xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn_check_tx_ring(struct iwn_softc *, int);
172 static void	iwn5000_ict_reset(struct iwn_softc *);
173 static int	iwn_read_eeprom(struct iwn_softc *,
174 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
175 static void	iwn4965_read_eeprom(struct iwn_softc *);
176 #ifdef	IWN_DEBUG
177 static void	iwn4965_print_power_group(struct iwn_softc *, int);
178 #endif
179 static void	iwn5000_read_eeprom(struct iwn_softc *);
180 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
181 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
184 		    struct ieee80211_channel[]);
185 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
187 		    struct ieee80211_channel *);
188 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
189 		    struct ieee80211_channel[]);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
204 		    int, int, int);
205 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
215 		    uint8_t);
216 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
217 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
218 		    uint64_t, int, int);
219 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
220 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
221 static void	iwn_notif_intr(struct iwn_softc *);
222 static void	iwn_wakeup_intr(struct iwn_softc *);
223 static void	iwn_rftoggle_task(void *, int);
224 static void	iwn_fatal_intr(struct iwn_softc *);
225 static void	iwn_intr(void *);
226 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
227 		    uint16_t);
228 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
229 		    uint16_t);
230 #ifdef notyet
231 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
232 #endif
233 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
234 		    struct ieee80211_node *);
235 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *,
237 		    const struct ieee80211_bpf_params *params);
238 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
239 		    struct ieee80211_node *, struct iwn_tx_ring *);
240 static void	iwn_xmit_task(void *arg0, int pending);
241 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
242 		    const struct ieee80211_bpf_params *);
243 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
244 static void	iwn_scan_timeout(void *);
245 static void	iwn_watchdog(void *);
246 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
247 static void	iwn_parent(struct ieee80211com *);
248 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
249 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
250 		    int);
251 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
252 		    int);
253 static int	iwn_set_link_quality(struct iwn_softc *,
254 		    struct ieee80211_node *);
255 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
256 static int	iwn_updateedca(struct ieee80211com *);
257 static void	iwn_set_promisc(struct iwn_softc *);
258 static void	iwn_update_promisc(struct ieee80211com *);
259 static void	iwn_update_mcast(struct ieee80211com *);
260 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
261 static int	iwn_set_critical_temp(struct iwn_softc *);
262 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
263 static void	iwn4965_power_calibration(struct iwn_softc *, int);
264 static int	iwn4965_set_txpower(struct iwn_softc *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *, int);
266 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
269 static int	iwn4965_get_temperature(struct iwn_softc *);
270 static int	iwn5000_get_temperature(struct iwn_softc *);
271 static int	iwn_init_sensitivity(struct iwn_softc *);
272 static void	iwn_collect_noise(struct iwn_softc *,
273 		    const struct iwn_rx_general_stats *);
274 static int	iwn4965_init_gains(struct iwn_softc *);
275 static int	iwn5000_init_gains(struct iwn_softc *);
276 static int	iwn4965_set_gains(struct iwn_softc *);
277 static int	iwn5000_set_gains(struct iwn_softc *);
278 static void	iwn_tune_sensitivity(struct iwn_softc *,
279 		    const struct iwn_rx_stats *);
280 static void	iwn_save_stats_counters(struct iwn_softc *,
281 		    const struct iwn_stats *);
282 static int	iwn_send_sensitivity(struct iwn_softc *);
283 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
284 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
285 static int	iwn_send_btcoex(struct iwn_softc *);
286 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
287 static int	iwn5000_runtime_calib(struct iwn_softc *);
288 static int	iwn_check_bss_filter(struct iwn_softc *);
289 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
290 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
291 static int	iwn_send_rxon(struct iwn_softc *, int, int);
292 static int	iwn_config(struct iwn_softc *);
293 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
294 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
295 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
296 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
297 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
298 		    struct ieee80211_rx_ampdu *, int, int, int);
299 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
300 		    struct ieee80211_rx_ampdu *);
301 static int	iwn_addba_request(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *, int, int, int);
303 static int	iwn_addba_response(struct ieee80211_node *,
304 		    struct ieee80211_tx_ampdu *, int, int, int);
305 static int	iwn_ampdu_tx_start(struct ieee80211com *,
306 		    struct ieee80211_node *, uint8_t);
307 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
308 		    struct ieee80211_tx_ampdu *);
309 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
310 		    struct ieee80211_node *, int, uint8_t, uint16_t);
311 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
312 		    uint8_t, uint16_t);
313 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
314 		    struct ieee80211_node *, int, uint8_t, uint16_t);
315 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
316 		    uint8_t, uint16_t);
317 static int	iwn5000_query_calibration(struct iwn_softc *);
318 static int	iwn5000_send_calibration(struct iwn_softc *);
319 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
320 static int	iwn5000_crystal_calib(struct iwn_softc *);
321 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
322 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
323 static int	iwn4965_post_alive(struct iwn_softc *);
324 static int	iwn5000_post_alive(struct iwn_softc *);
325 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
326 		    int);
327 static int	iwn4965_load_firmware(struct iwn_softc *);
328 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
329 		    const uint8_t *, int);
330 static int	iwn5000_load_firmware(struct iwn_softc *);
331 static int	iwn_read_firmware_leg(struct iwn_softc *,
332 		    struct iwn_fw_info *);
333 static int	iwn_read_firmware_tlv(struct iwn_softc *,
334 		    struct iwn_fw_info *, uint16_t);
335 static int	iwn_read_firmware(struct iwn_softc *);
336 static void	iwn_unload_firmware(struct iwn_softc *);
337 static int	iwn_clock_wait(struct iwn_softc *);
338 static int	iwn_apm_init(struct iwn_softc *);
339 static void	iwn_apm_stop_master(struct iwn_softc *);
340 static void	iwn_apm_stop(struct iwn_softc *);
341 static int	iwn4965_nic_config(struct iwn_softc *);
342 static int	iwn5000_nic_config(struct iwn_softc *);
343 static int	iwn_hw_prepare(struct iwn_softc *);
344 static int	iwn_hw_init(struct iwn_softc *);
345 static void	iwn_hw_stop(struct iwn_softc *);
346 static void	iwn_panicked(void *, int);
347 static int	iwn_init_locked(struct iwn_softc *);
348 static int	iwn_init(struct iwn_softc *);
349 static void	iwn_stop_locked(struct iwn_softc *);
350 static void	iwn_stop(struct iwn_softc *);
351 static void	iwn_scan_start(struct ieee80211com *);
352 static void	iwn_scan_end(struct ieee80211com *);
353 static void	iwn_set_channel(struct ieee80211com *);
354 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
355 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
356 #ifdef	IWN_DEBUG
357 static char	*iwn_get_csr_string(int);
358 static void	iwn_debug_register(struct iwn_softc *);
359 #endif
360 
361 static device_method_t iwn_methods[] = {
362 	/* Device interface */
363 	DEVMETHOD(device_probe,		iwn_probe),
364 	DEVMETHOD(device_attach,	iwn_attach),
365 	DEVMETHOD(device_detach,	iwn_detach),
366 	DEVMETHOD(device_shutdown,	iwn_shutdown),
367 	DEVMETHOD(device_suspend,	iwn_suspend),
368 	DEVMETHOD(device_resume,	iwn_resume),
369 
370 	DEVMETHOD_END
371 };
372 
373 static driver_t iwn_driver = {
374 	"iwn",
375 	iwn_methods,
376 	sizeof(struct iwn_softc)
377 };
378 static devclass_t iwn_devclass;
379 
380 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
381 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
382     nitems(iwn_ident_table) - 1);
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static d_ioctl_t iwn_cdev_ioctl;
390 static d_open_t iwn_cdev_open;
391 static d_close_t iwn_cdev_close;
392 
393 static struct cdevsw iwn_cdevsw = {
394 	.d_version = D_VERSION,
395 	.d_flags = 0,
396 	.d_open = iwn_cdev_open,
397 	.d_close = iwn_cdev_close,
398 	.d_ioctl = iwn_cdev_ioctl,
399 	.d_name = "iwn",
400 };
401 
402 static int
403 iwn_probe(device_t dev)
404 {
405 	const struct iwn_ident *ident;
406 
407 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
408 		if (pci_get_vendor(dev) == ident->vendor &&
409 		    pci_get_device(dev) == ident->device) {
410 			device_set_desc(dev, ident->name);
411 			return (BUS_PROBE_DEFAULT);
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 iwn_is_3stream_device(struct iwn_softc *sc)
419 {
420 	/* XXX for now only 5300, until the 5350 can be tested */
421 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
422 		return (1);
423 	return (0);
424 }
425 
426 static int
427 iwn_attach(device_t dev)
428 {
429 	struct iwn_softc *sc = device_get_softc(dev);
430 	struct ieee80211com *ic;
431 	int i, error, rid;
432 
433 	sc->sc_dev = dev;
434 
435 #ifdef	IWN_DEBUG
436 	error = resource_int_value(device_get_name(sc->sc_dev),
437 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
438 	if (error != 0)
439 		sc->sc_debug = 0;
440 #else
441 	sc->sc_debug = 0;
442 #endif
443 
444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
445 
446 	/*
447 	 * Get the offset of the PCI Express Capability Structure in PCI
448 	 * Configuration Space.
449 	 */
450 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
451 	if (error != 0) {
452 		device_printf(dev, "PCIe capability structure not found!\n");
453 		return error;
454 	}
455 
456 	/* Clear device-specific "PCI retry timeout" register (41h). */
457 	pci_write_config(dev, 0x41, 0, 1);
458 
459 	/* Enable bus-mastering. */
460 	pci_enable_busmaster(dev);
461 
462 	rid = PCIR_BAR(0);
463 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
464 	    RF_ACTIVE);
465 	if (sc->mem == NULL) {
466 		device_printf(dev, "can't map mem space\n");
467 		error = ENOMEM;
468 		return error;
469 	}
470 	sc->sc_st = rman_get_bustag(sc->mem);
471 	sc->sc_sh = rman_get_bushandle(sc->mem);
472 
473 	i = 1;
474 	rid = 0;
475 	if (pci_alloc_msi(dev, &i) == 0)
476 		rid = 1;
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		iwn5000_attach(sc, pci_get_device(dev));
501 
502 	/*
503 	 * Next, let's setup the various parameters of each NIC.
504 	 */
505 	error = iwn_config_specific(sc, pci_get_device(dev));
506 	if (error != 0) {
507 		device_printf(dev, "could not attach device, error %d\n",
508 		    error);
509 		goto fail;
510 	}
511 
512 	if ((error = iwn_hw_prepare(sc)) != 0) {
513 		device_printf(dev, "hardware not ready, error %d\n", error);
514 		goto fail;
515 	}
516 
517 	/* Allocate DMA memory for firmware transfers. */
518 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
519 		device_printf(dev,
520 		    "could not allocate memory for firmware, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	/* Allocate "Keep Warm" page. */
526 	if ((error = iwn_alloc_kw(sc)) != 0) {
527 		device_printf(dev,
528 		    "could not allocate keep warm page, error %d\n", error);
529 		goto fail;
530 	}
531 
532 	/* Allocate ICT table for 5000 Series. */
533 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
534 	    (error = iwn_alloc_ict(sc)) != 0) {
535 		device_printf(dev, "could not allocate ICT table, error %d\n",
536 		    error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX scheduler "rings". */
541 	if ((error = iwn_alloc_sched(sc)) != 0) {
542 		device_printf(dev,
543 		    "could not allocate TX scheduler rings, error %d\n", error);
544 		goto fail;
545 	}
546 
547 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
548 	for (i = 0; i < sc->ntxqs; i++) {
549 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
550 			device_printf(dev,
551 			    "could not allocate TX ring %d, error %d\n", i,
552 			    error);
553 			goto fail;
554 		}
555 	}
556 
557 	/* Allocate RX ring. */
558 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
559 		device_printf(dev, "could not allocate RX ring, error %d\n",
560 		    error);
561 		goto fail;
562 	}
563 
564 	/* Clear pending interrupts. */
565 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
566 
567 	ic = &sc->sc_ic;
568 	ic->ic_softc = sc;
569 	ic->ic_name = device_get_nameunit(dev);
570 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
571 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
572 
573 	/* Set device capabilities. */
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode supported */
576 		| IEEE80211_C_MONITOR		/* monitor mode supported */
577 #if 0
578 		| IEEE80211_C_BGSCAN		/* background scanning */
579 #endif
580 		| IEEE80211_C_TXPMGT		/* tx power management */
581 		| IEEE80211_C_SHSLOT		/* short slot time supported */
582 		| IEEE80211_C_WPA
583 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
584 #if 0
585 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
586 #endif
587 		| IEEE80211_C_WME		/* WME */
588 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
589 		;
590 
591 	/* Read MAC address, channels, etc from EEPROM. */
592 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
593 		device_printf(dev, "could not read EEPROM, error %d\n",
594 		    error);
595 		goto fail;
596 	}
597 
598 	/* Count the number of available chains. */
599 	sc->ntxchains =
600 	    ((sc->txchainmask >> 2) & 1) +
601 	    ((sc->txchainmask >> 1) & 1) +
602 	    ((sc->txchainmask >> 0) & 1);
603 	sc->nrxchains =
604 	    ((sc->rxchainmask >> 2) & 1) +
605 	    ((sc->rxchainmask >> 1) & 1) +
606 	    ((sc->rxchainmask >> 0) & 1);
607 	if (bootverbose) {
608 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
609 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
610 		    ic->ic_macaddr, ":");
611 	}
612 
613 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
614 		ic->ic_rxstream = sc->nrxchains;
615 		ic->ic_txstream = sc->ntxchains;
616 
617 		/*
618 		 * Some of the 3 antenna devices (ie, the 4965) only supports
619 		 * 2x2 operation.  So correct the number of streams if
620 		 * it's not a 3-stream device.
621 		 */
622 		if (! iwn_is_3stream_device(sc)) {
623 			if (ic->ic_rxstream > 2)
624 				ic->ic_rxstream = 2;
625 			if (ic->ic_txstream > 2)
626 				ic->ic_txstream = 2;
627 		}
628 
629 		ic->ic_htcaps =
630 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
631 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
632 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
633 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
634 #ifdef notyet
635 			| IEEE80211_HTCAP_GREENFIELD
636 #if IWN_RBUF_SIZE == 8192
637 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
638 #else
639 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
640 #endif
641 #endif
642 			/* s/w capabilities */
643 			| IEEE80211_HTC_HT		/* HT operation */
644 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
645 #ifdef notyet
646 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
647 #endif
648 			;
649 	}
650 
651 	ieee80211_ifattach(ic);
652 	ic->ic_vap_create = iwn_vap_create;
653 	ic->ic_ioctl = iwn_ioctl;
654 	ic->ic_parent = iwn_parent;
655 	ic->ic_vap_delete = iwn_vap_delete;
656 	ic->ic_transmit = iwn_transmit;
657 	ic->ic_raw_xmit = iwn_raw_xmit;
658 	ic->ic_node_alloc = iwn_node_alloc;
659 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
660 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
661 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
662 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
663 	sc->sc_addba_request = ic->ic_addba_request;
664 	ic->ic_addba_request = iwn_addba_request;
665 	sc->sc_addba_response = ic->ic_addba_response;
666 	ic->ic_addba_response = iwn_addba_response;
667 	sc->sc_addba_stop = ic->ic_addba_stop;
668 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
669 	ic->ic_newassoc = iwn_newassoc;
670 	ic->ic_wme.wme_update = iwn_updateedca;
671 	ic->ic_update_promisc = iwn_update_promisc;
672 	ic->ic_update_mcast = iwn_update_mcast;
673 	ic->ic_scan_start = iwn_scan_start;
674 	ic->ic_scan_end = iwn_scan_end;
675 	ic->ic_set_channel = iwn_set_channel;
676 	ic->ic_scan_curchan = iwn_scan_curchan;
677 	ic->ic_scan_mindwell = iwn_scan_mindwell;
678 	ic->ic_getradiocaps = iwn_getradiocaps;
679 	ic->ic_setregdomain = iwn_setregdomain;
680 
681 	iwn_radiotap_attach(sc);
682 
683 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
684 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
685 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
686 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
687 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
688 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
689 
690 	mbufq_init(&sc->sc_xmit_queue, 1024);
691 
692 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
693 	    taskqueue_thread_enqueue, &sc->sc_tq);
694 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
695 	if (error != 0) {
696 		device_printf(dev, "can't start threads, error %d\n", error);
697 		goto fail;
698 	}
699 
700 	iwn_sysctlattach(sc);
701 
702 	/*
703 	 * Hook our interrupt after all initialization is complete.
704 	 */
705 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
706 	    NULL, iwn_intr, sc, &sc->sc_ih);
707 	if (error != 0) {
708 		device_printf(dev, "can't establish interrupt, error %d\n",
709 		    error);
710 		goto fail;
711 	}
712 
713 #if 0
714 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
715 	    __func__,
716 	    sizeof(struct iwn_stats),
717 	    sizeof(struct iwn_stats_bt));
718 #endif
719 
720 	if (bootverbose)
721 		ieee80211_announce(ic);
722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
723 
724 	/* Add debug ioctl right at the end */
725 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
726 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
727 	if (sc->sc_cdev == NULL) {
728 		device_printf(dev, "failed to create debug character device\n");
729 	} else {
730 		sc->sc_cdev->si_drv1 = sc;
731 	}
732 	return 0;
733 fail:
734 	iwn_detach(dev);
735 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
736 	return error;
737 }
738 
739 /*
740  * Define specific configuration based on device id and subdevice id
741  * pid : PCI device id
742  */
743 static int
744 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
745 {
746 
747 	switch (pid) {
748 /* 4965 series */
749 	case IWN_DID_4965_1:
750 	case IWN_DID_4965_2:
751 	case IWN_DID_4965_3:
752 	case IWN_DID_4965_4:
753 		sc->base_params = &iwn4965_base_params;
754 		sc->limits = &iwn4965_sensitivity_limits;
755 		sc->fwname = "iwn4965fw";
756 		/* Override chains masks, ROM is known to be broken. */
757 		sc->txchainmask = IWN_ANT_AB;
758 		sc->rxchainmask = IWN_ANT_ABC;
759 		/* Enable normal btcoex */
760 		sc->sc_flags |= IWN_FLAG_BTCOEX;
761 		break;
762 /* 1000 Series */
763 	case IWN_DID_1000_1:
764 	case IWN_DID_1000_2:
765 		switch(sc->subdevice_id) {
766 			case	IWN_SDID_1000_1:
767 			case	IWN_SDID_1000_2:
768 			case	IWN_SDID_1000_3:
769 			case	IWN_SDID_1000_4:
770 			case	IWN_SDID_1000_5:
771 			case	IWN_SDID_1000_6:
772 			case	IWN_SDID_1000_7:
773 			case	IWN_SDID_1000_8:
774 			case	IWN_SDID_1000_9:
775 			case	IWN_SDID_1000_10:
776 			case	IWN_SDID_1000_11:
777 			case	IWN_SDID_1000_12:
778 				sc->limits = &iwn1000_sensitivity_limits;
779 				sc->base_params = &iwn1000_base_params;
780 				sc->fwname = "iwn1000fw";
781 				break;
782 			default:
783 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
784 				    "0x%04x rev %d not supported (subdevice)\n", pid,
785 				    sc->subdevice_id,sc->hw_type);
786 				return ENOTSUP;
787 		}
788 		break;
789 /* 6x00 Series */
790 	case IWN_DID_6x00_2:
791 	case IWN_DID_6x00_4:
792 	case IWN_DID_6x00_1:
793 	case IWN_DID_6x00_3:
794 		sc->fwname = "iwn6000fw";
795 		sc->limits = &iwn6000_sensitivity_limits;
796 		switch(sc->subdevice_id) {
797 			case IWN_SDID_6x00_1:
798 			case IWN_SDID_6x00_2:
799 			case IWN_SDID_6x00_8:
800 				//iwl6000_3agn_cfg
801 				sc->base_params = &iwn_6000_base_params;
802 				break;
803 			case IWN_SDID_6x00_3:
804 			case IWN_SDID_6x00_6:
805 			case IWN_SDID_6x00_9:
806 				////iwl6000i_2agn
807 			case IWN_SDID_6x00_4:
808 			case IWN_SDID_6x00_7:
809 			case IWN_SDID_6x00_10:
810 				//iwl6000i_2abg_cfg
811 			case IWN_SDID_6x00_5:
812 				//iwl6000i_2bg_cfg
813 				sc->base_params = &iwn_6000i_base_params;
814 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
815 				sc->txchainmask = IWN_ANT_BC;
816 				sc->rxchainmask = IWN_ANT_BC;
817 				break;
818 			default:
819 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
820 				    "0x%04x rev %d not supported (subdevice)\n", pid,
821 				    sc->subdevice_id,sc->hw_type);
822 				return ENOTSUP;
823 		}
824 		break;
825 /* 6x05 Series */
826 	case IWN_DID_6x05_1:
827 	case IWN_DID_6x05_2:
828 		switch(sc->subdevice_id) {
829 			case IWN_SDID_6x05_1:
830 			case IWN_SDID_6x05_4:
831 			case IWN_SDID_6x05_6:
832 				//iwl6005_2agn_cfg
833 			case IWN_SDID_6x05_2:
834 			case IWN_SDID_6x05_5:
835 			case IWN_SDID_6x05_7:
836 				//iwl6005_2abg_cfg
837 			case IWN_SDID_6x05_3:
838 				//iwl6005_2bg_cfg
839 			case IWN_SDID_6x05_8:
840 			case IWN_SDID_6x05_9:
841 				//iwl6005_2agn_sff_cfg
842 			case IWN_SDID_6x05_10:
843 				//iwl6005_2agn_d_cfg
844 			case IWN_SDID_6x05_11:
845 				//iwl6005_2agn_mow1_cfg
846 			case IWN_SDID_6x05_12:
847 				//iwl6005_2agn_mow2_cfg
848 				sc->fwname = "iwn6000g2afw";
849 				sc->limits = &iwn6000_sensitivity_limits;
850 				sc->base_params = &iwn_6000g2_base_params;
851 				break;
852 			default:
853 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
854 				    "0x%04x rev %d not supported (subdevice)\n", pid,
855 				    sc->subdevice_id,sc->hw_type);
856 				return ENOTSUP;
857 		}
858 		break;
859 /* 6x35 Series */
860 	case IWN_DID_6035_1:
861 	case IWN_DID_6035_2:
862 		switch(sc->subdevice_id) {
863 			case IWN_SDID_6035_1:
864 			case IWN_SDID_6035_2:
865 			case IWN_SDID_6035_3:
866 			case IWN_SDID_6035_4:
867 			case IWN_SDID_6035_5:
868 				sc->fwname = "iwn6000g2bfw";
869 				sc->limits = &iwn6235_sensitivity_limits;
870 				sc->base_params = &iwn_6235_base_params;
871 				break;
872 			default:
873 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
874 				    "0x%04x rev %d not supported (subdevice)\n", pid,
875 				    sc->subdevice_id,sc->hw_type);
876 				return ENOTSUP;
877 		}
878 		break;
879 /* 6x50 WiFi/WiMax Series */
880 	case IWN_DID_6050_1:
881 	case IWN_DID_6050_2:
882 		switch(sc->subdevice_id) {
883 			case IWN_SDID_6050_1:
884 			case IWN_SDID_6050_3:
885 			case IWN_SDID_6050_5:
886 				//iwl6050_2agn_cfg
887 			case IWN_SDID_6050_2:
888 			case IWN_SDID_6050_4:
889 			case IWN_SDID_6050_6:
890 				//iwl6050_2abg_cfg
891 				sc->fwname = "iwn6050fw";
892 				sc->txchainmask = IWN_ANT_AB;
893 				sc->rxchainmask = IWN_ANT_AB;
894 				sc->limits = &iwn6000_sensitivity_limits;
895 				sc->base_params = &iwn_6050_base_params;
896 				break;
897 			default:
898 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
899 				    "0x%04x rev %d not supported (subdevice)\n", pid,
900 				    sc->subdevice_id,sc->hw_type);
901 				return ENOTSUP;
902 		}
903 		break;
904 /* 6150 WiFi/WiMax Series */
905 	case IWN_DID_6150_1:
906 	case IWN_DID_6150_2:
907 		switch(sc->subdevice_id) {
908 			case IWN_SDID_6150_1:
909 			case IWN_SDID_6150_3:
910 			case IWN_SDID_6150_5:
911 				// iwl6150_bgn_cfg
912 			case IWN_SDID_6150_2:
913 			case IWN_SDID_6150_4:
914 			case IWN_SDID_6150_6:
915 				//iwl6150_bg_cfg
916 				sc->fwname = "iwn6050fw";
917 				sc->limits = &iwn6000_sensitivity_limits;
918 				sc->base_params = &iwn_6150_base_params;
919 				break;
920 			default:
921 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
922 				    "0x%04x rev %d not supported (subdevice)\n", pid,
923 				    sc->subdevice_id,sc->hw_type);
924 				return ENOTSUP;
925 		}
926 		break;
927 /* 6030 Series and 1030 Series */
928 	case IWN_DID_x030_1:
929 	case IWN_DID_x030_2:
930 	case IWN_DID_x030_3:
931 	case IWN_DID_x030_4:
932 		switch(sc->subdevice_id) {
933 			case IWN_SDID_x030_1:
934 			case IWN_SDID_x030_3:
935 			case IWN_SDID_x030_5:
936 			// iwl1030_bgn_cfg
937 			case IWN_SDID_x030_2:
938 			case IWN_SDID_x030_4:
939 			case IWN_SDID_x030_6:
940 			//iwl1030_bg_cfg
941 			case IWN_SDID_x030_7:
942 			case IWN_SDID_x030_10:
943 			case IWN_SDID_x030_14:
944 			//iwl6030_2agn_cfg
945 			case IWN_SDID_x030_8:
946 			case IWN_SDID_x030_11:
947 			case IWN_SDID_x030_15:
948 			// iwl6030_2bgn_cfg
949 			case IWN_SDID_x030_9:
950 			case IWN_SDID_x030_12:
951 			case IWN_SDID_x030_16:
952 			// iwl6030_2abg_cfg
953 			case IWN_SDID_x030_13:
954 			//iwl6030_2bg_cfg
955 				sc->fwname = "iwn6000g2bfw";
956 				sc->limits = &iwn6000_sensitivity_limits;
957 				sc->base_params = &iwn_6000g2b_base_params;
958 				break;
959 			default:
960 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
961 				    "0x%04x rev %d not supported (subdevice)\n", pid,
962 				    sc->subdevice_id,sc->hw_type);
963 				return ENOTSUP;
964 		}
965 		break;
966 /* 130 Series WiFi */
967 /* XXX: This series will need adjustment for rate.
968  * see rx_with_siso_diversity in linux kernel
969  */
970 	case IWN_DID_130_1:
971 	case IWN_DID_130_2:
972 		switch(sc->subdevice_id) {
973 			case IWN_SDID_130_1:
974 			case IWN_SDID_130_3:
975 			case IWN_SDID_130_5:
976 			//iwl130_bgn_cfg
977 			case IWN_SDID_130_2:
978 			case IWN_SDID_130_4:
979 			case IWN_SDID_130_6:
980 			//iwl130_bg_cfg
981 				sc->fwname = "iwn6000g2bfw";
982 				sc->limits = &iwn6000_sensitivity_limits;
983 				sc->base_params = &iwn_6000g2b_base_params;
984 				break;
985 			default:
986 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
987 				    "0x%04x rev %d not supported (subdevice)\n", pid,
988 				    sc->subdevice_id,sc->hw_type);
989 				return ENOTSUP;
990 		}
991 		break;
992 /* 100 Series WiFi */
993 	case IWN_DID_100_1:
994 	case IWN_DID_100_2:
995 		switch(sc->subdevice_id) {
996 			case IWN_SDID_100_1:
997 			case IWN_SDID_100_2:
998 			case IWN_SDID_100_3:
999 			case IWN_SDID_100_4:
1000 			case IWN_SDID_100_5:
1001 			case IWN_SDID_100_6:
1002 				sc->limits = &iwn1000_sensitivity_limits;
1003 				sc->base_params = &iwn1000_base_params;
1004 				sc->fwname = "iwn100fw";
1005 				break;
1006 			default:
1007 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1008 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1009 				    sc->subdevice_id,sc->hw_type);
1010 				return ENOTSUP;
1011 		}
1012 		break;
1013 
1014 /* 105 Series */
1015 /* XXX: This series will need adjustment for rate.
1016  * see rx_with_siso_diversity in linux kernel
1017  */
1018 	case IWN_DID_105_1:
1019 	case IWN_DID_105_2:
1020 		switch(sc->subdevice_id) {
1021 			case IWN_SDID_105_1:
1022 			case IWN_SDID_105_2:
1023 			case IWN_SDID_105_3:
1024 			//iwl105_bgn_cfg
1025 			case IWN_SDID_105_4:
1026 			//iwl105_bgn_d_cfg
1027 				sc->limits = &iwn2030_sensitivity_limits;
1028 				sc->base_params = &iwn2000_base_params;
1029 				sc->fwname = "iwn105fw";
1030 				break;
1031 			default:
1032 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1033 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1034 				    sc->subdevice_id,sc->hw_type);
1035 				return ENOTSUP;
1036 		}
1037 		break;
1038 
1039 /* 135 Series */
1040 /* XXX: This series will need adjustment for rate.
1041  * see rx_with_siso_diversity in linux kernel
1042  */
1043 	case IWN_DID_135_1:
1044 	case IWN_DID_135_2:
1045 		switch(sc->subdevice_id) {
1046 			case IWN_SDID_135_1:
1047 			case IWN_SDID_135_2:
1048 			case IWN_SDID_135_3:
1049 				sc->limits = &iwn2030_sensitivity_limits;
1050 				sc->base_params = &iwn2030_base_params;
1051 				sc->fwname = "iwn135fw";
1052 				break;
1053 			default:
1054 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1055 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1056 				    sc->subdevice_id,sc->hw_type);
1057 				return ENOTSUP;
1058 		}
1059 		break;
1060 
1061 /* 2x00 Series */
1062 	case IWN_DID_2x00_1:
1063 	case IWN_DID_2x00_2:
1064 		switch(sc->subdevice_id) {
1065 			case IWN_SDID_2x00_1:
1066 			case IWN_SDID_2x00_2:
1067 			case IWN_SDID_2x00_3:
1068 			//iwl2000_2bgn_cfg
1069 			case IWN_SDID_2x00_4:
1070 			//iwl2000_2bgn_d_cfg
1071 				sc->limits = &iwn2030_sensitivity_limits;
1072 				sc->base_params = &iwn2000_base_params;
1073 				sc->fwname = "iwn2000fw";
1074 				break;
1075 			default:
1076 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1077 				    "0x%04x rev %d not supported (subdevice) \n",
1078 				    pid, sc->subdevice_id, sc->hw_type);
1079 				return ENOTSUP;
1080 		}
1081 		break;
1082 /* 2x30 Series */
1083 	case IWN_DID_2x30_1:
1084 	case IWN_DID_2x30_2:
1085 		switch(sc->subdevice_id) {
1086 			case IWN_SDID_2x30_1:
1087 			case IWN_SDID_2x30_3:
1088 			case IWN_SDID_2x30_5:
1089 			//iwl100_bgn_cfg
1090 			case IWN_SDID_2x30_2:
1091 			case IWN_SDID_2x30_4:
1092 			case IWN_SDID_2x30_6:
1093 			//iwl100_bg_cfg
1094 				sc->limits = &iwn2030_sensitivity_limits;
1095 				sc->base_params = &iwn2030_base_params;
1096 				sc->fwname = "iwn2030fw";
1097 				break;
1098 			default:
1099 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1100 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1101 				    sc->subdevice_id,sc->hw_type);
1102 				return ENOTSUP;
1103 		}
1104 		break;
1105 /* 5x00 Series */
1106 	case IWN_DID_5x00_1:
1107 	case IWN_DID_5x00_2:
1108 	case IWN_DID_5x00_3:
1109 	case IWN_DID_5x00_4:
1110 		sc->limits = &iwn5000_sensitivity_limits;
1111 		sc->base_params = &iwn5000_base_params;
1112 		sc->fwname = "iwn5000fw";
1113 		switch(sc->subdevice_id) {
1114 			case IWN_SDID_5x00_1:
1115 			case IWN_SDID_5x00_2:
1116 			case IWN_SDID_5x00_3:
1117 			case IWN_SDID_5x00_4:
1118 			case IWN_SDID_5x00_9:
1119 			case IWN_SDID_5x00_10:
1120 			case IWN_SDID_5x00_11:
1121 			case IWN_SDID_5x00_12:
1122 			case IWN_SDID_5x00_17:
1123 			case IWN_SDID_5x00_18:
1124 			case IWN_SDID_5x00_19:
1125 			case IWN_SDID_5x00_20:
1126 			//iwl5100_agn_cfg
1127 				sc->txchainmask = IWN_ANT_B;
1128 				sc->rxchainmask = IWN_ANT_AB;
1129 				break;
1130 			case IWN_SDID_5x00_5:
1131 			case IWN_SDID_5x00_6:
1132 			case IWN_SDID_5x00_13:
1133 			case IWN_SDID_5x00_14:
1134 			case IWN_SDID_5x00_21:
1135 			case IWN_SDID_5x00_22:
1136 			//iwl5100_bgn_cfg
1137 				sc->txchainmask = IWN_ANT_B;
1138 				sc->rxchainmask = IWN_ANT_AB;
1139 				break;
1140 			case IWN_SDID_5x00_7:
1141 			case IWN_SDID_5x00_8:
1142 			case IWN_SDID_5x00_15:
1143 			case IWN_SDID_5x00_16:
1144 			case IWN_SDID_5x00_23:
1145 			case IWN_SDID_5x00_24:
1146 			//iwl5100_abg_cfg
1147 				sc->txchainmask = IWN_ANT_B;
1148 				sc->rxchainmask = IWN_ANT_AB;
1149 				break;
1150 			case IWN_SDID_5x00_25:
1151 			case IWN_SDID_5x00_26:
1152 			case IWN_SDID_5x00_27:
1153 			case IWN_SDID_5x00_28:
1154 			case IWN_SDID_5x00_29:
1155 			case IWN_SDID_5x00_30:
1156 			case IWN_SDID_5x00_31:
1157 			case IWN_SDID_5x00_32:
1158 			case IWN_SDID_5x00_33:
1159 			case IWN_SDID_5x00_34:
1160 			case IWN_SDID_5x00_35:
1161 			case IWN_SDID_5x00_36:
1162 			//iwl5300_agn_cfg
1163 				sc->txchainmask = IWN_ANT_ABC;
1164 				sc->rxchainmask = IWN_ANT_ABC;
1165 				break;
1166 			default:
1167 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1168 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1169 				    sc->subdevice_id,sc->hw_type);
1170 				return ENOTSUP;
1171 		}
1172 		break;
1173 /* 5x50 Series */
1174 	case IWN_DID_5x50_1:
1175 	case IWN_DID_5x50_2:
1176 	case IWN_DID_5x50_3:
1177 	case IWN_DID_5x50_4:
1178 		sc->limits = &iwn5000_sensitivity_limits;
1179 		sc->base_params = &iwn5000_base_params;
1180 		sc->fwname = "iwn5000fw";
1181 		switch(sc->subdevice_id) {
1182 			case IWN_SDID_5x50_1:
1183 			case IWN_SDID_5x50_2:
1184 			case IWN_SDID_5x50_3:
1185 			//iwl5350_agn_cfg
1186 				sc->limits = &iwn5000_sensitivity_limits;
1187 				sc->base_params = &iwn5000_base_params;
1188 				sc->fwname = "iwn5000fw";
1189 				break;
1190 			case IWN_SDID_5x50_4:
1191 			case IWN_SDID_5x50_5:
1192 			case IWN_SDID_5x50_8:
1193 			case IWN_SDID_5x50_9:
1194 			case IWN_SDID_5x50_10:
1195 			case IWN_SDID_5x50_11:
1196 			//iwl5150_agn_cfg
1197 			case IWN_SDID_5x50_6:
1198 			case IWN_SDID_5x50_7:
1199 			case IWN_SDID_5x50_12:
1200 			case IWN_SDID_5x50_13:
1201 			//iwl5150_abg_cfg
1202 				sc->limits = &iwn5000_sensitivity_limits;
1203 				sc->fwname = "iwn5150fw";
1204 				sc->base_params = &iwn_5x50_base_params;
1205 				break;
1206 			default:
1207 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1208 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1209 				    sc->subdevice_id,sc->hw_type);
1210 				return ENOTSUP;
1211 		}
1212 		break;
1213 	default:
1214 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1215 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1216 		     sc->hw_type);
1217 		return ENOTSUP;
1218 	}
1219 	return 0;
1220 }
1221 
1222 static void
1223 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1224 {
1225 	struct iwn_ops *ops = &sc->ops;
1226 
1227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1228 
1229 	ops->load_firmware = iwn4965_load_firmware;
1230 	ops->read_eeprom = iwn4965_read_eeprom;
1231 	ops->post_alive = iwn4965_post_alive;
1232 	ops->nic_config = iwn4965_nic_config;
1233 	ops->update_sched = iwn4965_update_sched;
1234 	ops->get_temperature = iwn4965_get_temperature;
1235 	ops->get_rssi = iwn4965_get_rssi;
1236 	ops->set_txpower = iwn4965_set_txpower;
1237 	ops->init_gains = iwn4965_init_gains;
1238 	ops->set_gains = iwn4965_set_gains;
1239 	ops->rxon_assoc = iwn4965_rxon_assoc;
1240 	ops->add_node = iwn4965_add_node;
1241 	ops->tx_done = iwn4965_tx_done;
1242 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1243 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1244 	sc->ntxqs = IWN4965_NTXQUEUES;
1245 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1246 	sc->ndmachnls = IWN4965_NDMACHNLS;
1247 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1248 	sc->rxonsz = IWN4965_RXONSZ;
1249 	sc->schedsz = IWN4965_SCHEDSZ;
1250 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1251 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1252 	sc->fwsz = IWN4965_FWSZ;
1253 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1254 	sc->limits = &iwn4965_sensitivity_limits;
1255 	sc->fwname = "iwn4965fw";
1256 	/* Override chains masks, ROM is known to be broken. */
1257 	sc->txchainmask = IWN_ANT_AB;
1258 	sc->rxchainmask = IWN_ANT_ABC;
1259 	/* Enable normal btcoex */
1260 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1261 
1262 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1263 }
1264 
1265 static void
1266 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1267 {
1268 	struct iwn_ops *ops = &sc->ops;
1269 
1270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1271 
1272 	ops->load_firmware = iwn5000_load_firmware;
1273 	ops->read_eeprom = iwn5000_read_eeprom;
1274 	ops->post_alive = iwn5000_post_alive;
1275 	ops->nic_config = iwn5000_nic_config;
1276 	ops->update_sched = iwn5000_update_sched;
1277 	ops->get_temperature = iwn5000_get_temperature;
1278 	ops->get_rssi = iwn5000_get_rssi;
1279 	ops->set_txpower = iwn5000_set_txpower;
1280 	ops->init_gains = iwn5000_init_gains;
1281 	ops->set_gains = iwn5000_set_gains;
1282 	ops->rxon_assoc = iwn5000_rxon_assoc;
1283 	ops->add_node = iwn5000_add_node;
1284 	ops->tx_done = iwn5000_tx_done;
1285 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1286 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1287 	sc->ntxqs = IWN5000_NTXQUEUES;
1288 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1289 	sc->ndmachnls = IWN5000_NDMACHNLS;
1290 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1291 	sc->rxonsz = IWN5000_RXONSZ;
1292 	sc->schedsz = IWN5000_SCHEDSZ;
1293 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1294 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1295 	sc->fwsz = IWN5000_FWSZ;
1296 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1297 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1298 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1299 
1300 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1301 }
1302 
1303 /*
1304  * Attach the interface to 802.11 radiotap.
1305  */
1306 static void
1307 iwn_radiotap_attach(struct iwn_softc *sc)
1308 {
1309 
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1311 	ieee80211_radiotap_attach(&sc->sc_ic,
1312 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1313 		IWN_TX_RADIOTAP_PRESENT,
1314 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1315 		IWN_RX_RADIOTAP_PRESENT);
1316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1317 }
1318 
1319 static void
1320 iwn_sysctlattach(struct iwn_softc *sc)
1321 {
1322 #ifdef	IWN_DEBUG
1323 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1324 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1325 
1326 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1327 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1328 		"control debugging printfs");
1329 #endif
1330 }
1331 
1332 static struct ieee80211vap *
1333 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1334     enum ieee80211_opmode opmode, int flags,
1335     const uint8_t bssid[IEEE80211_ADDR_LEN],
1336     const uint8_t mac[IEEE80211_ADDR_LEN])
1337 {
1338 	struct iwn_softc *sc = ic->ic_softc;
1339 	struct iwn_vap *ivp;
1340 	struct ieee80211vap *vap;
1341 
1342 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1343 		return NULL;
1344 
1345 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1346 	vap = &ivp->iv_vap;
1347 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1348 	ivp->ctx = IWN_RXON_BSS_CTX;
1349 	vap->iv_bmissthreshold = 10;		/* override default */
1350 	/* Override with driver methods. */
1351 	ivp->iv_newstate = vap->iv_newstate;
1352 	vap->iv_newstate = iwn_newstate;
1353 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1354 
1355 	ieee80211_ratectl_init(vap);
1356 	/* Complete setup. */
1357 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1358 	    mac);
1359 	ic->ic_opmode = opmode;
1360 	return vap;
1361 }
1362 
1363 static void
1364 iwn_vap_delete(struct ieee80211vap *vap)
1365 {
1366 	struct iwn_vap *ivp = IWN_VAP(vap);
1367 
1368 	ieee80211_ratectl_deinit(vap);
1369 	ieee80211_vap_detach(vap);
1370 	free(ivp, M_80211_VAP);
1371 }
1372 
1373 static void
1374 iwn_xmit_queue_drain(struct iwn_softc *sc)
1375 {
1376 	struct mbuf *m;
1377 	struct ieee80211_node *ni;
1378 
1379 	IWN_LOCK_ASSERT(sc);
1380 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1381 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1382 		ieee80211_free_node(ni);
1383 		m_freem(m);
1384 	}
1385 }
1386 
1387 static int
1388 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1389 {
1390 
1391 	IWN_LOCK_ASSERT(sc);
1392 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1393 }
1394 
1395 static int
1396 iwn_detach(device_t dev)
1397 {
1398 	struct iwn_softc *sc = device_get_softc(dev);
1399 	int qid;
1400 
1401 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1402 
1403 	if (sc->sc_ic.ic_softc != NULL) {
1404 		/* Free the mbuf queue and node references */
1405 		IWN_LOCK(sc);
1406 		iwn_xmit_queue_drain(sc);
1407 		IWN_UNLOCK(sc);
1408 
1409 		iwn_stop(sc);
1410 
1411 		taskqueue_drain_all(sc->sc_tq);
1412 		taskqueue_free(sc->sc_tq);
1413 
1414 		callout_drain(&sc->watchdog_to);
1415 		callout_drain(&sc->scan_timeout);
1416 		callout_drain(&sc->calib_to);
1417 		ieee80211_ifdetach(&sc->sc_ic);
1418 	}
1419 
1420 	/* Uninstall interrupt handler. */
1421 	if (sc->irq != NULL) {
1422 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1423 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1424 		    sc->irq);
1425 		pci_release_msi(dev);
1426 	}
1427 
1428 	/* Free DMA resources. */
1429 	iwn_free_rx_ring(sc, &sc->rxq);
1430 	for (qid = 0; qid < sc->ntxqs; qid++)
1431 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1432 	iwn_free_sched(sc);
1433 	iwn_free_kw(sc);
1434 	if (sc->ict != NULL)
1435 		iwn_free_ict(sc);
1436 	iwn_free_fwmem(sc);
1437 
1438 	if (sc->mem != NULL)
1439 		bus_release_resource(dev, SYS_RES_MEMORY,
1440 		    rman_get_rid(sc->mem), sc->mem);
1441 
1442 	if (sc->sc_cdev) {
1443 		destroy_dev(sc->sc_cdev);
1444 		sc->sc_cdev = NULL;
1445 	}
1446 
1447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1448 	IWN_LOCK_DESTROY(sc);
1449 	return 0;
1450 }
1451 
1452 static int
1453 iwn_shutdown(device_t dev)
1454 {
1455 	struct iwn_softc *sc = device_get_softc(dev);
1456 
1457 	iwn_stop(sc);
1458 	return 0;
1459 }
1460 
1461 static int
1462 iwn_suspend(device_t dev)
1463 {
1464 	struct iwn_softc *sc = device_get_softc(dev);
1465 
1466 	ieee80211_suspend_all(&sc->sc_ic);
1467 	return 0;
1468 }
1469 
1470 static int
1471 iwn_resume(device_t dev)
1472 {
1473 	struct iwn_softc *sc = device_get_softc(dev);
1474 
1475 	/* Clear device-specific "PCI retry timeout" register (41h). */
1476 	pci_write_config(dev, 0x41, 0, 1);
1477 
1478 	ieee80211_resume_all(&sc->sc_ic);
1479 	return 0;
1480 }
1481 
1482 static int
1483 iwn_nic_lock(struct iwn_softc *sc)
1484 {
1485 	int ntries;
1486 
1487 	/* Request exclusive access to NIC. */
1488 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1489 
1490 	/* Spin until we actually get the lock. */
1491 	for (ntries = 0; ntries < 1000; ntries++) {
1492 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1493 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1494 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1495 			return 0;
1496 		DELAY(10);
1497 	}
1498 	return ETIMEDOUT;
1499 }
1500 
1501 static __inline void
1502 iwn_nic_unlock(struct iwn_softc *sc)
1503 {
1504 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1505 }
1506 
1507 static __inline uint32_t
1508 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1509 {
1510 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1511 	IWN_BARRIER_READ_WRITE(sc);
1512 	return IWN_READ(sc, IWN_PRPH_RDATA);
1513 }
1514 
1515 static __inline void
1516 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1517 {
1518 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1519 	IWN_BARRIER_WRITE(sc);
1520 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1521 }
1522 
1523 static __inline void
1524 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1525 {
1526 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1527 }
1528 
1529 static __inline void
1530 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531 {
1532 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1533 }
1534 
1535 static __inline void
1536 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1537     const uint32_t *data, int count)
1538 {
1539 	for (; count > 0; count--, data++, addr += 4)
1540 		iwn_prph_write(sc, addr, *data);
1541 }
1542 
1543 static __inline uint32_t
1544 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1545 {
1546 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1547 	IWN_BARRIER_READ_WRITE(sc);
1548 	return IWN_READ(sc, IWN_MEM_RDATA);
1549 }
1550 
1551 static __inline void
1552 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1553 {
1554 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1555 	IWN_BARRIER_WRITE(sc);
1556 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1557 }
1558 
1559 static __inline void
1560 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1561 {
1562 	uint32_t tmp;
1563 
1564 	tmp = iwn_mem_read(sc, addr & ~3);
1565 	if (addr & 3)
1566 		tmp = (tmp & 0x0000ffff) | data << 16;
1567 	else
1568 		tmp = (tmp & 0xffff0000) | data;
1569 	iwn_mem_write(sc, addr & ~3, tmp);
1570 }
1571 
1572 static __inline void
1573 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1574     int count)
1575 {
1576 	for (; count > 0; count--, addr += 4)
1577 		*data++ = iwn_mem_read(sc, addr);
1578 }
1579 
1580 static __inline void
1581 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1582     int count)
1583 {
1584 	for (; count > 0; count--, addr += 4)
1585 		iwn_mem_write(sc, addr, val);
1586 }
1587 
1588 static int
1589 iwn_eeprom_lock(struct iwn_softc *sc)
1590 {
1591 	int i, ntries;
1592 
1593 	for (i = 0; i < 100; i++) {
1594 		/* Request exclusive access to EEPROM. */
1595 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1596 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1597 
1598 		/* Spin until we actually get the lock. */
1599 		for (ntries = 0; ntries < 100; ntries++) {
1600 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1601 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1602 				return 0;
1603 			DELAY(10);
1604 		}
1605 	}
1606 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1607 	return ETIMEDOUT;
1608 }
1609 
1610 static __inline void
1611 iwn_eeprom_unlock(struct iwn_softc *sc)
1612 {
1613 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1614 }
1615 
1616 /*
1617  * Initialize access by host to One Time Programmable ROM.
1618  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1619  */
1620 static int
1621 iwn_init_otprom(struct iwn_softc *sc)
1622 {
1623 	uint16_t prev, base, next;
1624 	int count, error;
1625 
1626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1627 
1628 	/* Wait for clock stabilization before accessing prph. */
1629 	if ((error = iwn_clock_wait(sc)) != 0)
1630 		return error;
1631 
1632 	if ((error = iwn_nic_lock(sc)) != 0)
1633 		return error;
1634 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	DELAY(5);
1636 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 	iwn_nic_unlock(sc);
1638 
1639 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1640 	if (sc->base_params->shadow_ram_support) {
1641 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1642 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1643 	}
1644 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1645 	/* Clear ECC status. */
1646 	IWN_SETBITS(sc, IWN_OTP_GP,
1647 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1648 
1649 	/*
1650 	 * Find the block before last block (contains the EEPROM image)
1651 	 * for HW without OTP shadow RAM.
1652 	 */
1653 	if (! sc->base_params->shadow_ram_support) {
1654 		/* Switch to absolute addressing mode. */
1655 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1656 		base = prev = 0;
1657 		for (count = 0; count < sc->base_params->max_ll_items;
1658 		    count++) {
1659 			error = iwn_read_prom_data(sc, base, &next, 2);
1660 			if (error != 0)
1661 				return error;
1662 			if (next == 0)	/* End of linked-list. */
1663 				break;
1664 			prev = base;
1665 			base = le16toh(next);
1666 		}
1667 		if (count == 0 || count == sc->base_params->max_ll_items)
1668 			return EIO;
1669 		/* Skip "next" word. */
1670 		sc->prom_base = prev + 1;
1671 	}
1672 
1673 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1674 
1675 	return 0;
1676 }
1677 
1678 static int
1679 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1680 {
1681 	uint8_t *out = data;
1682 	uint32_t val, tmp;
1683 	int ntries;
1684 
1685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1686 
1687 	addr += sc->prom_base;
1688 	for (; count > 0; count -= 2, addr++) {
1689 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1690 		for (ntries = 0; ntries < 10; ntries++) {
1691 			val = IWN_READ(sc, IWN_EEPROM);
1692 			if (val & IWN_EEPROM_READ_VALID)
1693 				break;
1694 			DELAY(5);
1695 		}
1696 		if (ntries == 10) {
1697 			device_printf(sc->sc_dev,
1698 			    "timeout reading ROM at 0x%x\n", addr);
1699 			return ETIMEDOUT;
1700 		}
1701 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1702 			/* OTPROM, check for ECC errors. */
1703 			tmp = IWN_READ(sc, IWN_OTP_GP);
1704 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1705 				device_printf(sc->sc_dev,
1706 				    "OTPROM ECC error at 0x%x\n", addr);
1707 				return EIO;
1708 			}
1709 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1710 				/* Correctable ECC error, clear bit. */
1711 				IWN_SETBITS(sc, IWN_OTP_GP,
1712 				    IWN_OTP_GP_ECC_CORR_STTS);
1713 			}
1714 		}
1715 		*out++ = val >> 16;
1716 		if (count > 1)
1717 			*out++ = val >> 24;
1718 	}
1719 
1720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1721 
1722 	return 0;
1723 }
1724 
1725 static void
1726 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1727 {
1728 	if (error != 0)
1729 		return;
1730 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1731 	*(bus_addr_t *)arg = segs[0].ds_addr;
1732 }
1733 
1734 static int
1735 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1736     void **kvap, bus_size_t size, bus_size_t alignment)
1737 {
1738 	int error;
1739 
1740 	dma->tag = NULL;
1741 	dma->size = size;
1742 
1743 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1744 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1745 	    1, size, 0, NULL, NULL, &dma->tag);
1746 	if (error != 0)
1747 		goto fail;
1748 
1749 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1750 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1751 	if (error != 0)
1752 		goto fail;
1753 
1754 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1755 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1756 	if (error != 0)
1757 		goto fail;
1758 
1759 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1760 
1761 	if (kvap != NULL)
1762 		*kvap = dma->vaddr;
1763 
1764 	return 0;
1765 
1766 fail:	iwn_dma_contig_free(dma);
1767 	return error;
1768 }
1769 
1770 static void
1771 iwn_dma_contig_free(struct iwn_dma_info *dma)
1772 {
1773 	if (dma->vaddr != NULL) {
1774 		bus_dmamap_sync(dma->tag, dma->map,
1775 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1776 		bus_dmamap_unload(dma->tag, dma->map);
1777 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1778 		dma->vaddr = NULL;
1779 	}
1780 	if (dma->tag != NULL) {
1781 		bus_dma_tag_destroy(dma->tag);
1782 		dma->tag = NULL;
1783 	}
1784 }
1785 
1786 static int
1787 iwn_alloc_sched(struct iwn_softc *sc)
1788 {
1789 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1790 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1791 	    sc->schedsz, 1024);
1792 }
1793 
1794 static void
1795 iwn_free_sched(struct iwn_softc *sc)
1796 {
1797 	iwn_dma_contig_free(&sc->sched_dma);
1798 }
1799 
1800 static int
1801 iwn_alloc_kw(struct iwn_softc *sc)
1802 {
1803 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1804 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1805 }
1806 
1807 static void
1808 iwn_free_kw(struct iwn_softc *sc)
1809 {
1810 	iwn_dma_contig_free(&sc->kw_dma);
1811 }
1812 
1813 static int
1814 iwn_alloc_ict(struct iwn_softc *sc)
1815 {
1816 	/* ICT table must be aligned on a 4KB boundary. */
1817 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1818 	    IWN_ICT_SIZE, 4096);
1819 }
1820 
1821 static void
1822 iwn_free_ict(struct iwn_softc *sc)
1823 {
1824 	iwn_dma_contig_free(&sc->ict_dma);
1825 }
1826 
1827 static int
1828 iwn_alloc_fwmem(struct iwn_softc *sc)
1829 {
1830 	/* Must be aligned on a 16-byte boundary. */
1831 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1832 }
1833 
1834 static void
1835 iwn_free_fwmem(struct iwn_softc *sc)
1836 {
1837 	iwn_dma_contig_free(&sc->fw_dma);
1838 }
1839 
1840 static int
1841 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1842 {
1843 	bus_size_t size;
1844 	int i, error;
1845 
1846 	ring->cur = 0;
1847 
1848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1849 
1850 	/* Allocate RX descriptors (256-byte aligned). */
1851 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1852 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1853 	    size, 256);
1854 	if (error != 0) {
1855 		device_printf(sc->sc_dev,
1856 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1857 		    __func__, error);
1858 		goto fail;
1859 	}
1860 
1861 	/* Allocate RX status area (16-byte aligned). */
1862 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1863 	    sizeof (struct iwn_rx_status), 16);
1864 	if (error != 0) {
1865 		device_printf(sc->sc_dev,
1866 		    "%s: could not allocate RX status DMA memory, error %d\n",
1867 		    __func__, error);
1868 		goto fail;
1869 	}
1870 
1871 	/* Create RX buffer DMA tag. */
1872 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1873 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1874 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1875 	if (error != 0) {
1876 		device_printf(sc->sc_dev,
1877 		    "%s: could not create RX buf DMA tag, error %d\n",
1878 		    __func__, error);
1879 		goto fail;
1880 	}
1881 
1882 	/*
1883 	 * Allocate and map RX buffers.
1884 	 */
1885 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1886 		struct iwn_rx_data *data = &ring->data[i];
1887 		bus_addr_t paddr;
1888 
1889 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1890 		if (error != 0) {
1891 			device_printf(sc->sc_dev,
1892 			    "%s: could not create RX buf DMA map, error %d\n",
1893 			    __func__, error);
1894 			goto fail;
1895 		}
1896 
1897 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1898 		    IWN_RBUF_SIZE);
1899 		if (data->m == NULL) {
1900 			device_printf(sc->sc_dev,
1901 			    "%s: could not allocate RX mbuf\n", __func__);
1902 			error = ENOBUFS;
1903 			goto fail;
1904 		}
1905 
1906 		error = bus_dmamap_load(ring->data_dmat, data->map,
1907 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1908 		    &paddr, BUS_DMA_NOWAIT);
1909 		if (error != 0 && error != EFBIG) {
1910 			device_printf(sc->sc_dev,
1911 			    "%s: can't map mbuf, error %d\n", __func__,
1912 			    error);
1913 			goto fail;
1914 		}
1915 
1916 		bus_dmamap_sync(ring->data_dmat, data->map,
1917 		    BUS_DMASYNC_PREREAD);
1918 
1919 		/* Set physical address of RX buffer (256-byte aligned). */
1920 		ring->desc[i] = htole32(paddr >> 8);
1921 	}
1922 
1923 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1924 	    BUS_DMASYNC_PREWRITE);
1925 
1926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1927 
1928 	return 0;
1929 
1930 fail:	iwn_free_rx_ring(sc, ring);
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1933 
1934 	return error;
1935 }
1936 
1937 static void
1938 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1939 {
1940 	int ntries;
1941 
1942 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1943 
1944 	if (iwn_nic_lock(sc) == 0) {
1945 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1946 		for (ntries = 0; ntries < 1000; ntries++) {
1947 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1948 			    IWN_FH_RX_STATUS_IDLE)
1949 				break;
1950 			DELAY(10);
1951 		}
1952 		iwn_nic_unlock(sc);
1953 	}
1954 	ring->cur = 0;
1955 	sc->last_rx_valid = 0;
1956 }
1957 
1958 static void
1959 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1960 {
1961 	int i;
1962 
1963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1964 
1965 	iwn_dma_contig_free(&ring->desc_dma);
1966 	iwn_dma_contig_free(&ring->stat_dma);
1967 
1968 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969 		struct iwn_rx_data *data = &ring->data[i];
1970 
1971 		if (data->m != NULL) {
1972 			bus_dmamap_sync(ring->data_dmat, data->map,
1973 			    BUS_DMASYNC_POSTREAD);
1974 			bus_dmamap_unload(ring->data_dmat, data->map);
1975 			m_freem(data->m);
1976 			data->m = NULL;
1977 		}
1978 		if (data->map != NULL)
1979 			bus_dmamap_destroy(ring->data_dmat, data->map);
1980 	}
1981 	if (ring->data_dmat != NULL) {
1982 		bus_dma_tag_destroy(ring->data_dmat);
1983 		ring->data_dmat = NULL;
1984 	}
1985 }
1986 
1987 static int
1988 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1989 {
1990 	bus_addr_t paddr;
1991 	bus_size_t size;
1992 	int i, error;
1993 
1994 	ring->qid = qid;
1995 	ring->queued = 0;
1996 	ring->cur = 0;
1997 
1998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1999 
2000 	/* Allocate TX descriptors (256-byte aligned). */
2001 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2002 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2003 	    size, 256);
2004 	if (error != 0) {
2005 		device_printf(sc->sc_dev,
2006 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2007 		    __func__, error);
2008 		goto fail;
2009 	}
2010 
2011 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2012 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2013 	    size, 4);
2014 	if (error != 0) {
2015 		device_printf(sc->sc_dev,
2016 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2017 		    __func__, error);
2018 		goto fail;
2019 	}
2020 
2021 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2022 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2023 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2024 	if (error != 0) {
2025 		device_printf(sc->sc_dev,
2026 		    "%s: could not create TX buf DMA tag, error %d\n",
2027 		    __func__, error);
2028 		goto fail;
2029 	}
2030 
2031 	paddr = ring->cmd_dma.paddr;
2032 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 		struct iwn_tx_data *data = &ring->data[i];
2034 
2035 		data->cmd_paddr = paddr;
2036 		data->scratch_paddr = paddr + 12;
2037 		paddr += sizeof (struct iwn_tx_cmd);
2038 
2039 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2040 		if (error != 0) {
2041 			device_printf(sc->sc_dev,
2042 			    "%s: could not create TX buf DMA map, error %d\n",
2043 			    __func__, error);
2044 			goto fail;
2045 		}
2046 	}
2047 
2048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2049 
2050 	return 0;
2051 
2052 fail:	iwn_free_tx_ring(sc, ring);
2053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2054 	return error;
2055 }
2056 
2057 static void
2058 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2059 {
2060 	int i;
2061 
2062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2063 
2064 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2065 		struct iwn_tx_data *data = &ring->data[i];
2066 
2067 		if (data->m != NULL) {
2068 			bus_dmamap_sync(ring->data_dmat, data->map,
2069 			    BUS_DMASYNC_POSTWRITE);
2070 			bus_dmamap_unload(ring->data_dmat, data->map);
2071 			m_freem(data->m);
2072 			data->m = NULL;
2073 		}
2074 		if (data->ni != NULL) {
2075 			ieee80211_free_node(data->ni);
2076 			data->ni = NULL;
2077 		}
2078 		data->remapped = 0;
2079 		data->long_retries = 0;
2080 	}
2081 	/* Clear TX descriptors. */
2082 	memset(ring->desc, 0, ring->desc_dma.size);
2083 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2084 	    BUS_DMASYNC_PREWRITE);
2085 	sc->qfullmsk &= ~(1 << ring->qid);
2086 	ring->queued = 0;
2087 	ring->cur = 0;
2088 }
2089 
2090 static void
2091 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2092 {
2093 	int i;
2094 
2095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2096 
2097 	iwn_dma_contig_free(&ring->desc_dma);
2098 	iwn_dma_contig_free(&ring->cmd_dma);
2099 
2100 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2101 		struct iwn_tx_data *data = &ring->data[i];
2102 
2103 		if (data->m != NULL) {
2104 			bus_dmamap_sync(ring->data_dmat, data->map,
2105 			    BUS_DMASYNC_POSTWRITE);
2106 			bus_dmamap_unload(ring->data_dmat, data->map);
2107 			m_freem(data->m);
2108 		}
2109 		if (data->map != NULL)
2110 			bus_dmamap_destroy(ring->data_dmat, data->map);
2111 	}
2112 	if (ring->data_dmat != NULL) {
2113 		bus_dma_tag_destroy(ring->data_dmat);
2114 		ring->data_dmat = NULL;
2115 	}
2116 }
2117 
2118 static void
2119 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2120 {
2121 	struct iwn_tx_ring *ring = &sc->txq[qid];
2122 
2123 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2124 	    __func__, ring->queued, qid));
2125 
2126 	if (qid >= sc->firstaggqueue) {
2127 		struct iwn_ops *ops = &sc->ops;
2128 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2129 
2130 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2131 			uint16_t ssn = tap->txa_start & 0xfff;
2132 			uint8_t tid = tap->txa_tid;
2133 			int *res = tap->txa_private;
2134 
2135 			iwn_nic_lock(sc);
2136 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2137 			iwn_nic_unlock(sc);
2138 
2139 			sc->qid2tap[qid] = NULL;
2140 			free(res, M_DEVBUF);
2141 		}
2142 	}
2143 
2144 	if (ring->queued < IWN_TX_RING_LOMARK) {
2145 		sc->qfullmsk &= ~(1 << qid);
2146 
2147 		if (ring->queued == 0)
2148 			sc->sc_tx_timer = 0;
2149 		else
2150 			sc->sc_tx_timer = 5;
2151 	}
2152 }
2153 
2154 static void
2155 iwn5000_ict_reset(struct iwn_softc *sc)
2156 {
2157 	/* Disable interrupts. */
2158 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2159 
2160 	/* Reset ICT table. */
2161 	memset(sc->ict, 0, IWN_ICT_SIZE);
2162 	sc->ict_cur = 0;
2163 
2164 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2165 	    BUS_DMASYNC_PREWRITE);
2166 
2167 	/* Set physical address of ICT table (4KB aligned). */
2168 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2169 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2170 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2171 
2172 	/* Enable periodic RX interrupt. */
2173 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2174 	/* Switch to ICT interrupt mode in driver. */
2175 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2176 
2177 	/* Re-enable interrupts. */
2178 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2179 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2180 }
2181 
2182 static int
2183 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2184 {
2185 	struct iwn_ops *ops = &sc->ops;
2186 	uint16_t val;
2187 	int error;
2188 
2189 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2190 
2191 	/* Check whether adapter has an EEPROM or an OTPROM. */
2192 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2193 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2194 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2195 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2196 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2197 
2198 	/* Adapter has to be powered on for EEPROM access to work. */
2199 	if ((error = iwn_apm_init(sc)) != 0) {
2200 		device_printf(sc->sc_dev,
2201 		    "%s: could not power ON adapter, error %d\n", __func__,
2202 		    error);
2203 		return error;
2204 	}
2205 
2206 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2207 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2208 		return EIO;
2209 	}
2210 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2211 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2212 		    __func__, error);
2213 		return error;
2214 	}
2215 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2216 		if ((error = iwn_init_otprom(sc)) != 0) {
2217 			device_printf(sc->sc_dev,
2218 			    "%s: could not initialize OTPROM, error %d\n",
2219 			    __func__, error);
2220 			return error;
2221 		}
2222 	}
2223 
2224 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2225 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2226 	/* Check if HT support is bonded out. */
2227 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2228 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2229 
2230 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2231 	sc->rfcfg = le16toh(val);
2232 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2233 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2234 	if (sc->txchainmask == 0)
2235 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2236 	if (sc->rxchainmask == 0)
2237 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2238 
2239 	/* Read MAC address. */
2240 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2241 
2242 	/* Read adapter-specific information from EEPROM. */
2243 	ops->read_eeprom(sc);
2244 
2245 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2246 
2247 	iwn_eeprom_unlock(sc);
2248 
2249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2250 
2251 	return 0;
2252 }
2253 
2254 static void
2255 iwn4965_read_eeprom(struct iwn_softc *sc)
2256 {
2257 	uint32_t addr;
2258 	uint16_t val;
2259 	int i;
2260 
2261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2262 
2263 	/* Read regulatory domain (4 ASCII characters). */
2264 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2265 
2266 	/* Read the list of authorized channels (20MHz & 40MHz). */
2267 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2268 		addr = iwn4965_regulatory_bands[i];
2269 		iwn_read_eeprom_channels(sc, i, addr);
2270 	}
2271 
2272 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2273 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2274 	sc->maxpwr2GHz = val & 0xff;
2275 	sc->maxpwr5GHz = val >> 8;
2276 	/* Check that EEPROM values are within valid range. */
2277 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2278 		sc->maxpwr5GHz = 38;
2279 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2280 		sc->maxpwr2GHz = 38;
2281 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2282 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2283 
2284 	/* Read samples for each TX power group. */
2285 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2286 	    sizeof sc->bands);
2287 
2288 	/* Read voltage at which samples were taken. */
2289 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2290 	sc->eeprom_voltage = (int16_t)le16toh(val);
2291 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2292 	    sc->eeprom_voltage);
2293 
2294 #ifdef IWN_DEBUG
2295 	/* Print samples. */
2296 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2297 		for (i = 0; i < IWN_NBANDS - 1; i++)
2298 			iwn4965_print_power_group(sc, i);
2299 	}
2300 #endif
2301 
2302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2303 }
2304 
2305 #ifdef IWN_DEBUG
2306 static void
2307 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2308 {
2309 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2310 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2311 	int j, c;
2312 
2313 	printf("===band %d===\n", i);
2314 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2315 	printf("chan1 num=%d\n", chans[0].num);
2316 	for (c = 0; c < 2; c++) {
2317 		for (j = 0; j < IWN_NSAMPLES; j++) {
2318 			printf("chain %d, sample %d: temp=%d gain=%d "
2319 			    "power=%d pa_det=%d\n", c, j,
2320 			    chans[0].samples[c][j].temp,
2321 			    chans[0].samples[c][j].gain,
2322 			    chans[0].samples[c][j].power,
2323 			    chans[0].samples[c][j].pa_det);
2324 		}
2325 	}
2326 	printf("chan2 num=%d\n", chans[1].num);
2327 	for (c = 0; c < 2; c++) {
2328 		for (j = 0; j < IWN_NSAMPLES; j++) {
2329 			printf("chain %d, sample %d: temp=%d gain=%d "
2330 			    "power=%d pa_det=%d\n", c, j,
2331 			    chans[1].samples[c][j].temp,
2332 			    chans[1].samples[c][j].gain,
2333 			    chans[1].samples[c][j].power,
2334 			    chans[1].samples[c][j].pa_det);
2335 		}
2336 	}
2337 }
2338 #endif
2339 
2340 static void
2341 iwn5000_read_eeprom(struct iwn_softc *sc)
2342 {
2343 	struct iwn5000_eeprom_calib_hdr hdr;
2344 	int32_t volt;
2345 	uint32_t base, addr;
2346 	uint16_t val;
2347 	int i;
2348 
2349 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2350 
2351 	/* Read regulatory domain (4 ASCII characters). */
2352 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2353 	base = le16toh(val);
2354 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2355 	    sc->eeprom_domain, 4);
2356 
2357 	/* Read the list of authorized channels (20MHz & 40MHz). */
2358 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2359 		addr =  base + sc->base_params->regulatory_bands[i];
2360 		iwn_read_eeprom_channels(sc, i, addr);
2361 	}
2362 
2363 	/* Read enhanced TX power information for 6000 Series. */
2364 	if (sc->base_params->enhanced_TX_power)
2365 		iwn_read_eeprom_enhinfo(sc);
2366 
2367 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2368 	base = le16toh(val);
2369 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2370 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2371 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2372 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2373 	sc->calib_ver = hdr.version;
2374 
2375 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2376 		sc->eeprom_voltage = le16toh(hdr.volt);
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2378 		sc->eeprom_temp_high=le16toh(val);
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2380 		sc->eeprom_temp = le16toh(val);
2381 	}
2382 
2383 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2384 		/* Compute temperature offset. */
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2386 		sc->eeprom_temp = le16toh(val);
2387 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2388 		volt = le16toh(val);
2389 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2391 		    sc->eeprom_temp, volt, sc->temp_off);
2392 	} else {
2393 		/* Read crystal calibration. */
2394 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2395 		    &sc->eeprom_crystal, sizeof (uint32_t));
2396 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2397 		    le32toh(sc->eeprom_crystal));
2398 	}
2399 
2400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2401 
2402 }
2403 
2404 /*
2405  * Translate EEPROM flags to net80211.
2406  */
2407 static uint32_t
2408 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2409 {
2410 	uint32_t nflags;
2411 
2412 	nflags = 0;
2413 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2414 		nflags |= IEEE80211_CHAN_PASSIVE;
2415 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2416 		nflags |= IEEE80211_CHAN_NOADHOC;
2417 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2418 		nflags |= IEEE80211_CHAN_DFS;
2419 		/* XXX apparently IBSS may still be marked */
2420 		nflags |= IEEE80211_CHAN_NOADHOC;
2421 	}
2422 
2423 	return nflags;
2424 }
2425 
2426 static void
2427 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2428     struct ieee80211_channel chans[])
2429 {
2430 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2431 	const struct iwn_chan_band *band = &iwn_bands[n];
2432 	uint8_t bands[IEEE80211_MODE_BYTES];
2433 	uint8_t chan;
2434 	int i, error, nflags;
2435 
2436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2437 
2438 	memset(bands, 0, sizeof(bands));
2439 	if (n == 0) {
2440 		setbit(bands, IEEE80211_MODE_11B);
2441 		setbit(bands, IEEE80211_MODE_11G);
2442 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2443 			setbit(bands, IEEE80211_MODE_11NG);
2444 	} else {
2445 		setbit(bands, IEEE80211_MODE_11A);
2446 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2447 			setbit(bands, IEEE80211_MODE_11NA);
2448 	}
2449 
2450 	for (i = 0; i < band->nchan; i++) {
2451 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2452 			DPRINTF(sc, IWN_DEBUG_RESET,
2453 			    "skip chan %d flags 0x%x maxpwr %d\n",
2454 			    band->chan[i], channels[i].flags,
2455 			    channels[i].maxpwr);
2456 			continue;
2457 		}
2458 
2459 		chan = band->chan[i];
2460 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2461 		error = ieee80211_add_channel(chans, maxchans, nchans,
2462 		    chan, 0, channels[i].maxpwr, nflags, bands);
2463 		if (error != 0)
2464 			break;
2465 
2466 		/* Save maximum allowed TX power for this channel. */
2467 		/* XXX wrong */
2468 		sc->maxpwr[chan] = channels[i].maxpwr;
2469 
2470 		DPRINTF(sc, IWN_DEBUG_RESET,
2471 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2472 		    channels[i].flags, channels[i].maxpwr);
2473 	}
2474 
2475 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2476 
2477 }
2478 
2479 static void
2480 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2481     struct ieee80211_channel chans[])
2482 {
2483 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2484 	const struct iwn_chan_band *band = &iwn_bands[n];
2485 	uint8_t chan;
2486 	int i, error, nflags;
2487 
2488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2489 
2490 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2491 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2492 		return;
2493 	}
2494 
2495 	for (i = 0; i < band->nchan; i++) {
2496 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2497 			DPRINTF(sc, IWN_DEBUG_RESET,
2498 			    "skip chan %d flags 0x%x maxpwr %d\n",
2499 			    band->chan[i], channels[i].flags,
2500 			    channels[i].maxpwr);
2501 			continue;
2502 		}
2503 
2504 		chan = band->chan[i];
2505 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2506 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2507 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2508 		    chan, channels[i].maxpwr, nflags);
2509 		switch (error) {
2510 		case EINVAL:
2511 			device_printf(sc->sc_dev,
2512 			    "%s: no entry for channel %d\n", __func__, chan);
2513 			continue;
2514 		case ENOENT:
2515 			DPRINTF(sc, IWN_DEBUG_RESET,
2516 			    "%s: skip chan %d, extension channel not found\n",
2517 			    __func__, chan);
2518 			continue;
2519 		case ENOBUFS:
2520 			device_printf(sc->sc_dev,
2521 			    "%s: channel table is full!\n", __func__);
2522 			break;
2523 		case 0:
2524 			DPRINTF(sc, IWN_DEBUG_RESET,
2525 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2526 			    chan, channels[i].flags, channels[i].maxpwr);
2527 			/* FALLTHROUGH */
2528 		default:
2529 			break;
2530 		}
2531 	}
2532 
2533 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2534 
2535 }
2536 
2537 static void
2538 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2539 {
2540 	struct ieee80211com *ic = &sc->sc_ic;
2541 
2542 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2543 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2544 
2545 	if (n < 5) {
2546 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2547 		    ic->ic_channels);
2548 	} else {
2549 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2550 		    ic->ic_channels);
2551 	}
2552 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2553 }
2554 
2555 static struct iwn_eeprom_chan *
2556 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2557 {
2558 	int band, chan, i, j;
2559 
2560 	if (IEEE80211_IS_CHAN_HT40(c)) {
2561 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2562 		if (IEEE80211_IS_CHAN_HT40D(c))
2563 			chan = c->ic_extieee;
2564 		else
2565 			chan = c->ic_ieee;
2566 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2567 			if (iwn_bands[band].chan[i] == chan)
2568 				return &sc->eeprom_channels[band][i];
2569 		}
2570 	} else {
2571 		for (j = 0; j < 5; j++) {
2572 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2573 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2574 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2575 					return &sc->eeprom_channels[j][i];
2576 			}
2577 		}
2578 	}
2579 	return NULL;
2580 }
2581 
2582 static void
2583 iwn_getradiocaps(struct ieee80211com *ic,
2584     int maxchans, int *nchans, struct ieee80211_channel chans[])
2585 {
2586 	struct iwn_softc *sc = ic->ic_softc;
2587 	int i;
2588 
2589 	/* Parse the list of authorized channels. */
2590 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2591 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2592 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2593 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2594 }
2595 
2596 /*
2597  * Enforce flags read from EEPROM.
2598  */
2599 static int
2600 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2601     int nchan, struct ieee80211_channel chans[])
2602 {
2603 	struct iwn_softc *sc = ic->ic_softc;
2604 	int i;
2605 
2606 	for (i = 0; i < nchan; i++) {
2607 		struct ieee80211_channel *c = &chans[i];
2608 		struct iwn_eeprom_chan *channel;
2609 
2610 		channel = iwn_find_eeprom_channel(sc, c);
2611 		if (channel == NULL) {
2612 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2613 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2614 			return EINVAL;
2615 		}
2616 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static void
2623 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2624 {
2625 	struct iwn_eeprom_enhinfo enhinfo[35];
2626 	struct ieee80211com *ic = &sc->sc_ic;
2627 	struct ieee80211_channel *c;
2628 	uint16_t val, base;
2629 	int8_t maxpwr;
2630 	uint8_t flags;
2631 	int i, j;
2632 
2633 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2634 
2635 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2636 	base = le16toh(val);
2637 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2638 	    enhinfo, sizeof enhinfo);
2639 
2640 	for (i = 0; i < nitems(enhinfo); i++) {
2641 		flags = enhinfo[i].flags;
2642 		if (!(flags & IWN_ENHINFO_VALID))
2643 			continue;	/* Skip invalid entries. */
2644 
2645 		maxpwr = 0;
2646 		if (sc->txchainmask & IWN_ANT_A)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2648 		if (sc->txchainmask & IWN_ANT_B)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2650 		if (sc->txchainmask & IWN_ANT_C)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2652 		if (sc->ntxchains == 2)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2654 		else if (sc->ntxchains == 3)
2655 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2656 
2657 		for (j = 0; j < ic->ic_nchans; j++) {
2658 			c = &ic->ic_channels[j];
2659 			if ((flags & IWN_ENHINFO_5GHZ)) {
2660 				if (!IEEE80211_IS_CHAN_A(c))
2661 					continue;
2662 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2663 				if (!IEEE80211_IS_CHAN_G(c))
2664 					continue;
2665 			} else if (!IEEE80211_IS_CHAN_B(c))
2666 				continue;
2667 			if ((flags & IWN_ENHINFO_HT40)) {
2668 				if (!IEEE80211_IS_CHAN_HT40(c))
2669 					continue;
2670 			} else {
2671 				if (IEEE80211_IS_CHAN_HT40(c))
2672 					continue;
2673 			}
2674 			if (enhinfo[i].chan != 0 &&
2675 			    enhinfo[i].chan != c->ic_ieee)
2676 				continue;
2677 
2678 			DPRINTF(sc, IWN_DEBUG_RESET,
2679 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2680 			    c->ic_flags, maxpwr / 2);
2681 			c->ic_maxregpower = maxpwr / 2;
2682 			c->ic_maxpower = maxpwr;
2683 		}
2684 	}
2685 
2686 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2687 
2688 }
2689 
2690 static struct ieee80211_node *
2691 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2692 {
2693 	struct iwn_node *wn;
2694 
2695 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2696 	if (wn == NULL)
2697 		return (NULL);
2698 
2699 	wn->id = IWN_ID_UNDEFINED;
2700 
2701 	return (&wn->ni);
2702 }
2703 
2704 static __inline int
2705 rate2plcp(int rate)
2706 {
2707 	switch (rate & 0xff) {
2708 	case 12:	return 0xd;
2709 	case 18:	return 0xf;
2710 	case 24:	return 0x5;
2711 	case 36:	return 0x7;
2712 	case 48:	return 0x9;
2713 	case 72:	return 0xb;
2714 	case 96:	return 0x1;
2715 	case 108:	return 0x3;
2716 	case 2:		return 10;
2717 	case 4:		return 20;
2718 	case 11:	return 55;
2719 	case 22:	return 110;
2720 	}
2721 	return 0;
2722 }
2723 
2724 static __inline uint8_t
2725 plcp2rate(const uint8_t rate_plcp)
2726 {
2727 	switch (rate_plcp) {
2728 	case 0xd:	return 12;
2729 	case 0xf:	return 18;
2730 	case 0x5:	return 24;
2731 	case 0x7:	return 36;
2732 	case 0x9:	return 48;
2733 	case 0xb:	return 72;
2734 	case 0x1:	return 96;
2735 	case 0x3:	return 108;
2736 	case 10:	return 2;
2737 	case 20:	return 4;
2738 	case 55:	return 11;
2739 	case 110:	return 22;
2740 	default:	return 0;
2741 	}
2742 }
2743 
2744 static int
2745 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2746 {
2747 
2748 	return IWN_LSB(sc->txchainmask);
2749 }
2750 
2751 static int
2752 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2753 {
2754 	int tx;
2755 
2756 	/*
2757 	 * The '2 stream' setup is a bit .. odd.
2758 	 *
2759 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2760 	 * the firmware panics (eg Intel 5100.)
2761 	 *
2762 	 * For NICs that support two antennas, we use ANT_AB.
2763 	 *
2764 	 * For NICs that support three antennas, we use the two that
2765 	 * wasn't the default one.
2766 	 *
2767 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2768 	 * this to only one antenna.
2769 	 */
2770 
2771 	/* Default - transmit on the other antennas */
2772 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2773 
2774 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2775 	if (tx == 0)
2776 		tx = IWN_ANT_AB;
2777 
2778 	/*
2779 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2780 	 * the default chainmask
2781 	 */
2782 	else if (sc->ntxchains == 2)
2783 		tx = sc->txchainmask;
2784 
2785 	return (tx);
2786 }
2787 
2788 
2789 
2790 /*
2791  * Calculate the required PLCP value from the given rate,
2792  * to the given node.
2793  *
2794  * This will take the node configuration (eg 11n, rate table
2795  * setup, etc) into consideration.
2796  */
2797 static uint32_t
2798 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2799     uint8_t rate)
2800 {
2801 	struct ieee80211com *ic = ni->ni_ic;
2802 	uint32_t plcp = 0;
2803 	int ridx;
2804 
2805 	/*
2806 	 * If it's an MCS rate, let's set the plcp correctly
2807 	 * and set the relevant flags based on the node config.
2808 	 */
2809 	if (rate & IEEE80211_RATE_MCS) {
2810 		/*
2811 		 * Set the initial PLCP value to be between 0->31 for
2812 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2813 		 * flag.
2814 		 */
2815 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2816 
2817 		/*
2818 		 * XXX the following should only occur if both
2819 		 * the local configuration _and_ the remote node
2820 		 * advertise these capabilities.  Thus this code
2821 		 * may need fixing!
2822 		 */
2823 
2824 		/*
2825 		 * Set the channel width and guard interval.
2826 		 */
2827 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2828 			plcp |= IWN_RFLAG_HT40;
2829 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2830 				plcp |= IWN_RFLAG_SGI;
2831 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2832 			plcp |= IWN_RFLAG_SGI;
2833 		}
2834 
2835 		/*
2836 		 * Ensure the selected rate matches the link quality
2837 		 * table entries being used.
2838 		 */
2839 		if (rate > 0x8f)
2840 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2841 		else if (rate > 0x87)
2842 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2843 		else
2844 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2845 	} else {
2846 		/*
2847 		 * Set the initial PLCP - fine for both
2848 		 * OFDM and CCK rates.
2849 		 */
2850 		plcp = rate2plcp(rate);
2851 
2852 		/* Set CCK flag if it's CCK */
2853 
2854 		/* XXX It would be nice to have a method
2855 		 * to map the ridx -> phy table entry
2856 		 * so we could just query that, rather than
2857 		 * this hack to check against IWN_RIDX_OFDM6.
2858 		 */
2859 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2860 		    rate & IEEE80211_RATE_VAL);
2861 		if (ridx < IWN_RIDX_OFDM6 &&
2862 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2863 			plcp |= IWN_RFLAG_CCK;
2864 
2865 		/* Set antenna configuration */
2866 		/* XXX TODO: is this the right antenna to use for legacy? */
2867 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2868 	}
2869 
2870 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2871 	    __func__,
2872 	    rate,
2873 	    plcp);
2874 
2875 	return (htole32(plcp));
2876 }
2877 
2878 static void
2879 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2880 {
2881 	/* Doesn't do anything at the moment */
2882 }
2883 
2884 static int
2885 iwn_media_change(struct ifnet *ifp)
2886 {
2887 	int error;
2888 
2889 	error = ieee80211_media_change(ifp);
2890 	/* NB: only the fixed rate can change and that doesn't need a reset */
2891 	return (error == ENETRESET ? 0 : error);
2892 }
2893 
2894 static int
2895 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2896 {
2897 	struct iwn_vap *ivp = IWN_VAP(vap);
2898 	struct ieee80211com *ic = vap->iv_ic;
2899 	struct iwn_softc *sc = ic->ic_softc;
2900 	int error = 0;
2901 
2902 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2903 
2904 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2905 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2906 
2907 	IEEE80211_UNLOCK(ic);
2908 	IWN_LOCK(sc);
2909 	callout_stop(&sc->calib_to);
2910 
2911 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2912 
2913 	switch (nstate) {
2914 	case IEEE80211_S_ASSOC:
2915 		if (vap->iv_state != IEEE80211_S_RUN)
2916 			break;
2917 		/* FALLTHROUGH */
2918 	case IEEE80211_S_AUTH:
2919 		if (vap->iv_state == IEEE80211_S_AUTH)
2920 			break;
2921 
2922 		/*
2923 		 * !AUTH -> AUTH transition requires state reset to handle
2924 		 * reassociations correctly.
2925 		 */
2926 		sc->rxon->associd = 0;
2927 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2928 		sc->calib.state = IWN_CALIB_STATE_INIT;
2929 
2930 		/* Wait until we hear a beacon before we transmit */
2931 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2932 			sc->sc_beacon_wait = 1;
2933 
2934 		if ((error = iwn_auth(sc, vap)) != 0) {
2935 			device_printf(sc->sc_dev,
2936 			    "%s: could not move to auth state\n", __func__);
2937 		}
2938 		break;
2939 
2940 	case IEEE80211_S_RUN:
2941 		/*
2942 		 * RUN -> RUN transition; Just restart the timers.
2943 		 */
2944 		if (vap->iv_state == IEEE80211_S_RUN) {
2945 			sc->calib_cnt = 0;
2946 			break;
2947 		}
2948 
2949 		/* Wait until we hear a beacon before we transmit */
2950 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2951 			sc->sc_beacon_wait = 1;
2952 
2953 		/*
2954 		 * !RUN -> RUN requires setting the association id
2955 		 * which is done with a firmware cmd.  We also defer
2956 		 * starting the timers until that work is done.
2957 		 */
2958 		if ((error = iwn_run(sc, vap)) != 0) {
2959 			device_printf(sc->sc_dev,
2960 			    "%s: could not move to run state\n", __func__);
2961 		}
2962 		break;
2963 
2964 	case IEEE80211_S_INIT:
2965 		sc->calib.state = IWN_CALIB_STATE_INIT;
2966 		/*
2967 		 * Purge the xmit queue so we don't have old frames
2968 		 * during a new association attempt.
2969 		 */
2970 		sc->sc_beacon_wait = 0;
2971 		iwn_xmit_queue_drain(sc);
2972 		break;
2973 
2974 	default:
2975 		break;
2976 	}
2977 	IWN_UNLOCK(sc);
2978 	IEEE80211_LOCK(ic);
2979 	if (error != 0){
2980 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2981 		return error;
2982 	}
2983 
2984 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2985 
2986 	return ivp->iv_newstate(vap, nstate, arg);
2987 }
2988 
2989 static void
2990 iwn_calib_timeout(void *arg)
2991 {
2992 	struct iwn_softc *sc = arg;
2993 
2994 	IWN_LOCK_ASSERT(sc);
2995 
2996 	/* Force automatic TX power calibration every 60 secs. */
2997 	if (++sc->calib_cnt >= 120) {
2998 		uint32_t flags = 0;
2999 
3000 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
3001 		    "sending request for statistics");
3002 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
3003 		    sizeof flags, 1);
3004 		sc->calib_cnt = 0;
3005 	}
3006 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
3007 	    sc);
3008 }
3009 
3010 /*
3011  * Process an RX_PHY firmware notification.  This is usually immediately
3012  * followed by an MPDU_RX_DONE notification.
3013  */
3014 static void
3015 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3016 {
3017 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3018 
3019 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3020 
3021 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3022 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3023 	sc->last_rx_valid = 1;
3024 }
3025 
3026 /*
3027  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3028  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3029  */
3030 static void
3031 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3032     struct iwn_rx_data *data)
3033 {
3034 	struct iwn_ops *ops = &sc->ops;
3035 	struct ieee80211com *ic = &sc->sc_ic;
3036 	struct iwn_rx_ring *ring = &sc->rxq;
3037 	struct ieee80211_frame_min *wh;
3038 	struct ieee80211_node *ni;
3039 	struct mbuf *m, *m1;
3040 	struct iwn_rx_stat *stat;
3041 	caddr_t head;
3042 	bus_addr_t paddr;
3043 	uint32_t flags;
3044 	int error, len, rssi, nf;
3045 
3046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3047 
3048 	if (desc->type == IWN_MPDU_RX_DONE) {
3049 		/* Check for prior RX_PHY notification. */
3050 		if (!sc->last_rx_valid) {
3051 			DPRINTF(sc, IWN_DEBUG_ANY,
3052 			    "%s: missing RX_PHY\n", __func__);
3053 			return;
3054 		}
3055 		stat = &sc->last_rx_stat;
3056 	} else
3057 		stat = (struct iwn_rx_stat *)(desc + 1);
3058 
3059 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3060 		device_printf(sc->sc_dev,
3061 		    "%s: invalid RX statistic header, len %d\n", __func__,
3062 		    stat->cfg_phy_len);
3063 		return;
3064 	}
3065 	if (desc->type == IWN_MPDU_RX_DONE) {
3066 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3067 		head = (caddr_t)(mpdu + 1);
3068 		len = le16toh(mpdu->len);
3069 	} else {
3070 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3071 		len = le16toh(stat->len);
3072 	}
3073 
3074 	flags = le32toh(*(uint32_t *)(head + len));
3075 
3076 	/* Discard frames with a bad FCS early. */
3077 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3078 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3079 		    __func__, flags);
3080 		counter_u64_add(ic->ic_ierrors, 1);
3081 		return;
3082 	}
3083 	/* Discard frames that are too short. */
3084 	if (len < sizeof (struct ieee80211_frame_ack)) {
3085 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3086 		    __func__, len);
3087 		counter_u64_add(ic->ic_ierrors, 1);
3088 		return;
3089 	}
3090 
3091 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3092 	if (m1 == NULL) {
3093 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3094 		    __func__);
3095 		counter_u64_add(ic->ic_ierrors, 1);
3096 		return;
3097 	}
3098 	bus_dmamap_unload(ring->data_dmat, data->map);
3099 
3100 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3101 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3102 	if (error != 0 && error != EFBIG) {
3103 		device_printf(sc->sc_dev,
3104 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3105 		m_freem(m1);
3106 
3107 		/* Try to reload the old mbuf. */
3108 		error = bus_dmamap_load(ring->data_dmat, data->map,
3109 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3110 		    &paddr, BUS_DMA_NOWAIT);
3111 		if (error != 0 && error != EFBIG) {
3112 			panic("%s: could not load old RX mbuf", __func__);
3113 		}
3114 		bus_dmamap_sync(ring->data_dmat, data->map,
3115 		    BUS_DMASYNC_PREREAD);
3116 		/* Physical address may have changed. */
3117 		ring->desc[ring->cur] = htole32(paddr >> 8);
3118 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3119 		    BUS_DMASYNC_PREWRITE);
3120 		counter_u64_add(ic->ic_ierrors, 1);
3121 		return;
3122 	}
3123 
3124 	bus_dmamap_sync(ring->data_dmat, data->map,
3125 	    BUS_DMASYNC_PREREAD);
3126 
3127 	m = data->m;
3128 	data->m = m1;
3129 	/* Update RX descriptor. */
3130 	ring->desc[ring->cur] = htole32(paddr >> 8);
3131 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3132 	    BUS_DMASYNC_PREWRITE);
3133 
3134 	/* Finalize mbuf. */
3135 	m->m_data = head;
3136 	m->m_pkthdr.len = m->m_len = len;
3137 
3138 	/* Grab a reference to the source node. */
3139 	wh = mtod(m, struct ieee80211_frame_min *);
3140 	if (len >= sizeof(struct ieee80211_frame_min))
3141 		ni = ieee80211_find_rxnode(ic, wh);
3142 	else
3143 		ni = NULL;
3144 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3145 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3146 
3147 	rssi = ops->get_rssi(sc, stat);
3148 
3149 	if (ieee80211_radiotap_active(ic)) {
3150 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3151 		uint32_t rate = le32toh(stat->rate);
3152 
3153 		tap->wr_flags = 0;
3154 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3155 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3156 		tap->wr_dbm_antsignal = (int8_t)rssi;
3157 		tap->wr_dbm_antnoise = (int8_t)nf;
3158 		tap->wr_tsft = stat->tstamp;
3159 		if (rate & IWN_RFLAG_MCS) {
3160 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3161 			tap->wr_rate |= IEEE80211_RATE_MCS;
3162 		} else
3163 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3164 	}
3165 
3166 	/*
3167 	 * If it's a beacon and we're waiting, then do the
3168 	 * wakeup.  This should unblock raw_xmit/start.
3169 	 */
3170 	if (sc->sc_beacon_wait) {
3171 		uint8_t type, subtype;
3172 		/* NB: Re-assign wh */
3173 		wh = mtod(m, struct ieee80211_frame_min *);
3174 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3175 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3176 		/*
3177 		 * This assumes at this point we've received our own
3178 		 * beacon.
3179 		 */
3180 		DPRINTF(sc, IWN_DEBUG_TRACE,
3181 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3182 		    __func__, type, subtype);
3183 		if (type == IEEE80211_FC0_TYPE_MGT &&
3184 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3185 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3186 			    "%s: waking things up\n", __func__);
3187 			/* queue taskqueue to transmit! */
3188 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3189 		}
3190 	}
3191 
3192 	IWN_UNLOCK(sc);
3193 
3194 	/* Send the frame to the 802.11 layer. */
3195 	if (ni != NULL) {
3196 		if (ni->ni_flags & IEEE80211_NODE_HT)
3197 			m->m_flags |= M_AMPDU;
3198 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3199 		/* Node is no longer needed. */
3200 		ieee80211_free_node(ni);
3201 	} else
3202 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3203 
3204 	IWN_LOCK(sc);
3205 
3206 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3207 
3208 }
3209 
3210 static void
3211 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3212     int idx, int success)
3213 {
3214 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3215 	struct iwn_tx_data *data = &ring->data[idx];
3216 	struct iwn_node *wn;
3217 	struct mbuf *m;
3218 	struct ieee80211_node *ni;
3219 
3220 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3221 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3222 
3223 	/* Unmap and free mbuf. */
3224 	bus_dmamap_sync(ring->data_dmat, data->map,
3225 	    BUS_DMASYNC_POSTWRITE);
3226 	bus_dmamap_unload(ring->data_dmat, data->map);
3227 	m = data->m, data->m = NULL;
3228 	ni = data->ni, data->ni = NULL;
3229 	wn = (void *)ni;
3230 
3231 #if 0
3232 	/* XXX causes significant performance degradation. */
3233 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3234 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3235 	txs->long_retries = data->long_retries - 1;
3236 #else
3237 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3238 #endif
3239 	txs->short_retries = wn->agg[tid].short_retries;
3240 	if (success)
3241 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3242 	else
3243 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3244 
3245 	wn->agg[tid].short_retries = 0;
3246 	data->long_retries = 0;
3247 
3248 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3249 	    __func__, m, ni, idx, ring->qid);
3250 	ieee80211_ratectl_tx_complete(ni, txs);
3251 	ieee80211_tx_complete(ni, m, !success);
3252 }
3253 
3254 /* Process an incoming Compressed BlockAck. */
3255 static void
3256 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3257 {
3258 	struct iwn_tx_ring *ring;
3259 	struct iwn_tx_data *data;
3260 	struct iwn_node *wn;
3261 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3262 	struct ieee80211_tx_ampdu *tap;
3263 	uint64_t bitmap;
3264 	uint8_t tid;
3265 	int i, qid, shift;
3266 	int tx_ok = 0;
3267 
3268 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3269 
3270 	qid = le16toh(ba->qid);
3271 	tap = sc->qid2tap[qid];
3272 	ring = &sc->txq[qid];
3273 	tid = tap->txa_tid;
3274 	wn = (void *)tap->txa_ni;
3275 
3276 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3277 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3278 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3279 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3280 	    wn->agg[tid].startidx);
3281 
3282 	if (wn->agg[tid].bitmap == 0)
3283 		return;
3284 
3285 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3286 	if (shift <= -64)
3287 		shift += 0x100;
3288 
3289 	/*
3290 	 * Walk the bitmap and calculate how many successful attempts
3291 	 * are made.
3292 	 *
3293 	 * Yes, the rate control code doesn't know these are A-MPDU
3294 	 * subframes; due to that long_retries stats are not used here.
3295 	 */
3296 	bitmap = le64toh(ba->bitmap);
3297 	if (shift >= 0)
3298 		bitmap >>= shift;
3299 	else
3300 		bitmap <<= -shift;
3301 	bitmap &= wn->agg[tid].bitmap;
3302 	wn->agg[tid].bitmap = 0;
3303 
3304 	for (i = wn->agg[tid].startidx;
3305 	     bitmap;
3306 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3307 		if ((bitmap & 1) == 0)
3308 			continue;
3309 
3310 		data = &ring->data[i];
3311 		if (__predict_false(data->m == NULL)) {
3312 			/*
3313 			 * There is no frame; skip this entry.
3314 			 *
3315 			 * NB: it is "ok" to have both
3316 			 * 'tx done' + 'compressed BA' replies for frame
3317 			 * with STATE_SCD_QUERY status.
3318 			 */
3319 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3320 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3321 			continue;
3322 		}
3323 
3324 		tx_ok++;
3325 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3326 	}
3327 
3328 	ring->queued -= tx_ok;
3329 	iwn_check_tx_ring(sc, qid);
3330 
3331 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3332 	    "->%s: end; %d ok\n",__func__, tx_ok);
3333 }
3334 
3335 /*
3336  * Process a CALIBRATION_RESULT notification sent by the initialization
3337  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3338  */
3339 static void
3340 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3341 {
3342 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3343 	int len, idx = -1;
3344 
3345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3346 
3347 	/* Runtime firmware should not send such a notification. */
3348 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3349 		DPRINTF(sc, IWN_DEBUG_TRACE,
3350 		    "->%s received after calib done\n", __func__);
3351 		return;
3352 	}
3353 	len = (le32toh(desc->len) & 0x3fff) - 4;
3354 
3355 	switch (calib->code) {
3356 	case IWN5000_PHY_CALIB_DC:
3357 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3358 			idx = 0;
3359 		break;
3360 	case IWN5000_PHY_CALIB_LO:
3361 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3362 			idx = 1;
3363 		break;
3364 	case IWN5000_PHY_CALIB_TX_IQ:
3365 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3366 			idx = 2;
3367 		break;
3368 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3369 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3370 			idx = 3;
3371 		break;
3372 	case IWN5000_PHY_CALIB_BASE_BAND:
3373 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3374 			idx = 4;
3375 		break;
3376 	}
3377 	if (idx == -1)	/* Ignore other results. */
3378 		return;
3379 
3380 	/* Save calibration result. */
3381 	if (sc->calibcmd[idx].buf != NULL)
3382 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3383 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3384 	if (sc->calibcmd[idx].buf == NULL) {
3385 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3386 		    "not enough memory for calibration result %d\n",
3387 		    calib->code);
3388 		return;
3389 	}
3390 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3391 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3392 	sc->calibcmd[idx].len = len;
3393 	memcpy(sc->calibcmd[idx].buf, calib, len);
3394 }
3395 
3396 static void
3397 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3398     struct iwn_stats *stats, int len)
3399 {
3400 	struct iwn_stats_bt *stats_bt;
3401 	struct iwn_stats *lstats;
3402 
3403 	/*
3404 	 * First - check whether the length is the bluetooth or normal.
3405 	 *
3406 	 * If it's normal - just copy it and bump out.
3407 	 * Otherwise we have to convert things.
3408 	 */
3409 
3410 	if (len == sizeof(struct iwn_stats) + 4) {
3411 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3412 		sc->last_stat_valid = 1;
3413 		return;
3414 	}
3415 
3416 	/*
3417 	 * If it's not the bluetooth size - log, then just copy.
3418 	 */
3419 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3420 		DPRINTF(sc, IWN_DEBUG_STATS,
3421 		    "%s: size of rx statistics (%d) not an expected size!\n",
3422 		    __func__,
3423 		    len);
3424 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3425 		sc->last_stat_valid = 1;
3426 		return;
3427 	}
3428 
3429 	/*
3430 	 * Ok. Time to copy.
3431 	 */
3432 	stats_bt = (struct iwn_stats_bt *) stats;
3433 	lstats = &sc->last_stat;
3434 
3435 	/* flags */
3436 	lstats->flags = stats_bt->flags;
3437 	/* rx_bt */
3438 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3439 	    sizeof(struct iwn_rx_phy_stats));
3440 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3441 	    sizeof(struct iwn_rx_phy_stats));
3442 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3443 	    sizeof(struct iwn_rx_general_stats));
3444 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3445 	    sizeof(struct iwn_rx_ht_phy_stats));
3446 	/* tx */
3447 	memcpy(&lstats->tx, &stats_bt->tx,
3448 	    sizeof(struct iwn_tx_stats));
3449 	/* general */
3450 	memcpy(&lstats->general, &stats_bt->general,
3451 	    sizeof(struct iwn_general_stats));
3452 
3453 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3454 	sc->last_stat_valid = 1;
3455 }
3456 
3457 /*
3458  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3459  * The latter is sent by the firmware after each received beacon.
3460  */
3461 static void
3462 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3463 {
3464 	struct iwn_ops *ops = &sc->ops;
3465 	struct ieee80211com *ic = &sc->sc_ic;
3466 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3467 	struct iwn_calib_state *calib = &sc->calib;
3468 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3469 	struct iwn_stats *lstats;
3470 	int temp;
3471 
3472 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3473 
3474 	/* Ignore statistics received during a scan. */
3475 	if (vap->iv_state != IEEE80211_S_RUN ||
3476 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3477 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3478 	    __func__);
3479 		return;
3480 	}
3481 
3482 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3483 	    "%s: received statistics, cmd %d, len %d\n",
3484 	    __func__, desc->type, le16toh(desc->len));
3485 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3486 
3487 	/*
3488 	 * Collect/track general statistics for reporting.
3489 	 *
3490 	 * This takes care of ensuring that the bluetooth sized message
3491 	 * will be correctly converted to the legacy sized message.
3492 	 */
3493 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3494 
3495 	/*
3496 	 * And now, let's take a reference of it to use!
3497 	 */
3498 	lstats = &sc->last_stat;
3499 
3500 	/* Test if temperature has changed. */
3501 	if (lstats->general.temp != sc->rawtemp) {
3502 		/* Convert "raw" temperature to degC. */
3503 		sc->rawtemp = stats->general.temp;
3504 		temp = ops->get_temperature(sc);
3505 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3506 		    __func__, temp);
3507 
3508 		/* Update TX power if need be (4965AGN only). */
3509 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3510 			iwn4965_power_calibration(sc, temp);
3511 	}
3512 
3513 	if (desc->type != IWN_BEACON_STATISTICS)
3514 		return;	/* Reply to a statistics request. */
3515 
3516 	sc->noise = iwn_get_noise(&lstats->rx.general);
3517 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3518 
3519 	/* Test that RSSI and noise are present in stats report. */
3520 	if (le32toh(lstats->rx.general.flags) != 1) {
3521 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3522 		    "received statistics without RSSI");
3523 		return;
3524 	}
3525 
3526 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3527 		iwn_collect_noise(sc, &lstats->rx.general);
3528 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3529 		iwn_tune_sensitivity(sc, &lstats->rx);
3530 		/*
3531 		 * XXX TODO: Only run the RX recovery if we're associated!
3532 		 */
3533 		iwn_check_rx_recovery(sc, lstats);
3534 		iwn_save_stats_counters(sc, lstats);
3535 	}
3536 
3537 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3538 }
3539 
3540 /*
3541  * Save the relevant statistic counters for the next calibration
3542  * pass.
3543  */
3544 static void
3545 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3546 {
3547 	struct iwn_calib_state *calib = &sc->calib;
3548 
3549 	/* Save counters values for next call. */
3550 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3551 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3552 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3553 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3554 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3555 
3556 	/* Last time we received these tick values */
3557 	sc->last_calib_ticks = ticks;
3558 }
3559 
3560 /*
3561  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3562  * and 5000 adapters have different incompatible TX status formats.
3563  */
3564 static void
3565 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3566     struct iwn_rx_data *data)
3567 {
3568 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3569 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3570 
3571 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3572 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3573 	    __func__, desc->qid, desc->idx,
3574 	    stat->rtsfailcnt,
3575 	    stat->ackfailcnt,
3576 	    stat->btkillcnt,
3577 	    stat->rate, le16toh(stat->duration),
3578 	    le32toh(stat->status));
3579 
3580 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3581 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3582 		    &stat->status);
3583 	} else {
3584 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3585 		    le32toh(stat->status) & 0xff);
3586 	}
3587 }
3588 
3589 static void
3590 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3591     struct iwn_rx_data *data)
3592 {
3593 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3594 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3595 
3596 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3597 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3598 	    __func__, desc->qid, desc->idx,
3599 	    stat->rtsfailcnt,
3600 	    stat->ackfailcnt,
3601 	    stat->btkillcnt,
3602 	    stat->rate, le16toh(stat->duration),
3603 	    le32toh(stat->status));
3604 
3605 #ifdef notyet
3606 	/* Reset TX scheduler slot. */
3607 	iwn5000_reset_sched(sc, qid, desc->idx);
3608 #endif
3609 
3610 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3611 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3612 		    &stat->status);
3613 	} else {
3614 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3615 		    le16toh(stat->status) & 0xff);
3616 	}
3617 }
3618 
3619 static void
3620 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3621 {
3622 	int i;
3623 
3624 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3625 		struct iwn_tx_data *data = &ring->data[i];
3626 
3627 		if (data->m != NULL)
3628 			break;
3629 
3630 		data->remapped = 0;
3631 	}
3632 
3633 	ring->read = i;
3634 }
3635 
3636 /*
3637  * Adapter-independent backend for TX_DONE firmware notifications.
3638  */
3639 static void
3640 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3641     int ackfailcnt, uint8_t status)
3642 {
3643 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3644 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3645 	struct iwn_tx_data *data = &ring->data[desc->idx];
3646 	struct mbuf *m;
3647 	struct ieee80211_node *ni;
3648 
3649 	if (__predict_false(data->m == NULL &&
3650 	    ring->qid >= sc->firstaggqueue)) {
3651 		/*
3652 		 * There is no frame; skip this entry.
3653 		 */
3654 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3655 		    __func__, ring->qid, desc->idx);
3656 		return;
3657 	}
3658 
3659 	KASSERT(data->ni != NULL, ("no node"));
3660 	KASSERT(data->m != NULL, ("no mbuf"));
3661 
3662 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3663 
3664 	/* Unmap and free mbuf. */
3665 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3666 	bus_dmamap_unload(ring->data_dmat, data->map);
3667 	m = data->m, data->m = NULL;
3668 	ni = data->ni, data->ni = NULL;
3669 
3670 	data->long_retries = 0;
3671 
3672 	if (ring->qid >= sc->firstaggqueue)
3673 		iwn_adj_ampdu_ptr(sc, ring);
3674 
3675 	/*
3676 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3677 	 * (aggregation queues only).
3678 	 */
3679 
3680 	ring->queued--;
3681 	iwn_check_tx_ring(sc, ring->qid);
3682 
3683 	/*
3684 	 * Update rate control statistics for the node.
3685 	 */
3686 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3687 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3688 	txs->short_retries = rtsfailcnt;
3689 	txs->long_retries = ackfailcnt;
3690 	if (!(status & IWN_TX_FAIL))
3691 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3692 	else {
3693 		switch (status) {
3694 		case IWN_TX_FAIL_SHORT_LIMIT:
3695 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3696 			break;
3697 		case IWN_TX_FAIL_LONG_LIMIT:
3698 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3699 			break;
3700 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3701 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3702 			break;
3703 		default:
3704 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3705 			break;
3706 		}
3707 	}
3708 	ieee80211_ratectl_tx_complete(ni, txs);
3709 
3710 	/*
3711 	 * Channels marked for "radar" require traffic to be received
3712 	 * to unlock before we can transmit.  Until traffic is seen
3713 	 * any attempt to transmit is returned immediately with status
3714 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3715 	 * happen on first authenticate after scanning.  To workaround
3716 	 * this we ignore a failure of this sort in AUTH state so the
3717 	 * 802.11 layer will fall back to using a timeout to wait for
3718 	 * the AUTH reply.  This allows the firmware time to see
3719 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3720 	 * unclear why the firmware does not maintain state for
3721 	 * channels recently visited as this would allow immediate
3722 	 * use of the channel after a scan (where we see traffic).
3723 	 */
3724 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3725 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3726 		ieee80211_tx_complete(ni, m, 0);
3727 	else
3728 		ieee80211_tx_complete(ni, m,
3729 		    (status & IWN_TX_FAIL) != 0);
3730 
3731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3732 }
3733 
3734 /*
3735  * Process a "command done" firmware notification.  This is where we wakeup
3736  * processes waiting for a synchronous command completion.
3737  */
3738 static void
3739 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3740 {
3741 	struct iwn_tx_ring *ring;
3742 	struct iwn_tx_data *data;
3743 	int cmd_queue_num;
3744 
3745 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3746 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3747 	else
3748 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3749 
3750 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3751 		return;	/* Not a command ack. */
3752 
3753 	ring = &sc->txq[cmd_queue_num];
3754 	data = &ring->data[desc->idx];
3755 
3756 	/* If the command was mapped in an mbuf, free it. */
3757 	if (data->m != NULL) {
3758 		bus_dmamap_sync(ring->data_dmat, data->map,
3759 		    BUS_DMASYNC_POSTWRITE);
3760 		bus_dmamap_unload(ring->data_dmat, data->map);
3761 		m_freem(data->m);
3762 		data->m = NULL;
3763 	}
3764 	wakeup(&ring->desc[desc->idx]);
3765 }
3766 
3767 static int
3768 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3769 {
3770 	int bit, shift;
3771 
3772 	bit = idx - start;
3773 	shift = 0;
3774 	if (bit >= 64) {
3775 		shift = 0x100 - bit;
3776 		bit = 0;
3777 	} else if (bit <= -64)
3778 		bit = 0x100 + bit;
3779 	else if (bit < 0) {
3780 		shift = -bit;
3781 		bit = 0;
3782 	}
3783 
3784 	if (bit - shift >= 64)
3785 		return (0);
3786 
3787 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3788 }
3789 
3790 /*
3791  * Firmware bug workaround: in case if 'retries' counter
3792  * overflows 'seqno' field will be incremented:
3793  *    status|sequence|status|sequence|status|sequence
3794  *     0000    0A48    0001    0A49    0000    0A6A
3795  *     1000    0A48    1000    0A49    1000    0A6A
3796  *     2000    0A48    2000    0A49    2000    0A6A
3797  * ...
3798  *     E000    0A48    E000    0A49    E000    0A6A
3799  *     F000    0A48    F000    0A49    F000    0A6A
3800  *     0000    0A49    0000    0A49    0000    0A6B
3801  *     1000    0A49    1000    0A49    1000    0A6B
3802  * ...
3803  *     D000    0A49    D000    0A49    D000    0A6B
3804  *     E000    0A49    E001    0A49    E000    0A6B
3805  *     F000    0A49    F001    0A49    F000    0A6B
3806  *     0000    0A4A    0000    0A4B    0000    0A6A
3807  *     1000    0A4A    1000    0A4B    1000    0A6A
3808  * ...
3809  *
3810  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3811  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3812  * Not checked with nretries >= 64.
3813  *
3814  */
3815 static int
3816 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3817     uint64_t bitmap, int start, int idx)
3818 {
3819 	struct ieee80211com *ic = &sc->sc_ic;
3820 	struct iwn_tx_data *data;
3821 	int diff, min_retries, max_retries, new_idx, loop_end;
3822 
3823 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3824 	if (new_idx < 0)
3825 		new_idx += IWN_TX_RING_COUNT;
3826 
3827 	/*
3828 	 * Corner case: check if retry count is not too big;
3829 	 * reset device otherwise.
3830 	 */
3831 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3832 		data = &ring->data[new_idx];
3833 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3834 			device_printf(sc->sc_dev,
3835 			    "%s: retry count (%d) for idx %d/%d overflow, "
3836 			    "resetting...\n", __func__, data->long_retries,
3837 			    ring->qid, new_idx);
3838 			ieee80211_restart_all(ic);
3839 			return (-1);
3840 		}
3841 	}
3842 
3843 	/* Correct index if needed. */
3844 	loop_end = idx;
3845 	do {
3846 		data = &ring->data[new_idx];
3847 		diff = idx - new_idx;
3848 		if (diff < 0)
3849 			diff += IWN_TX_RING_COUNT;
3850 
3851 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3852 		if ((new_idx % 2) == 0)
3853 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3854 		else
3855 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3856 
3857 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3858 		    ((data->long_retries >= min_retries &&
3859 		      data->long_retries < max_retries) ||
3860 		     (diff == 1 &&
3861 		      (new_idx & 0x03) == 0x02 &&
3862 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3863 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3864 			    "%s: correcting index %d -> %d in queue %d"
3865 			    " (retries %d)\n", __func__, idx, new_idx,
3866 			    ring->qid, data->long_retries);
3867 			return (new_idx);
3868 		}
3869 
3870 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3871 	} while (new_idx != loop_end);
3872 
3873 	return (idx);
3874 }
3875 
3876 static void
3877 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3878     void *stat)
3879 {
3880 	struct iwn_tx_ring *ring = &sc->txq[qid];
3881 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3882 	struct iwn_node *wn = (void *)tap->txa_ni;
3883 	struct iwn_tx_data *data;
3884 	uint64_t bitmap = 0;
3885 	uint16_t *aggstatus = stat;
3886 	uint8_t tid = tap->txa_tid;
3887 	int bit, i, idx, shift, start, tx_err;
3888 
3889 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3890 
3891 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3892 
3893 	for (i = 0; i < nframes; i++) {
3894 		uint16_t status = le16toh(aggstatus[i * 2]);
3895 
3896 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3897 			continue;
3898 
3899 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3900 		data = &ring->data[idx];
3901 		if (data->remapped) {
3902 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3903 			if (idx == -1) {
3904 				/* skip error (device will be restarted anyway). */
3905 				continue;
3906 			}
3907 
3908 			/* Index may have changed. */
3909 			data = &ring->data[idx];
3910 		}
3911 
3912 		/*
3913 		 * XXX Sometimes (rarely) some frames are excluded from events.
3914 		 * XXX Due to that long_retries counter may be wrong.
3915 		 */
3916 		data->long_retries &= ~0x0f;
3917 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3918 
3919 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3920 			int diff, wrong_idx;
3921 
3922 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3923 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3924 
3925 			/*
3926 			 * Mark the entry so the above code will check it
3927 			 * next time.
3928 			 */
3929 			ring->data[wrong_idx].remapped = 1;
3930 		}
3931 
3932 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3933 			/*
3934 			 * NB: count retries but postpone - it was not
3935 			 * transmitted.
3936 			 */
3937 			continue;
3938 		}
3939 
3940 		bit = idx - start;
3941 		shift = 0;
3942 		if (bit >= 64) {
3943 			shift = 0x100 - bit;
3944 			bit = 0;
3945 		} else if (bit <= -64)
3946 			bit = 0x100 + bit;
3947 		else if (bit < 0) {
3948 			shift = -bit;
3949 			bit = 0;
3950 		}
3951 		bitmap = bitmap << shift;
3952 		bitmap |= 1ULL << bit;
3953 	}
3954 	wn->agg[tid].startidx = start;
3955 	wn->agg[tid].bitmap = bitmap;
3956 	wn->agg[tid].short_retries = rtsfailcnt;
3957 
3958 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3959 	    __func__, nframes, start, (uintmax_t)bitmap);
3960 
3961 	i = ring->read;
3962 
3963 	for (tx_err = 0;
3964 	     i != wn->agg[tid].startidx;
3965 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3966 		data = &ring->data[i];
3967 		data->remapped = 0;
3968 		if (data->m == NULL)
3969 			continue;
3970 
3971 		tx_err++;
3972 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3973 	}
3974 
3975 	ring->read = wn->agg[tid].startidx;
3976 	ring->queued -= tx_err;
3977 
3978 	iwn_check_tx_ring(sc, qid);
3979 
3980 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3981 }
3982 
3983 /*
3984  * Process an INT_FH_RX or INT_SW_RX interrupt.
3985  */
3986 static void
3987 iwn_notif_intr(struct iwn_softc *sc)
3988 {
3989 	struct iwn_ops *ops = &sc->ops;
3990 	struct ieee80211com *ic = &sc->sc_ic;
3991 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3992 	uint16_t hw;
3993 
3994 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3995 	    BUS_DMASYNC_POSTREAD);
3996 
3997 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3998 	while (sc->rxq.cur != hw) {
3999 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4000 		struct iwn_rx_desc *desc;
4001 
4002 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4003 		    BUS_DMASYNC_POSTREAD);
4004 		desc = mtod(data->m, struct iwn_rx_desc *);
4005 
4006 		DPRINTF(sc, IWN_DEBUG_RECV,
4007 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4008 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4009 		    desc->idx, desc->flags, desc->type,
4010 		    iwn_intr_str(desc->type), le16toh(desc->len));
4011 
4012 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4013 			iwn_cmd_done(sc, desc);
4014 
4015 		switch (desc->type) {
4016 		case IWN_RX_PHY:
4017 			iwn_rx_phy(sc, desc);
4018 			break;
4019 
4020 		case IWN_RX_DONE:		/* 4965AGN only. */
4021 		case IWN_MPDU_RX_DONE:
4022 			/* An 802.11 frame has been received. */
4023 			iwn_rx_done(sc, desc, data);
4024 			break;
4025 
4026 		case IWN_RX_COMPRESSED_BA:
4027 			/* A Compressed BlockAck has been received. */
4028 			iwn_rx_compressed_ba(sc, desc);
4029 			break;
4030 
4031 		case IWN_TX_DONE:
4032 			/* An 802.11 frame has been transmitted. */
4033 			ops->tx_done(sc, desc, data);
4034 			break;
4035 
4036 		case IWN_RX_STATISTICS:
4037 		case IWN_BEACON_STATISTICS:
4038 			iwn_rx_statistics(sc, desc);
4039 			break;
4040 
4041 		case IWN_BEACON_MISSED:
4042 		{
4043 			struct iwn_beacon_missed *miss =
4044 			    (struct iwn_beacon_missed *)(desc + 1);
4045 			int misses;
4046 
4047 			misses = le32toh(miss->consecutive);
4048 
4049 			DPRINTF(sc, IWN_DEBUG_STATE,
4050 			    "%s: beacons missed %d/%d\n", __func__,
4051 			    misses, le32toh(miss->total));
4052 			/*
4053 			 * If more than 5 consecutive beacons are missed,
4054 			 * reinitialize the sensitivity state machine.
4055 			 */
4056 			if (vap->iv_state == IEEE80211_S_RUN &&
4057 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4058 				if (misses > 5)
4059 					(void)iwn_init_sensitivity(sc);
4060 				if (misses >= vap->iv_bmissthreshold) {
4061 					IWN_UNLOCK(sc);
4062 					ieee80211_beacon_miss(ic);
4063 					IWN_LOCK(sc);
4064 				}
4065 			}
4066 			break;
4067 		}
4068 		case IWN_UC_READY:
4069 		{
4070 			struct iwn_ucode_info *uc =
4071 			    (struct iwn_ucode_info *)(desc + 1);
4072 
4073 			/* The microcontroller is ready. */
4074 			DPRINTF(sc, IWN_DEBUG_RESET,
4075 			    "microcode alive notification version=%d.%d "
4076 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4077 			    uc->subtype, le32toh(uc->valid));
4078 
4079 			if (le32toh(uc->valid) != 1) {
4080 				device_printf(sc->sc_dev,
4081 				    "microcontroller initialization failed");
4082 				break;
4083 			}
4084 			if (uc->subtype == IWN_UCODE_INIT) {
4085 				/* Save microcontroller report. */
4086 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4087 			}
4088 			/* Save the address of the error log in SRAM. */
4089 			sc->errptr = le32toh(uc->errptr);
4090 			break;
4091 		}
4092 #ifdef IWN_DEBUG
4093 		case IWN_STATE_CHANGED:
4094 		{
4095 			/*
4096 			 * State change allows hardware switch change to be
4097 			 * noted. However, we handle this in iwn_intr as we
4098 			 * get both the enable/disble intr.
4099 			 */
4100 			uint32_t *status = (uint32_t *)(desc + 1);
4101 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4102 			    "state changed to %x\n",
4103 			    le32toh(*status));
4104 			break;
4105 		}
4106 		case IWN_START_SCAN:
4107 		{
4108 			struct iwn_start_scan *scan =
4109 			    (struct iwn_start_scan *)(desc + 1);
4110 			DPRINTF(sc, IWN_DEBUG_ANY,
4111 			    "%s: scanning channel %d status %x\n",
4112 			    __func__, scan->chan, le32toh(scan->status));
4113 			break;
4114 		}
4115 #endif
4116 		case IWN_STOP_SCAN:
4117 		{
4118 #ifdef	IWN_DEBUG
4119 			struct iwn_stop_scan *scan =
4120 			    (struct iwn_stop_scan *)(desc + 1);
4121 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4122 			    "scan finished nchan=%d status=%d chan=%d\n",
4123 			    scan->nchan, scan->status, scan->chan);
4124 #endif
4125 			sc->sc_is_scanning = 0;
4126 			callout_stop(&sc->scan_timeout);
4127 			IWN_UNLOCK(sc);
4128 			ieee80211_scan_next(vap);
4129 			IWN_LOCK(sc);
4130 			break;
4131 		}
4132 		case IWN5000_CALIBRATION_RESULT:
4133 			iwn5000_rx_calib_results(sc, desc);
4134 			break;
4135 
4136 		case IWN5000_CALIBRATION_DONE:
4137 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4138 			wakeup(sc);
4139 			break;
4140 		}
4141 
4142 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4143 	}
4144 
4145 	/* Tell the firmware what we have processed. */
4146 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4147 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4148 }
4149 
4150 /*
4151  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4152  * from power-down sleep mode.
4153  */
4154 static void
4155 iwn_wakeup_intr(struct iwn_softc *sc)
4156 {
4157 	int qid;
4158 
4159 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4160 	    __func__);
4161 
4162 	/* Wakeup RX and TX rings. */
4163 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4164 	for (qid = 0; qid < sc->ntxqs; qid++) {
4165 		struct iwn_tx_ring *ring = &sc->txq[qid];
4166 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4167 	}
4168 }
4169 
4170 static void
4171 iwn_rftoggle_task(void *arg, int npending)
4172 {
4173 	struct iwn_softc *sc = arg;
4174 	struct ieee80211com *ic = &sc->sc_ic;
4175 	uint32_t tmp;
4176 
4177 	IWN_LOCK(sc);
4178 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4179 	IWN_UNLOCK(sc);
4180 
4181 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4182 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4183 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4184 		ieee80211_suspend_all(ic);
4185 
4186 		/* Enable interrupts to get RF toggle notification. */
4187 		IWN_LOCK(sc);
4188 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4189 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4190 		IWN_UNLOCK(sc);
4191 	} else
4192 		ieee80211_resume_all(ic);
4193 }
4194 
4195 /*
4196  * Dump the error log of the firmware when a firmware panic occurs.  Although
4197  * we can't debug the firmware because it is neither open source nor free, it
4198  * can help us to identify certain classes of problems.
4199  */
4200 static void
4201 iwn_fatal_intr(struct iwn_softc *sc)
4202 {
4203 	struct iwn_fw_dump dump;
4204 	int i;
4205 
4206 	IWN_LOCK_ASSERT(sc);
4207 
4208 	/* Force a complete recalibration on next init. */
4209 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4210 
4211 	/* Check that the error log address is valid. */
4212 	if (sc->errptr < IWN_FW_DATA_BASE ||
4213 	    sc->errptr + sizeof (dump) >
4214 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4215 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4216 		    sc->errptr);
4217 		return;
4218 	}
4219 	if (iwn_nic_lock(sc) != 0) {
4220 		printf("%s: could not read firmware error log\n", __func__);
4221 		return;
4222 	}
4223 	/* Read firmware error log from SRAM. */
4224 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4225 	    sizeof (dump) / sizeof (uint32_t));
4226 	iwn_nic_unlock(sc);
4227 
4228 	if (dump.valid == 0) {
4229 		printf("%s: firmware error log is empty\n", __func__);
4230 		return;
4231 	}
4232 	printf("firmware error log:\n");
4233 	printf("  error type      = \"%s\" (0x%08X)\n",
4234 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4235 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4236 	    dump.id);
4237 	printf("  program counter = 0x%08X\n", dump.pc);
4238 	printf("  source line     = 0x%08X\n", dump.src_line);
4239 	printf("  error data      = 0x%08X%08X\n",
4240 	    dump.error_data[0], dump.error_data[1]);
4241 	printf("  branch link     = 0x%08X%08X\n",
4242 	    dump.branch_link[0], dump.branch_link[1]);
4243 	printf("  interrupt link  = 0x%08X%08X\n",
4244 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4245 	printf("  time            = %u\n", dump.time[0]);
4246 
4247 	/* Dump driver status (TX and RX rings) while we're here. */
4248 	printf("driver status:\n");
4249 	for (i = 0; i < sc->ntxqs; i++) {
4250 		struct iwn_tx_ring *ring = &sc->txq[i];
4251 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4252 		    i, ring->qid, ring->cur, ring->queued);
4253 	}
4254 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4255 }
4256 
4257 static void
4258 iwn_intr(void *arg)
4259 {
4260 	struct iwn_softc *sc = arg;
4261 	uint32_t r1, r2, tmp;
4262 
4263 	IWN_LOCK(sc);
4264 
4265 	/* Disable interrupts. */
4266 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4267 
4268 	/* Read interrupts from ICT (fast) or from registers (slow). */
4269 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4270 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4271 		    BUS_DMASYNC_POSTREAD);
4272 		tmp = 0;
4273 		while (sc->ict[sc->ict_cur] != 0) {
4274 			tmp |= sc->ict[sc->ict_cur];
4275 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4276 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4277 		}
4278 		tmp = le32toh(tmp);
4279 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4280 			tmp = 0;
4281 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4282 			tmp |= 0x8000;
4283 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4284 		r2 = 0;	/* Unused. */
4285 	} else {
4286 		r1 = IWN_READ(sc, IWN_INT);
4287 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4288 			IWN_UNLOCK(sc);
4289 			return;	/* Hardware gone! */
4290 		}
4291 		r2 = IWN_READ(sc, IWN_FH_INT);
4292 	}
4293 
4294 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4295     , r1, r2);
4296 
4297 	if (r1 == 0 && r2 == 0)
4298 		goto done;	/* Interrupt not for us. */
4299 
4300 	/* Acknowledge interrupts. */
4301 	IWN_WRITE(sc, IWN_INT, r1);
4302 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4303 		IWN_WRITE(sc, IWN_FH_INT, r2);
4304 
4305 	if (r1 & IWN_INT_RF_TOGGLED) {
4306 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4307 		goto done;
4308 	}
4309 	if (r1 & IWN_INT_CT_REACHED) {
4310 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4311 		    __func__);
4312 	}
4313 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4314 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4315 		    __func__);
4316 #ifdef	IWN_DEBUG
4317 		iwn_debug_register(sc);
4318 #endif
4319 		/* Dump firmware error log and stop. */
4320 		iwn_fatal_intr(sc);
4321 
4322 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4323 		goto done;
4324 	}
4325 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4326 	    (r2 & IWN_FH_INT_RX)) {
4327 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4328 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4329 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4330 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4331 			    IWN_INT_PERIODIC_DIS);
4332 			iwn_notif_intr(sc);
4333 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4334 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4335 				    IWN_INT_PERIODIC_ENA);
4336 			}
4337 		} else
4338 			iwn_notif_intr(sc);
4339 	}
4340 
4341 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4342 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4343 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4344 		wakeup(sc);	/* FH DMA transfer completed. */
4345 	}
4346 
4347 	if (r1 & IWN_INT_ALIVE)
4348 		wakeup(sc);	/* Firmware is alive. */
4349 
4350 	if (r1 & IWN_INT_WAKEUP)
4351 		iwn_wakeup_intr(sc);
4352 
4353 done:
4354 	/* Re-enable interrupts. */
4355 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4356 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4357 
4358 	IWN_UNLOCK(sc);
4359 }
4360 
4361 /*
4362  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4363  * 5000 adapters use a slightly different format).
4364  */
4365 static void
4366 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4367     uint16_t len)
4368 {
4369 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4370 
4371 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4372 
4373 	*w = htole16(len + 8);
4374 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4375 	    BUS_DMASYNC_PREWRITE);
4376 	if (idx < IWN_SCHED_WINSZ) {
4377 		*(w + IWN_TX_RING_COUNT) = *w;
4378 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4379 		    BUS_DMASYNC_PREWRITE);
4380 	}
4381 }
4382 
4383 static void
4384 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4385     uint16_t len)
4386 {
4387 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4388 
4389 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4390 
4391 	*w = htole16(id << 12 | (len + 8));
4392 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4393 	    BUS_DMASYNC_PREWRITE);
4394 	if (idx < IWN_SCHED_WINSZ) {
4395 		*(w + IWN_TX_RING_COUNT) = *w;
4396 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4397 		    BUS_DMASYNC_PREWRITE);
4398 	}
4399 }
4400 
4401 #ifdef notyet
4402 static void
4403 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4404 {
4405 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4406 
4407 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4408 
4409 	*w = (*w & htole16(0xf000)) | htole16(1);
4410 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4411 	    BUS_DMASYNC_PREWRITE);
4412 	if (idx < IWN_SCHED_WINSZ) {
4413 		*(w + IWN_TX_RING_COUNT) = *w;
4414 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4415 		    BUS_DMASYNC_PREWRITE);
4416 	}
4417 }
4418 #endif
4419 
4420 /*
4421  * Check whether OFDM 11g protection will be enabled for the given rate.
4422  *
4423  * The original driver code only enabled protection for OFDM rates.
4424  * It didn't check to see whether it was operating in 11a or 11bg mode.
4425  */
4426 static int
4427 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4428     struct ieee80211vap *vap, uint8_t rate)
4429 {
4430 	struct ieee80211com *ic = vap->iv_ic;
4431 
4432 	/*
4433 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4434 	 * 11bg protection.
4435 	 */
4436 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4437 		return (0);
4438 	}
4439 
4440 	/*
4441 	 * 11bg protection not enabled? Then don't use it.
4442 	 */
4443 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4444 		return (0);
4445 
4446 	/*
4447 	 * If it's an 11n rate - no protection.
4448 	 * We'll do it via a specific 11n check.
4449 	 */
4450 	if (rate & IEEE80211_RATE_MCS) {
4451 		return (0);
4452 	}
4453 
4454 	/*
4455 	 * Do a rate table lookup.  If the PHY is CCK,
4456 	 * don't do protection.
4457 	 */
4458 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4459 		return (0);
4460 
4461 	/*
4462 	 * Yup, enable protection.
4463 	 */
4464 	return (1);
4465 }
4466 
4467 /*
4468  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4469  * the link quality table that reflects this particular entry.
4470  */
4471 static int
4472 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4473     uint8_t rate)
4474 {
4475 	struct ieee80211_rateset *rs;
4476 	int is_11n;
4477 	int nr;
4478 	int i;
4479 	uint8_t cmp_rate;
4480 
4481 	/*
4482 	 * Figure out if we're using 11n or not here.
4483 	 */
4484 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4485 		is_11n = 1;
4486 	else
4487 		is_11n = 0;
4488 
4489 	/*
4490 	 * Use the correct rate table.
4491 	 */
4492 	if (is_11n) {
4493 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4494 		nr = ni->ni_htrates.rs_nrates;
4495 	} else {
4496 		rs = &ni->ni_rates;
4497 		nr = rs->rs_nrates;
4498 	}
4499 
4500 	/*
4501 	 * Find the relevant link quality entry in the table.
4502 	 */
4503 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4504 		/*
4505 		 * The link quality table index starts at 0 == highest
4506 		 * rate, so we walk the rate table backwards.
4507 		 */
4508 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4509 		if (rate & IEEE80211_RATE_MCS)
4510 			cmp_rate |= IEEE80211_RATE_MCS;
4511 
4512 #if 0
4513 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4514 		    __func__,
4515 		    i,
4516 		    nr,
4517 		    rate,
4518 		    cmp_rate);
4519 #endif
4520 
4521 		if (cmp_rate == rate)
4522 			return (i);
4523 	}
4524 
4525 	/* Failed? Start at the end */
4526 	return (IWN_MAX_TX_RETRIES - 1);
4527 }
4528 
4529 static int
4530 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4531 {
4532 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4533 	struct ieee80211vap *vap = ni->ni_vap;
4534 	struct ieee80211com *ic = ni->ni_ic;
4535 	struct iwn_node *wn = (void *)ni;
4536 	struct iwn_tx_ring *ring;
4537 	struct iwn_tx_cmd *cmd;
4538 	struct iwn_cmd_data *tx;
4539 	struct ieee80211_frame *wh;
4540 	struct ieee80211_key *k = NULL;
4541 	uint32_t flags;
4542 	uint16_t qos;
4543 	uint8_t tid, type;
4544 	int ac, totlen, rate;
4545 
4546 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4547 
4548 	IWN_LOCK_ASSERT(sc);
4549 
4550 	wh = mtod(m, struct ieee80211_frame *);
4551 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4552 
4553 	/* Select EDCA Access Category and TX ring for this frame. */
4554 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4555 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4556 		tid = qos & IEEE80211_QOS_TID;
4557 	} else {
4558 		qos = 0;
4559 		tid = 0;
4560 	}
4561 
4562 	/* Choose a TX rate index. */
4563 	if (type == IEEE80211_FC0_TYPE_MGT ||
4564 	    type == IEEE80211_FC0_TYPE_CTL ||
4565 	    (m->m_flags & M_EAPOL) != 0)
4566 		rate = tp->mgmtrate;
4567 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4568 		rate = tp->mcastrate;
4569 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4570 		rate = tp->ucastrate;
4571 	else {
4572 		/* XXX pass pktlen */
4573 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4574 		rate = ni->ni_txrate;
4575 	}
4576 
4577 	/*
4578 	 * XXX TODO: Group addressed frames aren't aggregated and must
4579 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4580 	 * assigned from net80211.
4581 	 */
4582 
4583 	ac = M_WME_GETAC(m);
4584 	if (m->m_flags & M_AMPDU_MPDU) {
4585 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4586 
4587 		if (!IEEE80211_AMPDU_RUNNING(tap))
4588 			return (EINVAL);
4589 
4590 		ac = *(int *)tap->txa_private;
4591 	}
4592 
4593 	/* Encrypt the frame if need be. */
4594 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4595 		/* Retrieve key for TX. */
4596 		k = ieee80211_crypto_encap(ni, m);
4597 		if (k == NULL) {
4598 			return ENOBUFS;
4599 		}
4600 		/* 802.11 header may have moved. */
4601 		wh = mtod(m, struct ieee80211_frame *);
4602 	}
4603 	totlen = m->m_pkthdr.len;
4604 
4605 	if (ieee80211_radiotap_active_vap(vap)) {
4606 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4607 
4608 		tap->wt_flags = 0;
4609 		tap->wt_rate = rate;
4610 		if (k != NULL)
4611 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4612 
4613 		ieee80211_radiotap_tx(vap, m);
4614 	}
4615 
4616 	flags = 0;
4617 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4618 		/* Unicast frame, check if an ACK is expected. */
4619 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4620 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4621 			flags |= IWN_TX_NEED_ACK;
4622 	}
4623 	if ((wh->i_fc[0] &
4624 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4625 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4626 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4627 
4628 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4629 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4630 
4631 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4632 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4633 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4634 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4635 			flags |= IWN_TX_NEED_RTS;
4636 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4637 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4638 				flags |= IWN_TX_NEED_CTS;
4639 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4640 				flags |= IWN_TX_NEED_RTS;
4641 		} else if ((rate & IEEE80211_RATE_MCS) &&
4642 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4643 			flags |= IWN_TX_NEED_RTS;
4644 		}
4645 
4646 		/* XXX HT protection? */
4647 
4648 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4649 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4650 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4651 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4652 				flags |= IWN_TX_NEED_PROTECTION;
4653 			} else
4654 				flags |= IWN_TX_FULL_TXOP;
4655 		}
4656 	}
4657 
4658 	ring = &sc->txq[ac];
4659 	if (m->m_flags & M_AMPDU_MPDU) {
4660 		uint16_t seqno = ni->ni_txseqs[tid];
4661 
4662 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4663 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4664 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4665 			    "(queued %d) left in %d queue!\n",
4666 			    __func__, ring->queued, ac);
4667 			return (ENOBUFS);
4668 		}
4669 
4670 		/*
4671 		 * Queue this frame to the hardware ring that we've
4672 		 * negotiated AMPDU TX on.
4673 		 *
4674 		 * Note that the sequence number must match the TX slot
4675 		 * being used!
4676 		 */
4677 		if ((seqno % 256) != ring->cur) {
4678 			device_printf(sc->sc_dev,
4679 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4680 			    __func__,
4681 			    m,
4682 			    seqno,
4683 			    seqno % 256,
4684 			    ring->cur);
4685 
4686 			/* XXX until D9195 will not be committed */
4687 			ni->ni_txseqs[tid] &= ~0xff;
4688 			ni->ni_txseqs[tid] += ring->cur;
4689 			seqno = ni->ni_txseqs[tid];
4690 		}
4691 
4692 		*(uint16_t *)wh->i_seq =
4693 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4694 		ni->ni_txseqs[tid]++;
4695 	}
4696 
4697 	/* Prepare TX firmware command. */
4698 	cmd = &ring->cmd[ring->cur];
4699 	tx = (struct iwn_cmd_data *)cmd->data;
4700 
4701 	/* NB: No need to clear tx, all fields are reinitialized here. */
4702 	tx->scratch = 0;	/* clear "scratch" area */
4703 
4704 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4705 	    type != IEEE80211_FC0_TYPE_DATA)
4706 		tx->id = sc->broadcast_id;
4707 	else
4708 		tx->id = wn->id;
4709 
4710 	if (type == IEEE80211_FC0_TYPE_MGT) {
4711 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4712 
4713 		/* Tell HW to set timestamp in probe responses. */
4714 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4715 			flags |= IWN_TX_INSERT_TSTAMP;
4716 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4717 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4718 			tx->timeout = htole16(3);
4719 		else
4720 			tx->timeout = htole16(2);
4721 	} else
4722 		tx->timeout = htole16(0);
4723 
4724 	if (tx->id == sc->broadcast_id) {
4725 		/* Group or management frame. */
4726 		tx->linkq = 0;
4727 	} else {
4728 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4729 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4730 	}
4731 
4732 	tx->tid = tid;
4733 	tx->rts_ntries = 60;
4734 	tx->data_ntries = 15;
4735 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4736 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4737 	tx->security = 0;
4738 	tx->flags = htole32(flags);
4739 
4740 	return (iwn_tx_cmd(sc, m, ni, ring));
4741 }
4742 
4743 static int
4744 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4745     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4746 {
4747 	struct ieee80211vap *vap = ni->ni_vap;
4748 	struct iwn_tx_cmd *cmd;
4749 	struct iwn_cmd_data *tx;
4750 	struct ieee80211_frame *wh;
4751 	struct iwn_tx_ring *ring;
4752 	uint32_t flags;
4753 	int ac, rate;
4754 	uint8_t type;
4755 
4756 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4757 
4758 	IWN_LOCK_ASSERT(sc);
4759 
4760 	wh = mtod(m, struct ieee80211_frame *);
4761 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4762 
4763 	ac = params->ibp_pri & 3;
4764 
4765 	/* Choose a TX rate. */
4766 	rate = params->ibp_rate0;
4767 
4768 	flags = 0;
4769 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4770 		flags |= IWN_TX_NEED_ACK;
4771 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4772 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4773 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4774 			flags &= ~IWN_TX_NEED_RTS;
4775 			flags |= IWN_TX_NEED_PROTECTION;
4776 		} else
4777 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4778 	}
4779 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4780 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4781 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4782 			flags &= ~IWN_TX_NEED_CTS;
4783 			flags |= IWN_TX_NEED_PROTECTION;
4784 		} else
4785 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4786 	}
4787 
4788 	if (ieee80211_radiotap_active_vap(vap)) {
4789 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4790 
4791 		tap->wt_flags = 0;
4792 		tap->wt_rate = rate;
4793 
4794 		ieee80211_radiotap_tx(vap, m);
4795 	}
4796 
4797 	ring = &sc->txq[ac];
4798 	cmd = &ring->cmd[ring->cur];
4799 
4800 	tx = (struct iwn_cmd_data *)cmd->data;
4801 	/* NB: No need to clear tx, all fields are reinitialized here. */
4802 	tx->scratch = 0;	/* clear "scratch" area */
4803 
4804 	if (type == IEEE80211_FC0_TYPE_MGT) {
4805 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4806 
4807 		/* Tell HW to set timestamp in probe responses. */
4808 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4809 			flags |= IWN_TX_INSERT_TSTAMP;
4810 
4811 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4812 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4813 			tx->timeout = htole16(3);
4814 		else
4815 			tx->timeout = htole16(2);
4816 	} else
4817 		tx->timeout = htole16(0);
4818 
4819 	tx->tid = 0;
4820 	tx->id = sc->broadcast_id;
4821 	tx->rts_ntries = params->ibp_try1;
4822 	tx->data_ntries = params->ibp_try0;
4823 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4824 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4825 	tx->security = 0;
4826 	tx->flags = htole32(flags);
4827 
4828 	/* Group or management frame. */
4829 	tx->linkq = 0;
4830 
4831 	return (iwn_tx_cmd(sc, m, ni, ring));
4832 }
4833 
4834 static int
4835 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4836     struct iwn_tx_ring *ring)
4837 {
4838 	struct iwn_ops *ops = &sc->ops;
4839 	struct iwn_tx_cmd *cmd;
4840 	struct iwn_cmd_data *tx;
4841 	struct ieee80211_frame *wh;
4842 	struct iwn_tx_desc *desc;
4843 	struct iwn_tx_data *data;
4844 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4845 	struct mbuf *m1;
4846 	u_int hdrlen;
4847 	int totlen, error, pad, nsegs = 0, i;
4848 
4849 	wh = mtod(m, struct ieee80211_frame *);
4850 	hdrlen = ieee80211_anyhdrsize(wh);
4851 	totlen = m->m_pkthdr.len;
4852 
4853 	desc = &ring->desc[ring->cur];
4854 	data = &ring->data[ring->cur];
4855 
4856 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4857 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4858 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4859 		    ring->cur, ring->qid);
4860 		return EIO;
4861 	}
4862 
4863 	/* Prepare TX firmware command. */
4864 	cmd = &ring->cmd[ring->cur];
4865 	cmd->code = IWN_CMD_TX_DATA;
4866 	cmd->flags = 0;
4867 	cmd->qid = ring->qid;
4868 	cmd->idx = ring->cur;
4869 
4870 	tx = (struct iwn_cmd_data *)cmd->data;
4871 	tx->len = htole16(totlen);
4872 
4873 	/* Set physical address of "scratch area". */
4874 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4875 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4876 	if (hdrlen & 3) {
4877 		/* First segment length must be a multiple of 4. */
4878 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4879 		pad = 4 - (hdrlen & 3);
4880 	} else
4881 		pad = 0;
4882 
4883 	/* Copy 802.11 header in TX command. */
4884 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4885 
4886 	/* Trim 802.11 header. */
4887 	m_adj(m, hdrlen);
4888 
4889 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4890 	    &nsegs, BUS_DMA_NOWAIT);
4891 	if (error != 0) {
4892 		if (error != EFBIG) {
4893 			device_printf(sc->sc_dev,
4894 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4895 			return error;
4896 		}
4897 		/* Too many DMA segments, linearize mbuf. */
4898 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4899 		if (m1 == NULL) {
4900 			device_printf(sc->sc_dev,
4901 			    "%s: could not defrag mbuf\n", __func__);
4902 			return ENOBUFS;
4903 		}
4904 		m = m1;
4905 
4906 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4907 		    segs, &nsegs, BUS_DMA_NOWAIT);
4908 		if (error != 0) {
4909 			/* XXX fix this */
4910 			/*
4911 			 * NB: Do not return error;
4912 			 * original mbuf does not exist anymore.
4913 			 */
4914 			device_printf(sc->sc_dev,
4915 			    "%s: can't map mbuf (error %d)\n",
4916 			    __func__, error);
4917 			if_inc_counter(ni->ni_vap->iv_ifp,
4918 			    IFCOUNTER_OERRORS, 1);
4919 			ieee80211_free_node(ni);
4920 			m_freem(m);
4921 			return 0;
4922 		}
4923 	}
4924 
4925 	data->m = m;
4926 	data->ni = ni;
4927 
4928 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4929 	    "plcp %d\n",
4930 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4931 
4932 	/* Fill TX descriptor. */
4933 	desc->nsegs = 1;
4934 	if (m->m_len != 0)
4935 		desc->nsegs += nsegs;
4936 	/* First DMA segment is used by the TX command. */
4937 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4938 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4939 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4940 	/* Other DMA segments are for data payload. */
4941 	seg = &segs[0];
4942 	for (i = 1; i <= nsegs; i++) {
4943 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4944 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4945 		    seg->ds_len << 4);
4946 		seg++;
4947 	}
4948 
4949 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4950 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4951 	    BUS_DMASYNC_PREWRITE);
4952 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4953 	    BUS_DMASYNC_PREWRITE);
4954 
4955 	/* Update TX scheduler. */
4956 	if (ring->qid >= sc->firstaggqueue)
4957 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4958 
4959 	/* Kick TX ring. */
4960 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4961 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4962 
4963 	/* Mark TX ring as full if we reach a certain threshold. */
4964 	if (++ring->queued > IWN_TX_RING_HIMARK)
4965 		sc->qfullmsk |= 1 << ring->qid;
4966 
4967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4968 
4969 	return 0;
4970 }
4971 
4972 static void
4973 iwn_xmit_task(void *arg0, int pending)
4974 {
4975 	struct iwn_softc *sc = arg0;
4976 	struct ieee80211_node *ni;
4977 	struct mbuf *m;
4978 	int error;
4979 	struct ieee80211_bpf_params p;
4980 	int have_p;
4981 
4982 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4983 
4984 	IWN_LOCK(sc);
4985 	/*
4986 	 * Dequeue frames, attempt to transmit,
4987 	 * then disable beaconwait when we're done.
4988 	 */
4989 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4990 		have_p = 0;
4991 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4992 
4993 		/* Get xmit params if appropriate */
4994 		if (ieee80211_get_xmit_params(m, &p) == 0)
4995 			have_p = 1;
4996 
4997 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4998 		    __func__, m, have_p);
4999 
5000 		/* If we have xmit params, use them */
5001 		if (have_p)
5002 			error = iwn_tx_data_raw(sc, m, ni, &p);
5003 		else
5004 			error = iwn_tx_data(sc, m, ni);
5005 
5006 		if (error != 0) {
5007 			if_inc_counter(ni->ni_vap->iv_ifp,
5008 			    IFCOUNTER_OERRORS, 1);
5009 			ieee80211_free_node(ni);
5010 			m_freem(m);
5011 		}
5012 	}
5013 
5014 	sc->sc_beacon_wait = 0;
5015 	IWN_UNLOCK(sc);
5016 }
5017 
5018 /*
5019  * raw frame xmit - free node/reference if failed.
5020  */
5021 static int
5022 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5023     const struct ieee80211_bpf_params *params)
5024 {
5025 	struct ieee80211com *ic = ni->ni_ic;
5026 	struct iwn_softc *sc = ic->ic_softc;
5027 	int error = 0;
5028 
5029 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5030 
5031 	IWN_LOCK(sc);
5032 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5033 		m_freem(m);
5034 		IWN_UNLOCK(sc);
5035 		return (ENETDOWN);
5036 	}
5037 
5038 	/* queue frame if we have to */
5039 	if (sc->sc_beacon_wait) {
5040 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5041 			m_freem(m);
5042 			IWN_UNLOCK(sc);
5043 			return (ENOBUFS);
5044 		}
5045 		/* Queued, so just return OK */
5046 		IWN_UNLOCK(sc);
5047 		return (0);
5048 	}
5049 
5050 	if (params == NULL) {
5051 		/*
5052 		 * Legacy path; interpret frame contents to decide
5053 		 * precisely how to send the frame.
5054 		 */
5055 		error = iwn_tx_data(sc, m, ni);
5056 	} else {
5057 		/*
5058 		 * Caller supplied explicit parameters to use in
5059 		 * sending the frame.
5060 		 */
5061 		error = iwn_tx_data_raw(sc, m, ni, params);
5062 	}
5063 	if (error == 0)
5064 		sc->sc_tx_timer = 5;
5065 	else
5066 		m_freem(m);
5067 
5068 	IWN_UNLOCK(sc);
5069 
5070 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5071 
5072 	return (error);
5073 }
5074 
5075 /*
5076  * transmit - don't free mbuf if failed; don't free node ref if failed.
5077  */
5078 static int
5079 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5080 {
5081 	struct iwn_softc *sc = ic->ic_softc;
5082 	struct ieee80211_node *ni;
5083 	int error;
5084 
5085 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5086 
5087 	IWN_LOCK(sc);
5088 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5089 		IWN_UNLOCK(sc);
5090 		return (ENXIO);
5091 	}
5092 
5093 	if (sc->qfullmsk) {
5094 		IWN_UNLOCK(sc);
5095 		return (ENOBUFS);
5096 	}
5097 
5098 	error = iwn_tx_data(sc, m, ni);
5099 	if (!error)
5100 		sc->sc_tx_timer = 5;
5101 	IWN_UNLOCK(sc);
5102 	return (error);
5103 }
5104 
5105 static void
5106 iwn_scan_timeout(void *arg)
5107 {
5108 	struct iwn_softc *sc = arg;
5109 	struct ieee80211com *ic = &sc->sc_ic;
5110 
5111 	ic_printf(ic, "scan timeout\n");
5112 	ieee80211_restart_all(ic);
5113 }
5114 
5115 static void
5116 iwn_watchdog(void *arg)
5117 {
5118 	struct iwn_softc *sc = arg;
5119 	struct ieee80211com *ic = &sc->sc_ic;
5120 
5121 	IWN_LOCK_ASSERT(sc);
5122 
5123 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5124 
5125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5126 
5127 	if (sc->sc_tx_timer > 0) {
5128 		if (--sc->sc_tx_timer == 0) {
5129 			ic_printf(ic, "device timeout\n");
5130 			ieee80211_restart_all(ic);
5131 			return;
5132 		}
5133 	}
5134 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5135 }
5136 
5137 static int
5138 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5139 {
5140 
5141 	return (0);
5142 }
5143 
5144 static int
5145 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5146 {
5147 
5148 	return (0);
5149 }
5150 
5151 static int
5152 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5153     struct thread *td)
5154 {
5155 	int rc;
5156 	struct iwn_softc *sc = dev->si_drv1;
5157 	struct iwn_ioctl_data *d;
5158 
5159 	rc = priv_check(td, PRIV_DRIVER);
5160 	if (rc != 0)
5161 		return (0);
5162 
5163 	switch (cmd) {
5164 	case SIOCGIWNSTATS:
5165 		d = (struct iwn_ioctl_data *) data;
5166 		IWN_LOCK(sc);
5167 		/* XXX validate permissions/memory/etc? */
5168 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5169 		IWN_UNLOCK(sc);
5170 		break;
5171 	case SIOCZIWNSTATS:
5172 		IWN_LOCK(sc);
5173 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5174 		IWN_UNLOCK(sc);
5175 		break;
5176 	default:
5177 		rc = EINVAL;
5178 		break;
5179 	}
5180 	return (rc);
5181 }
5182 
5183 static int
5184 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5185 {
5186 
5187 	return (ENOTTY);
5188 }
5189 
5190 static void
5191 iwn_parent(struct ieee80211com *ic)
5192 {
5193 	struct iwn_softc *sc = ic->ic_softc;
5194 	struct ieee80211vap *vap;
5195 	int error;
5196 
5197 	if (ic->ic_nrunning > 0) {
5198 		error = iwn_init(sc);
5199 
5200 		switch (error) {
5201 		case 0:
5202 			ieee80211_start_all(ic);
5203 			break;
5204 		case 1:
5205 			/* radio is disabled via RFkill switch */
5206 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5207 			break;
5208 		default:
5209 			vap = TAILQ_FIRST(&ic->ic_vaps);
5210 			if (vap != NULL)
5211 				ieee80211_stop(vap);
5212 			break;
5213 		}
5214 	} else
5215 		iwn_stop(sc);
5216 }
5217 
5218 /*
5219  * Send a command to the firmware.
5220  */
5221 static int
5222 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5223 {
5224 	struct iwn_tx_ring *ring;
5225 	struct iwn_tx_desc *desc;
5226 	struct iwn_tx_data *data;
5227 	struct iwn_tx_cmd *cmd;
5228 	struct mbuf *m;
5229 	bus_addr_t paddr;
5230 	int totlen, error;
5231 	int cmd_queue_num;
5232 
5233 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5234 
5235 	if (async == 0)
5236 		IWN_LOCK_ASSERT(sc);
5237 
5238 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5239 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5240 	else
5241 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5242 
5243 	ring = &sc->txq[cmd_queue_num];
5244 	desc = &ring->desc[ring->cur];
5245 	data = &ring->data[ring->cur];
5246 	totlen = 4 + size;
5247 
5248 	if (size > sizeof cmd->data) {
5249 		/* Command is too large to fit in a descriptor. */
5250 		if (totlen > MCLBYTES)
5251 			return EINVAL;
5252 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5253 		if (m == NULL)
5254 			return ENOMEM;
5255 		cmd = mtod(m, struct iwn_tx_cmd *);
5256 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5257 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5258 		if (error != 0) {
5259 			m_freem(m);
5260 			return error;
5261 		}
5262 		data->m = m;
5263 	} else {
5264 		cmd = &ring->cmd[ring->cur];
5265 		paddr = data->cmd_paddr;
5266 	}
5267 
5268 	cmd->code = code;
5269 	cmd->flags = 0;
5270 	cmd->qid = ring->qid;
5271 	cmd->idx = ring->cur;
5272 	memcpy(cmd->data, buf, size);
5273 
5274 	desc->nsegs = 1;
5275 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5276 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5277 
5278 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5279 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5280 	    cmd->flags, cmd->qid, cmd->idx);
5281 
5282 	if (size > sizeof cmd->data) {
5283 		bus_dmamap_sync(ring->data_dmat, data->map,
5284 		    BUS_DMASYNC_PREWRITE);
5285 	} else {
5286 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5287 		    BUS_DMASYNC_PREWRITE);
5288 	}
5289 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5290 	    BUS_DMASYNC_PREWRITE);
5291 
5292 	/* Kick command ring. */
5293 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5294 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5295 
5296 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5297 
5298 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5299 }
5300 
5301 static int
5302 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5303 {
5304 	struct iwn4965_node_info hnode;
5305 	caddr_t src, dst;
5306 
5307 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5308 
5309 	/*
5310 	 * We use the node structure for 5000 Series internally (it is
5311 	 * a superset of the one for 4965AGN). We thus copy the common
5312 	 * fields before sending the command.
5313 	 */
5314 	src = (caddr_t)node;
5315 	dst = (caddr_t)&hnode;
5316 	memcpy(dst, src, 48);
5317 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5318 	memcpy(dst + 48, src + 72, 20);
5319 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5320 }
5321 
5322 static int
5323 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5324 {
5325 
5326 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5327 
5328 	/* Direct mapping. */
5329 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5330 }
5331 
5332 static int
5333 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5334 {
5335 	struct iwn_node *wn = (void *)ni;
5336 	struct ieee80211_rateset *rs;
5337 	struct iwn_cmd_link_quality linkq;
5338 	int i, rate, txrate;
5339 	int is_11n;
5340 
5341 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5342 
5343 	memset(&linkq, 0, sizeof linkq);
5344 	linkq.id = wn->id;
5345 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5346 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5347 
5348 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5349 	linkq.ampdu_threshold = 3;
5350 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5351 
5352 	DPRINTF(sc, IWN_DEBUG_XMIT,
5353 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5354 	    __func__,
5355 	    linkq.antmsk_1stream,
5356 	    linkq.antmsk_2stream,
5357 	    sc->ntxchains);
5358 
5359 	/*
5360 	 * Are we using 11n rates? Ensure the channel is
5361 	 * 11n _and_ we have some 11n rates, or don't
5362 	 * try.
5363 	 */
5364 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5365 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5366 		is_11n = 1;
5367 	} else {
5368 		rs = &ni->ni_rates;
5369 		is_11n = 0;
5370 	}
5371 
5372 	/* Start at highest available bit-rate. */
5373 	/*
5374 	 * XXX this is all very dirty!
5375 	 */
5376 	if (is_11n)
5377 		txrate = ni->ni_htrates.rs_nrates - 1;
5378 	else
5379 		txrate = rs->rs_nrates - 1;
5380 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5381 		uint32_t plcp;
5382 
5383 		/*
5384 		 * XXX TODO: ensure the last two slots are the two lowest
5385 		 * rate entries, just for now.
5386 		 */
5387 		if (i == 14 || i == 15)
5388 			txrate = 0;
5389 
5390 		if (is_11n)
5391 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5392 		else
5393 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5394 
5395 		/* Do rate -> PLCP config mapping */
5396 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5397 		linkq.retry[i] = plcp;
5398 		DPRINTF(sc, IWN_DEBUG_XMIT,
5399 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5400 		    __func__,
5401 		    i,
5402 		    txrate,
5403 		    rate,
5404 		    le32toh(plcp));
5405 
5406 		/*
5407 		 * The mimo field is an index into the table which
5408 		 * indicates the first index where it and subsequent entries
5409 		 * will not be using MIMO.
5410 		 *
5411 		 * Since we're filling linkq from 0..15 and we're filling
5412 		 * from the highest MCS rates to the lowest rates, if we
5413 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5414 		 * the next entry.)  That way if the next entry is a non-MIMO
5415 		 * entry, we're already pointing at it.
5416 		 */
5417 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5418 		    IEEE80211_RV(le32toh(plcp)) > 7)
5419 			linkq.mimo = i + 1;
5420 
5421 		/* Next retry at immediate lower bit-rate. */
5422 		if (txrate > 0)
5423 			txrate--;
5424 	}
5425 	/*
5426 	 * If we reached the end of the list and indeed we hit
5427 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5428 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5429 	 */
5430 	if (linkq.mimo > 15)
5431 		linkq.mimo = 15;
5432 
5433 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5434 
5435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5436 
5437 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5438 }
5439 
5440 /*
5441  * Broadcast node is used to send group-addressed and management frames.
5442  */
5443 static int
5444 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5445 {
5446 	struct iwn_ops *ops = &sc->ops;
5447 	struct ieee80211com *ic = &sc->sc_ic;
5448 	struct iwn_node_info node;
5449 	struct iwn_cmd_link_quality linkq;
5450 	uint8_t txant;
5451 	int i, error;
5452 
5453 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5454 
5455 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5456 
5457 	memset(&node, 0, sizeof node);
5458 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5459 	node.id = sc->broadcast_id;
5460 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5461 	if ((error = ops->add_node(sc, &node, async)) != 0)
5462 		return error;
5463 
5464 	/* Use the first valid TX antenna. */
5465 	txant = IWN_LSB(sc->txchainmask);
5466 
5467 	memset(&linkq, 0, sizeof linkq);
5468 	linkq.id = sc->broadcast_id;
5469 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5470 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5471 	linkq.ampdu_max = 64;
5472 	linkq.ampdu_threshold = 3;
5473 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5474 
5475 	/* Use lowest mandatory bit-rate. */
5476 	/* XXX rate table lookup? */
5477 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5478 		linkq.retry[0] = htole32(0xd);
5479 	else
5480 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5481 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5482 	/* Use same bit-rate for all TX retries. */
5483 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5484 		linkq.retry[i] = linkq.retry[0];
5485 	}
5486 
5487 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5488 
5489 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5490 }
5491 
5492 static int
5493 iwn_updateedca(struct ieee80211com *ic)
5494 {
5495 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5496 	struct iwn_softc *sc = ic->ic_softc;
5497 	struct iwn_edca_params cmd;
5498 	struct chanAccParams chp;
5499 	int aci;
5500 
5501 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5502 
5503 	ieee80211_wme_ic_getparams(ic, &chp);
5504 
5505 	memset(&cmd, 0, sizeof cmd);
5506 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5507 
5508 	IEEE80211_LOCK(ic);
5509 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5510 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5511 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5512 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5513 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5514 		cmd.ac[aci].txoplimit =
5515 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5516 	}
5517 	IEEE80211_UNLOCK(ic);
5518 
5519 	IWN_LOCK(sc);
5520 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5521 	IWN_UNLOCK(sc);
5522 
5523 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5524 
5525 	return 0;
5526 #undef IWN_EXP2
5527 }
5528 
5529 static void
5530 iwn_set_promisc(struct iwn_softc *sc)
5531 {
5532 	struct ieee80211com *ic = &sc->sc_ic;
5533 	uint32_t promisc_filter;
5534 
5535 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5536 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5537 		sc->rxon->filter |= htole32(promisc_filter);
5538 	else
5539 		sc->rxon->filter &= ~htole32(promisc_filter);
5540 }
5541 
5542 static void
5543 iwn_update_promisc(struct ieee80211com *ic)
5544 {
5545 	struct iwn_softc *sc = ic->ic_softc;
5546 	int error;
5547 
5548 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5549 		return;		/* nothing to do */
5550 
5551 	IWN_LOCK(sc);
5552 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5553 		IWN_UNLOCK(sc);
5554 		return;
5555 	}
5556 
5557 	iwn_set_promisc(sc);
5558 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5559 		device_printf(sc->sc_dev,
5560 		    "%s: could not send RXON, error %d\n",
5561 		    __func__, error);
5562 	}
5563 	IWN_UNLOCK(sc);
5564 }
5565 
5566 static void
5567 iwn_update_mcast(struct ieee80211com *ic)
5568 {
5569 	/* Ignore */
5570 }
5571 
5572 static void
5573 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5574 {
5575 	struct iwn_cmd_led led;
5576 
5577 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5578 
5579 #if 0
5580 	/* XXX don't set LEDs during scan? */
5581 	if (sc->sc_is_scanning)
5582 		return;
5583 #endif
5584 
5585 	/* Clear microcode LED ownership. */
5586 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5587 
5588 	led.which = which;
5589 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5590 	led.off = off;
5591 	led.on = on;
5592 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5593 }
5594 
5595 /*
5596  * Set the critical temperature at which the firmware will stop the radio
5597  * and notify us.
5598  */
5599 static int
5600 iwn_set_critical_temp(struct iwn_softc *sc)
5601 {
5602 	struct iwn_critical_temp crit;
5603 	int32_t temp;
5604 
5605 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5606 
5607 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5608 
5609 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5610 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5611 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5612 		temp = IWN_CTOK(110);
5613 	else
5614 		temp = 110;
5615 	memset(&crit, 0, sizeof crit);
5616 	crit.tempR = htole32(temp);
5617 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5618 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5619 }
5620 
5621 static int
5622 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5623 {
5624 	struct iwn_cmd_timing cmd;
5625 	uint64_t val, mod;
5626 
5627 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5628 
5629 	memset(&cmd, 0, sizeof cmd);
5630 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5631 	cmd.bintval = htole16(ni->ni_intval);
5632 	cmd.lintval = htole16(10);
5633 
5634 	/* Compute remaining time until next beacon. */
5635 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5636 	mod = le64toh(cmd.tstamp) % val;
5637 	cmd.binitval = htole32((uint32_t)(val - mod));
5638 
5639 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5640 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5641 
5642 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5643 }
5644 
5645 static void
5646 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5647 {
5648 
5649 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5650 
5651 	/* Adjust TX power if need be (delta >= 3 degC). */
5652 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5653 	    __func__, sc->temp, temp);
5654 	if (abs(temp - sc->temp) >= 3) {
5655 		/* Record temperature of last calibration. */
5656 		sc->temp = temp;
5657 		(void)iwn4965_set_txpower(sc, 1);
5658 	}
5659 }
5660 
5661 /*
5662  * Set TX power for current channel (each rate has its own power settings).
5663  * This function takes into account the regulatory information from EEPROM,
5664  * the current temperature and the current voltage.
5665  */
5666 static int
5667 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5668 {
5669 /* Fixed-point arithmetic division using a n-bit fractional part. */
5670 #define fdivround(a, b, n)	\
5671 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5672 /* Linear interpolation. */
5673 #define interpolate(x, x1, y1, x2, y2, n)	\
5674 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5675 
5676 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5677 	struct iwn_ucode_info *uc = &sc->ucode_info;
5678 	struct iwn4965_cmd_txpower cmd;
5679 	struct iwn4965_eeprom_chan_samples *chans;
5680 	const uint8_t *rf_gain, *dsp_gain;
5681 	int32_t vdiff, tdiff;
5682 	int i, is_chan_5ghz, c, grp, maxpwr;
5683 	uint8_t chan;
5684 
5685 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5686 	/* Retrieve current channel from last RXON. */
5687 	chan = sc->rxon->chan;
5688 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5689 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5690 	    chan);
5691 
5692 	memset(&cmd, 0, sizeof cmd);
5693 	cmd.band = is_chan_5ghz ? 0 : 1;
5694 	cmd.chan = chan;
5695 
5696 	if (is_chan_5ghz) {
5697 		maxpwr   = sc->maxpwr5GHz;
5698 		rf_gain  = iwn4965_rf_gain_5ghz;
5699 		dsp_gain = iwn4965_dsp_gain_5ghz;
5700 	} else {
5701 		maxpwr   = sc->maxpwr2GHz;
5702 		rf_gain  = iwn4965_rf_gain_2ghz;
5703 		dsp_gain = iwn4965_dsp_gain_2ghz;
5704 	}
5705 
5706 	/* Compute voltage compensation. */
5707 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5708 	if (vdiff > 0)
5709 		vdiff *= 2;
5710 	if (abs(vdiff) > 2)
5711 		vdiff = 0;
5712 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5713 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5714 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5715 
5716 	/* Get channel attenuation group. */
5717 	if (chan <= 20)		/* 1-20 */
5718 		grp = 4;
5719 	else if (chan <= 43)	/* 34-43 */
5720 		grp = 0;
5721 	else if (chan <= 70)	/* 44-70 */
5722 		grp = 1;
5723 	else if (chan <= 124)	/* 71-124 */
5724 		grp = 2;
5725 	else			/* 125-200 */
5726 		grp = 3;
5727 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5728 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5729 
5730 	/* Get channel sub-band. */
5731 	for (i = 0; i < IWN_NBANDS; i++)
5732 		if (sc->bands[i].lo != 0 &&
5733 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5734 			break;
5735 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5736 		return EINVAL;
5737 	chans = sc->bands[i].chans;
5738 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5739 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5740 
5741 	for (c = 0; c < 2; c++) {
5742 		uint8_t power, gain, temp;
5743 		int maxchpwr, pwr, ridx, idx;
5744 
5745 		power = interpolate(chan,
5746 		    chans[0].num, chans[0].samples[c][1].power,
5747 		    chans[1].num, chans[1].samples[c][1].power, 1);
5748 		gain  = interpolate(chan,
5749 		    chans[0].num, chans[0].samples[c][1].gain,
5750 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5751 		temp  = interpolate(chan,
5752 		    chans[0].num, chans[0].samples[c][1].temp,
5753 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5754 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5755 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5756 		    __func__, c, power, gain, temp);
5757 
5758 		/* Compute temperature compensation. */
5759 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5760 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5761 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5762 		    __func__, tdiff, sc->temp, temp);
5763 
5764 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5765 			/* Convert dBm to half-dBm. */
5766 			maxchpwr = sc->maxpwr[chan] * 2;
5767 			if ((ridx / 8) & 1)
5768 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5769 
5770 			pwr = maxpwr;
5771 
5772 			/* Adjust TX power based on rate. */
5773 			if ((ridx % 8) == 5)
5774 				pwr -= 15;	/* OFDM48: -7.5dB */
5775 			else if ((ridx % 8) == 6)
5776 				pwr -= 17;	/* OFDM54: -8.5dB */
5777 			else if ((ridx % 8) == 7)
5778 				pwr -= 20;	/* OFDM60: -10dB */
5779 			else
5780 				pwr -= 10;	/* Others: -5dB */
5781 
5782 			/* Do not exceed channel max TX power. */
5783 			if (pwr > maxchpwr)
5784 				pwr = maxchpwr;
5785 
5786 			idx = gain - (pwr - power) - tdiff - vdiff;
5787 			if ((ridx / 8) & 1)	/* MIMO */
5788 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5789 
5790 			if (cmd.band == 0)
5791 				idx += 9;	/* 5GHz */
5792 			if (ridx == IWN_RIDX_MAX)
5793 				idx += 5;	/* CCK */
5794 
5795 			/* Make sure idx stays in a valid range. */
5796 			if (idx < 0)
5797 				idx = 0;
5798 			else if (idx > IWN4965_MAX_PWR_INDEX)
5799 				idx = IWN4965_MAX_PWR_INDEX;
5800 
5801 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5802 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5803 			    __func__, c, ridx, idx);
5804 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5805 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5806 		}
5807 	}
5808 
5809 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5810 	    "%s: set tx power for chan %d\n", __func__, chan);
5811 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5812 
5813 #undef interpolate
5814 #undef fdivround
5815 }
5816 
5817 static int
5818 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5819 {
5820 	struct iwn5000_cmd_txpower cmd;
5821 	int cmdid;
5822 
5823 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5824 
5825 	/*
5826 	 * TX power calibration is handled automatically by the firmware
5827 	 * for 5000 Series.
5828 	 */
5829 	memset(&cmd, 0, sizeof cmd);
5830 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5831 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5832 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5833 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5834 	    "%s: setting TX power; rev=%d\n",
5835 	    __func__,
5836 	    IWN_UCODE_API(sc->ucode_rev));
5837 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5838 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5839 	else
5840 		cmdid = IWN_CMD_TXPOWER_DBM;
5841 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5842 }
5843 
5844 /*
5845  * Retrieve the maximum RSSI (in dBm) among receivers.
5846  */
5847 static int
5848 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5849 {
5850 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5851 	uint8_t mask, agc;
5852 	int rssi;
5853 
5854 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5855 
5856 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5857 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5858 
5859 	rssi = 0;
5860 	if (mask & IWN_ANT_A)
5861 		rssi = MAX(rssi, phy->rssi[0]);
5862 	if (mask & IWN_ANT_B)
5863 		rssi = MAX(rssi, phy->rssi[2]);
5864 	if (mask & IWN_ANT_C)
5865 		rssi = MAX(rssi, phy->rssi[4]);
5866 
5867 	DPRINTF(sc, IWN_DEBUG_RECV,
5868 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5869 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5870 	    rssi - agc - IWN_RSSI_TO_DBM);
5871 	return rssi - agc - IWN_RSSI_TO_DBM;
5872 }
5873 
5874 static int
5875 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5876 {
5877 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5878 	uint8_t agc;
5879 	int rssi;
5880 
5881 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5882 
5883 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5884 
5885 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5886 		   le16toh(phy->rssi[1]) & 0xff);
5887 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5888 
5889 	DPRINTF(sc, IWN_DEBUG_RECV,
5890 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5891 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5892 	    rssi - agc - IWN_RSSI_TO_DBM);
5893 	return rssi - agc - IWN_RSSI_TO_DBM;
5894 }
5895 
5896 /*
5897  * Retrieve the average noise (in dBm) among receivers.
5898  */
5899 static int
5900 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5901 {
5902 	int i, total, nbant, noise;
5903 
5904 	total = nbant = 0;
5905 	for (i = 0; i < 3; i++) {
5906 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5907 			continue;
5908 		total += noise;
5909 		nbant++;
5910 	}
5911 	/* There should be at least one antenna but check anyway. */
5912 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5913 }
5914 
5915 /*
5916  * Compute temperature (in degC) from last received statistics.
5917  */
5918 static int
5919 iwn4965_get_temperature(struct iwn_softc *sc)
5920 {
5921 	struct iwn_ucode_info *uc = &sc->ucode_info;
5922 	int32_t r1, r2, r3, r4, temp;
5923 
5924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5925 
5926 	r1 = le32toh(uc->temp[0].chan20MHz);
5927 	r2 = le32toh(uc->temp[1].chan20MHz);
5928 	r3 = le32toh(uc->temp[2].chan20MHz);
5929 	r4 = le32toh(sc->rawtemp);
5930 
5931 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5932 		return 0;
5933 
5934 	/* Sign-extend 23-bit R4 value to 32-bit. */
5935 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5936 	/* Compute temperature in Kelvin. */
5937 	temp = (259 * (r4 - r2)) / (r3 - r1);
5938 	temp = (temp * 97) / 100 + 8;
5939 
5940 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5941 	    IWN_KTOC(temp));
5942 	return IWN_KTOC(temp);
5943 }
5944 
5945 static int
5946 iwn5000_get_temperature(struct iwn_softc *sc)
5947 {
5948 	int32_t temp;
5949 
5950 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5951 
5952 	/*
5953 	 * Temperature is not used by the driver for 5000 Series because
5954 	 * TX power calibration is handled by firmware.
5955 	 */
5956 	temp = le32toh(sc->rawtemp);
5957 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5958 		temp = (temp / -5) + sc->temp_off;
5959 		temp = IWN_KTOC(temp);
5960 	}
5961 	return temp;
5962 }
5963 
5964 /*
5965  * Initialize sensitivity calibration state machine.
5966  */
5967 static int
5968 iwn_init_sensitivity(struct iwn_softc *sc)
5969 {
5970 	struct iwn_ops *ops = &sc->ops;
5971 	struct iwn_calib_state *calib = &sc->calib;
5972 	uint32_t flags;
5973 	int error;
5974 
5975 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5976 
5977 	/* Reset calibration state machine. */
5978 	memset(calib, 0, sizeof (*calib));
5979 	calib->state = IWN_CALIB_STATE_INIT;
5980 	calib->cck_state = IWN_CCK_STATE_HIFA;
5981 	/* Set initial correlation values. */
5982 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5983 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5984 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5985 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5986 	calib->cck_x4      = 125;
5987 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5988 	calib->energy_cck  = sc->limits->energy_cck;
5989 
5990 	/* Write initial sensitivity. */
5991 	if ((error = iwn_send_sensitivity(sc)) != 0)
5992 		return error;
5993 
5994 	/* Write initial gains. */
5995 	if ((error = ops->init_gains(sc)) != 0)
5996 		return error;
5997 
5998 	/* Request statistics at each beacon interval. */
5999 	flags = 0;
6000 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6001 	    __func__);
6002 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6003 }
6004 
6005 /*
6006  * Collect noise and RSSI statistics for the first 20 beacons received
6007  * after association and use them to determine connected antennas and
6008  * to set differential gains.
6009  */
6010 static void
6011 iwn_collect_noise(struct iwn_softc *sc,
6012     const struct iwn_rx_general_stats *stats)
6013 {
6014 	struct iwn_ops *ops = &sc->ops;
6015 	struct iwn_calib_state *calib = &sc->calib;
6016 	struct ieee80211com *ic = &sc->sc_ic;
6017 	uint32_t val;
6018 	int i;
6019 
6020 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6021 
6022 	/* Accumulate RSSI and noise for all 3 antennas. */
6023 	for (i = 0; i < 3; i++) {
6024 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6025 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6026 	}
6027 	/* NB: We update differential gains only once after 20 beacons. */
6028 	if (++calib->nbeacons < 20)
6029 		return;
6030 
6031 	/* Determine highest average RSSI. */
6032 	val = MAX(calib->rssi[0], calib->rssi[1]);
6033 	val = MAX(calib->rssi[2], val);
6034 
6035 	/* Determine which antennas are connected. */
6036 	sc->chainmask = sc->rxchainmask;
6037 	for (i = 0; i < 3; i++)
6038 		if (val - calib->rssi[i] > 15 * 20)
6039 			sc->chainmask &= ~(1 << i);
6040 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6041 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6042 	    __func__, sc->rxchainmask, sc->chainmask);
6043 
6044 	/* If none of the TX antennas are connected, keep at least one. */
6045 	if ((sc->chainmask & sc->txchainmask) == 0)
6046 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6047 
6048 	(void)ops->set_gains(sc);
6049 	calib->state = IWN_CALIB_STATE_RUN;
6050 
6051 #ifdef notyet
6052 	/* XXX Disable RX chains with no antennas connected. */
6053 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6054 	if (sc->sc_is_scanning)
6055 		device_printf(sc->sc_dev,
6056 		    "%s: is_scanning set, before RXON\n",
6057 		    __func__);
6058 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6059 #endif
6060 
6061 	/* Enable power-saving mode if requested by user. */
6062 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6063 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6064 
6065 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6066 
6067 }
6068 
6069 static int
6070 iwn4965_init_gains(struct iwn_softc *sc)
6071 {
6072 	struct iwn_phy_calib_gain cmd;
6073 
6074 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6075 
6076 	memset(&cmd, 0, sizeof cmd);
6077 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6078 	/* Differential gains initially set to 0 for all 3 antennas. */
6079 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6080 	    "%s: setting initial differential gains\n", __func__);
6081 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6082 }
6083 
6084 static int
6085 iwn5000_init_gains(struct iwn_softc *sc)
6086 {
6087 	struct iwn_phy_calib cmd;
6088 
6089 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6090 
6091 	memset(&cmd, 0, sizeof cmd);
6092 	cmd.code = sc->reset_noise_gain;
6093 	cmd.ngroups = 1;
6094 	cmd.isvalid = 1;
6095 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6096 	    "%s: setting initial differential gains\n", __func__);
6097 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6098 }
6099 
6100 static int
6101 iwn4965_set_gains(struct iwn_softc *sc)
6102 {
6103 	struct iwn_calib_state *calib = &sc->calib;
6104 	struct iwn_phy_calib_gain cmd;
6105 	int i, delta, noise;
6106 
6107 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6108 
6109 	/* Get minimal noise among connected antennas. */
6110 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6111 	for (i = 0; i < 3; i++)
6112 		if (sc->chainmask & (1 << i))
6113 			noise = MIN(calib->noise[i], noise);
6114 
6115 	memset(&cmd, 0, sizeof cmd);
6116 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6117 	/* Set differential gains for connected antennas. */
6118 	for (i = 0; i < 3; i++) {
6119 		if (sc->chainmask & (1 << i)) {
6120 			/* Compute attenuation (in unit of 1.5dB). */
6121 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6122 			/* NB: delta <= 0 */
6123 			/* Limit to [-4.5dB,0]. */
6124 			cmd.gain[i] = MIN(abs(delta), 3);
6125 			if (delta < 0)
6126 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6127 		}
6128 	}
6129 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6130 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6131 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6132 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6133 }
6134 
6135 static int
6136 iwn5000_set_gains(struct iwn_softc *sc)
6137 {
6138 	struct iwn_calib_state *calib = &sc->calib;
6139 	struct iwn_phy_calib_gain cmd;
6140 	int i, ant, div, delta;
6141 
6142 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6143 
6144 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6145 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6146 
6147 	memset(&cmd, 0, sizeof cmd);
6148 	cmd.code = sc->noise_gain;
6149 	cmd.ngroups = 1;
6150 	cmd.isvalid = 1;
6151 	/* Get first available RX antenna as referential. */
6152 	ant = IWN_LSB(sc->rxchainmask);
6153 	/* Set differential gains for other antennas. */
6154 	for (i = ant + 1; i < 3; i++) {
6155 		if (sc->chainmask & (1 << i)) {
6156 			/* The delta is relative to antenna "ant". */
6157 			delta = ((int32_t)calib->noise[ant] -
6158 			    (int32_t)calib->noise[i]) / div;
6159 			/* Limit to [-4.5dB,+4.5dB]. */
6160 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6161 			if (delta < 0)
6162 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6163 		}
6164 	}
6165 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6166 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6167 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6168 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6169 }
6170 
6171 /*
6172  * Tune RF RX sensitivity based on the number of false alarms detected
6173  * during the last beacon period.
6174  */
6175 static void
6176 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6177 {
6178 #define inc(val, inc, max)			\
6179 	if ((val) < (max)) {			\
6180 		if ((val) < (max) - (inc))	\
6181 			(val) += (inc);		\
6182 		else				\
6183 			(val) = (max);		\
6184 		needs_update = 1;		\
6185 	}
6186 #define dec(val, dec, min)			\
6187 	if ((val) > (min)) {			\
6188 		if ((val) > (min) + (dec))	\
6189 			(val) -= (dec);		\
6190 		else				\
6191 			(val) = (min);		\
6192 		needs_update = 1;		\
6193 	}
6194 
6195 	const struct iwn_sensitivity_limits *limits = sc->limits;
6196 	struct iwn_calib_state *calib = &sc->calib;
6197 	uint32_t val, rxena, fa;
6198 	uint32_t energy[3], energy_min;
6199 	uint8_t noise[3], noise_ref;
6200 	int i, needs_update = 0;
6201 
6202 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6203 
6204 	/* Check that we've been enabled long enough. */
6205 	if ((rxena = le32toh(stats->general.load)) == 0){
6206 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6207 		return;
6208 	}
6209 
6210 	/* Compute number of false alarms since last call for OFDM. */
6211 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6212 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6213 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6214 
6215 	if (fa > 50 * rxena) {
6216 		/* High false alarm count, decrease sensitivity. */
6217 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6218 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6219 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6220 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6221 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6222 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6223 
6224 	} else if (fa < 5 * rxena) {
6225 		/* Low false alarm count, increase sensitivity. */
6226 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6227 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6228 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6229 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6230 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6231 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6232 	}
6233 
6234 	/* Compute maximum noise among 3 receivers. */
6235 	for (i = 0; i < 3; i++)
6236 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6237 	val = MAX(noise[0], noise[1]);
6238 	val = MAX(noise[2], val);
6239 	/* Insert it into our samples table. */
6240 	calib->noise_samples[calib->cur_noise_sample] = val;
6241 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6242 
6243 	/* Compute maximum noise among last 20 samples. */
6244 	noise_ref = calib->noise_samples[0];
6245 	for (i = 1; i < 20; i++)
6246 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6247 
6248 	/* Compute maximum energy among 3 receivers. */
6249 	for (i = 0; i < 3; i++)
6250 		energy[i] = le32toh(stats->general.energy[i]);
6251 	val = MIN(energy[0], energy[1]);
6252 	val = MIN(energy[2], val);
6253 	/* Insert it into our samples table. */
6254 	calib->energy_samples[calib->cur_energy_sample] = val;
6255 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6256 
6257 	/* Compute minimum energy among last 10 samples. */
6258 	energy_min = calib->energy_samples[0];
6259 	for (i = 1; i < 10; i++)
6260 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6261 	energy_min += 6;
6262 
6263 	/* Compute number of false alarms since last call for CCK. */
6264 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6265 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6266 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6267 
6268 	if (fa > 50 * rxena) {
6269 		/* High false alarm count, decrease sensitivity. */
6270 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6271 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6272 		calib->cck_state = IWN_CCK_STATE_HIFA;
6273 		calib->low_fa = 0;
6274 
6275 		if (calib->cck_x4 > 160) {
6276 			calib->noise_ref = noise_ref;
6277 			if (calib->energy_cck > 2)
6278 				dec(calib->energy_cck, 2, energy_min);
6279 		}
6280 		if (calib->cck_x4 < 160) {
6281 			calib->cck_x4 = 161;
6282 			needs_update = 1;
6283 		} else
6284 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6285 
6286 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6287 
6288 	} else if (fa < 5 * rxena) {
6289 		/* Low false alarm count, increase sensitivity. */
6290 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6291 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6292 		calib->cck_state = IWN_CCK_STATE_LOFA;
6293 		calib->low_fa++;
6294 
6295 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6296 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6297 		     calib->low_fa > 100)) {
6298 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6299 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6300 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6301 		}
6302 	} else {
6303 		/* Not worth to increase or decrease sensitivity. */
6304 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6305 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6306 		calib->low_fa = 0;
6307 		calib->noise_ref = noise_ref;
6308 
6309 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6310 			/* Previous interval had many false alarms. */
6311 			dec(calib->energy_cck, 8, energy_min);
6312 		}
6313 		calib->cck_state = IWN_CCK_STATE_INIT;
6314 	}
6315 
6316 	if (needs_update)
6317 		(void)iwn_send_sensitivity(sc);
6318 
6319 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6320 
6321 #undef dec
6322 #undef inc
6323 }
6324 
6325 static int
6326 iwn_send_sensitivity(struct iwn_softc *sc)
6327 {
6328 	struct iwn_calib_state *calib = &sc->calib;
6329 	struct iwn_enhanced_sensitivity_cmd cmd;
6330 	int len;
6331 
6332 	memset(&cmd, 0, sizeof cmd);
6333 	len = sizeof (struct iwn_sensitivity_cmd);
6334 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6335 	/* OFDM modulation. */
6336 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6337 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6338 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6339 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6340 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6341 	cmd.energy_ofdm_th     = htole16(62);
6342 	/* CCK modulation. */
6343 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6344 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6345 	cmd.energy_cck         = htole16(calib->energy_cck);
6346 	/* Barker modulation: use default values. */
6347 	cmd.corr_barker        = htole16(190);
6348 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6349 
6350 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6351 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6352 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6353 	    calib->ofdm_mrc_x4, calib->cck_x4,
6354 	    calib->cck_mrc_x4, calib->energy_cck);
6355 
6356 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6357 		goto send;
6358 	/* Enhanced sensitivity settings. */
6359 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6360 	cmd.ofdm_det_slope_mrc = htole16(668);
6361 	cmd.ofdm_det_icept_mrc = htole16(4);
6362 	cmd.ofdm_det_slope     = htole16(486);
6363 	cmd.ofdm_det_icept     = htole16(37);
6364 	cmd.cck_det_slope_mrc  = htole16(853);
6365 	cmd.cck_det_icept_mrc  = htole16(4);
6366 	cmd.cck_det_slope      = htole16(476);
6367 	cmd.cck_det_icept      = htole16(99);
6368 send:
6369 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6370 }
6371 
6372 /*
6373  * Look at the increase of PLCP errors over time; if it exceeds
6374  * a programmed threshold then trigger an RF retune.
6375  */
6376 static void
6377 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6378 {
6379 	int32_t delta_ofdm, delta_ht, delta_cck;
6380 	struct iwn_calib_state *calib = &sc->calib;
6381 	int delta_ticks, cur_ticks;
6382 	int delta_msec;
6383 	int thresh;
6384 
6385 	/*
6386 	 * Calculate the difference between the current and
6387 	 * previous statistics.
6388 	 */
6389 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6390 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6391 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6392 
6393 	/*
6394 	 * Calculate the delta in time between successive statistics
6395 	 * messages.  Yes, it can roll over; so we make sure that
6396 	 * this doesn't happen.
6397 	 *
6398 	 * XXX go figure out what to do about rollover
6399 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6400 	 * XXX go stab signed integer overflow undefined-ness in the face.
6401 	 */
6402 	cur_ticks = ticks;
6403 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6404 
6405 	/*
6406 	 * If any are negative, then the firmware likely reset; so just
6407 	 * bail.  We'll pick this up next time.
6408 	 */
6409 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6410 		return;
6411 
6412 	/*
6413 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6414 	 * so we can do some useful math with it.
6415 	 */
6416 	delta_msec = ticks_to_msecs(delta_ticks);
6417 
6418 	/*
6419 	 * Calculate what our threshold is given the current delta_msec.
6420 	 */
6421 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6422 
6423 	DPRINTF(sc, IWN_DEBUG_STATE,
6424 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6425 	    __func__,
6426 	    delta_msec,
6427 	    delta_cck,
6428 	    delta_ofdm,
6429 	    delta_ht,
6430 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6431 	    thresh);
6432 
6433 	/*
6434 	 * If we need a retune, then schedule a single channel scan
6435 	 * to a channel that isn't the currently active one!
6436 	 *
6437 	 * The math from linux iwlwifi:
6438 	 *
6439 	 * if ((delta * 100 / msecs) > threshold)
6440 	 */
6441 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6442 		DPRINTF(sc, IWN_DEBUG_ANY,
6443 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6444 		    "over limit (%d); retune!\n",
6445 		    __func__,
6446 		    (delta_cck + delta_ofdm + delta_ht),
6447 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6448 		    thresh);
6449 	}
6450 }
6451 
6452 /*
6453  * Set STA mode power saving level (between 0 and 5).
6454  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6455  */
6456 static int
6457 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6458 {
6459 	struct iwn_pmgt_cmd cmd;
6460 	const struct iwn_pmgt *pmgt;
6461 	uint32_t max, skip_dtim;
6462 	uint32_t reg;
6463 	int i;
6464 
6465 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6466 	    "%s: dtim=%d, level=%d, async=%d\n",
6467 	    __func__,
6468 	    dtim,
6469 	    level,
6470 	    async);
6471 
6472 	/* Select which PS parameters to use. */
6473 	if (dtim <= 2)
6474 		pmgt = &iwn_pmgt[0][level];
6475 	else if (dtim <= 10)
6476 		pmgt = &iwn_pmgt[1][level];
6477 	else
6478 		pmgt = &iwn_pmgt[2][level];
6479 
6480 	memset(&cmd, 0, sizeof cmd);
6481 	if (level != 0)	/* not CAM */
6482 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6483 	if (level == 5)
6484 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6485 	/* Retrieve PCIe Active State Power Management (ASPM). */
6486 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6487 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6488 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6489 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6490 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6491 
6492 	if (dtim == 0) {
6493 		dtim = 1;
6494 		skip_dtim = 0;
6495 	} else
6496 		skip_dtim = pmgt->skip_dtim;
6497 	if (skip_dtim != 0) {
6498 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6499 		max = pmgt->intval[4];
6500 		if (max == (uint32_t)-1)
6501 			max = dtim * (skip_dtim + 1);
6502 		else if (max > dtim)
6503 			max = rounddown(max, dtim);
6504 	} else
6505 		max = dtim;
6506 	for (i = 0; i < 5; i++)
6507 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6508 
6509 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6510 	    level);
6511 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6512 }
6513 
6514 static int
6515 iwn_send_btcoex(struct iwn_softc *sc)
6516 {
6517 	struct iwn_bluetooth cmd;
6518 
6519 	memset(&cmd, 0, sizeof cmd);
6520 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6521 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6522 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6523 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6524 	    __func__);
6525 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6526 }
6527 
6528 static int
6529 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6530 {
6531 	static const uint32_t btcoex_3wire[12] = {
6532 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6533 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6534 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6535 	};
6536 	struct iwn6000_btcoex_config btconfig;
6537 	struct iwn2000_btcoex_config btconfig2k;
6538 	struct iwn_btcoex_priotable btprio;
6539 	struct iwn_btcoex_prot btprot;
6540 	int error, i;
6541 	uint8_t flags;
6542 
6543 	memset(&btconfig, 0, sizeof btconfig);
6544 	memset(&btconfig2k, 0, sizeof btconfig2k);
6545 
6546 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6547 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6548 
6549 	if (sc->base_params->bt_sco_disable)
6550 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6551 	else
6552 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6553 
6554 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6555 
6556 	/* Default flags result is 145 as old value */
6557 
6558 	/*
6559 	 * Flags value has to be review. Values must change if we
6560 	 * which to disable it
6561 	 */
6562 	if (sc->base_params->bt_session_2) {
6563 		btconfig2k.flags = flags;
6564 		btconfig2k.max_kill = 5;
6565 		btconfig2k.bt3_t7_timer = 1;
6566 		btconfig2k.kill_ack = htole32(0xffff0000);
6567 		btconfig2k.kill_cts = htole32(0xffff0000);
6568 		btconfig2k.sample_time = 2;
6569 		btconfig2k.bt3_t2_timer = 0xc;
6570 
6571 		for (i = 0; i < 12; i++)
6572 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6573 		btconfig2k.valid = htole16(0xff);
6574 		btconfig2k.prio_boost = htole32(0xf0);
6575 		DPRINTF(sc, IWN_DEBUG_RESET,
6576 		    "%s: configuring advanced bluetooth coexistence"
6577 		    " session 2, flags : 0x%x\n",
6578 		    __func__,
6579 		    flags);
6580 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6581 		    sizeof(btconfig2k), 1);
6582 	} else {
6583 		btconfig.flags = flags;
6584 		btconfig.max_kill = 5;
6585 		btconfig.bt3_t7_timer = 1;
6586 		btconfig.kill_ack = htole32(0xffff0000);
6587 		btconfig.kill_cts = htole32(0xffff0000);
6588 		btconfig.sample_time = 2;
6589 		btconfig.bt3_t2_timer = 0xc;
6590 
6591 		for (i = 0; i < 12; i++)
6592 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6593 		btconfig.valid = htole16(0xff);
6594 		btconfig.prio_boost = 0xf0;
6595 		DPRINTF(sc, IWN_DEBUG_RESET,
6596 		    "%s: configuring advanced bluetooth coexistence,"
6597 		    " flags : 0x%x\n",
6598 		    __func__,
6599 		    flags);
6600 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6601 		    sizeof(btconfig), 1);
6602 	}
6603 
6604 	if (error != 0)
6605 		return error;
6606 
6607 	memset(&btprio, 0, sizeof btprio);
6608 	btprio.calib_init1 = 0x6;
6609 	btprio.calib_init2 = 0x7;
6610 	btprio.calib_periodic_low1 = 0x2;
6611 	btprio.calib_periodic_low2 = 0x3;
6612 	btprio.calib_periodic_high1 = 0x4;
6613 	btprio.calib_periodic_high2 = 0x5;
6614 	btprio.dtim = 0x6;
6615 	btprio.scan52 = 0x8;
6616 	btprio.scan24 = 0xa;
6617 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6618 	    1);
6619 	if (error != 0)
6620 		return error;
6621 
6622 	/* Force BT state machine change. */
6623 	memset(&btprot, 0, sizeof btprot);
6624 	btprot.open = 1;
6625 	btprot.type = 1;
6626 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6627 	if (error != 0)
6628 		return error;
6629 	btprot.open = 0;
6630 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6631 }
6632 
6633 static int
6634 iwn5000_runtime_calib(struct iwn_softc *sc)
6635 {
6636 	struct iwn5000_calib_config cmd;
6637 
6638 	memset(&cmd, 0, sizeof cmd);
6639 	cmd.ucode.once.enable = 0xffffffff;
6640 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6641 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6642 	    "%s: configuring runtime calibration\n", __func__);
6643 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6644 }
6645 
6646 static uint32_t
6647 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6648 {
6649 	struct ieee80211com *ic = &sc->sc_ic;
6650 	uint32_t htflags = 0;
6651 
6652 	if (! IEEE80211_IS_CHAN_HT(c))
6653 		return (0);
6654 
6655 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6656 
6657 	if (IEEE80211_IS_CHAN_HT40(c)) {
6658 		switch (ic->ic_curhtprotmode) {
6659 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6660 			htflags |= IWN_RXON_HT_MODEPURE40;
6661 			break;
6662 		default:
6663 			htflags |= IWN_RXON_HT_MODEMIXED;
6664 			break;
6665 		}
6666 	}
6667 	if (IEEE80211_IS_CHAN_HT40D(c))
6668 		htflags |= IWN_RXON_HT_HT40MINUS;
6669 
6670 	return (htflags);
6671 }
6672 
6673 static int
6674 iwn_check_bss_filter(struct iwn_softc *sc)
6675 {
6676 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6677 }
6678 
6679 static int
6680 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6681 {
6682 	struct iwn4965_rxon_assoc cmd;
6683 	struct iwn_rxon *rxon = sc->rxon;
6684 
6685 	cmd.flags = rxon->flags;
6686 	cmd.filter = rxon->filter;
6687 	cmd.ofdm_mask = rxon->ofdm_mask;
6688 	cmd.cck_mask = rxon->cck_mask;
6689 	cmd.ht_single_mask = rxon->ht_single_mask;
6690 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6691 	cmd.rxchain = rxon->rxchain;
6692 	cmd.reserved = 0;
6693 
6694 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6695 }
6696 
6697 static int
6698 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6699 {
6700 	struct iwn5000_rxon_assoc cmd;
6701 	struct iwn_rxon *rxon = sc->rxon;
6702 
6703 	cmd.flags = rxon->flags;
6704 	cmd.filter = rxon->filter;
6705 	cmd.ofdm_mask = rxon->ofdm_mask;
6706 	cmd.cck_mask = rxon->cck_mask;
6707 	cmd.reserved1 = 0;
6708 	cmd.ht_single_mask = rxon->ht_single_mask;
6709 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6710 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6711 	cmd.reserved2 = 0;
6712 	cmd.rxchain = rxon->rxchain;
6713 	cmd.acquisition = rxon->acquisition;
6714 	cmd.reserved3 = 0;
6715 
6716 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6717 }
6718 
6719 static int
6720 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6721 {
6722 	struct iwn_ops *ops = &sc->ops;
6723 	int error;
6724 
6725 	IWN_LOCK_ASSERT(sc);
6726 
6727 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6728 		error = ops->rxon_assoc(sc, async);
6729 		if (error != 0) {
6730 			device_printf(sc->sc_dev,
6731 			    "%s: RXON_ASSOC command failed, error %d\n",
6732 			    __func__, error);
6733 			return (error);
6734 		}
6735 	} else {
6736 		if (sc->sc_is_scanning)
6737 			device_printf(sc->sc_dev,
6738 			    "%s: is_scanning set, before RXON\n",
6739 			    __func__);
6740 
6741 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6742 		if (error != 0) {
6743 			device_printf(sc->sc_dev,
6744 			    "%s: RXON command failed, error %d\n",
6745 			    __func__, error);
6746 			return (error);
6747 		}
6748 
6749 		/*
6750 		 * Reconfiguring RXON clears the firmware nodes table so
6751 		 * we must add the broadcast node again.
6752 		 */
6753 		if (iwn_check_bss_filter(sc) == 0 &&
6754 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6755 			device_printf(sc->sc_dev,
6756 			    "%s: could not add broadcast node, error %d\n",
6757 			    __func__, error);
6758 			return (error);
6759 		}
6760 	}
6761 
6762 	/* Configuration has changed, set TX power accordingly. */
6763 	if ((error = ops->set_txpower(sc, async)) != 0) {
6764 		device_printf(sc->sc_dev,
6765 		    "%s: could not set TX power, error %d\n",
6766 		    __func__, error);
6767 		return (error);
6768 	}
6769 
6770 	return (0);
6771 }
6772 
6773 static int
6774 iwn_config(struct iwn_softc *sc)
6775 {
6776 	struct ieee80211com *ic = &sc->sc_ic;
6777 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6778 	const uint8_t *macaddr;
6779 	uint32_t txmask;
6780 	uint16_t rxchain;
6781 	int error;
6782 
6783 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6784 
6785 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6786 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6787 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6788 		    " exclusive each together. Review NIC config file. Conf"
6789 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6790 		    sc->base_params->calib_need,
6791 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6792 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6793 		return (EINVAL);
6794 	}
6795 
6796 	/* Compute temperature calib if needed. Will be send by send calib */
6797 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6798 		error = iwn5000_temp_offset_calib(sc);
6799 		if (error != 0) {
6800 			device_printf(sc->sc_dev,
6801 			    "%s: could not set temperature offset\n", __func__);
6802 			return (error);
6803 		}
6804 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6805 		error = iwn5000_temp_offset_calibv2(sc);
6806 		if (error != 0) {
6807 			device_printf(sc->sc_dev,
6808 			    "%s: could not compute temperature offset v2\n",
6809 			    __func__);
6810 			return (error);
6811 		}
6812 	}
6813 
6814 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6815 		/* Configure runtime DC calibration. */
6816 		error = iwn5000_runtime_calib(sc);
6817 		if (error != 0) {
6818 			device_printf(sc->sc_dev,
6819 			    "%s: could not configure runtime calibration\n",
6820 			    __func__);
6821 			return error;
6822 		}
6823 	}
6824 
6825 	/* Configure valid TX chains for >=5000 Series. */
6826 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6827 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6828 		txmask = htole32(sc->txchainmask);
6829 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6830 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6831 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6832 		    sizeof txmask, 0);
6833 		if (error != 0) {
6834 			device_printf(sc->sc_dev,
6835 			    "%s: could not configure valid TX chains, "
6836 			    "error %d\n", __func__, error);
6837 			return error;
6838 		}
6839 	}
6840 
6841 	/* Configure bluetooth coexistence. */
6842 	error = 0;
6843 
6844 	/* Configure bluetooth coexistence if needed. */
6845 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6846 		error = iwn_send_advanced_btcoex(sc);
6847 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6848 		error = iwn_send_btcoex(sc);
6849 
6850 	if (error != 0) {
6851 		device_printf(sc->sc_dev,
6852 		    "%s: could not configure bluetooth coexistence, error %d\n",
6853 		    __func__, error);
6854 		return error;
6855 	}
6856 
6857 	/* Set mode, channel, RX filter and enable RX. */
6858 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6859 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6860 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6861 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6862 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6863 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6864 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6865 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6866 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6867 
6868 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6869 	switch (ic->ic_opmode) {
6870 	case IEEE80211_M_STA:
6871 		sc->rxon->mode = IWN_MODE_STA;
6872 		break;
6873 	case IEEE80211_M_MONITOR:
6874 		sc->rxon->mode = IWN_MODE_MONITOR;
6875 		break;
6876 	default:
6877 		/* Should not get there. */
6878 		break;
6879 	}
6880 	iwn_set_promisc(sc);
6881 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6882 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6883 	sc->rxon->ht_single_mask = 0xff;
6884 	sc->rxon->ht_dual_mask = 0xff;
6885 	sc->rxon->ht_triple_mask = 0xff;
6886 	/*
6887 	 * In active association mode, ensure that
6888 	 * all the receive chains are enabled.
6889 	 *
6890 	 * Since we're not yet doing SMPS, don't allow the
6891 	 * number of idle RX chains to be less than the active
6892 	 * number.
6893 	 */
6894 	rxchain =
6895 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6896 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6897 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6898 	sc->rxon->rxchain = htole16(rxchain);
6899 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6900 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6901 	    __func__,
6902 	    sc->rxchainmask,
6903 	    sc->nrxchains);
6904 
6905 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6906 
6907 	DPRINTF(sc, IWN_DEBUG_RESET,
6908 	    "%s: setting configuration; flags=0x%08x\n",
6909 	    __func__, le32toh(sc->rxon->flags));
6910 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6911 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6912 		    __func__);
6913 		return error;
6914 	}
6915 
6916 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6917 		device_printf(sc->sc_dev,
6918 		    "%s: could not set critical temperature\n", __func__);
6919 		return error;
6920 	}
6921 
6922 	/* Set power saving level to CAM during initialization. */
6923 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6924 		device_printf(sc->sc_dev,
6925 		    "%s: could not set power saving level\n", __func__);
6926 		return error;
6927 	}
6928 
6929 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6930 
6931 	return 0;
6932 }
6933 
6934 static uint16_t
6935 iwn_get_active_dwell_time(struct iwn_softc *sc,
6936     struct ieee80211_channel *c, uint8_t n_probes)
6937 {
6938 	/* No channel? Default to 2GHz settings */
6939 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6940 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6941 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6942 	}
6943 
6944 	/* 5GHz dwell time */
6945 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6946 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6947 }
6948 
6949 /*
6950  * Limit the total dwell time to 85% of the beacon interval.
6951  *
6952  * Returns the dwell time in milliseconds.
6953  */
6954 static uint16_t
6955 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6956 {
6957 	struct ieee80211com *ic = &sc->sc_ic;
6958 	struct ieee80211vap *vap = NULL;
6959 	int bintval = 0;
6960 
6961 	/* bintval is in TU (1.024mS) */
6962 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6963 		vap = TAILQ_FIRST(&ic->ic_vaps);
6964 		bintval = vap->iv_bss->ni_intval;
6965 	}
6966 
6967 	/*
6968 	 * If it's non-zero, we should calculate the minimum of
6969 	 * it and the DWELL_BASE.
6970 	 *
6971 	 * XXX Yes, the math should take into account that bintval
6972 	 * is 1.024mS, not 1mS..
6973 	 */
6974 	if (bintval > 0) {
6975 		DPRINTF(sc, IWN_DEBUG_SCAN,
6976 		    "%s: bintval=%d\n",
6977 		    __func__,
6978 		    bintval);
6979 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6980 	}
6981 
6982 	/* No association context? Default */
6983 	return (IWN_PASSIVE_DWELL_BASE);
6984 }
6985 
6986 static uint16_t
6987 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6988 {
6989 	uint16_t passive;
6990 
6991 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6992 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6993 	} else {
6994 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6995 	}
6996 
6997 	/* Clamp to the beacon interval if we're associated */
6998 	return (iwn_limit_dwell(sc, passive));
6999 }
7000 
7001 static int
7002 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7003     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7004 {
7005 	struct ieee80211com *ic = &sc->sc_ic;
7006 	struct ieee80211_node *ni = vap->iv_bss;
7007 	struct iwn_scan_hdr *hdr;
7008 	struct iwn_cmd_data *tx;
7009 	struct iwn_scan_essid *essid;
7010 	struct iwn_scan_chan *chan;
7011 	struct ieee80211_frame *wh;
7012 	struct ieee80211_rateset *rs;
7013 	uint8_t *buf, *frm;
7014 	uint16_t rxchain;
7015 	uint8_t txant;
7016 	int buflen, error;
7017 	int is_active;
7018 	uint16_t dwell_active, dwell_passive;
7019 	uint32_t extra, scan_service_time;
7020 
7021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7022 
7023 	/*
7024 	 * We are absolutely not allowed to send a scan command when another
7025 	 * scan command is pending.
7026 	 */
7027 	if (sc->sc_is_scanning) {
7028 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7029 		    __func__);
7030 		return (EAGAIN);
7031 	}
7032 
7033 	/* Assign the scan channel */
7034 	c = ic->ic_curchan;
7035 
7036 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7037 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7038 	if (buf == NULL) {
7039 		device_printf(sc->sc_dev,
7040 		    "%s: could not allocate buffer for scan command\n",
7041 		    __func__);
7042 		return ENOMEM;
7043 	}
7044 	hdr = (struct iwn_scan_hdr *)buf;
7045 	/*
7046 	 * Move to the next channel if no frames are received within 10ms
7047 	 * after sending the probe request.
7048 	 */
7049 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7050 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7051 	/*
7052 	 * Max needs to be greater than active and passive and quiet!
7053 	 * It's also in microseconds!
7054 	 */
7055 	hdr->max_svc = htole32(250 * 1024);
7056 
7057 	/*
7058 	 * Reset scan: interval=100
7059 	 * Normal scan: interval=becaon interval
7060 	 * suspend_time: 100 (TU)
7061 	 *
7062 	 */
7063 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7064 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7065 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7066 	hdr->pause_svc = htole32(scan_service_time);
7067 
7068 	/* Select antennas for scanning. */
7069 	rxchain =
7070 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7071 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7072 	    IWN_RXCHAIN_DRIVER_FORCE;
7073 	if (IEEE80211_IS_CHAN_A(c) &&
7074 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7075 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7076 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7077 	} else	/* Use all available RX antennas. */
7078 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7079 	hdr->rxchain = htole16(rxchain);
7080 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7081 
7082 	tx = (struct iwn_cmd_data *)(hdr + 1);
7083 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7084 	tx->id = sc->broadcast_id;
7085 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7086 
7087 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7088 		/* Send probe requests at 6Mbps. */
7089 		tx->rate = htole32(0xd);
7090 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7091 	} else {
7092 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7093 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7094 		    sc->rxon->associd && sc->rxon->chan > 14)
7095 			tx->rate = htole32(0xd);
7096 		else {
7097 			/* Send probe requests at 1Mbps. */
7098 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7099 		}
7100 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7101 	}
7102 	/* Use the first valid TX antenna. */
7103 	txant = IWN_LSB(sc->txchainmask);
7104 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7105 
7106 	/*
7107 	 * Only do active scanning if we're announcing a probe request
7108 	 * for a given SSID (or more, if we ever add it to the driver.)
7109 	 */
7110 	is_active = 0;
7111 
7112 	/*
7113 	 * If we're scanning for a specific SSID, add it to the command.
7114 	 *
7115 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7116 	 */
7117 	essid = (struct iwn_scan_essid *)(tx + 1);
7118 	if (ss != NULL) {
7119 		if (ss->ss_ssid[0].len != 0) {
7120 			essid[0].id = IEEE80211_ELEMID_SSID;
7121 			essid[0].len = ss->ss_ssid[0].len;
7122 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7123 		}
7124 
7125 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7126 		    __func__,
7127 		    ss->ss_ssid[0].len,
7128 		    ss->ss_ssid[0].len,
7129 		    ss->ss_ssid[0].ssid);
7130 
7131 		if (ss->ss_nssid > 0)
7132 			is_active = 1;
7133 	}
7134 
7135 	/*
7136 	 * Build a probe request frame.  Most of the following code is a
7137 	 * copy & paste of what is done in net80211.
7138 	 */
7139 	wh = (struct ieee80211_frame *)(essid + 20);
7140 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7141 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7142 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7143 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7144 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7145 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7146 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7147 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7148 
7149 	frm = (uint8_t *)(wh + 1);
7150 	frm = ieee80211_add_ssid(frm, NULL, 0);
7151 	frm = ieee80211_add_rates(frm, rs);
7152 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7153 		frm = ieee80211_add_xrates(frm, rs);
7154 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7155 		frm = ieee80211_add_htcap(frm, ni);
7156 
7157 	/* Set length of probe request. */
7158 	tx->len = htole16(frm - (uint8_t *)wh);
7159 
7160 	/*
7161 	 * If active scanning is requested but a certain channel is
7162 	 * marked passive, we can do active scanning if we detect
7163 	 * transmissions.
7164 	 *
7165 	 * There is an issue with some firmware versions that triggers
7166 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7167 	 * on a radar channel even though this means that we should NOT
7168 	 * send probes.
7169 	 *
7170 	 * The "good CRC threshold" is the number of frames that we
7171 	 * need to receive during our dwell time on a channel before
7172 	 * sending out probes -- setting this to a huge value will
7173 	 * mean we never reach it, but at the same time work around
7174 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7175 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7176 	 *
7177 	 * This was fixed in later versions along with some other
7178 	 * scan changes, and the threshold behaves as a flag in those
7179 	 * versions.
7180 	 */
7181 
7182 	/*
7183 	 * If we're doing active scanning, set the crc_threshold
7184 	 * to a suitable value.  This is different to active veruss
7185 	 * passive scanning depending upon the channel flags; the
7186 	 * firmware will obey that particular check for us.
7187 	 */
7188 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7189 		hdr->crc_threshold = is_active ?
7190 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7191 	else
7192 		hdr->crc_threshold = is_active ?
7193 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7194 
7195 	chan = (struct iwn_scan_chan *)frm;
7196 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7197 	chan->flags = 0;
7198 	if (ss->ss_nssid > 0)
7199 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7200 	chan->dsp_gain = 0x6e;
7201 
7202 	/*
7203 	 * Set the passive/active flag depending upon the channel mode.
7204 	 * XXX TODO: take the is_active flag into account as well?
7205 	 */
7206 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7207 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7208 	else
7209 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7210 
7211 	/*
7212 	 * Calculate the active/passive dwell times.
7213 	 */
7214 
7215 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7216 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7217 
7218 	/* Make sure they're valid */
7219 	if (dwell_passive <= dwell_active)
7220 		dwell_passive = dwell_active + 1;
7221 
7222 	chan->active = htole16(dwell_active);
7223 	chan->passive = htole16(dwell_passive);
7224 
7225 	if (IEEE80211_IS_CHAN_5GHZ(c))
7226 		chan->rf_gain = 0x3b;
7227 	else
7228 		chan->rf_gain = 0x28;
7229 
7230 	DPRINTF(sc, IWN_DEBUG_STATE,
7231 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7232 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7233 	    "isactive=%d numssid=%d\n", __func__,
7234 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7235 	    dwell_active, dwell_passive, scan_service_time,
7236 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7237 
7238 	hdr->nchan++;
7239 	chan++;
7240 	buflen = (uint8_t *)chan - buf;
7241 	hdr->len = htole16(buflen);
7242 
7243 	if (sc->sc_is_scanning) {
7244 		device_printf(sc->sc_dev,
7245 		    "%s: called with is_scanning set!\n",
7246 		    __func__);
7247 	}
7248 	sc->sc_is_scanning = 1;
7249 
7250 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7251 	    hdr->nchan);
7252 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7253 	free(buf, M_DEVBUF);
7254 	if (error == 0)
7255 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7256 
7257 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7258 
7259 	return error;
7260 }
7261 
7262 static int
7263 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7264 {
7265 	struct ieee80211com *ic = &sc->sc_ic;
7266 	struct ieee80211_node *ni = vap->iv_bss;
7267 	int error;
7268 
7269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7270 
7271 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7272 	/* Update adapter configuration. */
7273 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7274 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7275 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7276 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7277 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7278 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7279 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7280 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7281 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7282 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7283 		sc->rxon->cck_mask  = 0;
7284 		sc->rxon->ofdm_mask = 0x15;
7285 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7286 		sc->rxon->cck_mask  = 0x03;
7287 		sc->rxon->ofdm_mask = 0;
7288 	} else {
7289 		/* Assume 802.11b/g. */
7290 		sc->rxon->cck_mask  = 0x03;
7291 		sc->rxon->ofdm_mask = 0x15;
7292 	}
7293 
7294 	/* try HT */
7295 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7296 
7297 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7298 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7299 	    sc->rxon->ofdm_mask);
7300 
7301 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7302 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7303 		    __func__);
7304 		return (error);
7305 	}
7306 
7307 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7308 
7309 	return (0);
7310 }
7311 
7312 static int
7313 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7314 {
7315 	struct iwn_ops *ops = &sc->ops;
7316 	struct ieee80211com *ic = &sc->sc_ic;
7317 	struct ieee80211_node *ni = vap->iv_bss;
7318 	struct iwn_node_info node;
7319 	int error;
7320 
7321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7322 
7323 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7324 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7325 		/* Link LED blinks while monitoring. */
7326 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7327 		return 0;
7328 	}
7329 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7330 		device_printf(sc->sc_dev,
7331 		    "%s: could not set timing, error %d\n", __func__, error);
7332 		return error;
7333 	}
7334 
7335 	/* Update adapter configuration. */
7336 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7337 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7338 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7339 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7340 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7341 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7342 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7343 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7344 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7345 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7346 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7347 		sc->rxon->cck_mask  = 0;
7348 		sc->rxon->ofdm_mask = 0x15;
7349 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7350 		sc->rxon->cck_mask  = 0x03;
7351 		sc->rxon->ofdm_mask = 0;
7352 	} else {
7353 		/* Assume 802.11b/g. */
7354 		sc->rxon->cck_mask  = 0x0f;
7355 		sc->rxon->ofdm_mask = 0x15;
7356 	}
7357 	/* try HT */
7358 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7359 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7360 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7361 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7362 
7363 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7364 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7365 		    __func__);
7366 		return error;
7367 	}
7368 
7369 	/* Fake a join to initialize the TX rate. */
7370 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7371 	iwn_newassoc(ni, 1);
7372 
7373 	/* Add BSS node. */
7374 	memset(&node, 0, sizeof node);
7375 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7376 	node.id = IWN_ID_BSS;
7377 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7378 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7379 		case IEEE80211_HTCAP_SMPS_ENA:
7380 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7381 			break;
7382 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7383 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7384 			break;
7385 		}
7386 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7387 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7388 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7389 			node.htflags |= htole32(IWN_NODE_HT40);
7390 	}
7391 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7392 	error = ops->add_node(sc, &node, 1);
7393 	if (error != 0) {
7394 		device_printf(sc->sc_dev,
7395 		    "%s: could not add BSS node, error %d\n", __func__, error);
7396 		return error;
7397 	}
7398 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7399 	    __func__, node.id);
7400 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7401 		device_printf(sc->sc_dev,
7402 		    "%s: could not setup link quality for node %d, error %d\n",
7403 		    __func__, node.id, error);
7404 		return error;
7405 	}
7406 
7407 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7408 		device_printf(sc->sc_dev,
7409 		    "%s: could not set sensitivity, error %d\n", __func__,
7410 		    error);
7411 		return error;
7412 	}
7413 	/* Start periodic calibration timer. */
7414 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7415 	sc->calib_cnt = 0;
7416 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7417 	    sc);
7418 
7419 	/* Link LED always on while associated. */
7420 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7421 
7422 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7423 
7424 	return 0;
7425 }
7426 
7427 /*
7428  * This function is called by upper layer when an ADDBA request is received
7429  * from another STA and before the ADDBA response is sent.
7430  */
7431 static int
7432 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7433     int baparamset, int batimeout, int baseqctl)
7434 {
7435 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7436 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7437 	struct iwn_ops *ops = &sc->ops;
7438 	struct iwn_node *wn = (void *)ni;
7439 	struct iwn_node_info node;
7440 	uint16_t ssn;
7441 	uint8_t tid;
7442 	int error;
7443 
7444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7445 
7446 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7447 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7448 
7449 	if (wn->id == IWN_ID_UNDEFINED)
7450 		return (ENOENT);
7451 
7452 	memset(&node, 0, sizeof node);
7453 	node.id = wn->id;
7454 	node.control = IWN_NODE_UPDATE;
7455 	node.flags = IWN_FLAG_SET_ADDBA;
7456 	node.addba_tid = tid;
7457 	node.addba_ssn = htole16(ssn);
7458 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7459 	    wn->id, tid, ssn);
7460 	error = ops->add_node(sc, &node, 1);
7461 	if (error != 0)
7462 		return error;
7463 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7464 #undef MS
7465 }
7466 
7467 /*
7468  * This function is called by upper layer on teardown of an HT-immediate
7469  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7470  */
7471 static void
7472 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7473 {
7474 	struct ieee80211com *ic = ni->ni_ic;
7475 	struct iwn_softc *sc = ic->ic_softc;
7476 	struct iwn_ops *ops = &sc->ops;
7477 	struct iwn_node *wn = (void *)ni;
7478 	struct iwn_node_info node;
7479 	uint8_t tid;
7480 
7481 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7482 
7483 	if (wn->id == IWN_ID_UNDEFINED)
7484 		goto end;
7485 
7486 	/* XXX: tid as an argument */
7487 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7488 		if (&ni->ni_rx_ampdu[tid] == rap)
7489 			break;
7490 	}
7491 
7492 	memset(&node, 0, sizeof node);
7493 	node.id = wn->id;
7494 	node.control = IWN_NODE_UPDATE;
7495 	node.flags = IWN_FLAG_SET_DELBA;
7496 	node.delba_tid = tid;
7497 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7498 	(void)ops->add_node(sc, &node, 1);
7499 end:
7500 	sc->sc_ampdu_rx_stop(ni, rap);
7501 }
7502 
7503 static int
7504 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7505     int dialogtoken, int baparamset, int batimeout)
7506 {
7507 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7508 	int qid;
7509 
7510 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7511 
7512 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7513 		if (sc->qid2tap[qid] == NULL)
7514 			break;
7515 	}
7516 	if (qid == sc->ntxqs) {
7517 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7518 		    __func__);
7519 		return 0;
7520 	}
7521 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7522 	if (tap->txa_private == NULL) {
7523 		device_printf(sc->sc_dev,
7524 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7525 		return 0;
7526 	}
7527 	sc->qid2tap[qid] = tap;
7528 	*(int *)tap->txa_private = qid;
7529 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7530 	    batimeout);
7531 }
7532 
7533 static int
7534 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7535     int code, int baparamset, int batimeout)
7536 {
7537 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7538 	int qid = *(int *)tap->txa_private;
7539 	uint8_t tid = tap->txa_tid;
7540 	int ret;
7541 
7542 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7543 
7544 	if (code == IEEE80211_STATUS_SUCCESS) {
7545 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7546 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7547 		if (ret != 1)
7548 			return ret;
7549 	} else {
7550 		sc->qid2tap[qid] = NULL;
7551 		free(tap->txa_private, M_DEVBUF);
7552 		tap->txa_private = NULL;
7553 	}
7554 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7555 }
7556 
7557 /*
7558  * This function is called by upper layer when an ADDBA response is received
7559  * from another STA.
7560  */
7561 static int
7562 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7563     uint8_t tid)
7564 {
7565 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7566 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7567 	struct iwn_ops *ops = &sc->ops;
7568 	struct iwn_node *wn = (void *)ni;
7569 	struct iwn_node_info node;
7570 	int error, qid;
7571 
7572 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7573 
7574 	if (wn->id == IWN_ID_UNDEFINED)
7575 		return (0);
7576 
7577 	/* Enable TX for the specified RA/TID. */
7578 	wn->disable_tid &= ~(1 << tid);
7579 	memset(&node, 0, sizeof node);
7580 	node.id = wn->id;
7581 	node.control = IWN_NODE_UPDATE;
7582 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7583 	node.disable_tid = htole16(wn->disable_tid);
7584 	error = ops->add_node(sc, &node, 1);
7585 	if (error != 0)
7586 		return 0;
7587 
7588 	if ((error = iwn_nic_lock(sc)) != 0)
7589 		return 0;
7590 	qid = *(int *)tap->txa_private;
7591 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7592 	    __func__, wn->id, tid, tap->txa_start, qid);
7593 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7594 	iwn_nic_unlock(sc);
7595 
7596 	iwn_set_link_quality(sc, ni);
7597 	return 1;
7598 }
7599 
7600 static void
7601 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7602 {
7603 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7604 	struct iwn_ops *ops = &sc->ops;
7605 	uint8_t tid = tap->txa_tid;
7606 	int qid;
7607 
7608 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7609 
7610 	sc->sc_addba_stop(ni, tap);
7611 
7612 	if (tap->txa_private == NULL)
7613 		return;
7614 
7615 	qid = *(int *)tap->txa_private;
7616 	if (sc->txq[qid].queued != 0)
7617 		return;
7618 	if (iwn_nic_lock(sc) != 0)
7619 		return;
7620 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7621 	iwn_nic_unlock(sc);
7622 	sc->qid2tap[qid] = NULL;
7623 	free(tap->txa_private, M_DEVBUF);
7624 	tap->txa_private = NULL;
7625 }
7626 
7627 static void
7628 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7629     int qid, uint8_t tid, uint16_t ssn)
7630 {
7631 	struct iwn_node *wn = (void *)ni;
7632 
7633 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7634 
7635 	/* Stop TX scheduler while we're changing its configuration. */
7636 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7637 	    IWN4965_TXQ_STATUS_CHGACT);
7638 
7639 	/* Assign RA/TID translation to the queue. */
7640 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7641 	    wn->id << 4 | tid);
7642 
7643 	/* Enable chain-building mode for the queue. */
7644 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7645 
7646 	/* Set starting sequence number from the ADDBA request. */
7647 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7648 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7649 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7650 
7651 	/* Set scheduler window size. */
7652 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7653 	    IWN_SCHED_WINSZ);
7654 	/* Set scheduler frame limit. */
7655 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7656 	    IWN_SCHED_LIMIT << 16);
7657 
7658 	/* Enable interrupts for the queue. */
7659 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7660 
7661 	/* Mark the queue as active. */
7662 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7663 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7664 	    iwn_tid2fifo[tid] << 1);
7665 }
7666 
7667 static void
7668 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7669 {
7670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7671 
7672 	/* Stop TX scheduler while we're changing its configuration. */
7673 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7674 	    IWN4965_TXQ_STATUS_CHGACT);
7675 
7676 	/* Set starting sequence number from the ADDBA request. */
7677 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7678 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7679 
7680 	/* Disable interrupts for the queue. */
7681 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7682 
7683 	/* Mark the queue as inactive. */
7684 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7685 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7686 }
7687 
7688 static void
7689 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7690     int qid, uint8_t tid, uint16_t ssn)
7691 {
7692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7693 
7694 	struct iwn_node *wn = (void *)ni;
7695 
7696 	/* Stop TX scheduler while we're changing its configuration. */
7697 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7698 	    IWN5000_TXQ_STATUS_CHGACT);
7699 
7700 	/* Assign RA/TID translation to the queue. */
7701 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7702 	    wn->id << 4 | tid);
7703 
7704 	/* Enable chain-building mode for the queue. */
7705 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7706 
7707 	/* Enable aggregation for the queue. */
7708 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7709 
7710 	/* Set starting sequence number from the ADDBA request. */
7711 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7712 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7713 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7714 
7715 	/* Set scheduler window size and frame limit. */
7716 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7717 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7718 
7719 	/* Enable interrupts for the queue. */
7720 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7721 
7722 	/* Mark the queue as active. */
7723 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7724 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7725 }
7726 
7727 static void
7728 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7729 {
7730 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7731 
7732 	/* Stop TX scheduler while we're changing its configuration. */
7733 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7734 	    IWN5000_TXQ_STATUS_CHGACT);
7735 
7736 	/* Disable aggregation for the queue. */
7737 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7738 
7739 	/* Set starting sequence number from the ADDBA request. */
7740 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7741 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7742 
7743 	/* Disable interrupts for the queue. */
7744 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7745 
7746 	/* Mark the queue as inactive. */
7747 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7748 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7749 }
7750 
7751 /*
7752  * Query calibration tables from the initialization firmware.  We do this
7753  * only once at first boot.  Called from a process context.
7754  */
7755 static int
7756 iwn5000_query_calibration(struct iwn_softc *sc)
7757 {
7758 	struct iwn5000_calib_config cmd;
7759 	int error;
7760 
7761 	memset(&cmd, 0, sizeof cmd);
7762 	cmd.ucode.once.enable = htole32(0xffffffff);
7763 	cmd.ucode.once.start  = htole32(0xffffffff);
7764 	cmd.ucode.once.send   = htole32(0xffffffff);
7765 	cmd.ucode.flags       = htole32(0xffffffff);
7766 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7767 	    __func__);
7768 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7769 	if (error != 0)
7770 		return error;
7771 
7772 	/* Wait at most two seconds for calibration to complete. */
7773 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7774 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7775 	return error;
7776 }
7777 
7778 /*
7779  * Send calibration results to the runtime firmware.  These results were
7780  * obtained on first boot from the initialization firmware.
7781  */
7782 static int
7783 iwn5000_send_calibration(struct iwn_softc *sc)
7784 {
7785 	int idx, error;
7786 
7787 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7788 		if (!(sc->base_params->calib_need & (1<<idx))) {
7789 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7790 			    "No need of calib %d\n",
7791 			    idx);
7792 			continue; /* no need for this calib */
7793 		}
7794 		if (sc->calibcmd[idx].buf == NULL) {
7795 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7796 			    "Need calib idx : %d but no available data\n",
7797 			    idx);
7798 			continue;
7799 		}
7800 
7801 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7802 		    "send calibration result idx=%d len=%d\n", idx,
7803 		    sc->calibcmd[idx].len);
7804 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7805 		    sc->calibcmd[idx].len, 0);
7806 		if (error != 0) {
7807 			device_printf(sc->sc_dev,
7808 			    "%s: could not send calibration result, error %d\n",
7809 			    __func__, error);
7810 			return error;
7811 		}
7812 	}
7813 	return 0;
7814 }
7815 
7816 static int
7817 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7818 {
7819 	struct iwn5000_wimax_coex wimax;
7820 
7821 #if 0
7822 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7823 		/* Enable WiMAX coexistence for combo adapters. */
7824 		wimax.flags =
7825 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7826 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7827 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7828 		    IWN_WIMAX_COEX_ENABLE;
7829 		memcpy(wimax.events, iwn6050_wimax_events,
7830 		    sizeof iwn6050_wimax_events);
7831 	} else
7832 #endif
7833 	{
7834 		/* Disable WiMAX coexistence. */
7835 		wimax.flags = 0;
7836 		memset(wimax.events, 0, sizeof wimax.events);
7837 	}
7838 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7839 	    __func__);
7840 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7841 }
7842 
7843 static int
7844 iwn5000_crystal_calib(struct iwn_softc *sc)
7845 {
7846 	struct iwn5000_phy_calib_crystal cmd;
7847 
7848 	memset(&cmd, 0, sizeof cmd);
7849 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7850 	cmd.ngroups = 1;
7851 	cmd.isvalid = 1;
7852 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7853 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7854 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7855 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7856 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7857 }
7858 
7859 static int
7860 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7861 {
7862 	struct iwn5000_phy_calib_temp_offset cmd;
7863 
7864 	memset(&cmd, 0, sizeof cmd);
7865 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7866 	cmd.ngroups = 1;
7867 	cmd.isvalid = 1;
7868 	if (sc->eeprom_temp != 0)
7869 		cmd.offset = htole16(sc->eeprom_temp);
7870 	else
7871 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7872 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7873 	    le16toh(cmd.offset));
7874 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7875 }
7876 
7877 static int
7878 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7879 {
7880 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7881 
7882 	memset(&cmd, 0, sizeof cmd);
7883 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7884 	cmd.ngroups = 1;
7885 	cmd.isvalid = 1;
7886 	if (sc->eeprom_temp != 0) {
7887 		cmd.offset_low = htole16(sc->eeprom_temp);
7888 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7889 	} else {
7890 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7891 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7892 	}
7893 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7894 
7895 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7896 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7897 	    le16toh(cmd.offset_low),
7898 	    le16toh(cmd.offset_high),
7899 	    le16toh(cmd.burnt_voltage_ref));
7900 
7901 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7902 }
7903 
7904 /*
7905  * This function is called after the runtime firmware notifies us of its
7906  * readiness (called in a process context).
7907  */
7908 static int
7909 iwn4965_post_alive(struct iwn_softc *sc)
7910 {
7911 	int error, qid;
7912 
7913 	if ((error = iwn_nic_lock(sc)) != 0)
7914 		return error;
7915 
7916 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7917 
7918 	/* Clear TX scheduler state in SRAM. */
7919 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7920 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7921 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7922 
7923 	/* Set physical address of TX scheduler rings (1KB aligned). */
7924 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7925 
7926 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7927 
7928 	/* Disable chain mode for all our 16 queues. */
7929 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7930 
7931 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7932 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7933 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7934 
7935 		/* Set scheduler window size. */
7936 		iwn_mem_write(sc, sc->sched_base +
7937 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7938 		/* Set scheduler frame limit. */
7939 		iwn_mem_write(sc, sc->sched_base +
7940 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7941 		    IWN_SCHED_LIMIT << 16);
7942 	}
7943 
7944 	/* Enable interrupts for all our 16 queues. */
7945 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7946 	/* Identify TX FIFO rings (0-7). */
7947 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7948 
7949 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7950 	for (qid = 0; qid < 7; qid++) {
7951 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7952 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7953 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7954 	}
7955 	iwn_nic_unlock(sc);
7956 	return 0;
7957 }
7958 
7959 /*
7960  * This function is called after the initialization or runtime firmware
7961  * notifies us of its readiness (called in a process context).
7962  */
7963 static int
7964 iwn5000_post_alive(struct iwn_softc *sc)
7965 {
7966 	int error, qid;
7967 
7968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7969 
7970 	/* Switch to using ICT interrupt mode. */
7971 	iwn5000_ict_reset(sc);
7972 
7973 	if ((error = iwn_nic_lock(sc)) != 0){
7974 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7975 		return error;
7976 	}
7977 
7978 	/* Clear TX scheduler state in SRAM. */
7979 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7980 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7981 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7982 
7983 	/* Set physical address of TX scheduler rings (1KB aligned). */
7984 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7985 
7986 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7987 
7988 	/* Enable chain mode for all queues, except command queue. */
7989 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7990 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7991 	else
7992 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7993 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7994 
7995 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7996 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7997 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7998 
7999 		iwn_mem_write(sc, sc->sched_base +
8000 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8001 		/* Set scheduler window size and frame limit. */
8002 		iwn_mem_write(sc, sc->sched_base +
8003 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8004 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8005 	}
8006 
8007 	/* Enable interrupts for all our 20 queues. */
8008 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8009 	/* Identify TX FIFO rings (0-7). */
8010 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8011 
8012 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8013 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8014 		/* Mark TX rings as active. */
8015 		for (qid = 0; qid < 11; qid++) {
8016 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8017 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8018 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8019 		}
8020 	} else {
8021 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8022 		for (qid = 0; qid < 7; qid++) {
8023 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8024 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8025 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8026 		}
8027 	}
8028 	iwn_nic_unlock(sc);
8029 
8030 	/* Configure WiMAX coexistence for combo adapters. */
8031 	error = iwn5000_send_wimax_coex(sc);
8032 	if (error != 0) {
8033 		device_printf(sc->sc_dev,
8034 		    "%s: could not configure WiMAX coexistence, error %d\n",
8035 		    __func__, error);
8036 		return error;
8037 	}
8038 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8039 		/* Perform crystal calibration. */
8040 		error = iwn5000_crystal_calib(sc);
8041 		if (error != 0) {
8042 			device_printf(sc->sc_dev,
8043 			    "%s: crystal calibration failed, error %d\n",
8044 			    __func__, error);
8045 			return error;
8046 		}
8047 	}
8048 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8049 		/* Query calibration from the initialization firmware. */
8050 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8051 			device_printf(sc->sc_dev,
8052 			    "%s: could not query calibration, error %d\n",
8053 			    __func__, error);
8054 			return error;
8055 		}
8056 		/*
8057 		 * We have the calibration results now, reboot with the
8058 		 * runtime firmware (call ourselves recursively!)
8059 		 */
8060 		iwn_hw_stop(sc);
8061 		error = iwn_hw_init(sc);
8062 	} else {
8063 		/* Send calibration results to runtime firmware. */
8064 		error = iwn5000_send_calibration(sc);
8065 	}
8066 
8067 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8068 
8069 	return error;
8070 }
8071 
8072 /*
8073  * The firmware boot code is small and is intended to be copied directly into
8074  * the NIC internal memory (no DMA transfer).
8075  */
8076 static int
8077 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8078 {
8079 	int error, ntries;
8080 
8081 	size /= sizeof (uint32_t);
8082 
8083 	if ((error = iwn_nic_lock(sc)) != 0)
8084 		return error;
8085 
8086 	/* Copy microcode image into NIC memory. */
8087 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8088 	    (const uint32_t *)ucode, size);
8089 
8090 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8091 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8092 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8093 
8094 	/* Start boot load now. */
8095 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8096 
8097 	/* Wait for transfer to complete. */
8098 	for (ntries = 0; ntries < 1000; ntries++) {
8099 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8100 		    IWN_BSM_WR_CTRL_START))
8101 			break;
8102 		DELAY(10);
8103 	}
8104 	if (ntries == 1000) {
8105 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8106 		    __func__);
8107 		iwn_nic_unlock(sc);
8108 		return ETIMEDOUT;
8109 	}
8110 
8111 	/* Enable boot after power up. */
8112 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8113 
8114 	iwn_nic_unlock(sc);
8115 	return 0;
8116 }
8117 
8118 static int
8119 iwn4965_load_firmware(struct iwn_softc *sc)
8120 {
8121 	struct iwn_fw_info *fw = &sc->fw;
8122 	struct iwn_dma_info *dma = &sc->fw_dma;
8123 	int error;
8124 
8125 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8126 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8127 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8128 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8129 	    fw->init.text, fw->init.textsz);
8130 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8131 
8132 	/* Tell adapter where to find initialization sections. */
8133 	if ((error = iwn_nic_lock(sc)) != 0)
8134 		return error;
8135 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8136 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8137 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8138 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8139 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8140 	iwn_nic_unlock(sc);
8141 
8142 	/* Load firmware boot code. */
8143 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8144 	if (error != 0) {
8145 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8146 		    __func__);
8147 		return error;
8148 	}
8149 	/* Now press "execute". */
8150 	IWN_WRITE(sc, IWN_RESET, 0);
8151 
8152 	/* Wait at most one second for first alive notification. */
8153 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8154 		device_printf(sc->sc_dev,
8155 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8156 		    __func__, error);
8157 		return error;
8158 	}
8159 
8160 	/* Retrieve current temperature for initial TX power calibration. */
8161 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8162 	sc->temp = iwn4965_get_temperature(sc);
8163 
8164 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8165 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8166 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8167 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8168 	    fw->main.text, fw->main.textsz);
8169 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8170 
8171 	/* Tell adapter where to find runtime sections. */
8172 	if ((error = iwn_nic_lock(sc)) != 0)
8173 		return error;
8174 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8175 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8176 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8177 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8178 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8179 	    IWN_FW_UPDATED | fw->main.textsz);
8180 	iwn_nic_unlock(sc);
8181 
8182 	return 0;
8183 }
8184 
8185 static int
8186 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8187     const uint8_t *section, int size)
8188 {
8189 	struct iwn_dma_info *dma = &sc->fw_dma;
8190 	int error;
8191 
8192 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8193 
8194 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8195 	memcpy(dma->vaddr, section, size);
8196 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8197 
8198 	if ((error = iwn_nic_lock(sc)) != 0)
8199 		return error;
8200 
8201 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8202 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8203 
8204 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8205 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8206 	    IWN_LOADDR(dma->paddr));
8207 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8208 	    IWN_HIADDR(dma->paddr) << 28 | size);
8209 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8210 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8211 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8212 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8213 
8214 	/* Kick Flow Handler to start DMA transfer. */
8215 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8216 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8217 
8218 	iwn_nic_unlock(sc);
8219 
8220 	/* Wait at most five seconds for FH DMA transfer to complete. */
8221 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8222 }
8223 
8224 static int
8225 iwn5000_load_firmware(struct iwn_softc *sc)
8226 {
8227 	struct iwn_fw_part *fw;
8228 	int error;
8229 
8230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8231 
8232 	/* Load the initialization firmware on first boot only. */
8233 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8234 	    &sc->fw.main : &sc->fw.init;
8235 
8236 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8237 	    fw->text, fw->textsz);
8238 	if (error != 0) {
8239 		device_printf(sc->sc_dev,
8240 		    "%s: could not load firmware %s section, error %d\n",
8241 		    __func__, ".text", error);
8242 		return error;
8243 	}
8244 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8245 	    fw->data, fw->datasz);
8246 	if (error != 0) {
8247 		device_printf(sc->sc_dev,
8248 		    "%s: could not load firmware %s section, error %d\n",
8249 		    __func__, ".data", error);
8250 		return error;
8251 	}
8252 
8253 	/* Now press "execute". */
8254 	IWN_WRITE(sc, IWN_RESET, 0);
8255 	return 0;
8256 }
8257 
8258 /*
8259  * Extract text and data sections from a legacy firmware image.
8260  */
8261 static int
8262 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8263 {
8264 	const uint32_t *ptr;
8265 	size_t hdrlen = 24;
8266 	uint32_t rev;
8267 
8268 	ptr = (const uint32_t *)fw->data;
8269 	rev = le32toh(*ptr++);
8270 
8271 	sc->ucode_rev = rev;
8272 
8273 	/* Check firmware API version. */
8274 	if (IWN_FW_API(rev) <= 1) {
8275 		device_printf(sc->sc_dev,
8276 		    "%s: bad firmware, need API version >=2\n", __func__);
8277 		return EINVAL;
8278 	}
8279 	if (IWN_FW_API(rev) >= 3) {
8280 		/* Skip build number (version 2 header). */
8281 		hdrlen += 4;
8282 		ptr++;
8283 	}
8284 	if (fw->size < hdrlen) {
8285 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8286 		    __func__, fw->size);
8287 		return EINVAL;
8288 	}
8289 	fw->main.textsz = le32toh(*ptr++);
8290 	fw->main.datasz = le32toh(*ptr++);
8291 	fw->init.textsz = le32toh(*ptr++);
8292 	fw->init.datasz = le32toh(*ptr++);
8293 	fw->boot.textsz = le32toh(*ptr++);
8294 
8295 	/* Check that all firmware sections fit. */
8296 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8297 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8298 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8299 		    __func__, fw->size);
8300 		return EINVAL;
8301 	}
8302 
8303 	/* Get pointers to firmware sections. */
8304 	fw->main.text = (const uint8_t *)ptr;
8305 	fw->main.data = fw->main.text + fw->main.textsz;
8306 	fw->init.text = fw->main.data + fw->main.datasz;
8307 	fw->init.data = fw->init.text + fw->init.textsz;
8308 	fw->boot.text = fw->init.data + fw->init.datasz;
8309 	return 0;
8310 }
8311 
8312 /*
8313  * Extract text and data sections from a TLV firmware image.
8314  */
8315 static int
8316 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8317     uint16_t alt)
8318 {
8319 	const struct iwn_fw_tlv_hdr *hdr;
8320 	const struct iwn_fw_tlv *tlv;
8321 	const uint8_t *ptr, *end;
8322 	uint64_t altmask;
8323 	uint32_t len, tmp;
8324 
8325 	if (fw->size < sizeof (*hdr)) {
8326 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8327 		    __func__, fw->size);
8328 		return EINVAL;
8329 	}
8330 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8331 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8332 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8333 		    __func__, le32toh(hdr->signature));
8334 		return EINVAL;
8335 	}
8336 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8337 	    le32toh(hdr->build));
8338 	sc->ucode_rev = le32toh(hdr->rev);
8339 
8340 	/*
8341 	 * Select the closest supported alternative that is less than
8342 	 * or equal to the specified one.
8343 	 */
8344 	altmask = le64toh(hdr->altmask);
8345 	while (alt > 0 && !(altmask & (1ULL << alt)))
8346 		alt--;	/* Downgrade. */
8347 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8348 
8349 	ptr = (const uint8_t *)(hdr + 1);
8350 	end = (const uint8_t *)(fw->data + fw->size);
8351 
8352 	/* Parse type-length-value fields. */
8353 	while (ptr + sizeof (*tlv) <= end) {
8354 		tlv = (const struct iwn_fw_tlv *)ptr;
8355 		len = le32toh(tlv->len);
8356 
8357 		ptr += sizeof (*tlv);
8358 		if (ptr + len > end) {
8359 			device_printf(sc->sc_dev,
8360 			    "%s: firmware too short: %zu bytes\n", __func__,
8361 			    fw->size);
8362 			return EINVAL;
8363 		}
8364 		/* Skip other alternatives. */
8365 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8366 			goto next;
8367 
8368 		switch (le16toh(tlv->type)) {
8369 		case IWN_FW_TLV_MAIN_TEXT:
8370 			fw->main.text = ptr;
8371 			fw->main.textsz = len;
8372 			break;
8373 		case IWN_FW_TLV_MAIN_DATA:
8374 			fw->main.data = ptr;
8375 			fw->main.datasz = len;
8376 			break;
8377 		case IWN_FW_TLV_INIT_TEXT:
8378 			fw->init.text = ptr;
8379 			fw->init.textsz = len;
8380 			break;
8381 		case IWN_FW_TLV_INIT_DATA:
8382 			fw->init.data = ptr;
8383 			fw->init.datasz = len;
8384 			break;
8385 		case IWN_FW_TLV_BOOT_TEXT:
8386 			fw->boot.text = ptr;
8387 			fw->boot.textsz = len;
8388 			break;
8389 		case IWN_FW_TLV_ENH_SENS:
8390 			if (!len)
8391 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8392 			break;
8393 		case IWN_FW_TLV_PHY_CALIB:
8394 			tmp = le32toh(*ptr);
8395 			if (tmp < 253) {
8396 				sc->reset_noise_gain = tmp;
8397 				sc->noise_gain = tmp + 1;
8398 			}
8399 			break;
8400 		case IWN_FW_TLV_PAN:
8401 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8402 			DPRINTF(sc, IWN_DEBUG_RESET,
8403 			    "PAN Support found: %d\n", 1);
8404 			break;
8405 		case IWN_FW_TLV_FLAGS:
8406 			if (len < sizeof(uint32_t))
8407 				break;
8408 			if (len % sizeof(uint32_t))
8409 				break;
8410 			sc->tlv_feature_flags = le32toh(*ptr);
8411 			DPRINTF(sc, IWN_DEBUG_RESET,
8412 			    "%s: feature: 0x%08x\n",
8413 			    __func__,
8414 			    sc->tlv_feature_flags);
8415 			break;
8416 		case IWN_FW_TLV_PBREQ_MAXLEN:
8417 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8418 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8419 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8420 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8421 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8422 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8423 		case IWN_FW_TLV_WOWLAN_INST:
8424 		case IWN_FW_TLV_WOWLAN_DATA:
8425 			DPRINTF(sc, IWN_DEBUG_RESET,
8426 			    "TLV type %d recognized but not handled\n",
8427 			    le16toh(tlv->type));
8428 			break;
8429 		default:
8430 			DPRINTF(sc, IWN_DEBUG_RESET,
8431 			    "TLV type %d not handled\n", le16toh(tlv->type));
8432 			break;
8433 		}
8434  next:		/* TLV fields are 32-bit aligned. */
8435 		ptr += (len + 3) & ~3;
8436 	}
8437 	return 0;
8438 }
8439 
8440 static int
8441 iwn_read_firmware(struct iwn_softc *sc)
8442 {
8443 	struct iwn_fw_info *fw = &sc->fw;
8444 	int error;
8445 
8446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8447 
8448 	IWN_UNLOCK(sc);
8449 
8450 	memset(fw, 0, sizeof (*fw));
8451 
8452 	/* Read firmware image from filesystem. */
8453 	sc->fw_fp = firmware_get(sc->fwname);
8454 	if (sc->fw_fp == NULL) {
8455 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8456 		    __func__, sc->fwname);
8457 		IWN_LOCK(sc);
8458 		return EINVAL;
8459 	}
8460 	IWN_LOCK(sc);
8461 
8462 	fw->size = sc->fw_fp->datasize;
8463 	fw->data = (const uint8_t *)sc->fw_fp->data;
8464 	if (fw->size < sizeof (uint32_t)) {
8465 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8466 		    __func__, fw->size);
8467 		error = EINVAL;
8468 		goto fail;
8469 	}
8470 
8471 	/* Retrieve text and data sections. */
8472 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8473 		error = iwn_read_firmware_leg(sc, fw);
8474 	else
8475 		error = iwn_read_firmware_tlv(sc, fw, 1);
8476 	if (error != 0) {
8477 		device_printf(sc->sc_dev,
8478 		    "%s: could not read firmware sections, error %d\n",
8479 		    __func__, error);
8480 		goto fail;
8481 	}
8482 
8483 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8484 
8485 	/* Make sure text and data sections fit in hardware memory. */
8486 	if (fw->main.textsz > sc->fw_text_maxsz ||
8487 	    fw->main.datasz > sc->fw_data_maxsz ||
8488 	    fw->init.textsz > sc->fw_text_maxsz ||
8489 	    fw->init.datasz > sc->fw_data_maxsz ||
8490 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8491 	    (fw->boot.textsz & 3) != 0) {
8492 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8493 		    __func__);
8494 		error = EINVAL;
8495 		goto fail;
8496 	}
8497 
8498 	/* We can proceed with loading the firmware. */
8499 	return 0;
8500 
8501 fail:	iwn_unload_firmware(sc);
8502 	return error;
8503 }
8504 
8505 static void
8506 iwn_unload_firmware(struct iwn_softc *sc)
8507 {
8508 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8509 	sc->fw_fp = NULL;
8510 }
8511 
8512 static int
8513 iwn_clock_wait(struct iwn_softc *sc)
8514 {
8515 	int ntries;
8516 
8517 	/* Set "initialization complete" bit. */
8518 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8519 
8520 	/* Wait for clock stabilization. */
8521 	for (ntries = 0; ntries < 2500; ntries++) {
8522 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8523 			return 0;
8524 		DELAY(10);
8525 	}
8526 	device_printf(sc->sc_dev,
8527 	    "%s: timeout waiting for clock stabilization\n", __func__);
8528 	return ETIMEDOUT;
8529 }
8530 
8531 static int
8532 iwn_apm_init(struct iwn_softc *sc)
8533 {
8534 	uint32_t reg;
8535 	int error;
8536 
8537 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8538 
8539 	/* Disable L0s exit timer (NMI bug workaround). */
8540 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8541 	/* Don't wait for ICH L0s (ICH bug workaround). */
8542 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8543 
8544 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8545 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8546 
8547 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8548 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8549 
8550 	/* Retrieve PCIe Active State Power Management (ASPM). */
8551 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8552 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8553 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8554 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8555 	else
8556 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8557 
8558 	if (sc->base_params->pll_cfg_val)
8559 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8560 
8561 	/* Wait for clock stabilization before accessing prph. */
8562 	if ((error = iwn_clock_wait(sc)) != 0)
8563 		return error;
8564 
8565 	if ((error = iwn_nic_lock(sc)) != 0)
8566 		return error;
8567 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8568 		/* Enable DMA and BSM (Bootstrap State Machine). */
8569 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8570 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8571 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8572 	} else {
8573 		/* Enable DMA. */
8574 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8575 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8576 	}
8577 	DELAY(20);
8578 	/* Disable L1-Active. */
8579 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8580 	iwn_nic_unlock(sc);
8581 
8582 	return 0;
8583 }
8584 
8585 static void
8586 iwn_apm_stop_master(struct iwn_softc *sc)
8587 {
8588 	int ntries;
8589 
8590 	/* Stop busmaster DMA activity. */
8591 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8592 	for (ntries = 0; ntries < 100; ntries++) {
8593 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8594 			return;
8595 		DELAY(10);
8596 	}
8597 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8598 }
8599 
8600 static void
8601 iwn_apm_stop(struct iwn_softc *sc)
8602 {
8603 	iwn_apm_stop_master(sc);
8604 
8605 	/* Reset the entire device. */
8606 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8607 	DELAY(10);
8608 	/* Clear "initialization complete" bit. */
8609 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8610 }
8611 
8612 static int
8613 iwn4965_nic_config(struct iwn_softc *sc)
8614 {
8615 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8616 
8617 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8618 		/*
8619 		 * I don't believe this to be correct but this is what the
8620 		 * vendor driver is doing. Probably the bits should not be
8621 		 * shifted in IWN_RFCFG_*.
8622 		 */
8623 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8624 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8625 		    IWN_RFCFG_STEP(sc->rfcfg) |
8626 		    IWN_RFCFG_DASH(sc->rfcfg));
8627 	}
8628 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8629 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8630 	return 0;
8631 }
8632 
8633 static int
8634 iwn5000_nic_config(struct iwn_softc *sc)
8635 {
8636 	uint32_t tmp;
8637 	int error;
8638 
8639 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8640 
8641 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8642 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8643 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8644 		    IWN_RFCFG_STEP(sc->rfcfg) |
8645 		    IWN_RFCFG_DASH(sc->rfcfg));
8646 	}
8647 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8648 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8649 
8650 	if ((error = iwn_nic_lock(sc)) != 0)
8651 		return error;
8652 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8653 
8654 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8655 		/*
8656 		 * Select first Switching Voltage Regulator (1.32V) to
8657 		 * solve a stability issue related to noisy DC2DC line
8658 		 * in the silicon of 1000 Series.
8659 		 */
8660 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8661 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8662 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8663 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8664 	}
8665 	iwn_nic_unlock(sc);
8666 
8667 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8668 		/* Use internal power amplifier only. */
8669 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8670 	}
8671 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8672 		/* Indicate that ROM calibration version is >=6. */
8673 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8674 	}
8675 	if (sc->base_params->additional_gp_drv_bit)
8676 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8677 		    sc->base_params->additional_gp_drv_bit);
8678 	return 0;
8679 }
8680 
8681 /*
8682  * Take NIC ownership over Intel Active Management Technology (AMT).
8683  */
8684 static int
8685 iwn_hw_prepare(struct iwn_softc *sc)
8686 {
8687 	int ntries;
8688 
8689 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8690 
8691 	/* Check if hardware is ready. */
8692 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8693 	for (ntries = 0; ntries < 5; ntries++) {
8694 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8695 		    IWN_HW_IF_CONFIG_NIC_READY)
8696 			return 0;
8697 		DELAY(10);
8698 	}
8699 
8700 	/* Hardware not ready, force into ready state. */
8701 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8702 	for (ntries = 0; ntries < 15000; ntries++) {
8703 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8704 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8705 			break;
8706 		DELAY(10);
8707 	}
8708 	if (ntries == 15000)
8709 		return ETIMEDOUT;
8710 
8711 	/* Hardware should be ready now. */
8712 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8713 	for (ntries = 0; ntries < 5; ntries++) {
8714 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8715 		    IWN_HW_IF_CONFIG_NIC_READY)
8716 			return 0;
8717 		DELAY(10);
8718 	}
8719 	return ETIMEDOUT;
8720 }
8721 
8722 static int
8723 iwn_hw_init(struct iwn_softc *sc)
8724 {
8725 	struct iwn_ops *ops = &sc->ops;
8726 	int error, chnl, qid;
8727 
8728 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8729 
8730 	/* Clear pending interrupts. */
8731 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8732 
8733 	if ((error = iwn_apm_init(sc)) != 0) {
8734 		device_printf(sc->sc_dev,
8735 		    "%s: could not power ON adapter, error %d\n", __func__,
8736 		    error);
8737 		return error;
8738 	}
8739 
8740 	/* Select VMAIN power source. */
8741 	if ((error = iwn_nic_lock(sc)) != 0)
8742 		return error;
8743 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8744 	iwn_nic_unlock(sc);
8745 
8746 	/* Perform adapter-specific initialization. */
8747 	if ((error = ops->nic_config(sc)) != 0)
8748 		return error;
8749 
8750 	/* Initialize RX ring. */
8751 	if ((error = iwn_nic_lock(sc)) != 0)
8752 		return error;
8753 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8754 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8755 	/* Set physical address of RX ring (256-byte aligned). */
8756 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8757 	/* Set physical address of RX status (16-byte aligned). */
8758 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8759 	/* Enable RX. */
8760 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8761 	    IWN_FH_RX_CONFIG_ENA           |
8762 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8763 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8764 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8765 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8766 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8767 	iwn_nic_unlock(sc);
8768 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8769 
8770 	if ((error = iwn_nic_lock(sc)) != 0)
8771 		return error;
8772 
8773 	/* Initialize TX scheduler. */
8774 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8775 
8776 	/* Set physical address of "keep warm" page (16-byte aligned). */
8777 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8778 
8779 	/* Initialize TX rings. */
8780 	for (qid = 0; qid < sc->ntxqs; qid++) {
8781 		struct iwn_tx_ring *txq = &sc->txq[qid];
8782 
8783 		/* Set physical address of TX ring (256-byte aligned). */
8784 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8785 		    txq->desc_dma.paddr >> 8);
8786 	}
8787 	iwn_nic_unlock(sc);
8788 
8789 	/* Enable DMA channels. */
8790 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8791 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8792 		    IWN_FH_TX_CONFIG_DMA_ENA |
8793 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8794 	}
8795 
8796 	/* Clear "radio off" and "commands blocked" bits. */
8797 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8798 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8799 
8800 	/* Clear pending interrupts. */
8801 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8802 	/* Enable interrupt coalescing. */
8803 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8804 	/* Enable interrupts. */
8805 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8806 
8807 	/* _Really_ make sure "radio off" bit is cleared! */
8808 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8809 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8810 
8811 	/* Enable shadow registers. */
8812 	if (sc->base_params->shadow_reg_enable)
8813 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8814 
8815 	if ((error = ops->load_firmware(sc)) != 0) {
8816 		device_printf(sc->sc_dev,
8817 		    "%s: could not load firmware, error %d\n", __func__,
8818 		    error);
8819 		return error;
8820 	}
8821 	/* Wait at most one second for firmware alive notification. */
8822 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8823 		device_printf(sc->sc_dev,
8824 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8825 		    __func__, error);
8826 		return error;
8827 	}
8828 	/* Do post-firmware initialization. */
8829 
8830 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8831 
8832 	return ops->post_alive(sc);
8833 }
8834 
8835 static void
8836 iwn_hw_stop(struct iwn_softc *sc)
8837 {
8838 	int chnl, qid, ntries;
8839 
8840 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8841 
8842 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8843 
8844 	/* Disable interrupts. */
8845 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8846 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8847 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8848 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8849 
8850 	/* Make sure we no longer hold the NIC lock. */
8851 	iwn_nic_unlock(sc);
8852 
8853 	/* Stop TX scheduler. */
8854 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8855 
8856 	/* Stop all DMA channels. */
8857 	if (iwn_nic_lock(sc) == 0) {
8858 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8859 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8860 			for (ntries = 0; ntries < 200; ntries++) {
8861 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8862 				    IWN_FH_TX_STATUS_IDLE(chnl))
8863 					break;
8864 				DELAY(10);
8865 			}
8866 		}
8867 		iwn_nic_unlock(sc);
8868 	}
8869 
8870 	/* Stop RX ring. */
8871 	iwn_reset_rx_ring(sc, &sc->rxq);
8872 
8873 	/* Reset all TX rings. */
8874 	for (qid = 0; qid < sc->ntxqs; qid++)
8875 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8876 
8877 	if (iwn_nic_lock(sc) == 0) {
8878 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8879 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8880 		iwn_nic_unlock(sc);
8881 	}
8882 	DELAY(5);
8883 	/* Power OFF adapter. */
8884 	iwn_apm_stop(sc);
8885 }
8886 
8887 static void
8888 iwn_panicked(void *arg0, int pending)
8889 {
8890 	struct iwn_softc *sc = arg0;
8891 	struct ieee80211com *ic = &sc->sc_ic;
8892 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8893 #if 0
8894 	int error;
8895 #endif
8896 
8897 	if (vap == NULL) {
8898 		printf("%s: null vap\n", __func__);
8899 		return;
8900 	}
8901 
8902 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8903 	    "restarting\n", __func__, vap->iv_state);
8904 
8905 	/*
8906 	 * This is not enough work. We need to also reinitialise
8907 	 * the correct transmit state for aggregation enabled queues,
8908 	 * which has a very specific requirement of
8909 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8910 	 * we definitely don't!) then the firmware will just panic again.
8911 	 */
8912 #if 1
8913 	ieee80211_restart_all(ic);
8914 #else
8915 	IWN_LOCK(sc);
8916 
8917 	iwn_stop_locked(sc);
8918 	if ((error = iwn_init_locked(sc)) != 0) {
8919 		device_printf(sc->sc_dev,
8920 		    "%s: could not init hardware\n", __func__);
8921 		goto unlock;
8922 	}
8923 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8924 	    (error = iwn_auth(sc, vap)) != 0) {
8925 		device_printf(sc->sc_dev,
8926 		    "%s: could not move to auth state\n", __func__);
8927 	}
8928 	if (vap->iv_state >= IEEE80211_S_RUN &&
8929 	    (error = iwn_run(sc, vap)) != 0) {
8930 		device_printf(sc->sc_dev,
8931 		    "%s: could not move to run state\n", __func__);
8932 	}
8933 
8934 unlock:
8935 	IWN_UNLOCK(sc);
8936 #endif
8937 }
8938 
8939 static int
8940 iwn_init_locked(struct iwn_softc *sc)
8941 {
8942 	int error;
8943 
8944 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8945 
8946 	IWN_LOCK_ASSERT(sc);
8947 
8948 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8949 		goto end;
8950 
8951 	sc->sc_flags |= IWN_FLAG_RUNNING;
8952 
8953 	if ((error = iwn_hw_prepare(sc)) != 0) {
8954 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8955 		    __func__, error);
8956 		goto fail;
8957 	}
8958 
8959 	/* Initialize interrupt mask to default value. */
8960 	sc->int_mask = IWN_INT_MASK_DEF;
8961 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8962 
8963 	/* Check that the radio is not disabled by hardware switch. */
8964 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8965 		iwn_stop_locked(sc);
8966 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8967 
8968 		return (1);
8969 	}
8970 
8971 	/* Read firmware images from the filesystem. */
8972 	if ((error = iwn_read_firmware(sc)) != 0) {
8973 		device_printf(sc->sc_dev,
8974 		    "%s: could not read firmware, error %d\n", __func__,
8975 		    error);
8976 		goto fail;
8977 	}
8978 
8979 	/* Initialize hardware and upload firmware. */
8980 	error = iwn_hw_init(sc);
8981 	iwn_unload_firmware(sc);
8982 	if (error != 0) {
8983 		device_printf(sc->sc_dev,
8984 		    "%s: could not initialize hardware, error %d\n", __func__,
8985 		    error);
8986 		goto fail;
8987 	}
8988 
8989 	/* Configure adapter now that it is ready. */
8990 	if ((error = iwn_config(sc)) != 0) {
8991 		device_printf(sc->sc_dev,
8992 		    "%s: could not configure device, error %d\n", __func__,
8993 		    error);
8994 		goto fail;
8995 	}
8996 
8997 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8998 
8999 end:
9000 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9001 
9002 	return (0);
9003 
9004 fail:
9005 	iwn_stop_locked(sc);
9006 
9007 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9008 
9009 	return (-1);
9010 }
9011 
9012 static int
9013 iwn_init(struct iwn_softc *sc)
9014 {
9015 	int error;
9016 
9017 	IWN_LOCK(sc);
9018 	error = iwn_init_locked(sc);
9019 	IWN_UNLOCK(sc);
9020 
9021 	return (error);
9022 }
9023 
9024 static void
9025 iwn_stop_locked(struct iwn_softc *sc)
9026 {
9027 
9028 	IWN_LOCK_ASSERT(sc);
9029 
9030 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9031 		return;
9032 
9033 	sc->sc_is_scanning = 0;
9034 	sc->sc_tx_timer = 0;
9035 	callout_stop(&sc->watchdog_to);
9036 	callout_stop(&sc->scan_timeout);
9037 	callout_stop(&sc->calib_to);
9038 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9039 
9040 	/* Power OFF hardware. */
9041 	iwn_hw_stop(sc);
9042 }
9043 
9044 static void
9045 iwn_stop(struct iwn_softc *sc)
9046 {
9047 	IWN_LOCK(sc);
9048 	iwn_stop_locked(sc);
9049 	IWN_UNLOCK(sc);
9050 }
9051 
9052 /*
9053  * Callback from net80211 to start a scan.
9054  */
9055 static void
9056 iwn_scan_start(struct ieee80211com *ic)
9057 {
9058 	struct iwn_softc *sc = ic->ic_softc;
9059 
9060 	IWN_LOCK(sc);
9061 	/* make the link LED blink while we're scanning */
9062 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9063 	IWN_UNLOCK(sc);
9064 }
9065 
9066 /*
9067  * Callback from net80211 to terminate a scan.
9068  */
9069 static void
9070 iwn_scan_end(struct ieee80211com *ic)
9071 {
9072 	struct iwn_softc *sc = ic->ic_softc;
9073 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9074 
9075 	IWN_LOCK(sc);
9076 	if (vap->iv_state == IEEE80211_S_RUN) {
9077 		/* Set link LED to ON status if we are associated */
9078 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9079 	}
9080 	IWN_UNLOCK(sc);
9081 }
9082 
9083 /*
9084  * Callback from net80211 to force a channel change.
9085  */
9086 static void
9087 iwn_set_channel(struct ieee80211com *ic)
9088 {
9089 	const struct ieee80211_channel *c = ic->ic_curchan;
9090 	struct iwn_softc *sc = ic->ic_softc;
9091 	int error;
9092 
9093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9094 
9095 	IWN_LOCK(sc);
9096 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
9097 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
9098 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
9099 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
9100 
9101 	/*
9102 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9103 	 * are already taken care of by their respective firmware commands.
9104 	 */
9105 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9106 		error = iwn_config(sc);
9107 		if (error != 0)
9108 		device_printf(sc->sc_dev,
9109 		    "%s: error %d settting channel\n", __func__, error);
9110 	}
9111 	IWN_UNLOCK(sc);
9112 }
9113 
9114 /*
9115  * Callback from net80211 to start scanning of the current channel.
9116  */
9117 static void
9118 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9119 {
9120 	struct ieee80211vap *vap = ss->ss_vap;
9121 	struct ieee80211com *ic = vap->iv_ic;
9122 	struct iwn_softc *sc = ic->ic_softc;
9123 	int error;
9124 
9125 	IWN_LOCK(sc);
9126 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9127 	IWN_UNLOCK(sc);
9128 	if (error != 0)
9129 		ieee80211_cancel_scan(vap);
9130 }
9131 
9132 /*
9133  * Callback from net80211 to handle the minimum dwell time being met.
9134  * The intent is to terminate the scan but we just let the firmware
9135  * notify us when it's finished as we have no safe way to abort it.
9136  */
9137 static void
9138 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9139 {
9140 	/* NB: don't try to abort scan; wait for firmware to finish */
9141 }
9142 #ifdef	IWN_DEBUG
9143 #define	IWN_DESC(x) case x:	return #x
9144 
9145 /*
9146  * Translate CSR code to string
9147  */
9148 static char *iwn_get_csr_string(int csr)
9149 {
9150 	switch (csr) {
9151 		IWN_DESC(IWN_HW_IF_CONFIG);
9152 		IWN_DESC(IWN_INT_COALESCING);
9153 		IWN_DESC(IWN_INT);
9154 		IWN_DESC(IWN_INT_MASK);
9155 		IWN_DESC(IWN_FH_INT);
9156 		IWN_DESC(IWN_GPIO_IN);
9157 		IWN_DESC(IWN_RESET);
9158 		IWN_DESC(IWN_GP_CNTRL);
9159 		IWN_DESC(IWN_HW_REV);
9160 		IWN_DESC(IWN_EEPROM);
9161 		IWN_DESC(IWN_EEPROM_GP);
9162 		IWN_DESC(IWN_OTP_GP);
9163 		IWN_DESC(IWN_GIO);
9164 		IWN_DESC(IWN_GP_UCODE);
9165 		IWN_DESC(IWN_GP_DRIVER);
9166 		IWN_DESC(IWN_UCODE_GP1);
9167 		IWN_DESC(IWN_UCODE_GP2);
9168 		IWN_DESC(IWN_LED);
9169 		IWN_DESC(IWN_DRAM_INT_TBL);
9170 		IWN_DESC(IWN_GIO_CHICKEN);
9171 		IWN_DESC(IWN_ANA_PLL);
9172 		IWN_DESC(IWN_HW_REV_WA);
9173 		IWN_DESC(IWN_DBG_HPET_MEM);
9174 	default:
9175 		return "UNKNOWN CSR";
9176 	}
9177 }
9178 
9179 /*
9180  * This function print firmware register
9181  */
9182 static void
9183 iwn_debug_register(struct iwn_softc *sc)
9184 {
9185 	int i;
9186 	static const uint32_t csr_tbl[] = {
9187 		IWN_HW_IF_CONFIG,
9188 		IWN_INT_COALESCING,
9189 		IWN_INT,
9190 		IWN_INT_MASK,
9191 		IWN_FH_INT,
9192 		IWN_GPIO_IN,
9193 		IWN_RESET,
9194 		IWN_GP_CNTRL,
9195 		IWN_HW_REV,
9196 		IWN_EEPROM,
9197 		IWN_EEPROM_GP,
9198 		IWN_OTP_GP,
9199 		IWN_GIO,
9200 		IWN_GP_UCODE,
9201 		IWN_GP_DRIVER,
9202 		IWN_UCODE_GP1,
9203 		IWN_UCODE_GP2,
9204 		IWN_LED,
9205 		IWN_DRAM_INT_TBL,
9206 		IWN_GIO_CHICKEN,
9207 		IWN_ANA_PLL,
9208 		IWN_HW_REV_WA,
9209 		IWN_DBG_HPET_MEM,
9210 	};
9211 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9212 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9213 	    "\n");
9214 	for (i = 0; i <  nitems(csr_tbl); i++){
9215 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9216 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9217 		if ((i+1) % 3 == 0)
9218 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9219 	}
9220 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9221 }
9222 #endif
9223 
9224 
9225