xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 0f454b93f8502e85e8d2b26a383e40b5dc50cd27)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70 #include <net80211/ieee80211_regdomain.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 static int	iwn_probe(device_t);
76 static int	iwn_attach(device_t);
77 const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
78 void		iwn_radiotap_attach(struct iwn_softc *);
79 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
80 		    const char name[IFNAMSIZ], int unit, int opmode,
81 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
82 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
83 static void	iwn_vap_delete(struct ieee80211vap *);
84 static int	iwn_cleanup(device_t);
85 static int 	iwn_detach(device_t);
86 int		iwn_nic_lock(struct iwn_softc *);
87 int		iwn_eeprom_lock(struct iwn_softc *);
88 int		iwn_init_otprom(struct iwn_softc *);
89 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
90 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
91 		    void **, bus_size_t, bus_size_t, int);
92 static void	iwn_dma_contig_free(struct iwn_dma_info *);
93 int		iwn_alloc_sched(struct iwn_softc *);
94 void		iwn_free_sched(struct iwn_softc *);
95 int		iwn_alloc_kw(struct iwn_softc *);
96 void		iwn_free_kw(struct iwn_softc *);
97 int		iwn_alloc_ict(struct iwn_softc *);
98 void		iwn_free_ict(struct iwn_softc *);
99 int		iwn_alloc_fwmem(struct iwn_softc *);
100 void		iwn_free_fwmem(struct iwn_softc *);
101 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
103 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
105 		    int);
106 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
107 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
108 void		iwn5000_ict_reset(struct iwn_softc *);
109 int		iwn_read_eeprom(struct iwn_softc *,
110 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
111 void		iwn4965_read_eeprom(struct iwn_softc *);
112 void		iwn4965_print_power_group(struct iwn_softc *, int);
113 void		iwn5000_read_eeprom(struct iwn_softc *);
114 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
115 		    uint32_t);
116 void		iwn_read_eeprom_enhinfo(struct iwn_softc *);
117 struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
118 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
119 void		iwn_newassoc(struct ieee80211_node *, int);
120 int		iwn_media_change(struct ifnet *);
121 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
122 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
123 		    struct iwn_rx_data *);
124 static void	iwn_timer_timeout(void *);
125 static void	iwn_calib_reset(struct iwn_softc *);
126 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
127 		    struct iwn_rx_data *);
128 #if 0	/* HT */
129 void		iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 #endif
132 void		iwn5000_rx_calib_results(struct iwn_softc *,
133 		    struct iwn_rx_desc *, struct iwn_rx_data *);
134 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
135 		    struct iwn_rx_data *);
136 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
139 		    struct iwn_rx_data *);
140 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
141 		    uint8_t);
142 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
143 void		iwn_notif_intr(struct iwn_softc *);
144 void		iwn_wakeup_intr(struct iwn_softc *);
145 void		iwn_rftoggle_intr(struct iwn_softc *);
146 void		iwn_fatal_intr(struct iwn_softc *);
147 void		iwn_intr(void *);
148 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
149 		    uint16_t);
150 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
151 		    uint16_t);
152 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
153 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
154 		    struct ieee80211_node *, struct iwn_tx_ring *);
155 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
156 		    const struct ieee80211_bpf_params *);
157 void		iwn_start(struct ifnet *);
158 void		iwn_start_locked(struct ifnet *);
159 static void	iwn_watchdog(struct iwn_softc *sc);
160 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
161 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
162 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
163 		    int);
164 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
165 		    int);
166 int		iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
167 int		iwn_add_broadcast_node(struct iwn_softc *, int);
168 int		iwn_wme_update(struct ieee80211com *);
169 static void	iwn_update_mcast(struct ifnet *);
170 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
171 int		iwn_set_critical_temp(struct iwn_softc *);
172 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
173 void		iwn4965_power_calibration(struct iwn_softc *, int);
174 int		iwn4965_set_txpower(struct iwn_softc *, int);
175 int		iwn5000_set_txpower(struct iwn_softc *, int);
176 int		iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
177 int		iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
178 int		iwn_get_noise(const struct iwn_rx_general_stats *);
179 int		iwn4965_get_temperature(struct iwn_softc *);
180 int		iwn5000_get_temperature(struct iwn_softc *);
181 int		iwn_init_sensitivity(struct iwn_softc *);
182 void		iwn_collect_noise(struct iwn_softc *,
183 		    const struct iwn_rx_general_stats *);
184 int		iwn4965_init_gains(struct iwn_softc *);
185 int		iwn5000_init_gains(struct iwn_softc *);
186 int		iwn4965_set_gains(struct iwn_softc *);
187 int		iwn5000_set_gains(struct iwn_softc *);
188 void		iwn_tune_sensitivity(struct iwn_softc *,
189 		    const struct iwn_rx_stats *);
190 int		iwn_send_sensitivity(struct iwn_softc *);
191 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
192 int		iwn_config(struct iwn_softc *);
193 int		iwn_scan(struct iwn_softc *);
194 int		iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
195 int		iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
196 int		iwn5000_query_calibration(struct iwn_softc *);
197 int		iwn5000_send_calibration(struct iwn_softc *);
198 int		iwn5000_send_wimax_coex(struct iwn_softc *);
199 int		iwn4965_post_alive(struct iwn_softc *);
200 int		iwn5000_post_alive(struct iwn_softc *);
201 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
202 		    int);
203 int		iwn4965_load_firmware(struct iwn_softc *);
204 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
205 		    const uint8_t *, int);
206 int		iwn5000_load_firmware(struct iwn_softc *);
207 int		iwn_read_firmware(struct iwn_softc *);
208 int		iwn_clock_wait(struct iwn_softc *);
209 int		iwn_apm_init(struct iwn_softc *);
210 void		iwn_apm_stop_master(struct iwn_softc *);
211 void		iwn_apm_stop(struct iwn_softc *);
212 int		iwn4965_nic_config(struct iwn_softc *);
213 int		iwn5000_nic_config(struct iwn_softc *);
214 int		iwn_hw_prepare(struct iwn_softc *);
215 int		iwn_hw_init(struct iwn_softc *);
216 void		iwn_hw_stop(struct iwn_softc *);
217 void		iwn_init_locked(struct iwn_softc *);
218 void		iwn_init(void *);
219 void		iwn_stop_locked(struct iwn_softc *);
220 void		iwn_stop(struct iwn_softc *);
221 static void 	iwn_scan_start(struct ieee80211com *);
222 static void 	iwn_scan_end(struct ieee80211com *);
223 static void 	iwn_set_channel(struct ieee80211com *);
224 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
225 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
226 static int	iwn_setregdomain(struct ieee80211com *,
227 		    struct ieee80211_regdomain *, int,
228 		    struct ieee80211_channel []);
229 static void	iwn_hw_reset(void *, int);
230 static void	iwn_radio_on(void *, int);
231 static void	iwn_radio_off(void *, int);
232 static void	iwn_sysctlattach(struct iwn_softc *);
233 static int	iwn_shutdown(device_t);
234 static int	iwn_suspend(device_t);
235 static int	iwn_resume(device_t);
236 
237 #define IWN_DEBUG
238 #ifdef IWN_DEBUG
239 enum {
240 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
241 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
242 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
243 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
244 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
245 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
246 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
247 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
248 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
249 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
250 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
251 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
252 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
253 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
254 	IWN_DEBUG_ANY		= 0xffffffff
255 };
256 
257 #define DPRINTF(sc, m, fmt, ...) do {			\
258 	if (sc->sc_debug & (m))				\
259 		printf(fmt, __VA_ARGS__);		\
260 } while (0)
261 
262 static const char *iwn_intr_str(uint8_t);
263 #else
264 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
265 #endif
266 
267 struct iwn_ident {
268 	uint16_t	vendor;
269 	uint16_t	device;
270 	const char	*name;
271 };
272 
273 static const struct iwn_ident iwn_ident_table [] = {
274 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
275 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
276 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
277 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
278 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
279 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
280 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
281 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
282 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
283 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
284 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5350" },
285 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
286 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
287 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
288 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
289 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
290 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
291 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
292 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
293 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
294 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
295 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
296 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
297 	{ 0, 0, NULL }
298 };
299 
300 static const struct iwn_hal iwn4965_hal = {
301 	iwn4965_load_firmware,
302 	iwn4965_read_eeprom,
303 	iwn4965_post_alive,
304 	iwn4965_nic_config,
305 	iwn4965_update_sched,
306 	iwn4965_get_temperature,
307 	iwn4965_get_rssi,
308 	iwn4965_set_txpower,
309 	iwn4965_init_gains,
310 	iwn4965_set_gains,
311 	iwn4965_add_node,
312 	iwn4965_tx_done,
313 #if 0	/* HT */
314 	iwn4965_ampdu_tx_start,
315 	iwn4965_ampdu_tx_stop,
316 #endif
317 	IWN4965_NTXQUEUES,
318 	IWN4965_NDMACHNLS,
319 	IWN4965_ID_BROADCAST,
320 	IWN4965_RXONSZ,
321 	IWN4965_SCHEDSZ,
322 	IWN4965_FW_TEXT_MAXSZ,
323 	IWN4965_FW_DATA_MAXSZ,
324 	IWN4965_FWSZ,
325 	IWN4965_SCHED_TXFACT
326 };
327 
328 static const struct iwn_hal iwn5000_hal = {
329 	iwn5000_load_firmware,
330 	iwn5000_read_eeprom,
331 	iwn5000_post_alive,
332 	iwn5000_nic_config,
333 	iwn5000_update_sched,
334 	iwn5000_get_temperature,
335 	iwn5000_get_rssi,
336 	iwn5000_set_txpower,
337 	iwn5000_init_gains,
338 	iwn5000_set_gains,
339 	iwn5000_add_node,
340 	iwn5000_tx_done,
341 #if 0	/* HT */
342 	iwn5000_ampdu_tx_start,
343 	iwn5000_ampdu_tx_stop,
344 #endif
345 	IWN5000_NTXQUEUES,
346 	IWN5000_NDMACHNLS,
347 	IWN5000_ID_BROADCAST,
348 	IWN5000_RXONSZ,
349 	IWN5000_SCHEDSZ,
350 	IWN5000_FW_TEXT_MAXSZ,
351 	IWN5000_FW_DATA_MAXSZ,
352 	IWN5000_FWSZ,
353 	IWN5000_SCHED_TXFACT
354 };
355 
356 static int
357 iwn_probe(device_t dev)
358 {
359 	const struct iwn_ident *ident;
360 
361 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
362 		if (pci_get_vendor(dev) == ident->vendor &&
363 		    pci_get_device(dev) == ident->device) {
364 			device_set_desc(dev, ident->name);
365 			return 0;
366 		}
367 	}
368 	return ENXIO;
369 }
370 
371 static int
372 iwn_attach(device_t dev)
373 {
374 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
375 	struct ieee80211com *ic;
376 	struct ifnet *ifp;
377 	const struct iwn_hal *hal;
378 	uint32_t tmp;
379 	int i, error, result;
380 	uint8_t macaddr[IEEE80211_ADDR_LEN];
381 
382 	sc->sc_dev = dev;
383 
384 	/*
385 	 * Get the offset of the PCI Express Capability Structure in PCI
386 	 * Configuration Space.
387 	 */
388 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
389 	if (error != 0) {
390 		device_printf(dev, "PCIe capability structure not found!\n");
391 		return error;
392 	}
393 
394 	/* Clear device-specific "PCI retry timeout" register (41h). */
395 	pci_write_config(dev, 0x41, 0, 1);
396 
397 	/* Hardware bug workaround. */
398 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
399 	if (tmp & PCIM_CMD_INTxDIS) {
400 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
401 		    __func__);
402 		tmp &= ~PCIM_CMD_INTxDIS;
403 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
404 	}
405 
406 	/* Enable bus-mastering. */
407 	pci_enable_busmaster(dev);
408 
409 	sc->mem_rid = PCIR_BAR(0);
410 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
411 	    RF_ACTIVE);
412 	if (sc->mem == NULL ) {
413 		device_printf(dev, "could not allocate memory resources\n");
414 		error = ENOMEM;
415 		return error;
416 	}
417 
418 	sc->sc_st = rman_get_bustag(sc->mem);
419 	sc->sc_sh = rman_get_bushandle(sc->mem);
420 	sc->irq_rid = 0;
421 	if ((result = pci_msi_count(dev)) == 1 &&
422 	    pci_alloc_msi(dev, &result) == 0)
423 		sc->irq_rid = 1;
424 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
425 	    RF_ACTIVE | RF_SHAREABLE);
426 	if (sc->irq == NULL) {
427 		device_printf(dev, "could not allocate interrupt resource\n");
428 		error = ENOMEM;
429 		goto fail;
430 	}
431 
432 	IWN_LOCK_INIT(sc);
433 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
434 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
435 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
436 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
437 
438 	/* Attach Hardware Abstraction Layer. */
439 	hal = iwn_hal_attach(sc);
440 	if (hal == NULL) {
441 		error = ENXIO;	/* XXX: Wrong error code? */
442 		goto fail;
443 	}
444 
445 	error = iwn_hw_prepare(sc);
446 	if (error != 0) {
447 		device_printf(dev, "hardware not ready, error %d\n", error);
448 		goto fail;
449 	}
450 
451 	/* Allocate DMA memory for firmware transfers. */
452 	error = iwn_alloc_fwmem(sc);
453 	if (error != 0) {
454 		device_printf(dev,
455 		    "could not allocate memory for firmware, error %d\n",
456 		    error);
457 		goto fail;
458 	}
459 
460 	/* Allocate "Keep Warm" page. */
461 	error = iwn_alloc_kw(sc);
462 	if (error != 0) {
463 		device_printf(dev,
464 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
465 		goto fail;
466 	}
467 
468 	/* Allocate ICT table for 5000 Series. */
469 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
470 	    (error = iwn_alloc_ict(sc)) != 0) {
471 		device_printf(dev,
472 		    "%s: could not allocate ICT table, error %d\n",
473 		    __func__, error);
474 		goto fail;
475 	}
476 
477 	/* Allocate TX scheduler "rings". */
478 	error = iwn_alloc_sched(sc);
479 	if (error != 0) {
480 		device_printf(dev,
481 		    "could not allocate TX scheduler rings, error %d\n",
482 		    error);
483 		goto fail;
484 	}
485 
486 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
487 	for (i = 0; i < hal->ntxqs; i++) {
488 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
489 		if (error != 0) {
490 			device_printf(dev,
491 			    "could not allocate Tx ring %d, error %d\n",
492 			    i, error);
493 			goto fail;
494 		}
495 	}
496 
497 	/* Allocate RX ring. */
498 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
499 	if (error != 0 ){
500 		device_printf(dev,
501 		    "could not allocate Rx ring, error %d\n", error);
502 		goto fail;
503 	}
504 
505 	/* Clear pending interrupts. */
506 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
507 
508 	/* Count the number of available chains. */
509 	sc->ntxchains =
510 	    ((sc->txchainmask >> 2) & 1) +
511 	    ((sc->txchainmask >> 1) & 1) +
512 	    ((sc->txchainmask >> 0) & 1);
513 	sc->nrxchains =
514 	    ((sc->rxchainmask >> 2) & 1) +
515 	    ((sc->rxchainmask >> 1) & 1) +
516 	    ((sc->rxchainmask >> 0) & 1);
517 
518 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
519 	if (ifp == NULL) {
520 		device_printf(dev, "can not allocate ifnet structure\n");
521 		goto fail;
522 	}
523 	ic = ifp->if_l2com;
524 
525 	ic->ic_ifp = ifp;
526 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
527 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
528 
529 	/* Set device capabilities. */
530 	ic->ic_caps =
531 		  IEEE80211_C_STA		/* station mode supported */
532 		| IEEE80211_C_MONITOR		/* monitor mode supported */
533 		| IEEE80211_C_TXPMGT		/* tx power management */
534 		| IEEE80211_C_SHSLOT		/* short slot time supported */
535 		| IEEE80211_C_WPA
536 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
537 		| IEEE80211_C_BGSCAN		/* background scanning */
538 #if 0
539 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
540 #endif
541 		| IEEE80211_C_WME		/* WME */
542 		;
543 #if 0	/* HT */
544 	/* XXX disable until HT channel setup works */
545 	ic->ic_htcaps =
546 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
547 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
548 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
549 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
550 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
551 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
552 		/* s/w capabilities */
553 		| IEEE80211_HTC_HT		/* HT operation */
554 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
555 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
556 		;
557 
558 	/* Set HT capabilities. */
559 	ic->ic_htcaps =
560 #if IWN_RBUF_SIZE == 8192
561 	    IEEE80211_HTCAP_AMSDU7935 |
562 #endif
563 	    IEEE80211_HTCAP_SMPS_DIS |
564 	    IEEE80211_HTCAP_CBW20_40 |
565 	    IEEE80211_HTCAP_SGI20 |
566 	    IEEE80211_HTCAP_SGI40;
567 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
568 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
569 #endif
570 
571 	/* Read MAC address, channels, etc from EEPROM. */
572 	error = iwn_read_eeprom(sc, macaddr);
573 	if (error != 0) {
574 		device_printf(dev, "could not read EEPROM, error %d\n",
575 		    error);
576 		goto fail;
577 	}
578 
579 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
580 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
581 	    macaddr, ":");
582 
583 #if 0	/* HT */
584 	/* Set supported HT rates. */
585 	ic->ic_sup_mcs[0] = 0xff;
586 	if (sc->nrxchains > 1)
587 		ic->ic_sup_mcs[1] = 0xff;
588 	if (sc->nrxchains > 2)
589 		ic->ic_sup_mcs[2] = 0xff;
590 #endif
591 
592 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
593 	ifp->if_softc = sc;
594 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
595 	ifp->if_init = iwn_init;
596 	ifp->if_ioctl = iwn_ioctl;
597 	ifp->if_start = iwn_start;
598 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
599 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
600 	IFQ_SET_READY(&ifp->if_snd);
601 
602 	ieee80211_ifattach(ic, macaddr);
603 	ic->ic_vap_create = iwn_vap_create;
604 	ic->ic_vap_delete = iwn_vap_delete;
605 	ic->ic_raw_xmit = iwn_raw_xmit;
606 	ic->ic_node_alloc = iwn_node_alloc;
607 	ic->ic_newassoc = iwn_newassoc;
608 	ic->ic_wme.wme_update = iwn_wme_update;
609 	ic->ic_update_mcast = iwn_update_mcast;
610 	ic->ic_scan_start = iwn_scan_start;
611 	ic->ic_scan_end = iwn_scan_end;
612 	ic->ic_set_channel = iwn_set_channel;
613 	ic->ic_scan_curchan = iwn_scan_curchan;
614 	ic->ic_scan_mindwell = iwn_scan_mindwell;
615 	ic->ic_setregdomain = iwn_setregdomain;
616 #if 0	/* HT */
617 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
618 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
619 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
620 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
621 #endif
622 
623 	iwn_radiotap_attach(sc);
624 	iwn_sysctlattach(sc);
625 
626 	/*
627 	 * Hook our interrupt after all initialization is complete.
628 	 */
629 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
630 	    NULL, iwn_intr, sc, &sc->sc_ih);
631 	if (error != 0) {
632 		device_printf(dev, "could not set up interrupt, error %d\n",
633 		    error);
634 		goto fail;
635 	}
636 
637 	ieee80211_announce(ic);
638 	return 0;
639 fail:
640 	iwn_cleanup(dev);
641 	return error;
642 }
643 
644 const struct iwn_hal *
645 iwn_hal_attach(struct iwn_softc *sc)
646 {
647 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
648 
649 	switch (sc->hw_type) {
650 	case IWN_HW_REV_TYPE_4965:
651 		sc->sc_hal = &iwn4965_hal;
652 		sc->limits = &iwn4965_sensitivity_limits;
653 		sc->fwname = "iwn4965fw";
654 		sc->txchainmask = IWN_ANT_AB;
655 		sc->rxchainmask = IWN_ANT_ABC;
656 		break;
657 	case IWN_HW_REV_TYPE_5100:
658 		sc->sc_hal = &iwn5000_hal;
659 		sc->limits = &iwn5000_sensitivity_limits;
660 		sc->fwname = "iwn5000fw";
661 		sc->txchainmask = IWN_ANT_B;
662 		sc->rxchainmask = IWN_ANT_AB;
663 		break;
664 	case IWN_HW_REV_TYPE_5150:
665 		sc->sc_hal = &iwn5000_hal;
666 		sc->limits = &iwn5150_sensitivity_limits;
667 		sc->fwname = "iwn5150fw";
668 		sc->txchainmask = IWN_ANT_A;
669 		sc->rxchainmask = IWN_ANT_AB;
670 		break;
671 	case IWN_HW_REV_TYPE_5300:
672 	case IWN_HW_REV_TYPE_5350:
673 		sc->sc_hal = &iwn5000_hal;
674 		sc->limits = &iwn5000_sensitivity_limits;
675 		sc->fwname = "iwn5000fw";
676 		sc->txchainmask = IWN_ANT_ABC;
677 		sc->rxchainmask = IWN_ANT_ABC;
678 		break;
679 	case IWN_HW_REV_TYPE_1000:
680 		sc->sc_hal = &iwn5000_hal;
681 		sc->limits = &iwn5000_sensitivity_limits;
682 		sc->fwname = "iwn1000fw";
683 		sc->txchainmask = IWN_ANT_A;
684 		sc->rxchainmask = IWN_ANT_AB;
685 		break;
686 	case IWN_HW_REV_TYPE_6000:
687 		sc->sc_hal = &iwn5000_hal;
688 		sc->limits = &iwn6000_sensitivity_limits;
689 		sc->fwname = "iwn6000fw";
690 		switch (pci_get_device(sc->sc_dev)) {
691 		case 0x422C:
692 		case 0x4239:
693 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
694 			sc->txchainmask = IWN_ANT_BC;
695 			sc->rxchainmask = IWN_ANT_BC;
696 			break;
697 		default:
698 			sc->txchainmask = IWN_ANT_ABC;
699 			sc->rxchainmask = IWN_ANT_ABC;
700 			break;
701 		}
702 		break;
703 	case IWN_HW_REV_TYPE_6050:
704 		sc->sc_hal = &iwn5000_hal;
705 		sc->limits = &iwn6000_sensitivity_limits;
706 		sc->fwname = "iwn6000fw";
707 		sc->txchainmask = IWN_ANT_AB;
708 		sc->rxchainmask = IWN_ANT_AB;
709 		break;
710 	default:
711 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
712 		    sc->hw_type);
713 		return NULL;
714 	}
715 	return sc->sc_hal;
716 }
717 
718 /*
719  * Attach the interface to 802.11 radiotap.
720  */
721 void
722 iwn_radiotap_attach(struct iwn_softc *sc)
723 {
724 	struct ifnet *ifp = sc->sc_ifp;
725 	struct ieee80211com *ic = ifp->if_l2com;
726 
727 	ieee80211_radiotap_attach(ic,
728 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
729 		IWN_TX_RADIOTAP_PRESENT,
730 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
731 		IWN_RX_RADIOTAP_PRESENT);
732 }
733 
734 static struct ieee80211vap *
735 iwn_vap_create(struct ieee80211com *ic,
736 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
737 	const uint8_t bssid[IEEE80211_ADDR_LEN],
738 	const uint8_t mac[IEEE80211_ADDR_LEN])
739 {
740 	struct iwn_vap *ivp;
741 	struct ieee80211vap *vap;
742 
743 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
744 		return NULL;
745 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
746 	    M_80211_VAP, M_NOWAIT | M_ZERO);
747 	if (ivp == NULL)
748 		return NULL;
749 	vap = &ivp->iv_vap;
750 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
751 	vap->iv_bmissthreshold = 10;		/* override default */
752 	/* Override with driver methods. */
753 	ivp->iv_newstate = vap->iv_newstate;
754 	vap->iv_newstate = iwn_newstate;
755 
756 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
757 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
758 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
759 	    500 /* ms */);
760 
761 	/* Complete setup. */
762 	ieee80211_vap_attach(vap, ieee80211_media_change,
763 	    ieee80211_media_status);
764 	ic->ic_opmode = opmode;
765 	return vap;
766 }
767 
768 static void
769 iwn_vap_delete(struct ieee80211vap *vap)
770 {
771 	struct iwn_vap *ivp = IWN_VAP(vap);
772 
773 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
774 	ieee80211_vap_detach(vap);
775 	free(ivp, M_80211_VAP);
776 }
777 
778 int
779 iwn_cleanup(device_t dev)
780 {
781 	struct iwn_softc *sc = device_get_softc(dev);
782 	struct ifnet *ifp = sc->sc_ifp;
783 	struct ieee80211com *ic;
784 	int i;
785 
786 	if (ifp != NULL) {
787 		ic = ifp->if_l2com;
788 
789 		ieee80211_draintask(ic, &sc->sc_reinit_task);
790 		ieee80211_draintask(ic, &sc->sc_radioon_task);
791 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
792 
793 		iwn_stop(sc);
794 		callout_drain(&sc->sc_timer_to);
795 		ieee80211_ifdetach(ic);
796 	}
797 
798 	/* Free DMA resources. */
799 	iwn_free_rx_ring(sc, &sc->rxq);
800 	if (sc->sc_hal != NULL)
801 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
802 			iwn_free_tx_ring(sc, &sc->txq[i]);
803 	iwn_free_sched(sc);
804 	iwn_free_kw(sc);
805 	if (sc->ict != NULL)
806 		iwn_free_ict(sc);
807 	iwn_free_fwmem(sc);
808 
809 	if (sc->irq != NULL) {
810 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
811 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
812 		if (sc->irq_rid == 1)
813 			pci_release_msi(dev);
814 	}
815 
816 	if (sc->mem != NULL)
817 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
818 
819 	if (ifp != NULL)
820 		if_free(ifp);
821 
822 	IWN_LOCK_DESTROY(sc);
823 	return 0;
824 }
825 
826 static int
827 iwn_detach(device_t dev)
828 {
829 	iwn_cleanup(dev);
830 	return 0;
831 }
832 
833 int
834 iwn_nic_lock(struct iwn_softc *sc)
835 {
836 	int ntries;
837 
838 	/* Request exclusive access to NIC. */
839 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
840 
841 	/* Spin until we actually get the lock. */
842 	for (ntries = 0; ntries < 1000; ntries++) {
843 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
844 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
845 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
846 			return 0;
847 		DELAY(10);
848 	}
849 	return ETIMEDOUT;
850 }
851 
852 static __inline void
853 iwn_nic_unlock(struct iwn_softc *sc)
854 {
855 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
856 }
857 
858 static __inline uint32_t
859 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
860 {
861 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
862 	IWN_BARRIER_READ_WRITE(sc);
863 	return IWN_READ(sc, IWN_PRPH_RDATA);
864 }
865 
866 static __inline void
867 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
868 {
869 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
870 	IWN_BARRIER_WRITE(sc);
871 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
872 }
873 
874 static __inline void
875 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
876 {
877 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
878 }
879 
880 static __inline void
881 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
882 {
883 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
884 }
885 
886 static __inline void
887 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
888     const uint32_t *data, int count)
889 {
890 	for (; count > 0; count--, data++, addr += 4)
891 		iwn_prph_write(sc, addr, *data);
892 }
893 
894 static __inline uint32_t
895 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
896 {
897 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
898 	IWN_BARRIER_READ_WRITE(sc);
899 	return IWN_READ(sc, IWN_MEM_RDATA);
900 }
901 
902 static __inline void
903 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
904 {
905 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
906 	IWN_BARRIER_WRITE(sc);
907 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
908 }
909 
910 static __inline void
911 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
912 {
913 	uint32_t tmp;
914 
915 	tmp = iwn_mem_read(sc, addr & ~3);
916 	if (addr & 3)
917 		tmp = (tmp & 0x0000ffff) | data << 16;
918 	else
919 		tmp = (tmp & 0xffff0000) | data;
920 	iwn_mem_write(sc, addr & ~3, tmp);
921 }
922 
923 static __inline void
924 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
925     int count)
926 {
927 	for (; count > 0; count--, addr += 4)
928 		*data++ = iwn_mem_read(sc, addr);
929 }
930 
931 static __inline void
932 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
933     int count)
934 {
935 	for (; count > 0; count--, addr += 4)
936 		iwn_mem_write(sc, addr, val);
937 }
938 
939 int
940 iwn_eeprom_lock(struct iwn_softc *sc)
941 {
942 	int i, ntries;
943 
944 	for (i = 0; i < 100; i++) {
945 		/* Request exclusive access to EEPROM. */
946 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
947 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
948 
949 		/* Spin until we actually get the lock. */
950 		for (ntries = 0; ntries < 100; ntries++) {
951 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
952 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
953 				return 0;
954 			DELAY(10);
955 		}
956 	}
957 	return ETIMEDOUT;
958 }
959 
960 static __inline void
961 iwn_eeprom_unlock(struct iwn_softc *sc)
962 {
963 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
964 }
965 
966 /*
967  * Initialize access by host to One Time Programmable ROM.
968  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
969  */
970 int
971 iwn_init_otprom(struct iwn_softc *sc)
972 {
973 	uint32_t base;
974 	uint16_t next;
975 	int count, error;
976 
977 	/* Wait for clock stabilization before accessing prph. */
978 	error = iwn_clock_wait(sc);
979 	if (error != 0)
980 		return error;
981 
982 	error = iwn_nic_lock(sc);
983 	if (error != 0)
984 		return error;
985 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
986 	DELAY(5);
987 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
988 	iwn_nic_unlock(sc);
989 
990 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
991 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
992 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
993 		    IWN_RESET_LINK_PWR_MGMT_DIS);
994 	}
995 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
996 	/* Clear ECC status. */
997 	IWN_SETBITS(sc, IWN_OTP_GP,
998 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
999 
1000 	/*
1001 	 * Find last valid OTP block (contains the EEPROM image) for HW
1002 	 * without OTP shadow RAM.
1003 	 */
1004 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1005 		/* Switch to absolute addressing mode. */
1006 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1007 		base = 0;
1008 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1009 			error = iwn_read_prom_data(sc, base, &next, 2);
1010 			if (error != 0)
1011 				return error;
1012 			if (next == 0)	/* End of linked-list. */
1013 				break;
1014 			base = le16toh(next);
1015 		}
1016 		if (base == 0 || count == IWN1000_OTP_NBLOCKS)
1017 			return EIO;
1018 		/* Skip "next" word. */
1019 		sc->prom_base = base + 1;
1020 	}
1021 	return 0;
1022 }
1023 
1024 int
1025 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1026 {
1027 	uint32_t val, tmp;
1028 	int ntries;
1029 	uint8_t *out = data;
1030 
1031 	addr += sc->prom_base;
1032 	for (; count > 0; count -= 2, addr++) {
1033 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1034 		for (ntries = 0; ntries < 10; ntries++) {
1035 			val = IWN_READ(sc, IWN_EEPROM);
1036 			if (val & IWN_EEPROM_READ_VALID)
1037 				break;
1038 			DELAY(5);
1039 		}
1040 		if (ntries == 10) {
1041 			device_printf(sc->sc_dev,
1042 			    "timeout reading ROM at 0x%x\n", addr);
1043 			return ETIMEDOUT;
1044 		}
1045 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1046 			/* OTPROM, check for ECC errors. */
1047 			tmp = IWN_READ(sc, IWN_OTP_GP);
1048 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1049 				device_printf(sc->sc_dev,
1050 				    "OTPROM ECC error at 0x%x\n", addr);
1051 				return EIO;
1052 			}
1053 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1054 				/* Correctable ECC error, clear bit. */
1055 				IWN_SETBITS(sc, IWN_OTP_GP,
1056 				    IWN_OTP_GP_ECC_CORR_STTS);
1057 			}
1058 		}
1059 		*out++ = val >> 16;
1060 		if (count > 1)
1061 			*out++ = val >> 24;
1062 	}
1063 	return 0;
1064 }
1065 
1066 static void
1067 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1068 {
1069 	if (error != 0)
1070 		return;
1071 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1072 	*(bus_addr_t *)arg = segs[0].ds_addr;
1073 }
1074 
1075 static int
1076 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1077 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1078 {
1079 	int error;
1080 
1081 	dma->size = size;
1082 	dma->tag = NULL;
1083 
1084 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1085 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1086 	    1, size, flags, NULL, NULL, &dma->tag);
1087 	if (error != 0) {
1088 		device_printf(sc->sc_dev,
1089 		    "%s: bus_dma_tag_create failed, error %d\n",
1090 		    __func__, error);
1091 		goto fail;
1092 	}
1093 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1094 	    flags | BUS_DMA_ZERO, &dma->map);
1095 	if (error != 0) {
1096 		device_printf(sc->sc_dev,
1097 		   "%s: bus_dmamem_alloc failed, error %d\n",
1098 		   __func__, error);
1099 		goto fail;
1100 	}
1101 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1102 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1103 	if (error != 0) {
1104 		device_printf(sc->sc_dev,
1105 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1106 		goto fail;
1107 	}
1108 
1109 	if (kvap != NULL)
1110 		*kvap = dma->vaddr;
1111 	return 0;
1112 fail:
1113 	iwn_dma_contig_free(dma);
1114 	return error;
1115 }
1116 
1117 void
1118 iwn_dma_contig_free(struct iwn_dma_info *dma)
1119 {
1120 	if (dma->tag != NULL) {
1121 		if (dma->map != NULL) {
1122 			if (dma->paddr == 0) {
1123 				bus_dmamap_sync(dma->tag, dma->map,
1124 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1125 				bus_dmamap_unload(dma->tag, dma->map);
1126 			}
1127 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1128 		}
1129 		bus_dma_tag_destroy(dma->tag);
1130 	}
1131 }
1132 
1133 int
1134 iwn_alloc_sched(struct iwn_softc *sc)
1135 {
1136 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1137 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1138 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1139 }
1140 
1141 void
1142 iwn_free_sched(struct iwn_softc *sc)
1143 {
1144 	iwn_dma_contig_free(&sc->sched_dma);
1145 }
1146 
1147 int
1148 iwn_alloc_kw(struct iwn_softc *sc)
1149 {
1150 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1151 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1152 	    BUS_DMA_NOWAIT);
1153 }
1154 
1155 void
1156 iwn_free_kw(struct iwn_softc *sc)
1157 {
1158 	iwn_dma_contig_free(&sc->kw_dma);
1159 }
1160 
1161 int
1162 iwn_alloc_ict(struct iwn_softc *sc)
1163 {
1164 	/* ICT table must be aligned on a 4KB boundary. */
1165 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1166 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1167 }
1168 
1169 void
1170 iwn_free_ict(struct iwn_softc *sc)
1171 {
1172 	iwn_dma_contig_free(&sc->ict_dma);
1173 }
1174 
1175 int
1176 iwn_alloc_fwmem(struct iwn_softc *sc)
1177 {
1178 	/* Must be aligned on a 16-byte boundary. */
1179 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1180 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1181 }
1182 
1183 void
1184 iwn_free_fwmem(struct iwn_softc *sc)
1185 {
1186 	iwn_dma_contig_free(&sc->fw_dma);
1187 }
1188 
1189 int
1190 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1191 {
1192 	bus_size_t size;
1193 	int i, error;
1194 
1195 	ring->cur = 0;
1196 
1197 	/* Allocate RX descriptors (256-byte aligned). */
1198 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1199 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1200 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1209 	    BUS_SPACE_MAXADDR_32BIT,
1210 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1211 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1212 	if (error != 0) {
1213 		device_printf(sc->sc_dev,
1214 		    "%s: bus_dma_tag_create_failed, error %d\n",
1215 		    __func__, error);
1216 		goto fail;
1217 	}
1218 
1219 	/* Allocate RX status area (16-byte aligned). */
1220 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1221 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1222 	    16, BUS_DMA_NOWAIT);
1223 	if (error != 0) {
1224 		device_printf(sc->sc_dev,
1225 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1226 		    __func__, error);
1227 		goto fail;
1228 	}
1229 
1230 	/*
1231 	 * Allocate and map RX buffers.
1232 	 */
1233 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1234 		struct iwn_rx_data *data = &ring->data[i];
1235 		bus_addr_t paddr;
1236 
1237 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1238 		if (error != 0) {
1239 			device_printf(sc->sc_dev,
1240 			    "%s: bus_dmamap_create failed, error %d\n",
1241 			    __func__, error);
1242 			goto fail;
1243 		}
1244 
1245 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1246 		if (data->m == NULL) {
1247 			device_printf(sc->sc_dev,
1248 			   "%s: could not allocate rx mbuf\n", __func__);
1249 			error = ENOMEM;
1250 			goto fail;
1251 		}
1252 
1253 		/* Map page. */
1254 		error = bus_dmamap_load(ring->data_dmat, data->map,
1255 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1256 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1257 		if (error != 0 && error != EFBIG) {
1258 			device_printf(sc->sc_dev,
1259 			    "%s: bus_dmamap_load failed, error %d\n",
1260 			    __func__, error);
1261 			m_freem(data->m);
1262 			error = ENOMEM;	/* XXX unique code */
1263 			goto fail;
1264 		}
1265 		bus_dmamap_sync(ring->data_dmat, data->map,
1266 		    BUS_DMASYNC_PREWRITE);
1267 
1268 		/* Set physical address of RX buffer (256-byte aligned). */
1269 		ring->desc[i] = htole32(paddr >> 8);
1270 	}
1271 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1272 	    BUS_DMASYNC_PREWRITE);
1273 	return 0;
1274 fail:
1275 	iwn_free_rx_ring(sc, ring);
1276 	return error;
1277 }
1278 
1279 void
1280 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1281 {
1282 	int ntries;
1283 
1284 	if (iwn_nic_lock(sc) == 0) {
1285 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1286 		for (ntries = 0; ntries < 1000; ntries++) {
1287 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1288 			    IWN_FH_RX_STATUS_IDLE)
1289 				break;
1290 			DELAY(10);
1291 		}
1292 		iwn_nic_unlock(sc);
1293 #ifdef IWN_DEBUG
1294 		if (ntries == 1000)
1295 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1296 			    "timeout resetting Rx ring");
1297 #endif
1298 	}
1299 	ring->cur = 0;
1300 	sc->last_rx_valid = 0;
1301 }
1302 
1303 void
1304 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1305 {
1306 	int i;
1307 
1308 	iwn_dma_contig_free(&ring->desc_dma);
1309 	iwn_dma_contig_free(&ring->stat_dma);
1310 
1311 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1312 		struct iwn_rx_data *data = &ring->data[i];
1313 
1314 		if (data->m != NULL) {
1315 			bus_dmamap_sync(ring->data_dmat, data->map,
1316 			    BUS_DMASYNC_POSTREAD);
1317 			bus_dmamap_unload(ring->data_dmat, data->map);
1318 			m_freem(data->m);
1319 		}
1320 		if (data->map != NULL)
1321 			bus_dmamap_destroy(ring->data_dmat, data->map);
1322 	}
1323 }
1324 
1325 int
1326 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1327 {
1328 	bus_size_t size;
1329 	bus_addr_t paddr;
1330 	int i, error;
1331 
1332 	ring->qid = qid;
1333 	ring->queued = 0;
1334 	ring->cur = 0;
1335 
1336 	/* Allocate TX descriptors (256-byte aligned.) */
1337 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1338 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1339 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1340 	if (error != 0) {
1341 		device_printf(sc->sc_dev,
1342 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1343 		    __func__, error);
1344 		goto fail;
1345 	}
1346 
1347 	/*
1348 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1349 	 * to allocate commands space for other rings.
1350 	 */
1351 	if (qid > 4)
1352 		return 0;
1353 
1354 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1355 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1356 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1357 	if (error != 0) {
1358 		device_printf(sc->sc_dev,
1359 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1360 		    __func__, error);
1361 		goto fail;
1362 	}
1363 
1364 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1365 	    BUS_SPACE_MAXADDR_32BIT,
1366 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1367 	    MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1368 	if (error != 0) {
1369 		device_printf(sc->sc_dev,
1370 		    "%s: bus_dma_tag_create_failed, error %d\n",
1371 		    __func__, error);
1372 		goto fail;
1373 	}
1374 
1375 	paddr = ring->cmd_dma.paddr;
1376 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1377 		struct iwn_tx_data *data = &ring->data[i];
1378 
1379 		data->cmd_paddr = paddr;
1380 		data->scratch_paddr = paddr + 12;
1381 		paddr += sizeof (struct iwn_tx_cmd);
1382 
1383 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1384 		if (error != 0) {
1385 			device_printf(sc->sc_dev,
1386 			    "%s: bus_dmamap_create failed, error %d\n",
1387 			    __func__, error);
1388 			goto fail;
1389 		}
1390 		bus_dmamap_sync(ring->data_dmat, data->map,
1391 		    BUS_DMASYNC_PREWRITE);
1392 	}
1393 	return 0;
1394 fail:
1395 	iwn_free_tx_ring(sc, ring);
1396 	return error;
1397 }
1398 
1399 void
1400 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1401 {
1402 	int i;
1403 
1404 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1405 		struct iwn_tx_data *data = &ring->data[i];
1406 
1407 		if (data->m != NULL) {
1408 			bus_dmamap_unload(ring->data_dmat, data->map);
1409 			m_freem(data->m);
1410 			data->m = NULL;
1411 		}
1412 	}
1413 	/* Clear TX descriptors. */
1414 	memset(ring->desc, 0, ring->desc_dma.size);
1415 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1416 	    BUS_DMASYNC_PREWRITE);
1417 	sc->qfullmsk &= ~(1 << ring->qid);
1418 	ring->queued = 0;
1419 	ring->cur = 0;
1420 }
1421 
1422 void
1423 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1424 {
1425 	int i;
1426 
1427 	iwn_dma_contig_free(&ring->desc_dma);
1428 	iwn_dma_contig_free(&ring->cmd_dma);
1429 
1430 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1431 		struct iwn_tx_data *data = &ring->data[i];
1432 
1433 		if (data->m != NULL) {
1434 			bus_dmamap_sync(ring->data_dmat, data->map,
1435 			    BUS_DMASYNC_POSTWRITE);
1436 			bus_dmamap_unload(ring->data_dmat, data->map);
1437 			m_freem(data->m);
1438 		}
1439 		if (data->map != NULL)
1440 			bus_dmamap_destroy(ring->data_dmat, data->map);
1441 	}
1442 }
1443 
1444 void
1445 iwn5000_ict_reset(struct iwn_softc *sc)
1446 {
1447 	/* Disable interrupts. */
1448 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1449 
1450 	/* Reset ICT table. */
1451 	memset(sc->ict, 0, IWN_ICT_SIZE);
1452 	sc->ict_cur = 0;
1453 
1454 	/* Set physical address of ICT table (4KB aligned.) */
1455 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1456 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1457 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1458 
1459 	/* Enable periodic RX interrupt. */
1460 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1461 	/* Switch to ICT interrupt mode in driver. */
1462 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1463 
1464 	/* Re-enable interrupts. */
1465 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1466 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1467 }
1468 
1469 int
1470 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1471 {
1472 	const struct iwn_hal *hal = sc->sc_hal;
1473 	int error;
1474 	uint16_t val;
1475 
1476 	/* Check whether adapter has an EEPROM or an OTPROM. */
1477 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1478 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1479 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1480 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1481 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1482 
1483 	/* Adapter has to be powered on for EEPROM access to work. */
1484 	error = iwn_apm_init(sc);
1485 	if (error != 0) {
1486 		device_printf(sc->sc_dev,
1487 		    "%s: could not power ON adapter, error %d\n",
1488 		    __func__, error);
1489 		return error;
1490 	}
1491 
1492 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1493 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1494 		return EIO;
1495 	}
1496 	error = iwn_eeprom_lock(sc);
1497 	if (error != 0) {
1498 		device_printf(sc->sc_dev,
1499 		    "%s: could not lock ROM, error %d\n",
1500 		    __func__, error);
1501 		return error;
1502 	}
1503 
1504 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1505 		error = iwn_init_otprom(sc);
1506 		if (error != 0) {
1507 			device_printf(sc->sc_dev,
1508 			    "%s: could not initialize OTPROM, error %d\n",
1509 			    __func__, error);
1510 			return error;
1511 		}
1512 	}
1513 
1514 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1515 	sc->rfcfg = le16toh(val);
1516 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1517 
1518 	/* Read MAC address. */
1519 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1520 
1521 	/* Read adapter-specific information from EEPROM. */
1522 	hal->read_eeprom(sc);
1523 
1524 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1525 
1526 	iwn_eeprom_unlock(sc);
1527 	return 0;
1528 }
1529 
1530 void
1531 iwn4965_read_eeprom(struct iwn_softc *sc)
1532 {
1533 	uint32_t addr;
1534 	int i;
1535 	uint16_t val;
1536 
1537 	/* Read regulatory domain (4 ASCII characters.) */
1538 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1539 
1540 	/* Read the list of authorized channels (20MHz ones only.) */
1541 	for (i = 0; i < 5; i++) {
1542 		addr = iwn4965_regulatory_bands[i];
1543 		iwn_read_eeprom_channels(sc, i, addr);
1544 	}
1545 
1546 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1547 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1548 	sc->maxpwr2GHz = val & 0xff;
1549 	sc->maxpwr5GHz = val >> 8;
1550 	/* Check that EEPROM values are within valid range. */
1551 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1552 		sc->maxpwr5GHz = 38;
1553 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1554 		sc->maxpwr2GHz = 38;
1555 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1556 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1557 
1558 	/* Read samples for each TX power group. */
1559 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1560 	    sizeof sc->bands);
1561 
1562 	/* Read voltage at which samples were taken. */
1563 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1564 	sc->eeprom_voltage = (int16_t)le16toh(val);
1565 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1566 	    sc->eeprom_voltage);
1567 
1568 #ifdef IWN_DEBUG
1569 	/* Print samples. */
1570 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1571 		for (i = 0; i < IWN_NBANDS; i++)
1572 			iwn4965_print_power_group(sc, i);
1573 	}
1574 #endif
1575 }
1576 
1577 #ifdef IWN_DEBUG
1578 void
1579 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1580 {
1581 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1582 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1583 	int j, c;
1584 
1585 	printf("===band %d===\n", i);
1586 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1587 	printf("chan1 num=%d\n", chans[0].num);
1588 	for (c = 0; c < 2; c++) {
1589 		for (j = 0; j < IWN_NSAMPLES; j++) {
1590 			printf("chain %d, sample %d: temp=%d gain=%d "
1591 			    "power=%d pa_det=%d\n", c, j,
1592 			    chans[0].samples[c][j].temp,
1593 			    chans[0].samples[c][j].gain,
1594 			    chans[0].samples[c][j].power,
1595 			    chans[0].samples[c][j].pa_det);
1596 		}
1597 	}
1598 	printf("chan2 num=%d\n", chans[1].num);
1599 	for (c = 0; c < 2; c++) {
1600 		for (j = 0; j < IWN_NSAMPLES; j++) {
1601 			printf("chain %d, sample %d: temp=%d gain=%d "
1602 			    "power=%d pa_det=%d\n", c, j,
1603 			    chans[1].samples[c][j].temp,
1604 			    chans[1].samples[c][j].gain,
1605 			    chans[1].samples[c][j].power,
1606 			    chans[1].samples[c][j].pa_det);
1607 		}
1608 	}
1609 }
1610 #endif
1611 
1612 void
1613 iwn5000_read_eeprom(struct iwn_softc *sc)
1614 {
1615 	int32_t temp, volt;
1616 	uint32_t addr, base;
1617 	int i;
1618 	uint16_t val;
1619 
1620 	/* Read regulatory domain (4 ASCII characters.) */
1621 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1622 	base = le16toh(val);
1623 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1624 	    sc->eeprom_domain, 4);
1625 
1626 	/* Read the list of authorized channels (20MHz ones only.) */
1627 	for (i = 0; i < 5; i++) {
1628 		addr = base + iwn5000_regulatory_bands[i];
1629 		iwn_read_eeprom_channels(sc, i, addr);
1630 	}
1631 
1632 	/* Read enhanced TX power information for 6000 Series. */
1633 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1634 		iwn_read_eeprom_enhinfo(sc);
1635 
1636 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1637 	base = le16toh(val);
1638 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1639 		/* Compute temperature offset. */
1640 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1641 		temp = le16toh(val);
1642 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1643 		volt = le16toh(val);
1644 		sc->temp_off = temp - (volt / -5);
1645 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1646 		    temp, volt, sc->temp_off);
1647 	} else {
1648 		/* Read crystal calibration. */
1649 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1650 		    &sc->eeprom_crystal, sizeof (uint32_t));
1651 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1652 		le32toh(sc->eeprom_crystal));
1653 	}
1654 }
1655 
1656 /*
1657  * Translate EEPROM flags to net80211.
1658  */
1659 static uint32_t
1660 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1661 {
1662 	uint32_t nflags;
1663 
1664 	nflags = 0;
1665 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1666 		nflags |= IEEE80211_CHAN_PASSIVE;
1667 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1668 		nflags |= IEEE80211_CHAN_NOADHOC;
1669 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1670 		nflags |= IEEE80211_CHAN_DFS;
1671 		/* XXX apparently IBSS may still be marked */
1672 		nflags |= IEEE80211_CHAN_NOADHOC;
1673 	}
1674 
1675 	return nflags;
1676 }
1677 
1678 static void
1679 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1680 {
1681 	struct ifnet *ifp = sc->sc_ifp;
1682 	struct ieee80211com *ic = ifp->if_l2com;
1683 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1684 	const struct iwn_chan_band *band = &iwn_bands[n];
1685 	struct ieee80211_channel *c;
1686 	int i, chan, nflags;
1687 
1688 	for (i = 0; i < band->nchan; i++) {
1689 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1690 			DPRINTF(sc, IWN_DEBUG_RESET,
1691 			    "skip chan %d flags 0x%x maxpwr %d\n",
1692 			    band->chan[i], channels[i].flags,
1693 			    channels[i].maxpwr);
1694 			continue;
1695 		}
1696 		chan = band->chan[i];
1697 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1698 
1699 		DPRINTF(sc, IWN_DEBUG_RESET,
1700 		    "add chan %d flags 0x%x maxpwr %d\n",
1701 		    chan, channels[i].flags, channels[i].maxpwr);
1702 
1703 		c = &ic->ic_channels[ic->ic_nchans++];
1704 		c->ic_ieee = chan;
1705 		c->ic_maxregpower = channels[i].maxpwr;
1706 		c->ic_maxpower = 2*c->ic_maxregpower;
1707 		if (n == 0) {	/* 2GHz band */
1708 			c->ic_freq = ieee80211_ieee2mhz(chan,
1709 			    IEEE80211_CHAN_G);
1710 
1711 			/* G =>'s B is supported */
1712 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1713 
1714 			c = &ic->ic_channels[ic->ic_nchans++];
1715 			c[0] = c[-1];
1716 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1717 		} else {	/* 5GHz band */
1718 			c->ic_freq = ieee80211_ieee2mhz(chan,
1719 			    IEEE80211_CHAN_A);
1720 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1721 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1722 		}
1723 #if 0	/* HT */
1724 		/* XXX no constraints on using HT20 */
1725 		/* add HT20, HT40 added separately */
1726 		c = &ic->ic_channels[ic->ic_nchans++];
1727 		c[0] = c[-1];
1728 		c->ic_flags |= IEEE80211_CHAN_HT20;
1729 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1730 #endif
1731 	}
1732 }
1733 
1734 #if 0	/* HT */
1735 static void
1736 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1737 {
1738 	struct ifnet *ifp = sc->sc_ifp;
1739 	struct ieee80211com *ic = ifp->if_l2com;
1740 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1741 	const struct iwn_chan_band *band = &iwn_bands[n];
1742 	struct ieee80211_channel *c, *cent, *extc;
1743 	int i;
1744 
1745 	for (i = 0; i < band->nchan; i++) {
1746 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1747 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1748 			DPRINTF(sc, IWN_DEBUG_RESET,
1749 			    "skip chan %d flags 0x%x maxpwr %d\n",
1750 			    band->chan[i], channels[i].flags,
1751 			    channels[i].maxpwr);
1752 			continue;
1753 		}
1754 		/*
1755 		 * Each entry defines an HT40 channel pair; find the
1756 		 * center channel, then the extension channel above.
1757 		 */
1758 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1759 		    band->flags & ~IEEE80211_CHAN_HT);
1760 		if (cent == NULL) {	/* XXX shouldn't happen */
1761 			device_printf(sc->sc_dev,
1762 			    "%s: no entry for channel %d\n",
1763 			    __func__, band->chan[i]);
1764 			continue;
1765 		}
1766 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1767 		    band->flags & ~IEEE80211_CHAN_HT);
1768 		if (extc == NULL) {
1769 			DPRINTF(sc, IWN_DEBUG_RESET,
1770 			    "skip chan %d, extension channel not found\n",
1771 			    band->chan[i]);
1772 			continue;
1773 		}
1774 
1775 		DPRINTF(sc, IWN_DEBUG_RESET,
1776 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1777 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1778 
1779 		c = &ic->ic_channels[ic->ic_nchans++];
1780 		c[0] = cent[0];
1781 		c->ic_extieee = extc->ic_ieee;
1782 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1783 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1784 		c = &ic->ic_channels[ic->ic_nchans++];
1785 		c[0] = extc[0];
1786 		c->ic_extieee = cent->ic_ieee;
1787 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1788 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1789 	}
1790 }
1791 #endif
1792 
1793 static void
1794 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1795 {
1796 	struct ifnet *ifp = sc->sc_ifp;
1797 	struct ieee80211com *ic = ifp->if_l2com;
1798 
1799 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1800 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1801 
1802 	if (n < 5)
1803 		iwn_read_eeprom_band(sc, n);
1804 #if 0	/* HT */
1805 	else
1806 		iwn_read_eeprom_ht40(sc, n);
1807 #endif
1808 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1809 }
1810 
1811 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1812 
1813 void
1814 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1815 {
1816 	struct iwn_eeprom_enhinfo enhinfo[35];
1817 	uint16_t val, base;
1818 	int8_t maxpwr;
1819 	int i;
1820 
1821 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1822 	base = le16toh(val);
1823 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1824 	    enhinfo, sizeof enhinfo);
1825 
1826 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1827 	for (i = 0; i < nitems(enhinfo); i++) {
1828 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1829 			continue;	/* Skip invalid entries. */
1830 
1831 		maxpwr = 0;
1832 		if (sc->txchainmask & IWN_ANT_A)
1833 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1834 		if (sc->txchainmask & IWN_ANT_B)
1835 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1836 		if (sc->txchainmask & IWN_ANT_C)
1837 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1838 		if (sc->ntxchains == 2)
1839 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1840 		else if (sc->ntxchains == 3)
1841 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1842 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1843 
1844 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1845 		    maxpwr);
1846 		sc->enh_maxpwr[i] = maxpwr;
1847 	}
1848 }
1849 
1850 struct ieee80211_node *
1851 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1852 {
1853 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
1854 }
1855 
1856 void
1857 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1858 {
1859 	struct ieee80211vap *vap = ni->ni_vap;
1860 	struct iwn_node *wn = (void *)ni;
1861 
1862 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
1863 	    &wn->amn, ni);
1864 }
1865 
1866 int
1867 iwn_media_change(struct ifnet *ifp)
1868 {
1869 	int error = ieee80211_media_change(ifp);
1870 	/* NB: only the fixed rate can change and that doesn't need a reset */
1871 	return (error == ENETRESET ? 0 : error);
1872 }
1873 
1874 int
1875 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1876 {
1877 	struct iwn_vap *ivp = IWN_VAP(vap);
1878 	struct ieee80211com *ic = vap->iv_ic;
1879 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1880 	int error;
1881 
1882 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1883 		ieee80211_state_name[vap->iv_state],
1884 		ieee80211_state_name[nstate]);
1885 
1886 	IEEE80211_UNLOCK(ic);
1887 	IWN_LOCK(sc);
1888 	callout_stop(&sc->sc_timer_to);
1889 
1890 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1891 		/* !AUTH -> AUTH requires adapter config */
1892 		/* Reset state to handle reassociations correctly. */
1893 		sc->rxon.associd = 0;
1894 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1895 		iwn_calib_reset(sc);
1896 		error = iwn_auth(sc, vap);
1897 	}
1898 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1899 		/*
1900 		 * !RUN -> RUN requires setting the association id
1901 		 * which is done with a firmware cmd.  We also defer
1902 		 * starting the timers until that work is done.
1903 		 */
1904 		error = iwn_run(sc, vap);
1905 	}
1906 	if (nstate == IEEE80211_S_RUN) {
1907 		/*
1908 		 * RUN -> RUN transition; just restart the timers.
1909 		 */
1910 		iwn_calib_reset(sc);
1911 	}
1912 	IWN_UNLOCK(sc);
1913 	IEEE80211_LOCK(ic);
1914 	return ivp->iv_newstate(vap, nstate, arg);
1915 }
1916 
1917 /*
1918  * Process an RX_PHY firmware notification.  This is usually immediately
1919  * followed by an MPDU_RX_DONE notification.
1920  */
1921 void
1922 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1923     struct iwn_rx_data *data)
1924 {
1925 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1926 
1927 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
1928 
1929 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1930 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1931 	sc->last_rx_valid = 1;
1932 }
1933 
1934 static void
1935 iwn_timer_timeout(void *arg)
1936 {
1937 	struct iwn_softc *sc = arg;
1938 	uint32_t flags = 0;
1939 
1940 	IWN_LOCK_ASSERT(sc);
1941 
1942 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1943 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1944 		    "send statistics request");
1945 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1946 		    sizeof flags, 1);
1947 		sc->calib_cnt = 60;	/* do calibration every 60s */
1948 	}
1949 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1950 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1951 }
1952 
1953 static void
1954 iwn_calib_reset(struct iwn_softc *sc)
1955 {
1956 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1957 	sc->calib_cnt = 60;		/* do calibration every 60s */
1958 }
1959 
1960 /*
1961  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1962  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1963  */
1964 void
1965 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1966     struct iwn_rx_data *data)
1967 {
1968 	const struct iwn_hal *hal = sc->sc_hal;
1969 	struct ifnet *ifp = sc->sc_ifp;
1970 	struct ieee80211com *ic = ifp->if_l2com;
1971 	struct iwn_rx_ring *ring = &sc->rxq;
1972 	struct ieee80211_frame *wh;
1973 	struct ieee80211_node *ni;
1974 	struct mbuf *m, *m1;
1975 	struct iwn_rx_stat *stat;
1976 	caddr_t head;
1977 	bus_addr_t paddr;
1978 	uint32_t flags;
1979 	int error, len, rssi, nf;
1980 
1981 	if (desc->type == IWN_MPDU_RX_DONE) {
1982 		/* Check for prior RX_PHY notification. */
1983 		if (!sc->last_rx_valid) {
1984 			DPRINTF(sc, IWN_DEBUG_ANY,
1985 			    "%s: missing RX_PHY\n", __func__);
1986 			ifp->if_ierrors++;
1987 			return;
1988 		}
1989 		sc->last_rx_valid = 0;
1990 		stat = &sc->last_rx_stat;
1991 	} else
1992 		stat = (struct iwn_rx_stat *)(desc + 1);
1993 
1994 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1995 
1996 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1997 		device_printf(sc->sc_dev,
1998 		    "%s: invalid rx statistic header, len %d\n",
1999 		    __func__, stat->cfg_phy_len);
2000 		ifp->if_ierrors++;
2001 		return;
2002 	}
2003 	if (desc->type == IWN_MPDU_RX_DONE) {
2004 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2005 		head = (caddr_t)(mpdu + 1);
2006 		len = le16toh(mpdu->len);
2007 	} else {
2008 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2009 		len = le16toh(stat->len);
2010 	}
2011 
2012 	flags = le32toh(*(uint32_t *)(head + len));
2013 
2014 	/* Discard frames with a bad FCS early. */
2015 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2016 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2017 		    __func__, flags);
2018 		ifp->if_ierrors++;
2019 		return;
2020 	}
2021 	/* Discard frames that are too short. */
2022 	if (len < sizeof (*wh)) {
2023 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2024 		    __func__, len);
2025 		ifp->if_ierrors++;
2026 		return;
2027 	}
2028 
2029 	/* XXX don't need mbuf, just dma buffer */
2030 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2031 	if (m1 == NULL) {
2032 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2033 		    __func__);
2034 		ifp->if_ierrors++;
2035 		return;
2036 	}
2037 	bus_dmamap_unload(ring->data_dmat, data->map);
2038 
2039 	error = bus_dmamap_load(ring->data_dmat, data->map,
2040 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2041 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2042 	if (error != 0 && error != EFBIG) {
2043 		device_printf(sc->sc_dev,
2044 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2045 		m_freem(m1);
2046 		ifp->if_ierrors++;
2047 		return;
2048 	}
2049 
2050 	m = data->m;
2051 	data->m = m1;
2052 	/* Update RX descriptor. */
2053 	ring->desc[ring->cur] = htole32(paddr >> 8);
2054 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2055 	    BUS_DMASYNC_PREWRITE);
2056 
2057 	/* Finalize mbuf. */
2058 	m->m_pkthdr.rcvif = ifp;
2059 	m->m_data = head;
2060 	m->m_pkthdr.len = m->m_len = len;
2061 
2062 	rssi = hal->get_rssi(sc, stat);
2063 
2064 	/* Grab a reference to the source node. */
2065 	wh = mtod(m, struct ieee80211_frame *);
2066 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2067 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2068 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2069 
2070 	if (ieee80211_radiotap_active(ic)) {
2071 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2072 
2073 		tap->wr_tsft = htole64(stat->tstamp);
2074 		tap->wr_flags = 0;
2075 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2076 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2077 		switch (stat->rate) {
2078 		/* CCK rates. */
2079 		case  10: tap->wr_rate =   2; break;
2080 		case  20: tap->wr_rate =   4; break;
2081 		case  55: tap->wr_rate =  11; break;
2082 		case 110: tap->wr_rate =  22; break;
2083 		/* OFDM rates. */
2084 		case 0xd: tap->wr_rate =  12; break;
2085 		case 0xf: tap->wr_rate =  18; break;
2086 		case 0x5: tap->wr_rate =  24; break;
2087 		case 0x7: tap->wr_rate =  36; break;
2088 		case 0x9: tap->wr_rate =  48; break;
2089 		case 0xb: tap->wr_rate =  72; break;
2090 		case 0x1: tap->wr_rate =  96; break;
2091 		case 0x3: tap->wr_rate = 108; break;
2092 		/* Unknown rate: should not happen. */
2093 		default:  tap->wr_rate =   0;
2094 		}
2095 		tap->wr_dbm_antsignal = rssi;
2096 		tap->wr_dbm_antnoise = nf;
2097 	}
2098 
2099 	IWN_UNLOCK(sc);
2100 
2101 	/* Send the frame to the 802.11 layer. */
2102 	if (ni != NULL) {
2103 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2104 		/* Node is no longer needed. */
2105 		ieee80211_free_node(ni);
2106 	} else
2107 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2108 
2109 	IWN_LOCK(sc);
2110 }
2111 
2112 #if 0	/* HT */
2113 /* Process an incoming Compressed BlockAck. */
2114 void
2115 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2116     struct iwn_rx_data *data)
2117 {
2118 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2119 	struct iwn_tx_ring *txq;
2120 
2121 	txq = &sc->txq[letoh16(ba->qid)];
2122 	/* XXX TBD */
2123 }
2124 #endif
2125 
2126 /*
2127  * Process a CALIBRATION_RESULT notification sent by the initialization
2128  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2129  */
2130 void
2131 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2132     struct iwn_rx_data *data)
2133 {
2134 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2135 	int len, idx = -1;
2136 
2137 	/* Runtime firmware should not send such a notification. */
2138 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2139 		return;
2140 
2141 	len = (le32toh(desc->len) & 0x3fff) - 4;
2142 
2143 	switch (calib->code) {
2144 	case IWN5000_PHY_CALIB_DC:
2145 		if (sc->hw_type == IWN_HW_REV_TYPE_5150)
2146 			idx = 0;
2147 		break;
2148 	case IWN5000_PHY_CALIB_LO:
2149 		idx = 1;
2150 		break;
2151 	case IWN5000_PHY_CALIB_TX_IQ:
2152 		idx = 2;
2153 		break;
2154 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2155 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2156 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2157 			idx = 3;
2158 		break;
2159 	case IWN5000_PHY_CALIB_BASE_BAND:
2160 		idx = 4;
2161 		break;
2162 	}
2163 	if (idx == -1)	/* Ignore other results. */
2164 		return;
2165 
2166 	/* Save calibration result. */
2167 	if (sc->calibcmd[idx].buf != NULL)
2168 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2169 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2170 	if (sc->calibcmd[idx].buf == NULL) {
2171 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2172 		    "not enough memory for calibration result %d\n",
2173 		    calib->code);
2174 		return;
2175 	}
2176 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2177 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2178 	sc->calibcmd[idx].len = len;
2179 	memcpy(sc->calibcmd[idx].buf, calib, len);
2180 }
2181 
2182 /*
2183  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2184  * The latter is sent by the firmware after each received beacon.
2185  */
2186 void
2187 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2188     struct iwn_rx_data *data)
2189 {
2190 	const struct iwn_hal *hal = sc->sc_hal;
2191 	struct ifnet *ifp = sc->sc_ifp;
2192 	struct ieee80211com *ic = ifp->if_l2com;
2193 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2194 	struct iwn_calib_state *calib = &sc->calib;
2195 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2196 	int temp;
2197 
2198 	/* Beacon stats are meaningful only when associated and not scanning. */
2199 	if (vap->iv_state != IEEE80211_S_RUN ||
2200 	    (ic->ic_flags & IEEE80211_F_SCAN))
2201 		return;
2202 
2203 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2204 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2205 
2206 	/* Test if temperature has changed. */
2207 	if (stats->general.temp != sc->rawtemp) {
2208 		/* Convert "raw" temperature to degC. */
2209 		sc->rawtemp = stats->general.temp;
2210 		temp = hal->get_temperature(sc);
2211 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2212 		    __func__, temp);
2213 
2214 		/* Update TX power if need be (4965AGN only.) */
2215 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2216 			iwn4965_power_calibration(sc, temp);
2217 	}
2218 
2219 	if (desc->type != IWN_BEACON_STATISTICS)
2220 		return;	/* Reply to a statistics request. */
2221 
2222 	sc->noise = iwn_get_noise(&stats->rx.general);
2223 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2224 
2225 	/* Test that RSSI and noise are present in stats report. */
2226 	if (le32toh(stats->rx.general.flags) != 1) {
2227 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2228 		    "received statistics without RSSI");
2229 		return;
2230 	}
2231 
2232 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2233 		iwn_collect_noise(sc, &stats->rx.general);
2234 	else if (calib->state == IWN_CALIB_STATE_RUN)
2235 		iwn_tune_sensitivity(sc, &stats->rx);
2236 }
2237 
2238 /*
2239  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2240  * and 5000 adapters have different incompatible TX status formats.
2241  */
2242 void
2243 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2244     struct iwn_rx_data *data)
2245 {
2246 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2247 
2248 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2249 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2250 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2251 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2252 	    le32toh(stat->status));
2253 
2254 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2255 }
2256 
2257 void
2258 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2259     struct iwn_rx_data *data)
2260 {
2261 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2262 
2263 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2264 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2265 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2266 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2267 	    le32toh(stat->status));
2268 
2269 #ifdef notyet
2270 	/* Reset TX scheduler slot. */
2271 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2272 #endif
2273 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2274 }
2275 
2276 /*
2277  * Adapter-independent backend for TX_DONE firmware notifications.
2278  */
2279 void
2280 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2281     uint8_t status)
2282 {
2283 	struct ifnet *ifp = sc->sc_ifp;
2284 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2285 	struct iwn_tx_data *data = &ring->data[desc->idx];
2286 	struct iwn_node *wn = (void *)data->ni;
2287 	struct mbuf *m;
2288 	struct ieee80211_node *ni;
2289 
2290 	KASSERT(data->ni != NULL, ("no node"));
2291 
2292 	/* Unmap and free mbuf. */
2293 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2294 	bus_dmamap_unload(ring->data_dmat, data->map);
2295 	m = data->m, data->m = NULL;
2296 	ni = data->ni, data->ni = NULL;
2297 
2298 	if (m->m_flags & M_TXCB) {
2299 		/*
2300 		 * Channels marked for "radar" require traffic to be received
2301 		 * to unlock before we can transmit.  Until traffic is seen
2302 		 * any attempt to transmit is returned immediately with status
2303 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2304 		 * happen on first authenticate after scanning.  To workaround
2305 		 * this we ignore a failure of this sort in AUTH state so the
2306 		 * 802.11 layer will fall back to using a timeout to wait for
2307 		 * the AUTH reply.  This allows the firmware time to see
2308 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2309 		 * unclear why the firmware does not maintain state for
2310 		 * channels recently visited as this would allow immediate
2311 		 * use of the channel after a scan (where we see traffic).
2312 		 */
2313 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2314 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2315 			ieee80211_process_callback(ni, m, 0);
2316 		else
2317 			ieee80211_process_callback(ni, m,
2318 			    (status & IWN_TX_FAIL) != 0);
2319 	}
2320 
2321 	/*
2322 	 * Update rate control statistics for the node.
2323 	 */
2324 	if (status & 0x80) {
2325 		ifp->if_oerrors++;
2326 		ieee80211_amrr_tx_complete(&wn->amn,
2327 		    IEEE80211_AMRR_FAILURE, ackfailcnt);
2328 	} else {
2329 		ieee80211_amrr_tx_complete(&wn->amn,
2330 		    IEEE80211_AMRR_SUCCESS, ackfailcnt);
2331 	}
2332 	m_freem(m);
2333 	ieee80211_free_node(ni);
2334 
2335 	sc->sc_tx_timer = 0;
2336 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2337 		sc->qfullmsk &= ~(1 << ring->qid);
2338 		if (sc->qfullmsk == 0 &&
2339 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2340 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2341 			iwn_start_locked(ifp);
2342 		}
2343 	}
2344 }
2345 
2346 /*
2347  * Process a "command done" firmware notification.  This is where we wakeup
2348  * processes waiting for a synchronous command completion.
2349  */
2350 void
2351 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2352 {
2353 	struct iwn_tx_ring *ring = &sc->txq[4];
2354 	struct iwn_tx_data *data;
2355 
2356 	if ((desc->qid & 0xf) != 4)
2357 		return;	/* Not a command ack. */
2358 
2359 	data = &ring->data[desc->idx];
2360 
2361 	/* If the command was mapped in an mbuf, free it. */
2362 	if (data->m != NULL) {
2363 		bus_dmamap_unload(ring->data_dmat, data->map);
2364 		m_freem(data->m);
2365 		data->m = NULL;
2366 	}
2367 	wakeup(&ring->desc[desc->idx]);
2368 }
2369 
2370 /*
2371  * Process an INT_FH_RX or INT_SW_RX interrupt.
2372  */
2373 void
2374 iwn_notif_intr(struct iwn_softc *sc)
2375 {
2376 	struct ifnet *ifp = sc->sc_ifp;
2377 	struct ieee80211com *ic = ifp->if_l2com;
2378 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2379 	uint16_t hw;
2380 
2381 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2382 	    BUS_DMASYNC_POSTREAD);
2383 
2384 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2385 	while (sc->rxq.cur != hw) {
2386 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2387 		struct iwn_rx_desc *desc;
2388 
2389 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2390 		    BUS_DMASYNC_POSTREAD);
2391 		desc = mtod(data->m, struct iwn_rx_desc *);
2392 
2393 		DPRINTF(sc, IWN_DEBUG_RECV,
2394 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2395 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2396 		    desc->type, iwn_intr_str(desc->type),
2397 		    le16toh(desc->len));
2398 
2399 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2400 			iwn_cmd_done(sc, desc);
2401 
2402 		switch (desc->type) {
2403 		case IWN_RX_PHY:
2404 			iwn_rx_phy(sc, desc, data);
2405 			break;
2406 
2407 		case IWN_RX_DONE:		/* 4965AGN only. */
2408 		case IWN_MPDU_RX_DONE:
2409 			/* An 802.11 frame has been received. */
2410 			iwn_rx_done(sc, desc, data);
2411 			break;
2412 
2413 #if 0	/* HT */
2414 		case IWN_RX_COMPRESSED_BA:
2415 			/* A Compressed BlockAck has been received. */
2416 			iwn_rx_compressed_ba(sc, desc, data);
2417 			break;
2418 #endif
2419 
2420 		case IWN_TX_DONE:
2421 			/* An 802.11 frame has been transmitted. */
2422 			sc->sc_hal->tx_done(sc, desc, data);
2423 			break;
2424 
2425 		case IWN_RX_STATISTICS:
2426 		case IWN_BEACON_STATISTICS:
2427 			iwn_rx_statistics(sc, desc, data);
2428 			break;
2429 
2430 		case IWN_BEACON_MISSED:
2431 		{
2432 			struct iwn_beacon_missed *miss =
2433 			    (struct iwn_beacon_missed *)(desc + 1);
2434 			int misses = le32toh(miss->consecutive);
2435 
2436 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2437 			    BUS_DMASYNC_POSTREAD);
2438 
2439 			/* XXX not sure why we're notified w/ zero */
2440 			if (misses == 0)
2441 				break;
2442 			DPRINTF(sc, IWN_DEBUG_STATE,
2443 			    "%s: beacons missed %d/%d\n", __func__,
2444 			    misses, le32toh(miss->total));
2445 
2446 			/*
2447 			 * If more than 5 consecutive beacons are missed,
2448 			 * reinitialize the sensitivity state machine.
2449 			 */
2450 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2451 				(void) iwn_init_sensitivity(sc);
2452 			if (misses >= vap->iv_bmissthreshold) {
2453 				IWN_UNLOCK(sc);
2454 				ieee80211_beacon_miss(ic);
2455 				IWN_LOCK(sc);
2456 			}
2457 			break;
2458 		}
2459 		case IWN_UC_READY:
2460 		{
2461 			struct iwn_ucode_info *uc =
2462 			    (struct iwn_ucode_info *)(desc + 1);
2463 
2464 			/* The microcontroller is ready. */
2465 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2466 			    BUS_DMASYNC_POSTREAD);
2467 			DPRINTF(sc, IWN_DEBUG_RESET,
2468 			    "microcode alive notification version=%d.%d "
2469 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2470 			    uc->subtype, le32toh(uc->valid));
2471 
2472 			if (le32toh(uc->valid) != 1) {
2473 				device_printf(sc->sc_dev,
2474 				    "microcontroller initialization failed");
2475 				break;
2476 			}
2477 			if (uc->subtype == IWN_UCODE_INIT) {
2478 				/* Save microcontroller report. */
2479 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2480 			}
2481 			/* Save the address of the error log in SRAM. */
2482 			sc->errptr = le32toh(uc->errptr);
2483 			break;
2484 		}
2485 		case IWN_STATE_CHANGED:
2486 		{
2487 			uint32_t *status = (uint32_t *)(desc + 1);
2488 
2489 			/*
2490 			 * State change allows hardware switch change to be
2491 			 * noted. However, we handle this in iwn_intr as we
2492 			 * get both the enable/disble intr.
2493 			 */
2494 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2495 			    BUS_DMASYNC_POSTREAD);
2496 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2497 			    le32toh(*status));
2498 			break;
2499 		}
2500 		case IWN_START_SCAN:
2501 		{
2502 			struct iwn_start_scan *scan =
2503 			    (struct iwn_start_scan *)(desc + 1);
2504 
2505 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2506 			    BUS_DMASYNC_POSTREAD);
2507 			DPRINTF(sc, IWN_DEBUG_ANY,
2508 			    "%s: scanning channel %d status %x\n",
2509 			    __func__, scan->chan, le32toh(scan->status));
2510 			break;
2511 		}
2512 		case IWN_STOP_SCAN:
2513 		{
2514 			struct iwn_stop_scan *scan =
2515 			    (struct iwn_stop_scan *)(desc + 1);
2516 
2517 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2518 			    BUS_DMASYNC_POSTREAD);
2519 			DPRINTF(sc, IWN_DEBUG_STATE,
2520 			    "scan finished nchan=%d status=%d chan=%d\n",
2521 			    scan->nchan, scan->status, scan->chan);
2522 
2523 			IWN_UNLOCK(sc);
2524 			ieee80211_scan_next(vap);
2525 			IWN_LOCK(sc);
2526 			break;
2527 		}
2528 		case IWN5000_CALIBRATION_RESULT:
2529 			iwn5000_rx_calib_results(sc, desc, data);
2530 			break;
2531 
2532 		case IWN5000_CALIBRATION_DONE:
2533 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2534 			wakeup(sc);
2535 			break;
2536 		}
2537 
2538 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2539 	}
2540 
2541 	/* Tell the firmware what we have processed. */
2542 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2543 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2544 }
2545 
2546 /*
2547  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2548  * from power-down sleep mode.
2549  */
2550 void
2551 iwn_wakeup_intr(struct iwn_softc *sc)
2552 {
2553 	int qid;
2554 
2555 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2556 	    __func__);
2557 
2558 	/* Wakeup RX and TX rings. */
2559 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2560 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2561 		struct iwn_tx_ring *ring = &sc->txq[qid];
2562 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2563 	}
2564 }
2565 
2566 void
2567 iwn_rftoggle_intr(struct iwn_softc *sc)
2568 {
2569 	struct ifnet *ifp = sc->sc_ifp;
2570 	struct ieee80211com *ic = ifp->if_l2com;
2571 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2572 
2573 	IWN_LOCK_ASSERT(sc);
2574 
2575 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2576 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2577 	if (tmp & IWN_GP_CNTRL_RFKILL)
2578 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2579 	else
2580 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2581 }
2582 
2583 /*
2584  * Dump the error log of the firmware when a firmware panic occurs.  Although
2585  * we can't debug the firmware because it is neither open source nor free, it
2586  * can help us to identify certain classes of problems.
2587  */
2588 void
2589 iwn_fatal_intr(struct iwn_softc *sc)
2590 {
2591 	const struct iwn_hal *hal = sc->sc_hal;
2592 	struct iwn_fw_dump dump;
2593 	int i;
2594 
2595 	IWN_LOCK_ASSERT(sc);
2596 
2597 	/* Force a complete recalibration on next init. */
2598 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2599 
2600 	/* Check that the error log address is valid. */
2601 	if (sc->errptr < IWN_FW_DATA_BASE ||
2602 	    sc->errptr + sizeof (dump) >
2603 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2604 		printf("%s: bad firmware error log address 0x%08x\n",
2605 		    __func__, sc->errptr);
2606 		return;
2607 	}
2608 	if (iwn_nic_lock(sc) != 0) {
2609 		printf("%s: could not read firmware error log\n",
2610 		    __func__);
2611 		return;
2612 	}
2613 	/* Read firmware error log from SRAM. */
2614 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2615 	    sizeof (dump) / sizeof (uint32_t));
2616 	iwn_nic_unlock(sc);
2617 
2618 	if (dump.valid == 0) {
2619 		printf("%s: firmware error log is empty\n",
2620 		    __func__);
2621 		return;
2622 	}
2623 	printf("firmware error log:\n");
2624 	printf("  error type      = \"%s\" (0x%08X)\n",
2625 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2626 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2627 	    dump.id);
2628 	printf("  program counter = 0x%08X\n", dump.pc);
2629 	printf("  source line     = 0x%08X\n", dump.src_line);
2630 	printf("  error data      = 0x%08X%08X\n",
2631 	    dump.error_data[0], dump.error_data[1]);
2632 	printf("  branch link     = 0x%08X%08X\n",
2633 	    dump.branch_link[0], dump.branch_link[1]);
2634 	printf("  interrupt link  = 0x%08X%08X\n",
2635 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2636 	printf("  time            = %u\n", dump.time[0]);
2637 
2638 	/* Dump driver status (TX and RX rings) while we're here. */
2639 	printf("driver status:\n");
2640 	for (i = 0; i < hal->ntxqs; i++) {
2641 		struct iwn_tx_ring *ring = &sc->txq[i];
2642 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2643 		    i, ring->qid, ring->cur, ring->queued);
2644 	}
2645 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2646 }
2647 
2648 void
2649 iwn_intr(void *arg)
2650 {
2651 	struct iwn_softc *sc = arg;
2652 	struct ifnet *ifp = sc->sc_ifp;
2653 	uint32_t r1, r2, tmp;
2654 
2655 	IWN_LOCK(sc);
2656 
2657 	/* Disable interrupts. */
2658 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2659 
2660 	/* Read interrupts from ICT (fast) or from registers (slow). */
2661 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2662 		tmp = 0;
2663 		while (sc->ict[sc->ict_cur] != 0) {
2664 			tmp |= sc->ict[sc->ict_cur];
2665 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2666 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2667 		}
2668 		tmp = le32toh(tmp);
2669 		if (tmp == 0xffffffff)
2670 			tmp = 0;	/* Shouldn't happen. */
2671 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2672 		r2 = 0;	/* Unused. */
2673 	} else {
2674 		r1 = IWN_READ(sc, IWN_INT);
2675 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2676 			return;	/* Hardware gone! */
2677 		r2 = IWN_READ(sc, IWN_FH_INT);
2678 	}
2679 
2680 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2681 
2682 	if (r1 == 0 && r2 == 0)
2683 		goto done;	/* Interrupt not for us. */
2684 
2685 	/* Acknowledge interrupts. */
2686 	IWN_WRITE(sc, IWN_INT, r1);
2687 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2688 		IWN_WRITE(sc, IWN_FH_INT, r2);
2689 
2690 	if (r1 & IWN_INT_RF_TOGGLED) {
2691 		iwn_rftoggle_intr(sc);
2692 		goto done;
2693 	}
2694 	if (r1 & IWN_INT_CT_REACHED) {
2695 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2696 		    __func__);
2697 	}
2698 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2699 		iwn_fatal_intr(sc);
2700 		ifp->if_flags &= ~IFF_UP;
2701 		iwn_stop_locked(sc);
2702 		goto done;
2703 	}
2704 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2705 	    (r2 & IWN_FH_INT_RX)) {
2706 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2707 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2708 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2709 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2710 			    IWN_INT_PERIODIC_DIS);
2711 			iwn_notif_intr(sc);
2712 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2713 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2714 				    IWN_INT_PERIODIC_ENA);
2715 			}
2716 		} else
2717 			iwn_notif_intr(sc);
2718 	}
2719 
2720 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2721 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2722 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2723 		wakeup(sc);	/* FH DMA transfer completed. */
2724 	}
2725 
2726 	if (r1 & IWN_INT_ALIVE)
2727 		wakeup(sc);	/* Firmware is alive. */
2728 
2729 	if (r1 & IWN_INT_WAKEUP)
2730 		iwn_wakeup_intr(sc);
2731 
2732 done:
2733 	/* Re-enable interrupts. */
2734 	if (ifp->if_flags & IFF_UP)
2735 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2736 
2737 	IWN_UNLOCK(sc);
2738 }
2739 
2740 /*
2741  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2742  * 5000 adapters use a slightly different format.)
2743  */
2744 void
2745 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2746     uint16_t len)
2747 {
2748 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2749 
2750 	*w = htole16(len + 8);
2751 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2752 	    BUS_DMASYNC_PREWRITE);
2753 	if (idx < IWN_SCHED_WINSZ) {
2754 		*(w + IWN_TX_RING_COUNT) = *w;
2755 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2756 		    BUS_DMASYNC_PREWRITE);
2757 	}
2758 }
2759 
2760 void
2761 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2762     uint16_t len)
2763 {
2764 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2765 
2766 	*w = htole16(id << 12 | (len + 8));
2767 
2768 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2769 	    BUS_DMASYNC_PREWRITE);
2770 	if (idx < IWN_SCHED_WINSZ) {
2771 		*(w + IWN_TX_RING_COUNT) = *w;
2772 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2773 		    BUS_DMASYNC_PREWRITE);
2774 	}
2775 }
2776 
2777 void
2778 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2779 {
2780 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2781 
2782 	*w = (*w & htole16(0xf000)) | htole16(1);
2783 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2784 	    BUS_DMASYNC_PREWRITE);
2785 	if (idx < IWN_SCHED_WINSZ) {
2786 		*(w + IWN_TX_RING_COUNT) = *w;
2787 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2788 		     BUS_DMASYNC_PREWRITE);
2789 	}
2790 }
2791 
2792 static uint8_t
2793 iwn_plcp_signal(int rate) {
2794 	int i;
2795 
2796 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2797 		if (rate == iwn_rates[i].rate)
2798 			return i;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 int
2805 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2806     struct iwn_tx_ring *ring)
2807 {
2808 	const struct iwn_hal *hal = sc->sc_hal;
2809 	const struct ieee80211_txparam *tp;
2810 	const struct iwn_rate *rinfo;
2811 	struct ieee80211vap *vap = ni->ni_vap;
2812 	struct ieee80211com *ic = ni->ni_ic;
2813 	struct iwn_node *wn = (void *)ni;
2814 	struct iwn_tx_desc *desc;
2815 	struct iwn_tx_data *data;
2816 	struct iwn_tx_cmd *cmd;
2817 	struct iwn_cmd_data *tx;
2818 	struct ieee80211_frame *wh;
2819 	struct ieee80211_key *k = NULL;
2820 	struct mbuf *mnew;
2821 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2822 	uint32_t flags;
2823 	u_int hdrlen;
2824 	int totlen, error, pad, nsegs = 0, i, rate;
2825 	uint8_t ridx, type, txant;
2826 
2827 	IWN_LOCK_ASSERT(sc);
2828 
2829 	wh = mtod(m, struct ieee80211_frame *);
2830 	hdrlen = ieee80211_anyhdrsize(wh);
2831 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2832 
2833 	desc = &ring->desc[ring->cur];
2834 	data = &ring->data[ring->cur];
2835 
2836 	/* Choose a TX rate index. */
2837 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2838 	if (type == IEEE80211_FC0_TYPE_MGT)
2839 		rate = tp->mgmtrate;
2840 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2841 		rate = tp->mcastrate;
2842 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2843 		rate = tp->ucastrate;
2844 	else {
2845 		(void) ieee80211_amrr_choose(ni, &wn->amn);
2846 		rate = ni->ni_txrate;
2847 	}
2848 	ridx = iwn_plcp_signal(rate);
2849 	rinfo = &iwn_rates[ridx];
2850 
2851 	/* Encrypt the frame if need be. */
2852 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2853 		k = ieee80211_crypto_encap(ni, m);
2854 		if (k == NULL) {
2855 			m_freem(m);
2856 			return ENOBUFS;
2857 		}
2858 		/* Packet header may have moved, reset our local pointer. */
2859 		wh = mtod(m, struct ieee80211_frame *);
2860 	}
2861 	totlen = m->m_pkthdr.len;
2862 
2863 	if (ieee80211_radiotap_active_vap(vap)) {
2864 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2865 
2866 		tap->wt_flags = 0;
2867 		tap->wt_rate = rinfo->rate;
2868 		if (k != NULL)
2869 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2870 
2871 		ieee80211_radiotap_tx(vap, m);
2872 	}
2873 
2874 	/* Prepare TX firmware command. */
2875 	cmd = &ring->cmd[ring->cur];
2876 	cmd->code = IWN_CMD_TX_DATA;
2877 	cmd->flags = 0;
2878 	cmd->qid = ring->qid;
2879 	cmd->idx = ring->cur;
2880 
2881 	tx = (struct iwn_cmd_data *)cmd->data;
2882 	/* NB: No need to clear tx, all fields are reinitialized here. */
2883 	tx->scratch = 0;	/* clear "scratch" area */
2884 
2885 	flags = 0;
2886 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2887 		flags |= IWN_TX_NEED_ACK;
2888 	if ((wh->i_fc[0] &
2889 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2890 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2891 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2892 
2893 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2894 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2895 
2896 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2897 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2898 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2899 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2900 			flags |= IWN_TX_NEED_RTS;
2901 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2902 		    ridx >= IWN_RIDX_OFDM6) {
2903 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2904 				flags |= IWN_TX_NEED_CTS;
2905 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2906 				flags |= IWN_TX_NEED_RTS;
2907 		}
2908 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2909 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2910 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2911 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2912 				flags |= IWN_TX_NEED_PROTECTION;
2913 			} else
2914 				flags |= IWN_TX_FULL_TXOP;
2915 		}
2916 	}
2917 
2918 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2919 	    type != IEEE80211_FC0_TYPE_DATA)
2920 		tx->id = hal->broadcast_id;
2921 	else
2922 		tx->id = wn->id;
2923 
2924 	if (type == IEEE80211_FC0_TYPE_MGT) {
2925 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2926 
2927 		/* Tell HW to set timestamp in probe responses. */
2928 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2929 			flags |= IWN_TX_INSERT_TSTAMP;
2930 
2931 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2932 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2933 			tx->timeout = htole16(3);
2934 		else
2935 			tx->timeout = htole16(2);
2936 	} else
2937 		tx->timeout = htole16(0);
2938 
2939 	if (hdrlen & 3) {
2940 		/* First segment length must be a multiple of 4. */
2941 		flags |= IWN_TX_NEED_PADDING;
2942 		pad = 4 - (hdrlen & 3);
2943 	} else
2944 		pad = 0;
2945 
2946 	tx->len = htole16(totlen);
2947 	tx->tid = 0;
2948 	tx->rts_ntries = 60;
2949 	tx->data_ntries = 15;
2950 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2951 	tx->plcp = rinfo->plcp;
2952 	tx->rflags = rinfo->flags;
2953 	if (tx->id == hal->broadcast_id) {
2954 		/* Group or management frame. */
2955 		tx->linkq = 0;
2956 		/* XXX Alternate between antenna A and B? */
2957 		txant = IWN_LSB(sc->txchainmask);
2958 		tx->rflags |= IWN_RFLAG_ANT(txant);
2959 	} else {
2960 		tx->linkq = 0;
2961 		flags |= IWN_TX_LINKQ;	/* enable MRR */
2962 	}
2963 
2964 	/* Set physical address of "scratch area". */
2965 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
2966 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
2967 
2968 	/* Copy 802.11 header in TX command. */
2969 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2970 
2971 	/* Trim 802.11 header. */
2972 	m_adj(m, hdrlen);
2973 	tx->security = 0;
2974 	tx->flags = htole32(flags);
2975 
2976 	if (m->m_len > 0) {
2977 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2978 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
2979 		if (error == EFBIG) {
2980 			/* too many fragments, linearize */
2981 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
2982 			if (mnew == NULL) {
2983 				device_printf(sc->sc_dev,
2984 				    "%s: could not defrag mbuf\n", __func__);
2985 				m_freem(m);
2986 				return ENOBUFS;
2987 			}
2988 			m = mnew;
2989 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2990 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
2991 		}
2992 		if (error != 0) {
2993 			device_printf(sc->sc_dev,
2994 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2995 			     __func__, error);
2996 			m_freem(m);
2997 			return error;
2998 		}
2999 	}
3000 
3001 	data->m = m;
3002 	data->ni = ni;
3003 
3004 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3005 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3006 
3007 	/* Fill TX descriptor. */
3008 	desc->nsegs = 1 + nsegs;
3009 	/* First DMA segment is used by the TX command. */
3010 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3011 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3012 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3013 	/* Other DMA segments are for data payload. */
3014 	for (i = 1; i <= nsegs; i++) {
3015 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3016 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3017 		    segs[i - 1].ds_len << 4);
3018 	}
3019 
3020 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3021 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3022 	    BUS_DMASYNC_PREWRITE);
3023 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3024 	    BUS_DMASYNC_PREWRITE);
3025 
3026 #ifdef notyet
3027 	/* Update TX scheduler. */
3028 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3029 #endif
3030 
3031 	/* Kick TX ring. */
3032 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3033 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3034 
3035 	/* Mark TX ring as full if we reach a certain threshold. */
3036 	if (++ring->queued > IWN_TX_RING_HIMARK)
3037 		sc->qfullmsk |= 1 << ring->qid;
3038 
3039 	return 0;
3040 }
3041 
3042 static int
3043 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3044     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3045     const struct ieee80211_bpf_params *params)
3046 {
3047 	const struct iwn_hal *hal = sc->sc_hal;
3048 	const struct iwn_rate *rinfo;
3049 	struct ifnet *ifp = sc->sc_ifp;
3050 	struct ieee80211vap *vap = ni->ni_vap;
3051 	struct ieee80211com *ic = ifp->if_l2com;
3052 	struct iwn_tx_cmd *cmd;
3053 	struct iwn_cmd_data *tx;
3054 	struct ieee80211_frame *wh;
3055 	struct iwn_tx_desc *desc;
3056 	struct iwn_tx_data *data;
3057 	struct mbuf *mnew;
3058 	bus_addr_t paddr;
3059 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3060 	uint32_t flags;
3061 	u_int hdrlen;
3062 	int totlen, error, pad, nsegs = 0, i, rate;
3063 	uint8_t ridx, type, txant;
3064 
3065 	IWN_LOCK_ASSERT(sc);
3066 
3067 	wh = mtod(m, struct ieee80211_frame *);
3068 	hdrlen = ieee80211_anyhdrsize(wh);
3069 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3070 
3071 	desc = &ring->desc[ring->cur];
3072 	data = &ring->data[ring->cur];
3073 
3074 	/* Choose a TX rate index. */
3075 	rate = params->ibp_rate0;
3076 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3077 		/* XXX fall back to mcast/mgmt rate? */
3078 		m_freem(m);
3079 		return EINVAL;
3080 	}
3081 	ridx = iwn_plcp_signal(rate);
3082 	rinfo = &iwn_rates[ridx];
3083 
3084 	totlen = m->m_pkthdr.len;
3085 
3086 	/* Prepare TX firmware command. */
3087 	cmd = &ring->cmd[ring->cur];
3088 	cmd->code = IWN_CMD_TX_DATA;
3089 	cmd->flags = 0;
3090 	cmd->qid = ring->qid;
3091 	cmd->idx = ring->cur;
3092 
3093 	tx = (struct iwn_cmd_data *)cmd->data;
3094 	/* NB: No need to clear tx, all fields are reinitialized here. */
3095 	tx->scratch = 0;	/* clear "scratch" area */
3096 
3097 	flags = 0;
3098 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3099 		flags |= IWN_TX_NEED_ACK;
3100 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3101 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3102 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3103 			flags &= ~IWN_TX_NEED_RTS;
3104 			flags |= IWN_TX_NEED_PROTECTION;
3105 		} else
3106 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3107 	}
3108 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3109 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3110 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3111 			flags &= ~IWN_TX_NEED_CTS;
3112 			flags |= IWN_TX_NEED_PROTECTION;
3113 		} else
3114 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3115 	}
3116 	if (type == IEEE80211_FC0_TYPE_MGT) {
3117 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3118 
3119 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3120 			flags |= IWN_TX_INSERT_TSTAMP;
3121 
3122 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3123 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3124 			tx->timeout = htole16(3);
3125 		else
3126 			tx->timeout = htole16(2);
3127 	} else
3128 		tx->timeout = htole16(0);
3129 
3130 	if (hdrlen & 3) {
3131 		/* First segment length must be a multiple of 4. */
3132 		flags |= IWN_TX_NEED_PADDING;
3133 		pad = 4 - (hdrlen & 3);
3134 	} else
3135 		pad = 0;
3136 
3137 	if (ieee80211_radiotap_active_vap(vap)) {
3138 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3139 
3140 		tap->wt_flags = 0;
3141 		tap->wt_rate = rate;
3142 
3143 		ieee80211_radiotap_tx(vap, m);
3144 	}
3145 
3146 	tx->len = htole16(totlen);
3147 	tx->tid = 0;
3148 	tx->id = hal->broadcast_id;
3149 	tx->rts_ntries = params->ibp_try1;
3150 	tx->data_ntries = params->ibp_try0;
3151 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3152 	tx->plcp = rinfo->plcp;
3153 	tx->rflags = rinfo->flags;
3154 	/* Group or management frame. */
3155 	tx->linkq = 0;
3156 	txant = IWN_LSB(sc->txchainmask);
3157 	tx->rflags |= IWN_RFLAG_ANT(txant);
3158 	/* Set physical address of "scratch area". */
3159 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3160 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3161 	tx->hiaddr = IWN_HIADDR(paddr);
3162 
3163 	/* Copy 802.11 header in TX command. */
3164 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3165 
3166 	/* Trim 802.11 header. */
3167 	m_adj(m, hdrlen);
3168 	tx->security = 0;
3169 	tx->flags = htole32(flags);
3170 
3171 	if (m->m_len > 0) {
3172 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3173 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3174 		if (error == EFBIG) {
3175 			/* Too many fragments, linearize. */
3176 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3177 			if (mnew == NULL) {
3178 				device_printf(sc->sc_dev,
3179 				    "%s: could not defrag mbuf\n", __func__);
3180 				m_freem(m);
3181 				return ENOBUFS;
3182 			}
3183 			m = mnew;
3184 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3185 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3186 		}
3187 		if (error != 0) {
3188 			device_printf(sc->sc_dev,
3189 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3190 			     __func__, error);
3191 			m_freem(m);
3192 			return error;
3193 		}
3194 	}
3195 
3196 	data->m = m;
3197 	data->ni = ni;
3198 
3199 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3200 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3201 
3202 	/* Fill TX descriptor. */
3203 	desc->nsegs = 1 + nsegs;
3204 	/* First DMA segment is used by the TX command. */
3205 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3206 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3207 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3208 	/* Other DMA segments are for data payload. */
3209 	for (i = 1; i <= nsegs; i++) {
3210 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3211 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3212 		    segs[i - 1].ds_len << 4);
3213 	}
3214 
3215 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3216 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3217 	    BUS_DMASYNC_PREWRITE);
3218 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3219 	    BUS_DMASYNC_PREWRITE);
3220 
3221 #ifdef notyet
3222 	/* Update TX scheduler. */
3223 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3224 #endif
3225 
3226 	/* Kick TX ring. */
3227 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3228 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3229 
3230 	/* Mark TX ring as full if we reach a certain threshold. */
3231 	if (++ring->queued > IWN_TX_RING_HIMARK)
3232 		sc->qfullmsk |= 1 << ring->qid;
3233 
3234 	return 0;
3235 }
3236 
3237 static int
3238 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3239 	const struct ieee80211_bpf_params *params)
3240 {
3241 	struct ieee80211com *ic = ni->ni_ic;
3242 	struct ifnet *ifp = ic->ic_ifp;
3243 	struct iwn_softc *sc = ifp->if_softc;
3244 	struct iwn_tx_ring *txq;
3245 	int error = 0;
3246 
3247 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3248 		ieee80211_free_node(ni);
3249 		m_freem(m);
3250 		return ENETDOWN;
3251 	}
3252 
3253 	IWN_LOCK(sc);
3254 	if (params == NULL)
3255 		txq = &sc->txq[M_WME_GETAC(m)];
3256 	else
3257 		txq = &sc->txq[params->ibp_pri & 3];
3258 
3259 	if (params == NULL) {
3260 		/*
3261 		 * Legacy path; interpret frame contents to decide
3262 		 * precisely how to send the frame.
3263 		 */
3264 		error = iwn_tx_data(sc, m, ni, txq);
3265 	} else {
3266 		/*
3267 		 * Caller supplied explicit parameters to use in
3268 		 * sending the frame.
3269 		 */
3270 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3271 	}
3272 	if (error != 0) {
3273 		/* NB: m is reclaimed on tx failure */
3274 		ieee80211_free_node(ni);
3275 		ifp->if_oerrors++;
3276 	}
3277 	IWN_UNLOCK(sc);
3278 	return error;
3279 }
3280 
3281 void
3282 iwn_start(struct ifnet *ifp)
3283 {
3284 	struct iwn_softc *sc = ifp->if_softc;
3285 
3286 	IWN_LOCK(sc);
3287 	iwn_start_locked(ifp);
3288 	IWN_UNLOCK(sc);
3289 }
3290 
3291 void
3292 iwn_start_locked(struct ifnet *ifp)
3293 {
3294 	struct iwn_softc *sc = ifp->if_softc;
3295 	struct ieee80211_node *ni;
3296 	struct iwn_tx_ring *txq;
3297 	struct mbuf *m;
3298 	int pri;
3299 
3300 	IWN_LOCK_ASSERT(sc);
3301 
3302 	for (;;) {
3303 		if (sc->qfullmsk != 0) {
3304 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3305 			break;
3306 		}
3307 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3308 		if (m == NULL)
3309 			break;
3310 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3311 		pri = M_WME_GETAC(m);
3312 		txq = &sc->txq[pri];
3313 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3314 			ifp->if_oerrors++;
3315 			ieee80211_free_node(ni);
3316 			break;
3317 		}
3318 		sc->sc_tx_timer = 5;
3319 	}
3320 }
3321 
3322 static void
3323 iwn_watchdog(struct iwn_softc *sc)
3324 {
3325 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3326 		struct ifnet *ifp = sc->sc_ifp;
3327 		struct ieee80211com *ic = ifp->if_l2com;
3328 
3329 		if_printf(ifp, "device timeout\n");
3330 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3331 	}
3332 }
3333 
3334 int
3335 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3336 {
3337 	struct iwn_softc *sc = ifp->if_softc;
3338 	struct ieee80211com *ic = ifp->if_l2com;
3339 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3340 	struct ifreq *ifr = (struct ifreq *) data;
3341 	int error = 0, startall = 0, stop = 0;
3342 
3343 	switch (cmd) {
3344 	case SIOCSIFFLAGS:
3345 		IWN_LOCK(sc);
3346 		if (ifp->if_flags & IFF_UP) {
3347 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3348 				iwn_init_locked(sc);
3349 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3350 					startall = 1;
3351 				else
3352 					stop = 1;
3353 			}
3354 		} else {
3355 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3356 				iwn_stop_locked(sc);
3357 		}
3358 		IWN_UNLOCK(sc);
3359 		if (startall)
3360 			ieee80211_start_all(ic);
3361 		else if (vap != NULL && stop)
3362 			ieee80211_stop(vap);
3363 		break;
3364 	case SIOCGIFMEDIA:
3365 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3366 		break;
3367 	case SIOCGIFADDR:
3368 		error = ether_ioctl(ifp, cmd, data);
3369 		break;
3370 	default:
3371 		error = EINVAL;
3372 		break;
3373 	}
3374 	return error;
3375 }
3376 
3377 /*
3378  * Send a command to the firmware.
3379  */
3380 int
3381 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3382 {
3383 	struct iwn_tx_ring *ring = &sc->txq[4];
3384 	struct iwn_tx_desc *desc;
3385 	struct iwn_tx_data *data;
3386 	struct iwn_tx_cmd *cmd;
3387 	struct mbuf *m;
3388 	bus_addr_t paddr;
3389 	int totlen, error;
3390 
3391 	IWN_LOCK_ASSERT(sc);
3392 
3393 	desc = &ring->desc[ring->cur];
3394 	data = &ring->data[ring->cur];
3395 	totlen = 4 + size;
3396 
3397 	if (size > sizeof cmd->data) {
3398 		/* Command is too large to fit in a descriptor. */
3399 		if (totlen > MCLBYTES)
3400 			return EINVAL;
3401 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3402 		if (m == NULL)
3403 			return ENOMEM;
3404 		cmd = mtod(m, struct iwn_tx_cmd *);
3405 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3406 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3407 		if (error != 0) {
3408 			m_freem(m);
3409 			return error;
3410 		}
3411 		data->m = m;
3412 	} else {
3413 		cmd = &ring->cmd[ring->cur];
3414 		paddr = data->cmd_paddr;
3415 	}
3416 
3417 	cmd->code = code;
3418 	cmd->flags = 0;
3419 	cmd->qid = ring->qid;
3420 	cmd->idx = ring->cur;
3421 	memcpy(cmd->data, buf, size);
3422 
3423 	desc->nsegs = 1;
3424 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3425 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3426 
3427 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3428 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3429 	    cmd->flags, cmd->qid, cmd->idx);
3430 
3431 	if (size > sizeof cmd->data) {
3432 		bus_dmamap_sync(ring->data_dmat, data->map,
3433 		    BUS_DMASYNC_PREWRITE);
3434 	} else {
3435 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3436 		    BUS_DMASYNC_PREWRITE);
3437 	}
3438 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3439 	    BUS_DMASYNC_PREWRITE);
3440 
3441 #ifdef notyet
3442 	/* Update TX scheduler. */
3443 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3444 #endif
3445 
3446 	/* Kick command ring. */
3447 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3448 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3449 
3450 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3451 }
3452 
3453 int
3454 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3455 {
3456 	struct iwn4965_node_info hnode;
3457 	caddr_t src, dst;
3458 
3459 	/*
3460 	 * We use the node structure for 5000 Series internally (it is
3461 	 * a superset of the one for 4965AGN). We thus copy the common
3462 	 * fields before sending the command.
3463 	 */
3464 	src = (caddr_t)node;
3465 	dst = (caddr_t)&hnode;
3466 	memcpy(dst, src, 48);
3467 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3468 	memcpy(dst + 48, src + 72, 20);
3469 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3470 }
3471 
3472 int
3473 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3474 {
3475 	/* Direct mapping. */
3476 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3477 }
3478 
3479 #if 0	/* HT */
3480 static const uint8_t iwn_ridx_to_plcp[] = {
3481 	10, 20, 55, 110, /* CCK */
3482 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3483 };
3484 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3485 	0, 0, 0, 0, 			/* CCK */
3486 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3487 };
3488 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3489 	0, 0, 0, 0, 			/* CCK */
3490 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3491 };
3492 #endif
3493 static const uint8_t iwn_prev_ridx[] = {
3494 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3495 	0, 0, 1, 5,			/* CCK */
3496 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3497 };
3498 
3499 /*
3500  * Configure hardware link parameters for the specified
3501  * node operating on the specified channel.
3502  */
3503 int
3504 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3505 {
3506 	struct ifnet *ifp = sc->sc_ifp;
3507 	struct ieee80211com *ic = ifp->if_l2com;
3508 	struct iwn_cmd_link_quality linkq;
3509 	const struct iwn_rate *rinfo;
3510 	int i;
3511 	uint8_t txant, ridx;
3512 
3513 	/* Use the first valid TX antenna. */
3514 	txant = IWN_LSB(sc->txchainmask);
3515 
3516 	memset(&linkq, 0, sizeof linkq);
3517 	linkq.id = id;
3518 	linkq.antmsk_1stream = txant;
3519 	linkq.antmsk_2stream = IWN_ANT_AB;
3520 	linkq.ampdu_max = 31;
3521 	linkq.ampdu_threshold = 3;
3522 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3523 
3524 #if 0	/* HT */
3525 	if (IEEE80211_IS_CHAN_HT(c))
3526 		linkq.mimo = 1;
3527 #endif
3528 
3529 	if (id == IWN_ID_BSS)
3530 		ridx = IWN_RIDX_OFDM54;
3531 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3532 		ridx = IWN_RIDX_OFDM6;
3533 	else
3534 		ridx = IWN_RIDX_CCK1;
3535 
3536 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3537 		rinfo = &iwn_rates[ridx];
3538 #if 0	/* HT */
3539 		if (IEEE80211_IS_CHAN_HT40(c)) {
3540 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3541 					 | IWN_RIDX_MCS;
3542 			linkq.retry[i].rflags = IWN_RFLAG_HT
3543 					 | IWN_RFLAG_HT40;
3544 			/* XXX shortGI */
3545 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3546 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3547 					 | IWN_RIDX_MCS;
3548 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3549 			/* XXX shortGI */
3550 		} else
3551 #endif
3552 		{
3553 			linkq.retry[i].plcp = rinfo->plcp;
3554 			linkq.retry[i].rflags = rinfo->flags;
3555 		}
3556 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3557 		ridx = iwn_prev_ridx[ridx];
3558 	}
3559 #ifdef IWN_DEBUG
3560 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3561 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3562 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3563 		printf("%s:", __func__);
3564 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3565 			printf(" %d:%x", linkq.retry[i].plcp,
3566 			    linkq.retry[i].rflags);
3567 		printf("\n");
3568 	}
3569 #endif
3570 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3571 }
3572 
3573 /*
3574  * Broadcast node is used to send group-addressed and management frames.
3575  */
3576 int
3577 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3578 {
3579 	const struct iwn_hal *hal = sc->sc_hal;
3580 	struct ifnet *ifp = sc->sc_ifp;
3581 	struct iwn_node_info node;
3582 	int error;
3583 
3584 	memset(&node, 0, sizeof node);
3585 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3586 	node.id = hal->broadcast_id;
3587 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3588 	error = hal->add_node(sc, &node, async);
3589 	if (error != 0)
3590 		return error;
3591 
3592 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3593 	return error;
3594 }
3595 
3596 int
3597 iwn_wme_update(struct ieee80211com *ic)
3598 {
3599 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3600 #define	IWN_TXOP_TO_US(v)		(v<<5)
3601 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3602 	struct iwn_edca_params cmd;
3603 	int i;
3604 
3605 	memset(&cmd, 0, sizeof cmd);
3606 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3607 	for (i = 0; i < WME_NUM_AC; i++) {
3608 		const struct wmeParams *wmep =
3609 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3610 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3611 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3612 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3613 		cmd.ac[i].txoplimit =
3614 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3615 	}
3616 	IEEE80211_UNLOCK(ic);
3617 	IWN_LOCK(sc);
3618 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3619 	IWN_UNLOCK(sc);
3620 	IEEE80211_LOCK(ic);
3621 	return 0;
3622 #undef IWN_TXOP_TO_US
3623 #undef IWN_EXP2
3624 }
3625 
3626 static void
3627 iwn_update_mcast(struct ifnet *ifp)
3628 {
3629 	/* Ignore */
3630 }
3631 
3632 void
3633 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3634 {
3635 	struct iwn_cmd_led led;
3636 
3637 	/* Clear microcode LED ownership. */
3638 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3639 
3640 	led.which = which;
3641 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3642 	led.off = off;
3643 	led.on = on;
3644 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3645 }
3646 
3647 /*
3648  * Set the critical temperature at which the firmware will stop the radio
3649  * and notify us.
3650  */
3651 int
3652 iwn_set_critical_temp(struct iwn_softc *sc)
3653 {
3654 	struct iwn_critical_temp crit;
3655 	int32_t temp;
3656 
3657 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3658 
3659 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3660 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3661 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3662 		temp = IWN_CTOK(110);
3663 	else
3664 		temp = 110;
3665 	memset(&crit, 0, sizeof crit);
3666 	crit.tempR = htole32(temp);
3667 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3668 	    temp);
3669 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3670 }
3671 
3672 int
3673 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3674 {
3675 	struct iwn_cmd_timing cmd;
3676 	uint64_t val, mod;
3677 
3678 	memset(&cmd, 0, sizeof cmd);
3679 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3680 	cmd.bintval = htole16(ni->ni_intval);
3681 	cmd.lintval = htole16(10);
3682 
3683 	/* Compute remaining time until next beacon. */
3684 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3685 	mod = le64toh(cmd.tstamp) % val;
3686 	cmd.binitval = htole32((uint32_t)(val - mod));
3687 
3688 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3689 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3690 
3691 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3692 }
3693 
3694 void
3695 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3696 {
3697 	/* Adjust TX power if need be (delta >= 3 degC.) */
3698 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3699 	    __func__, sc->temp, temp);
3700 	if (abs(temp - sc->temp) >= 3) {
3701 		/* Record temperature of last calibration. */
3702 		sc->temp = temp;
3703 		(void)iwn4965_set_txpower(sc, 1);
3704 	}
3705 }
3706 
3707 /*
3708  * Set TX power for current channel (each rate has its own power settings).
3709  * This function takes into account the regulatory information from EEPROM,
3710  * the current temperature and the current voltage.
3711  */
3712 int
3713 iwn4965_set_txpower(struct iwn_softc *sc, int async)
3714 {
3715 /* Fixed-point arithmetic division using a n-bit fractional part. */
3716 #define fdivround(a, b, n)	\
3717 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3718 /* Linear interpolation. */
3719 #define interpolate(x, x1, y1, x2, y2, n)	\
3720 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3721 
3722 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3723 	struct ifnet *ifp = sc->sc_ifp;
3724 	struct ieee80211com *ic = ifp->if_l2com;
3725 	struct iwn_ucode_info *uc = &sc->ucode_info;
3726 	struct ieee80211_channel *ch;
3727 	struct iwn4965_cmd_txpower cmd;
3728 	struct iwn4965_eeprom_chan_samples *chans;
3729 	int32_t vdiff, tdiff;
3730 	int i, c, grp, maxpwr;
3731 	const uint8_t *rf_gain, *dsp_gain;
3732 	uint8_t chan;
3733 
3734 	/* Retrieve current channel from last RXON. */
3735 	chan = sc->rxon.chan;
3736 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3737 	    chan);
3738 	ch = &ic->ic_channels[chan];
3739 
3740 	memset(&cmd, 0, sizeof cmd);
3741 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3742 	cmd.chan = chan;
3743 
3744 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3745 		maxpwr   = sc->maxpwr5GHz;
3746 		rf_gain  = iwn4965_rf_gain_5ghz;
3747 		dsp_gain = iwn4965_dsp_gain_5ghz;
3748 	} else {
3749 		maxpwr   = sc->maxpwr2GHz;
3750 		rf_gain  = iwn4965_rf_gain_2ghz;
3751 		dsp_gain = iwn4965_dsp_gain_2ghz;
3752 	}
3753 
3754 	/* Compute voltage compensation. */
3755 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3756 	if (vdiff > 0)
3757 		vdiff *= 2;
3758 	if (abs(vdiff) > 2)
3759 		vdiff = 0;
3760 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3761 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3762 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3763 
3764 	/* Get channel attenuation group. */
3765 	if (chan <= 20)		/* 1-20 */
3766 		grp = 4;
3767 	else if (chan <= 43)	/* 34-43 */
3768 		grp = 0;
3769 	else if (chan <= 70)	/* 44-70 */
3770 		grp = 1;
3771 	else if (chan <= 124)	/* 71-124 */
3772 		grp = 2;
3773 	else			/* 125-200 */
3774 		grp = 3;
3775 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3776 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3777 
3778 	/* Get channel sub-band. */
3779 	for (i = 0; i < IWN_NBANDS; i++)
3780 		if (sc->bands[i].lo != 0 &&
3781 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3782 			break;
3783 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3784 		return EINVAL;
3785 	chans = sc->bands[i].chans;
3786 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3787 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3788 
3789 	for (c = 0; c < 2; c++) {
3790 		uint8_t power, gain, temp;
3791 		int maxchpwr, pwr, ridx, idx;
3792 
3793 		power = interpolate(chan,
3794 		    chans[0].num, chans[0].samples[c][1].power,
3795 		    chans[1].num, chans[1].samples[c][1].power, 1);
3796 		gain  = interpolate(chan,
3797 		    chans[0].num, chans[0].samples[c][1].gain,
3798 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3799 		temp  = interpolate(chan,
3800 		    chans[0].num, chans[0].samples[c][1].temp,
3801 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3802 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3803 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3804 		    __func__, c, power, gain, temp);
3805 
3806 		/* Compute temperature compensation. */
3807 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3808 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3809 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3810 		    __func__, tdiff, sc->temp, temp);
3811 
3812 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3813 			/* Convert dBm to half-dBm. */
3814 			maxchpwr = sc->maxpwr[chan] * 2;
3815 			if ((ridx / 8) & 1)
3816 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3817 
3818 			pwr = maxpwr;
3819 
3820 			/* Adjust TX power based on rate. */
3821 			if ((ridx % 8) == 5)
3822 				pwr -= 15;	/* OFDM48: -7.5dB */
3823 			else if ((ridx % 8) == 6)
3824 				pwr -= 17;	/* OFDM54: -8.5dB */
3825 			else if ((ridx % 8) == 7)
3826 				pwr -= 20;	/* OFDM60: -10dB */
3827 			else
3828 				pwr -= 10;	/* Others: -5dB */
3829 
3830 			/* Do not exceed channel max TX power. */
3831 			if (pwr > maxchpwr)
3832 				pwr = maxchpwr;
3833 
3834 			idx = gain - (pwr - power) - tdiff - vdiff;
3835 			if ((ridx / 8) & 1)	/* MIMO */
3836 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3837 
3838 			if (cmd.band == 0)
3839 				idx += 9;	/* 5GHz */
3840 			if (ridx == IWN_RIDX_MAX)
3841 				idx += 5;	/* CCK */
3842 
3843 			/* Make sure idx stays in a valid range. */
3844 			if (idx < 0)
3845 				idx = 0;
3846 			else if (idx > IWN4965_MAX_PWR_INDEX)
3847 				idx = IWN4965_MAX_PWR_INDEX;
3848 
3849 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3850 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3851 			    __func__, c, ridx, idx);
3852 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3853 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3854 		}
3855 	}
3856 
3857 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3858 	    "%s: set tx power for chan %d\n", __func__, chan);
3859 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3860 
3861 #undef interpolate
3862 #undef fdivround
3863 }
3864 
3865 int
3866 iwn5000_set_txpower(struct iwn_softc *sc, int async)
3867 {
3868 	struct iwn5000_cmd_txpower cmd;
3869 
3870 	/*
3871 	 * TX power calibration is handled automatically by the firmware
3872 	 * for 5000 Series.
3873 	 */
3874 	memset(&cmd, 0, sizeof cmd);
3875 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3876 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3877 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3878 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3879 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3880 }
3881 
3882 /*
3883  * Retrieve the maximum RSSI (in dBm) among receivers.
3884  */
3885 int
3886 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3887 {
3888 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3889 	uint8_t mask, agc;
3890 	int rssi;
3891 
3892 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3893 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3894 
3895 	rssi = 0;
3896 #if 0
3897 	if (mask & IWN_ANT_A)	/* Ant A */
3898 		rssi = max(rssi, phy->rssi[0]);
3899 	if (mask & IWN_ATH_B)	/* Ant B */
3900 		rssi = max(rssi, phy->rssi[2]);
3901 	if (mask & IWN_ANT_C)	/* Ant C */
3902 		rssi = max(rssi, phy->rssi[4]);
3903 #else
3904 	rssi = max(rssi, phy->rssi[0]);
3905 	rssi = max(rssi, phy->rssi[2]);
3906 	rssi = max(rssi, phy->rssi[4]);
3907 #endif
3908 
3909 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3910 	    "result %d\n", __func__, agc, mask,
3911 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3912 	    rssi - agc - IWN_RSSI_TO_DBM);
3913 	return rssi - agc - IWN_RSSI_TO_DBM;
3914 }
3915 
3916 int
3917 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3918 {
3919 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3920 	int rssi;
3921 	uint8_t agc;
3922 
3923 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3924 
3925 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3926 		   le16toh(phy->rssi[1]) & 0xff);
3927 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3928 
3929 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
3930 	    "result %d\n", __func__, agc,
3931 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3932 	    rssi - agc - IWN_RSSI_TO_DBM);
3933 	return rssi - agc - IWN_RSSI_TO_DBM;
3934 }
3935 
3936 /*
3937  * Retrieve the average noise (in dBm) among receivers.
3938  */
3939 int
3940 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3941 {
3942 	int i, total, nbant, noise;
3943 
3944 	total = nbant = 0;
3945 	for (i = 0; i < 3; i++) {
3946 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3947 			continue;
3948 		total += noise;
3949 		nbant++;
3950 	}
3951 	/* There should be at least one antenna but check anyway. */
3952 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3953 }
3954 
3955 /*
3956  * Compute temperature (in degC) from last received statistics.
3957  */
3958 int
3959 iwn4965_get_temperature(struct iwn_softc *sc)
3960 {
3961 	struct iwn_ucode_info *uc = &sc->ucode_info;
3962 	int32_t r1, r2, r3, r4, temp;
3963 
3964 	r1 = le32toh(uc->temp[0].chan20MHz);
3965 	r2 = le32toh(uc->temp[1].chan20MHz);
3966 	r3 = le32toh(uc->temp[2].chan20MHz);
3967 	r4 = le32toh(sc->rawtemp);
3968 
3969 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
3970 		return 0;
3971 
3972 	/* Sign-extend 23-bit R4 value to 32-bit. */
3973 	r4 = (r4 << 8) >> 8;
3974 	/* Compute temperature in Kelvin. */
3975 	temp = (259 * (r4 - r2)) / (r3 - r1);
3976 	temp = (temp * 97) / 100 + 8;
3977 
3978 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
3979 	    IWN_KTOC(temp));
3980 	return IWN_KTOC(temp);
3981 }
3982 
3983 int
3984 iwn5000_get_temperature(struct iwn_softc *sc)
3985 {
3986 	int32_t temp;
3987 
3988 	/*
3989 	 * Temperature is not used by the driver for 5000 Series because
3990 	 * TX power calibration is handled by firmware.  We export it to
3991 	 * users through the sensor framework though.
3992 	 */
3993 	temp = le32toh(sc->rawtemp);
3994 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3995 		temp = (temp / -5) + sc->temp_off;
3996 		temp = IWN_KTOC(temp);
3997 	}
3998 	return temp;
3999 }
4000 
4001 /*
4002  * Initialize sensitivity calibration state machine.
4003  */
4004 int
4005 iwn_init_sensitivity(struct iwn_softc *sc)
4006 {
4007 	const struct iwn_hal *hal = sc->sc_hal;
4008 	struct iwn_calib_state *calib = &sc->calib;
4009 	uint32_t flags;
4010 	int error;
4011 
4012 	/* Reset calibration state machine. */
4013 	memset(calib, 0, sizeof (*calib));
4014 	calib->state = IWN_CALIB_STATE_INIT;
4015 	calib->cck_state = IWN_CCK_STATE_HIFA;
4016 	/* Set initial correlation values. */
4017 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4018 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4019 	calib->ofdm_x4     = 90;
4020 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4021 	calib->cck_x4      = 125;
4022 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4023 	calib->energy_cck  = sc->limits->energy_cck;
4024 
4025 	/* Write initial sensitivity. */
4026 	error = iwn_send_sensitivity(sc);
4027 	if (error != 0)
4028 		return error;
4029 
4030 	/* Write initial gains. */
4031 	error = hal->init_gains(sc);
4032 	if (error != 0)
4033 		return error;
4034 
4035 	/* Request statistics at each beacon interval. */
4036 	flags = 0;
4037 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4038 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4039 }
4040 
4041 /*
4042  * Collect noise and RSSI statistics for the first 20 beacons received
4043  * after association and use them to determine connected antennas and
4044  * to set differential gains.
4045  */
4046 void
4047 iwn_collect_noise(struct iwn_softc *sc,
4048     const struct iwn_rx_general_stats *stats)
4049 {
4050 	const struct iwn_hal *hal = sc->sc_hal;
4051 	struct iwn_calib_state *calib = &sc->calib;
4052 	uint32_t val;
4053 	int i;
4054 
4055 	/* Accumulate RSSI and noise for all 3 antennas. */
4056 	for (i = 0; i < 3; i++) {
4057 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4058 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4059 	}
4060 	/* NB: We update differential gains only once after 20 beacons. */
4061 	if (++calib->nbeacons < 20)
4062 		return;
4063 
4064 	/* Determine highest average RSSI. */
4065 	val = MAX(calib->rssi[0], calib->rssi[1]);
4066 	val = MAX(calib->rssi[2], val);
4067 
4068 	/* Determine which antennas are connected. */
4069 	sc->chainmask = 0;
4070 	for (i = 0; i < 3; i++)
4071 		if (val - calib->rssi[i] <= 15 * 20)
4072 			sc->chainmask |= 1 << i;
4073 	/* If none of the TX antennas are connected, keep at least one. */
4074 	if ((sc->chainmask & sc->txchainmask) == 0)
4075 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4076 
4077 	(void)hal->set_gains(sc);
4078 	calib->state = IWN_CALIB_STATE_RUN;
4079 
4080 #ifdef notyet
4081 	/* XXX Disable RX chains with no antennas connected. */
4082 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4083 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4084 #endif
4085 
4086 #if 0
4087 	/* XXX: not yet */
4088 	/* Enable power-saving mode if requested by user. */
4089 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4090 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4091 #endif
4092 }
4093 
4094 int
4095 iwn4965_init_gains(struct iwn_softc *sc)
4096 {
4097 	struct iwn_phy_calib_gain cmd;
4098 
4099 	memset(&cmd, 0, sizeof cmd);
4100 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4101 	/* Differential gains initially set to 0 for all 3 antennas. */
4102 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4103 	    "%s: setting initial differential gains\n", __func__);
4104 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4105 }
4106 
4107 int
4108 iwn5000_init_gains(struct iwn_softc *sc)
4109 {
4110 	struct iwn_phy_calib cmd;
4111 
4112 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
4113 		return 0;
4114 
4115 	memset(&cmd, 0, sizeof cmd);
4116 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4117 	cmd.ngroups = 1;
4118 	cmd.isvalid = 1;
4119 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4120 	    "%s: setting initial differential gains\n", __func__);
4121 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4122 }
4123 
4124 int
4125 iwn4965_set_gains(struct iwn_softc *sc)
4126 {
4127 	struct iwn_calib_state *calib = &sc->calib;
4128 	struct iwn_phy_calib_gain cmd;
4129 	int i, delta, noise;
4130 
4131 	/* Get minimal noise among connected antennas. */
4132 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4133 	for (i = 0; i < 3; i++)
4134 		if (sc->chainmask & (1 << i))
4135 			noise = MIN(calib->noise[i], noise);
4136 
4137 	memset(&cmd, 0, sizeof cmd);
4138 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4139 	/* Set differential gains for connected antennas. */
4140 	for (i = 0; i < 3; i++) {
4141 		if (sc->chainmask & (1 << i)) {
4142 			/* Compute attenuation (in unit of 1.5dB). */
4143 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4144 			/* NB: delta <= 0 */
4145 			/* Limit to [-4.5dB,0]. */
4146 			cmd.gain[i] = MIN(abs(delta), 3);
4147 			if (delta < 0)
4148 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4149 		}
4150 	}
4151 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4152 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4153 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4154 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4155 }
4156 
4157 int
4158 iwn5000_set_gains(struct iwn_softc *sc)
4159 {
4160 	struct iwn_calib_state *calib = &sc->calib;
4161 	struct iwn_phy_calib_gain cmd;
4162 	int i, ant, delta;
4163 
4164 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
4165 		return 0;
4166 
4167 	memset(&cmd, 0, sizeof cmd);
4168 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4169 	cmd.ngroups = 1;
4170 	cmd.isvalid = 1;
4171 	/* Get first available RX antenna as referential. */
4172 	ant = IWN_LSB(sc->rxchainmask);
4173 	/* Set differential gains for other antennas. */
4174 	for (i = ant + 1; i < 3; i++) {
4175 		if (sc->chainmask & (1 << i)) {
4176 			/* The delta is relative to antenna "ant". */
4177 			delta = ((int32_t)calib->noise[ant] -
4178 			    (int32_t)calib->noise[i]) / 30;
4179 			/* Limit to [-4.5dB,+4.5dB]. */
4180 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4181 			if (delta < 0)
4182 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4183 		}
4184 	}
4185 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4186 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4187 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4188 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4189 }
4190 
4191 /*
4192  * Tune RF RX sensitivity based on the number of false alarms detected
4193  * during the last beacon period.
4194  */
4195 void
4196 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4197 {
4198 #define inc(val, inc, max)			\
4199 	if ((val) < (max)) {			\
4200 		if ((val) < (max) - (inc))	\
4201 			(val) += (inc);		\
4202 		else				\
4203 			(val) = (max);		\
4204 		needs_update = 1;		\
4205 	}
4206 #define dec(val, dec, min)			\
4207 	if ((val) > (min)) {			\
4208 		if ((val) > (min) + (dec))	\
4209 			(val) -= (dec);		\
4210 		else				\
4211 			(val) = (min);		\
4212 		needs_update = 1;		\
4213 	}
4214 
4215 	const struct iwn_sensitivity_limits *limits = sc->limits;
4216 	struct iwn_calib_state *calib = &sc->calib;
4217 	uint32_t val, rxena, fa;
4218 	uint32_t energy[3], energy_min;
4219 	uint8_t noise[3], noise_ref;
4220 	int i, needs_update = 0;
4221 
4222 	/* Check that we've been enabled long enough. */
4223 	rxena = le32toh(stats->general.load);
4224 	if (rxena == 0)
4225 		return;
4226 
4227 	/* Compute number of false alarms since last call for OFDM. */
4228 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4229 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4230 	fa *= 200 * 1024;	/* 200TU */
4231 
4232 	/* Save counters values for next call. */
4233 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4234 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4235 
4236 	if (fa > 50 * rxena) {
4237 		/* High false alarm count, decrease sensitivity. */
4238 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4239 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4240 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4241 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4242 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4243 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4244 
4245 	} else if (fa < 5 * rxena) {
4246 		/* Low false alarm count, increase sensitivity. */
4247 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4248 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4249 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4250 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4251 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4252 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4253 	}
4254 
4255 	/* Compute maximum noise among 3 receivers. */
4256 	for (i = 0; i < 3; i++)
4257 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4258 	val = MAX(noise[0], noise[1]);
4259 	val = MAX(noise[2], val);
4260 	/* Insert it into our samples table. */
4261 	calib->noise_samples[calib->cur_noise_sample] = val;
4262 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4263 
4264 	/* Compute maximum noise among last 20 samples. */
4265 	noise_ref = calib->noise_samples[0];
4266 	for (i = 1; i < 20; i++)
4267 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4268 
4269 	/* Compute maximum energy among 3 receivers. */
4270 	for (i = 0; i < 3; i++)
4271 		energy[i] = le32toh(stats->general.energy[i]);
4272 	val = MIN(energy[0], energy[1]);
4273 	val = MIN(energy[2], val);
4274 	/* Insert it into our samples table. */
4275 	calib->energy_samples[calib->cur_energy_sample] = val;
4276 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4277 
4278 	/* Compute minimum energy among last 10 samples. */
4279 	energy_min = calib->energy_samples[0];
4280 	for (i = 1; i < 10; i++)
4281 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4282 	energy_min += 6;
4283 
4284 	/* Compute number of false alarms since last call for CCK. */
4285 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4286 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4287 	fa *= 200 * 1024;	/* 200TU */
4288 
4289 	/* Save counters values for next call. */
4290 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4291 	calib->fa_cck = le32toh(stats->cck.fa);
4292 
4293 	if (fa > 50 * rxena) {
4294 		/* High false alarm count, decrease sensitivity. */
4295 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4296 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4297 		calib->cck_state = IWN_CCK_STATE_HIFA;
4298 		calib->low_fa = 0;
4299 
4300 		if (calib->cck_x4 > 160) {
4301 			calib->noise_ref = noise_ref;
4302 			if (calib->energy_cck > 2)
4303 				dec(calib->energy_cck, 2, energy_min);
4304 		}
4305 		if (calib->cck_x4 < 160) {
4306 			calib->cck_x4 = 161;
4307 			needs_update = 1;
4308 		} else
4309 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4310 
4311 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4312 
4313 	} else if (fa < 5 * rxena) {
4314 		/* Low false alarm count, increase sensitivity. */
4315 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4316 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4317 		calib->cck_state = IWN_CCK_STATE_LOFA;
4318 		calib->low_fa++;
4319 
4320 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4321 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4322 		     calib->low_fa > 100)) {
4323 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4324 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4325 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4326 		}
4327 	} else {
4328 		/* Not worth to increase or decrease sensitivity. */
4329 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4330 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4331 		calib->low_fa = 0;
4332 		calib->noise_ref = noise_ref;
4333 
4334 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4335 			/* Previous interval had many false alarms. */
4336 			dec(calib->energy_cck, 8, energy_min);
4337 		}
4338 		calib->cck_state = IWN_CCK_STATE_INIT;
4339 	}
4340 
4341 	if (needs_update)
4342 		(void)iwn_send_sensitivity(sc);
4343 #undef dec
4344 #undef inc
4345 }
4346 
4347 int
4348 iwn_send_sensitivity(struct iwn_softc *sc)
4349 {
4350 	struct iwn_calib_state *calib = &sc->calib;
4351 	struct iwn_sensitivity_cmd cmd;
4352 
4353 	memset(&cmd, 0, sizeof cmd);
4354 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4355 	/* OFDM modulation. */
4356 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4357 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4358 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4359 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4360 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4361 	cmd.energy_ofdm_th   = htole16(62);
4362 	/* CCK modulation. */
4363 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4364 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4365 	cmd.energy_cck       = htole16(calib->energy_cck);
4366 	/* Barker modulation: use default values. */
4367 	cmd.corr_barker      = htole16(190);
4368 	cmd.corr_barker_mrc  = htole16(390);
4369 
4370 	DPRINTF(sc, IWN_DEBUG_RESET,
4371 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4372 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4373 	    calib->ofdm_mrc_x4, calib->cck_x4,
4374 	    calib->cck_mrc_x4, calib->energy_cck);
4375 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4376 }
4377 
4378 /*
4379  * Set STA mode power saving level (between 0 and 5).
4380  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4381  */
4382 int
4383 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4384 {
4385 	const struct iwn_pmgt *pmgt;
4386 	struct iwn_pmgt_cmd cmd;
4387 	uint32_t max, skip_dtim;
4388 	uint32_t tmp;
4389 	int i;
4390 
4391 	/* Select which PS parameters to use. */
4392 	if (dtim <= 2)
4393 		pmgt = &iwn_pmgt[0][level];
4394 	else if (dtim <= 10)
4395 		pmgt = &iwn_pmgt[1][level];
4396 	else
4397 		pmgt = &iwn_pmgt[2][level];
4398 
4399 	memset(&cmd, 0, sizeof cmd);
4400 	if (level != 0)	/* not CAM */
4401 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4402 	if (level == 5)
4403 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4404 	/* Retrieve PCIe Active State Power Management (ASPM). */
4405 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4406 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4407 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4408 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4409 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4410 
4411 	if (dtim == 0) {
4412 		dtim = 1;
4413 		skip_dtim = 0;
4414 	} else
4415 		skip_dtim = pmgt->skip_dtim;
4416 	if (skip_dtim != 0) {
4417 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4418 		max = pmgt->intval[4];
4419 		if (max == (uint32_t)-1)
4420 			max = dtim * (skip_dtim + 1);
4421 		else if (max > dtim)
4422 			max = (max / dtim) * dtim;
4423 	} else
4424 		max = dtim;
4425 	for (i = 0; i < 5; i++)
4426 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4427 
4428 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4429 	    level);
4430 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4431 }
4432 
4433 int
4434 iwn_config(struct iwn_softc *sc)
4435 {
4436 	const struct iwn_hal *hal = sc->sc_hal;
4437 	struct ifnet *ifp = sc->sc_ifp;
4438 	struct ieee80211com *ic = ifp->if_l2com;
4439 	struct iwn_bluetooth bluetooth;
4440 	uint32_t txmask;
4441 	int error;
4442 	uint16_t rxchain;
4443 
4444 	/* Configure valid TX chains for 5000 Series. */
4445 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4446 		txmask = htole32(sc->txchainmask);
4447 		DPRINTF(sc, IWN_DEBUG_RESET,
4448 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4449 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4450 		    sizeof txmask, 0);
4451 		if (error != 0) {
4452 			device_printf(sc->sc_dev,
4453 			    "%s: could not configure valid TX chains, "
4454 			    "error %d\n", __func__, error);
4455 			return error;
4456 		}
4457 	}
4458 
4459 	/* Configure bluetooth coexistence. */
4460 	memset(&bluetooth, 0, sizeof bluetooth);
4461 	bluetooth.flags = IWN_BT_COEX_MODE_4WIRE;
4462 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4463 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4464 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4465 	    __func__);
4466 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4467 	if (error != 0) {
4468 		device_printf(sc->sc_dev,
4469 		    "%s: could not configure bluetooth coexistence, error %d\n",
4470 		    __func__, error);
4471 		return error;
4472 	}
4473 
4474 	/* Set mode, channel, RX filter and enable RX. */
4475 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4476 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4477 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4478 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4479 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4480 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4481 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4482 	switch (ic->ic_opmode) {
4483 	case IEEE80211_M_STA:
4484 		sc->rxon.mode = IWN_MODE_STA;
4485 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4486 		break;
4487 	case IEEE80211_M_MONITOR:
4488 		sc->rxon.mode = IWN_MODE_MONITOR;
4489 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4490 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4491 		break;
4492 	default:
4493 		/* Should not get there. */
4494 		break;
4495 	}
4496 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4497 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4498 	sc->rxon.ht_single_mask = 0xff;
4499 	sc->rxon.ht_dual_mask = 0xff;
4500 	sc->rxon.ht_triple_mask = 0xff;
4501 	rxchain =
4502 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4503 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4504 	    IWN_RXCHAIN_IDLE_COUNT(2);
4505 	sc->rxon.rxchain = htole16(rxchain);
4506 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4507 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4508 	if (error != 0) {
4509 		device_printf(sc->sc_dev,
4510 		    "%s: RXON command failed\n", __func__);
4511 		return error;
4512 	}
4513 
4514 	error = iwn_add_broadcast_node(sc, 0);
4515 	if (error != 0) {
4516 		device_printf(sc->sc_dev,
4517 		    "%s: could not add broadcast node\n", __func__);
4518 		return error;
4519 	}
4520 
4521 	/* Configuration has changed, set TX power accordingly. */
4522 	error = hal->set_txpower(sc, 0);
4523 	if (error != 0) {
4524 		device_printf(sc->sc_dev,
4525 		    "%s: could not set TX power\n", __func__);
4526 		return error;
4527 	}
4528 
4529 	error = iwn_set_critical_temp(sc);
4530 	if (error != 0) {
4531 		device_printf(sc->sc_dev,
4532 		    "%s: ccould not set critical temperature\n", __func__);
4533 		return error;
4534 	}
4535 
4536 	/* Set power saving level to CAM during initialization. */
4537 	error = iwn_set_pslevel(sc, 0, 0, 0);
4538 	if (error != 0) {
4539 		device_printf(sc->sc_dev,
4540 		    "%s: could not set power saving level\n", __func__);
4541 		return error;
4542 	}
4543 	return 0;
4544 }
4545 
4546 int
4547 iwn_scan(struct iwn_softc *sc)
4548 {
4549 	struct ifnet *ifp = sc->sc_ifp;
4550 	struct ieee80211com *ic = ifp->if_l2com;
4551 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4552 	struct iwn_scan_hdr *hdr;
4553 	struct iwn_cmd_data *tx;
4554 	struct iwn_scan_essid *essid;
4555 	struct iwn_scan_chan *chan;
4556 	struct ieee80211_frame *wh;
4557 	struct ieee80211_rateset *rs;
4558 	struct ieee80211_channel *c;
4559 	int buflen, error, nrates;
4560 	uint16_t rxchain;
4561 	uint8_t *buf, *frm, txant;
4562 
4563 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4564 	if (buf == NULL) {
4565 		device_printf(sc->sc_dev,
4566 		    "%s: could not allocate buffer for scan command\n",
4567 		    __func__);
4568 		return ENOMEM;
4569 	}
4570 	hdr = (struct iwn_scan_hdr *)buf;
4571 
4572 	/*
4573 	 * Move to the next channel if no frames are received within 10ms
4574 	 * after sending the probe request.
4575 	 */
4576 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4577 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4578 
4579 	/* Select antennas for scanning. */
4580 	rxchain =
4581 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4582 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4583 	    IWN_RXCHAIN_DRIVER_FORCE;
4584 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4585 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4586 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4587 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4588 	} else	/* Use all available RX antennas. */
4589 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4590 	hdr->rxchain = htole16(rxchain);
4591 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4592 
4593 	tx = (struct iwn_cmd_data *)(hdr + 1);
4594 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4595 	tx->id = sc->sc_hal->broadcast_id;
4596 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4597 
4598 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4599 		/* Send probe requests at 6Mbps. */
4600 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4601 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4602 	} else {
4603 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4604 		/* Send probe requests at 1Mbps. */
4605 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4606 		tx->rflags = IWN_RFLAG_CCK;
4607 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4608 	}
4609 	/* Use the first valid TX antenna. */
4610 	txant = IWN_LSB(sc->txchainmask);
4611 	tx->rflags |= IWN_RFLAG_ANT(txant);
4612 
4613 	essid = (struct iwn_scan_essid *)(tx + 1);
4614 	if (ss->ss_ssid[0].len != 0) {
4615 		essid[0].id = IEEE80211_ELEMID_SSID;
4616 		essid[0].len = ss->ss_ssid[0].len;
4617 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4618 	}
4619 
4620 	/*
4621 	 * Build a probe request frame.  Most of the following code is a
4622 	 * copy & paste of what is done in net80211.
4623 	 */
4624 	wh = (struct ieee80211_frame *)(essid + 20);
4625 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4626 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4627 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4628 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4629 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4630 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4631 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4632 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4633 
4634 	frm = (uint8_t *)(wh + 1);
4635 
4636 	/* Add SSID IE. */
4637 	*frm++ = IEEE80211_ELEMID_SSID;
4638 	*frm++ = ss->ss_ssid[0].len;
4639 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4640 	frm += ss->ss_ssid[0].len;
4641 
4642 	/* Add supported rates IE. */
4643 	*frm++ = IEEE80211_ELEMID_RATES;
4644 	nrates = rs->rs_nrates;
4645 	if (nrates > IEEE80211_RATE_SIZE)
4646 		nrates = IEEE80211_RATE_SIZE;
4647 	*frm++ = nrates;
4648 	memcpy(frm, rs->rs_rates, nrates);
4649 	frm += nrates;
4650 
4651 	/* Add supported xrates IE. */
4652 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4653 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4654 		*frm++ = IEEE80211_ELEMID_XRATES;
4655 		*frm++ = (uint8_t)nrates;
4656 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4657 		frm += nrates;
4658 	}
4659 
4660 	/* Set length of probe request. */
4661 	tx->len = htole16(frm - (uint8_t *)wh);
4662 
4663 	c = ic->ic_curchan;
4664 	chan = (struct iwn_scan_chan *)frm;
4665 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4666 	chan->flags = 0;
4667 	if (ss->ss_nssid > 0)
4668 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4669 	chan->dsp_gain = 0x6e;
4670 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4671 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4672 		chan->rf_gain = 0x3b;
4673 		chan->active  = htole16(24);
4674 		chan->passive = htole16(110);
4675 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4676 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4677 		chan->rf_gain = 0x3b;
4678 		chan->active  = htole16(24);
4679 		if (sc->rxon.associd)
4680 			chan->passive = htole16(78);
4681 		else
4682 			chan->passive = htole16(110);
4683 		hdr->crc_threshold = htole16(1);
4684 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4685 		chan->rf_gain = 0x28;
4686 		chan->active  = htole16(36);
4687 		chan->passive = htole16(120);
4688 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4689 	} else {
4690 		chan->rf_gain = 0x28;
4691 		chan->active  = htole16(36);
4692 		if (sc->rxon.associd)
4693 			chan->passive = htole16(88);
4694 		else
4695 			chan->passive = htole16(120);
4696 		hdr->crc_threshold = htole16(1);
4697 	}
4698 
4699 	DPRINTF(sc, IWN_DEBUG_STATE,
4700 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4701 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4702 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4703 	    chan->active, chan->passive);
4704 
4705 	hdr->nchan++;
4706 	chan++;
4707 	buflen = (uint8_t *)chan - buf;
4708 	hdr->len = htole16(buflen);
4709 
4710 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4711 	    hdr->nchan);
4712 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4713 	free(buf, M_DEVBUF);
4714 	return error;
4715 }
4716 
4717 int
4718 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4719 {
4720 	const struct iwn_hal *hal = sc->sc_hal;
4721 	struct ifnet *ifp = sc->sc_ifp;
4722 	struct ieee80211com *ic = ifp->if_l2com;
4723 	struct ieee80211_node *ni = vap->iv_bss;
4724 	int error;
4725 
4726 	sc->calib.state = IWN_CALIB_STATE_INIT;
4727 
4728 	/* Update adapter configuration. */
4729 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4730 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4731 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4732 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4733 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4734 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4735 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4736 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4737 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4738 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4739 		sc->rxon.cck_mask  = 0;
4740 		sc->rxon.ofdm_mask = 0x15;
4741 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4742 		sc->rxon.cck_mask  = 0x03;
4743 		sc->rxon.ofdm_mask = 0;
4744 	} else {
4745 		/* XXX assume 802.11b/g */
4746 		sc->rxon.cck_mask  = 0x0f;
4747 		sc->rxon.ofdm_mask = 0x15;
4748 	}
4749 	DPRINTF(sc, IWN_DEBUG_STATE,
4750 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4751 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4752 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4753 	    __func__,
4754 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4755 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4756 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4757 	    le16toh(sc->rxon.rxchain),
4758 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4759 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4760 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4761 	if (error != 0) {
4762 		device_printf(sc->sc_dev,
4763 		    "%s: RXON command failed, error %d\n", __func__, error);
4764 		return error;
4765 	}
4766 
4767 	/* Configuration has changed, set TX power accordingly. */
4768 	error = hal->set_txpower(sc, 1);
4769 	if (error != 0) {
4770 		device_printf(sc->sc_dev,
4771 		    "%s: could not set Tx power, error %d\n", __func__, error);
4772 		return error;
4773 	}
4774 	/*
4775 	 * Reconfiguring RXON clears the firmware nodes table so we must
4776 	 * add the broadcast node again.
4777 	 */
4778 	error = iwn_add_broadcast_node(sc, 1);
4779 	if (error != 0) {
4780 		device_printf(sc->sc_dev,
4781 		    "%s: could not add broadcast node, error %d\n",
4782 		    __func__, error);
4783 		return error;
4784 	}
4785 	return 0;
4786 }
4787 
4788 /*
4789  * Configure the adapter for associated state.
4790  */
4791 int
4792 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4793 {
4794 #define	MS(v,x)	(((v) & x) >> x##_S)
4795 	const struct iwn_hal *hal = sc->sc_hal;
4796 	struct ifnet *ifp = sc->sc_ifp;
4797 	struct ieee80211com *ic = ifp->if_l2com;
4798 	struct ieee80211_node *ni = vap->iv_bss;
4799 	struct iwn_node_info node;
4800 	int error;
4801 
4802 	sc->calib.state = IWN_CALIB_STATE_INIT;
4803 
4804 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4805 		/* Link LED blinks while monitoring. */
4806 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4807 		return 0;
4808 	}
4809 	error = iwn_set_timing(sc, ni);
4810 	if (error != 0) {
4811 		device_printf(sc->sc_dev,
4812 		    "%s: could not set timing, error %d\n", __func__, error);
4813 		return error;
4814 	}
4815 
4816 	/* Update adapter configuration. */
4817 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4818 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4819 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4820 	/* Short preamble and slot time are negotiated when associating. */
4821 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4822 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4823 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4824 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4825 	else
4826 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4827 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4828 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4829 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4830 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4831 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4832 		sc->rxon.cck_mask  = 0;
4833 		sc->rxon.ofdm_mask = 0x15;
4834 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4835 		sc->rxon.cck_mask  = 0x03;
4836 		sc->rxon.ofdm_mask = 0;
4837 	} else {
4838 		/* XXX assume 802.11b/g */
4839 		sc->rxon.cck_mask  = 0x0f;
4840 		sc->rxon.ofdm_mask = 0x15;
4841 	}
4842 #if 0	/* HT */
4843 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4844 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4845 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4846 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4847 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4848 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4849 		else
4850 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4851 		sc->rxon.rxchain = htole16(
4852 			  IWN_RXCHAIN_VALID(3)
4853 			| IWN_RXCHAIN_MIMO_COUNT(3)
4854 			| IWN_RXCHAIN_IDLE_COUNT(1)
4855 			| IWN_RXCHAIN_MIMO_FORCE);
4856 
4857 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4858 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4859 	} else
4860 		maxrxampdu = ampdudensity = 0;
4861 #endif
4862 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4863 
4864 	DPRINTF(sc, IWN_DEBUG_STATE,
4865 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4866 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4867 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4868 	    __func__,
4869 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4870 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4871 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4872 	    le16toh(sc->rxon.rxchain),
4873 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4874 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4875 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4876 	if (error != 0) {
4877 		device_printf(sc->sc_dev,
4878 		    "%s: could not update configuration, error %d\n",
4879 		    __func__, error);
4880 		return error;
4881 	}
4882 
4883 
4884 	/* Configuration has changed, set TX power accordingly. */
4885 	error = hal->set_txpower(sc, 1);
4886 	if (error != 0) {
4887 		device_printf(sc->sc_dev,
4888 		    "%s: could not set Tx power, error %d\n", __func__, error);
4889 		return error;
4890 	}
4891 
4892 	/* Add BSS node. */
4893 	memset(&node, 0, sizeof node);
4894 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4895 	node.id = IWN_ID_BSS;
4896 #ifdef notyet
4897 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4898 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4899 #endif
4900 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4901 	    __func__, node.id, le32toh(node.htflags));
4902 	error = hal->add_node(sc, &node, 1);
4903 	if (error != 0) {
4904 		device_printf(sc->sc_dev, "could not add BSS node\n");
4905 		return error;
4906 	}
4907 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4908 	    node.id);
4909 	error = iwn_set_link_quality(sc, node.id, 1);
4910 	if (error != 0) {
4911 		device_printf(sc->sc_dev,
4912 		    "%s: could not setup MRR for node %d, error %d\n",
4913 		    __func__, node.id, error);
4914 		return error;
4915 	}
4916 
4917 	error = iwn_init_sensitivity(sc);
4918 	if (error != 0) {
4919 		device_printf(sc->sc_dev,
4920 		    "%s: could not set sensitivity, error %d\n",
4921 		    __func__, error);
4922 		return error;
4923 	}
4924 
4925 	/* Start periodic calibration timer. */
4926 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4927 	iwn_calib_reset(sc);
4928 
4929 	/* Link LED always on while associated. */
4930 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4931 
4932 	return 0;
4933 #undef MS
4934 }
4935 
4936 #if 0	/* HT */
4937 /*
4938  * This function is called by upper layer when an ADDBA request is received
4939  * from another STA and before the ADDBA response is sent.
4940  */
4941 int
4942 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4943     uint8_t tid)
4944 {
4945 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4946 	struct iwn_softc *sc = ic->ic_softc;
4947 	struct iwn_node *wn = (void *)ni;
4948 	struct iwn_node_info node;
4949 
4950 	memset(&node, 0, sizeof node);
4951 	node.id = wn->id;
4952 	node.control = IWN_NODE_UPDATE;
4953 	node.flags = IWN_FLAG_SET_ADDBA;
4954 	node.addba_tid = tid;
4955 	node.addba_ssn = htole16(ba->ba_winstart);
4956 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
4957 	    wn->id, tid, ba->ba_winstart));
4958 	return sc->sc_hal->add_node(sc, &node, 1);
4959 }
4960 
4961 /*
4962  * This function is called by upper layer on teardown of an HT-immediate
4963  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
4964  */
4965 void
4966 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
4967     uint8_t tid)
4968 {
4969 	struct iwn_softc *sc = ic->ic_softc;
4970 	struct iwn_node *wn = (void *)ni;
4971 	struct iwn_node_info node;
4972 
4973 	memset(&node, 0, sizeof node);
4974 	node.id = wn->id;
4975 	node.control = IWN_NODE_UPDATE;
4976 	node.flags = IWN_FLAG_SET_DELBA;
4977 	node.delba_tid = tid;
4978 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
4979 	(void)sc->sc_hal->add_node(sc, &node, 1);
4980 }
4981 
4982 /*
4983  * This function is called by upper layer when an ADDBA response is received
4984  * from another STA.
4985  */
4986 int
4987 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4988     uint8_t tid)
4989 {
4990 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
4991 	struct iwn_softc *sc = ic->ic_softc;
4992 	const struct iwn_hal *hal = sc->sc_hal;
4993 	struct iwn_node *wn = (void *)ni;
4994 	struct iwn_node_info node;
4995 	int error;
4996 
4997 	/* Enable TX for the specified RA/TID. */
4998 	wn->disable_tid &= ~(1 << tid);
4999 	memset(&node, 0, sizeof node);
5000 	node.id = wn->id;
5001 	node.control = IWN_NODE_UPDATE;
5002 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5003 	node.disable_tid = htole16(wn->disable_tid);
5004 	error = hal->add_node(sc, &node, 1);
5005 	if (error != 0)
5006 		return error;
5007 
5008 	if ((error = iwn_nic_lock(sc)) != 0)
5009 		return error;
5010 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5011 	iwn_nic_unlock(sc);
5012 	return 0;
5013 }
5014 
5015 void
5016 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5017     uint8_t tid)
5018 {
5019 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5020 	struct iwn_softc *sc = ic->ic_softc;
5021 	int error;
5022 
5023 	error = iwn_nic_lock(sc);
5024 	if (error != 0)
5025 		return;
5026 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5027 	iwn_nic_unlock(sc);
5028 }
5029 
5030 void
5031 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5032     uint8_t tid, uint16_t ssn)
5033 {
5034 	struct iwn_node *wn = (void *)ni;
5035 	int qid = 7 + tid;
5036 
5037 	/* Stop TX scheduler while we're changing its configuration. */
5038 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5039 	    IWN4965_TXQ_STATUS_CHGACT);
5040 
5041 	/* Assign RA/TID translation to the queue. */
5042 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5043 	    wn->id << 4 | tid);
5044 
5045 	/* Enable chain-building mode for the queue. */
5046 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5047 
5048 	/* Set starting sequence number from the ADDBA request. */
5049 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5050 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5051 
5052 	/* Set scheduler window size. */
5053 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5054 	    IWN_SCHED_WINSZ);
5055 	/* Set scheduler frame limit. */
5056 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5057 	    IWN_SCHED_LIMIT << 16);
5058 
5059 	/* Enable interrupts for the queue. */
5060 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5061 
5062 	/* Mark the queue as active. */
5063 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5064 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5065 	    iwn_tid2fifo[tid] << 1);
5066 }
5067 
5068 void
5069 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5070 {
5071 	int qid = 7 + tid;
5072 
5073 	/* Stop TX scheduler while we're changing its configuration. */
5074 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5075 	    IWN4965_TXQ_STATUS_CHGACT);
5076 
5077 	/* Set starting sequence number from the ADDBA request. */
5078 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5079 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5080 
5081 	/* Disable interrupts for the queue. */
5082 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5083 
5084 	/* Mark the queue as inactive. */
5085 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5086 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5087 }
5088 
5089 void
5090 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5091     uint8_t tid, uint16_t ssn)
5092 {
5093 	struct iwn_node *wn = (void *)ni;
5094 	int qid = 10 + tid;
5095 
5096 	/* Stop TX scheduler while we're changing its configuration. */
5097 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5098 	    IWN5000_TXQ_STATUS_CHGACT);
5099 
5100 	/* Assign RA/TID translation to the queue. */
5101 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5102 	    wn->id << 4 | tid);
5103 
5104 	/* Enable chain-building mode for the queue. */
5105 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5106 
5107 	/* Enable aggregation for the queue. */
5108 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5109 
5110 	/* Set starting sequence number from the ADDBA request. */
5111 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5112 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5113 
5114 	/* Set scheduler window size and frame limit. */
5115 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5116 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5117 
5118 	/* Enable interrupts for the queue. */
5119 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5120 
5121 	/* Mark the queue as active. */
5122 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5123 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5124 }
5125 
5126 void
5127 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5128 {
5129 	int qid = 10 + tid;
5130 
5131 	/* Stop TX scheduler while we're changing its configuration. */
5132 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5133 	    IWN5000_TXQ_STATUS_CHGACT);
5134 
5135 	/* Disable aggregation for the queue. */
5136 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5137 
5138 	/* Set starting sequence number from the ADDBA request. */
5139 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5140 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5141 
5142 	/* Disable interrupts for the queue. */
5143 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5144 
5145 	/* Mark the queue as inactive. */
5146 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5147 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5148 }
5149 #endif
5150 
5151 /*
5152  * Query calibration tables from the initialization firmware.  We do this
5153  * only once at first boot.  Called from a process context.
5154  */
5155 int
5156 iwn5000_query_calibration(struct iwn_softc *sc)
5157 {
5158 	struct iwn5000_calib_config cmd;
5159 	int error;
5160 
5161 	memset(&cmd, 0, sizeof cmd);
5162 	cmd.ucode.once.enable = 0xffffffff;
5163 	cmd.ucode.once.start  = 0xffffffff;
5164 	cmd.ucode.once.send   = 0xffffffff;
5165 	cmd.ucode.flags       = 0xffffffff;
5166 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5167 	    __func__);
5168 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5169 	if (error != 0)
5170 		return error;
5171 
5172 	/* Wait at most two seconds for calibration to complete. */
5173 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5174 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz);
5175 	return error;
5176 }
5177 
5178 /*
5179  * Send calibration results to the runtime firmware.  These results were
5180  * obtained on first boot from the initialization firmware.
5181  */
5182 int
5183 iwn5000_send_calibration(struct iwn_softc *sc)
5184 {
5185 	int idx, error;
5186 
5187 	for (idx = 0; idx < 5; idx++) {
5188 		if (sc->calibcmd[idx].buf == NULL)
5189 			continue;	/* No results available. */
5190 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5191 		    "send calibration result idx=%d len=%d\n",
5192 		    idx, sc->calibcmd[idx].len);
5193 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5194 		    sc->calibcmd[idx].len, 0);
5195 		if (error != 0) {
5196 			device_printf(sc->sc_dev,
5197 			    "%s: could not send calibration result, error %d\n",
5198 			    __func__, error);
5199 			return error;
5200 		}
5201 	}
5202 	return 0;
5203 }
5204 
5205 int
5206 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5207 {
5208 	struct iwn5000_wimax_coex wimax;
5209 
5210 #ifdef notyet
5211 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5212 		/* Enable WiMAX coexistence for combo adapters. */
5213 		wimax.flags =
5214 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5215 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5216 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5217 		    IWN_WIMAX_COEX_ENABLE;
5218 		memcpy(wimax.events, iwn6050_wimax_events,
5219 		    sizeof iwn6050_wimax_events);
5220 	} else
5221 #endif
5222 	{
5223 		/* Disable WiMAX coexistence. */
5224 		wimax.flags = 0;
5225 		memset(wimax.events, 0, sizeof wimax.events);
5226 	}
5227 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5228 	    __func__);
5229 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5230 }
5231 
5232 /*
5233  * This function is called after the runtime firmware notifies us of its
5234  * readiness (called in a process context.)
5235  */
5236 int
5237 iwn4965_post_alive(struct iwn_softc *sc)
5238 {
5239 	int error, qid;
5240 
5241 	if ((error = iwn_nic_lock(sc)) != 0)
5242 		return error;
5243 
5244 	/* Clear TX scheduler state in SRAM. */
5245 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5246 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5247 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5248 
5249 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5250 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5251 
5252 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5253 
5254 	/* Disable chain mode for all our 16 queues. */
5255 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5256 
5257 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5258 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5259 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5260 
5261 		/* Set scheduler window size. */
5262 		iwn_mem_write(sc, sc->sched_base +
5263 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5264 		/* Set scheduler frame limit. */
5265 		iwn_mem_write(sc, sc->sched_base +
5266 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5267 		    IWN_SCHED_LIMIT << 16);
5268 	}
5269 
5270 	/* Enable interrupts for all our 16 queues. */
5271 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5272 	/* Identify TX FIFO rings (0-7). */
5273 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5274 
5275 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5276 	for (qid = 0; qid < 7; qid++) {
5277 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5278 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5279 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5280 	}
5281 	iwn_nic_unlock(sc);
5282 	return 0;
5283 }
5284 
5285 /*
5286  * This function is called after the initialization or runtime firmware
5287  * notifies us of its readiness (called in a process context.)
5288  */
5289 int
5290 iwn5000_post_alive(struct iwn_softc *sc)
5291 {
5292 	int error, qid;
5293 
5294 	/* Switch to using ICT interrupt mode. */
5295 	iwn5000_ict_reset(sc);
5296 
5297 	error = iwn_nic_lock(sc);
5298 	if (error != 0)
5299 		return error;
5300 
5301 	/* Clear TX scheduler state in SRAM. */
5302 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5303 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5304 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5305 
5306 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5307 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5308 
5309 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5310 
5311 	/* Enable chain mode for all queues, except command queue. */
5312 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5313 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5314 
5315 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5316 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5317 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5318 
5319 		iwn_mem_write(sc, sc->sched_base +
5320 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5321 		/* Set scheduler window size and frame limit. */
5322 		iwn_mem_write(sc, sc->sched_base +
5323 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5324 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5325 	}
5326 
5327 	/* Enable interrupts for all our 20 queues. */
5328 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5329 	/* Identify TX FIFO rings (0-7). */
5330 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5331 
5332 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5333 	for (qid = 0; qid < 7; qid++) {
5334 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5335 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5336 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5337 	}
5338 	iwn_nic_unlock(sc);
5339 
5340 	/* Configure WiMAX coexistence for combo adapters. */
5341 	error = iwn5000_send_wimax_coex(sc);
5342 	if (error != 0) {
5343 		device_printf(sc->sc_dev,
5344 		    "%s: could not configure WiMAX coexistence, error %d\n",
5345 		    __func__, error);
5346 		return error;
5347 	}
5348 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5349 		struct iwn5000_phy_calib_crystal cmd;
5350 
5351 		/* Perform crystal calibration. */
5352 		memset(&cmd, 0, sizeof cmd);
5353 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5354 		cmd.ngroups = 1;
5355 		cmd.isvalid = 1;
5356 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5357 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5358 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5359 		    "sending crystal calibration %d, %d\n",
5360 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5361 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5362 		if (error != 0) {
5363 			device_printf(sc->sc_dev,
5364 			    "%s: crystal calibration failed, error %d\n",
5365 			    __func__, error);
5366 			return error;
5367 		}
5368 	}
5369 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5370 		/* Query calibration from the initialization firmware. */
5371 		error = iwn5000_query_calibration(sc);
5372 		if (error != 0) {
5373 			device_printf(sc->sc_dev,
5374 			    "%s: could not query calibration, error %d\n",
5375 			    __func__, error);
5376 			return error;
5377 		}
5378 		/*
5379 		 * We have the calibration results now, reboot with the
5380 		 * runtime firmware (call ourselves recursively!)
5381 		 */
5382 		iwn_hw_stop(sc);
5383 		error = iwn_hw_init(sc);
5384 	} else {
5385 		/* Send calibration results to runtime firmware. */
5386 		error = iwn5000_send_calibration(sc);
5387 	}
5388 	return error;
5389 }
5390 
5391 /*
5392  * The firmware boot code is small and is intended to be copied directly into
5393  * the NIC internal memory (no DMA transfer.)
5394  */
5395 int
5396 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5397 {
5398 	int error, ntries;
5399 
5400 	size /= sizeof (uint32_t);
5401 
5402 	error = iwn_nic_lock(sc);
5403 	if (error != 0)
5404 		return error;
5405 
5406 	/* Copy microcode image into NIC memory. */
5407 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5408 	    (const uint32_t *)ucode, size);
5409 
5410 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5411 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5412 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5413 
5414 	/* Start boot load now. */
5415 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5416 
5417 	/* Wait for transfer to complete. */
5418 	for (ntries = 0; ntries < 1000; ntries++) {
5419 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5420 		    IWN_BSM_WR_CTRL_START))
5421 			break;
5422 		DELAY(10);
5423 	}
5424 	if (ntries == 1000) {
5425 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5426 		    __func__);
5427 		iwn_nic_unlock(sc);
5428 		return ETIMEDOUT;
5429 	}
5430 
5431 	/* Enable boot after power up. */
5432 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5433 
5434 	iwn_nic_unlock(sc);
5435 	return 0;
5436 }
5437 
5438 int
5439 iwn4965_load_firmware(struct iwn_softc *sc)
5440 {
5441 	struct iwn_fw_info *fw = &sc->fw;
5442 	struct iwn_dma_info *dma = &sc->fw_dma;
5443 	int error;
5444 
5445 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5446 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5447 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5448 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5449 	    fw->init.text, fw->init.textsz);
5450 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5451 
5452 	/* Tell adapter where to find initialization sections. */
5453 	error = iwn_nic_lock(sc);
5454 	if (error != 0)
5455 		return error;
5456 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5457 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5458 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5459 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5460 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5461 	iwn_nic_unlock(sc);
5462 
5463 	/* Load firmware boot code. */
5464 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5465 	if (error != 0) {
5466 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5467 		    __func__);
5468 		return error;
5469 	}
5470 	/* Now press "execute". */
5471 	IWN_WRITE(sc, IWN_RESET, 0);
5472 
5473 	/* Wait at most one second for first alive notification. */
5474 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5475 	if (error) {
5476 		device_printf(sc->sc_dev,
5477 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5478 		    __func__, error);
5479 		return error;
5480 	}
5481 
5482 	/* Retrieve current temperature for initial TX power calibration. */
5483 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5484 	sc->temp = iwn4965_get_temperature(sc);
5485 
5486 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5487 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5488 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5489 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5490 	    fw->main.text, fw->main.textsz);
5491 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5492 
5493 	/* Tell adapter where to find runtime sections. */
5494 	error = iwn_nic_lock(sc);
5495 	if (error != 0)
5496 		return error;
5497 
5498 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5499 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5500 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5501 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5502 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5503 	    IWN_FW_UPDATED | fw->main.textsz);
5504 	iwn_nic_unlock(sc);
5505 
5506 	return 0;
5507 }
5508 
5509 int
5510 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5511     const uint8_t *section, int size)
5512 {
5513 	struct iwn_dma_info *dma = &sc->fw_dma;
5514 	int error;
5515 
5516 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5517 	memcpy(dma->vaddr, section, size);
5518 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5519 
5520 	error = iwn_nic_lock(sc);
5521 	if (error != 0)
5522 		return error;
5523 
5524 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5525 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5526 
5527 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5528 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5529 	    IWN_LOADDR(dma->paddr));
5530 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5531 	    IWN_HIADDR(dma->paddr) << 28 | size);
5532 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5533 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5534 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5535 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5536 
5537 	/* Kick Flow Handler to start DMA transfer. */
5538 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5539 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5540 
5541 	iwn_nic_unlock(sc);
5542 
5543 	/* Wait at most five seconds for FH DMA transfer to complete. */
5544 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5545 }
5546 
5547 int
5548 iwn5000_load_firmware(struct iwn_softc *sc)
5549 {
5550 	struct iwn_fw_part *fw;
5551 	int error;
5552 
5553 	/* Load the initialization firmware on first boot only. */
5554 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5555 	    &sc->fw.main : &sc->fw.init;
5556 
5557 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5558 	    fw->text, fw->textsz);
5559 	if (error != 0) {
5560 		device_printf(sc->sc_dev,
5561 		    "%s: could not load firmware %s section, error %d\n",
5562 		    __func__, ".text", error);
5563 		return error;
5564 	}
5565 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5566 	    fw->data, fw->datasz);
5567 	if (error != 0) {
5568 		device_printf(sc->sc_dev,
5569 		    "%s: could not load firmware %s section, error %d\n",
5570 		    __func__, ".data", error);
5571 		return error;
5572 	}
5573 
5574 	/* Now press "execute". */
5575 	IWN_WRITE(sc, IWN_RESET, 0);
5576 	return 0;
5577 }
5578 
5579 int
5580 iwn_read_firmware(struct iwn_softc *sc)
5581 {
5582 	const struct iwn_hal *hal = sc->sc_hal;
5583 	struct iwn_fw_info *fw = &sc->fw;
5584 	const uint32_t *ptr;
5585 	uint32_t rev;
5586 	size_t size;
5587 
5588 	IWN_UNLOCK(sc);
5589 
5590 	/* Read firmware image from filesystem. */
5591 	sc->fw_fp = firmware_get(sc->fwname);
5592 	if (sc->fw_fp == NULL) {
5593 		device_printf(sc->sc_dev,
5594 		    "%s: could not load firmare image \"%s\"\n", __func__,
5595 		     sc->fwname);
5596 		IWN_LOCK(sc);
5597 		return EINVAL;
5598 	}
5599 	IWN_LOCK(sc);
5600 
5601 	size = sc->fw_fp->datasize;
5602 	if (size < 28) {
5603 		device_printf(sc->sc_dev,
5604 		    "%s: truncated firmware header: %zu bytes\n",
5605 		    __func__, size);
5606 		return EINVAL;
5607 	}
5608 
5609 	/* Process firmware header. */
5610 	ptr = (const uint32_t *)sc->fw_fp->data;
5611 	rev = le32toh(*ptr++);
5612 	/* Check firmware API version. */
5613 	if (IWN_FW_API(rev) <= 1) {
5614 		device_printf(sc->sc_dev,
5615 		    "%s: bad firmware, need API version >=2\n", __func__);
5616 		return EINVAL;
5617 	}
5618 	if (IWN_FW_API(rev) >= 3) {
5619 		/* Skip build number (version 2 header). */
5620 		size -= 4;
5621 		ptr++;
5622 	}
5623 	fw->main.textsz = le32toh(*ptr++);
5624 	fw->main.datasz = le32toh(*ptr++);
5625 	fw->init.textsz = le32toh(*ptr++);
5626 	fw->init.datasz = le32toh(*ptr++);
5627 	fw->boot.textsz = le32toh(*ptr++);
5628 	size -= 24;
5629 
5630 	/* Sanity-check firmware header. */
5631 	if (fw->main.textsz > hal->fw_text_maxsz ||
5632 	    fw->main.datasz > hal->fw_data_maxsz ||
5633 	    fw->init.textsz > hal->fw_text_maxsz ||
5634 	    fw->init.datasz > hal->fw_data_maxsz ||
5635 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5636 	    (fw->boot.textsz & 3) != 0) {
5637 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5638 		    __func__);
5639 		return EINVAL;
5640 	}
5641 
5642 	/* Check that all firmware sections fit. */
5643 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5644 	    fw->init.datasz + fw->boot.textsz > size) {
5645 		device_printf(sc->sc_dev,
5646 		    "%s: firmware file too short: %zu bytes\n",
5647 		    __func__, size);
5648 		return EINVAL;
5649 	}
5650 
5651 	/* Get pointers to firmware sections. */
5652 	fw->main.text = (const uint8_t *)ptr;
5653 	fw->main.data = fw->main.text + fw->main.textsz;
5654 	fw->init.text = fw->main.data + fw->main.datasz;
5655 	fw->init.data = fw->init.text + fw->init.textsz;
5656 	fw->boot.text = fw->init.data + fw->init.datasz;
5657 
5658 	return 0;
5659 }
5660 
5661 int
5662 iwn_clock_wait(struct iwn_softc *sc)
5663 {
5664 	int ntries;
5665 
5666 	/* Set "initialization complete" bit. */
5667 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5668 
5669 	/* Wait for clock stabilization. */
5670 	for (ntries = 0; ntries < 2500; ntries++) {
5671 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5672 			return 0;
5673 		DELAY(10);
5674 	}
5675 	device_printf(sc->sc_dev,
5676 	    "%s: timeout waiting for clock stabilization\n", __func__);
5677 	return ETIMEDOUT;
5678 }
5679 
5680 int
5681 iwn_apm_init(struct iwn_softc *sc)
5682 {
5683 	uint32_t tmp;
5684 	int error;
5685 
5686 	/* Disable L0s exit timer (NMI bug workaround.) */
5687 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5688 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5689 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5690 
5691 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5692 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5693 
5694 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5695 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5696 
5697 	/* Retrieve PCIe Active State Power Management (ASPM). */
5698 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5699 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5700 	if (tmp & 0x02)	/* L1 Entry enabled. */
5701 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5702 	else
5703 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5704 
5705 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5706 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5707 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5708 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5709 
5710 	/* Wait for clock stabilization before accessing prph. */
5711 	error = iwn_clock_wait(sc);
5712 	if (error != 0)
5713 		return error;
5714 
5715 	error = iwn_nic_lock(sc);
5716 	if (error != 0)
5717 		return error;
5718 
5719 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5720 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5721 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5722 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5723 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5724 	} else {
5725 		/* Enable DMA. */
5726 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5727 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5728 	}
5729 	DELAY(20);
5730 
5731 	/* Disable L1-Active. */
5732 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5733 	iwn_nic_unlock(sc);
5734 
5735 	return 0;
5736 }
5737 
5738 void
5739 iwn_apm_stop_master(struct iwn_softc *sc)
5740 {
5741 	int ntries;
5742 
5743 	/* Stop busmaster DMA activity. */
5744 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5745 	for (ntries = 0; ntries < 100; ntries++) {
5746 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5747 			return;
5748 		DELAY(10);
5749 	}
5750 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5751 	    __func__);
5752 }
5753 
5754 void
5755 iwn_apm_stop(struct iwn_softc *sc)
5756 {
5757 	iwn_apm_stop_master(sc);
5758 
5759 	/* Reset the entire device. */
5760 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5761 	DELAY(10);
5762 	/* Clear "initialization complete" bit. */
5763 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5764 }
5765 
5766 int
5767 iwn4965_nic_config(struct iwn_softc *sc)
5768 {
5769 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5770 		/*
5771 		 * I don't believe this to be correct but this is what the
5772 		 * vendor driver is doing. Probably the bits should not be
5773 		 * shifted in IWN_RFCFG_*.
5774 		 */
5775 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5776 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5777 		    IWN_RFCFG_STEP(sc->rfcfg) |
5778 		    IWN_RFCFG_DASH(sc->rfcfg));
5779 	}
5780 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5781 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5782 	return 0;
5783 }
5784 
5785 int
5786 iwn5000_nic_config(struct iwn_softc *sc)
5787 {
5788 	uint32_t tmp;
5789 	int error;
5790 
5791 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5792 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5793 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5794 		    IWN_RFCFG_STEP(sc->rfcfg) |
5795 		    IWN_RFCFG_DASH(sc->rfcfg));
5796 	}
5797 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5798 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5799 
5800 	error = iwn_nic_lock(sc);
5801 	if (error != 0)
5802 		return error;
5803 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5804 
5805 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5806 		/*
5807 		 * Select first Switching Voltage Regulator (1.32V) to
5808 		 * solve a stability issue related to noisy DC2DC line
5809 		 * in the silicon of 1000 Series.
5810 		 */
5811 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5812 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5813 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5814 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5815 	}
5816 	iwn_nic_unlock(sc);
5817 
5818 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5819 		/* Use internal power amplifier only. */
5820 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5821 	}
5822 	return 0;
5823 }
5824 
5825 /*
5826  * Take NIC ownership over Intel Active Management Technology (AMT).
5827  */
5828 int
5829 iwn_hw_prepare(struct iwn_softc *sc)
5830 {
5831 	int ntries;
5832 
5833 	/* Check if hardware is ready. */
5834 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5835 	for (ntries = 0; ntries < 5; ntries++) {
5836 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5837 		    IWN_HW_IF_CONFIG_NIC_READY)
5838 			return 0;
5839 		DELAY(10);
5840 	}
5841 
5842 	/* Hardware not ready, force into ready state. */
5843 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5844 	for (ntries = 0; ntries < 15000; ntries++) {
5845 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5846 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5847 			break;
5848 		DELAY(10);
5849 	}
5850 	if (ntries == 15000)
5851 		return ETIMEDOUT;
5852 
5853 	/* Hardware should be ready now. */
5854 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5855 	for (ntries = 0; ntries < 5; ntries++) {
5856 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5857 		    IWN_HW_IF_CONFIG_NIC_READY)
5858 			return 0;
5859 		DELAY(10);
5860 	}
5861 	return ETIMEDOUT;
5862 }
5863 
5864 int
5865 iwn_hw_init(struct iwn_softc *sc)
5866 {
5867 	const struct iwn_hal *hal = sc->sc_hal;
5868 	int error, chnl, qid;
5869 
5870 	/* Clear pending interrupts. */
5871 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5872 
5873 	error = iwn_apm_init(sc);
5874 	if (error != 0) {
5875 		device_printf(sc->sc_dev,
5876 		    "%s: could not power ON adapter, error %d\n",
5877 		    __func__, error);
5878 		return error;
5879 	}
5880 
5881 	/* Select VMAIN power source. */
5882 	error = iwn_nic_lock(sc);
5883 	if (error != 0)
5884 		return error;
5885 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5886 	iwn_nic_unlock(sc);
5887 
5888 	/* Perform adapter-specific initialization. */
5889 	error = hal->nic_config(sc);
5890 	if (error != 0)
5891 		return error;
5892 
5893 	/* Initialize RX ring. */
5894 	error = iwn_nic_lock(sc);
5895 	if (error != 0)
5896 		return error;
5897 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5898 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5899 	/* Set physical address of RX ring (256-byte aligned.) */
5900 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5901 	/* Set physical address of RX status (16-byte aligned.) */
5902 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5903 	/* Enable RX. */
5904 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5905 	    IWN_FH_RX_CONFIG_ENA           |
5906 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5907 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5908 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5909 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5910 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5911 	iwn_nic_unlock(sc);
5912 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5913 
5914 	error = iwn_nic_lock(sc);
5915 	if (error != 0)
5916 		return error;
5917 
5918 	/* Initialize TX scheduler. */
5919 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5920 
5921 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5922 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5923 
5924 	/* Initialize TX rings. */
5925 	for (qid = 0; qid < hal->ntxqs; qid++) {
5926 		struct iwn_tx_ring *txq = &sc->txq[qid];
5927 
5928 		/* Set physical address of TX ring (256-byte aligned.) */
5929 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5930 		    txq->desc_dma.paddr >> 8);
5931 	}
5932 	iwn_nic_unlock(sc);
5933 
5934 	/* Enable DMA channels. */
5935 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5936 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5937 		    IWN_FH_TX_CONFIG_DMA_ENA |
5938 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5939 	}
5940 
5941 	/* Clear "radio off" and "commands blocked" bits. */
5942 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5943 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5944 
5945 	/* Clear pending interrupts. */
5946 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5947 	/* Enable interrupt coalescing. */
5948 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
5949 	/* Enable interrupts. */
5950 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
5951 
5952 	/* _Really_ make sure "radio off" bit is cleared! */
5953 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5954 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5955 
5956 	error = hal->load_firmware(sc);
5957 	if (error != 0) {
5958 		device_printf(sc->sc_dev,
5959 		    "%s: could not load firmware, error %d\n",
5960 		    __func__, error);
5961 		return error;
5962 	}
5963 	/* Wait at most one second for firmware alive notification. */
5964 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5965 	if (error != 0) {
5966 		device_printf(sc->sc_dev,
5967 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5968 		    __func__, error);
5969 		return error;
5970 	}
5971 	/* Do post-firmware initialization. */
5972 	return hal->post_alive(sc);
5973 }
5974 
5975 void
5976 iwn_hw_stop(struct iwn_softc *sc)
5977 {
5978 	const struct iwn_hal *hal = sc->sc_hal;
5979 	uint32_t tmp;
5980 	int chnl, qid, ntries;
5981 
5982 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
5983 
5984 	/* Disable interrupts. */
5985 	IWN_WRITE(sc, IWN_INT_MASK, 0);
5986 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5987 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
5988 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
5989 
5990 	/* Make sure we no longer hold the NIC lock. */
5991 	iwn_nic_unlock(sc);
5992 
5993 	/* Stop TX scheduler. */
5994 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5995 
5996 	/* Stop all DMA channels. */
5997 	if (iwn_nic_lock(sc) == 0) {
5998 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5999 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6000 			for (ntries = 0; ntries < 200; ntries++) {
6001 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6002 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6003 				    IWN_FH_TX_STATUS_IDLE(chnl))
6004 					break;
6005 				DELAY(10);
6006 			}
6007 		}
6008 		iwn_nic_unlock(sc);
6009 	}
6010 
6011 	/* Stop RX ring. */
6012 	iwn_reset_rx_ring(sc, &sc->rxq);
6013 
6014 	/* Reset all TX rings. */
6015 	for (qid = 0; qid < hal->ntxqs; qid++)
6016 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6017 
6018 	if (iwn_nic_lock(sc) == 0) {
6019 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6020 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6021 		iwn_nic_unlock(sc);
6022 	}
6023 	DELAY(5);
6024 
6025 	/* Power OFF adapter. */
6026 	iwn_apm_stop(sc);
6027 }
6028 
6029 void
6030 iwn_init_locked(struct iwn_softc *sc)
6031 {
6032 	struct ifnet *ifp = sc->sc_ifp;
6033 	int error;
6034 
6035 	IWN_LOCK_ASSERT(sc);
6036 
6037 	error = iwn_hw_prepare(sc);
6038 	if (error != 0) {
6039 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6040 		    __func__, error);
6041 		goto fail;
6042 	}
6043 
6044 	/* Initialize interrupt mask to default value. */
6045 	sc->int_mask = IWN_INT_MASK_DEF;
6046 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6047 
6048 	/* Check that the radio is not disabled by hardware switch. */
6049 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6050 		device_printf(sc->sc_dev,
6051 		    "radio is disabled by hardware switch\n");
6052 
6053 		/* Enable interrupts to get RF toggle notifications. */
6054 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6055 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6056 		return;
6057 	}
6058 
6059 	/* Read firmware images from the filesystem. */
6060 	error = iwn_read_firmware(sc);
6061 	if (error != 0) {
6062 		device_printf(sc->sc_dev,
6063 		    "%s: could not read firmware, error %d\n",
6064 		    __func__, error);
6065 		goto fail;
6066 	}
6067 
6068 	/* Initialize hardware and upload firmware. */
6069 	error = iwn_hw_init(sc);
6070 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6071 	sc->fw_fp = NULL;
6072 	if (error != 0) {
6073 		device_printf(sc->sc_dev,
6074 		    "%s: could not initialize hardware, error %d\n",
6075 		    __func__, error);
6076 		goto fail;
6077 	}
6078 
6079 	/* Configure adapter now that it is ready. */
6080 	error = iwn_config(sc);
6081 	if (error != 0) {
6082 		device_printf(sc->sc_dev,
6083 		    "%s: could not configure device, error %d\n",
6084 		    __func__, error);
6085 		goto fail;
6086 	}
6087 
6088 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6089 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6090 
6091 	return;
6092 
6093 fail:
6094 	iwn_stop_locked(sc);
6095 }
6096 
6097 void
6098 iwn_init(void *arg)
6099 {
6100 	struct iwn_softc *sc = arg;
6101 	struct ifnet *ifp = sc->sc_ifp;
6102 	struct ieee80211com *ic = ifp->if_l2com;
6103 
6104 	IWN_LOCK(sc);
6105 	iwn_init_locked(sc);
6106 	IWN_UNLOCK(sc);
6107 
6108 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6109 		ieee80211_start_all(ic);
6110 }
6111 
6112 void
6113 iwn_stop_locked(struct iwn_softc *sc)
6114 {
6115 	struct ifnet *ifp = sc->sc_ifp;
6116 
6117 	IWN_LOCK_ASSERT(sc);
6118 
6119 	sc->sc_tx_timer = 0;
6120 	callout_stop(&sc->sc_timer_to);
6121 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6122 
6123 	/* Power OFF hardware. */
6124 	iwn_hw_stop(sc);
6125 }
6126 
6127 void
6128 iwn_stop(struct iwn_softc *sc)
6129 {
6130 	IWN_LOCK(sc);
6131 	iwn_stop_locked(sc);
6132 	IWN_UNLOCK(sc);
6133 }
6134 
6135 /*
6136  * Callback from net80211 to start a scan.
6137  */
6138 static void
6139 iwn_scan_start(struct ieee80211com *ic)
6140 {
6141 	struct ifnet *ifp = ic->ic_ifp;
6142 	struct iwn_softc *sc = ifp->if_softc;
6143 
6144 	IWN_LOCK(sc);
6145 	/* make the link LED blink while we're scanning */
6146 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6147 	IWN_UNLOCK(sc);
6148 }
6149 
6150 /*
6151  * Callback from net80211 to terminate a scan.
6152  */
6153 static void
6154 iwn_scan_end(struct ieee80211com *ic)
6155 {
6156 	struct ifnet *ifp = ic->ic_ifp;
6157 	struct iwn_softc *sc = ifp->if_softc;
6158 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6159 
6160 	IWN_LOCK(sc);
6161 	if (vap->iv_state == IEEE80211_S_RUN) {
6162 		/* Set link LED to ON status if we are associated */
6163 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6164 	}
6165 	IWN_UNLOCK(sc);
6166 }
6167 
6168 /*
6169  * Callback from net80211 to force a channel change.
6170  */
6171 static void
6172 iwn_set_channel(struct ieee80211com *ic)
6173 {
6174 	const struct ieee80211_channel *c = ic->ic_curchan;
6175 	struct ifnet *ifp = ic->ic_ifp;
6176 	struct iwn_softc *sc = ifp->if_softc;
6177 
6178 	IWN_LOCK(sc);
6179 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6180 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6181 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6182 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6183 	IWN_UNLOCK(sc);
6184 }
6185 
6186 /*
6187  * Callback from net80211 to start scanning of the current channel.
6188  */
6189 static void
6190 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6191 {
6192 	struct ieee80211vap *vap = ss->ss_vap;
6193 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6194 	int error;
6195 
6196 	IWN_LOCK(sc);
6197 	error = iwn_scan(sc);
6198 	IWN_UNLOCK(sc);
6199 	if (error != 0)
6200 		ieee80211_cancel_scan(vap);
6201 }
6202 
6203 /*
6204  * Callback from net80211 to handle the minimum dwell time being met.
6205  * The intent is to terminate the scan but we just let the firmware
6206  * notify us when it's finished as we have no safe way to abort it.
6207  */
6208 static void
6209 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6210 {
6211 	/* NB: don't try to abort scan; wait for firmware to finish */
6212 }
6213 
6214 static struct iwn_eeprom_chan *
6215 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6216 {
6217 	int i, j;
6218 
6219 	for (j = 0; j < 7; j++) {
6220 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6221 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6222 				return &sc->eeprom_channels[j][i];
6223 		}
6224 	}
6225 
6226 	return NULL;
6227 }
6228 
6229 /*
6230  * Enforce flags read from EEPROM.
6231  */
6232 static int
6233 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6234     int nchan, struct ieee80211_channel chans[])
6235 {
6236 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6237 	int i;
6238 
6239 	for (i = 0; i < nchan; i++) {
6240 		struct ieee80211_channel *c = &chans[i];
6241 		struct iwn_eeprom_chan *channel;
6242 
6243 		channel = iwn_find_eeprom_channel(sc, c);
6244 		if (channel == NULL) {
6245 			if_printf(ic->ic_ifp,
6246 			    "%s: invalid channel %u freq %u/0x%x\n",
6247 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6248 			return EINVAL;
6249 		}
6250 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6251 	}
6252 
6253 	return 0;
6254 }
6255 
6256 static void
6257 iwn_hw_reset(void *arg0, int pending)
6258 {
6259 	struct iwn_softc *sc = arg0;
6260 	struct ifnet *ifp = sc->sc_ifp;
6261 	struct ieee80211com *ic = ifp->if_l2com;
6262 
6263 	iwn_stop(sc);
6264 	iwn_init(sc);
6265 	ieee80211_notify_radio(ic, 1);
6266 }
6267 
6268 static void
6269 iwn_radio_on(void *arg0, int pending)
6270 {
6271 	struct iwn_softc *sc = arg0;
6272 	struct ifnet *ifp = sc->sc_ifp;
6273 	struct ieee80211com *ic = ifp->if_l2com;
6274 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6275 
6276 	if (vap != NULL) {
6277 		iwn_init(sc);
6278 		ieee80211_init(vap);
6279 	}
6280 }
6281 
6282 static void
6283 iwn_radio_off(void *arg0, int pending)
6284 {
6285 	struct iwn_softc *sc = arg0;
6286 	struct ifnet *ifp = sc->sc_ifp;
6287 	struct ieee80211com *ic = ifp->if_l2com;
6288 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6289 
6290 	iwn_stop(sc);
6291 	if (vap != NULL)
6292 		ieee80211_stop(vap);
6293 
6294 	/* Enable interrupts to get RF toggle notification. */
6295 	IWN_LOCK(sc);
6296 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6297 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6298 	IWN_UNLOCK(sc);
6299 }
6300 
6301 static void
6302 iwn_sysctlattach(struct iwn_softc *sc)
6303 {
6304 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6305 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6306 
6307 #ifdef IWN_DEBUG
6308 	sc->sc_debug = 0;
6309 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6310 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6311 #endif
6312 }
6313 
6314 static int
6315 iwn_shutdown(device_t dev)
6316 {
6317 	struct iwn_softc *sc = device_get_softc(dev);
6318 
6319 	iwn_stop(sc);
6320 	return 0;
6321 }
6322 
6323 static int
6324 iwn_suspend(device_t dev)
6325 {
6326 	struct iwn_softc *sc = device_get_softc(dev);
6327 	struct ifnet *ifp = sc->sc_ifp;
6328 	struct ieee80211com *ic = ifp->if_l2com;
6329 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6330 
6331 	iwn_stop(sc);
6332 	if (vap != NULL)
6333 		ieee80211_stop(vap);
6334 	return 0;
6335 }
6336 
6337 static int
6338 iwn_resume(device_t dev)
6339 {
6340 	struct iwn_softc *sc = device_get_softc(dev);
6341 	struct ifnet *ifp = sc->sc_ifp;
6342 	struct ieee80211com *ic = ifp->if_l2com;
6343 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6344 
6345 	/* Clear device-specific "PCI retry timeout" register (41h). */
6346 	pci_write_config(dev, 0x41, 0, 1);
6347 
6348 	if (ifp->if_flags & IFF_UP) {
6349 		iwn_init(sc);
6350 		if (vap != NULL)
6351 			ieee80211_init(vap);
6352 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6353 			iwn_start(ifp);
6354 	}
6355 	return 0;
6356 }
6357 
6358 #ifdef IWN_DEBUG
6359 static const char *
6360 iwn_intr_str(uint8_t cmd)
6361 {
6362 	switch (cmd) {
6363 	/* Notifications */
6364 	case IWN_UC_READY:		return "UC_READY";
6365 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6366 	case IWN_TX_DONE:		return "TX_DONE";
6367 	case IWN_START_SCAN:		return "START_SCAN";
6368 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6369 	case IWN_RX_STATISTICS:		return "RX_STATS";
6370 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6371 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6372 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6373 	case IWN_RX_PHY:		return "RX_PHY";
6374 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6375 	case IWN_RX_DONE:		return "RX_DONE";
6376 
6377 	/* Command Notifications */
6378 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6379 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6380 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6381 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6382 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6383 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6384 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6385 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6386 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6387 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6388 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6389 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6390 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6391 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6392 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6393 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6394 	}
6395 	return "UNKNOWN INTR NOTIF/CMD";
6396 }
6397 #endif /* IWN_DEBUG */
6398 
6399 static device_method_t iwn_methods[] = {
6400 	/* Device interface */
6401 	DEVMETHOD(device_probe,		iwn_probe),
6402 	DEVMETHOD(device_attach,	iwn_attach),
6403 	DEVMETHOD(device_detach,	iwn_detach),
6404 	DEVMETHOD(device_shutdown,	iwn_shutdown),
6405 	DEVMETHOD(device_suspend,	iwn_suspend),
6406 	DEVMETHOD(device_resume,	iwn_resume),
6407 	{ 0, 0 }
6408 };
6409 
6410 static driver_t iwn_driver = {
6411 	"iwn",
6412 	iwn_methods,
6413 	sizeof (struct iwn_softc)
6414 };
6415 static devclass_t iwn_devclass;
6416 
6417 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6418 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6419 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6420 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6421 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6422