss_nssid > 0)
6939 			is_active = 1;
6940 	}
6941 
6942 	/*
6943 	 * Build a probe request frame.  Most of the following code is a
6944 	 * copy & paste of what is done in net80211.
6945 	 */
6946 	wh = (struct ieee80211_frame *)(essid + 20);
6947 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6948 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6949 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6950 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6951 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6952 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6953 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6954 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6955 
6956 	frm = (uint8_t *)(wh + 1);
6957 	frm = ieee80211_add_ssid(frm, NULL, 0);
6958 	frm = ieee80211_add_rates(frm, rs);
6959 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6960 		frm = ieee80211_add_xrates(frm, rs);
6961 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6962 		frm = ieee80211_add_htcap(frm, ni);
6963 
6964 	/* Set length of probe request. */
6965 	tx->len = htole16(frm - (uint8_t *)wh);
6966 
6967 	/*
6968 	 * If active scanning is requested but a certain channel is
6969 	 * marked passive, we can do active scanning if we detect
6970 	 * transmissions.
6971 	 *
6972 	 * There is an issue with some firmware versions that triggers
6973 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6974 	 * on a radar channel even though this means that we should NOT
6975 	 * send probes.
6976 	 *
6977 	 * The "good CRC threshold" is the number of frames that we
6978 	 * need to receive during our dwell time on a channel before
6979 	 * sending out probes -- setting this to a huge value will
6980 	 * mean we never reach it, but at the same time work around
6981 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6982 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6983 	 *
6984 	 * This was fixed in later versions along with some other
6985 	 * scan changes, and the threshold behaves as a flag in those
6986 	 * versions.
6987 	 */
6988 
6989 	/*
6990 	 * If we're doing active scanning, set the crc_threshold
6991 	 * to a suitable value.  This is different to active veruss
6992 	 * passive scanning depending upon the channel flags; the
6993 	 * firmware will obey that particular check for us.
6994 	 */
6995 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6996 		hdr->crc_threshold = is_active ?
6997 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6998 	else
6999 		hdr->crc_threshold = is_active ?
7000 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7001 
7002 	chan = (struct iwn_scan_chan *)frm;
7003 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7004 	chan->flags = 0;
7005 	if (ss->ss_nssid > 0)
7006 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7007 	chan->dsp_gain = 0x6e;
7008 
7009 	/*
7010 	 * Set the passive/active flag depending upon the channel mode.
7011 	 * XXX TODO: take the is_active flag into account as well?
7012 	 */
7013 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7014 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7015 	else
7016 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7017 
7018 	/*
7019 	 * Calculate the active/passive dwell times.
7020 	 */
7021 
7022 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7023 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7024 
7025 	/* Make sure they're valid */
7026 	if (dwell_passive <= dwell_active)
7027 		dwell_passive = dwell_active + 1;
7028 
7029 	chan->active = htole16(dwell_active);
7030 	chan->passive = htole16(dwell_passive);
7031 
7032 	if (IEEE80211_IS_CHAN_5GHZ(c))
7033 		chan->rf_gain = 0x3b;
7034 	else
7035 		chan->rf_gain = 0x28;
7036 
7037 	DPRINTF(sc, IWN_DEBUG_STATE,
7038 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7039 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7040 	    "isactive=%d numssid=%d\n", __func__,
7041 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7042 	    dwell_active, dwell_passive, scan_service_time,
7043 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7044 
7045 	hdr->nchan++;
7046 	chan++;
7047 	buflen = (uint8_t *)chan - buf;
7048 	hdr->len = htole16(buflen);
7049 
7050 	if (sc->sc_is_scanning) {
7051 		device_printf(sc->sc_dev,
7052 		    "%s: called with is_scanning set!\n",
7053 		    __func__);
7054 	}
7055 	sc->sc_is_scanning = 1;
7056 
7057 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7058 	    hdr->nchan);
7059 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7060 	free(buf, M_DEVBUF);
7061 	if (error == 0)
7062 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7063 
7064 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7065 
7066 	return error;
7067 }
7068 
7069 static int
7070 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7071 {
7072 	struct ieee80211com *ic = &sc->sc_ic;
7073 	struct ieee80211_node *ni = vap->iv_bss;
7074 	int error;
7075 
7076 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7077 
7078 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7079 	/* Update adapter configuration. */
7080 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7081 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7082 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7083 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7084 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7085 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7086 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7087 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7088 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7089 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7090 		sc->rxon->cck_mask  = 0;
7091 		sc->rxon->ofdm_mask = 0x15;
7092 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7093 		sc->rxon->cck_mask  = 0x03;
7094 		sc->rxon->ofdm_mask = 0;
7095 	} else {
7096 		/* Assume 802.11b/g. */
7097 		sc->rxon->cck_mask  = 0x03;
7098 		sc->rxon->ofdm_mask = 0x15;
7099 	}
7100 
7101 	/* try HT */
7102 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7103 
7104 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7105 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7106 	    sc->rxon->ofdm_mask);
7107 
7108 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7109 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7110 		    __func__);
7111 		return (error);
7112 	}
7113 
7114 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7115 
7116 	return (0);
7117 }
7118 
7119 static int
7120 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7121 {
7122 	struct iwn_ops *ops = &sc->ops;
7123 	struct ieee80211com *ic = &sc->sc_ic;
7124 	struct ieee80211_node *ni = vap->iv_bss;
7125 	struct iwn_node_info node;
7126 	int error;
7127 
7128 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7129 
7130 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7131 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7132 		/* Link LED blinks while monitoring. */
7133 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7134 		return 0;
7135 	}
7136 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7137 		device_printf(sc->sc_dev,
7138 		    "%s: could not set timing, error %d\n", __func__, error);
7139 		return error;
7140 	}
7141 
7142 	/* Update adapter configuration. */
7143 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7144 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7145 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7146 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7147 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7148 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7149 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7150 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7151 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7152 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7153 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7154 		sc->rxon->cck_mask  = 0;
7155 		sc->rxon->ofdm_mask = 0x15;
7156 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7157 		sc->rxon->cck_mask  = 0x03;
7158 		sc->rxon->ofdm_mask = 0;
7159 	} else {
7160 		/* Assume 802.11b/g. */
7161 		sc->rxon->cck_mask  = 0x0f;
7162 		sc->rxon->ofdm_mask = 0x15;
7163 	}
7164 	/* try HT */
7165 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7166 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7167 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7168 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7169 
7170 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7171 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7172 		    __func__);
7173 		return error;
7174 	}
7175 
7176 	/* Fake a join to initialize the TX rate. */
7177 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7178 	iwn_newassoc(ni, 1);
7179 
7180 	/* Add BSS node. */
7181 	memset(&node, 0, sizeof node);
7182 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7183 	node.id = IWN_ID_BSS;
7184 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7185 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7186 		case IEEE80211_HTCAP_SMPS_ENA:
7187 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7188 			break;
7189 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7190 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7191 			break;
7192 		}
7193 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7194 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7195 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7196 			node.htflags |= htole32(IWN_NODE_HT40);
7197 	}
7198 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7199 	error = ops->add_node(sc, &node, 1);
7200 	if (error != 0) {
7201 		device_printf(sc->sc_dev,
7202 		    "%s: could not add BSS node, error %d\n", __func__, error);
7203 		return error;
7204 	}
7205 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7206 	    __func__, node.id);
7207 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7208 		device_printf(sc->sc_dev,
7209 		    "%s: could not setup link quality for node %d, error %d\n",
7210 		    __func__, node.id, error);
7211 		return error;
7212 	}
7213 
7214 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7215 		device_printf(sc->sc_dev,
7216 		    "%s: could not set sensitivity, error %d\n", __func__,
7217 		    error);
7218 		return error;
7219 	}
7220 	/* Start periodic calibration timer. */
7221 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7222 	sc->calib_cnt = 0;
7223 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7224 	    sc);
7225 
7226 	/* Link LED always on while associated. */
7227 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7228 
7229 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7230 
7231 	return 0;
7232 }
7233 
7234 /*
7235  * This function is called by upper layer when an ADDBA request is received
7236  * from another STA and before the ADDBA response is sent.
7237  */
7238 static int
7239 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7240     int baparamset, int batimeout, int baseqctl)
7241 {
7242 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7243 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7244 	struct iwn_ops *ops = &sc->ops;
7245 	struct iwn_node *wn = (void *)ni;
7246 	struct iwn_node_info node;
7247 	uint16_t ssn;
7248 	uint8_t tid;
7249 	int error;
7250 
7251 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7252 
7253 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7254 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7255 
7256 	if (wn->id == IWN_ID_UNDEFINED)
7257 		return (ENOENT);
7258 
7259 	memset(&node, 0, sizeof node);
7260 	node.id = wn->id;
7261 	node.control = IWN_NODE_UPDATE;
7262 	node.flags = IWN_FLAG_SET_ADDBA;
7263 	node.addba_tid = tid;
7264 	node.addba_ssn = htole16(ssn);
7265 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7266 	    wn->id, tid, ssn);
7267 	error = ops->add_node(sc, &node, 1);
7268 	if (error != 0)
7269 		return error;
7270 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7271 #undef MS
7272 }
7273 
7274 /*
7275  * This function is called by upper layer on teardown of an HT-immediate
7276  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7277  */
7278 static void
7279 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7280 {
7281 	struct ieee80211com *ic = ni->ni_ic;
7282 	struct iwn_softc *sc = ic->ic_softc;
7283 	struct iwn_ops *ops = &sc->ops;
7284 	struct iwn_node *wn = (void *)ni;
7285 	struct iwn_node_info node;
7286 	uint8_t tid;
7287 
7288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7289 
7290 	if (wn->id == IWN_ID_UNDEFINED)
7291 		goto end;
7292 
7293 	/* XXX: tid as an argument */
7294 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7295 		if (&ni->ni_rx_ampdu[tid] == rap)
7296 			break;
7297 	}
7298 
7299 	memset(&node, 0, sizeof node);
7300 	node.id = wn->id;
7301 	node.control = IWN_NODE_UPDATE;
7302 	node.flags = IWN_FLAG_SET_DELBA;
7303 	node.delba_tid = tid;
7304 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7305 	(void)ops->add_node(sc, &node, 1);
7306 end:
7307 	sc->sc_ampdu_rx_stop(ni, rap);
7308 }
7309 
7310 static int
7311 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7312     int dialogtoken, int baparamset, int batimeout)
7313 {
7314 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7315 	int qid;
7316 
7317 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7318 
7319 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7320 		if (sc->qid2tap[qid] == NULL)
7321 			break;
7322 	}
7323 	if (qid == sc->ntxqs) {
7324 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7325 		    __func__);
7326 		return 0;
7327 	}
7328 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7329 	if (tap->txa_private == NULL) {
7330 		device_printf(sc->sc_dev,
7331 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7332 		return 0;
7333 	}
7334 	sc->qid2tap[qid] = tap;
7335 	*(int *)tap->txa_private = qid;
7336 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7337 	    batimeout);
7338 }
7339 
7340 static int
7341 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7342     int code, int baparamset, int batimeout)
7343 {
7344 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7345 	int qid = *(int *)tap->txa_private;
7346 	uint8_t tid = tap->txa_tid;
7347 	int ret;
7348 
7349 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7350 
7351 	if (code == IEEE80211_STATUS_SUCCESS) {
7352 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7353 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7354 		if (ret != 1)
7355 			return ret;
7356 	} else {
7357 		sc->qid2tap[qid] = NULL;
7358 		free(tap->txa_private, M_DEVBUF);
7359 		tap->txa_private = NULL;
7360 	}
7361 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7362 }
7363 
7364 /*
7365  * This function is called by upper layer when an ADDBA response is received
7366  * from another STA.
7367  */
7368 static int
7369 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7370     uint8_t tid)
7371 {
7372 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7373 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7374 	struct iwn_ops *ops = &sc->ops;
7375 	struct iwn_node *wn = (void *)ni;
7376 	struct iwn_node_info node;
7377 	int error, qid;
7378 
7379 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7380 
7381 	if (wn->id == IWN_ID_UNDEFINED)
7382 		return (0);
7383 
7384 	/* Enable TX for the specified RA/TID. */
7385 	wn->disable_tid &= ~(1 << tid);
7386 	memset(&node, 0, sizeof node);
7387 	node.id = wn->id;
7388 	node.control = IWN_NODE_UPDATE;
7389 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7390 	node.disable_tid = htole16(wn->disable_tid);
7391 	error = ops->add_node(sc, &node, 1);
7392 	if (error != 0)
7393 		return 0;
7394 
7395 	if ((error = iwn_nic_lock(sc)) != 0)
7396 		return 0;
7397 	qid = *(int *)tap->txa_private;
7398 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7399 	    __func__, wn->id, tid, tap->txa_start, qid);
7400 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7401 	iwn_nic_unlock(sc);
7402 
7403 	iwn_set_link_quality(sc, ni);
7404 	return 1;
7405 }
7406 
7407 static void
7408 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7409 {
7410 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7411 	struct iwn_ops *ops = &sc->ops;
7412 	uint8_t tid = tap->txa_tid;
7413 	int qid;
7414 
7415 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7416 
7417 	sc->sc_addba_stop(ni, tap);
7418 
7419 	if (tap->txa_private == NULL)
7420 		return;
7421 
7422 	qid = *(int *)tap->txa_private;
7423 	if (sc->txq[qid].queued != 0)
7424 		return;
7425 	if (iwn_nic_lock(sc) != 0)
7426 		return;
7427 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7428 	iwn_nic_unlock(sc);
7429 	sc->qid2tap[qid] = NULL;
7430 	free(tap->txa_private, M_DEVBUF);
7431 	tap->txa_private = NULL;
7432 }
7433 
7434 static void
7435 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7436     int qid, uint8_t tid, uint16_t ssn)
7437 {
7438 	struct iwn_node *wn = (void *)ni;
7439 
7440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7441 
7442 	/* Stop TX scheduler while we're changing its configuration. */
7443 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7444 	    IWN4965_TXQ_STATUS_CHGACT);
7445 
7446 	/* Assign RA/TID translation to the queue. */
7447 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7448 	    wn->id << 4 | tid);
7449 
7450 	/* Enable chain-building mode for the queue. */
7451 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7452 
7453 	/* Set starting sequence number from the ADDBA request. */
7454 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7455 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7456 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7457 
7458 	/* Set scheduler window size. */
7459 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7460 	    IWN_SCHED_WINSZ);
7461 	/* Set scheduler frame limit. */
7462 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7463 	    IWN_SCHED_LIMIT << 16);
7464 
7465 	/* Enable interrupts for the queue. */
7466 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7467 
7468 	/* Mark the queue as active. */
7469 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7470 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7471 	    iwn_tid2fifo[tid] << 1);
7472 }
7473 
7474 static void
7475 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7476 {
7477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7478 
7479 	/* Stop TX scheduler while we're changing its configuration. */
7480 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7481 	    IWN4965_TXQ_STATUS_CHGACT);
7482 
7483 	/* Set starting sequence number from the ADDBA request. */
7484 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7485 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7486 
7487 	/* Disable interrupts for the queue. */
7488 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7489 
7490 	/* Mark the queue as inactive. */
7491 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7492 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7493 }
7494 
7495 static void
7496 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7497     int qid, uint8_t tid, uint16_t ssn)
7498 {
7499 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7500 
7501 	struct iwn_node *wn = (void *)ni;
7502 
7503 	/* Stop TX scheduler while we're changing its configuration. */
7504 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7505 	    IWN5000_TXQ_STATUS_CHGACT);
7506 
7507 	/* Assign RA/TID translation to the queue. */
7508 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7509 	    wn->id << 4 | tid);
7510 
7511 	/* Enable chain-building mode for the queue. */
7512 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7513 
7514 	/* Enable aggregation for the queue. */
7515 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7516 
7517 	/* Set starting sequence number from the ADDBA request. */
7518 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7519 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7520 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7521 
7522 	/* Set scheduler window size and frame limit. */
7523 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7524 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7525 
7526 	/* Enable interrupts for the queue. */
7527 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7528 
7529 	/* Mark the queue as active. */
7530 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7531 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7532 }
7533 
7534 static void
7535 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7536 {
7537 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7538 
7539 	/* Stop TX scheduler while we're changing its configuration. */
7540 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7541 	    IWN5000_TXQ_STATUS_CHGACT);
7542 
7543 	/* Disable aggregation for the queue. */
7544 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7545 
7546 	/* Set starting sequence number from the ADDBA request. */
7547 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7548 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7549 
7550 	/* Disable interrupts for the queue. */
7551 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7552 
7553 	/* Mark the queue as inactive. */
7554 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7555 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7556 }
7557 
7558 /*
7559  * Query calibration tables from the initialization firmware.  We do this
7560  * only once at first boot.  Called from a process context.
7561  */
7562 static int
7563 iwn5000_query_calibration(struct iwn_softc *sc)
7564 {
7565 	struct iwn5000_calib_config cmd;
7566 	int error;
7567 
7568 	memset(&cmd, 0, sizeof cmd);
7569 	cmd.ucode.once.enable = htole32(0xffffffff);
7570 	cmd.ucode.once.start  = htole32(0xffffffff);
7571 	cmd.ucode.once.send   = htole32(0xffffffff);
7572 	cmd.ucode.flags       = htole32(0xffffffff);
7573 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7574 	    __func__);
7575 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7576 	if (error != 0)
7577 		return error;
7578 
7579 	/* Wait at most two seconds for calibration to complete. */
7580 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7581 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7582 	return error;
7583 }
7584 
7585 /*
7586  * Send calibration results to the runtime firmware.  These results were
7587  * obtained on first boot from the initialization firmware.
7588  */
7589 static int
7590 iwn5000_send_calibration(struct iwn_softc *sc)
7591 {
7592 	int idx, error;
7593 
7594 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7595 		if (!(sc->base_params->calib_need & (1<<idx))) {
7596 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7597 			    "No need of calib %d\n",
7598 			    idx);
7599 			continue; /* no need for this calib */
7600 		}
7601 		if (sc->calibcmd[idx].buf == NULL) {
7602 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7603 			    "Need calib idx : %d but no available data\n",
7604 			    idx);
7605 			continue;
7606 		}
7607 
7608 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7609 		    "send calibration result idx=%d len=%d\n", idx,
7610 		    sc->calibcmd[idx].len);
7611 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7612 		    sc->calibcmd[idx].len, 0);
7613 		if (error != 0) {
7614 			device_printf(sc->sc_dev,
7615 			    "%s: could not send calibration result, error %d\n",
7616 			    __func__, error);
7617 			return error;
7618 		}
7619 	}
7620 	return 0;
7621 }
7622 
7623 static int
7624 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7625 {
7626 	struct iwn5000_wimax_coex wimax;
7627 
7628 #if 0
7629 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7630 		/* Enable WiMAX coexistence for combo adapters. */
7631 		wimax.flags =
7632 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7633 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7634 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7635 		    IWN_WIMAX_COEX_ENABLE;
7636 		memcpy(wimax.events, iwn6050_wimax_events,
7637 		    sizeof iwn6050_wimax_events);
7638 	} else
7639 #endif
7640 	{
7641 		/* Disable WiMAX coexistence. */
7642 		wimax.flags = 0;
7643 		memset(wimax.events, 0, sizeof wimax.events);
7644 	}
7645 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7646 	    __func__);
7647 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7648 }
7649 
7650 static int
7651 iwn5000_crystal_calib(struct iwn_softc *sc)
7652 {
7653 	struct iwn5000_phy_calib_crystal cmd;
7654 
7655 	memset(&cmd, 0, sizeof cmd);
7656 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7657 	cmd.ngroups = 1;
7658 	cmd.isvalid = 1;
7659 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7660 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7661 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7662 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7663 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7664 }
7665 
7666 static int
7667 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7668 {
7669 	struct iwn5000_phy_calib_temp_offset cmd;
7670 
7671 	memset(&cmd, 0, sizeof cmd);
7672 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7673 	cmd.ngroups = 1;
7674 	cmd.isvalid = 1;
7675 	if (sc->eeprom_temp != 0)
7676 		cmd.offset = htole16(sc->eeprom_temp);
7677 	else
7678 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7679 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7680 	    le16toh(cmd.offset));
7681 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7682 }
7683 
7684 static int
7685 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7686 {
7687 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7688 
7689 	memset(&cmd, 0, sizeof cmd);
7690 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7691 	cmd.ngroups = 1;
7692 	cmd.isvalid = 1;
7693 	if (sc->eeprom_temp != 0) {
7694 		cmd.offset_low = htole16(sc->eeprom_temp);
7695 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7696 	} else {
7697 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7698 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7699 	}
7700 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7701 
7702 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7703 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7704 	    le16toh(cmd.offset_low),
7705 	    le16toh(cmd.offset_high),
7706 	    le16toh(cmd.burnt_voltage_ref));
7707 
7708 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7709 }
7710 
7711 /*
7712  * This function is called after the runtime firmware notifies us of its
7713  * readiness (called in a process context).
7714  */
7715 static int
7716 iwn4965_post_alive(struct iwn_softc *sc)
7717 {
7718 	int error, qid;
7719 
7720 	if ((error = iwn_nic_lock(sc)) != 0)
7721 		return error;
7722 
7723 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7724 
7725 	/* Clear TX scheduler state in SRAM. */
7726 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7727 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7728 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7729 
7730 	/* Set physical address of TX scheduler rings (1KB aligned). */
7731 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7732 
7733 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7734 
7735 	/* Disable chain mode for all our 16 queues. */
7736 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7737 
7738 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7739 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7740 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7741 
7742 		/* Set scheduler window size. */
7743 		iwn_mem_write(sc, sc->sched_base +
7744 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7745 		/* Set scheduler frame limit. */
7746 		iwn_mem_write(sc, sc->sched_base +
7747 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7748 		    IWN_SCHED_LIMIT << 16);
7749 	}
7750 
7751 	/* Enable interrupts for all our 16 queues. */
7752 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7753 	/* Identify TX FIFO rings (0-7). */
7754 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7755 
7756 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7757 	for (qid = 0; qid < 7; qid++) {
7758 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7759 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7760 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7761 	}
7762 	iwn_nic_unlock(sc);
7763 	return 0;
7764 }
7765 
7766 /*
7767  * This function is called after the initialization or runtime firmware
7768  * notifies us of its readiness (called in a process context).
7769  */
7770 static int
7771 iwn5000_post_alive(struct iwn_softc *sc)
7772 {
7773 	int error, qid;
7774 
7775 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7776 
7777 	/* Switch to using ICT interrupt mode. */
7778 	iwn5000_ict_reset(sc);
7779 
7780 	if ((error = iwn_nic_lock(sc)) != 0){
7781 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7782 		return error;
7783 	}
7784 
7785 	/* Clear TX scheduler state in SRAM. */
7786 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7787 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7788 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7789 
7790 	/* Set physical address of TX scheduler rings (1KB aligned). */
7791 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7792 
7793 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7794 
7795 	/* Enable chain mode for all queues, except command queue. */
7796 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7797 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7798 	else
7799 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7800 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7801 
7802 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7803 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7804 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7805 
7806 		iwn_mem_write(sc, sc->sched_base +
7807 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7808 		/* Set scheduler window size and frame limit. */
7809 		iwn_mem_write(sc, sc->sched_base +
7810 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7811 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7812 	}
7813 
7814 	/* Enable interrupts for all our 20 queues. */
7815 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7816 	/* Identify TX FIFO rings (0-7). */
7817 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7818 
7819 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7820 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7821 		/* Mark TX rings as active. */
7822 		for (qid = 0; qid < 11; qid++) {
7823 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7824 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7825 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7826 		}
7827 	} else {
7828 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7829 		for (qid = 0; qid < 7; qid++) {
7830 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7831 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7832 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7833 		}
7834 	}
7835 	iwn_nic_unlock(sc);
7836 
7837 	/* Configure WiMAX coexistence for combo adapters. */
7838 	error = iwn5000_send_wimax_coex(sc);
7839 	if (error != 0) {
7840 		device_printf(sc->sc_dev,
7841 		    "%s: could not configure WiMAX coexistence, error %d\n",
7842 		    __func__, error);
7843 		return error;
7844 	}
7845 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7846 		/* Perform crystal calibration. */
7847 		error = iwn5000_crystal_calib(sc);
7848 		if (error != 0) {
7849 			device_printf(sc->sc_dev,
7850 			    "%s: crystal calibration failed, error %d\n",
7851 			    __func__, error);
7852 			return error;
7853 		}
7854 	}
7855 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7856 		/* Query calibration from the initialization firmware. */
7857 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7858 			device_printf(sc->sc_dev,
7859 			    "%s: could not query calibration, error %d\n",
7860 			    __func__, error);
7861 			return error;
7862 		}
7863 		/*
7864 		 * We have the calibration results now, reboot with the
7865 		 * runtime firmware (call ourselves recursively!)
7866 		 */
7867 		iwn_hw_stop(sc);
7868 		error = iwn_hw_init(sc);
7869 	} else {
7870 		/* Send calibration results to runtime firmware. */
7871 		error = iwn5000_send_calibration(sc);
7872 	}
7873 
7874 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7875 
7876 	return error;
7877 }
7878 
7879 /*
7880  * The firmware boot code is small and is intended to be copied directly into
7881  * the NIC internal memory (no DMA transfer).
7882  */
7883 static int
7884 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7885 {
7886 	int error, ntries;
7887 
7888 	size /= sizeof (uint32_t);
7889 
7890 	if ((error = iwn_nic_lock(sc)) != 0)
7891 		return error;
7892 
7893 	/* Copy microcode image into NIC memory. */
7894 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7895 	    (const uint32_t *)ucode, size);
7896 
7897 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7898 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7899 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7900 
7901 	/* Start boot load now. */
7902 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7903 
7904 	/* Wait for transfer to complete. */
7905 	for (ntries = 0; ntries < 1000; ntries++) {
7906 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7907 		    IWN_BSM_WR_CTRL_START))
7908 			break;
7909 		DELAY(10);
7910 	}
7911 	if (ntries == 1000) {
7912 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7913 		    __func__);
7914 		iwn_nic_unlock(sc);
7915 		return ETIMEDOUT;
7916 	}
7917 
7918 	/* Enable boot after power up. */
7919 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7920 
7921 	iwn_nic_unlock(sc);
7922 	return 0;
7923 }
7924 
7925 static int
7926 iwn4965_load_firmware(struct iwn_softc *sc)
7927 {
7928 	struct iwn_fw_info *fw = &sc->fw;
7929 	struct iwn_dma_info *dma = &sc->fw_dma;
7930 	int error;
7931 
7932 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7933 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7934 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7935 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7936 	    fw->init.text, fw->init.textsz);
7937 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7938 
7939 	/* Tell adapter where to find initialization sections. */
7940 	if ((error = iwn_nic_lock(sc)) != 0)
7941 		return error;
7942 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7943 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7944 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7945 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7946 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7947 	iwn_nic_unlock(sc);
7948 
7949 	/* Load firmware boot code. */
7950 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7951 	if (error != 0) {
7952 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7953 		    __func__);
7954 		return error;
7955 	}
7956 	/* Now press "execute". */
7957 	IWN_WRITE(sc, IWN_RESET, 0);
7958 
7959 	/* Wait at most one second for first alive notification. */
7960 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7961 		device_printf(sc->sc_dev,
7962 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7963 		    __func__, error);
7964 		return error;
7965 	}
7966 
7967 	/* Retrieve current temperature for initial TX power calibration. */
7968 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7969 	sc->temp = iwn4965_get_temperature(sc);
7970 
7971 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7972 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7973 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7974 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7975 	    fw->main.text, fw->main.textsz);
7976 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7977 
7978 	/* Tell adapter where to find runtime sections. */
7979 	if ((error = iwn_nic_lock(sc)) != 0)
7980 		return error;
7981 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7982 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7983 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7984 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7985 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7986 	    IWN_FW_UPDATED | fw->main.textsz);
7987 	iwn_nic_unlock(sc);
7988 
7989 	return 0;
7990 }
7991 
7992 static int
7993 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7994     const uint8_t *section, int size)
7995 {
7996 	struct iwn_dma_info *dma = &sc->fw_dma;
7997 	int error;
7998 
7999 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8000 
8001 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8002 	memcpy(dma->vaddr, section, size);
8003 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8004 
8005 	if ((error = iwn_nic_lock(sc)) != 0)
8006 		return error;
8007 
8008 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8009 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8010 
8011 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8012 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8013 	    IWN_LOADDR(dma->paddr));
8014 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8015 	    IWN_HIADDR(dma->paddr) << 28 | size);
8016 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8017 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8018 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8019 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8020 
8021 	/* Kick Flow Handler to start DMA transfer. */
8022 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8023 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8024 
8025 	iwn_nic_unlock(sc);
8026 
8027 	/* Wait at most five seconds for FH DMA transfer to complete. */
8028 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8029 }
8030 
8031 static int
8032 iwn5000_load_firmware(struct iwn_softc *sc)
8033 {
8034 	struct iwn_fw_part *fw;
8035 	int error;
8036 
8037 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8038 
8039 	/* Load the initialization firmware on first boot only. */
8040 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8041 	    &sc->fw.main : &sc->fw.init;
8042 
8043 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8044 	    fw->text, fw->textsz);
8045 	if (error != 0) {
8046 		device_printf(sc->sc_dev,
8047 		    "%s: could not load firmware %s section, error %d\n",
8048 		    __func__, ".text", error);
8049 		return error;
8050 	}
8051 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8052 	    fw->data, fw->datasz);
8053 	if (error != 0) {
8054 		device_printf(sc->sc_dev,
8055 		    "%s: could not load firmware %s section, error %d\n",
8056 		    __func__, ".data", error);
8057 		return error;
8058 	}
8059 
8060 	/* Now press "execute". */
8061 	IWN_WRITE(sc, IWN_RESET, 0);
8062 	return 0;
8063 }
8064 
8065 /*
8066  * Extract text and data sections from a legacy firmware image.
8067  */
8068 static int
8069 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8070 {
8071 	const uint32_t *ptr;
8072 	size_t hdrlen = 24;
8073 	uint32_t rev;
8074 
8075 	ptr = (const uint32_t *)fw->data;
8076 	rev = le32toh(*ptr++);
8077 
8078 	sc->ucode_rev = rev;
8079 
8080 	/* Check firmware API version. */
8081 	if (IWN_FW_API(rev) <= 1) {
8082 		device_printf(sc->sc_dev,
8083 		    "%s: bad firmware, need API version >=2\n", __func__);
8084 		return EINVAL;
8085 	}
8086 	if (IWN_FW_API(rev) >= 3) {
8087 		/* Skip build number (version 2 header). */
8088 		hdrlen += 4;
8089 		ptr++;
8090 	}
8091 	if (fw->size < hdrlen) {
8092 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8093 		    __func__, fw->size);
8094 		return EINVAL;
8095 	}
8096 	fw->main.textsz = le32toh(*ptr++);
8097 	fw->main.datasz = le32toh(*ptr++);
8098 	fw->init.textsz = le32toh(*ptr++);
8099 	fw->init.datasz = le32toh(*ptr++);
8100 	fw->boot.textsz = le32toh(*ptr++);
8101 
8102 	/* Check that all firmware sections fit. */
8103 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8104 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8105 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8106 		    __func__, fw->size);
8107 		return EINVAL;
8108 	}
8109 
8110 	/* Get pointers to firmware sections. */
8111 	fw->main.text = (const uint8_t *)ptr;
8112 	fw->main.data = fw->main.text + fw->main.textsz;
8113 	fw->init.text = fw->main.data + fw->main.datasz;
8114 	fw->init.data = fw->init.text + fw->init.textsz;
8115 	fw->boot.text = fw->init.data + fw->init.datasz;
8116 	return 0;
8117 }
8118 
8119 /*
8120  * Extract text and data sections from a TLV firmware image.
8121  */
8122 static int
8123 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8124     uint16_t alt)
8125 {
8126 	const struct iwn_fw_tlv_hdr *hdr;
8127 	const struct iwn_fw_tlv *tlv;
8128 	const uint8_t *ptr, *end;
8129 	uint64_t altmask;
8130 	uint32_t len, tmp;
8131 
8132 	if (fw->size < sizeof (*hdr)) {
8133 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8134 		    __func__, fw->size);
8135 		return EINVAL;
8136 	}
8137 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8138 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8139 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8140 		    __func__, le32toh(hdr->signature));
8141 		return EINVAL;
8142 	}
8143 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8144 	    le32toh(hdr->build));
8145 	sc->ucode_rev = le32toh(hdr->rev);
8146 
8147 	/*
8148 	 * Select the closest supported alternative that is less than
8149 	 * or equal to the specified one.
8150 	 */
8151 	altmask = le64toh(hdr->altmask);
8152 	while (alt > 0 && !(altmask & (1ULL << alt)))
8153 		alt--;	/* Downgrade. */
8154 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8155 
8156 	ptr = (const uint8_t *)(hdr + 1);
8157 	end = (const uint8_t *)(fw->data + fw->size);
8158 
8159 	/* Parse type-length-value fields. */
8160 	while (ptr + sizeof (*tlv) <= end) {
8161 		tlv = (const struct iwn_fw_tlv *)ptr;
8162 		len = le32toh(tlv->len);
8163 
8164 		ptr += sizeof (*tlv);
8165 		if (ptr + len > end) {
8166 			device_printf(sc->sc_dev,
8167 			    "%s: firmware too short: %zu bytes\n", __func__,
8168 			    fw->size);
8169 			return EINVAL;
8170 		}
8171 		/* Skip other alternatives. */
8172 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8173 			goto next;
8174 
8175 		switch (le16toh(tlv->type)) {
8176 		case IWN_FW_TLV_MAIN_TEXT:
8177 			fw->main.text = ptr;
8178 			fw->main.textsz = len;
8179 			break;
8180 		case IWN_FW_TLV_MAIN_DATA:
8181 			fw->main.data = ptr;
8182 			fw->main.datasz = len;
8183 			break;
8184 		case IWN_FW_TLV_INIT_TEXT:
8185 			fw->init.text = ptr;
8186 			fw->init.textsz = len;
8187 			break;
8188 		case IWN_FW_TLV_INIT_DATA:
8189 			fw->init.data = ptr;
8190 			fw->init.datasz = len;
8191 			break;
8192 		case IWN_FW_TLV_BOOT_TEXT:
8193 			fw->boot.text = ptr;
8194 			fw->boot.textsz = len;
8195 			break;
8196 		case IWN_FW_TLV_ENH_SENS:
8197 			if (!len)
8198 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8199 			break;
8200 		case IWN_FW_TLV_PHY_CALIB:
8201 			tmp = le32toh(*ptr);
8202 			if (tmp < 253) {
8203 				sc->reset_noise_gain = tmp;
8204 				sc->noise_gain = tmp + 1;
8205 			}
8206 			break;
8207 		case IWN_FW_TLV_PAN:
8208 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8209 			DPRINTF(sc, IWN_DEBUG_RESET,
8210 			    "PAN Support found: %d\n", 1);
8211 			break;
8212 		case IWN_FW_TLV_FLAGS:
8213 			if (len < sizeof(uint32_t))
8214 				break;
8215 			if (len % sizeof(uint32_t))
8216 				break;
8217 			sc->tlv_feature_flags = le32toh(*ptr);
8218 			DPRINTF(sc, IWN_DEBUG_RESET,
8219 			    "%s: feature: 0x%08x\n",
8220 			    __func__,
8221 			    sc->tlv_feature_flags);
8222 			break;
8223 		case IWN_FW_TLV_PBREQ_MAXLEN:
8224 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8225 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8226 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8227 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8228 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8229 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8230 		case IWN_FW_TLV_WOWLAN_INST:
8231 		case IWN_FW_TLV_WOWLAN_DATA:
8232 			DPRINTF(sc, IWN_DEBUG_RESET,
8233 			    "TLV type %d recognized but not handled\n",
8234 			    le16toh(tlv->type));
8235 			break;
8236 		default:
8237 			DPRINTF(sc, IWN_DEBUG_RESET,
8238 			    "TLV type %d not handled\n", le16toh(tlv->type));
8239 			break;
8240 		}
8241  next:		/* TLV fields are 32-bit aligned. */
8242 		ptr += (len + 3) & ~3;
8243 	}
8244 	return 0;
8245 }
8246 
8247 static int
8248 iwn_read_firmware(struct iwn_softc *sc)
8249 {
8250 	struct iwn_fw_info *fw = &sc->fw;
8251 	int error;
8252 
8253 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8254 
8255 	IWN_UNLOCK(sc);
8256 
8257 	memset(fw, 0, sizeof (*fw));
8258 
8259 	/* Read firmware image from filesystem. */
8260 	sc->fw_fp = firmware_get(sc->fwname);
8261 	if (sc->fw_fp == NULL) {
8262 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8263 		    __func__, sc->fwname);
8264 		IWN_LOCK(sc);
8265 		return EINVAL;
8266 	}
8267 	IWN_LOCK(sc);
8268 
8269 	fw->size = sc->fw_fp->datasize;
8270 	fw->data = (const uint8_t *)sc->fw_fp->data;
8271 	if (fw->size < sizeof (uint32_t)) {
8272 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8273 		    __func__, fw->size);
8274 		error = EINVAL;
8275 		goto fail;
8276 	}
8277 
8278 	/* Retrieve text and data sections. */
8279 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8280 		error = iwn_read_firmware_leg(sc, fw);
8281 	else
8282 		error = iwn_read_firmware_tlv(sc, fw, 1);
8283 	if (error != 0) {
8284 		device_printf(sc->sc_dev,
8285 		    "%s: could not read firmware sections, error %d\n",
8286 		    __func__, error);
8287 		goto fail;
8288 	}
8289 
8290 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8291 
8292 	/* Make sure text and data sections fit in hardware memory. */
8293 	if (fw->main.textsz > sc->fw_text_maxsz ||
8294 	    fw->main.datasz > sc->fw_data_maxsz ||
8295 	    fw->init.textsz > sc->fw_text_maxsz ||
8296 	    fw->init.datasz > sc->fw_data_maxsz ||
8297 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8298 	    (fw->boot.textsz & 3) != 0) {
8299 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8300 		    __func__);
8301 		error = EINVAL;
8302 		goto fail;
8303 	}
8304 
8305 	/* We can proceed with loading the firmware. */
8306 	return 0;
8307 
8308 fail:	iwn_unload_firmware(sc);
8309 	return error;
8310 }
8311 
8312 static void
8313 iwn_unload_firmware(struct iwn_softc *sc)
8314 {
8315 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8316 	sc->fw_fp = NULL;
8317 }
8318 
8319 static int
8320 iwn_clock_wait(struct iwn_softc *sc)
8321 {
8322 	int ntries;
8323 
8324 	/* Set "initialization complete" bit. */
8325 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8326 
8327 	/* Wait for clock stabilization. */
8328 	for (ntries = 0; ntries < 2500; ntries++) {
8329 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8330 			return 0;
8331 		DELAY(10);
8332 	}
8333 	device_printf(sc->sc_dev,
8334 	    "%s: timeout waiting for clock stabilization\n", __func__);
8335 	return ETIMEDOUT;
8336 }
8337 
8338 static int
8339 iwn_apm_init(struct iwn_softc *sc)
8340 {
8341 	uint32_t reg;
8342 	int error;
8343 
8344 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8345 
8346 	/* Disable L0s exit timer (NMI bug workaround). */
8347 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8348 	/* Don't wait for ICH L0s (ICH bug workaround). */
8349 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8350 
8351 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8352 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8353 
8354 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8355 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8356 
8357 	/* Retrieve PCIe Active State Power Management (ASPM). */
8358 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8359 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8360 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8361 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8362 	else
8363 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8364 
8365 	if (sc->base_params->pll_cfg_val)
8366 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8367 
8368 	/* Wait for clock stabilization before accessing prph. */
8369 	if ((error = iwn_clock_wait(sc)) != 0)
8370 		return error;
8371 
8372 	if ((error = iwn_nic_lock(sc)) != 0)
8373 		return error;
8374 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8375 		/* Enable DMA and BSM (Bootstrap State Machine). */
8376 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8377 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8378 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8379 	} else {
8380 		/* Enable DMA. */
8381 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8382 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8383 	}
8384 	DELAY(20);
8385 	/* Disable L1-Active. */
8386 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8387 	iwn_nic_unlock(sc);
8388 
8389 	return 0;
8390 }
8391 
8392 static void
8393 iwn_apm_stop_master(struct iwn_softc *sc)
8394 {
8395 	int ntries;
8396 
8397 	/* Stop busmaster DMA activity. */
8398 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8399 	for (ntries = 0; ntries < 100; ntries++) {
8400 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8401 			return;
8402 		DELAY(10);
8403 	}
8404 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8405 }
8406 
8407 static void
8408 iwn_apm_stop(struct iwn_softc *sc)
8409 {
8410 	iwn_apm_stop_master(sc);
8411 
8412 	/* Reset the entire device. */
8413 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8414 	DELAY(10);
8415 	/* Clear "initialization complete" bit. */
8416 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8417 }
8418 
8419 static int
8420 iwn4965_nic_config(struct iwn_softc *sc)
8421 {
8422 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8423 
8424 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8425 		/*
8426 		 * I don't believe this to be correct but this is what the
8427 		 * vendor driver is doing. Probably the bits should not be
8428 		 * shifted in IWN_RFCFG_*.
8429 		 */
8430 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8431 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8432 		    IWN_RFCFG_STEP(sc->rfcfg) |
8433 		    IWN_RFCFG_DASH(sc->rfcfg));
8434 	}
8435 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8436 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8437 	return 0;
8438 }
8439 
8440 static int
8441 iwn5000_nic_config(struct iwn_softc *sc)
8442 {
8443 	uint32_t tmp;
8444 	int error;
8445 
8446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8447 
8448 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8449 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8450 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8451 		    IWN_RFCFG_STEP(sc->rfcfg) |
8452 		    IWN_RFCFG_DASH(sc->rfcfg));
8453 	}
8454 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8455 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8456 
8457 	if ((error = iwn_nic_lock(sc)) != 0)
8458 		return error;
8459 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8460 
8461 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8462 		/*
8463 		 * Select first Switching Voltage Regulator (1.32V) to
8464 		 * solve a stability issue related to noisy DC2DC line
8465 		 * in the silicon of 1000 Series.
8466 		 */
8467 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8468 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8469 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8470 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8471 	}
8472 	iwn_nic_unlock(sc);
8473 
8474 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8475 		/* Use internal power amplifier only. */
8476 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8477 	}
8478 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8479 		/* Indicate that ROM calibration version is >=6. */
8480 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8481 	}
8482 	if (sc->base_params->additional_gp_drv_bit)
8483 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8484 		    sc->base_params->additional_gp_drv_bit);
8485 	return 0;
8486 }
8487 
8488 /*
8489  * Take NIC ownership over Intel Active Management Technology (AMT).
8490  */
8491 static int
8492 iwn_hw_prepare(struct iwn_softc *sc)
8493 {
8494 	int ntries;
8495 
8496 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8497 
8498 	/* Check if hardware is ready. */
8499 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8500 	for (ntries = 0; ntries < 5; ntries++) {
8501 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8502 		    IWN_HW_IF_CONFIG_NIC_READY)
8503 			return 0;
8504 		DELAY(10);
8505 	}
8506 
8507 	/* Hardware not ready, force into ready state. */
8508 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8509 	for (ntries = 0; ntries < 15000; ntries++) {
8510 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8511 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8512 			break;
8513 		DELAY(10);
8514 	}
8515 	if (ntries == 15000)
8516 		return ETIMEDOUT;
8517 
8518 	/* Hardware should be ready now. */
8519 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8520 	for (ntries = 0; ntries < 5; ntries++) {
8521 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8522 		    IWN_HW_IF_CONFIG_NIC_READY)
8523 			return 0;
8524 		DELAY(10);
8525 	}
8526 	return ETIMEDOUT;
8527 }
8528 
8529 static int
8530 iwn_hw_init(struct iwn_softc *sc)
8531 {
8532 	struct iwn_ops *ops = &sc->ops;
8533 	int error, chnl, qid;
8534 
8535 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8536 
8537 	/* Clear pending interrupts. */
8538 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8539 
8540 	if ((error = iwn_apm_init(sc)) != 0) {
8541 		device_printf(sc->sc_dev,
8542 		    "%s: could not power ON adapter, error %d\n", __func__,
8543 		    error);
8544 		return error;
8545 	}
8546 
8547 	/* Select VMAIN power source. */
8548 	if ((error = iwn_nic_lock(sc)) != 0)
8549 		return error;
8550 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8551 	iwn_nic_unlock(sc);
8552 
8553 	/* Perform adapter-specific initialization. */
8554 	if ((error = ops->nic_config(sc)) != 0)
8555 		return error;
8556 
8557 	/* Initialize RX ring. */
8558 	if ((error = iwn_nic_lock(sc)) != 0)
8559 		return error;
8560 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8561 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8562 	/* Set physical address of RX ring (256-byte aligned). */
8563 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8564 	/* Set physical address of RX status (16-byte aligned). */
8565 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8566 	/* Enable RX. */
8567 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8568 	    IWN_FH_RX_CONFIG_ENA           |
8569 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8570 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8571 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8572 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8573 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8574 	iwn_nic_unlock(sc);
8575 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8576 
8577 	if ((error = iwn_nic_lock(sc)) != 0)
8578 		return error;
8579 
8580 	/* Initialize TX scheduler. */
8581 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8582 
8583 	/* Set physical address of "keep warm" page (16-byte aligned). */
8584 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8585 
8586 	/* Initialize TX rings. */
8587 	for (qid = 0; qid < sc->ntxqs; qid++) {
8588 		struct iwn_tx_ring *txq = &sc->txq[qid];
8589 
8590 		/* Set physical address of TX ring (256-byte aligned). */
8591 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8592 		    txq->desc_dma.paddr >> 8);
8593 	}
8594 	iwn_nic_unlock(sc);
8595 
8596 	/* Enable DMA channels. */
8597 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8598 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8599 		    IWN_FH_TX_CONFIG_DMA_ENA |
8600 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8601 	}
8602 
8603 	/* Clear "radio off" and "commands blocked" bits. */
8604 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8605 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8606 
8607 	/* Clear pending interrupts. */
8608 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8609 	/* Enable interrupt coalescing. */
8610 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8611 	/* Enable interrupts. */
8612 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8613 
8614 	/* _Really_ make sure "radio off" bit is cleared! */
8615 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8616 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8617 
8618 	/* Enable shadow registers. */
8619 	if (sc->base_params->shadow_reg_enable)
8620 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8621 
8622 	if ((error = ops->load_firmware(sc)) != 0) {
8623 		device_printf(sc->sc_dev,
8624 		    "%s: could not load firmware, error %d\n", __func__,
8625 		    error);
8626 		return error;
8627 	}
8628 	/* Wait at most one second for firmware alive notification. */
8629 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8630 		device_printf(sc->sc_dev,
8631 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8632 		    __func__, error);
8633 		return error;
8634 	}
8635 	/* Do post-firmware initialization. */
8636 
8637 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8638 
8639 	return ops->post_alive(sc);
8640 }
8641 
8642 static void
8643 iwn_hw_stop(struct iwn_softc *sc)
8644 {
8645 	int chnl, qid, ntries;
8646 
8647 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8648 
8649 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8650 
8651 	/* Disable interrupts. */
8652 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8653 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8654 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8655 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8656 
8657 	/* Make sure we no longer hold the NIC lock. */
8658 	iwn_nic_unlock(sc);
8659 
8660 	/* Stop TX scheduler. */
8661 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8662 
8663 	/* Stop all DMA channels. */
8664 	if (iwn_nic_lock(sc) == 0) {
8665 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8666 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8667 			for (ntries = 0; ntries < 200; ntries++) {
8668 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8669 				    IWN_FH_TX_STATUS_IDLE(chnl))
8670 					break;
8671 				DELAY(10);
8672 			}
8673 		}
8674 		iwn_nic_unlock(sc);
8675 	}
8676 
8677 	/* Stop RX ring. */
8678 	iwn_reset_rx_ring(sc, &sc->rxq);
8679 
8680 	/* Reset all TX rings. */
8681 	for (qid = 0; qid < sc->ntxqs; qid++)
8682 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8683 
8684 	if (iwn_nic_lock(sc) == 0) {
8685 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8686 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8687 		iwn_nic_unlock(sc);
8688 	}
8689 	DELAY(5);
8690 	/* Power OFF adapter. */
8691 	iwn_apm_stop(sc);
8692 }
8693 
8694 static void
8695 iwn_panicked(void *arg0, int pending)
8696 {
8697 	struct iwn_softc *sc = arg0;
8698 	struct ieee80211com *ic = &sc->sc_ic;
8699 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8700 #if 0
8701 	int error;
8702 #endif
8703 
8704 	if (vap == NULL) {
8705 		printf("%s: null vap\n", __func__);
8706 		return;
8707 	}
8708 
8709 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8710 	    "restarting\n", __func__, vap->iv_state);
8711 
8712 	/*
8713 	 * This is not enough work. We need to also reinitialise
8714 	 * the correct transmit state for aggregation enabled queues,
8715 	 * which has a very specific requirement of
8716 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8717 	 * we definitely don't!) then the firmware will just panic again.
8718 	 */
8719 #if 1
8720 	ieee80211_restart_all(ic);
8721 #else
8722 	IWN_LOCK(sc);
8723 
8724 	iwn_stop_locked(sc);
8725 	if ((error = iwn_init_locked(sc)) != 0) {
8726 		device_printf(sc->sc_dev,
8727 		    "%s: could not init hardware\n", __func__);
8728 		goto unlock;
8729 	}
8730 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8731 	    (error = iwn_auth(sc, vap)) != 0) {
8732 		device_printf(sc->sc_dev,
8733 		    "%s: could not move to auth state\n", __func__);
8734 	}
8735 	if (vap->iv_state >= IEEE80211_S_RUN &&
8736 	    (error = iwn_run(sc, vap)) != 0) {
8737 		device_printf(sc->sc_dev,
8738 		    "%s: could not move to run state\n", __func__);
8739 	}
8740 
8741 unlock:
8742 	IWN_UNLOCK(sc);
8743 #endif
8744 }
8745 
8746 static int
8747 iwn_init_locked(struct iwn_softc *sc)
8748 {
8749 	int error;
8750 
8751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8752 
8753 	IWN_LOCK_ASSERT(sc);
8754 
8755 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8756 		goto end;
8757 
8758 	sc->sc_flags |= IWN_FLAG_RUNNING;
8759 
8760 	if ((error = iwn_hw_prepare(sc)) != 0) {
8761 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8762 		    __func__, error);
8763 		goto fail;
8764 	}
8765 
8766 	/* Initialize interrupt mask to default value. */
8767 	sc->int_mask = IWN_INT_MASK_DEF;
8768 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8769 
8770 	/* Check that the radio is not disabled by hardware switch. */
8771 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8772 		iwn_stop_locked(sc);
8773 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8774 
8775 		return (1);
8776 	}
8777 
8778 	/* Read firmware images from the filesystem. */
8779 	if ((error = iwn_read_firmware(sc)) != 0) {
8780 		device_printf(sc->sc_dev,
8781 		    "%s: could not read firmware, error %d\n", __func__,
8782 		    error);
8783 		goto fail;
8784 	}
8785 
8786 	/* Initialize hardware and upload firmware. */
8787 	error = iwn_hw_init(sc);
8788 	iwn_unload_firmware(sc);
8789 	if (error != 0) {
8790 		device_printf(sc->sc_dev,
8791 		    "%s: could not initialize hardware, error %d\n", __func__,
8792 		    error);
8793 		goto fail;
8794 	}
8795 
8796 	/* Configure adapter now that it is ready. */
8797 	if ((error = iwn_config(sc)) != 0) {
8798 		device_printf(sc->sc_dev,
8799 		    "%s: could not configure device, error %d\n", __func__,
8800 		    error);
8801 		goto fail;
8802 	}
8803 
8804 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8805 
8806 end:
8807 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8808 
8809 	return (0);
8810 
8811 fail:
8812 	iwn_stop_locked(sc);
8813 
8814 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8815 
8816 	return (-1);
8817 }
8818 
8819 static int
8820 iwn_init(struct iwn_softc *sc)
8821 {
8822 	int error;
8823 
8824 	IWN_LOCK(sc);
8825 	error = iwn_init_locked(sc);
8826 	IWN_UNLOCK(sc);
8827 
8828 	return (error);
8829 }
8830 
8831 static void
8832 iwn_stop_locked(struct iwn_softc *sc)
8833 {
8834 
8835 	IWN_LOCK_ASSERT(sc);
8836 
8837 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
8838 		return;
8839 
8840 	sc->sc_is_scanning = 0;
8841 	sc->sc_tx_timer = 0;
8842 	callout_stop(&sc->watchdog_to);
8843 	callout_stop(&sc->scan_timeout);
8844 	callout_stop(&sc->calib_to);
8845 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8846 
8847 	/* Power OFF hardware. */
8848 	iwn_hw_stop(sc);
8849 }
8850 
8851 static void
8852 iwn_stop(struct iwn_softc *sc)
8853 {
8854 	IWN_LOCK(sc);
8855 	iwn_stop_locked(sc);
8856 	IWN_UNLOCK(sc);
8857 }
8858 
8859 /*
8860  * Callback from net80211 to start a scan.
8861  */
8862 static void
8863 iwn_scan_start(struct ieee80211com *ic)
8864 {
8865 	struct iwn_softc *sc = ic->ic_softc;
8866 
8867 	IWN_LOCK(sc);
8868 	/* make the link LED blink while we're scanning */
8869 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8870 	IWN_UNLOCK(sc);
8871 }
8872 
8873 /*
8874  * Callback from net80211 to terminate a scan.
8875  */
8876 static void
8877 iwn_scan_end(struct ieee80211com *ic)
8878 {
8879 	struct iwn_softc *sc = ic->ic_softc;
8880 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8881 
8882 	IWN_LOCK(sc);
8883 	if (vap->iv_state == IEEE80211_S_RUN) {
8884 		/* Set link LED to ON status if we are associated */
8885 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8886 	}
8887 	IWN_UNLOCK(sc);
8888 }
8889 
8890 /*
8891  * Callback from net80211 to force a channel change.
8892  */
8893 static void
8894 iwn_set_channel(struct ieee80211com *ic)
8895 {
8896 	const struct ieee80211_channel *c = ic->ic_curchan;
8897 	struct iwn_softc *sc = ic->ic_softc;
8898 	int error;
8899 
8900 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8901 
8902 	IWN_LOCK(sc);
8903 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8904 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8905 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8906 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8907 
8908 	/*
8909 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8910 	 * are already taken care of by their respective firmware commands.
8911 	 */
8912 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8913 		error = iwn_config(sc);
8914 		if (error != 0)
8915 		device_printf(sc->sc_dev,
8916 		    "%s: error %d settting channel\n", __func__, error);
8917 	}
8918 	IWN_UNLOCK(sc);
8919 }
8920 
8921 /*
8922  * Callback from net80211 to start scanning of the current channel.
8923  */
8924 static void
8925 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8926 {
8927 	struct ieee80211vap *vap = ss->ss_vap;
8928 	struct ieee80211com *ic = vap->iv_ic;
8929 	struct iwn_softc *sc = ic->ic_softc;
8930 	int error;
8931 
8932 	IWN_LOCK(sc);
8933 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8934 	IWN_UNLOCK(sc);
8935 	if (error != 0)
8936 		ieee80211_cancel_scan(vap);
8937 }
8938 
8939 /*
8940  * Callback from net80211 to handle the minimum dwell time being met.
8941  * The intent is to terminate the scan but we just let the firmware
8942  * notify us when it's finished as we have no safe way to abort it.
8943  */
8944 static void
8945 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8946 {
8947 	/* NB: don't try to abort scan; wait for firmware to finish */
8948 }
8949 #ifdef	IWN_DEBUG
8950 #define	IWN_DESC(x) case x:	return #x
8951 
8952 /*
8953  * Translate CSR code to string
8954  */
8955 static char *iwn_get_csr_string(int csr)
8956 {
8957 	switch (csr) {
8958 		IWN_DESC(IWN_HW_IF_CONFIG);
8959 		IWN_DESC(IWN_INT_COALESCING);
8960 		IWN_DESC(IWN_INT);
8961 		IWN_DESC(IWN_INT_MASK);
8962 		IWN_DESC(IWN_FH_INT);
8963 		IWN_DESC(IWN_GPIO_IN);
8964 		IWN_DESC(IWN_RESET);
8965 		IWN_DESC(IWN_GP_CNTRL);
8966 		IWN_DESC(IWN_HW_REV);
8967 		IWN_DESC(IWN_EEPROM);
8968 		IWN_DESC(IWN_EEPROM_GP);
8969 		IWN_DESC(IWN_OTP_GP);
8970 		IWN_DESC(IWN_GIO);
8971 		IWN_DESC(IWN_GP_UCODE);
8972 		IWN_DESC(IWN_GP_DRIVER);
8973 		IWN_DESC(IWN_UCODE_GP1);
8974 		IWN_DESC(IWN_UCODE_GP2);
8975 		IWN_DESC(IWN_LED);
8976 		IWN_DESC(IWN_DRAM_INT_TBL);
8977 		IWN_DESC(IWN_GIO_CHICKEN);
8978 		IWN_DESC(IWN_ANA_PLL);
8979 		IWN_DESC(IWN_HW_REV_WA);
8980 		IWN_DESC(IWN_DBG_HPET_MEM);
8981 	default:
8982 		return "UNKNOWN CSR";
8983 	}
8984 }
8985 
8986 /*
8987  * This function print firmware register
8988  */
8989 static void
8990 iwn_debug_register(struct iwn_softc *sc)
8991 {
8992 	int i;
8993 	static const uint32_t csr_tbl[] = {
8994 		IWN_HW_IF_CONFIG,
8995 		IWN_INT_COALESCING,
8996 		IWN_INT,
8997 		IWN_INT_MASK,
8998 		IWN_FH_INT,
8999 		IWN_GPIO_IN,
9000 		IWN_RESET,
9001 		IWN_GP_CNTRL,
9002 		IWN_HW_REV,
9003 		IWN_EEPROM,
9004 		IWN_EEPROM_GP,
9005 		IWN_OTP_GP,
9006 		IWN_GIO,
9007 		IWN_GP_UCODE,
9008 		IWN_GP_DRIVER,
9009 		IWN_UCODE_GP1,
9010 		IWN_UCODE_GP2,
9011 		IWN_LED,
9012 		IWN_DRAM_INT_TBL,
9013 		IWN_GIO_CHICKEN,
9014 		IWN_ANA_PLL,
9015 		IWN_HW_REV_WA,
9016 		IWN_DBG_HPET_MEM,
9017 	};
9018 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9019 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9020 	    "\n");
9021 	for (i = 0; i <  nitems(csr_tbl); i++){
9022 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9023 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9024 		if ((i+1) % 3 == 0)
9025 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9026 	}
9027 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9028 }
9029 #endif
9030 
9031 
9032