xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 1593c65a5bc643d8afee4e9c88d81e9bb052fe91)
1 /*-
2  * Copyright (c) 2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <machine/clock.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 
71 #include <dev/iwn/if_iwnreg.h>
72 #include <dev/iwn/if_iwnvar.h>
73 
74 static int	iwn_probe(device_t);
75 static int	iwn_attach(device_t);
76 static int 	iwn_detach(device_t);
77 static int	iwn_cleanup(device_t);
78 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
79 		    const char name[IFNAMSIZ], int unit, int opmode,
80 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
81 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
82 static void	iwn_vap_delete(struct ieee80211vap *);
83 static int	iwn_shutdown(device_t);
84 static int	iwn_suspend(device_t);
85 static int	iwn_resume(device_t);
86 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	iwn_dma_contig_free(struct iwn_dma_info *);
89 int		iwn_alloc_shared(struct iwn_softc *);
90 void		iwn_free_shared(struct iwn_softc *);
91 int		iwn_alloc_kw(struct iwn_softc *);
92 void		iwn_free_kw(struct iwn_softc *);
93 int		iwn_alloc_fwmem(struct iwn_softc *);
94 void		iwn_free_fwmem(struct iwn_softc *);
95 struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
96 void		iwn_free_rbuf(void *, void *);
97 int		iwn_alloc_rpool(struct iwn_softc *);
98 void		iwn_free_rpool(struct iwn_softc *);
99 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
100 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
101 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
103 		    int);
104 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
105 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
106 struct		ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
107 void		iwn_newassoc(struct ieee80211_node *, int);
108 int		iwn_media_change(struct ifnet *);
109 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
110 void		iwn_mem_lock(struct iwn_softc *);
111 void		iwn_mem_unlock(struct iwn_softc *);
112 uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
113 void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
114 void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
115 		    const uint32_t *, int);
116 int		iwn_eeprom_lock(struct iwn_softc *);
117 void		iwn_eeprom_unlock(struct iwn_softc *);
118 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
119 int		iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
120 int		iwn_transfer_firmware(struct iwn_softc *);
121 int		iwn_load_firmware(struct iwn_softc *);
122 void		iwn_unload_firmware(struct iwn_softc *);
123 static void	iwn_timer_timeout(void *);
124 static void	iwn_calib_reset(struct iwn_softc *);
125 void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
126 void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
127 		    struct iwn_rx_data *);
128 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
129 void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
130 void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
131 static void	iwn_bmiss(void *, int);
132 void		iwn_notif_intr(struct iwn_softc *);
133 void		iwn_intr(void *);
134 void		iwn_read_eeprom(struct iwn_softc *);
135 static void	iwn_read_eeprom_channels(struct iwn_softc *);
136 void		iwn_print_power_group(struct iwn_softc *, int);
137 uint8_t		iwn_plcp_signal(int);
138 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
139 		    struct ieee80211_node *, struct iwn_tx_ring *);
140 void		iwn_start(struct ifnet *);
141 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
142 		    const struct ieee80211_bpf_params *);
143 static void	iwn_watchdog(struct iwn_softc *);
144 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
145 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
146 int		iwn_set_link_quality(struct iwn_softc *, uint8_t,
147 		    const struct ieee80211_channel *, int);
148 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
149 		    const struct ieee80211_key *);
150 int		iwn_wme_update(struct ieee80211com *);
151 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
152 int		iwn_set_critical_temp(struct iwn_softc *);
153 void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
154 void		iwn_power_calibration(struct iwn_softc *, int);
155 int		iwn_set_txpower(struct iwn_softc *,
156 		    struct ieee80211_channel *, int);
157 int8_t		iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
158 int		iwn_get_noise(const struct iwn_rx_general_stats *);
159 int		iwn_get_temperature(struct iwn_softc *);
160 int		iwn_init_sensitivity(struct iwn_softc *);
161 void		iwn_compute_differential_gain(struct iwn_softc *,
162 		    const struct iwn_rx_general_stats *);
163 void		iwn_tune_sensitivity(struct iwn_softc *,
164 		    const struct iwn_rx_stats *);
165 int		iwn_send_sensitivity(struct iwn_softc *);
166 int		iwn_auth(struct iwn_softc *);
167 int		iwn_run(struct iwn_softc *);
168 int		iwn_scan(struct iwn_softc *);
169 int		iwn_config(struct iwn_softc *);
170 void		iwn_post_alive(struct iwn_softc *);
171 void		iwn_stop_master(struct iwn_softc *);
172 int		iwn_reset(struct iwn_softc *);
173 void		iwn_hw_config(struct iwn_softc *);
174 void		iwn_init_locked(struct iwn_softc *);
175 void		iwn_init(void *);
176 void		iwn_stop_locked(struct iwn_softc *);
177 void		iwn_stop(struct iwn_softc *);
178 static void 	iwn_scan_start(struct ieee80211com *);
179 static void 	iwn_scan_end(struct ieee80211com *);
180 static void 	iwn_set_channel(struct ieee80211com *);
181 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
182 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
183 static void 	iwn_ops(void *, int);
184 static int 	iwn_queue_cmd( struct iwn_softc *, int, int, int);
185 static void	iwn_bpfattach(struct iwn_softc *);
186 static void	iwn_sysctlattach(struct iwn_softc *);
187 
188 #define IWN_DEBUG
189 #ifdef IWN_DEBUG
190 enum {
191 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
192 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
193 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
194 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
195 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
196 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
197 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
198 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
199 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
200 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
201 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
202 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
203 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
204 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
205 	IWN_DEBUG_ANY		= 0xffffffff
206 };
207 
208 #define DPRINTF(sc, m, fmt, ...) do {			\
209 	if (sc->sc_debug & (m))				\
210 		printf(fmt, __VA_ARGS__);		\
211 } while (0)
212 
213 static const char *iwn_ops_str(int);
214 static const char *iwn_intr_str(uint8_t);
215 #else
216 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
217 #endif
218 
219 struct iwn_ident {
220 	uint16_t	vendor;
221 	uint16_t	device;
222 	const char	*name;
223 };
224 
225 static const struct iwn_ident iwn_ident_table [] = {
226         { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
227         { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
228         { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
229         { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
230         { 0, 0, NULL }
231 };
232 
233 static int
234 iwn_probe(device_t dev)
235 {
236         const struct iwn_ident *ident;
237 
238         for (ident = iwn_ident_table; ident->name != NULL; ident++) {
239                 if (pci_get_vendor(dev) == ident->vendor &&
240                     pci_get_device(dev) == ident->device) {
241                         device_set_desc(dev, ident->name);
242                         return 0;
243                 }
244         }
245         return ENXIO;
246 }
247 
248 static int
249 iwn_attach(device_t dev)
250 {
251 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
252 	struct ieee80211com *ic;
253 	struct ifnet *ifp;
254 	int i, error;
255 
256 	sc->sc_dev = dev;
257 
258 	/* XXX */
259 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
260 		device_printf(dev, "chip is in D%d power mode "
261 		    "-- setting to D0\n", pci_get_powerstate(dev));
262 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
263 	}
264 
265 	/* clear device specific PCI configuration register 0x41 */
266 	pci_write_config(dev, 0x41, 0, 1);
267 
268 	/* enable bus-mastering */
269 	pci_enable_busmaster(dev);
270 
271 	sc->mem_rid= PCIR_BAR(0);
272 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
273 					 RF_ACTIVE);
274 	if (sc->mem == NULL ) {
275 		device_printf(dev, "could not allocate memory resources\n");
276 		error = ENOMEM;
277 		return error;
278 	}
279 
280 	sc->sc_st = rman_get_bustag(sc->mem);
281 	sc->sc_sh = rman_get_bushandle(sc->mem);
282 	sc->irq_rid = 0;
283 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
284 					 RF_ACTIVE | RF_SHAREABLE);
285 	if (sc->irq == NULL) {
286 		device_printf(dev, "could not allocate interrupt resource\n");
287 		error = ENOMEM;
288 		return error;
289 	}
290 
291 	IWN_LOCK_INIT(sc);
292 	IWN_CMD_LOCK_INIT(sc);
293 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
294 
295         /*
296          * Create the taskqueues used by the driver. Primarily
297          * sc_tq handles most the task
298          */
299         sc->sc_tq = taskqueue_create("iwn_taskq", M_NOWAIT | M_ZERO,
300                 taskqueue_thread_enqueue, &sc->sc_tq);
301         taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
302                 device_get_nameunit(dev));
303 
304         TASK_INIT(&sc->sc_ops_task, 0, iwn_ops, sc );
305 	TASK_INIT(&sc->sc_bmiss_task, 0, iwn_bmiss, sc);
306 
307 	/*
308 	 * Put adapter into a known state.
309 	 */
310 	error = iwn_reset(sc);
311 	if (error != 0) {
312 		device_printf(dev,
313 		    "could not reset adapter, error %d\n", error);
314 		goto fail;
315 	}
316 
317 	/*
318 	 * Allocate DMA memory for firmware transfers.
319 	 */
320 	error = iwn_alloc_fwmem(sc);
321 	if (error != 0) {
322 		device_printf(dev,
323 		    "could not allocate firmware memory, error %d\n", error);
324 		goto fail;
325 	}
326 
327 	/*
328 	 * Allocate a "keep warm" page.
329 	 */
330 	error = iwn_alloc_kw(sc);
331 	if (error != 0) {
332 		device_printf(dev,
333 		    "could not allocate keep-warm page, error %d\n", error);
334 		goto fail;
335 	}
336 
337 	/*
338 	 * Allocate shared area (communication area).
339 	 */
340 	error = iwn_alloc_shared(sc);
341 	if (error != 0) {
342 		device_printf(dev,
343 		    "could not allocate shared area, error %d\n", error);
344 		goto fail;
345 	}
346 
347 	/*
348 	 * Allocate Tx rings.
349 	 */
350 	for (i = 0; i < IWN_NTXQUEUES; i++) {
351 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
352 		if (error != 0) {
353 			device_printf(dev,
354 			    "could not allocate Tx ring %d, error %d\n",
355 			    i, error);
356 			goto fail;
357 		}
358 	}
359 
360 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
361 	if (error != 0 ){
362 		device_printf(dev,
363 		    "could not allocate Rx ring, error %d\n", error);
364 		goto fail;
365 	}
366 
367 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
368 	if (ifp == NULL) {
369 		device_printf(dev, "can not allocate ifnet structure\n");
370 		goto fail;
371 	}
372 	ic = ifp->if_l2com;
373 
374 	ic->ic_ifp = ifp;
375 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
376 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
377 
378 	/* set device capabilities */
379 	ic->ic_caps =
380 		  IEEE80211_C_STA		/* station mode supported */
381 		| IEEE80211_C_MONITOR		/* monitor mode supported */
382 		| IEEE80211_C_TXPMGT		/* tx power management */
383 		| IEEE80211_C_SHSLOT		/* short slot time supported */
384 		| IEEE80211_C_WPA
385 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
386 #if 0
387 		| IEEE80211_C_BGSCAN		/* background scanning */
388 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
389 #endif
390 		| IEEE80211_C_WME		/* WME */
391 		;
392 #if 0
393 	/* XXX disable until HT channel setup works */
394 	ic->ic_htcaps =
395 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
396 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
397 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
398 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
399 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
400 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
401 		/* s/w capabilities */
402 		| IEEE80211_HTC_HT		/* HT operation */
403 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
404 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
405 		;
406 #endif
407 	/* read supported channels and MAC address from EEPROM */
408 	iwn_read_eeprom(sc);
409 
410 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
411 	ifp->if_softc = sc;
412 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
413 	ifp->if_init = iwn_init;
414 	ifp->if_ioctl = iwn_ioctl;
415 	ifp->if_start = iwn_start;
416         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
417 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
418 	IFQ_SET_READY(&ifp->if_snd);
419 
420 	ieee80211_ifattach(ic);
421 	ic->ic_vap_create = iwn_vap_create;
422 	ic->ic_vap_delete = iwn_vap_delete;
423 	ic->ic_raw_xmit = iwn_raw_xmit;
424 	ic->ic_node_alloc = iwn_node_alloc;
425 	ic->ic_newassoc = iwn_newassoc;
426         ic->ic_wme.wme_update = iwn_wme_update;
427         ic->ic_scan_start = iwn_scan_start;
428         ic->ic_scan_end = iwn_scan_end;
429         ic->ic_set_channel = iwn_set_channel;
430         ic->ic_scan_curchan = iwn_scan_curchan;
431         ic->ic_scan_mindwell = iwn_scan_mindwell;
432 
433 	iwn_bpfattach(sc);
434 	iwn_sysctlattach(sc);
435 
436         /*
437          * Hook our interrupt after all initialization is complete.
438          */
439         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
440 	    NULL, iwn_intr, sc, &sc->sc_ih);
441         if (error != 0) {
442                 device_printf(dev, "could not set up interrupt, error %d\n", error);
443                 goto fail;
444         }
445 
446         ieee80211_announce(ic);
447 	return 0;
448 fail:
449 	iwn_cleanup(dev);
450 	return error;
451 }
452 
453 static int
454 iwn_detach(device_t dev)
455 {
456 	iwn_cleanup(dev);
457         return 0;
458 }
459 
460 /*
461  * Cleanup any device resources that were allocated
462  */
463 int
464 iwn_cleanup(device_t dev)
465 {
466 	struct iwn_softc *sc = device_get_softc(dev);
467 	struct ifnet *ifp = sc->sc_ifp;
468 	struct ieee80211com *ic = ifp->if_l2com;
469 	int i;
470 
471 	if (ifp != NULL) {
472 		iwn_stop(sc);
473 		callout_drain(&sc->sc_timer_to);
474 		bpfdetach(ifp);
475 		ieee80211_ifdetach(ic);
476 	}
477 
478 	iwn_unload_firmware(sc);
479 
480 	iwn_free_rx_ring(sc, &sc->rxq);
481 	for (i = 0; i < IWN_NTXQUEUES; i++)
482 		iwn_free_tx_ring(sc, &sc->txq[i]);
483 	iwn_free_kw(sc);
484 	iwn_free_fwmem(sc);
485 	if (sc->irq != NULL) {
486 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
487 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
488 	}
489 	if (sc->mem != NULL)
490 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
491 	if (ifp != NULL)
492 		if_free(ifp);
493 	taskqueue_free(sc->sc_tq);
494 	IWN_CMD_LOCK_DESTROY(sc);
495 	IWN_LOCK_DESTROY(sc);
496 	return 0;
497 }
498 
499 static struct ieee80211vap *
500 iwn_vap_create(struct ieee80211com *ic,
501 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
502 	const uint8_t bssid[IEEE80211_ADDR_LEN],
503 	const uint8_t mac[IEEE80211_ADDR_LEN])
504 {
505 	struct iwn_vap *ivp;
506 	struct ieee80211vap *vap;
507 
508 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
509 		return NULL;
510 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
511 	    M_80211_VAP, M_NOWAIT | M_ZERO);
512 	if (ivp == NULL)
513 		return NULL;
514 	vap = &ivp->iv_vap;
515 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
516 	vap->iv_bmissthreshold = 10;		/* override default */
517 	/* override with driver methods */
518 	ivp->iv_newstate = vap->iv_newstate;
519 	vap->iv_newstate = iwn_newstate;
520 
521 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
522 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
523 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
524 	    500 /*ms*/);
525 
526 	/* complete setup */
527 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
528 	ic->ic_opmode = opmode;
529 	return vap;
530 }
531 
532 static void
533 iwn_vap_delete(struct ieee80211vap *vap)
534 {
535 	struct iwn_vap *ivp = IWN_VAP(vap);
536 
537 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
538 	ieee80211_vap_detach(vap);
539 	free(ivp, M_80211_VAP);
540 }
541 
542 static int
543 iwn_shutdown(device_t dev)
544 {
545 	struct iwn_softc *sc = device_get_softc(dev);
546 
547 	iwn_stop(sc);
548 	return 0;
549 }
550 
551 static int
552 iwn_suspend(device_t dev)
553 {
554 	struct iwn_softc *sc = device_get_softc(dev);
555 
556 	iwn_stop(sc);
557 	return 0;
558 }
559 
560 static int
561 iwn_resume(device_t dev)
562 {
563 	struct iwn_softc *sc = device_get_softc(dev);
564 	struct ifnet *ifp = sc->sc_ifp;
565 
566 	pci_write_config(dev, 0x41, 0, 1);
567 
568 	if (ifp->if_flags & IFF_UP)
569 		iwn_init(sc);
570 	return 0;
571 }
572 
573 static void
574 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
575 {
576         if (error != 0)
577                 return;
578         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
579         *(bus_addr_t *)arg = segs[0].ds_addr;
580 }
581 
582 static int
583 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
584 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
585 {
586 	int error, lalignment, i;
587 
588 	/*
589 	 * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
590 	 * we allocate an extra 12k with 4k alignement and walk through
591 	 * it trying to find where the alignment is. It's a nasty fix for
592 	 * a bigger problem.
593 	*/
594 	DPRINTF(sc, IWN_DEBUG_RESET,
595 	    "Size: %zd - alignment %zd\n", size, alignment);
596 	if (alignment == 0x4000) {
597 		size += 12*1024;
598 		lalignment = 4096;
599 		DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
600 		    "Attempting to find a 16k boundary");
601 	} else
602 		lalignment = alignment;
603 	dma->size = size;
604 	dma->tag = NULL;
605 
606 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
607 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
608 	    1, size, flags, NULL, NULL, &dma->tag);
609 	if (error != 0) {
610 		device_printf(sc->sc_dev,
611 		    "%s: bus_dma_tag_create failed, error %d\n",
612 		    __func__, error);
613 		goto fail;
614 	}
615 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
616 	    flags | BUS_DMA_ZERO, &dma->map);
617 	if (error != 0) {
618 		device_printf(sc->sc_dev,
619 		   "%s: bus_dmamem_alloc failed, error %d\n",
620 		   __func__, error);
621 		goto fail;
622 	}
623 	if (alignment == 0x4000) {
624 		for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
625 			DPRINTF(sc, IWN_DEBUG_RESET,  "%s\n",
626 			    "Memory Unaligned, shifting pointer by 4k");
627 			dma->vaddr += 4096;
628 			size -= 4096;
629 		}
630 		if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
631 			DPRINTF(sc, IWN_DEBUG_ANY,
632 			    "%s: failed to align memory, vaddr %p, align %zd\n",
633 			    __func__, dma->vaddr, alignment);
634 			error = ENOMEM;
635 			goto fail;
636 		}
637 	}
638 
639 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
640 	    size, iwn_dma_map_addr, &dma->paddr, flags);
641 	if (error != 0) {
642 		device_printf(sc->sc_dev,
643 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
644 		goto fail;
645 	}
646 
647 	if (kvap != NULL)
648 		*kvap = dma->vaddr;
649 	return 0;
650 fail:
651 	iwn_dma_contig_free(dma);
652 	return error;
653 }
654 
655 static void
656 iwn_dma_contig_free(struct iwn_dma_info *dma)
657 {
658 	if (dma->tag != NULL) {
659 		if (dma->map != NULL) {
660 			if (dma->paddr == 0) {
661 				bus_dmamap_sync(dma->tag, dma->map,
662 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
663 				bus_dmamap_unload(dma->tag, dma->map);
664 			}
665 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
666 		}
667 		bus_dma_tag_destroy(dma->tag);
668 	}
669 }
670 
671 int
672 iwn_alloc_shared(struct iwn_softc *sc)
673 {
674 	/* must be aligned on a 1KB boundary */
675 	return iwn_dma_contig_alloc(sc, &sc->shared_dma,
676 	    (void **)&sc->shared, sizeof (struct iwn_shared), 1024,
677 	    BUS_DMA_NOWAIT);
678 }
679 
680 void
681 iwn_free_shared(struct iwn_softc *sc)
682 {
683 	iwn_dma_contig_free(&sc->shared_dma);
684 }
685 
686 int
687 iwn_alloc_kw(struct iwn_softc *sc)
688 {
689 	/* must be aligned on a 4k boundary */
690 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
691 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
692 }
693 
694 void
695 iwn_free_kw(struct iwn_softc *sc)
696 {
697 	iwn_dma_contig_free(&sc->kw_dma);
698 }
699 
700 int
701 iwn_alloc_fwmem(struct iwn_softc *sc)
702 {
703 	/* allocate enough contiguous space to store text and data */
704 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
705 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
706 	    BUS_DMA_NOWAIT);
707 }
708 
709 void
710 iwn_free_fwmem(struct iwn_softc *sc)
711 {
712 	iwn_dma_contig_free(&sc->fw_dma);
713 }
714 
715 int
716 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
717 {
718 	int i, error;
719 
720 	ring->cur = 0;
721 
722 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
723 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
724 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
725 	if (error != 0) {
726 		device_printf(sc->sc_dev,
727 		    "%s: could not allocate rx ring DMA memory, error %d\n",
728 		    __func__, error);
729 		goto fail;
730 	}
731 
732         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
733 	    BUS_SPACE_MAXADDR_32BIT,
734             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
735             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
736         if (error != 0) {
737                 device_printf(sc->sc_dev,
738 		    "%s: bus_dma_tag_create_failed, error %d\n",
739 		    __func__, error);
740                 goto fail;
741         }
742 
743 	/*
744 	 * Setup Rx buffers.
745 	 */
746 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
747 		struct iwn_rx_data *data = &ring->data[i];
748 		struct mbuf *m;
749 		bus_addr_t paddr;
750 
751 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
752 		if (error != 0) {
753 			device_printf(sc->sc_dev,
754 			    "%s: bus_dmamap_create failed, error %d\n",
755 			    __func__, error);
756 			goto fail;
757 		}
758 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
759 		if (m == NULL) {
760 			device_printf(sc->sc_dev,
761 			   "%s: could not allocate rx mbuf\n", __func__);
762 			error = ENOMEM;
763 			goto fail;
764 		}
765 		/* map page */
766 		error = bus_dmamap_load(ring->data_dmat, data->map,
767 		    mtod(m, caddr_t), MJUMPAGESIZE,
768 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
769 		if (error != 0 && error != EFBIG) {
770 			device_printf(sc->sc_dev,
771 			    "%s: bus_dmamap_load failed, error %d\n",
772 			    __func__, error);
773 			m_freem(m);
774 			error = ENOMEM;	/* XXX unique code */
775 			goto fail;
776 		}
777 		bus_dmamap_sync(ring->data_dmat, data->map,
778 		    BUS_DMASYNC_PREWRITE);
779 
780 		data->m = m;
781 		/* Rx buffers are aligned on a 256-byte boundary */
782 		ring->desc[i] = htole32(paddr >> 8);
783 	}
784 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
785 	    BUS_DMASYNC_PREWRITE);
786 	return 0;
787 fail:
788 	iwn_free_rx_ring(sc, ring);
789 	return error;
790 }
791 
792 void
793 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
794 {
795 	int ntries;
796 
797 	iwn_mem_lock(sc);
798 
799 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
800 	for (ntries = 0; ntries < 100; ntries++) {
801 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
802 			break;
803 		DELAY(10);
804 	}
805 #ifdef IWN_DEBUG
806 	if (ntries == 100)
807 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
808 #endif
809 	iwn_mem_unlock(sc);
810 
811 	ring->cur = 0;
812 }
813 
814 void
815 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
816 {
817 	int i;
818 
819 	iwn_dma_contig_free(&ring->desc_dma);
820 
821 	for (i = 0; i < IWN_RX_RING_COUNT; i++)
822 		if (ring->data[i].m != NULL)
823 			m_freem(ring->data[i].m);
824 }
825 
826 int
827 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
828 {
829 	bus_size_t size;
830 	int i, error;
831 
832 	ring->qid = qid;
833 	ring->queued = 0;
834 	ring->cur = 0;
835 
836 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
837 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
838 	    (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
839 	if (error != 0) {
840 		device_printf(sc->sc_dev,
841 		    "%s: could not allocate tx ring DMA memory, error %d\n",
842 		    __func__, error);
843 		goto fail;
844 	}
845 
846 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
847 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
848 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
849 	if (error != 0) {
850 		device_printf(sc->sc_dev,
851 		    "%s: could not allocate tx cmd DMA memory, error %d\n",
852 		    __func__, error);
853 		goto fail;
854 	}
855 
856         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
857 	    BUS_SPACE_MAXADDR_32BIT,
858             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
859             MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
860         if (error != 0) {
861                 device_printf(sc->sc_dev,
862 		    "%s: bus_dma_tag_create_failed, error %d\n",
863 		    __func__, error);
864                 goto fail;
865         }
866 
867 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
868 		struct iwn_tx_data *data = &ring->data[i];
869 
870 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
871 		if (error != 0) {
872 			device_printf(sc->sc_dev,
873 			    "%s: bus_dmamap_create failed, error %d\n",
874 			    __func__, error);
875 			goto fail;
876 		}
877 		bus_dmamap_sync(ring->data_dmat, data->map,
878 		    BUS_DMASYNC_PREWRITE);
879 	}
880 	return 0;
881 fail:
882 	iwn_free_tx_ring(sc, ring);
883 	return error;
884 }
885 
886 void
887 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
888 {
889 	uint32_t tmp;
890 	int i, ntries;
891 
892 	iwn_mem_lock(sc);
893 
894 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
895 	for (ntries = 0; ntries < 20; ntries++) {
896 		tmp = IWN_READ(sc, IWN_TX_STATUS);
897 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
898 			break;
899 		DELAY(10);
900 	}
901 #ifdef IWN_DEBUG
902 	if (ntries == 20)
903 		DPRINTF(sc, IWN_DEBUG_RESET,
904 		    "%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
905 #endif
906 	iwn_mem_unlock(sc);
907 
908 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
909 		struct iwn_tx_data *data = &ring->data[i];
910 
911 		if (data->m != NULL) {
912 			bus_dmamap_unload(ring->data_dmat, data->map);
913 			m_freem(data->m);
914 			data->m = NULL;
915 		}
916 	}
917 
918 	ring->queued = 0;
919 	ring->cur = 0;
920 }
921 
922 void
923 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
924 {
925 	int i;
926 
927 	iwn_dma_contig_free(&ring->desc_dma);
928 	iwn_dma_contig_free(&ring->cmd_dma);
929 
930 	if (ring->data != NULL) {
931 		for (i = 0; i < IWN_TX_RING_COUNT; i++) {
932 			struct iwn_tx_data *data = &ring->data[i];
933 
934 			if (data->m != NULL) {
935 				bus_dmamap_unload(ring->data_dmat, data->map);
936 				m_freem(data->m);
937 			}
938 		}
939 	}
940 }
941 
942 struct ieee80211_node *
943 iwn_node_alloc(struct ieee80211_node_table *ic)
944 {
945 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
946 }
947 
948 void
949 iwn_newassoc(struct ieee80211_node *ni, int isnew)
950 {
951 	struct ieee80211vap *vap = ni->ni_vap;
952 
953 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
954 	   &IWN_NODE(ni)->amn, ni);
955 }
956 
957 int
958 iwn_media_change(struct ifnet *ifp)
959 {
960 	int error = ieee80211_media_change(ifp);
961 	/* NB: only the fixed rate can change and that doesn't need a reset */
962 	return (error == ENETRESET ? 0 : error);
963 }
964 
965 int
966 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
967 {
968 	struct iwn_vap *ivp = IWN_VAP(vap);
969 	struct ieee80211com *ic = vap->iv_ic;
970 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
971 	int error;
972 
973 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
974 		ieee80211_state_name[vap->iv_state],
975 		ieee80211_state_name[nstate]);
976 
977 	IWN_LOCK(sc);
978 	callout_stop(&sc->sc_timer_to);
979 	IWN_UNLOCK(sc);
980 
981 	/*
982 	 * Some state transitions require issuing a configure request
983 	 * to the adapter.  This must be done in a blocking context
984 	 * so we toss control to the task q thread where the state
985 	 * change will be finished after the command completes.
986 	 */
987 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
988 		/* !AUTH -> AUTH requires adapter config */
989 		error = iwn_queue_cmd(sc, IWN_AUTH, arg, IWN_QUEUE_NORMAL);
990 		return (error != 0 ? error : EINPROGRESS);
991 	}
992 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
993 		/*
994 		 * !RUN -> RUN requires setting the association id
995 		 * which is done with a firmware cmd.  We also defer
996 		 * starting the timers until that work is done.
997 		 */
998 		error = iwn_queue_cmd(sc, IWN_RUN, arg, IWN_QUEUE_NORMAL);
999 		return (error != 0 ? error : EINPROGRESS);
1000 	}
1001 	if (nstate == IEEE80211_S_RUN) {
1002 		/*
1003 		 * RUN -> RUN transition; just restart the timers.
1004 		 */
1005 		iwn_calib_reset(sc);
1006 	}
1007 	return ivp->iv_newstate(vap, nstate, arg);
1008 }
1009 
1010 /*
1011  * Grab exclusive access to NIC memory.
1012  */
1013 void
1014 iwn_mem_lock(struct iwn_softc *sc)
1015 {
1016 	uint32_t tmp;
1017 	int ntries;
1018 
1019 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1020 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1021 
1022 	/* spin until we actually get the lock */
1023 	for (ntries = 0; ntries < 1000; ntries++) {
1024 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1025 		    (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1026 			break;
1027 		DELAY(10);
1028 	}
1029 	if (ntries == 1000)
1030 		device_printf(sc->sc_dev,
1031 		    "%s: could not lock memory\n", __func__);
1032 }
1033 
1034 /*
1035  * Release lock on NIC memory.
1036  */
1037 void
1038 iwn_mem_unlock(struct iwn_softc *sc)
1039 {
1040 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1041 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1042 }
1043 
1044 uint32_t
1045 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1046 {
1047 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1048 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1049 }
1050 
1051 void
1052 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1053 {
1054 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1055 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1056 }
1057 
1058 void
1059 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1060     const uint32_t *data, int wlen)
1061 {
1062 	for (; wlen > 0; wlen--, data++, addr += 4)
1063 		iwn_mem_write(sc, addr, *data);
1064 }
1065 
1066 int
1067 iwn_eeprom_lock(struct iwn_softc *sc)
1068 {
1069 	uint32_t tmp;
1070 	int ntries;
1071 
1072 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1073 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1074 
1075 	/* spin until we actually get the lock */
1076 	for (ntries = 0; ntries < 100; ntries++) {
1077 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1078 			return 0;
1079 		DELAY(10);
1080 	}
1081 	return ETIMEDOUT;
1082 }
1083 
1084 void
1085 iwn_eeprom_unlock(struct iwn_softc *sc)
1086 {
1087 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1088 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1089 }
1090 
1091 /*
1092  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1093  * instead of using the traditional bit-bang method.
1094  */
1095 int
1096 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1097 {
1098 	uint8_t *out = data;
1099 	uint32_t val;
1100 	int ntries, tmp;
1101 
1102 	iwn_mem_lock(sc);
1103 	for (; len > 0; len -= 2, addr++) {
1104 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1105 		tmp = IWN_READ(sc, IWN_EEPROM_CTL);
1106 		IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
1107 
1108 		for (ntries = 0; ntries < 10; ntries++) {
1109 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1110 			    IWN_EEPROM_READY)
1111 				break;
1112 			DELAY(5);
1113 		}
1114 		if (ntries == 10) {
1115 			device_printf(sc->sc_dev,"could not read EEPROM\n");
1116 			return ETIMEDOUT;
1117 		}
1118 		*out++ = val >> 16;
1119 		if (len > 1)
1120 			*out++ = val >> 24;
1121 	}
1122 	iwn_mem_unlock(sc);
1123 
1124 	return 0;
1125 }
1126 
1127 /*
1128  * The firmware boot code is small and is intended to be copied directly into
1129  * the NIC internal memory.
1130  */
1131 int
1132 iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1133 {
1134 	int ntries;
1135 
1136 	size /= sizeof (uint32_t);
1137 
1138 	iwn_mem_lock(sc);
1139 
1140 	/* copy microcode image into NIC memory */
1141 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1142 	    (const uint32_t *)ucode, size);
1143 
1144 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1145 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1146 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1147 
1148 	/* run microcode */
1149 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1150 
1151 	/* wait for transfer to complete */
1152 	for (ntries = 0; ntries < 1000; ntries++) {
1153 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1154 			break;
1155 		DELAY(10);
1156 	}
1157 	if (ntries == 1000) {
1158 		iwn_mem_unlock(sc);
1159 		device_printf(sc->sc_dev,
1160 		    "%s: could not load boot firmware\n", __func__);
1161 		return ETIMEDOUT;
1162 	}
1163 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1164 
1165 	iwn_mem_unlock(sc);
1166 
1167 	return 0;
1168 }
1169 
1170 int
1171 iwn_load_firmware(struct iwn_softc *sc)
1172 {
1173 	int error;
1174 
1175 	KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
1176 
1177 	IWN_UNLOCK(sc);
1178 	/* load firmware image from disk */
1179 	sc->fw_fp = firmware_get("iwnfw");
1180 	if (sc->fw_fp == NULL) {
1181 		device_printf(sc->sc_dev,
1182 		    "%s: could not load firmare image \"iwnfw\"\n", __func__);
1183 		error = EINVAL;
1184 	} else
1185 		error = 0;
1186 	IWN_LOCK(sc);
1187 	return error;
1188 }
1189 
1190 int
1191 iwn_transfer_firmware(struct iwn_softc *sc)
1192 {
1193 	struct iwn_dma_info *dma = &sc->fw_dma;
1194 	const struct iwn_firmware_hdr *hdr;
1195 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1196 	const uint8_t *boot_text;
1197 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1198 	uint32_t boot_textsz;
1199 	int error = 0;
1200 	const struct firmware *fp = sc->fw_fp;
1201 
1202 	/* extract firmware header information */
1203 	if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
1204 		device_printf(sc->sc_dev,
1205 		    "%s: truncated firmware header: %zu bytes, expecting %zu\n",
1206 		    __func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
1207 		error = EINVAL;
1208 		goto fail;
1209 	}
1210 	hdr = (const struct iwn_firmware_hdr *)fp->data;
1211 	main_textsz = le32toh(hdr->main_textsz);
1212 	main_datasz = le32toh(hdr->main_datasz);
1213 	init_textsz = le32toh(hdr->init_textsz);
1214 	init_datasz = le32toh(hdr->init_datasz);
1215 	boot_textsz = le32toh(hdr->boot_textsz);
1216 
1217 	/* sanity-check firmware segments sizes */
1218 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1219 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1220 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1221 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1222 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1223 	    (boot_textsz & 3) != 0) {
1224 		device_printf(sc->sc_dev,
1225 		    "%s: invalid firmware header, main [%d,%d], init [%d,%d] "
1226 		    "boot %d\n", __func__, main_textsz, main_datasz,
1227 		    init_textsz, init_datasz, boot_textsz);
1228 		error = EINVAL;
1229 		goto fail;
1230 	}
1231 
1232 	/* check that all firmware segments are present */
1233 	if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
1234 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1235 		device_printf(sc->sc_dev, "%s: firmware file too short: "
1236 		    "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
1237 		    __func__, fp->datasize, main_textsz, main_datasz,
1238 		    init_textsz, init_datasz, boot_textsz);
1239 		error = EINVAL;
1240 		goto fail;
1241 	}
1242 
1243 	/* get pointers to firmware segments */
1244 	main_text = (const uint8_t *)(hdr + 1);
1245 	main_data = main_text + main_textsz;
1246 	init_text = main_data + main_datasz;
1247 	init_data = init_text + init_textsz;
1248 	boot_text = init_data + init_datasz;
1249 
1250 	/* copy initialization images into pre-allocated DMA-safe memory */
1251 	memcpy(dma->vaddr, init_data, init_datasz);
1252 	memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1253 
1254 	/* tell adapter where to find initialization images */
1255 	iwn_mem_lock(sc);
1256 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1257 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1258 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1259 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1260 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1261 	iwn_mem_unlock(sc);
1262 
1263 	/* load firmware boot code */
1264 	error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
1265 	if (error != 0) {
1266 		device_printf(sc->sc_dev,
1267 		    "%s: could not load boot firmware, error %d\n",
1268 		    __func__, error);
1269 		goto fail;
1270 	}
1271 
1272 	/* now press "execute" ;-) */
1273 	IWN_WRITE(sc, IWN_RESET, 0);
1274 
1275 	/* wait at most one second for first alive notification */
1276 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1277 	if (error != 0) {
1278 		/* this isn't what was supposed to happen.. */
1279 		device_printf(sc->sc_dev,
1280 		    "%s: timeout waiting for first alive notice, error %d\n",
1281 		    __func__, error);
1282 		goto fail;
1283 	}
1284 
1285 	/* copy runtime images into pre-allocated DMA-safe memory */
1286 	memcpy(dma->vaddr, main_data, main_datasz);
1287 	memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1288 
1289 	/* tell adapter where to find runtime images */
1290 	iwn_mem_lock(sc);
1291 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1292 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1293 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1294 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1295 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1296 	iwn_mem_unlock(sc);
1297 
1298 	/* wait at most one second for second alive notification */
1299 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1300 	if (error != 0) {
1301 		/* this isn't what was supposed to happen.. */
1302 		device_printf(sc->sc_dev,
1303 		   "%s: timeout waiting for second alive notice, error %d\n",
1304 		   __func__, error);
1305 		goto fail;
1306 	}
1307 	return 0;
1308 fail:
1309 	return error;
1310 }
1311 
1312 void
1313 iwn_unload_firmware(struct iwn_softc *sc)
1314 {
1315         if (sc->fw_fp != NULL) {
1316                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
1317                 sc->fw_fp = NULL;
1318         }
1319 }
1320 
1321 static void
1322 iwn_timer_timeout(void *arg)
1323 {
1324 	struct iwn_softc *sc = arg;
1325 
1326 	IWN_LOCK_ASSERT(sc);
1327 
1328 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1329 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1330 		    "send statistics request");
1331 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1332 		sc->calib_cnt = 60;	/* do calibration every 60s */
1333 	}
1334 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1335 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1336 }
1337 
1338 static void
1339 iwn_calib_reset(struct iwn_softc *sc)
1340 {
1341 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1342 	sc->calib_cnt = 60;		/* do calibration every 60s */
1343 }
1344 
1345 void
1346 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1347 {
1348 	struct iwn_rx_stat *stat;
1349 
1350 	DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
1351 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1352 	stat = (struct iwn_rx_stat *)(desc + 1);
1353 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1354 	sc->last_rx_valid = 1;
1355 }
1356 
1357 static __inline int
1358 maprate(int iwnrate)
1359 {
1360 	switch (iwnrate) {
1361 	/* CCK rates */
1362 	case  10: return   2;
1363 	case  20: return   4;
1364 	case  55: return  11;
1365 	case 110: return  22;
1366 	/* OFDM rates */
1367 	case 0xd: return  12;
1368 	case 0xf: return  18;
1369 	case 0x5: return  24;
1370 	case 0x7: return  36;
1371 	case 0x9: return  48;
1372 	case 0xb: return  72;
1373 	case 0x1: return  96;
1374 	case 0x3: return 108;
1375 	/* XXX MCS */
1376 	}
1377 	/* unknown rate: should not happen */
1378 	return 0;
1379 }
1380 
1381 void
1382 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1383     struct iwn_rx_data *data)
1384 {
1385 	struct ifnet *ifp = sc->sc_ifp;
1386 	struct ieee80211com *ic = ifp->if_l2com;
1387 	struct iwn_rx_ring *ring = &sc->rxq;
1388 	struct ieee80211_frame *wh;
1389 	struct ieee80211_node *ni;
1390 	struct mbuf *m, *mnew;
1391 	struct iwn_rx_stat *stat;
1392 	caddr_t head;
1393 	uint32_t *tail;
1394 	int8_t rssi, nf;
1395 	int len, error;
1396 	bus_addr_t paddr;
1397 
1398 	if (desc->type == IWN_AMPDU_RX_DONE) {
1399 		/* check for prior AMPDU_RX_START */
1400 		if (!sc->last_rx_valid) {
1401 			DPRINTF(sc, IWN_DEBUG_ANY,
1402 			    "%s: missing AMPDU_RX_START\n", __func__);
1403 			ifp->if_ierrors++;
1404 			return;
1405 		}
1406 		sc->last_rx_valid = 0;
1407 		stat = &sc->last_rx_stat;
1408 	} else
1409 		stat = (struct iwn_rx_stat *)(desc + 1);
1410 
1411 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1412 		device_printf(sc->sc_dev,
1413 		    "%s: invalid rx statistic header, len %d\n",
1414 		    __func__, stat->cfg_phy_len);
1415 		ifp->if_ierrors++;
1416 		return;
1417 	}
1418 	if (desc->type == IWN_AMPDU_RX_DONE) {
1419 		struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
1420 		head = (caddr_t)(ampdu + 1);
1421 		len = le16toh(ampdu->len);
1422 	} else {
1423 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1424 		len = le16toh(stat->len);
1425 	}
1426 
1427 	/* discard Rx frames with bad CRC early */
1428 	tail = (uint32_t *)(head + len);
1429 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1430 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
1431 		    __func__, le32toh(*tail));
1432 		ifp->if_ierrors++;
1433 		return;
1434 	}
1435 	if (len < sizeof (struct ieee80211_frame)) {
1436 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
1437 		    __func__, len);
1438 		ic->ic_stats.is_rx_tooshort++;
1439 		ifp->if_ierrors++;
1440 		return;
1441 	}
1442 
1443 	/* XXX don't need mbuf, just dma buffer */
1444 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1445 	if (mnew == NULL) {
1446 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1447 		    __func__);
1448 		ic->ic_stats.is_rx_nobuf++;
1449 		ifp->if_ierrors++;
1450 		return;
1451 	}
1452 	error = bus_dmamap_load(ring->data_dmat, data->map,
1453 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1454 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1455 	if (error != 0 && error != EFBIG) {
1456 		device_printf(sc->sc_dev,
1457 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1458 		m_freem(mnew);
1459 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1460 		ifp->if_ierrors++;
1461 		return;
1462 	}
1463 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1464 
1465 	/* finalize mbuf and swap in new one */
1466 	m = data->m;
1467 	m->m_pkthdr.rcvif = ifp;
1468 	m->m_data = head;
1469 	m->m_pkthdr.len = m->m_len = len;
1470 
1471 	data->m = mnew;
1472 	/* update Rx descriptor */
1473 	ring->desc[ring->cur] = htole32(paddr >> 8);
1474 
1475 	rssi = iwn_get_rssi(sc, stat);
1476 
1477 	/* grab a reference to the source node */
1478 	wh = mtod(m, struct ieee80211_frame *);
1479 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1480 
1481 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
1482 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
1483 
1484 	if (bpf_peers_present(ifp->if_bpf)) {
1485 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1486 
1487 		tap->wr_flags = 0;
1488 		tap->wr_dbm_antsignal = rssi;
1489 		tap->wr_dbm_antnoise = nf;
1490 		tap->wr_rate = maprate(stat->rate);
1491 		tap->wr_tsft = htole64(stat->tstamp);
1492 
1493 		if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
1494 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1495 
1496 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1497 	}
1498 
1499 	IWN_UNLOCK(sc);
1500 
1501 	/* send the frame to the 802.11 layer */
1502 	if (ni != NULL) {
1503 		(void) ieee80211_input(ni, m, rssi - nf, nf, 0);
1504 		ieee80211_free_node(ni);
1505 	} else
1506 		(void) ieee80211_input_all(ic, m, rssi - nf, nf, 0);
1507 
1508 	IWN_LOCK(sc);
1509 }
1510 
1511 void
1512 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1513 {
1514 	struct ifnet *ifp = sc->sc_ifp;
1515 	struct ieee80211com *ic = ifp->if_l2com;
1516 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1517 	struct iwn_calib_state *calib = &sc->calib;
1518 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1519 
1520 	/* beacon stats are meaningful only when associated and not scanning */
1521 	if (vap->iv_state != IEEE80211_S_RUN ||
1522 	    (ic->ic_flags & IEEE80211_F_SCAN))
1523 		return;
1524 
1525 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
1526 	iwn_calib_reset(sc);
1527 
1528 	/* test if temperature has changed */
1529 	if (stats->general.temp != sc->rawtemp) {
1530 		int temp;
1531 
1532 		sc->rawtemp = stats->general.temp;
1533 		temp = iwn_get_temperature(sc);
1534 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
1535 		    __func__, temp);
1536 
1537 		/* update Tx power if need be */
1538 		iwn_power_calibration(sc, temp);
1539 	}
1540 
1541 	if (desc->type != IWN_BEACON_STATISTICS)
1542 		return;	/* reply to a statistics request */
1543 
1544 	sc->noise = iwn_get_noise(&stats->rx.general);
1545 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
1546 
1547 	/* test that RSSI and noise are present in stats report */
1548 	if (stats->rx.general.flags != htole32(1)) {
1549 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1550 		    "received statistics without RSSI");
1551 		return;
1552 	}
1553 
1554 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1555 		iwn_compute_differential_gain(sc, &stats->rx.general);
1556 	else if (calib->state == IWN_CALIB_STATE_RUN)
1557 		iwn_tune_sensitivity(sc, &stats->rx);
1558 }
1559 
1560 void
1561 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1562 {
1563 	struct ifnet *ifp = sc->sc_ifp;
1564 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1565 	struct iwn_tx_data *data = &ring->data[desc->idx];
1566 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1567 	struct iwn_node *wn = IWN_NODE(data->ni);
1568 	struct mbuf *m;
1569 	struct ieee80211_node *ni;
1570 	uint32_t status;
1571 
1572 	KASSERT(data->ni != NULL, ("no node"));
1573 
1574 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
1575 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
1576 	    __func__, desc->qid, desc->idx, stat->ntries,
1577 	    stat->nkill, stat->rate, le16toh(stat->duration),
1578 	    le32toh(stat->status));
1579 
1580 	/*
1581 	 * Update rate control statistics for the node.
1582 	 */
1583 	status = le32toh(stat->status) & 0xff;
1584 	if (status & 0x80) {
1585 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
1586 		    __func__, le32toh(stat->status));
1587 		ifp->if_oerrors++;
1588 		ieee80211_amrr_tx_complete(&wn->amn,
1589 		    IEEE80211_AMRR_FAILURE, stat->ntries);
1590 	} else {
1591 		ieee80211_amrr_tx_complete(&wn->amn,
1592 		    IEEE80211_AMRR_SUCCESS, stat->ntries);
1593 	}
1594 
1595 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1596 	bus_dmamap_unload(ring->data_dmat, data->map);
1597 
1598 	m = data->m, data->m = NULL;
1599 	ni = data->ni, data->ni = NULL;
1600 
1601 	if (m->m_flags & M_TXCB) {
1602 		/*
1603 		 * Channels marked for "radar" require traffic to be received
1604 		 * to unlock before we can transmit.  Until traffic is seen
1605 		 * any attempt to transmit is returned immediately with status
1606 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
1607 		 * happen on first authenticate after scanning.  To workaround
1608 		 * this we ignore a failure of this sort in AUTH state so the
1609 		 * 802.11 layer will fall back to using a timeout to wait for
1610 		 * the AUTH reply.  This allows the firmware time to see
1611 		 * traffic so a subsequent retry of AUTH succeeds.  It's
1612 		 * unclear why the firmware does not maintain state for
1613 		 * channels recently visited as this would allow immediate
1614 		 * use of the channel after a scan (where we see traffic).
1615 		 */
1616 		if (status == IWN_TX_FAIL_TX_LOCKED &&
1617 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
1618 			ieee80211_process_callback(ni, m, 0);
1619 		else
1620 			ieee80211_process_callback(ni, m,
1621 			    (status & IWN_TX_FAIL) != 0);
1622 	}
1623 	m_freem(m);
1624 	ieee80211_free_node(ni);
1625 
1626 	ring->queued--;
1627 
1628 	sc->sc_tx_timer = 0;
1629 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1630 	iwn_start(ifp);
1631 }
1632 
1633 void
1634 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1635 {
1636 	struct iwn_tx_ring *ring = &sc->txq[4];
1637 	struct iwn_tx_data *data;
1638 
1639 	if ((desc->qid & 0xf) != 4)
1640 		return;	/* not a command ack */
1641 
1642 	data = &ring->data[desc->idx];
1643 
1644 	/* if the command was mapped in a mbuf, free it */
1645 	if (data->m != NULL) {
1646 		bus_dmamap_unload(ring->data_dmat, data->map);
1647 		m_freem(data->m);
1648 		data->m = NULL;
1649 	}
1650 
1651 	wakeup(&ring->cmd[desc->idx]);
1652 }
1653 
1654 static void
1655 iwn_bmiss(void *arg, int npending)
1656 {
1657 	struct iwn_softc *sc = arg;
1658 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1659 
1660 	ieee80211_beacon_miss(ic);
1661 }
1662 
1663 void
1664 iwn_notif_intr(struct iwn_softc *sc)
1665 {
1666 	struct ifnet *ifp = sc->sc_ifp;
1667 	struct ieee80211com *ic = ifp->if_l2com;
1668 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1669 	uint16_t hw;
1670 
1671 	hw = le16toh(sc->shared->closed_count) & 0xfff;
1672 	while (sc->rxq.cur != hw) {
1673 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1674 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1675 
1676 		DPRINTF(sc, IWN_DEBUG_RECV,
1677 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
1678 		    __func__, desc->qid, desc->idx, desc->flags,
1679 		    desc->type, iwn_intr_str(desc->type),
1680 		    le16toh(desc->len));
1681 
1682 		if (!(desc->qid & 0x80))	/* reply to a command */
1683 			iwn_cmd_intr(sc, desc);
1684 
1685 		switch (desc->type) {
1686 		case IWN_RX_DONE:
1687 		case IWN_AMPDU_RX_DONE:
1688 			iwn_rx_intr(sc, desc, data);
1689 			break;
1690 
1691 		case IWN_AMPDU_RX_START:
1692 			iwn_ampdu_rx_start(sc, desc);
1693 			break;
1694 
1695 		case IWN_TX_DONE:
1696 			/* a 802.11 frame has been transmitted */
1697 			iwn_tx_intr(sc, desc);
1698 			break;
1699 
1700 		case IWN_RX_STATISTICS:
1701 		case IWN_BEACON_STATISTICS:
1702 			iwn_rx_statistics(sc, desc);
1703 			break;
1704 
1705 		case IWN_BEACON_MISSED: {
1706 			struct iwn_beacon_missed *miss =
1707 			    (struct iwn_beacon_missed *)(desc + 1);
1708 			int misses = le32toh(miss->consecutive);
1709 
1710 			/* XXX not sure why we're notified w/ zero */
1711 			if (misses == 0)
1712 				break;
1713 			DPRINTF(sc, IWN_DEBUG_STATE,
1714 			    "%s: beacons missed %d/%d\n", __func__,
1715 			    misses, le32toh(miss->total));
1716 			/*
1717 			 * If more than 5 consecutive beacons are missed,
1718 			 * reinitialize the sensitivity state machine.
1719 			 */
1720 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
1721 				(void) iwn_init_sensitivity(sc);
1722 			if (misses >= vap->iv_bmissthreshold)
1723 				taskqueue_enqueue(taskqueue_swi,
1724 				    &sc->sc_bmiss_task);
1725 			break;
1726 		}
1727 		case IWN_UC_READY: {
1728 			struct iwn_ucode_info *uc =
1729 			    (struct iwn_ucode_info *)(desc + 1);
1730 
1731 			/* the microcontroller is ready */
1732 			DPRINTF(sc, IWN_DEBUG_RESET,
1733 			    "microcode alive notification version=%d.%d "
1734 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
1735 			    uc->subtype, le32toh(uc->valid));
1736 
1737 			if (le32toh(uc->valid) != 1) {
1738 				device_printf(sc->sc_dev,
1739 				"microcontroller initialization failed");
1740 				break;
1741 			}
1742 			if (uc->subtype == IWN_UCODE_INIT) {
1743 				/* save microcontroller's report */
1744 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1745 			}
1746 			break;
1747 		}
1748 		case IWN_STATE_CHANGED: {
1749 			uint32_t *status = (uint32_t *)(desc + 1);
1750 
1751 			/*
1752 			 * State change allows hardware switch change to be
1753 			 * noted. However, we handle this in iwn_intr as we
1754 			 * get both the enable/disble intr.
1755 			 */
1756 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
1757 			    le32toh(*status));
1758 			break;
1759 		}
1760 		case IWN_START_SCAN: {
1761 			struct iwn_start_scan *scan =
1762 			    (struct iwn_start_scan *)(desc + 1);
1763 
1764 			DPRINTF(sc, IWN_DEBUG_ANY,
1765 			    "%s: scanning channel %d status %x\n",
1766 			    __func__, scan->chan, le32toh(scan->status));
1767 			break;
1768 		}
1769 		case IWN_STOP_SCAN: {
1770 			struct iwn_stop_scan *scan =
1771 			    (struct iwn_stop_scan *)(desc + 1);
1772 
1773 			DPRINTF(sc, IWN_DEBUG_STATE,
1774 			    "scan finished nchan=%d status=%d chan=%d\n",
1775 			    scan->nchan, scan->status, scan->chan);
1776 
1777 			iwn_queue_cmd(sc, IWN_SCAN_NEXT, 0, IWN_QUEUE_NORMAL);
1778 			break;
1779 		}
1780 		}
1781 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1782 	}
1783 
1784 	/* tell the firmware what we have processed */
1785 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1786 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1787 }
1788 
1789 void
1790 iwn_intr(void *arg)
1791 {
1792 	struct iwn_softc *sc = arg;
1793 	uint32_t r1, r2;
1794 
1795 	IWN_LOCK(sc);
1796 
1797 	/* disable interrupts */
1798 	IWN_WRITE(sc, IWN_MASK, 0);
1799 
1800 	r1 = IWN_READ(sc, IWN_INTR);
1801 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1802 
1803 	if (r1 == 0 && r2 == 0) {
1804 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1805 		goto done;	/* not for us */
1806 	}
1807 
1808 	if (r1 == 0xffffffff)
1809 		goto done;	/* hardware gone */
1810 
1811 	/* ack interrupts */
1812 	IWN_WRITE(sc, IWN_INTR, r1);
1813 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1814 
1815 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
1816 
1817 	if (r1 & IWN_RF_TOGGLED) {
1818 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1819 		device_printf(sc->sc_dev, "RF switch: radio %s\n",
1820 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1821 		if (tmp & IWN_GPIO_RF_ENABLED)
1822 			iwn_queue_cmd(sc, IWN_RADIO_ENABLE, 0, IWN_QUEUE_CLEAR);
1823 		else
1824 			iwn_queue_cmd(sc, IWN_RADIO_DISABLE, 0, IWN_QUEUE_CLEAR);
1825 	}
1826 	if (r1 & IWN_CT_REACHED)
1827 		device_printf(sc->sc_dev, "critical temperature reached!\n");
1828 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1829 		device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
1830 		    r1, IWN_INTR_BITS, r2);
1831 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
1832 		goto done;
1833 	}
1834 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
1835 		iwn_notif_intr(sc);
1836 	if (r1 & IWN_ALIVE_INTR)
1837 		wakeup(sc);
1838 
1839 	/* re-enable interrupts */
1840 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1841 done:
1842 	IWN_UNLOCK(sc);
1843 }
1844 
1845 uint8_t
1846 iwn_plcp_signal(int rate)
1847 {
1848 	switch (rate) {
1849 	/* CCK rates (returned values are device-dependent) */
1850 	case 2:		return 10;
1851 	case 4:		return 20;
1852 	case 11:	return 55;
1853 	case 22:	return 110;
1854 
1855 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1856 	/* R1-R4, (u)ral is R4-R1 */
1857 	case 12:	return 0xd;
1858 	case 18:	return 0xf;
1859 	case 24:	return 0x5;
1860 	case 36:	return 0x7;
1861 	case 48:	return 0x9;
1862 	case 72:	return 0xb;
1863 	case 96:	return 0x1;
1864 	case 108:	return 0x3;
1865 	case 120:	return 0x3;
1866 	}
1867 	/* unknown rate (should not get there) */
1868 	return 0;
1869 }
1870 
1871 /* determine if a given rate is CCK or OFDM */
1872 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1873 
1874 int
1875 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1876     struct iwn_tx_ring *ring)
1877 {
1878 	struct ieee80211vap *vap = ni->ni_vap;
1879 	struct ieee80211com *ic = ni->ni_ic;
1880 	struct ifnet *ifp = sc->sc_ifp;
1881 	const struct ieee80211_txparam *tp;
1882 	struct iwn_tx_desc *desc;
1883 	struct iwn_tx_data *data;
1884 	struct iwn_tx_cmd *cmd;
1885 	struct iwn_cmd_data *tx;
1886 	struct ieee80211_frame *wh;
1887 	struct ieee80211_key *k;
1888 	bus_addr_t paddr;
1889 	uint32_t flags;
1890 	uint16_t timeout;
1891 	uint8_t type;
1892 	u_int hdrlen;
1893 	struct mbuf *mnew;
1894 	int rate, error, pad, nsegs, i, ismcast, id;
1895 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
1896 
1897 	IWN_LOCK_ASSERT(sc);
1898 
1899 	wh = mtod(m0, struct ieee80211_frame *);
1900 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1901 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1902 	hdrlen = ieee80211_anyhdrsize(wh);
1903 
1904 	/* pick a tx rate */
1905 	/* XXX ni_chan */
1906 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1907 	if (type == IEEE80211_FC0_TYPE_MGT)
1908 		rate = tp->mgmtrate;
1909 	else if (ismcast)
1910 		rate = tp->mcastrate;
1911 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1912 		rate = tp->ucastrate;
1913 	else {
1914 		(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
1915 		rate = ni->ni_txrate;
1916 	}
1917 
1918 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1919 		k = ieee80211_crypto_encap(ni, m0);
1920 		if (k == NULL) {
1921 			m_freem(m0);
1922 			return ENOBUFS;
1923 		}
1924 		/* packet header may have moved, reset our local pointer */
1925 		wh = mtod(m0, struct ieee80211_frame *);
1926 	} else
1927 		k = NULL;
1928 
1929 	if (bpf_peers_present(ifp->if_bpf)) {
1930 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1931 
1932 		tap->wt_flags = 0;
1933 		tap->wt_rate = rate;
1934 		if (k != NULL)
1935 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1936 
1937 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1938 	}
1939 
1940 	flags = IWN_TX_AUTO_SEQ;
1941 	/* XXX honor ACM */
1942 	if (!ismcast)
1943 		flags |= IWN_TX_NEED_ACK;
1944 
1945 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
1946 		id = IWN_ID_BROADCAST;
1947 	else
1948 		id = IWN_ID_BSS;
1949 
1950 	/* check if RTS/CTS or CTS-to-self protection must be used */
1951 	if (!ismcast) {
1952 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1953 		if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1954 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1955 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1956 		    IWN_RATE_IS_OFDM(rate)) {
1957 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1958 				flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
1959 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1960 				flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1961 		}
1962 	}
1963 
1964 	if (type == IEEE80211_FC0_TYPE_MGT) {
1965 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1966 
1967 		/* tell h/w to set timestamp in probe responses */
1968 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1969 			flags |= IWN_TX_INSERT_TSTAMP;
1970 
1971 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1972 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1973 			timeout = htole16(3);
1974 		else
1975 			timeout = htole16(2);
1976 	} else
1977 		timeout = htole16(0);
1978 
1979 	if (hdrlen & 3) {
1980 		/* first segment's length must be a multiple of 4 */
1981 		flags |= IWN_TX_NEED_PADDING;
1982 		pad = 4 - (hdrlen & 3);
1983 	} else
1984 		pad = 0;
1985 
1986 	desc = &ring->desc[ring->cur];
1987 	data = &ring->data[ring->cur];
1988 
1989 	cmd = &ring->cmd[ring->cur];
1990 	cmd->code = IWN_CMD_TX_DATA;
1991 	cmd->flags = 0;
1992 	cmd->qid = ring->qid;
1993 	cmd->idx = ring->cur;
1994 
1995 	tx = (struct iwn_cmd_data *)cmd->data;
1996 	/* NB: no need to bzero tx, all fields are reinitialized here */
1997 	tx->id = id;
1998 	tx->flags = htole32(flags);
1999 	tx->len = htole16(m0->m_pkthdr.len);
2000 	tx->rate = iwn_plcp_signal(rate);
2001 	tx->rts_ntries = 60;		/* XXX? */
2002 	tx->data_ntries = 15;		/* XXX? */
2003 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2004 	tx->timeout = timeout;
2005 
2006 	if (k != NULL) {
2007 		/* XXX fill in */;
2008 	} else
2009 		tx->security = 0;
2010 
2011 	/* XXX alternate between Ant A and Ant B ? */
2012 	tx->rflags = IWN_RFLAG_ANT_B;
2013 	if (tx->id == IWN_ID_BROADCAST) {
2014 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2015 		if (!IWN_RATE_IS_OFDM(rate))
2016 			tx->rflags |= IWN_RFLAG_CCK;
2017 	} else {
2018 		tx->ridx = 0;
2019 		/* tell adapter to ignore rflags */
2020 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2021 	}
2022 
2023 	/* copy and trim IEEE802.11 header */
2024 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2025 	m_adj(m0, hdrlen);
2026 
2027 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2028 	    &nsegs, BUS_DMA_NOWAIT);
2029 	if (error != 0) {
2030 		if (error == EFBIG) {
2031 			/* too many fragments, linearize */
2032 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2033 			if (mnew == NULL) {
2034 				IWN_UNLOCK(sc);
2035 				device_printf(sc->sc_dev,
2036 				    "%s: could not defrag mbuf\n", __func__);
2037 				m_freem(m0);
2038 				return ENOBUFS;
2039 			}
2040 			m0 = mnew;
2041 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2042 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2043 		}
2044 		if (error != 0) {
2045 			IWN_UNLOCK(sc);
2046 			device_printf(sc->sc_dev,
2047 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2048 			     __func__, error);
2049 			m_freem(m0);
2050 			return error;
2051 		}
2052 	}
2053 
2054 	data->m = m0;
2055 	data->ni = ni;
2056 
2057 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2058 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2059 
2060 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2061 	tx->loaddr = htole32(paddr + 4 +
2062 	    offsetof(struct iwn_cmd_data, ntries));
2063 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2064 
2065 	/* first scatter/gather segment is used by the tx data command */
2066 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2067 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2068 	for (i = 1; i <= nsegs; i++) {
2069 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2070 		     segs[i - 1].ds_len);
2071 	}
2072 	sc->shared->len[ring->qid][ring->cur] =
2073 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2074 
2075 	if (ring->cur < IWN_TX_WINDOW)
2076 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2077 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2078 
2079 	ring->queued++;
2080 
2081 	/* kick Tx ring */
2082 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2083 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2084 
2085 	ifp->if_opackets++;
2086 	sc->sc_tx_timer = 5;
2087 
2088 	return 0;
2089 }
2090 
2091 void
2092 iwn_start(struct ifnet *ifp)
2093 {
2094 	struct iwn_softc *sc = ifp->if_softc;
2095 	struct ieee80211_node *ni;
2096 	struct iwn_tx_ring *txq;
2097 	struct mbuf *m;
2098 	int pri;
2099 
2100 	for (;;) {
2101 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2102 		if (m == NULL)
2103 			break;
2104 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2105 		pri = M_WME_GETAC(m);
2106 		txq = &sc->txq[pri];
2107 		m = ieee80211_encap(ni, m);
2108 		if (m == NULL) {
2109 			ifp->if_oerrors++;
2110 			ieee80211_free_node(ni);
2111 			continue;
2112 		}
2113 		IWN_LOCK(sc);
2114 		if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2115 			/* XXX not right */
2116 			/* ring is nearly full, stop flow */
2117 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2118 		}
2119 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
2120 			ifp->if_oerrors++;
2121 			ieee80211_free_node(ni);
2122 			IWN_UNLOCK(sc);
2123 			break;
2124 		}
2125 		IWN_UNLOCK(sc);
2126 	}
2127 }
2128 
2129 static int
2130 iwn_tx_handoff(struct iwn_softc *sc,
2131 	struct iwn_tx_ring *ring,
2132 	struct iwn_tx_cmd *cmd,
2133 	struct iwn_cmd_data *tx,
2134 	struct ieee80211_node *ni,
2135 	struct mbuf *m0, u_int hdrlen, int pad)
2136 {
2137 	struct ifnet *ifp = sc->sc_ifp;
2138 	struct iwn_tx_desc *desc;
2139 	struct iwn_tx_data *data;
2140 	bus_addr_t paddr;
2141 	struct mbuf *mnew;
2142 	int error, nsegs, i;
2143 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2144 
2145 	/* copy and trim IEEE802.11 header */
2146 	memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
2147 	m_adj(m0, hdrlen);
2148 
2149 	desc = &ring->desc[ring->cur];
2150 	data = &ring->data[ring->cur];
2151 
2152 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2153 	    &nsegs, BUS_DMA_NOWAIT);
2154 	if (error != 0) {
2155 		if (error == EFBIG) {
2156 			/* too many fragments, linearize */
2157 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2158 			if (mnew == NULL) {
2159 				IWN_UNLOCK(sc);
2160 				device_printf(sc->sc_dev,
2161 				    "%s: could not defrag mbuf\n", __func__);
2162 				m_freem(m0);
2163 				return ENOBUFS;
2164 			}
2165 			m0 = mnew;
2166 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2167 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2168 		}
2169 		if (error != 0) {
2170 			IWN_UNLOCK(sc);
2171 			device_printf(sc->sc_dev,
2172 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2173 			     __func__, error);
2174 			m_freem(m0);
2175 			return error;
2176 		}
2177 	}
2178 
2179 	data->m = m0;
2180 	data->ni = ni;
2181 
2182 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2183 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2184 
2185 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2186 	tx->loaddr = htole32(paddr + 4 +
2187 	    offsetof(struct iwn_cmd_data, ntries));
2188 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2189 
2190 	/* first scatter/gather segment is used by the tx data command */
2191 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2192 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2193 	for (i = 1; i <= nsegs; i++) {
2194 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2195 		     segs[i - 1].ds_len);
2196 	}
2197 	sc->shared->len[ring->qid][ring->cur] =
2198 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2199 
2200 	if (ring->cur < IWN_TX_WINDOW)
2201 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2202 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2203 
2204 	ring->queued++;
2205 
2206 	/* kick Tx ring */
2207 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2208 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2209 
2210 	ifp->if_opackets++;
2211 	sc->sc_tx_timer = 5;
2212 
2213 	return 0;
2214 }
2215 
2216 static int
2217 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
2218     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
2219     const struct ieee80211_bpf_params *params)
2220 {
2221 	struct ifnet *ifp = sc->sc_ifp;
2222 	struct iwn_tx_cmd *cmd;
2223 	struct iwn_cmd_data *tx;
2224 	struct ieee80211_frame *wh;
2225 	uint32_t flags;
2226 	uint8_t type, subtype;
2227 	u_int hdrlen;
2228 	int rate, pad;
2229 
2230 	IWN_LOCK_ASSERT(sc);
2231 
2232 	wh = mtod(m0, struct ieee80211_frame *);
2233 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2234 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2235 	hdrlen = ieee80211_anyhdrsize(wh);
2236 
2237 	flags = IWN_TX_AUTO_SEQ;
2238 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2239 		flags |= IWN_TX_NEED_ACK;
2240 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2241 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2242 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2243 		flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
2244 	if (type == IEEE80211_FC0_TYPE_MGT &&
2245 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2246 		/* tell h/w to set timestamp in probe responses */
2247 		flags |= IWN_TX_INSERT_TSTAMP;
2248 	}
2249 	if (hdrlen & 3) {
2250 		/* first segment's length must be a multiple of 4 */
2251 		flags |= IWN_TX_NEED_PADDING;
2252 		pad = 4 - (hdrlen & 3);
2253 	} else
2254 		pad = 0;
2255 
2256 	/* pick a tx rate */
2257 	rate = params->ibp_rate0;
2258 
2259 	if (bpf_peers_present(ifp->if_bpf)) {
2260 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2261 
2262 		tap->wt_flags = 0;
2263 		tap->wt_rate = rate;
2264 
2265 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
2266 	}
2267 
2268 	cmd = &ring->cmd[ring->cur];
2269 	cmd->code = IWN_CMD_TX_DATA;
2270 	cmd->flags = 0;
2271 	cmd->qid = ring->qid;
2272 	cmd->idx = ring->cur;
2273 
2274 	tx = (struct iwn_cmd_data *)cmd->data;
2275 	/* NB: no need to bzero tx, all fields are reinitialized here */
2276 	tx->id = IWN_ID_BROADCAST;
2277 	tx->flags = htole32(flags);
2278 	tx->len = htole16(m0->m_pkthdr.len);
2279 	tx->rate = iwn_plcp_signal(rate);
2280 	tx->rts_ntries = params->ibp_try1;		/* XXX? */
2281 	tx->data_ntries = params->ibp_try0;
2282 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2283 	/* XXX use try count? */
2284 	if (type == IEEE80211_FC0_TYPE_MGT) {
2285 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2286 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2287 			tx->timeout = htole16(3);
2288 		else
2289 			tx->timeout = htole16(2);
2290 	} else
2291 		tx->timeout = htole16(0);
2292 	tx->security = 0;
2293 	/* XXX alternate between Ant A and Ant B ? */
2294 	tx->rflags = IWN_RFLAG_ANT_B;	/* XXX params->ibp_pri >> 2 */
2295 	tx->ridx = IWN_MAX_TX_RETRIES - 1;
2296 	if (!IWN_RATE_IS_OFDM(rate))
2297 		tx->rflags |= IWN_RFLAG_CCK;
2298 
2299 	return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
2300 }
2301 
2302 static int
2303 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2304 	const struct ieee80211_bpf_params *params)
2305 {
2306 	struct ieee80211com *ic = ni->ni_ic;
2307 	struct ifnet *ifp = ic->ic_ifp;
2308 	struct iwn_softc *sc = ifp->if_softc;
2309 	struct iwn_tx_ring *txq;
2310 	int error;
2311 
2312 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2313 		ieee80211_free_node(ni);
2314 		m_freem(m);
2315 		return ENETDOWN;
2316 	}
2317 
2318 	IWN_LOCK(sc);
2319 	if (params == NULL)
2320 		txq = &sc->txq[M_WME_GETAC(m)];
2321 	else
2322 		txq = &sc->txq[params->ibp_pri & 3];
2323 	if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2324 		/* XXX not right */
2325 		/* ring is nearly full, stop flow */
2326 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2327 	}
2328 	if (params == NULL) {
2329 		/*
2330 		 * Legacy path; interpret frame contents to decide
2331 		 * precisely how to send the frame.
2332 		 */
2333 		error = iwn_tx_data(sc, m, ni, txq);
2334 	} else {
2335 		/*
2336 		 * Caller supplied explicit parameters to use in
2337 		 * sending the frame.
2338 		 */
2339 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
2340 	}
2341 	if (error != 0) {
2342 		/* NB: m is reclaimed on tx failure */
2343 		ieee80211_free_node(ni);
2344 		ifp->if_oerrors++;
2345 	}
2346 	IWN_UNLOCK(sc);
2347 	return error;
2348 }
2349 
2350 static void
2351 iwn_watchdog(struct iwn_softc *sc)
2352 {
2353 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2354 		struct ifnet *ifp = sc->sc_ifp;
2355 
2356 		if_printf(ifp, "device timeout\n");
2357 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
2358 	}
2359 }
2360 
2361 int
2362 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2363 {
2364 	struct iwn_softc *sc = ifp->if_softc;
2365 	struct ieee80211com *ic = ifp->if_l2com;
2366 	struct ifreq *ifr = (struct ifreq *) data;
2367 	int error = 0, startall = 0;
2368 
2369 	switch (cmd) {
2370 	case SIOCSIFFLAGS:
2371 		IWN_LOCK(sc);
2372 		if (ifp->if_flags & IFF_UP) {
2373 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2374 				iwn_init_locked(sc);
2375 				startall = 1;
2376 			}
2377 		} else {
2378 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2379 				iwn_stop_locked(sc);
2380 		}
2381 		IWN_UNLOCK(sc);
2382 		if (startall)
2383 			ieee80211_start_all(ic);
2384 		break;
2385 	case SIOCGIFMEDIA:
2386 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2387 		break;
2388 	case SIOCGIFADDR:
2389 		error = ether_ioctl(ifp, cmd, data);
2390 		break;
2391 	default:
2392 		error = EINVAL;
2393 		break;
2394 	}
2395 	return error;
2396 }
2397 
2398 void
2399 iwn_read_eeprom(struct iwn_softc *sc)
2400 {
2401 	struct ifnet *ifp = sc->sc_ifp;
2402 	struct ieee80211com *ic = ifp->if_l2com;
2403 	char domain[4];
2404 	uint16_t val;
2405 	int i, error;
2406 
2407 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2408 		device_printf(sc->sc_dev,
2409 		    "%s: could not lock EEPROM, error %d\n", __func__, error);
2410 		return;
2411 	}
2412 	/* read and print regulatory domain */
2413 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2414 	device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
2415 
2416 	/* read and print MAC address */
2417 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2418 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
2419 
2420 	/* read the list of authorized channels */
2421 	iwn_read_eeprom_channels(sc);
2422 
2423 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2424 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2425 	sc->maxpwr2GHz = val & 0xff;
2426 	sc->maxpwr5GHz = val >> 8;
2427 	/* check that EEPROM values are correct */
2428 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2429 		sc->maxpwr5GHz = 38;
2430 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2431 		sc->maxpwr2GHz = 38;
2432 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2433 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2434 
2435 	/* read voltage at which samples were taken */
2436 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2437 	sc->eeprom_voltage = (int16_t)le16toh(val);
2438 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2439 	    sc->eeprom_voltage);
2440 
2441 	/* read power groups */
2442 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2443 #ifdef IWN_DEBUG
2444 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2445 		for (i = 0; i < IWN_NBANDS; i++)
2446 			iwn_print_power_group(sc, i);
2447 	}
2448 #endif
2449 	iwn_eeprom_unlock(sc);
2450 }
2451 
2452 struct iwn_chan_band {
2453 	uint32_t	addr;	/* offset in EEPROM */
2454 	uint32_t	flags;	/* net80211 flags */
2455 	uint8_t		nchan;
2456 #define IWN_MAX_CHAN_PER_BAND	14
2457 	uint8_t		chan[IWN_MAX_CHAN_PER_BAND];
2458 };
2459 
2460 static void
2461 iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
2462 {
2463 	struct ifnet *ifp = sc->sc_ifp;
2464 	struct ieee80211com *ic = ifp->if_l2com;
2465 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2466 	struct ieee80211_channel *c;
2467 	int i, chan, flags;
2468 
2469 	iwn_read_prom_data(sc, band->addr, channels,
2470 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2471 
2472 	for (i = 0; i < band->nchan; i++) {
2473 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2474 			DPRINTF(sc, IWN_DEBUG_RESET,
2475 			    "skip chan %d flags 0x%x maxpwr %d\n",
2476 			    band->chan[i], channels[i].flags,
2477 			    channels[i].maxpwr);
2478 			continue;
2479 		}
2480 		chan = band->chan[i];
2481 
2482 		/* translate EEPROM flags to net80211 */
2483 		flags = 0;
2484 		if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2485 			flags |= IEEE80211_CHAN_PASSIVE;
2486 		if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
2487 			flags |= IEEE80211_CHAN_NOADHOC;
2488 		if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
2489 			flags |= IEEE80211_CHAN_DFS;
2490 			/* XXX apparently IBSS may still be marked */
2491 			flags |= IEEE80211_CHAN_NOADHOC;
2492 		}
2493 
2494 		DPRINTF(sc, IWN_DEBUG_RESET,
2495 		    "add chan %d flags 0x%x maxpwr %d\n",
2496 		    chan, channels[i].flags, channels[i].maxpwr);
2497 
2498 		c = &ic->ic_channels[ic->ic_nchans++];
2499 		c->ic_ieee = chan;
2500 		c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
2501 		c->ic_maxregpower = channels[i].maxpwr;
2502 		c->ic_maxpower = 2*c->ic_maxregpower;
2503 		if (band->flags & IEEE80211_CHAN_2GHZ) {
2504 			/* G =>'s B is supported */
2505 			c->ic_flags = IEEE80211_CHAN_B | flags;
2506 
2507 			c = &ic->ic_channels[ic->ic_nchans++];
2508 			c[0] = c[-1];
2509 			c->ic_flags = IEEE80211_CHAN_G | flags;
2510 		} else {	/* 5GHz band */
2511 			c->ic_flags = IEEE80211_CHAN_A | flags;
2512 		}
2513 		/* XXX no constraints on using HT20 */
2514 		/* add HT20, HT40 added separately */
2515 		c = &ic->ic_channels[ic->ic_nchans++];
2516 		c[0] = c[-1];
2517 		c->ic_flags |= IEEE80211_CHAN_HT20;
2518 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
2519 	}
2520 }
2521 
2522 static void
2523 iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
2524 {
2525 	struct ifnet *ifp = sc->sc_ifp;
2526 	struct ieee80211com *ic = ifp->if_l2com;
2527 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2528 	struct ieee80211_channel *c, *cent, *extc;
2529 	int i;
2530 
2531 	iwn_read_prom_data(sc, band->addr, channels,
2532 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2533 
2534 	for (i = 0; i < band->nchan; i++) {
2535 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
2536 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
2537 			DPRINTF(sc, IWN_DEBUG_RESET,
2538 			    "skip chan %d flags 0x%x maxpwr %d\n",
2539 			    band->chan[i], channels[i].flags,
2540 			    channels[i].maxpwr);
2541 			continue;
2542 		}
2543 		/*
2544 		 * Each entry defines an HT40 channel pair; find the
2545 		 * center channel, then the extension channel above.
2546 		 */
2547 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
2548 		    band->flags & ~IEEE80211_CHAN_HT);
2549 		if (cent == NULL) {	/* XXX shouldn't happen */
2550 			device_printf(sc->sc_dev,
2551 			    "%s: no entry for channel %d\n",
2552 			    __func__, band->chan[i]);
2553 			continue;
2554 		}
2555 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2556 		    band->flags & ~IEEE80211_CHAN_HT);
2557 		if (extc == NULL) {
2558 			DPRINTF(sc, IWN_DEBUG_RESET,
2559 			    "skip chan %d, extension channel not found\n",
2560 			    band->chan[i]);
2561 			continue;
2562 		}
2563 
2564 		DPRINTF(sc, IWN_DEBUG_RESET,
2565 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2566 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
2567 
2568 		c = &ic->ic_channels[ic->ic_nchans++];
2569 		c[0] = cent[0];
2570 		c->ic_extieee = extc->ic_ieee;
2571 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2572 		c->ic_flags |= IEEE80211_CHAN_HT40U;
2573 		c = &ic->ic_channels[ic->ic_nchans++];
2574 		c[0] = extc[0];
2575 		c->ic_extieee = cent->ic_ieee;
2576 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2577 		c->ic_flags |= IEEE80211_CHAN_HT40D;
2578 	}
2579 }
2580 
2581 static void
2582 iwn_read_eeprom_channels(struct iwn_softc *sc)
2583 {
2584 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2585 	static const struct iwn_chan_band iwn_bands[] = {
2586 	    { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
2587 		{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
2588 	    { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
2589 		{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
2590 	    { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
2591 		{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
2592 	    { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
2593 		{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
2594 	    { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
2595 		{ 145, 149, 153, 157, 161, 165 } },
2596 	    { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
2597 		{ 1, 2, 3, 4, 5, 6, 7 } },
2598 	    { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
2599 		{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
2600 	};
2601 	struct ifnet *ifp = sc->sc_ifp;
2602 	struct ieee80211com *ic = ifp->if_l2com;
2603 	int i;
2604 
2605 	/* read the list of authorized channels */
2606 	for (i = 0; i < N(iwn_bands)-2; i++)
2607 		iwn_read_eeprom_band(sc, &iwn_bands[i]);
2608 	for (; i < N(iwn_bands); i++)
2609 		iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
2610 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2611 #undef N
2612 }
2613 
2614 #ifdef IWN_DEBUG
2615 void
2616 iwn_print_power_group(struct iwn_softc *sc, int i)
2617 {
2618 	struct iwn_eeprom_band *band = &sc->bands[i];
2619 	struct iwn_eeprom_chan_samples *chans = band->chans;
2620 	int j, c;
2621 
2622 	printf("===band %d===\n", i);
2623 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2624 	printf("chan1 num=%d\n", chans[0].num);
2625 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2626 		for (j = 0; j < IWN_NSAMPLES; j++) {
2627 			printf("chain %d, sample %d: temp=%d gain=%d "
2628 			    "power=%d pa_det=%d\n", c, j,
2629 			    chans[0].samples[c][j].temp,
2630 			    chans[0].samples[c][j].gain,
2631 			    chans[0].samples[c][j].power,
2632 			    chans[0].samples[c][j].pa_det);
2633 		}
2634 	}
2635 	printf("chan2 num=%d\n", chans[1].num);
2636 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2637 		for (j = 0; j < IWN_NSAMPLES; j++) {
2638 			printf("chain %d, sample %d: temp=%d gain=%d "
2639 			    "power=%d pa_det=%d\n", c, j,
2640 			    chans[1].samples[c][j].temp,
2641 			    chans[1].samples[c][j].gain,
2642 			    chans[1].samples[c][j].power,
2643 			    chans[1].samples[c][j].pa_det);
2644 		}
2645 	}
2646 }
2647 #endif
2648 
2649 /*
2650  * Send a command to the firmware.
2651  */
2652 int
2653 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2654 {
2655 	struct iwn_tx_ring *ring = &sc->txq[4];
2656 	struct iwn_tx_desc *desc;
2657 	struct iwn_tx_cmd *cmd;
2658 	bus_addr_t paddr;
2659 
2660 	IWN_LOCK_ASSERT(sc);
2661 
2662 	KASSERT(size <= sizeof cmd->data, ("Command too big"));
2663 
2664 	desc = &ring->desc[ring->cur];
2665 	cmd = &ring->cmd[ring->cur];
2666 
2667 	cmd->code = code;
2668 	cmd->flags = 0;
2669 	cmd->qid = ring->qid;
2670 	cmd->idx = ring->cur;
2671 	memcpy(cmd->data, buf, size);
2672 
2673 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2674 
2675 	IWN_SET_DESC_NSEGS(desc, 1);
2676 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2677 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2678 	if (ring->cur < IWN_TX_WINDOW) {
2679 	    sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2680 		htole16(8);
2681 	}
2682 
2683 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
2684 	    __func__, iwn_intr_str(cmd->code), cmd->code,
2685 	    cmd->flags, cmd->qid, cmd->idx);
2686 
2687 	/* kick cmd ring */
2688 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2689 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2690 
2691 	return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
2692 }
2693 
2694 static const uint8_t iwn_ridx_to_plcp[] = {
2695 	10, 20, 55, 110, /* CCK */
2696 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
2697 };
2698 static const uint8_t iwn_siso_mcs_to_plcp[] = {
2699 	0, 0, 0, 0, 			/* CCK */
2700 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
2701 };
2702 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
2703 	0, 0, 0, 0, 			/* CCK */
2704 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
2705 };
2706 static const uint8_t iwn_prev_ridx[] = {
2707 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
2708 	0, 0, 1, 5,			/* CCK */
2709 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
2710 };
2711 
2712 /*
2713  * Configure hardware link parameters for the specified
2714  * node operating on the specified channel.
2715  */
2716 int
2717 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
2718 	const struct ieee80211_channel *c, int async)
2719 {
2720 	struct iwn_cmd_link_quality lq;
2721 	int i, ridx;
2722 
2723 	memset(&lq, 0, sizeof(lq));
2724 	lq.id = id;
2725 	if (IEEE80211_IS_CHAN_HT(c)) {
2726 		lq.mimo = 1;
2727 		lq.ssmask = 0x1;
2728 	} else
2729 		lq.ssmask = 0x2;
2730 
2731 	if (id == IWN_ID_BSS)
2732 		ridx = IWN_RATE_OFDM54;
2733 	else if (IEEE80211_IS_CHAN_A(c))
2734 		ridx = IWN_RATE_OFDM6;
2735 	else
2736 		ridx = IWN_RATE_CCK1;
2737 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2738 		/* XXX toggle antenna for retry patterns */
2739 		if (IEEE80211_IS_CHAN_HT40(c)) {
2740 			lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
2741 					 | IWN_RATE_MCS;
2742 			lq.table[i].rflags = IWN_RFLAG_HT
2743 					 | IWN_RFLAG_HT40
2744 					 | IWN_RFLAG_ANT_A;
2745 			/* XXX shortGI */
2746 		} else if (IEEE80211_IS_CHAN_HT(c)) {
2747 			lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
2748 					 | IWN_RATE_MCS;
2749 			lq.table[i].rflags = IWN_RFLAG_HT
2750 					 | IWN_RFLAG_ANT_A;
2751 			/* XXX shortGI */
2752 		} else {
2753 			lq.table[i].rate = iwn_ridx_to_plcp[ridx];
2754 			if (ridx <= IWN_RATE_CCK11)
2755 				lq.table[i].rflags = IWN_RFLAG_CCK;
2756 			lq.table[i].rflags |= IWN_RFLAG_ANT_B;
2757 		}
2758 		ridx = iwn_prev_ridx[ridx];
2759 	}
2760 
2761 	lq.dsmask = 0x3;
2762 	lq.ampdu_disable = 3;
2763 	lq.ampdu_limit = htole16(4000);
2764 #ifdef IWN_DEBUG
2765 	if (sc->sc_debug & IWN_DEBUG_STATE) {
2766 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
2767 		    __func__, id, lq.mimo, lq.ssmask);
2768 		printf("%s:", __func__);
2769 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
2770 			printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
2771 		printf("\n");
2772 	}
2773 #endif
2774 	return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
2775 }
2776 
2777 #if 0
2778 
2779 /*
2780  * Install a pairwise key into the hardware.
2781  */
2782 int
2783 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2784     const struct ieee80211_key *k)
2785 {
2786 	struct iwn_softc *sc = ic->ic_softc;
2787 	struct iwn_node_info node;
2788 
2789 	if (k->k_flags & IEEE80211_KEY_GROUP)
2790 		return 0;
2791 
2792 	memset(&node, 0, sizeof node);
2793 
2794 	switch (k->k_cipher) {
2795 	case IEEE80211_CIPHER_CCMP:
2796 		node.security = htole16(IWN_CIPHER_CCMP);
2797 		memcpy(node.key, k->k_key, k->k_len);
2798 		break;
2799 	default:
2800 		return 0;
2801 	}
2802 
2803 	node.id = IWN_ID_BSS;
2804 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2805 	node.control = IWN_NODE_UPDATE;
2806 	node.flags = IWN_FLAG_SET_KEY;
2807 
2808 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
2809 }
2810 #endif
2811 
2812 int
2813 iwn_wme_update(struct ieee80211com *ic)
2814 {
2815 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2816 #define	IWN_TXOP_TO_US(v)		(v<<5)
2817 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2818 	struct iwn_edca_params cmd;
2819 	int i;
2820 
2821 	memset(&cmd, 0, sizeof cmd);
2822 	cmd.flags = htole32(IWN_EDCA_UPDATE);
2823 	for (i = 0; i < WME_NUM_AC; i++) {
2824 		const struct wmeParams *wmep =
2825 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
2826 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
2827 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
2828 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
2829 		cmd.ac[i].txoplimit =
2830 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
2831 	}
2832 	IWN_LOCK(sc);
2833 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
2834 	IWN_UNLOCK(sc);
2835 	return 0;
2836 #undef IWN_TXOP_TO_US
2837 #undef IWN_EXP2
2838 }
2839 
2840 void
2841 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2842 {
2843 	struct iwn_cmd_led led;
2844 
2845 	led.which = which;
2846 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2847 	led.off = off;
2848 	led.on = on;
2849 
2850 	(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2851 }
2852 
2853 /*
2854  * Set the critical temperature at which the firmware will automatically stop
2855  * the radio transmitter.
2856  */
2857 int
2858 iwn_set_critical_temp(struct iwn_softc *sc)
2859 {
2860 	struct iwn_ucode_info *uc = &sc->ucode_info;
2861 	struct iwn_critical_temp crit;
2862 	uint32_t r1, r2, r3, temp;
2863 
2864 	r1 = le32toh(uc->temp[0].chan20MHz);
2865 	r2 = le32toh(uc->temp[1].chan20MHz);
2866 	r3 = le32toh(uc->temp[2].chan20MHz);
2867 	/* inverse function of iwn_get_temperature() */
2868 	temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
2869 
2870 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2871 
2872 	memset(&crit, 0, sizeof crit);
2873 	crit.tempR = htole32(temp);
2874 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
2875 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2876 }
2877 
2878 void
2879 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2880 {
2881 	struct iwn_cmd_tsf tsf;
2882 	uint64_t val, mod;
2883 
2884 	memset(&tsf, 0, sizeof tsf);
2885 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2886 	tsf.bintval = htole16(ni->ni_intval);
2887 	tsf.lintval = htole16(10);
2888 
2889 	/* XXX all wrong */
2890 	/* compute remaining time until next beacon */
2891 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2892 	DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
2893 	    val, val == 0 ? "correcting" : "");
2894 	if (val == 0)
2895 		val = 1;
2896 	mod = le64toh(tsf.tstamp) % val;
2897 	tsf.binitval = htole32((uint32_t)(val - mod));
2898 
2899 	DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
2900 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
2901 
2902 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2903 		device_printf(sc->sc_dev,
2904 		    "%s: could not enable TSF\n", __func__);
2905 }
2906 
2907 void
2908 iwn_power_calibration(struct iwn_softc *sc, int temp)
2909 {
2910 	struct ifnet *ifp = sc->sc_ifp;
2911 	struct ieee80211com *ic = ifp->if_l2com;
2912 #if 0
2913 	KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
2914 #endif
2915 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
2916 	    __func__, sc->temp, temp);
2917 
2918 	/* adjust Tx power if need be (delta >= 3�C) */
2919 	if (abs(temp - sc->temp) < 3)
2920 		return;
2921 
2922 	sc->temp = temp;
2923 
2924 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
2925 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
2926 	if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
2927 		/* just warn, too bad for the automatic calibration... */
2928 		device_printf(sc->sc_dev,
2929 		    "%s: could not adjust Tx power\n", __func__);
2930 	}
2931 }
2932 
2933 /*
2934  * Set Tx power for a given channel (each rate has its own power settings).
2935  * This function takes into account the regulatory information from EEPROM,
2936  * the current temperature and the current voltage.
2937  */
2938 int
2939 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2940 {
2941 /* fixed-point arithmetic division using a n-bit fractional part */
2942 #define fdivround(a, b, n)	\
2943 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2944 /* linear interpolation */
2945 #define interpolate(x, x1, y1, x2, y2, n)	\
2946 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2947 
2948 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2949 	struct ifnet *ifp = sc->sc_ifp;
2950 	struct ieee80211com *ic = ifp->if_l2com;
2951 	struct iwn_ucode_info *uc = &sc->ucode_info;
2952 	struct iwn_cmd_txpower cmd;
2953 	struct iwn_eeprom_chan_samples *chans;
2954 	const uint8_t *rf_gain, *dsp_gain;
2955 	int32_t vdiff, tdiff;
2956 	int i, c, grp, maxpwr;
2957 	u_int chan;
2958 
2959 	/* get channel number */
2960 	chan = ieee80211_chan2ieee(ic, ch);
2961 
2962 	memset(&cmd, 0, sizeof cmd);
2963 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2964 	cmd.chan = chan;
2965 
2966 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2967 		maxpwr   = sc->maxpwr5GHz;
2968 		rf_gain  = iwn_rf_gain_5ghz;
2969 		dsp_gain = iwn_dsp_gain_5ghz;
2970 	} else {
2971 		maxpwr   = sc->maxpwr2GHz;
2972 		rf_gain  = iwn_rf_gain_2ghz;
2973 		dsp_gain = iwn_dsp_gain_2ghz;
2974 	}
2975 
2976 	/* compute voltage compensation */
2977 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2978 	if (vdiff > 0)
2979 		vdiff *= 2;
2980 	if (abs(vdiff) > 2)
2981 		vdiff = 0;
2982 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2983 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2984 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
2985 
2986 	/* get channel's attenuation group */
2987 	if (chan <= 20)		/* 1-20 */
2988 		grp = 4;
2989 	else if (chan <= 43)	/* 34-43 */
2990 		grp = 0;
2991 	else if (chan <= 70)	/* 44-70 */
2992 		grp = 1;
2993 	else if (chan <= 124)	/* 71-124 */
2994 		grp = 2;
2995 	else			/* 125-200 */
2996 		grp = 3;
2997 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2998 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
2999 
3000 	/* get channel's sub-band */
3001 	for (i = 0; i < IWN_NBANDS; i++)
3002 		if (sc->bands[i].lo != 0 &&
3003 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3004 			break;
3005 	chans = sc->bands[i].chans;
3006 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3007 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3008 
3009 	for (c = 0; c < IWN_NTXCHAINS; c++) {
3010 		uint8_t power, gain, temp;
3011 		int maxchpwr, pwr, ridx, idx;
3012 
3013 		power = interpolate(chan,
3014 		    chans[0].num, chans[0].samples[c][1].power,
3015 		    chans[1].num, chans[1].samples[c][1].power, 1);
3016 		gain  = interpolate(chan,
3017 		    chans[0].num, chans[0].samples[c][1].gain,
3018 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3019 		temp  = interpolate(chan,
3020 		    chans[0].num, chans[0].samples[c][1].temp,
3021 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3022 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3023 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3024 		    __func__, c, power, gain, temp);
3025 
3026 		/* compute temperature compensation */
3027 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3028 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3029 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3030 		    __func__, tdiff, sc->temp, temp);
3031 
3032 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3033 			maxchpwr = ch->ic_maxpower;
3034 			if ((ridx / 8) & 1) {
3035 				/* MIMO: decrease Tx power (-3dB) */
3036 				maxchpwr -= 6;
3037 			}
3038 
3039 			pwr = maxpwr - 10;
3040 
3041 			/* decrease power for highest OFDM rates */
3042 			if ((ridx % 8) == 5)		/* 48Mbit/s */
3043 				pwr -= 5;
3044 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
3045 				pwr -= 7;
3046 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
3047 				pwr -= 10;
3048 
3049 			if (pwr > maxchpwr)
3050 				pwr = maxchpwr;
3051 
3052 			idx = gain - (pwr - power) - tdiff - vdiff;
3053 			if ((ridx / 8) & 1)	/* MIMO */
3054 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3055 
3056 			if (cmd.band == 0)
3057 				idx += 9;	/* 5GHz */
3058 			if (ridx == IWN_RIDX_MAX)
3059 				idx += 5;	/* CCK */
3060 
3061 			/* make sure idx stays in a valid range */
3062 			if (idx < 0)
3063 				idx = 0;
3064 			else if (idx > IWN_MAX_PWR_INDEX)
3065 				idx = IWN_MAX_PWR_INDEX;
3066 
3067 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3068 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3069 			    __func__, c, ridx, idx);
3070 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3071 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3072 		}
3073 	}
3074 
3075 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3076 	    "%s: set tx power for chan %d\n", __func__, chan);
3077 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3078 
3079 #undef interpolate
3080 #undef fdivround
3081 }
3082 
3083 /*
3084  * Get the best (maximum) RSSI among the
3085  * connected antennas and convert to dBm.
3086  */
3087 int8_t
3088 iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
3089 {
3090 	int mask, agc, rssi;
3091 
3092 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
3093 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
3094 
3095 	rssi = 0;
3096 #if 0
3097 	if (mask & (1 << 0))	/* Ant A */
3098 		rssi = max(rssi, stat->rssi[0]);
3099 	if (mask & (1 << 1))	/* Ant B */
3100 		rssi = max(rssi, stat->rssi[2]);
3101 	if (mask & (1 << 2))	/* Ant C */
3102 		rssi = max(rssi, stat->rssi[4]);
3103 #else
3104 	rssi = max(rssi, stat->rssi[0]);
3105 	rssi = max(rssi, stat->rssi[2]);
3106 	rssi = max(rssi, stat->rssi[4]);
3107 #endif
3108 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3109 	    "result %d\n", __func__, agc, mask,
3110 	    stat->rssi[0], stat->rssi[2], stat->rssi[4],
3111 	    rssi - agc - IWN_RSSI_TO_DBM);
3112 	return rssi - agc - IWN_RSSI_TO_DBM;
3113 }
3114 
3115 /*
3116  * Get the average noise among Rx antennas (in dBm).
3117  */
3118 int
3119 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3120 {
3121 	int i, total, nbant, noise;
3122 
3123 	total = nbant = 0;
3124 	for (i = 0; i < 3; i++) {
3125 		noise = le32toh(stats->noise[i]) & 0xff;
3126 		if (noise != 0) {
3127 			total += noise;
3128 			nbant++;
3129 		}
3130 	}
3131 	/* there should be at least one antenna but check anyway */
3132 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3133 }
3134 
3135 /*
3136  * Read temperature (in degC) from the on-board thermal sensor.
3137  */
3138 int
3139 iwn_get_temperature(struct iwn_softc *sc)
3140 {
3141 	struct iwn_ucode_info *uc = &sc->ucode_info;
3142 	int32_t r1, r2, r3, r4, temp;
3143 
3144 	r1 = le32toh(uc->temp[0].chan20MHz);
3145 	r2 = le32toh(uc->temp[1].chan20MHz);
3146 	r3 = le32toh(uc->temp[2].chan20MHz);
3147 	r4 = le32toh(sc->rawtemp);
3148 
3149 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
3150 		return 0;
3151 
3152 	/* sign-extend 23-bit R4 value to 32-bit */
3153 	r4 = (r4 << 8) >> 8;
3154 	/* compute temperature */
3155 	temp = (259 * (r4 - r2)) / (r3 - r1);
3156 	temp = (temp * 97) / 100 + 8;
3157 
3158 	return IWN_KTOC(temp);
3159 }
3160 
3161 /*
3162  * Initialize sensitivity calibration state machine.
3163  */
3164 int
3165 iwn_init_sensitivity(struct iwn_softc *sc)
3166 {
3167 	struct iwn_calib_state *calib = &sc->calib;
3168 	struct iwn_phy_calib_cmd cmd;
3169 	int error;
3170 
3171 	/* reset calibration state */
3172 	memset(calib, 0, sizeof (*calib));
3173 	calib->state = IWN_CALIB_STATE_INIT;
3174 	calib->cck_state = IWN_CCK_STATE_HIFA;
3175 	/* initial values taken from the reference driver */
3176 	calib->corr_ofdm_x1     = 105;
3177 	calib->corr_ofdm_mrc_x1 = 220;
3178 	calib->corr_ofdm_x4     =  90;
3179 	calib->corr_ofdm_mrc_x4 = 170;
3180 	calib->corr_cck_x4      = 125;
3181 	calib->corr_cck_mrc_x4  = 200;
3182 	calib->energy_cck       = 100;
3183 
3184 	/* write initial sensitivity values */
3185 	error = iwn_send_sensitivity(sc);
3186 	if (error != 0)
3187 		return error;
3188 
3189 	memset(&cmd, 0, sizeof cmd);
3190 	cmd.code = IWN_SET_DIFF_GAIN;
3191 	/* differential gains initially set to 0 for all 3 antennas */
3192 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
3193 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
3194 }
3195 
3196 /*
3197  * Collect noise and RSSI statistics for the first 20 beacons received
3198  * after association and use them to determine connected antennas and
3199  * set differential gains.
3200  */
3201 void
3202 iwn_compute_differential_gain(struct iwn_softc *sc,
3203     const struct iwn_rx_general_stats *stats)
3204 {
3205 	struct iwn_calib_state *calib = &sc->calib;
3206 	struct iwn_phy_calib_cmd cmd;
3207 	int i, val;
3208 
3209 	/* accumulate RSSI and noise for all 3 antennas */
3210 	for (i = 0; i < 3; i++) {
3211 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3212 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3213 	}
3214 
3215 	/* we update differential gain only once after 20 beacons */
3216 	if (++calib->nbeacons < 20)
3217 		return;
3218 
3219 	/* determine antenna with highest average RSSI */
3220 	val = max(calib->rssi[0], calib->rssi[1]);
3221 	val = max(calib->rssi[2], val);
3222 
3223 	/* determine which antennas are connected */
3224 	sc->antmsk = 0;
3225 	for (i = 0; i < 3; i++)
3226 		if (val - calib->rssi[i] <= 15 * 20)
3227 			sc->antmsk |= 1 << i;
3228 	/* if neither Ant A and Ant B are connected.. */
3229 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
3230 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
3231 
3232 	/* get minimal noise among connected antennas */
3233 	val = INT_MAX;	/* ok, there's at least one */
3234 	for (i = 0; i < 3; i++)
3235 		if (sc->antmsk & (1 << i))
3236 			val = min(calib->noise[i], val);
3237 
3238 	memset(&cmd, 0, sizeof cmd);
3239 	cmd.code = IWN_SET_DIFF_GAIN;
3240 	/* set differential gains for connected antennas */
3241 	for (i = 0; i < 3; i++) {
3242 		if (sc->antmsk & (1 << i)) {
3243 			cmd.gain[i] = (calib->noise[i] - val) / 30;
3244 			/* limit differential gain to 3 */
3245 			cmd.gain[i] = min(cmd.gain[i], 3);
3246 			cmd.gain[i] |= IWN_GAIN_SET;
3247 		}
3248 	}
3249 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3250 	    "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3251 	    __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
3252 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
3253 		calib->state = IWN_CALIB_STATE_RUN;
3254 }
3255 
3256 /*
3257  * Tune RF Rx sensitivity based on the number of false alarms detected
3258  * during the last beacon period.
3259  */
3260 void
3261 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3262 {
3263 #define inc_clip(val, inc, max)			\
3264 	if ((val) < (max)) {			\
3265 		if ((val) < (max) - (inc))	\
3266 			(val) += (inc);		\
3267 		else				\
3268 			(val) = (max);		\
3269 		needs_update = 1;		\
3270 	}
3271 #define dec_clip(val, dec, min)			\
3272 	if ((val) > (min)) {			\
3273 		if ((val) > (min) + (dec))	\
3274 			(val) -= (dec);		\
3275 		else				\
3276 			(val) = (min);		\
3277 		needs_update = 1;		\
3278 	}
3279 
3280 	struct iwn_calib_state *calib = &sc->calib;
3281 	uint32_t val, rxena, fa;
3282 	uint32_t energy[3], energy_min;
3283 	uint8_t noise[3], noise_ref;
3284 	int i, needs_update = 0;
3285 
3286 	/* check that we've been enabled long enough */
3287 	if ((rxena = le32toh(stats->general.load)) == 0)
3288 		return;
3289 
3290 	/* compute number of false alarms since last call for OFDM */
3291 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3292 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3293 	fa *= 200 * 1024;	/* 200TU */
3294 
3295 	/* save counters values for next call */
3296 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3297 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3298 
3299 	if (fa > 50 * rxena) {
3300 		/* high false alarm count, decrease sensitivity */
3301 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3302 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
3303 		inc_clip(calib->corr_ofdm_x1,     1, 140);
3304 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
3305 		inc_clip(calib->corr_ofdm_x4,     1, 120);
3306 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
3307 
3308 	} else if (fa < 5 * rxena) {
3309 		/* low false alarm count, increase sensitivity */
3310 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3311 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
3312 		dec_clip(calib->corr_ofdm_x1,     1, 105);
3313 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
3314 		dec_clip(calib->corr_ofdm_x4,     1,  85);
3315 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
3316 	}
3317 
3318 	/* compute maximum noise among 3 antennas */
3319 	for (i = 0; i < 3; i++)
3320 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3321 	val = max(noise[0], noise[1]);
3322 	val = max(noise[2], val);
3323 	/* insert it into our samples table */
3324 	calib->noise_samples[calib->cur_noise_sample] = val;
3325 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3326 
3327 	/* compute maximum noise among last 20 samples */
3328 	noise_ref = calib->noise_samples[0];
3329 	for (i = 1; i < 20; i++)
3330 		noise_ref = max(noise_ref, calib->noise_samples[i]);
3331 
3332 	/* compute maximum energy among 3 antennas */
3333 	for (i = 0; i < 3; i++)
3334 		energy[i] = le32toh(stats->general.energy[i]);
3335 	val = min(energy[0], energy[1]);
3336 	val = min(energy[2], val);
3337 	/* insert it into our samples table */
3338 	calib->energy_samples[calib->cur_energy_sample] = val;
3339 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3340 
3341 	/* compute minimum energy among last 10 samples */
3342 	energy_min = calib->energy_samples[0];
3343 	for (i = 1; i < 10; i++)
3344 		energy_min = max(energy_min, calib->energy_samples[i]);
3345 	energy_min += 6;
3346 
3347 	/* compute number of false alarms since last call for CCK */
3348 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3349 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3350 	fa *= 200 * 1024;	/* 200TU */
3351 
3352 	/* save counters values for next call */
3353 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3354 	calib->fa_cck = le32toh(stats->cck.fa);
3355 
3356 	if (fa > 50 * rxena) {
3357 		/* high false alarm count, decrease sensitivity */
3358 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3359 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
3360 		calib->cck_state = IWN_CCK_STATE_HIFA;
3361 		calib->low_fa = 0;
3362 
3363 		if (calib->corr_cck_x4 > 160) {
3364 			calib->noise_ref = noise_ref;
3365 			if (calib->energy_cck > 2)
3366 				dec_clip(calib->energy_cck, 2, energy_min);
3367 		}
3368 		if (calib->corr_cck_x4 < 160) {
3369 			calib->corr_cck_x4 = 161;
3370 			needs_update = 1;
3371 		} else
3372 			inc_clip(calib->corr_cck_x4, 3, 200);
3373 
3374 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3375 
3376 	} else if (fa < 5 * rxena) {
3377 		/* low false alarm count, increase sensitivity */
3378 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3379 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
3380 		calib->cck_state = IWN_CCK_STATE_LOFA;
3381 		calib->low_fa++;
3382 
3383 		if (calib->cck_state != 0 &&
3384 		    ((calib->noise_ref - noise_ref) > 2 ||
3385 		     calib->low_fa > 100)) {
3386 			inc_clip(calib->energy_cck,      2,  97);
3387 			dec_clip(calib->corr_cck_x4,     3, 125);
3388 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3389 		}
3390 	} else {
3391 		/* not worth to increase or decrease sensitivity */
3392 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3393 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
3394 		calib->low_fa = 0;
3395 		calib->noise_ref = noise_ref;
3396 
3397 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3398 			/* previous interval had many false alarms */
3399 			dec_clip(calib->energy_cck, 8, energy_min);
3400 		}
3401 		calib->cck_state = IWN_CCK_STATE_INIT;
3402 	}
3403 
3404 	if (needs_update)
3405 		(void)iwn_send_sensitivity(sc);
3406 #undef dec_clip
3407 #undef inc_clip
3408 }
3409 
3410 int
3411 iwn_send_sensitivity(struct iwn_softc *sc)
3412 {
3413 	struct iwn_calib_state *calib = &sc->calib;
3414 	struct iwn_sensitivity_cmd cmd;
3415 
3416 	memset(&cmd, 0, sizeof cmd);
3417 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3418 	/* OFDM modulation */
3419 	cmd.corr_ofdm_x1     = htole16(calib->corr_ofdm_x1);
3420 	cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
3421 	cmd.corr_ofdm_x4     = htole16(calib->corr_ofdm_x4);
3422 	cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
3423 	cmd.energy_ofdm      = htole16(100);
3424 	cmd.energy_ofdm_th   = htole16(62);
3425 	/* CCK modulation */
3426 	cmd.corr_cck_x4      = htole16(calib->corr_cck_x4);
3427 	cmd.corr_cck_mrc_x4  = htole16(calib->corr_cck_mrc_x4);
3428 	cmd.energy_cck       = htole16(calib->energy_cck);
3429 	/* Barker modulation: use default values */
3430 	cmd.corr_barker      = htole16(190);
3431 	cmd.corr_barker_mrc  = htole16(390);
3432 
3433 	DPRINTF(sc, IWN_DEBUG_RESET,
3434 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
3435 	    calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
3436 	    calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
3437 	    calib->corr_cck_mrc_x4, calib->energy_cck);
3438 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3439 }
3440 
3441 int
3442 iwn_auth(struct iwn_softc *sc)
3443 {
3444 	struct ifnet *ifp = sc->sc_ifp;
3445 	struct ieee80211com *ic = ifp->if_l2com;
3446 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3447 	struct ieee80211_node *ni = vap->iv_bss;
3448 	struct iwn_node_info node;
3449 	int error;
3450 
3451 	sc->calib.state = IWN_CALIB_STATE_INIT;
3452 
3453 	/* update adapter's configuration */
3454 	sc->config.associd = 0;
3455 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3456 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
3457 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3458 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3459 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3460 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3461 		sc->config.cck_mask  = 0;
3462 		sc->config.ofdm_mask = 0x15;
3463 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3464 		sc->config.cck_mask  = 0x03;
3465 		sc->config.ofdm_mask = 0;
3466 	} else {
3467 		/* XXX assume 802.11b/g */
3468 		sc->config.cck_mask  = 0x0f;
3469 		sc->config.ofdm_mask = 0x15;
3470 	}
3471 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3472 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3473 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3474 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3475 	sc->config.filter &= ~htole32(IWN_FILTER_BSS);
3476 
3477 	DPRINTF(sc, IWN_DEBUG_STATE,
3478 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3479 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3480 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3481 	   __func__,
3482 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3483 	   sc->config.cck_mask, sc->config.ofdm_mask,
3484 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3485 	   le16toh(sc->config.rxchain),
3486 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3487 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3488 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3489 	    sizeof (struct iwn_config), 1);
3490 	if (error != 0) {
3491 		device_printf(sc->sc_dev,
3492 		    "%s: could not configure, error %d\n", __func__, error);
3493 		return error;
3494 	}
3495 	sc->sc_curchan = ic->ic_curchan;
3496 
3497 	/* configuration has changed, set Tx power accordingly */
3498 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3499 	if (error != 0) {
3500 		device_printf(sc->sc_dev,
3501 		    "%s: could not set Tx power, error %d\n", __func__, error);
3502 		return error;
3503 	}
3504 
3505 	/*
3506 	 * Reconfiguring clears the adapter's nodes table so we must
3507 	 * add the broadcast node again.
3508 	 */
3509 	memset(&node, 0, sizeof node);
3510 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3511 	node.id = IWN_ID_BROADCAST;
3512 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
3513 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3514 	if (error != 0) {
3515 		device_printf(sc->sc_dev,
3516 		    "%s: could not add broadcast node, error %d\n",
3517 		    __func__, error);
3518 		return error;
3519 	}
3520 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
3521 	if (error != 0) {
3522 		device_printf(sc->sc_dev,
3523 		    "%s: could not setup MRR for broadcast node, error %d\n",
3524 		    __func__, error);
3525 		return error;
3526 	}
3527 
3528 	return 0;
3529 }
3530 
3531 /*
3532  * Configure the adapter for associated state.
3533  */
3534 int
3535 iwn_run(struct iwn_softc *sc)
3536 {
3537 #define	MS(v,x)	(((v) & x) >> x##_S)
3538 	struct ifnet *ifp = sc->sc_ifp;
3539 	struct ieee80211com *ic = ifp->if_l2com;
3540 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3541 	struct ieee80211_node *ni = vap->iv_bss;
3542 	struct iwn_node_info node;
3543 	int error, maxrxampdu, ampdudensity;
3544 
3545 	sc->calib.state = IWN_CALIB_STATE_INIT;
3546 
3547 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3548 		/* link LED blinks while monitoring */
3549 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3550 		return 0;
3551 	}
3552 
3553 	iwn_enable_tsf(sc, ni);
3554 
3555 	/* update adapter's configuration */
3556 	sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
3557 	/* short preamble/slot time are negotiated when associating */
3558 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
3559 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3560 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3561 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3562 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3563 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3564 		sc->config.flags &= ~htole32(IWN_CONFIG_HT);
3565 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3566 			sc->config.flags |= htole32(IWN_CONFIG_HT40U);
3567 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3568 			sc->config.flags |= htole32(IWN_CONFIG_HT40D);
3569 		else
3570 			sc->config.flags |= htole32(IWN_CONFIG_HT20);
3571 		sc->config.rxchain = htole16(
3572 			  (3 << IWN_RXCHAIN_VALID_S)
3573 			| (3 << IWN_RXCHAIN_MIMO_CNT_S)
3574 			| (1 << IWN_RXCHAIN_CNT_S)
3575 			| IWN_RXCHAIN_MIMO_FORCE);
3576 
3577 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3578 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3579 	} else
3580 		maxrxampdu = ampdudensity = 0;
3581 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3582 
3583 	DPRINTF(sc, IWN_DEBUG_STATE,
3584 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3585 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3586 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3587 	   __func__,
3588 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3589 	   sc->config.cck_mask, sc->config.ofdm_mask,
3590 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3591 	   le16toh(sc->config.rxchain),
3592 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3593 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3594 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3595 	    sizeof (struct iwn_config), 1);
3596 	if (error != 0) {
3597 		device_printf(sc->sc_dev,
3598 		    "%s: could not update configuration, error %d\n",
3599 		    __func__, error);
3600 		return error;
3601 	}
3602 	sc->sc_curchan = ni->ni_chan;
3603 
3604 	/* configuration has changed, set Tx power accordingly */
3605 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3606 	if (error != 0) {
3607 		device_printf(sc->sc_dev,
3608 		    "%s: could not set Tx power, error %d\n", __func__, error);
3609 		return error;
3610 	}
3611 
3612 	/* add BSS node */
3613 	memset(&node, 0, sizeof node);
3614 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3615 	node.id = IWN_ID_BSS;
3616 	node.htflags = htole32(
3617 	    (maxrxampdu << IWN_MAXRXAMPDU_S) |
3618 	    (ampdudensity << IWN_MPDUDENSITY_S));
3619 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
3620 	    __func__, node.id, le32toh(node.htflags));
3621 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3622 	if (error != 0) {
3623 		device_printf(sc->sc_dev,"could not add BSS node\n");
3624 		return error;
3625 	}
3626 	error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
3627 	if (error != 0) {
3628 		device_printf(sc->sc_dev,
3629 		    "%s: could not setup MRR for node %d, error %d\n",
3630 		    __func__, node.id, error);
3631 		return error;
3632 	}
3633 
3634 	if (ic->ic_opmode == IEEE80211_M_STA) {
3635 		/* fake a join to init the tx rate */
3636 		iwn_newassoc(ni, 1);
3637 	}
3638 
3639 	error = iwn_init_sensitivity(sc);
3640 	if (error != 0) {
3641 		device_printf(sc->sc_dev,
3642 		    "%s: could not set sensitivity, error %d\n",
3643 		    __func__, error);
3644 		return error;
3645 	}
3646 
3647 	/* start/restart periodic calibration timer */
3648 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3649 	iwn_calib_reset(sc);
3650 
3651 	/* link LED always on while associated */
3652 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3653 
3654 	return 0;
3655 #undef MS
3656 }
3657 
3658 /*
3659  * Send a scan request to the firmware.  Since this command is huge, we map it
3660  * into a mbuf instead of using the pre-allocated set of commands.
3661  */
3662 int
3663 iwn_scan(struct iwn_softc *sc)
3664 {
3665 	struct ifnet *ifp = sc->sc_ifp;
3666 	struct ieee80211com *ic = ifp->if_l2com;
3667 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
3668 	struct iwn_tx_ring *ring = &sc->txq[4];
3669 	struct iwn_tx_desc *desc;
3670 	struct iwn_tx_data *data;
3671 	struct iwn_tx_cmd *cmd;
3672 	struct iwn_cmd_data *tx;
3673 	struct iwn_scan_hdr *hdr;
3674 	struct iwn_scan_essid *essid;
3675 	struct iwn_scan_chan *chan;
3676 	struct ieee80211_frame *wh;
3677 	struct ieee80211_rateset *rs;
3678 	struct ieee80211_channel *c;
3679 	enum ieee80211_phymode mode;
3680 	uint8_t *frm;
3681 	int pktlen, error, nrates;
3682 	bus_addr_t physaddr;
3683 
3684 	desc = &ring->desc[ring->cur];
3685 	data = &ring->data[ring->cur];
3686 
3687 	/* XXX malloc */
3688 	data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
3689 	if (data->m == NULL) {
3690 		device_printf(sc->sc_dev,
3691 		    "%s: could not allocate mbuf for scan command\n", __func__);
3692 		return ENOMEM;
3693 	}
3694 
3695 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3696 	cmd->code = IWN_CMD_SCAN;
3697 	cmd->flags = 0;
3698 	cmd->qid = ring->qid;
3699 	cmd->idx = ring->cur;
3700 
3701 	hdr = (struct iwn_scan_hdr *)cmd->data;
3702 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3703 
3704 	/* XXX use scan state */
3705 	/*
3706 	 * Move to the next channel if no packets are received within 5 msecs
3707 	 * after sending the probe request (this helps to reduce the duration
3708 	 * of active scans).
3709 	 */
3710 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3711 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3712 
3713 	/* select Ant B and Ant C for scanning */
3714 	hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
3715 
3716 	tx = (struct iwn_cmd_data *)(hdr + 1);
3717 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3718 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200);	/* XXX */
3719 	tx->id = IWN_ID_BROADCAST;
3720 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3721 	tx->rflags = IWN_RFLAG_ANT_B;
3722 
3723 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
3724 		hdr->crc_threshold = htole16(1);
3725 		/* send probe requests at 6Mbps */
3726 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
3727 	} else {
3728 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3729 		/* send probe requests at 1Mbps */
3730 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
3731 		tx->rflags |= IWN_RFLAG_CCK;
3732 	}
3733 
3734 	essid = (struct iwn_scan_essid *)(tx + 1);
3735 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3736 	essid[0].id  = IEEE80211_ELEMID_SSID;
3737 	essid[0].len = ss->ss_ssid[0].len;
3738 	memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3739 
3740 	/*
3741 	 * Build a probe request frame.  Most of the following code is a
3742 	 * copy & paste of what is done in net80211.
3743 	 */
3744 	wh = (struct ieee80211_frame *)&essid[4];
3745 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3746 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3747 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3748 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3749 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3750 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3751 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3752 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3753 
3754 	frm = (uint8_t *)(wh + 1);
3755 
3756 	/* add SSID IE */
3757         *frm++ = IEEE80211_ELEMID_SSID;
3758         *frm++ = ss->ss_ssid[0].len;
3759         memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3760 	frm += ss->ss_ssid[0].len;
3761 
3762 	mode = ieee80211_chan2mode(ic->ic_curchan);
3763 	rs = &ic->ic_sup_rates[mode];
3764 
3765 	/* add supported rates IE */
3766 	*frm++ = IEEE80211_ELEMID_RATES;
3767 	nrates = rs->rs_nrates;
3768 	if (nrates > IEEE80211_RATE_SIZE)
3769 		nrates = IEEE80211_RATE_SIZE;
3770 	*frm++ = nrates;
3771 	memcpy(frm, rs->rs_rates, nrates);
3772 	frm += nrates;
3773 
3774 	/* add supported xrates IE */
3775 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3776 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3777 		*frm++ = IEEE80211_ELEMID_XRATES;
3778 		*frm++ = (uint8_t)nrates;
3779 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3780 		frm += nrates;
3781 	}
3782 
3783 	/* setup length of probe request */
3784 	tx->len = htole16(frm - (uint8_t *)wh);
3785 
3786 	c = ic->ic_curchan;
3787 	chan = (struct iwn_scan_chan *)frm;
3788 	chan->chan = ieee80211_chan2ieee(ic, c);
3789 	chan->flags = 0;
3790 	if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
3791 		chan->flags |= IWN_CHAN_ACTIVE;
3792 		if (ss->ss_nssid > 0)
3793 			chan->flags |= IWN_CHAN_DIRECT;
3794 	}
3795 	chan->dsp_gain = 0x6e;
3796 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3797 		chan->rf_gain = 0x3b;
3798 		chan->active  = htole16(10);
3799 		chan->passive = htole16(110);
3800 	} else {
3801 		chan->rf_gain = 0x28;
3802 		chan->active  = htole16(20);
3803 		chan->passive = htole16(120);
3804 	}
3805 
3806 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
3807 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
3808 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
3809 	    chan->active, chan->passive);
3810 	hdr->nchan++;
3811 	chan++;
3812 
3813 	frm += sizeof (struct iwn_scan_chan);
3814 
3815 	hdr->len = htole16(frm - (uint8_t *)hdr);
3816 	pktlen = frm - (uint8_t *)cmd;
3817 
3818 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
3819 	    iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
3820 	if (error != 0) {
3821 		device_printf(sc->sc_dev,
3822 		    "%s: could not map scan command, error %d\n",
3823 		    __func__, error);
3824 		m_freem(data->m);
3825 		data->m = NULL;
3826 		return error;
3827 	}
3828 
3829 	IWN_SET_DESC_NSEGS(desc, 1);
3830 	IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
3831 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3832 	if (ring->cur < IWN_TX_WINDOW)
3833 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3834 		    htole16(8);
3835 
3836 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3837 	    BUS_DMASYNC_PREWRITE);
3838 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3839 
3840 	/* kick cmd ring */
3841 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3842 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3843 
3844 	return 0;	/* will be notified async. of failure/success */
3845 }
3846 
3847 int
3848 iwn_config(struct iwn_softc *sc)
3849 {
3850 	struct ifnet *ifp = sc->sc_ifp;
3851 	struct ieee80211com *ic = ifp->if_l2com;
3852 	struct iwn_power power;
3853 	struct iwn_bluetooth bluetooth;
3854 	struct iwn_node_info node;
3855 	int error;
3856 
3857 	/* set power mode */
3858 	memset(&power, 0, sizeof power);
3859 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3860 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
3861 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3862 	if (error != 0) {
3863 		device_printf(sc->sc_dev,
3864 		    "%s: could not set power mode, error %d\n",
3865 		    __func__, error);
3866 		return error;
3867 	}
3868 
3869 	/* configure bluetooth coexistence */
3870 	memset(&bluetooth, 0, sizeof bluetooth);
3871 	bluetooth.flags = 3;
3872 	bluetooth.lead = 0xaa;
3873 	bluetooth.kill = 1;
3874 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
3875 	    __func__);
3876 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3877 	    0);
3878 	if (error != 0) {
3879 		device_printf(sc->sc_dev,
3880 		    "%s: could not configure bluetooth coexistence, error %d\n",
3881 		    __func__, error);
3882 		return error;
3883 	}
3884 
3885 	/* configure adapter */
3886 	memset(&sc->config, 0, sizeof (struct iwn_config));
3887 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3888 	IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3889 	/* set default channel */
3890 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
3891 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3892 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3893 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3894 	sc->config.filter = 0;
3895 	switch (ic->ic_opmode) {
3896 	case IEEE80211_M_STA:
3897 		sc->config.mode = IWN_MODE_STA;
3898 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3899 		break;
3900 	case IEEE80211_M_IBSS:
3901 	case IEEE80211_M_AHDEMO:
3902 		sc->config.mode = IWN_MODE_IBSS;
3903 		break;
3904 	case IEEE80211_M_HOSTAP:
3905 		sc->config.mode = IWN_MODE_HOSTAP;
3906 		break;
3907 	case IEEE80211_M_MONITOR:
3908 		sc->config.mode = IWN_MODE_MONITOR;
3909 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3910 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3911 		break;
3912 	default:
3913 		break;
3914 	}
3915 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3916 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3917 	sc->config.ht_single_mask = 0xff;
3918 	sc->config.ht_dual_mask = 0xff;
3919 	sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
3920 
3921 	DPRINTF(sc, IWN_DEBUG_STATE,
3922 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3923 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3924 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3925 	   __func__,
3926 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3927 	   sc->config.cck_mask, sc->config.ofdm_mask,
3928 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3929 	   le16toh(sc->config.rxchain),
3930 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3931 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3932 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3933 	    sizeof (struct iwn_config), 0);
3934 	if (error != 0) {
3935 		device_printf(sc->sc_dev,
3936 		    "%s: configure command failed, error %d\n",
3937 		    __func__, error);
3938 		return error;
3939 	}
3940 	sc->sc_curchan = ic->ic_curchan;
3941 
3942 	/* configuration has changed, set Tx power accordingly */
3943 	error = iwn_set_txpower(sc, ic->ic_curchan, 0);
3944 	if (error != 0) {
3945 		device_printf(sc->sc_dev,
3946 		    "%s: could not set Tx power, error %d\n", __func__, error);
3947 		return error;
3948 	}
3949 
3950 	/* add broadcast node */
3951 	memset(&node, 0, sizeof node);
3952 	IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
3953 	node.id = IWN_ID_BROADCAST;
3954 	node.rate = iwn_plcp_signal(2);
3955 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
3956 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3957 	if (error != 0) {
3958 		device_printf(sc->sc_dev,
3959 		    "%s: could not add broadcast node, error %d\n",
3960 		    __func__, error);
3961 		return error;
3962 	}
3963 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
3964 	if (error != 0) {
3965 		device_printf(sc->sc_dev,
3966 		    "%s: could not setup MRR for node %d, error %d\n",
3967 		    __func__, node.id, error);
3968 		return error;
3969 	}
3970 
3971 	error = iwn_set_critical_temp(sc);
3972 	if (error != 0) {
3973 		device_printf(sc->sc_dev,
3974 		    "%s: could not set critical temperature, error %d\n",
3975 		    __func__, error);
3976 		return error;
3977 	}
3978 	return 0;
3979 }
3980 
3981 /*
3982  * Do post-alive initialization of the NIC (after firmware upload).
3983  */
3984 void
3985 iwn_post_alive(struct iwn_softc *sc)
3986 {
3987 	uint32_t base;
3988 	uint16_t offset;
3989 	int qid;
3990 
3991 	iwn_mem_lock(sc);
3992 
3993 	/* clear SRAM */
3994 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3995 	for (offset = 0x380; offset < 0x520; offset += 4) {
3996 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3997 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3998 	}
3999 
4000 	/* shared area is aligned on a 1K boundary */
4001 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
4002 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
4003 
4004 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4005 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
4006 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
4007 
4008 		/* set sched. window size */
4009 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
4010 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
4011 		/* set sched. frame limit */
4012 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
4013 		IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
4014 	}
4015 
4016 	/* enable interrupts for all 16 queues */
4017 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
4018 
4019 	/* identify active Tx rings (0-7) */
4020 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
4021 
4022 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
4023 	for (qid = 0; qid < 7; qid++) {
4024 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
4025 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
4026 	}
4027 
4028 	iwn_mem_unlock(sc);
4029 }
4030 
4031 void
4032 iwn_stop_master(struct iwn_softc *sc)
4033 {
4034 	uint32_t tmp;
4035 	int ntries;
4036 
4037 	tmp = IWN_READ(sc, IWN_RESET);
4038 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
4039 
4040 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4041 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
4042 		return;	/* already asleep */
4043 
4044 	for (ntries = 0; ntries < 100; ntries++) {
4045 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
4046 			break;
4047 		DELAY(10);
4048 	}
4049 	if (ntries == 100)
4050 		device_printf(sc->sc_dev,
4051 		    "%s: timeout waiting for master\n", __func__);
4052 }
4053 
4054 int
4055 iwn_reset(struct iwn_softc *sc)
4056 {
4057 	uint32_t tmp;
4058 	int ntries;
4059 
4060 	/* clear any pending interrupts */
4061 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4062 
4063 	tmp = IWN_READ(sc, IWN_CHICKEN);
4064 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
4065 
4066 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4067 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
4068 
4069 	/* wait for clock stabilization */
4070 	for (ntries = 0; ntries < 1000; ntries++) {
4071 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
4072 			break;
4073 		DELAY(10);
4074 	}
4075 	if (ntries == 1000) {
4076 		device_printf(sc->sc_dev,
4077 		    "%s: timeout waiting for clock stabilization\n", __func__);
4078 		return ETIMEDOUT;
4079 	}
4080 	return 0;
4081 }
4082 
4083 void
4084 iwn_hw_config(struct iwn_softc *sc)
4085 {
4086 	uint32_t tmp, hw;
4087 
4088 	/* enable interrupts mitigation */
4089 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
4090 
4091 	/* voodoo from the reference driver */
4092 	tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
4093 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
4094 		/* enable "no snoop" field */
4095 		tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
4096 		tmp &= ~IWN_DIS_NOSNOOP;
4097 		/* clear device specific PCI configuration register 0x41 */
4098 		pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
4099 	}
4100 
4101 	/* disable L1 entry to work around a hardware bug */
4102 	tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
4103 	tmp &= ~IWN_ENA_L1;
4104 	pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
4105 
4106 	hw = IWN_READ(sc, IWN_HWCONFIG);
4107 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
4108 
4109 	iwn_mem_lock(sc);
4110 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4111 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
4112 	DELAY(5);
4113 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4114 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
4115 	iwn_mem_unlock(sc);
4116 }
4117 
4118 void
4119 iwn_init_locked(struct iwn_softc *sc)
4120 {
4121 	struct ifnet *ifp = sc->sc_ifp;
4122 	uint32_t tmp;
4123 	int error, qid;
4124 
4125 	IWN_LOCK_ASSERT(sc);
4126 
4127 	/* load the firmware */
4128 	if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
4129 		device_printf(sc->sc_dev,
4130 		    "%s: could not load firmware, error %d\n", __func__, error);
4131 		return;
4132 	}
4133 
4134 	error = iwn_reset(sc);
4135 	if (error != 0) {
4136 		device_printf(sc->sc_dev,
4137 		    "%s: could not reset adapter, error %d\n", __func__, error);
4138 		return;
4139 	}
4140 
4141 	iwn_mem_lock(sc);
4142 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4143 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
4144 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4145 	iwn_mem_unlock(sc);
4146 
4147 	DELAY(20);
4148 
4149 	iwn_mem_lock(sc);
4150 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
4151 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
4152 	iwn_mem_unlock(sc);
4153 
4154 	iwn_mem_lock(sc);
4155 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4156 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
4157 	iwn_mem_unlock(sc);
4158 
4159 	iwn_hw_config(sc);
4160 
4161 	/* init Rx ring */
4162 	iwn_mem_lock(sc);
4163 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
4164 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
4165 	/* Rx ring is aligned on a 256-byte boundary */
4166 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
4167 	/* shared area is aligned on a 16-byte boundary */
4168 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
4169 	    offsetof(struct iwn_shared, closed_count)) >> 4);
4170 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
4171 	iwn_mem_unlock(sc);
4172 
4173 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
4174 
4175 	iwn_mem_lock(sc);
4176 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
4177 
4178 	/* set physical address of "keep warm" page */
4179 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
4180 
4181 	/* init Tx rings */
4182 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4183 		struct iwn_tx_ring *txq = &sc->txq[qid];
4184 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
4185 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
4186 	}
4187 	iwn_mem_unlock(sc);
4188 
4189 	/* clear "radio off" and "disable command" bits (reversed logic) */
4190 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4191 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
4192 
4193 	/* clear any pending interrupts */
4194 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4195 	/* enable interrupts */
4196 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
4197 
4198 	/* not sure why/if this is necessary... */
4199 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4200 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4201 
4202 	/* check that the radio is not disabled by RF switch */
4203 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
4204 		device_printf(sc->sc_dev,
4205 		    "radio is disabled by hardware switch\n");
4206 		return;
4207 	}
4208 
4209 	error = iwn_transfer_firmware(sc);
4210 	if (error != 0) {
4211 		device_printf(sc->sc_dev,
4212 		    "%s: could not load firmware, error %d\n", __func__, error);
4213 		return;
4214 	}
4215 
4216 	/* firmware has notified us that it is alive.. */
4217 	iwn_post_alive(sc);	/* ..do post alive initialization */
4218 
4219 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4220 	sc->temp = iwn_get_temperature(sc);
4221 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
4222 	   __func__, sc->temp);
4223 
4224 	error = iwn_config(sc);
4225 	if (error != 0) {
4226 		device_printf(sc->sc_dev,
4227 		    "%s: could not configure device, error %d\n",
4228 		    __func__, error);
4229 		return;
4230 	}
4231 
4232 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4233 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4234 }
4235 
4236 void
4237 iwn_init(void *arg)
4238 {
4239 	struct iwn_softc *sc = arg;
4240 	struct ifnet *ifp = sc->sc_ifp;
4241 	struct ieee80211com *ic = ifp->if_l2com;
4242 
4243 	IWN_LOCK(sc);
4244 	iwn_init_locked(sc);
4245 	IWN_UNLOCK(sc);
4246 
4247 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4248 		ieee80211_start_all(ic);
4249 }
4250 
4251 void
4252 iwn_stop_locked(struct iwn_softc *sc)
4253 {
4254 	struct ifnet *ifp = sc->sc_ifp;
4255 	uint32_t tmp;
4256 	int i;
4257 
4258 	IWN_LOCK_ASSERT(sc);
4259 
4260 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
4261 
4262 	sc->sc_tx_timer = 0;
4263 	callout_stop(&sc->sc_timer_to);
4264 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4265 
4266 	/* disable interrupts */
4267 	IWN_WRITE(sc, IWN_MASK, 0);
4268 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4269 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
4270 
4271 	/* Clear any commands left in the taskq command buffer */
4272 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
4273 
4274 	/* reset all Tx rings */
4275 	for (i = 0; i < IWN_NTXQUEUES; i++)
4276 		iwn_reset_tx_ring(sc, &sc->txq[i]);
4277 
4278 	/* reset Rx ring */
4279 	iwn_reset_rx_ring(sc, &sc->rxq);
4280 
4281 	iwn_mem_lock(sc);
4282 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
4283 	iwn_mem_unlock(sc);
4284 
4285 	DELAY(5);
4286 	iwn_stop_master(sc);
4287 
4288 	tmp = IWN_READ(sc, IWN_RESET);
4289 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
4290 }
4291 
4292 void
4293 iwn_stop(struct iwn_softc *sc)
4294 {
4295 	IWN_LOCK(sc);
4296 	iwn_stop_locked(sc);
4297 	IWN_UNLOCK(sc);
4298 }
4299 
4300 /*
4301  * Callback from net80211 to start a scan.
4302  */
4303 static void
4304 iwn_scan_start(struct ieee80211com *ic)
4305 {
4306 	struct ifnet *ifp = ic->ic_ifp;
4307 	struct iwn_softc *sc = ifp->if_softc;
4308 
4309 	iwn_queue_cmd(sc, IWN_SCAN_START, 0, IWN_QUEUE_NORMAL);
4310 }
4311 
4312 /*
4313  * Callback from net80211 to terminate a scan.
4314  */
4315 static void
4316 iwn_scan_end(struct ieee80211com *ic)
4317 {
4318 	struct ifnet *ifp = ic->ic_ifp;
4319 	struct iwn_softc *sc = ifp->if_softc;
4320 
4321 	iwn_queue_cmd(sc, IWN_SCAN_STOP, 0, IWN_QUEUE_NORMAL);
4322 }
4323 
4324 /*
4325  * Callback from net80211 to force a channel change.
4326  */
4327 static void
4328 iwn_set_channel(struct ieee80211com *ic)
4329 {
4330 	struct ifnet *ifp = ic->ic_ifp;
4331 	struct iwn_softc *sc = ifp->if_softc;
4332 	const struct ieee80211_channel *c = ic->ic_curchan;
4333 
4334 	if (c != sc->sc_curchan) {
4335 		sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4336 		sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4337 		sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4338 		sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4339 		iwn_queue_cmd(sc, IWN_SET_CHAN, 0, IWN_QUEUE_NORMAL);
4340 	}
4341 }
4342 
4343 /*
4344  * Callback from net80211 to start scanning of the current channel.
4345  */
4346 static void
4347 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4348 {
4349 	struct ieee80211vap *vap = ss->ss_vap;
4350 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4351 
4352 	iwn_queue_cmd(sc, IWN_SCAN_CURCHAN, 0, IWN_QUEUE_NORMAL);
4353 }
4354 
4355 /*
4356  * Callback from net80211 to handle the minimum dwell time being met.
4357  * The intent is to terminate the scan but we just let the firmware
4358  * notify us when it's finished as we have no safe way to abort it.
4359  */
4360 static void
4361 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
4362 {
4363 	/* NB: don't try to abort scan; wait for firmware to finish */
4364 }
4365 
4366 /*
4367  * Carry out work in the taskq context.
4368  */
4369 static void
4370 iwn_ops(void *arg0, int pending)
4371 {
4372 	struct iwn_softc *sc = arg0;
4373 	struct ifnet *ifp = sc->sc_ifp;
4374 	struct ieee80211com *ic = ifp->if_l2com;
4375 	struct ieee80211vap *vap;
4376 	int cmd, arg, error;
4377 	enum ieee80211_state nstate;
4378 
4379 	for (;;) {
4380 		IWN_CMD_LOCK(sc);
4381 		cmd = sc->sc_cmd[sc->sc_cmd_cur];
4382 		if (cmd == 0) {
4383 			/* No more commands to process */
4384 			IWN_CMD_UNLOCK(sc);
4385 			return;
4386 		}
4387 		if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
4388 		    cmd != IWN_RADIO_ENABLE ) {
4389 			IWN_CMD_UNLOCK(sc);
4390 			return;
4391 		}
4392 		arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
4393 		sc->sc_cmd[sc->sc_cmd_cur] = 0;		/* free the slot */
4394 		sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWN_CMD_MAXOPS;
4395 		IWN_CMD_UNLOCK(sc);
4396 
4397 		IWN_LOCK(sc);		/* NB: sync debug printfs on smp */
4398 		DPRINTF(sc, IWN_DEBUG_OPS, "%s: %s (cmd 0x%x)\n",
4399 		    __func__, iwn_ops_str(cmd), cmd);
4400 
4401 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
4402 		switch (cmd) {
4403 		case IWN_SCAN_START:
4404 			/* make the link LED blink while we're scanning */
4405 			iwn_set_led(sc, IWN_LED_LINK, 20, 2);
4406 			break;
4407 		case IWN_SCAN_STOP:
4408 			break;
4409 		case IWN_SCAN_NEXT:
4410 			ieee80211_scan_next(vap);
4411 			break;
4412 		case IWN_SCAN_CURCHAN:
4413 			error = iwn_scan(sc);
4414 			if (error != 0) {
4415 				IWN_UNLOCK(sc);
4416 				ieee80211_cancel_scan(vap);
4417 				IWN_LOCK(sc);
4418 				return;
4419 			}
4420 			break;
4421 		case IWN_SET_CHAN:
4422 			error = iwn_config(sc);
4423 			if (error != 0) {
4424 				DPRINTF(sc, IWN_DEBUG_STATE,
4425 				    "%s: set chan failed, cancel scan\n",
4426 				    __func__);
4427 				IWN_UNLOCK(sc);
4428 				//XXX Handle failed scan correctly
4429 				ieee80211_cancel_scan(vap);
4430 				return;
4431 			}
4432 			break;
4433 		case IWN_AUTH:
4434 		case IWN_RUN:
4435 			if (cmd == IWN_AUTH) {
4436 				error = iwn_auth(sc);
4437 				nstate = IEEE80211_S_AUTH;
4438 			} else {
4439 				error = iwn_run(sc);
4440 				nstate = IEEE80211_S_RUN;
4441 			}
4442 			if (error == 0) {
4443 				IWN_UNLOCK(sc);
4444 				IEEE80211_LOCK(ic);
4445 				IWN_VAP(vap)->iv_newstate(vap, nstate, arg);
4446 				if (vap->iv_newstate_cb != NULL)
4447 					vap->iv_newstate_cb(vap, nstate, arg);
4448 				IEEE80211_UNLOCK(ic);
4449 				IWN_LOCK(sc);
4450 			} else {
4451 				device_printf(sc->sc_dev,
4452 				    "%s: %s state change failed, error %d\n",
4453 				    __func__, ieee80211_state_name[nstate],
4454 				    error);
4455 			}
4456 			break;
4457 		case IWN_REINIT:
4458 			IWN_UNLOCK(sc);
4459 			iwn_init(sc);
4460 			IWN_LOCK(sc);
4461 			ieee80211_notify_radio(ic, 1);
4462 			break;
4463 		case IWN_RADIO_ENABLE:
4464 			KASSERT(sc->fw_fp != NULL,
4465 			    ("Fware Not Loaded, can't load from tq"));
4466 			IWN_UNLOCK(sc);
4467 			iwn_init(sc);
4468 			IWN_LOCK(sc);
4469 			break;
4470 		case IWN_RADIO_DISABLE:
4471 			ieee80211_notify_radio(ic, 0);
4472 			iwn_stop_locked(sc);
4473 			break;
4474 		}
4475 		IWN_UNLOCK(sc);
4476 	}
4477 }
4478 
4479 /*
4480  * Queue a command for execution in the taskq thread.
4481  * This is needed as the net80211 callbacks do not allow
4482  * sleeping, since we need to sleep to confirm commands have
4483  * been processed by the firmware, we must defer execution to
4484  * a sleep enabled thread.
4485  */
4486 static int
4487 iwn_queue_cmd(struct iwn_softc *sc, int cmd, int arg, int clear)
4488 {
4489 	IWN_CMD_LOCK(sc);
4490 	if (clear) {
4491 		sc->sc_cmd[0] = cmd;
4492 		sc->sc_cmd_arg[0] = arg;
4493 		sc->sc_cmd_cur = 0;
4494 		sc->sc_cmd_next = 1;
4495 	} else {
4496 		if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
4497 			IWN_CMD_UNLOCK(sc);
4498 			DPRINTF(sc, IWN_DEBUG_ANY, "%s: command %d dropped\n",
4499 			    __func__, cmd);
4500 			return EBUSY;
4501 		}
4502 		sc->sc_cmd[sc->sc_cmd_next] = cmd;
4503 		sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
4504 		sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWN_CMD_MAXOPS;
4505 	}
4506 	taskqueue_enqueue(sc->sc_tq, &sc->sc_ops_task);
4507 	IWN_CMD_UNLOCK(sc);
4508 	return 0;
4509 }
4510 
4511 static void
4512 iwn_bpfattach(struct iwn_softc *sc)
4513 {
4514 	struct ifnet *ifp = sc->sc_ifp;
4515 
4516         bpfattach(ifp, DLT_IEEE802_11_RADIO,
4517             sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
4518 
4519         sc->sc_rxtap_len = sizeof sc->sc_rxtap;
4520         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
4521         sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
4522 
4523         sc->sc_txtap_len = sizeof sc->sc_txtap;
4524         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
4525         sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
4526 }
4527 
4528 static void
4529 iwn_sysctlattach(struct iwn_softc *sc)
4530 {
4531 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4532 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4533 
4534 #ifdef IWN_DEBUG
4535 	sc->sc_debug = 0;
4536 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4537 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
4538 #endif
4539 }
4540 
4541 #ifdef IWN_DEBUG
4542 static const char *
4543 iwn_ops_str(int cmd)
4544 {
4545 	switch (cmd) {
4546 	case IWN_SCAN_START:	return "SCAN_START";
4547 	case IWN_SCAN_CURCHAN:	return "SCAN_CURCHAN";
4548 	case IWN_SCAN_STOP:	return "SCAN_STOP";
4549 	case IWN_SET_CHAN:	return "SET_CHAN";
4550 	case IWN_AUTH:		return "AUTH";
4551 	case IWN_SCAN_NEXT:	return "SCAN_NEXT";
4552 	case IWN_RUN:		return "RUN";
4553 	case IWN_RADIO_ENABLE:	return "RADIO_ENABLE";
4554 	case IWN_RADIO_DISABLE:	return "RADIO_DISABLE";
4555 	case IWN_REINIT:	return "REINIT";
4556 	}
4557 	return "UNKNOWN COMMAND";
4558 }
4559 
4560 static const char *
4561 iwn_intr_str(uint8_t cmd)
4562 {
4563 	switch (cmd) {
4564 	/* Notifications */
4565 	case IWN_UC_READY:		return "UC_READY";
4566 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
4567 	case IWN_TX_DONE:		return "TX_DONE";
4568 	case IWN_START_SCAN:		return "START_SCAN";
4569 	case IWN_STOP_SCAN:		return "STOP_SCAN";
4570 	case IWN_RX_STATISTICS:		return "RX_STATS";
4571 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
4572 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
4573 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
4574 	case IWN_AMPDU_RX_START:	return "AMPDU_RX_START";
4575 	case IWN_AMPDU_RX_DONE:		return "AMPDU_RX_DONE";
4576 	case IWN_RX_DONE:		return "RX_DONE";
4577 
4578 	/* Command Notifications */
4579 	case IWN_CMD_CONFIGURE:		return "IWN_CMD_CONFIGURE";
4580 	case IWN_CMD_ASSOCIATE:		return "IWN_CMD_ASSOCIATE";
4581 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
4582 	case IWN_CMD_TSF:		return "IWN_CMD_TSF";
4583 	case IWN_CMD_TX_LINK_QUALITY:	return "IWN_CMD_TX_LINK_QUALITY";
4584 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
4585 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
4586 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
4587 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
4588 	case IWN_CMD_BLUETOOTH:		return "IWN_CMD_BLUETOOTH";
4589 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
4590 	case IWN_SENSITIVITY:		return "IWN_SENSITIVITY";
4591 	case IWN_PHY_CALIB:		return "IWN_PHY_CALIB";
4592 	}
4593 	return "UNKNOWN INTR NOTIF/CMD";
4594 }
4595 #endif /* IWN_DEBUG */
4596 
4597 static device_method_t iwn_methods[] = {
4598         /* Device interface */
4599         DEVMETHOD(device_probe,         iwn_probe),
4600         DEVMETHOD(device_attach,        iwn_attach),
4601         DEVMETHOD(device_detach,        iwn_detach),
4602         DEVMETHOD(device_shutdown,      iwn_shutdown),
4603         DEVMETHOD(device_suspend,       iwn_suspend),
4604         DEVMETHOD(device_resume,        iwn_resume),
4605 
4606         { 0, 0 }
4607 };
4608 
4609 static driver_t iwn_driver = {
4610         "iwn",
4611         iwn_methods,
4612         sizeof (struct iwn_softc)
4613 };
4614 static devclass_t iwn_devclass;
4615 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
4616 MODULE_DEPEND(iwn, pci, 1, 1, 1);
4617 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
4618 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
4619 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
4620