xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 00a5db46de56179184c0f000eaacad695e2b0859)
1 /*-
2  * Copyright (c) 2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <machine/clock.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 
71 #include <dev/iwn/if_iwnreg.h>
72 #include <dev/iwn/if_iwnvar.h>
73 
74 static int	iwn_probe(device_t);
75 static int	iwn_attach(device_t);
76 static int 	iwn_detach(device_t);
77 static int	iwn_cleanup(device_t);
78 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
79 		    const char name[IFNAMSIZ], int unit, int opmode,
80 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
81 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
82 static void	iwn_vap_delete(struct ieee80211vap *);
83 static int	iwn_shutdown(device_t);
84 static int	iwn_suspend(device_t);
85 static int	iwn_resume(device_t);
86 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	iwn_dma_contig_free(struct iwn_dma_info *);
89 int		iwn_alloc_shared(struct iwn_softc *);
90 void		iwn_free_shared(struct iwn_softc *);
91 int		iwn_alloc_kw(struct iwn_softc *);
92 void		iwn_free_kw(struct iwn_softc *);
93 int		iwn_alloc_fwmem(struct iwn_softc *);
94 void		iwn_free_fwmem(struct iwn_softc *);
95 struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
96 void		iwn_free_rbuf(void *, void *);
97 int		iwn_alloc_rpool(struct iwn_softc *);
98 void		iwn_free_rpool(struct iwn_softc *);
99 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
100 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
101 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
103 		    int);
104 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
105 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
106 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
107 		    const uint8_t [IEEE80211_ADDR_LEN]);
108 void		iwn_newassoc(struct ieee80211_node *, int);
109 int		iwn_media_change(struct ifnet *);
110 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
111 void		iwn_mem_lock(struct iwn_softc *);
112 void		iwn_mem_unlock(struct iwn_softc *);
113 uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
114 void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
115 void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
116 		    const uint32_t *, int);
117 int		iwn_eeprom_lock(struct iwn_softc *);
118 void		iwn_eeprom_unlock(struct iwn_softc *);
119 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
120 int		iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
121 int		iwn_transfer_firmware(struct iwn_softc *);
122 int		iwn_load_firmware(struct iwn_softc *);
123 void		iwn_unload_firmware(struct iwn_softc *);
124 static void	iwn_timer_timeout(void *);
125 static void	iwn_calib_reset(struct iwn_softc *);
126 void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
127 void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
128 		    struct iwn_rx_data *);
129 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
130 void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
131 void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
132 void		iwn_notif_intr(struct iwn_softc *);
133 void		iwn_intr(void *);
134 void		iwn_read_eeprom(struct iwn_softc *,
135 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
136 static void	iwn_read_eeprom_channels(struct iwn_softc *);
137 void		iwn_print_power_group(struct iwn_softc *, int);
138 uint8_t		iwn_plcp_signal(int);
139 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
140 		    struct ieee80211_node *, struct iwn_tx_ring *);
141 void		iwn_start(struct ifnet *);
142 void		iwn_start_locked(struct ifnet *);
143 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
144 		    const struct ieee80211_bpf_params *);
145 static void	iwn_watchdog(struct iwn_softc *);
146 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
147 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
148 int		iwn_set_link_quality(struct iwn_softc *, uint8_t,
149 		    const struct ieee80211_channel *, int);
150 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
151 		    const struct ieee80211_key *);
152 int		iwn_wme_update(struct ieee80211com *);
153 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
154 int		iwn_set_critical_temp(struct iwn_softc *);
155 void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
156 void		iwn_power_calibration(struct iwn_softc *, int);
157 int		iwn_set_txpower(struct iwn_softc *,
158 		    struct ieee80211_channel *, int);
159 int8_t		iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
160 int		iwn_get_noise(const struct iwn_rx_general_stats *);
161 int		iwn_get_temperature(struct iwn_softc *);
162 int		iwn_init_sensitivity(struct iwn_softc *);
163 void		iwn_compute_differential_gain(struct iwn_softc *,
164 		    const struct iwn_rx_general_stats *);
165 void		iwn_tune_sensitivity(struct iwn_softc *,
166 		    const struct iwn_rx_stats *);
167 int		iwn_send_sensitivity(struct iwn_softc *);
168 int		iwn_auth(struct iwn_softc *, struct ieee80211vap *);
169 int		iwn_run(struct iwn_softc *, struct ieee80211vap *);
170 int		iwn_scan(struct iwn_softc *);
171 int		iwn_config(struct iwn_softc *);
172 void		iwn_post_alive(struct iwn_softc *);
173 void		iwn_stop_master(struct iwn_softc *);
174 int		iwn_reset(struct iwn_softc *);
175 void		iwn_hw_config(struct iwn_softc *);
176 void		iwn_init_locked(struct iwn_softc *);
177 void		iwn_init(void *);
178 void		iwn_stop_locked(struct iwn_softc *);
179 void		iwn_stop(struct iwn_softc *);
180 static void 	iwn_scan_start(struct ieee80211com *);
181 static void 	iwn_scan_end(struct ieee80211com *);
182 static void 	iwn_set_channel(struct ieee80211com *);
183 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
184 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
185 static void	iwn_hwreset(void *, int);
186 static void	iwn_radioon(void *, int);
187 static void	iwn_radiooff(void *, int);
188 static void	iwn_sysctlattach(struct iwn_softc *);
189 
190 #define IWN_DEBUG
191 #ifdef IWN_DEBUG
192 enum {
193 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
194 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
195 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
196 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
197 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
198 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
199 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
200 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
201 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
202 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
203 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
204 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
205 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
206 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
207 	IWN_DEBUG_ANY		= 0xffffffff
208 };
209 
210 #define DPRINTF(sc, m, fmt, ...) do {			\
211 	if (sc->sc_debug & (m))				\
212 		printf(fmt, __VA_ARGS__);		\
213 } while (0)
214 
215 static const char *iwn_intr_str(uint8_t);
216 #else
217 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
218 #endif
219 
220 struct iwn_ident {
221 	uint16_t	vendor;
222 	uint16_t	device;
223 	const char	*name;
224 };
225 
226 static const struct iwn_ident iwn_ident_table [] = {
227         { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
228         { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
229         { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
230         { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
231         { 0, 0, NULL }
232 };
233 
234 static int
235 iwn_probe(device_t dev)
236 {
237         const struct iwn_ident *ident;
238 
239         for (ident = iwn_ident_table; ident->name != NULL; ident++) {
240                 if (pci_get_vendor(dev) == ident->vendor &&
241                     pci_get_device(dev) == ident->device) {
242                         device_set_desc(dev, ident->name);
243                         return 0;
244                 }
245         }
246         return ENXIO;
247 }
248 
249 static int
250 iwn_attach(device_t dev)
251 {
252 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
253 	struct ieee80211com *ic;
254 	struct ifnet *ifp;
255 	int i, error, result;
256 	uint8_t macaddr[IEEE80211_ADDR_LEN];
257 
258 	sc->sc_dev = dev;
259 
260 	/* XXX */
261 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
262 		device_printf(dev, "chip is in D%d power mode "
263 		    "-- setting to D0\n", pci_get_powerstate(dev));
264 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
265 	}
266 
267 	/* clear device specific PCI configuration register 0x41 */
268 	pci_write_config(dev, 0x41, 0, 1);
269 
270 	/* enable bus-mastering */
271 	pci_enable_busmaster(dev);
272 
273 	sc->mem_rid= PCIR_BAR(0);
274 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
275 					 RF_ACTIVE);
276 	if (sc->mem == NULL ) {
277 		device_printf(dev, "could not allocate memory resources\n");
278 		error = ENOMEM;
279 		return error;
280 	}
281 
282 	sc->sc_st = rman_get_bustag(sc->mem);
283 	sc->sc_sh = rman_get_bushandle(sc->mem);
284 	sc->irq_rid = 0;
285 	if ((result = pci_msi_count(dev)) == 1 &&
286 	    pci_alloc_msi(dev, &result) == 0)
287 		sc->irq_rid = 1;
288 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
289 					 RF_ACTIVE | RF_SHAREABLE);
290 	if (sc->irq == NULL) {
291 		device_printf(dev, "could not allocate interrupt resource\n");
292 		error = ENOMEM;
293 		return error;
294 	}
295 
296 	IWN_LOCK_INIT(sc);
297 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
298         TASK_INIT(&sc->sc_reinit_task, 0, iwn_hwreset, sc );
299         TASK_INIT(&sc->sc_radioon_task, 0, iwn_radioon, sc );
300         TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radiooff, sc );
301 
302 	/*
303 	 * Put adapter into a known state.
304 	 */
305 	error = iwn_reset(sc);
306 	if (error != 0) {
307 		device_printf(dev,
308 		    "could not reset adapter, error %d\n", error);
309 		goto fail;
310 	}
311 
312 	/*
313 	 * Allocate DMA memory for firmware transfers.
314 	 */
315 	error = iwn_alloc_fwmem(sc);
316 	if (error != 0) {
317 		device_printf(dev,
318 		    "could not allocate firmware memory, error %d\n", error);
319 		goto fail;
320 	}
321 
322 	/*
323 	 * Allocate a "keep warm" page.
324 	 */
325 	error = iwn_alloc_kw(sc);
326 	if (error != 0) {
327 		device_printf(dev,
328 		    "could not allocate keep-warm page, error %d\n", error);
329 		goto fail;
330 	}
331 
332 	/*
333 	 * Allocate shared area (communication area).
334 	 */
335 	error = iwn_alloc_shared(sc);
336 	if (error != 0) {
337 		device_printf(dev,
338 		    "could not allocate shared area, error %d\n", error);
339 		goto fail;
340 	}
341 
342 	/*
343 	 * Allocate Tx rings.
344 	 */
345 	for (i = 0; i < IWN_NTXQUEUES; i++) {
346 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
347 		if (error != 0) {
348 			device_printf(dev,
349 			    "could not allocate Tx ring %d, error %d\n",
350 			    i, error);
351 			goto fail;
352 		}
353 	}
354 
355 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
356 	if (error != 0 ){
357 		device_printf(dev,
358 		    "could not allocate Rx ring, error %d\n", error);
359 		goto fail;
360 	}
361 
362 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
363 	if (ifp == NULL) {
364 		device_printf(dev, "can not allocate ifnet structure\n");
365 		goto fail;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	ic->ic_ifp = ifp;
370 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
371 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
372 
373 	/* set device capabilities */
374 	ic->ic_caps =
375 		  IEEE80211_C_STA		/* station mode supported */
376 		| IEEE80211_C_MONITOR		/* monitor mode supported */
377 		| IEEE80211_C_TXPMGT		/* tx power management */
378 		| IEEE80211_C_SHSLOT		/* short slot time supported */
379 		| IEEE80211_C_WPA
380 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
381 #if 0
382 		| IEEE80211_C_BGSCAN		/* background scanning */
383 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
384 #endif
385 		| IEEE80211_C_WME		/* WME */
386 		;
387 #if 0
388 	/* XXX disable until HT channel setup works */
389 	ic->ic_htcaps =
390 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
391 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
392 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
393 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
394 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
395 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
396 		/* s/w capabilities */
397 		| IEEE80211_HTC_HT		/* HT operation */
398 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
399 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
400 		;
401 #endif
402 	/* read supported channels and MAC address from EEPROM */
403 	iwn_read_eeprom(sc, macaddr);
404 
405 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
406 	ifp->if_softc = sc;
407 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
408 	ifp->if_init = iwn_init;
409 	ifp->if_ioctl = iwn_ioctl;
410 	ifp->if_start = iwn_start;
411         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
412 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
413 	IFQ_SET_READY(&ifp->if_snd);
414 
415 	ieee80211_ifattach(ic, macaddr);
416 	ic->ic_vap_create = iwn_vap_create;
417 	ic->ic_vap_delete = iwn_vap_delete;
418 	ic->ic_raw_xmit = iwn_raw_xmit;
419 	ic->ic_node_alloc = iwn_node_alloc;
420 	ic->ic_newassoc = iwn_newassoc;
421         ic->ic_wme.wme_update = iwn_wme_update;
422         ic->ic_scan_start = iwn_scan_start;
423         ic->ic_scan_end = iwn_scan_end;
424         ic->ic_set_channel = iwn_set_channel;
425         ic->ic_scan_curchan = iwn_scan_curchan;
426         ic->ic_scan_mindwell = iwn_scan_mindwell;
427 
428 	ieee80211_radiotap_attach(ic,
429             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
430 		IWN_TX_RADIOTAP_PRESENT,
431             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
432 		IWN_RX_RADIOTAP_PRESENT);
433 
434 	iwn_sysctlattach(sc);
435 
436         /*
437          * Hook our interrupt after all initialization is complete.
438          */
439         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
440 	    NULL, iwn_intr, sc, &sc->sc_ih);
441         if (error != 0) {
442                 device_printf(dev, "could not set up interrupt, error %d\n", error);
443                 goto fail;
444         }
445 
446         ieee80211_announce(ic);
447 	return 0;
448 fail:
449 	iwn_cleanup(dev);
450 	return error;
451 }
452 
453 static int
454 iwn_detach(device_t dev)
455 {
456 	iwn_cleanup(dev);
457         return 0;
458 }
459 
460 /*
461  * Cleanup any device resources that were allocated
462  */
463 int
464 iwn_cleanup(device_t dev)
465 {
466 	struct iwn_softc *sc = device_get_softc(dev);
467 	struct ifnet *ifp = sc->sc_ifp;
468 	struct ieee80211com *ic = ifp->if_l2com;
469 	int i;
470 
471 	ieee80211_draintask(ic, &sc->sc_reinit_task);
472 	ieee80211_draintask(ic, &sc->sc_radioon_task);
473 	ieee80211_draintask(ic, &sc->sc_radiooff_task);
474 
475 	if (ifp != NULL) {
476 		iwn_stop(sc);
477 		callout_drain(&sc->sc_timer_to);
478 		ieee80211_ifdetach(ic);
479 	}
480 
481 	iwn_unload_firmware(sc);
482 
483 	iwn_free_rx_ring(sc, &sc->rxq);
484 	for (i = 0; i < IWN_NTXQUEUES; i++)
485 		iwn_free_tx_ring(sc, &sc->txq[i]);
486 	iwn_free_kw(sc);
487 	iwn_free_fwmem(sc);
488 	if (sc->irq != NULL) {
489 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
490 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
491 		if (sc->irq_rid == 1)
492 			pci_release_msi(dev);
493 	}
494 	if (sc->mem != NULL)
495 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
496 	if (ifp != NULL)
497 		if_free(ifp);
498 	IWN_LOCK_DESTROY(sc);
499 	return 0;
500 }
501 
502 static struct ieee80211vap *
503 iwn_vap_create(struct ieee80211com *ic,
504 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
505 	const uint8_t bssid[IEEE80211_ADDR_LEN],
506 	const uint8_t mac[IEEE80211_ADDR_LEN])
507 {
508 	struct iwn_vap *ivp;
509 	struct ieee80211vap *vap;
510 
511 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
512 		return NULL;
513 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
514 	    M_80211_VAP, M_NOWAIT | M_ZERO);
515 	if (ivp == NULL)
516 		return NULL;
517 	vap = &ivp->iv_vap;
518 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
519 	vap->iv_bmissthreshold = 10;		/* override default */
520 	/* override with driver methods */
521 	ivp->iv_newstate = vap->iv_newstate;
522 	vap->iv_newstate = iwn_newstate;
523 
524 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
525 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
526 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
527 	    500 /*ms*/);
528 
529 	/* complete setup */
530 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
531 	ic->ic_opmode = opmode;
532 	return vap;
533 }
534 
535 static void
536 iwn_vap_delete(struct ieee80211vap *vap)
537 {
538 	struct iwn_vap *ivp = IWN_VAP(vap);
539 
540 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
541 	ieee80211_vap_detach(vap);
542 	free(ivp, M_80211_VAP);
543 }
544 
545 static int
546 iwn_shutdown(device_t dev)
547 {
548 	struct iwn_softc *sc = device_get_softc(dev);
549 
550 	iwn_stop(sc);
551 	return 0;
552 }
553 
554 static int
555 iwn_suspend(device_t dev)
556 {
557 	struct iwn_softc *sc = device_get_softc(dev);
558 
559 	iwn_stop(sc);
560 	return 0;
561 }
562 
563 static int
564 iwn_resume(device_t dev)
565 {
566 	struct iwn_softc *sc = device_get_softc(dev);
567 	struct ifnet *ifp = sc->sc_ifp;
568 
569 	pci_write_config(dev, 0x41, 0, 1);
570 
571 	if (ifp->if_flags & IFF_UP)
572 		iwn_init(sc);
573 	return 0;
574 }
575 
576 static void
577 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
578 {
579         if (error != 0)
580                 return;
581         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
582         *(bus_addr_t *)arg = segs[0].ds_addr;
583 }
584 
585 static int
586 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
587 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
588 {
589 	int error, lalignment, i;
590 
591 	/*
592 	 * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
593 	 * we allocate an extra 12k with 4k alignement and walk through
594 	 * it trying to find where the alignment is. It's a nasty fix for
595 	 * a bigger problem.
596 	*/
597 	DPRINTF(sc, IWN_DEBUG_RESET,
598 	    "Size: %zd - alignment %zd\n", size, alignment);
599 	if (alignment == 0x4000) {
600 		size += 12*1024;
601 		lalignment = 4096;
602 		DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
603 		    "Attempting to find a 16k boundary");
604 	} else
605 		lalignment = alignment;
606 	dma->size = size;
607 	dma->tag = NULL;
608 
609 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
610 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
611 	    1, size, flags, NULL, NULL, &dma->tag);
612 	if (error != 0) {
613 		device_printf(sc->sc_dev,
614 		    "%s: bus_dma_tag_create failed, error %d\n",
615 		    __func__, error);
616 		goto fail;
617 	}
618 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
619 	    flags | BUS_DMA_ZERO, &dma->map);
620 	if (error != 0) {
621 		device_printf(sc->sc_dev,
622 		   "%s: bus_dmamem_alloc failed, error %d\n",
623 		   __func__, error);
624 		goto fail;
625 	}
626 	if (alignment == 0x4000) {
627 		for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
628 			DPRINTF(sc, IWN_DEBUG_RESET,  "%s\n",
629 			    "Memory Unaligned, shifting pointer by 4k");
630 			dma->vaddr += 4096;
631 			size -= 4096;
632 		}
633 		if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
634 			DPRINTF(sc, IWN_DEBUG_ANY,
635 			    "%s: failed to align memory, vaddr %p, align %zd\n",
636 			    __func__, dma->vaddr, alignment);
637 			error = ENOMEM;
638 			goto fail;
639 		}
640 	}
641 
642 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
643 	    size, iwn_dma_map_addr, &dma->paddr, flags);
644 	if (error != 0) {
645 		device_printf(sc->sc_dev,
646 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
647 		goto fail;
648 	}
649 
650 	if (kvap != NULL)
651 		*kvap = dma->vaddr;
652 	return 0;
653 fail:
654 	iwn_dma_contig_free(dma);
655 	return error;
656 }
657 
658 static void
659 iwn_dma_contig_free(struct iwn_dma_info *dma)
660 {
661 	if (dma->tag != NULL) {
662 		if (dma->map != NULL) {
663 			if (dma->paddr == 0) {
664 				bus_dmamap_sync(dma->tag, dma->map,
665 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
666 				bus_dmamap_unload(dma->tag, dma->map);
667 			}
668 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
669 		}
670 		bus_dma_tag_destroy(dma->tag);
671 	}
672 }
673 
674 int
675 iwn_alloc_shared(struct iwn_softc *sc)
676 {
677 	/* must be aligned on a 1KB boundary */
678 	return iwn_dma_contig_alloc(sc, &sc->shared_dma,
679 	    (void **)&sc->shared, sizeof (struct iwn_shared), 1024,
680 	    BUS_DMA_NOWAIT);
681 }
682 
683 void
684 iwn_free_shared(struct iwn_softc *sc)
685 {
686 	iwn_dma_contig_free(&sc->shared_dma);
687 }
688 
689 int
690 iwn_alloc_kw(struct iwn_softc *sc)
691 {
692 	/* must be aligned on a 4k boundary */
693 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
694 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
695 }
696 
697 void
698 iwn_free_kw(struct iwn_softc *sc)
699 {
700 	iwn_dma_contig_free(&sc->kw_dma);
701 }
702 
703 int
704 iwn_alloc_fwmem(struct iwn_softc *sc)
705 {
706 	/* allocate enough contiguous space to store text and data */
707 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
708 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
709 	    BUS_DMA_NOWAIT);
710 }
711 
712 void
713 iwn_free_fwmem(struct iwn_softc *sc)
714 {
715 	iwn_dma_contig_free(&sc->fw_dma);
716 }
717 
718 int
719 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
720 {
721 	int i, error;
722 
723 	ring->cur = 0;
724 
725 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
726 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
727 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
728 	if (error != 0) {
729 		device_printf(sc->sc_dev,
730 		    "%s: could not allocate rx ring DMA memory, error %d\n",
731 		    __func__, error);
732 		goto fail;
733 	}
734 
735         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
736 	    BUS_SPACE_MAXADDR_32BIT,
737             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
738             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
739         if (error != 0) {
740                 device_printf(sc->sc_dev,
741 		    "%s: bus_dma_tag_create_failed, error %d\n",
742 		    __func__, error);
743                 goto fail;
744         }
745 
746 	/*
747 	 * Setup Rx buffers.
748 	 */
749 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
750 		struct iwn_rx_data *data = &ring->data[i];
751 		struct mbuf *m;
752 		bus_addr_t paddr;
753 
754 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
755 		if (error != 0) {
756 			device_printf(sc->sc_dev,
757 			    "%s: bus_dmamap_create failed, error %d\n",
758 			    __func__, error);
759 			goto fail;
760 		}
761 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
762 		if (m == NULL) {
763 			device_printf(sc->sc_dev,
764 			   "%s: could not allocate rx mbuf\n", __func__);
765 			error = ENOMEM;
766 			goto fail;
767 		}
768 		/* map page */
769 		error = bus_dmamap_load(ring->data_dmat, data->map,
770 		    mtod(m, caddr_t), MJUMPAGESIZE,
771 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
772 		if (error != 0 && error != EFBIG) {
773 			device_printf(sc->sc_dev,
774 			    "%s: bus_dmamap_load failed, error %d\n",
775 			    __func__, error);
776 			m_freem(m);
777 			error = ENOMEM;	/* XXX unique code */
778 			goto fail;
779 		}
780 		bus_dmamap_sync(ring->data_dmat, data->map,
781 		    BUS_DMASYNC_PREWRITE);
782 
783 		data->m = m;
784 		/* Rx buffers are aligned on a 256-byte boundary */
785 		ring->desc[i] = htole32(paddr >> 8);
786 	}
787 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
788 	    BUS_DMASYNC_PREWRITE);
789 	return 0;
790 fail:
791 	iwn_free_rx_ring(sc, ring);
792 	return error;
793 }
794 
795 void
796 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
797 {
798 	int ntries;
799 
800 	iwn_mem_lock(sc);
801 
802 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
803 	for (ntries = 0; ntries < 100; ntries++) {
804 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
805 			break;
806 		DELAY(10);
807 	}
808 #ifdef IWN_DEBUG
809 	if (ntries == 100)
810 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
811 #endif
812 	iwn_mem_unlock(sc);
813 
814 	ring->cur = 0;
815 }
816 
817 void
818 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
819 {
820 	int i;
821 
822 	iwn_dma_contig_free(&ring->desc_dma);
823 
824 	for (i = 0; i < IWN_RX_RING_COUNT; i++)
825 		if (ring->data[i].m != NULL)
826 			m_freem(ring->data[i].m);
827 }
828 
829 int
830 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
831 {
832 	bus_size_t size;
833 	int i, error;
834 
835 	ring->qid = qid;
836 	ring->queued = 0;
837 	ring->cur = 0;
838 
839 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
840 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
841 	    (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
842 	if (error != 0) {
843 		device_printf(sc->sc_dev,
844 		    "%s: could not allocate tx ring DMA memory, error %d\n",
845 		    __func__, error);
846 		goto fail;
847 	}
848 
849 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
850 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
851 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
852 	if (error != 0) {
853 		device_printf(sc->sc_dev,
854 		    "%s: could not allocate tx cmd DMA memory, error %d\n",
855 		    __func__, error);
856 		goto fail;
857 	}
858 
859         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
860 	    BUS_SPACE_MAXADDR_32BIT,
861             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
862             MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
863         if (error != 0) {
864                 device_printf(sc->sc_dev,
865 		    "%s: bus_dma_tag_create_failed, error %d\n",
866 		    __func__, error);
867                 goto fail;
868         }
869 
870 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
871 		struct iwn_tx_data *data = &ring->data[i];
872 
873 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
874 		if (error != 0) {
875 			device_printf(sc->sc_dev,
876 			    "%s: bus_dmamap_create failed, error %d\n",
877 			    __func__, error);
878 			goto fail;
879 		}
880 		bus_dmamap_sync(ring->data_dmat, data->map,
881 		    BUS_DMASYNC_PREWRITE);
882 	}
883 	return 0;
884 fail:
885 	iwn_free_tx_ring(sc, ring);
886 	return error;
887 }
888 
889 void
890 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
891 {
892 	uint32_t tmp;
893 	int i, ntries;
894 
895 	iwn_mem_lock(sc);
896 
897 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
898 	for (ntries = 0; ntries < 20; ntries++) {
899 		tmp = IWN_READ(sc, IWN_TX_STATUS);
900 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
901 			break;
902 		DELAY(10);
903 	}
904 #ifdef IWN_DEBUG
905 	if (ntries == 20)
906 		DPRINTF(sc, IWN_DEBUG_RESET,
907 		    "%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
908 #endif
909 	iwn_mem_unlock(sc);
910 
911 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
912 		struct iwn_tx_data *data = &ring->data[i];
913 
914 		if (data->m != NULL) {
915 			bus_dmamap_unload(ring->data_dmat, data->map);
916 			m_freem(data->m);
917 			data->m = NULL;
918 		}
919 	}
920 
921 	ring->queued = 0;
922 	ring->cur = 0;
923 }
924 
925 void
926 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
927 {
928 	int i;
929 
930 	iwn_dma_contig_free(&ring->desc_dma);
931 	iwn_dma_contig_free(&ring->cmd_dma);
932 
933 	if (ring->data != NULL) {
934 		for (i = 0; i < IWN_TX_RING_COUNT; i++) {
935 			struct iwn_tx_data *data = &ring->data[i];
936 
937 			if (data->m != NULL) {
938 				bus_dmamap_unload(ring->data_dmat, data->map);
939 				m_freem(data->m);
940 			}
941 		}
942 	}
943 }
944 
945 struct ieee80211_node *
946 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
947 {
948 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
949 }
950 
951 void
952 iwn_newassoc(struct ieee80211_node *ni, int isnew)
953 {
954 	struct ieee80211vap *vap = ni->ni_vap;
955 
956 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
957 	   &IWN_NODE(ni)->amn, ni);
958 }
959 
960 int
961 iwn_media_change(struct ifnet *ifp)
962 {
963 	int error = ieee80211_media_change(ifp);
964 	/* NB: only the fixed rate can change and that doesn't need a reset */
965 	return (error == ENETRESET ? 0 : error);
966 }
967 
968 int
969 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
970 {
971 	struct iwn_vap *ivp = IWN_VAP(vap);
972 	struct ieee80211com *ic = vap->iv_ic;
973 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
974 	int error;
975 
976 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
977 		ieee80211_state_name[vap->iv_state],
978 		ieee80211_state_name[nstate]);
979 
980 	IEEE80211_UNLOCK(ic);
981 	IWN_LOCK(sc);
982 	callout_stop(&sc->sc_timer_to);
983 
984 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
985 		/* !AUTH -> AUTH requires adapter config */
986 		error = iwn_auth(sc, vap);
987 	}
988 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
989 		/*
990 		 * !RUN -> RUN requires setting the association id
991 		 * which is done with a firmware cmd.  We also defer
992 		 * starting the timers until that work is done.
993 		 */
994 		error = iwn_run(sc, vap);
995 	}
996 	if (nstate == IEEE80211_S_RUN) {
997 		/*
998 		 * RUN -> RUN transition; just restart the timers.
999 		 */
1000 		iwn_calib_reset(sc);
1001 	}
1002 	IWN_UNLOCK(sc);
1003 	IEEE80211_LOCK(ic);
1004 	return ivp->iv_newstate(vap, nstate, arg);
1005 }
1006 
1007 /*
1008  * Grab exclusive access to NIC memory.
1009  */
1010 void
1011 iwn_mem_lock(struct iwn_softc *sc)
1012 {
1013 	uint32_t tmp;
1014 	int ntries;
1015 
1016 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1017 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1018 
1019 	/* spin until we actually get the lock */
1020 	for (ntries = 0; ntries < 1000; ntries++) {
1021 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1022 		    (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1023 			break;
1024 		DELAY(10);
1025 	}
1026 	if (ntries == 1000)
1027 		device_printf(sc->sc_dev,
1028 		    "%s: could not lock memory\n", __func__);
1029 }
1030 
1031 /*
1032  * Release lock on NIC memory.
1033  */
1034 void
1035 iwn_mem_unlock(struct iwn_softc *sc)
1036 {
1037 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1038 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1039 }
1040 
1041 uint32_t
1042 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1043 {
1044 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1045 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1046 }
1047 
1048 void
1049 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1050 {
1051 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1052 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1053 }
1054 
1055 void
1056 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1057     const uint32_t *data, int wlen)
1058 {
1059 	for (; wlen > 0; wlen--, data++, addr += 4)
1060 		iwn_mem_write(sc, addr, *data);
1061 }
1062 
1063 int
1064 iwn_eeprom_lock(struct iwn_softc *sc)
1065 {
1066 	uint32_t tmp;
1067 	int ntries;
1068 
1069 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1070 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1071 
1072 	/* spin until we actually get the lock */
1073 	for (ntries = 0; ntries < 100; ntries++) {
1074 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1075 			return 0;
1076 		DELAY(10);
1077 	}
1078 	return ETIMEDOUT;
1079 }
1080 
1081 void
1082 iwn_eeprom_unlock(struct iwn_softc *sc)
1083 {
1084 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1085 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1086 }
1087 
1088 /*
1089  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1090  * instead of using the traditional bit-bang method.
1091  */
1092 int
1093 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1094 {
1095 	uint8_t *out = data;
1096 	uint32_t val;
1097 	int ntries, tmp;
1098 
1099 	iwn_mem_lock(sc);
1100 	for (; len > 0; len -= 2, addr++) {
1101 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1102 		tmp = IWN_READ(sc, IWN_EEPROM_CTL);
1103 		IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
1104 
1105 		for (ntries = 0; ntries < 10; ntries++) {
1106 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1107 			    IWN_EEPROM_READY)
1108 				break;
1109 			DELAY(5);
1110 		}
1111 		if (ntries == 10) {
1112 			device_printf(sc->sc_dev,"could not read EEPROM\n");
1113 			return ETIMEDOUT;
1114 		}
1115 		*out++ = val >> 16;
1116 		if (len > 1)
1117 			*out++ = val >> 24;
1118 	}
1119 	iwn_mem_unlock(sc);
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * The firmware boot code is small and is intended to be copied directly into
1126  * the NIC internal memory.
1127  */
1128 int
1129 iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1130 {
1131 	int ntries;
1132 
1133 	size /= sizeof (uint32_t);
1134 
1135 	iwn_mem_lock(sc);
1136 
1137 	/* copy microcode image into NIC memory */
1138 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1139 	    (const uint32_t *)ucode, size);
1140 
1141 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1142 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1143 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1144 
1145 	/* run microcode */
1146 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1147 
1148 	/* wait for transfer to complete */
1149 	for (ntries = 0; ntries < 1000; ntries++) {
1150 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1151 			break;
1152 		DELAY(10);
1153 	}
1154 	if (ntries == 1000) {
1155 		iwn_mem_unlock(sc);
1156 		device_printf(sc->sc_dev,
1157 		    "%s: could not load boot firmware\n", __func__);
1158 		return ETIMEDOUT;
1159 	}
1160 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1161 
1162 	iwn_mem_unlock(sc);
1163 
1164 	return 0;
1165 }
1166 
1167 int
1168 iwn_load_firmware(struct iwn_softc *sc)
1169 {
1170 	int error;
1171 
1172 	KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
1173 
1174 	IWN_UNLOCK(sc);
1175 	/* load firmware image from disk */
1176 	sc->fw_fp = firmware_get("iwnfw");
1177 	if (sc->fw_fp == NULL) {
1178 		device_printf(sc->sc_dev,
1179 		    "%s: could not load firmare image \"iwnfw\"\n", __func__);
1180 		error = EINVAL;
1181 	} else
1182 		error = 0;
1183 	IWN_LOCK(sc);
1184 	return error;
1185 }
1186 
1187 int
1188 iwn_transfer_firmware(struct iwn_softc *sc)
1189 {
1190 	struct iwn_dma_info *dma = &sc->fw_dma;
1191 	const struct iwn_firmware_hdr *hdr;
1192 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1193 	const uint8_t *boot_text;
1194 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1195 	uint32_t boot_textsz;
1196 	int error = 0;
1197 	const struct firmware *fp = sc->fw_fp;
1198 
1199 	/* extract firmware header information */
1200 	if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
1201 		device_printf(sc->sc_dev,
1202 		    "%s: truncated firmware header: %zu bytes, expecting %zu\n",
1203 		    __func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
1204 		error = EINVAL;
1205 		goto fail;
1206 	}
1207 	hdr = (const struct iwn_firmware_hdr *)fp->data;
1208 	main_textsz = le32toh(hdr->main_textsz);
1209 	main_datasz = le32toh(hdr->main_datasz);
1210 	init_textsz = le32toh(hdr->init_textsz);
1211 	init_datasz = le32toh(hdr->init_datasz);
1212 	boot_textsz = le32toh(hdr->boot_textsz);
1213 
1214 	/* sanity-check firmware segments sizes */
1215 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1216 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1217 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1218 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1219 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1220 	    (boot_textsz & 3) != 0) {
1221 		device_printf(sc->sc_dev,
1222 		    "%s: invalid firmware header, main [%d,%d], init [%d,%d] "
1223 		    "boot %d\n", __func__, main_textsz, main_datasz,
1224 		    init_textsz, init_datasz, boot_textsz);
1225 		error = EINVAL;
1226 		goto fail;
1227 	}
1228 
1229 	/* check that all firmware segments are present */
1230 	if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
1231 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1232 		device_printf(sc->sc_dev, "%s: firmware file too short: "
1233 		    "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
1234 		    __func__, fp->datasize, main_textsz, main_datasz,
1235 		    init_textsz, init_datasz, boot_textsz);
1236 		error = EINVAL;
1237 		goto fail;
1238 	}
1239 
1240 	/* get pointers to firmware segments */
1241 	main_text = (const uint8_t *)(hdr + 1);
1242 	main_data = main_text + main_textsz;
1243 	init_text = main_data + main_datasz;
1244 	init_data = init_text + init_textsz;
1245 	boot_text = init_data + init_datasz;
1246 
1247 	/* copy initialization images into pre-allocated DMA-safe memory */
1248 	memcpy(dma->vaddr, init_data, init_datasz);
1249 	memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1250 
1251 	/* tell adapter where to find initialization images */
1252 	iwn_mem_lock(sc);
1253 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1254 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1255 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1256 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1257 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1258 	iwn_mem_unlock(sc);
1259 
1260 	/* load firmware boot code */
1261 	error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
1262 	if (error != 0) {
1263 		device_printf(sc->sc_dev,
1264 		    "%s: could not load boot firmware, error %d\n",
1265 		    __func__, error);
1266 		goto fail;
1267 	}
1268 
1269 	/* now press "execute" ;-) */
1270 	IWN_WRITE(sc, IWN_RESET, 0);
1271 
1272 	/* wait at most one second for first alive notification */
1273 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1274 	if (error != 0) {
1275 		/* this isn't what was supposed to happen.. */
1276 		device_printf(sc->sc_dev,
1277 		    "%s: timeout waiting for first alive notice, error %d\n",
1278 		    __func__, error);
1279 		goto fail;
1280 	}
1281 
1282 	/* copy runtime images into pre-allocated DMA-safe memory */
1283 	memcpy(dma->vaddr, main_data, main_datasz);
1284 	memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1285 
1286 	/* tell adapter where to find runtime images */
1287 	iwn_mem_lock(sc);
1288 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1289 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1290 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1291 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1292 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1293 	iwn_mem_unlock(sc);
1294 
1295 	/* wait at most one second for second alive notification */
1296 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1297 	if (error != 0) {
1298 		/* this isn't what was supposed to happen.. */
1299 		device_printf(sc->sc_dev,
1300 		   "%s: timeout waiting for second alive notice, error %d\n",
1301 		   __func__, error);
1302 		goto fail;
1303 	}
1304 	return 0;
1305 fail:
1306 	return error;
1307 }
1308 
1309 void
1310 iwn_unload_firmware(struct iwn_softc *sc)
1311 {
1312         if (sc->fw_fp != NULL) {
1313                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
1314                 sc->fw_fp = NULL;
1315         }
1316 }
1317 
1318 static void
1319 iwn_timer_timeout(void *arg)
1320 {
1321 	struct iwn_softc *sc = arg;
1322 
1323 	IWN_LOCK_ASSERT(sc);
1324 
1325 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1326 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1327 		    "send statistics request");
1328 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1329 		sc->calib_cnt = 60;	/* do calibration every 60s */
1330 	}
1331 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1332 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1333 }
1334 
1335 static void
1336 iwn_calib_reset(struct iwn_softc *sc)
1337 {
1338 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1339 	sc->calib_cnt = 60;		/* do calibration every 60s */
1340 }
1341 
1342 void
1343 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1344 {
1345 	struct iwn_rx_stat *stat;
1346 
1347 	DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
1348 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1349 	stat = (struct iwn_rx_stat *)(desc + 1);
1350 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1351 	sc->last_rx_valid = 1;
1352 }
1353 
1354 static __inline int
1355 maprate(int iwnrate)
1356 {
1357 	switch (iwnrate) {
1358 	/* CCK rates */
1359 	case  10: return   2;
1360 	case  20: return   4;
1361 	case  55: return  11;
1362 	case 110: return  22;
1363 	/* OFDM rates */
1364 	case 0xd: return  12;
1365 	case 0xf: return  18;
1366 	case 0x5: return  24;
1367 	case 0x7: return  36;
1368 	case 0x9: return  48;
1369 	case 0xb: return  72;
1370 	case 0x1: return  96;
1371 	case 0x3: return 108;
1372 	/* XXX MCS */
1373 	}
1374 	/* unknown rate: should not happen */
1375 	return 0;
1376 }
1377 
1378 void
1379 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1380     struct iwn_rx_data *data)
1381 {
1382 	struct ifnet *ifp = sc->sc_ifp;
1383 	struct ieee80211com *ic = ifp->if_l2com;
1384 	struct iwn_rx_ring *ring = &sc->rxq;
1385 	struct ieee80211_frame *wh;
1386 	struct ieee80211_node *ni;
1387 	struct mbuf *m, *mnew;
1388 	struct iwn_rx_stat *stat;
1389 	caddr_t head;
1390 	uint32_t *tail;
1391 	int8_t rssi, nf;
1392 	int len, error;
1393 	bus_addr_t paddr;
1394 
1395 	if (desc->type == IWN_AMPDU_RX_DONE) {
1396 		/* check for prior AMPDU_RX_START */
1397 		if (!sc->last_rx_valid) {
1398 			DPRINTF(sc, IWN_DEBUG_ANY,
1399 			    "%s: missing AMPDU_RX_START\n", __func__);
1400 			ifp->if_ierrors++;
1401 			return;
1402 		}
1403 		sc->last_rx_valid = 0;
1404 		stat = &sc->last_rx_stat;
1405 	} else
1406 		stat = (struct iwn_rx_stat *)(desc + 1);
1407 
1408 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1409 		device_printf(sc->sc_dev,
1410 		    "%s: invalid rx statistic header, len %d\n",
1411 		    __func__, stat->cfg_phy_len);
1412 		ifp->if_ierrors++;
1413 		return;
1414 	}
1415 	if (desc->type == IWN_AMPDU_RX_DONE) {
1416 		struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
1417 		head = (caddr_t)(ampdu + 1);
1418 		len = le16toh(ampdu->len);
1419 	} else {
1420 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1421 		len = le16toh(stat->len);
1422 	}
1423 
1424 	/* discard Rx frames with bad CRC early */
1425 	tail = (uint32_t *)(head + len);
1426 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1427 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
1428 		    __func__, le32toh(*tail));
1429 		ifp->if_ierrors++;
1430 		return;
1431 	}
1432 	if (len < sizeof (struct ieee80211_frame)) {
1433 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
1434 		    __func__, len);
1435 		ifp->if_ierrors++;
1436 		return;
1437 	}
1438 
1439 	/* XXX don't need mbuf, just dma buffer */
1440 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1441 	if (mnew == NULL) {
1442 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1443 		    __func__);
1444 		ifp->if_ierrors++;
1445 		return;
1446 	}
1447 	error = bus_dmamap_load(ring->data_dmat, data->map,
1448 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1449 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1450 	if (error != 0 && error != EFBIG) {
1451 		device_printf(sc->sc_dev,
1452 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1453 		m_freem(mnew);
1454 		ifp->if_ierrors++;
1455 		return;
1456 	}
1457 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1458 
1459 	/* finalize mbuf and swap in new one */
1460 	m = data->m;
1461 	m->m_pkthdr.rcvif = ifp;
1462 	m->m_data = head;
1463 	m->m_pkthdr.len = m->m_len = len;
1464 
1465 	data->m = mnew;
1466 	/* update Rx descriptor */
1467 	ring->desc[ring->cur] = htole32(paddr >> 8);
1468 
1469 	rssi = iwn_get_rssi(sc, stat);
1470 
1471 	/* grab a reference to the source node */
1472 	wh = mtod(m, struct ieee80211_frame *);
1473 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1474 
1475 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
1476 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
1477 
1478 	if (ieee80211_radiotap_active(ic)) {
1479 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1480 
1481 		tap->wr_tsft = htole64(stat->tstamp);
1482 		tap->wr_flags = 0;
1483 		if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
1484 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1485 		tap->wr_rate = maprate(stat->rate);
1486 		tap->wr_dbm_antsignal = rssi;
1487 		tap->wr_dbm_antnoise = nf;
1488 	}
1489 
1490 	IWN_UNLOCK(sc);
1491 
1492 	/* send the frame to the 802.11 layer */
1493 	if (ni != NULL) {
1494 		(void) ieee80211_input(ni, m, rssi - nf, nf);
1495 		ieee80211_free_node(ni);
1496 	} else
1497 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
1498 
1499 	IWN_LOCK(sc);
1500 }
1501 
1502 void
1503 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1504 {
1505 	struct ifnet *ifp = sc->sc_ifp;
1506 	struct ieee80211com *ic = ifp->if_l2com;
1507 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1508 	struct iwn_calib_state *calib = &sc->calib;
1509 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1510 
1511 	/* beacon stats are meaningful only when associated and not scanning */
1512 	if (vap->iv_state != IEEE80211_S_RUN ||
1513 	    (ic->ic_flags & IEEE80211_F_SCAN))
1514 		return;
1515 
1516 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
1517 	iwn_calib_reset(sc);
1518 
1519 	/* test if temperature has changed */
1520 	if (stats->general.temp != sc->rawtemp) {
1521 		int temp;
1522 
1523 		sc->rawtemp = stats->general.temp;
1524 		temp = iwn_get_temperature(sc);
1525 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
1526 		    __func__, temp);
1527 
1528 		/* update Tx power if need be */
1529 		iwn_power_calibration(sc, temp);
1530 	}
1531 
1532 	if (desc->type != IWN_BEACON_STATISTICS)
1533 		return;	/* reply to a statistics request */
1534 
1535 	sc->noise = iwn_get_noise(&stats->rx.general);
1536 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
1537 
1538 	/* test that RSSI and noise are present in stats report */
1539 	if (stats->rx.general.flags != htole32(1)) {
1540 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1541 		    "received statistics without RSSI");
1542 		return;
1543 	}
1544 
1545 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1546 		iwn_compute_differential_gain(sc, &stats->rx.general);
1547 	else if (calib->state == IWN_CALIB_STATE_RUN)
1548 		iwn_tune_sensitivity(sc, &stats->rx);
1549 }
1550 
1551 void
1552 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1553 {
1554 	struct ifnet *ifp = sc->sc_ifp;
1555 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1556 	struct iwn_tx_data *data = &ring->data[desc->idx];
1557 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1558 	struct iwn_node *wn = IWN_NODE(data->ni);
1559 	struct mbuf *m;
1560 	struct ieee80211_node *ni;
1561 	uint32_t status;
1562 
1563 	KASSERT(data->ni != NULL, ("no node"));
1564 
1565 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
1566 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
1567 	    __func__, desc->qid, desc->idx, stat->ntries,
1568 	    stat->nkill, stat->rate, le16toh(stat->duration),
1569 	    le32toh(stat->status));
1570 
1571 	/*
1572 	 * Update rate control statistics for the node.
1573 	 */
1574 	status = le32toh(stat->status) & 0xff;
1575 	if (status & 0x80) {
1576 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
1577 		    __func__, le32toh(stat->status));
1578 		ifp->if_oerrors++;
1579 		ieee80211_amrr_tx_complete(&wn->amn,
1580 		    IEEE80211_AMRR_FAILURE, stat->ntries);
1581 	} else {
1582 		ieee80211_amrr_tx_complete(&wn->amn,
1583 		    IEEE80211_AMRR_SUCCESS, stat->ntries);
1584 	}
1585 
1586 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1587 	bus_dmamap_unload(ring->data_dmat, data->map);
1588 
1589 	m = data->m, data->m = NULL;
1590 	ni = data->ni, data->ni = NULL;
1591 
1592 	if (m->m_flags & M_TXCB) {
1593 		/*
1594 		 * Channels marked for "radar" require traffic to be received
1595 		 * to unlock before we can transmit.  Until traffic is seen
1596 		 * any attempt to transmit is returned immediately with status
1597 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
1598 		 * happen on first authenticate after scanning.  To workaround
1599 		 * this we ignore a failure of this sort in AUTH state so the
1600 		 * 802.11 layer will fall back to using a timeout to wait for
1601 		 * the AUTH reply.  This allows the firmware time to see
1602 		 * traffic so a subsequent retry of AUTH succeeds.  It's
1603 		 * unclear why the firmware does not maintain state for
1604 		 * channels recently visited as this would allow immediate
1605 		 * use of the channel after a scan (where we see traffic).
1606 		 */
1607 		if (status == IWN_TX_FAIL_TX_LOCKED &&
1608 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
1609 			ieee80211_process_callback(ni, m, 0);
1610 		else
1611 			ieee80211_process_callback(ni, m,
1612 			    (status & IWN_TX_FAIL) != 0);
1613 	}
1614 	m_freem(m);
1615 	ieee80211_free_node(ni);
1616 
1617 	ring->queued--;
1618 
1619 	sc->sc_tx_timer = 0;
1620 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621 	iwn_start_locked(ifp);
1622 }
1623 
1624 void
1625 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1626 {
1627 	struct iwn_tx_ring *ring = &sc->txq[4];
1628 	struct iwn_tx_data *data;
1629 
1630 	if ((desc->qid & 0xf) != 4)
1631 		return;	/* not a command ack */
1632 
1633 	data = &ring->data[desc->idx];
1634 
1635 	/* if the command was mapped in a mbuf, free it */
1636 	if (data->m != NULL) {
1637 		bus_dmamap_unload(ring->data_dmat, data->map);
1638 		m_freem(data->m);
1639 		data->m = NULL;
1640 	}
1641 
1642 	wakeup(&ring->cmd[desc->idx]);
1643 }
1644 
1645 void
1646 iwn_notif_intr(struct iwn_softc *sc)
1647 {
1648 	struct ifnet *ifp = sc->sc_ifp;
1649 	struct ieee80211com *ic = ifp->if_l2com;
1650 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1651 	uint16_t hw;
1652 
1653 	hw = le16toh(sc->shared->closed_count) & 0xfff;
1654 	while (sc->rxq.cur != hw) {
1655 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1656 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1657 
1658 		DPRINTF(sc, IWN_DEBUG_RECV,
1659 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
1660 		    __func__, desc->qid, desc->idx, desc->flags,
1661 		    desc->type, iwn_intr_str(desc->type),
1662 		    le16toh(desc->len));
1663 
1664 		if (!(desc->qid & 0x80))	/* reply to a command */
1665 			iwn_cmd_intr(sc, desc);
1666 
1667 		switch (desc->type) {
1668 		case IWN_RX_DONE:
1669 		case IWN_AMPDU_RX_DONE:
1670 			iwn_rx_intr(sc, desc, data);
1671 			break;
1672 
1673 		case IWN_AMPDU_RX_START:
1674 			iwn_ampdu_rx_start(sc, desc);
1675 			break;
1676 
1677 		case IWN_TX_DONE:
1678 			/* a 802.11 frame has been transmitted */
1679 			iwn_tx_intr(sc, desc);
1680 			break;
1681 
1682 		case IWN_RX_STATISTICS:
1683 		case IWN_BEACON_STATISTICS:
1684 			iwn_rx_statistics(sc, desc);
1685 			break;
1686 
1687 		case IWN_BEACON_MISSED: {
1688 			struct iwn_beacon_missed *miss =
1689 			    (struct iwn_beacon_missed *)(desc + 1);
1690 			int misses = le32toh(miss->consecutive);
1691 
1692 			/* XXX not sure why we're notified w/ zero */
1693 			if (misses == 0)
1694 				break;
1695 			DPRINTF(sc, IWN_DEBUG_STATE,
1696 			    "%s: beacons missed %d/%d\n", __func__,
1697 			    misses, le32toh(miss->total));
1698 			/*
1699 			 * If more than 5 consecutive beacons are missed,
1700 			 * reinitialize the sensitivity state machine.
1701 			 */
1702 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
1703 				(void) iwn_init_sensitivity(sc);
1704 			if (misses >= vap->iv_bmissthreshold)
1705 				ieee80211_beacon_miss(ic);
1706 			break;
1707 		}
1708 		case IWN_UC_READY: {
1709 			struct iwn_ucode_info *uc =
1710 			    (struct iwn_ucode_info *)(desc + 1);
1711 
1712 			/* the microcontroller is ready */
1713 			DPRINTF(sc, IWN_DEBUG_RESET,
1714 			    "microcode alive notification version=%d.%d "
1715 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
1716 			    uc->subtype, le32toh(uc->valid));
1717 
1718 			if (le32toh(uc->valid) != 1) {
1719 				device_printf(sc->sc_dev,
1720 				"microcontroller initialization failed");
1721 				break;
1722 			}
1723 			if (uc->subtype == IWN_UCODE_INIT) {
1724 				/* save microcontroller's report */
1725 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1726 			}
1727 			break;
1728 		}
1729 		case IWN_STATE_CHANGED: {
1730 			uint32_t *status = (uint32_t *)(desc + 1);
1731 
1732 			/*
1733 			 * State change allows hardware switch change to be
1734 			 * noted. However, we handle this in iwn_intr as we
1735 			 * get both the enable/disble intr.
1736 			 */
1737 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
1738 			    le32toh(*status));
1739 			break;
1740 		}
1741 		case IWN_START_SCAN: {
1742 			struct iwn_start_scan *scan =
1743 			    (struct iwn_start_scan *)(desc + 1);
1744 
1745 			DPRINTF(sc, IWN_DEBUG_ANY,
1746 			    "%s: scanning channel %d status %x\n",
1747 			    __func__, scan->chan, le32toh(scan->status));
1748 			break;
1749 		}
1750 		case IWN_STOP_SCAN: {
1751 			struct iwn_stop_scan *scan =
1752 			    (struct iwn_stop_scan *)(desc + 1);
1753 
1754 			DPRINTF(sc, IWN_DEBUG_STATE,
1755 			    "scan finished nchan=%d status=%d chan=%d\n",
1756 			    scan->nchan, scan->status, scan->chan);
1757 
1758 			ieee80211_scan_next(vap);
1759 			break;
1760 		}
1761 		}
1762 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1763 	}
1764 
1765 	/* tell the firmware what we have processed */
1766 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1767 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1768 }
1769 
1770 static void
1771 iwn_rftoggle_intr(struct iwn_softc *sc)
1772 {
1773 	struct ifnet *ifp = sc->sc_ifp;
1774 	struct ieee80211com *ic = ifp->if_l2com;
1775 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1776 
1777 	IWN_LOCK_ASSERT(sc);
1778 
1779 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
1780 	    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1781 	if (tmp & IWN_GPIO_RF_ENABLED)
1782 		ieee80211_runtask(ic, &sc->sc_radioon_task);
1783 	else
1784 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
1785 }
1786 
1787 static void
1788 iwn_error_intr(struct iwn_softc *sc, uint32_t r1, uint32_t r2)
1789 {
1790 	struct ifnet *ifp = sc->sc_ifp;
1791 	struct ieee80211com *ic = ifp->if_l2com;
1792 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1793 
1794 	IWN_LOCK_ASSERT(sc);
1795 
1796 	device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
1797 	    r1, IWN_INTR_BITS, r2);
1798 	if (vap != NULL)
1799 		ieee80211_cancel_scan(vap);
1800 	ieee80211_runtask(ic, &sc->sc_reinit_task);
1801 }
1802 
1803 void
1804 iwn_intr(void *arg)
1805 {
1806 	struct iwn_softc *sc = arg;
1807 	uint32_t r1, r2;
1808 
1809 	IWN_LOCK(sc);
1810 
1811 	/* disable interrupts */
1812 	IWN_WRITE(sc, IWN_MASK, 0);
1813 
1814 	r1 = IWN_READ(sc, IWN_INTR);
1815 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1816 
1817 	if (r1 == 0 && r2 == 0) {
1818 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1819 		goto done;	/* not for us */
1820 	}
1821 
1822 	if (r1 == 0xffffffff)
1823 		goto done;	/* hardware gone */
1824 
1825 	/* ack interrupts */
1826 	IWN_WRITE(sc, IWN_INTR, r1);
1827 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1828 
1829 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
1830 
1831 	if (r1 & IWN_RF_TOGGLED)
1832 		iwn_rftoggle_intr(sc);
1833 	if (r1 & IWN_CT_REACHED)
1834 		device_printf(sc->sc_dev, "critical temperature reached!\n");
1835 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1836 		iwn_error_intr(sc, r1, r2);
1837 		goto done;
1838 	}
1839 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
1840 		iwn_notif_intr(sc);
1841 	if (r1 & IWN_ALIVE_INTR)
1842 		wakeup(sc);
1843 
1844 	/* re-enable interrupts */
1845 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1846 done:
1847 	IWN_UNLOCK(sc);
1848 }
1849 
1850 uint8_t
1851 iwn_plcp_signal(int rate)
1852 {
1853 	switch (rate) {
1854 	/* CCK rates (returned values are device-dependent) */
1855 	case 2:		return 10;
1856 	case 4:		return 20;
1857 	case 11:	return 55;
1858 	case 22:	return 110;
1859 
1860 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1861 	/* R1-R4, (u)ral is R4-R1 */
1862 	case 12:	return 0xd;
1863 	case 18:	return 0xf;
1864 	case 24:	return 0x5;
1865 	case 36:	return 0x7;
1866 	case 48:	return 0x9;
1867 	case 72:	return 0xb;
1868 	case 96:	return 0x1;
1869 	case 108:	return 0x3;
1870 	case 120:	return 0x3;
1871 	}
1872 	/* unknown rate (should not get there) */
1873 	return 0;
1874 }
1875 
1876 /* determine if a given rate is CCK or OFDM */
1877 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1878 
1879 int
1880 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1881     struct iwn_tx_ring *ring)
1882 {
1883 	struct ieee80211vap *vap = ni->ni_vap;
1884 	struct ieee80211com *ic = ni->ni_ic;
1885 	struct ifnet *ifp = sc->sc_ifp;
1886 	const struct ieee80211_txparam *tp;
1887 	struct iwn_tx_desc *desc;
1888 	struct iwn_tx_data *data;
1889 	struct iwn_tx_cmd *cmd;
1890 	struct iwn_cmd_data *tx;
1891 	struct ieee80211_frame *wh;
1892 	struct ieee80211_key *k;
1893 	bus_addr_t paddr;
1894 	uint32_t flags;
1895 	uint16_t timeout;
1896 	uint8_t type;
1897 	u_int hdrlen;
1898 	struct mbuf *mnew;
1899 	int rate, error, pad, nsegs, i, ismcast, id;
1900 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
1901 
1902 	IWN_LOCK_ASSERT(sc);
1903 
1904 	wh = mtod(m0, struct ieee80211_frame *);
1905 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1906 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1907 	hdrlen = ieee80211_anyhdrsize(wh);
1908 
1909 	/* pick a tx rate */
1910 	/* XXX ni_chan */
1911 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1912 	if (type == IEEE80211_FC0_TYPE_MGT)
1913 		rate = tp->mgmtrate;
1914 	else if (ismcast)
1915 		rate = tp->mcastrate;
1916 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1917 		rate = tp->ucastrate;
1918 	else {
1919 		(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
1920 		rate = ni->ni_txrate;
1921 	}
1922 
1923 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1924 		k = ieee80211_crypto_encap(ni, m0);
1925 		if (k == NULL) {
1926 			m_freem(m0);
1927 			return ENOBUFS;
1928 		}
1929 		/* packet header may have moved, reset our local pointer */
1930 		wh = mtod(m0, struct ieee80211_frame *);
1931 	} else
1932 		k = NULL;
1933 
1934 	if (ieee80211_radiotap_active_vap(vap)) {
1935 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1936 
1937 		tap->wt_flags = 0;
1938 		tap->wt_rate = rate;
1939 		if (k != NULL)
1940 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1941 
1942 		ieee80211_radiotap_tx(vap, m0);
1943 	}
1944 
1945 	flags = IWN_TX_AUTO_SEQ;
1946 	/* XXX honor ACM */
1947 	if (!ismcast)
1948 		flags |= IWN_TX_NEED_ACK;
1949 
1950 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
1951 		id = IWN_ID_BROADCAST;
1952 	else
1953 		id = IWN_ID_BSS;
1954 
1955 	/* check if RTS/CTS or CTS-to-self protection must be used */
1956 	if (!ismcast) {
1957 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1958 		if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1959 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1960 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1961 		    IWN_RATE_IS_OFDM(rate)) {
1962 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1963 				flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
1964 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1965 				flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1966 		}
1967 	}
1968 
1969 	if (type == IEEE80211_FC0_TYPE_MGT) {
1970 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1971 
1972 		/* tell h/w to set timestamp in probe responses */
1973 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1974 			flags |= IWN_TX_INSERT_TSTAMP;
1975 
1976 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1977 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1978 			timeout = htole16(3);
1979 		else
1980 			timeout = htole16(2);
1981 	} else
1982 		timeout = htole16(0);
1983 
1984 	if (hdrlen & 3) {
1985 		/* first segment's length must be a multiple of 4 */
1986 		flags |= IWN_TX_NEED_PADDING;
1987 		pad = 4 - (hdrlen & 3);
1988 	} else
1989 		pad = 0;
1990 
1991 	desc = &ring->desc[ring->cur];
1992 	data = &ring->data[ring->cur];
1993 
1994 	cmd = &ring->cmd[ring->cur];
1995 	cmd->code = IWN_CMD_TX_DATA;
1996 	cmd->flags = 0;
1997 	cmd->qid = ring->qid;
1998 	cmd->idx = ring->cur;
1999 
2000 	tx = (struct iwn_cmd_data *)cmd->data;
2001 	/* NB: no need to bzero tx, all fields are reinitialized here */
2002 	tx->id = id;
2003 	tx->flags = htole32(flags);
2004 	tx->len = htole16(m0->m_pkthdr.len);
2005 	tx->rate = iwn_plcp_signal(rate);
2006 	tx->rts_ntries = 60;		/* XXX? */
2007 	tx->data_ntries = 15;		/* XXX? */
2008 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2009 	tx->timeout = timeout;
2010 
2011 	if (k != NULL) {
2012 		/* XXX fill in */;
2013 	} else
2014 		tx->security = 0;
2015 
2016 	/* XXX alternate between Ant A and Ant B ? */
2017 	tx->rflags = IWN_RFLAG_ANT_B;
2018 	if (tx->id == IWN_ID_BROADCAST) {
2019 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2020 		if (!IWN_RATE_IS_OFDM(rate))
2021 			tx->rflags |= IWN_RFLAG_CCK;
2022 	} else {
2023 		tx->ridx = 0;
2024 		/* tell adapter to ignore rflags */
2025 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2026 	}
2027 
2028 	/* copy and trim IEEE802.11 header */
2029 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2030 	m_adj(m0, hdrlen);
2031 
2032 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2033 	    &nsegs, BUS_DMA_NOWAIT);
2034 	if (error != 0) {
2035 		if (error == EFBIG) {
2036 			/* too many fragments, linearize */
2037 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2038 			if (mnew == NULL) {
2039 				IWN_UNLOCK(sc);
2040 				device_printf(sc->sc_dev,
2041 				    "%s: could not defrag mbuf\n", __func__);
2042 				m_freem(m0);
2043 				return ENOBUFS;
2044 			}
2045 			m0 = mnew;
2046 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2047 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2048 		}
2049 		if (error != 0) {
2050 			IWN_UNLOCK(sc);
2051 			device_printf(sc->sc_dev,
2052 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2053 			     __func__, error);
2054 			m_freem(m0);
2055 			return error;
2056 		}
2057 	}
2058 
2059 	data->m = m0;
2060 	data->ni = ni;
2061 
2062 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2063 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2064 
2065 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2066 	tx->loaddr = htole32(paddr + 4 +
2067 	    offsetof(struct iwn_cmd_data, ntries));
2068 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2069 
2070 	/* first scatter/gather segment is used by the tx data command */
2071 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2072 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2073 	for (i = 1; i <= nsegs; i++) {
2074 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2075 		     segs[i - 1].ds_len);
2076 	}
2077 	sc->shared->len[ring->qid][ring->cur] =
2078 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2079 
2080 	if (ring->cur < IWN_TX_WINDOW)
2081 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2082 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2083 
2084 	ring->queued++;
2085 
2086 	/* kick Tx ring */
2087 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2088 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2089 
2090 	ifp->if_opackets++;
2091 	sc->sc_tx_timer = 5;
2092 
2093 	return 0;
2094 }
2095 
2096 void
2097 iwn_start(struct ifnet *ifp)
2098 {
2099 	struct iwn_softc *sc = ifp->if_softc;
2100 
2101 	IWN_LOCK(sc);
2102 	iwn_start_locked(ifp);
2103 	IWN_UNLOCK(sc);
2104 }
2105 
2106 void
2107 iwn_start_locked(struct ifnet *ifp)
2108 {
2109 	struct iwn_softc *sc = ifp->if_softc;
2110 	struct ieee80211_node *ni;
2111 	struct iwn_tx_ring *txq;
2112 	struct mbuf *m;
2113 	int pri;
2114 
2115 	IWN_LOCK_ASSERT(sc);
2116 
2117 	for (;;) {
2118 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2119 		if (m == NULL)
2120 			break;
2121 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2122 		pri = M_WME_GETAC(m);
2123 		txq = &sc->txq[pri];
2124 		if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2125 			/* XXX not right */
2126 			/* ring is nearly full, stop flow */
2127 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2128 		}
2129 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
2130 			ifp->if_oerrors++;
2131 			ieee80211_free_node(ni);
2132 			break;
2133 		}
2134 	}
2135 }
2136 
2137 static int
2138 iwn_tx_handoff(struct iwn_softc *sc,
2139 	struct iwn_tx_ring *ring,
2140 	struct iwn_tx_cmd *cmd,
2141 	struct iwn_cmd_data *tx,
2142 	struct ieee80211_node *ni,
2143 	struct mbuf *m0, u_int hdrlen, int pad)
2144 {
2145 	struct ifnet *ifp = sc->sc_ifp;
2146 	struct iwn_tx_desc *desc;
2147 	struct iwn_tx_data *data;
2148 	bus_addr_t paddr;
2149 	struct mbuf *mnew;
2150 	int error, nsegs, i;
2151 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2152 
2153 	/* copy and trim IEEE802.11 header */
2154 	memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
2155 	m_adj(m0, hdrlen);
2156 
2157 	desc = &ring->desc[ring->cur];
2158 	data = &ring->data[ring->cur];
2159 
2160 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2161 	    &nsegs, BUS_DMA_NOWAIT);
2162 	if (error != 0) {
2163 		if (error == EFBIG) {
2164 			/* too many fragments, linearize */
2165 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2166 			if (mnew == NULL) {
2167 				IWN_UNLOCK(sc);
2168 				device_printf(sc->sc_dev,
2169 				    "%s: could not defrag mbuf\n", __func__);
2170 				m_freem(m0);
2171 				return ENOBUFS;
2172 			}
2173 			m0 = mnew;
2174 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2175 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2176 		}
2177 		if (error != 0) {
2178 			IWN_UNLOCK(sc);
2179 			device_printf(sc->sc_dev,
2180 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2181 			     __func__, error);
2182 			m_freem(m0);
2183 			return error;
2184 		}
2185 	}
2186 
2187 	data->m = m0;
2188 	data->ni = ni;
2189 
2190 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2191 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2192 
2193 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2194 	tx->loaddr = htole32(paddr + 4 +
2195 	    offsetof(struct iwn_cmd_data, ntries));
2196 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2197 
2198 	/* first scatter/gather segment is used by the tx data command */
2199 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2200 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2201 	for (i = 1; i <= nsegs; i++) {
2202 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2203 		     segs[i - 1].ds_len);
2204 	}
2205 	sc->shared->len[ring->qid][ring->cur] =
2206 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2207 
2208 	if (ring->cur < IWN_TX_WINDOW)
2209 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2210 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2211 
2212 	ring->queued++;
2213 
2214 	/* kick Tx ring */
2215 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2216 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2217 
2218 	ifp->if_opackets++;
2219 	sc->sc_tx_timer = 5;
2220 
2221 	return 0;
2222 }
2223 
2224 static int
2225 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
2226     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
2227     const struct ieee80211_bpf_params *params)
2228 {
2229 	struct ieee80211vap *vap = ni->ni_vap;
2230 	struct iwn_tx_cmd *cmd;
2231 	struct iwn_cmd_data *tx;
2232 	struct ieee80211_frame *wh;
2233 	uint32_t flags;
2234 	uint8_t type, subtype;
2235 	u_int hdrlen;
2236 	int rate, pad;
2237 
2238 	IWN_LOCK_ASSERT(sc);
2239 
2240 	wh = mtod(m0, struct ieee80211_frame *);
2241 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2242 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2243 	hdrlen = ieee80211_anyhdrsize(wh);
2244 
2245 	flags = IWN_TX_AUTO_SEQ;
2246 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2247 		flags |= IWN_TX_NEED_ACK;
2248 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2249 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2250 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2251 		flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
2252 	if (type == IEEE80211_FC0_TYPE_MGT &&
2253 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2254 		/* tell h/w to set timestamp in probe responses */
2255 		flags |= IWN_TX_INSERT_TSTAMP;
2256 	}
2257 	if (hdrlen & 3) {
2258 		/* first segment's length must be a multiple of 4 */
2259 		flags |= IWN_TX_NEED_PADDING;
2260 		pad = 4 - (hdrlen & 3);
2261 	} else
2262 		pad = 0;
2263 
2264 	/* pick a tx rate */
2265 	rate = params->ibp_rate0;
2266 
2267 	if (ieee80211_radiotap_active_vap(vap)) {
2268 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2269 
2270 		tap->wt_flags = 0;
2271 		tap->wt_rate = rate;
2272 
2273 		ieee80211_radiotap_tx(vap, m0);
2274 	}
2275 
2276 	cmd = &ring->cmd[ring->cur];
2277 	cmd->code = IWN_CMD_TX_DATA;
2278 	cmd->flags = 0;
2279 	cmd->qid = ring->qid;
2280 	cmd->idx = ring->cur;
2281 
2282 	tx = (struct iwn_cmd_data *)cmd->data;
2283 	/* NB: no need to bzero tx, all fields are reinitialized here */
2284 	tx->id = IWN_ID_BROADCAST;
2285 	tx->flags = htole32(flags);
2286 	tx->len = htole16(m0->m_pkthdr.len);
2287 	tx->rate = iwn_plcp_signal(rate);
2288 	tx->rts_ntries = params->ibp_try1;		/* XXX? */
2289 	tx->data_ntries = params->ibp_try0;
2290 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2291 	/* XXX use try count? */
2292 	if (type == IEEE80211_FC0_TYPE_MGT) {
2293 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2294 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2295 			tx->timeout = htole16(3);
2296 		else
2297 			tx->timeout = htole16(2);
2298 	} else
2299 		tx->timeout = htole16(0);
2300 	tx->security = 0;
2301 	/* XXX alternate between Ant A and Ant B ? */
2302 	tx->rflags = IWN_RFLAG_ANT_B;	/* XXX params->ibp_pri >> 2 */
2303 	tx->ridx = IWN_MAX_TX_RETRIES - 1;
2304 	if (!IWN_RATE_IS_OFDM(rate))
2305 		tx->rflags |= IWN_RFLAG_CCK;
2306 
2307 	return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
2308 }
2309 
2310 static int
2311 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2312 	const struct ieee80211_bpf_params *params)
2313 {
2314 	struct ieee80211com *ic = ni->ni_ic;
2315 	struct ifnet *ifp = ic->ic_ifp;
2316 	struct iwn_softc *sc = ifp->if_softc;
2317 	struct iwn_tx_ring *txq;
2318 	int error;
2319 
2320 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2321 		ieee80211_free_node(ni);
2322 		m_freem(m);
2323 		return ENETDOWN;
2324 	}
2325 
2326 	IWN_LOCK(sc);
2327 	if (params == NULL)
2328 		txq = &sc->txq[M_WME_GETAC(m)];
2329 	else
2330 		txq = &sc->txq[params->ibp_pri & 3];
2331 	if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2332 		/* XXX not right */
2333 		/* ring is nearly full, stop flow */
2334 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2335 	}
2336 	if (params == NULL) {
2337 		/*
2338 		 * Legacy path; interpret frame contents to decide
2339 		 * precisely how to send the frame.
2340 		 */
2341 		error = iwn_tx_data(sc, m, ni, txq);
2342 	} else {
2343 		/*
2344 		 * Caller supplied explicit parameters to use in
2345 		 * sending the frame.
2346 		 */
2347 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
2348 	}
2349 	if (error != 0) {
2350 		/* NB: m is reclaimed on tx failure */
2351 		ieee80211_free_node(ni);
2352 		ifp->if_oerrors++;
2353 	}
2354 	IWN_UNLOCK(sc);
2355 	return error;
2356 }
2357 
2358 static void
2359 iwn_watchdog(struct iwn_softc *sc)
2360 {
2361 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2362 		struct ifnet *ifp = sc->sc_ifp;
2363 		struct ieee80211com *ic = ifp->if_l2com;
2364 
2365 		if_printf(ifp, "device timeout\n");
2366 		ieee80211_runtask(ic, &sc->sc_reinit_task);
2367 	}
2368 }
2369 
2370 int
2371 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2372 {
2373 	struct iwn_softc *sc = ifp->if_softc;
2374 	struct ieee80211com *ic = ifp->if_l2com;
2375 	struct ifreq *ifr = (struct ifreq *) data;
2376 	int error = 0, startall = 0;
2377 
2378 	switch (cmd) {
2379 	case SIOCSIFFLAGS:
2380 		IWN_LOCK(sc);
2381 		if (ifp->if_flags & IFF_UP) {
2382 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2383 				iwn_init_locked(sc);
2384 				startall = 1;
2385 			}
2386 		} else {
2387 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2388 				iwn_stop_locked(sc);
2389 		}
2390 		IWN_UNLOCK(sc);
2391 		if (startall)
2392 			ieee80211_start_all(ic);
2393 		break;
2394 	case SIOCGIFMEDIA:
2395 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2396 		break;
2397 	case SIOCGIFADDR:
2398 		error = ether_ioctl(ifp, cmd, data);
2399 		break;
2400 	default:
2401 		error = EINVAL;
2402 		break;
2403 	}
2404 	return error;
2405 }
2406 
2407 void
2408 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2409 {
2410 	char domain[4];
2411 	uint16_t val;
2412 	int i, error;
2413 
2414 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2415 		device_printf(sc->sc_dev,
2416 		    "%s: could not lock EEPROM, error %d\n", __func__, error);
2417 		return;
2418 	}
2419 	/* read and print regulatory domain */
2420 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2421 	device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
2422 
2423 	/* read and print MAC address */
2424 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2425 	printf(", address %6D\n", macaddr, ":");
2426 
2427 	/* read the list of authorized channels */
2428 	iwn_read_eeprom_channels(sc);
2429 
2430 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2431 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2432 	sc->maxpwr2GHz = val & 0xff;
2433 	sc->maxpwr5GHz = val >> 8;
2434 	/* check that EEPROM values are correct */
2435 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2436 		sc->maxpwr5GHz = 38;
2437 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2438 		sc->maxpwr2GHz = 38;
2439 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2440 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2441 
2442 	/* read voltage at which samples were taken */
2443 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2444 	sc->eeprom_voltage = (int16_t)le16toh(val);
2445 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2446 	    sc->eeprom_voltage);
2447 
2448 	/* read power groups */
2449 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2450 #ifdef IWN_DEBUG
2451 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2452 		for (i = 0; i < IWN_NBANDS; i++)
2453 			iwn_print_power_group(sc, i);
2454 	}
2455 #endif
2456 	iwn_eeprom_unlock(sc);
2457 }
2458 
2459 struct iwn_chan_band {
2460 	uint32_t	addr;	/* offset in EEPROM */
2461 	uint32_t	flags;	/* net80211 flags */
2462 	uint8_t		nchan;
2463 #define IWN_MAX_CHAN_PER_BAND	14
2464 	uint8_t		chan[IWN_MAX_CHAN_PER_BAND];
2465 };
2466 
2467 static void
2468 iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
2469 {
2470 	struct ifnet *ifp = sc->sc_ifp;
2471 	struct ieee80211com *ic = ifp->if_l2com;
2472 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2473 	struct ieee80211_channel *c;
2474 	int i, chan, flags;
2475 
2476 	iwn_read_prom_data(sc, band->addr, channels,
2477 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2478 
2479 	for (i = 0; i < band->nchan; i++) {
2480 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2481 			DPRINTF(sc, IWN_DEBUG_RESET,
2482 			    "skip chan %d flags 0x%x maxpwr %d\n",
2483 			    band->chan[i], channels[i].flags,
2484 			    channels[i].maxpwr);
2485 			continue;
2486 		}
2487 		chan = band->chan[i];
2488 
2489 		/* translate EEPROM flags to net80211 */
2490 		flags = 0;
2491 		if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2492 			flags |= IEEE80211_CHAN_PASSIVE;
2493 		if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
2494 			flags |= IEEE80211_CHAN_NOADHOC;
2495 		if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
2496 			flags |= IEEE80211_CHAN_DFS;
2497 			/* XXX apparently IBSS may still be marked */
2498 			flags |= IEEE80211_CHAN_NOADHOC;
2499 		}
2500 
2501 		DPRINTF(sc, IWN_DEBUG_RESET,
2502 		    "add chan %d flags 0x%x maxpwr %d\n",
2503 		    chan, channels[i].flags, channels[i].maxpwr);
2504 
2505 		c = &ic->ic_channels[ic->ic_nchans++];
2506 		c->ic_ieee = chan;
2507 		c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
2508 		c->ic_maxregpower = channels[i].maxpwr;
2509 		c->ic_maxpower = 2*c->ic_maxregpower;
2510 		if (band->flags & IEEE80211_CHAN_2GHZ) {
2511 			/* G =>'s B is supported */
2512 			c->ic_flags = IEEE80211_CHAN_B | flags;
2513 
2514 			c = &ic->ic_channels[ic->ic_nchans++];
2515 			c[0] = c[-1];
2516 			c->ic_flags = IEEE80211_CHAN_G | flags;
2517 		} else {	/* 5GHz band */
2518 			c->ic_flags = IEEE80211_CHAN_A | flags;
2519 		}
2520 		/* XXX no constraints on using HT20 */
2521 		/* add HT20, HT40 added separately */
2522 		c = &ic->ic_channels[ic->ic_nchans++];
2523 		c[0] = c[-1];
2524 		c->ic_flags |= IEEE80211_CHAN_HT20;
2525 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
2526 	}
2527 }
2528 
2529 static void
2530 iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
2531 {
2532 	struct ifnet *ifp = sc->sc_ifp;
2533 	struct ieee80211com *ic = ifp->if_l2com;
2534 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2535 	struct ieee80211_channel *c, *cent, *extc;
2536 	int i;
2537 
2538 	iwn_read_prom_data(sc, band->addr, channels,
2539 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2540 
2541 	for (i = 0; i < band->nchan; i++) {
2542 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
2543 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
2544 			DPRINTF(sc, IWN_DEBUG_RESET,
2545 			    "skip chan %d flags 0x%x maxpwr %d\n",
2546 			    band->chan[i], channels[i].flags,
2547 			    channels[i].maxpwr);
2548 			continue;
2549 		}
2550 		/*
2551 		 * Each entry defines an HT40 channel pair; find the
2552 		 * center channel, then the extension channel above.
2553 		 */
2554 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
2555 		    band->flags & ~IEEE80211_CHAN_HT);
2556 		if (cent == NULL) {	/* XXX shouldn't happen */
2557 			device_printf(sc->sc_dev,
2558 			    "%s: no entry for channel %d\n",
2559 			    __func__, band->chan[i]);
2560 			continue;
2561 		}
2562 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2563 		    band->flags & ~IEEE80211_CHAN_HT);
2564 		if (extc == NULL) {
2565 			DPRINTF(sc, IWN_DEBUG_RESET,
2566 			    "skip chan %d, extension channel not found\n",
2567 			    band->chan[i]);
2568 			continue;
2569 		}
2570 
2571 		DPRINTF(sc, IWN_DEBUG_RESET,
2572 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2573 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
2574 
2575 		c = &ic->ic_channels[ic->ic_nchans++];
2576 		c[0] = cent[0];
2577 		c->ic_extieee = extc->ic_ieee;
2578 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2579 		c->ic_flags |= IEEE80211_CHAN_HT40U;
2580 		c = &ic->ic_channels[ic->ic_nchans++];
2581 		c[0] = extc[0];
2582 		c->ic_extieee = cent->ic_ieee;
2583 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2584 		c->ic_flags |= IEEE80211_CHAN_HT40D;
2585 	}
2586 }
2587 
2588 static void
2589 iwn_read_eeprom_channels(struct iwn_softc *sc)
2590 {
2591 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2592 	static const struct iwn_chan_band iwn_bands[] = {
2593 	    { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
2594 		{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
2595 	    { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
2596 		{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
2597 	    { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
2598 		{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
2599 	    { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
2600 		{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
2601 	    { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
2602 		{ 145, 149, 153, 157, 161, 165 } },
2603 	    { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
2604 		{ 1, 2, 3, 4, 5, 6, 7 } },
2605 	    { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
2606 		{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
2607 	};
2608 	struct ifnet *ifp = sc->sc_ifp;
2609 	struct ieee80211com *ic = ifp->if_l2com;
2610 	int i;
2611 
2612 	/* read the list of authorized channels */
2613 	for (i = 0; i < N(iwn_bands)-2; i++)
2614 		iwn_read_eeprom_band(sc, &iwn_bands[i]);
2615 	for (; i < N(iwn_bands); i++)
2616 		iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
2617 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2618 #undef N
2619 }
2620 
2621 #ifdef IWN_DEBUG
2622 void
2623 iwn_print_power_group(struct iwn_softc *sc, int i)
2624 {
2625 	struct iwn_eeprom_band *band = &sc->bands[i];
2626 	struct iwn_eeprom_chan_samples *chans = band->chans;
2627 	int j, c;
2628 
2629 	printf("===band %d===\n", i);
2630 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2631 	printf("chan1 num=%d\n", chans[0].num);
2632 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2633 		for (j = 0; j < IWN_NSAMPLES; j++) {
2634 			printf("chain %d, sample %d: temp=%d gain=%d "
2635 			    "power=%d pa_det=%d\n", c, j,
2636 			    chans[0].samples[c][j].temp,
2637 			    chans[0].samples[c][j].gain,
2638 			    chans[0].samples[c][j].power,
2639 			    chans[0].samples[c][j].pa_det);
2640 		}
2641 	}
2642 	printf("chan2 num=%d\n", chans[1].num);
2643 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2644 		for (j = 0; j < IWN_NSAMPLES; j++) {
2645 			printf("chain %d, sample %d: temp=%d gain=%d "
2646 			    "power=%d pa_det=%d\n", c, j,
2647 			    chans[1].samples[c][j].temp,
2648 			    chans[1].samples[c][j].gain,
2649 			    chans[1].samples[c][j].power,
2650 			    chans[1].samples[c][j].pa_det);
2651 		}
2652 	}
2653 }
2654 #endif
2655 
2656 /*
2657  * Send a command to the firmware.
2658  */
2659 int
2660 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2661 {
2662 	struct iwn_tx_ring *ring = &sc->txq[4];
2663 	struct iwn_tx_desc *desc;
2664 	struct iwn_tx_cmd *cmd;
2665 	bus_addr_t paddr;
2666 
2667 	IWN_LOCK_ASSERT(sc);
2668 
2669 	KASSERT(size <= sizeof cmd->data, ("Command too big"));
2670 
2671 	desc = &ring->desc[ring->cur];
2672 	cmd = &ring->cmd[ring->cur];
2673 
2674 	cmd->code = code;
2675 	cmd->flags = 0;
2676 	cmd->qid = ring->qid;
2677 	cmd->idx = ring->cur;
2678 	memcpy(cmd->data, buf, size);
2679 
2680 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2681 
2682 	IWN_SET_DESC_NSEGS(desc, 1);
2683 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2684 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2685 	if (ring->cur < IWN_TX_WINDOW) {
2686 	    sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2687 		htole16(8);
2688 	}
2689 
2690 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
2691 	    __func__, iwn_intr_str(cmd->code), cmd->code,
2692 	    cmd->flags, cmd->qid, cmd->idx);
2693 
2694 	/* kick cmd ring */
2695 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2696 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2697 
2698 	return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
2699 }
2700 
2701 static const uint8_t iwn_ridx_to_plcp[] = {
2702 	10, 20, 55, 110, /* CCK */
2703 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
2704 };
2705 static const uint8_t iwn_siso_mcs_to_plcp[] = {
2706 	0, 0, 0, 0, 			/* CCK */
2707 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
2708 };
2709 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
2710 	0, 0, 0, 0, 			/* CCK */
2711 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
2712 };
2713 static const uint8_t iwn_prev_ridx[] = {
2714 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
2715 	0, 0, 1, 5,			/* CCK */
2716 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
2717 };
2718 
2719 /*
2720  * Configure hardware link parameters for the specified
2721  * node operating on the specified channel.
2722  */
2723 int
2724 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
2725 	const struct ieee80211_channel *c, int async)
2726 {
2727 	struct iwn_cmd_link_quality lq;
2728 	int i, ridx;
2729 
2730 	memset(&lq, 0, sizeof(lq));
2731 	lq.id = id;
2732 	if (IEEE80211_IS_CHAN_HT(c)) {
2733 		lq.mimo = 1;
2734 		lq.ssmask = 0x1;
2735 	} else
2736 		lq.ssmask = 0x2;
2737 
2738 	if (id == IWN_ID_BSS)
2739 		ridx = IWN_RATE_OFDM54;
2740 	else if (IEEE80211_IS_CHAN_A(c))
2741 		ridx = IWN_RATE_OFDM6;
2742 	else
2743 		ridx = IWN_RATE_CCK1;
2744 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2745 		/* XXX toggle antenna for retry patterns */
2746 		if (IEEE80211_IS_CHAN_HT40(c)) {
2747 			lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
2748 					 | IWN_RATE_MCS;
2749 			lq.table[i].rflags = IWN_RFLAG_HT
2750 					 | IWN_RFLAG_HT40
2751 					 | IWN_RFLAG_ANT_A;
2752 			/* XXX shortGI */
2753 		} else if (IEEE80211_IS_CHAN_HT(c)) {
2754 			lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
2755 					 | IWN_RATE_MCS;
2756 			lq.table[i].rflags = IWN_RFLAG_HT
2757 					 | IWN_RFLAG_ANT_A;
2758 			/* XXX shortGI */
2759 		} else {
2760 			lq.table[i].rate = iwn_ridx_to_plcp[ridx];
2761 			if (ridx <= IWN_RATE_CCK11)
2762 				lq.table[i].rflags = IWN_RFLAG_CCK;
2763 			lq.table[i].rflags |= IWN_RFLAG_ANT_B;
2764 		}
2765 		ridx = iwn_prev_ridx[ridx];
2766 	}
2767 
2768 	lq.dsmask = 0x3;
2769 	lq.ampdu_disable = 3;
2770 	lq.ampdu_limit = htole16(4000);
2771 #ifdef IWN_DEBUG
2772 	if (sc->sc_debug & IWN_DEBUG_STATE) {
2773 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
2774 		    __func__, id, lq.mimo, lq.ssmask);
2775 		printf("%s:", __func__);
2776 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
2777 			printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
2778 		printf("\n");
2779 	}
2780 #endif
2781 	return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
2782 }
2783 
2784 #if 0
2785 
2786 /*
2787  * Install a pairwise key into the hardware.
2788  */
2789 int
2790 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2791     const struct ieee80211_key *k)
2792 {
2793 	struct iwn_softc *sc = ic->ic_softc;
2794 	struct iwn_node_info node;
2795 
2796 	if (k->k_flags & IEEE80211_KEY_GROUP)
2797 		return 0;
2798 
2799 	memset(&node, 0, sizeof node);
2800 
2801 	switch (k->k_cipher) {
2802 	case IEEE80211_CIPHER_CCMP:
2803 		node.security = htole16(IWN_CIPHER_CCMP);
2804 		memcpy(node.key, k->k_key, k->k_len);
2805 		break;
2806 	default:
2807 		return 0;
2808 	}
2809 
2810 	node.id = IWN_ID_BSS;
2811 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2812 	node.control = IWN_NODE_UPDATE;
2813 	node.flags = IWN_FLAG_SET_KEY;
2814 
2815 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
2816 }
2817 #endif
2818 
2819 int
2820 iwn_wme_update(struct ieee80211com *ic)
2821 {
2822 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2823 #define	IWN_TXOP_TO_US(v)		(v<<5)
2824 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2825 	struct iwn_edca_params cmd;
2826 	int i;
2827 
2828 	memset(&cmd, 0, sizeof cmd);
2829 	cmd.flags = htole32(IWN_EDCA_UPDATE);
2830 	for (i = 0; i < WME_NUM_AC; i++) {
2831 		const struct wmeParams *wmep =
2832 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
2833 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
2834 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
2835 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
2836 		cmd.ac[i].txoplimit =
2837 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
2838 	}
2839 	IWN_LOCK(sc);
2840 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
2841 	IWN_UNLOCK(sc);
2842 	return 0;
2843 #undef IWN_TXOP_TO_US
2844 #undef IWN_EXP2
2845 }
2846 
2847 void
2848 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2849 {
2850 	struct iwn_cmd_led led;
2851 
2852 	led.which = which;
2853 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2854 	led.off = off;
2855 	led.on = on;
2856 
2857 	(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2858 }
2859 
2860 /*
2861  * Set the critical temperature at which the firmware will automatically stop
2862  * the radio transmitter.
2863  */
2864 int
2865 iwn_set_critical_temp(struct iwn_softc *sc)
2866 {
2867 	struct iwn_ucode_info *uc = &sc->ucode_info;
2868 	struct iwn_critical_temp crit;
2869 	uint32_t r1, r2, r3, temp;
2870 
2871 	r1 = le32toh(uc->temp[0].chan20MHz);
2872 	r2 = le32toh(uc->temp[1].chan20MHz);
2873 	r3 = le32toh(uc->temp[2].chan20MHz);
2874 	/* inverse function of iwn_get_temperature() */
2875 	temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
2876 
2877 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2878 
2879 	memset(&crit, 0, sizeof crit);
2880 	crit.tempR = htole32(temp);
2881 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
2882 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2883 }
2884 
2885 void
2886 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2887 {
2888 	struct iwn_cmd_tsf tsf;
2889 	uint64_t val, mod;
2890 
2891 	memset(&tsf, 0, sizeof tsf);
2892 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2893 	tsf.bintval = htole16(ni->ni_intval);
2894 	tsf.lintval = htole16(10);
2895 
2896 	/* XXX all wrong */
2897 	/* compute remaining time until next beacon */
2898 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2899 	DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
2900 	    val, val == 0 ? "correcting" : "");
2901 	if (val == 0)
2902 		val = 1;
2903 	mod = le64toh(tsf.tstamp) % val;
2904 	tsf.binitval = htole32((uint32_t)(val - mod));
2905 
2906 	DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
2907 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
2908 
2909 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2910 		device_printf(sc->sc_dev,
2911 		    "%s: could not enable TSF\n", __func__);
2912 }
2913 
2914 void
2915 iwn_power_calibration(struct iwn_softc *sc, int temp)
2916 {
2917 	struct ifnet *ifp = sc->sc_ifp;
2918 	struct ieee80211com *ic = ifp->if_l2com;
2919 #if 0
2920 	KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
2921 #endif
2922 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
2923 	    __func__, sc->temp, temp);
2924 
2925 	/* adjust Tx power if need be (delta >= 3�C) */
2926 	if (abs(temp - sc->temp) < 3)
2927 		return;
2928 
2929 	sc->temp = temp;
2930 
2931 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
2932 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
2933 	if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
2934 		/* just warn, too bad for the automatic calibration... */
2935 		device_printf(sc->sc_dev,
2936 		    "%s: could not adjust Tx power\n", __func__);
2937 	}
2938 }
2939 
2940 /*
2941  * Set Tx power for a given channel (each rate has its own power settings).
2942  * This function takes into account the regulatory information from EEPROM,
2943  * the current temperature and the current voltage.
2944  */
2945 int
2946 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2947 {
2948 /* fixed-point arithmetic division using a n-bit fractional part */
2949 #define fdivround(a, b, n)	\
2950 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2951 /* linear interpolation */
2952 #define interpolate(x, x1, y1, x2, y2, n)	\
2953 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2954 
2955 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2956 	struct ifnet *ifp = sc->sc_ifp;
2957 	struct ieee80211com *ic = ifp->if_l2com;
2958 	struct iwn_ucode_info *uc = &sc->ucode_info;
2959 	struct iwn_cmd_txpower cmd;
2960 	struct iwn_eeprom_chan_samples *chans;
2961 	const uint8_t *rf_gain, *dsp_gain;
2962 	int32_t vdiff, tdiff;
2963 	int i, c, grp, maxpwr;
2964 	u_int chan;
2965 
2966 	/* get channel number */
2967 	chan = ieee80211_chan2ieee(ic, ch);
2968 
2969 	memset(&cmd, 0, sizeof cmd);
2970 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2971 	cmd.chan = chan;
2972 
2973 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2974 		maxpwr   = sc->maxpwr5GHz;
2975 		rf_gain  = iwn_rf_gain_5ghz;
2976 		dsp_gain = iwn_dsp_gain_5ghz;
2977 	} else {
2978 		maxpwr   = sc->maxpwr2GHz;
2979 		rf_gain  = iwn_rf_gain_2ghz;
2980 		dsp_gain = iwn_dsp_gain_2ghz;
2981 	}
2982 
2983 	/* compute voltage compensation */
2984 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2985 	if (vdiff > 0)
2986 		vdiff *= 2;
2987 	if (abs(vdiff) > 2)
2988 		vdiff = 0;
2989 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2990 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2991 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
2992 
2993 	/* get channel's attenuation group */
2994 	if (chan <= 20)		/* 1-20 */
2995 		grp = 4;
2996 	else if (chan <= 43)	/* 34-43 */
2997 		grp = 0;
2998 	else if (chan <= 70)	/* 44-70 */
2999 		grp = 1;
3000 	else if (chan <= 124)	/* 71-124 */
3001 		grp = 2;
3002 	else			/* 125-200 */
3003 		grp = 3;
3004 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3005 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3006 
3007 	/* get channel's sub-band */
3008 	for (i = 0; i < IWN_NBANDS; i++)
3009 		if (sc->bands[i].lo != 0 &&
3010 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3011 			break;
3012 	chans = sc->bands[i].chans;
3013 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3014 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3015 
3016 	for (c = 0; c < IWN_NTXCHAINS; c++) {
3017 		uint8_t power, gain, temp;
3018 		int maxchpwr, pwr, ridx, idx;
3019 
3020 		power = interpolate(chan,
3021 		    chans[0].num, chans[0].samples[c][1].power,
3022 		    chans[1].num, chans[1].samples[c][1].power, 1);
3023 		gain  = interpolate(chan,
3024 		    chans[0].num, chans[0].samples[c][1].gain,
3025 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3026 		temp  = interpolate(chan,
3027 		    chans[0].num, chans[0].samples[c][1].temp,
3028 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3029 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3030 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3031 		    __func__, c, power, gain, temp);
3032 
3033 		/* compute temperature compensation */
3034 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3035 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3036 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3037 		    __func__, tdiff, sc->temp, temp);
3038 
3039 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3040 			maxchpwr = ch->ic_maxpower;
3041 			if ((ridx / 8) & 1) {
3042 				/* MIMO: decrease Tx power (-3dB) */
3043 				maxchpwr -= 6;
3044 			}
3045 
3046 			pwr = maxpwr - 10;
3047 
3048 			/* decrease power for highest OFDM rates */
3049 			if ((ridx % 8) == 5)		/* 48Mbit/s */
3050 				pwr -= 5;
3051 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
3052 				pwr -= 7;
3053 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
3054 				pwr -= 10;
3055 
3056 			if (pwr > maxchpwr)
3057 				pwr = maxchpwr;
3058 
3059 			idx = gain - (pwr - power) - tdiff - vdiff;
3060 			if ((ridx / 8) & 1)	/* MIMO */
3061 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3062 
3063 			if (cmd.band == 0)
3064 				idx += 9;	/* 5GHz */
3065 			if (ridx == IWN_RIDX_MAX)
3066 				idx += 5;	/* CCK */
3067 
3068 			/* make sure idx stays in a valid range */
3069 			if (idx < 0)
3070 				idx = 0;
3071 			else if (idx > IWN_MAX_PWR_INDEX)
3072 				idx = IWN_MAX_PWR_INDEX;
3073 
3074 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3075 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3076 			    __func__, c, ridx, idx);
3077 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3078 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3079 		}
3080 	}
3081 
3082 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3083 	    "%s: set tx power for chan %d\n", __func__, chan);
3084 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3085 
3086 #undef interpolate
3087 #undef fdivround
3088 }
3089 
3090 /*
3091  * Get the best (maximum) RSSI among the
3092  * connected antennas and convert to dBm.
3093  */
3094 int8_t
3095 iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
3096 {
3097 	int mask, agc, rssi;
3098 
3099 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
3100 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
3101 
3102 	rssi = 0;
3103 #if 0
3104 	if (mask & (1 << 0))	/* Ant A */
3105 		rssi = max(rssi, stat->rssi[0]);
3106 	if (mask & (1 << 1))	/* Ant B */
3107 		rssi = max(rssi, stat->rssi[2]);
3108 	if (mask & (1 << 2))	/* Ant C */
3109 		rssi = max(rssi, stat->rssi[4]);
3110 #else
3111 	rssi = max(rssi, stat->rssi[0]);
3112 	rssi = max(rssi, stat->rssi[2]);
3113 	rssi = max(rssi, stat->rssi[4]);
3114 #endif
3115 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3116 	    "result %d\n", __func__, agc, mask,
3117 	    stat->rssi[0], stat->rssi[2], stat->rssi[4],
3118 	    rssi - agc - IWN_RSSI_TO_DBM);
3119 	return rssi - agc - IWN_RSSI_TO_DBM;
3120 }
3121 
3122 /*
3123  * Get the average noise among Rx antennas (in dBm).
3124  */
3125 int
3126 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3127 {
3128 	int i, total, nbant, noise;
3129 
3130 	total = nbant = 0;
3131 	for (i = 0; i < 3; i++) {
3132 		noise = le32toh(stats->noise[i]) & 0xff;
3133 		if (noise != 0) {
3134 			total += noise;
3135 			nbant++;
3136 		}
3137 	}
3138 	/* there should be at least one antenna but check anyway */
3139 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3140 }
3141 
3142 /*
3143  * Read temperature (in degC) from the on-board thermal sensor.
3144  */
3145 int
3146 iwn_get_temperature(struct iwn_softc *sc)
3147 {
3148 	struct iwn_ucode_info *uc = &sc->ucode_info;
3149 	int32_t r1, r2, r3, r4, temp;
3150 
3151 	r1 = le32toh(uc->temp[0].chan20MHz);
3152 	r2 = le32toh(uc->temp[1].chan20MHz);
3153 	r3 = le32toh(uc->temp[2].chan20MHz);
3154 	r4 = le32toh(sc->rawtemp);
3155 
3156 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
3157 		return 0;
3158 
3159 	/* sign-extend 23-bit R4 value to 32-bit */
3160 	r4 = (r4 << 8) >> 8;
3161 	/* compute temperature */
3162 	temp = (259 * (r4 - r2)) / (r3 - r1);
3163 	temp = (temp * 97) / 100 + 8;
3164 
3165 	return IWN_KTOC(temp);
3166 }
3167 
3168 /*
3169  * Initialize sensitivity calibration state machine.
3170  */
3171 int
3172 iwn_init_sensitivity(struct iwn_softc *sc)
3173 {
3174 	struct iwn_calib_state *calib = &sc->calib;
3175 	struct iwn_phy_calib_cmd cmd;
3176 	int error;
3177 
3178 	/* reset calibration state */
3179 	memset(calib, 0, sizeof (*calib));
3180 	calib->state = IWN_CALIB_STATE_INIT;
3181 	calib->cck_state = IWN_CCK_STATE_HIFA;
3182 	/* initial values taken from the reference driver */
3183 	calib->corr_ofdm_x1     = 105;
3184 	calib->corr_ofdm_mrc_x1 = 220;
3185 	calib->corr_ofdm_x4     =  90;
3186 	calib->corr_ofdm_mrc_x4 = 170;
3187 	calib->corr_cck_x4      = 125;
3188 	calib->corr_cck_mrc_x4  = 200;
3189 	calib->energy_cck       = 100;
3190 
3191 	/* write initial sensitivity values */
3192 	error = iwn_send_sensitivity(sc);
3193 	if (error != 0)
3194 		return error;
3195 
3196 	memset(&cmd, 0, sizeof cmd);
3197 	cmd.code = IWN_SET_DIFF_GAIN;
3198 	/* differential gains initially set to 0 for all 3 antennas */
3199 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
3200 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
3201 }
3202 
3203 /*
3204  * Collect noise and RSSI statistics for the first 20 beacons received
3205  * after association and use them to determine connected antennas and
3206  * set differential gains.
3207  */
3208 void
3209 iwn_compute_differential_gain(struct iwn_softc *sc,
3210     const struct iwn_rx_general_stats *stats)
3211 {
3212 	struct iwn_calib_state *calib = &sc->calib;
3213 	struct iwn_phy_calib_cmd cmd;
3214 	int i, val;
3215 
3216 	/* accumulate RSSI and noise for all 3 antennas */
3217 	for (i = 0; i < 3; i++) {
3218 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3219 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3220 	}
3221 
3222 	/* we update differential gain only once after 20 beacons */
3223 	if (++calib->nbeacons < 20)
3224 		return;
3225 
3226 	/* determine antenna with highest average RSSI */
3227 	val = max(calib->rssi[0], calib->rssi[1]);
3228 	val = max(calib->rssi[2], val);
3229 
3230 	/* determine which antennas are connected */
3231 	sc->antmsk = 0;
3232 	for (i = 0; i < 3; i++)
3233 		if (val - calib->rssi[i] <= 15 * 20)
3234 			sc->antmsk |= 1 << i;
3235 	/* if neither Ant A and Ant B are connected.. */
3236 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
3237 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
3238 
3239 	/* get minimal noise among connected antennas */
3240 	val = INT_MAX;	/* ok, there's at least one */
3241 	for (i = 0; i < 3; i++)
3242 		if (sc->antmsk & (1 << i))
3243 			val = min(calib->noise[i], val);
3244 
3245 	memset(&cmd, 0, sizeof cmd);
3246 	cmd.code = IWN_SET_DIFF_GAIN;
3247 	/* set differential gains for connected antennas */
3248 	for (i = 0; i < 3; i++) {
3249 		if (sc->antmsk & (1 << i)) {
3250 			cmd.gain[i] = (calib->noise[i] - val) / 30;
3251 			/* limit differential gain to 3 */
3252 			cmd.gain[i] = min(cmd.gain[i], 3);
3253 			cmd.gain[i] |= IWN_GAIN_SET;
3254 		}
3255 	}
3256 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3257 	    "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3258 	    __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
3259 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
3260 		calib->state = IWN_CALIB_STATE_RUN;
3261 }
3262 
3263 /*
3264  * Tune RF Rx sensitivity based on the number of false alarms detected
3265  * during the last beacon period.
3266  */
3267 void
3268 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3269 {
3270 #define inc_clip(val, inc, max)			\
3271 	if ((val) < (max)) {			\
3272 		if ((val) < (max) - (inc))	\
3273 			(val) += (inc);		\
3274 		else				\
3275 			(val) = (max);		\
3276 		needs_update = 1;		\
3277 	}
3278 #define dec_clip(val, dec, min)			\
3279 	if ((val) > (min)) {			\
3280 		if ((val) > (min) + (dec))	\
3281 			(val) -= (dec);		\
3282 		else				\
3283 			(val) = (min);		\
3284 		needs_update = 1;		\
3285 	}
3286 
3287 	struct iwn_calib_state *calib = &sc->calib;
3288 	uint32_t val, rxena, fa;
3289 	uint32_t energy[3], energy_min;
3290 	uint8_t noise[3], noise_ref;
3291 	int i, needs_update = 0;
3292 
3293 	/* check that we've been enabled long enough */
3294 	if ((rxena = le32toh(stats->general.load)) == 0)
3295 		return;
3296 
3297 	/* compute number of false alarms since last call for OFDM */
3298 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3299 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3300 	fa *= 200 * 1024;	/* 200TU */
3301 
3302 	/* save counters values for next call */
3303 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3304 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3305 
3306 	if (fa > 50 * rxena) {
3307 		/* high false alarm count, decrease sensitivity */
3308 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3309 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
3310 		inc_clip(calib->corr_ofdm_x1,     1, 140);
3311 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
3312 		inc_clip(calib->corr_ofdm_x4,     1, 120);
3313 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
3314 
3315 	} else if (fa < 5 * rxena) {
3316 		/* low false alarm count, increase sensitivity */
3317 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3318 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
3319 		dec_clip(calib->corr_ofdm_x1,     1, 105);
3320 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
3321 		dec_clip(calib->corr_ofdm_x4,     1,  85);
3322 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
3323 	}
3324 
3325 	/* compute maximum noise among 3 antennas */
3326 	for (i = 0; i < 3; i++)
3327 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3328 	val = max(noise[0], noise[1]);
3329 	val = max(noise[2], val);
3330 	/* insert it into our samples table */
3331 	calib->noise_samples[calib->cur_noise_sample] = val;
3332 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3333 
3334 	/* compute maximum noise among last 20 samples */
3335 	noise_ref = calib->noise_samples[0];
3336 	for (i = 1; i < 20; i++)
3337 		noise_ref = max(noise_ref, calib->noise_samples[i]);
3338 
3339 	/* compute maximum energy among 3 antennas */
3340 	for (i = 0; i < 3; i++)
3341 		energy[i] = le32toh(stats->general.energy[i]);
3342 	val = min(energy[0], energy[1]);
3343 	val = min(energy[2], val);
3344 	/* insert it into our samples table */
3345 	calib->energy_samples[calib->cur_energy_sample] = val;
3346 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3347 
3348 	/* compute minimum energy among last 10 samples */
3349 	energy_min = calib->energy_samples[0];
3350 	for (i = 1; i < 10; i++)
3351 		energy_min = max(energy_min, calib->energy_samples[i]);
3352 	energy_min += 6;
3353 
3354 	/* compute number of false alarms since last call for CCK */
3355 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3356 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3357 	fa *= 200 * 1024;	/* 200TU */
3358 
3359 	/* save counters values for next call */
3360 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3361 	calib->fa_cck = le32toh(stats->cck.fa);
3362 
3363 	if (fa > 50 * rxena) {
3364 		/* high false alarm count, decrease sensitivity */
3365 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3366 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
3367 		calib->cck_state = IWN_CCK_STATE_HIFA;
3368 		calib->low_fa = 0;
3369 
3370 		if (calib->corr_cck_x4 > 160) {
3371 			calib->noise_ref = noise_ref;
3372 			if (calib->energy_cck > 2)
3373 				dec_clip(calib->energy_cck, 2, energy_min);
3374 		}
3375 		if (calib->corr_cck_x4 < 160) {
3376 			calib->corr_cck_x4 = 161;
3377 			needs_update = 1;
3378 		} else
3379 			inc_clip(calib->corr_cck_x4, 3, 200);
3380 
3381 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3382 
3383 	} else if (fa < 5 * rxena) {
3384 		/* low false alarm count, increase sensitivity */
3385 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3386 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
3387 		calib->cck_state = IWN_CCK_STATE_LOFA;
3388 		calib->low_fa++;
3389 
3390 		if (calib->cck_state != 0 &&
3391 		    ((calib->noise_ref - noise_ref) > 2 ||
3392 		     calib->low_fa > 100)) {
3393 			inc_clip(calib->energy_cck,      2,  97);
3394 			dec_clip(calib->corr_cck_x4,     3, 125);
3395 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3396 		}
3397 	} else {
3398 		/* not worth to increase or decrease sensitivity */
3399 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3400 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
3401 		calib->low_fa = 0;
3402 		calib->noise_ref = noise_ref;
3403 
3404 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3405 			/* previous interval had many false alarms */
3406 			dec_clip(calib->energy_cck, 8, energy_min);
3407 		}
3408 		calib->cck_state = IWN_CCK_STATE_INIT;
3409 	}
3410 
3411 	if (needs_update)
3412 		(void)iwn_send_sensitivity(sc);
3413 #undef dec_clip
3414 #undef inc_clip
3415 }
3416 
3417 int
3418 iwn_send_sensitivity(struct iwn_softc *sc)
3419 {
3420 	struct iwn_calib_state *calib = &sc->calib;
3421 	struct iwn_sensitivity_cmd cmd;
3422 
3423 	memset(&cmd, 0, sizeof cmd);
3424 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3425 	/* OFDM modulation */
3426 	cmd.corr_ofdm_x1     = htole16(calib->corr_ofdm_x1);
3427 	cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
3428 	cmd.corr_ofdm_x4     = htole16(calib->corr_ofdm_x4);
3429 	cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
3430 	cmd.energy_ofdm      = htole16(100);
3431 	cmd.energy_ofdm_th   = htole16(62);
3432 	/* CCK modulation */
3433 	cmd.corr_cck_x4      = htole16(calib->corr_cck_x4);
3434 	cmd.corr_cck_mrc_x4  = htole16(calib->corr_cck_mrc_x4);
3435 	cmd.energy_cck       = htole16(calib->energy_cck);
3436 	/* Barker modulation: use default values */
3437 	cmd.corr_barker      = htole16(190);
3438 	cmd.corr_barker_mrc  = htole16(390);
3439 
3440 	DPRINTF(sc, IWN_DEBUG_RESET,
3441 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
3442 	    calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
3443 	    calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
3444 	    calib->corr_cck_mrc_x4, calib->energy_cck);
3445 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3446 }
3447 
3448 int
3449 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
3450 {
3451 	struct ifnet *ifp = sc->sc_ifp;
3452 	struct ieee80211com *ic = ifp->if_l2com;
3453 	struct ieee80211_node *ni = vap->iv_bss;
3454 	struct iwn_node_info node;
3455 	int error;
3456 
3457 	sc->calib.state = IWN_CALIB_STATE_INIT;
3458 
3459 	/* update adapter's configuration */
3460 	sc->config.associd = 0;
3461 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3462 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
3463 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3464 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3465 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3466 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3467 		sc->config.cck_mask  = 0;
3468 		sc->config.ofdm_mask = 0x15;
3469 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3470 		sc->config.cck_mask  = 0x03;
3471 		sc->config.ofdm_mask = 0;
3472 	} else {
3473 		/* XXX assume 802.11b/g */
3474 		sc->config.cck_mask  = 0x0f;
3475 		sc->config.ofdm_mask = 0x15;
3476 	}
3477 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3478 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3479 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3480 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3481 	sc->config.filter &= ~htole32(IWN_FILTER_BSS);
3482 
3483 	DPRINTF(sc, IWN_DEBUG_STATE,
3484 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3485 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3486 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3487 	   __func__,
3488 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3489 	   sc->config.cck_mask, sc->config.ofdm_mask,
3490 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3491 	   le16toh(sc->config.rxchain),
3492 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3493 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3494 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3495 	    sizeof (struct iwn_config), 1);
3496 	if (error != 0) {
3497 		device_printf(sc->sc_dev,
3498 		    "%s: could not configure, error %d\n", __func__, error);
3499 		return error;
3500 	}
3501 	sc->sc_curchan = ic->ic_curchan;
3502 
3503 	/* configuration has changed, set Tx power accordingly */
3504 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3505 	if (error != 0) {
3506 		device_printf(sc->sc_dev,
3507 		    "%s: could not set Tx power, error %d\n", __func__, error);
3508 		return error;
3509 	}
3510 
3511 	/*
3512 	 * Reconfiguring clears the adapter's nodes table so we must
3513 	 * add the broadcast node again.
3514 	 */
3515 	memset(&node, 0, sizeof node);
3516 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3517 	node.id = IWN_ID_BROADCAST;
3518 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
3519 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3520 	if (error != 0) {
3521 		device_printf(sc->sc_dev,
3522 		    "%s: could not add broadcast node, error %d\n",
3523 		    __func__, error);
3524 		return error;
3525 	}
3526 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
3527 	if (error != 0) {
3528 		device_printf(sc->sc_dev,
3529 		    "%s: could not setup MRR for broadcast node, error %d\n",
3530 		    __func__, error);
3531 		return error;
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 /*
3538  * Configure the adapter for associated state.
3539  */
3540 int
3541 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
3542 {
3543 #define	MS(v,x)	(((v) & x) >> x##_S)
3544 	struct ifnet *ifp = sc->sc_ifp;
3545 	struct ieee80211com *ic = ifp->if_l2com;
3546 	struct ieee80211_node *ni = vap->iv_bss;
3547 	struct iwn_node_info node;
3548 	int error, maxrxampdu, ampdudensity;
3549 
3550 	sc->calib.state = IWN_CALIB_STATE_INIT;
3551 
3552 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3553 		/* link LED blinks while monitoring */
3554 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3555 		return 0;
3556 	}
3557 
3558 	iwn_enable_tsf(sc, ni);
3559 
3560 	/* update adapter's configuration */
3561 	sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
3562 	/* short preamble/slot time are negotiated when associating */
3563 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
3564 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3565 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3566 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3567 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3568 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3569 		sc->config.flags &= ~htole32(IWN_CONFIG_HT);
3570 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3571 			sc->config.flags |= htole32(IWN_CONFIG_HT40U);
3572 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3573 			sc->config.flags |= htole32(IWN_CONFIG_HT40D);
3574 		else
3575 			sc->config.flags |= htole32(IWN_CONFIG_HT20);
3576 		sc->config.rxchain = htole16(
3577 			  (3 << IWN_RXCHAIN_VALID_S)
3578 			| (3 << IWN_RXCHAIN_MIMO_CNT_S)
3579 			| (1 << IWN_RXCHAIN_CNT_S)
3580 			| IWN_RXCHAIN_MIMO_FORCE);
3581 
3582 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3583 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3584 	} else
3585 		maxrxampdu = ampdudensity = 0;
3586 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3587 
3588 	DPRINTF(sc, IWN_DEBUG_STATE,
3589 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3590 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3591 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3592 	   __func__,
3593 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3594 	   sc->config.cck_mask, sc->config.ofdm_mask,
3595 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3596 	   le16toh(sc->config.rxchain),
3597 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3598 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3599 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3600 	    sizeof (struct iwn_config), 1);
3601 	if (error != 0) {
3602 		device_printf(sc->sc_dev,
3603 		    "%s: could not update configuration, error %d\n",
3604 		    __func__, error);
3605 		return error;
3606 	}
3607 	sc->sc_curchan = ni->ni_chan;
3608 
3609 	/* configuration has changed, set Tx power accordingly */
3610 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3611 	if (error != 0) {
3612 		device_printf(sc->sc_dev,
3613 		    "%s: could not set Tx power, error %d\n", __func__, error);
3614 		return error;
3615 	}
3616 
3617 	/* add BSS node */
3618 	memset(&node, 0, sizeof node);
3619 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3620 	node.id = IWN_ID_BSS;
3621 	node.htflags = htole32(
3622 	    (maxrxampdu << IWN_MAXRXAMPDU_S) |
3623 	    (ampdudensity << IWN_MPDUDENSITY_S));
3624 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
3625 	    __func__, node.id, le32toh(node.htflags));
3626 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3627 	if (error != 0) {
3628 		device_printf(sc->sc_dev,"could not add BSS node\n");
3629 		return error;
3630 	}
3631 	error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
3632 	if (error != 0) {
3633 		device_printf(sc->sc_dev,
3634 		    "%s: could not setup MRR for node %d, error %d\n",
3635 		    __func__, node.id, error);
3636 		return error;
3637 	}
3638 
3639 	error = iwn_init_sensitivity(sc);
3640 	if (error != 0) {
3641 		device_printf(sc->sc_dev,
3642 		    "%s: could not set sensitivity, error %d\n",
3643 		    __func__, error);
3644 		return error;
3645 	}
3646 
3647 	/* start/restart periodic calibration timer */
3648 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3649 	iwn_calib_reset(sc);
3650 
3651 	/* link LED always on while associated */
3652 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3653 
3654 	return 0;
3655 #undef MS
3656 }
3657 
3658 /*
3659  * Send a scan request to the firmware.  Since this command is huge, we map it
3660  * into a mbuf instead of using the pre-allocated set of commands.
3661  */
3662 int
3663 iwn_scan(struct iwn_softc *sc)
3664 {
3665 	struct ifnet *ifp = sc->sc_ifp;
3666 	struct ieee80211com *ic = ifp->if_l2com;
3667 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
3668 	struct iwn_tx_ring *ring = &sc->txq[4];
3669 	struct iwn_tx_desc *desc;
3670 	struct iwn_tx_data *data;
3671 	struct iwn_tx_cmd *cmd;
3672 	struct iwn_cmd_data *tx;
3673 	struct iwn_scan_hdr *hdr;
3674 	struct iwn_scan_essid *essid;
3675 	struct iwn_scan_chan *chan;
3676 	struct ieee80211_frame *wh;
3677 	struct ieee80211_rateset *rs;
3678 	struct ieee80211_channel *c;
3679 	enum ieee80211_phymode mode;
3680 	uint8_t *frm;
3681 	int pktlen, error, nrates;
3682 	bus_addr_t physaddr;
3683 
3684 	desc = &ring->desc[ring->cur];
3685 	data = &ring->data[ring->cur];
3686 
3687 	/* XXX malloc */
3688 	data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
3689 	if (data->m == NULL) {
3690 		device_printf(sc->sc_dev,
3691 		    "%s: could not allocate mbuf for scan command\n", __func__);
3692 		return ENOMEM;
3693 	}
3694 
3695 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3696 	cmd->code = IWN_CMD_SCAN;
3697 	cmd->flags = 0;
3698 	cmd->qid = ring->qid;
3699 	cmd->idx = ring->cur;
3700 
3701 	hdr = (struct iwn_scan_hdr *)cmd->data;
3702 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3703 
3704 	/* XXX use scan state */
3705 	/*
3706 	 * Move to the next channel if no packets are received within 5 msecs
3707 	 * after sending the probe request (this helps to reduce the duration
3708 	 * of active scans).
3709 	 */
3710 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3711 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3712 
3713 	/* select Ant B and Ant C for scanning */
3714 	hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
3715 
3716 	tx = (struct iwn_cmd_data *)(hdr + 1);
3717 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3718 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200);	/* XXX */
3719 	tx->id = IWN_ID_BROADCAST;
3720 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3721 	tx->rflags = IWN_RFLAG_ANT_B;
3722 
3723 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
3724 		hdr->crc_threshold = htole16(1);
3725 		/* send probe requests at 6Mbps */
3726 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
3727 	} else {
3728 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3729 		/* send probe requests at 1Mbps */
3730 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
3731 		tx->rflags |= IWN_RFLAG_CCK;
3732 	}
3733 
3734 	essid = (struct iwn_scan_essid *)(tx + 1);
3735 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3736 	essid[0].id  = IEEE80211_ELEMID_SSID;
3737 	essid[0].len = ss->ss_ssid[0].len;
3738 	memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3739 
3740 	/*
3741 	 * Build a probe request frame.  Most of the following code is a
3742 	 * copy & paste of what is done in net80211.
3743 	 */
3744 	wh = (struct ieee80211_frame *)&essid[4];
3745 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3746 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3747 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3748 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3749 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
3750 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3751 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3752 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3753 
3754 	frm = (uint8_t *)(wh + 1);
3755 
3756 	/* add SSID IE */
3757         *frm++ = IEEE80211_ELEMID_SSID;
3758         *frm++ = ss->ss_ssid[0].len;
3759         memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3760 	frm += ss->ss_ssid[0].len;
3761 
3762 	mode = ieee80211_chan2mode(ic->ic_curchan);
3763 	rs = &ic->ic_sup_rates[mode];
3764 
3765 	/* add supported rates IE */
3766 	*frm++ = IEEE80211_ELEMID_RATES;
3767 	nrates = rs->rs_nrates;
3768 	if (nrates > IEEE80211_RATE_SIZE)
3769 		nrates = IEEE80211_RATE_SIZE;
3770 	*frm++ = nrates;
3771 	memcpy(frm, rs->rs_rates, nrates);
3772 	frm += nrates;
3773 
3774 	/* add supported xrates IE */
3775 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3776 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3777 		*frm++ = IEEE80211_ELEMID_XRATES;
3778 		*frm++ = (uint8_t)nrates;
3779 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3780 		frm += nrates;
3781 	}
3782 
3783 	/* setup length of probe request */
3784 	tx->len = htole16(frm - (uint8_t *)wh);
3785 
3786 	c = ic->ic_curchan;
3787 	chan = (struct iwn_scan_chan *)frm;
3788 	chan->chan = ieee80211_chan2ieee(ic, c);
3789 	chan->flags = 0;
3790 	if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
3791 		chan->flags |= IWN_CHAN_ACTIVE;
3792 		if (ss->ss_nssid > 0)
3793 			chan->flags |= IWN_CHAN_DIRECT;
3794 	}
3795 	chan->dsp_gain = 0x6e;
3796 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3797 		chan->rf_gain = 0x3b;
3798 		chan->active  = htole16(10);
3799 		chan->passive = htole16(110);
3800 	} else {
3801 		chan->rf_gain = 0x28;
3802 		chan->active  = htole16(20);
3803 		chan->passive = htole16(120);
3804 	}
3805 
3806 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
3807 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
3808 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
3809 	    chan->active, chan->passive);
3810 	hdr->nchan++;
3811 	chan++;
3812 
3813 	frm += sizeof (struct iwn_scan_chan);
3814 
3815 	hdr->len = htole16(frm - (uint8_t *)hdr);
3816 	pktlen = frm - (uint8_t *)cmd;
3817 
3818 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
3819 	    iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
3820 	if (error != 0) {
3821 		device_printf(sc->sc_dev,
3822 		    "%s: could not map scan command, error %d\n",
3823 		    __func__, error);
3824 		m_freem(data->m);
3825 		data->m = NULL;
3826 		return error;
3827 	}
3828 
3829 	IWN_SET_DESC_NSEGS(desc, 1);
3830 	IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
3831 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3832 	if (ring->cur < IWN_TX_WINDOW)
3833 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3834 		    htole16(8);
3835 
3836 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3837 	    BUS_DMASYNC_PREWRITE);
3838 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3839 
3840 	/* kick cmd ring */
3841 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3842 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3843 
3844 	return 0;	/* will be notified async. of failure/success */
3845 }
3846 
3847 int
3848 iwn_config(struct iwn_softc *sc)
3849 {
3850 	struct ifnet *ifp = sc->sc_ifp;
3851 	struct ieee80211com *ic = ifp->if_l2com;
3852 	struct iwn_power power;
3853 	struct iwn_bluetooth bluetooth;
3854 	struct iwn_node_info node;
3855 	int error;
3856 
3857 	/* set power mode */
3858 	memset(&power, 0, sizeof power);
3859 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3860 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
3861 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3862 	if (error != 0) {
3863 		device_printf(sc->sc_dev,
3864 		    "%s: could not set power mode, error %d\n",
3865 		    __func__, error);
3866 		return error;
3867 	}
3868 
3869 	/* configure bluetooth coexistence */
3870 	memset(&bluetooth, 0, sizeof bluetooth);
3871 	bluetooth.flags = 3;
3872 	bluetooth.lead = 0xaa;
3873 	bluetooth.kill = 1;
3874 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
3875 	    __func__);
3876 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3877 	    0);
3878 	if (error != 0) {
3879 		device_printf(sc->sc_dev,
3880 		    "%s: could not configure bluetooth coexistence, error %d\n",
3881 		    __func__, error);
3882 		return error;
3883 	}
3884 
3885 	/* configure adapter */
3886 	memset(&sc->config, 0, sizeof (struct iwn_config));
3887 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
3888 	IEEE80211_ADDR_COPY(sc->config.wlap, IF_LLADDR(ifp));
3889 	/* set default channel */
3890 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
3891 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3892 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3893 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3894 	sc->config.filter = 0;
3895 	switch (ic->ic_opmode) {
3896 	case IEEE80211_M_STA:
3897 		sc->config.mode = IWN_MODE_STA;
3898 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3899 		break;
3900 	case IEEE80211_M_IBSS:
3901 	case IEEE80211_M_AHDEMO:
3902 		sc->config.mode = IWN_MODE_IBSS;
3903 		break;
3904 	case IEEE80211_M_HOSTAP:
3905 		sc->config.mode = IWN_MODE_HOSTAP;
3906 		break;
3907 	case IEEE80211_M_MONITOR:
3908 		sc->config.mode = IWN_MODE_MONITOR;
3909 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3910 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3911 		break;
3912 	default:
3913 		break;
3914 	}
3915 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3916 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3917 	sc->config.ht_single_mask = 0xff;
3918 	sc->config.ht_dual_mask = 0xff;
3919 	sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
3920 
3921 	DPRINTF(sc, IWN_DEBUG_STATE,
3922 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3923 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3924 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3925 	   __func__,
3926 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3927 	   sc->config.cck_mask, sc->config.ofdm_mask,
3928 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3929 	   le16toh(sc->config.rxchain),
3930 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3931 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3932 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3933 	    sizeof (struct iwn_config), 0);
3934 	if (error != 0) {
3935 		device_printf(sc->sc_dev,
3936 		    "%s: configure command failed, error %d\n",
3937 		    __func__, error);
3938 		return error;
3939 	}
3940 	sc->sc_curchan = ic->ic_curchan;
3941 
3942 	/* configuration has changed, set Tx power accordingly */
3943 	error = iwn_set_txpower(sc, ic->ic_curchan, 0);
3944 	if (error != 0) {
3945 		device_printf(sc->sc_dev,
3946 		    "%s: could not set Tx power, error %d\n", __func__, error);
3947 		return error;
3948 	}
3949 
3950 	/* add broadcast node */
3951 	memset(&node, 0, sizeof node);
3952 	IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
3953 	node.id = IWN_ID_BROADCAST;
3954 	node.rate = iwn_plcp_signal(2);
3955 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
3956 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3957 	if (error != 0) {
3958 		device_printf(sc->sc_dev,
3959 		    "%s: could not add broadcast node, error %d\n",
3960 		    __func__, error);
3961 		return error;
3962 	}
3963 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
3964 	if (error != 0) {
3965 		device_printf(sc->sc_dev,
3966 		    "%s: could not setup MRR for node %d, error %d\n",
3967 		    __func__, node.id, error);
3968 		return error;
3969 	}
3970 
3971 	error = iwn_set_critical_temp(sc);
3972 	if (error != 0) {
3973 		device_printf(sc->sc_dev,
3974 		    "%s: could not set critical temperature, error %d\n",
3975 		    __func__, error);
3976 		return error;
3977 	}
3978 	return 0;
3979 }
3980 
3981 /*
3982  * Do post-alive initialization of the NIC (after firmware upload).
3983  */
3984 void
3985 iwn_post_alive(struct iwn_softc *sc)
3986 {
3987 	uint32_t base;
3988 	uint16_t offset;
3989 	int qid;
3990 
3991 	iwn_mem_lock(sc);
3992 
3993 	/* clear SRAM */
3994 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3995 	for (offset = 0x380; offset < 0x520; offset += 4) {
3996 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3997 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3998 	}
3999 
4000 	/* shared area is aligned on a 1K boundary */
4001 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
4002 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
4003 
4004 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4005 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
4006 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
4007 
4008 		/* set sched. window size */
4009 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
4010 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
4011 		/* set sched. frame limit */
4012 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
4013 		IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
4014 	}
4015 
4016 	/* enable interrupts for all 16 queues */
4017 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
4018 
4019 	/* identify active Tx rings (0-7) */
4020 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
4021 
4022 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
4023 	for (qid = 0; qid < 7; qid++) {
4024 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
4025 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
4026 	}
4027 
4028 	iwn_mem_unlock(sc);
4029 }
4030 
4031 void
4032 iwn_stop_master(struct iwn_softc *sc)
4033 {
4034 	uint32_t tmp;
4035 	int ntries;
4036 
4037 	tmp = IWN_READ(sc, IWN_RESET);
4038 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
4039 
4040 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4041 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
4042 		return;	/* already asleep */
4043 
4044 	for (ntries = 0; ntries < 100; ntries++) {
4045 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
4046 			break;
4047 		DELAY(10);
4048 	}
4049 	if (ntries == 100)
4050 		device_printf(sc->sc_dev,
4051 		    "%s: timeout waiting for master\n", __func__);
4052 }
4053 
4054 int
4055 iwn_reset(struct iwn_softc *sc)
4056 {
4057 	uint32_t tmp;
4058 	int ntries;
4059 
4060 	/* clear any pending interrupts */
4061 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4062 
4063 	tmp = IWN_READ(sc, IWN_CHICKEN);
4064 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
4065 
4066 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4067 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
4068 
4069 	/* wait for clock stabilization */
4070 	for (ntries = 0; ntries < 1000; ntries++) {
4071 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
4072 			break;
4073 		DELAY(10);
4074 	}
4075 	if (ntries == 1000) {
4076 		device_printf(sc->sc_dev,
4077 		    "%s: timeout waiting for clock stabilization\n", __func__);
4078 		return ETIMEDOUT;
4079 	}
4080 	return 0;
4081 }
4082 
4083 void
4084 iwn_hw_config(struct iwn_softc *sc)
4085 {
4086 	uint32_t tmp, hw;
4087 
4088 	/* enable interrupts mitigation */
4089 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
4090 
4091 	/* voodoo from the reference driver */
4092 	tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
4093 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
4094 		/* enable "no snoop" field */
4095 		tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
4096 		tmp &= ~IWN_DIS_NOSNOOP;
4097 		/* clear device specific PCI configuration register 0x41 */
4098 		pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
4099 	}
4100 
4101 	/* disable L1 entry to work around a hardware bug */
4102 	tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
4103 	tmp &= ~IWN_ENA_L1;
4104 	pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
4105 
4106 	hw = IWN_READ(sc, IWN_HWCONFIG);
4107 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
4108 
4109 	iwn_mem_lock(sc);
4110 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4111 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
4112 	DELAY(5);
4113 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4114 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
4115 	iwn_mem_unlock(sc);
4116 }
4117 
4118 void
4119 iwn_init_locked(struct iwn_softc *sc)
4120 {
4121 	struct ifnet *ifp = sc->sc_ifp;
4122 	uint32_t tmp;
4123 	int error, qid;
4124 
4125 	IWN_LOCK_ASSERT(sc);
4126 
4127 	/* load the firmware */
4128 	if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
4129 		device_printf(sc->sc_dev,
4130 		    "%s: could not load firmware, error %d\n", __func__, error);
4131 		return;
4132 	}
4133 
4134 	error = iwn_reset(sc);
4135 	if (error != 0) {
4136 		device_printf(sc->sc_dev,
4137 		    "%s: could not reset adapter, error %d\n", __func__, error);
4138 		return;
4139 	}
4140 
4141 	iwn_mem_lock(sc);
4142 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4143 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
4144 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4145 	iwn_mem_unlock(sc);
4146 
4147 	DELAY(20);
4148 
4149 	iwn_mem_lock(sc);
4150 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
4151 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
4152 	iwn_mem_unlock(sc);
4153 
4154 	iwn_mem_lock(sc);
4155 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4156 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
4157 	iwn_mem_unlock(sc);
4158 
4159 	iwn_hw_config(sc);
4160 
4161 	/* init Rx ring */
4162 	iwn_mem_lock(sc);
4163 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
4164 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
4165 	/* Rx ring is aligned on a 256-byte boundary */
4166 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
4167 	/* shared area is aligned on a 16-byte boundary */
4168 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
4169 	    offsetof(struct iwn_shared, closed_count)) >> 4);
4170 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
4171 	iwn_mem_unlock(sc);
4172 
4173 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
4174 
4175 	iwn_mem_lock(sc);
4176 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
4177 
4178 	/* set physical address of "keep warm" page */
4179 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
4180 
4181 	/* init Tx rings */
4182 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4183 		struct iwn_tx_ring *txq = &sc->txq[qid];
4184 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
4185 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
4186 	}
4187 	iwn_mem_unlock(sc);
4188 
4189 	/* clear "radio off" and "disable command" bits (reversed logic) */
4190 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4191 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
4192 
4193 	/* clear any pending interrupts */
4194 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4195 	/* enable interrupts */
4196 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
4197 
4198 	/* not sure why/if this is necessary... */
4199 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4200 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4201 
4202 	/* check that the radio is not disabled by RF switch */
4203 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
4204 		device_printf(sc->sc_dev,
4205 		    "radio is disabled by hardware switch\n");
4206 		return;
4207 	}
4208 
4209 	error = iwn_transfer_firmware(sc);
4210 	if (error != 0) {
4211 		device_printf(sc->sc_dev,
4212 		    "%s: could not load firmware, error %d\n", __func__, error);
4213 		return;
4214 	}
4215 
4216 	/* firmware has notified us that it is alive.. */
4217 	iwn_post_alive(sc);	/* ..do post alive initialization */
4218 
4219 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4220 	sc->temp = iwn_get_temperature(sc);
4221 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
4222 	   __func__, sc->temp);
4223 
4224 	error = iwn_config(sc);
4225 	if (error != 0) {
4226 		device_printf(sc->sc_dev,
4227 		    "%s: could not configure device, error %d\n",
4228 		    __func__, error);
4229 		return;
4230 	}
4231 
4232 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4233 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4234 }
4235 
4236 void
4237 iwn_init(void *arg)
4238 {
4239 	struct iwn_softc *sc = arg;
4240 	struct ifnet *ifp = sc->sc_ifp;
4241 	struct ieee80211com *ic = ifp->if_l2com;
4242 
4243 	IWN_LOCK(sc);
4244 	iwn_init_locked(sc);
4245 	IWN_UNLOCK(sc);
4246 
4247 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4248 		ieee80211_start_all(ic);
4249 }
4250 
4251 void
4252 iwn_stop_locked(struct iwn_softc *sc)
4253 {
4254 	struct ifnet *ifp = sc->sc_ifp;
4255 	uint32_t tmp;
4256 	int i;
4257 
4258 	IWN_LOCK_ASSERT(sc);
4259 
4260 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
4261 
4262 	sc->sc_tx_timer = 0;
4263 	callout_stop(&sc->sc_timer_to);
4264 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4265 
4266 	/* disable interrupts */
4267 	IWN_WRITE(sc, IWN_MASK, 0);
4268 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4269 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
4270 
4271 	/* reset all Tx rings */
4272 	for (i = 0; i < IWN_NTXQUEUES; i++)
4273 		iwn_reset_tx_ring(sc, &sc->txq[i]);
4274 
4275 	/* reset Rx ring */
4276 	iwn_reset_rx_ring(sc, &sc->rxq);
4277 
4278 	iwn_mem_lock(sc);
4279 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
4280 	iwn_mem_unlock(sc);
4281 
4282 	DELAY(5);
4283 	iwn_stop_master(sc);
4284 
4285 	tmp = IWN_READ(sc, IWN_RESET);
4286 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
4287 }
4288 
4289 void
4290 iwn_stop(struct iwn_softc *sc)
4291 {
4292 	IWN_LOCK(sc);
4293 	iwn_stop_locked(sc);
4294 	IWN_UNLOCK(sc);
4295 }
4296 
4297 /*
4298  * Callback from net80211 to start a scan.
4299  */
4300 static void
4301 iwn_scan_start(struct ieee80211com *ic)
4302 {
4303 	struct ifnet *ifp = ic->ic_ifp;
4304 	struct iwn_softc *sc = ifp->if_softc;
4305 
4306 	IWN_LOCK(sc);
4307 	/* make the link LED blink while we're scanning */
4308 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
4309 	IWN_UNLOCK(sc);
4310 }
4311 
4312 /*
4313  * Callback from net80211 to terminate a scan.
4314  */
4315 static void
4316 iwn_scan_end(struct ieee80211com *ic)
4317 {
4318 	/* ignore */
4319 }
4320 
4321 /*
4322  * Callback from net80211 to force a channel change.
4323  */
4324 static void
4325 iwn_set_channel(struct ieee80211com *ic)
4326 {
4327 	struct ifnet *ifp = ic->ic_ifp;
4328 	struct iwn_softc *sc = ifp->if_softc;
4329 	struct ieee80211vap *vap;
4330 	const struct ieee80211_channel *c = ic->ic_curchan;
4331 	int error;
4332 
4333 	vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
4334 
4335 	IWN_LOCK(sc);
4336 	if (c != sc->sc_curchan) {
4337 		sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4338 		sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4339 		sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4340 		sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4341 
4342 		error = iwn_config(sc);
4343 		if (error != 0) {
4344 			DPRINTF(sc, IWN_DEBUG_STATE,
4345 			    "%s: set chan failed, cancel scan\n",
4346 			    __func__);
4347 			//XXX Handle failed scan correctly
4348 			ieee80211_cancel_scan(vap);
4349 		}
4350 	}
4351 	IWN_UNLOCK(sc);
4352 }
4353 
4354 /*
4355  * Callback from net80211 to start scanning of the current channel.
4356  */
4357 static void
4358 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4359 {
4360 	struct ieee80211vap *vap = ss->ss_vap;
4361 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4362 	int error;
4363 
4364 	IWN_LOCK(sc);
4365 	error = iwn_scan(sc);
4366 	IWN_UNLOCK(sc);
4367 	if (error != 0)
4368 		ieee80211_cancel_scan(vap);
4369 }
4370 
4371 /*
4372  * Callback from net80211 to handle the minimum dwell time being met.
4373  * The intent is to terminate the scan but we just let the firmware
4374  * notify us when it's finished as we have no safe way to abort it.
4375  */
4376 static void
4377 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
4378 {
4379 	/* NB: don't try to abort scan; wait for firmware to finish */
4380 }
4381 
4382 static void
4383 iwn_hwreset(void *arg0, int pending)
4384 {
4385 	struct iwn_softc *sc = arg0;
4386 	struct ifnet *ifp = sc->sc_ifp;
4387 	struct ieee80211com *ic = ifp->if_l2com;
4388 
4389 	iwn_init(sc);
4390 	ieee80211_notify_radio(ic, 1);
4391 }
4392 
4393 static void
4394 iwn_radioon(void *arg0, int pending)
4395 {
4396 	struct iwn_softc *sc = arg0;
4397 
4398 	iwn_init(sc);
4399 }
4400 
4401 static void
4402 iwn_radiooff(void *arg0, int pending)
4403 {
4404 	struct iwn_softc *sc = arg0;
4405 	struct ifnet *ifp = sc->sc_ifp;
4406 	struct ieee80211com *ic = ifp->if_l2com;
4407 
4408 	IWN_LOCK(sc);
4409 	ieee80211_notify_radio(ic, 0);
4410 	iwn_stop_locked(sc);
4411 	IWN_UNLOCK(sc);
4412 }
4413 
4414 static void
4415 iwn_sysctlattach(struct iwn_softc *sc)
4416 {
4417 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4418 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4419 
4420 #ifdef IWN_DEBUG
4421 	sc->sc_debug = 0;
4422 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4423 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
4424 #endif
4425 }
4426 
4427 #ifdef IWN_DEBUG
4428 static const char *
4429 iwn_intr_str(uint8_t cmd)
4430 {
4431 	switch (cmd) {
4432 	/* Notifications */
4433 	case IWN_UC_READY:		return "UC_READY";
4434 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
4435 	case IWN_TX_DONE:		return "TX_DONE";
4436 	case IWN_START_SCAN:		return "START_SCAN";
4437 	case IWN_STOP_SCAN:		return "STOP_SCAN";
4438 	case IWN_RX_STATISTICS:		return "RX_STATS";
4439 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
4440 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
4441 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
4442 	case IWN_AMPDU_RX_START:	return "AMPDU_RX_START";
4443 	case IWN_AMPDU_RX_DONE:		return "AMPDU_RX_DONE";
4444 	case IWN_RX_DONE:		return "RX_DONE";
4445 
4446 	/* Command Notifications */
4447 	case IWN_CMD_CONFIGURE:		return "IWN_CMD_CONFIGURE";
4448 	case IWN_CMD_ASSOCIATE:		return "IWN_CMD_ASSOCIATE";
4449 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
4450 	case IWN_CMD_TSF:		return "IWN_CMD_TSF";
4451 	case IWN_CMD_TX_LINK_QUALITY:	return "IWN_CMD_TX_LINK_QUALITY";
4452 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
4453 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
4454 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
4455 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
4456 	case IWN_CMD_BLUETOOTH:		return "IWN_CMD_BLUETOOTH";
4457 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
4458 	case IWN_SENSITIVITY:		return "IWN_SENSITIVITY";
4459 	case IWN_PHY_CALIB:		return "IWN_PHY_CALIB";
4460 	}
4461 	return "UNKNOWN INTR NOTIF/CMD";
4462 }
4463 #endif /* IWN_DEBUG */
4464 
4465 static device_method_t iwn_methods[] = {
4466         /* Device interface */
4467         DEVMETHOD(device_probe,         iwn_probe),
4468         DEVMETHOD(device_attach,        iwn_attach),
4469         DEVMETHOD(device_detach,        iwn_detach),
4470         DEVMETHOD(device_shutdown,      iwn_shutdown),
4471         DEVMETHOD(device_suspend,       iwn_suspend),
4472         DEVMETHOD(device_resume,        iwn_resume),
4473 
4474         { 0, 0 }
4475 };
4476 
4477 static driver_t iwn_driver = {
4478         "iwn",
4479         iwn_methods,
4480         sizeof (struct iwn_softc)
4481 };
4482 static devclass_t iwn_devclass;
4483 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
4484 MODULE_DEPEND(iwn, pci, 1, 1, 1);
4485 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
4486 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
4487 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
4488