xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 2008043f386721d58158e37e0d7e50df8095942d)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 #include "opt_wlan.h"
29 #include "opt_iwn.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/bus.h>
40 #include <sys/conf.h>
41 #include <sys/rman.h>
42 #include <sys/endian.h>
43 #include <sys/firmware.h>
44 #include <sys/limits.h>
45 #include <sys/module.h>
46 #include <sys/priv.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/clock.h>
53 
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_regdomain.h>
68 #include <net80211/ieee80211_ratectl.h>
69 
70 #include <dev/iwn/if_iwnreg.h>
71 #include <dev/iwn/if_iwnvar.h>
72 #include <dev/iwn/if_iwn_devid.h>
73 #include <dev/iwn/if_iwn_chip_cfg.h>
74 #include <dev/iwn/if_iwn_debug.h>
75 #include <dev/iwn/if_iwn_ioctl.h>
76 
77 struct iwn_ident {
78 	uint16_t	vendor;
79 	uint16_t	device;
80 	const char	*name;
81 };
82 
83 static const struct iwn_ident iwn_ident_table[] = {
84 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
85 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
86 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
87 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
88 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
89 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
90 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
91 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
92 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
93 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
94 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
95 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
96 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
97 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
98 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
99 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
100 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
101 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
102 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
103 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
104 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
105 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
106 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
107 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
108 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
109 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
110 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
111 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
112 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
113 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
114 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
115 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
117 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
118 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
119 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
120 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
121 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
122 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
123 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
124 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
125 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
126 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
127 	{ 0, 0, NULL }
128 };
129 
130 static int	iwn_probe(device_t);
131 static int	iwn_attach(device_t);
132 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
133 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
134 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
135 static void	iwn_radiotap_attach(struct iwn_softc *);
136 static void	iwn_sysctlattach(struct iwn_softc *);
137 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
138 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139 		    const uint8_t [IEEE80211_ADDR_LEN],
140 		    const uint8_t [IEEE80211_ADDR_LEN]);
141 static void	iwn_vap_delete(struct ieee80211vap *);
142 static int	iwn_detach(device_t);
143 static int	iwn_shutdown(device_t);
144 static int	iwn_suspend(device_t);
145 static int	iwn_resume(device_t);
146 static int	iwn_nic_lock(struct iwn_softc *);
147 static int	iwn_eeprom_lock(struct iwn_softc *);
148 static int	iwn_init_otprom(struct iwn_softc *);
149 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
150 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
151 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
152 		    void **, bus_size_t, bus_size_t);
153 static void	iwn_dma_contig_free(struct iwn_dma_info *);
154 static int	iwn_alloc_sched(struct iwn_softc *);
155 static void	iwn_free_sched(struct iwn_softc *);
156 static int	iwn_alloc_kw(struct iwn_softc *);
157 static void	iwn_free_kw(struct iwn_softc *);
158 static int	iwn_alloc_ict(struct iwn_softc *);
159 static void	iwn_free_ict(struct iwn_softc *);
160 static int	iwn_alloc_fwmem(struct iwn_softc *);
161 static void	iwn_free_fwmem(struct iwn_softc *);
162 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
163 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
164 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
166 		    int);
167 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
168 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
169 static void	iwn_check_tx_ring(struct iwn_softc *, int);
170 static void	iwn5000_ict_reset(struct iwn_softc *);
171 static int	iwn_read_eeprom(struct iwn_softc *,
172 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
173 static void	iwn4965_read_eeprom(struct iwn_softc *);
174 #ifdef	IWN_DEBUG
175 static void	iwn4965_print_power_group(struct iwn_softc *, int);
176 #endif
177 static void	iwn5000_read_eeprom(struct iwn_softc *);
178 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
179 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
180 		    struct ieee80211_channel[]);
181 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
184 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
185 		    struct ieee80211_channel *);
186 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
187 		    struct ieee80211_channel[]);
188 static int	iwn_setregdomain(struct ieee80211com *,
189 		    struct ieee80211_regdomain *, int,
190 		    struct ieee80211_channel[]);
191 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
192 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
193 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
194 static void	iwn_newassoc(struct ieee80211_node *, int);
195 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
196 static void	iwn_calib_timeout(void *);
197 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
198 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
199 		    struct iwn_rx_data *);
200 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
201 		    int, int, int);
202 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
211 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
212 		    uint8_t);
213 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
214 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
215 		    uint64_t, int, int);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_task(void *, int);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *, struct iwn_tx_ring *);
237 static void	iwn_xmit_task(void *arg0, int pending);
238 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
239 		    const struct ieee80211_bpf_params *);
240 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
241 static void	iwn_scan_timeout(void *);
242 static void	iwn_watchdog(void *);
243 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
244 static void	iwn_parent(struct ieee80211com *);
245 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
246 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn_set_link_quality(struct iwn_softc *,
251 		    struct ieee80211_node *);
252 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
253 static int	iwn_updateedca(struct ieee80211com *);
254 static void	iwn_set_promisc(struct iwn_softc *);
255 static void	iwn_update_promisc(struct ieee80211com *);
256 static void	iwn_update_mcast(struct ieee80211com *);
257 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
258 static int	iwn_set_critical_temp(struct iwn_softc *);
259 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
260 static void	iwn4965_power_calibration(struct iwn_softc *, int);
261 static int	iwn4965_set_txpower(struct iwn_softc *, int);
262 static int	iwn5000_set_txpower(struct iwn_softc *, int);
263 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
264 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
266 static int	iwn4965_get_temperature(struct iwn_softc *);
267 static int	iwn5000_get_temperature(struct iwn_softc *);
268 static int	iwn_init_sensitivity(struct iwn_softc *);
269 static void	iwn_collect_noise(struct iwn_softc *,
270 		    const struct iwn_rx_general_stats *);
271 static int	iwn4965_init_gains(struct iwn_softc *);
272 static int	iwn5000_init_gains(struct iwn_softc *);
273 static int	iwn4965_set_gains(struct iwn_softc *);
274 static int	iwn5000_set_gains(struct iwn_softc *);
275 static void	iwn_tune_sensitivity(struct iwn_softc *,
276 		    const struct iwn_rx_stats *);
277 static void	iwn_save_stats_counters(struct iwn_softc *,
278 		    const struct iwn_stats *);
279 static int	iwn_send_sensitivity(struct iwn_softc *);
280 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
281 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
282 static int	iwn_send_btcoex(struct iwn_softc *);
283 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
284 static int	iwn5000_runtime_calib(struct iwn_softc *);
285 static int	iwn_check_bss_filter(struct iwn_softc *);
286 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
287 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
288 static int	iwn_send_rxon(struct iwn_softc *, int, int);
289 static int	iwn_config(struct iwn_softc *);
290 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
291 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
292 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
294 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *, int, int, int);
296 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *);
298 static int	iwn_addba_request(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_addba_response(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_ampdu_tx_start(struct ieee80211com *,
303 		    struct ieee80211_node *, uint8_t);
304 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *);
306 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
307 		    struct ieee80211_node *, int, uint8_t, uint16_t);
308 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
309 		    uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static int	iwn5000_query_calibration(struct iwn_softc *);
315 static int	iwn5000_send_calibration(struct iwn_softc *);
316 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
317 static int	iwn5000_crystal_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
319 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
320 static int	iwn4965_post_alive(struct iwn_softc *);
321 static int	iwn5000_post_alive(struct iwn_softc *);
322 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
323 		    int);
324 static int	iwn4965_load_firmware(struct iwn_softc *);
325 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
326 		    const uint8_t *, int);
327 static int	iwn5000_load_firmware(struct iwn_softc *);
328 static int	iwn_read_firmware_leg(struct iwn_softc *,
329 		    struct iwn_fw_info *);
330 static int	iwn_read_firmware_tlv(struct iwn_softc *,
331 		    struct iwn_fw_info *, uint16_t);
332 static int	iwn_read_firmware(struct iwn_softc *);
333 static void	iwn_unload_firmware(struct iwn_softc *);
334 static int	iwn_clock_wait(struct iwn_softc *);
335 static int	iwn_apm_init(struct iwn_softc *);
336 static void	iwn_apm_stop_master(struct iwn_softc *);
337 static void	iwn_apm_stop(struct iwn_softc *);
338 static int	iwn4965_nic_config(struct iwn_softc *);
339 static int	iwn5000_nic_config(struct iwn_softc *);
340 static int	iwn_hw_prepare(struct iwn_softc *);
341 static int	iwn_hw_init(struct iwn_softc *);
342 static void	iwn_hw_stop(struct iwn_softc *);
343 static void	iwn_panicked(void *, int);
344 static int	iwn_init_locked(struct iwn_softc *);
345 static int	iwn_init(struct iwn_softc *);
346 static void	iwn_stop_locked(struct iwn_softc *);
347 static void	iwn_stop(struct iwn_softc *);
348 static void	iwn_scan_start(struct ieee80211com *);
349 static void	iwn_scan_end(struct ieee80211com *);
350 static void	iwn_set_channel(struct ieee80211com *);
351 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
352 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
353 #ifdef	IWN_DEBUG
354 static char	*iwn_get_csr_string(int);
355 static void	iwn_debug_register(struct iwn_softc *);
356 #endif
357 
358 static device_method_t iwn_methods[] = {
359 	/* Device interface */
360 	DEVMETHOD(device_probe,		iwn_probe),
361 	DEVMETHOD(device_attach,	iwn_attach),
362 	DEVMETHOD(device_detach,	iwn_detach),
363 	DEVMETHOD(device_shutdown,	iwn_shutdown),
364 	DEVMETHOD(device_suspend,	iwn_suspend),
365 	DEVMETHOD(device_resume,	iwn_resume),
366 
367 	DEVMETHOD_END
368 };
369 
370 static driver_t iwn_driver = {
371 	"iwn",
372 	iwn_methods,
373 	sizeof(struct iwn_softc)
374 };
375 
376 DRIVER_MODULE(iwn, pci, iwn_driver, NULL, NULL);
377 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
378     nitems(iwn_ident_table) - 1);
379 MODULE_VERSION(iwn, 1);
380 
381 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
382 MODULE_DEPEND(iwn, pci, 1, 1, 1);
383 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
384 
385 static d_ioctl_t iwn_cdev_ioctl;
386 static d_open_t iwn_cdev_open;
387 static d_close_t iwn_cdev_close;
388 
389 static struct cdevsw iwn_cdevsw = {
390 	.d_version = D_VERSION,
391 	.d_flags = 0,
392 	.d_open = iwn_cdev_open,
393 	.d_close = iwn_cdev_close,
394 	.d_ioctl = iwn_cdev_ioctl,
395 	.d_name = "iwn",
396 };
397 
398 static int
399 iwn_probe(device_t dev)
400 {
401 	const struct iwn_ident *ident;
402 
403 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
404 		if (pci_get_vendor(dev) == ident->vendor &&
405 		    pci_get_device(dev) == ident->device) {
406 			device_set_desc(dev, ident->name);
407 			return (BUS_PROBE_DEFAULT);
408 		}
409 	}
410 	return ENXIO;
411 }
412 
413 static int
414 iwn_is_3stream_device(struct iwn_softc *sc)
415 {
416 	/* XXX for now only 5300, until the 5350 can be tested */
417 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
418 		return (1);
419 	return (0);
420 }
421 
422 static int
423 iwn_attach(device_t dev)
424 {
425 	struct iwn_softc *sc = device_get_softc(dev);
426 	struct ieee80211com *ic;
427 	int i, error, rid;
428 
429 	sc->sc_dev = dev;
430 
431 #ifdef	IWN_DEBUG
432 	error = resource_int_value(device_get_name(sc->sc_dev),
433 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
434 	if (error != 0)
435 		sc->sc_debug = 0;
436 #else
437 	sc->sc_debug = 0;
438 #endif
439 
440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
441 
442 	/*
443 	 * Get the offset of the PCI Express Capability Structure in PCI
444 	 * Configuration Space.
445 	 */
446 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		return error;
450 	}
451 
452 	/* Clear device-specific "PCI retry timeout" register (41h). */
453 	pci_write_config(dev, 0x41, 0, 1);
454 
455 	/* Enable bus-mastering. */
456 	pci_enable_busmaster(dev);
457 
458 	rid = PCIR_BAR(0);
459 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
460 	    RF_ACTIVE);
461 	if (sc->mem == NULL) {
462 		device_printf(dev, "can't map mem space\n");
463 		error = ENOMEM;
464 		return error;
465 	}
466 	sc->sc_st = rman_get_bustag(sc->mem);
467 	sc->sc_sh = rman_get_bushandle(sc->mem);
468 
469 	i = 1;
470 	rid = 0;
471 	if (pci_alloc_msi(dev, &i) == 0)
472 		rid = 1;
473 	/* Install interrupt handler. */
474 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
475 	    (rid != 0 ? 0 : RF_SHAREABLE));
476 	if (sc->irq == NULL) {
477 		device_printf(dev, "can't map interrupt\n");
478 		error = ENOMEM;
479 		goto fail;
480 	}
481 
482 	IWN_LOCK_INIT(sc);
483 
484 	/* Read hardware revision and attach. */
485 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
486 	    & IWN_HW_REV_TYPE_MASK;
487 	sc->subdevice_id = pci_get_subdevice(dev);
488 
489 	/*
490 	 * 4965 versus 5000 and later have different methods.
491 	 * Let's set those up first.
492 	 */
493 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
494 		iwn4965_attach(sc, pci_get_device(dev));
495 	else
496 		iwn5000_attach(sc, pci_get_device(dev));
497 
498 	/*
499 	 * Next, let's setup the various parameters of each NIC.
500 	 */
501 	error = iwn_config_specific(sc, pci_get_device(dev));
502 	if (error != 0) {
503 		device_printf(dev, "could not attach device, error %d\n",
504 		    error);
505 		goto fail;
506 	}
507 
508 	if ((error = iwn_hw_prepare(sc)) != 0) {
509 		device_printf(dev, "hardware not ready, error %d\n", error);
510 		goto fail;
511 	}
512 
513 	/* Allocate DMA memory for firmware transfers. */
514 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
515 		device_printf(dev,
516 		    "could not allocate memory for firmware, error %d\n",
517 		    error);
518 		goto fail;
519 	}
520 
521 	/* Allocate "Keep Warm" page. */
522 	if ((error = iwn_alloc_kw(sc)) != 0) {
523 		device_printf(dev,
524 		    "could not allocate keep warm page, error %d\n", error);
525 		goto fail;
526 	}
527 
528 	/* Allocate ICT table for 5000 Series. */
529 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
530 	    (error = iwn_alloc_ict(sc)) != 0) {
531 		device_printf(dev, "could not allocate ICT table, error %d\n",
532 		    error);
533 		goto fail;
534 	}
535 
536 	/* Allocate TX scheduler "rings". */
537 	if ((error = iwn_alloc_sched(sc)) != 0) {
538 		device_printf(dev,
539 		    "could not allocate TX scheduler rings, error %d\n", error);
540 		goto fail;
541 	}
542 
543 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
544 	for (i = 0; i < sc->ntxqs; i++) {
545 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
546 			device_printf(dev,
547 			    "could not allocate TX ring %d, error %d\n", i,
548 			    error);
549 			goto fail;
550 		}
551 	}
552 
553 	/* Allocate RX ring. */
554 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
555 		device_printf(dev, "could not allocate RX ring, error %d\n",
556 		    error);
557 		goto fail;
558 	}
559 
560 	/* Clear pending interrupts. */
561 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
562 
563 	ic = &sc->sc_ic;
564 	ic->ic_softc = sc;
565 	ic->ic_name = device_get_nameunit(dev);
566 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
567 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
568 
569 	/* Set device capabilities. */
570 	ic->ic_caps =
571 		  IEEE80211_C_STA		/* station mode supported */
572 		| IEEE80211_C_MONITOR		/* monitor mode supported */
573 #if 0
574 		| IEEE80211_C_BGSCAN		/* background scanning */
575 #endif
576 		| IEEE80211_C_TXPMGT		/* tx power management */
577 		| IEEE80211_C_SHSLOT		/* short slot time supported */
578 		| IEEE80211_C_WPA
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 #if 0
581 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
582 #endif
583 		| IEEE80211_C_WME		/* WME */
584 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
585 		;
586 
587 	/* Read MAC address, channels, etc from EEPROM. */
588 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
589 		device_printf(dev, "could not read EEPROM, error %d\n",
590 		    error);
591 		goto fail;
592 	}
593 
594 	/* Count the number of available chains. */
595 	sc->ntxchains =
596 	    ((sc->txchainmask >> 2) & 1) +
597 	    ((sc->txchainmask >> 1) & 1) +
598 	    ((sc->txchainmask >> 0) & 1);
599 	sc->nrxchains =
600 	    ((sc->rxchainmask >> 2) & 1) +
601 	    ((sc->rxchainmask >> 1) & 1) +
602 	    ((sc->rxchainmask >> 0) & 1);
603 	if (bootverbose) {
604 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
605 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
606 		    ic->ic_macaddr, ":");
607 	}
608 
609 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
610 		ic->ic_rxstream = sc->nrxchains;
611 		ic->ic_txstream = sc->ntxchains;
612 
613 		/*
614 		 * Some of the 3 antenna devices (ie, the 4965) only supports
615 		 * 2x2 operation.  So correct the number of streams if
616 		 * it's not a 3-stream device.
617 		 */
618 		if (! iwn_is_3stream_device(sc)) {
619 			if (ic->ic_rxstream > 2)
620 				ic->ic_rxstream = 2;
621 			if (ic->ic_txstream > 2)
622 				ic->ic_txstream = 2;
623 		}
624 
625 		ic->ic_htcaps =
626 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
627 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
628 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
629 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
630 #ifdef notyet
631 			| IEEE80211_HTCAP_GREENFIELD
632 #if IWN_RBUF_SIZE == 8192
633 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
634 #else
635 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
636 #endif
637 #endif
638 			/* s/w capabilities */
639 			| IEEE80211_HTC_HT		/* HT operation */
640 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
641 #ifdef notyet
642 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
643 #endif
644 			;
645 	}
646 
647 	ieee80211_ifattach(ic);
648 	ic->ic_vap_create = iwn_vap_create;
649 	ic->ic_ioctl = iwn_ioctl;
650 	ic->ic_parent = iwn_parent;
651 	ic->ic_vap_delete = iwn_vap_delete;
652 	ic->ic_transmit = iwn_transmit;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
656 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
658 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
659 	sc->sc_addba_request = ic->ic_addba_request;
660 	ic->ic_addba_request = iwn_addba_request;
661 	sc->sc_addba_response = ic->ic_addba_response;
662 	ic->ic_addba_response = iwn_addba_response;
663 	sc->sc_addba_stop = ic->ic_addba_stop;
664 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
665 	ic->ic_newassoc = iwn_newassoc;
666 	ic->ic_wme.wme_update = iwn_updateedca;
667 	ic->ic_update_promisc = iwn_update_promisc;
668 	ic->ic_update_mcast = iwn_update_mcast;
669 	ic->ic_scan_start = iwn_scan_start;
670 	ic->ic_scan_end = iwn_scan_end;
671 	ic->ic_set_channel = iwn_set_channel;
672 	ic->ic_scan_curchan = iwn_scan_curchan;
673 	ic->ic_scan_mindwell = iwn_scan_mindwell;
674 	ic->ic_getradiocaps = iwn_getradiocaps;
675 	ic->ic_setregdomain = iwn_setregdomain;
676 
677 	iwn_radiotap_attach(sc);
678 
679 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
680 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
681 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
682 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
683 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
684 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
685 
686 	mbufq_init(&sc->sc_xmit_queue, 1024);
687 
688 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
689 	    taskqueue_thread_enqueue, &sc->sc_tq);
690 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
691 	if (error != 0) {
692 		device_printf(dev, "can't start threads, error %d\n", error);
693 		goto fail;
694 	}
695 
696 	iwn_sysctlattach(sc);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
702 	    NULL, iwn_intr, sc, &sc->sc_ih);
703 	if (error != 0) {
704 		device_printf(dev, "can't establish interrupt, error %d\n",
705 		    error);
706 		goto fail;
707 	}
708 
709 #if 0
710 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
711 	    __func__,
712 	    sizeof(struct iwn_stats),
713 	    sizeof(struct iwn_stats_bt));
714 #endif
715 
716 	if (bootverbose)
717 		ieee80211_announce(ic);
718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
719 
720 	/* Add debug ioctl right at the end */
721 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
722 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
723 	if (sc->sc_cdev == NULL) {
724 		device_printf(dev, "failed to create debug character device\n");
725 	} else {
726 		sc->sc_cdev->si_drv1 = sc;
727 	}
728 	return 0;
729 fail:
730 	iwn_detach(dev);
731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
732 	return error;
733 }
734 
735 /*
736  * Define specific configuration based on device id and subdevice id
737  * pid : PCI device id
738  */
739 static int
740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
741 {
742 
743 	switch (pid) {
744 /* 4965 series */
745 	case IWN_DID_4965_1:
746 	case IWN_DID_4965_2:
747 	case IWN_DID_4965_3:
748 	case IWN_DID_4965_4:
749 		sc->base_params = &iwn4965_base_params;
750 		sc->limits = &iwn4965_sensitivity_limits;
751 		sc->fwname = "iwn4965fw";
752 		/* Override chains masks, ROM is known to be broken. */
753 		sc->txchainmask = IWN_ANT_AB;
754 		sc->rxchainmask = IWN_ANT_ABC;
755 		/* Enable normal btcoex */
756 		sc->sc_flags |= IWN_FLAG_BTCOEX;
757 		break;
758 /* 1000 Series */
759 	case IWN_DID_1000_1:
760 	case IWN_DID_1000_2:
761 		switch(sc->subdevice_id) {
762 			case	IWN_SDID_1000_1:
763 			case	IWN_SDID_1000_2:
764 			case	IWN_SDID_1000_3:
765 			case	IWN_SDID_1000_4:
766 			case	IWN_SDID_1000_5:
767 			case	IWN_SDID_1000_6:
768 			case	IWN_SDID_1000_7:
769 			case	IWN_SDID_1000_8:
770 			case	IWN_SDID_1000_9:
771 			case	IWN_SDID_1000_10:
772 			case	IWN_SDID_1000_11:
773 			case	IWN_SDID_1000_12:
774 				sc->limits = &iwn1000_sensitivity_limits;
775 				sc->base_params = &iwn1000_base_params;
776 				sc->fwname = "iwn1000fw";
777 				break;
778 			default:
779 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
780 				    "0x%04x rev %d not supported (subdevice)\n", pid,
781 				    sc->subdevice_id,sc->hw_type);
782 				return ENOTSUP;
783 		}
784 		break;
785 /* 6x00 Series */
786 	case IWN_DID_6x00_2:
787 	case IWN_DID_6x00_4:
788 	case IWN_DID_6x00_1:
789 	case IWN_DID_6x00_3:
790 		sc->fwname = "iwn6000fw";
791 		sc->limits = &iwn6000_sensitivity_limits;
792 		switch(sc->subdevice_id) {
793 			case IWN_SDID_6x00_1:
794 			case IWN_SDID_6x00_2:
795 			case IWN_SDID_6x00_8:
796 				//iwl6000_3agn_cfg
797 				sc->base_params = &iwn_6000_base_params;
798 				break;
799 			case IWN_SDID_6x00_3:
800 			case IWN_SDID_6x00_6:
801 			case IWN_SDID_6x00_9:
802 				////iwl6000i_2agn
803 			case IWN_SDID_6x00_4:
804 			case IWN_SDID_6x00_7:
805 			case IWN_SDID_6x00_10:
806 				//iwl6000i_2abg_cfg
807 			case IWN_SDID_6x00_5:
808 				//iwl6000i_2bg_cfg
809 				sc->base_params = &iwn_6000i_base_params;
810 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
811 				sc->txchainmask = IWN_ANT_BC;
812 				sc->rxchainmask = IWN_ANT_BC;
813 				break;
814 			default:
815 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
816 				    "0x%04x rev %d not supported (subdevice)\n", pid,
817 				    sc->subdevice_id,sc->hw_type);
818 				return ENOTSUP;
819 		}
820 		break;
821 /* 6x05 Series */
822 	case IWN_DID_6x05_1:
823 	case IWN_DID_6x05_2:
824 		switch(sc->subdevice_id) {
825 			case IWN_SDID_6x05_1:
826 			case IWN_SDID_6x05_4:
827 			case IWN_SDID_6x05_6:
828 				//iwl6005_2agn_cfg
829 			case IWN_SDID_6x05_2:
830 			case IWN_SDID_6x05_5:
831 			case IWN_SDID_6x05_7:
832 				//iwl6005_2abg_cfg
833 			case IWN_SDID_6x05_3:
834 				//iwl6005_2bg_cfg
835 			case IWN_SDID_6x05_8:
836 			case IWN_SDID_6x05_9:
837 				//iwl6005_2agn_sff_cfg
838 			case IWN_SDID_6x05_10:
839 				//iwl6005_2agn_d_cfg
840 			case IWN_SDID_6x05_11:
841 				//iwl6005_2agn_mow1_cfg
842 			case IWN_SDID_6x05_12:
843 				//iwl6005_2agn_mow2_cfg
844 				sc->fwname = "iwn6000g2afw";
845 				sc->limits = &iwn6000_sensitivity_limits;
846 				sc->base_params = &iwn_6000g2_base_params;
847 				break;
848 			default:
849 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
850 				    "0x%04x rev %d not supported (subdevice)\n", pid,
851 				    sc->subdevice_id,sc->hw_type);
852 				return ENOTSUP;
853 		}
854 		break;
855 /* 6x35 Series */
856 	case IWN_DID_6035_1:
857 	case IWN_DID_6035_2:
858 		switch(sc->subdevice_id) {
859 			case IWN_SDID_6035_1:
860 			case IWN_SDID_6035_2:
861 			case IWN_SDID_6035_3:
862 			case IWN_SDID_6035_4:
863 			case IWN_SDID_6035_5:
864 				sc->fwname = "iwn6000g2bfw";
865 				sc->limits = &iwn6235_sensitivity_limits;
866 				sc->base_params = &iwn_6235_base_params;
867 				break;
868 			default:
869 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
870 				    "0x%04x rev %d not supported (subdevice)\n", pid,
871 				    sc->subdevice_id,sc->hw_type);
872 				return ENOTSUP;
873 		}
874 		break;
875 /* 6x50 WiFi/WiMax Series */
876 	case IWN_DID_6050_1:
877 	case IWN_DID_6050_2:
878 		switch(sc->subdevice_id) {
879 			case IWN_SDID_6050_1:
880 			case IWN_SDID_6050_3:
881 			case IWN_SDID_6050_5:
882 				//iwl6050_2agn_cfg
883 			case IWN_SDID_6050_2:
884 			case IWN_SDID_6050_4:
885 			case IWN_SDID_6050_6:
886 				//iwl6050_2abg_cfg
887 				sc->fwname = "iwn6050fw";
888 				sc->txchainmask = IWN_ANT_AB;
889 				sc->rxchainmask = IWN_ANT_AB;
890 				sc->limits = &iwn6000_sensitivity_limits;
891 				sc->base_params = &iwn_6050_base_params;
892 				break;
893 			default:
894 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
895 				    "0x%04x rev %d not supported (subdevice)\n", pid,
896 				    sc->subdevice_id,sc->hw_type);
897 				return ENOTSUP;
898 		}
899 		break;
900 /* 6150 WiFi/WiMax Series */
901 	case IWN_DID_6150_1:
902 	case IWN_DID_6150_2:
903 		switch(sc->subdevice_id) {
904 			case IWN_SDID_6150_1:
905 			case IWN_SDID_6150_3:
906 			case IWN_SDID_6150_5:
907 				// iwl6150_bgn_cfg
908 			case IWN_SDID_6150_2:
909 			case IWN_SDID_6150_4:
910 			case IWN_SDID_6150_6:
911 				//iwl6150_bg_cfg
912 				sc->fwname = "iwn6050fw";
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6150_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6030 Series and 1030 Series */
924 	case IWN_DID_x030_1:
925 	case IWN_DID_x030_2:
926 	case IWN_DID_x030_3:
927 	case IWN_DID_x030_4:
928 		switch(sc->subdevice_id) {
929 			case IWN_SDID_x030_1:
930 			case IWN_SDID_x030_3:
931 			case IWN_SDID_x030_5:
932 			// iwl1030_bgn_cfg
933 			case IWN_SDID_x030_2:
934 			case IWN_SDID_x030_4:
935 			case IWN_SDID_x030_6:
936 			//iwl1030_bg_cfg
937 			case IWN_SDID_x030_7:
938 			case IWN_SDID_x030_10:
939 			case IWN_SDID_x030_14:
940 			//iwl6030_2agn_cfg
941 			case IWN_SDID_x030_8:
942 			case IWN_SDID_x030_11:
943 			case IWN_SDID_x030_15:
944 			// iwl6030_2bgn_cfg
945 			case IWN_SDID_x030_9:
946 			case IWN_SDID_x030_12:
947 			case IWN_SDID_x030_16:
948 			// iwl6030_2abg_cfg
949 			case IWN_SDID_x030_13:
950 			//iwl6030_2bg_cfg
951 				sc->fwname = "iwn6000g2bfw";
952 				sc->limits = &iwn6000_sensitivity_limits;
953 				sc->base_params = &iwn_6000g2b_base_params;
954 				break;
955 			default:
956 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
957 				    "0x%04x rev %d not supported (subdevice)\n", pid,
958 				    sc->subdevice_id,sc->hw_type);
959 				return ENOTSUP;
960 		}
961 		break;
962 /* 130 Series WiFi */
963 /* XXX: This series will need adjustment for rate.
964  * see rx_with_siso_diversity in linux kernel
965  */
966 	case IWN_DID_130_1:
967 	case IWN_DID_130_2:
968 		switch(sc->subdevice_id) {
969 			case IWN_SDID_130_1:
970 			case IWN_SDID_130_3:
971 			case IWN_SDID_130_5:
972 			//iwl130_bgn_cfg
973 			case IWN_SDID_130_2:
974 			case IWN_SDID_130_4:
975 			case IWN_SDID_130_6:
976 			//iwl130_bg_cfg
977 				sc->fwname = "iwn6000g2bfw";
978 				sc->limits = &iwn6000_sensitivity_limits;
979 				sc->base_params = &iwn_6000g2b_base_params;
980 				break;
981 			default:
982 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
983 				    "0x%04x rev %d not supported (subdevice)\n", pid,
984 				    sc->subdevice_id,sc->hw_type);
985 				return ENOTSUP;
986 		}
987 		break;
988 /* 100 Series WiFi */
989 	case IWN_DID_100_1:
990 	case IWN_DID_100_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_100_1:
993 			case IWN_SDID_100_2:
994 			case IWN_SDID_100_3:
995 			case IWN_SDID_100_4:
996 			case IWN_SDID_100_5:
997 			case IWN_SDID_100_6:
998 				sc->limits = &iwn1000_sensitivity_limits;
999 				sc->base_params = &iwn1000_base_params;
1000 				sc->fwname = "iwn100fw";
1001 				break;
1002 			default:
1003 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1004 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1005 				    sc->subdevice_id,sc->hw_type);
1006 				return ENOTSUP;
1007 		}
1008 		break;
1009 
1010 /* 105 Series */
1011 /* XXX: This series will need adjustment for rate.
1012  * see rx_with_siso_diversity in linux kernel
1013  */
1014 	case IWN_DID_105_1:
1015 	case IWN_DID_105_2:
1016 		switch(sc->subdevice_id) {
1017 			case IWN_SDID_105_1:
1018 			case IWN_SDID_105_2:
1019 			case IWN_SDID_105_3:
1020 			//iwl105_bgn_cfg
1021 			case IWN_SDID_105_4:
1022 			//iwl105_bgn_d_cfg
1023 				sc->limits = &iwn2030_sensitivity_limits;
1024 				sc->base_params = &iwn2000_base_params;
1025 				sc->fwname = "iwn105fw";
1026 				break;
1027 			default:
1028 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1029 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1030 				    sc->subdevice_id,sc->hw_type);
1031 				return ENOTSUP;
1032 		}
1033 		break;
1034 
1035 /* 135 Series */
1036 /* XXX: This series will need adjustment for rate.
1037  * see rx_with_siso_diversity in linux kernel
1038  */
1039 	case IWN_DID_135_1:
1040 	case IWN_DID_135_2:
1041 		switch(sc->subdevice_id) {
1042 			case IWN_SDID_135_1:
1043 			case IWN_SDID_135_2:
1044 			case IWN_SDID_135_3:
1045 				sc->limits = &iwn2030_sensitivity_limits;
1046 				sc->base_params = &iwn2030_base_params;
1047 				sc->fwname = "iwn135fw";
1048 				break;
1049 			default:
1050 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1051 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1052 				    sc->subdevice_id,sc->hw_type);
1053 				return ENOTSUP;
1054 		}
1055 		break;
1056 
1057 /* 2x00 Series */
1058 	case IWN_DID_2x00_1:
1059 	case IWN_DID_2x00_2:
1060 		switch(sc->subdevice_id) {
1061 			case IWN_SDID_2x00_1:
1062 			case IWN_SDID_2x00_2:
1063 			case IWN_SDID_2x00_3:
1064 			//iwl2000_2bgn_cfg
1065 			case IWN_SDID_2x00_4:
1066 			//iwl2000_2bgn_d_cfg
1067 				sc->limits = &iwn2030_sensitivity_limits;
1068 				sc->base_params = &iwn2000_base_params;
1069 				sc->fwname = "iwn2000fw";
1070 				break;
1071 			default:
1072 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1073 				    "0x%04x rev %d not supported (subdevice) \n",
1074 				    pid, sc->subdevice_id, sc->hw_type);
1075 				return ENOTSUP;
1076 		}
1077 		break;
1078 /* 2x30 Series */
1079 	case IWN_DID_2x30_1:
1080 	case IWN_DID_2x30_2:
1081 		switch(sc->subdevice_id) {
1082 			case IWN_SDID_2x30_1:
1083 			case IWN_SDID_2x30_3:
1084 			case IWN_SDID_2x30_5:
1085 			//iwl100_bgn_cfg
1086 			case IWN_SDID_2x30_2:
1087 			case IWN_SDID_2x30_4:
1088 			case IWN_SDID_2x30_6:
1089 			//iwl100_bg_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2030_base_params;
1092 				sc->fwname = "iwn2030fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1097 				    sc->subdevice_id,sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 5x00 Series */
1102 	case IWN_DID_5x00_1:
1103 	case IWN_DID_5x00_2:
1104 	case IWN_DID_5x00_3:
1105 	case IWN_DID_5x00_4:
1106 		sc->limits = &iwn5000_sensitivity_limits;
1107 		sc->base_params = &iwn5000_base_params;
1108 		sc->fwname = "iwn5000fw";
1109 		switch(sc->subdevice_id) {
1110 			case IWN_SDID_5x00_1:
1111 			case IWN_SDID_5x00_2:
1112 			case IWN_SDID_5x00_3:
1113 			case IWN_SDID_5x00_4:
1114 			case IWN_SDID_5x00_9:
1115 			case IWN_SDID_5x00_10:
1116 			case IWN_SDID_5x00_11:
1117 			case IWN_SDID_5x00_12:
1118 			case IWN_SDID_5x00_17:
1119 			case IWN_SDID_5x00_18:
1120 			case IWN_SDID_5x00_19:
1121 			case IWN_SDID_5x00_20:
1122 			//iwl5100_agn_cfg
1123 				sc->txchainmask = IWN_ANT_B;
1124 				sc->rxchainmask = IWN_ANT_AB;
1125 				break;
1126 			case IWN_SDID_5x00_5:
1127 			case IWN_SDID_5x00_6:
1128 			case IWN_SDID_5x00_13:
1129 			case IWN_SDID_5x00_14:
1130 			case IWN_SDID_5x00_21:
1131 			case IWN_SDID_5x00_22:
1132 			//iwl5100_bgn_cfg
1133 				sc->txchainmask = IWN_ANT_B;
1134 				sc->rxchainmask = IWN_ANT_AB;
1135 				break;
1136 			case IWN_SDID_5x00_7:
1137 			case IWN_SDID_5x00_8:
1138 			case IWN_SDID_5x00_15:
1139 			case IWN_SDID_5x00_16:
1140 			case IWN_SDID_5x00_23:
1141 			case IWN_SDID_5x00_24:
1142 			//iwl5100_abg_cfg
1143 				sc->txchainmask = IWN_ANT_B;
1144 				sc->rxchainmask = IWN_ANT_AB;
1145 				break;
1146 			case IWN_SDID_5x00_25:
1147 			case IWN_SDID_5x00_26:
1148 			case IWN_SDID_5x00_27:
1149 			case IWN_SDID_5x00_28:
1150 			case IWN_SDID_5x00_29:
1151 			case IWN_SDID_5x00_30:
1152 			case IWN_SDID_5x00_31:
1153 			case IWN_SDID_5x00_32:
1154 			case IWN_SDID_5x00_33:
1155 			case IWN_SDID_5x00_34:
1156 			case IWN_SDID_5x00_35:
1157 			case IWN_SDID_5x00_36:
1158 			//iwl5300_agn_cfg
1159 				sc->txchainmask = IWN_ANT_ABC;
1160 				sc->rxchainmask = IWN_ANT_ABC;
1161 				break;
1162 			default:
1163 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1164 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1165 				    sc->subdevice_id,sc->hw_type);
1166 				return ENOTSUP;
1167 		}
1168 		break;
1169 /* 5x50 Series */
1170 	case IWN_DID_5x50_1:
1171 	case IWN_DID_5x50_2:
1172 	case IWN_DID_5x50_3:
1173 	case IWN_DID_5x50_4:
1174 		sc->limits = &iwn5000_sensitivity_limits;
1175 		sc->base_params = &iwn5000_base_params;
1176 		sc->fwname = "iwn5000fw";
1177 		switch(sc->subdevice_id) {
1178 			case IWN_SDID_5x50_1:
1179 			case IWN_SDID_5x50_2:
1180 			case IWN_SDID_5x50_3:
1181 			//iwl5350_agn_cfg
1182 				sc->limits = &iwn5000_sensitivity_limits;
1183 				sc->base_params = &iwn5000_base_params;
1184 				sc->fwname = "iwn5000fw";
1185 				break;
1186 			case IWN_SDID_5x50_4:
1187 			case IWN_SDID_5x50_5:
1188 			case IWN_SDID_5x50_8:
1189 			case IWN_SDID_5x50_9:
1190 			case IWN_SDID_5x50_10:
1191 			case IWN_SDID_5x50_11:
1192 			//iwl5150_agn_cfg
1193 			case IWN_SDID_5x50_6:
1194 			case IWN_SDID_5x50_7:
1195 			case IWN_SDID_5x50_12:
1196 			case IWN_SDID_5x50_13:
1197 			//iwl5150_abg_cfg
1198 				sc->limits = &iwn5000_sensitivity_limits;
1199 				sc->fwname = "iwn5150fw";
1200 				sc->base_params = &iwn_5x50_base_params;
1201 				break;
1202 			default:
1203 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1204 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1205 				    sc->subdevice_id,sc->hw_type);
1206 				return ENOTSUP;
1207 		}
1208 		break;
1209 	default:
1210 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1211 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1212 		     sc->hw_type);
1213 		return ENOTSUP;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static void
1219 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1220 {
1221 	struct iwn_ops *ops = &sc->ops;
1222 
1223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1224 
1225 	ops->load_firmware = iwn4965_load_firmware;
1226 	ops->read_eeprom = iwn4965_read_eeprom;
1227 	ops->post_alive = iwn4965_post_alive;
1228 	ops->nic_config = iwn4965_nic_config;
1229 	ops->update_sched = iwn4965_update_sched;
1230 	ops->get_temperature = iwn4965_get_temperature;
1231 	ops->get_rssi = iwn4965_get_rssi;
1232 	ops->set_txpower = iwn4965_set_txpower;
1233 	ops->init_gains = iwn4965_init_gains;
1234 	ops->set_gains = iwn4965_set_gains;
1235 	ops->rxon_assoc = iwn4965_rxon_assoc;
1236 	ops->add_node = iwn4965_add_node;
1237 	ops->tx_done = iwn4965_tx_done;
1238 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1239 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1240 	sc->ntxqs = IWN4965_NTXQUEUES;
1241 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1242 	sc->ndmachnls = IWN4965_NDMACHNLS;
1243 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1244 	sc->rxonsz = IWN4965_RXONSZ;
1245 	sc->schedsz = IWN4965_SCHEDSZ;
1246 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1247 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1248 	sc->fwsz = IWN4965_FWSZ;
1249 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1250 	sc->limits = &iwn4965_sensitivity_limits;
1251 	sc->fwname = "iwn4965fw";
1252 	/* Override chains masks, ROM is known to be broken. */
1253 	sc->txchainmask = IWN_ANT_AB;
1254 	sc->rxchainmask = IWN_ANT_ABC;
1255 	/* Enable normal btcoex */
1256 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1257 
1258 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1259 }
1260 
1261 static void
1262 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1263 {
1264 	struct iwn_ops *ops = &sc->ops;
1265 
1266 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1267 
1268 	ops->load_firmware = iwn5000_load_firmware;
1269 	ops->read_eeprom = iwn5000_read_eeprom;
1270 	ops->post_alive = iwn5000_post_alive;
1271 	ops->nic_config = iwn5000_nic_config;
1272 	ops->update_sched = iwn5000_update_sched;
1273 	ops->get_temperature = iwn5000_get_temperature;
1274 	ops->get_rssi = iwn5000_get_rssi;
1275 	ops->set_txpower = iwn5000_set_txpower;
1276 	ops->init_gains = iwn5000_init_gains;
1277 	ops->set_gains = iwn5000_set_gains;
1278 	ops->rxon_assoc = iwn5000_rxon_assoc;
1279 	ops->add_node = iwn5000_add_node;
1280 	ops->tx_done = iwn5000_tx_done;
1281 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1282 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1283 	sc->ntxqs = IWN5000_NTXQUEUES;
1284 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1285 	sc->ndmachnls = IWN5000_NDMACHNLS;
1286 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1287 	sc->rxonsz = IWN5000_RXONSZ;
1288 	sc->schedsz = IWN5000_SCHEDSZ;
1289 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1290 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1291 	sc->fwsz = IWN5000_FWSZ;
1292 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1293 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1294 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1295 
1296 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1297 }
1298 
1299 /*
1300  * Attach the interface to 802.11 radiotap.
1301  */
1302 static void
1303 iwn_radiotap_attach(struct iwn_softc *sc)
1304 {
1305 
1306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1307 	ieee80211_radiotap_attach(&sc->sc_ic,
1308 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1309 		IWN_TX_RADIOTAP_PRESENT,
1310 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1311 		IWN_RX_RADIOTAP_PRESENT);
1312 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1313 }
1314 
1315 static void
1316 iwn_sysctlattach(struct iwn_softc *sc)
1317 {
1318 #ifdef	IWN_DEBUG
1319 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1320 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1321 
1322 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1323 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1324 		"control debugging printfs");
1325 #endif
1326 }
1327 
1328 static struct ieee80211vap *
1329 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1330     enum ieee80211_opmode opmode, int flags,
1331     const uint8_t bssid[IEEE80211_ADDR_LEN],
1332     const uint8_t mac[IEEE80211_ADDR_LEN])
1333 {
1334 	struct iwn_softc *sc = ic->ic_softc;
1335 	struct iwn_vap *ivp;
1336 	struct ieee80211vap *vap;
1337 
1338 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1339 		return NULL;
1340 
1341 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1342 	vap = &ivp->iv_vap;
1343 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1344 	ivp->ctx = IWN_RXON_BSS_CTX;
1345 	vap->iv_bmissthreshold = 10;		/* override default */
1346 	/* Override with driver methods. */
1347 	ivp->iv_newstate = vap->iv_newstate;
1348 	vap->iv_newstate = iwn_newstate;
1349 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1350 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1351 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1352 
1353 	ieee80211_ratectl_init(vap);
1354 	/* Complete setup. */
1355 	ieee80211_vap_attach(vap, ieee80211_media_change,
1356 	    ieee80211_media_status, mac);
1357 	ic->ic_opmode = opmode;
1358 	return vap;
1359 }
1360 
1361 static void
1362 iwn_vap_delete(struct ieee80211vap *vap)
1363 {
1364 	struct iwn_vap *ivp = IWN_VAP(vap);
1365 
1366 	ieee80211_ratectl_deinit(vap);
1367 	ieee80211_vap_detach(vap);
1368 	free(ivp, M_80211_VAP);
1369 }
1370 
1371 static void
1372 iwn_xmit_queue_drain(struct iwn_softc *sc)
1373 {
1374 	struct mbuf *m;
1375 	struct ieee80211_node *ni;
1376 
1377 	IWN_LOCK_ASSERT(sc);
1378 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1379 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1380 		ieee80211_free_node(ni);
1381 		m_freem(m);
1382 	}
1383 }
1384 
1385 static int
1386 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1387 {
1388 
1389 	IWN_LOCK_ASSERT(sc);
1390 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1391 }
1392 
1393 static int
1394 iwn_detach(device_t dev)
1395 {
1396 	struct iwn_softc *sc = device_get_softc(dev);
1397 	int qid;
1398 
1399 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1400 
1401 	if (sc->sc_ic.ic_softc != NULL) {
1402 		/* Free the mbuf queue and node references */
1403 		IWN_LOCK(sc);
1404 		iwn_xmit_queue_drain(sc);
1405 		IWN_UNLOCK(sc);
1406 
1407 		iwn_stop(sc);
1408 
1409 		taskqueue_drain_all(sc->sc_tq);
1410 		taskqueue_free(sc->sc_tq);
1411 
1412 		callout_drain(&sc->watchdog_to);
1413 		callout_drain(&sc->scan_timeout);
1414 		callout_drain(&sc->calib_to);
1415 		ieee80211_ifdetach(&sc->sc_ic);
1416 	}
1417 
1418 	/* Uninstall interrupt handler. */
1419 	if (sc->irq != NULL) {
1420 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1421 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1422 		    sc->irq);
1423 		pci_release_msi(dev);
1424 	}
1425 
1426 	/* Free DMA resources. */
1427 	iwn_free_rx_ring(sc, &sc->rxq);
1428 	for (qid = 0; qid < sc->ntxqs; qid++)
1429 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1430 	iwn_free_sched(sc);
1431 	iwn_free_kw(sc);
1432 	if (sc->ict != NULL)
1433 		iwn_free_ict(sc);
1434 	iwn_free_fwmem(sc);
1435 
1436 	if (sc->mem != NULL)
1437 		bus_release_resource(dev, SYS_RES_MEMORY,
1438 		    rman_get_rid(sc->mem), sc->mem);
1439 
1440 	if (sc->sc_cdev) {
1441 		destroy_dev(sc->sc_cdev);
1442 		sc->sc_cdev = NULL;
1443 	}
1444 
1445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1446 	IWN_LOCK_DESTROY(sc);
1447 	return 0;
1448 }
1449 
1450 static int
1451 iwn_shutdown(device_t dev)
1452 {
1453 	struct iwn_softc *sc = device_get_softc(dev);
1454 
1455 	iwn_stop(sc);
1456 	return 0;
1457 }
1458 
1459 static int
1460 iwn_suspend(device_t dev)
1461 {
1462 	struct iwn_softc *sc = device_get_softc(dev);
1463 
1464 	ieee80211_suspend_all(&sc->sc_ic);
1465 	return 0;
1466 }
1467 
1468 static int
1469 iwn_resume(device_t dev)
1470 {
1471 	struct iwn_softc *sc = device_get_softc(dev);
1472 
1473 	/* Clear device-specific "PCI retry timeout" register (41h). */
1474 	pci_write_config(dev, 0x41, 0, 1);
1475 
1476 	ieee80211_resume_all(&sc->sc_ic);
1477 	return 0;
1478 }
1479 
1480 static int
1481 iwn_nic_lock(struct iwn_softc *sc)
1482 {
1483 	int ntries;
1484 
1485 	/* Request exclusive access to NIC. */
1486 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1487 
1488 	/* Spin until we actually get the lock. */
1489 	for (ntries = 0; ntries < 1000; ntries++) {
1490 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1491 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1492 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1493 			return 0;
1494 		DELAY(10);
1495 	}
1496 	return ETIMEDOUT;
1497 }
1498 
1499 static __inline void
1500 iwn_nic_unlock(struct iwn_softc *sc)
1501 {
1502 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1503 }
1504 
1505 static __inline uint32_t
1506 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1507 {
1508 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1509 	IWN_BARRIER_READ_WRITE(sc);
1510 	return IWN_READ(sc, IWN_PRPH_RDATA);
1511 }
1512 
1513 static __inline void
1514 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1515 {
1516 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1517 	IWN_BARRIER_WRITE(sc);
1518 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1519 }
1520 
1521 static __inline void
1522 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1523 {
1524 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1525 }
1526 
1527 static __inline void
1528 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1529 {
1530 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1531 }
1532 
1533 static __inline void
1534 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1535     const uint32_t *data, int count)
1536 {
1537 	for (; count > 0; count--, data++, addr += 4)
1538 		iwn_prph_write(sc, addr, *data);
1539 }
1540 
1541 static __inline uint32_t
1542 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1543 {
1544 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1545 	IWN_BARRIER_READ_WRITE(sc);
1546 	return IWN_READ(sc, IWN_MEM_RDATA);
1547 }
1548 
1549 static __inline void
1550 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1551 {
1552 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1553 	IWN_BARRIER_WRITE(sc);
1554 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1555 }
1556 
1557 static __inline void
1558 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1559 {
1560 	uint32_t tmp;
1561 
1562 	tmp = iwn_mem_read(sc, addr & ~3);
1563 	if (addr & 3)
1564 		tmp = (tmp & 0x0000ffff) | data << 16;
1565 	else
1566 		tmp = (tmp & 0xffff0000) | data;
1567 	iwn_mem_write(sc, addr & ~3, tmp);
1568 }
1569 
1570 static __inline void
1571 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1572     int count)
1573 {
1574 	for (; count > 0; count--, addr += 4)
1575 		*data++ = iwn_mem_read(sc, addr);
1576 }
1577 
1578 static __inline void
1579 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1580     int count)
1581 {
1582 	for (; count > 0; count--, addr += 4)
1583 		iwn_mem_write(sc, addr, val);
1584 }
1585 
1586 static int
1587 iwn_eeprom_lock(struct iwn_softc *sc)
1588 {
1589 	int i, ntries;
1590 
1591 	for (i = 0; i < 100; i++) {
1592 		/* Request exclusive access to EEPROM. */
1593 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1594 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1595 
1596 		/* Spin until we actually get the lock. */
1597 		for (ntries = 0; ntries < 100; ntries++) {
1598 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1599 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1600 				return 0;
1601 			DELAY(10);
1602 		}
1603 	}
1604 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1605 	return ETIMEDOUT;
1606 }
1607 
1608 static __inline void
1609 iwn_eeprom_unlock(struct iwn_softc *sc)
1610 {
1611 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1612 }
1613 
1614 /*
1615  * Initialize access by host to One Time Programmable ROM.
1616  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1617  */
1618 static int
1619 iwn_init_otprom(struct iwn_softc *sc)
1620 {
1621 	uint16_t prev, base, next;
1622 	int count, error;
1623 
1624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1625 
1626 	/* Wait for clock stabilization before accessing prph. */
1627 	if ((error = iwn_clock_wait(sc)) != 0)
1628 		return error;
1629 
1630 	if ((error = iwn_nic_lock(sc)) != 0)
1631 		return error;
1632 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1633 	DELAY(5);
1634 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	iwn_nic_unlock(sc);
1636 
1637 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1638 	if (sc->base_params->shadow_ram_support) {
1639 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1640 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1641 	}
1642 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1643 	/* Clear ECC status. */
1644 	IWN_SETBITS(sc, IWN_OTP_GP,
1645 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1646 
1647 	/*
1648 	 * Find the block before last block (contains the EEPROM image)
1649 	 * for HW without OTP shadow RAM.
1650 	 */
1651 	if (! sc->base_params->shadow_ram_support) {
1652 		/* Switch to absolute addressing mode. */
1653 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1654 		base = prev = 0;
1655 		for (count = 0; count < sc->base_params->max_ll_items;
1656 		    count++) {
1657 			error = iwn_read_prom_data(sc, base, &next, 2);
1658 			if (error != 0)
1659 				return error;
1660 			if (next == 0)	/* End of linked-list. */
1661 				break;
1662 			prev = base;
1663 			base = le16toh(next);
1664 		}
1665 		if (count == 0 || count == sc->base_params->max_ll_items)
1666 			return EIO;
1667 		/* Skip "next" word. */
1668 		sc->prom_base = prev + 1;
1669 	}
1670 
1671 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1672 
1673 	return 0;
1674 }
1675 
1676 static int
1677 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1678 {
1679 	uint8_t *out = data;
1680 	uint32_t val, tmp;
1681 	int ntries;
1682 
1683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1684 
1685 	addr += sc->prom_base;
1686 	for (; count > 0; count -= 2, addr++) {
1687 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1688 		for (ntries = 0; ntries < 20; ntries++) {
1689 			val = IWN_READ(sc, IWN_EEPROM);
1690 			if (val & IWN_EEPROM_READ_VALID)
1691 				break;
1692 			DELAY(5);
1693 		}
1694 		if (ntries == 20) {
1695 			device_printf(sc->sc_dev,
1696 			    "timeout reading ROM at 0x%x\n", addr);
1697 			return ETIMEDOUT;
1698 		}
1699 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1700 			/* OTPROM, check for ECC errors. */
1701 			tmp = IWN_READ(sc, IWN_OTP_GP);
1702 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1703 				device_printf(sc->sc_dev,
1704 				    "OTPROM ECC error at 0x%x\n", addr);
1705 				return EIO;
1706 			}
1707 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1708 				/* Correctable ECC error, clear bit. */
1709 				IWN_SETBITS(sc, IWN_OTP_GP,
1710 				    IWN_OTP_GP_ECC_CORR_STTS);
1711 			}
1712 		}
1713 		*out++ = val >> 16;
1714 		if (count > 1)
1715 			*out++ = val >> 24;
1716 	}
1717 
1718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1719 
1720 	return 0;
1721 }
1722 
1723 static void
1724 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1725 {
1726 	if (error != 0)
1727 		return;
1728 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1729 	*(bus_addr_t *)arg = segs[0].ds_addr;
1730 }
1731 
1732 static int
1733 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1734     void **kvap, bus_size_t size, bus_size_t alignment)
1735 {
1736 	int error;
1737 
1738 	dma->tag = NULL;
1739 	dma->size = size;
1740 
1741 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1742 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1743 	    1, size, 0, NULL, NULL, &dma->tag);
1744 	if (error != 0)
1745 		goto fail;
1746 
1747 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1748 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1749 	if (error != 0)
1750 		goto fail;
1751 
1752 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1753 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1754 	if (error != 0)
1755 		goto fail;
1756 
1757 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1758 
1759 	if (kvap != NULL)
1760 		*kvap = dma->vaddr;
1761 
1762 	return 0;
1763 
1764 fail:	iwn_dma_contig_free(dma);
1765 	return error;
1766 }
1767 
1768 static void
1769 iwn_dma_contig_free(struct iwn_dma_info *dma)
1770 {
1771 	if (dma->vaddr != NULL) {
1772 		bus_dmamap_sync(dma->tag, dma->map,
1773 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774 		bus_dmamap_unload(dma->tag, dma->map);
1775 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1776 		dma->vaddr = NULL;
1777 	}
1778 	if (dma->tag != NULL) {
1779 		bus_dma_tag_destroy(dma->tag);
1780 		dma->tag = NULL;
1781 	}
1782 }
1783 
1784 static int
1785 iwn_alloc_sched(struct iwn_softc *sc)
1786 {
1787 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1788 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1789 	    sc->schedsz, 1024);
1790 }
1791 
1792 static void
1793 iwn_free_sched(struct iwn_softc *sc)
1794 {
1795 	iwn_dma_contig_free(&sc->sched_dma);
1796 }
1797 
1798 static int
1799 iwn_alloc_kw(struct iwn_softc *sc)
1800 {
1801 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1802 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1803 }
1804 
1805 static void
1806 iwn_free_kw(struct iwn_softc *sc)
1807 {
1808 	iwn_dma_contig_free(&sc->kw_dma);
1809 }
1810 
1811 static int
1812 iwn_alloc_ict(struct iwn_softc *sc)
1813 {
1814 	/* ICT table must be aligned on a 4KB boundary. */
1815 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1816 	    IWN_ICT_SIZE, 4096);
1817 }
1818 
1819 static void
1820 iwn_free_ict(struct iwn_softc *sc)
1821 {
1822 	iwn_dma_contig_free(&sc->ict_dma);
1823 }
1824 
1825 static int
1826 iwn_alloc_fwmem(struct iwn_softc *sc)
1827 {
1828 	/* Must be aligned on a 16-byte boundary. */
1829 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1830 }
1831 
1832 static void
1833 iwn_free_fwmem(struct iwn_softc *sc)
1834 {
1835 	iwn_dma_contig_free(&sc->fw_dma);
1836 }
1837 
1838 static int
1839 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1840 {
1841 	bus_size_t size;
1842 	int i, error;
1843 
1844 	ring->cur = 0;
1845 
1846 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1847 
1848 	/* Allocate RX descriptors (256-byte aligned). */
1849 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1850 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1851 	    size, 256);
1852 	if (error != 0) {
1853 		device_printf(sc->sc_dev,
1854 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1855 		    __func__, error);
1856 		goto fail;
1857 	}
1858 
1859 	/* Allocate RX status area (16-byte aligned). */
1860 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1861 	    sizeof (struct iwn_rx_status), 16);
1862 	if (error != 0) {
1863 		device_printf(sc->sc_dev,
1864 		    "%s: could not allocate RX status DMA memory, error %d\n",
1865 		    __func__, error);
1866 		goto fail;
1867 	}
1868 
1869 	/* Create RX buffer DMA tag. */
1870 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1871 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1872 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1873 	if (error != 0) {
1874 		device_printf(sc->sc_dev,
1875 		    "%s: could not create RX buf DMA tag, error %d\n",
1876 		    __func__, error);
1877 		goto fail;
1878 	}
1879 
1880 	/*
1881 	 * Allocate and map RX buffers.
1882 	 */
1883 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1884 		struct iwn_rx_data *data = &ring->data[i];
1885 		bus_addr_t paddr;
1886 
1887 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1888 		if (error != 0) {
1889 			device_printf(sc->sc_dev,
1890 			    "%s: could not create RX buf DMA map, error %d\n",
1891 			    __func__, error);
1892 			goto fail;
1893 		}
1894 
1895 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1896 		    IWN_RBUF_SIZE);
1897 		if (data->m == NULL) {
1898 			device_printf(sc->sc_dev,
1899 			    "%s: could not allocate RX mbuf\n", __func__);
1900 			error = ENOBUFS;
1901 			goto fail;
1902 		}
1903 
1904 		error = bus_dmamap_load(ring->data_dmat, data->map,
1905 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1906 		    &paddr, BUS_DMA_NOWAIT);
1907 		if (error != 0 && error != EFBIG) {
1908 			device_printf(sc->sc_dev,
1909 			    "%s: can't map mbuf, error %d\n", __func__,
1910 			    error);
1911 			goto fail;
1912 		}
1913 
1914 		bus_dmamap_sync(ring->data_dmat, data->map,
1915 		    BUS_DMASYNC_PREREAD);
1916 
1917 		/* Set physical address of RX buffer (256-byte aligned). */
1918 		ring->desc[i] = htole32(paddr >> 8);
1919 	}
1920 
1921 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1922 	    BUS_DMASYNC_PREWRITE);
1923 
1924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1925 
1926 	return 0;
1927 
1928 fail:	iwn_free_rx_ring(sc, ring);
1929 
1930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1931 
1932 	return error;
1933 }
1934 
1935 static void
1936 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1937 {
1938 	int ntries;
1939 
1940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1941 
1942 	if (iwn_nic_lock(sc) == 0) {
1943 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1944 		for (ntries = 0; ntries < 1000; ntries++) {
1945 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1946 			    IWN_FH_RX_STATUS_IDLE)
1947 				break;
1948 			DELAY(10);
1949 		}
1950 		iwn_nic_unlock(sc);
1951 	}
1952 	ring->cur = 0;
1953 	sc->last_rx_valid = 0;
1954 }
1955 
1956 static void
1957 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1958 {
1959 	int i;
1960 
1961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1962 
1963 	iwn_dma_contig_free(&ring->desc_dma);
1964 	iwn_dma_contig_free(&ring->stat_dma);
1965 
1966 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1967 		struct iwn_rx_data *data = &ring->data[i];
1968 
1969 		if (data->m != NULL) {
1970 			bus_dmamap_sync(ring->data_dmat, data->map,
1971 			    BUS_DMASYNC_POSTREAD);
1972 			bus_dmamap_unload(ring->data_dmat, data->map);
1973 			m_freem(data->m);
1974 			data->m = NULL;
1975 		}
1976 		if (data->map != NULL)
1977 			bus_dmamap_destroy(ring->data_dmat, data->map);
1978 	}
1979 	if (ring->data_dmat != NULL) {
1980 		bus_dma_tag_destroy(ring->data_dmat);
1981 		ring->data_dmat = NULL;
1982 	}
1983 }
1984 
1985 static int
1986 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1987 {
1988 	bus_addr_t paddr;
1989 	bus_size_t size;
1990 	int i, error;
1991 
1992 	ring->qid = qid;
1993 	ring->queued = 0;
1994 	ring->cur = 0;
1995 
1996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1997 
1998 	/* Allocate TX descriptors (256-byte aligned). */
1999 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2000 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2001 	    size, 256);
2002 	if (error != 0) {
2003 		device_printf(sc->sc_dev,
2004 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2005 		    __func__, error);
2006 		goto fail;
2007 	}
2008 
2009 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2010 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2011 	    size, 4);
2012 	if (error != 0) {
2013 		device_printf(sc->sc_dev,
2014 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2015 		    __func__, error);
2016 		goto fail;
2017 	}
2018 
2019 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2020 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2021 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2022 	if (error != 0) {
2023 		device_printf(sc->sc_dev,
2024 		    "%s: could not create TX buf DMA tag, error %d\n",
2025 		    __func__, error);
2026 		goto fail;
2027 	}
2028 
2029 	paddr = ring->cmd_dma.paddr;
2030 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2031 		struct iwn_tx_data *data = &ring->data[i];
2032 
2033 		data->cmd_paddr = paddr;
2034 		data->scratch_paddr = paddr + 12;
2035 		paddr += sizeof (struct iwn_tx_cmd);
2036 
2037 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2038 		if (error != 0) {
2039 			device_printf(sc->sc_dev,
2040 			    "%s: could not create TX buf DMA map, error %d\n",
2041 			    __func__, error);
2042 			goto fail;
2043 		}
2044 	}
2045 
2046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2047 
2048 	return 0;
2049 
2050 fail:	iwn_free_tx_ring(sc, ring);
2051 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2052 	return error;
2053 }
2054 
2055 static void
2056 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2057 {
2058 	int i;
2059 
2060 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2061 
2062 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2063 		struct iwn_tx_data *data = &ring->data[i];
2064 
2065 		if (data->m != NULL) {
2066 			bus_dmamap_sync(ring->data_dmat, data->map,
2067 			    BUS_DMASYNC_POSTWRITE);
2068 			bus_dmamap_unload(ring->data_dmat, data->map);
2069 			m_freem(data->m);
2070 			data->m = NULL;
2071 		}
2072 		if (data->ni != NULL) {
2073 			ieee80211_free_node(data->ni);
2074 			data->ni = NULL;
2075 		}
2076 		data->remapped = 0;
2077 		data->long_retries = 0;
2078 	}
2079 	/* Clear TX descriptors. */
2080 	memset(ring->desc, 0, ring->desc_dma.size);
2081 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2082 	    BUS_DMASYNC_PREWRITE);
2083 	sc->qfullmsk &= ~(1 << ring->qid);
2084 	ring->queued = 0;
2085 	ring->cur = 0;
2086 }
2087 
2088 static void
2089 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2090 {
2091 	int i;
2092 
2093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2094 
2095 	iwn_dma_contig_free(&ring->desc_dma);
2096 	iwn_dma_contig_free(&ring->cmd_dma);
2097 
2098 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2099 		struct iwn_tx_data *data = &ring->data[i];
2100 
2101 		if (data->m != NULL) {
2102 			bus_dmamap_sync(ring->data_dmat, data->map,
2103 			    BUS_DMASYNC_POSTWRITE);
2104 			bus_dmamap_unload(ring->data_dmat, data->map);
2105 			m_freem(data->m);
2106 		}
2107 		if (data->map != NULL)
2108 			bus_dmamap_destroy(ring->data_dmat, data->map);
2109 	}
2110 	if (ring->data_dmat != NULL) {
2111 		bus_dma_tag_destroy(ring->data_dmat);
2112 		ring->data_dmat = NULL;
2113 	}
2114 }
2115 
2116 static void
2117 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2118 {
2119 	struct iwn_tx_ring *ring = &sc->txq[qid];
2120 
2121 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2122 	    __func__, ring->queued, qid));
2123 
2124 	if (qid >= sc->firstaggqueue) {
2125 		struct iwn_ops *ops = &sc->ops;
2126 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2127 
2128 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2129 			uint16_t ssn = tap->txa_start & 0xfff;
2130 			uint8_t tid = tap->txa_tid;
2131 			int *res = tap->txa_private;
2132 
2133 			iwn_nic_lock(sc);
2134 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2135 			iwn_nic_unlock(sc);
2136 
2137 			sc->qid2tap[qid] = NULL;
2138 			free(res, M_DEVBUF);
2139 		}
2140 	}
2141 
2142 	if (ring->queued < IWN_TX_RING_LOMARK) {
2143 		sc->qfullmsk &= ~(1 << qid);
2144 
2145 		if (ring->queued == 0)
2146 			sc->sc_tx_timer = 0;
2147 		else
2148 			sc->sc_tx_timer = 5;
2149 	}
2150 }
2151 
2152 static void
2153 iwn5000_ict_reset(struct iwn_softc *sc)
2154 {
2155 	/* Disable interrupts. */
2156 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2157 
2158 	/* Reset ICT table. */
2159 	memset(sc->ict, 0, IWN_ICT_SIZE);
2160 	sc->ict_cur = 0;
2161 
2162 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2163 	    BUS_DMASYNC_PREWRITE);
2164 
2165 	/* Set physical address of ICT table (4KB aligned). */
2166 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2167 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2168 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2169 
2170 	/* Enable periodic RX interrupt. */
2171 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2172 	/* Switch to ICT interrupt mode in driver. */
2173 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2174 
2175 	/* Re-enable interrupts. */
2176 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2177 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2178 }
2179 
2180 static int
2181 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2182 {
2183 	struct iwn_ops *ops = &sc->ops;
2184 	uint16_t val;
2185 	int error;
2186 
2187 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2188 
2189 	/* Check whether adapter has an EEPROM or an OTPROM. */
2190 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2191 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2192 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2193 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2194 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2195 
2196 	/* Adapter has to be powered on for EEPROM access to work. */
2197 	if ((error = iwn_apm_init(sc)) != 0) {
2198 		device_printf(sc->sc_dev,
2199 		    "%s: could not power ON adapter, error %d\n", __func__,
2200 		    error);
2201 		return error;
2202 	}
2203 
2204 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2205 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2206 		return EIO;
2207 	}
2208 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2209 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2210 		    __func__, error);
2211 		return error;
2212 	}
2213 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2214 		if ((error = iwn_init_otprom(sc)) != 0) {
2215 			device_printf(sc->sc_dev,
2216 			    "%s: could not initialize OTPROM, error %d\n",
2217 			    __func__, error);
2218 			return error;
2219 		}
2220 	}
2221 
2222 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2223 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2224 	/* Check if HT support is bonded out. */
2225 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2226 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2227 
2228 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2229 	sc->rfcfg = le16toh(val);
2230 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2231 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2232 	if (sc->txchainmask == 0)
2233 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2234 	if (sc->rxchainmask == 0)
2235 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2236 
2237 	/* Read MAC address. */
2238 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2239 
2240 	/* Read adapter-specific information from EEPROM. */
2241 	ops->read_eeprom(sc);
2242 
2243 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2244 
2245 	iwn_eeprom_unlock(sc);
2246 
2247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2248 
2249 	return 0;
2250 }
2251 
2252 static void
2253 iwn4965_read_eeprom(struct iwn_softc *sc)
2254 {
2255 	uint32_t addr;
2256 	uint16_t val;
2257 	int i;
2258 
2259 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2260 
2261 	/* Read regulatory domain (4 ASCII characters). */
2262 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2263 
2264 	/* Read the list of authorized channels (20MHz & 40MHz). */
2265 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2266 		addr = iwn4965_regulatory_bands[i];
2267 		iwn_read_eeprom_channels(sc, i, addr);
2268 	}
2269 
2270 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2271 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2272 	sc->maxpwr2GHz = val & 0xff;
2273 	sc->maxpwr5GHz = val >> 8;
2274 	/* Check that EEPROM values are within valid range. */
2275 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2276 		sc->maxpwr5GHz = 38;
2277 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2278 		sc->maxpwr2GHz = 38;
2279 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2280 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2281 
2282 	/* Read samples for each TX power group. */
2283 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2284 	    sizeof sc->bands);
2285 
2286 	/* Read voltage at which samples were taken. */
2287 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2288 	sc->eeprom_voltage = (int16_t)le16toh(val);
2289 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2290 	    sc->eeprom_voltage);
2291 
2292 #ifdef IWN_DEBUG
2293 	/* Print samples. */
2294 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2295 		for (i = 0; i < IWN_NBANDS - 1; i++)
2296 			iwn4965_print_power_group(sc, i);
2297 	}
2298 #endif
2299 
2300 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2301 }
2302 
2303 #ifdef IWN_DEBUG
2304 static void
2305 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2306 {
2307 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2308 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2309 	int j, c;
2310 
2311 	printf("===band %d===\n", i);
2312 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2313 	printf("chan1 num=%d\n", chans[0].num);
2314 	for (c = 0; c < 2; c++) {
2315 		for (j = 0; j < IWN_NSAMPLES; j++) {
2316 			printf("chain %d, sample %d: temp=%d gain=%d "
2317 			    "power=%d pa_det=%d\n", c, j,
2318 			    chans[0].samples[c][j].temp,
2319 			    chans[0].samples[c][j].gain,
2320 			    chans[0].samples[c][j].power,
2321 			    chans[0].samples[c][j].pa_det);
2322 		}
2323 	}
2324 	printf("chan2 num=%d\n", chans[1].num);
2325 	for (c = 0; c < 2; c++) {
2326 		for (j = 0; j < IWN_NSAMPLES; j++) {
2327 			printf("chain %d, sample %d: temp=%d gain=%d "
2328 			    "power=%d pa_det=%d\n", c, j,
2329 			    chans[1].samples[c][j].temp,
2330 			    chans[1].samples[c][j].gain,
2331 			    chans[1].samples[c][j].power,
2332 			    chans[1].samples[c][j].pa_det);
2333 		}
2334 	}
2335 }
2336 #endif
2337 
2338 static void
2339 iwn5000_read_eeprom(struct iwn_softc *sc)
2340 {
2341 	struct iwn5000_eeprom_calib_hdr hdr;
2342 	int32_t volt;
2343 	uint32_t base, addr;
2344 	uint16_t val;
2345 	int i;
2346 
2347 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2348 
2349 	/* Read regulatory domain (4 ASCII characters). */
2350 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2351 	base = le16toh(val);
2352 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2353 	    sc->eeprom_domain, 4);
2354 
2355 	/* Read the list of authorized channels (20MHz & 40MHz). */
2356 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2357 		addr =  base + sc->base_params->regulatory_bands[i];
2358 		iwn_read_eeprom_channels(sc, i, addr);
2359 	}
2360 
2361 	/* Read enhanced TX power information for 6000 Series. */
2362 	if (sc->base_params->enhanced_TX_power)
2363 		iwn_read_eeprom_enhinfo(sc);
2364 
2365 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2366 	base = le16toh(val);
2367 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2368 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2369 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2370 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2371 	sc->calib_ver = hdr.version;
2372 
2373 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2374 		sc->eeprom_voltage = le16toh(hdr.volt);
2375 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2376 		sc->eeprom_temp_high=le16toh(val);
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2378 		sc->eeprom_temp = le16toh(val);
2379 	}
2380 
2381 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2382 		/* Compute temperature offset. */
2383 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2384 		sc->eeprom_temp = le16toh(val);
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2386 		volt = le16toh(val);
2387 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2388 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2389 		    sc->eeprom_temp, volt, sc->temp_off);
2390 	} else {
2391 		/* Read crystal calibration. */
2392 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2393 		    &sc->eeprom_crystal, sizeof (uint32_t));
2394 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2395 		    le32toh(sc->eeprom_crystal));
2396 	}
2397 
2398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2399 
2400 }
2401 
2402 /*
2403  * Translate EEPROM flags to net80211.
2404  */
2405 static uint32_t
2406 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2407 {
2408 	uint32_t nflags;
2409 
2410 	nflags = 0;
2411 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2412 		nflags |= IEEE80211_CHAN_PASSIVE;
2413 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2414 		nflags |= IEEE80211_CHAN_NOADHOC;
2415 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2416 		nflags |= IEEE80211_CHAN_DFS;
2417 		/* XXX apparently IBSS may still be marked */
2418 		nflags |= IEEE80211_CHAN_NOADHOC;
2419 	}
2420 
2421 	return nflags;
2422 }
2423 
2424 static void
2425 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2426     struct ieee80211_channel chans[])
2427 {
2428 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2429 	const struct iwn_chan_band *band = &iwn_bands[n];
2430 	uint8_t bands[IEEE80211_MODE_BYTES];
2431 	uint8_t chan;
2432 	int i, error, nflags;
2433 
2434 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2435 
2436 	memset(bands, 0, sizeof(bands));
2437 	if (n == 0) {
2438 		setbit(bands, IEEE80211_MODE_11B);
2439 		setbit(bands, IEEE80211_MODE_11G);
2440 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2441 			setbit(bands, IEEE80211_MODE_11NG);
2442 	} else {
2443 		setbit(bands, IEEE80211_MODE_11A);
2444 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2445 			setbit(bands, IEEE80211_MODE_11NA);
2446 	}
2447 
2448 	for (i = 0; i < band->nchan; i++) {
2449 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2450 			DPRINTF(sc, IWN_DEBUG_RESET,
2451 			    "skip chan %d flags 0x%x maxpwr %d\n",
2452 			    band->chan[i], channels[i].flags,
2453 			    channels[i].maxpwr);
2454 			continue;
2455 		}
2456 
2457 		chan = band->chan[i];
2458 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2459 		error = ieee80211_add_channel(chans, maxchans, nchans,
2460 		    chan, 0, channels[i].maxpwr, nflags, bands);
2461 		if (error != 0)
2462 			break;
2463 
2464 		/* Save maximum allowed TX power for this channel. */
2465 		/* XXX wrong */
2466 		sc->maxpwr[chan] = channels[i].maxpwr;
2467 
2468 		DPRINTF(sc, IWN_DEBUG_RESET,
2469 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2470 		    channels[i].flags, channels[i].maxpwr);
2471 	}
2472 
2473 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2474 
2475 }
2476 
2477 static void
2478 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2479     struct ieee80211_channel chans[])
2480 {
2481 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2482 	const struct iwn_chan_band *band = &iwn_bands[n];
2483 	uint8_t chan;
2484 	int i, error, nflags;
2485 
2486 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2487 
2488 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2489 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2490 		return;
2491 	}
2492 
2493 	for (i = 0; i < band->nchan; i++) {
2494 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2495 			DPRINTF(sc, IWN_DEBUG_RESET,
2496 			    "skip chan %d flags 0x%x maxpwr %d\n",
2497 			    band->chan[i], channels[i].flags,
2498 			    channels[i].maxpwr);
2499 			continue;
2500 		}
2501 
2502 		chan = band->chan[i];
2503 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2504 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2505 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2506 		    chan, channels[i].maxpwr, nflags);
2507 		switch (error) {
2508 		case EINVAL:
2509 			device_printf(sc->sc_dev,
2510 			    "%s: no entry for channel %d\n", __func__, chan);
2511 			continue;
2512 		case ENOENT:
2513 			DPRINTF(sc, IWN_DEBUG_RESET,
2514 			    "%s: skip chan %d, extension channel not found\n",
2515 			    __func__, chan);
2516 			continue;
2517 		case ENOBUFS:
2518 			device_printf(sc->sc_dev,
2519 			    "%s: channel table is full!\n", __func__);
2520 			break;
2521 		case 0:
2522 			DPRINTF(sc, IWN_DEBUG_RESET,
2523 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2524 			    chan, channels[i].flags, channels[i].maxpwr);
2525 			/* FALLTHROUGH */
2526 		default:
2527 			break;
2528 		}
2529 	}
2530 
2531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2532 
2533 }
2534 
2535 static void
2536 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2537 {
2538 	struct ieee80211com *ic = &sc->sc_ic;
2539 
2540 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2541 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2542 
2543 	if (n < 5) {
2544 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2545 		    ic->ic_channels);
2546 	} else {
2547 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2548 		    ic->ic_channels);
2549 	}
2550 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2551 }
2552 
2553 static struct iwn_eeprom_chan *
2554 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2555 {
2556 	int band, chan, i, j;
2557 
2558 	if (IEEE80211_IS_CHAN_HT40(c)) {
2559 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2560 		if (IEEE80211_IS_CHAN_HT40D(c))
2561 			chan = c->ic_extieee;
2562 		else
2563 			chan = c->ic_ieee;
2564 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2565 			if (iwn_bands[band].chan[i] == chan)
2566 				return &sc->eeprom_channels[band][i];
2567 		}
2568 	} else {
2569 		for (j = 0; j < 5; j++) {
2570 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2571 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2572 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2573 					return &sc->eeprom_channels[j][i];
2574 			}
2575 		}
2576 	}
2577 	return NULL;
2578 }
2579 
2580 static void
2581 iwn_getradiocaps(struct ieee80211com *ic,
2582     int maxchans, int *nchans, struct ieee80211_channel chans[])
2583 {
2584 	struct iwn_softc *sc = ic->ic_softc;
2585 	int i;
2586 
2587 	/* Parse the list of authorized channels. */
2588 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2589 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2590 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2591 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2592 }
2593 
2594 /*
2595  * Enforce flags read from EEPROM.
2596  */
2597 static int
2598 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2599     int nchan, struct ieee80211_channel chans[])
2600 {
2601 	struct iwn_softc *sc = ic->ic_softc;
2602 	int i;
2603 
2604 	for (i = 0; i < nchan; i++) {
2605 		struct ieee80211_channel *c = &chans[i];
2606 		struct iwn_eeprom_chan *channel;
2607 
2608 		channel = iwn_find_eeprom_channel(sc, c);
2609 		if (channel == NULL) {
2610 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2611 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2612 			return EINVAL;
2613 		}
2614 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 static void
2621 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2622 {
2623 	struct iwn_eeprom_enhinfo enhinfo[35];
2624 	struct ieee80211com *ic = &sc->sc_ic;
2625 	struct ieee80211_channel *c;
2626 	uint16_t val, base;
2627 	int8_t maxpwr;
2628 	uint8_t flags;
2629 	int i, j;
2630 
2631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2632 
2633 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2634 	base = le16toh(val);
2635 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2636 	    enhinfo, sizeof enhinfo);
2637 
2638 	for (i = 0; i < nitems(enhinfo); i++) {
2639 		flags = enhinfo[i].flags;
2640 		if (!(flags & IWN_ENHINFO_VALID))
2641 			continue;	/* Skip invalid entries. */
2642 
2643 		maxpwr = 0;
2644 		if (sc->txchainmask & IWN_ANT_A)
2645 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2646 		if (sc->txchainmask & IWN_ANT_B)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2648 		if (sc->txchainmask & IWN_ANT_C)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2650 		if (sc->ntxchains == 2)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2652 		else if (sc->ntxchains == 3)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2654 
2655 		for (j = 0; j < ic->ic_nchans; j++) {
2656 			c = &ic->ic_channels[j];
2657 			if ((flags & IWN_ENHINFO_5GHZ)) {
2658 				if (!IEEE80211_IS_CHAN_A(c))
2659 					continue;
2660 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2661 				if (!IEEE80211_IS_CHAN_G(c))
2662 					continue;
2663 			} else if (!IEEE80211_IS_CHAN_B(c))
2664 				continue;
2665 			if ((flags & IWN_ENHINFO_HT40)) {
2666 				if (!IEEE80211_IS_CHAN_HT40(c))
2667 					continue;
2668 			} else {
2669 				if (IEEE80211_IS_CHAN_HT40(c))
2670 					continue;
2671 			}
2672 			if (enhinfo[i].chan != 0 &&
2673 			    enhinfo[i].chan != c->ic_ieee)
2674 				continue;
2675 
2676 			DPRINTF(sc, IWN_DEBUG_RESET,
2677 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2678 			    c->ic_flags, maxpwr / 2);
2679 			c->ic_maxregpower = maxpwr / 2;
2680 			c->ic_maxpower = maxpwr;
2681 		}
2682 	}
2683 
2684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2685 
2686 }
2687 
2688 static struct ieee80211_node *
2689 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2690 {
2691 	struct iwn_node *wn;
2692 
2693 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2694 	if (wn == NULL)
2695 		return (NULL);
2696 
2697 	wn->id = IWN_ID_UNDEFINED;
2698 
2699 	return (&wn->ni);
2700 }
2701 
2702 static __inline int
2703 rate2plcp(int rate)
2704 {
2705 	switch (rate & 0xff) {
2706 	case 12:	return 0xd;
2707 	case 18:	return 0xf;
2708 	case 24:	return 0x5;
2709 	case 36:	return 0x7;
2710 	case 48:	return 0x9;
2711 	case 72:	return 0xb;
2712 	case 96:	return 0x1;
2713 	case 108:	return 0x3;
2714 	case 2:		return 10;
2715 	case 4:		return 20;
2716 	case 11:	return 55;
2717 	case 22:	return 110;
2718 	}
2719 	return 0;
2720 }
2721 
2722 static __inline uint8_t
2723 plcp2rate(const uint8_t rate_plcp)
2724 {
2725 	switch (rate_plcp) {
2726 	case 0xd:	return 12;
2727 	case 0xf:	return 18;
2728 	case 0x5:	return 24;
2729 	case 0x7:	return 36;
2730 	case 0x9:	return 48;
2731 	case 0xb:	return 72;
2732 	case 0x1:	return 96;
2733 	case 0x3:	return 108;
2734 	case 10:	return 2;
2735 	case 20:	return 4;
2736 	case 55:	return 11;
2737 	case 110:	return 22;
2738 	default:	return 0;
2739 	}
2740 }
2741 
2742 static int
2743 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2744 {
2745 
2746 	return IWN_LSB(sc->txchainmask);
2747 }
2748 
2749 static int
2750 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2751 {
2752 	int tx;
2753 
2754 	/*
2755 	 * The '2 stream' setup is a bit .. odd.
2756 	 *
2757 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2758 	 * the firmware panics (eg Intel 5100.)
2759 	 *
2760 	 * For NICs that support two antennas, we use ANT_AB.
2761 	 *
2762 	 * For NICs that support three antennas, we use the two that
2763 	 * wasn't the default one.
2764 	 *
2765 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2766 	 * this to only one antenna.
2767 	 */
2768 
2769 	/* Default - transmit on the other antennas */
2770 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2771 
2772 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2773 	if (tx == 0)
2774 		tx = IWN_ANT_AB;
2775 
2776 	/*
2777 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2778 	 * the default chainmask
2779 	 */
2780 	else if (sc->ntxchains == 2)
2781 		tx = sc->txchainmask;
2782 
2783 	return (tx);
2784 }
2785 
2786 
2787 
2788 /*
2789  * Calculate the required PLCP value from the given rate,
2790  * to the given node.
2791  *
2792  * This will take the node configuration (eg 11n, rate table
2793  * setup, etc) into consideration.
2794  */
2795 static uint32_t
2796 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2797     uint8_t rate)
2798 {
2799 	struct ieee80211com *ic = ni->ni_ic;
2800 	uint32_t plcp = 0;
2801 	int ridx;
2802 
2803 	/*
2804 	 * If it's an MCS rate, let's set the plcp correctly
2805 	 * and set the relevant flags based on the node config.
2806 	 */
2807 	if (rate & IEEE80211_RATE_MCS) {
2808 		/*
2809 		 * Set the initial PLCP value to be between 0->31 for
2810 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2811 		 * flag.
2812 		 */
2813 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2814 
2815 		/*
2816 		 * XXX the following should only occur if both
2817 		 * the local configuration _and_ the remote node
2818 		 * advertise these capabilities.  Thus this code
2819 		 * may need fixing!
2820 		 */
2821 
2822 		/*
2823 		 * Set the channel width and guard interval.
2824 		 */
2825 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2826 			plcp |= IWN_RFLAG_HT40;
2827 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2828 				plcp |= IWN_RFLAG_SGI;
2829 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2830 			plcp |= IWN_RFLAG_SGI;
2831 		}
2832 
2833 		/*
2834 		 * Ensure the selected rate matches the link quality
2835 		 * table entries being used.
2836 		 */
2837 		if (rate > 0x8f)
2838 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2839 		else if (rate > 0x87)
2840 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2841 		else
2842 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2843 	} else {
2844 		/*
2845 		 * Set the initial PLCP - fine for both
2846 		 * OFDM and CCK rates.
2847 		 */
2848 		plcp = rate2plcp(rate);
2849 
2850 		/* Set CCK flag if it's CCK */
2851 
2852 		/* XXX It would be nice to have a method
2853 		 * to map the ridx -> phy table entry
2854 		 * so we could just query that, rather than
2855 		 * this hack to check against IWN_RIDX_OFDM6.
2856 		 */
2857 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2858 		    rate & IEEE80211_RATE_VAL);
2859 		if (ridx < IWN_RIDX_OFDM6 &&
2860 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2861 			plcp |= IWN_RFLAG_CCK;
2862 
2863 		/* Set antenna configuration */
2864 		/* XXX TODO: is this the right antenna to use for legacy? */
2865 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2866 	}
2867 
2868 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2869 	    __func__,
2870 	    rate,
2871 	    plcp);
2872 
2873 	return (htole32(plcp));
2874 }
2875 
2876 static void
2877 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2878 {
2879 	/* Doesn't do anything at the moment */
2880 }
2881 
2882 static int
2883 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2884 {
2885 	struct iwn_vap *ivp = IWN_VAP(vap);
2886 	struct ieee80211com *ic = vap->iv_ic;
2887 	struct iwn_softc *sc = ic->ic_softc;
2888 	int error = 0;
2889 
2890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2891 
2892 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2893 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2894 
2895 	IEEE80211_UNLOCK(ic);
2896 	IWN_LOCK(sc);
2897 	callout_stop(&sc->calib_to);
2898 
2899 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2900 
2901 	switch (nstate) {
2902 	case IEEE80211_S_ASSOC:
2903 		if (vap->iv_state != IEEE80211_S_RUN)
2904 			break;
2905 		/* FALLTHROUGH */
2906 	case IEEE80211_S_AUTH:
2907 		if (vap->iv_state == IEEE80211_S_AUTH)
2908 			break;
2909 
2910 		/*
2911 		 * !AUTH -> AUTH transition requires state reset to handle
2912 		 * reassociations correctly.
2913 		 */
2914 		sc->rxon->associd = 0;
2915 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2916 		sc->calib.state = IWN_CALIB_STATE_INIT;
2917 
2918 		/* Wait until we hear a beacon before we transmit */
2919 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2920 			sc->sc_beacon_wait = 1;
2921 
2922 		if ((error = iwn_auth(sc, vap)) != 0) {
2923 			device_printf(sc->sc_dev,
2924 			    "%s: could not move to auth state\n", __func__);
2925 		}
2926 		break;
2927 
2928 	case IEEE80211_S_RUN:
2929 		/*
2930 		 * RUN -> RUN transition; Just restart the timers.
2931 		 */
2932 		if (vap->iv_state == IEEE80211_S_RUN) {
2933 			sc->calib_cnt = 0;
2934 			break;
2935 		}
2936 
2937 		/* Wait until we hear a beacon before we transmit */
2938 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2939 			sc->sc_beacon_wait = 1;
2940 
2941 		/*
2942 		 * !RUN -> RUN requires setting the association id
2943 		 * which is done with a firmware cmd.  We also defer
2944 		 * starting the timers until that work is done.
2945 		 */
2946 		if ((error = iwn_run(sc, vap)) != 0) {
2947 			device_printf(sc->sc_dev,
2948 			    "%s: could not move to run state\n", __func__);
2949 		}
2950 		break;
2951 
2952 	case IEEE80211_S_INIT:
2953 		sc->calib.state = IWN_CALIB_STATE_INIT;
2954 		/*
2955 		 * Purge the xmit queue so we don't have old frames
2956 		 * during a new association attempt.
2957 		 */
2958 		sc->sc_beacon_wait = 0;
2959 		iwn_xmit_queue_drain(sc);
2960 		break;
2961 
2962 	default:
2963 		break;
2964 	}
2965 	IWN_UNLOCK(sc);
2966 	IEEE80211_LOCK(ic);
2967 	if (error != 0){
2968 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2969 		return error;
2970 	}
2971 
2972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2973 
2974 	return ivp->iv_newstate(vap, nstate, arg);
2975 }
2976 
2977 static void
2978 iwn_calib_timeout(void *arg)
2979 {
2980 	struct iwn_softc *sc = arg;
2981 
2982 	IWN_LOCK_ASSERT(sc);
2983 
2984 	/* Force automatic TX power calibration every 60 secs. */
2985 	if (++sc->calib_cnt >= 120) {
2986 		uint32_t flags = 0;
2987 
2988 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2989 		    "sending request for statistics");
2990 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2991 		    sizeof flags, 1);
2992 		sc->calib_cnt = 0;
2993 	}
2994 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2995 	    sc);
2996 }
2997 
2998 /*
2999  * Process an RX_PHY firmware notification.  This is usually immediately
3000  * followed by an MPDU_RX_DONE notification.
3001  */
3002 static void
3003 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3004 {
3005 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3006 
3007 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3008 
3009 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3010 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3011 	sc->last_rx_valid = 1;
3012 }
3013 
3014 /*
3015  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3016  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3017  */
3018 static void
3019 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3020     struct iwn_rx_data *data)
3021 {
3022 	struct epoch_tracker et;
3023 	struct iwn_ops *ops = &sc->ops;
3024 	struct ieee80211com *ic = &sc->sc_ic;
3025 	struct iwn_rx_ring *ring = &sc->rxq;
3026 	struct ieee80211_frame_min *wh;
3027 	struct ieee80211_node *ni;
3028 	struct mbuf *m, *m1;
3029 	struct iwn_rx_stat *stat;
3030 	caddr_t head;
3031 	bus_addr_t paddr;
3032 	uint32_t flags;
3033 	int error, len, rssi, nf;
3034 
3035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3036 
3037 	if (desc->type == IWN_MPDU_RX_DONE) {
3038 		/* Check for prior RX_PHY notification. */
3039 		if (!sc->last_rx_valid) {
3040 			DPRINTF(sc, IWN_DEBUG_ANY,
3041 			    "%s: missing RX_PHY\n", __func__);
3042 			return;
3043 		}
3044 		stat = &sc->last_rx_stat;
3045 	} else
3046 		stat = (struct iwn_rx_stat *)(desc + 1);
3047 
3048 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3049 		device_printf(sc->sc_dev,
3050 		    "%s: invalid RX statistic header, len %d\n", __func__,
3051 		    stat->cfg_phy_len);
3052 		return;
3053 	}
3054 	if (desc->type == IWN_MPDU_RX_DONE) {
3055 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3056 		head = (caddr_t)(mpdu + 1);
3057 		len = le16toh(mpdu->len);
3058 	} else {
3059 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3060 		len = le16toh(stat->len);
3061 	}
3062 
3063 	flags = le32toh(*(uint32_t *)(head + len));
3064 
3065 	/* Discard frames with a bad FCS early. */
3066 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3067 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3068 		    __func__, flags);
3069 		counter_u64_add(ic->ic_ierrors, 1);
3070 		return;
3071 	}
3072 	/* Discard frames that are too short. */
3073 	if (len < sizeof (struct ieee80211_frame_ack)) {
3074 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3075 		    __func__, len);
3076 		counter_u64_add(ic->ic_ierrors, 1);
3077 		return;
3078 	}
3079 
3080 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3081 	if (m1 == NULL) {
3082 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3083 		    __func__);
3084 		counter_u64_add(ic->ic_ierrors, 1);
3085 		return;
3086 	}
3087 	bus_dmamap_unload(ring->data_dmat, data->map);
3088 
3089 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3090 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3091 	if (error != 0 && error != EFBIG) {
3092 		device_printf(sc->sc_dev,
3093 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3094 		m_freem(m1);
3095 
3096 		/* Try to reload the old mbuf. */
3097 		error = bus_dmamap_load(ring->data_dmat, data->map,
3098 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3099 		    &paddr, BUS_DMA_NOWAIT);
3100 		if (error != 0 && error != EFBIG) {
3101 			panic("%s: could not load old RX mbuf", __func__);
3102 		}
3103 		bus_dmamap_sync(ring->data_dmat, data->map,
3104 		    BUS_DMASYNC_PREREAD);
3105 		/* Physical address may have changed. */
3106 		ring->desc[ring->cur] = htole32(paddr >> 8);
3107 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3108 		    BUS_DMASYNC_PREWRITE);
3109 		counter_u64_add(ic->ic_ierrors, 1);
3110 		return;
3111 	}
3112 
3113 	bus_dmamap_sync(ring->data_dmat, data->map,
3114 	    BUS_DMASYNC_PREREAD);
3115 
3116 	m = data->m;
3117 	data->m = m1;
3118 	/* Update RX descriptor. */
3119 	ring->desc[ring->cur] = htole32(paddr >> 8);
3120 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3121 	    BUS_DMASYNC_PREWRITE);
3122 
3123 	/* Finalize mbuf. */
3124 	m->m_data = head;
3125 	m->m_pkthdr.len = m->m_len = len;
3126 
3127 	/* Grab a reference to the source node. */
3128 	wh = mtod(m, struct ieee80211_frame_min *);
3129 	if (len >= sizeof(struct ieee80211_frame_min))
3130 		ni = ieee80211_find_rxnode(ic, wh);
3131 	else
3132 		ni = NULL;
3133 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3134 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3135 
3136 	rssi = ops->get_rssi(sc, stat);
3137 
3138 	if (ieee80211_radiotap_active(ic)) {
3139 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3140 		uint32_t rate = le32toh(stat->rate);
3141 
3142 		tap->wr_flags = 0;
3143 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3144 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3145 		tap->wr_dbm_antsignal = (int8_t)rssi;
3146 		tap->wr_dbm_antnoise = (int8_t)nf;
3147 		tap->wr_tsft = stat->tstamp;
3148 		if (rate & IWN_RFLAG_MCS) {
3149 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3150 			tap->wr_rate |= IEEE80211_RATE_MCS;
3151 		} else
3152 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3153 	}
3154 
3155 	/*
3156 	 * If it's a beacon and we're waiting, then do the
3157 	 * wakeup.  This should unblock raw_xmit/start.
3158 	 */
3159 	if (sc->sc_beacon_wait) {
3160 		uint8_t type, subtype;
3161 		/* NB: Re-assign wh */
3162 		wh = mtod(m, struct ieee80211_frame_min *);
3163 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3164 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3165 		/*
3166 		 * This assumes at this point we've received our own
3167 		 * beacon.
3168 		 */
3169 		DPRINTF(sc, IWN_DEBUG_TRACE,
3170 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3171 		    __func__, type, subtype);
3172 		if (type == IEEE80211_FC0_TYPE_MGT &&
3173 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3174 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3175 			    "%s: waking things up\n", __func__);
3176 			/* queue taskqueue to transmit! */
3177 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3178 		}
3179 	}
3180 
3181 	IWN_UNLOCK(sc);
3182 	NET_EPOCH_ENTER(et);
3183 
3184 	/* Send the frame to the 802.11 layer. */
3185 	if (ni != NULL) {
3186 		if (ni->ni_flags & IEEE80211_NODE_HT)
3187 			m->m_flags |= M_AMPDU;
3188 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3189 		/* Node is no longer needed. */
3190 		ieee80211_free_node(ni);
3191 	} else
3192 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3193 
3194 	NET_EPOCH_EXIT(et);
3195 	IWN_LOCK(sc);
3196 
3197 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3198 
3199 }
3200 
3201 static void
3202 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3203     int idx, int success)
3204 {
3205 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3206 	struct iwn_tx_data *data = &ring->data[idx];
3207 	struct iwn_node *wn;
3208 	struct mbuf *m;
3209 	struct ieee80211_node *ni;
3210 
3211 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3212 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3213 
3214 	/* Unmap and free mbuf. */
3215 	bus_dmamap_sync(ring->data_dmat, data->map,
3216 	    BUS_DMASYNC_POSTWRITE);
3217 	bus_dmamap_unload(ring->data_dmat, data->map);
3218 	m = data->m, data->m = NULL;
3219 	ni = data->ni, data->ni = NULL;
3220 	wn = (void *)ni;
3221 
3222 #if 0
3223 	/* XXX causes significant performance degradation. */
3224 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3225 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3226 	txs->long_retries = data->long_retries - 1;
3227 #else
3228 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3229 #endif
3230 	txs->short_retries = wn->agg[tid].short_retries;
3231 	if (success)
3232 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3233 	else
3234 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3235 
3236 	wn->agg[tid].short_retries = 0;
3237 	data->long_retries = 0;
3238 
3239 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3240 	    __func__, m, ni, idx, ring->qid);
3241 	ieee80211_ratectl_tx_complete(ni, txs);
3242 	ieee80211_tx_complete(ni, m, !success);
3243 }
3244 
3245 /* Process an incoming Compressed BlockAck. */
3246 static void
3247 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3248 {
3249 	struct iwn_tx_ring *ring;
3250 	struct iwn_tx_data *data;
3251 	struct iwn_node *wn;
3252 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3253 	struct ieee80211_tx_ampdu *tap;
3254 	uint64_t bitmap;
3255 	uint8_t tid;
3256 	int i, qid, shift;
3257 	int tx_ok = 0;
3258 
3259 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3260 
3261 	qid = le16toh(ba->qid);
3262 	tap = sc->qid2tap[qid];
3263 	ring = &sc->txq[qid];
3264 	tid = tap->txa_tid;
3265 	wn = (void *)tap->txa_ni;
3266 
3267 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3268 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3269 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3270 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3271 	    wn->agg[tid].startidx);
3272 
3273 	if (wn->agg[tid].bitmap == 0)
3274 		return;
3275 
3276 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3277 	if (shift <= -64)
3278 		shift += 0x100;
3279 
3280 	/*
3281 	 * Walk the bitmap and calculate how many successful attempts
3282 	 * are made.
3283 	 *
3284 	 * Yes, the rate control code doesn't know these are A-MPDU
3285 	 * subframes; due to that long_retries stats are not used here.
3286 	 */
3287 	bitmap = le64toh(ba->bitmap);
3288 	if (shift >= 0)
3289 		bitmap >>= shift;
3290 	else
3291 		bitmap <<= -shift;
3292 	bitmap &= wn->agg[tid].bitmap;
3293 	wn->agg[tid].bitmap = 0;
3294 
3295 	for (i = wn->agg[tid].startidx;
3296 	     bitmap;
3297 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3298 		if ((bitmap & 1) == 0)
3299 			continue;
3300 
3301 		data = &ring->data[i];
3302 		if (__predict_false(data->m == NULL)) {
3303 			/*
3304 			 * There is no frame; skip this entry.
3305 			 *
3306 			 * NB: it is "ok" to have both
3307 			 * 'tx done' + 'compressed BA' replies for frame
3308 			 * with STATE_SCD_QUERY status.
3309 			 */
3310 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3311 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3312 			continue;
3313 		}
3314 
3315 		tx_ok++;
3316 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3317 	}
3318 
3319 	ring->queued -= tx_ok;
3320 	iwn_check_tx_ring(sc, qid);
3321 
3322 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3323 	    "->%s: end; %d ok\n",__func__, tx_ok);
3324 }
3325 
3326 /*
3327  * Process a CALIBRATION_RESULT notification sent by the initialization
3328  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3329  */
3330 static void
3331 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3332 {
3333 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3334 	int len, idx = -1;
3335 
3336 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3337 
3338 	/* Runtime firmware should not send such a notification. */
3339 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3340 		DPRINTF(sc, IWN_DEBUG_TRACE,
3341 		    "->%s received after calib done\n", __func__);
3342 		return;
3343 	}
3344 	len = (le32toh(desc->len) & 0x3fff) - 4;
3345 
3346 	switch (calib->code) {
3347 	case IWN5000_PHY_CALIB_DC:
3348 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3349 			idx = 0;
3350 		break;
3351 	case IWN5000_PHY_CALIB_LO:
3352 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3353 			idx = 1;
3354 		break;
3355 	case IWN5000_PHY_CALIB_TX_IQ:
3356 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3357 			idx = 2;
3358 		break;
3359 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3360 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3361 			idx = 3;
3362 		break;
3363 	case IWN5000_PHY_CALIB_BASE_BAND:
3364 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3365 			idx = 4;
3366 		break;
3367 	}
3368 	if (idx == -1)	/* Ignore other results. */
3369 		return;
3370 
3371 	/* Save calibration result. */
3372 	if (sc->calibcmd[idx].buf != NULL)
3373 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3374 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3375 	if (sc->calibcmd[idx].buf == NULL) {
3376 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3377 		    "not enough memory for calibration result %d\n",
3378 		    calib->code);
3379 		return;
3380 	}
3381 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3382 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3383 	sc->calibcmd[idx].len = len;
3384 	memcpy(sc->calibcmd[idx].buf, calib, len);
3385 }
3386 
3387 static void
3388 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3389     struct iwn_stats *stats, int len)
3390 {
3391 	struct iwn_stats_bt *stats_bt;
3392 	struct iwn_stats *lstats;
3393 
3394 	/*
3395 	 * First - check whether the length is the bluetooth or normal.
3396 	 *
3397 	 * If it's normal - just copy it and bump out.
3398 	 * Otherwise we have to convert things.
3399 	 */
3400 
3401 	if (len == sizeof(struct iwn_stats) + 4) {
3402 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3403 		sc->last_stat_valid = 1;
3404 		return;
3405 	}
3406 
3407 	/*
3408 	 * If it's not the bluetooth size - log, then just copy.
3409 	 */
3410 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3411 		DPRINTF(sc, IWN_DEBUG_STATS,
3412 		    "%s: size of rx statistics (%d) not an expected size!\n",
3413 		    __func__,
3414 		    len);
3415 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3416 		sc->last_stat_valid = 1;
3417 		return;
3418 	}
3419 
3420 	/*
3421 	 * Ok. Time to copy.
3422 	 */
3423 	stats_bt = (struct iwn_stats_bt *) stats;
3424 	lstats = &sc->last_stat;
3425 
3426 	/* flags */
3427 	lstats->flags = stats_bt->flags;
3428 	/* rx_bt */
3429 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3430 	    sizeof(struct iwn_rx_phy_stats));
3431 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3432 	    sizeof(struct iwn_rx_phy_stats));
3433 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3434 	    sizeof(struct iwn_rx_general_stats));
3435 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3436 	    sizeof(struct iwn_rx_ht_phy_stats));
3437 	/* tx */
3438 	memcpy(&lstats->tx, &stats_bt->tx,
3439 	    sizeof(struct iwn_tx_stats));
3440 	/* general */
3441 	memcpy(&lstats->general, &stats_bt->general,
3442 	    sizeof(struct iwn_general_stats));
3443 
3444 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3445 	sc->last_stat_valid = 1;
3446 }
3447 
3448 /*
3449  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3450  * The latter is sent by the firmware after each received beacon.
3451  */
3452 static void
3453 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3454 {
3455 	struct iwn_ops *ops = &sc->ops;
3456 	struct ieee80211com *ic = &sc->sc_ic;
3457 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3458 	struct iwn_calib_state *calib = &sc->calib;
3459 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3460 	struct iwn_stats *lstats;
3461 	int temp;
3462 
3463 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3464 
3465 	/* Ignore statistics received during a scan. */
3466 	if (vap->iv_state != IEEE80211_S_RUN ||
3467 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3468 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3469 	    __func__);
3470 		return;
3471 	}
3472 
3473 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3474 	    "%s: received statistics, cmd %d, len %d\n",
3475 	    __func__, desc->type, le16toh(desc->len));
3476 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3477 
3478 	/*
3479 	 * Collect/track general statistics for reporting.
3480 	 *
3481 	 * This takes care of ensuring that the bluetooth sized message
3482 	 * will be correctly converted to the legacy sized message.
3483 	 */
3484 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3485 
3486 	/*
3487 	 * And now, let's take a reference of it to use!
3488 	 */
3489 	lstats = &sc->last_stat;
3490 
3491 	/* Test if temperature has changed. */
3492 	if (lstats->general.temp != sc->rawtemp) {
3493 		/* Convert "raw" temperature to degC. */
3494 		sc->rawtemp = stats->general.temp;
3495 		temp = ops->get_temperature(sc);
3496 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3497 		    __func__, temp);
3498 
3499 		/* Update TX power if need be (4965AGN only). */
3500 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3501 			iwn4965_power_calibration(sc, temp);
3502 	}
3503 
3504 	if (desc->type != IWN_BEACON_STATISTICS)
3505 		return;	/* Reply to a statistics request. */
3506 
3507 	sc->noise = iwn_get_noise(&lstats->rx.general);
3508 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3509 
3510 	/* Test that RSSI and noise are present in stats report. */
3511 	if (le32toh(lstats->rx.general.flags) != 1) {
3512 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3513 		    "received statistics without RSSI");
3514 		return;
3515 	}
3516 
3517 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3518 		iwn_collect_noise(sc, &lstats->rx.general);
3519 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3520 		iwn_tune_sensitivity(sc, &lstats->rx);
3521 		/*
3522 		 * XXX TODO: Only run the RX recovery if we're associated!
3523 		 */
3524 		iwn_check_rx_recovery(sc, lstats);
3525 		iwn_save_stats_counters(sc, lstats);
3526 	}
3527 
3528 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3529 }
3530 
3531 /*
3532  * Save the relevant statistic counters for the next calibration
3533  * pass.
3534  */
3535 static void
3536 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3537 {
3538 	struct iwn_calib_state *calib = &sc->calib;
3539 
3540 	/* Save counters values for next call. */
3541 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3542 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3543 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3544 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3545 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3546 
3547 	/* Last time we received these tick values */
3548 	sc->last_calib_ticks = ticks;
3549 }
3550 
3551 /*
3552  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3553  * and 5000 adapters have different incompatible TX status formats.
3554  */
3555 static void
3556 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3557     struct iwn_rx_data *data)
3558 {
3559 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3560 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3561 
3562 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3563 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3564 	    __func__, desc->qid, desc->idx,
3565 	    stat->rtsfailcnt,
3566 	    stat->ackfailcnt,
3567 	    stat->btkillcnt,
3568 	    stat->rate, le16toh(stat->duration),
3569 	    le32toh(stat->status));
3570 
3571 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3572 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3573 		    &stat->status);
3574 	} else {
3575 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3576 		    le32toh(stat->status) & 0xff);
3577 	}
3578 }
3579 
3580 static void
3581 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3582     struct iwn_rx_data *data)
3583 {
3584 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3585 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3586 
3587 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3588 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3589 	    __func__, desc->qid, desc->idx,
3590 	    stat->rtsfailcnt,
3591 	    stat->ackfailcnt,
3592 	    stat->btkillcnt,
3593 	    stat->rate, le16toh(stat->duration),
3594 	    le32toh(stat->status));
3595 
3596 #ifdef notyet
3597 	/* Reset TX scheduler slot. */
3598 	iwn5000_reset_sched(sc, qid, desc->idx);
3599 #endif
3600 
3601 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3602 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3603 		    &stat->status);
3604 	} else {
3605 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3606 		    le16toh(stat->status) & 0xff);
3607 	}
3608 }
3609 
3610 static void
3611 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3612 {
3613 	int i;
3614 
3615 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3616 		struct iwn_tx_data *data = &ring->data[i];
3617 
3618 		if (data->m != NULL)
3619 			break;
3620 
3621 		data->remapped = 0;
3622 	}
3623 
3624 	ring->read = i;
3625 }
3626 
3627 /*
3628  * Adapter-independent backend for TX_DONE firmware notifications.
3629  */
3630 static void
3631 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3632     int ackfailcnt, uint8_t status)
3633 {
3634 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3635 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3636 	struct iwn_tx_data *data = &ring->data[desc->idx];
3637 	struct mbuf *m;
3638 	struct ieee80211_node *ni;
3639 
3640 	if (__predict_false(data->m == NULL &&
3641 	    ring->qid >= sc->firstaggqueue)) {
3642 		/*
3643 		 * There is no frame; skip this entry.
3644 		 */
3645 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3646 		    __func__, ring->qid, desc->idx);
3647 		return;
3648 	}
3649 
3650 	KASSERT(data->ni != NULL, ("no node"));
3651 	KASSERT(data->m != NULL, ("no mbuf"));
3652 
3653 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3654 
3655 	/* Unmap and free mbuf. */
3656 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3657 	bus_dmamap_unload(ring->data_dmat, data->map);
3658 	m = data->m, data->m = NULL;
3659 	ni = data->ni, data->ni = NULL;
3660 
3661 	data->long_retries = 0;
3662 
3663 	if (ring->qid >= sc->firstaggqueue)
3664 		iwn_adj_ampdu_ptr(sc, ring);
3665 
3666 	/*
3667 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3668 	 * (aggregation queues only).
3669 	 */
3670 
3671 	ring->queued--;
3672 	iwn_check_tx_ring(sc, ring->qid);
3673 
3674 	/*
3675 	 * Update rate control statistics for the node.
3676 	 */
3677 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3678 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3679 	txs->short_retries = rtsfailcnt;
3680 	txs->long_retries = ackfailcnt;
3681 	if (!(status & IWN_TX_FAIL))
3682 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3683 	else {
3684 		switch (status) {
3685 		case IWN_TX_FAIL_SHORT_LIMIT:
3686 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3687 			break;
3688 		case IWN_TX_FAIL_LONG_LIMIT:
3689 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3690 			break;
3691 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3692 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3693 			break;
3694 		default:
3695 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3696 			break;
3697 		}
3698 	}
3699 	ieee80211_ratectl_tx_complete(ni, txs);
3700 
3701 	/*
3702 	 * Channels marked for "radar" require traffic to be received
3703 	 * to unlock before we can transmit.  Until traffic is seen
3704 	 * any attempt to transmit is returned immediately with status
3705 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3706 	 * happen on first authenticate after scanning.  To workaround
3707 	 * this we ignore a failure of this sort in AUTH state so the
3708 	 * 802.11 layer will fall back to using a timeout to wait for
3709 	 * the AUTH reply.  This allows the firmware time to see
3710 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3711 	 * unclear why the firmware does not maintain state for
3712 	 * channels recently visited as this would allow immediate
3713 	 * use of the channel after a scan (where we see traffic).
3714 	 */
3715 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3716 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3717 		ieee80211_tx_complete(ni, m, 0);
3718 	else
3719 		ieee80211_tx_complete(ni, m,
3720 		    (status & IWN_TX_FAIL) != 0);
3721 
3722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3723 }
3724 
3725 /*
3726  * Process a "command done" firmware notification.  This is where we wakeup
3727  * processes waiting for a synchronous command completion.
3728  */
3729 static void
3730 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3731 {
3732 	struct iwn_tx_ring *ring;
3733 	struct iwn_tx_data *data;
3734 	int cmd_queue_num;
3735 
3736 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3737 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3738 	else
3739 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3740 
3741 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3742 		return;	/* Not a command ack. */
3743 
3744 	ring = &sc->txq[cmd_queue_num];
3745 	data = &ring->data[desc->idx];
3746 
3747 	/* If the command was mapped in an mbuf, free it. */
3748 	if (data->m != NULL) {
3749 		bus_dmamap_sync(ring->data_dmat, data->map,
3750 		    BUS_DMASYNC_POSTWRITE);
3751 		bus_dmamap_unload(ring->data_dmat, data->map);
3752 		m_freem(data->m);
3753 		data->m = NULL;
3754 	}
3755 	wakeup(&ring->desc[desc->idx]);
3756 }
3757 
3758 static int
3759 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3760 {
3761 	int bit, shift;
3762 
3763 	bit = idx - start;
3764 	shift = 0;
3765 	if (bit >= 64) {
3766 		shift = 0x100 - bit;
3767 		bit = 0;
3768 	} else if (bit <= -64)
3769 		bit = 0x100 + bit;
3770 	else if (bit < 0) {
3771 		shift = -bit;
3772 		bit = 0;
3773 	}
3774 
3775 	if (bit - shift >= 64)
3776 		return (0);
3777 
3778 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3779 }
3780 
3781 /*
3782  * Firmware bug workaround: in case if 'retries' counter
3783  * overflows 'seqno' field will be incremented:
3784  *    status|sequence|status|sequence|status|sequence
3785  *     0000    0A48    0001    0A49    0000    0A6A
3786  *     1000    0A48    1000    0A49    1000    0A6A
3787  *     2000    0A48    2000    0A49    2000    0A6A
3788  * ...
3789  *     E000    0A48    E000    0A49    E000    0A6A
3790  *     F000    0A48    F000    0A49    F000    0A6A
3791  *     0000    0A49    0000    0A49    0000    0A6B
3792  *     1000    0A49    1000    0A49    1000    0A6B
3793  * ...
3794  *     D000    0A49    D000    0A49    D000    0A6B
3795  *     E000    0A49    E001    0A49    E000    0A6B
3796  *     F000    0A49    F001    0A49    F000    0A6B
3797  *     0000    0A4A    0000    0A4B    0000    0A6A
3798  *     1000    0A4A    1000    0A4B    1000    0A6A
3799  * ...
3800  *
3801  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3802  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3803  * Not checked with nretries >= 64.
3804  *
3805  */
3806 static int
3807 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3808     uint64_t bitmap, int start, int idx)
3809 {
3810 	struct ieee80211com *ic = &sc->sc_ic;
3811 	struct iwn_tx_data *data;
3812 	int diff, min_retries, max_retries, new_idx, loop_end;
3813 
3814 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3815 	if (new_idx < 0)
3816 		new_idx += IWN_TX_RING_COUNT;
3817 
3818 	/*
3819 	 * Corner case: check if retry count is not too big;
3820 	 * reset device otherwise.
3821 	 */
3822 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3823 		data = &ring->data[new_idx];
3824 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3825 			device_printf(sc->sc_dev,
3826 			    "%s: retry count (%d) for idx %d/%d overflow, "
3827 			    "resetting...\n", __func__, data->long_retries,
3828 			    ring->qid, new_idx);
3829 			ieee80211_restart_all(ic);
3830 			return (-1);
3831 		}
3832 	}
3833 
3834 	/* Correct index if needed. */
3835 	loop_end = idx;
3836 	do {
3837 		data = &ring->data[new_idx];
3838 		diff = idx - new_idx;
3839 		if (diff < 0)
3840 			diff += IWN_TX_RING_COUNT;
3841 
3842 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3843 		if ((new_idx % 2) == 0)
3844 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3845 		else
3846 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3847 
3848 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3849 		    ((data->long_retries >= min_retries &&
3850 		      data->long_retries < max_retries) ||
3851 		     (diff == 1 &&
3852 		      (new_idx & 0x03) == 0x02 &&
3853 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3854 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3855 			    "%s: correcting index %d -> %d in queue %d"
3856 			    " (retries %d)\n", __func__, idx, new_idx,
3857 			    ring->qid, data->long_retries);
3858 			return (new_idx);
3859 		}
3860 
3861 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3862 	} while (new_idx != loop_end);
3863 
3864 	return (idx);
3865 }
3866 
3867 static void
3868 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3869     void *stat)
3870 {
3871 	struct iwn_tx_ring *ring = &sc->txq[qid];
3872 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3873 	struct iwn_node *wn = (void *)tap->txa_ni;
3874 	struct iwn_tx_data *data;
3875 	uint64_t bitmap = 0;
3876 	uint16_t *aggstatus = stat;
3877 	uint8_t tid = tap->txa_tid;
3878 	int bit, i, idx, shift, start, tx_err;
3879 
3880 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3881 
3882 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3883 
3884 	for (i = 0; i < nframes; i++) {
3885 		uint16_t status = le16toh(aggstatus[i * 2]);
3886 
3887 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3888 			continue;
3889 
3890 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3891 		data = &ring->data[idx];
3892 		if (data->remapped) {
3893 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3894 			if (idx == -1) {
3895 				/* skip error (device will be restarted anyway). */
3896 				continue;
3897 			}
3898 
3899 			/* Index may have changed. */
3900 			data = &ring->data[idx];
3901 		}
3902 
3903 		/*
3904 		 * XXX Sometimes (rarely) some frames are excluded from events.
3905 		 * XXX Due to that long_retries counter may be wrong.
3906 		 */
3907 		data->long_retries &= ~0x0f;
3908 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3909 
3910 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3911 			int diff, wrong_idx;
3912 
3913 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3914 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3915 
3916 			/*
3917 			 * Mark the entry so the above code will check it
3918 			 * next time.
3919 			 */
3920 			ring->data[wrong_idx].remapped = 1;
3921 		}
3922 
3923 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3924 			/*
3925 			 * NB: count retries but postpone - it was not
3926 			 * transmitted.
3927 			 */
3928 			continue;
3929 		}
3930 
3931 		bit = idx - start;
3932 		shift = 0;
3933 		if (bit >= 64) {
3934 			shift = 0x100 - bit;
3935 			bit = 0;
3936 		} else if (bit <= -64)
3937 			bit = 0x100 + bit;
3938 		else if (bit < 0) {
3939 			shift = -bit;
3940 			bit = 0;
3941 		}
3942 		bitmap = bitmap << shift;
3943 		bitmap |= 1ULL << bit;
3944 	}
3945 	wn->agg[tid].startidx = start;
3946 	wn->agg[tid].bitmap = bitmap;
3947 	wn->agg[tid].short_retries = rtsfailcnt;
3948 
3949 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3950 	    __func__, nframes, start, (uintmax_t)bitmap);
3951 
3952 	i = ring->read;
3953 
3954 	for (tx_err = 0;
3955 	     i != wn->agg[tid].startidx;
3956 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3957 		data = &ring->data[i];
3958 		data->remapped = 0;
3959 		if (data->m == NULL)
3960 			continue;
3961 
3962 		tx_err++;
3963 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3964 	}
3965 
3966 	ring->read = wn->agg[tid].startidx;
3967 	ring->queued -= tx_err;
3968 
3969 	iwn_check_tx_ring(sc, qid);
3970 
3971 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3972 }
3973 
3974 /*
3975  * Process an INT_FH_RX or INT_SW_RX interrupt.
3976  */
3977 static void
3978 iwn_notif_intr(struct iwn_softc *sc)
3979 {
3980 	struct iwn_ops *ops = &sc->ops;
3981 	struct ieee80211com *ic = &sc->sc_ic;
3982 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3983 	uint16_t hw;
3984 	int is_stopped;
3985 
3986 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3987 	    BUS_DMASYNC_POSTREAD);
3988 
3989 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3990 	while (sc->rxq.cur != hw) {
3991 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3992 		struct iwn_rx_desc *desc;
3993 
3994 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3995 		    BUS_DMASYNC_POSTREAD);
3996 		desc = mtod(data->m, struct iwn_rx_desc *);
3997 
3998 		DPRINTF(sc, IWN_DEBUG_RECV,
3999 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4000 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4001 		    desc->idx, desc->flags, desc->type,
4002 		    iwn_intr_str(desc->type), le16toh(desc->len));
4003 
4004 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4005 			iwn_cmd_done(sc, desc);
4006 
4007 		switch (desc->type) {
4008 		case IWN_RX_PHY:
4009 			iwn_rx_phy(sc, desc);
4010 			break;
4011 
4012 		case IWN_RX_DONE:		/* 4965AGN only. */
4013 		case IWN_MPDU_RX_DONE:
4014 			/* An 802.11 frame has been received. */
4015 			iwn_rx_done(sc, desc, data);
4016 
4017 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4018 			if (__predict_false(is_stopped))
4019 				return;
4020 
4021 			break;
4022 
4023 		case IWN_RX_COMPRESSED_BA:
4024 			/* A Compressed BlockAck has been received. */
4025 			iwn_rx_compressed_ba(sc, desc);
4026 			break;
4027 
4028 		case IWN_TX_DONE:
4029 			/* An 802.11 frame has been transmitted. */
4030 			ops->tx_done(sc, desc, data);
4031 			break;
4032 
4033 		case IWN_RX_STATISTICS:
4034 		case IWN_BEACON_STATISTICS:
4035 			iwn_rx_statistics(sc, desc);
4036 			break;
4037 
4038 		case IWN_BEACON_MISSED:
4039 		{
4040 			struct iwn_beacon_missed *miss =
4041 			    (struct iwn_beacon_missed *)(desc + 1);
4042 			int misses;
4043 
4044 			misses = le32toh(miss->consecutive);
4045 
4046 			DPRINTF(sc, IWN_DEBUG_STATE,
4047 			    "%s: beacons missed %d/%d\n", __func__,
4048 			    misses, le32toh(miss->total));
4049 			/*
4050 			 * If more than 5 consecutive beacons are missed,
4051 			 * reinitialize the sensitivity state machine.
4052 			 */
4053 			if (vap->iv_state == IEEE80211_S_RUN &&
4054 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4055 				if (misses > 5)
4056 					(void)iwn_init_sensitivity(sc);
4057 				if (misses >= vap->iv_bmissthreshold) {
4058 					IWN_UNLOCK(sc);
4059 					ieee80211_beacon_miss(ic);
4060 					IWN_LOCK(sc);
4061 
4062 					is_stopped = (sc->sc_flags &
4063 					    IWN_FLAG_RUNNING) == 0;
4064 					if (__predict_false(is_stopped))
4065 						return;
4066 				}
4067 			}
4068 			break;
4069 		}
4070 		case IWN_UC_READY:
4071 		{
4072 			struct iwn_ucode_info *uc =
4073 			    (struct iwn_ucode_info *)(desc + 1);
4074 
4075 			/* The microcontroller is ready. */
4076 			DPRINTF(sc, IWN_DEBUG_RESET,
4077 			    "microcode alive notification version=%d.%d "
4078 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4079 			    uc->subtype, le32toh(uc->valid));
4080 
4081 			if (le32toh(uc->valid) != 1) {
4082 				device_printf(sc->sc_dev,
4083 				    "microcontroller initialization failed");
4084 				break;
4085 			}
4086 			if (uc->subtype == IWN_UCODE_INIT) {
4087 				/* Save microcontroller report. */
4088 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4089 			}
4090 			/* Save the address of the error log in SRAM. */
4091 			sc->errptr = le32toh(uc->errptr);
4092 			break;
4093 		}
4094 #ifdef IWN_DEBUG
4095 		case IWN_STATE_CHANGED:
4096 		{
4097 			/*
4098 			 * State change allows hardware switch change to be
4099 			 * noted. However, we handle this in iwn_intr as we
4100 			 * get both the enable/disble intr.
4101 			 */
4102 			uint32_t *status = (uint32_t *)(desc + 1);
4103 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4104 			    "state changed to %x\n",
4105 			    le32toh(*status));
4106 			break;
4107 		}
4108 		case IWN_START_SCAN:
4109 		{
4110 			struct iwn_start_scan *scan =
4111 			    (struct iwn_start_scan *)(desc + 1);
4112 			DPRINTF(sc, IWN_DEBUG_ANY,
4113 			    "%s: scanning channel %d status %x\n",
4114 			    __func__, scan->chan, le32toh(scan->status));
4115 			break;
4116 		}
4117 #endif
4118 		case IWN_STOP_SCAN:
4119 		{
4120 #ifdef	IWN_DEBUG
4121 			struct iwn_stop_scan *scan =
4122 			    (struct iwn_stop_scan *)(desc + 1);
4123 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4124 			    "scan finished nchan=%d status=%d chan=%d\n",
4125 			    scan->nchan, scan->status, scan->chan);
4126 #endif
4127 			sc->sc_is_scanning = 0;
4128 			callout_stop(&sc->scan_timeout);
4129 			IWN_UNLOCK(sc);
4130 			ieee80211_scan_next(vap);
4131 			IWN_LOCK(sc);
4132 
4133 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4134 			if (__predict_false(is_stopped))
4135 				return;
4136 
4137 			break;
4138 		}
4139 		case IWN5000_CALIBRATION_RESULT:
4140 			iwn5000_rx_calib_results(sc, desc);
4141 			break;
4142 
4143 		case IWN5000_CALIBRATION_DONE:
4144 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4145 			wakeup(sc);
4146 			break;
4147 		}
4148 
4149 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4150 	}
4151 
4152 	/* Tell the firmware what we have processed. */
4153 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4154 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4155 }
4156 
4157 /*
4158  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4159  * from power-down sleep mode.
4160  */
4161 static void
4162 iwn_wakeup_intr(struct iwn_softc *sc)
4163 {
4164 	int qid;
4165 
4166 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4167 	    __func__);
4168 
4169 	/* Wakeup RX and TX rings. */
4170 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4171 	for (qid = 0; qid < sc->ntxqs; qid++) {
4172 		struct iwn_tx_ring *ring = &sc->txq[qid];
4173 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4174 	}
4175 }
4176 
4177 static void
4178 iwn_rftoggle_task(void *arg, int npending)
4179 {
4180 	struct iwn_softc *sc = arg;
4181 	struct ieee80211com *ic = &sc->sc_ic;
4182 	uint32_t tmp;
4183 
4184 	IWN_LOCK(sc);
4185 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4186 	IWN_UNLOCK(sc);
4187 
4188 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4189 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4190 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4191 		ieee80211_suspend_all(ic);
4192 
4193 		/* Enable interrupts to get RF toggle notification. */
4194 		IWN_LOCK(sc);
4195 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4196 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4197 		IWN_UNLOCK(sc);
4198 	} else
4199 		ieee80211_resume_all(ic);
4200 }
4201 
4202 /*
4203  * Dump the error log of the firmware when a firmware panic occurs.  Although
4204  * we can't debug the firmware because it is neither open source nor free, it
4205  * can help us to identify certain classes of problems.
4206  */
4207 static void
4208 iwn_fatal_intr(struct iwn_softc *sc)
4209 {
4210 	struct iwn_fw_dump dump;
4211 	int i;
4212 
4213 	IWN_LOCK_ASSERT(sc);
4214 
4215 	/* Force a complete recalibration on next init. */
4216 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4217 
4218 	/* Check that the error log address is valid. */
4219 	if (sc->errptr < IWN_FW_DATA_BASE ||
4220 	    sc->errptr + sizeof (dump) >
4221 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4222 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4223 		    sc->errptr);
4224 		return;
4225 	}
4226 	if (iwn_nic_lock(sc) != 0) {
4227 		printf("%s: could not read firmware error log\n", __func__);
4228 		return;
4229 	}
4230 	/* Read firmware error log from SRAM. */
4231 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4232 	    sizeof (dump) / sizeof (uint32_t));
4233 	iwn_nic_unlock(sc);
4234 
4235 	if (dump.valid == 0) {
4236 		printf("%s: firmware error log is empty\n", __func__);
4237 		return;
4238 	}
4239 	printf("firmware error log:\n");
4240 	printf("  error type      = \"%s\" (0x%08X)\n",
4241 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4242 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4243 	    dump.id);
4244 	printf("  program counter = 0x%08X\n", dump.pc);
4245 	printf("  source line     = 0x%08X\n", dump.src_line);
4246 	printf("  error data      = 0x%08X%08X\n",
4247 	    dump.error_data[0], dump.error_data[1]);
4248 	printf("  branch link     = 0x%08X%08X\n",
4249 	    dump.branch_link[0], dump.branch_link[1]);
4250 	printf("  interrupt link  = 0x%08X%08X\n",
4251 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4252 	printf("  time            = %u\n", dump.time[0]);
4253 
4254 	/* Dump driver status (TX and RX rings) while we're here. */
4255 	printf("driver status:\n");
4256 	for (i = 0; i < sc->ntxqs; i++) {
4257 		struct iwn_tx_ring *ring = &sc->txq[i];
4258 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4259 		    i, ring->qid, ring->cur, ring->queued);
4260 	}
4261 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4262 }
4263 
4264 static void
4265 iwn_intr(void *arg)
4266 {
4267 	struct iwn_softc *sc = arg;
4268 	uint32_t r1, r2, tmp;
4269 
4270 	IWN_LOCK(sc);
4271 
4272 	/* Disable interrupts. */
4273 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4274 
4275 	/* Read interrupts from ICT (fast) or from registers (slow). */
4276 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4277 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4278 		    BUS_DMASYNC_POSTREAD);
4279 		tmp = 0;
4280 		while (sc->ict[sc->ict_cur] != 0) {
4281 			tmp |= sc->ict[sc->ict_cur];
4282 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4283 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4284 		}
4285 		tmp = le32toh(tmp);
4286 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4287 			tmp = 0;
4288 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4289 			tmp |= 0x8000;
4290 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4291 		r2 = 0;	/* Unused. */
4292 	} else {
4293 		r1 = IWN_READ(sc, IWN_INT);
4294 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4295 			IWN_UNLOCK(sc);
4296 			return;	/* Hardware gone! */
4297 		}
4298 		r2 = IWN_READ(sc, IWN_FH_INT);
4299 	}
4300 
4301 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4302     , r1, r2);
4303 
4304 	if (r1 == 0 && r2 == 0)
4305 		goto done;	/* Interrupt not for us. */
4306 
4307 	/* Acknowledge interrupts. */
4308 	IWN_WRITE(sc, IWN_INT, r1);
4309 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4310 		IWN_WRITE(sc, IWN_FH_INT, r2);
4311 
4312 	if (r1 & IWN_INT_RF_TOGGLED) {
4313 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4314 		goto done;
4315 	}
4316 	if (r1 & IWN_INT_CT_REACHED) {
4317 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4318 		    __func__);
4319 	}
4320 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4321 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4322 		    __func__);
4323 #ifdef	IWN_DEBUG
4324 		iwn_debug_register(sc);
4325 #endif
4326 		/* Dump firmware error log and stop. */
4327 		iwn_fatal_intr(sc);
4328 
4329 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4330 		goto done;
4331 	}
4332 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4333 	    (r2 & IWN_FH_INT_RX)) {
4334 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4335 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4336 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4337 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4338 			    IWN_INT_PERIODIC_DIS);
4339 			iwn_notif_intr(sc);
4340 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4341 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4342 				    IWN_INT_PERIODIC_ENA);
4343 			}
4344 		} else
4345 			iwn_notif_intr(sc);
4346 	}
4347 
4348 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4349 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4350 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4351 		wakeup(sc);	/* FH DMA transfer completed. */
4352 	}
4353 
4354 	if (r1 & IWN_INT_ALIVE)
4355 		wakeup(sc);	/* Firmware is alive. */
4356 
4357 	if (r1 & IWN_INT_WAKEUP)
4358 		iwn_wakeup_intr(sc);
4359 
4360 done:
4361 	/* Re-enable interrupts. */
4362 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4363 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4364 
4365 	IWN_UNLOCK(sc);
4366 }
4367 
4368 /*
4369  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4370  * 5000 adapters use a slightly different format).
4371  */
4372 static void
4373 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4374     uint16_t len)
4375 {
4376 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4377 
4378 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4379 
4380 	*w = htole16(len + 8);
4381 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4382 	    BUS_DMASYNC_PREWRITE);
4383 	if (idx < IWN_SCHED_WINSZ) {
4384 		*(w + IWN_TX_RING_COUNT) = *w;
4385 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4386 		    BUS_DMASYNC_PREWRITE);
4387 	}
4388 }
4389 
4390 static void
4391 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4392     uint16_t len)
4393 {
4394 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4395 
4396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4397 
4398 	*w = htole16(id << 12 | (len + 8));
4399 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4400 	    BUS_DMASYNC_PREWRITE);
4401 	if (idx < IWN_SCHED_WINSZ) {
4402 		*(w + IWN_TX_RING_COUNT) = *w;
4403 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4404 		    BUS_DMASYNC_PREWRITE);
4405 	}
4406 }
4407 
4408 #ifdef notyet
4409 static void
4410 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4411 {
4412 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4413 
4414 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4415 
4416 	*w = (*w & htole16(0xf000)) | htole16(1);
4417 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4418 	    BUS_DMASYNC_PREWRITE);
4419 	if (idx < IWN_SCHED_WINSZ) {
4420 		*(w + IWN_TX_RING_COUNT) = *w;
4421 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4422 		    BUS_DMASYNC_PREWRITE);
4423 	}
4424 }
4425 #endif
4426 
4427 /*
4428  * Check whether OFDM 11g protection will be enabled for the given rate.
4429  *
4430  * The original driver code only enabled protection for OFDM rates.
4431  * It didn't check to see whether it was operating in 11a or 11bg mode.
4432  */
4433 static int
4434 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4435     struct ieee80211vap *vap, uint8_t rate)
4436 {
4437 	struct ieee80211com *ic = vap->iv_ic;
4438 
4439 	/*
4440 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4441 	 * 11bg protection.
4442 	 */
4443 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4444 		return (0);
4445 	}
4446 
4447 	/*
4448 	 * 11bg protection not enabled? Then don't use it.
4449 	 */
4450 	if ((vap->iv_flags & IEEE80211_F_USEPROT) == 0)
4451 		return (0);
4452 
4453 	/*
4454 	 * If it's an 11n rate - no protection.
4455 	 * We'll do it via a specific 11n check.
4456 	 */
4457 	if (rate & IEEE80211_RATE_MCS) {
4458 		return (0);
4459 	}
4460 
4461 	/*
4462 	 * Do a rate table lookup.  If the PHY is CCK,
4463 	 * don't do protection.
4464 	 */
4465 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4466 		return (0);
4467 
4468 	/*
4469 	 * Yup, enable protection.
4470 	 */
4471 	return (1);
4472 }
4473 
4474 /*
4475  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4476  * the link quality table that reflects this particular entry.
4477  */
4478 static int
4479 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4480     uint8_t rate)
4481 {
4482 	struct ieee80211_rateset *rs;
4483 	int is_11n;
4484 	int nr;
4485 	int i;
4486 	uint8_t cmp_rate;
4487 
4488 	/*
4489 	 * Figure out if we're using 11n or not here.
4490 	 */
4491 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4492 		is_11n = 1;
4493 	else
4494 		is_11n = 0;
4495 
4496 	/*
4497 	 * Use the correct rate table.
4498 	 */
4499 	if (is_11n) {
4500 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4501 		nr = ni->ni_htrates.rs_nrates;
4502 	} else {
4503 		rs = &ni->ni_rates;
4504 		nr = rs->rs_nrates;
4505 	}
4506 
4507 	/*
4508 	 * Find the relevant link quality entry in the table.
4509 	 */
4510 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4511 		/*
4512 		 * The link quality table index starts at 0 == highest
4513 		 * rate, so we walk the rate table backwards.
4514 		 */
4515 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4516 		if (rate & IEEE80211_RATE_MCS)
4517 			cmp_rate |= IEEE80211_RATE_MCS;
4518 
4519 #if 0
4520 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4521 		    __func__,
4522 		    i,
4523 		    nr,
4524 		    rate,
4525 		    cmp_rate);
4526 #endif
4527 
4528 		if (cmp_rate == rate)
4529 			return (i);
4530 	}
4531 
4532 	/* Failed? Start at the end */
4533 	return (IWN_MAX_TX_RETRIES - 1);
4534 }
4535 
4536 static int
4537 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4538 {
4539 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4540 	struct ieee80211vap *vap = ni->ni_vap;
4541 	struct ieee80211com *ic = ni->ni_ic;
4542 	struct iwn_node *wn = (void *)ni;
4543 	struct iwn_tx_ring *ring;
4544 	struct iwn_tx_cmd *cmd;
4545 	struct iwn_cmd_data *tx;
4546 	struct ieee80211_frame *wh;
4547 	struct ieee80211_key *k = NULL;
4548 	uint32_t flags;
4549 	uint16_t qos;
4550 	uint8_t tid, type;
4551 	int ac, totlen, rate;
4552 
4553 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4554 
4555 	IWN_LOCK_ASSERT(sc);
4556 
4557 	wh = mtod(m, struct ieee80211_frame *);
4558 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4559 
4560 	/* Select EDCA Access Category and TX ring for this frame. */
4561 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4562 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4563 		tid = qos & IEEE80211_QOS_TID;
4564 	} else {
4565 		qos = 0;
4566 		tid = 0;
4567 	}
4568 
4569 	/* Choose a TX rate index. */
4570 	if (type == IEEE80211_FC0_TYPE_MGT ||
4571 	    type == IEEE80211_FC0_TYPE_CTL ||
4572 	    (m->m_flags & M_EAPOL) != 0)
4573 		rate = tp->mgmtrate;
4574 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4575 		rate = tp->mcastrate;
4576 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4577 		rate = tp->ucastrate;
4578 	else {
4579 		/* XXX pass pktlen */
4580 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4581 		rate = ni->ni_txrate;
4582 	}
4583 
4584 	/*
4585 	 * XXX TODO: Group addressed frames aren't aggregated and must
4586 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4587 	 * assigned from net80211.
4588 	 */
4589 
4590 	ac = M_WME_GETAC(m);
4591 	if (m->m_flags & M_AMPDU_MPDU) {
4592 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4593 
4594 		if (!IEEE80211_AMPDU_RUNNING(tap))
4595 			return (EINVAL);
4596 
4597 		ac = *(int *)tap->txa_private;
4598 	}
4599 
4600 	/* Encrypt the frame if need be. */
4601 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4602 		/* Retrieve key for TX. */
4603 		k = ieee80211_crypto_encap(ni, m);
4604 		if (k == NULL) {
4605 			return ENOBUFS;
4606 		}
4607 		/* 802.11 header may have moved. */
4608 		wh = mtod(m, struct ieee80211_frame *);
4609 	}
4610 	totlen = m->m_pkthdr.len;
4611 
4612 	if (ieee80211_radiotap_active_vap(vap)) {
4613 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4614 
4615 		tap->wt_flags = 0;
4616 		tap->wt_rate = rate;
4617 		if (k != NULL)
4618 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4619 
4620 		ieee80211_radiotap_tx(vap, m);
4621 	}
4622 
4623 	flags = 0;
4624 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4625 		/* Unicast frame, check if an ACK is expected. */
4626 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4627 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4628 			flags |= IWN_TX_NEED_ACK;
4629 	}
4630 	if ((wh->i_fc[0] &
4631 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4632 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4633 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4634 
4635 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4636 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4637 
4638 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4639 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4640 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4641 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4642 			flags |= IWN_TX_NEED_RTS;
4643 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4644 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4645 				flags |= IWN_TX_NEED_CTS;
4646 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4647 				flags |= IWN_TX_NEED_RTS;
4648 		} else if ((rate & IEEE80211_RATE_MCS) &&
4649 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4650 			flags |= IWN_TX_NEED_RTS;
4651 		}
4652 
4653 		/* XXX HT protection? */
4654 
4655 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4656 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4657 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4658 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4659 				flags |= IWN_TX_NEED_PROTECTION;
4660 			} else
4661 				flags |= IWN_TX_FULL_TXOP;
4662 		}
4663 	}
4664 
4665 	ring = &sc->txq[ac];
4666 	if (m->m_flags & M_AMPDU_MPDU) {
4667 		uint16_t seqno = ni->ni_txseqs[tid];
4668 
4669 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4670 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4671 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4672 			    "(queued %d) left in %d queue!\n",
4673 			    __func__, ring->queued, ac);
4674 			return (ENOBUFS);
4675 		}
4676 
4677 		/*
4678 		 * Queue this frame to the hardware ring that we've
4679 		 * negotiated AMPDU TX on.
4680 		 *
4681 		 * Note that the sequence number must match the TX slot
4682 		 * being used!
4683 		 */
4684 		if ((seqno % 256) != ring->cur) {
4685 			device_printf(sc->sc_dev,
4686 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4687 			    __func__,
4688 			    m,
4689 			    seqno,
4690 			    seqno % 256,
4691 			    ring->cur);
4692 
4693 			/* XXX until D9195 will not be committed */
4694 			ni->ni_txseqs[tid] &= ~0xff;
4695 			ni->ni_txseqs[tid] += ring->cur;
4696 			seqno = ni->ni_txseqs[tid];
4697 		}
4698 
4699 		*(uint16_t *)wh->i_seq =
4700 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4701 		ni->ni_txseqs[tid]++;
4702 	}
4703 
4704 	/* Prepare TX firmware command. */
4705 	cmd = &ring->cmd[ring->cur];
4706 	tx = (struct iwn_cmd_data *)cmd->data;
4707 
4708 	/* NB: No need to clear tx, all fields are reinitialized here. */
4709 	tx->scratch = 0;	/* clear "scratch" area */
4710 
4711 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4712 	    type != IEEE80211_FC0_TYPE_DATA)
4713 		tx->id = sc->broadcast_id;
4714 	else
4715 		tx->id = wn->id;
4716 
4717 	if (type == IEEE80211_FC0_TYPE_MGT) {
4718 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4719 
4720 		/* Tell HW to set timestamp in probe responses. */
4721 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4722 			flags |= IWN_TX_INSERT_TSTAMP;
4723 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4724 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4725 			tx->timeout = htole16(3);
4726 		else
4727 			tx->timeout = htole16(2);
4728 	} else
4729 		tx->timeout = htole16(0);
4730 
4731 	if (tx->id == sc->broadcast_id) {
4732 		/* Group or management frame. */
4733 		tx->linkq = 0;
4734 	} else {
4735 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4736 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4737 	}
4738 
4739 	tx->tid = tid;
4740 	tx->rts_ntries = 60;
4741 	tx->data_ntries = 15;
4742 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4743 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4744 	tx->security = 0;
4745 	tx->flags = htole32(flags);
4746 
4747 	return (iwn_tx_cmd(sc, m, ni, ring));
4748 }
4749 
4750 static int
4751 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4752     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4753 {
4754 	struct ieee80211vap *vap = ni->ni_vap;
4755 	struct iwn_tx_cmd *cmd;
4756 	struct iwn_cmd_data *tx;
4757 	struct ieee80211_frame *wh;
4758 	struct iwn_tx_ring *ring;
4759 	uint32_t flags;
4760 	int ac, rate;
4761 	uint8_t type;
4762 
4763 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4764 
4765 	IWN_LOCK_ASSERT(sc);
4766 
4767 	wh = mtod(m, struct ieee80211_frame *);
4768 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4769 
4770 	ac = params->ibp_pri & 3;
4771 
4772 	/* Choose a TX rate. */
4773 	rate = params->ibp_rate0;
4774 
4775 	flags = 0;
4776 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4777 		flags |= IWN_TX_NEED_ACK;
4778 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4779 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4780 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4781 			flags &= ~IWN_TX_NEED_RTS;
4782 			flags |= IWN_TX_NEED_PROTECTION;
4783 		} else
4784 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4785 	}
4786 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4787 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4788 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4789 			flags &= ~IWN_TX_NEED_CTS;
4790 			flags |= IWN_TX_NEED_PROTECTION;
4791 		} else
4792 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4793 	}
4794 
4795 	if (ieee80211_radiotap_active_vap(vap)) {
4796 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4797 
4798 		tap->wt_flags = 0;
4799 		tap->wt_rate = rate;
4800 
4801 		ieee80211_radiotap_tx(vap, m);
4802 	}
4803 
4804 	ring = &sc->txq[ac];
4805 	cmd = &ring->cmd[ring->cur];
4806 
4807 	tx = (struct iwn_cmd_data *)cmd->data;
4808 	/* NB: No need to clear tx, all fields are reinitialized here. */
4809 	tx->scratch = 0;	/* clear "scratch" area */
4810 
4811 	if (type == IEEE80211_FC0_TYPE_MGT) {
4812 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4813 
4814 		/* Tell HW to set timestamp in probe responses. */
4815 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4816 			flags |= IWN_TX_INSERT_TSTAMP;
4817 
4818 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4819 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4820 			tx->timeout = htole16(3);
4821 		else
4822 			tx->timeout = htole16(2);
4823 	} else
4824 		tx->timeout = htole16(0);
4825 
4826 	tx->tid = 0;
4827 	tx->id = sc->broadcast_id;
4828 	tx->rts_ntries = params->ibp_try1;
4829 	tx->data_ntries = params->ibp_try0;
4830 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4831 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4832 	tx->security = 0;
4833 	tx->flags = htole32(flags);
4834 
4835 	/* Group or management frame. */
4836 	tx->linkq = 0;
4837 
4838 	return (iwn_tx_cmd(sc, m, ni, ring));
4839 }
4840 
4841 static int
4842 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4843     struct iwn_tx_ring *ring)
4844 {
4845 	struct iwn_ops *ops = &sc->ops;
4846 	struct iwn_tx_cmd *cmd;
4847 	struct iwn_cmd_data *tx;
4848 	struct ieee80211_frame *wh;
4849 	struct iwn_tx_desc *desc;
4850 	struct iwn_tx_data *data;
4851 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4852 	struct mbuf *m1;
4853 	u_int hdrlen;
4854 	int totlen, error, pad, nsegs = 0, i;
4855 
4856 	wh = mtod(m, struct ieee80211_frame *);
4857 	hdrlen = ieee80211_anyhdrsize(wh);
4858 	totlen = m->m_pkthdr.len;
4859 
4860 	desc = &ring->desc[ring->cur];
4861 	data = &ring->data[ring->cur];
4862 
4863 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4864 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4865 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4866 		    ring->cur, ring->qid);
4867 		return EIO;
4868 	}
4869 
4870 	/* Prepare TX firmware command. */
4871 	cmd = &ring->cmd[ring->cur];
4872 	cmd->code = IWN_CMD_TX_DATA;
4873 	cmd->flags = 0;
4874 	cmd->qid = ring->qid;
4875 	cmd->idx = ring->cur;
4876 
4877 	tx = (struct iwn_cmd_data *)cmd->data;
4878 	tx->len = htole16(totlen);
4879 
4880 	/* Set physical address of "scratch area". */
4881 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4882 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4883 	if (hdrlen & 3) {
4884 		/* First segment length must be a multiple of 4. */
4885 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4886 		pad = 4 - (hdrlen & 3);
4887 	} else
4888 		pad = 0;
4889 
4890 	/* Copy 802.11 header in TX command. */
4891 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4892 
4893 	/* Trim 802.11 header. */
4894 	m_adj(m, hdrlen);
4895 
4896 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4897 	    &nsegs, BUS_DMA_NOWAIT);
4898 	if (error != 0) {
4899 		if (error != EFBIG) {
4900 			device_printf(sc->sc_dev,
4901 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4902 			return error;
4903 		}
4904 		/* Too many DMA segments, linearize mbuf. */
4905 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4906 		if (m1 == NULL) {
4907 			device_printf(sc->sc_dev,
4908 			    "%s: could not defrag mbuf\n", __func__);
4909 			return ENOBUFS;
4910 		}
4911 		m = m1;
4912 
4913 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4914 		    segs, &nsegs, BUS_DMA_NOWAIT);
4915 		if (error != 0) {
4916 			/* XXX fix this */
4917 			/*
4918 			 * NB: Do not return error;
4919 			 * original mbuf does not exist anymore.
4920 			 */
4921 			device_printf(sc->sc_dev,
4922 			    "%s: can't map mbuf (error %d)\n",
4923 			    __func__, error);
4924 			if_inc_counter(ni->ni_vap->iv_ifp,
4925 			    IFCOUNTER_OERRORS, 1);
4926 			ieee80211_free_node(ni);
4927 			m_freem(m);
4928 			return 0;
4929 		}
4930 	}
4931 
4932 	data->m = m;
4933 	data->ni = ni;
4934 
4935 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4936 	    "plcp 0x%x\n",
4937 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4938 
4939 	/* Fill TX descriptor. */
4940 	desc->nsegs = 1;
4941 	if (m->m_len != 0)
4942 		desc->nsegs += nsegs;
4943 	/* First DMA segment is used by the TX command. */
4944 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4945 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4946 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4947 	/* Other DMA segments are for data payload. */
4948 	seg = &segs[0];
4949 	for (i = 1; i <= nsegs; i++) {
4950 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4951 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4952 		    seg->ds_len << 4);
4953 		seg++;
4954 	}
4955 
4956 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4957 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4958 	    BUS_DMASYNC_PREWRITE);
4959 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4960 	    BUS_DMASYNC_PREWRITE);
4961 
4962 	/* Update TX scheduler. */
4963 	if (ring->qid >= sc->firstaggqueue)
4964 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4965 
4966 	/* Kick TX ring. */
4967 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4968 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4969 
4970 	/* Mark TX ring as full if we reach a certain threshold. */
4971 	if (++ring->queued > IWN_TX_RING_HIMARK)
4972 		sc->qfullmsk |= 1 << ring->qid;
4973 
4974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4975 
4976 	return 0;
4977 }
4978 
4979 static void
4980 iwn_xmit_task(void *arg0, int pending)
4981 {
4982 	struct iwn_softc *sc = arg0;
4983 	struct ieee80211_node *ni;
4984 	struct mbuf *m;
4985 	int error;
4986 	struct ieee80211_bpf_params p;
4987 	int have_p;
4988 
4989 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4990 
4991 	IWN_LOCK(sc);
4992 	/*
4993 	 * Dequeue frames, attempt to transmit,
4994 	 * then disable beaconwait when we're done.
4995 	 */
4996 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4997 		have_p = 0;
4998 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4999 
5000 		/* Get xmit params if appropriate */
5001 		if (ieee80211_get_xmit_params(m, &p) == 0)
5002 			have_p = 1;
5003 
5004 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5005 		    __func__, m, have_p);
5006 
5007 		/* If we have xmit params, use them */
5008 		if (have_p)
5009 			error = iwn_tx_data_raw(sc, m, ni, &p);
5010 		else
5011 			error = iwn_tx_data(sc, m, ni);
5012 
5013 		if (error != 0) {
5014 			if_inc_counter(ni->ni_vap->iv_ifp,
5015 			    IFCOUNTER_OERRORS, 1);
5016 			ieee80211_free_node(ni);
5017 			m_freem(m);
5018 		}
5019 	}
5020 
5021 	sc->sc_beacon_wait = 0;
5022 	IWN_UNLOCK(sc);
5023 }
5024 
5025 /*
5026  * raw frame xmit - free node/reference if failed.
5027  */
5028 static int
5029 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5030     const struct ieee80211_bpf_params *params)
5031 {
5032 	struct ieee80211com *ic = ni->ni_ic;
5033 	struct iwn_softc *sc = ic->ic_softc;
5034 	int error = 0;
5035 
5036 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5037 
5038 	IWN_LOCK(sc);
5039 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5040 		m_freem(m);
5041 		IWN_UNLOCK(sc);
5042 		return (ENETDOWN);
5043 	}
5044 
5045 	/* queue frame if we have to */
5046 	if (sc->sc_beacon_wait) {
5047 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5048 			m_freem(m);
5049 			IWN_UNLOCK(sc);
5050 			return (ENOBUFS);
5051 		}
5052 		/* Queued, so just return OK */
5053 		IWN_UNLOCK(sc);
5054 		return (0);
5055 	}
5056 
5057 	if (params == NULL) {
5058 		/*
5059 		 * Legacy path; interpret frame contents to decide
5060 		 * precisely how to send the frame.
5061 		 */
5062 		error = iwn_tx_data(sc, m, ni);
5063 	} else {
5064 		/*
5065 		 * Caller supplied explicit parameters to use in
5066 		 * sending the frame.
5067 		 */
5068 		error = iwn_tx_data_raw(sc, m, ni, params);
5069 	}
5070 	if (error == 0)
5071 		sc->sc_tx_timer = 5;
5072 	else
5073 		m_freem(m);
5074 
5075 	IWN_UNLOCK(sc);
5076 
5077 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5078 
5079 	return (error);
5080 }
5081 
5082 /*
5083  * transmit - don't free mbuf if failed; don't free node ref if failed.
5084  */
5085 static int
5086 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5087 {
5088 	struct iwn_softc *sc = ic->ic_softc;
5089 	struct ieee80211_node *ni;
5090 	int error;
5091 
5092 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5093 
5094 	IWN_LOCK(sc);
5095 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5096 		IWN_UNLOCK(sc);
5097 		return (ENXIO);
5098 	}
5099 
5100 	if (sc->qfullmsk) {
5101 		IWN_UNLOCK(sc);
5102 		return (ENOBUFS);
5103 	}
5104 
5105 	error = iwn_tx_data(sc, m, ni);
5106 	if (!error)
5107 		sc->sc_tx_timer = 5;
5108 	IWN_UNLOCK(sc);
5109 	return (error);
5110 }
5111 
5112 static void
5113 iwn_scan_timeout(void *arg)
5114 {
5115 	struct iwn_softc *sc = arg;
5116 	struct ieee80211com *ic = &sc->sc_ic;
5117 
5118 	ic_printf(ic, "scan timeout\n");
5119 	ieee80211_restart_all(ic);
5120 }
5121 
5122 static void
5123 iwn_watchdog(void *arg)
5124 {
5125 	struct iwn_softc *sc = arg;
5126 	struct ieee80211com *ic = &sc->sc_ic;
5127 
5128 	IWN_LOCK_ASSERT(sc);
5129 
5130 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5131 
5132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5133 
5134 	if (sc->sc_tx_timer > 0) {
5135 		if (--sc->sc_tx_timer == 0) {
5136 			ic_printf(ic, "device timeout\n");
5137 			ieee80211_restart_all(ic);
5138 			return;
5139 		}
5140 	}
5141 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5142 }
5143 
5144 static int
5145 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5146 {
5147 
5148 	return (0);
5149 }
5150 
5151 static int
5152 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5153 {
5154 
5155 	return (0);
5156 }
5157 
5158 static int
5159 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5160     struct thread *td)
5161 {
5162 	int rc;
5163 	struct iwn_softc *sc = dev->si_drv1;
5164 	struct iwn_ioctl_data *d;
5165 
5166 	rc = priv_check(td, PRIV_DRIVER);
5167 	if (rc != 0)
5168 		return (0);
5169 
5170 	switch (cmd) {
5171 	case SIOCGIWNSTATS:
5172 		d = (struct iwn_ioctl_data *) data;
5173 		IWN_LOCK(sc);
5174 		/* XXX validate permissions/memory/etc? */
5175 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5176 		IWN_UNLOCK(sc);
5177 		break;
5178 	case SIOCZIWNSTATS:
5179 		IWN_LOCK(sc);
5180 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5181 		IWN_UNLOCK(sc);
5182 		break;
5183 	default:
5184 		rc = EINVAL;
5185 		break;
5186 	}
5187 	return (rc);
5188 }
5189 
5190 static int
5191 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5192 {
5193 
5194 	return (ENOTTY);
5195 }
5196 
5197 static void
5198 iwn_parent(struct ieee80211com *ic)
5199 {
5200 	struct iwn_softc *sc = ic->ic_softc;
5201 	struct ieee80211vap *vap;
5202 	int error;
5203 
5204 	if (ic->ic_nrunning > 0) {
5205 		error = iwn_init(sc);
5206 
5207 		switch (error) {
5208 		case 0:
5209 			ieee80211_start_all(ic);
5210 			break;
5211 		case 1:
5212 			/* radio is disabled via RFkill switch */
5213 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5214 			break;
5215 		default:
5216 			vap = TAILQ_FIRST(&ic->ic_vaps);
5217 			if (vap != NULL)
5218 				ieee80211_stop(vap);
5219 			break;
5220 		}
5221 	} else
5222 		iwn_stop(sc);
5223 }
5224 
5225 /*
5226  * Send a command to the firmware.
5227  */
5228 static int
5229 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5230 {
5231 	struct iwn_tx_ring *ring;
5232 	struct iwn_tx_desc *desc;
5233 	struct iwn_tx_data *data;
5234 	struct iwn_tx_cmd *cmd;
5235 	struct mbuf *m;
5236 	bus_addr_t paddr;
5237 	int totlen, error;
5238 	int cmd_queue_num;
5239 
5240 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5241 
5242 	if (async == 0)
5243 		IWN_LOCK_ASSERT(sc);
5244 
5245 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5246 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5247 	else
5248 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5249 
5250 	ring = &sc->txq[cmd_queue_num];
5251 	desc = &ring->desc[ring->cur];
5252 	data = &ring->data[ring->cur];
5253 	totlen = 4 + size;
5254 
5255 	if (size > sizeof cmd->data) {
5256 		/* Command is too large to fit in a descriptor. */
5257 		if (totlen > MCLBYTES)
5258 			return EINVAL;
5259 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5260 		if (m == NULL)
5261 			return ENOMEM;
5262 		cmd = mtod(m, struct iwn_tx_cmd *);
5263 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5264 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5265 		if (error != 0) {
5266 			m_freem(m);
5267 			return error;
5268 		}
5269 		data->m = m;
5270 	} else {
5271 		cmd = &ring->cmd[ring->cur];
5272 		paddr = data->cmd_paddr;
5273 	}
5274 
5275 	cmd->code = code;
5276 	cmd->flags = 0;
5277 	cmd->qid = ring->qid;
5278 	cmd->idx = ring->cur;
5279 	memcpy(cmd->data, buf, size);
5280 
5281 	desc->nsegs = 1;
5282 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5283 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5284 
5285 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5286 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5287 	    cmd->flags, cmd->qid, cmd->idx);
5288 
5289 	if (size > sizeof cmd->data) {
5290 		bus_dmamap_sync(ring->data_dmat, data->map,
5291 		    BUS_DMASYNC_PREWRITE);
5292 	} else {
5293 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5294 		    BUS_DMASYNC_PREWRITE);
5295 	}
5296 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5297 	    BUS_DMASYNC_PREWRITE);
5298 
5299 	/* Kick command ring. */
5300 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5301 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5302 
5303 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5304 
5305 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5306 }
5307 
5308 static int
5309 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5310 {
5311 	struct iwn4965_node_info hnode;
5312 	caddr_t src, dst;
5313 
5314 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5315 
5316 	/*
5317 	 * We use the node structure for 5000 Series internally (it is
5318 	 * a superset of the one for 4965AGN). We thus copy the common
5319 	 * fields before sending the command.
5320 	 */
5321 	src = (caddr_t)node;
5322 	dst = (caddr_t)&hnode;
5323 	memcpy(dst, src, 48);
5324 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5325 	memcpy(dst + 48, src + 72, 20);
5326 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5327 }
5328 
5329 static int
5330 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5331 {
5332 
5333 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5334 
5335 	/* Direct mapping. */
5336 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5337 }
5338 
5339 static int
5340 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5341 {
5342 	struct iwn_node *wn = (void *)ni;
5343 	struct ieee80211_rateset *rs;
5344 	struct iwn_cmd_link_quality linkq;
5345 	int i, rate, txrate;
5346 	int is_11n;
5347 
5348 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5349 
5350 	memset(&linkq, 0, sizeof linkq);
5351 	linkq.id = wn->id;
5352 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5353 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5354 
5355 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5356 	linkq.ampdu_threshold = 3;
5357 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5358 
5359 	DPRINTF(sc, IWN_DEBUG_XMIT,
5360 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5361 	    __func__,
5362 	    linkq.antmsk_1stream,
5363 	    linkq.antmsk_2stream,
5364 	    sc->ntxchains);
5365 
5366 	/*
5367 	 * Are we using 11n rates? Ensure the channel is
5368 	 * 11n _and_ we have some 11n rates, or don't
5369 	 * try.
5370 	 */
5371 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5372 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5373 		is_11n = 1;
5374 	} else {
5375 		rs = &ni->ni_rates;
5376 		is_11n = 0;
5377 	}
5378 
5379 	/* Start at highest available bit-rate. */
5380 	/*
5381 	 * XXX this is all very dirty!
5382 	 */
5383 	if (is_11n)
5384 		txrate = ni->ni_htrates.rs_nrates - 1;
5385 	else
5386 		txrate = rs->rs_nrates - 1;
5387 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5388 		uint32_t plcp;
5389 
5390 		/*
5391 		 * XXX TODO: ensure the last two slots are the two lowest
5392 		 * rate entries, just for now.
5393 		 */
5394 		if (i == 14 || i == 15)
5395 			txrate = 0;
5396 
5397 		if (is_11n)
5398 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5399 		else
5400 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5401 
5402 		/* Do rate -> PLCP config mapping */
5403 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5404 		linkq.retry[i] = plcp;
5405 		DPRINTF(sc, IWN_DEBUG_XMIT,
5406 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5407 		    __func__,
5408 		    i,
5409 		    txrate,
5410 		    rate,
5411 		    le32toh(plcp));
5412 
5413 		/*
5414 		 * The mimo field is an index into the table which
5415 		 * indicates the first index where it and subsequent entries
5416 		 * will not be using MIMO.
5417 		 *
5418 		 * Since we're filling linkq from 0..15 and we're filling
5419 		 * from the highest MCS rates to the lowest rates, if we
5420 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5421 		 * the next entry.)  That way if the next entry is a non-MIMO
5422 		 * entry, we're already pointing at it.
5423 		 */
5424 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5425 		    IEEE80211_RV(le32toh(plcp)) > 7)
5426 			linkq.mimo = i + 1;
5427 
5428 		/* Next retry at immediate lower bit-rate. */
5429 		if (txrate > 0)
5430 			txrate--;
5431 	}
5432 	/*
5433 	 * If we reached the end of the list and indeed we hit
5434 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5435 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5436 	 */
5437 	if (linkq.mimo > 15)
5438 		linkq.mimo = 15;
5439 
5440 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5441 
5442 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5443 
5444 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5445 }
5446 
5447 /*
5448  * Broadcast node is used to send group-addressed and management frames.
5449  */
5450 static int
5451 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5452 {
5453 	struct iwn_ops *ops = &sc->ops;
5454 	struct ieee80211com *ic = &sc->sc_ic;
5455 	struct iwn_node_info node;
5456 	struct iwn_cmd_link_quality linkq;
5457 	uint8_t txant;
5458 	int i, error;
5459 
5460 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5461 
5462 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5463 
5464 	memset(&node, 0, sizeof node);
5465 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5466 	node.id = sc->broadcast_id;
5467 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5468 	if ((error = ops->add_node(sc, &node, async)) != 0)
5469 		return error;
5470 
5471 	/* Use the first valid TX antenna. */
5472 	txant = IWN_LSB(sc->txchainmask);
5473 
5474 	memset(&linkq, 0, sizeof linkq);
5475 	linkq.id = sc->broadcast_id;
5476 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5477 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5478 	linkq.ampdu_max = 64;
5479 	linkq.ampdu_threshold = 3;
5480 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5481 
5482 	/* Use lowest mandatory bit-rate. */
5483 	/* XXX rate table lookup? */
5484 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5485 		linkq.retry[0] = htole32(0xd);
5486 	else
5487 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5488 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5489 	/* Use same bit-rate for all TX retries. */
5490 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5491 		linkq.retry[i] = linkq.retry[0];
5492 	}
5493 
5494 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5495 
5496 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5497 }
5498 
5499 static int
5500 iwn_updateedca(struct ieee80211com *ic)
5501 {
5502 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5503 	struct iwn_softc *sc = ic->ic_softc;
5504 	struct iwn_edca_params cmd;
5505 	struct chanAccParams chp;
5506 	int aci;
5507 
5508 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5509 
5510 	ieee80211_wme_ic_getparams(ic, &chp);
5511 
5512 	memset(&cmd, 0, sizeof cmd);
5513 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5514 
5515 	IEEE80211_LOCK(ic);
5516 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5517 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5518 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5519 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5520 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5521 		cmd.ac[aci].txoplimit =
5522 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5523 	}
5524 	IEEE80211_UNLOCK(ic);
5525 
5526 	IWN_LOCK(sc);
5527 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5528 	IWN_UNLOCK(sc);
5529 
5530 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5531 
5532 	return 0;
5533 #undef IWN_EXP2
5534 }
5535 
5536 static void
5537 iwn_set_promisc(struct iwn_softc *sc)
5538 {
5539 	struct ieee80211com *ic = &sc->sc_ic;
5540 	uint32_t promisc_filter;
5541 
5542 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5543 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5544 		sc->rxon->filter |= htole32(promisc_filter);
5545 	else
5546 		sc->rxon->filter &= ~htole32(promisc_filter);
5547 }
5548 
5549 static void
5550 iwn_update_promisc(struct ieee80211com *ic)
5551 {
5552 	struct iwn_softc *sc = ic->ic_softc;
5553 	int error;
5554 
5555 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5556 		return;		/* nothing to do */
5557 
5558 	IWN_LOCK(sc);
5559 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5560 		IWN_UNLOCK(sc);
5561 		return;
5562 	}
5563 
5564 	iwn_set_promisc(sc);
5565 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5566 		device_printf(sc->sc_dev,
5567 		    "%s: could not send RXON, error %d\n",
5568 		    __func__, error);
5569 	}
5570 	IWN_UNLOCK(sc);
5571 }
5572 
5573 static void
5574 iwn_update_mcast(struct ieee80211com *ic)
5575 {
5576 	/* Ignore */
5577 }
5578 
5579 static void
5580 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5581 {
5582 	struct iwn_cmd_led led;
5583 
5584 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5585 
5586 #if 0
5587 	/* XXX don't set LEDs during scan? */
5588 	if (sc->sc_is_scanning)
5589 		return;
5590 #endif
5591 
5592 	/* Clear microcode LED ownership. */
5593 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5594 
5595 	led.which = which;
5596 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5597 	led.off = off;
5598 	led.on = on;
5599 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5600 }
5601 
5602 /*
5603  * Set the critical temperature at which the firmware will stop the radio
5604  * and notify us.
5605  */
5606 static int
5607 iwn_set_critical_temp(struct iwn_softc *sc)
5608 {
5609 	struct iwn_critical_temp crit;
5610 	int32_t temp;
5611 
5612 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5613 
5614 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5615 
5616 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5617 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5618 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5619 		temp = IWN_CTOK(110);
5620 	else
5621 		temp = 110;
5622 	memset(&crit, 0, sizeof crit);
5623 	crit.tempR = htole32(temp);
5624 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5625 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5626 }
5627 
5628 static int
5629 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5630 {
5631 	struct iwn_cmd_timing cmd;
5632 	uint64_t val, mod;
5633 
5634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5635 
5636 	memset(&cmd, 0, sizeof cmd);
5637 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5638 	cmd.bintval = htole16(ni->ni_intval);
5639 	cmd.lintval = htole16(10);
5640 
5641 	/* Compute remaining time until next beacon. */
5642 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5643 	mod = le64toh(cmd.tstamp) % val;
5644 	cmd.binitval = htole32((uint32_t)(val - mod));
5645 
5646 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5647 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5648 
5649 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5650 }
5651 
5652 static void
5653 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5654 {
5655 
5656 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5657 
5658 	/* Adjust TX power if need be (delta >= 3 degC). */
5659 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5660 	    __func__, sc->temp, temp);
5661 	if (abs(temp - sc->temp) >= 3) {
5662 		/* Record temperature of last calibration. */
5663 		sc->temp = temp;
5664 		(void)iwn4965_set_txpower(sc, 1);
5665 	}
5666 }
5667 
5668 /*
5669  * Set TX power for current channel (each rate has its own power settings).
5670  * This function takes into account the regulatory information from EEPROM,
5671  * the current temperature and the current voltage.
5672  */
5673 static int
5674 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5675 {
5676 /* Fixed-point arithmetic division using a n-bit fractional part. */
5677 #define fdivround(a, b, n)	\
5678 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5679 /* Linear interpolation. */
5680 #define interpolate(x, x1, y1, x2, y2, n)	\
5681 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5682 
5683 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5684 	struct iwn_ucode_info *uc = &sc->ucode_info;
5685 	struct iwn4965_cmd_txpower cmd;
5686 	struct iwn4965_eeprom_chan_samples *chans;
5687 	const uint8_t *rf_gain, *dsp_gain;
5688 	int32_t vdiff, tdiff;
5689 	int i, is_chan_5ghz, c, grp, maxpwr;
5690 	uint8_t chan;
5691 
5692 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5693 	/* Retrieve current channel from last RXON. */
5694 	chan = sc->rxon->chan;
5695 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5696 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5697 	    chan);
5698 
5699 	memset(&cmd, 0, sizeof cmd);
5700 	cmd.band = is_chan_5ghz ? 0 : 1;
5701 	cmd.chan = chan;
5702 
5703 	if (is_chan_5ghz) {
5704 		maxpwr   = sc->maxpwr5GHz;
5705 		rf_gain  = iwn4965_rf_gain_5ghz;
5706 		dsp_gain = iwn4965_dsp_gain_5ghz;
5707 	} else {
5708 		maxpwr   = sc->maxpwr2GHz;
5709 		rf_gain  = iwn4965_rf_gain_2ghz;
5710 		dsp_gain = iwn4965_dsp_gain_2ghz;
5711 	}
5712 
5713 	/* Compute voltage compensation. */
5714 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5715 	if (vdiff > 0)
5716 		vdiff *= 2;
5717 	if (abs(vdiff) > 2)
5718 		vdiff = 0;
5719 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5720 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5721 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5722 
5723 	/* Get channel attenuation group. */
5724 	if (chan <= 20)		/* 1-20 */
5725 		grp = 4;
5726 	else if (chan <= 43)	/* 34-43 */
5727 		grp = 0;
5728 	else if (chan <= 70)	/* 44-70 */
5729 		grp = 1;
5730 	else if (chan <= 124)	/* 71-124 */
5731 		grp = 2;
5732 	else			/* 125-200 */
5733 		grp = 3;
5734 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5735 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5736 
5737 	/* Get channel sub-band. */
5738 	for (i = 0; i < IWN_NBANDS; i++)
5739 		if (sc->bands[i].lo != 0 &&
5740 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5741 			break;
5742 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5743 		return EINVAL;
5744 	chans = sc->bands[i].chans;
5745 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5746 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5747 
5748 	for (c = 0; c < 2; c++) {
5749 		uint8_t power, gain, temp;
5750 		int maxchpwr, pwr, ridx, idx;
5751 
5752 		power = interpolate(chan,
5753 		    chans[0].num, chans[0].samples[c][1].power,
5754 		    chans[1].num, chans[1].samples[c][1].power, 1);
5755 		gain  = interpolate(chan,
5756 		    chans[0].num, chans[0].samples[c][1].gain,
5757 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5758 		temp  = interpolate(chan,
5759 		    chans[0].num, chans[0].samples[c][1].temp,
5760 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5761 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5762 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5763 		    __func__, c, power, gain, temp);
5764 
5765 		/* Compute temperature compensation. */
5766 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5767 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5768 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5769 		    __func__, tdiff, sc->temp, temp);
5770 
5771 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5772 			/* Convert dBm to half-dBm. */
5773 			maxchpwr = sc->maxpwr[chan] * 2;
5774 			if ((ridx / 8) & 1)
5775 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5776 
5777 			pwr = maxpwr;
5778 
5779 			/* Adjust TX power based on rate. */
5780 			if ((ridx % 8) == 5)
5781 				pwr -= 15;	/* OFDM48: -7.5dB */
5782 			else if ((ridx % 8) == 6)
5783 				pwr -= 17;	/* OFDM54: -8.5dB */
5784 			else if ((ridx % 8) == 7)
5785 				pwr -= 20;	/* OFDM60: -10dB */
5786 			else
5787 				pwr -= 10;	/* Others: -5dB */
5788 
5789 			/* Do not exceed channel max TX power. */
5790 			if (pwr > maxchpwr)
5791 				pwr = maxchpwr;
5792 
5793 			idx = gain - (pwr - power) - tdiff - vdiff;
5794 			if ((ridx / 8) & 1)	/* MIMO */
5795 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5796 
5797 			if (cmd.band == 0)
5798 				idx += 9;	/* 5GHz */
5799 			if (ridx == IWN_RIDX_MAX)
5800 				idx += 5;	/* CCK */
5801 
5802 			/* Make sure idx stays in a valid range. */
5803 			if (idx < 0)
5804 				idx = 0;
5805 			else if (idx > IWN4965_MAX_PWR_INDEX)
5806 				idx = IWN4965_MAX_PWR_INDEX;
5807 
5808 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5809 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5810 			    __func__, c, ridx, idx);
5811 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5812 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5813 		}
5814 	}
5815 
5816 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5817 	    "%s: set tx power for chan %d\n", __func__, chan);
5818 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5819 
5820 #undef interpolate
5821 #undef fdivround
5822 }
5823 
5824 static int
5825 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5826 {
5827 	struct iwn5000_cmd_txpower cmd;
5828 	int cmdid;
5829 
5830 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5831 
5832 	/*
5833 	 * TX power calibration is handled automatically by the firmware
5834 	 * for 5000 Series.
5835 	 */
5836 	memset(&cmd, 0, sizeof cmd);
5837 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5838 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5839 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5840 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5841 	    "%s: setting TX power; rev=%d\n",
5842 	    __func__,
5843 	    IWN_UCODE_API(sc->ucode_rev));
5844 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5845 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5846 	else
5847 		cmdid = IWN_CMD_TXPOWER_DBM;
5848 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5849 }
5850 
5851 /*
5852  * Retrieve the maximum RSSI (in dBm) among receivers.
5853  */
5854 static int
5855 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5856 {
5857 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5858 	uint8_t mask, agc;
5859 	int rssi;
5860 
5861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5862 
5863 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5864 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5865 
5866 	rssi = 0;
5867 	if (mask & IWN_ANT_A)
5868 		rssi = MAX(rssi, phy->rssi[0]);
5869 	if (mask & IWN_ANT_B)
5870 		rssi = MAX(rssi, phy->rssi[2]);
5871 	if (mask & IWN_ANT_C)
5872 		rssi = MAX(rssi, phy->rssi[4]);
5873 
5874 	DPRINTF(sc, IWN_DEBUG_RECV,
5875 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5876 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5877 	    rssi - agc - IWN_RSSI_TO_DBM);
5878 	return rssi - agc - IWN_RSSI_TO_DBM;
5879 }
5880 
5881 static int
5882 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5883 {
5884 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5885 	uint8_t agc;
5886 	int rssi;
5887 
5888 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5889 
5890 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5891 
5892 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5893 		   le16toh(phy->rssi[1]) & 0xff);
5894 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5895 
5896 	DPRINTF(sc, IWN_DEBUG_RECV,
5897 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5898 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5899 	    rssi - agc - IWN_RSSI_TO_DBM);
5900 	return rssi - agc - IWN_RSSI_TO_DBM;
5901 }
5902 
5903 /*
5904  * Retrieve the average noise (in dBm) among receivers.
5905  */
5906 static int
5907 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5908 {
5909 	int i, total, nbant, noise;
5910 
5911 	total = nbant = 0;
5912 	for (i = 0; i < 3; i++) {
5913 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5914 			continue;
5915 		total += noise;
5916 		nbant++;
5917 	}
5918 	/* There should be at least one antenna but check anyway. */
5919 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5920 }
5921 
5922 /*
5923  * Compute temperature (in degC) from last received statistics.
5924  */
5925 static int
5926 iwn4965_get_temperature(struct iwn_softc *sc)
5927 {
5928 	struct iwn_ucode_info *uc = &sc->ucode_info;
5929 	int32_t r1, r2, r3, r4, temp;
5930 
5931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5932 
5933 	r1 = le32toh(uc->temp[0].chan20MHz);
5934 	r2 = le32toh(uc->temp[1].chan20MHz);
5935 	r3 = le32toh(uc->temp[2].chan20MHz);
5936 	r4 = le32toh(sc->rawtemp);
5937 
5938 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5939 		return 0;
5940 
5941 	/* Sign-extend 23-bit R4 value to 32-bit. */
5942 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5943 	/* Compute temperature in Kelvin. */
5944 	temp = (259 * (r4 - r2)) / (r3 - r1);
5945 	temp = (temp * 97) / 100 + 8;
5946 
5947 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5948 	    IWN_KTOC(temp));
5949 	return IWN_KTOC(temp);
5950 }
5951 
5952 static int
5953 iwn5000_get_temperature(struct iwn_softc *sc)
5954 {
5955 	int32_t temp;
5956 
5957 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5958 
5959 	/*
5960 	 * Temperature is not used by the driver for 5000 Series because
5961 	 * TX power calibration is handled by firmware.
5962 	 */
5963 	temp = le32toh(sc->rawtemp);
5964 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5965 		temp = (temp / -5) + sc->temp_off;
5966 		temp = IWN_KTOC(temp);
5967 	}
5968 	return temp;
5969 }
5970 
5971 /*
5972  * Initialize sensitivity calibration state machine.
5973  */
5974 static int
5975 iwn_init_sensitivity(struct iwn_softc *sc)
5976 {
5977 	struct iwn_ops *ops = &sc->ops;
5978 	struct iwn_calib_state *calib = &sc->calib;
5979 	uint32_t flags;
5980 	int error;
5981 
5982 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5983 
5984 	/* Reset calibration state machine. */
5985 	memset(calib, 0, sizeof (*calib));
5986 	calib->state = IWN_CALIB_STATE_INIT;
5987 	calib->cck_state = IWN_CCK_STATE_HIFA;
5988 	/* Set initial correlation values. */
5989 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5990 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5991 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5992 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5993 	calib->cck_x4      = 125;
5994 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5995 	calib->energy_cck  = sc->limits->energy_cck;
5996 
5997 	/* Write initial sensitivity. */
5998 	if ((error = iwn_send_sensitivity(sc)) != 0)
5999 		return error;
6000 
6001 	/* Write initial gains. */
6002 	if ((error = ops->init_gains(sc)) != 0)
6003 		return error;
6004 
6005 	/* Request statistics at each beacon interval. */
6006 	flags = 0;
6007 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6008 	    __func__);
6009 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6010 }
6011 
6012 /*
6013  * Collect noise and RSSI statistics for the first 20 beacons received
6014  * after association and use them to determine connected antennas and
6015  * to set differential gains.
6016  */
6017 static void
6018 iwn_collect_noise(struct iwn_softc *sc,
6019     const struct iwn_rx_general_stats *stats)
6020 {
6021 	struct iwn_ops *ops = &sc->ops;
6022 	struct iwn_calib_state *calib = &sc->calib;
6023 	struct ieee80211com *ic = &sc->sc_ic;
6024 	uint32_t val;
6025 	int i;
6026 
6027 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6028 
6029 	/* Accumulate RSSI and noise for all 3 antennas. */
6030 	for (i = 0; i < 3; i++) {
6031 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6032 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6033 	}
6034 	/* NB: We update differential gains only once after 20 beacons. */
6035 	if (++calib->nbeacons < 20)
6036 		return;
6037 
6038 	/* Determine highest average RSSI. */
6039 	val = MAX(calib->rssi[0], calib->rssi[1]);
6040 	val = MAX(calib->rssi[2], val);
6041 
6042 	/* Determine which antennas are connected. */
6043 	sc->chainmask = sc->rxchainmask;
6044 	for (i = 0; i < 3; i++)
6045 		if (val - calib->rssi[i] > 15 * 20)
6046 			sc->chainmask &= ~(1 << i);
6047 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6048 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6049 	    __func__, sc->rxchainmask, sc->chainmask);
6050 
6051 	/* If none of the TX antennas are connected, keep at least one. */
6052 	if ((sc->chainmask & sc->txchainmask) == 0)
6053 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6054 
6055 	(void)ops->set_gains(sc);
6056 	calib->state = IWN_CALIB_STATE_RUN;
6057 
6058 #ifdef notyet
6059 	/* XXX Disable RX chains with no antennas connected. */
6060 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6061 	if (sc->sc_is_scanning)
6062 		device_printf(sc->sc_dev,
6063 		    "%s: is_scanning set, before RXON\n",
6064 		    __func__);
6065 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6066 #endif
6067 
6068 	/* Enable power-saving mode if requested by user. */
6069 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6070 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6071 
6072 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6073 
6074 }
6075 
6076 static int
6077 iwn4965_init_gains(struct iwn_softc *sc)
6078 {
6079 	struct iwn_phy_calib_gain cmd;
6080 
6081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6082 
6083 	memset(&cmd, 0, sizeof cmd);
6084 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6085 	/* Differential gains initially set to 0 for all 3 antennas. */
6086 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6087 	    "%s: setting initial differential gains\n", __func__);
6088 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6089 }
6090 
6091 static int
6092 iwn5000_init_gains(struct iwn_softc *sc)
6093 {
6094 	struct iwn_phy_calib cmd;
6095 
6096 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6097 
6098 	memset(&cmd, 0, sizeof cmd);
6099 	cmd.code = sc->reset_noise_gain;
6100 	cmd.ngroups = 1;
6101 	cmd.isvalid = 1;
6102 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6103 	    "%s: setting initial differential gains\n", __func__);
6104 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6105 }
6106 
6107 static int
6108 iwn4965_set_gains(struct iwn_softc *sc)
6109 {
6110 	struct iwn_calib_state *calib = &sc->calib;
6111 	struct iwn_phy_calib_gain cmd;
6112 	int i, delta, noise;
6113 
6114 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6115 
6116 	/* Get minimal noise among connected antennas. */
6117 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6118 	for (i = 0; i < 3; i++)
6119 		if (sc->chainmask & (1 << i))
6120 			noise = MIN(calib->noise[i], noise);
6121 
6122 	memset(&cmd, 0, sizeof cmd);
6123 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6124 	/* Set differential gains for connected antennas. */
6125 	for (i = 0; i < 3; i++) {
6126 		if (sc->chainmask & (1 << i)) {
6127 			/* Compute attenuation (in unit of 1.5dB). */
6128 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6129 			/* NB: delta <= 0 */
6130 			/* Limit to [-4.5dB,0]. */
6131 			cmd.gain[i] = MIN(abs(delta), 3);
6132 			if (delta < 0)
6133 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6134 		}
6135 	}
6136 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6137 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6138 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6139 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6140 }
6141 
6142 static int
6143 iwn5000_set_gains(struct iwn_softc *sc)
6144 {
6145 	struct iwn_calib_state *calib = &sc->calib;
6146 	struct iwn_phy_calib_gain cmd;
6147 	int i, ant, div, delta;
6148 
6149 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6150 
6151 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6152 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6153 
6154 	memset(&cmd, 0, sizeof cmd);
6155 	cmd.code = sc->noise_gain;
6156 	cmd.ngroups = 1;
6157 	cmd.isvalid = 1;
6158 	/* Get first available RX antenna as referential. */
6159 	ant = IWN_LSB(sc->rxchainmask);
6160 	/* Set differential gains for other antennas. */
6161 	for (i = ant + 1; i < 3; i++) {
6162 		if (sc->chainmask & (1 << i)) {
6163 			/* The delta is relative to antenna "ant". */
6164 			delta = ((int32_t)calib->noise[ant] -
6165 			    (int32_t)calib->noise[i]) / div;
6166 			/* Limit to [-4.5dB,+4.5dB]. */
6167 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6168 			if (delta < 0)
6169 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6170 		}
6171 	}
6172 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6173 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6174 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6175 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6176 }
6177 
6178 /*
6179  * Tune RF RX sensitivity based on the number of false alarms detected
6180  * during the last beacon period.
6181  */
6182 static void
6183 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6184 {
6185 #define inc(val, inc, max)			\
6186 	if ((val) < (max)) {			\
6187 		if ((val) < (max) - (inc))	\
6188 			(val) += (inc);		\
6189 		else				\
6190 			(val) = (max);		\
6191 		needs_update = 1;		\
6192 	}
6193 #define dec(val, dec, min)			\
6194 	if ((val) > (min)) {			\
6195 		if ((val) > (min) + (dec))	\
6196 			(val) -= (dec);		\
6197 		else				\
6198 			(val) = (min);		\
6199 		needs_update = 1;		\
6200 	}
6201 
6202 	const struct iwn_sensitivity_limits *limits = sc->limits;
6203 	struct iwn_calib_state *calib = &sc->calib;
6204 	uint32_t val, rxena, fa;
6205 	uint32_t energy[3], energy_min;
6206 	uint8_t noise[3], noise_ref;
6207 	int i, needs_update = 0;
6208 
6209 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6210 
6211 	/* Check that we've been enabled long enough. */
6212 	if ((rxena = le32toh(stats->general.load)) == 0){
6213 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6214 		return;
6215 	}
6216 
6217 	/* Compute number of false alarms since last call for OFDM. */
6218 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6219 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6220 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6221 
6222 	if (fa > 50 * rxena) {
6223 		/* High false alarm count, decrease sensitivity. */
6224 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6225 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6226 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6227 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6228 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6229 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6230 
6231 	} else if (fa < 5 * rxena) {
6232 		/* Low false alarm count, increase sensitivity. */
6233 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6234 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6235 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6236 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6237 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6238 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6239 	}
6240 
6241 	/* Compute maximum noise among 3 receivers. */
6242 	for (i = 0; i < 3; i++)
6243 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6244 	val = MAX(noise[0], noise[1]);
6245 	val = MAX(noise[2], val);
6246 	/* Insert it into our samples table. */
6247 	calib->noise_samples[calib->cur_noise_sample] = val;
6248 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6249 
6250 	/* Compute maximum noise among last 20 samples. */
6251 	noise_ref = calib->noise_samples[0];
6252 	for (i = 1; i < 20; i++)
6253 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6254 
6255 	/* Compute maximum energy among 3 receivers. */
6256 	for (i = 0; i < 3; i++)
6257 		energy[i] = le32toh(stats->general.energy[i]);
6258 	val = MIN(energy[0], energy[1]);
6259 	val = MIN(energy[2], val);
6260 	/* Insert it into our samples table. */
6261 	calib->energy_samples[calib->cur_energy_sample] = val;
6262 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6263 
6264 	/* Compute minimum energy among last 10 samples. */
6265 	energy_min = calib->energy_samples[0];
6266 	for (i = 1; i < 10; i++)
6267 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6268 	energy_min += 6;
6269 
6270 	/* Compute number of false alarms since last call for CCK. */
6271 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6272 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6273 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6274 
6275 	if (fa > 50 * rxena) {
6276 		/* High false alarm count, decrease sensitivity. */
6277 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6278 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6279 		calib->cck_state = IWN_CCK_STATE_HIFA;
6280 		calib->low_fa = 0;
6281 
6282 		if (calib->cck_x4 > 160) {
6283 			calib->noise_ref = noise_ref;
6284 			if (calib->energy_cck > 2)
6285 				dec(calib->energy_cck, 2, energy_min);
6286 		}
6287 		if (calib->cck_x4 < 160) {
6288 			calib->cck_x4 = 161;
6289 			needs_update = 1;
6290 		} else
6291 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6292 
6293 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6294 
6295 	} else if (fa < 5 * rxena) {
6296 		/* Low false alarm count, increase sensitivity. */
6297 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6298 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6299 		calib->cck_state = IWN_CCK_STATE_LOFA;
6300 		calib->low_fa++;
6301 
6302 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6303 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6304 		     calib->low_fa > 100)) {
6305 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6306 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6307 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6308 		}
6309 	} else {
6310 		/* Not worth to increase or decrease sensitivity. */
6311 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6312 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6313 		calib->low_fa = 0;
6314 		calib->noise_ref = noise_ref;
6315 
6316 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6317 			/* Previous interval had many false alarms. */
6318 			dec(calib->energy_cck, 8, energy_min);
6319 		}
6320 		calib->cck_state = IWN_CCK_STATE_INIT;
6321 	}
6322 
6323 	if (needs_update)
6324 		(void)iwn_send_sensitivity(sc);
6325 
6326 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6327 
6328 #undef dec
6329 #undef inc
6330 }
6331 
6332 static int
6333 iwn_send_sensitivity(struct iwn_softc *sc)
6334 {
6335 	struct iwn_calib_state *calib = &sc->calib;
6336 	struct iwn_enhanced_sensitivity_cmd cmd;
6337 	int len;
6338 
6339 	memset(&cmd, 0, sizeof cmd);
6340 	len = sizeof (struct iwn_sensitivity_cmd);
6341 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6342 	/* OFDM modulation. */
6343 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6344 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6345 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6346 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6347 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6348 	cmd.energy_ofdm_th     = htole16(62);
6349 	/* CCK modulation. */
6350 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6351 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6352 	cmd.energy_cck         = htole16(calib->energy_cck);
6353 	/* Barker modulation: use default values. */
6354 	cmd.corr_barker        = htole16(190);
6355 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6356 
6357 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6358 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6359 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6360 	    calib->ofdm_mrc_x4, calib->cck_x4,
6361 	    calib->cck_mrc_x4, calib->energy_cck);
6362 
6363 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6364 		goto send;
6365 	/* Enhanced sensitivity settings. */
6366 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6367 	cmd.ofdm_det_slope_mrc = htole16(668);
6368 	cmd.ofdm_det_icept_mrc = htole16(4);
6369 	cmd.ofdm_det_slope     = htole16(486);
6370 	cmd.ofdm_det_icept     = htole16(37);
6371 	cmd.cck_det_slope_mrc  = htole16(853);
6372 	cmd.cck_det_icept_mrc  = htole16(4);
6373 	cmd.cck_det_slope      = htole16(476);
6374 	cmd.cck_det_icept      = htole16(99);
6375 send:
6376 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6377 }
6378 
6379 /*
6380  * Look at the increase of PLCP errors over time; if it exceeds
6381  * a programmed threshold then trigger an RF retune.
6382  */
6383 static void
6384 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6385 {
6386 	int32_t delta_ofdm, delta_ht, delta_cck;
6387 	struct iwn_calib_state *calib = &sc->calib;
6388 	int delta_ticks, cur_ticks;
6389 	int delta_msec;
6390 	int thresh;
6391 
6392 	/*
6393 	 * Calculate the difference between the current and
6394 	 * previous statistics.
6395 	 */
6396 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6397 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6398 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6399 
6400 	/*
6401 	 * Calculate the delta in time between successive statistics
6402 	 * messages.  Yes, it can roll over; so we make sure that
6403 	 * this doesn't happen.
6404 	 *
6405 	 * XXX go figure out what to do about rollover
6406 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6407 	 * XXX go stab signed integer overflow undefined-ness in the face.
6408 	 */
6409 	cur_ticks = ticks;
6410 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6411 
6412 	/*
6413 	 * If any are negative, then the firmware likely reset; so just
6414 	 * bail.  We'll pick this up next time.
6415 	 */
6416 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6417 		return;
6418 
6419 	/*
6420 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6421 	 * so we can do some useful math with it.
6422 	 */
6423 	delta_msec = ticks_to_msecs(delta_ticks);
6424 
6425 	/*
6426 	 * Calculate what our threshold is given the current delta_msec.
6427 	 */
6428 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6429 
6430 	DPRINTF(sc, IWN_DEBUG_STATE,
6431 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6432 	    __func__,
6433 	    delta_msec,
6434 	    delta_cck,
6435 	    delta_ofdm,
6436 	    delta_ht,
6437 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6438 	    thresh);
6439 
6440 	/*
6441 	 * If we need a retune, then schedule a single channel scan
6442 	 * to a channel that isn't the currently active one!
6443 	 *
6444 	 * The math from linux iwlwifi:
6445 	 *
6446 	 * if ((delta * 100 / msecs) > threshold)
6447 	 */
6448 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6449 		DPRINTF(sc, IWN_DEBUG_ANY,
6450 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6451 		    "over limit (%d); retune!\n",
6452 		    __func__,
6453 		    (delta_cck + delta_ofdm + delta_ht),
6454 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6455 		    thresh);
6456 	}
6457 }
6458 
6459 /*
6460  * Set STA mode power saving level (between 0 and 5).
6461  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6462  */
6463 static int
6464 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6465 {
6466 	struct iwn_pmgt_cmd cmd;
6467 	const struct iwn_pmgt *pmgt;
6468 	uint32_t max, skip_dtim;
6469 	uint32_t reg;
6470 	int i;
6471 
6472 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6473 	    "%s: dtim=%d, level=%d, async=%d\n",
6474 	    __func__,
6475 	    dtim,
6476 	    level,
6477 	    async);
6478 
6479 	/* Select which PS parameters to use. */
6480 	if (dtim <= 2)
6481 		pmgt = &iwn_pmgt[0][level];
6482 	else if (dtim <= 10)
6483 		pmgt = &iwn_pmgt[1][level];
6484 	else
6485 		pmgt = &iwn_pmgt[2][level];
6486 
6487 	memset(&cmd, 0, sizeof cmd);
6488 	if (level != 0)	/* not CAM */
6489 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6490 	if (level == 5)
6491 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6492 	/* Retrieve PCIe Active State Power Management (ASPM). */
6493 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6494 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6495 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6496 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6497 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6498 
6499 	if (dtim == 0) {
6500 		dtim = 1;
6501 		skip_dtim = 0;
6502 	} else
6503 		skip_dtim = pmgt->skip_dtim;
6504 	if (skip_dtim != 0) {
6505 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6506 		max = pmgt->intval[4];
6507 		if (max == (uint32_t)-1)
6508 			max = dtim * (skip_dtim + 1);
6509 		else if (max > dtim)
6510 			max = rounddown(max, dtim);
6511 	} else
6512 		max = dtim;
6513 	for (i = 0; i < 5; i++)
6514 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6515 
6516 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6517 	    level);
6518 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6519 }
6520 
6521 static int
6522 iwn_send_btcoex(struct iwn_softc *sc)
6523 {
6524 	struct iwn_bluetooth cmd;
6525 
6526 	memset(&cmd, 0, sizeof cmd);
6527 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6528 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6529 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6530 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6531 	    __func__);
6532 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6533 }
6534 
6535 static int
6536 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6537 {
6538 	static const uint32_t btcoex_3wire[12] = {
6539 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6540 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6541 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6542 	};
6543 	struct iwn6000_btcoex_config btconfig;
6544 	struct iwn2000_btcoex_config btconfig2k;
6545 	struct iwn_btcoex_priotable btprio;
6546 	struct iwn_btcoex_prot btprot;
6547 	int error, i;
6548 	uint8_t flags;
6549 
6550 	memset(&btconfig, 0, sizeof btconfig);
6551 	memset(&btconfig2k, 0, sizeof btconfig2k);
6552 
6553 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6554 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6555 
6556 	if (sc->base_params->bt_sco_disable)
6557 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6558 	else
6559 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6560 
6561 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6562 
6563 	/* Default flags result is 145 as old value */
6564 
6565 	/*
6566 	 * Flags value has to be review. Values must change if we
6567 	 * which to disable it
6568 	 */
6569 	if (sc->base_params->bt_session_2) {
6570 		btconfig2k.flags = flags;
6571 		btconfig2k.max_kill = 5;
6572 		btconfig2k.bt3_t7_timer = 1;
6573 		btconfig2k.kill_ack = htole32(0xffff0000);
6574 		btconfig2k.kill_cts = htole32(0xffff0000);
6575 		btconfig2k.sample_time = 2;
6576 		btconfig2k.bt3_t2_timer = 0xc;
6577 
6578 		for (i = 0; i < 12; i++)
6579 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6580 		btconfig2k.valid = htole16(0xff);
6581 		btconfig2k.prio_boost = htole32(0xf0);
6582 		DPRINTF(sc, IWN_DEBUG_RESET,
6583 		    "%s: configuring advanced bluetooth coexistence"
6584 		    " session 2, flags : 0x%x\n",
6585 		    __func__,
6586 		    flags);
6587 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6588 		    sizeof(btconfig2k), 1);
6589 	} else {
6590 		btconfig.flags = flags;
6591 		btconfig.max_kill = 5;
6592 		btconfig.bt3_t7_timer = 1;
6593 		btconfig.kill_ack = htole32(0xffff0000);
6594 		btconfig.kill_cts = htole32(0xffff0000);
6595 		btconfig.sample_time = 2;
6596 		btconfig.bt3_t2_timer = 0xc;
6597 
6598 		for (i = 0; i < 12; i++)
6599 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6600 		btconfig.valid = htole16(0xff);
6601 		btconfig.prio_boost = 0xf0;
6602 		DPRINTF(sc, IWN_DEBUG_RESET,
6603 		    "%s: configuring advanced bluetooth coexistence,"
6604 		    " flags : 0x%x\n",
6605 		    __func__,
6606 		    flags);
6607 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6608 		    sizeof(btconfig), 1);
6609 	}
6610 
6611 	if (error != 0)
6612 		return error;
6613 
6614 	memset(&btprio, 0, sizeof btprio);
6615 	btprio.calib_init1 = 0x6;
6616 	btprio.calib_init2 = 0x7;
6617 	btprio.calib_periodic_low1 = 0x2;
6618 	btprio.calib_periodic_low2 = 0x3;
6619 	btprio.calib_periodic_high1 = 0x4;
6620 	btprio.calib_periodic_high2 = 0x5;
6621 	btprio.dtim = 0x6;
6622 	btprio.scan52 = 0x8;
6623 	btprio.scan24 = 0xa;
6624 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6625 	    1);
6626 	if (error != 0)
6627 		return error;
6628 
6629 	/* Force BT state machine change. */
6630 	memset(&btprot, 0, sizeof btprot);
6631 	btprot.open = 1;
6632 	btprot.type = 1;
6633 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6634 	if (error != 0)
6635 		return error;
6636 	btprot.open = 0;
6637 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6638 }
6639 
6640 static int
6641 iwn5000_runtime_calib(struct iwn_softc *sc)
6642 {
6643 	struct iwn5000_calib_config cmd;
6644 
6645 	memset(&cmd, 0, sizeof cmd);
6646 	cmd.ucode.once.enable = 0xffffffff;
6647 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6648 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6649 	    "%s: configuring runtime calibration\n", __func__);
6650 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6651 }
6652 
6653 static uint32_t
6654 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211vap *vap,
6655     struct ieee80211_channel *c)
6656 {
6657 	uint32_t htflags = 0;
6658 
6659 	if (! IEEE80211_IS_CHAN_HT(c))
6660 		return (0);
6661 
6662 	htflags |= IWN_RXON_HT_PROTMODE(vap->iv_curhtprotmode);
6663 
6664 	if (IEEE80211_IS_CHAN_HT40(c)) {
6665 		switch (vap->iv_curhtprotmode) {
6666 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6667 			htflags |= IWN_RXON_HT_MODEPURE40;
6668 			break;
6669 		default:
6670 			htflags |= IWN_RXON_HT_MODEMIXED;
6671 			break;
6672 		}
6673 	}
6674 	if (IEEE80211_IS_CHAN_HT40D(c))
6675 		htflags |= IWN_RXON_HT_HT40MINUS;
6676 
6677 	return (htflags);
6678 }
6679 
6680 static int
6681 iwn_check_bss_filter(struct iwn_softc *sc)
6682 {
6683 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6684 }
6685 
6686 static int
6687 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6688 {
6689 	struct iwn4965_rxon_assoc cmd;
6690 	struct iwn_rxon *rxon = sc->rxon;
6691 
6692 	cmd.flags = rxon->flags;
6693 	cmd.filter = rxon->filter;
6694 	cmd.ofdm_mask = rxon->ofdm_mask;
6695 	cmd.cck_mask = rxon->cck_mask;
6696 	cmd.ht_single_mask = rxon->ht_single_mask;
6697 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6698 	cmd.rxchain = rxon->rxchain;
6699 	cmd.reserved = 0;
6700 
6701 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6702 }
6703 
6704 static int
6705 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6706 {
6707 	struct iwn5000_rxon_assoc cmd;
6708 	struct iwn_rxon *rxon = sc->rxon;
6709 
6710 	cmd.flags = rxon->flags;
6711 	cmd.filter = rxon->filter;
6712 	cmd.ofdm_mask = rxon->ofdm_mask;
6713 	cmd.cck_mask = rxon->cck_mask;
6714 	cmd.reserved1 = 0;
6715 	cmd.ht_single_mask = rxon->ht_single_mask;
6716 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6717 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6718 	cmd.reserved2 = 0;
6719 	cmd.rxchain = rxon->rxchain;
6720 	cmd.acquisition = rxon->acquisition;
6721 	cmd.reserved3 = 0;
6722 
6723 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6724 }
6725 
6726 static int
6727 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6728 {
6729 	struct iwn_ops *ops = &sc->ops;
6730 	int error;
6731 
6732 	IWN_LOCK_ASSERT(sc);
6733 
6734 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6735 		error = ops->rxon_assoc(sc, async);
6736 		if (error != 0) {
6737 			device_printf(sc->sc_dev,
6738 			    "%s: RXON_ASSOC command failed, error %d\n",
6739 			    __func__, error);
6740 			return (error);
6741 		}
6742 	} else {
6743 		if (sc->sc_is_scanning)
6744 			device_printf(sc->sc_dev,
6745 			    "%s: is_scanning set, before RXON\n",
6746 			    __func__);
6747 
6748 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6749 		if (error != 0) {
6750 			device_printf(sc->sc_dev,
6751 			    "%s: RXON command failed, error %d\n",
6752 			    __func__, error);
6753 			return (error);
6754 		}
6755 
6756 		/*
6757 		 * Reconfiguring RXON clears the firmware nodes table so
6758 		 * we must add the broadcast node again.
6759 		 */
6760 		if (iwn_check_bss_filter(sc) == 0 &&
6761 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6762 			device_printf(sc->sc_dev,
6763 			    "%s: could not add broadcast node, error %d\n",
6764 			    __func__, error);
6765 			return (error);
6766 		}
6767 	}
6768 
6769 	/* Configuration has changed, set TX power accordingly. */
6770 	if ((error = ops->set_txpower(sc, async)) != 0) {
6771 		device_printf(sc->sc_dev,
6772 		    "%s: could not set TX power, error %d\n",
6773 		    __func__, error);
6774 		return (error);
6775 	}
6776 
6777 	return (0);
6778 }
6779 
6780 static int
6781 iwn_config(struct iwn_softc *sc)
6782 {
6783 	struct ieee80211com *ic = &sc->sc_ic;
6784 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6785 	const uint8_t *macaddr;
6786 	uint32_t txmask;
6787 	uint16_t rxchain;
6788 	int error;
6789 
6790 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6791 
6792 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6793 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6794 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6795 		    " exclusive each together. Review NIC config file. Conf"
6796 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6797 		    sc->base_params->calib_need,
6798 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6799 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6800 		return (EINVAL);
6801 	}
6802 
6803 	/* Compute temperature calib if needed. Will be send by send calib */
6804 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6805 		error = iwn5000_temp_offset_calib(sc);
6806 		if (error != 0) {
6807 			device_printf(sc->sc_dev,
6808 			    "%s: could not set temperature offset\n", __func__);
6809 			return (error);
6810 		}
6811 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6812 		error = iwn5000_temp_offset_calibv2(sc);
6813 		if (error != 0) {
6814 			device_printf(sc->sc_dev,
6815 			    "%s: could not compute temperature offset v2\n",
6816 			    __func__);
6817 			return (error);
6818 		}
6819 	}
6820 
6821 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6822 		/* Configure runtime DC calibration. */
6823 		error = iwn5000_runtime_calib(sc);
6824 		if (error != 0) {
6825 			device_printf(sc->sc_dev,
6826 			    "%s: could not configure runtime calibration\n",
6827 			    __func__);
6828 			return error;
6829 		}
6830 	}
6831 
6832 	/* Configure valid TX chains for >=5000 Series. */
6833 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6834 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6835 		txmask = htole32(sc->txchainmask);
6836 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6837 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6838 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6839 		    sizeof txmask, 0);
6840 		if (error != 0) {
6841 			device_printf(sc->sc_dev,
6842 			    "%s: could not configure valid TX chains, "
6843 			    "error %d\n", __func__, error);
6844 			return error;
6845 		}
6846 	}
6847 
6848 	/* Configure bluetooth coexistence. */
6849 	error = 0;
6850 
6851 	/* Configure bluetooth coexistence if needed. */
6852 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6853 		error = iwn_send_advanced_btcoex(sc);
6854 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6855 		error = iwn_send_btcoex(sc);
6856 
6857 	if (error != 0) {
6858 		device_printf(sc->sc_dev,
6859 		    "%s: could not configure bluetooth coexistence, error %d\n",
6860 		    __func__, error);
6861 		return error;
6862 	}
6863 
6864 	/* Set mode, channel, RX filter and enable RX. */
6865 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6866 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6867 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6868 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6869 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6870 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6871 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6872 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6873 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6874 
6875 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6876 	switch (ic->ic_opmode) {
6877 	case IEEE80211_M_STA:
6878 		sc->rxon->mode = IWN_MODE_STA;
6879 		break;
6880 	case IEEE80211_M_MONITOR:
6881 		sc->rxon->mode = IWN_MODE_MONITOR;
6882 		break;
6883 	default:
6884 		/* Should not get there. */
6885 		break;
6886 	}
6887 	iwn_set_promisc(sc);
6888 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6889 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6890 	sc->rxon->ht_single_mask = 0xff;
6891 	sc->rxon->ht_dual_mask = 0xff;
6892 	sc->rxon->ht_triple_mask = 0xff;
6893 	/*
6894 	 * In active association mode, ensure that
6895 	 * all the receive chains are enabled.
6896 	 *
6897 	 * Since we're not yet doing SMPS, don't allow the
6898 	 * number of idle RX chains to be less than the active
6899 	 * number.
6900 	 */
6901 	rxchain =
6902 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6903 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6904 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6905 	sc->rxon->rxchain = htole16(rxchain);
6906 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6907 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6908 	    __func__,
6909 	    sc->rxchainmask,
6910 	    sc->nrxchains);
6911 
6912 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
6913 
6914 	DPRINTF(sc, IWN_DEBUG_RESET,
6915 	    "%s: setting configuration; flags=0x%08x\n",
6916 	    __func__, le32toh(sc->rxon->flags));
6917 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6918 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6919 		    __func__);
6920 		return error;
6921 	}
6922 
6923 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6924 		device_printf(sc->sc_dev,
6925 		    "%s: could not set critical temperature\n", __func__);
6926 		return error;
6927 	}
6928 
6929 	/* Set power saving level to CAM during initialization. */
6930 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6931 		device_printf(sc->sc_dev,
6932 		    "%s: could not set power saving level\n", __func__);
6933 		return error;
6934 	}
6935 
6936 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6937 
6938 	return 0;
6939 }
6940 
6941 static uint16_t
6942 iwn_get_active_dwell_time(struct iwn_softc *sc,
6943     struct ieee80211_channel *c, uint8_t n_probes)
6944 {
6945 	/* No channel? Default to 2GHz settings */
6946 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6947 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6948 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6949 	}
6950 
6951 	/* 5GHz dwell time */
6952 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6953 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6954 }
6955 
6956 /*
6957  * Limit the total dwell time to 85% of the beacon interval.
6958  *
6959  * Returns the dwell time in milliseconds.
6960  */
6961 static uint16_t
6962 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6963 {
6964 	struct ieee80211com *ic = &sc->sc_ic;
6965 	struct ieee80211vap *vap = NULL;
6966 	int bintval = 0;
6967 
6968 	/* bintval is in TU (1.024mS) */
6969 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6970 		vap = TAILQ_FIRST(&ic->ic_vaps);
6971 		bintval = vap->iv_bss->ni_intval;
6972 	}
6973 
6974 	/*
6975 	 * If it's non-zero, we should calculate the minimum of
6976 	 * it and the DWELL_BASE.
6977 	 *
6978 	 * XXX Yes, the math should take into account that bintval
6979 	 * is 1.024mS, not 1mS..
6980 	 */
6981 	if (bintval > 0) {
6982 		DPRINTF(sc, IWN_DEBUG_SCAN,
6983 		    "%s: bintval=%d\n",
6984 		    __func__,
6985 		    bintval);
6986 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6987 	}
6988 
6989 	/* No association context? Default */
6990 	return (IWN_PASSIVE_DWELL_BASE);
6991 }
6992 
6993 static uint16_t
6994 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6995 {
6996 	uint16_t passive;
6997 
6998 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6999 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7000 	} else {
7001 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7002 	}
7003 
7004 	/* Clamp to the beacon interval if we're associated */
7005 	return (iwn_limit_dwell(sc, passive));
7006 }
7007 
7008 static int
7009 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7010     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7011 {
7012 	struct ieee80211com *ic = &sc->sc_ic;
7013 	struct ieee80211_node *ni = vap->iv_bss;
7014 	struct iwn_scan_hdr *hdr;
7015 	struct iwn_cmd_data *tx;
7016 	struct iwn_scan_essid *essid;
7017 	struct iwn_scan_chan *chan;
7018 	struct ieee80211_frame *wh;
7019 	struct ieee80211_rateset *rs;
7020 	uint8_t *buf, *frm;
7021 	uint16_t rxchain;
7022 	uint8_t txant;
7023 	int buflen, error;
7024 	int is_active;
7025 	uint16_t dwell_active, dwell_passive;
7026 	uint32_t scan_service_time;
7027 
7028 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7029 
7030 	/*
7031 	 * We are absolutely not allowed to send a scan command when another
7032 	 * scan command is pending.
7033 	 */
7034 	if (sc->sc_is_scanning) {
7035 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7036 		    __func__);
7037 		return (EAGAIN);
7038 	}
7039 
7040 	/* Assign the scan channel */
7041 	c = ic->ic_curchan;
7042 
7043 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7044 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7045 	if (buf == NULL) {
7046 		device_printf(sc->sc_dev,
7047 		    "%s: could not allocate buffer for scan command\n",
7048 		    __func__);
7049 		return ENOMEM;
7050 	}
7051 	hdr = (struct iwn_scan_hdr *)buf;
7052 	/*
7053 	 * Move to the next channel if no frames are received within 10ms
7054 	 * after sending the probe request.
7055 	 */
7056 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7057 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7058 	/*
7059 	 * Max needs to be greater than active and passive and quiet!
7060 	 * It's also in microseconds!
7061 	 */
7062 	hdr->max_svc = htole32(250 * 1024);
7063 
7064 	/*
7065 	 * Reset scan: interval=100
7066 	 * Normal scan: interval=becaon interval
7067 	 * suspend_time: 100 (TU)
7068 	 *
7069 	 */
7070 #if 0
7071 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7072 	scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7073 #else
7074 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7075 #endif
7076 	hdr->pause_svc = htole32(scan_service_time);
7077 
7078 	/* Select antennas for scanning. */
7079 	rxchain =
7080 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7081 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7082 	    IWN_RXCHAIN_DRIVER_FORCE;
7083 	if (IEEE80211_IS_CHAN_A(c) &&
7084 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7085 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7086 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7087 	} else	/* Use all available RX antennas. */
7088 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7089 	hdr->rxchain = htole16(rxchain);
7090 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7091 
7092 	tx = (struct iwn_cmd_data *)(hdr + 1);
7093 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7094 	tx->id = sc->broadcast_id;
7095 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7096 
7097 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7098 		/* Send probe requests at 6Mbps. */
7099 		tx->rate = htole32(0xd);
7100 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7101 	} else {
7102 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7103 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7104 		    sc->rxon->associd && sc->rxon->chan > 14)
7105 			tx->rate = htole32(0xd);
7106 		else {
7107 			/* Send probe requests at 1Mbps. */
7108 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7109 		}
7110 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7111 	}
7112 	/* Use the first valid TX antenna. */
7113 	txant = IWN_LSB(sc->txchainmask);
7114 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7115 
7116 	/*
7117 	 * Only do active scanning if we're announcing a probe request
7118 	 * for a given SSID (or more, if we ever add it to the driver.)
7119 	 */
7120 	is_active = 0;
7121 
7122 	/*
7123 	 * If we're scanning for a specific SSID, add it to the command.
7124 	 *
7125 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7126 	 */
7127 	essid = (struct iwn_scan_essid *)(tx + 1);
7128 	if (ss != NULL) {
7129 		if (ss->ss_ssid[0].len != 0) {
7130 			essid[0].id = IEEE80211_ELEMID_SSID;
7131 			essid[0].len = ss->ss_ssid[0].len;
7132 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7133 		}
7134 
7135 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7136 		    __func__,
7137 		    ss->ss_ssid[0].len,
7138 		    ss->ss_ssid[0].len,
7139 		    ss->ss_ssid[0].ssid);
7140 
7141 		if (ss->ss_nssid > 0)
7142 			is_active = 1;
7143 	}
7144 
7145 	/*
7146 	 * Build a probe request frame.  Most of the following code is a
7147 	 * copy & paste of what is done in net80211.
7148 	 */
7149 	wh = (struct ieee80211_frame *)(essid + 20);
7150 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7151 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7152 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7153 	IEEE80211_ADDR_COPY(wh->i_addr1, if_getbroadcastaddr(vap->iv_ifp));
7154 	IEEE80211_ADDR_COPY(wh->i_addr2, if_getlladdr(vap->iv_ifp));
7155 	IEEE80211_ADDR_COPY(wh->i_addr3, if_getbroadcastaddr(vap->iv_ifp));
7156 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7157 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7158 
7159 	frm = (uint8_t *)(wh + 1);
7160 	frm = ieee80211_add_ssid(frm, NULL, 0);
7161 	frm = ieee80211_add_rates(frm, rs);
7162 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7163 		frm = ieee80211_add_xrates(frm, rs);
7164 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7165 		frm = ieee80211_add_htcap(frm, ni);
7166 
7167 	/* Set length of probe request. */
7168 	tx->len = htole16(frm - (uint8_t *)wh);
7169 
7170 	/*
7171 	 * If active scanning is requested but a certain channel is
7172 	 * marked passive, we can do active scanning if we detect
7173 	 * transmissions.
7174 	 *
7175 	 * There is an issue with some firmware versions that triggers
7176 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7177 	 * on a radar channel even though this means that we should NOT
7178 	 * send probes.
7179 	 *
7180 	 * The "good CRC threshold" is the number of frames that we
7181 	 * need to receive during our dwell time on a channel before
7182 	 * sending out probes -- setting this to a huge value will
7183 	 * mean we never reach it, but at the same time work around
7184 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7185 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7186 	 *
7187 	 * This was fixed in later versions along with some other
7188 	 * scan changes, and the threshold behaves as a flag in those
7189 	 * versions.
7190 	 */
7191 
7192 	/*
7193 	 * If we're doing active scanning, set the crc_threshold
7194 	 * to a suitable value.  This is different to active veruss
7195 	 * passive scanning depending upon the channel flags; the
7196 	 * firmware will obey that particular check for us.
7197 	 */
7198 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7199 		hdr->crc_threshold = is_active ?
7200 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7201 	else
7202 		hdr->crc_threshold = is_active ?
7203 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7204 
7205 	chan = (struct iwn_scan_chan *)frm;
7206 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7207 	chan->flags = 0;
7208 	if (ss->ss_nssid > 0)
7209 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7210 	chan->dsp_gain = 0x6e;
7211 
7212 	/*
7213 	 * Set the passive/active flag depending upon the channel mode.
7214 	 * XXX TODO: take the is_active flag into account as well?
7215 	 */
7216 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7217 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7218 	else
7219 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7220 
7221 	/*
7222 	 * Calculate the active/passive dwell times.
7223 	 */
7224 
7225 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7226 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7227 
7228 	/* Make sure they're valid */
7229 	if (dwell_passive <= dwell_active)
7230 		dwell_passive = dwell_active + 1;
7231 
7232 	chan->active = htole16(dwell_active);
7233 	chan->passive = htole16(dwell_passive);
7234 
7235 	if (IEEE80211_IS_CHAN_5GHZ(c))
7236 		chan->rf_gain = 0x3b;
7237 	else
7238 		chan->rf_gain = 0x28;
7239 
7240 	DPRINTF(sc, IWN_DEBUG_STATE,
7241 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7242 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7243 	    "isactive=%d numssid=%d\n", __func__,
7244 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7245 	    dwell_active, dwell_passive, scan_service_time,
7246 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7247 
7248 	hdr->nchan++;
7249 	chan++;
7250 	buflen = (uint8_t *)chan - buf;
7251 	hdr->len = htole16(buflen);
7252 
7253 	if (sc->sc_is_scanning) {
7254 		device_printf(sc->sc_dev,
7255 		    "%s: called with is_scanning set!\n",
7256 		    __func__);
7257 	}
7258 	sc->sc_is_scanning = 1;
7259 
7260 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7261 	    hdr->nchan);
7262 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7263 	free(buf, M_DEVBUF);
7264 	if (error == 0)
7265 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7266 
7267 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7268 
7269 	return error;
7270 }
7271 
7272 static int
7273 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7274 {
7275 	struct ieee80211com *ic = &sc->sc_ic;
7276 	struct ieee80211_node *ni = vap->iv_bss;
7277 	int error;
7278 
7279 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7280 
7281 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7282 	/* Update adapter configuration. */
7283 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7284 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7285 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7286 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7287 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7288 
7289 	/*
7290 	 * We always set short slot on 5GHz channels.
7291 	 * We optionally set it for 2.4GHz channels.
7292 	 */
7293 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7294 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7295 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7296 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7297 
7298 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7299 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7300 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7301 		sc->rxon->cck_mask  = 0;
7302 		sc->rxon->ofdm_mask = 0x15;
7303 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7304 		sc->rxon->cck_mask  = 0x03;
7305 		sc->rxon->ofdm_mask = 0;
7306 	} else {
7307 		/* Assume 802.11b/g. */
7308 		sc->rxon->cck_mask  = 0x03;
7309 		sc->rxon->ofdm_mask = 0x15;
7310 	}
7311 
7312 	/* try HT */
7313 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
7314 
7315 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7316 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7317 	    sc->rxon->ofdm_mask);
7318 
7319 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7320 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7321 		    __func__);
7322 		return (error);
7323 	}
7324 
7325 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7326 
7327 	return (0);
7328 }
7329 
7330 static int
7331 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7332 {
7333 	struct iwn_ops *ops = &sc->ops;
7334 	struct ieee80211com *ic = &sc->sc_ic;
7335 	struct ieee80211_node *ni = vap->iv_bss;
7336 	struct iwn_node_info node;
7337 	int error;
7338 
7339 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7340 
7341 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7342 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7343 		/* Link LED blinks while monitoring. */
7344 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7345 		return 0;
7346 	}
7347 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7348 		device_printf(sc->sc_dev,
7349 		    "%s: could not set timing, error %d\n", __func__, error);
7350 		return error;
7351 	}
7352 
7353 	/* Update adapter configuration. */
7354 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7355 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7356 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7357 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7358 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7359 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7360 
7361 	/* As previously - short slot only on 5GHz */
7362 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7363 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7364 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7365 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7366 
7367 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7368 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7369 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7370 		sc->rxon->cck_mask  = 0;
7371 		sc->rxon->ofdm_mask = 0x15;
7372 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7373 		sc->rxon->cck_mask  = 0x03;
7374 		sc->rxon->ofdm_mask = 0;
7375 	} else {
7376 		/* Assume 802.11b/g. */
7377 		sc->rxon->cck_mask  = 0x0f;
7378 		sc->rxon->ofdm_mask = 0x15;
7379 	}
7380 	/* try HT */
7381 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ni->ni_chan));
7382 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7383 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7384 	    sc->rxon->chan, le32toh(sc->rxon->flags), vap->iv_curhtprotmode);
7385 
7386 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7387 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7388 		    __func__);
7389 		return error;
7390 	}
7391 
7392 	/* Fake a join to initialize the TX rate. */
7393 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7394 	iwn_newassoc(ni, 1);
7395 
7396 	/* Add BSS node. */
7397 	memset(&node, 0, sizeof node);
7398 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7399 	node.id = IWN_ID_BSS;
7400 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7401 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7402 		case IEEE80211_HTCAP_SMPS_ENA:
7403 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7404 			break;
7405 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7406 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7407 			break;
7408 		}
7409 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7410 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7411 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7412 			node.htflags |= htole32(IWN_NODE_HT40);
7413 	}
7414 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7415 	error = ops->add_node(sc, &node, 1);
7416 	if (error != 0) {
7417 		device_printf(sc->sc_dev,
7418 		    "%s: could not add BSS node, error %d\n", __func__, error);
7419 		return error;
7420 	}
7421 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7422 	    __func__, node.id);
7423 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7424 		device_printf(sc->sc_dev,
7425 		    "%s: could not setup link quality for node %d, error %d\n",
7426 		    __func__, node.id, error);
7427 		return error;
7428 	}
7429 
7430 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7431 		device_printf(sc->sc_dev,
7432 		    "%s: could not set sensitivity, error %d\n", __func__,
7433 		    error);
7434 		return error;
7435 	}
7436 	/* Start periodic calibration timer. */
7437 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7438 	sc->calib_cnt = 0;
7439 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7440 	    sc);
7441 
7442 	/* Link LED always on while associated. */
7443 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7444 
7445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7446 
7447 	return 0;
7448 }
7449 
7450 /*
7451  * This function is called by upper layer when an ADDBA request is received
7452  * from another STA and before the ADDBA response is sent.
7453  */
7454 static int
7455 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7456     int baparamset, int batimeout, int baseqctl)
7457 {
7458 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7459 	struct iwn_ops *ops = &sc->ops;
7460 	struct iwn_node *wn = (void *)ni;
7461 	struct iwn_node_info node;
7462 	uint16_t ssn;
7463 	uint8_t tid;
7464 	int error;
7465 
7466 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7467 
7468 	tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID);
7469 	ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START);
7470 
7471 	if (wn->id == IWN_ID_UNDEFINED)
7472 		return (ENOENT);
7473 
7474 	memset(&node, 0, sizeof node);
7475 	node.id = wn->id;
7476 	node.control = IWN_NODE_UPDATE;
7477 	node.flags = IWN_FLAG_SET_ADDBA;
7478 	node.addba_tid = tid;
7479 	node.addba_ssn = htole16(ssn);
7480 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7481 	    wn->id, tid, ssn);
7482 	error = ops->add_node(sc, &node, 1);
7483 	if (error != 0)
7484 		return error;
7485 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7486 }
7487 
7488 /*
7489  * This function is called by upper layer on teardown of an HT-immediate
7490  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7491  */
7492 static void
7493 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7494 {
7495 	struct ieee80211com *ic = ni->ni_ic;
7496 	struct iwn_softc *sc = ic->ic_softc;
7497 	struct iwn_ops *ops = &sc->ops;
7498 	struct iwn_node *wn = (void *)ni;
7499 	struct iwn_node_info node;
7500 	uint8_t tid;
7501 
7502 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7503 
7504 	if (wn->id == IWN_ID_UNDEFINED)
7505 		goto end;
7506 
7507 	/* XXX: tid as an argument */
7508 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7509 		if (&ni->ni_rx_ampdu[tid] == rap)
7510 			break;
7511 	}
7512 
7513 	memset(&node, 0, sizeof node);
7514 	node.id = wn->id;
7515 	node.control = IWN_NODE_UPDATE;
7516 	node.flags = IWN_FLAG_SET_DELBA;
7517 	node.delba_tid = tid;
7518 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7519 	(void)ops->add_node(sc, &node, 1);
7520 end:
7521 	sc->sc_ampdu_rx_stop(ni, rap);
7522 }
7523 
7524 static int
7525 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7526     int dialogtoken, int baparamset, int batimeout)
7527 {
7528 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7529 	int qid;
7530 
7531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7532 
7533 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7534 		if (sc->qid2tap[qid] == NULL)
7535 			break;
7536 	}
7537 	if (qid == sc->ntxqs) {
7538 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7539 		    __func__);
7540 		return 0;
7541 	}
7542 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7543 	if (tap->txa_private == NULL) {
7544 		device_printf(sc->sc_dev,
7545 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7546 		return 0;
7547 	}
7548 	sc->qid2tap[qid] = tap;
7549 	*(int *)tap->txa_private = qid;
7550 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7551 	    batimeout);
7552 }
7553 
7554 static int
7555 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7556     int code, int baparamset, int batimeout)
7557 {
7558 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7559 	int qid = *(int *)tap->txa_private;
7560 	uint8_t tid = tap->txa_tid;
7561 	int ret;
7562 
7563 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7564 
7565 	if (code == IEEE80211_STATUS_SUCCESS) {
7566 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7567 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7568 		if (ret != 1)
7569 			return ret;
7570 	} else {
7571 		sc->qid2tap[qid] = NULL;
7572 		free(tap->txa_private, M_DEVBUF);
7573 		tap->txa_private = NULL;
7574 	}
7575 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7576 }
7577 
7578 /*
7579  * This function is called by upper layer when an ADDBA response is received
7580  * from another STA.
7581  */
7582 static int
7583 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7584     uint8_t tid)
7585 {
7586 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7587 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7588 	struct iwn_ops *ops = &sc->ops;
7589 	struct iwn_node *wn = (void *)ni;
7590 	struct iwn_node_info node;
7591 	int error, qid;
7592 
7593 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7594 
7595 	if (wn->id == IWN_ID_UNDEFINED)
7596 		return (0);
7597 
7598 	/* Enable TX for the specified RA/TID. */
7599 	wn->disable_tid &= ~(1 << tid);
7600 	memset(&node, 0, sizeof node);
7601 	node.id = wn->id;
7602 	node.control = IWN_NODE_UPDATE;
7603 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7604 	node.disable_tid = htole16(wn->disable_tid);
7605 	error = ops->add_node(sc, &node, 1);
7606 	if (error != 0)
7607 		return 0;
7608 
7609 	if ((error = iwn_nic_lock(sc)) != 0)
7610 		return 0;
7611 	qid = *(int *)tap->txa_private;
7612 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7613 	    __func__, wn->id, tid, tap->txa_start, qid);
7614 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7615 	iwn_nic_unlock(sc);
7616 
7617 	iwn_set_link_quality(sc, ni);
7618 	return 1;
7619 }
7620 
7621 static void
7622 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7623 {
7624 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7625 	struct iwn_ops *ops = &sc->ops;
7626 	uint8_t tid = tap->txa_tid;
7627 	int qid;
7628 
7629 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7630 
7631 	sc->sc_addba_stop(ni, tap);
7632 
7633 	if (tap->txa_private == NULL)
7634 		return;
7635 
7636 	qid = *(int *)tap->txa_private;
7637 	if (sc->txq[qid].queued != 0)
7638 		return;
7639 	if (iwn_nic_lock(sc) != 0)
7640 		return;
7641 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7642 	iwn_nic_unlock(sc);
7643 	sc->qid2tap[qid] = NULL;
7644 	free(tap->txa_private, M_DEVBUF);
7645 	tap->txa_private = NULL;
7646 }
7647 
7648 static void
7649 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7650     int qid, uint8_t tid, uint16_t ssn)
7651 {
7652 	struct iwn_node *wn = (void *)ni;
7653 
7654 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7655 
7656 	/* Stop TX scheduler while we're changing its configuration. */
7657 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7658 	    IWN4965_TXQ_STATUS_CHGACT);
7659 
7660 	/* Assign RA/TID translation to the queue. */
7661 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7662 	    wn->id << 4 | tid);
7663 
7664 	/* Enable chain-building mode for the queue. */
7665 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7666 
7667 	/* Set starting sequence number from the ADDBA request. */
7668 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7669 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7670 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7671 
7672 	/* Set scheduler window size. */
7673 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7674 	    IWN_SCHED_WINSZ);
7675 	/* Set scheduler frame limit. */
7676 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7677 	    IWN_SCHED_LIMIT << 16);
7678 
7679 	/* Enable interrupts for the queue. */
7680 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7681 
7682 	/* Mark the queue as active. */
7683 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7684 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7685 	    iwn_tid2fifo[tid] << 1);
7686 }
7687 
7688 static void
7689 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7690 {
7691 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7692 
7693 	/* Stop TX scheduler while we're changing its configuration. */
7694 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7695 	    IWN4965_TXQ_STATUS_CHGACT);
7696 
7697 	/* Set starting sequence number from the ADDBA request. */
7698 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7699 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7700 
7701 	/* Disable interrupts for the queue. */
7702 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7703 
7704 	/* Mark the queue as inactive. */
7705 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7706 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7707 }
7708 
7709 static void
7710 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7711     int qid, uint8_t tid, uint16_t ssn)
7712 {
7713 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7714 
7715 	struct iwn_node *wn = (void *)ni;
7716 
7717 	/* Stop TX scheduler while we're changing its configuration. */
7718 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7719 	    IWN5000_TXQ_STATUS_CHGACT);
7720 
7721 	/* Assign RA/TID translation to the queue. */
7722 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7723 	    wn->id << 4 | tid);
7724 
7725 	/* Enable chain-building mode for the queue. */
7726 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7727 
7728 	/* Enable aggregation for the queue. */
7729 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7730 
7731 	/* Set starting sequence number from the ADDBA request. */
7732 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7733 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7734 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7735 
7736 	/* Set scheduler window size and frame limit. */
7737 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7738 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7739 
7740 	/* Enable interrupts for the queue. */
7741 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7742 
7743 	/* Mark the queue as active. */
7744 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7745 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7746 }
7747 
7748 static void
7749 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7750 {
7751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7752 
7753 	/* Stop TX scheduler while we're changing its configuration. */
7754 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7755 	    IWN5000_TXQ_STATUS_CHGACT);
7756 
7757 	/* Disable aggregation for the queue. */
7758 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7759 
7760 	/* Set starting sequence number from the ADDBA request. */
7761 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7762 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7763 
7764 	/* Disable interrupts for the queue. */
7765 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7766 
7767 	/* Mark the queue as inactive. */
7768 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7769 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7770 }
7771 
7772 /*
7773  * Query calibration tables from the initialization firmware.  We do this
7774  * only once at first boot.  Called from a process context.
7775  */
7776 static int
7777 iwn5000_query_calibration(struct iwn_softc *sc)
7778 {
7779 	struct iwn5000_calib_config cmd;
7780 	int error;
7781 
7782 	memset(&cmd, 0, sizeof cmd);
7783 	cmd.ucode.once.enable = htole32(0xffffffff);
7784 	cmd.ucode.once.start  = htole32(0xffffffff);
7785 	cmd.ucode.once.send   = htole32(0xffffffff);
7786 	cmd.ucode.flags       = htole32(0xffffffff);
7787 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7788 	    __func__);
7789 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7790 	if (error != 0)
7791 		return error;
7792 
7793 	/* Wait at most two seconds for calibration to complete. */
7794 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7795 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7796 	return error;
7797 }
7798 
7799 /*
7800  * Send calibration results to the runtime firmware.  These results were
7801  * obtained on first boot from the initialization firmware.
7802  */
7803 static int
7804 iwn5000_send_calibration(struct iwn_softc *sc)
7805 {
7806 	int idx, error;
7807 
7808 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7809 		if (!(sc->base_params->calib_need & (1<<idx))) {
7810 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7811 			    "No need of calib %d\n",
7812 			    idx);
7813 			continue; /* no need for this calib */
7814 		}
7815 		if (sc->calibcmd[idx].buf == NULL) {
7816 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7817 			    "Need calib idx : %d but no available data\n",
7818 			    idx);
7819 			continue;
7820 		}
7821 
7822 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7823 		    "send calibration result idx=%d len=%d\n", idx,
7824 		    sc->calibcmd[idx].len);
7825 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7826 		    sc->calibcmd[idx].len, 0);
7827 		if (error != 0) {
7828 			device_printf(sc->sc_dev,
7829 			    "%s: could not send calibration result, error %d\n",
7830 			    __func__, error);
7831 			return error;
7832 		}
7833 	}
7834 	return 0;
7835 }
7836 
7837 static int
7838 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7839 {
7840 	struct iwn5000_wimax_coex wimax;
7841 
7842 #if 0
7843 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7844 		/* Enable WiMAX coexistence for combo adapters. */
7845 		wimax.flags =
7846 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7847 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7848 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7849 		    IWN_WIMAX_COEX_ENABLE;
7850 		memcpy(wimax.events, iwn6050_wimax_events,
7851 		    sizeof iwn6050_wimax_events);
7852 	} else
7853 #endif
7854 	{
7855 		/* Disable WiMAX coexistence. */
7856 		wimax.flags = 0;
7857 		memset(wimax.events, 0, sizeof wimax.events);
7858 	}
7859 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7860 	    __func__);
7861 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7862 }
7863 
7864 static int
7865 iwn5000_crystal_calib(struct iwn_softc *sc)
7866 {
7867 	struct iwn5000_phy_calib_crystal cmd;
7868 
7869 	memset(&cmd, 0, sizeof cmd);
7870 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7871 	cmd.ngroups = 1;
7872 	cmd.isvalid = 1;
7873 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7874 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7875 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7876 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7877 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7878 }
7879 
7880 static int
7881 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7882 {
7883 	struct iwn5000_phy_calib_temp_offset cmd;
7884 
7885 	memset(&cmd, 0, sizeof cmd);
7886 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7887 	cmd.ngroups = 1;
7888 	cmd.isvalid = 1;
7889 	if (sc->eeprom_temp != 0)
7890 		cmd.offset = htole16(sc->eeprom_temp);
7891 	else
7892 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7893 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7894 	    le16toh(cmd.offset));
7895 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7896 }
7897 
7898 static int
7899 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7900 {
7901 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7902 
7903 	memset(&cmd, 0, sizeof cmd);
7904 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7905 	cmd.ngroups = 1;
7906 	cmd.isvalid = 1;
7907 	if (sc->eeprom_temp != 0) {
7908 		cmd.offset_low = htole16(sc->eeprom_temp);
7909 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7910 	} else {
7911 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7912 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7913 	}
7914 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7915 
7916 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7917 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7918 	    le16toh(cmd.offset_low),
7919 	    le16toh(cmd.offset_high),
7920 	    le16toh(cmd.burnt_voltage_ref));
7921 
7922 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7923 }
7924 
7925 /*
7926  * This function is called after the runtime firmware notifies us of its
7927  * readiness (called in a process context).
7928  */
7929 static int
7930 iwn4965_post_alive(struct iwn_softc *sc)
7931 {
7932 	int error, qid;
7933 
7934 	if ((error = iwn_nic_lock(sc)) != 0)
7935 		return error;
7936 
7937 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7938 
7939 	/* Clear TX scheduler state in SRAM. */
7940 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7941 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7942 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7943 
7944 	/* Set physical address of TX scheduler rings (1KB aligned). */
7945 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7946 
7947 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7948 
7949 	/* Disable chain mode for all our 16 queues. */
7950 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7951 
7952 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7953 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7954 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7955 
7956 		/* Set scheduler window size. */
7957 		iwn_mem_write(sc, sc->sched_base +
7958 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7959 		/* Set scheduler frame limit. */
7960 		iwn_mem_write(sc, sc->sched_base +
7961 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7962 		    IWN_SCHED_LIMIT << 16);
7963 	}
7964 
7965 	/* Enable interrupts for all our 16 queues. */
7966 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7967 	/* Identify TX FIFO rings (0-7). */
7968 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7969 
7970 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7971 	for (qid = 0; qid < 7; qid++) {
7972 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7973 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7974 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7975 	}
7976 	iwn_nic_unlock(sc);
7977 	return 0;
7978 }
7979 
7980 /*
7981  * This function is called after the initialization or runtime firmware
7982  * notifies us of its readiness (called in a process context).
7983  */
7984 static int
7985 iwn5000_post_alive(struct iwn_softc *sc)
7986 {
7987 	int error, qid;
7988 
7989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7990 
7991 	/* Switch to using ICT interrupt mode. */
7992 	iwn5000_ict_reset(sc);
7993 
7994 	if ((error = iwn_nic_lock(sc)) != 0){
7995 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7996 		return error;
7997 	}
7998 
7999 	/* Clear TX scheduler state in SRAM. */
8000 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
8001 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8002 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8003 
8004 	/* Set physical address of TX scheduler rings (1KB aligned). */
8005 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8006 
8007 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8008 
8009 	/* Enable chain mode for all queues, except command queue. */
8010 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8011 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8012 	else
8013 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8014 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8015 
8016 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8017 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8018 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8019 
8020 		iwn_mem_write(sc, sc->sched_base +
8021 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8022 		/* Set scheduler window size and frame limit. */
8023 		iwn_mem_write(sc, sc->sched_base +
8024 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8025 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8026 	}
8027 
8028 	/* Enable interrupts for all our 20 queues. */
8029 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8030 	/* Identify TX FIFO rings (0-7). */
8031 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8032 
8033 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8034 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8035 		/* Mark TX rings as active. */
8036 		for (qid = 0; qid < 11; qid++) {
8037 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8038 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8039 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8040 		}
8041 	} else {
8042 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8043 		for (qid = 0; qid < 7; qid++) {
8044 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8045 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8046 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8047 		}
8048 	}
8049 	iwn_nic_unlock(sc);
8050 
8051 	/* Configure WiMAX coexistence for combo adapters. */
8052 	error = iwn5000_send_wimax_coex(sc);
8053 	if (error != 0) {
8054 		device_printf(sc->sc_dev,
8055 		    "%s: could not configure WiMAX coexistence, error %d\n",
8056 		    __func__, error);
8057 		return error;
8058 	}
8059 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8060 		/* Perform crystal calibration. */
8061 		error = iwn5000_crystal_calib(sc);
8062 		if (error != 0) {
8063 			device_printf(sc->sc_dev,
8064 			    "%s: crystal calibration failed, error %d\n",
8065 			    __func__, error);
8066 			return error;
8067 		}
8068 	}
8069 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8070 		/* Query calibration from the initialization firmware. */
8071 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8072 			device_printf(sc->sc_dev,
8073 			    "%s: could not query calibration, error %d\n",
8074 			    __func__, error);
8075 			return error;
8076 		}
8077 		/*
8078 		 * We have the calibration results now, reboot with the
8079 		 * runtime firmware (call ourselves recursively!)
8080 		 */
8081 		iwn_hw_stop(sc);
8082 		error = iwn_hw_init(sc);
8083 	} else {
8084 		/* Send calibration results to runtime firmware. */
8085 		error = iwn5000_send_calibration(sc);
8086 	}
8087 
8088 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8089 
8090 	return error;
8091 }
8092 
8093 /*
8094  * The firmware boot code is small and is intended to be copied directly into
8095  * the NIC internal memory (no DMA transfer).
8096  */
8097 static int
8098 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8099 {
8100 	int error, ntries;
8101 
8102 	size /= sizeof (uint32_t);
8103 
8104 	if ((error = iwn_nic_lock(sc)) != 0)
8105 		return error;
8106 
8107 	/* Copy microcode image into NIC memory. */
8108 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8109 	    (const uint32_t *)ucode, size);
8110 
8111 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8112 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8113 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8114 
8115 	/* Start boot load now. */
8116 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8117 
8118 	/* Wait for transfer to complete. */
8119 	for (ntries = 0; ntries < 1000; ntries++) {
8120 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8121 		    IWN_BSM_WR_CTRL_START))
8122 			break;
8123 		DELAY(10);
8124 	}
8125 	if (ntries == 1000) {
8126 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8127 		    __func__);
8128 		iwn_nic_unlock(sc);
8129 		return ETIMEDOUT;
8130 	}
8131 
8132 	/* Enable boot after power up. */
8133 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8134 
8135 	iwn_nic_unlock(sc);
8136 	return 0;
8137 }
8138 
8139 static int
8140 iwn4965_load_firmware(struct iwn_softc *sc)
8141 {
8142 	struct iwn_fw_info *fw = &sc->fw;
8143 	struct iwn_dma_info *dma = &sc->fw_dma;
8144 	int error;
8145 
8146 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8147 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8148 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8149 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8150 	    fw->init.text, fw->init.textsz);
8151 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8152 
8153 	/* Tell adapter where to find initialization sections. */
8154 	if ((error = iwn_nic_lock(sc)) != 0)
8155 		return error;
8156 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8157 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8159 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8160 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8161 	iwn_nic_unlock(sc);
8162 
8163 	/* Load firmware boot code. */
8164 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8165 	if (error != 0) {
8166 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8167 		    __func__);
8168 		return error;
8169 	}
8170 	/* Now press "execute". */
8171 	IWN_WRITE(sc, IWN_RESET, 0);
8172 
8173 	/* Wait at most one second for first alive notification. */
8174 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8175 		device_printf(sc->sc_dev,
8176 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8177 		    __func__, error);
8178 		return error;
8179 	}
8180 
8181 	/* Retrieve current temperature for initial TX power calibration. */
8182 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8183 	sc->temp = iwn4965_get_temperature(sc);
8184 
8185 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8186 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8187 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8188 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8189 	    fw->main.text, fw->main.textsz);
8190 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8191 
8192 	/* Tell adapter where to find runtime sections. */
8193 	if ((error = iwn_nic_lock(sc)) != 0)
8194 		return error;
8195 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8196 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8197 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8198 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8199 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8200 	    IWN_FW_UPDATED | fw->main.textsz);
8201 	iwn_nic_unlock(sc);
8202 
8203 	return 0;
8204 }
8205 
8206 static int
8207 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8208     const uint8_t *section, int size)
8209 {
8210 	struct iwn_dma_info *dma = &sc->fw_dma;
8211 	int error;
8212 
8213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8214 
8215 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8216 	memcpy(dma->vaddr, section, size);
8217 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8218 
8219 	if ((error = iwn_nic_lock(sc)) != 0)
8220 		return error;
8221 
8222 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8223 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8224 
8225 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8226 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8227 	    IWN_LOADDR(dma->paddr));
8228 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8229 	    IWN_HIADDR(dma->paddr) << 28 | size);
8230 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8231 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8232 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8233 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8234 
8235 	/* Kick Flow Handler to start DMA transfer. */
8236 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8237 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8238 
8239 	iwn_nic_unlock(sc);
8240 
8241 	/* Wait at most five seconds for FH DMA transfer to complete. */
8242 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8243 }
8244 
8245 static int
8246 iwn5000_load_firmware(struct iwn_softc *sc)
8247 {
8248 	struct iwn_fw_part *fw;
8249 	int error;
8250 
8251 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8252 
8253 	/* Load the initialization firmware on first boot only. */
8254 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8255 	    &sc->fw.main : &sc->fw.init;
8256 
8257 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8258 	    fw->text, fw->textsz);
8259 	if (error != 0) {
8260 		device_printf(sc->sc_dev,
8261 		    "%s: could not load firmware %s section, error %d\n",
8262 		    __func__, ".text", error);
8263 		return error;
8264 	}
8265 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8266 	    fw->data, fw->datasz);
8267 	if (error != 0) {
8268 		device_printf(sc->sc_dev,
8269 		    "%s: could not load firmware %s section, error %d\n",
8270 		    __func__, ".data", error);
8271 		return error;
8272 	}
8273 
8274 	/* Now press "execute". */
8275 	IWN_WRITE(sc, IWN_RESET, 0);
8276 	return 0;
8277 }
8278 
8279 /*
8280  * Extract text and data sections from a legacy firmware image.
8281  */
8282 static int
8283 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8284 {
8285 	const uint32_t *ptr;
8286 	size_t hdrlen = 24;
8287 	uint32_t rev;
8288 
8289 	ptr = (const uint32_t *)fw->data;
8290 	rev = le32toh(*ptr++);
8291 
8292 	sc->ucode_rev = rev;
8293 
8294 	/* Check firmware API version. */
8295 	if (IWN_FW_API(rev) <= 1) {
8296 		device_printf(sc->sc_dev,
8297 		    "%s: bad firmware, need API version >=2\n", __func__);
8298 		return EINVAL;
8299 	}
8300 	if (IWN_FW_API(rev) >= 3) {
8301 		/* Skip build number (version 2 header). */
8302 		hdrlen += 4;
8303 		ptr++;
8304 	}
8305 	if (fw->size < hdrlen) {
8306 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8307 		    __func__, fw->size);
8308 		return EINVAL;
8309 	}
8310 	fw->main.textsz = le32toh(*ptr++);
8311 	fw->main.datasz = le32toh(*ptr++);
8312 	fw->init.textsz = le32toh(*ptr++);
8313 	fw->init.datasz = le32toh(*ptr++);
8314 	fw->boot.textsz = le32toh(*ptr++);
8315 
8316 	/* Check that all firmware sections fit. */
8317 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8318 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8319 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8320 		    __func__, fw->size);
8321 		return EINVAL;
8322 	}
8323 
8324 	/* Get pointers to firmware sections. */
8325 	fw->main.text = (const uint8_t *)ptr;
8326 	fw->main.data = fw->main.text + fw->main.textsz;
8327 	fw->init.text = fw->main.data + fw->main.datasz;
8328 	fw->init.data = fw->init.text + fw->init.textsz;
8329 	fw->boot.text = fw->init.data + fw->init.datasz;
8330 	return 0;
8331 }
8332 
8333 /*
8334  * Extract text and data sections from a TLV firmware image.
8335  */
8336 static int
8337 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8338     uint16_t alt)
8339 {
8340 	const struct iwn_fw_tlv_hdr *hdr;
8341 	const struct iwn_fw_tlv *tlv;
8342 	const uint8_t *ptr, *end;
8343 	uint64_t altmask;
8344 	uint32_t len, tmp;
8345 
8346 	if (fw->size < sizeof (*hdr)) {
8347 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8348 		    __func__, fw->size);
8349 		return EINVAL;
8350 	}
8351 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8352 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8353 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8354 		    __func__, le32toh(hdr->signature));
8355 		return EINVAL;
8356 	}
8357 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8358 	    le32toh(hdr->build));
8359 	sc->ucode_rev = le32toh(hdr->rev);
8360 
8361 	/*
8362 	 * Select the closest supported alternative that is less than
8363 	 * or equal to the specified one.
8364 	 */
8365 	altmask = le64toh(hdr->altmask);
8366 	while (alt > 0 && !(altmask & (1ULL << alt)))
8367 		alt--;	/* Downgrade. */
8368 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8369 
8370 	ptr = (const uint8_t *)(hdr + 1);
8371 	end = (const uint8_t *)(fw->data + fw->size);
8372 
8373 	/* Parse type-length-value fields. */
8374 	while (ptr + sizeof (*tlv) <= end) {
8375 		tlv = (const struct iwn_fw_tlv *)ptr;
8376 		len = le32toh(tlv->len);
8377 
8378 		ptr += sizeof (*tlv);
8379 		if (ptr + len > end) {
8380 			device_printf(sc->sc_dev,
8381 			    "%s: firmware too short: %zu bytes\n", __func__,
8382 			    fw->size);
8383 			return EINVAL;
8384 		}
8385 		/* Skip other alternatives. */
8386 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8387 			goto next;
8388 
8389 		switch (le16toh(tlv->type)) {
8390 		case IWN_FW_TLV_MAIN_TEXT:
8391 			fw->main.text = ptr;
8392 			fw->main.textsz = len;
8393 			break;
8394 		case IWN_FW_TLV_MAIN_DATA:
8395 			fw->main.data = ptr;
8396 			fw->main.datasz = len;
8397 			break;
8398 		case IWN_FW_TLV_INIT_TEXT:
8399 			fw->init.text = ptr;
8400 			fw->init.textsz = len;
8401 			break;
8402 		case IWN_FW_TLV_INIT_DATA:
8403 			fw->init.data = ptr;
8404 			fw->init.datasz = len;
8405 			break;
8406 		case IWN_FW_TLV_BOOT_TEXT:
8407 			fw->boot.text = ptr;
8408 			fw->boot.textsz = len;
8409 			break;
8410 		case IWN_FW_TLV_ENH_SENS:
8411 			if (!len)
8412 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8413 			break;
8414 		case IWN_FW_TLV_PHY_CALIB:
8415 			tmp = le32toh(*ptr);
8416 			if (tmp < 253) {
8417 				sc->reset_noise_gain = tmp;
8418 				sc->noise_gain = tmp + 1;
8419 			}
8420 			break;
8421 		case IWN_FW_TLV_PAN:
8422 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8423 			DPRINTF(sc, IWN_DEBUG_RESET,
8424 			    "PAN Support found: %d\n", 1);
8425 			break;
8426 		case IWN_FW_TLV_FLAGS:
8427 			if (len < sizeof(uint32_t))
8428 				break;
8429 			if (len % sizeof(uint32_t))
8430 				break;
8431 			sc->tlv_feature_flags = le32toh(*ptr);
8432 			DPRINTF(sc, IWN_DEBUG_RESET,
8433 			    "%s: feature: 0x%08x\n",
8434 			    __func__,
8435 			    sc->tlv_feature_flags);
8436 			break;
8437 		case IWN_FW_TLV_PBREQ_MAXLEN:
8438 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8439 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8440 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8441 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8442 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8443 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8444 		case IWN_FW_TLV_WOWLAN_INST:
8445 		case IWN_FW_TLV_WOWLAN_DATA:
8446 			DPRINTF(sc, IWN_DEBUG_RESET,
8447 			    "TLV type %d recognized but not handled\n",
8448 			    le16toh(tlv->type));
8449 			break;
8450 		default:
8451 			DPRINTF(sc, IWN_DEBUG_RESET,
8452 			    "TLV type %d not handled\n", le16toh(tlv->type));
8453 			break;
8454 		}
8455  next:		/* TLV fields are 32-bit aligned. */
8456 		ptr += (len + 3) & ~3;
8457 	}
8458 	return 0;
8459 }
8460 
8461 static int
8462 iwn_read_firmware(struct iwn_softc *sc)
8463 {
8464 	struct iwn_fw_info *fw = &sc->fw;
8465 	int error;
8466 
8467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8468 
8469 	IWN_UNLOCK(sc);
8470 
8471 	memset(fw, 0, sizeof (*fw));
8472 
8473 	/* Read firmware image from filesystem. */
8474 	sc->fw_fp = firmware_get(sc->fwname);
8475 	if (sc->fw_fp == NULL) {
8476 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8477 		    __func__, sc->fwname);
8478 		IWN_LOCK(sc);
8479 		return EINVAL;
8480 	}
8481 	IWN_LOCK(sc);
8482 
8483 	fw->size = sc->fw_fp->datasize;
8484 	fw->data = (const uint8_t *)sc->fw_fp->data;
8485 	if (fw->size < sizeof (uint32_t)) {
8486 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8487 		    __func__, fw->size);
8488 		error = EINVAL;
8489 		goto fail;
8490 	}
8491 
8492 	/* Retrieve text and data sections. */
8493 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8494 		error = iwn_read_firmware_leg(sc, fw);
8495 	else
8496 		error = iwn_read_firmware_tlv(sc, fw, 1);
8497 	if (error != 0) {
8498 		device_printf(sc->sc_dev,
8499 		    "%s: could not read firmware sections, error %d\n",
8500 		    __func__, error);
8501 		goto fail;
8502 	}
8503 
8504 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8505 
8506 	/* Make sure text and data sections fit in hardware memory. */
8507 	if (fw->main.textsz > sc->fw_text_maxsz ||
8508 	    fw->main.datasz > sc->fw_data_maxsz ||
8509 	    fw->init.textsz > sc->fw_text_maxsz ||
8510 	    fw->init.datasz > sc->fw_data_maxsz ||
8511 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8512 	    (fw->boot.textsz & 3) != 0) {
8513 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8514 		    __func__);
8515 		error = EINVAL;
8516 		goto fail;
8517 	}
8518 
8519 	/* We can proceed with loading the firmware. */
8520 	return 0;
8521 
8522 fail:	iwn_unload_firmware(sc);
8523 	return error;
8524 }
8525 
8526 static void
8527 iwn_unload_firmware(struct iwn_softc *sc)
8528 {
8529 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8530 	sc->fw_fp = NULL;
8531 }
8532 
8533 static int
8534 iwn_clock_wait(struct iwn_softc *sc)
8535 {
8536 	int ntries;
8537 
8538 	/* Set "initialization complete" bit. */
8539 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8540 
8541 	/* Wait for clock stabilization. */
8542 	for (ntries = 0; ntries < 2500; ntries++) {
8543 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8544 			return 0;
8545 		DELAY(10);
8546 	}
8547 	device_printf(sc->sc_dev,
8548 	    "%s: timeout waiting for clock stabilization\n", __func__);
8549 	return ETIMEDOUT;
8550 }
8551 
8552 static int
8553 iwn_apm_init(struct iwn_softc *sc)
8554 {
8555 	uint32_t reg;
8556 	int error;
8557 
8558 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8559 
8560 	/* Disable L0s exit timer (NMI bug workaround). */
8561 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8562 	/* Don't wait for ICH L0s (ICH bug workaround). */
8563 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8564 
8565 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8566 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8567 
8568 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8569 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8570 
8571 	/* Retrieve PCIe Active State Power Management (ASPM). */
8572 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8573 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8574 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8575 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8576 	else
8577 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8578 
8579 	if (sc->base_params->pll_cfg_val)
8580 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8581 
8582 	/* Wait for clock stabilization before accessing prph. */
8583 	if ((error = iwn_clock_wait(sc)) != 0)
8584 		return error;
8585 
8586 	if ((error = iwn_nic_lock(sc)) != 0)
8587 		return error;
8588 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8589 		/* Enable DMA and BSM (Bootstrap State Machine). */
8590 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8591 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8592 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8593 	} else {
8594 		/* Enable DMA. */
8595 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8596 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8597 	}
8598 	DELAY(20);
8599 	/* Disable L1-Active. */
8600 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8601 	iwn_nic_unlock(sc);
8602 
8603 	return 0;
8604 }
8605 
8606 static void
8607 iwn_apm_stop_master(struct iwn_softc *sc)
8608 {
8609 	int ntries;
8610 
8611 	/* Stop busmaster DMA activity. */
8612 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8613 	for (ntries = 0; ntries < 100; ntries++) {
8614 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8615 			return;
8616 		DELAY(10);
8617 	}
8618 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8619 }
8620 
8621 static void
8622 iwn_apm_stop(struct iwn_softc *sc)
8623 {
8624 	iwn_apm_stop_master(sc);
8625 
8626 	/* Reset the entire device. */
8627 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8628 	DELAY(10);
8629 	/* Clear "initialization complete" bit. */
8630 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8631 }
8632 
8633 static int
8634 iwn4965_nic_config(struct iwn_softc *sc)
8635 {
8636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8637 
8638 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8639 		/*
8640 		 * I don't believe this to be correct but this is what the
8641 		 * vendor driver is doing. Probably the bits should not be
8642 		 * shifted in IWN_RFCFG_*.
8643 		 */
8644 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8645 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8646 		    IWN_RFCFG_STEP(sc->rfcfg) |
8647 		    IWN_RFCFG_DASH(sc->rfcfg));
8648 	}
8649 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8650 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8651 	return 0;
8652 }
8653 
8654 static int
8655 iwn5000_nic_config(struct iwn_softc *sc)
8656 {
8657 	uint32_t tmp;
8658 	int error;
8659 
8660 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8661 
8662 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8663 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8664 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8665 		    IWN_RFCFG_STEP(sc->rfcfg) |
8666 		    IWN_RFCFG_DASH(sc->rfcfg));
8667 	}
8668 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8669 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8670 
8671 	if ((error = iwn_nic_lock(sc)) != 0)
8672 		return error;
8673 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8674 
8675 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8676 		/*
8677 		 * Select first Switching Voltage Regulator (1.32V) to
8678 		 * solve a stability issue related to noisy DC2DC line
8679 		 * in the silicon of 1000 Series.
8680 		 */
8681 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8682 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8683 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8684 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8685 	}
8686 	iwn_nic_unlock(sc);
8687 
8688 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8689 		/* Use internal power amplifier only. */
8690 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8691 	}
8692 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8693 		/* Indicate that ROM calibration version is >=6. */
8694 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8695 	}
8696 	if (sc->base_params->additional_gp_drv_bit)
8697 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8698 		    sc->base_params->additional_gp_drv_bit);
8699 	return 0;
8700 }
8701 
8702 /*
8703  * Take NIC ownership over Intel Active Management Technology (AMT).
8704  */
8705 static int
8706 iwn_hw_prepare(struct iwn_softc *sc)
8707 {
8708 	int ntries;
8709 
8710 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8711 
8712 	/* Check if hardware is ready. */
8713 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8714 	for (ntries = 0; ntries < 5; ntries++) {
8715 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8716 		    IWN_HW_IF_CONFIG_NIC_READY)
8717 			return 0;
8718 		DELAY(10);
8719 	}
8720 
8721 	/* Hardware not ready, force into ready state. */
8722 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8723 	for (ntries = 0; ntries < 15000; ntries++) {
8724 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8725 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8726 			break;
8727 		DELAY(10);
8728 	}
8729 	if (ntries == 15000)
8730 		return ETIMEDOUT;
8731 
8732 	/* Hardware should be ready now. */
8733 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8734 	for (ntries = 0; ntries < 5; ntries++) {
8735 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8736 		    IWN_HW_IF_CONFIG_NIC_READY)
8737 			return 0;
8738 		DELAY(10);
8739 	}
8740 	return ETIMEDOUT;
8741 }
8742 
8743 static int
8744 iwn_hw_init(struct iwn_softc *sc)
8745 {
8746 	struct iwn_ops *ops = &sc->ops;
8747 	int error, chnl, qid;
8748 
8749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8750 
8751 	/* Clear pending interrupts. */
8752 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8753 
8754 	if ((error = iwn_apm_init(sc)) != 0) {
8755 		device_printf(sc->sc_dev,
8756 		    "%s: could not power ON adapter, error %d\n", __func__,
8757 		    error);
8758 		return error;
8759 	}
8760 
8761 	/* Select VMAIN power source. */
8762 	if ((error = iwn_nic_lock(sc)) != 0)
8763 		return error;
8764 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8765 	iwn_nic_unlock(sc);
8766 
8767 	/* Perform adapter-specific initialization. */
8768 	if ((error = ops->nic_config(sc)) != 0)
8769 		return error;
8770 
8771 	/* Initialize RX ring. */
8772 	if ((error = iwn_nic_lock(sc)) != 0)
8773 		return error;
8774 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8775 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8776 	/* Set physical address of RX ring (256-byte aligned). */
8777 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8778 	/* Set physical address of RX status (16-byte aligned). */
8779 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8780 	/* Enable RX. */
8781 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8782 	    IWN_FH_RX_CONFIG_ENA           |
8783 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8784 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8785 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8786 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8787 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8788 	iwn_nic_unlock(sc);
8789 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8790 
8791 	if ((error = iwn_nic_lock(sc)) != 0)
8792 		return error;
8793 
8794 	/* Initialize TX scheduler. */
8795 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8796 
8797 	/* Set physical address of "keep warm" page (16-byte aligned). */
8798 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8799 
8800 	/* Initialize TX rings. */
8801 	for (qid = 0; qid < sc->ntxqs; qid++) {
8802 		struct iwn_tx_ring *txq = &sc->txq[qid];
8803 
8804 		/* Set physical address of TX ring (256-byte aligned). */
8805 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8806 		    txq->desc_dma.paddr >> 8);
8807 	}
8808 	iwn_nic_unlock(sc);
8809 
8810 	/* Enable DMA channels. */
8811 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8812 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8813 		    IWN_FH_TX_CONFIG_DMA_ENA |
8814 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8815 	}
8816 
8817 	/* Clear "radio off" and "commands blocked" bits. */
8818 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8819 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8820 
8821 	/* Clear pending interrupts. */
8822 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8823 	/* Enable interrupt coalescing. */
8824 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8825 	/* Enable interrupts. */
8826 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8827 
8828 	/* _Really_ make sure "radio off" bit is cleared! */
8829 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8830 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8831 
8832 	/* Enable shadow registers. */
8833 	if (sc->base_params->shadow_reg_enable)
8834 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8835 
8836 	if ((error = ops->load_firmware(sc)) != 0) {
8837 		device_printf(sc->sc_dev,
8838 		    "%s: could not load firmware, error %d\n", __func__,
8839 		    error);
8840 		return error;
8841 	}
8842 	/* Wait at most one second for firmware alive notification. */
8843 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8844 		device_printf(sc->sc_dev,
8845 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8846 		    __func__, error);
8847 		return error;
8848 	}
8849 	/* Do post-firmware initialization. */
8850 
8851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8852 
8853 	return ops->post_alive(sc);
8854 }
8855 
8856 static void
8857 iwn_hw_stop(struct iwn_softc *sc)
8858 {
8859 	int chnl, qid, ntries;
8860 
8861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8862 
8863 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8864 
8865 	/* Disable interrupts. */
8866 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8867 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8868 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8869 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8870 
8871 	/* Make sure we no longer hold the NIC lock. */
8872 	iwn_nic_unlock(sc);
8873 
8874 	/* Stop TX scheduler. */
8875 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8876 
8877 	/* Stop all DMA channels. */
8878 	if (iwn_nic_lock(sc) == 0) {
8879 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8880 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8881 			for (ntries = 0; ntries < 200; ntries++) {
8882 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8883 				    IWN_FH_TX_STATUS_IDLE(chnl))
8884 					break;
8885 				DELAY(10);
8886 			}
8887 		}
8888 		iwn_nic_unlock(sc);
8889 	}
8890 
8891 	/* Stop RX ring. */
8892 	iwn_reset_rx_ring(sc, &sc->rxq);
8893 
8894 	/* Reset all TX rings. */
8895 	for (qid = 0; qid < sc->ntxqs; qid++)
8896 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8897 
8898 	if (iwn_nic_lock(sc) == 0) {
8899 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8900 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8901 		iwn_nic_unlock(sc);
8902 	}
8903 	DELAY(5);
8904 	/* Power OFF adapter. */
8905 	iwn_apm_stop(sc);
8906 }
8907 
8908 static void
8909 iwn_panicked(void *arg0, int pending)
8910 {
8911 	struct iwn_softc *sc = arg0;
8912 	struct ieee80211com *ic = &sc->sc_ic;
8913 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8914 #if 0
8915 	int error;
8916 #endif
8917 
8918 	if (vap == NULL) {
8919 		printf("%s: null vap\n", __func__);
8920 		return;
8921 	}
8922 
8923 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8924 	    "restarting\n", __func__, vap->iv_state);
8925 
8926 	/*
8927 	 * This is not enough work. We need to also reinitialise
8928 	 * the correct transmit state for aggregation enabled queues,
8929 	 * which has a very specific requirement of
8930 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8931 	 * we definitely don't!) then the firmware will just panic again.
8932 	 */
8933 #if 1
8934 	ieee80211_restart_all(ic);
8935 #else
8936 	IWN_LOCK(sc);
8937 
8938 	iwn_stop_locked(sc);
8939 	if ((error = iwn_init_locked(sc)) != 0) {
8940 		device_printf(sc->sc_dev,
8941 		    "%s: could not init hardware\n", __func__);
8942 		goto unlock;
8943 	}
8944 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8945 	    (error = iwn_auth(sc, vap)) != 0) {
8946 		device_printf(sc->sc_dev,
8947 		    "%s: could not move to auth state\n", __func__);
8948 	}
8949 	if (vap->iv_state >= IEEE80211_S_RUN &&
8950 	    (error = iwn_run(sc, vap)) != 0) {
8951 		device_printf(sc->sc_dev,
8952 		    "%s: could not move to run state\n", __func__);
8953 	}
8954 
8955 unlock:
8956 	IWN_UNLOCK(sc);
8957 #endif
8958 }
8959 
8960 static int
8961 iwn_init_locked(struct iwn_softc *sc)
8962 {
8963 	int error;
8964 
8965 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8966 
8967 	IWN_LOCK_ASSERT(sc);
8968 
8969 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8970 		goto end;
8971 
8972 	sc->sc_flags |= IWN_FLAG_RUNNING;
8973 
8974 	if ((error = iwn_hw_prepare(sc)) != 0) {
8975 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8976 		    __func__, error);
8977 		goto fail;
8978 	}
8979 
8980 	/* Initialize interrupt mask to default value. */
8981 	sc->int_mask = IWN_INT_MASK_DEF;
8982 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8983 
8984 	/* Check that the radio is not disabled by hardware switch. */
8985 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8986 		iwn_stop_locked(sc);
8987 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8988 
8989 		return (1);
8990 	}
8991 
8992 	/* Read firmware images from the filesystem. */
8993 	if ((error = iwn_read_firmware(sc)) != 0) {
8994 		device_printf(sc->sc_dev,
8995 		    "%s: could not read firmware, error %d\n", __func__,
8996 		    error);
8997 		goto fail;
8998 	}
8999 
9000 	/* Initialize hardware and upload firmware. */
9001 	error = iwn_hw_init(sc);
9002 	iwn_unload_firmware(sc);
9003 	if (error != 0) {
9004 		device_printf(sc->sc_dev,
9005 		    "%s: could not initialize hardware, error %d\n", __func__,
9006 		    error);
9007 		goto fail;
9008 	}
9009 
9010 	/* Configure adapter now that it is ready. */
9011 	if ((error = iwn_config(sc)) != 0) {
9012 		device_printf(sc->sc_dev,
9013 		    "%s: could not configure device, error %d\n", __func__,
9014 		    error);
9015 		goto fail;
9016 	}
9017 
9018 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9019 
9020 end:
9021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9022 
9023 	return (0);
9024 
9025 fail:
9026 	iwn_stop_locked(sc);
9027 
9028 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9029 
9030 	return (-1);
9031 }
9032 
9033 static int
9034 iwn_init(struct iwn_softc *sc)
9035 {
9036 	int error;
9037 
9038 	IWN_LOCK(sc);
9039 	error = iwn_init_locked(sc);
9040 	IWN_UNLOCK(sc);
9041 
9042 	return (error);
9043 }
9044 
9045 static void
9046 iwn_stop_locked(struct iwn_softc *sc)
9047 {
9048 
9049 	IWN_LOCK_ASSERT(sc);
9050 
9051 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9052 		return;
9053 
9054 	sc->sc_is_scanning = 0;
9055 	sc->sc_tx_timer = 0;
9056 	callout_stop(&sc->watchdog_to);
9057 	callout_stop(&sc->scan_timeout);
9058 	callout_stop(&sc->calib_to);
9059 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9060 
9061 	/* Power OFF hardware. */
9062 	iwn_hw_stop(sc);
9063 }
9064 
9065 static void
9066 iwn_stop(struct iwn_softc *sc)
9067 {
9068 	IWN_LOCK(sc);
9069 	iwn_stop_locked(sc);
9070 	IWN_UNLOCK(sc);
9071 }
9072 
9073 /*
9074  * Callback from net80211 to start a scan.
9075  */
9076 static void
9077 iwn_scan_start(struct ieee80211com *ic)
9078 {
9079 	struct iwn_softc *sc = ic->ic_softc;
9080 
9081 	IWN_LOCK(sc);
9082 	/* make the link LED blink while we're scanning */
9083 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9084 	IWN_UNLOCK(sc);
9085 }
9086 
9087 /*
9088  * Callback from net80211 to terminate a scan.
9089  */
9090 static void
9091 iwn_scan_end(struct ieee80211com *ic)
9092 {
9093 	struct iwn_softc *sc = ic->ic_softc;
9094 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9095 
9096 	IWN_LOCK(sc);
9097 	if (vap->iv_state == IEEE80211_S_RUN) {
9098 		/* Set link LED to ON status if we are associated */
9099 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9100 	}
9101 	IWN_UNLOCK(sc);
9102 }
9103 
9104 /*
9105  * Callback from net80211 to force a channel change.
9106  */
9107 static void
9108 iwn_set_channel(struct ieee80211com *ic)
9109 {
9110 	struct iwn_softc *sc = ic->ic_softc;
9111 	int error;
9112 
9113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9114 
9115 	IWN_LOCK(sc);
9116 	/*
9117 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9118 	 * are already taken care of by their respective firmware commands.
9119 	 */
9120 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9121 		error = iwn_config(sc);
9122 		if (error != 0)
9123 		device_printf(sc->sc_dev,
9124 		    "%s: error %d setting channel\n", __func__, error);
9125 	}
9126 	IWN_UNLOCK(sc);
9127 }
9128 
9129 /*
9130  * Callback from net80211 to start scanning of the current channel.
9131  */
9132 static void
9133 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9134 {
9135 	struct ieee80211vap *vap = ss->ss_vap;
9136 	struct ieee80211com *ic = vap->iv_ic;
9137 	struct iwn_softc *sc = ic->ic_softc;
9138 	int error;
9139 
9140 	IWN_LOCK(sc);
9141 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9142 	IWN_UNLOCK(sc);
9143 	if (error != 0)
9144 		ieee80211_cancel_scan(vap);
9145 }
9146 
9147 /*
9148  * Callback from net80211 to handle the minimum dwell time being met.
9149  * The intent is to terminate the scan but we just let the firmware
9150  * notify us when it's finished as we have no safe way to abort it.
9151  */
9152 static void
9153 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9154 {
9155 	/* NB: don't try to abort scan; wait for firmware to finish */
9156 }
9157 #ifdef	IWN_DEBUG
9158 #define	IWN_DESC(x) case x:	return #x
9159 
9160 /*
9161  * Translate CSR code to string
9162  */
9163 static char *iwn_get_csr_string(int csr)
9164 {
9165 	switch (csr) {
9166 		IWN_DESC(IWN_HW_IF_CONFIG);
9167 		IWN_DESC(IWN_INT_COALESCING);
9168 		IWN_DESC(IWN_INT);
9169 		IWN_DESC(IWN_INT_MASK);
9170 		IWN_DESC(IWN_FH_INT);
9171 		IWN_DESC(IWN_GPIO_IN);
9172 		IWN_DESC(IWN_RESET);
9173 		IWN_DESC(IWN_GP_CNTRL);
9174 		IWN_DESC(IWN_HW_REV);
9175 		IWN_DESC(IWN_EEPROM);
9176 		IWN_DESC(IWN_EEPROM_GP);
9177 		IWN_DESC(IWN_OTP_GP);
9178 		IWN_DESC(IWN_GIO);
9179 		IWN_DESC(IWN_GP_UCODE);
9180 		IWN_DESC(IWN_GP_DRIVER);
9181 		IWN_DESC(IWN_UCODE_GP1);
9182 		IWN_DESC(IWN_UCODE_GP2);
9183 		IWN_DESC(IWN_LED);
9184 		IWN_DESC(IWN_DRAM_INT_TBL);
9185 		IWN_DESC(IWN_GIO_CHICKEN);
9186 		IWN_DESC(IWN_ANA_PLL);
9187 		IWN_DESC(IWN_HW_REV_WA);
9188 		IWN_DESC(IWN_DBG_HPET_MEM);
9189 	default:
9190 		return "UNKNOWN CSR";
9191 	}
9192 }
9193 
9194 /*
9195  * This function print firmware register
9196  */
9197 static void
9198 iwn_debug_register(struct iwn_softc *sc)
9199 {
9200 	int i;
9201 	static const uint32_t csr_tbl[] = {
9202 		IWN_HW_IF_CONFIG,
9203 		IWN_INT_COALESCING,
9204 		IWN_INT,
9205 		IWN_INT_MASK,
9206 		IWN_FH_INT,
9207 		IWN_GPIO_IN,
9208 		IWN_RESET,
9209 		IWN_GP_CNTRL,
9210 		IWN_HW_REV,
9211 		IWN_EEPROM,
9212 		IWN_EEPROM_GP,
9213 		IWN_OTP_GP,
9214 		IWN_GIO,
9215 		IWN_GP_UCODE,
9216 		IWN_GP_DRIVER,
9217 		IWN_UCODE_GP1,
9218 		IWN_UCODE_GP2,
9219 		IWN_LED,
9220 		IWN_DRAM_INT_TBL,
9221 		IWN_GIO_CHICKEN,
9222 		IWN_ANA_PLL,
9223 		IWN_HW_REV_WA,
9224 		IWN_DBG_HPET_MEM,
9225 	};
9226 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9227 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9228 	    "\n");
9229 	for (i = 0; i <  nitems(csr_tbl); i++){
9230 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9231 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9232 		if ((i+1) % 3 == 0)
9233 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9234 	}
9235 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9236 }
9237 #endif
9238 
9239 
9240