xref: /freebsd/sys/dev/iwm/if_iwm.c (revision fa50a3552d1e759e1bb65e54cb0b7e863bcf54d5)
1 /*	$OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 #include "opt_iwm.h"
110 
111 #include <sys/param.h>
112 #include <sys/bus.h>
113 #include <sys/conf.h>
114 #include <sys/endian.h>
115 #include <sys/firmware.h>
116 #include <sys/kernel.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/module.h>
121 #include <sys/proc.h>
122 #include <sys/rman.h>
123 #include <sys/socket.h>
124 #include <sys/sockio.h>
125 #include <sys/sysctl.h>
126 #include <sys/linker.h>
127 
128 #include <machine/bus.h>
129 #include <machine/endian.h>
130 #include <machine/resource.h>
131 
132 #include <dev/pci/pcivar.h>
133 #include <dev/pci/pcireg.h>
134 
135 #include <net/bpf.h>
136 
137 #include <net/if.h>
138 #include <net/if_var.h>
139 #include <net/if_arp.h>
140 #include <net/if_dl.h>
141 #include <net/if_media.h>
142 #include <net/if_types.h>
143 
144 #include <netinet/in.h>
145 #include <netinet/in_systm.h>
146 #include <netinet/if_ether.h>
147 #include <netinet/ip.h>
148 
149 #include <net80211/ieee80211_var.h>
150 #include <net80211/ieee80211_regdomain.h>
151 #include <net80211/ieee80211_ratectl.h>
152 #include <net80211/ieee80211_radiotap.h>
153 
154 #include <dev/iwm/if_iwmreg.h>
155 #include <dev/iwm/if_iwmvar.h>
156 #include <dev/iwm/if_iwm_config.h>
157 #include <dev/iwm/if_iwm_debug.h>
158 #include <dev/iwm/if_iwm_notif_wait.h>
159 #include <dev/iwm/if_iwm_util.h>
160 #include <dev/iwm/if_iwm_binding.h>
161 #include <dev/iwm/if_iwm_phy_db.h>
162 #include <dev/iwm/if_iwm_mac_ctxt.h>
163 #include <dev/iwm/if_iwm_phy_ctxt.h>
164 #include <dev/iwm/if_iwm_time_event.h>
165 #include <dev/iwm/if_iwm_power.h>
166 #include <dev/iwm/if_iwm_scan.h>
167 #include <dev/iwm/if_iwm_sf.h>
168 #include <dev/iwm/if_iwm_sta.h>
169 
170 #include <dev/iwm/if_iwm_pcie_trans.h>
171 #include <dev/iwm/if_iwm_led.h>
172 #include <dev/iwm/if_iwm_fw.h>
173 
174 /* From DragonflyBSD */
175 #define mtodoff(m, t, off)      ((t)((m)->m_data + (off)))
176 
177 const uint8_t iwm_nvm_channels[] = {
178 	/* 2.4 GHz */
179 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
180 	/* 5 GHz */
181 	36, 40, 44, 48, 52, 56, 60, 64,
182 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
183 	149, 153, 157, 161, 165
184 };
185 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
186     "IWM_NUM_CHANNELS is too small");
187 
188 const uint8_t iwm_nvm_channels_8000[] = {
189 	/* 2.4 GHz */
190 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
191 	/* 5 GHz */
192 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
193 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
194 	149, 153, 157, 161, 165, 169, 173, 177, 181
195 };
196 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
197     "IWM_NUM_CHANNELS_8000 is too small");
198 
199 #define IWM_NUM_2GHZ_CHANNELS	14
200 #define IWM_N_HW_ADDR_MASK	0xF
201 
202 /*
203  * XXX For now, there's simply a fixed set of rate table entries
204  * that are populated.
205  */
206 const struct iwm_rate {
207 	uint8_t rate;
208 	uint8_t plcp;
209 } iwm_rates[] = {
210 	{   2,	IWM_RATE_1M_PLCP  },
211 	{   4,	IWM_RATE_2M_PLCP  },
212 	{  11,	IWM_RATE_5M_PLCP  },
213 	{  22,	IWM_RATE_11M_PLCP },
214 	{  12,	IWM_RATE_6M_PLCP  },
215 	{  18,	IWM_RATE_9M_PLCP  },
216 	{  24,	IWM_RATE_12M_PLCP },
217 	{  36,	IWM_RATE_18M_PLCP },
218 	{  48,	IWM_RATE_24M_PLCP },
219 	{  72,	IWM_RATE_36M_PLCP },
220 	{  96,	IWM_RATE_48M_PLCP },
221 	{ 108,	IWM_RATE_54M_PLCP },
222 };
223 #define IWM_RIDX_CCK	0
224 #define IWM_RIDX_OFDM	4
225 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
226 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
227 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
228 
229 struct iwm_nvm_section {
230 	uint16_t length;
231 	uint8_t *data;
232 };
233 
234 #define IWM_MVM_UCODE_ALIVE_TIMEOUT	hz
235 #define IWM_MVM_UCODE_CALIB_TIMEOUT	(2*hz)
236 
237 struct iwm_mvm_alive_data {
238 	int valid;
239 	uint32_t scd_base_addr;
240 };
241 
242 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
243 static int	iwm_firmware_store_section(struct iwm_softc *,
244                                            enum iwm_ucode_type,
245                                            const uint8_t *, size_t);
246 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
247 static void	iwm_fw_info_free(struct iwm_fw_info *);
248 static int	iwm_read_firmware(struct iwm_softc *);
249 static int	iwm_alloc_fwmem(struct iwm_softc *);
250 static int	iwm_alloc_sched(struct iwm_softc *);
251 static int	iwm_alloc_kw(struct iwm_softc *);
252 static int	iwm_alloc_ict(struct iwm_softc *);
253 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
254 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
255 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
256 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
257                                   int);
258 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
259 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
260 static void	iwm_enable_interrupts(struct iwm_softc *);
261 static void	iwm_restore_interrupts(struct iwm_softc *);
262 static void	iwm_disable_interrupts(struct iwm_softc *);
263 static void	iwm_ict_reset(struct iwm_softc *);
264 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
265 static void	iwm_stop_device(struct iwm_softc *);
266 static void	iwm_mvm_nic_config(struct iwm_softc *);
267 static int	iwm_nic_rx_init(struct iwm_softc *);
268 static int	iwm_nic_tx_init(struct iwm_softc *);
269 static int	iwm_nic_init(struct iwm_softc *);
270 static int	iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t);
271 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
272                                    uint16_t, uint8_t *, uint16_t *);
273 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
274 				     uint16_t *, uint32_t);
275 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
276 static void	iwm_add_channel_band(struct iwm_softc *,
277 		    struct ieee80211_channel[], int, int *, int, size_t,
278 		    const uint8_t[]);
279 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
280 		    struct ieee80211_channel[]);
281 static struct iwm_nvm_data *
282 	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
283 			   const uint16_t *, const uint16_t *,
284 			   const uint16_t *, const uint16_t *,
285 			   const uint16_t *);
286 static void	iwm_free_nvm_data(struct iwm_nvm_data *);
287 static void	iwm_set_hw_address_family_8000(struct iwm_softc *,
288 					       struct iwm_nvm_data *,
289 					       const uint16_t *,
290 					       const uint16_t *);
291 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
292 			    const uint16_t *);
293 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
294 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
295 				  const uint16_t *);
296 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
297 				   const uint16_t *);
298 static void	iwm_set_radio_cfg(const struct iwm_softc *,
299 				  struct iwm_nvm_data *, uint32_t);
300 static struct iwm_nvm_data *
301 	iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
302 static int	iwm_nvm_init(struct iwm_softc *);
303 static int	iwm_pcie_load_section(struct iwm_softc *, uint8_t,
304 				      const struct iwm_fw_desc *);
305 static int	iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t,
306 					     bus_addr_t, uint32_t);
307 static int	iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
308 						const struct iwm_fw_img *,
309 						int, int *);
310 static int	iwm_pcie_load_cpu_sections(struct iwm_softc *,
311 					   const struct iwm_fw_img *,
312 					   int, int *);
313 static int	iwm_pcie_load_given_ucode_8000(struct iwm_softc *,
314 					       const struct iwm_fw_img *);
315 static int	iwm_pcie_load_given_ucode(struct iwm_softc *,
316 					  const struct iwm_fw_img *);
317 static int	iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *);
318 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
319 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
320 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
321                                               enum iwm_ucode_type);
322 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
323 static int	iwm_mvm_config_ltr(struct iwm_softc *sc);
324 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
325 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
326 					    struct iwm_rx_phy_info *);
327 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
328                                       struct iwm_rx_packet *);
329 static int	iwm_get_noise(struct iwm_softc *,
330 		    const struct iwm_mvm_statistics_rx_non_phy *);
331 static void	iwm_mvm_handle_rx_statistics(struct iwm_softc *,
332 		    struct iwm_rx_packet *);
333 static boolean_t iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct mbuf *,
334 				    uint32_t, boolean_t);
335 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
336                                          struct iwm_rx_packet *,
337 				         struct iwm_node *);
338 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *);
339 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
340 #if 0
341 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
342                                  uint16_t);
343 #endif
344 static const struct iwm_rate *
345 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
346 			struct mbuf *, struct iwm_tx_cmd *);
347 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
348                        struct ieee80211_node *, int);
349 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
350 			     const struct ieee80211_bpf_params *);
351 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_vap *);
352 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
353 static struct ieee80211_node *
354 		iwm_node_alloc(struct ieee80211vap *,
355 		               const uint8_t[IEEE80211_ADDR_LEN]);
356 static uint8_t	iwm_rate_from_ucode_rate(uint32_t);
357 static int	iwm_rate2ridx(struct iwm_softc *, uint8_t);
358 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *, int);
359 static int	iwm_media_change(struct ifnet *);
360 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
361 static void	iwm_endscan_cb(void *, int);
362 static int	iwm_send_bt_init_conf(struct iwm_softc *);
363 static boolean_t iwm_mvm_is_lar_supported(struct iwm_softc *);
364 static boolean_t iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *);
365 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
366 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
367 static int	iwm_init_hw(struct iwm_softc *);
368 static void	iwm_init(struct iwm_softc *);
369 static void	iwm_start(struct iwm_softc *);
370 static void	iwm_stop(struct iwm_softc *);
371 static void	iwm_watchdog(void *);
372 static void	iwm_parent(struct ieee80211com *);
373 #ifdef IWM_DEBUG
374 static const char *
375 		iwm_desc_lookup(uint32_t);
376 static void	iwm_nic_error(struct iwm_softc *);
377 static void	iwm_nic_umac_error(struct iwm_softc *);
378 #endif
379 static void	iwm_handle_rxb(struct iwm_softc *, struct mbuf *);
380 static void	iwm_notif_intr(struct iwm_softc *);
381 static void	iwm_intr(void *);
382 static int	iwm_attach(device_t);
383 static int	iwm_is_valid_ether_addr(uint8_t *);
384 static void	iwm_preinit(void *);
385 static int	iwm_detach_local(struct iwm_softc *sc, int);
386 static void	iwm_init_task(void *);
387 static void	iwm_radiotap_attach(struct iwm_softc *);
388 static struct ieee80211vap *
389 		iwm_vap_create(struct ieee80211com *,
390 		               const char [IFNAMSIZ], int,
391 		               enum ieee80211_opmode, int,
392 		               const uint8_t [IEEE80211_ADDR_LEN],
393 		               const uint8_t [IEEE80211_ADDR_LEN]);
394 static void	iwm_vap_delete(struct ieee80211vap *);
395 static void	iwm_xmit_queue_drain(struct iwm_softc *);
396 static void	iwm_scan_start(struct ieee80211com *);
397 static void	iwm_scan_end(struct ieee80211com *);
398 static void	iwm_update_mcast(struct ieee80211com *);
399 static void	iwm_set_channel(struct ieee80211com *);
400 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
401 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
402 static int	iwm_detach(device_t);
403 
404 static int	iwm_lar_disable = 0;
405 TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable);
406 
407 /*
408  * Firmware parser.
409  */
410 
411 static int
412 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
413 {
414 	const struct iwm_fw_cscheme_list *l = (const void *)data;
415 
416 	if (dlen < sizeof(*l) ||
417 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
418 		return EINVAL;
419 
420 	/* we don't actually store anything for now, always use s/w crypto */
421 
422 	return 0;
423 }
424 
425 static int
426 iwm_firmware_store_section(struct iwm_softc *sc,
427     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
428 {
429 	struct iwm_fw_img *fws;
430 	struct iwm_fw_desc *fwone;
431 
432 	if (type >= IWM_UCODE_TYPE_MAX)
433 		return EINVAL;
434 	if (dlen < sizeof(uint32_t))
435 		return EINVAL;
436 
437 	fws = &sc->sc_fw.img[type];
438 	if (fws->fw_count >= IWM_UCODE_SECTION_MAX)
439 		return EINVAL;
440 
441 	fwone = &fws->sec[fws->fw_count];
442 
443 	/* first 32bit are device load offset */
444 	memcpy(&fwone->offset, data, sizeof(uint32_t));
445 
446 	/* rest is data */
447 	fwone->data = data + sizeof(uint32_t);
448 	fwone->len = dlen - sizeof(uint32_t);
449 
450 	fws->fw_count++;
451 
452 	return 0;
453 }
454 
455 #define IWM_DEFAULT_SCAN_CHANNELS 40
456 
457 /* iwlwifi: iwl-drv.c */
458 struct iwm_tlv_calib_data {
459 	uint32_t ucode_type;
460 	struct iwm_tlv_calib_ctrl calib;
461 } __packed;
462 
463 static int
464 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
465 {
466 	const struct iwm_tlv_calib_data *def_calib = data;
467 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
468 
469 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
470 		device_printf(sc->sc_dev,
471 		    "Wrong ucode_type %u for default "
472 		    "calibration.\n", ucode_type);
473 		return EINVAL;
474 	}
475 
476 	sc->sc_default_calib[ucode_type].flow_trigger =
477 	    def_calib->calib.flow_trigger;
478 	sc->sc_default_calib[ucode_type].event_trigger =
479 	    def_calib->calib.event_trigger;
480 
481 	return 0;
482 }
483 
484 static int
485 iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data,
486 			struct iwm_ucode_capabilities *capa)
487 {
488 	const struct iwm_ucode_api *ucode_api = (const void *)data;
489 	uint32_t api_index = le32toh(ucode_api->api_index);
490 	uint32_t api_flags = le32toh(ucode_api->api_flags);
491 	int i;
492 
493 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
494 		device_printf(sc->sc_dev,
495 		    "api flags index %d larger than supported by driver\n",
496 		    api_index);
497 		/* don't return an error so we can load FW that has more bits */
498 		return 0;
499 	}
500 
501 	for (i = 0; i < 32; i++) {
502 		if (api_flags & (1U << i))
503 			setbit(capa->enabled_api, i + 32 * api_index);
504 	}
505 
506 	return 0;
507 }
508 
509 static int
510 iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data,
511 			   struct iwm_ucode_capabilities *capa)
512 {
513 	const struct iwm_ucode_capa *ucode_capa = (const void *)data;
514 	uint32_t api_index = le32toh(ucode_capa->api_index);
515 	uint32_t api_flags = le32toh(ucode_capa->api_capa);
516 	int i;
517 
518 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
519 		device_printf(sc->sc_dev,
520 		    "capa flags index %d larger than supported by driver\n",
521 		    api_index);
522 		/* don't return an error so we can load FW that has more bits */
523 		return 0;
524 	}
525 
526 	for (i = 0; i < 32; i++) {
527 		if (api_flags & (1U << i))
528 			setbit(capa->enabled_capa, i + 32 * api_index);
529 	}
530 
531 	return 0;
532 }
533 
534 static void
535 iwm_fw_info_free(struct iwm_fw_info *fw)
536 {
537 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
538 	fw->fw_fp = NULL;
539 	memset(fw->img, 0, sizeof(fw->img));
540 }
541 
542 static int
543 iwm_read_firmware(struct iwm_softc *sc)
544 {
545 	struct iwm_fw_info *fw = &sc->sc_fw;
546 	const struct iwm_tlv_ucode_header *uhdr;
547 	const struct iwm_ucode_tlv *tlv;
548 	struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa;
549 	enum iwm_ucode_tlv_type tlv_type;
550 	const struct firmware *fwp;
551 	const uint8_t *data;
552 	uint32_t tlv_len;
553 	uint32_t usniffer_img;
554 	const uint8_t *tlv_data;
555 	uint32_t paging_mem_size;
556 	int num_of_cpus;
557 	int error = 0;
558 	size_t len;
559 
560 	/*
561 	 * Load firmware into driver memory.
562 	 * fw_fp will be set.
563 	 */
564 	fwp = firmware_get(sc->cfg->fw_name);
565 	if (fwp == NULL) {
566 		device_printf(sc->sc_dev,
567 		    "could not read firmware %s (error %d)\n",
568 		    sc->cfg->fw_name, error);
569 		goto out;
570 	}
571 	fw->fw_fp = fwp;
572 
573 	/* (Re-)Initialize default values. */
574 	capa->flags = 0;
575 	capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH;
576 	capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
577 	memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa));
578 	memset(capa->enabled_api, 0, sizeof(capa->enabled_api));
579 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
580 
581 	/*
582 	 * Parse firmware contents
583 	 */
584 
585 	uhdr = (const void *)fw->fw_fp->data;
586 	if (*(const uint32_t *)fw->fw_fp->data != 0
587 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
588 		device_printf(sc->sc_dev, "invalid firmware %s\n",
589 		    sc->cfg->fw_name);
590 		error = EINVAL;
591 		goto out;
592 	}
593 
594 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)",
595 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
596 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
597 	    IWM_UCODE_API(le32toh(uhdr->ver)));
598 	data = uhdr->data;
599 	len = fw->fw_fp->datasize - sizeof(*uhdr);
600 
601 	while (len >= sizeof(*tlv)) {
602 		len -= sizeof(*tlv);
603 		tlv = (const void *)data;
604 
605 		tlv_len = le32toh(tlv->length);
606 		tlv_type = le32toh(tlv->type);
607 		tlv_data = tlv->data;
608 
609 		if (len < tlv_len) {
610 			device_printf(sc->sc_dev,
611 			    "firmware too short: %zu bytes\n",
612 			    len);
613 			error = EINVAL;
614 			goto parse_out;
615 		}
616 		len -= roundup2(tlv_len, 4);
617 		data += sizeof(*tlv) + roundup2(tlv_len, 4);
618 
619 		switch ((int)tlv_type) {
620 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
621 			if (tlv_len != sizeof(uint32_t)) {
622 				device_printf(sc->sc_dev,
623 				    "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n",
624 				    __func__, tlv_len);
625 				error = EINVAL;
626 				goto parse_out;
627 			}
628 			capa->max_probe_length =
629 			    le32_to_cpup((const uint32_t *)tlv_data);
630 			/* limit it to something sensible */
631 			if (capa->max_probe_length >
632 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
633 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
634 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
635 				    "ridiculous\n", __func__);
636 				error = EINVAL;
637 				goto parse_out;
638 			}
639 			break;
640 		case IWM_UCODE_TLV_PAN:
641 			if (tlv_len) {
642 				device_printf(sc->sc_dev,
643 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n",
644 				    __func__, tlv_len);
645 				error = EINVAL;
646 				goto parse_out;
647 			}
648 			capa->flags |= IWM_UCODE_TLV_FLAGS_PAN;
649 			break;
650 		case IWM_UCODE_TLV_FLAGS:
651 			if (tlv_len < sizeof(uint32_t)) {
652 				device_printf(sc->sc_dev,
653 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n",
654 				    __func__, tlv_len);
655 				error = EINVAL;
656 				goto parse_out;
657 			}
658 			if (tlv_len % sizeof(uint32_t)) {
659 				device_printf(sc->sc_dev,
660 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n",
661 				    __func__, tlv_len);
662 				error = EINVAL;
663 				goto parse_out;
664 			}
665 			/*
666 			 * Apparently there can be many flags, but Linux driver
667 			 * parses only the first one, and so do we.
668 			 *
669 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
670 			 * Intentional or a bug?  Observations from
671 			 * current firmware file:
672 			 *  1) TLV_PAN is parsed first
673 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
674 			 * ==> this resets TLV_PAN to itself... hnnnk
675 			 */
676 			capa->flags = le32_to_cpup((const uint32_t *)tlv_data);
677 			break;
678 		case IWM_UCODE_TLV_CSCHEME:
679 			if ((error = iwm_store_cscheme(sc,
680 			    tlv_data, tlv_len)) != 0) {
681 				device_printf(sc->sc_dev,
682 				    "%s: iwm_store_cscheme(): returned %d\n",
683 				    __func__, error);
684 				goto parse_out;
685 			}
686 			break;
687 		case IWM_UCODE_TLV_NUM_OF_CPU:
688 			if (tlv_len != sizeof(uint32_t)) {
689 				device_printf(sc->sc_dev,
690 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n",
691 				    __func__, tlv_len);
692 				error = EINVAL;
693 				goto parse_out;
694 			}
695 			num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data);
696 			if (num_of_cpus == 2) {
697 				fw->img[IWM_UCODE_REGULAR].is_dual_cpus =
698 					TRUE;
699 				fw->img[IWM_UCODE_INIT].is_dual_cpus =
700 					TRUE;
701 				fw->img[IWM_UCODE_WOWLAN].is_dual_cpus =
702 					TRUE;
703 			} else if ((num_of_cpus > 2) || (num_of_cpus < 1)) {
704 				device_printf(sc->sc_dev,
705 				    "%s: Driver supports only 1 or 2 CPUs\n",
706 				    __func__);
707 				error = EINVAL;
708 				goto parse_out;
709 			}
710 			break;
711 		case IWM_UCODE_TLV_SEC_RT:
712 			if ((error = iwm_firmware_store_section(sc,
713 			    IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) {
714 				device_printf(sc->sc_dev,
715 				    "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n",
716 				    __func__, error);
717 				goto parse_out;
718 			}
719 			break;
720 		case IWM_UCODE_TLV_SEC_INIT:
721 			if ((error = iwm_firmware_store_section(sc,
722 			    IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) {
723 				device_printf(sc->sc_dev,
724 				    "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n",
725 				    __func__, error);
726 				goto parse_out;
727 			}
728 			break;
729 		case IWM_UCODE_TLV_SEC_WOWLAN:
730 			if ((error = iwm_firmware_store_section(sc,
731 			    IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) {
732 				device_printf(sc->sc_dev,
733 				    "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n",
734 				    __func__, error);
735 				goto parse_out;
736 			}
737 			break;
738 		case IWM_UCODE_TLV_DEF_CALIB:
739 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
740 				device_printf(sc->sc_dev,
741 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n",
742 				    __func__, tlv_len,
743 				    sizeof(struct iwm_tlv_calib_data));
744 				error = EINVAL;
745 				goto parse_out;
746 			}
747 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
748 				device_printf(sc->sc_dev,
749 				    "%s: iwm_set_default_calib() failed: %d\n",
750 				    __func__, error);
751 				goto parse_out;
752 			}
753 			break;
754 		case IWM_UCODE_TLV_PHY_SKU:
755 			if (tlv_len != sizeof(uint32_t)) {
756 				error = EINVAL;
757 				device_printf(sc->sc_dev,
758 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n",
759 				    __func__, tlv_len);
760 				goto parse_out;
761 			}
762 			sc->sc_fw.phy_config =
763 			    le32_to_cpup((const uint32_t *)tlv_data);
764 			sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config &
765 						  IWM_FW_PHY_CFG_TX_CHAIN) >>
766 						  IWM_FW_PHY_CFG_TX_CHAIN_POS;
767 			sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config &
768 						  IWM_FW_PHY_CFG_RX_CHAIN) >>
769 						  IWM_FW_PHY_CFG_RX_CHAIN_POS;
770 			break;
771 
772 		case IWM_UCODE_TLV_API_CHANGES_SET: {
773 			if (tlv_len != sizeof(struct iwm_ucode_api)) {
774 				error = EINVAL;
775 				goto parse_out;
776 			}
777 			if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			break;
782 		}
783 
784 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
785 			if (tlv_len != sizeof(struct iwm_ucode_capa)) {
786 				error = EINVAL;
787 				goto parse_out;
788 			}
789 			if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) {
790 				error = EINVAL;
791 				goto parse_out;
792 			}
793 			break;
794 		}
795 
796 		case 48: /* undocumented TLV */
797 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
798 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
799 			/* ignore, not used by current driver */
800 			break;
801 
802 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
803 			if ((error = iwm_firmware_store_section(sc,
804 			    IWM_UCODE_REGULAR_USNIFFER, tlv_data,
805 			    tlv_len)) != 0)
806 				goto parse_out;
807 			break;
808 
809 		case IWM_UCODE_TLV_PAGING:
810 			if (tlv_len != sizeof(uint32_t)) {
811 				error = EINVAL;
812 				goto parse_out;
813 			}
814 			paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data);
815 
816 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
817 			    "%s: Paging: paging enabled (size = %u bytes)\n",
818 			    __func__, paging_mem_size);
819 			if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
820 				device_printf(sc->sc_dev,
821 					"%s: Paging: driver supports up to %u bytes for paging image\n",
822 					__func__, IWM_MAX_PAGING_IMAGE_SIZE);
823 				error = EINVAL;
824 				goto out;
825 			}
826 			if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
827 				device_printf(sc->sc_dev,
828 				    "%s: Paging: image isn't multiple %u\n",
829 				    __func__, IWM_FW_PAGING_SIZE);
830 				error = EINVAL;
831 				goto out;
832 			}
833 
834 			sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size =
835 			    paging_mem_size;
836 			usniffer_img = IWM_UCODE_REGULAR_USNIFFER;
837 			sc->sc_fw.img[usniffer_img].paging_mem_size =
838 			    paging_mem_size;
839 			break;
840 
841 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
842 			if (tlv_len != sizeof(uint32_t)) {
843 				error = EINVAL;
844 				goto parse_out;
845 			}
846 			capa->n_scan_channels =
847 			    le32_to_cpup((const uint32_t *)tlv_data);
848 			break;
849 
850 		case IWM_UCODE_TLV_FW_VERSION:
851 			if (tlv_len != sizeof(uint32_t) * 3) {
852 				error = EINVAL;
853 				goto parse_out;
854 			}
855 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
856 			    "%d.%d.%d",
857 			    le32toh(((const uint32_t *)tlv_data)[0]),
858 			    le32toh(((const uint32_t *)tlv_data)[1]),
859 			    le32toh(((const uint32_t *)tlv_data)[2]));
860 			break;
861 
862 		case IWM_UCODE_TLV_FW_MEM_SEG:
863 			break;
864 
865 		default:
866 			device_printf(sc->sc_dev,
867 			    "%s: unknown firmware section %d, abort\n",
868 			    __func__, tlv_type);
869 			error = EINVAL;
870 			goto parse_out;
871 		}
872 	}
873 
874 	KASSERT(error == 0, ("unhandled error"));
875 
876  parse_out:
877 	if (error) {
878 		device_printf(sc->sc_dev, "firmware parse error %d, "
879 		    "section type %d\n", error, tlv_type);
880 	}
881 
882  out:
883 	if (error) {
884 		if (fw->fw_fp != NULL)
885 			iwm_fw_info_free(fw);
886 	}
887 
888 	return error;
889 }
890 
891 /*
892  * DMA resource routines
893  */
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    IWM_FH_MEM_TB_MAX_LENGTH, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1001 {
1002 	/* Reset the ring state */
1003 	ring->cur = 0;
1004 
1005 	/*
1006 	 * The hw rx ring index in shared memory must also be cleared,
1007 	 * otherwise the discrepancy can cause reprocessing chaos.
1008 	 */
1009 	if (sc->rxq.stat)
1010 		memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1011 }
1012 
1013 static void
1014 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1015 {
1016 	int i;
1017 
1018 	iwm_dma_contig_free(&ring->desc_dma);
1019 	iwm_dma_contig_free(&ring->stat_dma);
1020 
1021 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1022 		struct iwm_rx_data *data = &ring->data[i];
1023 
1024 		if (data->m != NULL) {
1025 			bus_dmamap_sync(ring->data_dmat, data->map,
1026 			    BUS_DMASYNC_POSTREAD);
1027 			bus_dmamap_unload(ring->data_dmat, data->map);
1028 			m_freem(data->m);
1029 			data->m = NULL;
1030 		}
1031 		if (data->map != NULL) {
1032 			bus_dmamap_destroy(ring->data_dmat, data->map);
1033 			data->map = NULL;
1034 		}
1035 	}
1036 	if (ring->spare_map != NULL) {
1037 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1038 		ring->spare_map = NULL;
1039 	}
1040 	if (ring->data_dmat != NULL) {
1041 		bus_dma_tag_destroy(ring->data_dmat);
1042 		ring->data_dmat = NULL;
1043 	}
1044 }
1045 
1046 static int
1047 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1048 {
1049 	bus_addr_t paddr;
1050 	bus_size_t size;
1051 	size_t maxsize;
1052 	int nsegments;
1053 	int i, error;
1054 
1055 	ring->qid = qid;
1056 	ring->queued = 0;
1057 	ring->cur = 0;
1058 
1059 	/* Allocate TX descriptors (256-byte aligned). */
1060 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1061 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1062 	if (error != 0) {
1063 		device_printf(sc->sc_dev,
1064 		    "could not allocate TX ring DMA memory\n");
1065 		goto fail;
1066 	}
1067 	ring->desc = ring->desc_dma.vaddr;
1068 
1069 	/*
1070 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1071 	 * to allocate commands space for other rings.
1072 	 */
1073 	if (qid > IWM_MVM_CMD_QUEUE)
1074 		return 0;
1075 
1076 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1077 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1078 	if (error != 0) {
1079 		device_printf(sc->sc_dev,
1080 		    "could not allocate TX cmd DMA memory\n");
1081 		goto fail;
1082 	}
1083 	ring->cmd = ring->cmd_dma.vaddr;
1084 
1085 	/* FW commands may require more mapped space than packets. */
1086 	if (qid == IWM_MVM_CMD_QUEUE) {
1087 		maxsize = IWM_RBUF_SIZE;
1088 		nsegments = 1;
1089 	} else {
1090 		maxsize = MCLBYTES;
1091 		nsegments = IWM_MAX_SCATTER - 2;
1092 	}
1093 
1094 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1095 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1096             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1097 	if (error != 0) {
1098 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1099 		goto fail;
1100 	}
1101 
1102 	paddr = ring->cmd_dma.paddr;
1103 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1104 		struct iwm_tx_data *data = &ring->data[i];
1105 
1106 		data->cmd_paddr = paddr;
1107 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1108 		    + offsetof(struct iwm_tx_cmd, scratch);
1109 		paddr += sizeof(struct iwm_device_cmd);
1110 
1111 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1112 		if (error != 0) {
1113 			device_printf(sc->sc_dev,
1114 			    "could not create TX buf DMA map\n");
1115 			goto fail;
1116 		}
1117 	}
1118 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1119 	    ("invalid physical address"));
1120 	return 0;
1121 
1122 fail:	iwm_free_tx_ring(sc, ring);
1123 	return error;
1124 }
1125 
1126 static void
1127 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1128 {
1129 	int i;
1130 
1131 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1132 		struct iwm_tx_data *data = &ring->data[i];
1133 
1134 		if (data->m != NULL) {
1135 			bus_dmamap_sync(ring->data_dmat, data->map,
1136 			    BUS_DMASYNC_POSTWRITE);
1137 			bus_dmamap_unload(ring->data_dmat, data->map);
1138 			m_freem(data->m);
1139 			data->m = NULL;
1140 		}
1141 	}
1142 	/* Clear TX descriptors. */
1143 	memset(ring->desc, 0, ring->desc_dma.size);
1144 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1145 	    BUS_DMASYNC_PREWRITE);
1146 	sc->qfullmsk &= ~(1 << ring->qid);
1147 	ring->queued = 0;
1148 	ring->cur = 0;
1149 
1150 	if (ring->qid == IWM_MVM_CMD_QUEUE && sc->cmd_hold_nic_awake)
1151 		iwm_pcie_clear_cmd_in_flight(sc);
1152 }
1153 
1154 static void
1155 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1156 {
1157 	int i;
1158 
1159 	iwm_dma_contig_free(&ring->desc_dma);
1160 	iwm_dma_contig_free(&ring->cmd_dma);
1161 
1162 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1163 		struct iwm_tx_data *data = &ring->data[i];
1164 
1165 		if (data->m != NULL) {
1166 			bus_dmamap_sync(ring->data_dmat, data->map,
1167 			    BUS_DMASYNC_POSTWRITE);
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 		if (data->map != NULL) {
1173 			bus_dmamap_destroy(ring->data_dmat, data->map);
1174 			data->map = NULL;
1175 		}
1176 	}
1177 	if (ring->data_dmat != NULL) {
1178 		bus_dma_tag_destroy(ring->data_dmat);
1179 		ring->data_dmat = NULL;
1180 	}
1181 }
1182 
1183 /*
1184  * High-level hardware frobbing routines
1185  */
1186 
1187 static void
1188 iwm_enable_interrupts(struct iwm_softc *sc)
1189 {
1190 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1191 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1192 }
1193 
1194 static void
1195 iwm_restore_interrupts(struct iwm_softc *sc)
1196 {
1197 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1198 }
1199 
1200 static void
1201 iwm_disable_interrupts(struct iwm_softc *sc)
1202 {
1203 	/* disable interrupts */
1204 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1205 
1206 	/* acknowledge all interrupts */
1207 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1208 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1209 }
1210 
1211 static void
1212 iwm_ict_reset(struct iwm_softc *sc)
1213 {
1214 	iwm_disable_interrupts(sc);
1215 
1216 	/* Reset ICT table. */
1217 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1218 	sc->ict_cur = 0;
1219 
1220 	/* Set physical address of ICT table (4KB aligned). */
1221 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1222 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1223 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1224 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1225 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1226 
1227 	/* Switch to ICT interrupt mode in driver. */
1228 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1229 
1230 	/* Re-enable interrupts. */
1231 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1232 	iwm_enable_interrupts(sc);
1233 }
1234 
1235 /* iwlwifi pcie/trans.c */
1236 
1237 /*
1238  * Since this .. hard-resets things, it's time to actually
1239  * mark the first vap (if any) as having no mac context.
1240  * It's annoying, but since the driver is potentially being
1241  * stop/start'ed whilst active (thanks openbsd port!) we
1242  * have to correctly track this.
1243  */
1244 static void
1245 iwm_stop_device(struct iwm_softc *sc)
1246 {
1247 	struct ieee80211com *ic = &sc->sc_ic;
1248 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1249 	int chnl, qid;
1250 	uint32_t mask = 0;
1251 
1252 	/* tell the device to stop sending interrupts */
1253 	iwm_disable_interrupts(sc);
1254 
1255 	/*
1256 	 * FreeBSD-local: mark the first vap as not-uploaded,
1257 	 * so the next transition through auth/assoc
1258 	 * will correctly populate the MAC context.
1259 	 */
1260 	if (vap) {
1261 		struct iwm_vap *iv = IWM_VAP(vap);
1262 		iv->phy_ctxt = NULL;
1263 		iv->is_uploaded = 0;
1264 	}
1265 	sc->sc_firmware_state = 0;
1266 	sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
1267 
1268 	/* device going down, Stop using ICT table */
1269 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1270 
1271 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1272 
1273 	if (iwm_nic_lock(sc)) {
1274 		iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1275 
1276 		/* Stop each Tx DMA channel */
1277 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1278 			IWM_WRITE(sc,
1279 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1280 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1281 		}
1282 
1283 		/* Wait for DMA channels to be idle */
1284 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1285 		    5000)) {
1286 			device_printf(sc->sc_dev,
1287 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1288 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1289 		}
1290 		iwm_nic_unlock(sc);
1291 	}
1292 	iwm_pcie_rx_stop(sc);
1293 
1294 	/* Stop RX ring. */
1295 	iwm_reset_rx_ring(sc, &sc->rxq);
1296 
1297 	/* Reset all TX rings. */
1298 	for (qid = 0; qid < nitems(sc->txq); qid++)
1299 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1300 
1301 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1302 		/* Power-down device's busmaster DMA clocks */
1303 		if (iwm_nic_lock(sc)) {
1304 			iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
1305 			    IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1306 			iwm_nic_unlock(sc);
1307 		}
1308 		DELAY(5);
1309 	}
1310 
1311 	/* Make sure (redundant) we've released our request to stay awake */
1312 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1313 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1314 
1315 	/* Stop the device, and put it in low power state */
1316 	iwm_apm_stop(sc);
1317 
1318 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1319 	 * Clean again the interrupt here
1320 	 */
1321 	iwm_disable_interrupts(sc);
1322 	/* stop and reset the on-board processor */
1323 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1324 
1325 	/*
1326 	 * Even if we stop the HW, we still want the RF kill
1327 	 * interrupt
1328 	 */
1329 	iwm_enable_rfkill_int(sc);
1330 	iwm_check_rfkill(sc);
1331 }
1332 
1333 /* iwlwifi: mvm/ops.c */
1334 static void
1335 iwm_mvm_nic_config(struct iwm_softc *sc)
1336 {
1337 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1338 	uint32_t reg_val = 0;
1339 	uint32_t phy_config = iwm_mvm_get_phy_config(sc);
1340 
1341 	radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	/*
1381 	 * Initialize RX ring.  This is from the iwn driver.
1382 	 */
1383 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1384 
1385 	/* Stop Rx DMA */
1386 	iwm_pcie_rx_stop(sc);
1387 
1388 	if (!iwm_nic_lock(sc))
1389 		return EBUSY;
1390 
1391 	/* reset and flush pointers */
1392 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1394 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1395 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1396 
1397 	/* Set physical address of RX ring (256-byte aligned). */
1398 	IWM_WRITE(sc,
1399 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1400 
1401 	/* Set physical address of RX status (16-byte aligned). */
1402 	IWM_WRITE(sc,
1403 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1404 
1405 	/* Enable Rx DMA
1406 	 * XXX 5000 HW isn't supported by the iwm(4) driver.
1407 	 * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
1408 	 *      the credit mechanism in 5000 HW RX FIFO
1409 	 * Direct rx interrupts to hosts
1410 	 * Rx buffer size 4 or 8k or 12k
1411 	 * RB timeout 0x10
1412 	 * 256 RBDs
1413 	 */
1414 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1415 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1416 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1417 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1418 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1419 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1420 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1421 
1422 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1423 
1424 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1425 	if (sc->cfg->host_interrupt_operation_mode)
1426 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1427 
1428 	/*
1429 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1430 	 *
1431 	 * This value should initially be 0 (before preparing any
1432 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1433 	 */
1434 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1435 
1436 	iwm_nic_unlock(sc);
1437 
1438 	return 0;
1439 }
1440 
1441 static int
1442 iwm_nic_tx_init(struct iwm_softc *sc)
1443 {
1444 	int qid;
1445 
1446 	if (!iwm_nic_lock(sc))
1447 		return EBUSY;
1448 
1449 	/* Deactivate TX scheduler. */
1450 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1451 
1452 	/* Set physical address of "keep warm" page (16-byte aligned). */
1453 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1454 
1455 	/* Initialize TX rings. */
1456 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1457 		struct iwm_tx_ring *txq = &sc->txq[qid];
1458 
1459 		/* Set physical address of TX ring (256-byte aligned). */
1460 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1461 		    txq->desc_dma.paddr >> 8);
1462 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1463 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1464 		    __func__,
1465 		    qid, txq->desc,
1466 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1467 	}
1468 
1469 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1470 
1471 	iwm_nic_unlock(sc);
1472 
1473 	return 0;
1474 }
1475 
1476 static int
1477 iwm_nic_init(struct iwm_softc *sc)
1478 {
1479 	int error;
1480 
1481 	iwm_apm_init(sc);
1482 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1483 		iwm_set_pwr(sc);
1484 
1485 	iwm_mvm_nic_config(sc);
1486 
1487 	if ((error = iwm_nic_rx_init(sc)) != 0)
1488 		return error;
1489 
1490 	/*
1491 	 * Ditto for TX, from iwn
1492 	 */
1493 	if ((error = iwm_nic_tx_init(sc)) != 0)
1494 		return error;
1495 
1496 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1497 	    "%s: shadow registers enabled\n", __func__);
1498 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1499 
1500 	return 0;
1501 }
1502 
1503 int
1504 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1505 {
1506 	if (!iwm_nic_lock(sc)) {
1507 		device_printf(sc->sc_dev,
1508 		    "%s: cannot enable txq %d\n",
1509 		    __func__,
1510 		    qid);
1511 		return EBUSY;
1512 	}
1513 
1514 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1515 
1516 	if (qid == IWM_MVM_CMD_QUEUE) {
1517 		/* unactivate before configuration */
1518 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1519 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1520 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1521 
1522 		iwm_nic_unlock(sc);
1523 
1524 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1525 
1526 		if (!iwm_nic_lock(sc)) {
1527 			device_printf(sc->sc_dev,
1528 			    "%s: cannot enable txq %d\n", __func__, qid);
1529 			return EBUSY;
1530 		}
1531 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1532 		iwm_nic_unlock(sc);
1533 
1534 		iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1535 		/* Set scheduler window size and frame limit. */
1536 		iwm_write_mem32(sc,
1537 		    sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1538 		    sizeof(uint32_t),
1539 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1540 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1541 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1542 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1543 
1544 		if (!iwm_nic_lock(sc)) {
1545 			device_printf(sc->sc_dev,
1546 			    "%s: cannot enable txq %d\n", __func__, qid);
1547 			return EBUSY;
1548 		}
1549 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1550 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1551 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1552 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1553 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1554 	} else {
1555 		struct iwm_scd_txq_cfg_cmd cmd;
1556 		int error;
1557 
1558 		iwm_nic_unlock(sc);
1559 
1560 		memset(&cmd, 0, sizeof(cmd));
1561 		cmd.scd_queue = qid;
1562 		cmd.enable = 1;
1563 		cmd.sta_id = sta_id;
1564 		cmd.tx_fifo = fifo;
1565 		cmd.aggregate = 0;
1566 		cmd.window = IWM_FRAME_LIMIT;
1567 
1568 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1569 		    sizeof(cmd), &cmd);
1570 		if (error) {
1571 			device_printf(sc->sc_dev,
1572 			    "cannot enable txq %d\n", qid);
1573 			return error;
1574 		}
1575 
1576 		if (!iwm_nic_lock(sc))
1577 			return EBUSY;
1578 	}
1579 
1580 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1581 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1582 
1583 	iwm_nic_unlock(sc);
1584 
1585 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1586 	    __func__, qid, fifo);
1587 
1588 	return 0;
1589 }
1590 
1591 static int
1592 iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr)
1593 {
1594 	int error, chnl;
1595 
1596 	int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
1598 
1599 	if (!iwm_nic_lock(sc))
1600 		return EBUSY;
1601 
1602 	iwm_ict_reset(sc);
1603 
1604 	sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1605 	if (scd_base_addr != 0 &&
1606 	    scd_base_addr != sc->scd_base_addr) {
1607 		device_printf(sc->sc_dev,
1608 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1609 		    __func__, sc->scd_base_addr, scd_base_addr);
1610 	}
1611 
1612 	iwm_nic_unlock(sc);
1613 
1614 	/* reset context data, TX status and translation data */
1615 	error = iwm_write_mem(sc,
1616 	    sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1617 	    NULL, clear_dwords);
1618 	if (error)
1619 		return EBUSY;
1620 
1621 	if (!iwm_nic_lock(sc))
1622 		return EBUSY;
1623 
1624 	/* Set physical address of TX scheduler rings (1KB aligned). */
1625 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1626 
1627 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1628 
1629 	iwm_nic_unlock(sc);
1630 
1631 	/* enable command channel */
1632 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1633 	if (error)
1634 		return error;
1635 
1636 	if (!iwm_nic_lock(sc))
1637 		return EBUSY;
1638 
1639 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1640 
1641 	/* Enable DMA channels. */
1642 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1643 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1644 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1645 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1646 	}
1647 
1648 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1649 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1650 
1651 	iwm_nic_unlock(sc);
1652 
1653 	/* Enable L1-Active */
1654 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
1655 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1656 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1657 	}
1658 
1659 	return error;
1660 }
1661 
1662 /*
1663  * NVM read access and content parsing.  We do not support
1664  * external NVM or writing NVM.
1665  * iwlwifi/mvm/nvm.c
1666  */
1667 
1668 /* Default NVM size to read */
1669 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1670 
1671 #define IWM_NVM_WRITE_OPCODE 1
1672 #define IWM_NVM_READ_OPCODE 0
1673 
1674 /* load nvm chunk response */
1675 enum {
1676 	IWM_READ_NVM_CHUNK_SUCCEED = 0,
1677 	IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
1678 };
1679 
1680 static int
1681 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1682 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1683 {
1684 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1685 		.offset = htole16(offset),
1686 		.length = htole16(length),
1687 		.type = htole16(section),
1688 		.op_code = IWM_NVM_READ_OPCODE,
1689 	};
1690 	struct iwm_nvm_access_resp *nvm_resp;
1691 	struct iwm_rx_packet *pkt;
1692 	struct iwm_host_cmd cmd = {
1693 		.id = IWM_NVM_ACCESS_CMD,
1694 		.flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL,
1695 		.data = { &nvm_access_cmd, },
1696 	};
1697 	int ret, bytes_read, offset_read;
1698 	uint8_t *resp_data;
1699 
1700 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1701 
1702 	ret = iwm_send_cmd(sc, &cmd);
1703 	if (ret) {
1704 		device_printf(sc->sc_dev,
1705 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1706 		return ret;
1707 	}
1708 
1709 	pkt = cmd.resp_pkt;
1710 
1711 	/* Extract NVM response */
1712 	nvm_resp = (void *)pkt->data;
1713 	ret = le16toh(nvm_resp->status);
1714 	bytes_read = le16toh(nvm_resp->length);
1715 	offset_read = le16toh(nvm_resp->offset);
1716 	resp_data = nvm_resp->data;
1717 	if (ret) {
1718 		if ((offset != 0) &&
1719 		    (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
1720 			/*
1721 			 * meaning of NOT_VALID_ADDRESS:
1722 			 * driver try to read chunk from address that is
1723 			 * multiple of 2K and got an error since addr is empty.
1724 			 * meaning of (offset != 0): driver already
1725 			 * read valid data from another chunk so this case
1726 			 * is not an error.
1727 			 */
1728 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1729 				    "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
1730 				    offset);
1731 			*len = 0;
1732 			ret = 0;
1733 		} else {
1734 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1735 				    "NVM access command failed with status %d\n", ret);
1736 			ret = EIO;
1737 		}
1738 		goto exit;
1739 	}
1740 
1741 	if (offset_read != offset) {
1742 		device_printf(sc->sc_dev,
1743 		    "NVM ACCESS response with invalid offset %d\n",
1744 		    offset_read);
1745 		ret = EINVAL;
1746 		goto exit;
1747 	}
1748 
1749 	if (bytes_read > length) {
1750 		device_printf(sc->sc_dev,
1751 		    "NVM ACCESS response with too much data "
1752 		    "(%d bytes requested, %d bytes received)\n",
1753 		    length, bytes_read);
1754 		ret = EINVAL;
1755 		goto exit;
1756 	}
1757 
1758 	/* Write data to NVM */
1759 	memcpy(data + offset, resp_data, bytes_read);
1760 	*len = bytes_read;
1761 
1762  exit:
1763 	iwm_free_resp(sc, &cmd);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Reads an NVM section completely.
1769  * NICs prior to 7000 family don't have a real NVM, but just read
1770  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1771  * by uCode, we need to manually check in this case that we don't
1772  * overflow and try to read more than the EEPROM size.
1773  * For 7000 family NICs, we supply the maximal size we can read, and
1774  * the uCode fills the response with as much data as we can,
1775  * without overflowing, so no check is needed.
1776  */
1777 static int
1778 iwm_nvm_read_section(struct iwm_softc *sc,
1779 	uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read)
1780 {
1781 	uint16_t seglen, length, offset = 0;
1782 	int ret;
1783 
1784 	/* Set nvm section read length */
1785 	length = IWM_NVM_DEFAULT_CHUNK_SIZE;
1786 
1787 	seglen = length;
1788 
1789 	/* Read the NVM until exhausted (reading less than requested) */
1790 	while (seglen == length) {
1791 		/* Check no memory assumptions fail and cause an overflow */
1792 		if ((size_read + offset + length) >
1793 		    sc->cfg->eeprom_size) {
1794 			device_printf(sc->sc_dev,
1795 			    "EEPROM size is too small for NVM\n");
1796 			return ENOBUFS;
1797 		}
1798 
1799 		ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen);
1800 		if (ret) {
1801 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1802 				    "Cannot read NVM from section %d offset %d, length %d\n",
1803 				    section, offset, length);
1804 			return ret;
1805 		}
1806 		offset += seglen;
1807 	}
1808 
1809 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1810 		    "NVM section %d read completed\n", section);
1811 	*len = offset;
1812 	return 0;
1813 }
1814 
1815 /*
1816  * BEGIN IWM_NVM_PARSE
1817  */
1818 
1819 /* iwlwifi/iwl-nvm-parse.c */
1820 
1821 /* NVM offsets (in words) definitions */
1822 enum iwm_nvm_offsets {
1823 	/* NVM HW-Section offset (in words) definitions */
1824 	IWM_HW_ADDR = 0x15,
1825 
1826 /* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION = 0x1C0,
1828 	IWM_NVM_VERSION = 0,
1829 	IWM_RADIO_CFG = 1,
1830 	IWM_SKU = 2,
1831 	IWM_N_HW_ADDRS = 3,
1832 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1833 
1834 /* NVM calibration section offset (in words) definitions */
1835 	IWM_NVM_CALIB_SECTION = 0x2B8,
1836 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1837 };
1838 
1839 enum iwm_8000_nvm_offsets {
1840 	/* NVM HW-Section offset (in words) definitions */
1841 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1842 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1843 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1844 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1845 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1846 
1847 	/* NVM SW-Section offset (in words) definitions */
1848 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1849 	IWM_NVM_VERSION_8000 = 0,
1850 	IWM_RADIO_CFG_8000 = 0,
1851 	IWM_SKU_8000 = 2,
1852 	IWM_N_HW_ADDRS_8000 = 3,
1853 
1854 	/* NVM REGULATORY -Section offset (in words) definitions */
1855 	IWM_NVM_CHANNELS_8000 = 0,
1856 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1857 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1858 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1859 
1860 	/* NVM calibration section offset (in words) definitions */
1861 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1862 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1863 };
1864 
1865 /* SKU Capabilities (actual values from NVM definition) */
1866 enum nvm_sku_bits {
1867 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1868 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1869 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1870 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1871 };
1872 
1873 /* radio config bits (actual values from NVM definition) */
1874 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1875 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1876 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1877 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1878 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1879 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1880 
1881 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1882 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1883 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1884 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1885 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1886 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1887 
1888 /**
1889  * enum iwm_nvm_channel_flags - channel flags in NVM
1890  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1891  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1892  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1893  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1894  * XXX cannot find this (DFS) flag in iwm-nvm-parse.c
1895  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1896  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1897  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1898  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1899  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1900  */
1901 enum iwm_nvm_channel_flags {
1902 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1903 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1904 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1905 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1906 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1907 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1908 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1909 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1910 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1911 };
1912 
1913 /*
1914  * Translate EEPROM flags to net80211.
1915  */
1916 static uint32_t
1917 iwm_eeprom_channel_flags(uint16_t ch_flags)
1918 {
1919 	uint32_t nflags;
1920 
1921 	nflags = 0;
1922 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1923 		nflags |= IEEE80211_CHAN_PASSIVE;
1924 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1925 		nflags |= IEEE80211_CHAN_NOADHOC;
1926 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1927 		nflags |= IEEE80211_CHAN_DFS;
1928 		/* Just in case. */
1929 		nflags |= IEEE80211_CHAN_NOADHOC;
1930 	}
1931 
1932 	return (nflags);
1933 }
1934 
1935 static void
1936 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1937     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1938     const uint8_t bands[])
1939 {
1940 	const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags;
1941 	uint32_t nflags;
1942 	uint16_t ch_flags;
1943 	uint8_t ieee;
1944 	int error;
1945 
1946 	for (; ch_idx < ch_num; ch_idx++) {
1947 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1948 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1949 			ieee = iwm_nvm_channels[ch_idx];
1950 		else
1951 			ieee = iwm_nvm_channels_8000[ch_idx];
1952 
1953 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1954 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1955 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1956 			    ieee, ch_flags,
1957 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1958 			    "5.2" : "2.4");
1959 			continue;
1960 		}
1961 
1962 		nflags = iwm_eeprom_channel_flags(ch_flags);
1963 		error = ieee80211_add_channel(chans, maxchans, nchans,
1964 		    ieee, 0, 0, nflags, bands);
1965 		if (error != 0)
1966 			break;
1967 
1968 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1969 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1970 		    ieee, ch_flags,
1971 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1972 		    "5.2" : "2.4");
1973 	}
1974 }
1975 
1976 static void
1977 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1978     struct ieee80211_channel chans[])
1979 {
1980 	struct iwm_softc *sc = ic->ic_softc;
1981 	struct iwm_nvm_data *data = sc->nvm_data;
1982 	uint8_t bands[IEEE80211_MODE_BYTES];
1983 	size_t ch_num;
1984 
1985 	memset(bands, 0, sizeof(bands));
1986 	/* 1-13: 11b/g channels. */
1987 	setbit(bands, IEEE80211_MODE_11B);
1988 	setbit(bands, IEEE80211_MODE_11G);
1989 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1990 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1991 
1992 	/* 14: 11b channel only. */
1993 	clrbit(bands, IEEE80211_MODE_11G);
1994 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1995 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1996 
1997 	if (data->sku_cap_band_52GHz_enable) {
1998 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1999 			ch_num = nitems(iwm_nvm_channels);
2000 		else
2001 			ch_num = nitems(iwm_nvm_channels_8000);
2002 		memset(bands, 0, sizeof(bands));
2003 		setbit(bands, IEEE80211_MODE_11A);
2004 		iwm_add_channel_band(sc, chans, maxchans, nchans,
2005 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
2006 	}
2007 }
2008 
2009 static void
2010 iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
2011 	const uint16_t *mac_override, const uint16_t *nvm_hw)
2012 {
2013 	const uint8_t *hw_addr;
2014 
2015 	if (mac_override) {
2016 		static const uint8_t reserved_mac[] = {
2017 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
2018 		};
2019 
2020 		hw_addr = (const uint8_t *)(mac_override +
2021 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2022 
2023 		/*
2024 		 * Store the MAC address from MAO section.
2025 		 * No byte swapping is required in MAO section
2026 		 */
2027 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2028 
2029 		/*
2030 		 * Force the use of the OTP MAC address in case of reserved MAC
2031 		 * address in the NVM, or if address is given but invalid.
2032 		 */
2033 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2034 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2035 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2036 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2037 			return;
2038 
2039 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2040 		    "%s: mac address from nvm override section invalid\n",
2041 		    __func__);
2042 	}
2043 
2044 	if (nvm_hw) {
2045 		/* read the mac address from WFMP registers */
2046 		uint32_t mac_addr0 =
2047 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2048 		uint32_t mac_addr1 =
2049 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2050 
2051 		hw_addr = (const uint8_t *)&mac_addr0;
2052 		data->hw_addr[0] = hw_addr[3];
2053 		data->hw_addr[1] = hw_addr[2];
2054 		data->hw_addr[2] = hw_addr[1];
2055 		data->hw_addr[3] = hw_addr[0];
2056 
2057 		hw_addr = (const uint8_t *)&mac_addr1;
2058 		data->hw_addr[4] = hw_addr[1];
2059 		data->hw_addr[5] = hw_addr[0];
2060 
2061 		return;
2062 	}
2063 
2064 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2065 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2066 }
2067 
2068 static int
2069 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2070 	    const uint16_t *phy_sku)
2071 {
2072 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2073 		return le16_to_cpup(nvm_sw + IWM_SKU);
2074 
2075 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2076 }
2077 
2078 static int
2079 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2080 {
2081 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2082 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2083 	else
2084 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2085 						IWM_NVM_VERSION_8000));
2086 }
2087 
2088 static int
2089 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2090 		  const uint16_t *phy_sku)
2091 {
2092         if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2093                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2094 
2095         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2096 }
2097 
2098 static int
2099 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2100 {
2101 	int n_hw_addr;
2102 
2103 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2104 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2105 
2106 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2107 
2108         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2109 }
2110 
2111 static void
2112 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2113 		  uint32_t radio_cfg)
2114 {
2115 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2116 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2117 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2118 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2119 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2120 		return;
2121 	}
2122 
2123 	/* set the radio configuration for family 8000 */
2124 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2125 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2126 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2127 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2128 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2129 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2130 }
2131 
2132 static int
2133 iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data,
2134 		   const uint16_t *nvm_hw, const uint16_t *mac_override)
2135 {
2136 #ifdef notyet /* for FAMILY 9000 */
2137 	if (cfg->mac_addr_from_csr) {
2138 		iwm_set_hw_address_from_csr(sc, data);
2139         } else
2140 #endif
2141 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2142 		const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR);
2143 
2144 		/* The byte order is little endian 16 bit, meaning 214365 */
2145 		data->hw_addr[0] = hw_addr[1];
2146 		data->hw_addr[1] = hw_addr[0];
2147 		data->hw_addr[2] = hw_addr[3];
2148 		data->hw_addr[3] = hw_addr[2];
2149 		data->hw_addr[4] = hw_addr[5];
2150 		data->hw_addr[5] = hw_addr[4];
2151 	} else {
2152 		iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw);
2153 	}
2154 
2155 	if (!iwm_is_valid_ether_addr(data->hw_addr)) {
2156 		device_printf(sc->sc_dev, "no valid mac address was found\n");
2157 		return EINVAL;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static struct iwm_nvm_data *
2164 iwm_parse_nvm_data(struct iwm_softc *sc,
2165 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2166 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2167 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2168 {
2169 	struct iwm_nvm_data *data;
2170 	uint32_t sku, radio_cfg;
2171 	uint16_t lar_config;
2172 
2173 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2174 		data = malloc(sizeof(*data) +
2175 		    IWM_NUM_CHANNELS * sizeof(uint16_t),
2176 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2177 	} else {
2178 		data = malloc(sizeof(*data) +
2179 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t),
2180 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2181 	}
2182 	if (!data)
2183 		return NULL;
2184 
2185 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2186 
2187 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2188 	iwm_set_radio_cfg(sc, data, radio_cfg);
2189 
2190 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2191 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2192 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2193 	data->sku_cap_11n_enable = 0;
2194 
2195 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2196 
2197 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2198 		uint16_t lar_offset = data->nvm_version < 0xE39 ?
2199 				       IWM_NVM_LAR_OFFSET_8000_OLD :
2200 				       IWM_NVM_LAR_OFFSET_8000;
2201 
2202 		lar_config = le16_to_cpup(regulatory + lar_offset);
2203 		data->lar_enabled = !!(lar_config &
2204 				       IWM_NVM_LAR_ENABLED_8000);
2205 	}
2206 
2207 	/* If no valid mac address was found - bail out */
2208 	if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) {
2209 		free(data, M_DEVBUF);
2210 		return NULL;
2211 	}
2212 
2213 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2214 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2215 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2216 	} else {
2217 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2218 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2219 	}
2220 
2221 	return data;
2222 }
2223 
2224 static void
2225 iwm_free_nvm_data(struct iwm_nvm_data *data)
2226 {
2227 	if (data != NULL)
2228 		free(data, M_DEVBUF);
2229 }
2230 
2231 static struct iwm_nvm_data *
2232 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2233 {
2234 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2235 
2236 	/* Checking for required sections */
2237 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2238 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2239 		    !sections[sc->cfg->nvm_hw_section_num].data) {
2240 			device_printf(sc->sc_dev,
2241 			    "Can't parse empty OTP/NVM sections\n");
2242 			return NULL;
2243 		}
2244 	} else if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2245 		/* SW and REGULATORY sections are mandatory */
2246 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2247 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2248 			device_printf(sc->sc_dev,
2249 			    "Can't parse empty OTP/NVM sections\n");
2250 			return NULL;
2251 		}
2252 		/* MAC_OVERRIDE or at least HW section must exist */
2253 		if (!sections[sc->cfg->nvm_hw_section_num].data &&
2254 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2255 			device_printf(sc->sc_dev,
2256 			    "Can't parse mac_address, empty sections\n");
2257 			return NULL;
2258 		}
2259 
2260 		/* PHY_SKU section is mandatory in B0 */
2261 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2262 			device_printf(sc->sc_dev,
2263 			    "Can't parse phy_sku in B0, empty sections\n");
2264 			return NULL;
2265 		}
2266 	} else {
2267 		panic("unknown device family %d\n", sc->cfg->device_family);
2268 	}
2269 
2270 	hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data;
2271 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2272 	calib = (const uint16_t *)
2273 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2274 	regulatory = (const uint16_t *)
2275 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2276 	mac_override = (const uint16_t *)
2277 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2278 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2279 
2280 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2281 	    phy_sku, regulatory);
2282 }
2283 
2284 static int
2285 iwm_nvm_init(struct iwm_softc *sc)
2286 {
2287 	struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS];
2288 	int i, ret, section;
2289 	uint32_t size_read = 0;
2290 	uint8_t *nvm_buffer, *temp;
2291 	uint16_t len;
2292 
2293 	memset(nvm_sections, 0, sizeof(nvm_sections));
2294 
2295 	if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS)
2296 		return EINVAL;
2297 
2298 	/* load NVM values from nic */
2299 	/* Read From FW NVM */
2300 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n");
2301 
2302 	nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO);
2303 	if (!nvm_buffer)
2304 		return ENOMEM;
2305 	for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) {
2306 		/* we override the constness for initial read */
2307 		ret = iwm_nvm_read_section(sc, section, nvm_buffer,
2308 					   &len, size_read);
2309 		if (ret)
2310 			continue;
2311 		size_read += len;
2312 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
2313 		if (!temp) {
2314 			ret = ENOMEM;
2315 			break;
2316 		}
2317 		memcpy(temp, nvm_buffer, len);
2318 
2319 		nvm_sections[section].data = temp;
2320 		nvm_sections[section].length = len;
2321 	}
2322 	if (!size_read)
2323 		device_printf(sc->sc_dev, "OTP is blank\n");
2324 	free(nvm_buffer, M_DEVBUF);
2325 
2326 	sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections);
2327 	if (!sc->nvm_data)
2328 		return EINVAL;
2329 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
2330 		    "nvm version = %x\n", sc->nvm_data->nvm_version);
2331 
2332 	for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) {
2333 		if (nvm_sections[i].data != NULL)
2334 			free(nvm_sections[i].data, M_DEVBUF);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static int
2341 iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num,
2342 	const struct iwm_fw_desc *section)
2343 {
2344 	struct iwm_dma_info *dma = &sc->fw_dma;
2345 	uint8_t *v_addr;
2346 	bus_addr_t p_addr;
2347 	uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len);
2348 	int ret = 0;
2349 
2350 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2351 		    "%s: [%d] uCode section being loaded...\n",
2352 		    __func__, section_num);
2353 
2354 	v_addr = dma->vaddr;
2355 	p_addr = dma->paddr;
2356 
2357 	for (offset = 0; offset < section->len; offset += chunk_sz) {
2358 		uint32_t copy_size, dst_addr;
2359 		int extended_addr = FALSE;
2360 
2361 		copy_size = MIN(chunk_sz, section->len - offset);
2362 		dst_addr = section->offset + offset;
2363 
2364 		if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2365 		    dst_addr <= IWM_FW_MEM_EXTENDED_END)
2366 			extended_addr = TRUE;
2367 
2368 		if (extended_addr)
2369 			iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2370 					  IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2371 
2372 		memcpy(v_addr, (const uint8_t *)section->data + offset,
2373 		    copy_size);
2374 		bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2375 		ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr,
2376 						   copy_size);
2377 
2378 		if (extended_addr)
2379 			iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2380 					    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2381 
2382 		if (ret) {
2383 			device_printf(sc->sc_dev,
2384 			    "%s: Could not load the [%d] uCode section\n",
2385 			    __func__, section_num);
2386 			break;
2387 		}
2388 	}
2389 
2390 	return ret;
2391 }
2392 
2393 /*
2394  * ucode
2395  */
2396 static int
2397 iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2398 			     bus_addr_t phy_addr, uint32_t byte_cnt)
2399 {
2400 	sc->sc_fw_chunk_done = 0;
2401 
2402 	if (!iwm_nic_lock(sc))
2403 		return EBUSY;
2404 
2405 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2406 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2407 
2408 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2409 	    dst_addr);
2410 
2411 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2412 	    phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2413 
2414 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2415 	    (iwm_get_dma_hi_addr(phy_addr)
2416 	     << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2417 
2418 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2419 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2420 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2421 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2422 
2423 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2424 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2425 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2426 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2427 
2428 	iwm_nic_unlock(sc);
2429 
2430 	/* wait up to 5s for this segment to load */
2431 	msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz * 5);
2432 
2433 	if (!sc->sc_fw_chunk_done) {
2434 		device_printf(sc->sc_dev,
2435 		    "fw chunk addr 0x%x len %d failed to load\n",
2436 		    dst_addr, byte_cnt);
2437 		return ETIMEDOUT;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 static int
2444 iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
2445 	const struct iwm_fw_img *image, int cpu, int *first_ucode_section)
2446 {
2447 	int shift_param;
2448 	int i, ret = 0, sec_num = 0x1;
2449 	uint32_t val, last_read_idx = 0;
2450 
2451 	if (cpu == 1) {
2452 		shift_param = 0;
2453 		*first_ucode_section = 0;
2454 	} else {
2455 		shift_param = 16;
2456 		(*first_ucode_section)++;
2457 	}
2458 
2459 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2460 		last_read_idx = i;
2461 
2462 		/*
2463 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2464 		 * CPU1 to CPU2.
2465 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2466 		 * CPU2 non paged to CPU2 paging sec.
2467 		 */
2468 		if (!image->sec[i].data ||
2469 		    image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2470 		    image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2471 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2472 				    "Break since Data not valid or Empty section, sec = %d\n",
2473 				    i);
2474 			break;
2475 		}
2476 		ret = iwm_pcie_load_section(sc, i, &image->sec[i]);
2477 		if (ret)
2478 			return ret;
2479 
2480 		/* Notify the ucode of the loaded section number and status */
2481 		if (iwm_nic_lock(sc)) {
2482 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2483 			val = val | (sec_num << shift_param);
2484 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2485 			sec_num = (sec_num << 1) | 0x1;
2486 			iwm_nic_unlock(sc);
2487 		}
2488 	}
2489 
2490 	*first_ucode_section = last_read_idx;
2491 
2492 	iwm_enable_interrupts(sc);
2493 
2494 	if (iwm_nic_lock(sc)) {
2495 		if (cpu == 1)
2496 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2497 		else
2498 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2499 		iwm_nic_unlock(sc);
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static int
2506 iwm_pcie_load_cpu_sections(struct iwm_softc *sc,
2507 	const struct iwm_fw_img *image, int cpu, int *first_ucode_section)
2508 {
2509 	int shift_param;
2510 	int i, ret = 0;
2511 	uint32_t last_read_idx = 0;
2512 
2513 	if (cpu == 1) {
2514 		shift_param = 0;
2515 		*first_ucode_section = 0;
2516 	} else {
2517 		shift_param = 16;
2518 		(*first_ucode_section)++;
2519 	}
2520 
2521 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2522 		last_read_idx = i;
2523 
2524 		/*
2525 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2526 		 * CPU1 to CPU2.
2527 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2528 		 * CPU2 non paged to CPU2 paging sec.
2529 		 */
2530 		if (!image->sec[i].data ||
2531 		    image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2532 		    image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2533 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2534 				    "Break since Data not valid or Empty section, sec = %d\n",
2535 				     i);
2536 			break;
2537 		}
2538 
2539 		ret = iwm_pcie_load_section(sc, i, &image->sec[i]);
2540 		if (ret)
2541 			return ret;
2542 	}
2543 
2544 	*first_ucode_section = last_read_idx;
2545 
2546 	return 0;
2547 
2548 }
2549 
2550 static int
2551 iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image)
2552 {
2553 	int ret = 0;
2554 	int first_ucode_section;
2555 
2556 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2557 		     image->is_dual_cpus ? "Dual" : "Single");
2558 
2559 	/* load to FW the binary non secured sections of CPU1 */
2560 	ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section);
2561 	if (ret)
2562 		return ret;
2563 
2564 	if (image->is_dual_cpus) {
2565 		/* set CPU2 header address */
2566 		if (iwm_nic_lock(sc)) {
2567 			iwm_write_prph(sc,
2568 				       IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
2569 				       IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
2570 			iwm_nic_unlock(sc);
2571 		}
2572 
2573 		/* load to FW the binary sections of CPU2 */
2574 		ret = iwm_pcie_load_cpu_sections(sc, image, 2,
2575 						 &first_ucode_section);
2576 		if (ret)
2577 			return ret;
2578 	}
2579 
2580 	iwm_enable_interrupts(sc);
2581 
2582 	/* release CPU reset */
2583 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2584 
2585 	return 0;
2586 }
2587 
2588 int
2589 iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc,
2590 	const struct iwm_fw_img *image)
2591 {
2592 	int ret = 0;
2593 	int first_ucode_section;
2594 
2595 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2596 		    image->is_dual_cpus ? "Dual" : "Single");
2597 
2598 	/* configure the ucode to be ready to get the secured image */
2599 	/* release CPU reset */
2600 	if (iwm_nic_lock(sc)) {
2601 		iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
2602 		    IWM_RELEASE_CPU_RESET_BIT);
2603 		iwm_nic_unlock(sc);
2604 	}
2605 
2606 	/* load to FW the binary Secured sections of CPU1 */
2607 	ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1,
2608 	    &first_ucode_section);
2609 	if (ret)
2610 		return ret;
2611 
2612 	/* load to FW the binary sections of CPU2 */
2613 	return iwm_pcie_load_cpu_sections_8000(sc, image, 2,
2614 	    &first_ucode_section);
2615 }
2616 
2617 /* XXX Get rid of this definition */
2618 static inline void
2619 iwm_enable_fw_load_int(struct iwm_softc *sc)
2620 {
2621 	IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n");
2622 	sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
2623 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
2624 }
2625 
2626 /* XXX Add proper rfkill support code */
2627 static int
2628 iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw)
2629 {
2630 	int ret;
2631 
2632 	/* This may fail if AMT took ownership of the device */
2633 	if (iwm_prepare_card_hw(sc)) {
2634 		device_printf(sc->sc_dev,
2635 		    "%s: Exit HW not ready\n", __func__);
2636 		ret = EIO;
2637 		goto out;
2638 	}
2639 
2640 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2641 
2642 	iwm_disable_interrupts(sc);
2643 
2644 	/* make sure rfkill handshake bits are cleared */
2645 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2646 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2647 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2648 
2649 	/* clear (again), then enable host interrupts */
2650 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2651 
2652 	ret = iwm_nic_init(sc);
2653 	if (ret) {
2654 		device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__);
2655 		goto out;
2656 	}
2657 
2658 	/*
2659 	 * Now, we load the firmware and don't want to be interrupted, even
2660 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
2661 	 * FH_TX interrupt which is needed to load the firmware). If the
2662 	 * RF-Kill switch is toggled, we will find out after having loaded
2663 	 * the firmware and return the proper value to the caller.
2664 	 */
2665 	iwm_enable_fw_load_int(sc);
2666 
2667 	/* really make sure rfkill handshake bits are cleared */
2668 	/* maybe we should write a few times more?  just to make sure */
2669 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2670 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2671 
2672 	/* Load the given image to the HW */
2673 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2674 		ret = iwm_pcie_load_given_ucode_8000(sc, fw);
2675 	else
2676 		ret = iwm_pcie_load_given_ucode(sc, fw);
2677 
2678 	/* XXX re-check RF-Kill state */
2679 
2680 out:
2681 	return ret;
2682 }
2683 
2684 static int
2685 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2686 {
2687 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2688 		.valid = htole32(valid_tx_ant),
2689 	};
2690 
2691 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2692 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2693 }
2694 
2695 /* iwlwifi: mvm/fw.c */
2696 static int
2697 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2698 {
2699 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2700 	enum iwm_ucode_type ucode_type = sc->cur_ucode;
2701 
2702 	/* Set parameters */
2703 	phy_cfg_cmd.phy_cfg = htole32(iwm_mvm_get_phy_config(sc));
2704 	phy_cfg_cmd.calib_control.event_trigger =
2705 	    sc->sc_default_calib[ucode_type].event_trigger;
2706 	phy_cfg_cmd.calib_control.flow_trigger =
2707 	    sc->sc_default_calib[ucode_type].flow_trigger;
2708 
2709 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2710 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2711 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2712 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2713 }
2714 
2715 static int
2716 iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data)
2717 {
2718 	struct iwm_mvm_alive_data *alive_data = data;
2719 	struct iwm_mvm_alive_resp_v3 *palive3;
2720 	struct iwm_mvm_alive_resp *palive;
2721 	struct iwm_umac_alive *umac;
2722 	struct iwm_lmac_alive *lmac1;
2723 	struct iwm_lmac_alive *lmac2 = NULL;
2724 	uint16_t status;
2725 
2726 	if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) {
2727 		palive = (void *)pkt->data;
2728 		umac = &palive->umac_data;
2729 		lmac1 = &palive->lmac_data[0];
2730 		lmac2 = &palive->lmac_data[1];
2731 		status = le16toh(palive->status);
2732 	} else {
2733 		palive3 = (void *)pkt->data;
2734 		umac = &palive3->umac_data;
2735 		lmac1 = &palive3->lmac_data;
2736 		status = le16toh(palive3->status);
2737 	}
2738 
2739 	sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr);
2740 	if (lmac2)
2741 		sc->error_event_table[1] =
2742 			le32toh(lmac2->error_event_table_ptr);
2743 	sc->log_event_table = le32toh(lmac1->log_event_table_ptr);
2744 	sc->umac_error_event_table = le32toh(umac->error_info_addr);
2745 	alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr);
2746 	alive_data->valid = status == IWM_ALIVE_STATUS_OK;
2747 	if (sc->umac_error_event_table)
2748 		sc->support_umac_log = TRUE;
2749 
2750 	IWM_DPRINTF(sc, IWM_DEBUG_FW,
2751 		    "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n",
2752 		    status, lmac1->ver_type, lmac1->ver_subtype);
2753 
2754 	if (lmac2)
2755 		IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n");
2756 
2757 	IWM_DPRINTF(sc, IWM_DEBUG_FW,
2758 		    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2759 		    le32toh(umac->umac_major),
2760 		    le32toh(umac->umac_minor));
2761 
2762 	return TRUE;
2763 }
2764 
2765 static int
2766 iwm_wait_phy_db_entry(struct iwm_softc *sc,
2767 	struct iwm_rx_packet *pkt, void *data)
2768 {
2769 	struct iwm_phy_db *phy_db = data;
2770 
2771 	if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) {
2772 		if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) {
2773 			device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n",
2774 			    __func__, pkt->hdr.code);
2775 		}
2776 		return TRUE;
2777 	}
2778 
2779 	if (iwm_phy_db_set_section(phy_db, pkt)) {
2780 		device_printf(sc->sc_dev,
2781 		    "%s: iwm_phy_db_set_section failed\n", __func__);
2782 	}
2783 
2784 	return FALSE;
2785 }
2786 
2787 static int
2788 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2789 	enum iwm_ucode_type ucode_type)
2790 {
2791 	struct iwm_notification_wait alive_wait;
2792 	struct iwm_mvm_alive_data alive_data;
2793 	const struct iwm_fw_img *fw;
2794 	enum iwm_ucode_type old_type = sc->cur_ucode;
2795 	int error;
2796 	static const uint16_t alive_cmd[] = { IWM_MVM_ALIVE };
2797 
2798 	fw = &sc->sc_fw.img[ucode_type];
2799 	sc->cur_ucode = ucode_type;
2800 	sc->ucode_loaded = FALSE;
2801 
2802 	memset(&alive_data, 0, sizeof(alive_data));
2803 	iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait,
2804 				   alive_cmd, nitems(alive_cmd),
2805 				   iwm_alive_fn, &alive_data);
2806 
2807 	error = iwm_start_fw(sc, fw);
2808 	if (error) {
2809 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2810 		sc->cur_ucode = old_type;
2811 		iwm_remove_notification(sc->sc_notif_wait, &alive_wait);
2812 		return error;
2813 	}
2814 
2815 	/*
2816 	 * Some things may run in the background now, but we
2817 	 * just wait for the ALIVE notification here.
2818 	 */
2819 	IWM_UNLOCK(sc);
2820 	error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait,
2821 				      IWM_MVM_UCODE_ALIVE_TIMEOUT);
2822 	IWM_LOCK(sc);
2823 	if (error) {
2824 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2825 			uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a;
2826 			if (iwm_nic_lock(sc)) {
2827 				a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS);
2828 				b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS);
2829 				iwm_nic_unlock(sc);
2830 			}
2831 			device_printf(sc->sc_dev,
2832 			    "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n",
2833 			    a, b);
2834 		}
2835 		sc->cur_ucode = old_type;
2836 		return error;
2837 	}
2838 
2839 	if (!alive_data.valid) {
2840 		device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n",
2841 		    __func__);
2842 		sc->cur_ucode = old_type;
2843 		return EIO;
2844 	}
2845 
2846 	iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr);
2847 
2848 	/*
2849 	 * configure and operate fw paging mechanism.
2850 	 * driver configures the paging flow only once, CPU2 paging image
2851 	 * included in the IWM_UCODE_INIT image.
2852 	 */
2853 	if (fw->paging_mem_size) {
2854 		error = iwm_save_fw_paging(sc, fw);
2855 		if (error) {
2856 			device_printf(sc->sc_dev,
2857 			    "%s: failed to save the FW paging image\n",
2858 			    __func__);
2859 			return error;
2860 		}
2861 
2862 		error = iwm_send_paging_cmd(sc, fw);
2863 		if (error) {
2864 			device_printf(sc->sc_dev,
2865 			    "%s: failed to send the paging cmd\n", __func__);
2866 			iwm_free_fw_paging(sc);
2867 			return error;
2868 		}
2869 	}
2870 
2871 	if (!error)
2872 		sc->ucode_loaded = TRUE;
2873 	return error;
2874 }
2875 
2876 /*
2877  * mvm misc bits
2878  */
2879 
2880 /*
2881  * follows iwlwifi/fw.c
2882  */
2883 static int
2884 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2885 {
2886 	struct iwm_notification_wait calib_wait;
2887 	static const uint16_t init_complete[] = {
2888 		IWM_INIT_COMPLETE_NOTIF,
2889 		IWM_CALIB_RES_NOTIF_PHY_DB
2890 	};
2891 	int ret;
2892 
2893 	/* do not operate with rfkill switch turned on */
2894 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2895 		device_printf(sc->sc_dev,
2896 		    "radio is disabled by hardware switch\n");
2897 		return EPERM;
2898 	}
2899 
2900 	iwm_init_notification_wait(sc->sc_notif_wait,
2901 				   &calib_wait,
2902 				   init_complete,
2903 				   nitems(init_complete),
2904 				   iwm_wait_phy_db_entry,
2905 				   sc->sc_phy_db);
2906 
2907 	/* Will also start the device */
2908 	ret = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_INIT);
2909 	if (ret) {
2910 		device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n",
2911 		    ret);
2912 		goto error;
2913 	}
2914 
2915 	if (justnvm) {
2916 		/* Read nvm */
2917 		ret = iwm_nvm_init(sc);
2918 		if (ret) {
2919 			device_printf(sc->sc_dev, "failed to read nvm\n");
2920 			goto error;
2921 		}
2922 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr);
2923 		goto error;
2924 	}
2925 
2926 	ret = iwm_send_bt_init_conf(sc);
2927 	if (ret) {
2928 		device_printf(sc->sc_dev,
2929 		    "failed to send bt coex configuration: %d\n", ret);
2930 		goto error;
2931 	}
2932 
2933 	/* Send TX valid antennas before triggering calibrations */
2934 	ret = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
2935 	if (ret) {
2936 		device_printf(sc->sc_dev,
2937 		    "failed to send antennas before calibration: %d\n", ret);
2938 		goto error;
2939 	}
2940 
2941 	/*
2942 	 * Send phy configurations command to init uCode
2943 	 * to start the 16.0 uCode init image internal calibrations.
2944 	 */
2945 	ret = iwm_send_phy_cfg_cmd(sc);
2946 	if (ret) {
2947 		device_printf(sc->sc_dev,
2948 		    "%s: Failed to run INIT calibrations: %d\n",
2949 		    __func__, ret);
2950 		goto error;
2951 	}
2952 
2953 	/*
2954 	 * Nothing to do but wait for the init complete notification
2955 	 * from the firmware.
2956 	 */
2957 	IWM_UNLOCK(sc);
2958 	ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait,
2959 	    IWM_MVM_UCODE_CALIB_TIMEOUT);
2960 	IWM_LOCK(sc);
2961 
2962 
2963 	goto out;
2964 
2965 error:
2966 	iwm_remove_notification(sc->sc_notif_wait, &calib_wait);
2967 out:
2968 	return ret;
2969 }
2970 
2971 static int
2972 iwm_mvm_config_ltr(struct iwm_softc *sc)
2973 {
2974 	struct iwm_ltr_config_cmd cmd = {
2975 		.flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE),
2976 	};
2977 
2978 	if (!sc->sc_ltr_enabled)
2979 		return 0;
2980 
2981 	return iwm_mvm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd);
2982 }
2983 
2984 /*
2985  * receive side
2986  */
2987 
2988 /* (re)stock rx ring, called at init-time and at runtime */
2989 static int
2990 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2991 {
2992 	struct iwm_rx_ring *ring = &sc->rxq;
2993 	struct iwm_rx_data *data = &ring->data[idx];
2994 	struct mbuf *m;
2995 	bus_dmamap_t dmamap;
2996 	bus_dma_segment_t seg;
2997 	int nsegs, error;
2998 
2999 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
3000 	if (m == NULL)
3001 		return ENOBUFS;
3002 
3003 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3004 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
3005 	    &seg, &nsegs, BUS_DMA_NOWAIT);
3006 	if (error != 0) {
3007 		device_printf(sc->sc_dev,
3008 		    "%s: can't map mbuf, error %d\n", __func__, error);
3009 		m_freem(m);
3010 		return error;
3011 	}
3012 
3013 	if (data->m != NULL)
3014 		bus_dmamap_unload(ring->data_dmat, data->map);
3015 
3016 	/* Swap ring->spare_map with data->map */
3017 	dmamap = data->map;
3018 	data->map = ring->spare_map;
3019 	ring->spare_map = dmamap;
3020 
3021 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
3022 	data->m = m;
3023 
3024 	/* Update RX descriptor. */
3025 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
3026 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
3027 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3028 	    BUS_DMASYNC_PREWRITE);
3029 
3030 	return 0;
3031 }
3032 
3033 /* iwlwifi: mvm/rx.c */
3034 /*
3035  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
3036  * values are reported by the fw as positive values - need to negate
3037  * to obtain their dBM.  Account for missing antennas by replacing 0
3038  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
3039  */
3040 static int
3041 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
3042 {
3043 	int energy_a, energy_b, energy_c, max_energy;
3044 	uint32_t val;
3045 
3046 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
3047 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
3048 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
3049 	energy_a = energy_a ? -energy_a : -256;
3050 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
3051 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
3052 	energy_b = energy_b ? -energy_b : -256;
3053 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
3054 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
3055 	energy_c = energy_c ? -energy_c : -256;
3056 	max_energy = MAX(energy_a, energy_b);
3057 	max_energy = MAX(max_energy, energy_c);
3058 
3059 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3060 	    "energy In A %d B %d C %d , and max %d\n",
3061 	    energy_a, energy_b, energy_c, max_energy);
3062 
3063 	return max_energy;
3064 }
3065 
3066 static void
3067 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3068 {
3069 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
3070 
3071 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
3072 
3073 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
3074 }
3075 
3076 /*
3077  * Retrieve the average noise (in dBm) among receivers.
3078  */
3079 static int
3080 iwm_get_noise(struct iwm_softc *sc,
3081     const struct iwm_mvm_statistics_rx_non_phy *stats)
3082 {
3083 	int i, total, nbant, noise;
3084 
3085 	total = nbant = noise = 0;
3086 	for (i = 0; i < 3; i++) {
3087 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
3088 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
3089 		    __func__,
3090 		    i,
3091 		    noise);
3092 
3093 		if (noise) {
3094 			total += noise;
3095 			nbant++;
3096 		}
3097 	}
3098 
3099 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
3100 	    __func__, nbant, total);
3101 #if 0
3102 	/* There should be at least one antenna but check anyway. */
3103 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3104 #else
3105 	/* For now, just hard-code it to -96 to be safe */
3106 	return (-96);
3107 #endif
3108 }
3109 
3110 static void
3111 iwm_mvm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3112 {
3113 	struct iwm_notif_statistics_v10 *stats = (void *)&pkt->data;
3114 
3115 	memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
3116 	sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
3117 }
3118 
3119 /*
3120  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
3121  *
3122  * Handles the actual data of the Rx packet from the fw
3123  */
3124 static boolean_t
3125 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset,
3126 	boolean_t stolen)
3127 {
3128 	struct ieee80211com *ic = &sc->sc_ic;
3129 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3130 	struct ieee80211_frame *wh;
3131 	struct ieee80211_node *ni;
3132 	struct ieee80211_rx_stats rxs;
3133 	struct iwm_rx_phy_info *phy_info;
3134 	struct iwm_rx_mpdu_res_start *rx_res;
3135 	struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset);
3136 	uint32_t len;
3137 	uint32_t rx_pkt_status;
3138 	int rssi;
3139 
3140 	phy_info = &sc->sc_last_phy_info;
3141 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
3142 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
3143 	len = le16toh(rx_res->byte_count);
3144 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
3145 
3146 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
3147 		device_printf(sc->sc_dev,
3148 		    "dsp size out of range [0,20]: %d\n",
3149 		    phy_info->cfg_phy_cnt);
3150 		goto fail;
3151 	}
3152 
3153 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
3154 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
3155 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3156 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
3157 		goto fail;
3158 	}
3159 
3160 	rssi = iwm_mvm_get_signal_strength(sc, phy_info);
3161 
3162 	/* Map it to relative value */
3163 	rssi = rssi - sc->sc_noise;
3164 
3165 	/* replenish ring for the buffer we're going to feed to the sharks */
3166 	if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
3167 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
3168 		    __func__);
3169 		goto fail;
3170 	}
3171 
3172 	m->m_data = pkt->data + sizeof(*rx_res);
3173 	m->m_pkthdr.len = m->m_len = len;
3174 
3175 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3176 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
3177 
3178 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3179 
3180 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3181 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
3182 	    __func__,
3183 	    le16toh(phy_info->channel),
3184 	    le16toh(phy_info->phy_flags));
3185 
3186 	/*
3187 	 * Populate an RX state struct with the provided information.
3188 	 */
3189 	bzero(&rxs, sizeof(rxs));
3190 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
3191 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
3192 	rxs.c_ieee = le16toh(phy_info->channel);
3193 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
3194 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
3195 	} else {
3196 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
3197 	}
3198 
3199 	/* rssi is in 1/2db units */
3200 	rxs.c_rssi = rssi * 2;
3201 	rxs.c_nf = sc->sc_noise;
3202 	if (ieee80211_add_rx_params(m, &rxs) == 0) {
3203 		if (ni)
3204 			ieee80211_free_node(ni);
3205 		goto fail;
3206 	}
3207 
3208 	if (ieee80211_radiotap_active_vap(vap)) {
3209 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
3210 
3211 		tap->wr_flags = 0;
3212 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
3213 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3214 		tap->wr_chan_freq = htole16(rxs.c_freq);
3215 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
3216 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
3217 		tap->wr_dbm_antsignal = (int8_t)rssi;
3218 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
3219 		tap->wr_tsft = phy_info->system_timestamp;
3220 		switch (phy_info->rate) {
3221 		/* CCK rates. */
3222 		case  10: tap->wr_rate =   2; break;
3223 		case  20: tap->wr_rate =   4; break;
3224 		case  55: tap->wr_rate =  11; break;
3225 		case 110: tap->wr_rate =  22; break;
3226 		/* OFDM rates. */
3227 		case 0xd: tap->wr_rate =  12; break;
3228 		case 0xf: tap->wr_rate =  18; break;
3229 		case 0x5: tap->wr_rate =  24; break;
3230 		case 0x7: tap->wr_rate =  36; break;
3231 		case 0x9: tap->wr_rate =  48; break;
3232 		case 0xb: tap->wr_rate =  72; break;
3233 		case 0x1: tap->wr_rate =  96; break;
3234 		case 0x3: tap->wr_rate = 108; break;
3235 		/* Unknown rate: should not happen. */
3236 		default:  tap->wr_rate =   0;
3237 		}
3238 	}
3239 
3240 	IWM_UNLOCK(sc);
3241 	if (ni != NULL) {
3242 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3243 		ieee80211_input_mimo(ni, m);
3244 		ieee80211_free_node(ni);
3245 	} else {
3246 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3247 		ieee80211_input_mimo_all(ic, m);
3248 	}
3249 	IWM_LOCK(sc);
3250 
3251 	return TRUE;
3252 
3253 fail:
3254 	counter_u64_add(ic->ic_ierrors, 1);
3255 	return FALSE;
3256 }
3257 
3258 static int
3259 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3260 	struct iwm_node *in)
3261 {
3262 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3263 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3264 	struct ieee80211_node *ni = &in->in_ni;
3265 	struct ieee80211vap *vap = ni->ni_vap;
3266 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3267 	int new_rate, cur_rate = vap->iv_bss->ni_txrate;
3268 	boolean_t rate_matched;
3269 	uint8_t tx_resp_rate;
3270 
3271 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3272 
3273 	/* Update rate control statistics. */
3274 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3275 	    __func__,
3276 	    (int) le16toh(tx_resp->status.status),
3277 	    (int) le16toh(tx_resp->status.sequence),
3278 	    tx_resp->frame_count,
3279 	    tx_resp->bt_kill_count,
3280 	    tx_resp->failure_rts,
3281 	    tx_resp->failure_frame,
3282 	    le32toh(tx_resp->initial_rate),
3283 	    (int) le16toh(tx_resp->wireless_media_time));
3284 
3285 	tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate));
3286 
3287 	/* For rate control, ignore frames sent at different initial rate */
3288 	rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate);
3289 
3290 	if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) {
3291 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3292 		    "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u "
3293 		    "ni_txrate=%d)\n", tx_resp_rate, cur_rate);
3294 	}
3295 
3296 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3297 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3298 	txs->short_retries = tx_resp->failure_rts;
3299 	txs->long_retries = tx_resp->failure_frame;
3300 	if (status != IWM_TX_STATUS_SUCCESS &&
3301 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3302 		switch (status) {
3303 		case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3304 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3305 			break;
3306 		case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3307 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3308 			break;
3309 		case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3310 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3311 			break;
3312 		default:
3313 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3314 			break;
3315 		}
3316 	} else {
3317 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3318 	}
3319 
3320 	if (rate_matched) {
3321 		ieee80211_ratectl_tx_complete(ni, txs);
3322 
3323 		int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0);
3324 		new_rate = vap->iv_bss->ni_txrate;
3325 		if (new_rate != 0 && new_rate != cur_rate) {
3326 			struct iwm_node *in = IWM_NODE(vap->iv_bss);
3327 			iwm_setrates(sc, in, rix);
3328 			iwm_mvm_send_lq_cmd(sc, &in->in_lq, FALSE);
3329 		}
3330  	}
3331 
3332 	return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3333 }
3334 
3335 static void
3336 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3337 {
3338 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3339 	int idx = cmd_hdr->idx;
3340 	int qid = cmd_hdr->qid;
3341 	struct iwm_tx_ring *ring = &sc->txq[qid];
3342 	struct iwm_tx_data *txd = &ring->data[idx];
3343 	struct iwm_node *in = txd->in;
3344 	struct mbuf *m = txd->m;
3345 	int status;
3346 
3347 	KASSERT(txd->done == 0, ("txd not done"));
3348 	KASSERT(txd->in != NULL, ("txd without node"));
3349 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3350 
3351 	sc->sc_tx_timer = 0;
3352 
3353 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3354 
3355 	/* Unmap and free mbuf. */
3356 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3357 	bus_dmamap_unload(ring->data_dmat, txd->map);
3358 
3359 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3360 	    "free txd %p, in %p\n", txd, txd->in);
3361 	txd->done = 1;
3362 	txd->m = NULL;
3363 	txd->in = NULL;
3364 
3365 	ieee80211_tx_complete(&in->in_ni, m, status);
3366 
3367 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3368 		sc->qfullmsk &= ~(1 << ring->qid);
3369 		if (sc->qfullmsk == 0) {
3370 			iwm_start(sc);
3371 		}
3372 	}
3373 }
3374 
3375 /*
3376  * transmit side
3377  */
3378 
3379 /*
3380  * Process a "command done" firmware notification.  This is where we wakeup
3381  * processes waiting for a synchronous command completion.
3382  * from if_iwn
3383  */
3384 static void
3385 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3386 {
3387 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3388 	struct iwm_tx_data *data;
3389 
3390 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3391 		return;	/* Not a command ack. */
3392 	}
3393 
3394 	/* XXX wide commands? */
3395 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3396 	    "cmd notification type 0x%x qid %d idx %d\n",
3397 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3398 
3399 	data = &ring->data[pkt->hdr.idx];
3400 
3401 	/* If the command was mapped in an mbuf, free it. */
3402 	if (data->m != NULL) {
3403 		bus_dmamap_sync(ring->data_dmat, data->map,
3404 		    BUS_DMASYNC_POSTWRITE);
3405 		bus_dmamap_unload(ring->data_dmat, data->map);
3406 		m_freem(data->m);
3407 		data->m = NULL;
3408 	}
3409 	wakeup(&ring->desc[pkt->hdr.idx]);
3410 
3411 	if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
3412 		device_printf(sc->sc_dev,
3413 		    "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
3414 		    __func__, pkt->hdr.idx, ring->queued, ring->cur);
3415 		/* XXX call iwm_force_nmi() */
3416 	}
3417 
3418 	KASSERT(ring->queued > 0, ("ring->queued is empty?"));
3419 	ring->queued--;
3420 	if (ring->queued == 0)
3421 		iwm_pcie_clear_cmd_in_flight(sc);
3422 }
3423 
3424 #if 0
3425 /*
3426  * necessary only for block ack mode
3427  */
3428 void
3429 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3430 	uint16_t len)
3431 {
3432 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3433 	uint16_t w_val;
3434 
3435 	scd_bc_tbl = sc->sched_dma.vaddr;
3436 
3437 	len += 8; /* magic numbers came naturally from paris */
3438 	len = roundup(len, 4) / 4;
3439 
3440 	w_val = htole16(sta_id << 12 | len);
3441 
3442 	/* Update TX scheduler. */
3443 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3444 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3445 	    BUS_DMASYNC_PREWRITE);
3446 
3447 	/* I really wonder what this is ?!? */
3448 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3449 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3450 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3451 		    BUS_DMASYNC_PREWRITE);
3452 	}
3453 }
3454 #endif
3455 
3456 static int
3457 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3458 {
3459 	int i;
3460 
3461 	for (i = 0; i < nitems(iwm_rates); i++) {
3462 		if (iwm_rates[i].rate == rate)
3463 			return (i);
3464 	}
3465 	/* XXX error? */
3466 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3467 	    "%s: couldn't find an entry for rate=%d\n",
3468 	    __func__,
3469 	    rate);
3470 	return (0);
3471 }
3472 
3473 /*
3474  * Fill in the rate related information for a transmit command.
3475  */
3476 static const struct iwm_rate *
3477 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3478 	struct mbuf *m, struct iwm_tx_cmd *tx)
3479 {
3480 	struct ieee80211_node *ni = &in->in_ni;
3481 	struct ieee80211_frame *wh;
3482 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3483 	const struct iwm_rate *rinfo;
3484 	int type;
3485 	int ridx, rate_flags;
3486 
3487 	wh = mtod(m, struct ieee80211_frame *);
3488 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3489 
3490 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3491 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3492 
3493 	if (type == IEEE80211_FC0_TYPE_MGT ||
3494 	    type == IEEE80211_FC0_TYPE_CTL ||
3495 	    (m->m_flags & M_EAPOL) != 0) {
3496 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3497 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3498 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3499 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3500 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3501 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3502 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3503 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3504 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3505 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3506 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3507 	} else {
3508 		/* for data frames, use RS table */
3509 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3510 		ridx = iwm_rate2ridx(sc, ni->ni_txrate);
3511 		if (ridx == -1)
3512 			ridx = 0;
3513 
3514 		/* This is the index into the programmed table */
3515 		tx->initial_rate_index = 0;
3516 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3517 	}
3518 
3519 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3520 	    "%s: frame type=%d txrate %d\n",
3521 	        __func__, type, iwm_rates[ridx].rate);
3522 
3523 	rinfo = &iwm_rates[ridx];
3524 
3525 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3526 	    __func__, ridx,
3527 	    rinfo->rate,
3528 	    !! (IWM_RIDX_IS_CCK(ridx))
3529 	    );
3530 
3531 	/* XXX TODO: hard-coded TX antenna? */
3532 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3533 	if (IWM_RIDX_IS_CCK(ridx))
3534 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3535 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3536 
3537 	return rinfo;
3538 }
3539 
3540 #define TB0_SIZE 16
3541 static int
3542 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3543 {
3544 	struct ieee80211com *ic = &sc->sc_ic;
3545 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3546 	struct iwm_node *in = IWM_NODE(ni);
3547 	struct iwm_tx_ring *ring;
3548 	struct iwm_tx_data *data;
3549 	struct iwm_tfd *desc;
3550 	struct iwm_device_cmd *cmd;
3551 	struct iwm_tx_cmd *tx;
3552 	struct ieee80211_frame *wh;
3553 	struct ieee80211_key *k = NULL;
3554 	struct mbuf *m1;
3555 	const struct iwm_rate *rinfo;
3556 	uint32_t flags;
3557 	u_int hdrlen;
3558 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3559 	int nsegs;
3560 	uint8_t tid, type;
3561 	int i, totlen, error, pad;
3562 
3563 	wh = mtod(m, struct ieee80211_frame *);
3564 	hdrlen = ieee80211_anyhdrsize(wh);
3565 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3566 	tid = 0;
3567 	ring = &sc->txq[ac];
3568 	desc = &ring->desc[ring->cur];
3569 	memset(desc, 0, sizeof(*desc));
3570 	data = &ring->data[ring->cur];
3571 
3572 	/* Fill out iwm_tx_cmd to send to the firmware */
3573 	cmd = &ring->cmd[ring->cur];
3574 	cmd->hdr.code = IWM_TX_CMD;
3575 	cmd->hdr.flags = 0;
3576 	cmd->hdr.qid = ring->qid;
3577 	cmd->hdr.idx = ring->cur;
3578 
3579 	tx = (void *)cmd->data;
3580 	memset(tx, 0, sizeof(*tx));
3581 
3582 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3583 
3584 	/* Encrypt the frame if need be. */
3585 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3586 		/* Retrieve key for TX && do software encryption. */
3587 		k = ieee80211_crypto_encap(ni, m);
3588 		if (k == NULL) {
3589 			m_freem(m);
3590 			return (ENOBUFS);
3591 		}
3592 		/* 802.11 header may have moved. */
3593 		wh = mtod(m, struct ieee80211_frame *);
3594 	}
3595 
3596 	if (ieee80211_radiotap_active_vap(vap)) {
3597 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3598 
3599 		tap->wt_flags = 0;
3600 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3601 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3602 		tap->wt_rate = rinfo->rate;
3603 		if (k != NULL)
3604 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3605 		ieee80211_radiotap_tx(vap, m);
3606 	}
3607 
3608 
3609 	totlen = m->m_pkthdr.len;
3610 
3611 	flags = 0;
3612 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3613 		flags |= IWM_TX_CMD_FLG_ACK;
3614 	}
3615 
3616 	if (type == IEEE80211_FC0_TYPE_DATA
3617 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3618 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3619 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3620 	}
3621 
3622 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3623 	    type != IEEE80211_FC0_TYPE_DATA)
3624 		tx->sta_id = sc->sc_aux_sta.sta_id;
3625 	else
3626 		tx->sta_id = IWM_STATION_ID;
3627 
3628 	if (type == IEEE80211_FC0_TYPE_MGT) {
3629 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3630 
3631 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3632 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3633 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3634 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3635 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3636 		} else {
3637 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3638 		}
3639 	} else {
3640 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3641 	}
3642 
3643 	if (hdrlen & 3) {
3644 		/* First segment length must be a multiple of 4. */
3645 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3646 		pad = 4 - (hdrlen & 3);
3647 	} else
3648 		pad = 0;
3649 
3650 	tx->driver_txop = 0;
3651 	tx->next_frame_len = 0;
3652 
3653 	tx->len = htole16(totlen);
3654 	tx->tid_tspec = tid;
3655 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3656 
3657 	/* Set physical address of "scratch area". */
3658 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3659 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3660 
3661 	/* Copy 802.11 header in TX command. */
3662 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3663 
3664 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3665 
3666 	tx->sec_ctl = 0;
3667 	tx->tx_flags |= htole32(flags);
3668 
3669 	/* Trim 802.11 header. */
3670 	m_adj(m, hdrlen);
3671 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3672 	    segs, &nsegs, BUS_DMA_NOWAIT);
3673 	if (error != 0) {
3674 		if (error != EFBIG) {
3675 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3676 			    error);
3677 			m_freem(m);
3678 			return error;
3679 		}
3680 		/* Too many DMA segments, linearize mbuf. */
3681 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3682 		if (m1 == NULL) {
3683 			device_printf(sc->sc_dev,
3684 			    "%s: could not defrag mbuf\n", __func__);
3685 			m_freem(m);
3686 			return (ENOBUFS);
3687 		}
3688 		m = m1;
3689 
3690 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3691 		    segs, &nsegs, BUS_DMA_NOWAIT);
3692 		if (error != 0) {
3693 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3694 			    error);
3695 			m_freem(m);
3696 			return error;
3697 		}
3698 	}
3699 	data->m = m;
3700 	data->in = in;
3701 	data->done = 0;
3702 
3703 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3704 	    "sending txd %p, in %p\n", data, data->in);
3705 	KASSERT(data->in != NULL, ("node is NULL"));
3706 
3707 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3708 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3709 	    ring->qid, ring->cur, totlen, nsegs,
3710 	    le32toh(tx->tx_flags),
3711 	    le32toh(tx->rate_n_flags),
3712 	    tx->initial_rate_index
3713 	    );
3714 
3715 	/* Fill TX descriptor. */
3716 	desc->num_tbs = 2 + nsegs;
3717 
3718 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3719 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3720 	    (TB0_SIZE << 4);
3721 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3722 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3723 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3724 	      + hdrlen + pad - TB0_SIZE) << 4);
3725 
3726 	/* Other DMA segments are for data payload. */
3727 	for (i = 0; i < nsegs; i++) {
3728 		seg = &segs[i];
3729 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3730 		desc->tbs[i+2].hi_n_len = \
3731 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3732 		    | ((seg->ds_len) << 4);
3733 	}
3734 
3735 	bus_dmamap_sync(ring->data_dmat, data->map,
3736 	    BUS_DMASYNC_PREWRITE);
3737 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3738 	    BUS_DMASYNC_PREWRITE);
3739 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3740 	    BUS_DMASYNC_PREWRITE);
3741 
3742 #if 0
3743 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3744 #endif
3745 
3746 	/* Kick TX ring. */
3747 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3748 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3749 
3750 	/* Mark TX ring as full if we reach a certain threshold. */
3751 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3752 		sc->qfullmsk |= 1 << ring->qid;
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 static int
3759 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3760     const struct ieee80211_bpf_params *params)
3761 {
3762 	struct ieee80211com *ic = ni->ni_ic;
3763 	struct iwm_softc *sc = ic->ic_softc;
3764 	int error = 0;
3765 
3766 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3767 	    "->%s begin\n", __func__);
3768 
3769 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3770 		m_freem(m);
3771 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3772 		    "<-%s not RUNNING\n", __func__);
3773 		return (ENETDOWN);
3774         }
3775 
3776 	IWM_LOCK(sc);
3777 	/* XXX fix this */
3778         if (params == NULL) {
3779 		error = iwm_tx(sc, m, ni, 0);
3780 	} else {
3781 		error = iwm_tx(sc, m, ni, 0);
3782 	}
3783 	if (sc->sc_tx_timer == 0)
3784 		callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3785 	sc->sc_tx_timer = 5;
3786 	IWM_UNLOCK(sc);
3787 
3788         return (error);
3789 }
3790 
3791 /*
3792  * mvm/tx.c
3793  */
3794 
3795 /*
3796  * Note that there are transports that buffer frames before they reach
3797  * the firmware. This means that after flush_tx_path is called, the
3798  * queue might not be empty. The race-free way to handle this is to:
3799  * 1) set the station as draining
3800  * 2) flush the Tx path
3801  * 3) wait for the transport queues to be empty
3802  */
3803 int
3804 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3805 {
3806 	int ret;
3807 	struct iwm_tx_path_flush_cmd flush_cmd = {
3808 		.queues_ctl = htole32(tfd_msk),
3809 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3810 	};
3811 
3812 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3813 	    sizeof(flush_cmd), &flush_cmd);
3814 	if (ret)
3815                 device_printf(sc->sc_dev,
3816 		    "Flushing tx queue failed: %d\n", ret);
3817 	return ret;
3818 }
3819 
3820 /*
3821  * BEGIN mvm/quota.c
3822  */
3823 
3824 static int
3825 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp)
3826 {
3827 	struct iwm_time_quota_cmd cmd;
3828 	int i, idx, ret, num_active_macs, quota, quota_rem;
3829 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3830 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3831 	uint16_t id;
3832 
3833 	memset(&cmd, 0, sizeof(cmd));
3834 
3835 	/* currently, PHY ID == binding ID */
3836 	if (ivp) {
3837 		id = ivp->phy_ctxt->id;
3838 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3839 		colors[id] = ivp->phy_ctxt->color;
3840 
3841 		if (1)
3842 			n_ifs[id] = 1;
3843 	}
3844 
3845 	/*
3846 	 * The FW's scheduling session consists of
3847 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3848 	 * equally between all the bindings that require quota
3849 	 */
3850 	num_active_macs = 0;
3851 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3852 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3853 		num_active_macs += n_ifs[i];
3854 	}
3855 
3856 	quota = 0;
3857 	quota_rem = 0;
3858 	if (num_active_macs) {
3859 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3860 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3861 	}
3862 
3863 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3864 		if (colors[i] < 0)
3865 			continue;
3866 
3867 		cmd.quotas[idx].id_and_color =
3868 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3869 
3870 		if (n_ifs[i] <= 0) {
3871 			cmd.quotas[idx].quota = htole32(0);
3872 			cmd.quotas[idx].max_duration = htole32(0);
3873 		} else {
3874 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3875 			cmd.quotas[idx].max_duration = htole32(0);
3876 		}
3877 		idx++;
3878 	}
3879 
3880 	/* Give the remainder of the session to the first binding */
3881 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3882 
3883 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3884 	    sizeof(cmd), &cmd);
3885 	if (ret)
3886 		device_printf(sc->sc_dev,
3887 		    "%s: Failed to send quota: %d\n", __func__, ret);
3888 	return ret;
3889 }
3890 
3891 /*
3892  * END mvm/quota.c
3893  */
3894 
3895 /*
3896  * ieee80211 routines
3897  */
3898 
3899 /*
3900  * Change to AUTH state in 80211 state machine.  Roughly matches what
3901  * Linux does in bss_info_changed().
3902  */
3903 static int
3904 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3905 {
3906 	struct ieee80211_node *ni;
3907 	struct iwm_node *in;
3908 	struct iwm_vap *iv = IWM_VAP(vap);
3909 	uint32_t duration;
3910 	int error;
3911 
3912 	/*
3913 	 * XXX i have a feeling that the vap node is being
3914 	 * freed from underneath us. Grr.
3915 	 */
3916 	ni = ieee80211_ref_node(vap->iv_bss);
3917 	in = IWM_NODE(ni);
3918 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3919 	    "%s: called; vap=%p, bss ni=%p\n",
3920 	    __func__,
3921 	    vap,
3922 	    ni);
3923 	IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n",
3924 	    __func__, ether_sprintf(ni->ni_bssid));
3925 
3926 	in->in_assoc = 0;
3927 	iv->iv_auth = 1;
3928 
3929 	/*
3930 	 * Firmware bug - it'll crash if the beacon interval is less
3931 	 * than 16. We can't avoid connecting at all, so refuse the
3932 	 * station state change, this will cause net80211 to abandon
3933 	 * attempts to connect to this AP, and eventually wpa_s will
3934 	 * blacklist the AP...
3935 	 */
3936 	if (ni->ni_intval < 16) {
3937 		device_printf(sc->sc_dev,
3938 		    "AP %s beacon interval is %d, refusing due to firmware bug!\n",
3939 		    ether_sprintf(ni->ni_bssid), ni->ni_intval);
3940 		error = EINVAL;
3941 		goto out;
3942 	}
3943 
3944 	error = iwm_allow_mcast(vap, sc);
3945 	if (error) {
3946 		device_printf(sc->sc_dev,
3947 		    "%s: failed to set multicast\n", __func__);
3948 		goto out;
3949 	}
3950 
3951 	/*
3952 	 * This is where it deviates from what Linux does.
3953 	 *
3954 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3955 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3956 	 * and always does a mac_ctx_changed().
3957 	 *
3958 	 * The openbsd port doesn't attempt to do that - it reset things
3959 	 * at odd states and does the add here.
3960 	 *
3961 	 * So, until the state handling is fixed (ie, we never reset
3962 	 * the NIC except for a firmware failure, which should drag
3963 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3964 	 * contexts that are required), let's do a dirty hack here.
3965 	 */
3966 	if (iv->is_uploaded) {
3967 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3968 			device_printf(sc->sc_dev,
3969 			    "%s: failed to update MAC\n", __func__);
3970 			goto out;
3971 		}
3972 	} else {
3973 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3974 			device_printf(sc->sc_dev,
3975 			    "%s: failed to add MAC\n", __func__);
3976 			goto out;
3977 		}
3978 	}
3979 	sc->sc_firmware_state = 1;
3980 
3981 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3982 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3983 		device_printf(sc->sc_dev,
3984 		    "%s: failed update phy ctxt\n", __func__);
3985 		goto out;
3986 	}
3987 	iv->phy_ctxt = &sc->sc_phyctxt[0];
3988 
3989 	if ((error = iwm_mvm_binding_add_vif(sc, iv)) != 0) {
3990 		device_printf(sc->sc_dev,
3991 		    "%s: binding update cmd\n", __func__);
3992 		goto out;
3993 	}
3994 	sc->sc_firmware_state = 2;
3995 	/*
3996 	 * Authentication becomes unreliable when powersaving is left enabled
3997 	 * here. Powersaving will be activated again when association has
3998 	 * finished or is aborted.
3999 	 */
4000 	iv->ps_disabled = TRUE;
4001 	error = iwm_mvm_power_update_mac(sc);
4002 	iv->ps_disabled = FALSE;
4003 	if (error != 0) {
4004 		device_printf(sc->sc_dev,
4005 		    "%s: failed to update power management\n",
4006 		    __func__);
4007 		goto out;
4008 	}
4009 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
4010 		device_printf(sc->sc_dev,
4011 		    "%s: failed to add sta\n", __func__);
4012 		goto out;
4013 	}
4014 	sc->sc_firmware_state = 3;
4015 
4016 	/*
4017 	 * Prevent the FW from wandering off channel during association
4018 	 * by "protecting" the session with a time event.
4019 	 */
4020 	/* XXX duration is in units of TU, not MS */
4021 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
4022 	iwm_mvm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE);
4023 
4024 	error = 0;
4025 out:
4026 	if (error != 0)
4027 		iv->iv_auth = 0;
4028 	ieee80211_free_node(ni);
4029 	return (error);
4030 }
4031 
4032 static struct ieee80211_node *
4033 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4034 {
4035 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4036 	    M_NOWAIT | M_ZERO);
4037 }
4038 
4039 static uint8_t
4040 iwm_rate_from_ucode_rate(uint32_t rate_n_flags)
4041 {
4042 	uint8_t plcp = rate_n_flags & 0xff;
4043 	int i;
4044 
4045 	for (i = 0; i <= IWM_RIDX_MAX; i++) {
4046 		if (iwm_rates[i].plcp == plcp)
4047 			return iwm_rates[i].rate;
4048 	}
4049 	return 0;
4050 }
4051 
4052 uint8_t
4053 iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
4054 {
4055 	int i;
4056 	uint8_t rval;
4057 
4058 	for (i = 0; i < rs->rs_nrates; i++) {
4059 		rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
4060 		if (rval == iwm_rates[ridx].rate)
4061 			return rs->rs_rates[i];
4062 	}
4063 
4064 	return 0;
4065 }
4066 
4067 static int
4068 iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate)
4069 {
4070 	int i;
4071 
4072 	for (i = 0; i <= IWM_RIDX_MAX; i++) {
4073 		if (iwm_rates[i].rate == rate)
4074 			return i;
4075 	}
4076 
4077 	device_printf(sc->sc_dev,
4078 	    "%s: WARNING: device rate for %u not found!\n",
4079 	    __func__, rate);
4080 
4081 	return -1;
4082 }
4083 
4084 
4085 static void
4086 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix)
4087 {
4088 	struct ieee80211_node *ni = &in->in_ni;
4089 	struct iwm_lq_cmd *lq = &in->in_lq;
4090 	struct ieee80211_rateset *rs = &ni->ni_rates;
4091 	int nrates = rs->rs_nrates;
4092 	int i, ridx, tab = 0;
4093 //	int txant = 0;
4094 
4095 	KASSERT(rix >= 0 && rix < nrates, ("invalid rix"));
4096 
4097 	if (nrates > nitems(lq->rs_table)) {
4098 		device_printf(sc->sc_dev,
4099 		    "%s: node supports %d rates, driver handles "
4100 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4101 		return;
4102 	}
4103 	if (nrates == 0) {
4104 		device_printf(sc->sc_dev,
4105 		    "%s: node supports 0 rates, odd!\n", __func__);
4106 		return;
4107 	}
4108 	nrates = imin(rix + 1, nrates);
4109 
4110 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4111 	    "%s: nrates=%d\n", __func__, nrates);
4112 
4113 	/* then construct a lq_cmd based on those */
4114 	memset(lq, 0, sizeof(*lq));
4115 	lq->sta_id = IWM_STATION_ID;
4116 
4117 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4118 	if (ni->ni_flags & IEEE80211_NODE_HT)
4119 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4120 
4121 	/*
4122 	 * are these used? (we don't do SISO or MIMO)
4123 	 * need to set them to non-zero, though, or we get an error.
4124 	 */
4125 	lq->single_stream_ant_msk = 1;
4126 	lq->dual_stream_ant_msk = 1;
4127 
4128 	/*
4129 	 * Build the actual rate selection table.
4130 	 * The lowest bits are the rates.  Additionally,
4131 	 * CCK needs bit 9 to be set.  The rest of the bits
4132 	 * we add to the table select the tx antenna
4133 	 * Note that we add the rates in the highest rate first
4134 	 * (opposite of ni_rates).
4135 	 */
4136 	for (i = 0; i < nrates; i++) {
4137 		int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL;
4138 		int nextant;
4139 
4140 		/* Map 802.11 rate to HW rate index. */
4141 		ridx = iwm_rate2ridx(sc, rate);
4142 		if (ridx == -1)
4143 			continue;
4144 
4145 #if 0
4146 		if (txant == 0)
4147 			txant = iwm_mvm_get_valid_tx_ant(sc);
4148 		nextant = 1<<(ffs(txant)-1);
4149 		txant &= ~nextant;
4150 #else
4151 		nextant = iwm_mvm_get_valid_tx_ant(sc);
4152 #endif
4153 		tab = iwm_rates[ridx].plcp;
4154 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4155 		if (IWM_RIDX_IS_CCK(ridx))
4156 			tab |= IWM_RATE_MCS_CCK_MSK;
4157 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4158 		    "station rate i=%d, rate=%d, hw=%x\n",
4159 		    i, iwm_rates[ridx].rate, tab);
4160 		lq->rs_table[i] = htole32(tab);
4161 	}
4162 	/* then fill the rest with the lowest possible rate */
4163 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4164 		KASSERT(tab != 0, ("invalid tab"));
4165 		lq->rs_table[i] = htole32(tab);
4166 	}
4167 }
4168 
4169 static int
4170 iwm_media_change(struct ifnet *ifp)
4171 {
4172 	struct ieee80211vap *vap = ifp->if_softc;
4173 	struct ieee80211com *ic = vap->iv_ic;
4174 	struct iwm_softc *sc = ic->ic_softc;
4175 	int error;
4176 
4177 	error = ieee80211_media_change(ifp);
4178 	if (error != ENETRESET)
4179 		return error;
4180 
4181 	IWM_LOCK(sc);
4182 	if (ic->ic_nrunning > 0) {
4183 		iwm_stop(sc);
4184 		iwm_init(sc);
4185 	}
4186 	IWM_UNLOCK(sc);
4187 	return error;
4188 }
4189 
4190 static void
4191 iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap)
4192 {
4193 	struct iwm_vap *ivp = IWM_VAP(vap);
4194 	int error;
4195 
4196 	/* Avoid Tx watchdog triggering, when transfers get dropped here. */
4197 	sc->sc_tx_timer = 0;
4198 
4199 	ivp->iv_auth = 0;
4200 	if (sc->sc_firmware_state == 3) {
4201 		iwm_xmit_queue_drain(sc);
4202 //		iwm_mvm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC);
4203 		error = iwm_mvm_rm_sta(sc, vap, TRUE);
4204 		if (error) {
4205 			device_printf(sc->sc_dev,
4206 			    "%s: Failed to remove station: %d\n",
4207 			    __func__, error);
4208 		}
4209 	}
4210 	if (sc->sc_firmware_state == 3) {
4211 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4212 		if (error) {
4213 			device_printf(sc->sc_dev,
4214 			    "%s: Failed to change mac context: %d\n",
4215 			    __func__, error);
4216 		}
4217 	}
4218 	if (sc->sc_firmware_state == 3) {
4219 		error = iwm_mvm_sf_update(sc, vap, FALSE);
4220 		if (error) {
4221 			device_printf(sc->sc_dev,
4222 			    "%s: Failed to update smart FIFO: %d\n",
4223 			    __func__, error);
4224 		}
4225 	}
4226 	if (sc->sc_firmware_state == 3) {
4227 		error = iwm_mvm_rm_sta_id(sc, vap);
4228 		if (error) {
4229 			device_printf(sc->sc_dev,
4230 			    "%s: Failed to remove station id: %d\n",
4231 			    __func__, error);
4232 		}
4233 	}
4234 	if (sc->sc_firmware_state == 3) {
4235 		error = iwm_mvm_update_quotas(sc, NULL);
4236 		if (error) {
4237 			device_printf(sc->sc_dev,
4238 			    "%s: Failed to update PHY quota: %d\n",
4239 			    __func__, error);
4240 		}
4241 	}
4242 	if (sc->sc_firmware_state == 3) {
4243 		/* XXX Might need to specify bssid correctly. */
4244 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4245 		if (error) {
4246 			device_printf(sc->sc_dev,
4247 			    "%s: Failed to change mac context: %d\n",
4248 			    __func__, error);
4249 		}
4250 	}
4251 	if (sc->sc_firmware_state == 3) {
4252 		sc->sc_firmware_state = 2;
4253 	}
4254 	if (sc->sc_firmware_state > 1) {
4255 		error = iwm_mvm_binding_remove_vif(sc, ivp);
4256 		if (error) {
4257 			device_printf(sc->sc_dev,
4258 			    "%s: Failed to remove channel ctx: %d\n",
4259 			    __func__, error);
4260 		}
4261 	}
4262 	if (sc->sc_firmware_state > 1) {
4263 		sc->sc_firmware_state = 1;
4264 	}
4265 	ivp->phy_ctxt = NULL;
4266 	if (sc->sc_firmware_state > 0) {
4267 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4268 		if (error) {
4269 			device_printf(sc->sc_dev,
4270 			    "%s: Failed to change mac context: %d\n",
4271 			    __func__, error);
4272 		}
4273 	}
4274 	if (sc->sc_firmware_state > 0) {
4275 		error = iwm_mvm_power_update_mac(sc);
4276 		if (error != 0) {
4277 			device_printf(sc->sc_dev,
4278 			    "%s: failed to update power management\n",
4279 			    __func__);
4280 		}
4281 	}
4282 	sc->sc_firmware_state = 0;
4283 }
4284 
4285 static int
4286 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4287 {
4288 	struct iwm_vap *ivp = IWM_VAP(vap);
4289 	struct ieee80211com *ic = vap->iv_ic;
4290 	struct iwm_softc *sc = ic->ic_softc;
4291 	struct iwm_node *in;
4292 	int error;
4293 
4294 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4295 	    "switching state %s -> %s arg=0x%x\n",
4296 	    ieee80211_state_name[vap->iv_state],
4297 	    ieee80211_state_name[nstate],
4298 	    arg);
4299 
4300 	IEEE80211_UNLOCK(ic);
4301 	IWM_LOCK(sc);
4302 
4303 	if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) &&
4304 	    (nstate == IEEE80211_S_AUTH ||
4305 	     nstate == IEEE80211_S_ASSOC ||
4306 	     nstate == IEEE80211_S_RUN)) {
4307 		/* Stop blinking for a scan, when authenticating. */
4308 		iwm_led_blink_stop(sc);
4309 	}
4310 
4311 	if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
4312 		iwm_mvm_led_disable(sc);
4313 		/* disable beacon filtering if we're hopping out of RUN */
4314 		iwm_mvm_disable_beacon_filter(sc);
4315 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4316 			in->in_assoc = 0;
4317 	}
4318 
4319 	if ((vap->iv_state == IEEE80211_S_AUTH ||
4320 	     vap->iv_state == IEEE80211_S_ASSOC ||
4321 	     vap->iv_state == IEEE80211_S_RUN) &&
4322 	    (nstate == IEEE80211_S_INIT ||
4323 	     nstate == IEEE80211_S_SCAN ||
4324 	     nstate == IEEE80211_S_AUTH)) {
4325 		iwm_mvm_stop_session_protection(sc, ivp);
4326 	}
4327 
4328 	if ((vap->iv_state == IEEE80211_S_RUN ||
4329 	     vap->iv_state == IEEE80211_S_ASSOC) &&
4330 	    nstate == IEEE80211_S_INIT) {
4331 		/*
4332 		 * In this case, iv_newstate() wants to send an 80211 frame on
4333 		 * the network that we are leaving. So we need to call it,
4334 		 * before tearing down all the firmware state.
4335 		 */
4336 		IWM_UNLOCK(sc);
4337 		IEEE80211_LOCK(ic);
4338 		ivp->iv_newstate(vap, nstate, arg);
4339 		IEEE80211_UNLOCK(ic);
4340 		IWM_LOCK(sc);
4341 		iwm_bring_down_firmware(sc, vap);
4342 		IWM_UNLOCK(sc);
4343 		IEEE80211_LOCK(ic);
4344 		return 0;
4345 	}
4346 
4347 	switch (nstate) {
4348 	case IEEE80211_S_INIT:
4349 	case IEEE80211_S_SCAN:
4350 		break;
4351 
4352 	case IEEE80211_S_AUTH:
4353 		iwm_bring_down_firmware(sc, vap);
4354 		if ((error = iwm_auth(vap, sc)) != 0) {
4355 			device_printf(sc->sc_dev,
4356 			    "%s: could not move to auth state: %d\n",
4357 			    __func__, error);
4358 			iwm_bring_down_firmware(sc, vap);
4359 			IWM_UNLOCK(sc);
4360 			IEEE80211_LOCK(ic);
4361 			return 1;
4362 		}
4363 		break;
4364 
4365 	case IEEE80211_S_ASSOC:
4366 		/*
4367 		 * EBS may be disabled due to previous failures reported by FW.
4368 		 * Reset EBS status here assuming environment has been changed.
4369 		 */
4370 		sc->last_ebs_successful = TRUE;
4371 		break;
4372 
4373 	case IEEE80211_S_RUN:
4374 		in = IWM_NODE(vap->iv_bss);
4375 		/* Update the association state, now we have it all */
4376 		/* (eg associd comes in at this point */
4377 		error = iwm_mvm_update_sta(sc, in);
4378 		if (error != 0) {
4379 			device_printf(sc->sc_dev,
4380 			    "%s: failed to update STA\n", __func__);
4381 			IWM_UNLOCK(sc);
4382 			IEEE80211_LOCK(ic);
4383 			return error;
4384 		}
4385 		in->in_assoc = 1;
4386 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4387 		if (error != 0) {
4388 			device_printf(sc->sc_dev,
4389 			    "%s: failed to update MAC: %d\n", __func__, error);
4390 		}
4391 
4392 		iwm_mvm_sf_update(sc, vap, FALSE);
4393 		iwm_mvm_enable_beacon_filter(sc, ivp);
4394 		iwm_mvm_power_update_mac(sc);
4395 		iwm_mvm_update_quotas(sc, ivp);
4396 		int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0);
4397 		iwm_setrates(sc, in, rix);
4398 
4399 		if ((error = iwm_mvm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) {
4400 			device_printf(sc->sc_dev,
4401 			    "%s: IWM_LQ_CMD failed: %d\n", __func__, error);
4402 		}
4403 
4404 		iwm_mvm_led_enable(sc);
4405 		break;
4406 
4407 	default:
4408 		break;
4409 	}
4410 	IWM_UNLOCK(sc);
4411 	IEEE80211_LOCK(ic);
4412 
4413 	return (ivp->iv_newstate(vap, nstate, arg));
4414 }
4415 
4416 void
4417 iwm_endscan_cb(void *arg, int pending)
4418 {
4419 	struct iwm_softc *sc = arg;
4420 	struct ieee80211com *ic = &sc->sc_ic;
4421 
4422 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4423 	    "%s: scan ended\n",
4424 	    __func__);
4425 
4426 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4427 }
4428 
4429 static int
4430 iwm_send_bt_init_conf(struct iwm_softc *sc)
4431 {
4432 	struct iwm_bt_coex_cmd bt_cmd;
4433 
4434 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4435 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4436 
4437 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4438 	    &bt_cmd);
4439 }
4440 
4441 static boolean_t
4442 iwm_mvm_is_lar_supported(struct iwm_softc *sc)
4443 {
4444 	boolean_t nvm_lar = sc->nvm_data->lar_enabled;
4445 	boolean_t tlv_lar = fw_has_capa(&sc->sc_fw.ucode_capa,
4446 					IWM_UCODE_TLV_CAPA_LAR_SUPPORT);
4447 
4448 	if (iwm_lar_disable)
4449 		return FALSE;
4450 
4451 	/*
4452 	 * Enable LAR only if it is supported by the FW (TLV) &&
4453 	 * enabled in the NVM
4454 	 */
4455 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4456 		return nvm_lar && tlv_lar;
4457 	else
4458 		return tlv_lar;
4459 }
4460 
4461 static boolean_t
4462 iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *sc)
4463 {
4464 	return fw_has_api(&sc->sc_fw.ucode_capa,
4465 			  IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4466 	       fw_has_capa(&sc->sc_fw.ucode_capa,
4467 			   IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC);
4468 }
4469 
4470 static int
4471 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4472 {
4473 	struct iwm_mcc_update_cmd mcc_cmd;
4474 	struct iwm_host_cmd hcmd = {
4475 		.id = IWM_MCC_UPDATE_CMD,
4476 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4477 		.data = { &mcc_cmd },
4478 	};
4479 	int ret;
4480 #ifdef IWM_DEBUG
4481 	struct iwm_rx_packet *pkt;
4482 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4483 	struct iwm_mcc_update_resp *mcc_resp;
4484 	int n_channels;
4485 	uint16_t mcc;
4486 #endif
4487 	int resp_v2 = fw_has_capa(&sc->sc_fw.ucode_capa,
4488 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4489 
4490 	if (!iwm_mvm_is_lar_supported(sc)) {
4491 		IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n",
4492 		    __func__);
4493 		return 0;
4494 	}
4495 
4496 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4497 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4498 	if (iwm_mvm_is_wifi_mcc_supported(sc))
4499 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4500 	else
4501 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4502 
4503 	if (resp_v2)
4504 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4505 	else
4506 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4507 
4508 	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4509 	    "send MCC update to FW with '%c%c' src = %d\n",
4510 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4511 
4512 	ret = iwm_send_cmd(sc, &hcmd);
4513 	if (ret)
4514 		return ret;
4515 
4516 #ifdef IWM_DEBUG
4517 	pkt = hcmd.resp_pkt;
4518 
4519 	/* Extract MCC response */
4520 	if (resp_v2) {
4521 		mcc_resp = (void *)pkt->data;
4522 		mcc = mcc_resp->mcc;
4523 		n_channels =  le32toh(mcc_resp->n_channels);
4524 	} else {
4525 		mcc_resp_v1 = (void *)pkt->data;
4526 		mcc = mcc_resp_v1->mcc;
4527 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4528 	}
4529 
4530 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4531 	if (mcc == 0)
4532 		mcc = 0x3030;  /* "00" - world */
4533 
4534 	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4535 	    "regulatory domain '%c%c' (%d channels available)\n",
4536 	    mcc >> 8, mcc & 0xff, n_channels);
4537 #endif
4538 	iwm_free_resp(sc, &hcmd);
4539 
4540 	return 0;
4541 }
4542 
4543 static void
4544 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4545 {
4546 	struct iwm_host_cmd cmd = {
4547 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4548 		.len = { sizeof(uint32_t), },
4549 		.data = { &backoff, },
4550 	};
4551 
4552 	if (iwm_send_cmd(sc, &cmd) != 0) {
4553 		device_printf(sc->sc_dev,
4554 		    "failed to change thermal tx backoff\n");
4555 	}
4556 }
4557 
4558 static int
4559 iwm_init_hw(struct iwm_softc *sc)
4560 {
4561 	struct ieee80211com *ic = &sc->sc_ic;
4562 	int error, i, ac;
4563 
4564 	sc->sf_state = IWM_SF_UNINIT;
4565 
4566 	if ((error = iwm_start_hw(sc)) != 0) {
4567 		printf("iwm_start_hw: failed %d\n", error);
4568 		return error;
4569 	}
4570 
4571 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4572 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4573 		return error;
4574 	}
4575 
4576 	/*
4577 	 * should stop and start HW since that INIT
4578 	 * image just loaded
4579 	 */
4580 	iwm_stop_device(sc);
4581 	sc->sc_ps_disabled = FALSE;
4582 	if ((error = iwm_start_hw(sc)) != 0) {
4583 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4584 		return error;
4585 	}
4586 
4587 	/* omstart, this time with the regular firmware */
4588 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR);
4589 	if (error) {
4590 		device_printf(sc->sc_dev, "could not load firmware\n");
4591 		goto error;
4592 	}
4593 
4594 	error = iwm_mvm_sf_update(sc, NULL, FALSE);
4595 	if (error)
4596 		device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n");
4597 
4598 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4599 		device_printf(sc->sc_dev, "bt init conf failed\n");
4600 		goto error;
4601 	}
4602 
4603 	error = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
4604 	if (error != 0) {
4605 		device_printf(sc->sc_dev, "antenna config failed\n");
4606 		goto error;
4607 	}
4608 
4609 	/* Send phy db control command and then phy db calibration */
4610 	if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0)
4611 		goto error;
4612 
4613 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4614 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4615 		goto error;
4616 	}
4617 
4618 	/* Add auxiliary station for scanning */
4619 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4620 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4621 		goto error;
4622 	}
4623 
4624 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4625 		/*
4626 		 * The channel used here isn't relevant as it's
4627 		 * going to be overwritten in the other flows.
4628 		 * For now use the first channel we have.
4629 		 */
4630 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4631 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4632 			goto error;
4633 	}
4634 
4635 	/* Initialize tx backoffs to the minimum. */
4636 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
4637 		iwm_mvm_tt_tx_backoff(sc, 0);
4638 
4639 	if (iwm_mvm_config_ltr(sc) != 0)
4640 		device_printf(sc->sc_dev, "PCIe LTR configuration failed\n");
4641 
4642 	error = iwm_mvm_power_update_device(sc);
4643 	if (error)
4644 		goto error;
4645 
4646 	if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4647 		goto error;
4648 
4649 	if (fw_has_capa(&sc->sc_fw.ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4650 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4651 			goto error;
4652 	}
4653 
4654 	/* Enable Tx queues. */
4655 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4656 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4657 		    iwm_mvm_ac_to_tx_fifo[ac]);
4658 		if (error)
4659 			goto error;
4660 	}
4661 
4662 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4663 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4664 		goto error;
4665 	}
4666 
4667 	return 0;
4668 
4669  error:
4670 	iwm_stop_device(sc);
4671 	return error;
4672 }
4673 
4674 /* Allow multicast from our BSSID. */
4675 static int
4676 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4677 {
4678 	struct ieee80211_node *ni = vap->iv_bss;
4679 	struct iwm_mcast_filter_cmd *cmd;
4680 	size_t size;
4681 	int error;
4682 
4683 	size = roundup(sizeof(*cmd), 4);
4684 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4685 	if (cmd == NULL)
4686 		return ENOMEM;
4687 	cmd->filter_own = 1;
4688 	cmd->port_id = 0;
4689 	cmd->count = 0;
4690 	cmd->pass_all = 1;
4691 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4692 
4693 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4694 	    IWM_CMD_SYNC, size, cmd);
4695 	free(cmd, M_DEVBUF);
4696 
4697 	return (error);
4698 }
4699 
4700 /*
4701  * ifnet interfaces
4702  */
4703 
4704 static void
4705 iwm_init(struct iwm_softc *sc)
4706 {
4707 	int error;
4708 
4709 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4710 		return;
4711 	}
4712 	sc->sc_generation++;
4713 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4714 
4715 	if ((error = iwm_init_hw(sc)) != 0) {
4716 		printf("iwm_init_hw failed %d\n", error);
4717 		iwm_stop(sc);
4718 		return;
4719 	}
4720 
4721 	/*
4722 	 * Ok, firmware loaded and we are jogging
4723 	 */
4724 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4725 }
4726 
4727 static int
4728 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4729 {
4730 	struct iwm_softc *sc;
4731 	int error;
4732 
4733 	sc = ic->ic_softc;
4734 
4735 	IWM_LOCK(sc);
4736 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4737 		IWM_UNLOCK(sc);
4738 		return (ENXIO);
4739 	}
4740 	error = mbufq_enqueue(&sc->sc_snd, m);
4741 	if (error) {
4742 		IWM_UNLOCK(sc);
4743 		return (error);
4744 	}
4745 	iwm_start(sc);
4746 	IWM_UNLOCK(sc);
4747 	return (0);
4748 }
4749 
4750 /*
4751  * Dequeue packets from sendq and call send.
4752  */
4753 static void
4754 iwm_start(struct iwm_softc *sc)
4755 {
4756 	struct ieee80211_node *ni;
4757 	struct mbuf *m;
4758 	int ac = 0;
4759 
4760 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4761 	while (sc->qfullmsk == 0 &&
4762 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4763 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4764 		if (iwm_tx(sc, m, ni, ac) != 0) {
4765 			if_inc_counter(ni->ni_vap->iv_ifp,
4766 			    IFCOUNTER_OERRORS, 1);
4767 			ieee80211_free_node(ni);
4768 			continue;
4769 		}
4770 		if (sc->sc_tx_timer == 0) {
4771 			callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog,
4772 			    sc);
4773 		}
4774 		sc->sc_tx_timer = 15;
4775 	}
4776 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4777 }
4778 
4779 static void
4780 iwm_stop(struct iwm_softc *sc)
4781 {
4782 
4783 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4784 	sc->sc_flags |= IWM_FLAG_STOPPED;
4785 	sc->sc_generation++;
4786 	iwm_led_blink_stop(sc);
4787 	sc->sc_tx_timer = 0;
4788 	iwm_stop_device(sc);
4789 	sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
4790 }
4791 
4792 static void
4793 iwm_watchdog(void *arg)
4794 {
4795 	struct iwm_softc *sc = arg;
4796 	struct ieee80211com *ic = &sc->sc_ic;
4797 
4798 	if (sc->sc_attached == 0)
4799 		return;
4800 
4801 	if (sc->sc_tx_timer > 0) {
4802 		if (--sc->sc_tx_timer == 0) {
4803 			device_printf(sc->sc_dev, "device timeout\n");
4804 #ifdef IWM_DEBUG
4805 			iwm_nic_error(sc);
4806 #endif
4807 			ieee80211_restart_all(ic);
4808 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4809 			return;
4810 		}
4811 		callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4812 	}
4813 }
4814 
4815 static void
4816 iwm_parent(struct ieee80211com *ic)
4817 {
4818 	struct iwm_softc *sc = ic->ic_softc;
4819 	int startall = 0;
4820 
4821 	IWM_LOCK(sc);
4822 	if (ic->ic_nrunning > 0) {
4823 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4824 			iwm_init(sc);
4825 			startall = 1;
4826 		}
4827 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4828 		iwm_stop(sc);
4829 	IWM_UNLOCK(sc);
4830 	if (startall)
4831 		ieee80211_start_all(ic);
4832 }
4833 
4834 /*
4835  * The interrupt side of things
4836  */
4837 
4838 /*
4839  * error dumping routines are from iwlwifi/mvm/utils.c
4840  */
4841 
4842 /*
4843  * Note: This structure is read from the device with IO accesses,
4844  * and the reading already does the endian conversion. As it is
4845  * read with uint32_t-sized accesses, any members with a different size
4846  * need to be ordered correctly though!
4847  */
4848 struct iwm_error_event_table {
4849 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4850 	uint32_t error_id;		/* type of error */
4851 	uint32_t trm_hw_status0;	/* TRM HW status */
4852 	uint32_t trm_hw_status1;	/* TRM HW status */
4853 	uint32_t blink2;		/* branch link */
4854 	uint32_t ilink1;		/* interrupt link */
4855 	uint32_t ilink2;		/* interrupt link */
4856 	uint32_t data1;		/* error-specific data */
4857 	uint32_t data2;		/* error-specific data */
4858 	uint32_t data3;		/* error-specific data */
4859 	uint32_t bcon_time;		/* beacon timer */
4860 	uint32_t tsf_low;		/* network timestamp function timer */
4861 	uint32_t tsf_hi;		/* network timestamp function timer */
4862 	uint32_t gp1;		/* GP1 timer register */
4863 	uint32_t gp2;		/* GP2 timer register */
4864 	uint32_t fw_rev_type;	/* firmware revision type */
4865 	uint32_t major;		/* uCode version major */
4866 	uint32_t minor;		/* uCode version minor */
4867 	uint32_t hw_ver;		/* HW Silicon version */
4868 	uint32_t brd_ver;		/* HW board version */
4869 	uint32_t log_pc;		/* log program counter */
4870 	uint32_t frame_ptr;		/* frame pointer */
4871 	uint32_t stack_ptr;		/* stack pointer */
4872 	uint32_t hcmd;		/* last host command header */
4873 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4874 				 * rxtx_flag */
4875 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4876 				 * host_flag */
4877 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4878 				 * enc_flag */
4879 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4880 				 * time_flag */
4881 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4882 				 * wico interrupt */
4883 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4884 	uint32_t wait_event;		/* wait event() caller address */
4885 	uint32_t l2p_control;	/* L2pControlField */
4886 	uint32_t l2p_duration;	/* L2pDurationField */
4887 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4888 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4889 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4890 				 * (LMPM_PMG_SEL) */
4891 	uint32_t u_timestamp;	/* indicate when the date and time of the
4892 				 * compilation */
4893 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4894 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4895 
4896 /*
4897  * UMAC error struct - relevant starting from family 8000 chip.
4898  * Note: This structure is read from the device with IO accesses,
4899  * and the reading already does the endian conversion. As it is
4900  * read with u32-sized accesses, any members with a different size
4901  * need to be ordered correctly though!
4902  */
4903 struct iwm_umac_error_event_table {
4904 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4905 	uint32_t error_id;	/* type of error */
4906 	uint32_t blink1;	/* branch link */
4907 	uint32_t blink2;	/* branch link */
4908 	uint32_t ilink1;	/* interrupt link */
4909 	uint32_t ilink2;	/* interrupt link */
4910 	uint32_t data1;		/* error-specific data */
4911 	uint32_t data2;		/* error-specific data */
4912 	uint32_t data3;		/* error-specific data */
4913 	uint32_t umac_major;
4914 	uint32_t umac_minor;
4915 	uint32_t frame_pointer;	/* core register 27*/
4916 	uint32_t stack_pointer;	/* core register 28 */
4917 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4918 	uint32_t nic_isr_pref;	/* ISR status register */
4919 } __packed;
4920 
4921 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4922 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4923 
4924 #ifdef IWM_DEBUG
4925 struct {
4926 	const char *name;
4927 	uint8_t num;
4928 } advanced_lookup[] = {
4929 	{ "NMI_INTERRUPT_WDG", 0x34 },
4930 	{ "SYSASSERT", 0x35 },
4931 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4932 	{ "BAD_COMMAND", 0x38 },
4933 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4934 	{ "FATAL_ERROR", 0x3D },
4935 	{ "NMI_TRM_HW_ERR", 0x46 },
4936 	{ "NMI_INTERRUPT_TRM", 0x4C },
4937 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4938 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4939 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4940 	{ "NMI_INTERRUPT_HOST", 0x66 },
4941 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4942 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4943 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4944 	{ "ADVANCED_SYSASSERT", 0 },
4945 };
4946 
4947 static const char *
4948 iwm_desc_lookup(uint32_t num)
4949 {
4950 	int i;
4951 
4952 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4953 		if (advanced_lookup[i].num == num)
4954 			return advanced_lookup[i].name;
4955 
4956 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4957 	return advanced_lookup[i].name;
4958 }
4959 
4960 static void
4961 iwm_nic_umac_error(struct iwm_softc *sc)
4962 {
4963 	struct iwm_umac_error_event_table table;
4964 	uint32_t base;
4965 
4966 	base = sc->umac_error_event_table;
4967 
4968 	if (base < 0x800000) {
4969 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4970 		    base);
4971 		return;
4972 	}
4973 
4974 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4975 		device_printf(sc->sc_dev, "reading errlog failed\n");
4976 		return;
4977 	}
4978 
4979 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4980 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4981 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4982 		    sc->sc_flags, table.valid);
4983 	}
4984 
4985 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4986 		iwm_desc_lookup(table.error_id));
4987 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4988 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4989 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4990 	    table.ilink1);
4991 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4992 	    table.ilink2);
4993 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4994 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4995 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4996 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4997 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4998 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4999 	    table.frame_pointer);
5000 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
5001 	    table.stack_pointer);
5002 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
5003 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
5004 	    table.nic_isr_pref);
5005 }
5006 
5007 /*
5008  * Support for dumping the error log seemed like a good idea ...
5009  * but it's mostly hex junk and the only sensible thing is the
5010  * hw/ucode revision (which we know anyway).  Since it's here,
5011  * I'll just leave it in, just in case e.g. the Intel guys want to
5012  * help us decipher some "ADVANCED_SYSASSERT" later.
5013  */
5014 static void
5015 iwm_nic_error(struct iwm_softc *sc)
5016 {
5017 	struct iwm_error_event_table table;
5018 	uint32_t base;
5019 
5020 	device_printf(sc->sc_dev, "dumping device error log\n");
5021 	base = sc->error_event_table[0];
5022 	if (base < 0x800000) {
5023 		device_printf(sc->sc_dev,
5024 		    "Invalid error log pointer 0x%08x\n", base);
5025 		return;
5026 	}
5027 
5028 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5029 		device_printf(sc->sc_dev, "reading errlog failed\n");
5030 		return;
5031 	}
5032 
5033 	if (!table.valid) {
5034 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5035 		return;
5036 	}
5037 
5038 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5039 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5040 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5041 		    sc->sc_flags, table.valid);
5042 	}
5043 
5044 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5045 	    iwm_desc_lookup(table.error_id));
5046 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5047 	    table.trm_hw_status0);
5048 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5049 	    table.trm_hw_status1);
5050 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5051 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5052 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5053 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5054 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5055 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5056 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5057 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5058 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5059 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5060 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5061 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5062 	    table.fw_rev_type);
5063 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5064 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5065 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5066 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5067 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5068 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5069 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5070 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5071 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5072 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5073 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5074 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5075 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5076 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5077 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5078 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5079 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5080 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5081 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5082 
5083 	if (sc->umac_error_event_table)
5084 		iwm_nic_umac_error(sc);
5085 }
5086 #endif
5087 
5088 static void
5089 iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m)
5090 {
5091 	struct ieee80211com *ic = &sc->sc_ic;
5092 	struct iwm_cmd_response *cresp;
5093 	struct mbuf *m1;
5094 	uint32_t offset = 0;
5095 	uint32_t maxoff = IWM_RBUF_SIZE;
5096 	uint32_t nextoff;
5097 	boolean_t stolen = FALSE;
5098 
5099 #define HAVEROOM(a)	\
5100     ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff)
5101 
5102 	while (HAVEROOM(offset)) {
5103 		struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *,
5104 		    offset);
5105 		int qid, idx, code, len;
5106 
5107 		qid = pkt->hdr.qid;
5108 		idx = pkt->hdr.idx;
5109 
5110 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5111 
5112 		/*
5113 		 * randomly get these from the firmware, no idea why.
5114 		 * they at least seem harmless, so just ignore them for now
5115 		 */
5116 		if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) ||
5117 		    pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) {
5118 			break;
5119 		}
5120 
5121 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5122 		    "rx packet qid=%d idx=%d type=%x\n",
5123 		    qid & ~0x80, pkt->hdr.idx, code);
5124 
5125 		len = iwm_rx_packet_len(pkt);
5126 		len += sizeof(uint32_t); /* account for status word */
5127 		nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN);
5128 
5129 		iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt);
5130 
5131 		switch (code) {
5132 		case IWM_REPLY_RX_PHY_CMD:
5133 			iwm_mvm_rx_rx_phy_cmd(sc, pkt);
5134 			break;
5135 
5136 		case IWM_REPLY_RX_MPDU_CMD: {
5137 			/*
5138 			 * If this is the last frame in the RX buffer, we
5139 			 * can directly feed the mbuf to the sharks here.
5140 			 */
5141 			struct iwm_rx_packet *nextpkt = mtodoff(m,
5142 			    struct iwm_rx_packet *, nextoff);
5143 			if (!HAVEROOM(nextoff) ||
5144 			    (nextpkt->hdr.code == 0 &&
5145 			     (nextpkt->hdr.qid & ~0x80) == 0 &&
5146 			     nextpkt->hdr.idx == 0) ||
5147 			    (nextpkt->len_n_flags ==
5148 			     htole32(IWM_FH_RSCSR_FRAME_INVALID))) {
5149 				if (iwm_mvm_rx_rx_mpdu(sc, m, offset, stolen)) {
5150 					stolen = FALSE;
5151 					/* Make sure we abort the loop */
5152 					nextoff = maxoff;
5153 				}
5154 				break;
5155 			}
5156 
5157 			/*
5158 			 * Use m_copym instead of m_split, because that
5159 			 * makes it easier to keep a valid rx buffer in
5160 			 * the ring, when iwm_mvm_rx_rx_mpdu() fails.
5161 			 *
5162 			 * We need to start m_copym() at offset 0, to get the
5163 			 * M_PKTHDR flag preserved.
5164 			 */
5165 			m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT);
5166 			if (m1) {
5167 				if (iwm_mvm_rx_rx_mpdu(sc, m1, offset, stolen))
5168 					stolen = TRUE;
5169 				else
5170 					m_freem(m1);
5171 			}
5172 			break;
5173 		}
5174 
5175 		case IWM_TX_CMD:
5176 			iwm_mvm_rx_tx_cmd(sc, pkt);
5177 			break;
5178 
5179 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5180 			struct iwm_missed_beacons_notif *resp;
5181 			int missed;
5182 
5183 			/* XXX look at mac_id to determine interface ID */
5184 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5185 
5186 			resp = (void *)pkt->data;
5187 			missed = le32toh(resp->consec_missed_beacons);
5188 
5189 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5190 			    "%s: MISSED_BEACON: mac_id=%d, "
5191 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5192 			    "num_rx=%d\n",
5193 			    __func__,
5194 			    le32toh(resp->mac_id),
5195 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5196 			    le32toh(resp->consec_missed_beacons),
5197 			    le32toh(resp->num_expected_beacons),
5198 			    le32toh(resp->num_recvd_beacons));
5199 
5200 			/* Be paranoid */
5201 			if (vap == NULL)
5202 				break;
5203 
5204 			/* XXX no net80211 locking? */
5205 			if (vap->iv_state == IEEE80211_S_RUN &&
5206 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5207 				if (missed > vap->iv_bmissthreshold) {
5208 					/* XXX bad locking; turn into task */
5209 					IWM_UNLOCK(sc);
5210 					ieee80211_beacon_miss(ic);
5211 					IWM_LOCK(sc);
5212 				}
5213 			}
5214 
5215 			break;
5216 		}
5217 
5218 		case IWM_MFUART_LOAD_NOTIFICATION:
5219 			break;
5220 
5221 		case IWM_MVM_ALIVE:
5222 			break;
5223 
5224 		case IWM_CALIB_RES_NOTIF_PHY_DB:
5225 			break;
5226 
5227 		case IWM_STATISTICS_NOTIFICATION:
5228 			iwm_mvm_handle_rx_statistics(sc, pkt);
5229 			break;
5230 
5231 		case IWM_NVM_ACCESS_CMD:
5232 		case IWM_MCC_UPDATE_CMD:
5233 			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5234 				memcpy(sc->sc_cmd_resp,
5235 				    pkt, sizeof(sc->sc_cmd_resp));
5236 			}
5237 			break;
5238 
5239 		case IWM_MCC_CHUB_UPDATE_CMD: {
5240 			struct iwm_mcc_chub_notif *notif;
5241 			notif = (void *)pkt->data;
5242 
5243 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5244 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5245 			sc->sc_fw_mcc[2] = '\0';
5246 			IWM_DPRINTF(sc, IWM_DEBUG_LAR,
5247 			    "fw source %d sent CC '%s'\n",
5248 			    notif->source_id, sc->sc_fw_mcc);
5249 			break;
5250 		}
5251 
5252 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5253 		case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
5254 				 IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
5255 			struct iwm_dts_measurement_notif_v1 *notif;
5256 
5257 			if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) {
5258 				device_printf(sc->sc_dev,
5259 				    "Invalid DTS_MEASUREMENT_NOTIFICATION\n");
5260 				break;
5261 			}
5262 			notif = (void *)pkt->data;
5263 			IWM_DPRINTF(sc, IWM_DEBUG_TEMP,
5264 			    "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n",
5265 			    notif->temp);
5266 			break;
5267 		}
5268 
5269 		case IWM_PHY_CONFIGURATION_CMD:
5270 		case IWM_TX_ANT_CONFIGURATION_CMD:
5271 		case IWM_ADD_STA:
5272 		case IWM_MAC_CONTEXT_CMD:
5273 		case IWM_REPLY_SF_CFG_CMD:
5274 		case IWM_POWER_TABLE_CMD:
5275 		case IWM_LTR_CONFIG:
5276 		case IWM_PHY_CONTEXT_CMD:
5277 		case IWM_BINDING_CONTEXT_CMD:
5278 		case IWM_TIME_EVENT_CMD:
5279 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5280 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5281 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
5282 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5283 		case IWM_SCAN_OFFLOAD_ABORT_CMD:
5284 		case IWM_REPLY_BEACON_FILTERING_CMD:
5285 		case IWM_MAC_PM_POWER_TABLE:
5286 		case IWM_TIME_QUOTA_CMD:
5287 		case IWM_REMOVE_STA:
5288 		case IWM_TXPATH_FLUSH:
5289 		case IWM_LQ_CMD:
5290 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP,
5291 				 IWM_FW_PAGING_BLOCK_CMD):
5292 		case IWM_BT_CONFIG:
5293 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5294 			cresp = (void *)pkt->data;
5295 			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5296 				memcpy(sc->sc_cmd_resp,
5297 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5298 			}
5299 			break;
5300 
5301 		/* ignore */
5302 		case IWM_PHY_DB_CMD:
5303 			break;
5304 
5305 		case IWM_INIT_COMPLETE_NOTIF:
5306 			break;
5307 
5308 		case IWM_SCAN_OFFLOAD_COMPLETE:
5309 			iwm_mvm_rx_lmac_scan_complete_notif(sc, pkt);
5310 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5311 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5312 				ieee80211_runtask(ic, &sc->sc_es_task);
5313 			}
5314 			break;
5315 
5316 		case IWM_SCAN_ITERATION_COMPLETE: {
5317 			struct iwm_lmac_scan_complete_notif *notif;
5318 			notif = (void *)pkt->data;
5319 			break;
5320 		}
5321 
5322 		case IWM_SCAN_COMPLETE_UMAC:
5323 			iwm_mvm_rx_umac_scan_complete_notif(sc, pkt);
5324 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5325 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5326 				ieee80211_runtask(ic, &sc->sc_es_task);
5327 			}
5328 			break;
5329 
5330 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5331 			struct iwm_umac_scan_iter_complete_notif *notif;
5332 			notif = (void *)pkt->data;
5333 
5334 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5335 			    "complete, status=0x%x, %d channels scanned\n",
5336 			    notif->status, notif->scanned_channels);
5337 			break;
5338 		}
5339 
5340 		case IWM_REPLY_ERROR: {
5341 			struct iwm_error_resp *resp;
5342 			resp = (void *)pkt->data;
5343 
5344 			device_printf(sc->sc_dev,
5345 			    "firmware error 0x%x, cmd 0x%x\n",
5346 			    le32toh(resp->error_type),
5347 			    resp->cmd_id);
5348 			break;
5349 		}
5350 
5351 		case IWM_TIME_EVENT_NOTIFICATION:
5352 			iwm_mvm_rx_time_event_notif(sc, pkt);
5353 			break;
5354 
5355 		/*
5356 		 * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG
5357 		 * messages. Just ignore them for now.
5358 		 */
5359 		case IWM_DEBUG_LOG_MSG:
5360 			break;
5361 
5362 		case IWM_MCAST_FILTER_CMD:
5363 			break;
5364 
5365 		case IWM_SCD_QUEUE_CFG: {
5366 			struct iwm_scd_txq_cfg_rsp *rsp;
5367 			rsp = (void *)pkt->data;
5368 
5369 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5370 			    "queue cfg token=0x%x sta_id=%d "
5371 			    "tid=%d scd_queue=%d\n",
5372 			    rsp->token, rsp->sta_id, rsp->tid,
5373 			    rsp->scd_queue);
5374 			break;
5375 		}
5376 
5377 		default:
5378 			device_printf(sc->sc_dev,
5379 			    "frame %d/%d %x UNHANDLED (this should "
5380 			    "not happen)\n", qid & ~0x80, idx,
5381 			    pkt->len_n_flags);
5382 			break;
5383 		}
5384 
5385 		/*
5386 		 * Why test bit 0x80?  The Linux driver:
5387 		 *
5388 		 * There is one exception:  uCode sets bit 15 when it
5389 		 * originates the response/notification, i.e. when the
5390 		 * response/notification is not a direct response to a
5391 		 * command sent by the driver.  For example, uCode issues
5392 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5393 		 * it is not a direct response to any driver command.
5394 		 *
5395 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5396 		 * uses a slightly different format for pkt->hdr, and "qid"
5397 		 * is actually the upper byte of a two-byte field.
5398 		 */
5399 		if (!(qid & (1 << 7)))
5400 			iwm_cmd_done(sc, pkt);
5401 
5402 		offset = nextoff;
5403 	}
5404 	if (stolen)
5405 		m_freem(m);
5406 #undef HAVEROOM
5407 }
5408 
5409 /*
5410  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5411  * Basic structure from if_iwn
5412  */
5413 static void
5414 iwm_notif_intr(struct iwm_softc *sc)
5415 {
5416 	uint16_t hw;
5417 
5418 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5419 	    BUS_DMASYNC_POSTREAD);
5420 
5421 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5422 
5423 	/*
5424 	 * Process responses
5425 	 */
5426 	while (sc->rxq.cur != hw) {
5427 		struct iwm_rx_ring *ring = &sc->rxq;
5428 		struct iwm_rx_data *data = &ring->data[ring->cur];
5429 
5430 		bus_dmamap_sync(ring->data_dmat, data->map,
5431 		    BUS_DMASYNC_POSTREAD);
5432 
5433 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5434 		    "%s: hw = %d cur = %d\n", __func__, hw, ring->cur);
5435 		iwm_handle_rxb(sc, data->m);
5436 
5437 		ring->cur = (ring->cur + 1) % IWM_RX_RING_COUNT;
5438 	}
5439 
5440 	/*
5441 	 * Tell the firmware that it can reuse the ring entries that
5442 	 * we have just processed.
5443 	 * Seems like the hardware gets upset unless we align
5444 	 * the write by 8??
5445 	 */
5446 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5447 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, rounddown2(hw, 8));
5448 }
5449 
5450 static void
5451 iwm_intr(void *arg)
5452 {
5453 	struct iwm_softc *sc = arg;
5454 	int handled = 0;
5455 	int r1, r2, rv = 0;
5456 	int isperiodic = 0;
5457 
5458 	IWM_LOCK(sc);
5459 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5460 
5461 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5462 		uint32_t *ict = sc->ict_dma.vaddr;
5463 		int tmp;
5464 
5465 		tmp = htole32(ict[sc->ict_cur]);
5466 		if (!tmp)
5467 			goto out_ena;
5468 
5469 		/*
5470 		 * ok, there was something.  keep plowing until we have all.
5471 		 */
5472 		r1 = r2 = 0;
5473 		while (tmp) {
5474 			r1 |= tmp;
5475 			ict[sc->ict_cur] = 0;
5476 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5477 			tmp = htole32(ict[sc->ict_cur]);
5478 		}
5479 
5480 		/* this is where the fun begins.  don't ask */
5481 		if (r1 == 0xffffffff)
5482 			r1 = 0;
5483 
5484 		/* i am not expected to understand this */
5485 		if (r1 & 0xc0000)
5486 			r1 |= 0x8000;
5487 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5488 	} else {
5489 		r1 = IWM_READ(sc, IWM_CSR_INT);
5490 		/* "hardware gone" (where, fishing?) */
5491 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5492 			goto out;
5493 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5494 	}
5495 	if (r1 == 0 && r2 == 0) {
5496 		goto out_ena;
5497 	}
5498 
5499 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5500 
5501 	/* Safely ignore these bits for debug checks below */
5502 	r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD);
5503 
5504 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5505 		int i;
5506 		struct ieee80211com *ic = &sc->sc_ic;
5507 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5508 
5509 #ifdef IWM_DEBUG
5510 		iwm_nic_error(sc);
5511 #endif
5512 		/* Dump driver status (TX and RX rings) while we're here. */
5513 		device_printf(sc->sc_dev, "driver status:\n");
5514 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5515 			struct iwm_tx_ring *ring = &sc->txq[i];
5516 			device_printf(sc->sc_dev,
5517 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5518 			    "queued=%-3d\n",
5519 			    i, ring->qid, ring->cur, ring->queued);
5520 		}
5521 		device_printf(sc->sc_dev,
5522 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5523 		device_printf(sc->sc_dev,
5524 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5525 
5526 		/* Reset our firmware state tracking. */
5527 		sc->sc_firmware_state = 0;
5528 		/* Don't stop the device; just do a VAP restart */
5529 		IWM_UNLOCK(sc);
5530 
5531 		if (vap == NULL) {
5532 			printf("%s: null vap\n", __func__);
5533 			return;
5534 		}
5535 
5536 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5537 		    "restarting\n", __func__, vap->iv_state);
5538 
5539 		ieee80211_restart_all(ic);
5540 		return;
5541 	}
5542 
5543 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5544 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5545 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5546 		iwm_stop(sc);
5547 		rv = 1;
5548 		goto out;
5549 	}
5550 
5551 	/* firmware chunk loaded */
5552 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5553 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5554 		handled |= IWM_CSR_INT_BIT_FH_TX;
5555 		sc->sc_fw_chunk_done = 1;
5556 		wakeup(&sc->sc_fw);
5557 	}
5558 
5559 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5560 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5561 		if (iwm_check_rfkill(sc)) {
5562 			device_printf(sc->sc_dev,
5563 			    "%s: rfkill switch, disabling interface\n",
5564 			    __func__);
5565 			iwm_stop(sc);
5566 		}
5567 	}
5568 
5569 	/*
5570 	 * The Linux driver uses periodic interrupts to avoid races.
5571 	 * We cargo-cult like it's going out of fashion.
5572 	 */
5573 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5574 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5575 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5576 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5577 			IWM_WRITE_1(sc,
5578 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5579 		isperiodic = 1;
5580 	}
5581 
5582 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5583 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5584 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5585 
5586 		iwm_notif_intr(sc);
5587 
5588 		/* enable periodic interrupt, see above */
5589 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5590 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5591 			    IWM_CSR_INT_PERIODIC_ENA);
5592 	}
5593 
5594 	if (__predict_false(r1 & ~handled))
5595 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5596 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5597 	rv = 1;
5598 
5599  out_ena:
5600 	iwm_restore_interrupts(sc);
5601  out:
5602 	IWM_UNLOCK(sc);
5603 	return;
5604 }
5605 
5606 /*
5607  * Autoconf glue-sniffing
5608  */
5609 #define	PCI_VENDOR_INTEL		0x8086
5610 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5611 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5612 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5613 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5614 #define	PCI_PRODUCT_INTEL_WL_3168_1	0x24fb
5615 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5616 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5617 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5618 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5619 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5620 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5621 #define	PCI_PRODUCT_INTEL_WL_8265_1	0x24fd
5622 
5623 static const struct iwm_devices {
5624 	uint16_t		device;
5625 	const struct iwm_cfg	*cfg;
5626 } iwm_devices[] = {
5627 	{ PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg },
5628 	{ PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg },
5629 	{ PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg },
5630 	{ PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg },
5631 	{ PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg },
5632 	{ PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg },
5633 	{ PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg },
5634 	{ PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg },
5635 	{ PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg },
5636 	{ PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg },
5637 	{ PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg },
5638 	{ PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg },
5639 };
5640 
5641 static int
5642 iwm_probe(device_t dev)
5643 {
5644 	int i;
5645 
5646 	for (i = 0; i < nitems(iwm_devices); i++) {
5647 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5648 		    pci_get_device(dev) == iwm_devices[i].device) {
5649 			device_set_desc(dev, iwm_devices[i].cfg->name);
5650 			return (BUS_PROBE_DEFAULT);
5651 		}
5652 	}
5653 
5654 	return (ENXIO);
5655 }
5656 
5657 static int
5658 iwm_dev_check(device_t dev)
5659 {
5660 	struct iwm_softc *sc;
5661 	uint16_t devid;
5662 	int i;
5663 
5664 	sc = device_get_softc(dev);
5665 
5666 	devid = pci_get_device(dev);
5667 	for (i = 0; i < nitems(iwm_devices); i++) {
5668 		if (iwm_devices[i].device == devid) {
5669 			sc->cfg = iwm_devices[i].cfg;
5670 			return (0);
5671 		}
5672 	}
5673 	device_printf(dev, "unknown adapter type\n");
5674 	return ENXIO;
5675 }
5676 
5677 /* PCI registers */
5678 #define PCI_CFG_RETRY_TIMEOUT	0x041
5679 
5680 static int
5681 iwm_pci_attach(device_t dev)
5682 {
5683 	struct iwm_softc *sc;
5684 	int count, error, rid;
5685 	uint16_t reg;
5686 
5687 	sc = device_get_softc(dev);
5688 
5689 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
5690 	 * PCI Tx retries from interfering with C3 CPU state */
5691 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
5692 
5693 	/* Enable bus-mastering and hardware bug workaround. */
5694 	pci_enable_busmaster(dev);
5695 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5696 	/* if !MSI */
5697 	if (reg & PCIM_STATUS_INTxSTATE) {
5698 		reg &= ~PCIM_STATUS_INTxSTATE;
5699 	}
5700 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5701 
5702 	rid = PCIR_BAR(0);
5703 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5704 	    RF_ACTIVE);
5705 	if (sc->sc_mem == NULL) {
5706 		device_printf(sc->sc_dev, "can't map mem space\n");
5707 		return (ENXIO);
5708 	}
5709 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5710 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5711 
5712 	/* Install interrupt handler. */
5713 	count = 1;
5714 	rid = 0;
5715 	if (pci_alloc_msi(dev, &count) == 0)
5716 		rid = 1;
5717 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5718 	    (rid != 0 ? 0 : RF_SHAREABLE));
5719 	if (sc->sc_irq == NULL) {
5720 		device_printf(dev, "can't map interrupt\n");
5721 			return (ENXIO);
5722 	}
5723 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5724 	    NULL, iwm_intr, sc, &sc->sc_ih);
5725 	if (sc->sc_ih == NULL) {
5726 		device_printf(dev, "can't establish interrupt");
5727 			return (ENXIO);
5728 	}
5729 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5730 
5731 	return (0);
5732 }
5733 
5734 static void
5735 iwm_pci_detach(device_t dev)
5736 {
5737 	struct iwm_softc *sc = device_get_softc(dev);
5738 
5739 	if (sc->sc_irq != NULL) {
5740 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5741 		bus_release_resource(dev, SYS_RES_IRQ,
5742 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5743 		pci_release_msi(dev);
5744         }
5745 	if (sc->sc_mem != NULL)
5746 		bus_release_resource(dev, SYS_RES_MEMORY,
5747 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5748 }
5749 
5750 
5751 
5752 static int
5753 iwm_attach(device_t dev)
5754 {
5755 	struct iwm_softc *sc = device_get_softc(dev);
5756 	struct ieee80211com *ic = &sc->sc_ic;
5757 	int error;
5758 	int txq_i, i;
5759 
5760 	sc->sc_dev = dev;
5761 	sc->sc_attached = 1;
5762 	IWM_LOCK_INIT(sc);
5763 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5764 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5765 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5766 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5767 
5768 	sc->sc_notif_wait = iwm_notification_wait_init(sc);
5769 	if (sc->sc_notif_wait == NULL) {
5770 		device_printf(dev, "failed to init notification wait struct\n");
5771 		goto fail;
5772 	}
5773 
5774 	sc->sf_state = IWM_SF_UNINIT;
5775 
5776 	/* Init phy db */
5777 	sc->sc_phy_db = iwm_phy_db_init(sc);
5778 	if (!sc->sc_phy_db) {
5779 		device_printf(dev, "Cannot init phy_db\n");
5780 		goto fail;
5781 	}
5782 
5783 	/* Set EBS as successful as long as not stated otherwise by the FW. */
5784 	sc->last_ebs_successful = TRUE;
5785 
5786 	/* PCI attach */
5787 	error = iwm_pci_attach(dev);
5788 	if (error != 0)
5789 		goto fail;
5790 
5791 	sc->sc_wantresp = -1;
5792 
5793 	/* Match device id */
5794 	error = iwm_dev_check(dev);
5795 	if (error != 0)
5796 		goto fail;
5797 
5798 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5799 	/*
5800 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5801 	 * changed, and now the revision step also includes bit 0-1 (no more
5802 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5803 	 * in the old format.
5804 	 */
5805 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
5806 		int ret;
5807 		uint32_t hw_step;
5808 
5809 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5810 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5811 
5812 		if (iwm_prepare_card_hw(sc) != 0) {
5813 			device_printf(dev, "could not initialize hardware\n");
5814 			goto fail;
5815 		}
5816 
5817 		/*
5818 		 * In order to recognize C step the driver should read the
5819 		 * chip version id located at the AUX bus MISC address.
5820 		 */
5821 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5822 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5823 		DELAY(2);
5824 
5825 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5826 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5827 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5828 				   25000);
5829 		if (!ret) {
5830 			device_printf(sc->sc_dev,
5831 			    "Failed to wake up the nic\n");
5832 			goto fail;
5833 		}
5834 
5835 		if (iwm_nic_lock(sc)) {
5836 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5837 			hw_step |= IWM_ENABLE_WFPM;
5838 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5839 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5840 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5841 			if (hw_step == 0x3)
5842 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5843 						(IWM_SILICON_C_STEP << 2);
5844 			iwm_nic_unlock(sc);
5845 		} else {
5846 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5847 			goto fail;
5848 		}
5849 	}
5850 
5851 	/* special-case 7265D, it has the same PCI IDs. */
5852 	if (sc->cfg == &iwm7265_cfg &&
5853 	    (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) {
5854 		sc->cfg = &iwm7265d_cfg;
5855 	}
5856 
5857 	/* Allocate DMA memory for firmware transfers. */
5858 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5859 		device_printf(dev, "could not allocate memory for firmware\n");
5860 		goto fail;
5861 	}
5862 
5863 	/* Allocate "Keep Warm" page. */
5864 	if ((error = iwm_alloc_kw(sc)) != 0) {
5865 		device_printf(dev, "could not allocate keep warm page\n");
5866 		goto fail;
5867 	}
5868 
5869 	/* We use ICT interrupts */
5870 	if ((error = iwm_alloc_ict(sc)) != 0) {
5871 		device_printf(dev, "could not allocate ICT table\n");
5872 		goto fail;
5873 	}
5874 
5875 	/* Allocate TX scheduler "rings". */
5876 	if ((error = iwm_alloc_sched(sc)) != 0) {
5877 		device_printf(dev, "could not allocate TX scheduler rings\n");
5878 		goto fail;
5879 	}
5880 
5881 	/* Allocate TX rings */
5882 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5883 		if ((error = iwm_alloc_tx_ring(sc,
5884 		    &sc->txq[txq_i], txq_i)) != 0) {
5885 			device_printf(dev,
5886 			    "could not allocate TX ring %d\n",
5887 			    txq_i);
5888 			goto fail;
5889 		}
5890 	}
5891 
5892 	/* Allocate RX ring. */
5893 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5894 		device_printf(dev, "could not allocate RX ring\n");
5895 		goto fail;
5896 	}
5897 
5898 	/* Clear pending interrupts. */
5899 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5900 
5901 	ic->ic_softc = sc;
5902 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5903 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5904 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5905 
5906 	/* Set device capabilities. */
5907 	ic->ic_caps =
5908 	    IEEE80211_C_STA |
5909 	    IEEE80211_C_WPA |		/* WPA/RSN */
5910 	    IEEE80211_C_WME |
5911 	    IEEE80211_C_PMGT |
5912 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5913 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5914 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5915 	    ;
5916 	/* Advertise full-offload scanning */
5917 	ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD;
5918 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5919 		sc->sc_phyctxt[i].id = i;
5920 		sc->sc_phyctxt[i].color = 0;
5921 		sc->sc_phyctxt[i].ref = 0;
5922 		sc->sc_phyctxt[i].channel = NULL;
5923 	}
5924 
5925 	/* Default noise floor */
5926 	sc->sc_noise = -96;
5927 
5928 	/* Max RSSI */
5929 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5930 
5931 #ifdef IWM_DEBUG
5932 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5933 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5934 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5935 #endif
5936 
5937 	error = iwm_read_firmware(sc);
5938 	if (error) {
5939 		goto fail;
5940 	} else if (sc->sc_fw.fw_fp == NULL) {
5941 		/*
5942 		 * XXX Add a solution for properly deferring firmware load
5943 		 *     during bootup.
5944 		 */
5945 		goto fail;
5946 	} else {
5947 		sc->sc_preinit_hook.ich_func = iwm_preinit;
5948 		sc->sc_preinit_hook.ich_arg = sc;
5949 		if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5950 			device_printf(dev,
5951 			    "config_intrhook_establish failed\n");
5952 			goto fail;
5953 		}
5954 	}
5955 
5956 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5957 	    "<-%s\n", __func__);
5958 
5959 	return 0;
5960 
5961 	/* Free allocated memory if something failed during attachment. */
5962 fail:
5963 	iwm_detach_local(sc, 0);
5964 
5965 	return ENXIO;
5966 }
5967 
5968 static int
5969 iwm_is_valid_ether_addr(uint8_t *addr)
5970 {
5971 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5972 
5973 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5974 		return (FALSE);
5975 
5976 	return (TRUE);
5977 }
5978 
5979 static int
5980 iwm_wme_update(struct ieee80211com *ic)
5981 {
5982 #define IWM_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5983 	struct iwm_softc *sc = ic->ic_softc;
5984 	struct chanAccParams chp;
5985 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5986 	struct iwm_vap *ivp = IWM_VAP(vap);
5987 	struct iwm_node *in;
5988 	struct wmeParams tmp[WME_NUM_AC];
5989 	int aci, error;
5990 
5991 	if (vap == NULL)
5992 		return (0);
5993 
5994 	ieee80211_wme_ic_getparams(ic, &chp);
5995 
5996 	IEEE80211_LOCK(ic);
5997 	for (aci = 0; aci < WME_NUM_AC; aci++)
5998 		tmp[aci] = chp.cap_wmeParams[aci];
5999 	IEEE80211_UNLOCK(ic);
6000 
6001 	IWM_LOCK(sc);
6002 	for (aci = 0; aci < WME_NUM_AC; aci++) {
6003 		const struct wmeParams *ac = &tmp[aci];
6004 		ivp->queue_params[aci].aifsn = ac->wmep_aifsn;
6005 		ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin);
6006 		ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax);
6007 		ivp->queue_params[aci].edca_txop =
6008 		    IEEE80211_TXOP_TO_US(ac->wmep_txopLimit);
6009 	}
6010 	ivp->have_wme = TRUE;
6011 	if (ivp->is_uploaded && vap->iv_bss != NULL) {
6012 		in = IWM_NODE(vap->iv_bss);
6013 		if (in->in_assoc) {
6014 			if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
6015 				device_printf(sc->sc_dev,
6016 				    "%s: failed to update MAC\n", __func__);
6017 			}
6018 		}
6019 	}
6020 	IWM_UNLOCK(sc);
6021 
6022 	return (0);
6023 #undef IWM_EXP2
6024 }
6025 
6026 static void
6027 iwm_preinit(void *arg)
6028 {
6029 	struct iwm_softc *sc = arg;
6030 	device_t dev = sc->sc_dev;
6031 	struct ieee80211com *ic = &sc->sc_ic;
6032 	int error;
6033 
6034 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6035 	    "->%s\n", __func__);
6036 
6037 	IWM_LOCK(sc);
6038 	if ((error = iwm_start_hw(sc)) != 0) {
6039 		device_printf(dev, "could not initialize hardware\n");
6040 		IWM_UNLOCK(sc);
6041 		goto fail;
6042 	}
6043 
6044 	error = iwm_run_init_mvm_ucode(sc, 1);
6045 	iwm_stop_device(sc);
6046 	if (error) {
6047 		IWM_UNLOCK(sc);
6048 		goto fail;
6049 	}
6050 	device_printf(dev,
6051 	    "hw rev 0x%x, fw ver %s, address %s\n",
6052 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
6053 	    sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr));
6054 
6055 	/* not all hardware can do 5GHz band */
6056 	if (!sc->nvm_data->sku_cap_band_52GHz_enable)
6057 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
6058 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
6059 	IWM_UNLOCK(sc);
6060 
6061 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
6062 	    ic->ic_channels);
6063 
6064 	/*
6065 	 * At this point we've committed - if we fail to do setup,
6066 	 * we now also have to tear down the net80211 state.
6067 	 */
6068 	ieee80211_ifattach(ic);
6069 	ic->ic_vap_create = iwm_vap_create;
6070 	ic->ic_vap_delete = iwm_vap_delete;
6071 	ic->ic_raw_xmit = iwm_raw_xmit;
6072 	ic->ic_node_alloc = iwm_node_alloc;
6073 	ic->ic_scan_start = iwm_scan_start;
6074 	ic->ic_scan_end = iwm_scan_end;
6075 	ic->ic_update_mcast = iwm_update_mcast;
6076 	ic->ic_getradiocaps = iwm_init_channel_map;
6077 	ic->ic_set_channel = iwm_set_channel;
6078 	ic->ic_scan_curchan = iwm_scan_curchan;
6079 	ic->ic_scan_mindwell = iwm_scan_mindwell;
6080 	ic->ic_wme.wme_update = iwm_wme_update;
6081 	ic->ic_parent = iwm_parent;
6082 	ic->ic_transmit = iwm_transmit;
6083 	iwm_radiotap_attach(sc);
6084 	if (bootverbose)
6085 		ieee80211_announce(ic);
6086 
6087 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6088 	    "<-%s\n", __func__);
6089 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6090 
6091 	return;
6092 fail:
6093 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6094 	iwm_detach_local(sc, 0);
6095 }
6096 
6097 /*
6098  * Attach the interface to 802.11 radiotap.
6099  */
6100 static void
6101 iwm_radiotap_attach(struct iwm_softc *sc)
6102 {
6103         struct ieee80211com *ic = &sc->sc_ic;
6104 
6105 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6106 	    "->%s begin\n", __func__);
6107         ieee80211_radiotap_attach(ic,
6108             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6109                 IWM_TX_RADIOTAP_PRESENT,
6110             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6111                 IWM_RX_RADIOTAP_PRESENT);
6112 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6113 	    "->%s end\n", __func__);
6114 }
6115 
6116 static struct ieee80211vap *
6117 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6118     enum ieee80211_opmode opmode, int flags,
6119     const uint8_t bssid[IEEE80211_ADDR_LEN],
6120     const uint8_t mac[IEEE80211_ADDR_LEN])
6121 {
6122 	struct iwm_vap *ivp;
6123 	struct ieee80211vap *vap;
6124 
6125 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6126 		return NULL;
6127 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6128 	vap = &ivp->iv_vap;
6129 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6130 	vap->iv_bmissthreshold = 10;            /* override default */
6131 	/* Override with driver methods. */
6132 	ivp->iv_newstate = vap->iv_newstate;
6133 	vap->iv_newstate = iwm_newstate;
6134 
6135 	ivp->id = IWM_DEFAULT_MACID;
6136 	ivp->color = IWM_DEFAULT_COLOR;
6137 
6138 	ivp->have_wme = FALSE;
6139 	ivp->ps_disabled = FALSE;
6140 
6141 	ieee80211_ratectl_init(vap);
6142 	/* Complete setup. */
6143 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6144 	    mac);
6145 	ic->ic_opmode = opmode;
6146 
6147 	return vap;
6148 }
6149 
6150 static void
6151 iwm_vap_delete(struct ieee80211vap *vap)
6152 {
6153 	struct iwm_vap *ivp = IWM_VAP(vap);
6154 
6155 	ieee80211_ratectl_deinit(vap);
6156 	ieee80211_vap_detach(vap);
6157 	free(ivp, M_80211_VAP);
6158 }
6159 
6160 static void
6161 iwm_xmit_queue_drain(struct iwm_softc *sc)
6162 {
6163 	struct mbuf *m;
6164 	struct ieee80211_node *ni;
6165 
6166 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
6167 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
6168 		ieee80211_free_node(ni);
6169 		m_freem(m);
6170 	}
6171 }
6172 
6173 static void
6174 iwm_scan_start(struct ieee80211com *ic)
6175 {
6176 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6177 	struct iwm_softc *sc = ic->ic_softc;
6178 	int error;
6179 
6180 	IWM_LOCK(sc);
6181 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6182 		/* This should not be possible */
6183 		device_printf(sc->sc_dev,
6184 		    "%s: Previous scan not completed yet\n", __func__);
6185 	}
6186 	if (fw_has_capa(&sc->sc_fw.ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6187 		error = iwm_mvm_umac_scan(sc);
6188 	else
6189 		error = iwm_mvm_lmac_scan(sc);
6190 	if (error != 0) {
6191 		device_printf(sc->sc_dev, "could not initiate scan\n");
6192 		IWM_UNLOCK(sc);
6193 		ieee80211_cancel_scan(vap);
6194 	} else {
6195 		sc->sc_flags |= IWM_FLAG_SCAN_RUNNING;
6196 		iwm_led_blink_start(sc);
6197 		IWM_UNLOCK(sc);
6198 	}
6199 }
6200 
6201 static void
6202 iwm_scan_end(struct ieee80211com *ic)
6203 {
6204 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6205 	struct iwm_softc *sc = ic->ic_softc;
6206 
6207 	IWM_LOCK(sc);
6208 	iwm_led_blink_stop(sc);
6209 	if (vap->iv_state == IEEE80211_S_RUN)
6210 		iwm_mvm_led_enable(sc);
6211 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6212 		/*
6213 		 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because
6214 		 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq
6215 		 * taskqueue.
6216 		 */
6217 		sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
6218 		iwm_mvm_scan_stop_wait(sc);
6219 	}
6220 	IWM_UNLOCK(sc);
6221 
6222 	/*
6223 	 * Make sure we don't race, if sc_es_task is still enqueued here.
6224 	 * This is to make sure that it won't call ieee80211_scan_done
6225 	 * when we have already started the next scan.
6226 	 */
6227 	taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL);
6228 }
6229 
6230 static void
6231 iwm_update_mcast(struct ieee80211com *ic)
6232 {
6233 }
6234 
6235 static void
6236 iwm_set_channel(struct ieee80211com *ic)
6237 {
6238 }
6239 
6240 static void
6241 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6242 {
6243 }
6244 
6245 static void
6246 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6247 {
6248 	return;
6249 }
6250 
6251 void
6252 iwm_init_task(void *arg1)
6253 {
6254 	struct iwm_softc *sc = arg1;
6255 
6256 	IWM_LOCK(sc);
6257 	while (sc->sc_flags & IWM_FLAG_BUSY)
6258 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6259 	sc->sc_flags |= IWM_FLAG_BUSY;
6260 	iwm_stop(sc);
6261 	if (sc->sc_ic.ic_nrunning > 0)
6262 		iwm_init(sc);
6263 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6264 	wakeup(&sc->sc_flags);
6265 	IWM_UNLOCK(sc);
6266 }
6267 
6268 static int
6269 iwm_resume(device_t dev)
6270 {
6271 	struct iwm_softc *sc = device_get_softc(dev);
6272 	int do_reinit = 0;
6273 
6274 	/*
6275 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
6276 	 * PCI Tx retries from interfering with C3 CPU state.
6277 	 */
6278 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
6279 
6280 	if (!sc->sc_attached)
6281 		return 0;
6282 
6283 	iwm_init_task(device_get_softc(dev));
6284 
6285 	IWM_LOCK(sc);
6286 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6287 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6288 		do_reinit = 1;
6289 	}
6290 	IWM_UNLOCK(sc);
6291 
6292 	if (do_reinit)
6293 		ieee80211_resume_all(&sc->sc_ic);
6294 
6295 	return 0;
6296 }
6297 
6298 static int
6299 iwm_suspend(device_t dev)
6300 {
6301 	int do_stop = 0;
6302 	struct iwm_softc *sc = device_get_softc(dev);
6303 
6304 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6305 
6306 	if (!sc->sc_attached)
6307 		return (0);
6308 
6309 	ieee80211_suspend_all(&sc->sc_ic);
6310 
6311 	if (do_stop) {
6312 		IWM_LOCK(sc);
6313 		iwm_stop(sc);
6314 		sc->sc_flags |= IWM_FLAG_SCANNING;
6315 		IWM_UNLOCK(sc);
6316 	}
6317 
6318 	return (0);
6319 }
6320 
6321 static int
6322 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6323 {
6324 	struct iwm_fw_info *fw = &sc->sc_fw;
6325 	device_t dev = sc->sc_dev;
6326 	int i;
6327 
6328 	if (!sc->sc_attached)
6329 		return 0;
6330 	sc->sc_attached = 0;
6331 
6332 	if (do_net80211)
6333 		ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6334 
6335 	callout_drain(&sc->sc_led_blink_to);
6336 	callout_drain(&sc->sc_watchdog_to);
6337 	iwm_stop_device(sc);
6338 	if (do_net80211) {
6339 		IWM_LOCK(sc);
6340 		iwm_xmit_queue_drain(sc);
6341 		IWM_UNLOCK(sc);
6342 		ieee80211_ifdetach(&sc->sc_ic);
6343 	}
6344 
6345 	iwm_phy_db_free(sc->sc_phy_db);
6346 	sc->sc_phy_db = NULL;
6347 
6348 	iwm_free_nvm_data(sc->nvm_data);
6349 
6350 	/* Free descriptor rings */
6351 	iwm_free_rx_ring(sc, &sc->rxq);
6352 	for (i = 0; i < nitems(sc->txq); i++)
6353 		iwm_free_tx_ring(sc, &sc->txq[i]);
6354 
6355 	/* Free firmware */
6356 	if (fw->fw_fp != NULL)
6357 		iwm_fw_info_free(fw);
6358 
6359 	/* Free scheduler */
6360 	iwm_dma_contig_free(&sc->sched_dma);
6361 	iwm_dma_contig_free(&sc->ict_dma);
6362 	iwm_dma_contig_free(&sc->kw_dma);
6363 	iwm_dma_contig_free(&sc->fw_dma);
6364 
6365 	iwm_free_fw_paging(sc);
6366 
6367 	/* Finished with the hardware - detach things */
6368 	iwm_pci_detach(dev);
6369 
6370 	if (sc->sc_notif_wait != NULL) {
6371 		iwm_notification_wait_free(sc->sc_notif_wait);
6372 		sc->sc_notif_wait = NULL;
6373 	}
6374 
6375 	IWM_LOCK_DESTROY(sc);
6376 
6377 	return (0);
6378 }
6379 
6380 static int
6381 iwm_detach(device_t dev)
6382 {
6383 	struct iwm_softc *sc = device_get_softc(dev);
6384 
6385 	return (iwm_detach_local(sc, 1));
6386 }
6387 
6388 static device_method_t iwm_pci_methods[] = {
6389         /* Device interface */
6390         DEVMETHOD(device_probe,         iwm_probe),
6391         DEVMETHOD(device_attach,        iwm_attach),
6392         DEVMETHOD(device_detach,        iwm_detach),
6393         DEVMETHOD(device_suspend,       iwm_suspend),
6394         DEVMETHOD(device_resume,        iwm_resume),
6395 
6396         DEVMETHOD_END
6397 };
6398 
6399 static driver_t iwm_pci_driver = {
6400         "iwm",
6401         iwm_pci_methods,
6402         sizeof (struct iwm_softc)
6403 };
6404 
6405 static devclass_t iwm_devclass;
6406 
6407 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6408 MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver,
6409     iwm_devices, nitems(iwm_devices));
6410 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6411 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6412 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6413