1 /* $OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $ */ 2 3 /* 4 * Copyright (c) 2014 genua mbh <info@genua.de> 5 * Copyright (c) 2014 Fixup Software Ltd. 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Based on BSD-licensed source modules in the Linux iwlwifi driver, 22 * which were used as the reference documentation for this implementation. 23 * 24 * Driver version we are currently based off of is 25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) 26 * 27 *********************************************************************** 28 * 29 * This file is provided under a dual BSD/GPLv2 license. When using or 30 * redistributing this file, you may do so under either license. 31 * 32 * GPL LICENSE SUMMARY 33 * 34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. 35 * 36 * This program is free software; you can redistribute it and/or modify 37 * it under the terms of version 2 of the GNU General Public License as 38 * published by the Free Software Foundation. 39 * 40 * This program is distributed in the hope that it will be useful, but 41 * WITHOUT ANY WARRANTY; without even the implied warranty of 42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 43 * General Public License for more details. 44 * 45 * You should have received a copy of the GNU General Public License 46 * along with this program; if not, write to the Free Software 47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 48 * USA 49 * 50 * The full GNU General Public License is included in this distribution 51 * in the file called COPYING. 52 * 53 * Contact Information: 54 * Intel Linux Wireless <ilw@linux.intel.com> 55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 56 * 57 * 58 * BSD LICENSE 59 * 60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. 61 * All rights reserved. 62 * 63 * Redistribution and use in source and binary forms, with or without 64 * modification, are permitted provided that the following conditions 65 * are met: 66 * 67 * * Redistributions of source code must retain the above copyright 68 * notice, this list of conditions and the following disclaimer. 69 * * Redistributions in binary form must reproduce the above copyright 70 * notice, this list of conditions and the following disclaimer in 71 * the documentation and/or other materials provided with the 72 * distribution. 73 * * Neither the name Intel Corporation nor the names of its 74 * contributors may be used to endorse or promote products derived 75 * from this software without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 88 */ 89 90 /*- 91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 92 * 93 * Permission to use, copy, modify, and distribute this software for any 94 * purpose with or without fee is hereby granted, provided that the above 95 * copyright notice and this permission notice appear in all copies. 96 * 97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 104 */ 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_wlan.h" 109 #include "opt_iwm.h" 110 111 #include <sys/param.h> 112 #include <sys/bus.h> 113 #include <sys/conf.h> 114 #include <sys/endian.h> 115 #include <sys/firmware.h> 116 #include <sys/kernel.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/module.h> 121 #include <sys/proc.h> 122 #include <sys/rman.h> 123 #include <sys/socket.h> 124 #include <sys/sockio.h> 125 #include <sys/sysctl.h> 126 #include <sys/linker.h> 127 128 #include <machine/bus.h> 129 #include <machine/endian.h> 130 #include <machine/resource.h> 131 132 #include <dev/pci/pcivar.h> 133 #include <dev/pci/pcireg.h> 134 135 #include <net/bpf.h> 136 137 #include <net/if.h> 138 #include <net/if_var.h> 139 #include <net/if_arp.h> 140 #include <net/if_dl.h> 141 #include <net/if_media.h> 142 #include <net/if_types.h> 143 144 #include <netinet/in.h> 145 #include <netinet/in_systm.h> 146 #include <netinet/if_ether.h> 147 #include <netinet/ip.h> 148 149 #include <net80211/ieee80211_var.h> 150 #include <net80211/ieee80211_regdomain.h> 151 #include <net80211/ieee80211_ratectl.h> 152 #include <net80211/ieee80211_radiotap.h> 153 154 #include <dev/iwm/if_iwmreg.h> 155 #include <dev/iwm/if_iwmvar.h> 156 #include <dev/iwm/if_iwm_config.h> 157 #include <dev/iwm/if_iwm_debug.h> 158 #include <dev/iwm/if_iwm_notif_wait.h> 159 #include <dev/iwm/if_iwm_util.h> 160 #include <dev/iwm/if_iwm_binding.h> 161 #include <dev/iwm/if_iwm_phy_db.h> 162 #include <dev/iwm/if_iwm_mac_ctxt.h> 163 #include <dev/iwm/if_iwm_phy_ctxt.h> 164 #include <dev/iwm/if_iwm_time_event.h> 165 #include <dev/iwm/if_iwm_power.h> 166 #include <dev/iwm/if_iwm_scan.h> 167 #include <dev/iwm/if_iwm_sf.h> 168 #include <dev/iwm/if_iwm_sta.h> 169 170 #include <dev/iwm/if_iwm_pcie_trans.h> 171 #include <dev/iwm/if_iwm_led.h> 172 #include <dev/iwm/if_iwm_fw.h> 173 174 /* From DragonflyBSD */ 175 #define mtodoff(m, t, off) ((t)((m)->m_data + (off))) 176 177 const uint8_t iwm_nvm_channels[] = { 178 /* 2.4 GHz */ 179 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 180 /* 5 GHz */ 181 36, 40, 44, 48, 52, 56, 60, 64, 182 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 183 149, 153, 157, 161, 165 184 }; 185 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS, 186 "IWM_NUM_CHANNELS is too small"); 187 188 const uint8_t iwm_nvm_channels_8000[] = { 189 /* 2.4 GHz */ 190 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 191 /* 5 GHz */ 192 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 193 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 194 149, 153, 157, 161, 165, 169, 173, 177, 181 195 }; 196 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000, 197 "IWM_NUM_CHANNELS_8000 is too small"); 198 199 #define IWM_NUM_2GHZ_CHANNELS 14 200 #define IWM_N_HW_ADDR_MASK 0xF 201 202 /* 203 * XXX For now, there's simply a fixed set of rate table entries 204 * that are populated. 205 */ 206 const struct iwm_rate { 207 uint8_t rate; 208 uint8_t plcp; 209 } iwm_rates[] = { 210 { 2, IWM_RATE_1M_PLCP }, 211 { 4, IWM_RATE_2M_PLCP }, 212 { 11, IWM_RATE_5M_PLCP }, 213 { 22, IWM_RATE_11M_PLCP }, 214 { 12, IWM_RATE_6M_PLCP }, 215 { 18, IWM_RATE_9M_PLCP }, 216 { 24, IWM_RATE_12M_PLCP }, 217 { 36, IWM_RATE_18M_PLCP }, 218 { 48, IWM_RATE_24M_PLCP }, 219 { 72, IWM_RATE_36M_PLCP }, 220 { 96, IWM_RATE_48M_PLCP }, 221 { 108, IWM_RATE_54M_PLCP }, 222 }; 223 #define IWM_RIDX_CCK 0 224 #define IWM_RIDX_OFDM 4 225 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) 226 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) 227 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) 228 229 struct iwm_nvm_section { 230 uint16_t length; 231 uint8_t *data; 232 }; 233 234 #define IWM_UCODE_ALIVE_TIMEOUT hz 235 #define IWM_UCODE_CALIB_TIMEOUT (2*hz) 236 237 struct iwm_alive_data { 238 int valid; 239 uint32_t scd_base_addr; 240 }; 241 242 static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); 243 static int iwm_firmware_store_section(struct iwm_softc *, 244 enum iwm_ucode_type, 245 const uint8_t *, size_t); 246 static int iwm_set_default_calib(struct iwm_softc *, const void *); 247 static void iwm_fw_info_free(struct iwm_fw_info *); 248 static int iwm_read_firmware(struct iwm_softc *); 249 static int iwm_alloc_fwmem(struct iwm_softc *); 250 static int iwm_alloc_sched(struct iwm_softc *); 251 static int iwm_alloc_kw(struct iwm_softc *); 252 static int iwm_alloc_ict(struct iwm_softc *); 253 static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 254 static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 255 static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 256 static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, 257 int); 258 static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 259 static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 260 static void iwm_enable_interrupts(struct iwm_softc *); 261 static void iwm_restore_interrupts(struct iwm_softc *); 262 static void iwm_disable_interrupts(struct iwm_softc *); 263 static void iwm_ict_reset(struct iwm_softc *); 264 static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); 265 static void iwm_stop_device(struct iwm_softc *); 266 static void iwm_nic_config(struct iwm_softc *); 267 static int iwm_nic_rx_init(struct iwm_softc *); 268 static int iwm_nic_tx_init(struct iwm_softc *); 269 static int iwm_nic_init(struct iwm_softc *); 270 static int iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t); 271 static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, 272 uint16_t, uint8_t *, uint16_t *); 273 static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, 274 uint16_t *, uint32_t); 275 static uint32_t iwm_eeprom_channel_flags(uint16_t); 276 static void iwm_add_channel_band(struct iwm_softc *, 277 struct ieee80211_channel[], int, int *, int, size_t, 278 const uint8_t[]); 279 static void iwm_init_channel_map(struct ieee80211com *, int, int *, 280 struct ieee80211_channel[]); 281 static struct iwm_nvm_data * 282 iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, 283 const uint16_t *, const uint16_t *, 284 const uint16_t *, const uint16_t *, 285 const uint16_t *); 286 static void iwm_free_nvm_data(struct iwm_nvm_data *); 287 static void iwm_set_hw_address_family_8000(struct iwm_softc *, 288 struct iwm_nvm_data *, 289 const uint16_t *, 290 const uint16_t *); 291 static int iwm_get_sku(const struct iwm_softc *, const uint16_t *, 292 const uint16_t *); 293 static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *); 294 static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *, 295 const uint16_t *); 296 static int iwm_get_n_hw_addrs(const struct iwm_softc *, 297 const uint16_t *); 298 static void iwm_set_radio_cfg(const struct iwm_softc *, 299 struct iwm_nvm_data *, uint32_t); 300 static struct iwm_nvm_data * 301 iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); 302 static int iwm_nvm_init(struct iwm_softc *); 303 static int iwm_pcie_load_section(struct iwm_softc *, uint8_t, 304 const struct iwm_fw_desc *); 305 static int iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t, 306 bus_addr_t, uint32_t); 307 static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, 308 const struct iwm_fw_img *, 309 int, int *); 310 static int iwm_pcie_load_cpu_sections(struct iwm_softc *, 311 const struct iwm_fw_img *, 312 int, int *); 313 static int iwm_pcie_load_given_ucode_8000(struct iwm_softc *, 314 const struct iwm_fw_img *); 315 static int iwm_pcie_load_given_ucode(struct iwm_softc *, 316 const struct iwm_fw_img *); 317 static int iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *); 318 static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); 319 static int iwm_send_phy_cfg_cmd(struct iwm_softc *); 320 static int iwm_load_ucode_wait_alive(struct iwm_softc *, 321 enum iwm_ucode_type); 322 static int iwm_run_init_ucode(struct iwm_softc *, int); 323 static int iwm_config_ltr(struct iwm_softc *sc); 324 static int iwm_rx_addbuf(struct iwm_softc *, int, int); 325 static void iwm_rx_rx_phy_cmd(struct iwm_softc *, 326 struct iwm_rx_packet *); 327 static int iwm_get_noise(struct iwm_softc *, 328 const struct iwm_statistics_rx_non_phy *); 329 static void iwm_handle_rx_statistics(struct iwm_softc *, 330 struct iwm_rx_packet *); 331 static bool iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, 332 uint32_t, bool); 333 static int iwm_rx_tx_cmd_single(struct iwm_softc *, 334 struct iwm_rx_packet *, 335 struct iwm_node *); 336 static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *); 337 static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); 338 #if 0 339 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, 340 uint16_t); 341 #endif 342 static const struct iwm_rate * 343 iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, 344 struct mbuf *, struct iwm_tx_cmd *); 345 static int iwm_tx(struct iwm_softc *, struct mbuf *, 346 struct ieee80211_node *, int); 347 static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, 348 const struct ieee80211_bpf_params *); 349 static int iwm_update_quotas(struct iwm_softc *, struct iwm_vap *); 350 static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); 351 static struct ieee80211_node * 352 iwm_node_alloc(struct ieee80211vap *, 353 const uint8_t[IEEE80211_ADDR_LEN]); 354 static uint8_t iwm_rate_from_ucode_rate(uint32_t); 355 static int iwm_rate2ridx(struct iwm_softc *, uint8_t); 356 static void iwm_setrates(struct iwm_softc *, struct iwm_node *, int); 357 static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); 358 static void iwm_endscan_cb(void *, int); 359 static int iwm_send_bt_init_conf(struct iwm_softc *); 360 static boolean_t iwm_is_lar_supported(struct iwm_softc *); 361 static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *); 362 static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); 363 static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); 364 static int iwm_init_hw(struct iwm_softc *); 365 static void iwm_init(struct iwm_softc *); 366 static void iwm_start(struct iwm_softc *); 367 static void iwm_stop(struct iwm_softc *); 368 static void iwm_watchdog(void *); 369 static void iwm_parent(struct ieee80211com *); 370 #ifdef IWM_DEBUG 371 static const char * 372 iwm_desc_lookup(uint32_t); 373 static void iwm_nic_error(struct iwm_softc *); 374 static void iwm_nic_umac_error(struct iwm_softc *); 375 #endif 376 static void iwm_handle_rxb(struct iwm_softc *, struct mbuf *); 377 static void iwm_notif_intr(struct iwm_softc *); 378 static void iwm_intr(void *); 379 static int iwm_attach(device_t); 380 static int iwm_is_valid_ether_addr(uint8_t *); 381 static void iwm_preinit(void *); 382 static int iwm_detach_local(struct iwm_softc *sc, int); 383 static void iwm_init_task(void *); 384 static void iwm_radiotap_attach(struct iwm_softc *); 385 static struct ieee80211vap * 386 iwm_vap_create(struct ieee80211com *, 387 const char [IFNAMSIZ], int, 388 enum ieee80211_opmode, int, 389 const uint8_t [IEEE80211_ADDR_LEN], 390 const uint8_t [IEEE80211_ADDR_LEN]); 391 static void iwm_vap_delete(struct ieee80211vap *); 392 static void iwm_xmit_queue_drain(struct iwm_softc *); 393 static void iwm_scan_start(struct ieee80211com *); 394 static void iwm_scan_end(struct ieee80211com *); 395 static void iwm_update_mcast(struct ieee80211com *); 396 static void iwm_set_channel(struct ieee80211com *); 397 static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); 398 static void iwm_scan_mindwell(struct ieee80211_scan_state *); 399 static int iwm_detach(device_t); 400 401 static int iwm_lar_disable = 0; 402 TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable); 403 404 /* 405 * Firmware parser. 406 */ 407 408 static int 409 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) 410 { 411 const struct iwm_fw_cscheme_list *l = (const void *)data; 412 413 if (dlen < sizeof(*l) || 414 dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) 415 return EINVAL; 416 417 /* we don't actually store anything for now, always use s/w crypto */ 418 419 return 0; 420 } 421 422 static int 423 iwm_firmware_store_section(struct iwm_softc *sc, 424 enum iwm_ucode_type type, const uint8_t *data, size_t dlen) 425 { 426 struct iwm_fw_img *fws; 427 struct iwm_fw_desc *fwone; 428 429 if (type >= IWM_UCODE_TYPE_MAX) 430 return EINVAL; 431 if (dlen < sizeof(uint32_t)) 432 return EINVAL; 433 434 fws = &sc->sc_fw.img[type]; 435 if (fws->fw_count >= IWM_UCODE_SECTION_MAX) 436 return EINVAL; 437 438 fwone = &fws->sec[fws->fw_count]; 439 440 /* first 32bit are device load offset */ 441 memcpy(&fwone->offset, data, sizeof(uint32_t)); 442 443 /* rest is data */ 444 fwone->data = data + sizeof(uint32_t); 445 fwone->len = dlen - sizeof(uint32_t); 446 447 fws->fw_count++; 448 449 return 0; 450 } 451 452 #define IWM_DEFAULT_SCAN_CHANNELS 40 453 454 /* iwlwifi: iwl-drv.c */ 455 struct iwm_tlv_calib_data { 456 uint32_t ucode_type; 457 struct iwm_tlv_calib_ctrl calib; 458 } __packed; 459 460 static int 461 iwm_set_default_calib(struct iwm_softc *sc, const void *data) 462 { 463 const struct iwm_tlv_calib_data *def_calib = data; 464 uint32_t ucode_type = le32toh(def_calib->ucode_type); 465 466 if (ucode_type >= IWM_UCODE_TYPE_MAX) { 467 device_printf(sc->sc_dev, 468 "Wrong ucode_type %u for default " 469 "calibration.\n", ucode_type); 470 return EINVAL; 471 } 472 473 sc->sc_default_calib[ucode_type].flow_trigger = 474 def_calib->calib.flow_trigger; 475 sc->sc_default_calib[ucode_type].event_trigger = 476 def_calib->calib.event_trigger; 477 478 return 0; 479 } 480 481 static int 482 iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data, 483 struct iwm_ucode_capabilities *capa) 484 { 485 const struct iwm_ucode_api *ucode_api = (const void *)data; 486 uint32_t api_index = le32toh(ucode_api->api_index); 487 uint32_t api_flags = le32toh(ucode_api->api_flags); 488 int i; 489 490 if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) { 491 device_printf(sc->sc_dev, 492 "api flags index %d larger than supported by driver\n", 493 api_index); 494 /* don't return an error so we can load FW that has more bits */ 495 return 0; 496 } 497 498 for (i = 0; i < 32; i++) { 499 if (api_flags & (1U << i)) 500 setbit(capa->enabled_api, i + 32 * api_index); 501 } 502 503 return 0; 504 } 505 506 static int 507 iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data, 508 struct iwm_ucode_capabilities *capa) 509 { 510 const struct iwm_ucode_capa *ucode_capa = (const void *)data; 511 uint32_t api_index = le32toh(ucode_capa->api_index); 512 uint32_t api_flags = le32toh(ucode_capa->api_capa); 513 int i; 514 515 if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { 516 device_printf(sc->sc_dev, 517 "capa flags index %d larger than supported by driver\n", 518 api_index); 519 /* don't return an error so we can load FW that has more bits */ 520 return 0; 521 } 522 523 for (i = 0; i < 32; i++) { 524 if (api_flags & (1U << i)) 525 setbit(capa->enabled_capa, i + 32 * api_index); 526 } 527 528 return 0; 529 } 530 531 static void 532 iwm_fw_info_free(struct iwm_fw_info *fw) 533 { 534 firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); 535 fw->fw_fp = NULL; 536 memset(fw->img, 0, sizeof(fw->img)); 537 } 538 539 static int 540 iwm_read_firmware(struct iwm_softc *sc) 541 { 542 struct iwm_fw_info *fw = &sc->sc_fw; 543 const struct iwm_tlv_ucode_header *uhdr; 544 const struct iwm_ucode_tlv *tlv; 545 struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa; 546 enum iwm_ucode_tlv_type tlv_type; 547 const struct firmware *fwp; 548 const uint8_t *data; 549 uint32_t tlv_len; 550 uint32_t usniffer_img; 551 const uint8_t *tlv_data; 552 uint32_t paging_mem_size; 553 int num_of_cpus; 554 int error = 0; 555 size_t len; 556 557 /* 558 * Load firmware into driver memory. 559 * fw_fp will be set. 560 */ 561 fwp = firmware_get(sc->cfg->fw_name); 562 if (fwp == NULL) { 563 device_printf(sc->sc_dev, 564 "could not read firmware %s (error %d)\n", 565 sc->cfg->fw_name, error); 566 goto out; 567 } 568 fw->fw_fp = fwp; 569 570 /* (Re-)Initialize default values. */ 571 capa->flags = 0; 572 capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH; 573 capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS; 574 memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa)); 575 memset(capa->enabled_api, 0, sizeof(capa->enabled_api)); 576 memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); 577 578 /* 579 * Parse firmware contents 580 */ 581 582 uhdr = (const void *)fw->fw_fp->data; 583 if (*(const uint32_t *)fw->fw_fp->data != 0 584 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { 585 device_printf(sc->sc_dev, "invalid firmware %s\n", 586 sc->cfg->fw_name); 587 error = EINVAL; 588 goto out; 589 } 590 591 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)", 592 IWM_UCODE_MAJOR(le32toh(uhdr->ver)), 593 IWM_UCODE_MINOR(le32toh(uhdr->ver)), 594 IWM_UCODE_API(le32toh(uhdr->ver))); 595 data = uhdr->data; 596 len = fw->fw_fp->datasize - sizeof(*uhdr); 597 598 while (len >= sizeof(*tlv)) { 599 len -= sizeof(*tlv); 600 tlv = (const void *)data; 601 602 tlv_len = le32toh(tlv->length); 603 tlv_type = le32toh(tlv->type); 604 tlv_data = tlv->data; 605 606 if (len < tlv_len) { 607 device_printf(sc->sc_dev, 608 "firmware too short: %zu bytes\n", 609 len); 610 error = EINVAL; 611 goto parse_out; 612 } 613 len -= roundup2(tlv_len, 4); 614 data += sizeof(*tlv) + roundup2(tlv_len, 4); 615 616 switch ((int)tlv_type) { 617 case IWM_UCODE_TLV_PROBE_MAX_LEN: 618 if (tlv_len != sizeof(uint32_t)) { 619 device_printf(sc->sc_dev, 620 "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n", 621 __func__, tlv_len); 622 error = EINVAL; 623 goto parse_out; 624 } 625 capa->max_probe_length = 626 le32_to_cpup((const uint32_t *)tlv_data); 627 /* limit it to something sensible */ 628 if (capa->max_probe_length > 629 IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { 630 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 631 "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " 632 "ridiculous\n", __func__); 633 error = EINVAL; 634 goto parse_out; 635 } 636 break; 637 case IWM_UCODE_TLV_PAN: 638 if (tlv_len) { 639 device_printf(sc->sc_dev, 640 "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n", 641 __func__, tlv_len); 642 error = EINVAL; 643 goto parse_out; 644 } 645 capa->flags |= IWM_UCODE_TLV_FLAGS_PAN; 646 break; 647 case IWM_UCODE_TLV_FLAGS: 648 if (tlv_len < sizeof(uint32_t)) { 649 device_printf(sc->sc_dev, 650 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n", 651 __func__, tlv_len); 652 error = EINVAL; 653 goto parse_out; 654 } 655 if (tlv_len % sizeof(uint32_t)) { 656 device_printf(sc->sc_dev, 657 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n", 658 __func__, tlv_len); 659 error = EINVAL; 660 goto parse_out; 661 } 662 /* 663 * Apparently there can be many flags, but Linux driver 664 * parses only the first one, and so do we. 665 * 666 * XXX: why does this override IWM_UCODE_TLV_PAN? 667 * Intentional or a bug? Observations from 668 * current firmware file: 669 * 1) TLV_PAN is parsed first 670 * 2) TLV_FLAGS contains TLV_FLAGS_PAN 671 * ==> this resets TLV_PAN to itself... hnnnk 672 */ 673 capa->flags = le32_to_cpup((const uint32_t *)tlv_data); 674 break; 675 case IWM_UCODE_TLV_CSCHEME: 676 if ((error = iwm_store_cscheme(sc, 677 tlv_data, tlv_len)) != 0) { 678 device_printf(sc->sc_dev, 679 "%s: iwm_store_cscheme(): returned %d\n", 680 __func__, error); 681 goto parse_out; 682 } 683 break; 684 case IWM_UCODE_TLV_NUM_OF_CPU: 685 if (tlv_len != sizeof(uint32_t)) { 686 device_printf(sc->sc_dev, 687 "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n", 688 __func__, tlv_len); 689 error = EINVAL; 690 goto parse_out; 691 } 692 num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data); 693 if (num_of_cpus == 2) { 694 fw->img[IWM_UCODE_REGULAR].is_dual_cpus = 695 TRUE; 696 fw->img[IWM_UCODE_INIT].is_dual_cpus = 697 TRUE; 698 fw->img[IWM_UCODE_WOWLAN].is_dual_cpus = 699 TRUE; 700 } else if ((num_of_cpus > 2) || (num_of_cpus < 1)) { 701 device_printf(sc->sc_dev, 702 "%s: Driver supports only 1 or 2 CPUs\n", 703 __func__); 704 error = EINVAL; 705 goto parse_out; 706 } 707 break; 708 case IWM_UCODE_TLV_SEC_RT: 709 if ((error = iwm_firmware_store_section(sc, 710 IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) { 711 device_printf(sc->sc_dev, 712 "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n", 713 __func__, error); 714 goto parse_out; 715 } 716 break; 717 case IWM_UCODE_TLV_SEC_INIT: 718 if ((error = iwm_firmware_store_section(sc, 719 IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) { 720 device_printf(sc->sc_dev, 721 "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n", 722 __func__, error); 723 goto parse_out; 724 } 725 break; 726 case IWM_UCODE_TLV_SEC_WOWLAN: 727 if ((error = iwm_firmware_store_section(sc, 728 IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) { 729 device_printf(sc->sc_dev, 730 "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n", 731 __func__, error); 732 goto parse_out; 733 } 734 break; 735 case IWM_UCODE_TLV_DEF_CALIB: 736 if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { 737 device_printf(sc->sc_dev, 738 "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n", 739 __func__, tlv_len, 740 sizeof(struct iwm_tlv_calib_data)); 741 error = EINVAL; 742 goto parse_out; 743 } 744 if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { 745 device_printf(sc->sc_dev, 746 "%s: iwm_set_default_calib() failed: %d\n", 747 __func__, error); 748 goto parse_out; 749 } 750 break; 751 case IWM_UCODE_TLV_PHY_SKU: 752 if (tlv_len != sizeof(uint32_t)) { 753 error = EINVAL; 754 device_printf(sc->sc_dev, 755 "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n", 756 __func__, tlv_len); 757 goto parse_out; 758 } 759 sc->sc_fw.phy_config = 760 le32_to_cpup((const uint32_t *)tlv_data); 761 sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config & 762 IWM_FW_PHY_CFG_TX_CHAIN) >> 763 IWM_FW_PHY_CFG_TX_CHAIN_POS; 764 sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config & 765 IWM_FW_PHY_CFG_RX_CHAIN) >> 766 IWM_FW_PHY_CFG_RX_CHAIN_POS; 767 break; 768 769 case IWM_UCODE_TLV_API_CHANGES_SET: { 770 if (tlv_len != sizeof(struct iwm_ucode_api)) { 771 error = EINVAL; 772 goto parse_out; 773 } 774 if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) { 775 error = EINVAL; 776 goto parse_out; 777 } 778 break; 779 } 780 781 case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { 782 if (tlv_len != sizeof(struct iwm_ucode_capa)) { 783 error = EINVAL; 784 goto parse_out; 785 } 786 if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) { 787 error = EINVAL; 788 goto parse_out; 789 } 790 break; 791 } 792 793 case IWM_UCODE_TLV_CMD_VERSIONS: 794 case IWM_UCODE_TLV_SDIO_ADMA_ADDR: 795 case IWM_UCODE_TLV_FW_GSCAN_CAPA: 796 /* ignore, not used by current driver */ 797 break; 798 799 case IWM_UCODE_TLV_SEC_RT_USNIFFER: 800 if ((error = iwm_firmware_store_section(sc, 801 IWM_UCODE_REGULAR_USNIFFER, tlv_data, 802 tlv_len)) != 0) 803 goto parse_out; 804 break; 805 806 case IWM_UCODE_TLV_PAGING: 807 if (tlv_len != sizeof(uint32_t)) { 808 error = EINVAL; 809 goto parse_out; 810 } 811 paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data); 812 813 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 814 "%s: Paging: paging enabled (size = %u bytes)\n", 815 __func__, paging_mem_size); 816 if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) { 817 device_printf(sc->sc_dev, 818 "%s: Paging: driver supports up to %u bytes for paging image\n", 819 __func__, IWM_MAX_PAGING_IMAGE_SIZE); 820 error = EINVAL; 821 goto out; 822 } 823 if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) { 824 device_printf(sc->sc_dev, 825 "%s: Paging: image isn't multiple %u\n", 826 __func__, IWM_FW_PAGING_SIZE); 827 error = EINVAL; 828 goto out; 829 } 830 831 sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size = 832 paging_mem_size; 833 usniffer_img = IWM_UCODE_REGULAR_USNIFFER; 834 sc->sc_fw.img[usniffer_img].paging_mem_size = 835 paging_mem_size; 836 break; 837 838 case IWM_UCODE_TLV_N_SCAN_CHANNELS: 839 if (tlv_len != sizeof(uint32_t)) { 840 error = EINVAL; 841 goto parse_out; 842 } 843 capa->n_scan_channels = 844 le32_to_cpup((const uint32_t *)tlv_data); 845 break; 846 847 case IWM_UCODE_TLV_FW_VERSION: 848 if (tlv_len != sizeof(uint32_t) * 3) { 849 error = EINVAL; 850 goto parse_out; 851 } 852 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), 853 "%u.%u.%u", 854 le32toh(((const uint32_t *)tlv_data)[0]), 855 le32toh(((const uint32_t *)tlv_data)[1]), 856 le32toh(((const uint32_t *)tlv_data)[2])); 857 break; 858 859 case IWM_UCODE_TLV_FW_MEM_SEG: 860 break; 861 862 default: 863 device_printf(sc->sc_dev, 864 "%s: unknown firmware section %d, abort\n", 865 __func__, tlv_type); 866 error = EINVAL; 867 goto parse_out; 868 } 869 } 870 871 KASSERT(error == 0, ("unhandled error")); 872 873 parse_out: 874 if (error) { 875 device_printf(sc->sc_dev, "firmware parse error %d, " 876 "section type %d\n", error, tlv_type); 877 } 878 879 out: 880 if (error) { 881 if (fw->fw_fp != NULL) 882 iwm_fw_info_free(fw); 883 } 884 885 return error; 886 } 887 888 /* 889 * DMA resource routines 890 */ 891 892 /* fwmem is used to load firmware onto the card */ 893 static int 894 iwm_alloc_fwmem(struct iwm_softc *sc) 895 { 896 /* Must be aligned on a 16-byte boundary. */ 897 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, 898 IWM_FH_MEM_TB_MAX_LENGTH, 16); 899 } 900 901 /* tx scheduler rings. not used? */ 902 static int 903 iwm_alloc_sched(struct iwm_softc *sc) 904 { 905 /* TX scheduler rings must be aligned on a 1KB boundary. */ 906 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 907 nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); 908 } 909 910 /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ 911 static int 912 iwm_alloc_kw(struct iwm_softc *sc) 913 { 914 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); 915 } 916 917 /* interrupt cause table */ 918 static int 919 iwm_alloc_ict(struct iwm_softc *sc) 920 { 921 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 922 IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT); 923 } 924 925 static int 926 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 927 { 928 bus_size_t size; 929 size_t descsz; 930 int count, i, error; 931 932 ring->cur = 0; 933 if (sc->cfg->mqrx_supported) { 934 count = IWM_RX_MQ_RING_COUNT; 935 descsz = sizeof(uint64_t); 936 } else { 937 count = IWM_RX_LEGACY_RING_COUNT; 938 descsz = sizeof(uint32_t); 939 } 940 941 /* Allocate RX descriptors (256-byte aligned). */ 942 size = count * descsz; 943 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 944 256); 945 if (error != 0) { 946 device_printf(sc->sc_dev, 947 "could not allocate RX ring DMA memory\n"); 948 goto fail; 949 } 950 ring->desc = ring->free_desc_dma.vaddr; 951 952 /* Allocate RX status area (16-byte aligned). */ 953 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 954 sizeof(*ring->stat), 16); 955 if (error != 0) { 956 device_printf(sc->sc_dev, 957 "could not allocate RX status DMA memory\n"); 958 goto fail; 959 } 960 ring->stat = ring->stat_dma.vaddr; 961 962 if (sc->cfg->mqrx_supported) { 963 size = count * sizeof(uint32_t); 964 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, 965 size, 256); 966 if (error != 0) { 967 device_printf(sc->sc_dev, 968 "could not allocate RX ring DMA memory\n"); 969 goto fail; 970 } 971 } 972 973 /* Create RX buffer DMA tag. */ 974 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 975 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 976 IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 977 if (error != 0) { 978 device_printf(sc->sc_dev, 979 "%s: could not create RX buf DMA tag, error %d\n", 980 __func__, error); 981 goto fail; 982 } 983 984 /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */ 985 error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map); 986 if (error != 0) { 987 device_printf(sc->sc_dev, 988 "%s: could not create RX buf DMA map, error %d\n", 989 __func__, error); 990 goto fail; 991 } 992 993 /* 994 * Allocate and map RX buffers. 995 */ 996 for (i = 0; i < count; i++) { 997 struct iwm_rx_data *data = &ring->data[i]; 998 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 999 if (error != 0) { 1000 device_printf(sc->sc_dev, 1001 "%s: could not create RX buf DMA map, error %d\n", 1002 __func__, error); 1003 goto fail; 1004 } 1005 data->m = NULL; 1006 1007 if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { 1008 goto fail; 1009 } 1010 } 1011 return 0; 1012 1013 fail: iwm_free_rx_ring(sc, ring); 1014 return error; 1015 } 1016 1017 static void 1018 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1019 { 1020 /* Reset the ring state */ 1021 ring->cur = 0; 1022 1023 /* 1024 * The hw rx ring index in shared memory must also be cleared, 1025 * otherwise the discrepancy can cause reprocessing chaos. 1026 */ 1027 if (sc->rxq.stat) 1028 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 1029 } 1030 1031 static void 1032 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1033 { 1034 int count, i; 1035 1036 iwm_dma_contig_free(&ring->free_desc_dma); 1037 iwm_dma_contig_free(&ring->stat_dma); 1038 iwm_dma_contig_free(&ring->used_desc_dma); 1039 1040 count = sc->cfg->mqrx_supported ? IWM_RX_MQ_RING_COUNT : 1041 IWM_RX_LEGACY_RING_COUNT; 1042 1043 for (i = 0; i < count; i++) { 1044 struct iwm_rx_data *data = &ring->data[i]; 1045 1046 if (data->m != NULL) { 1047 bus_dmamap_sync(ring->data_dmat, data->map, 1048 BUS_DMASYNC_POSTREAD); 1049 bus_dmamap_unload(ring->data_dmat, data->map); 1050 m_freem(data->m); 1051 data->m = NULL; 1052 } 1053 if (data->map != NULL) { 1054 bus_dmamap_destroy(ring->data_dmat, data->map); 1055 data->map = NULL; 1056 } 1057 } 1058 if (ring->spare_map != NULL) { 1059 bus_dmamap_destroy(ring->data_dmat, ring->spare_map); 1060 ring->spare_map = NULL; 1061 } 1062 if (ring->data_dmat != NULL) { 1063 bus_dma_tag_destroy(ring->data_dmat); 1064 ring->data_dmat = NULL; 1065 } 1066 } 1067 1068 static int 1069 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) 1070 { 1071 bus_addr_t paddr; 1072 bus_size_t size; 1073 size_t maxsize; 1074 int nsegments; 1075 int i, error; 1076 1077 ring->qid = qid; 1078 ring->queued = 0; 1079 ring->cur = 0; 1080 1081 /* Allocate TX descriptors (256-byte aligned). */ 1082 size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); 1083 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 1084 if (error != 0) { 1085 device_printf(sc->sc_dev, 1086 "could not allocate TX ring DMA memory\n"); 1087 goto fail; 1088 } 1089 ring->desc = ring->desc_dma.vaddr; 1090 1091 /* 1092 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need 1093 * to allocate commands space for other rings. 1094 */ 1095 if (qid > IWM_CMD_QUEUE) 1096 return 0; 1097 1098 size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); 1099 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); 1100 if (error != 0) { 1101 device_printf(sc->sc_dev, 1102 "could not allocate TX cmd DMA memory\n"); 1103 goto fail; 1104 } 1105 ring->cmd = ring->cmd_dma.vaddr; 1106 1107 /* FW commands may require more mapped space than packets. */ 1108 if (qid == IWM_CMD_QUEUE) { 1109 maxsize = IWM_RBUF_SIZE; 1110 nsegments = 1; 1111 } else { 1112 maxsize = MCLBYTES; 1113 nsegments = IWM_MAX_SCATTER - 2; 1114 } 1115 1116 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 1117 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1118 nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat); 1119 if (error != 0) { 1120 device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); 1121 goto fail; 1122 } 1123 1124 paddr = ring->cmd_dma.paddr; 1125 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1126 struct iwm_tx_data *data = &ring->data[i]; 1127 1128 data->cmd_paddr = paddr; 1129 data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) 1130 + offsetof(struct iwm_tx_cmd, scratch); 1131 paddr += sizeof(struct iwm_device_cmd); 1132 1133 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1134 if (error != 0) { 1135 device_printf(sc->sc_dev, 1136 "could not create TX buf DMA map\n"); 1137 goto fail; 1138 } 1139 } 1140 KASSERT(paddr == ring->cmd_dma.paddr + size, 1141 ("invalid physical address")); 1142 return 0; 1143 1144 fail: iwm_free_tx_ring(sc, ring); 1145 return error; 1146 } 1147 1148 static void 1149 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1150 { 1151 int i; 1152 1153 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1154 struct iwm_tx_data *data = &ring->data[i]; 1155 1156 if (data->m != NULL) { 1157 bus_dmamap_sync(ring->data_dmat, data->map, 1158 BUS_DMASYNC_POSTWRITE); 1159 bus_dmamap_unload(ring->data_dmat, data->map); 1160 m_freem(data->m); 1161 data->m = NULL; 1162 } 1163 } 1164 /* Clear TX descriptors. */ 1165 memset(ring->desc, 0, ring->desc_dma.size); 1166 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1167 BUS_DMASYNC_PREWRITE); 1168 sc->qfullmsk &= ~(1 << ring->qid); 1169 ring->queued = 0; 1170 ring->cur = 0; 1171 1172 if (ring->qid == IWM_CMD_QUEUE && sc->cmd_hold_nic_awake) 1173 iwm_pcie_clear_cmd_in_flight(sc); 1174 } 1175 1176 static void 1177 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1178 { 1179 int i; 1180 1181 iwm_dma_contig_free(&ring->desc_dma); 1182 iwm_dma_contig_free(&ring->cmd_dma); 1183 1184 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1185 struct iwm_tx_data *data = &ring->data[i]; 1186 1187 if (data->m != NULL) { 1188 bus_dmamap_sync(ring->data_dmat, data->map, 1189 BUS_DMASYNC_POSTWRITE); 1190 bus_dmamap_unload(ring->data_dmat, data->map); 1191 m_freem(data->m); 1192 data->m = NULL; 1193 } 1194 if (data->map != NULL) { 1195 bus_dmamap_destroy(ring->data_dmat, data->map); 1196 data->map = NULL; 1197 } 1198 } 1199 if (ring->data_dmat != NULL) { 1200 bus_dma_tag_destroy(ring->data_dmat); 1201 ring->data_dmat = NULL; 1202 } 1203 } 1204 1205 /* 1206 * High-level hardware frobbing routines 1207 */ 1208 1209 static void 1210 iwm_enable_interrupts(struct iwm_softc *sc) 1211 { 1212 sc->sc_intmask = IWM_CSR_INI_SET_MASK; 1213 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1214 } 1215 1216 static void 1217 iwm_restore_interrupts(struct iwm_softc *sc) 1218 { 1219 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1220 } 1221 1222 static void 1223 iwm_disable_interrupts(struct iwm_softc *sc) 1224 { 1225 /* disable interrupts */ 1226 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 1227 1228 /* acknowledge all interrupts */ 1229 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1230 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); 1231 } 1232 1233 static void 1234 iwm_ict_reset(struct iwm_softc *sc) 1235 { 1236 iwm_disable_interrupts(sc); 1237 1238 /* Reset ICT table. */ 1239 memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); 1240 sc->ict_cur = 0; 1241 1242 /* Set physical address of ICT table (4KB aligned). */ 1243 IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, 1244 IWM_CSR_DRAM_INT_TBL_ENABLE 1245 | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER 1246 | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK 1247 | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); 1248 1249 /* Switch to ICT interrupt mode in driver. */ 1250 sc->sc_flags |= IWM_FLAG_USE_ICT; 1251 1252 /* Re-enable interrupts. */ 1253 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1254 iwm_enable_interrupts(sc); 1255 } 1256 1257 /* iwlwifi pcie/trans.c */ 1258 1259 /* 1260 * Since this .. hard-resets things, it's time to actually 1261 * mark the first vap (if any) as having no mac context. 1262 * It's annoying, but since the driver is potentially being 1263 * stop/start'ed whilst active (thanks openbsd port!) we 1264 * have to correctly track this. 1265 */ 1266 static void 1267 iwm_stop_device(struct iwm_softc *sc) 1268 { 1269 struct ieee80211com *ic = &sc->sc_ic; 1270 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1271 int chnl, qid; 1272 uint32_t mask = 0; 1273 1274 /* tell the device to stop sending interrupts */ 1275 iwm_disable_interrupts(sc); 1276 1277 /* 1278 * FreeBSD-local: mark the first vap as not-uploaded, 1279 * so the next transition through auth/assoc 1280 * will correctly populate the MAC context. 1281 */ 1282 if (vap) { 1283 struct iwm_vap *iv = IWM_VAP(vap); 1284 iv->phy_ctxt = NULL; 1285 iv->is_uploaded = 0; 1286 } 1287 sc->sc_firmware_state = 0; 1288 sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE; 1289 1290 /* device going down, Stop using ICT table */ 1291 sc->sc_flags &= ~IWM_FLAG_USE_ICT; 1292 1293 /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ 1294 1295 if (iwm_nic_lock(sc)) { 1296 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1297 1298 /* Stop each Tx DMA channel */ 1299 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1300 IWM_WRITE(sc, 1301 IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); 1302 mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl); 1303 } 1304 1305 /* Wait for DMA channels to be idle */ 1306 if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask, 1307 5000)) { 1308 device_printf(sc->sc_dev, 1309 "Failing on timeout while stopping DMA channel: [0x%08x]\n", 1310 IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)); 1311 } 1312 iwm_nic_unlock(sc); 1313 } 1314 iwm_pcie_rx_stop(sc); 1315 1316 /* Stop RX ring. */ 1317 iwm_reset_rx_ring(sc, &sc->rxq); 1318 1319 /* Reset all TX rings. */ 1320 for (qid = 0; qid < nitems(sc->txq); qid++) 1321 iwm_reset_tx_ring(sc, &sc->txq[qid]); 1322 1323 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 1324 /* Power-down device's busmaster DMA clocks */ 1325 if (iwm_nic_lock(sc)) { 1326 iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, 1327 IWM_APMG_CLK_VAL_DMA_CLK_RQT); 1328 iwm_nic_unlock(sc); 1329 } 1330 DELAY(5); 1331 } 1332 1333 /* Make sure (redundant) we've released our request to stay awake */ 1334 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 1335 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 1336 1337 /* Stop the device, and put it in low power state */ 1338 iwm_apm_stop(sc); 1339 1340 /* stop and reset the on-board processor */ 1341 IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); 1342 DELAY(5000); 1343 1344 /* 1345 * Upon stop, the APM issues an interrupt if HW RF kill is set. 1346 */ 1347 iwm_disable_interrupts(sc); 1348 1349 /* 1350 * Even if we stop the HW, we still want the RF kill 1351 * interrupt 1352 */ 1353 iwm_enable_rfkill_int(sc); 1354 iwm_check_rfkill(sc); 1355 1356 iwm_prepare_card_hw(sc); 1357 } 1358 1359 /* iwlwifi: mvm/ops.c */ 1360 static void 1361 iwm_nic_config(struct iwm_softc *sc) 1362 { 1363 uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; 1364 uint32_t reg_val = 0; 1365 uint32_t phy_config = iwm_get_phy_config(sc); 1366 1367 radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> 1368 IWM_FW_PHY_CFG_RADIO_TYPE_POS; 1369 radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> 1370 IWM_FW_PHY_CFG_RADIO_STEP_POS; 1371 radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> 1372 IWM_FW_PHY_CFG_RADIO_DASH_POS; 1373 1374 /* SKU control */ 1375 reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << 1376 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; 1377 reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << 1378 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; 1379 1380 /* radio configuration */ 1381 reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; 1382 reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; 1383 reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; 1384 1385 IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, 1386 IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH | 1387 IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP | 1388 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | 1389 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH | 1390 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | 1391 IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | 1392 IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI | 1393 reg_val); 1394 1395 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1396 "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, 1397 radio_cfg_step, radio_cfg_dash); 1398 1399 /* 1400 * W/A : NIC is stuck in a reset state after Early PCIe power off 1401 * (PCIe power is lost before PERST# is asserted), causing ME FW 1402 * to lose ownership and not being able to obtain it back. 1403 */ 1404 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 1405 iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, 1406 IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, 1407 ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); 1408 } 1409 } 1410 1411 static int 1412 iwm_nic_rx_mq_init(struct iwm_softc *sc) 1413 { 1414 int enabled; 1415 1416 if (!iwm_nic_lock(sc)) 1417 return EBUSY; 1418 1419 /* Stop RX DMA. */ 1420 iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0); 1421 /* Disable RX used and free queue operation. */ 1422 iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0); 1423 1424 iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB, 1425 sc->rxq.free_desc_dma.paddr); 1426 iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB, 1427 sc->rxq.used_desc_dma.paddr); 1428 iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB, 1429 sc->rxq.stat_dma.paddr); 1430 iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0); 1431 iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0); 1432 iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0); 1433 1434 /* We configure only queue 0 for now. */ 1435 enabled = ((1 << 0) << 16) | (1 << 0); 1436 1437 /* Enable RX DMA, 4KB buffer size. */ 1438 iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 1439 IWM_RFH_DMA_EN_ENABLE_VAL | 1440 IWM_RFH_RXF_DMA_RB_SIZE_4K | 1441 IWM_RFH_RXF_DMA_MIN_RB_4_8 | 1442 IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 1443 IWM_RFH_RXF_DMA_RBDCB_SIZE_512); 1444 1445 /* Enable RX DMA snooping. */ 1446 iwm_write_prph(sc, IWM_RFH_GEN_CFG, 1447 IWM_RFH_GEN_CFG_RFH_DMA_SNOOP | 1448 IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP | 1449 (sc->cfg->integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 1450 IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 1451 1452 /* Enable the configured queue(s). */ 1453 iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled); 1454 1455 iwm_nic_unlock(sc); 1456 1457 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1458 1459 IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8); 1460 1461 return (0); 1462 } 1463 1464 static int 1465 iwm_nic_rx_legacy_init(struct iwm_softc *sc) 1466 { 1467 1468 /* Stop Rx DMA */ 1469 iwm_pcie_rx_stop(sc); 1470 1471 if (!iwm_nic_lock(sc)) 1472 return EBUSY; 1473 1474 /* reset and flush pointers */ 1475 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 1476 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 1477 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); 1478 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 1479 1480 /* Set physical address of RX ring (256-byte aligned). */ 1481 IWM_WRITE(sc, 1482 IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, 1483 sc->rxq.free_desc_dma.paddr >> 8); 1484 1485 /* Set physical address of RX status (16-byte aligned). */ 1486 IWM_WRITE(sc, 1487 IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); 1488 1489 /* Enable Rx DMA 1490 * XXX 5000 HW isn't supported by the iwm(4) driver. 1491 * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 1492 * the credit mechanism in 5000 HW RX FIFO 1493 * Direct rx interrupts to hosts 1494 * Rx buffer size 4 or 8k or 12k 1495 * RB timeout 0x10 1496 * 256 RBDs 1497 */ 1498 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 1499 IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 1500 IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ 1501 IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 1502 IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | 1503 (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 1504 IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); 1505 1506 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1507 1508 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 1509 if (sc->cfg->host_interrupt_operation_mode) 1510 IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); 1511 1512 iwm_nic_unlock(sc); 1513 1514 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); 1515 1516 return 0; 1517 } 1518 1519 static int 1520 iwm_nic_rx_init(struct iwm_softc *sc) 1521 { 1522 if (sc->cfg->mqrx_supported) 1523 return iwm_nic_rx_mq_init(sc); 1524 else 1525 return iwm_nic_rx_legacy_init(sc); 1526 } 1527 1528 static int 1529 iwm_nic_tx_init(struct iwm_softc *sc) 1530 { 1531 int qid; 1532 1533 if (!iwm_nic_lock(sc)) 1534 return EBUSY; 1535 1536 /* Deactivate TX scheduler. */ 1537 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1538 1539 /* Set physical address of "keep warm" page (16-byte aligned). */ 1540 IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); 1541 1542 /* Initialize TX rings. */ 1543 for (qid = 0; qid < nitems(sc->txq); qid++) { 1544 struct iwm_tx_ring *txq = &sc->txq[qid]; 1545 1546 /* Set physical address of TX ring (256-byte aligned). */ 1547 IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), 1548 txq->desc_dma.paddr >> 8); 1549 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 1550 "%s: loading ring %d descriptors (%p) at %lx\n", 1551 __func__, 1552 qid, txq->desc, 1553 (unsigned long) (txq->desc_dma.paddr >> 8)); 1554 } 1555 1556 iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL, 1557 IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE | 1558 IWM_SCD_GP_CTRL_ENABLE_31_QUEUES); 1559 1560 iwm_nic_unlock(sc); 1561 1562 return 0; 1563 } 1564 1565 static int 1566 iwm_nic_init(struct iwm_softc *sc) 1567 { 1568 int error; 1569 1570 iwm_apm_init(sc); 1571 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 1572 iwm_set_pwr(sc); 1573 1574 iwm_nic_config(sc); 1575 1576 if ((error = iwm_nic_rx_init(sc)) != 0) 1577 return error; 1578 1579 /* 1580 * Ditto for TX, from iwn 1581 */ 1582 if ((error = iwm_nic_tx_init(sc)) != 0) 1583 return error; 1584 1585 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1586 "%s: shadow registers enabled\n", __func__); 1587 IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); 1588 1589 return 0; 1590 } 1591 1592 int 1593 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) 1594 { 1595 int qmsk; 1596 1597 qmsk = 1 << qid; 1598 1599 if (!iwm_nic_lock(sc)) { 1600 device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", 1601 __func__, qid); 1602 return EBUSY; 1603 } 1604 1605 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); 1606 1607 if (qid == IWM_CMD_QUEUE) { 1608 /* Disable the scheduler. */ 1609 iwm_write_prph(sc, IWM_SCD_EN_CTRL, 0); 1610 1611 /* Stop the TX queue prior to configuration. */ 1612 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1613 (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1614 (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); 1615 1616 iwm_nic_unlock(sc); 1617 1618 /* Disable aggregations for this queue. */ 1619 iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, qmsk); 1620 1621 if (!iwm_nic_lock(sc)) { 1622 device_printf(sc->sc_dev, 1623 "%s: cannot enable txq %d\n", __func__, qid); 1624 return EBUSY; 1625 } 1626 iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); 1627 iwm_nic_unlock(sc); 1628 1629 iwm_write_mem32(sc, 1630 sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); 1631 /* Set scheduler window size and frame limit. */ 1632 iwm_write_mem32(sc, 1633 sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + 1634 sizeof(uint32_t), 1635 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & 1636 IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | 1637 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & 1638 IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); 1639 1640 if (!iwm_nic_lock(sc)) { 1641 device_printf(sc->sc_dev, 1642 "%s: cannot enable txq %d\n", __func__, qid); 1643 return EBUSY; 1644 } 1645 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1646 (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1647 (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | 1648 (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | 1649 IWM_SCD_QUEUE_STTS_REG_MSK); 1650 1651 /* Enable the scheduler for this queue. */ 1652 iwm_write_prph(sc, IWM_SCD_EN_CTRL, qmsk); 1653 } else { 1654 struct iwm_scd_txq_cfg_cmd cmd; 1655 int error; 1656 1657 iwm_nic_unlock(sc); 1658 1659 memset(&cmd, 0, sizeof(cmd)); 1660 cmd.scd_queue = qid; 1661 cmd.enable = 1; 1662 cmd.sta_id = sta_id; 1663 cmd.tx_fifo = fifo; 1664 cmd.aggregate = 0; 1665 cmd.window = IWM_FRAME_LIMIT; 1666 1667 error = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC, 1668 sizeof(cmd), &cmd); 1669 if (error) { 1670 device_printf(sc->sc_dev, 1671 "cannot enable txq %d\n", qid); 1672 return error; 1673 } 1674 1675 if (!iwm_nic_lock(sc)) 1676 return EBUSY; 1677 } 1678 1679 iwm_nic_unlock(sc); 1680 1681 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n", 1682 __func__, qid, fifo); 1683 1684 return 0; 1685 } 1686 1687 static int 1688 iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr) 1689 { 1690 int error, chnl; 1691 1692 int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - 1693 IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); 1694 1695 if (!iwm_nic_lock(sc)) 1696 return EBUSY; 1697 1698 iwm_ict_reset(sc); 1699 1700 sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); 1701 if (scd_base_addr != 0 && 1702 scd_base_addr != sc->scd_base_addr) { 1703 device_printf(sc->sc_dev, 1704 "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n", 1705 __func__, sc->scd_base_addr, scd_base_addr); 1706 } 1707 1708 iwm_nic_unlock(sc); 1709 1710 /* reset context data, TX status and translation data */ 1711 error = iwm_write_mem(sc, 1712 sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, 1713 NULL, clear_dwords); 1714 if (error) 1715 return EBUSY; 1716 1717 if (!iwm_nic_lock(sc)) 1718 return EBUSY; 1719 1720 /* Set physical address of TX scheduler rings (1KB aligned). */ 1721 iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); 1722 1723 iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); 1724 1725 iwm_nic_unlock(sc); 1726 1727 /* enable command channel */ 1728 error = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7); 1729 if (error) 1730 return error; 1731 1732 if (!iwm_nic_lock(sc)) 1733 return EBUSY; 1734 1735 iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); 1736 1737 /* Enable DMA channels. */ 1738 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1739 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 1740 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1741 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); 1742 } 1743 1744 IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, 1745 IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); 1746 1747 iwm_nic_unlock(sc); 1748 1749 /* Enable L1-Active */ 1750 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 1751 iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, 1752 IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); 1753 } 1754 1755 return error; 1756 } 1757 1758 /* 1759 * NVM read access and content parsing. We do not support 1760 * external NVM or writing NVM. 1761 * iwlwifi/mvm/nvm.c 1762 */ 1763 1764 /* Default NVM size to read */ 1765 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) 1766 1767 #define IWM_NVM_WRITE_OPCODE 1 1768 #define IWM_NVM_READ_OPCODE 0 1769 1770 /* load nvm chunk response */ 1771 enum { 1772 IWM_READ_NVM_CHUNK_SUCCEED = 0, 1773 IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 1774 }; 1775 1776 static int 1777 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, 1778 uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) 1779 { 1780 struct iwm_nvm_access_cmd nvm_access_cmd = { 1781 .offset = htole16(offset), 1782 .length = htole16(length), 1783 .type = htole16(section), 1784 .op_code = IWM_NVM_READ_OPCODE, 1785 }; 1786 struct iwm_nvm_access_resp *nvm_resp; 1787 struct iwm_rx_packet *pkt; 1788 struct iwm_host_cmd cmd = { 1789 .id = IWM_NVM_ACCESS_CMD, 1790 .flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL, 1791 .data = { &nvm_access_cmd, }, 1792 }; 1793 int ret, bytes_read, offset_read; 1794 uint8_t *resp_data; 1795 1796 cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); 1797 1798 ret = iwm_send_cmd(sc, &cmd); 1799 if (ret) { 1800 device_printf(sc->sc_dev, 1801 "Could not send NVM_ACCESS command (error=%d)\n", ret); 1802 return ret; 1803 } 1804 1805 pkt = cmd.resp_pkt; 1806 1807 /* Extract NVM response */ 1808 nvm_resp = (void *)pkt->data; 1809 ret = le16toh(nvm_resp->status); 1810 bytes_read = le16toh(nvm_resp->length); 1811 offset_read = le16toh(nvm_resp->offset); 1812 resp_data = nvm_resp->data; 1813 if (ret) { 1814 if ((offset != 0) && 1815 (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { 1816 /* 1817 * meaning of NOT_VALID_ADDRESS: 1818 * driver try to read chunk from address that is 1819 * multiple of 2K and got an error since addr is empty. 1820 * meaning of (offset != 0): driver already 1821 * read valid data from another chunk so this case 1822 * is not an error. 1823 */ 1824 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1825 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", 1826 offset); 1827 *len = 0; 1828 ret = 0; 1829 } else { 1830 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1831 "NVM access command failed with status %d\n", ret); 1832 ret = EIO; 1833 } 1834 goto exit; 1835 } 1836 1837 if (offset_read != offset) { 1838 device_printf(sc->sc_dev, 1839 "NVM ACCESS response with invalid offset %d\n", 1840 offset_read); 1841 ret = EINVAL; 1842 goto exit; 1843 } 1844 1845 if (bytes_read > length) { 1846 device_printf(sc->sc_dev, 1847 "NVM ACCESS response with too much data " 1848 "(%d bytes requested, %d bytes received)\n", 1849 length, bytes_read); 1850 ret = EINVAL; 1851 goto exit; 1852 } 1853 1854 /* Write data to NVM */ 1855 memcpy(data + offset, resp_data, bytes_read); 1856 *len = bytes_read; 1857 1858 exit: 1859 iwm_free_resp(sc, &cmd); 1860 return ret; 1861 } 1862 1863 /* 1864 * Reads an NVM section completely. 1865 * NICs prior to 7000 family don't have a real NVM, but just read 1866 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited 1867 * by uCode, we need to manually check in this case that we don't 1868 * overflow and try to read more than the EEPROM size. 1869 * For 7000 family NICs, we supply the maximal size we can read, and 1870 * the uCode fills the response with as much data as we can, 1871 * without overflowing, so no check is needed. 1872 */ 1873 static int 1874 iwm_nvm_read_section(struct iwm_softc *sc, 1875 uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read) 1876 { 1877 uint16_t seglen, length, offset = 0; 1878 int ret; 1879 1880 /* Set nvm section read length */ 1881 length = IWM_NVM_DEFAULT_CHUNK_SIZE; 1882 1883 seglen = length; 1884 1885 /* Read the NVM until exhausted (reading less than requested) */ 1886 while (seglen == length) { 1887 /* Check no memory assumptions fail and cause an overflow */ 1888 if ((size_read + offset + length) > 1889 sc->cfg->eeprom_size) { 1890 device_printf(sc->sc_dev, 1891 "EEPROM size is too small for NVM\n"); 1892 return ENOBUFS; 1893 } 1894 1895 ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen); 1896 if (ret) { 1897 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1898 "Cannot read NVM from section %d offset %d, length %d\n", 1899 section, offset, length); 1900 return ret; 1901 } 1902 offset += seglen; 1903 } 1904 1905 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1906 "NVM section %d read completed\n", section); 1907 *len = offset; 1908 return 0; 1909 } 1910 1911 /* 1912 * BEGIN IWM_NVM_PARSE 1913 */ 1914 1915 /* iwlwifi/iwl-nvm-parse.c */ 1916 1917 /* NVM offsets (in words) definitions */ 1918 enum iwm_nvm_offsets { 1919 /* NVM HW-Section offset (in words) definitions */ 1920 IWM_HW_ADDR = 0x15, 1921 1922 /* NVM SW-Section offset (in words) definitions */ 1923 IWM_NVM_SW_SECTION = 0x1C0, 1924 IWM_NVM_VERSION = 0, 1925 IWM_RADIO_CFG = 1, 1926 IWM_SKU = 2, 1927 IWM_N_HW_ADDRS = 3, 1928 IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, 1929 1930 /* NVM calibration section offset (in words) definitions */ 1931 IWM_NVM_CALIB_SECTION = 0x2B8, 1932 IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION 1933 }; 1934 1935 enum iwm_8000_nvm_offsets { 1936 /* NVM HW-Section offset (in words) definitions */ 1937 IWM_HW_ADDR0_WFPM_8000 = 0x12, 1938 IWM_HW_ADDR1_WFPM_8000 = 0x16, 1939 IWM_HW_ADDR0_PCIE_8000 = 0x8A, 1940 IWM_HW_ADDR1_PCIE_8000 = 0x8E, 1941 IWM_MAC_ADDRESS_OVERRIDE_8000 = 1, 1942 1943 /* NVM SW-Section offset (in words) definitions */ 1944 IWM_NVM_SW_SECTION_8000 = 0x1C0, 1945 IWM_NVM_VERSION_8000 = 0, 1946 IWM_RADIO_CFG_8000 = 0, 1947 IWM_SKU_8000 = 2, 1948 IWM_N_HW_ADDRS_8000 = 3, 1949 1950 /* NVM REGULATORY -Section offset (in words) definitions */ 1951 IWM_NVM_CHANNELS_8000 = 0, 1952 IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7, 1953 IWM_NVM_LAR_OFFSET_8000 = 0x507, 1954 IWM_NVM_LAR_ENABLED_8000 = 0x7, 1955 1956 /* NVM calibration section offset (in words) definitions */ 1957 IWM_NVM_CALIB_SECTION_8000 = 0x2B8, 1958 IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000 1959 }; 1960 1961 /* SKU Capabilities (actual values from NVM definition) */ 1962 enum nvm_sku_bits { 1963 IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), 1964 IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), 1965 IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), 1966 IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), 1967 }; 1968 1969 /* radio config bits (actual values from NVM definition) */ 1970 #define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ 1971 #define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ 1972 #define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ 1973 #define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ 1974 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ 1975 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ 1976 1977 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x) (x & 0xF) 1978 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF) 1979 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF) 1980 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF) 1981 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF) 1982 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF) 1983 1984 /** 1985 * enum iwm_nvm_channel_flags - channel flags in NVM 1986 * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo 1987 * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel 1988 * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed 1989 * @IWM_NVM_CHANNEL_RADAR: radar detection required 1990 * XXX cannot find this (DFS) flag in iwm-nvm-parse.c 1991 * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate 1992 * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 1993 * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 1994 * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 1995 * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 1996 */ 1997 enum iwm_nvm_channel_flags { 1998 IWM_NVM_CHANNEL_VALID = (1 << 0), 1999 IWM_NVM_CHANNEL_IBSS = (1 << 1), 2000 IWM_NVM_CHANNEL_ACTIVE = (1 << 3), 2001 IWM_NVM_CHANNEL_RADAR = (1 << 4), 2002 IWM_NVM_CHANNEL_DFS = (1 << 7), 2003 IWM_NVM_CHANNEL_WIDE = (1 << 8), 2004 IWM_NVM_CHANNEL_40MHZ = (1 << 9), 2005 IWM_NVM_CHANNEL_80MHZ = (1 << 10), 2006 IWM_NVM_CHANNEL_160MHZ = (1 << 11), 2007 }; 2008 2009 /* 2010 * Translate EEPROM flags to net80211. 2011 */ 2012 static uint32_t 2013 iwm_eeprom_channel_flags(uint16_t ch_flags) 2014 { 2015 uint32_t nflags; 2016 2017 nflags = 0; 2018 if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0) 2019 nflags |= IEEE80211_CHAN_PASSIVE; 2020 if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0) 2021 nflags |= IEEE80211_CHAN_NOADHOC; 2022 if (ch_flags & IWM_NVM_CHANNEL_RADAR) { 2023 nflags |= IEEE80211_CHAN_DFS; 2024 /* Just in case. */ 2025 nflags |= IEEE80211_CHAN_NOADHOC; 2026 } 2027 2028 return (nflags); 2029 } 2030 2031 static void 2032 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[], 2033 int maxchans, int *nchans, int ch_idx, size_t ch_num, 2034 const uint8_t bands[]) 2035 { 2036 const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags; 2037 uint32_t nflags; 2038 uint16_t ch_flags; 2039 uint8_t ieee; 2040 int error; 2041 2042 for (; ch_idx < ch_num; ch_idx++) { 2043 ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); 2044 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 2045 ieee = iwm_nvm_channels[ch_idx]; 2046 else 2047 ieee = iwm_nvm_channels_8000[ch_idx]; 2048 2049 if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { 2050 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 2051 "Ch. %d Flags %x [%sGHz] - No traffic\n", 2052 ieee, ch_flags, 2053 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 2054 "5.2" : "2.4"); 2055 continue; 2056 } 2057 2058 nflags = iwm_eeprom_channel_flags(ch_flags); 2059 error = ieee80211_add_channel(chans, maxchans, nchans, 2060 ieee, 0, 0, nflags, bands); 2061 if (error != 0) 2062 break; 2063 2064 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 2065 "Ch. %d Flags %x [%sGHz] - Added\n", 2066 ieee, ch_flags, 2067 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 2068 "5.2" : "2.4"); 2069 } 2070 } 2071 2072 static void 2073 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans, 2074 struct ieee80211_channel chans[]) 2075 { 2076 struct iwm_softc *sc = ic->ic_softc; 2077 struct iwm_nvm_data *data = sc->nvm_data; 2078 uint8_t bands[IEEE80211_MODE_BYTES]; 2079 size_t ch_num; 2080 2081 memset(bands, 0, sizeof(bands)); 2082 /* 1-13: 11b/g channels. */ 2083 setbit(bands, IEEE80211_MODE_11B); 2084 setbit(bands, IEEE80211_MODE_11G); 2085 iwm_add_channel_band(sc, chans, maxchans, nchans, 0, 2086 IWM_NUM_2GHZ_CHANNELS - 1, bands); 2087 2088 /* 14: 11b channel only. */ 2089 clrbit(bands, IEEE80211_MODE_11G); 2090 iwm_add_channel_band(sc, chans, maxchans, nchans, 2091 IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands); 2092 2093 if (data->sku_cap_band_52GHz_enable) { 2094 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 2095 ch_num = nitems(iwm_nvm_channels); 2096 else 2097 ch_num = nitems(iwm_nvm_channels_8000); 2098 memset(bands, 0, sizeof(bands)); 2099 setbit(bands, IEEE80211_MODE_11A); 2100 iwm_add_channel_band(sc, chans, maxchans, nchans, 2101 IWM_NUM_2GHZ_CHANNELS, ch_num, bands); 2102 } 2103 } 2104 2105 static void 2106 iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, 2107 const uint16_t *mac_override, const uint16_t *nvm_hw) 2108 { 2109 const uint8_t *hw_addr; 2110 2111 if (mac_override) { 2112 static const uint8_t reserved_mac[] = { 2113 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 2114 }; 2115 2116 hw_addr = (const uint8_t *)(mac_override + 2117 IWM_MAC_ADDRESS_OVERRIDE_8000); 2118 2119 /* 2120 * Store the MAC address from MAO section. 2121 * No byte swapping is required in MAO section 2122 */ 2123 IEEE80211_ADDR_COPY(data->hw_addr, hw_addr); 2124 2125 /* 2126 * Force the use of the OTP MAC address in case of reserved MAC 2127 * address in the NVM, or if address is given but invalid. 2128 */ 2129 if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) && 2130 !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) && 2131 iwm_is_valid_ether_addr(data->hw_addr) && 2132 !IEEE80211_IS_MULTICAST(data->hw_addr)) 2133 return; 2134 2135 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2136 "%s: mac address from nvm override section invalid\n", 2137 __func__); 2138 } 2139 2140 if (nvm_hw) { 2141 /* read the mac address from WFMP registers */ 2142 uint32_t mac_addr0 = 2143 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); 2144 uint32_t mac_addr1 = 2145 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); 2146 2147 hw_addr = (const uint8_t *)&mac_addr0; 2148 data->hw_addr[0] = hw_addr[3]; 2149 data->hw_addr[1] = hw_addr[2]; 2150 data->hw_addr[2] = hw_addr[1]; 2151 data->hw_addr[3] = hw_addr[0]; 2152 2153 hw_addr = (const uint8_t *)&mac_addr1; 2154 data->hw_addr[4] = hw_addr[1]; 2155 data->hw_addr[5] = hw_addr[0]; 2156 2157 return; 2158 } 2159 2160 device_printf(sc->sc_dev, "%s: mac address not found\n", __func__); 2161 memset(data->hw_addr, 0, sizeof(data->hw_addr)); 2162 } 2163 2164 static int 2165 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2166 const uint16_t *phy_sku) 2167 { 2168 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2169 return le16_to_cpup(nvm_sw + IWM_SKU); 2170 2171 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000)); 2172 } 2173 2174 static int 2175 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2176 { 2177 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2178 return le16_to_cpup(nvm_sw + IWM_NVM_VERSION); 2179 else 2180 return le32_to_cpup((const uint32_t *)(nvm_sw + 2181 IWM_NVM_VERSION_8000)); 2182 } 2183 2184 static int 2185 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2186 const uint16_t *phy_sku) 2187 { 2188 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2189 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG); 2190 2191 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000)); 2192 } 2193 2194 static int 2195 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2196 { 2197 int n_hw_addr; 2198 2199 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2200 return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); 2201 2202 n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000)); 2203 2204 return n_hw_addr & IWM_N_HW_ADDR_MASK; 2205 } 2206 2207 static void 2208 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data, 2209 uint32_t radio_cfg) 2210 { 2211 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2212 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); 2213 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); 2214 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); 2215 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); 2216 return; 2217 } 2218 2219 /* set the radio configuration for family 8000 */ 2220 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); 2221 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); 2222 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); 2223 data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg); 2224 data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); 2225 data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); 2226 } 2227 2228 static int 2229 iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data, 2230 const uint16_t *nvm_hw, const uint16_t *mac_override) 2231 { 2232 #ifdef notyet /* for FAMILY 9000 */ 2233 if (cfg->mac_addr_from_csr) { 2234 iwm_set_hw_address_from_csr(sc, data); 2235 } else 2236 #endif 2237 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2238 const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR); 2239 2240 /* The byte order is little endian 16 bit, meaning 214365 */ 2241 data->hw_addr[0] = hw_addr[1]; 2242 data->hw_addr[1] = hw_addr[0]; 2243 data->hw_addr[2] = hw_addr[3]; 2244 data->hw_addr[3] = hw_addr[2]; 2245 data->hw_addr[4] = hw_addr[5]; 2246 data->hw_addr[5] = hw_addr[4]; 2247 } else { 2248 iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw); 2249 } 2250 2251 if (!iwm_is_valid_ether_addr(data->hw_addr)) { 2252 device_printf(sc->sc_dev, "no valid mac address was found\n"); 2253 return EINVAL; 2254 } 2255 2256 return 0; 2257 } 2258 2259 static struct iwm_nvm_data * 2260 iwm_parse_nvm_data(struct iwm_softc *sc, 2261 const uint16_t *nvm_hw, const uint16_t *nvm_sw, 2262 const uint16_t *nvm_calib, const uint16_t *mac_override, 2263 const uint16_t *phy_sku, const uint16_t *regulatory) 2264 { 2265 struct iwm_nvm_data *data; 2266 uint32_t sku, radio_cfg; 2267 uint16_t lar_config; 2268 2269 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2270 data = malloc(sizeof(*data) + 2271 IWM_NUM_CHANNELS * sizeof(uint16_t), 2272 M_DEVBUF, M_NOWAIT | M_ZERO); 2273 } else { 2274 data = malloc(sizeof(*data) + 2275 IWM_NUM_CHANNELS_8000 * sizeof(uint16_t), 2276 M_DEVBUF, M_NOWAIT | M_ZERO); 2277 } 2278 if (!data) 2279 return NULL; 2280 2281 data->nvm_version = iwm_get_nvm_version(sc, nvm_sw); 2282 2283 radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku); 2284 iwm_set_radio_cfg(sc, data, radio_cfg); 2285 2286 sku = iwm_get_sku(sc, nvm_sw, phy_sku); 2287 data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; 2288 data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; 2289 data->sku_cap_11n_enable = 0; 2290 2291 data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw); 2292 2293 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2294 /* TODO: use IWL_NVM_EXT */ 2295 uint16_t lar_offset = data->nvm_version < 0xE39 ? 2296 IWM_NVM_LAR_OFFSET_8000_OLD : 2297 IWM_NVM_LAR_OFFSET_8000; 2298 2299 lar_config = le16_to_cpup(regulatory + lar_offset); 2300 data->lar_enabled = !!(lar_config & 2301 IWM_NVM_LAR_ENABLED_8000); 2302 } 2303 2304 /* If no valid mac address was found - bail out */ 2305 if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) { 2306 free(data, M_DEVBUF); 2307 return NULL; 2308 } 2309 2310 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 2311 memcpy(data->nvm_ch_flags, sc->cfg->nvm_type == IWM_NVM_SDP ? 2312 ®ulatory[0] : &nvm_sw[IWM_NVM_CHANNELS], 2313 IWM_NUM_CHANNELS * sizeof(uint16_t)); 2314 } else { 2315 memcpy(data->nvm_ch_flags, ®ulatory[IWM_NVM_CHANNELS_8000], 2316 IWM_NUM_CHANNELS_8000 * sizeof(uint16_t)); 2317 } 2318 2319 return data; 2320 } 2321 2322 static void 2323 iwm_free_nvm_data(struct iwm_nvm_data *data) 2324 { 2325 if (data != NULL) 2326 free(data, M_DEVBUF); 2327 } 2328 2329 static struct iwm_nvm_data * 2330 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) 2331 { 2332 const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku; 2333 2334 /* Checking for required sections */ 2335 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 2336 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2337 !sections[sc->cfg->nvm_hw_section_num].data) { 2338 device_printf(sc->sc_dev, 2339 "Can't parse empty OTP/NVM sections\n"); 2340 return NULL; 2341 } 2342 } else if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2343 /* SW and REGULATORY sections are mandatory */ 2344 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2345 !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { 2346 device_printf(sc->sc_dev, 2347 "Can't parse empty OTP/NVM sections\n"); 2348 return NULL; 2349 } 2350 /* MAC_OVERRIDE or at least HW section must exist */ 2351 if (!sections[sc->cfg->nvm_hw_section_num].data && 2352 !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { 2353 device_printf(sc->sc_dev, 2354 "Can't parse mac_address, empty sections\n"); 2355 return NULL; 2356 } 2357 2358 /* PHY_SKU section is mandatory in B0 */ 2359 if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { 2360 device_printf(sc->sc_dev, 2361 "Can't parse phy_sku in B0, empty sections\n"); 2362 return NULL; 2363 } 2364 } else { 2365 panic("unknown device family %d\n", sc->cfg->device_family); 2366 } 2367 2368 hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data; 2369 sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; 2370 calib = (const uint16_t *) 2371 sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; 2372 regulatory = sc->cfg->nvm_type == IWM_NVM_SDP ? 2373 (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data : 2374 (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; 2375 mac_override = (const uint16_t *) 2376 sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; 2377 phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; 2378 2379 return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, 2380 phy_sku, regulatory); 2381 } 2382 2383 static int 2384 iwm_nvm_init(struct iwm_softc *sc) 2385 { 2386 struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS]; 2387 int i, ret, section; 2388 uint32_t size_read = 0; 2389 uint8_t *nvm_buffer, *temp; 2390 uint16_t len; 2391 2392 memset(nvm_sections, 0, sizeof(nvm_sections)); 2393 2394 if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS) 2395 return EINVAL; 2396 2397 /* load NVM values from nic */ 2398 /* Read From FW NVM */ 2399 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n"); 2400 2401 nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO); 2402 if (!nvm_buffer) 2403 return ENOMEM; 2404 for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) { 2405 /* we override the constness for initial read */ 2406 ret = iwm_nvm_read_section(sc, section, nvm_buffer, 2407 &len, size_read); 2408 if (ret) 2409 continue; 2410 size_read += len; 2411 temp = malloc(len, M_DEVBUF, M_NOWAIT); 2412 if (!temp) { 2413 ret = ENOMEM; 2414 break; 2415 } 2416 memcpy(temp, nvm_buffer, len); 2417 2418 nvm_sections[section].data = temp; 2419 nvm_sections[section].length = len; 2420 } 2421 if (!size_read) 2422 device_printf(sc->sc_dev, "OTP is blank\n"); 2423 free(nvm_buffer, M_DEVBUF); 2424 2425 sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections); 2426 if (!sc->nvm_data) 2427 return EINVAL; 2428 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 2429 "nvm version = %x\n", sc->nvm_data->nvm_version); 2430 2431 for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) { 2432 if (nvm_sections[i].data != NULL) 2433 free(nvm_sections[i].data, M_DEVBUF); 2434 } 2435 2436 return 0; 2437 } 2438 2439 static int 2440 iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num, 2441 const struct iwm_fw_desc *section) 2442 { 2443 struct iwm_dma_info *dma = &sc->fw_dma; 2444 uint8_t *v_addr; 2445 bus_addr_t p_addr; 2446 uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len); 2447 int ret = 0; 2448 2449 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2450 "%s: [%d] uCode section being loaded...\n", 2451 __func__, section_num); 2452 2453 v_addr = dma->vaddr; 2454 p_addr = dma->paddr; 2455 2456 for (offset = 0; offset < section->len; offset += chunk_sz) { 2457 uint32_t copy_size, dst_addr; 2458 int extended_addr = FALSE; 2459 2460 copy_size = MIN(chunk_sz, section->len - offset); 2461 dst_addr = section->offset + offset; 2462 2463 if (dst_addr >= IWM_FW_MEM_EXTENDED_START && 2464 dst_addr <= IWM_FW_MEM_EXTENDED_END) 2465 extended_addr = TRUE; 2466 2467 if (extended_addr) 2468 iwm_set_bits_prph(sc, IWM_LMPM_CHICK, 2469 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2470 2471 memcpy(v_addr, (const uint8_t *)section->data + offset, 2472 copy_size); 2473 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 2474 ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr, 2475 copy_size); 2476 2477 if (extended_addr) 2478 iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, 2479 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2480 2481 if (ret) { 2482 device_printf(sc->sc_dev, 2483 "%s: Could not load the [%d] uCode section\n", 2484 __func__, section_num); 2485 break; 2486 } 2487 } 2488 2489 return ret; 2490 } 2491 2492 /* 2493 * ucode 2494 */ 2495 static int 2496 iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr, 2497 bus_addr_t phy_addr, uint32_t byte_cnt) 2498 { 2499 sc->sc_fw_chunk_done = 0; 2500 2501 if (!iwm_nic_lock(sc)) 2502 return EBUSY; 2503 2504 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2505 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); 2506 2507 IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), 2508 dst_addr); 2509 2510 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), 2511 phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); 2512 2513 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), 2514 (iwm_get_dma_hi_addr(phy_addr) 2515 << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); 2516 2517 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 2518 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 2519 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | 2520 IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); 2521 2522 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2523 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 2524 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | 2525 IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); 2526 2527 iwm_nic_unlock(sc); 2528 2529 /* wait up to 5s for this segment to load */ 2530 msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz * 5); 2531 2532 if (!sc->sc_fw_chunk_done) { 2533 device_printf(sc->sc_dev, 2534 "fw chunk addr 0x%x len %d failed to load\n", 2535 dst_addr, byte_cnt); 2536 return ETIMEDOUT; 2537 } 2538 2539 return 0; 2540 } 2541 2542 static int 2543 iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, 2544 const struct iwm_fw_img *image, int cpu, int *first_ucode_section) 2545 { 2546 int shift_param; 2547 int i, ret = 0, sec_num = 0x1; 2548 uint32_t val, last_read_idx = 0; 2549 2550 if (cpu == 1) { 2551 shift_param = 0; 2552 *first_ucode_section = 0; 2553 } else { 2554 shift_param = 16; 2555 (*first_ucode_section)++; 2556 } 2557 2558 for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { 2559 last_read_idx = i; 2560 2561 /* 2562 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between 2563 * CPU1 to CPU2. 2564 * PAGING_SEPARATOR_SECTION delimiter - separate between 2565 * CPU2 non paged to CPU2 paging sec. 2566 */ 2567 if (!image->sec[i].data || 2568 image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || 2569 image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { 2570 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2571 "Break since Data not valid or Empty section, sec = %d\n", 2572 i); 2573 break; 2574 } 2575 ret = iwm_pcie_load_section(sc, i, &image->sec[i]); 2576 if (ret) 2577 return ret; 2578 2579 /* Notify the ucode of the loaded section number and status */ 2580 if (iwm_nic_lock(sc)) { 2581 val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); 2582 val = val | (sec_num << shift_param); 2583 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); 2584 sec_num = (sec_num << 1) | 0x1; 2585 iwm_nic_unlock(sc); 2586 } 2587 } 2588 2589 *first_ucode_section = last_read_idx; 2590 2591 iwm_enable_interrupts(sc); 2592 2593 if (iwm_nic_lock(sc)) { 2594 if (cpu == 1) 2595 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); 2596 else 2597 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); 2598 iwm_nic_unlock(sc); 2599 } 2600 2601 return 0; 2602 } 2603 2604 static int 2605 iwm_pcie_load_cpu_sections(struct iwm_softc *sc, 2606 const struct iwm_fw_img *image, int cpu, int *first_ucode_section) 2607 { 2608 int shift_param; 2609 int i, ret = 0; 2610 uint32_t last_read_idx = 0; 2611 2612 if (cpu == 1) { 2613 shift_param = 0; 2614 *first_ucode_section = 0; 2615 } else { 2616 shift_param = 16; 2617 (*first_ucode_section)++; 2618 } 2619 2620 for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { 2621 last_read_idx = i; 2622 2623 /* 2624 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between 2625 * CPU1 to CPU2. 2626 * PAGING_SEPARATOR_SECTION delimiter - separate between 2627 * CPU2 non paged to CPU2 paging sec. 2628 */ 2629 if (!image->sec[i].data || 2630 image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || 2631 image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { 2632 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2633 "Break since Data not valid or Empty section, sec = %d\n", 2634 i); 2635 break; 2636 } 2637 2638 ret = iwm_pcie_load_section(sc, i, &image->sec[i]); 2639 if (ret) 2640 return ret; 2641 } 2642 2643 *first_ucode_section = last_read_idx; 2644 2645 return 0; 2646 2647 } 2648 2649 static int 2650 iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image) 2651 { 2652 int ret = 0; 2653 int first_ucode_section; 2654 2655 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", 2656 image->is_dual_cpus ? "Dual" : "Single"); 2657 2658 /* load to FW the binary non secured sections of CPU1 */ 2659 ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section); 2660 if (ret) 2661 return ret; 2662 2663 if (image->is_dual_cpus) { 2664 /* set CPU2 header address */ 2665 if (iwm_nic_lock(sc)) { 2666 iwm_write_prph(sc, 2667 IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, 2668 IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE); 2669 iwm_nic_unlock(sc); 2670 } 2671 2672 /* load to FW the binary sections of CPU2 */ 2673 ret = iwm_pcie_load_cpu_sections(sc, image, 2, 2674 &first_ucode_section); 2675 if (ret) 2676 return ret; 2677 } 2678 2679 iwm_enable_interrupts(sc); 2680 2681 /* release CPU reset */ 2682 IWM_WRITE(sc, IWM_CSR_RESET, 0); 2683 2684 return 0; 2685 } 2686 2687 int 2688 iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc, 2689 const struct iwm_fw_img *image) 2690 { 2691 int ret = 0; 2692 int first_ucode_section; 2693 2694 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", 2695 image->is_dual_cpus ? "Dual" : "Single"); 2696 2697 /* configure the ucode to be ready to get the secured image */ 2698 /* release CPU reset */ 2699 if (iwm_nic_lock(sc)) { 2700 iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, 2701 IWM_RELEASE_CPU_RESET_BIT); 2702 iwm_nic_unlock(sc); 2703 } 2704 2705 /* load to FW the binary Secured sections of CPU1 */ 2706 ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1, 2707 &first_ucode_section); 2708 if (ret) 2709 return ret; 2710 2711 /* load to FW the binary sections of CPU2 */ 2712 return iwm_pcie_load_cpu_sections_8000(sc, image, 2, 2713 &first_ucode_section); 2714 } 2715 2716 /* XXX Get rid of this definition */ 2717 static inline void 2718 iwm_enable_fw_load_int(struct iwm_softc *sc) 2719 { 2720 IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n"); 2721 sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX; 2722 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 2723 } 2724 2725 /* XXX Add proper rfkill support code */ 2726 static int 2727 iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw) 2728 { 2729 int ret; 2730 2731 /* This may fail if AMT took ownership of the device */ 2732 if (iwm_prepare_card_hw(sc)) { 2733 device_printf(sc->sc_dev, 2734 "%s: Exit HW not ready\n", __func__); 2735 ret = EIO; 2736 goto out; 2737 } 2738 2739 IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); 2740 2741 iwm_disable_interrupts(sc); 2742 2743 /* make sure rfkill handshake bits are cleared */ 2744 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2745 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, 2746 IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); 2747 2748 /* clear (again), then enable host interrupts */ 2749 IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); 2750 2751 ret = iwm_nic_init(sc); 2752 if (ret) { 2753 device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__); 2754 goto out; 2755 } 2756 2757 /* 2758 * Now, we load the firmware and don't want to be interrupted, even 2759 * by the RF-Kill interrupt (hence mask all the interrupt besides the 2760 * FH_TX interrupt which is needed to load the firmware). If the 2761 * RF-Kill switch is toggled, we will find out after having loaded 2762 * the firmware and return the proper value to the caller. 2763 */ 2764 iwm_enable_fw_load_int(sc); 2765 2766 /* really make sure rfkill handshake bits are cleared */ 2767 /* maybe we should write a few times more? just to make sure */ 2768 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2769 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2770 2771 /* Load the given image to the HW */ 2772 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) 2773 ret = iwm_pcie_load_given_ucode_8000(sc, fw); 2774 else 2775 ret = iwm_pcie_load_given_ucode(sc, fw); 2776 2777 /* XXX re-check RF-Kill state */ 2778 2779 out: 2780 return ret; 2781 } 2782 2783 static int 2784 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) 2785 { 2786 struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { 2787 .valid = htole32(valid_tx_ant), 2788 }; 2789 2790 return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 2791 IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); 2792 } 2793 2794 /* iwlwifi: mvm/fw.c */ 2795 static int 2796 iwm_send_phy_cfg_cmd(struct iwm_softc *sc) 2797 { 2798 struct iwm_phy_cfg_cmd phy_cfg_cmd; 2799 enum iwm_ucode_type ucode_type = sc->cur_ucode; 2800 2801 /* Set parameters */ 2802 phy_cfg_cmd.phy_cfg = htole32(iwm_get_phy_config(sc)); 2803 phy_cfg_cmd.calib_control.event_trigger = 2804 sc->sc_default_calib[ucode_type].event_trigger; 2805 phy_cfg_cmd.calib_control.flow_trigger = 2806 sc->sc_default_calib[ucode_type].flow_trigger; 2807 2808 IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, 2809 "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); 2810 return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, 2811 sizeof(phy_cfg_cmd), &phy_cfg_cmd); 2812 } 2813 2814 static int 2815 iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) 2816 { 2817 struct iwm_alive_data *alive_data = data; 2818 struct iwm_alive_resp_v3 *palive3; 2819 struct iwm_alive_resp *palive; 2820 struct iwm_umac_alive *umac; 2821 struct iwm_lmac_alive *lmac1; 2822 struct iwm_lmac_alive *lmac2 = NULL; 2823 uint16_t status; 2824 2825 if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) { 2826 palive = (void *)pkt->data; 2827 umac = &palive->umac_data; 2828 lmac1 = &palive->lmac_data[0]; 2829 lmac2 = &palive->lmac_data[1]; 2830 status = le16toh(palive->status); 2831 } else { 2832 palive3 = (void *)pkt->data; 2833 umac = &palive3->umac_data; 2834 lmac1 = &palive3->lmac_data; 2835 status = le16toh(palive3->status); 2836 } 2837 2838 sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr); 2839 if (lmac2) 2840 sc->error_event_table[1] = 2841 le32toh(lmac2->error_event_table_ptr); 2842 sc->log_event_table = le32toh(lmac1->log_event_table_ptr); 2843 sc->umac_error_event_table = le32toh(umac->error_info_addr); 2844 alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr); 2845 alive_data->valid = status == IWM_ALIVE_STATUS_OK; 2846 if (sc->umac_error_event_table) 2847 sc->support_umac_log = TRUE; 2848 2849 IWM_DPRINTF(sc, IWM_DEBUG_FW, 2850 "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n", 2851 status, lmac1->ver_type, lmac1->ver_subtype); 2852 2853 if (lmac2) 2854 IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n"); 2855 2856 IWM_DPRINTF(sc, IWM_DEBUG_FW, 2857 "UMAC version: Major - 0x%x, Minor - 0x%x\n", 2858 le32toh(umac->umac_major), 2859 le32toh(umac->umac_minor)); 2860 2861 return TRUE; 2862 } 2863 2864 static int 2865 iwm_wait_phy_db_entry(struct iwm_softc *sc, 2866 struct iwm_rx_packet *pkt, void *data) 2867 { 2868 struct iwm_phy_db *phy_db = data; 2869 2870 if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) { 2871 if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) { 2872 device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n", 2873 __func__, pkt->hdr.code); 2874 } 2875 return TRUE; 2876 } 2877 2878 if (iwm_phy_db_set_section(phy_db, pkt)) { 2879 device_printf(sc->sc_dev, 2880 "%s: iwm_phy_db_set_section failed\n", __func__); 2881 } 2882 2883 return FALSE; 2884 } 2885 2886 static int 2887 iwm_load_ucode_wait_alive(struct iwm_softc *sc, 2888 enum iwm_ucode_type ucode_type) 2889 { 2890 struct iwm_notification_wait alive_wait; 2891 struct iwm_alive_data alive_data; 2892 const struct iwm_fw_img *fw; 2893 enum iwm_ucode_type old_type = sc->cur_ucode; 2894 int error; 2895 static const uint16_t alive_cmd[] = { IWM_ALIVE }; 2896 2897 fw = &sc->sc_fw.img[ucode_type]; 2898 sc->cur_ucode = ucode_type; 2899 sc->ucode_loaded = FALSE; 2900 2901 memset(&alive_data, 0, sizeof(alive_data)); 2902 iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait, 2903 alive_cmd, nitems(alive_cmd), 2904 iwm_alive_fn, &alive_data); 2905 2906 error = iwm_start_fw(sc, fw); 2907 if (error) { 2908 device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error); 2909 sc->cur_ucode = old_type; 2910 iwm_remove_notification(sc->sc_notif_wait, &alive_wait); 2911 return error; 2912 } 2913 2914 /* 2915 * Some things may run in the background now, but we 2916 * just wait for the ALIVE notification here. 2917 */ 2918 IWM_UNLOCK(sc); 2919 error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait, 2920 IWM_UCODE_ALIVE_TIMEOUT); 2921 IWM_LOCK(sc); 2922 if (error) { 2923 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2924 uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a; 2925 if (iwm_nic_lock(sc)) { 2926 a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS); 2927 b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS); 2928 iwm_nic_unlock(sc); 2929 } 2930 device_printf(sc->sc_dev, 2931 "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n", 2932 a, b); 2933 } 2934 sc->cur_ucode = old_type; 2935 return error; 2936 } 2937 2938 if (!alive_data.valid) { 2939 device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n", 2940 __func__); 2941 sc->cur_ucode = old_type; 2942 return EIO; 2943 } 2944 2945 iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr); 2946 2947 /* 2948 * configure and operate fw paging mechanism. 2949 * driver configures the paging flow only once, CPU2 paging image 2950 * included in the IWM_UCODE_INIT image. 2951 */ 2952 if (fw->paging_mem_size) { 2953 error = iwm_save_fw_paging(sc, fw); 2954 if (error) { 2955 device_printf(sc->sc_dev, 2956 "%s: failed to save the FW paging image\n", 2957 __func__); 2958 return error; 2959 } 2960 2961 error = iwm_send_paging_cmd(sc, fw); 2962 if (error) { 2963 device_printf(sc->sc_dev, 2964 "%s: failed to send the paging cmd\n", __func__); 2965 iwm_free_fw_paging(sc); 2966 return error; 2967 } 2968 } 2969 2970 if (!error) 2971 sc->ucode_loaded = TRUE; 2972 return error; 2973 } 2974 2975 /* 2976 * mvm misc bits 2977 */ 2978 2979 /* 2980 * follows iwlwifi/fw.c 2981 */ 2982 static int 2983 iwm_run_init_ucode(struct iwm_softc *sc, int justnvm) 2984 { 2985 struct iwm_notification_wait calib_wait; 2986 static const uint16_t init_complete[] = { 2987 IWM_INIT_COMPLETE_NOTIF, 2988 IWM_CALIB_RES_NOTIF_PHY_DB 2989 }; 2990 int ret; 2991 2992 /* do not operate with rfkill switch turned on */ 2993 if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { 2994 device_printf(sc->sc_dev, 2995 "radio is disabled by hardware switch\n"); 2996 return EPERM; 2997 } 2998 2999 iwm_init_notification_wait(sc->sc_notif_wait, 3000 &calib_wait, 3001 init_complete, 3002 nitems(init_complete), 3003 iwm_wait_phy_db_entry, 3004 sc->sc_phy_db); 3005 3006 /* Will also start the device */ 3007 ret = iwm_load_ucode_wait_alive(sc, IWM_UCODE_INIT); 3008 if (ret) { 3009 device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n", 3010 ret); 3011 goto error; 3012 } 3013 3014 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 3015 ret = iwm_send_bt_init_conf(sc); 3016 if (ret) { 3017 device_printf(sc->sc_dev, 3018 "failed to send bt coex configuration: %d\n", ret); 3019 goto error; 3020 } 3021 } 3022 3023 if (justnvm) { 3024 /* Read nvm */ 3025 ret = iwm_nvm_init(sc); 3026 if (ret) { 3027 device_printf(sc->sc_dev, "failed to read nvm\n"); 3028 goto error; 3029 } 3030 IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr); 3031 goto error; 3032 } 3033 3034 /* Send TX valid antennas before triggering calibrations */ 3035 ret = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); 3036 if (ret) { 3037 device_printf(sc->sc_dev, 3038 "failed to send antennas before calibration: %d\n", ret); 3039 goto error; 3040 } 3041 3042 /* 3043 * Send phy configurations command to init uCode 3044 * to start the 16.0 uCode init image internal calibrations. 3045 */ 3046 ret = iwm_send_phy_cfg_cmd(sc); 3047 if (ret) { 3048 device_printf(sc->sc_dev, 3049 "%s: Failed to run INIT calibrations: %d\n", 3050 __func__, ret); 3051 goto error; 3052 } 3053 3054 /* 3055 * Nothing to do but wait for the init complete notification 3056 * from the firmware. 3057 */ 3058 IWM_UNLOCK(sc); 3059 ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait, 3060 IWM_UCODE_CALIB_TIMEOUT); 3061 IWM_LOCK(sc); 3062 3063 3064 goto out; 3065 3066 error: 3067 iwm_remove_notification(sc->sc_notif_wait, &calib_wait); 3068 out: 3069 return ret; 3070 } 3071 3072 static int 3073 iwm_config_ltr(struct iwm_softc *sc) 3074 { 3075 struct iwm_ltr_config_cmd cmd = { 3076 .flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE), 3077 }; 3078 3079 if (!sc->sc_ltr_enabled) 3080 return 0; 3081 3082 return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd); 3083 } 3084 3085 /* 3086 * receive side 3087 */ 3088 3089 /* (re)stock rx ring, called at init-time and at runtime */ 3090 static int 3091 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) 3092 { 3093 struct iwm_rx_ring *ring = &sc->rxq; 3094 struct iwm_rx_data *data = &ring->data[idx]; 3095 struct mbuf *m; 3096 bus_dmamap_t dmamap; 3097 bus_dma_segment_t seg; 3098 int nsegs, error; 3099 3100 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); 3101 if (m == NULL) 3102 return ENOBUFS; 3103 3104 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3105 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m, 3106 &seg, &nsegs, BUS_DMA_NOWAIT); 3107 if (error != 0) { 3108 device_printf(sc->sc_dev, 3109 "%s: can't map mbuf, error %d\n", __func__, error); 3110 m_freem(m); 3111 return error; 3112 } 3113 3114 if (data->m != NULL) 3115 bus_dmamap_unload(ring->data_dmat, data->map); 3116 3117 /* Swap ring->spare_map with data->map */ 3118 dmamap = data->map; 3119 data->map = ring->spare_map; 3120 ring->spare_map = dmamap; 3121 3122 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); 3123 data->m = m; 3124 3125 /* Update RX descriptor. */ 3126 KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned")); 3127 if (sc->cfg->mqrx_supported) 3128 ((uint64_t *)ring->desc)[idx] = htole64(seg.ds_addr); 3129 else 3130 ((uint32_t *)ring->desc)[idx] = htole32(seg.ds_addr >> 8); 3131 bus_dmamap_sync(ring->free_desc_dma.tag, ring->free_desc_dma.map, 3132 BUS_DMASYNC_PREWRITE); 3133 3134 return 0; 3135 } 3136 3137 static void 3138 iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3139 { 3140 struct iwm_rx_phy_info *phy_info = (void *)pkt->data; 3141 3142 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); 3143 3144 memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); 3145 } 3146 3147 /* 3148 * Retrieve the average noise (in dBm) among receivers. 3149 */ 3150 static int 3151 iwm_get_noise(struct iwm_softc *sc, 3152 const struct iwm_statistics_rx_non_phy *stats) 3153 { 3154 int i, total, nbant, noise; 3155 3156 total = nbant = noise = 0; 3157 for (i = 0; i < 3; i++) { 3158 noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; 3159 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n", 3160 __func__, 3161 i, 3162 noise); 3163 3164 if (noise) { 3165 total += noise; 3166 nbant++; 3167 } 3168 } 3169 3170 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n", 3171 __func__, nbant, total); 3172 #if 0 3173 /* There should be at least one antenna but check anyway. */ 3174 return (nbant == 0) ? -127 : (total / nbant) - 107; 3175 #else 3176 /* For now, just hard-code it to -96 to be safe */ 3177 return (-96); 3178 #endif 3179 } 3180 3181 static void 3182 iwm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3183 { 3184 struct iwm_notif_statistics_v10 *stats = (void *)&pkt->data; 3185 3186 memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); 3187 sc->sc_noise = iwm_get_noise(sc, &stats->rx.general); 3188 } 3189 3190 /* iwlwifi: mvm/rx.c */ 3191 /* 3192 * iwm_get_signal_strength - use new rx PHY INFO API 3193 * values are reported by the fw as positive values - need to negate 3194 * to obtain their dBM. Account for missing antennas by replacing 0 3195 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. 3196 */ 3197 static int 3198 iwm_rx_get_signal_strength(struct iwm_softc *sc, 3199 struct iwm_rx_phy_info *phy_info) 3200 { 3201 int energy_a, energy_b, energy_c, max_energy; 3202 uint32_t val; 3203 3204 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); 3205 energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> 3206 IWM_RX_INFO_ENERGY_ANT_A_POS; 3207 energy_a = energy_a ? -energy_a : -256; 3208 energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> 3209 IWM_RX_INFO_ENERGY_ANT_B_POS; 3210 energy_b = energy_b ? -energy_b : -256; 3211 energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> 3212 IWM_RX_INFO_ENERGY_ANT_C_POS; 3213 energy_c = energy_c ? -energy_c : -256; 3214 max_energy = MAX(energy_a, energy_b); 3215 max_energy = MAX(max_energy, energy_c); 3216 3217 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3218 "energy In A %d B %d C %d , and max %d\n", 3219 energy_a, energy_b, energy_c, max_energy); 3220 3221 return max_energy; 3222 } 3223 3224 static int 3225 iwm_rxmq_get_signal_strength(struct iwm_softc *sc, 3226 struct iwm_rx_mpdu_desc *desc) 3227 { 3228 int energy_a, energy_b; 3229 3230 energy_a = desc->v1.energy_a; 3231 energy_b = desc->v1.energy_b; 3232 energy_a = energy_a ? -energy_a : -256; 3233 energy_b = energy_b ? -energy_b : -256; 3234 return MAX(energy_a, energy_b); 3235 } 3236 3237 /* 3238 * iwm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler 3239 * 3240 * Handles the actual data of the Rx packet from the fw 3241 */ 3242 static bool 3243 iwm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3244 bool stolen) 3245 { 3246 struct ieee80211com *ic = &sc->sc_ic; 3247 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3248 struct ieee80211_frame *wh; 3249 struct ieee80211_rx_stats rxs; 3250 struct iwm_rx_phy_info *phy_info; 3251 struct iwm_rx_mpdu_res_start *rx_res; 3252 struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); 3253 uint32_t len; 3254 uint32_t rx_pkt_status; 3255 int rssi; 3256 3257 phy_info = &sc->sc_last_phy_info; 3258 rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; 3259 wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); 3260 len = le16toh(rx_res->byte_count); 3261 rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); 3262 3263 if (__predict_false(phy_info->cfg_phy_cnt > 20)) { 3264 device_printf(sc->sc_dev, 3265 "dsp size out of range [0,20]: %d\n", 3266 phy_info->cfg_phy_cnt); 3267 return false; 3268 } 3269 3270 if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || 3271 !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { 3272 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3273 "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); 3274 return false; 3275 } 3276 3277 rssi = iwm_rx_get_signal_strength(sc, phy_info); 3278 3279 /* Map it to relative value */ 3280 rssi = rssi - sc->sc_noise; 3281 3282 /* replenish ring for the buffer we're going to feed to the sharks */ 3283 if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 3284 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 3285 __func__); 3286 return false; 3287 } 3288 3289 m->m_data = pkt->data + sizeof(*rx_res); 3290 m->m_pkthdr.len = m->m_len = len; 3291 3292 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3293 "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); 3294 3295 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3296 "%s: phy_info: channel=%d, flags=0x%08x\n", 3297 __func__, 3298 le16toh(phy_info->channel), 3299 le16toh(phy_info->phy_flags)); 3300 3301 /* 3302 * Populate an RX state struct with the provided information. 3303 */ 3304 bzero(&rxs, sizeof(rxs)); 3305 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 3306 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 3307 rxs.c_ieee = le16toh(phy_info->channel); 3308 if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { 3309 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); 3310 } else { 3311 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); 3312 } 3313 3314 /* rssi is in 1/2db units */ 3315 rxs.c_rssi = rssi * 2; 3316 rxs.c_nf = sc->sc_noise; 3317 if (ieee80211_add_rx_params(m, &rxs) == 0) 3318 return false; 3319 3320 if (ieee80211_radiotap_active_vap(vap)) { 3321 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 3322 3323 tap->wr_flags = 0; 3324 if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) 3325 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3326 tap->wr_chan_freq = htole16(rxs.c_freq); 3327 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 3328 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 3329 tap->wr_dbm_antsignal = (int8_t)rssi; 3330 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 3331 tap->wr_tsft = phy_info->system_timestamp; 3332 switch (phy_info->rate) { 3333 /* CCK rates. */ 3334 case 10: tap->wr_rate = 2; break; 3335 case 20: tap->wr_rate = 4; break; 3336 case 55: tap->wr_rate = 11; break; 3337 case 110: tap->wr_rate = 22; break; 3338 /* OFDM rates. */ 3339 case 0xd: tap->wr_rate = 12; break; 3340 case 0xf: tap->wr_rate = 18; break; 3341 case 0x5: tap->wr_rate = 24; break; 3342 case 0x7: tap->wr_rate = 36; break; 3343 case 0x9: tap->wr_rate = 48; break; 3344 case 0xb: tap->wr_rate = 72; break; 3345 case 0x1: tap->wr_rate = 96; break; 3346 case 0x3: tap->wr_rate = 108; break; 3347 /* Unknown rate: should not happen. */ 3348 default: tap->wr_rate = 0; 3349 } 3350 } 3351 3352 return true; 3353 } 3354 3355 static bool 3356 iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3357 bool stolen) 3358 { 3359 struct ieee80211com *ic = &sc->sc_ic; 3360 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3361 struct ieee80211_frame *wh; 3362 struct ieee80211_rx_stats rxs; 3363 struct iwm_rx_mpdu_desc *desc; 3364 struct iwm_rx_packet *pkt; 3365 int rssi; 3366 uint32_t hdrlen, len, rate_n_flags; 3367 uint16_t phy_info; 3368 uint8_t channel; 3369 3370 pkt = mtodo(m, offset); 3371 desc = (void *)pkt->data; 3372 3373 if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) || 3374 !(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) { 3375 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3376 "Bad CRC or FIFO: 0x%08X.\n", desc->status); 3377 return false; 3378 } 3379 3380 channel = desc->v1.channel; 3381 len = le16toh(desc->mpdu_len); 3382 phy_info = le16toh(desc->phy_info); 3383 rate_n_flags = desc->v1.rate_n_flags; 3384 3385 wh = mtodo(m, sizeof(*desc)); 3386 m->m_data = pkt->data + sizeof(*desc); 3387 m->m_pkthdr.len = m->m_len = len; 3388 m->m_len = len; 3389 3390 /* Account for padding following the frame header. */ 3391 if ((desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD)) { 3392 hdrlen = ieee80211_anyhdrsize(wh); 3393 memmove(mtodo(m, 2), mtodo(m, 0), hdrlen); 3394 m->m_data = mtodo(m, 2); 3395 wh = mtod(m, struct ieee80211_frame *); 3396 } 3397 3398 /* Map it to relative value */ 3399 rssi = iwm_rxmq_get_signal_strength(sc, desc); 3400 rssi = rssi - sc->sc_noise; 3401 3402 /* replenish ring for the buffer we're going to feed to the sharks */ 3403 if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 3404 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 3405 __func__); 3406 return false; 3407 } 3408 3409 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3410 "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); 3411 3412 /* 3413 * Populate an RX state struct with the provided information. 3414 */ 3415 bzero(&rxs, sizeof(rxs)); 3416 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 3417 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 3418 rxs.c_ieee = channel; 3419 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, 3420 channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ); 3421 3422 /* rssi is in 1/2db units */ 3423 rxs.c_rssi = rssi * 2; 3424 rxs.c_nf = sc->sc_noise; 3425 if (ieee80211_add_rx_params(m, &rxs) == 0) 3426 return false; 3427 3428 if (ieee80211_radiotap_active_vap(vap)) { 3429 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 3430 3431 tap->wr_flags = 0; 3432 if ((phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE) != 0) 3433 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3434 tap->wr_chan_freq = htole16(rxs.c_freq); 3435 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 3436 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 3437 tap->wr_dbm_antsignal = (int8_t)rssi; 3438 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 3439 tap->wr_tsft = desc->v1.gp2_on_air_rise; 3440 switch ((rate_n_flags & 0xff)) { 3441 /* CCK rates. */ 3442 case 10: tap->wr_rate = 2; break; 3443 case 20: tap->wr_rate = 4; break; 3444 case 55: tap->wr_rate = 11; break; 3445 case 110: tap->wr_rate = 22; break; 3446 /* OFDM rates. */ 3447 case 0xd: tap->wr_rate = 12; break; 3448 case 0xf: tap->wr_rate = 18; break; 3449 case 0x5: tap->wr_rate = 24; break; 3450 case 0x7: tap->wr_rate = 36; break; 3451 case 0x9: tap->wr_rate = 48; break; 3452 case 0xb: tap->wr_rate = 72; break; 3453 case 0x1: tap->wr_rate = 96; break; 3454 case 0x3: tap->wr_rate = 108; break; 3455 /* Unknown rate: should not happen. */ 3456 default: tap->wr_rate = 0; 3457 } 3458 } 3459 3460 return true; 3461 } 3462 3463 static bool 3464 iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3465 bool stolen) 3466 { 3467 struct epoch_tracker et; 3468 struct ieee80211com *ic; 3469 struct ieee80211_frame *wh; 3470 struct ieee80211_node *ni; 3471 bool ret; 3472 3473 ic = &sc->sc_ic; 3474 3475 ret = sc->cfg->mqrx_supported ? 3476 iwm_rx_mpdu_mq(sc, m, offset, stolen) : 3477 iwm_rx_rx_mpdu(sc, m, offset, stolen); 3478 if (!ret) { 3479 counter_u64_add(ic->ic_ierrors, 1); 3480 return (ret); 3481 } 3482 3483 wh = mtod(m, struct ieee80211_frame *); 3484 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3485 3486 IWM_UNLOCK(sc); 3487 3488 NET_EPOCH_ENTER(et); 3489 if (ni != NULL) { 3490 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); 3491 ieee80211_input_mimo(ni, m); 3492 ieee80211_free_node(ni); 3493 } else { 3494 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); 3495 ieee80211_input_mimo_all(ic, m); 3496 } 3497 NET_EPOCH_EXIT(et); 3498 3499 IWM_LOCK(sc); 3500 3501 return true; 3502 } 3503 3504 static int 3505 iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, 3506 struct iwm_node *in) 3507 { 3508 struct iwm_tx_resp *tx_resp = (void *)pkt->data; 3509 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3510 struct ieee80211_node *ni = &in->in_ni; 3511 struct ieee80211vap *vap = ni->ni_vap; 3512 int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; 3513 int new_rate, cur_rate = vap->iv_bss->ni_txrate; 3514 boolean_t rate_matched; 3515 uint8_t tx_resp_rate; 3516 3517 KASSERT(tx_resp->frame_count == 1, ("too many frames")); 3518 3519 /* Update rate control statistics. */ 3520 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", 3521 __func__, 3522 (int) le16toh(tx_resp->status.status), 3523 (int) le16toh(tx_resp->status.sequence), 3524 tx_resp->frame_count, 3525 tx_resp->bt_kill_count, 3526 tx_resp->failure_rts, 3527 tx_resp->failure_frame, 3528 le32toh(tx_resp->initial_rate), 3529 (int) le16toh(tx_resp->wireless_media_time)); 3530 3531 tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate)); 3532 3533 /* For rate control, ignore frames sent at different initial rate */ 3534 rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate); 3535 3536 if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) { 3537 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3538 "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u " 3539 "ni_txrate=%d)\n", tx_resp_rate, cur_rate); 3540 } 3541 3542 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3543 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3544 txs->short_retries = tx_resp->failure_rts; 3545 txs->long_retries = tx_resp->failure_frame; 3546 if (status != IWM_TX_STATUS_SUCCESS && 3547 status != IWM_TX_STATUS_DIRECT_DONE) { 3548 switch (status) { 3549 case IWM_TX_STATUS_FAIL_SHORT_LIMIT: 3550 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 3551 break; 3552 case IWM_TX_STATUS_FAIL_LONG_LIMIT: 3553 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 3554 break; 3555 case IWM_TX_STATUS_FAIL_LIFE_EXPIRE: 3556 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 3557 break; 3558 default: 3559 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3560 break; 3561 } 3562 } else { 3563 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3564 } 3565 3566 if (rate_matched) { 3567 ieee80211_ratectl_tx_complete(ni, txs); 3568 3569 int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0); 3570 new_rate = vap->iv_bss->ni_txrate; 3571 if (new_rate != 0 && new_rate != cur_rate) { 3572 struct iwm_node *in = IWM_NODE(vap->iv_bss); 3573 iwm_setrates(sc, in, rix); 3574 iwm_send_lq_cmd(sc, &in->in_lq, FALSE); 3575 } 3576 } 3577 3578 return (txs->status != IEEE80211_RATECTL_TX_SUCCESS); 3579 } 3580 3581 static void 3582 iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3583 { 3584 struct iwm_cmd_header *cmd_hdr; 3585 struct iwm_tx_ring *ring; 3586 struct iwm_tx_data *txd; 3587 struct iwm_node *in; 3588 struct mbuf *m; 3589 int idx, qid, qmsk, status; 3590 3591 cmd_hdr = &pkt->hdr; 3592 idx = cmd_hdr->idx; 3593 qid = cmd_hdr->qid; 3594 3595 ring = &sc->txq[qid]; 3596 txd = &ring->data[idx]; 3597 in = txd->in; 3598 m = txd->m; 3599 3600 KASSERT(txd->done == 0, ("txd not done")); 3601 KASSERT(txd->in != NULL, ("txd without node")); 3602 KASSERT(txd->m != NULL, ("txd without mbuf")); 3603 3604 sc->sc_tx_timer = 0; 3605 3606 status = iwm_rx_tx_cmd_single(sc, pkt, in); 3607 3608 /* Unmap and free mbuf. */ 3609 bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); 3610 bus_dmamap_unload(ring->data_dmat, txd->map); 3611 3612 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3613 "free txd %p, in %p\n", txd, txd->in); 3614 txd->done = 1; 3615 txd->m = NULL; 3616 txd->in = NULL; 3617 3618 ieee80211_tx_complete(&in->in_ni, m, status); 3619 3620 qmsk = 1 << qid; 3621 if (--ring->queued < IWM_TX_RING_LOMARK && (sc->qfullmsk & qmsk) != 0) { 3622 sc->qfullmsk &= ~qmsk; 3623 if (sc->qfullmsk == 0) 3624 iwm_start(sc); 3625 } 3626 } 3627 3628 /* 3629 * transmit side 3630 */ 3631 3632 /* 3633 * Process a "command done" firmware notification. This is where we wakeup 3634 * processes waiting for a synchronous command completion. 3635 * from if_iwn 3636 */ 3637 static void 3638 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3639 { 3640 struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; 3641 struct iwm_tx_data *data; 3642 3643 if (pkt->hdr.qid != IWM_CMD_QUEUE) { 3644 return; /* Not a command ack. */ 3645 } 3646 3647 /* XXX wide commands? */ 3648 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 3649 "cmd notification type 0x%x qid %d idx %d\n", 3650 pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx); 3651 3652 data = &ring->data[pkt->hdr.idx]; 3653 3654 /* If the command was mapped in an mbuf, free it. */ 3655 if (data->m != NULL) { 3656 bus_dmamap_sync(ring->data_dmat, data->map, 3657 BUS_DMASYNC_POSTWRITE); 3658 bus_dmamap_unload(ring->data_dmat, data->map); 3659 m_freem(data->m); 3660 data->m = NULL; 3661 } 3662 wakeup(&ring->desc[pkt->hdr.idx]); 3663 3664 if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) { 3665 device_printf(sc->sc_dev, 3666 "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n", 3667 __func__, pkt->hdr.idx, ring->queued, ring->cur); 3668 /* XXX call iwm_force_nmi() */ 3669 } 3670 3671 KASSERT(ring->queued > 0, ("ring->queued is empty?")); 3672 ring->queued--; 3673 if (ring->queued == 0) 3674 iwm_pcie_clear_cmd_in_flight(sc); 3675 } 3676 3677 #if 0 3678 /* 3679 * necessary only for block ack mode 3680 */ 3681 void 3682 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, 3683 uint16_t len) 3684 { 3685 struct iwm_agn_scd_bc_tbl *scd_bc_tbl; 3686 uint16_t w_val; 3687 3688 scd_bc_tbl = sc->sched_dma.vaddr; 3689 3690 len += 8; /* magic numbers came naturally from paris */ 3691 len = roundup(len, 4) / 4; 3692 3693 w_val = htole16(sta_id << 12 | len); 3694 3695 /* Update TX scheduler. */ 3696 scd_bc_tbl[qid].tfd_offset[idx] = w_val; 3697 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3698 BUS_DMASYNC_PREWRITE); 3699 3700 /* I really wonder what this is ?!? */ 3701 if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { 3702 scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; 3703 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3704 BUS_DMASYNC_PREWRITE); 3705 } 3706 } 3707 #endif 3708 3709 static int 3710 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate) 3711 { 3712 int i; 3713 3714 for (i = 0; i < nitems(iwm_rates); i++) { 3715 if (iwm_rates[i].rate == rate) 3716 return (i); 3717 } 3718 /* XXX error? */ 3719 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 3720 "%s: couldn't find an entry for rate=%d\n", 3721 __func__, 3722 rate); 3723 return (0); 3724 } 3725 3726 /* 3727 * Fill in the rate related information for a transmit command. 3728 */ 3729 static const struct iwm_rate * 3730 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, 3731 struct mbuf *m, struct iwm_tx_cmd *tx) 3732 { 3733 struct ieee80211_node *ni = &in->in_ni; 3734 struct ieee80211_frame *wh; 3735 const struct ieee80211_txparam *tp = ni->ni_txparms; 3736 const struct iwm_rate *rinfo; 3737 int type; 3738 int ridx, rate_flags; 3739 3740 wh = mtod(m, struct ieee80211_frame *); 3741 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3742 3743 tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; 3744 tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; 3745 3746 if (type == IEEE80211_FC0_TYPE_MGT || 3747 type == IEEE80211_FC0_TYPE_CTL || 3748 (m->m_flags & M_EAPOL) != 0) { 3749 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate); 3750 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3751 "%s: MGT (%d)\n", __func__, tp->mgmtrate); 3752 } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3753 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate); 3754 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3755 "%s: MCAST (%d)\n", __func__, tp->mcastrate); 3756 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 3757 ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate); 3758 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3759 "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate); 3760 } else { 3761 /* for data frames, use RS table */ 3762 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__); 3763 ridx = iwm_rate2ridx(sc, ni->ni_txrate); 3764 if (ridx == -1) 3765 ridx = 0; 3766 3767 /* This is the index into the programmed table */ 3768 tx->initial_rate_index = 0; 3769 tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); 3770 } 3771 3772 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 3773 "%s: frame type=%d txrate %d\n", 3774 __func__, type, iwm_rates[ridx].rate); 3775 3776 rinfo = &iwm_rates[ridx]; 3777 3778 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", 3779 __func__, ridx, 3780 rinfo->rate, 3781 !! (IWM_RIDX_IS_CCK(ridx)) 3782 ); 3783 3784 /* XXX TODO: hard-coded TX antenna? */ 3785 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_9000) 3786 rate_flags = IWM_RATE_MCS_ANT_B_MSK; 3787 else 3788 rate_flags = IWM_RATE_MCS_ANT_A_MSK; 3789 if (IWM_RIDX_IS_CCK(ridx)) 3790 rate_flags |= IWM_RATE_MCS_CCK_MSK; 3791 tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); 3792 3793 return rinfo; 3794 } 3795 3796 #define TB0_SIZE 16 3797 static int 3798 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 3799 { 3800 struct ieee80211com *ic = &sc->sc_ic; 3801 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3802 struct iwm_node *in = IWM_NODE(ni); 3803 struct iwm_tx_ring *ring; 3804 struct iwm_tx_data *data; 3805 struct iwm_tfd *desc; 3806 struct iwm_device_cmd *cmd; 3807 struct iwm_tx_cmd *tx; 3808 struct ieee80211_frame *wh; 3809 struct ieee80211_key *k = NULL; 3810 struct mbuf *m1; 3811 const struct iwm_rate *rinfo; 3812 uint32_t flags; 3813 u_int hdrlen; 3814 bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; 3815 int nsegs; 3816 uint8_t tid, type; 3817 int i, totlen, error, pad; 3818 3819 wh = mtod(m, struct ieee80211_frame *); 3820 hdrlen = ieee80211_anyhdrsize(wh); 3821 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3822 tid = 0; 3823 ring = &sc->txq[ac]; 3824 desc = &ring->desc[ring->cur]; 3825 data = &ring->data[ring->cur]; 3826 3827 /* Fill out iwm_tx_cmd to send to the firmware */ 3828 cmd = &ring->cmd[ring->cur]; 3829 cmd->hdr.code = IWM_TX_CMD; 3830 cmd->hdr.flags = 0; 3831 cmd->hdr.qid = ring->qid; 3832 cmd->hdr.idx = ring->cur; 3833 3834 tx = (void *)cmd->data; 3835 memset(tx, 0, sizeof(*tx)); 3836 3837 rinfo = iwm_tx_fill_cmd(sc, in, m, tx); 3838 3839 /* Encrypt the frame if need be. */ 3840 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 3841 /* Retrieve key for TX && do software encryption. */ 3842 k = ieee80211_crypto_encap(ni, m); 3843 if (k == NULL) { 3844 m_freem(m); 3845 return (ENOBUFS); 3846 } 3847 /* 802.11 header may have moved. */ 3848 wh = mtod(m, struct ieee80211_frame *); 3849 } 3850 3851 if (ieee80211_radiotap_active_vap(vap)) { 3852 struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; 3853 3854 tap->wt_flags = 0; 3855 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3856 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3857 tap->wt_rate = rinfo->rate; 3858 if (k != NULL) 3859 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3860 ieee80211_radiotap_tx(vap, m); 3861 } 3862 3863 flags = 0; 3864 totlen = m->m_pkthdr.len; 3865 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3866 flags |= IWM_TX_CMD_FLG_ACK; 3867 } 3868 3869 if (type == IEEE80211_FC0_TYPE_DATA && 3870 totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold && 3871 !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3872 flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; 3873 } 3874 3875 tx->sta_id = IWM_STATION_ID; 3876 3877 if (type == IEEE80211_FC0_TYPE_MGT) { 3878 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3879 3880 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3881 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 3882 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); 3883 } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) { 3884 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3885 } else { 3886 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); 3887 } 3888 } else { 3889 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3890 } 3891 3892 if (hdrlen & 3) { 3893 /* First segment length must be a multiple of 4. */ 3894 flags |= IWM_TX_CMD_FLG_MH_PAD; 3895 tx->offload_assist |= htole16(1 << IWM_TX_CMD_OFFLD_PAD); 3896 pad = 4 - (hdrlen & 3); 3897 } else { 3898 tx->offload_assist = 0; 3899 pad = 0; 3900 } 3901 3902 tx->len = htole16(totlen); 3903 tx->tid_tspec = tid; 3904 tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); 3905 3906 /* Set physical address of "scratch area". */ 3907 tx->dram_lsb_ptr = htole32(data->scratch_paddr); 3908 tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); 3909 3910 /* Copy 802.11 header in TX command. */ 3911 memcpy((uint8_t *)tx + sizeof(*tx), wh, hdrlen); 3912 3913 flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; 3914 3915 tx->sec_ctl = 0; 3916 tx->tx_flags |= htole32(flags); 3917 3918 /* Trim 802.11 header. */ 3919 m_adj(m, hdrlen); 3920 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3921 segs, &nsegs, BUS_DMA_NOWAIT); 3922 if (error != 0) { 3923 if (error != EFBIG) { 3924 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3925 error); 3926 m_freem(m); 3927 return error; 3928 } 3929 /* Too many DMA segments, linearize mbuf. */ 3930 m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); 3931 if (m1 == NULL) { 3932 device_printf(sc->sc_dev, 3933 "%s: could not defrag mbuf\n", __func__); 3934 m_freem(m); 3935 return (ENOBUFS); 3936 } 3937 m = m1; 3938 3939 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3940 segs, &nsegs, BUS_DMA_NOWAIT); 3941 if (error != 0) { 3942 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3943 error); 3944 m_freem(m); 3945 return error; 3946 } 3947 } 3948 data->m = m; 3949 data->in = in; 3950 data->done = 0; 3951 3952 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3953 "sending txd %p, in %p\n", data, data->in); 3954 KASSERT(data->in != NULL, ("node is NULL")); 3955 3956 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3957 "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n", 3958 ring->qid, ring->cur, totlen, nsegs, 3959 le32toh(tx->tx_flags), 3960 le32toh(tx->rate_n_flags), 3961 tx->initial_rate_index 3962 ); 3963 3964 /* Fill TX descriptor. */ 3965 memset(desc, 0, sizeof(*desc)); 3966 desc->num_tbs = 2 + nsegs; 3967 3968 desc->tbs[0].lo = htole32(data->cmd_paddr); 3969 desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | 3970 (TB0_SIZE << 4)); 3971 desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); 3972 desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | 3973 ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + 3974 hdrlen + pad - TB0_SIZE) << 4)); 3975 3976 /* Other DMA segments are for data payload. */ 3977 for (i = 0; i < nsegs; i++) { 3978 seg = &segs[i]; 3979 desc->tbs[i + 2].lo = htole32(seg->ds_addr); 3980 desc->tbs[i + 2].hi_n_len = 3981 htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | 3982 (seg->ds_len << 4); 3983 } 3984 3985 bus_dmamap_sync(ring->data_dmat, data->map, 3986 BUS_DMASYNC_PREWRITE); 3987 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 3988 BUS_DMASYNC_PREWRITE); 3989 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3990 BUS_DMASYNC_PREWRITE); 3991 3992 #if 0 3993 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); 3994 #endif 3995 3996 /* Kick TX ring. */ 3997 ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; 3998 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3999 4000 /* Mark TX ring as full if we reach a certain threshold. */ 4001 if (++ring->queued > IWM_TX_RING_HIMARK) { 4002 sc->qfullmsk |= 1 << ring->qid; 4003 } 4004 4005 return 0; 4006 } 4007 4008 static int 4009 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4010 const struct ieee80211_bpf_params *params) 4011 { 4012 struct ieee80211com *ic = ni->ni_ic; 4013 struct iwm_softc *sc = ic->ic_softc; 4014 int error = 0; 4015 4016 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 4017 "->%s begin\n", __func__); 4018 4019 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 4020 m_freem(m); 4021 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 4022 "<-%s not RUNNING\n", __func__); 4023 return (ENETDOWN); 4024 } 4025 4026 IWM_LOCK(sc); 4027 /* XXX fix this */ 4028 if (params == NULL) { 4029 error = iwm_tx(sc, m, ni, 0); 4030 } else { 4031 error = iwm_tx(sc, m, ni, 0); 4032 } 4033 if (sc->sc_tx_timer == 0) 4034 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 4035 sc->sc_tx_timer = 5; 4036 IWM_UNLOCK(sc); 4037 4038 return (error); 4039 } 4040 4041 /* 4042 * mvm/tx.c 4043 */ 4044 4045 /* 4046 * Note that there are transports that buffer frames before they reach 4047 * the firmware. This means that after flush_tx_path is called, the 4048 * queue might not be empty. The race-free way to handle this is to: 4049 * 1) set the station as draining 4050 * 2) flush the Tx path 4051 * 3) wait for the transport queues to be empty 4052 */ 4053 int 4054 iwm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags) 4055 { 4056 int ret; 4057 struct iwm_tx_path_flush_cmd flush_cmd = { 4058 .queues_ctl = htole32(tfd_msk), 4059 .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), 4060 }; 4061 4062 ret = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags, 4063 sizeof(flush_cmd), &flush_cmd); 4064 if (ret) 4065 device_printf(sc->sc_dev, 4066 "Flushing tx queue failed: %d\n", ret); 4067 return ret; 4068 } 4069 4070 /* 4071 * BEGIN mvm/quota.c 4072 */ 4073 4074 static int 4075 iwm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp) 4076 { 4077 struct iwm_time_quota_cmd cmd; 4078 int i, idx, ret, num_active_macs, quota, quota_rem; 4079 int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; 4080 int n_ifs[IWM_MAX_BINDINGS] = {0, }; 4081 uint16_t id; 4082 4083 memset(&cmd, 0, sizeof(cmd)); 4084 4085 /* currently, PHY ID == binding ID */ 4086 if (ivp) { 4087 id = ivp->phy_ctxt->id; 4088 KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); 4089 colors[id] = ivp->phy_ctxt->color; 4090 4091 if (1) 4092 n_ifs[id] = 1; 4093 } 4094 4095 /* 4096 * The FW's scheduling session consists of 4097 * IWM_MAX_QUOTA fragments. Divide these fragments 4098 * equally between all the bindings that require quota 4099 */ 4100 num_active_macs = 0; 4101 for (i = 0; i < IWM_MAX_BINDINGS; i++) { 4102 cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); 4103 num_active_macs += n_ifs[i]; 4104 } 4105 4106 quota = 0; 4107 quota_rem = 0; 4108 if (num_active_macs) { 4109 quota = IWM_MAX_QUOTA / num_active_macs; 4110 quota_rem = IWM_MAX_QUOTA % num_active_macs; 4111 } 4112 4113 for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { 4114 if (colors[i] < 0) 4115 continue; 4116 4117 cmd.quotas[idx].id_and_color = 4118 htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); 4119 4120 if (n_ifs[i] <= 0) { 4121 cmd.quotas[idx].quota = htole32(0); 4122 cmd.quotas[idx].max_duration = htole32(0); 4123 } else { 4124 cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); 4125 cmd.quotas[idx].max_duration = htole32(0); 4126 } 4127 idx++; 4128 } 4129 4130 /* Give the remainder of the session to the first binding */ 4131 cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); 4132 4133 ret = iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, 4134 sizeof(cmd), &cmd); 4135 if (ret) 4136 device_printf(sc->sc_dev, 4137 "%s: Failed to send quota: %d\n", __func__, ret); 4138 return ret; 4139 } 4140 4141 /* 4142 * END mvm/quota.c 4143 */ 4144 4145 /* 4146 * ieee80211 routines 4147 */ 4148 4149 /* 4150 * Change to AUTH state in 80211 state machine. Roughly matches what 4151 * Linux does in bss_info_changed(). 4152 */ 4153 static int 4154 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) 4155 { 4156 struct ieee80211_node *ni; 4157 struct iwm_node *in; 4158 struct iwm_vap *iv = IWM_VAP(vap); 4159 uint32_t duration; 4160 int error; 4161 4162 /* 4163 * XXX i have a feeling that the vap node is being 4164 * freed from underneath us. Grr. 4165 */ 4166 ni = ieee80211_ref_node(vap->iv_bss); 4167 in = IWM_NODE(ni); 4168 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, 4169 "%s: called; vap=%p, bss ni=%p\n", 4170 __func__, 4171 vap, 4172 ni); 4173 IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n", 4174 __func__, ether_sprintf(ni->ni_bssid)); 4175 4176 in->in_assoc = 0; 4177 iv->iv_auth = 1; 4178 4179 /* 4180 * Firmware bug - it'll crash if the beacon interval is less 4181 * than 16. We can't avoid connecting at all, so refuse the 4182 * station state change, this will cause net80211 to abandon 4183 * attempts to connect to this AP, and eventually wpa_s will 4184 * blacklist the AP... 4185 */ 4186 if (ni->ni_intval < 16) { 4187 device_printf(sc->sc_dev, 4188 "AP %s beacon interval is %d, refusing due to firmware bug!\n", 4189 ether_sprintf(ni->ni_bssid), ni->ni_intval); 4190 error = EINVAL; 4191 goto out; 4192 } 4193 4194 error = iwm_allow_mcast(vap, sc); 4195 if (error) { 4196 device_printf(sc->sc_dev, 4197 "%s: failed to set multicast\n", __func__); 4198 goto out; 4199 } 4200 4201 /* 4202 * This is where it deviates from what Linux does. 4203 * 4204 * Linux iwlwifi doesn't reset the nic each time, nor does it 4205 * call ctxt_add() here. Instead, it adds it during vap creation, 4206 * and always does a mac_ctx_changed(). 4207 * 4208 * The openbsd port doesn't attempt to do that - it reset things 4209 * at odd states and does the add here. 4210 * 4211 * So, until the state handling is fixed (ie, we never reset 4212 * the NIC except for a firmware failure, which should drag 4213 * the NIC back to IDLE, re-setup and re-add all the mac/phy 4214 * contexts that are required), let's do a dirty hack here. 4215 */ 4216 if (iv->is_uploaded) { 4217 if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { 4218 device_printf(sc->sc_dev, 4219 "%s: failed to update MAC\n", __func__); 4220 goto out; 4221 } 4222 } else { 4223 if ((error = iwm_mac_ctxt_add(sc, vap)) != 0) { 4224 device_printf(sc->sc_dev, 4225 "%s: failed to add MAC\n", __func__); 4226 goto out; 4227 } 4228 } 4229 sc->sc_firmware_state = 1; 4230 4231 if ((error = iwm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 4232 in->in_ni.ni_chan, 1, 1)) != 0) { 4233 device_printf(sc->sc_dev, 4234 "%s: failed update phy ctxt\n", __func__); 4235 goto out; 4236 } 4237 iv->phy_ctxt = &sc->sc_phyctxt[0]; 4238 4239 if ((error = iwm_binding_add_vif(sc, iv)) != 0) { 4240 device_printf(sc->sc_dev, 4241 "%s: binding update cmd\n", __func__); 4242 goto out; 4243 } 4244 sc->sc_firmware_state = 2; 4245 /* 4246 * Authentication becomes unreliable when powersaving is left enabled 4247 * here. Powersaving will be activated again when association has 4248 * finished or is aborted. 4249 */ 4250 iv->ps_disabled = TRUE; 4251 error = iwm_power_update_mac(sc); 4252 iv->ps_disabled = FALSE; 4253 if (error != 0) { 4254 device_printf(sc->sc_dev, 4255 "%s: failed to update power management\n", 4256 __func__); 4257 goto out; 4258 } 4259 if ((error = iwm_add_sta(sc, in)) != 0) { 4260 device_printf(sc->sc_dev, 4261 "%s: failed to add sta\n", __func__); 4262 goto out; 4263 } 4264 sc->sc_firmware_state = 3; 4265 4266 /* 4267 * Prevent the FW from wandering off channel during association 4268 * by "protecting" the session with a time event. 4269 */ 4270 /* XXX duration is in units of TU, not MS */ 4271 duration = IWM_TE_SESSION_PROTECTION_MAX_TIME_MS; 4272 iwm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE); 4273 4274 error = 0; 4275 out: 4276 if (error != 0) 4277 iv->iv_auth = 0; 4278 ieee80211_free_node(ni); 4279 return (error); 4280 } 4281 4282 static struct ieee80211_node * 4283 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4284 { 4285 return malloc(sizeof (struct iwm_node), M_80211_NODE, 4286 M_NOWAIT | M_ZERO); 4287 } 4288 4289 static uint8_t 4290 iwm_rate_from_ucode_rate(uint32_t rate_n_flags) 4291 { 4292 uint8_t plcp = rate_n_flags & 0xff; 4293 int i; 4294 4295 for (i = 0; i <= IWM_RIDX_MAX; i++) { 4296 if (iwm_rates[i].plcp == plcp) 4297 return iwm_rates[i].rate; 4298 } 4299 return 0; 4300 } 4301 4302 uint8_t 4303 iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) 4304 { 4305 int i; 4306 uint8_t rval; 4307 4308 for (i = 0; i < rs->rs_nrates; i++) { 4309 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 4310 if (rval == iwm_rates[ridx].rate) 4311 return rs->rs_rates[i]; 4312 } 4313 4314 return 0; 4315 } 4316 4317 static int 4318 iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate) 4319 { 4320 int i; 4321 4322 for (i = 0; i <= IWM_RIDX_MAX; i++) { 4323 if (iwm_rates[i].rate == rate) 4324 return i; 4325 } 4326 4327 device_printf(sc->sc_dev, 4328 "%s: WARNING: device rate for %u not found!\n", 4329 __func__, rate); 4330 4331 return -1; 4332 } 4333 4334 4335 static void 4336 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix) 4337 { 4338 struct ieee80211_node *ni = &in->in_ni; 4339 struct iwm_lq_cmd *lq = &in->in_lq; 4340 struct ieee80211_rateset *rs = &ni->ni_rates; 4341 int nrates = rs->rs_nrates; 4342 int i, ridx, tab = 0; 4343 // int txant = 0; 4344 4345 KASSERT(rix >= 0 && rix < nrates, ("invalid rix")); 4346 4347 if (nrates > nitems(lq->rs_table)) { 4348 device_printf(sc->sc_dev, 4349 "%s: node supports %d rates, driver handles " 4350 "only %zu\n", __func__, nrates, nitems(lq->rs_table)); 4351 return; 4352 } 4353 if (nrates == 0) { 4354 device_printf(sc->sc_dev, 4355 "%s: node supports 0 rates, odd!\n", __func__); 4356 return; 4357 } 4358 nrates = imin(rix + 1, nrates); 4359 4360 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4361 "%s: nrates=%d\n", __func__, nrates); 4362 4363 /* then construct a lq_cmd based on those */ 4364 memset(lq, 0, sizeof(*lq)); 4365 lq->sta_id = IWM_STATION_ID; 4366 4367 /* For HT, always enable RTS/CTS to avoid excessive retries. */ 4368 if (ni->ni_flags & IEEE80211_NODE_HT) 4369 lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; 4370 4371 /* 4372 * are these used? (we don't do SISO or MIMO) 4373 * need to set them to non-zero, though, or we get an error. 4374 */ 4375 lq->single_stream_ant_msk = 1; 4376 lq->dual_stream_ant_msk = 1; 4377 4378 /* 4379 * Build the actual rate selection table. 4380 * The lowest bits are the rates. Additionally, 4381 * CCK needs bit 9 to be set. The rest of the bits 4382 * we add to the table select the tx antenna 4383 * Note that we add the rates in the highest rate first 4384 * (opposite of ni_rates). 4385 */ 4386 for (i = 0; i < nrates; i++) { 4387 int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL; 4388 int nextant; 4389 4390 /* Map 802.11 rate to HW rate index. */ 4391 ridx = iwm_rate2ridx(sc, rate); 4392 if (ridx == -1) 4393 continue; 4394 4395 #if 0 4396 if (txant == 0) 4397 txant = iwm_get_valid_tx_ant(sc); 4398 nextant = 1<<(ffs(txant)-1); 4399 txant &= ~nextant; 4400 #else 4401 nextant = iwm_get_valid_tx_ant(sc); 4402 #endif 4403 tab = iwm_rates[ridx].plcp; 4404 tab |= nextant << IWM_RATE_MCS_ANT_POS; 4405 if (IWM_RIDX_IS_CCK(ridx)) 4406 tab |= IWM_RATE_MCS_CCK_MSK; 4407 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4408 "station rate i=%d, rate=%d, hw=%x\n", 4409 i, iwm_rates[ridx].rate, tab); 4410 lq->rs_table[i] = htole32(tab); 4411 } 4412 /* then fill the rest with the lowest possible rate */ 4413 for (i = nrates; i < nitems(lq->rs_table); i++) { 4414 KASSERT(tab != 0, ("invalid tab")); 4415 lq->rs_table[i] = htole32(tab); 4416 } 4417 } 4418 4419 static void 4420 iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap) 4421 { 4422 struct iwm_vap *ivp = IWM_VAP(vap); 4423 int error; 4424 4425 /* Avoid Tx watchdog triggering, when transfers get dropped here. */ 4426 sc->sc_tx_timer = 0; 4427 4428 ivp->iv_auth = 0; 4429 if (sc->sc_firmware_state == 3) { 4430 iwm_xmit_queue_drain(sc); 4431 // iwm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC); 4432 error = iwm_rm_sta(sc, vap, TRUE); 4433 if (error) { 4434 device_printf(sc->sc_dev, 4435 "%s: Failed to remove station: %d\n", 4436 __func__, error); 4437 } 4438 } 4439 if (sc->sc_firmware_state == 3) { 4440 error = iwm_mac_ctxt_changed(sc, vap); 4441 if (error) { 4442 device_printf(sc->sc_dev, 4443 "%s: Failed to change mac context: %d\n", 4444 __func__, error); 4445 } 4446 } 4447 if (sc->sc_firmware_state == 3) { 4448 error = iwm_sf_update(sc, vap, FALSE); 4449 if (error) { 4450 device_printf(sc->sc_dev, 4451 "%s: Failed to update smart FIFO: %d\n", 4452 __func__, error); 4453 } 4454 } 4455 if (sc->sc_firmware_state == 3) { 4456 error = iwm_rm_sta_id(sc, vap); 4457 if (error) { 4458 device_printf(sc->sc_dev, 4459 "%s: Failed to remove station id: %d\n", 4460 __func__, error); 4461 } 4462 } 4463 if (sc->sc_firmware_state == 3) { 4464 error = iwm_update_quotas(sc, NULL); 4465 if (error) { 4466 device_printf(sc->sc_dev, 4467 "%s: Failed to update PHY quota: %d\n", 4468 __func__, error); 4469 } 4470 } 4471 if (sc->sc_firmware_state == 3) { 4472 /* XXX Might need to specify bssid correctly. */ 4473 error = iwm_mac_ctxt_changed(sc, vap); 4474 if (error) { 4475 device_printf(sc->sc_dev, 4476 "%s: Failed to change mac context: %d\n", 4477 __func__, error); 4478 } 4479 } 4480 if (sc->sc_firmware_state == 3) { 4481 sc->sc_firmware_state = 2; 4482 } 4483 if (sc->sc_firmware_state > 1) { 4484 error = iwm_binding_remove_vif(sc, ivp); 4485 if (error) { 4486 device_printf(sc->sc_dev, 4487 "%s: Failed to remove channel ctx: %d\n", 4488 __func__, error); 4489 } 4490 } 4491 if (sc->sc_firmware_state > 1) { 4492 sc->sc_firmware_state = 1; 4493 } 4494 ivp->phy_ctxt = NULL; 4495 if (sc->sc_firmware_state > 0) { 4496 error = iwm_mac_ctxt_changed(sc, vap); 4497 if (error) { 4498 device_printf(sc->sc_dev, 4499 "%s: Failed to change mac context: %d\n", 4500 __func__, error); 4501 } 4502 } 4503 if (sc->sc_firmware_state > 0) { 4504 error = iwm_power_update_mac(sc); 4505 if (error != 0) { 4506 device_printf(sc->sc_dev, 4507 "%s: failed to update power management\n", 4508 __func__); 4509 } 4510 } 4511 sc->sc_firmware_state = 0; 4512 } 4513 4514 static int 4515 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4516 { 4517 struct iwm_vap *ivp = IWM_VAP(vap); 4518 struct ieee80211com *ic = vap->iv_ic; 4519 struct iwm_softc *sc = ic->ic_softc; 4520 struct iwm_node *in; 4521 int error; 4522 4523 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 4524 "switching state %s -> %s arg=0x%x\n", 4525 ieee80211_state_name[vap->iv_state], 4526 ieee80211_state_name[nstate], 4527 arg); 4528 4529 IEEE80211_UNLOCK(ic); 4530 IWM_LOCK(sc); 4531 4532 if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) && 4533 (nstate == IEEE80211_S_AUTH || 4534 nstate == IEEE80211_S_ASSOC || 4535 nstate == IEEE80211_S_RUN)) { 4536 /* Stop blinking for a scan, when authenticating. */ 4537 iwm_led_blink_stop(sc); 4538 } 4539 4540 if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { 4541 iwm_led_disable(sc); 4542 /* disable beacon filtering if we're hopping out of RUN */ 4543 iwm_disable_beacon_filter(sc); 4544 if (((in = IWM_NODE(vap->iv_bss)) != NULL)) 4545 in->in_assoc = 0; 4546 } 4547 4548 if ((vap->iv_state == IEEE80211_S_AUTH || 4549 vap->iv_state == IEEE80211_S_ASSOC || 4550 vap->iv_state == IEEE80211_S_RUN) && 4551 (nstate == IEEE80211_S_INIT || 4552 nstate == IEEE80211_S_SCAN || 4553 nstate == IEEE80211_S_AUTH)) { 4554 iwm_stop_session_protection(sc, ivp); 4555 } 4556 4557 if ((vap->iv_state == IEEE80211_S_RUN || 4558 vap->iv_state == IEEE80211_S_ASSOC) && 4559 nstate == IEEE80211_S_INIT) { 4560 /* 4561 * In this case, iv_newstate() wants to send an 80211 frame on 4562 * the network that we are leaving. So we need to call it, 4563 * before tearing down all the firmware state. 4564 */ 4565 IWM_UNLOCK(sc); 4566 IEEE80211_LOCK(ic); 4567 ivp->iv_newstate(vap, nstate, arg); 4568 IEEE80211_UNLOCK(ic); 4569 IWM_LOCK(sc); 4570 iwm_bring_down_firmware(sc, vap); 4571 IWM_UNLOCK(sc); 4572 IEEE80211_LOCK(ic); 4573 return 0; 4574 } 4575 4576 switch (nstate) { 4577 case IEEE80211_S_INIT: 4578 case IEEE80211_S_SCAN: 4579 break; 4580 4581 case IEEE80211_S_AUTH: 4582 iwm_bring_down_firmware(sc, vap); 4583 if ((error = iwm_auth(vap, sc)) != 0) { 4584 device_printf(sc->sc_dev, 4585 "%s: could not move to auth state: %d\n", 4586 __func__, error); 4587 iwm_bring_down_firmware(sc, vap); 4588 IWM_UNLOCK(sc); 4589 IEEE80211_LOCK(ic); 4590 return 1; 4591 } 4592 break; 4593 4594 case IEEE80211_S_ASSOC: 4595 /* 4596 * EBS may be disabled due to previous failures reported by FW. 4597 * Reset EBS status here assuming environment has been changed. 4598 */ 4599 sc->last_ebs_successful = TRUE; 4600 break; 4601 4602 case IEEE80211_S_RUN: 4603 in = IWM_NODE(vap->iv_bss); 4604 /* Update the association state, now we have it all */ 4605 /* (eg associd comes in at this point */ 4606 error = iwm_update_sta(sc, in); 4607 if (error != 0) { 4608 device_printf(sc->sc_dev, 4609 "%s: failed to update STA\n", __func__); 4610 IWM_UNLOCK(sc); 4611 IEEE80211_LOCK(ic); 4612 return error; 4613 } 4614 in->in_assoc = 1; 4615 error = iwm_mac_ctxt_changed(sc, vap); 4616 if (error != 0) { 4617 device_printf(sc->sc_dev, 4618 "%s: failed to update MAC: %d\n", __func__, error); 4619 } 4620 4621 iwm_sf_update(sc, vap, FALSE); 4622 iwm_enable_beacon_filter(sc, ivp); 4623 iwm_power_update_mac(sc); 4624 iwm_update_quotas(sc, ivp); 4625 int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0); 4626 iwm_setrates(sc, in, rix); 4627 4628 if ((error = iwm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) { 4629 device_printf(sc->sc_dev, 4630 "%s: IWM_LQ_CMD failed: %d\n", __func__, error); 4631 } 4632 4633 iwm_led_enable(sc); 4634 break; 4635 4636 default: 4637 break; 4638 } 4639 IWM_UNLOCK(sc); 4640 IEEE80211_LOCK(ic); 4641 4642 return (ivp->iv_newstate(vap, nstate, arg)); 4643 } 4644 4645 void 4646 iwm_endscan_cb(void *arg, int pending) 4647 { 4648 struct iwm_softc *sc = arg; 4649 struct ieee80211com *ic = &sc->sc_ic; 4650 4651 IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, 4652 "%s: scan ended\n", 4653 __func__); 4654 4655 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 4656 } 4657 4658 static int 4659 iwm_send_bt_init_conf(struct iwm_softc *sc) 4660 { 4661 struct iwm_bt_coex_cmd bt_cmd; 4662 4663 bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); 4664 bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); 4665 4666 return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), 4667 &bt_cmd); 4668 } 4669 4670 static boolean_t 4671 iwm_is_lar_supported(struct iwm_softc *sc) 4672 { 4673 boolean_t nvm_lar = sc->nvm_data->lar_enabled; 4674 boolean_t tlv_lar = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT); 4675 4676 if (iwm_lar_disable) 4677 return FALSE; 4678 4679 /* 4680 * Enable LAR only if it is supported by the FW (TLV) && 4681 * enabled in the NVM 4682 */ 4683 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) 4684 return nvm_lar && tlv_lar; 4685 else 4686 return tlv_lar; 4687 } 4688 4689 static boolean_t 4690 iwm_is_wifi_mcc_supported(struct iwm_softc *sc) 4691 { 4692 return iwm_fw_has_api(sc, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || 4693 iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC); 4694 } 4695 4696 static int 4697 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) 4698 { 4699 struct iwm_mcc_update_cmd mcc_cmd; 4700 struct iwm_host_cmd hcmd = { 4701 .id = IWM_MCC_UPDATE_CMD, 4702 .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB), 4703 .data = { &mcc_cmd }, 4704 }; 4705 int ret; 4706 #ifdef IWM_DEBUG 4707 struct iwm_rx_packet *pkt; 4708 struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL; 4709 struct iwm_mcc_update_resp *mcc_resp; 4710 int n_channels; 4711 uint16_t mcc; 4712 #endif 4713 int resp_v2 = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); 4714 4715 if (!iwm_is_lar_supported(sc)) { 4716 IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n", 4717 __func__); 4718 return 0; 4719 } 4720 4721 memset(&mcc_cmd, 0, sizeof(mcc_cmd)); 4722 mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); 4723 if (iwm_is_wifi_mcc_supported(sc)) 4724 mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; 4725 else 4726 mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; 4727 4728 if (resp_v2) 4729 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); 4730 else 4731 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); 4732 4733 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 4734 "send MCC update to FW with '%c%c' src = %d\n", 4735 alpha2[0], alpha2[1], mcc_cmd.source_id); 4736 4737 ret = iwm_send_cmd(sc, &hcmd); 4738 if (ret) 4739 return ret; 4740 4741 #ifdef IWM_DEBUG 4742 pkt = hcmd.resp_pkt; 4743 4744 /* Extract MCC response */ 4745 if (resp_v2) { 4746 mcc_resp = (void *)pkt->data; 4747 mcc = mcc_resp->mcc; 4748 n_channels = le32toh(mcc_resp->n_channels); 4749 } else { 4750 mcc_resp_v1 = (void *)pkt->data; 4751 mcc = mcc_resp_v1->mcc; 4752 n_channels = le32toh(mcc_resp_v1->n_channels); 4753 } 4754 4755 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ 4756 if (mcc == 0) 4757 mcc = 0x3030; /* "00" - world */ 4758 4759 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 4760 "regulatory domain '%c%c' (%d channels available)\n", 4761 mcc >> 8, mcc & 0xff, n_channels); 4762 #endif 4763 iwm_free_resp(sc, &hcmd); 4764 4765 return 0; 4766 } 4767 4768 static void 4769 iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) 4770 { 4771 struct iwm_host_cmd cmd = { 4772 .id = IWM_REPLY_THERMAL_MNG_BACKOFF, 4773 .len = { sizeof(uint32_t), }, 4774 .data = { &backoff, }, 4775 }; 4776 4777 if (iwm_send_cmd(sc, &cmd) != 0) { 4778 device_printf(sc->sc_dev, 4779 "failed to change thermal tx backoff\n"); 4780 } 4781 } 4782 4783 static int 4784 iwm_init_hw(struct iwm_softc *sc) 4785 { 4786 struct ieee80211com *ic = &sc->sc_ic; 4787 int error, i, ac; 4788 4789 sc->sf_state = IWM_SF_UNINIT; 4790 4791 if ((error = iwm_start_hw(sc)) != 0) { 4792 printf("iwm_start_hw: failed %d\n", error); 4793 return error; 4794 } 4795 4796 if ((error = iwm_run_init_ucode(sc, 0)) != 0) { 4797 printf("iwm_run_init_ucode: failed %d\n", error); 4798 return error; 4799 } 4800 4801 /* 4802 * should stop and start HW since that INIT 4803 * image just loaded 4804 */ 4805 iwm_stop_device(sc); 4806 sc->sc_ps_disabled = FALSE; 4807 if ((error = iwm_start_hw(sc)) != 0) { 4808 device_printf(sc->sc_dev, "could not initialize hardware\n"); 4809 return error; 4810 } 4811 4812 /* omstart, this time with the regular firmware */ 4813 error = iwm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR); 4814 if (error) { 4815 device_printf(sc->sc_dev, "could not load firmware\n"); 4816 goto error; 4817 } 4818 4819 error = iwm_sf_update(sc, NULL, FALSE); 4820 if (error) 4821 device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n"); 4822 4823 if ((error = iwm_send_bt_init_conf(sc)) != 0) { 4824 device_printf(sc->sc_dev, "bt init conf failed\n"); 4825 goto error; 4826 } 4827 4828 error = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); 4829 if (error != 0) { 4830 device_printf(sc->sc_dev, "antenna config failed\n"); 4831 goto error; 4832 } 4833 4834 /* Send phy db control command and then phy db calibration */ 4835 if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0) 4836 goto error; 4837 4838 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) { 4839 device_printf(sc->sc_dev, "phy_cfg_cmd failed\n"); 4840 goto error; 4841 } 4842 4843 /* Add auxiliary station for scanning */ 4844 if ((error = iwm_add_aux_sta(sc)) != 0) { 4845 device_printf(sc->sc_dev, "add_aux_sta failed\n"); 4846 goto error; 4847 } 4848 4849 for (i = 0; i < IWM_NUM_PHY_CTX; i++) { 4850 /* 4851 * The channel used here isn't relevant as it's 4852 * going to be overwritten in the other flows. 4853 * For now use the first channel we have. 4854 */ 4855 if ((error = iwm_phy_ctxt_add(sc, 4856 &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) 4857 goto error; 4858 } 4859 4860 /* Initialize tx backoffs to the minimum. */ 4861 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 4862 iwm_tt_tx_backoff(sc, 0); 4863 4864 if (iwm_config_ltr(sc) != 0) 4865 device_printf(sc->sc_dev, "PCIe LTR configuration failed\n"); 4866 4867 error = iwm_power_update_device(sc); 4868 if (error) 4869 goto error; 4870 4871 if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0) 4872 goto error; 4873 4874 if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { 4875 if ((error = iwm_config_umac_scan(sc)) != 0) 4876 goto error; 4877 } 4878 4879 /* Enable Tx queues. */ 4880 for (ac = 0; ac < WME_NUM_AC; ac++) { 4881 error = iwm_enable_txq(sc, IWM_STATION_ID, ac, 4882 iwm_ac_to_tx_fifo[ac]); 4883 if (error) 4884 goto error; 4885 } 4886 4887 if ((error = iwm_disable_beacon_filter(sc)) != 0) { 4888 device_printf(sc->sc_dev, "failed to disable beacon filter\n"); 4889 goto error; 4890 } 4891 4892 return 0; 4893 4894 error: 4895 iwm_stop_device(sc); 4896 return error; 4897 } 4898 4899 /* Allow multicast from our BSSID. */ 4900 static int 4901 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) 4902 { 4903 struct ieee80211_node *ni = vap->iv_bss; 4904 struct iwm_mcast_filter_cmd *cmd; 4905 size_t size; 4906 int error; 4907 4908 size = roundup(sizeof(*cmd), 4); 4909 cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 4910 if (cmd == NULL) 4911 return ENOMEM; 4912 cmd->filter_own = 1; 4913 cmd->port_id = 0; 4914 cmd->count = 0; 4915 cmd->pass_all = 1; 4916 IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); 4917 4918 error = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 4919 IWM_CMD_SYNC, size, cmd); 4920 free(cmd, M_DEVBUF); 4921 4922 return (error); 4923 } 4924 4925 /* 4926 * ifnet interfaces 4927 */ 4928 4929 static void 4930 iwm_init(struct iwm_softc *sc) 4931 { 4932 int error; 4933 4934 if (sc->sc_flags & IWM_FLAG_HW_INITED) { 4935 return; 4936 } 4937 sc->sc_generation++; 4938 sc->sc_flags &= ~IWM_FLAG_STOPPED; 4939 4940 if ((error = iwm_init_hw(sc)) != 0) { 4941 printf("iwm_init_hw failed %d\n", error); 4942 iwm_stop(sc); 4943 return; 4944 } 4945 4946 /* 4947 * Ok, firmware loaded and we are jogging 4948 */ 4949 sc->sc_flags |= IWM_FLAG_HW_INITED; 4950 } 4951 4952 static int 4953 iwm_transmit(struct ieee80211com *ic, struct mbuf *m) 4954 { 4955 struct iwm_softc *sc; 4956 int error; 4957 4958 sc = ic->ic_softc; 4959 4960 IWM_LOCK(sc); 4961 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 4962 IWM_UNLOCK(sc); 4963 return (ENXIO); 4964 } 4965 error = mbufq_enqueue(&sc->sc_snd, m); 4966 if (error) { 4967 IWM_UNLOCK(sc); 4968 return (error); 4969 } 4970 iwm_start(sc); 4971 IWM_UNLOCK(sc); 4972 return (0); 4973 } 4974 4975 /* 4976 * Dequeue packets from sendq and call send. 4977 */ 4978 static void 4979 iwm_start(struct iwm_softc *sc) 4980 { 4981 struct ieee80211_node *ni; 4982 struct mbuf *m; 4983 int ac = 0; 4984 4985 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); 4986 while (sc->qfullmsk == 0 && 4987 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 4988 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4989 if (iwm_tx(sc, m, ni, ac) != 0) { 4990 if_inc_counter(ni->ni_vap->iv_ifp, 4991 IFCOUNTER_OERRORS, 1); 4992 ieee80211_free_node(ni); 4993 continue; 4994 } 4995 if (sc->sc_tx_timer == 0) { 4996 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, 4997 sc); 4998 } 4999 sc->sc_tx_timer = 15; 5000 } 5001 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); 5002 } 5003 5004 static void 5005 iwm_stop(struct iwm_softc *sc) 5006 { 5007 5008 sc->sc_flags &= ~IWM_FLAG_HW_INITED; 5009 sc->sc_flags |= IWM_FLAG_STOPPED; 5010 sc->sc_generation++; 5011 iwm_led_blink_stop(sc); 5012 sc->sc_tx_timer = 0; 5013 iwm_stop_device(sc); 5014 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 5015 } 5016 5017 static void 5018 iwm_watchdog(void *arg) 5019 { 5020 struct iwm_softc *sc = arg; 5021 struct ieee80211com *ic = &sc->sc_ic; 5022 5023 if (sc->sc_attached == 0) 5024 return; 5025 5026 if (sc->sc_tx_timer > 0) { 5027 if (--sc->sc_tx_timer == 0) { 5028 device_printf(sc->sc_dev, "device timeout\n"); 5029 #ifdef IWM_DEBUG 5030 iwm_nic_error(sc); 5031 #endif 5032 ieee80211_restart_all(ic); 5033 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 5034 return; 5035 } 5036 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 5037 } 5038 } 5039 5040 static void 5041 iwm_parent(struct ieee80211com *ic) 5042 { 5043 struct iwm_softc *sc = ic->ic_softc; 5044 int startall = 0; 5045 int rfkill = 0; 5046 5047 IWM_LOCK(sc); 5048 if (ic->ic_nrunning > 0) { 5049 if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { 5050 iwm_init(sc); 5051 rfkill = iwm_check_rfkill(sc); 5052 if (!rfkill) 5053 startall = 1; 5054 } 5055 } else if (sc->sc_flags & IWM_FLAG_HW_INITED) 5056 iwm_stop(sc); 5057 IWM_UNLOCK(sc); 5058 if (startall) 5059 ieee80211_start_all(ic); 5060 else if (rfkill) 5061 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5062 } 5063 5064 static void 5065 iwm_rftoggle_task(void *arg, int npending __unused) 5066 { 5067 struct iwm_softc *sc = arg; 5068 struct ieee80211com *ic = &sc->sc_ic; 5069 int rfkill; 5070 5071 IWM_LOCK(sc); 5072 rfkill = iwm_check_rfkill(sc); 5073 IWM_UNLOCK(sc); 5074 if (rfkill) { 5075 device_printf(sc->sc_dev, 5076 "%s: rfkill switch, disabling interface\n", __func__); 5077 ieee80211_suspend_all(ic); 5078 ieee80211_notify_radio(ic, 0); 5079 } else { 5080 device_printf(sc->sc_dev, 5081 "%s: rfkill cleared, re-enabling interface\n", __func__); 5082 ieee80211_resume_all(ic); 5083 ieee80211_notify_radio(ic, 1); 5084 } 5085 } 5086 5087 /* 5088 * The interrupt side of things 5089 */ 5090 5091 /* 5092 * error dumping routines are from iwlwifi/mvm/utils.c 5093 */ 5094 5095 /* 5096 * Note: This structure is read from the device with IO accesses, 5097 * and the reading already does the endian conversion. As it is 5098 * read with uint32_t-sized accesses, any members with a different size 5099 * need to be ordered correctly though! 5100 */ 5101 struct iwm_error_event_table { 5102 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 5103 uint32_t error_id; /* type of error */ 5104 uint32_t trm_hw_status0; /* TRM HW status */ 5105 uint32_t trm_hw_status1; /* TRM HW status */ 5106 uint32_t blink2; /* branch link */ 5107 uint32_t ilink1; /* interrupt link */ 5108 uint32_t ilink2; /* interrupt link */ 5109 uint32_t data1; /* error-specific data */ 5110 uint32_t data2; /* error-specific data */ 5111 uint32_t data3; /* error-specific data */ 5112 uint32_t bcon_time; /* beacon timer */ 5113 uint32_t tsf_low; /* network timestamp function timer */ 5114 uint32_t tsf_hi; /* network timestamp function timer */ 5115 uint32_t gp1; /* GP1 timer register */ 5116 uint32_t gp2; /* GP2 timer register */ 5117 uint32_t fw_rev_type; /* firmware revision type */ 5118 uint32_t major; /* uCode version major */ 5119 uint32_t minor; /* uCode version minor */ 5120 uint32_t hw_ver; /* HW Silicon version */ 5121 uint32_t brd_ver; /* HW board version */ 5122 uint32_t log_pc; /* log program counter */ 5123 uint32_t frame_ptr; /* frame pointer */ 5124 uint32_t stack_ptr; /* stack pointer */ 5125 uint32_t hcmd; /* last host command header */ 5126 uint32_t isr0; /* isr status register LMPM_NIC_ISR0: 5127 * rxtx_flag */ 5128 uint32_t isr1; /* isr status register LMPM_NIC_ISR1: 5129 * host_flag */ 5130 uint32_t isr2; /* isr status register LMPM_NIC_ISR2: 5131 * enc_flag */ 5132 uint32_t isr3; /* isr status register LMPM_NIC_ISR3: 5133 * time_flag */ 5134 uint32_t isr4; /* isr status register LMPM_NIC_ISR4: 5135 * wico interrupt */ 5136 uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ 5137 uint32_t wait_event; /* wait event() caller address */ 5138 uint32_t l2p_control; /* L2pControlField */ 5139 uint32_t l2p_duration; /* L2pDurationField */ 5140 uint32_t l2p_mhvalid; /* L2pMhValidBits */ 5141 uint32_t l2p_addr_match; /* L2pAddrMatchStat */ 5142 uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on 5143 * (LMPM_PMG_SEL) */ 5144 uint32_t u_timestamp; /* indicate when the date and time of the 5145 * compilation */ 5146 uint32_t flow_handler; /* FH read/write pointers, RX credit */ 5147 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; 5148 5149 /* 5150 * UMAC error struct - relevant starting from family 8000 chip. 5151 * Note: This structure is read from the device with IO accesses, 5152 * and the reading already does the endian conversion. As it is 5153 * read with u32-sized accesses, any members with a different size 5154 * need to be ordered correctly though! 5155 */ 5156 struct iwm_umac_error_event_table { 5157 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 5158 uint32_t error_id; /* type of error */ 5159 uint32_t blink1; /* branch link */ 5160 uint32_t blink2; /* branch link */ 5161 uint32_t ilink1; /* interrupt link */ 5162 uint32_t ilink2; /* interrupt link */ 5163 uint32_t data1; /* error-specific data */ 5164 uint32_t data2; /* error-specific data */ 5165 uint32_t data3; /* error-specific data */ 5166 uint32_t umac_major; 5167 uint32_t umac_minor; 5168 uint32_t frame_pointer; /* core register 27*/ 5169 uint32_t stack_pointer; /* core register 28 */ 5170 uint32_t cmd_header; /* latest host cmd sent to UMAC */ 5171 uint32_t nic_isr_pref; /* ISR status register */ 5172 } __packed; 5173 5174 #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) 5175 #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) 5176 5177 #ifdef IWM_DEBUG 5178 struct { 5179 const char *name; 5180 uint8_t num; 5181 } advanced_lookup[] = { 5182 { "NMI_INTERRUPT_WDG", 0x34 }, 5183 { "SYSASSERT", 0x35 }, 5184 { "UCODE_VERSION_MISMATCH", 0x37 }, 5185 { "BAD_COMMAND", 0x38 }, 5186 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 5187 { "FATAL_ERROR", 0x3D }, 5188 { "NMI_TRM_HW_ERR", 0x46 }, 5189 { "NMI_INTERRUPT_TRM", 0x4C }, 5190 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 5191 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 5192 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 5193 { "NMI_INTERRUPT_HOST", 0x66 }, 5194 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 5195 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 5196 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 5197 { "ADVANCED_SYSASSERT", 0 }, 5198 }; 5199 5200 static const char * 5201 iwm_desc_lookup(uint32_t num) 5202 { 5203 int i; 5204 5205 for (i = 0; i < nitems(advanced_lookup) - 1; i++) 5206 if (advanced_lookup[i].num == num) 5207 return advanced_lookup[i].name; 5208 5209 /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ 5210 return advanced_lookup[i].name; 5211 } 5212 5213 static void 5214 iwm_nic_umac_error(struct iwm_softc *sc) 5215 { 5216 struct iwm_umac_error_event_table table; 5217 uint32_t base; 5218 5219 base = sc->umac_error_event_table; 5220 5221 if (base < 0x800000) { 5222 device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", 5223 base); 5224 return; 5225 } 5226 5227 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 5228 device_printf(sc->sc_dev, "reading errlog failed\n"); 5229 return; 5230 } 5231 5232 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 5233 device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n"); 5234 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 5235 sc->sc_flags, table.valid); 5236 } 5237 5238 device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id, 5239 iwm_desc_lookup(table.error_id)); 5240 device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1); 5241 device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2); 5242 device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n", 5243 table.ilink1); 5244 device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n", 5245 table.ilink2); 5246 device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1); 5247 device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2); 5248 device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3); 5249 device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major); 5250 device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor); 5251 device_printf(sc->sc_dev, "0x%08X | frame pointer\n", 5252 table.frame_pointer); 5253 device_printf(sc->sc_dev, "0x%08X | stack pointer\n", 5254 table.stack_pointer); 5255 device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header); 5256 device_printf(sc->sc_dev, "0x%08X | isr status reg\n", 5257 table.nic_isr_pref); 5258 } 5259 5260 /* 5261 * Support for dumping the error log seemed like a good idea ... 5262 * but it's mostly hex junk and the only sensible thing is the 5263 * hw/ucode revision (which we know anyway). Since it's here, 5264 * I'll just leave it in, just in case e.g. the Intel guys want to 5265 * help us decipher some "ADVANCED_SYSASSERT" later. 5266 */ 5267 static void 5268 iwm_nic_error(struct iwm_softc *sc) 5269 { 5270 struct iwm_error_event_table table; 5271 uint32_t base; 5272 5273 device_printf(sc->sc_dev, "dumping device error log\n"); 5274 base = sc->error_event_table[0]; 5275 if (base < 0x800000) { 5276 device_printf(sc->sc_dev, 5277 "Invalid error log pointer 0x%08x\n", base); 5278 return; 5279 } 5280 5281 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 5282 device_printf(sc->sc_dev, "reading errlog failed\n"); 5283 return; 5284 } 5285 5286 if (!table.valid) { 5287 device_printf(sc->sc_dev, "errlog not found, skipping\n"); 5288 return; 5289 } 5290 5291 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 5292 device_printf(sc->sc_dev, "Start Error Log Dump:\n"); 5293 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 5294 sc->sc_flags, table.valid); 5295 } 5296 5297 device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, 5298 iwm_desc_lookup(table.error_id)); 5299 device_printf(sc->sc_dev, "%08X | trm_hw_status0\n", 5300 table.trm_hw_status0); 5301 device_printf(sc->sc_dev, "%08X | trm_hw_status1\n", 5302 table.trm_hw_status1); 5303 device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); 5304 device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); 5305 device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); 5306 device_printf(sc->sc_dev, "%08X | data1\n", table.data1); 5307 device_printf(sc->sc_dev, "%08X | data2\n", table.data2); 5308 device_printf(sc->sc_dev, "%08X | data3\n", table.data3); 5309 device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); 5310 device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); 5311 device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); 5312 device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); 5313 device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); 5314 device_printf(sc->sc_dev, "%08X | uCode revision type\n", 5315 table.fw_rev_type); 5316 device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major); 5317 device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor); 5318 device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); 5319 device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); 5320 device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); 5321 device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); 5322 device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); 5323 device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); 5324 device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); 5325 device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); 5326 device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id); 5327 device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); 5328 device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); 5329 device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); 5330 device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); 5331 device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); 5332 device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 5333 device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); 5334 device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); 5335 5336 if (sc->umac_error_event_table) 5337 iwm_nic_umac_error(sc); 5338 } 5339 #endif 5340 5341 static void 5342 iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m) 5343 { 5344 struct ieee80211com *ic = &sc->sc_ic; 5345 struct iwm_cmd_response *cresp; 5346 struct mbuf *m1; 5347 uint32_t offset = 0; 5348 uint32_t maxoff = IWM_RBUF_SIZE; 5349 uint32_t nextoff; 5350 boolean_t stolen = FALSE; 5351 5352 #define HAVEROOM(a) \ 5353 ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff) 5354 5355 while (HAVEROOM(offset)) { 5356 struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, 5357 offset); 5358 int qid, idx, code, len; 5359 5360 qid = pkt->hdr.qid; 5361 idx = pkt->hdr.idx; 5362 5363 code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); 5364 5365 /* 5366 * randomly get these from the firmware, no idea why. 5367 * they at least seem harmless, so just ignore them for now 5368 */ 5369 if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) || 5370 pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) { 5371 break; 5372 } 5373 5374 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5375 "rx packet qid=%d idx=%d type=%x\n", 5376 qid & ~0x80, pkt->hdr.idx, code); 5377 5378 len = iwm_rx_packet_len(pkt); 5379 len += sizeof(uint32_t); /* account for status word */ 5380 nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN); 5381 5382 iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt); 5383 5384 switch (code) { 5385 case IWM_REPLY_RX_PHY_CMD: 5386 iwm_rx_rx_phy_cmd(sc, pkt); 5387 break; 5388 5389 case IWM_REPLY_RX_MPDU_CMD: { 5390 /* 5391 * If this is the last frame in the RX buffer, we 5392 * can directly feed the mbuf to the sharks here. 5393 */ 5394 struct iwm_rx_packet *nextpkt = mtodoff(m, 5395 struct iwm_rx_packet *, nextoff); 5396 if (!HAVEROOM(nextoff) || 5397 (nextpkt->hdr.code == 0 && 5398 (nextpkt->hdr.qid & ~0x80) == 0 && 5399 nextpkt->hdr.idx == 0) || 5400 (nextpkt->len_n_flags == 5401 htole32(IWM_FH_RSCSR_FRAME_INVALID))) { 5402 if (iwm_rx_mpdu(sc, m, offset, stolen)) { 5403 stolen = FALSE; 5404 /* Make sure we abort the loop */ 5405 nextoff = maxoff; 5406 } 5407 break; 5408 } 5409 5410 /* 5411 * Use m_copym instead of m_split, because that 5412 * makes it easier to keep a valid rx buffer in 5413 * the ring, when iwm_rx_mpdu() fails. 5414 * 5415 * We need to start m_copym() at offset 0, to get the 5416 * M_PKTHDR flag preserved. 5417 */ 5418 m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT); 5419 if (m1) { 5420 if (iwm_rx_mpdu(sc, m1, offset, stolen)) 5421 stolen = TRUE; 5422 else 5423 m_freem(m1); 5424 } 5425 break; 5426 } 5427 5428 case IWM_TX_CMD: 5429 iwm_rx_tx_cmd(sc, pkt); 5430 break; 5431 5432 case IWM_MISSED_BEACONS_NOTIFICATION: { 5433 struct iwm_missed_beacons_notif *resp; 5434 int missed; 5435 5436 /* XXX look at mac_id to determine interface ID */ 5437 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5438 5439 resp = (void *)pkt->data; 5440 missed = le32toh(resp->consec_missed_beacons); 5441 5442 IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, 5443 "%s: MISSED_BEACON: mac_id=%d, " 5444 "consec_since_last_rx=%d, consec=%d, num_expect=%d " 5445 "num_rx=%d\n", 5446 __func__, 5447 le32toh(resp->mac_id), 5448 le32toh(resp->consec_missed_beacons_since_last_rx), 5449 le32toh(resp->consec_missed_beacons), 5450 le32toh(resp->num_expected_beacons), 5451 le32toh(resp->num_recvd_beacons)); 5452 5453 /* Be paranoid */ 5454 if (vap == NULL) 5455 break; 5456 5457 /* XXX no net80211 locking? */ 5458 if (vap->iv_state == IEEE80211_S_RUN && 5459 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 5460 if (missed > vap->iv_bmissthreshold) { 5461 /* XXX bad locking; turn into task */ 5462 IWM_UNLOCK(sc); 5463 ieee80211_beacon_miss(ic); 5464 IWM_LOCK(sc); 5465 } 5466 } 5467 5468 break; 5469 } 5470 5471 case IWM_MFUART_LOAD_NOTIFICATION: 5472 break; 5473 5474 case IWM_ALIVE: 5475 break; 5476 5477 case IWM_CALIB_RES_NOTIF_PHY_DB: 5478 break; 5479 5480 case IWM_STATISTICS_NOTIFICATION: 5481 iwm_handle_rx_statistics(sc, pkt); 5482 break; 5483 5484 case IWM_NVM_ACCESS_CMD: 5485 case IWM_MCC_UPDATE_CMD: 5486 if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { 5487 memcpy(sc->sc_cmd_resp, 5488 pkt, sizeof(sc->sc_cmd_resp)); 5489 } 5490 break; 5491 5492 case IWM_MCC_CHUB_UPDATE_CMD: { 5493 struct iwm_mcc_chub_notif *notif; 5494 notif = (void *)pkt->data; 5495 5496 sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; 5497 sc->sc_fw_mcc[1] = notif->mcc & 0xff; 5498 sc->sc_fw_mcc[2] = '\0'; 5499 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 5500 "fw source %d sent CC '%s'\n", 5501 notif->source_id, sc->sc_fw_mcc); 5502 break; 5503 } 5504 5505 case IWM_DTS_MEASUREMENT_NOTIFICATION: 5506 case IWM_WIDE_ID(IWM_PHY_OPS_GROUP, 5507 IWM_DTS_MEASUREMENT_NOTIF_WIDE): { 5508 struct iwm_dts_measurement_notif_v1 *notif; 5509 5510 if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) { 5511 device_printf(sc->sc_dev, 5512 "Invalid DTS_MEASUREMENT_NOTIFICATION\n"); 5513 break; 5514 } 5515 notif = (void *)pkt->data; 5516 IWM_DPRINTF(sc, IWM_DEBUG_TEMP, 5517 "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n", 5518 notif->temp); 5519 break; 5520 } 5521 5522 case IWM_PHY_CONFIGURATION_CMD: 5523 case IWM_TX_ANT_CONFIGURATION_CMD: 5524 case IWM_ADD_STA: 5525 case IWM_MAC_CONTEXT_CMD: 5526 case IWM_REPLY_SF_CFG_CMD: 5527 case IWM_POWER_TABLE_CMD: 5528 case IWM_LTR_CONFIG: 5529 case IWM_PHY_CONTEXT_CMD: 5530 case IWM_BINDING_CONTEXT_CMD: 5531 case IWM_TIME_EVENT_CMD: 5532 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): 5533 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): 5534 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC): 5535 case IWM_SCAN_OFFLOAD_REQUEST_CMD: 5536 case IWM_SCAN_OFFLOAD_ABORT_CMD: 5537 case IWM_REPLY_BEACON_FILTERING_CMD: 5538 case IWM_MAC_PM_POWER_TABLE: 5539 case IWM_TIME_QUOTA_CMD: 5540 case IWM_REMOVE_STA: 5541 case IWM_TXPATH_FLUSH: 5542 case IWM_LQ_CMD: 5543 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, 5544 IWM_FW_PAGING_BLOCK_CMD): 5545 case IWM_BT_CONFIG: 5546 case IWM_REPLY_THERMAL_MNG_BACKOFF: 5547 cresp = (void *)pkt->data; 5548 if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { 5549 memcpy(sc->sc_cmd_resp, 5550 pkt, sizeof(*pkt)+sizeof(*cresp)); 5551 } 5552 break; 5553 5554 /* ignore */ 5555 case IWM_PHY_DB_CMD: 5556 break; 5557 5558 case IWM_INIT_COMPLETE_NOTIF: 5559 break; 5560 5561 case IWM_SCAN_OFFLOAD_COMPLETE: 5562 iwm_rx_lmac_scan_complete_notif(sc, pkt); 5563 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 5564 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 5565 ieee80211_runtask(ic, &sc->sc_es_task); 5566 } 5567 break; 5568 5569 case IWM_SCAN_ITERATION_COMPLETE: { 5570 struct iwm_lmac_scan_complete_notif *notif; 5571 notif = (void *)pkt->data; 5572 break; 5573 } 5574 5575 case IWM_SCAN_COMPLETE_UMAC: 5576 iwm_rx_umac_scan_complete_notif(sc, pkt); 5577 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 5578 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 5579 ieee80211_runtask(ic, &sc->sc_es_task); 5580 } 5581 break; 5582 5583 case IWM_SCAN_ITERATION_COMPLETE_UMAC: { 5584 struct iwm_umac_scan_iter_complete_notif *notif; 5585 notif = (void *)pkt->data; 5586 5587 IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration " 5588 "complete, status=0x%x, %d channels scanned\n", 5589 notif->status, notif->scanned_channels); 5590 break; 5591 } 5592 5593 case IWM_REPLY_ERROR: { 5594 struct iwm_error_resp *resp; 5595 resp = (void *)pkt->data; 5596 5597 device_printf(sc->sc_dev, 5598 "firmware error 0x%x, cmd 0x%x\n", 5599 le32toh(resp->error_type), 5600 resp->cmd_id); 5601 break; 5602 } 5603 5604 case IWM_TIME_EVENT_NOTIFICATION: 5605 iwm_rx_time_event_notif(sc, pkt); 5606 break; 5607 5608 /* 5609 * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG 5610 * messages. Just ignore them for now. 5611 */ 5612 case IWM_DEBUG_LOG_MSG: 5613 break; 5614 5615 case IWM_MCAST_FILTER_CMD: 5616 break; 5617 5618 case IWM_SCD_QUEUE_CFG: { 5619 struct iwm_scd_txq_cfg_rsp *rsp; 5620 rsp = (void *)pkt->data; 5621 5622 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 5623 "queue cfg token=0x%x sta_id=%d " 5624 "tid=%d scd_queue=%d\n", 5625 rsp->token, rsp->sta_id, rsp->tid, 5626 rsp->scd_queue); 5627 break; 5628 } 5629 5630 default: 5631 device_printf(sc->sc_dev, 5632 "code %x, frame %d/%d %x unhandled\n", 5633 code, qid & ~0x80, idx, pkt->len_n_flags); 5634 break; 5635 } 5636 5637 /* 5638 * Why test bit 0x80? The Linux driver: 5639 * 5640 * There is one exception: uCode sets bit 15 when it 5641 * originates the response/notification, i.e. when the 5642 * response/notification is not a direct response to a 5643 * command sent by the driver. For example, uCode issues 5644 * IWM_REPLY_RX when it sends a received frame to the driver; 5645 * it is not a direct response to any driver command. 5646 * 5647 * Ok, so since when is 7 == 15? Well, the Linux driver 5648 * uses a slightly different format for pkt->hdr, and "qid" 5649 * is actually the upper byte of a two-byte field. 5650 */ 5651 if (!(qid & (1 << 7))) 5652 iwm_cmd_done(sc, pkt); 5653 5654 offset = nextoff; 5655 } 5656 if (stolen) 5657 m_freem(m); 5658 #undef HAVEROOM 5659 } 5660 5661 /* 5662 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. 5663 * Basic structure from if_iwn 5664 */ 5665 static void 5666 iwm_notif_intr(struct iwm_softc *sc) 5667 { 5668 int count; 5669 uint32_t wreg; 5670 uint16_t hw; 5671 5672 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 5673 BUS_DMASYNC_POSTREAD); 5674 5675 if (sc->cfg->mqrx_supported) { 5676 count = IWM_RX_MQ_RING_COUNT; 5677 wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG; 5678 } else { 5679 count = IWM_RX_LEGACY_RING_COUNT; 5680 wreg = IWM_FH_RSCSR_CHNL0_WPTR; 5681 } 5682 5683 hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; 5684 5685 /* 5686 * Process responses 5687 */ 5688 while (sc->rxq.cur != hw) { 5689 struct iwm_rx_ring *ring = &sc->rxq; 5690 struct iwm_rx_data *data = &ring->data[ring->cur]; 5691 5692 bus_dmamap_sync(ring->data_dmat, data->map, 5693 BUS_DMASYNC_POSTREAD); 5694 5695 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5696 "%s: hw = %d cur = %d\n", __func__, hw, ring->cur); 5697 iwm_handle_rxb(sc, data->m); 5698 5699 ring->cur = (ring->cur + 1) % count; 5700 } 5701 5702 /* 5703 * Tell the firmware that it can reuse the ring entries that 5704 * we have just processed. 5705 * Seems like the hardware gets upset unless we align 5706 * the write by 8?? 5707 */ 5708 hw = (hw == 0) ? count - 1 : hw - 1; 5709 IWM_WRITE(sc, wreg, rounddown2(hw, 8)); 5710 } 5711 5712 static void 5713 iwm_intr(void *arg) 5714 { 5715 struct iwm_softc *sc = arg; 5716 int handled = 0; 5717 int r1, r2, rv = 0; 5718 int isperiodic = 0; 5719 5720 IWM_LOCK(sc); 5721 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 5722 5723 if (sc->sc_flags & IWM_FLAG_USE_ICT) { 5724 uint32_t *ict = sc->ict_dma.vaddr; 5725 int tmp; 5726 5727 tmp = htole32(ict[sc->ict_cur]); 5728 if (!tmp) 5729 goto out_ena; 5730 5731 /* 5732 * ok, there was something. keep plowing until we have all. 5733 */ 5734 r1 = r2 = 0; 5735 while (tmp) { 5736 r1 |= tmp; 5737 ict[sc->ict_cur] = 0; 5738 sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; 5739 tmp = htole32(ict[sc->ict_cur]); 5740 } 5741 5742 /* this is where the fun begins. don't ask */ 5743 if (r1 == 0xffffffff) 5744 r1 = 0; 5745 5746 /* i am not expected to understand this */ 5747 if (r1 & 0xc0000) 5748 r1 |= 0x8000; 5749 r1 = (0xff & r1) | ((0xff00 & r1) << 16); 5750 } else { 5751 r1 = IWM_READ(sc, IWM_CSR_INT); 5752 /* "hardware gone" (where, fishing?) */ 5753 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 5754 goto out; 5755 r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); 5756 } 5757 if (r1 == 0 && r2 == 0) { 5758 goto out_ena; 5759 } 5760 5761 IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); 5762 5763 /* Safely ignore these bits for debug checks below */ 5764 r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD); 5765 5766 if (r1 & IWM_CSR_INT_BIT_SW_ERR) { 5767 int i; 5768 struct ieee80211com *ic = &sc->sc_ic; 5769 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5770 5771 #ifdef IWM_DEBUG 5772 iwm_nic_error(sc); 5773 #endif 5774 /* Dump driver status (TX and RX rings) while we're here. */ 5775 device_printf(sc->sc_dev, "driver status:\n"); 5776 for (i = 0; i < IWM_MAX_QUEUES; i++) { 5777 struct iwm_tx_ring *ring = &sc->txq[i]; 5778 device_printf(sc->sc_dev, 5779 " tx ring %2d: qid=%-2d cur=%-3d " 5780 "queued=%-3d\n", 5781 i, ring->qid, ring->cur, ring->queued); 5782 } 5783 device_printf(sc->sc_dev, 5784 " rx ring: cur=%d\n", sc->rxq.cur); 5785 device_printf(sc->sc_dev, 5786 " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); 5787 5788 /* Reset our firmware state tracking. */ 5789 sc->sc_firmware_state = 0; 5790 /* Don't stop the device; just do a VAP restart */ 5791 IWM_UNLOCK(sc); 5792 5793 if (vap == NULL) { 5794 printf("%s: null vap\n", __func__); 5795 return; 5796 } 5797 5798 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 5799 "restarting\n", __func__, vap->iv_state); 5800 5801 ieee80211_restart_all(ic); 5802 return; 5803 } 5804 5805 if (r1 & IWM_CSR_INT_BIT_HW_ERR) { 5806 handled |= IWM_CSR_INT_BIT_HW_ERR; 5807 device_printf(sc->sc_dev, "hardware error, stopping device\n"); 5808 iwm_stop(sc); 5809 rv = 1; 5810 goto out; 5811 } 5812 5813 /* firmware chunk loaded */ 5814 if (r1 & IWM_CSR_INT_BIT_FH_TX) { 5815 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); 5816 handled |= IWM_CSR_INT_BIT_FH_TX; 5817 sc->sc_fw_chunk_done = 1; 5818 wakeup(&sc->sc_fw); 5819 } 5820 5821 if (r1 & IWM_CSR_INT_BIT_RF_KILL) { 5822 handled |= IWM_CSR_INT_BIT_RF_KILL; 5823 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5824 } 5825 5826 /* 5827 * The Linux driver uses periodic interrupts to avoid races. 5828 * We cargo-cult like it's going out of fashion. 5829 */ 5830 if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { 5831 handled |= IWM_CSR_INT_BIT_RX_PERIODIC; 5832 IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); 5833 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) 5834 IWM_WRITE_1(sc, 5835 IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); 5836 isperiodic = 1; 5837 } 5838 5839 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { 5840 handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); 5841 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); 5842 5843 iwm_notif_intr(sc); 5844 5845 /* enable periodic interrupt, see above */ 5846 if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) 5847 IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, 5848 IWM_CSR_INT_PERIODIC_ENA); 5849 } 5850 5851 if (__predict_false(r1 & ~handled)) 5852 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5853 "%s: unhandled interrupts: %x\n", __func__, r1); 5854 rv = 1; 5855 5856 out_ena: 5857 iwm_restore_interrupts(sc); 5858 out: 5859 IWM_UNLOCK(sc); 5860 return; 5861 } 5862 5863 /* 5864 * Autoconf glue-sniffing 5865 */ 5866 #define PCI_VENDOR_INTEL 0x8086 5867 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 5868 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 5869 #define PCI_PRODUCT_INTEL_WL_3165_1 0x3165 5870 #define PCI_PRODUCT_INTEL_WL_3165_2 0x3166 5871 #define PCI_PRODUCT_INTEL_WL_3168_1 0x24fb 5872 #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 5873 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 5874 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a 5875 #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b 5876 #define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3 5877 #define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4 5878 #define PCI_PRODUCT_INTEL_WL_8265_1 0x24fd 5879 #define PCI_PRODUCT_INTEL_WL_9560_1 0x9df0 5880 #define PCI_PRODUCT_INTEL_WL_9560_2 0xa370 5881 #define PCI_PRODUCT_INTEL_WL_9260_1 0x2526 5882 5883 static const struct iwm_devices { 5884 uint16_t device; 5885 const struct iwm_cfg *cfg; 5886 } iwm_devices[] = { 5887 { PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg }, 5888 { PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg }, 5889 { PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg }, 5890 { PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg }, 5891 { PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg }, 5892 { PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg }, 5893 { PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg }, 5894 { PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg }, 5895 { PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg }, 5896 { PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg }, 5897 { PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg }, 5898 { PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg }, 5899 { PCI_PRODUCT_INTEL_WL_9560_1, &iwm9560_cfg }, 5900 { PCI_PRODUCT_INTEL_WL_9560_2, &iwm9560_cfg }, 5901 { PCI_PRODUCT_INTEL_WL_9260_1, &iwm9260_cfg }, 5902 }; 5903 5904 static int 5905 iwm_probe(device_t dev) 5906 { 5907 int i; 5908 5909 for (i = 0; i < nitems(iwm_devices); i++) { 5910 if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && 5911 pci_get_device(dev) == iwm_devices[i].device) { 5912 device_set_desc(dev, iwm_devices[i].cfg->name); 5913 return (BUS_PROBE_DEFAULT); 5914 } 5915 } 5916 5917 return (ENXIO); 5918 } 5919 5920 static int 5921 iwm_dev_check(device_t dev) 5922 { 5923 struct iwm_softc *sc; 5924 uint16_t devid; 5925 int i; 5926 5927 sc = device_get_softc(dev); 5928 5929 devid = pci_get_device(dev); 5930 for (i = 0; i < nitems(iwm_devices); i++) { 5931 if (iwm_devices[i].device == devid) { 5932 sc->cfg = iwm_devices[i].cfg; 5933 return (0); 5934 } 5935 } 5936 device_printf(dev, "unknown adapter type\n"); 5937 return ENXIO; 5938 } 5939 5940 /* PCI registers */ 5941 #define PCI_CFG_RETRY_TIMEOUT 0x041 5942 5943 static int 5944 iwm_pci_attach(device_t dev) 5945 { 5946 struct iwm_softc *sc; 5947 int count, error, rid; 5948 uint16_t reg; 5949 5950 sc = device_get_softc(dev); 5951 5952 /* We disable the RETRY_TIMEOUT register (0x41) to keep 5953 * PCI Tx retries from interfering with C3 CPU state */ 5954 pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); 5955 5956 /* Enable bus-mastering and hardware bug workaround. */ 5957 pci_enable_busmaster(dev); 5958 reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); 5959 /* if !MSI */ 5960 if (reg & PCIM_STATUS_INTxSTATE) { 5961 reg &= ~PCIM_STATUS_INTxSTATE; 5962 } 5963 pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); 5964 5965 rid = PCIR_BAR(0); 5966 sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 5967 RF_ACTIVE); 5968 if (sc->sc_mem == NULL) { 5969 device_printf(sc->sc_dev, "can't map mem space\n"); 5970 return (ENXIO); 5971 } 5972 sc->sc_st = rman_get_bustag(sc->sc_mem); 5973 sc->sc_sh = rman_get_bushandle(sc->sc_mem); 5974 5975 /* Install interrupt handler. */ 5976 count = 1; 5977 rid = 0; 5978 if (pci_alloc_msi(dev, &count) == 0) 5979 rid = 1; 5980 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 5981 (rid != 0 ? 0 : RF_SHAREABLE)); 5982 if (sc->sc_irq == NULL) { 5983 device_printf(dev, "can't map interrupt\n"); 5984 return (ENXIO); 5985 } 5986 error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, 5987 NULL, iwm_intr, sc, &sc->sc_ih); 5988 if (sc->sc_ih == NULL) { 5989 device_printf(dev, "can't establish interrupt"); 5990 return (ENXIO); 5991 } 5992 sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); 5993 5994 return (0); 5995 } 5996 5997 static void 5998 iwm_pci_detach(device_t dev) 5999 { 6000 struct iwm_softc *sc = device_get_softc(dev); 6001 6002 if (sc->sc_irq != NULL) { 6003 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 6004 bus_release_resource(dev, SYS_RES_IRQ, 6005 rman_get_rid(sc->sc_irq), sc->sc_irq); 6006 pci_release_msi(dev); 6007 } 6008 if (sc->sc_mem != NULL) 6009 bus_release_resource(dev, SYS_RES_MEMORY, 6010 rman_get_rid(sc->sc_mem), sc->sc_mem); 6011 } 6012 6013 static int 6014 iwm_attach(device_t dev) 6015 { 6016 struct iwm_softc *sc = device_get_softc(dev); 6017 struct ieee80211com *ic = &sc->sc_ic; 6018 int error; 6019 int txq_i, i; 6020 6021 sc->sc_dev = dev; 6022 sc->sc_attached = 1; 6023 IWM_LOCK_INIT(sc); 6024 mbufq_init(&sc->sc_snd, ifqmaxlen); 6025 callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); 6026 callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0); 6027 TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); 6028 TASK_INIT(&sc->sc_rftoggle_task, 0, iwm_rftoggle_task, sc); 6029 6030 sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK, 6031 taskqueue_thread_enqueue, &sc->sc_tq); 6032 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq"); 6033 if (error != 0) { 6034 device_printf(dev, "can't start taskq thread, error %d\n", 6035 error); 6036 goto fail; 6037 } 6038 6039 error = iwm_dev_check(dev); 6040 if (error != 0) 6041 goto fail; 6042 6043 sc->sc_notif_wait = iwm_notification_wait_init(sc); 6044 if (sc->sc_notif_wait == NULL) { 6045 device_printf(dev, "failed to init notification wait struct\n"); 6046 goto fail; 6047 } 6048 6049 sc->sf_state = IWM_SF_UNINIT; 6050 6051 /* Init phy db */ 6052 sc->sc_phy_db = iwm_phy_db_init(sc); 6053 if (!sc->sc_phy_db) { 6054 device_printf(dev, "Cannot init phy_db\n"); 6055 goto fail; 6056 } 6057 6058 /* Set EBS as successful as long as not stated otherwise by the FW. */ 6059 sc->last_ebs_successful = TRUE; 6060 6061 /* PCI attach */ 6062 error = iwm_pci_attach(dev); 6063 if (error != 0) 6064 goto fail; 6065 6066 sc->sc_wantresp = -1; 6067 6068 sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); 6069 /* 6070 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have 6071 * changed, and now the revision step also includes bit 0-1 (no more 6072 * "dash" value). To keep hw_rev backwards compatible - we'll store it 6073 * in the old format. 6074 */ 6075 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 6076 int ret; 6077 uint32_t hw_step; 6078 6079 sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | 6080 (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); 6081 6082 if (iwm_prepare_card_hw(sc) != 0) { 6083 device_printf(dev, "could not initialize hardware\n"); 6084 goto fail; 6085 } 6086 6087 /* 6088 * In order to recognize C step the driver should read the 6089 * chip version id located at the AUX bus MISC address. 6090 */ 6091 IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, 6092 IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); 6093 DELAY(2); 6094 6095 ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, 6096 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 6097 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 6098 25000); 6099 if (!ret) { 6100 device_printf(sc->sc_dev, 6101 "Failed to wake up the nic\n"); 6102 goto fail; 6103 } 6104 6105 if (iwm_nic_lock(sc)) { 6106 hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); 6107 hw_step |= IWM_ENABLE_WFPM; 6108 iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); 6109 hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); 6110 hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; 6111 if (hw_step == 0x3) 6112 sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | 6113 (IWM_SILICON_C_STEP << 2); 6114 iwm_nic_unlock(sc); 6115 } else { 6116 device_printf(sc->sc_dev, "Failed to lock the nic\n"); 6117 goto fail; 6118 } 6119 } 6120 6121 /* special-case 7265D, it has the same PCI IDs. */ 6122 if (sc->cfg == &iwm7265_cfg && 6123 (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) { 6124 sc->cfg = &iwm7265d_cfg; 6125 } 6126 6127 /* Allocate DMA memory for firmware transfers. */ 6128 if ((error = iwm_alloc_fwmem(sc)) != 0) { 6129 device_printf(dev, "could not allocate memory for firmware\n"); 6130 goto fail; 6131 } 6132 6133 /* Allocate "Keep Warm" page. */ 6134 if ((error = iwm_alloc_kw(sc)) != 0) { 6135 device_printf(dev, "could not allocate keep warm page\n"); 6136 goto fail; 6137 } 6138 6139 /* We use ICT interrupts */ 6140 if ((error = iwm_alloc_ict(sc)) != 0) { 6141 device_printf(dev, "could not allocate ICT table\n"); 6142 goto fail; 6143 } 6144 6145 /* Allocate TX scheduler "rings". */ 6146 if ((error = iwm_alloc_sched(sc)) != 0) { 6147 device_printf(dev, "could not allocate TX scheduler rings\n"); 6148 goto fail; 6149 } 6150 6151 /* Allocate TX rings */ 6152 for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { 6153 if ((error = iwm_alloc_tx_ring(sc, 6154 &sc->txq[txq_i], txq_i)) != 0) { 6155 device_printf(dev, 6156 "could not allocate TX ring %d\n", 6157 txq_i); 6158 goto fail; 6159 } 6160 } 6161 6162 /* Allocate RX ring. */ 6163 if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { 6164 device_printf(dev, "could not allocate RX ring\n"); 6165 goto fail; 6166 } 6167 6168 /* Clear pending interrupts. */ 6169 IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); 6170 6171 ic->ic_softc = sc; 6172 ic->ic_name = device_get_nameunit(sc->sc_dev); 6173 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 6174 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 6175 6176 /* Set device capabilities. */ 6177 ic->ic_caps = 6178 IEEE80211_C_STA | 6179 IEEE80211_C_WPA | /* WPA/RSN */ 6180 IEEE80211_C_WME | 6181 IEEE80211_C_PMGT | 6182 IEEE80211_C_SHSLOT | /* short slot time supported */ 6183 IEEE80211_C_SHPREAMBLE /* short preamble supported */ 6184 // IEEE80211_C_BGSCAN /* capable of bg scanning */ 6185 ; 6186 /* Advertise full-offload scanning */ 6187 ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD; 6188 for (i = 0; i < nitems(sc->sc_phyctxt); i++) { 6189 sc->sc_phyctxt[i].id = i; 6190 sc->sc_phyctxt[i].color = 0; 6191 sc->sc_phyctxt[i].ref = 0; 6192 sc->sc_phyctxt[i].channel = NULL; 6193 } 6194 6195 /* Default noise floor */ 6196 sc->sc_noise = -96; 6197 6198 /* Max RSSI */ 6199 sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; 6200 6201 #ifdef IWM_DEBUG 6202 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 6203 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", 6204 CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); 6205 #endif 6206 6207 error = iwm_read_firmware(sc); 6208 if (error) { 6209 goto fail; 6210 } else if (sc->sc_fw.fw_fp == NULL) { 6211 /* 6212 * XXX Add a solution for properly deferring firmware load 6213 * during bootup. 6214 */ 6215 goto fail; 6216 } else { 6217 sc->sc_preinit_hook.ich_func = iwm_preinit; 6218 sc->sc_preinit_hook.ich_arg = sc; 6219 if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { 6220 device_printf(dev, 6221 "config_intrhook_establish failed\n"); 6222 goto fail; 6223 } 6224 } 6225 6226 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6227 "<-%s\n", __func__); 6228 6229 return 0; 6230 6231 /* Free allocated memory if something failed during attachment. */ 6232 fail: 6233 iwm_detach_local(sc, 0); 6234 6235 return ENXIO; 6236 } 6237 6238 static int 6239 iwm_is_valid_ether_addr(uint8_t *addr) 6240 { 6241 char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 }; 6242 6243 if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr)) 6244 return (FALSE); 6245 6246 return (TRUE); 6247 } 6248 6249 static int 6250 iwm_wme_update(struct ieee80211com *ic) 6251 { 6252 #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 6253 struct iwm_softc *sc = ic->ic_softc; 6254 struct chanAccParams chp; 6255 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6256 struct iwm_vap *ivp = IWM_VAP(vap); 6257 struct iwm_node *in; 6258 struct wmeParams tmp[WME_NUM_AC]; 6259 int aci, error; 6260 6261 if (vap == NULL) 6262 return (0); 6263 6264 ieee80211_wme_ic_getparams(ic, &chp); 6265 6266 IEEE80211_LOCK(ic); 6267 for (aci = 0; aci < WME_NUM_AC; aci++) 6268 tmp[aci] = chp.cap_wmeParams[aci]; 6269 IEEE80211_UNLOCK(ic); 6270 6271 IWM_LOCK(sc); 6272 for (aci = 0; aci < WME_NUM_AC; aci++) { 6273 const struct wmeParams *ac = &tmp[aci]; 6274 ivp->queue_params[aci].aifsn = ac->wmep_aifsn; 6275 ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin); 6276 ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax); 6277 ivp->queue_params[aci].edca_txop = 6278 IEEE80211_TXOP_TO_US(ac->wmep_txopLimit); 6279 } 6280 ivp->have_wme = TRUE; 6281 if (ivp->is_uploaded && vap->iv_bss != NULL) { 6282 in = IWM_NODE(vap->iv_bss); 6283 if (in->in_assoc) { 6284 if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { 6285 device_printf(sc->sc_dev, 6286 "%s: failed to update MAC\n", __func__); 6287 } 6288 } 6289 } 6290 IWM_UNLOCK(sc); 6291 6292 return (0); 6293 #undef IWM_EXP2 6294 } 6295 6296 static void 6297 iwm_preinit(void *arg) 6298 { 6299 struct iwm_softc *sc = arg; 6300 device_t dev = sc->sc_dev; 6301 struct ieee80211com *ic = &sc->sc_ic; 6302 int error; 6303 6304 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6305 "->%s\n", __func__); 6306 6307 IWM_LOCK(sc); 6308 if ((error = iwm_start_hw(sc)) != 0) { 6309 device_printf(dev, "could not initialize hardware\n"); 6310 IWM_UNLOCK(sc); 6311 goto fail; 6312 } 6313 6314 error = iwm_run_init_ucode(sc, 1); 6315 iwm_stop_device(sc); 6316 if (error) { 6317 IWM_UNLOCK(sc); 6318 goto fail; 6319 } 6320 device_printf(dev, 6321 "hw rev 0x%x, fw ver %s, address %s\n", 6322 sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, 6323 sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr)); 6324 6325 /* not all hardware can do 5GHz band */ 6326 if (!sc->nvm_data->sku_cap_band_52GHz_enable) 6327 memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, 6328 sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); 6329 IWM_UNLOCK(sc); 6330 6331 iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 6332 ic->ic_channels); 6333 6334 /* 6335 * At this point we've committed - if we fail to do setup, 6336 * we now also have to tear down the net80211 state. 6337 */ 6338 ieee80211_ifattach(ic); 6339 ic->ic_vap_create = iwm_vap_create; 6340 ic->ic_vap_delete = iwm_vap_delete; 6341 ic->ic_raw_xmit = iwm_raw_xmit; 6342 ic->ic_node_alloc = iwm_node_alloc; 6343 ic->ic_scan_start = iwm_scan_start; 6344 ic->ic_scan_end = iwm_scan_end; 6345 ic->ic_update_mcast = iwm_update_mcast; 6346 ic->ic_getradiocaps = iwm_init_channel_map; 6347 ic->ic_set_channel = iwm_set_channel; 6348 ic->ic_scan_curchan = iwm_scan_curchan; 6349 ic->ic_scan_mindwell = iwm_scan_mindwell; 6350 ic->ic_wme.wme_update = iwm_wme_update; 6351 ic->ic_parent = iwm_parent; 6352 ic->ic_transmit = iwm_transmit; 6353 iwm_radiotap_attach(sc); 6354 if (bootverbose) 6355 ieee80211_announce(ic); 6356 6357 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6358 "<-%s\n", __func__); 6359 config_intrhook_disestablish(&sc->sc_preinit_hook); 6360 6361 return; 6362 fail: 6363 config_intrhook_disestablish(&sc->sc_preinit_hook); 6364 iwm_detach_local(sc, 0); 6365 } 6366 6367 /* 6368 * Attach the interface to 802.11 radiotap. 6369 */ 6370 static void 6371 iwm_radiotap_attach(struct iwm_softc *sc) 6372 { 6373 struct ieee80211com *ic = &sc->sc_ic; 6374 6375 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6376 "->%s begin\n", __func__); 6377 ieee80211_radiotap_attach(ic, 6378 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 6379 IWM_TX_RADIOTAP_PRESENT, 6380 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 6381 IWM_RX_RADIOTAP_PRESENT); 6382 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6383 "->%s end\n", __func__); 6384 } 6385 6386 static struct ieee80211vap * 6387 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 6388 enum ieee80211_opmode opmode, int flags, 6389 const uint8_t bssid[IEEE80211_ADDR_LEN], 6390 const uint8_t mac[IEEE80211_ADDR_LEN]) 6391 { 6392 struct iwm_vap *ivp; 6393 struct ieee80211vap *vap; 6394 6395 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 6396 return NULL; 6397 ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); 6398 vap = &ivp->iv_vap; 6399 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 6400 vap->iv_bmissthreshold = 10; /* override default */ 6401 /* Override with driver methods. */ 6402 ivp->iv_newstate = vap->iv_newstate; 6403 vap->iv_newstate = iwm_newstate; 6404 6405 ivp->id = IWM_DEFAULT_MACID; 6406 ivp->color = IWM_DEFAULT_COLOR; 6407 6408 ivp->have_wme = FALSE; 6409 ivp->ps_disabled = FALSE; 6410 6411 ieee80211_ratectl_init(vap); 6412 /* Complete setup. */ 6413 ieee80211_vap_attach(vap, ieee80211_media_change, 6414 ieee80211_media_status, mac); 6415 ic->ic_opmode = opmode; 6416 6417 return vap; 6418 } 6419 6420 static void 6421 iwm_vap_delete(struct ieee80211vap *vap) 6422 { 6423 struct iwm_vap *ivp = IWM_VAP(vap); 6424 6425 ieee80211_ratectl_deinit(vap); 6426 ieee80211_vap_detach(vap); 6427 free(ivp, M_80211_VAP); 6428 } 6429 6430 static void 6431 iwm_xmit_queue_drain(struct iwm_softc *sc) 6432 { 6433 struct mbuf *m; 6434 struct ieee80211_node *ni; 6435 6436 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 6437 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 6438 ieee80211_free_node(ni); 6439 m_freem(m); 6440 } 6441 } 6442 6443 static void 6444 iwm_scan_start(struct ieee80211com *ic) 6445 { 6446 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6447 struct iwm_softc *sc = ic->ic_softc; 6448 int error; 6449 6450 IWM_LOCK(sc); 6451 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 6452 /* This should not be possible */ 6453 device_printf(sc->sc_dev, 6454 "%s: Previous scan not completed yet\n", __func__); 6455 } 6456 if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) 6457 error = iwm_umac_scan(sc); 6458 else 6459 error = iwm_lmac_scan(sc); 6460 if (error != 0) { 6461 device_printf(sc->sc_dev, "could not initiate scan\n"); 6462 IWM_UNLOCK(sc); 6463 ieee80211_cancel_scan(vap); 6464 } else { 6465 sc->sc_flags |= IWM_FLAG_SCAN_RUNNING; 6466 iwm_led_blink_start(sc); 6467 IWM_UNLOCK(sc); 6468 } 6469 } 6470 6471 static void 6472 iwm_scan_end(struct ieee80211com *ic) 6473 { 6474 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6475 struct iwm_softc *sc = ic->ic_softc; 6476 6477 IWM_LOCK(sc); 6478 iwm_led_blink_stop(sc); 6479 if (vap->iv_state == IEEE80211_S_RUN) 6480 iwm_led_enable(sc); 6481 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 6482 /* 6483 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because 6484 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq 6485 * taskqueue. 6486 */ 6487 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 6488 iwm_scan_stop_wait(sc); 6489 } 6490 IWM_UNLOCK(sc); 6491 6492 /* 6493 * Make sure we don't race, if sc_es_task is still enqueued here. 6494 * This is to make sure that it won't call ieee80211_scan_done 6495 * when we have already started the next scan. 6496 */ 6497 taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL); 6498 } 6499 6500 static void 6501 iwm_update_mcast(struct ieee80211com *ic) 6502 { 6503 } 6504 6505 static void 6506 iwm_set_channel(struct ieee80211com *ic) 6507 { 6508 } 6509 6510 static void 6511 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 6512 { 6513 } 6514 6515 static void 6516 iwm_scan_mindwell(struct ieee80211_scan_state *ss) 6517 { 6518 } 6519 6520 void 6521 iwm_init_task(void *arg1) 6522 { 6523 struct iwm_softc *sc = arg1; 6524 6525 IWM_LOCK(sc); 6526 while (sc->sc_flags & IWM_FLAG_BUSY) 6527 msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); 6528 sc->sc_flags |= IWM_FLAG_BUSY; 6529 iwm_stop(sc); 6530 if (sc->sc_ic.ic_nrunning > 0) 6531 iwm_init(sc); 6532 sc->sc_flags &= ~IWM_FLAG_BUSY; 6533 wakeup(&sc->sc_flags); 6534 IWM_UNLOCK(sc); 6535 } 6536 6537 static int 6538 iwm_resume(device_t dev) 6539 { 6540 struct iwm_softc *sc = device_get_softc(dev); 6541 int do_reinit = 0; 6542 6543 /* 6544 * We disable the RETRY_TIMEOUT register (0x41) to keep 6545 * PCI Tx retries from interfering with C3 CPU state. 6546 */ 6547 pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); 6548 6549 if (!sc->sc_attached) 6550 return 0; 6551 6552 iwm_init_task(device_get_softc(dev)); 6553 6554 IWM_LOCK(sc); 6555 if (sc->sc_flags & IWM_FLAG_SCANNING) { 6556 sc->sc_flags &= ~IWM_FLAG_SCANNING; 6557 do_reinit = 1; 6558 } 6559 IWM_UNLOCK(sc); 6560 6561 if (do_reinit) 6562 ieee80211_resume_all(&sc->sc_ic); 6563 6564 return 0; 6565 } 6566 6567 static int 6568 iwm_suspend(device_t dev) 6569 { 6570 int do_stop = 0; 6571 struct iwm_softc *sc = device_get_softc(dev); 6572 6573 do_stop = !! (sc->sc_ic.ic_nrunning > 0); 6574 6575 if (!sc->sc_attached) 6576 return (0); 6577 6578 ieee80211_suspend_all(&sc->sc_ic); 6579 6580 if (do_stop) { 6581 IWM_LOCK(sc); 6582 iwm_stop(sc); 6583 sc->sc_flags |= IWM_FLAG_SCANNING; 6584 IWM_UNLOCK(sc); 6585 } 6586 6587 return (0); 6588 } 6589 6590 static int 6591 iwm_detach_local(struct iwm_softc *sc, int do_net80211) 6592 { 6593 struct iwm_fw_info *fw = &sc->sc_fw; 6594 device_t dev = sc->sc_dev; 6595 int i; 6596 6597 if (!sc->sc_attached) 6598 return 0; 6599 sc->sc_attached = 0; 6600 if (do_net80211) { 6601 ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task); 6602 } 6603 iwm_stop_device(sc); 6604 taskqueue_drain_all(sc->sc_tq); 6605 taskqueue_free(sc->sc_tq); 6606 if (do_net80211) { 6607 IWM_LOCK(sc); 6608 iwm_xmit_queue_drain(sc); 6609 IWM_UNLOCK(sc); 6610 ieee80211_ifdetach(&sc->sc_ic); 6611 } 6612 callout_drain(&sc->sc_led_blink_to); 6613 callout_drain(&sc->sc_watchdog_to); 6614 6615 iwm_phy_db_free(sc->sc_phy_db); 6616 sc->sc_phy_db = NULL; 6617 6618 iwm_free_nvm_data(sc->nvm_data); 6619 6620 /* Free descriptor rings */ 6621 iwm_free_rx_ring(sc, &sc->rxq); 6622 for (i = 0; i < nitems(sc->txq); i++) 6623 iwm_free_tx_ring(sc, &sc->txq[i]); 6624 6625 /* Free firmware */ 6626 if (fw->fw_fp != NULL) 6627 iwm_fw_info_free(fw); 6628 6629 /* Free scheduler */ 6630 iwm_dma_contig_free(&sc->sched_dma); 6631 iwm_dma_contig_free(&sc->ict_dma); 6632 iwm_dma_contig_free(&sc->kw_dma); 6633 iwm_dma_contig_free(&sc->fw_dma); 6634 6635 iwm_free_fw_paging(sc); 6636 6637 /* Finished with the hardware - detach things */ 6638 iwm_pci_detach(dev); 6639 6640 if (sc->sc_notif_wait != NULL) { 6641 iwm_notification_wait_free(sc->sc_notif_wait); 6642 sc->sc_notif_wait = NULL; 6643 } 6644 6645 IWM_LOCK_DESTROY(sc); 6646 6647 return (0); 6648 } 6649 6650 static int 6651 iwm_detach(device_t dev) 6652 { 6653 struct iwm_softc *sc = device_get_softc(dev); 6654 6655 return (iwm_detach_local(sc, 1)); 6656 } 6657 6658 static device_method_t iwm_pci_methods[] = { 6659 /* Device interface */ 6660 DEVMETHOD(device_probe, iwm_probe), 6661 DEVMETHOD(device_attach, iwm_attach), 6662 DEVMETHOD(device_detach, iwm_detach), 6663 DEVMETHOD(device_suspend, iwm_suspend), 6664 DEVMETHOD(device_resume, iwm_resume), 6665 6666 DEVMETHOD_END 6667 }; 6668 6669 static driver_t iwm_pci_driver = { 6670 "iwm", 6671 iwm_pci_methods, 6672 sizeof (struct iwm_softc) 6673 }; 6674 6675 static devclass_t iwm_devclass; 6676 6677 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); 6678 MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver, 6679 iwm_devices, nitems(iwm_devices)); 6680 MODULE_DEPEND(iwm, firmware, 1, 1, 1); 6681 MODULE_DEPEND(iwm, pci, 1, 1, 1); 6682 MODULE_DEPEND(iwm, wlan, 1, 1, 1); 6683