xref: /freebsd/sys/dev/iwm/if_iwm.c (revision f0574f5cf69e168cc4ea71ebbe5fdec9ec9a3dfe)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_config.h>
156 #include <dev/iwm/if_iwm_debug.h>
157 #include <dev/iwm/if_iwm_notif_wait.h>
158 #include <dev/iwm/if_iwm_util.h>
159 #include <dev/iwm/if_iwm_binding.h>
160 #include <dev/iwm/if_iwm_phy_db.h>
161 #include <dev/iwm/if_iwm_mac_ctxt.h>
162 #include <dev/iwm/if_iwm_phy_ctxt.h>
163 #include <dev/iwm/if_iwm_time_event.h>
164 #include <dev/iwm/if_iwm_power.h>
165 #include <dev/iwm/if_iwm_scan.h>
166 
167 #include <dev/iwm/if_iwm_pcie_trans.h>
168 #include <dev/iwm/if_iwm_led.h>
169 #include <dev/iwm/if_iwm_fw.h>
170 
171 const uint8_t iwm_nvm_channels[] = {
172 	/* 2.4 GHz */
173 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
174 	/* 5 GHz */
175 	36, 40, 44, 48, 52, 56, 60, 64,
176 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
177 	149, 153, 157, 161, 165
178 };
179 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
180     "IWM_NUM_CHANNELS is too small");
181 
182 const uint8_t iwm_nvm_channels_8000[] = {
183 	/* 2.4 GHz */
184 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
185 	/* 5 GHz */
186 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
187 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
188 	149, 153, 157, 161, 165, 169, 173, 177, 181
189 };
190 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
191     "IWM_NUM_CHANNELS_8000 is too small");
192 
193 #define IWM_NUM_2GHZ_CHANNELS	14
194 #define IWM_N_HW_ADDR_MASK	0xF
195 
196 /*
197  * XXX For now, there's simply a fixed set of rate table entries
198  * that are populated.
199  */
200 const struct iwm_rate {
201 	uint8_t rate;
202 	uint8_t plcp;
203 } iwm_rates[] = {
204 	{   2,	IWM_RATE_1M_PLCP  },
205 	{   4,	IWM_RATE_2M_PLCP  },
206 	{  11,	IWM_RATE_5M_PLCP  },
207 	{  22,	IWM_RATE_11M_PLCP },
208 	{  12,	IWM_RATE_6M_PLCP  },
209 	{  18,	IWM_RATE_9M_PLCP  },
210 	{  24,	IWM_RATE_12M_PLCP },
211 	{  36,	IWM_RATE_18M_PLCP },
212 	{  48,	IWM_RATE_24M_PLCP },
213 	{  72,	IWM_RATE_36M_PLCP },
214 	{  96,	IWM_RATE_48M_PLCP },
215 	{ 108,	IWM_RATE_54M_PLCP },
216 };
217 #define IWM_RIDX_CCK	0
218 #define IWM_RIDX_OFDM	4
219 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
220 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
221 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
222 
223 struct iwm_nvm_section {
224 	uint16_t length;
225 	uint8_t *data;
226 };
227 
228 #define IWM_MVM_UCODE_ALIVE_TIMEOUT	hz
229 #define IWM_MVM_UCODE_CALIB_TIMEOUT	(2*hz)
230 
231 struct iwm_mvm_alive_data {
232 	int valid;
233 	uint32_t scd_base_addr;
234 };
235 
236 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
237 static int	iwm_firmware_store_section(struct iwm_softc *,
238                                            enum iwm_ucode_type,
239                                            const uint8_t *, size_t);
240 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
241 static void	iwm_fw_info_free(struct iwm_fw_info *);
242 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
243 static int	iwm_alloc_fwmem(struct iwm_softc *);
244 static int	iwm_alloc_sched(struct iwm_softc *);
245 static int	iwm_alloc_kw(struct iwm_softc *);
246 static int	iwm_alloc_ict(struct iwm_softc *);
247 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
248 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
249 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
250 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
251                                   int);
252 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
253 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
254 static void	iwm_enable_interrupts(struct iwm_softc *);
255 static void	iwm_restore_interrupts(struct iwm_softc *);
256 static void	iwm_disable_interrupts(struct iwm_softc *);
257 static void	iwm_ict_reset(struct iwm_softc *);
258 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
259 static void	iwm_stop_device(struct iwm_softc *);
260 static void	iwm_mvm_nic_config(struct iwm_softc *);
261 static int	iwm_nic_rx_init(struct iwm_softc *);
262 static int	iwm_nic_tx_init(struct iwm_softc *);
263 static int	iwm_nic_init(struct iwm_softc *);
264 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
265 static int	iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t);
266 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
267                                    uint16_t, uint8_t *, uint16_t *);
268 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
269 				     uint16_t *, uint32_t);
270 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
271 static void	iwm_add_channel_band(struct iwm_softc *,
272 		    struct ieee80211_channel[], int, int *, int, size_t,
273 		    const uint8_t[]);
274 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
275 		    struct ieee80211_channel[]);
276 static struct iwm_nvm_data *
277 	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
278 			   const uint16_t *, const uint16_t *,
279 			   const uint16_t *, const uint16_t *,
280 			   const uint16_t *);
281 static void	iwm_free_nvm_data(struct iwm_nvm_data *);
282 static void	iwm_set_hw_address_family_8000(struct iwm_softc *,
283 					       struct iwm_nvm_data *,
284 					       const uint16_t *,
285 					       const uint16_t *);
286 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
287 			    const uint16_t *);
288 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
289 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
290 				  const uint16_t *);
291 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
292 				   const uint16_t *);
293 static void	iwm_set_radio_cfg(const struct iwm_softc *,
294 				  struct iwm_nvm_data *, uint32_t);
295 static struct iwm_nvm_data *
296 	iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
297 static int	iwm_nvm_init(struct iwm_softc *);
298 static int	iwm_pcie_load_section(struct iwm_softc *, uint8_t,
299 				      const struct iwm_fw_desc *);
300 static int	iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t,
301 					     bus_addr_t, uint32_t);
302 static int	iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
303 						const struct iwm_fw_sects *,
304 						int, int *);
305 static int	iwm_pcie_load_cpu_sections(struct iwm_softc *,
306 					   const struct iwm_fw_sects *,
307 					   int, int *);
308 static int	iwm_pcie_load_given_ucode_8000(struct iwm_softc *,
309 					       const struct iwm_fw_sects *);
310 static int	iwm_pcie_load_given_ucode(struct iwm_softc *,
311 					  const struct iwm_fw_sects *);
312 static int	iwm_start_fw(struct iwm_softc *, const struct iwm_fw_sects *);
313 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
314 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
315 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
316                                               enum iwm_ucode_type);
317 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
318 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
319 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
320 					    struct iwm_rx_phy_info *);
321 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
322                                       struct iwm_rx_packet *,
323                                       struct iwm_rx_data *);
324 static int	iwm_get_noise(struct iwm_softc *sc,
325 		    const struct iwm_mvm_statistics_rx_non_phy *);
326 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct mbuf *);
327 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
328                                          struct iwm_rx_packet *,
329 				         struct iwm_node *);
330 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
331                                   struct iwm_rx_data *);
332 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
333 #if 0
334 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
335                                  uint16_t);
336 #endif
337 static const struct iwm_rate *
338 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
339 			struct mbuf *, struct iwm_tx_cmd *);
340 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
341                        struct ieee80211_node *, int);
342 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
343 			     const struct ieee80211_bpf_params *);
344 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
345 				      uint32_t tfd_msk, uint32_t flags);
346 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
347 					        struct iwm_mvm_add_sta_cmd *,
348                                                 int *);
349 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
350                                        int);
351 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
352 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
354                                            struct iwm_int_sta *,
355 				           const uint8_t *, uint16_t, uint16_t);
356 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
357 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
358 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
359 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
360 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
361 static struct ieee80211_node *
362 		iwm_node_alloc(struct ieee80211vap *,
363 		               const uint8_t[IEEE80211_ADDR_LEN]);
364 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
365 static int	iwm_media_change(struct ifnet *);
366 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
367 static void	iwm_endscan_cb(void *, int);
368 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
369 					struct iwm_sf_cfg_cmd *,
370 					struct ieee80211_node *);
371 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
372 static int	iwm_send_bt_init_conf(struct iwm_softc *);
373 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
374 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
375 static int	iwm_init_hw(struct iwm_softc *);
376 static void	iwm_init(struct iwm_softc *);
377 static void	iwm_start(struct iwm_softc *);
378 static void	iwm_stop(struct iwm_softc *);
379 static void	iwm_watchdog(void *);
380 static void	iwm_parent(struct ieee80211com *);
381 #ifdef IWM_DEBUG
382 static const char *
383 		iwm_desc_lookup(uint32_t);
384 static void	iwm_nic_error(struct iwm_softc *);
385 static void	iwm_nic_umac_error(struct iwm_softc *);
386 #endif
387 static void	iwm_notif_intr(struct iwm_softc *);
388 static void	iwm_intr(void *);
389 static int	iwm_attach(device_t);
390 static int	iwm_is_valid_ether_addr(uint8_t *);
391 static void	iwm_preinit(void *);
392 static int	iwm_detach_local(struct iwm_softc *sc, int);
393 static void	iwm_init_task(void *);
394 static void	iwm_radiotap_attach(struct iwm_softc *);
395 static struct ieee80211vap *
396 		iwm_vap_create(struct ieee80211com *,
397 		               const char [IFNAMSIZ], int,
398 		               enum ieee80211_opmode, int,
399 		               const uint8_t [IEEE80211_ADDR_LEN],
400 		               const uint8_t [IEEE80211_ADDR_LEN]);
401 static void	iwm_vap_delete(struct ieee80211vap *);
402 static void	iwm_scan_start(struct ieee80211com *);
403 static void	iwm_scan_end(struct ieee80211com *);
404 static void	iwm_update_mcast(struct ieee80211com *);
405 static void	iwm_set_channel(struct ieee80211com *);
406 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
407 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
408 static int	iwm_detach(device_t);
409 
410 /*
411  * Firmware parser.
412  */
413 
414 static int
415 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
416 {
417 	const struct iwm_fw_cscheme_list *l = (const void *)data;
418 
419 	if (dlen < sizeof(*l) ||
420 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
421 		return EINVAL;
422 
423 	/* we don't actually store anything for now, always use s/w crypto */
424 
425 	return 0;
426 }
427 
428 static int
429 iwm_firmware_store_section(struct iwm_softc *sc,
430     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
431 {
432 	struct iwm_fw_sects *fws;
433 	struct iwm_fw_desc *fwone;
434 
435 	if (type >= IWM_UCODE_TYPE_MAX)
436 		return EINVAL;
437 	if (dlen < sizeof(uint32_t))
438 		return EINVAL;
439 
440 	fws = &sc->sc_fw.fw_sects[type];
441 	if (fws->fw_count >= IWM_UCODE_SECTION_MAX)
442 		return EINVAL;
443 
444 	fwone = &fws->fw_sect[fws->fw_count];
445 
446 	/* first 32bit are device load offset */
447 	memcpy(&fwone->offset, data, sizeof(uint32_t));
448 
449 	/* rest is data */
450 	fwone->data = data + sizeof(uint32_t);
451 	fwone->len = dlen - sizeof(uint32_t);
452 
453 	fws->fw_count++;
454 
455 	return 0;
456 }
457 
458 #define IWM_DEFAULT_SCAN_CHANNELS 40
459 
460 /* iwlwifi: iwl-drv.c */
461 struct iwm_tlv_calib_data {
462 	uint32_t ucode_type;
463 	struct iwm_tlv_calib_ctrl calib;
464 } __packed;
465 
466 static int
467 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
468 {
469 	const struct iwm_tlv_calib_data *def_calib = data;
470 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
471 
472 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
473 		device_printf(sc->sc_dev,
474 		    "Wrong ucode_type %u for default "
475 		    "calibration.\n", ucode_type);
476 		return EINVAL;
477 	}
478 
479 	sc->sc_default_calib[ucode_type].flow_trigger =
480 	    def_calib->calib.flow_trigger;
481 	sc->sc_default_calib[ucode_type].event_trigger =
482 	    def_calib->calib.event_trigger;
483 
484 	return 0;
485 }
486 
487 static int
488 iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data,
489 			struct iwm_ucode_capabilities *capa)
490 {
491 	const struct iwm_ucode_api *ucode_api = (const void *)data;
492 	uint32_t api_index = le32toh(ucode_api->api_index);
493 	uint32_t api_flags = le32toh(ucode_api->api_flags);
494 	int i;
495 
496 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
497 		device_printf(sc->sc_dev,
498 		    "api flags index %d larger than supported by driver\n",
499 		    api_index);
500 		/* don't return an error so we can load FW that has more bits */
501 		return 0;
502 	}
503 
504 	for (i = 0; i < 32; i++) {
505 		if (api_flags & (1U << i))
506 			setbit(capa->enabled_api, i + 32 * api_index);
507 	}
508 
509 	return 0;
510 }
511 
512 static int
513 iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data,
514 			   struct iwm_ucode_capabilities *capa)
515 {
516 	const struct iwm_ucode_capa *ucode_capa = (const void *)data;
517 	uint32_t api_index = le32toh(ucode_capa->api_index);
518 	uint32_t api_flags = le32toh(ucode_capa->api_capa);
519 	int i;
520 
521 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
522 		device_printf(sc->sc_dev,
523 		    "capa flags index %d larger than supported by driver\n",
524 		    api_index);
525 		/* don't return an error so we can load FW that has more bits */
526 		return 0;
527 	}
528 
529 	for (i = 0; i < 32; i++) {
530 		if (api_flags & (1U << i))
531 			setbit(capa->enabled_capa, i + 32 * api_index);
532 	}
533 
534 	return 0;
535 }
536 
537 static void
538 iwm_fw_info_free(struct iwm_fw_info *fw)
539 {
540 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
541 	fw->fw_fp = NULL;
542 	/* don't touch fw->fw_status */
543 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
544 }
545 
546 static int
547 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
548 {
549 	struct iwm_fw_info *fw = &sc->sc_fw;
550 	const struct iwm_tlv_ucode_header *uhdr;
551 	struct iwm_ucode_tlv tlv;
552 	struct iwm_ucode_capabilities *capa = &sc->ucode_capa;
553 	enum iwm_ucode_tlv_type tlv_type;
554 	const struct firmware *fwp;
555 	const uint8_t *data;
556 	uint32_t usniffer_img;
557 	uint32_t paging_mem_size;
558 	int num_of_cpus;
559 	int error = 0;
560 	size_t len;
561 
562 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
563 	    ucode_type != IWM_UCODE_INIT)
564 		return 0;
565 
566 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
567 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
568 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
569 
570 	if (fw->fw_fp != NULL)
571 		iwm_fw_info_free(fw);
572 
573 	/*
574 	 * Load firmware into driver memory.
575 	 * fw_fp will be set.
576 	 */
577 	IWM_UNLOCK(sc);
578 	fwp = firmware_get(sc->cfg->fw_name);
579 	IWM_LOCK(sc);
580 	if (fwp == NULL) {
581 		device_printf(sc->sc_dev,
582 		    "could not read firmware %s (error %d)\n",
583 		    sc->cfg->fw_name, error);
584 		goto out;
585 	}
586 	fw->fw_fp = fwp;
587 
588 	/* (Re-)Initialize default values. */
589 	capa->flags = 0;
590 	capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH;
591 	capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
592 	memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa));
593 	memset(capa->enabled_api, 0, sizeof(capa->enabled_api));
594 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
595 
596 	/*
597 	 * Parse firmware contents
598 	 */
599 
600 	uhdr = (const void *)fw->fw_fp->data;
601 	if (*(const uint32_t *)fw->fw_fp->data != 0
602 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
603 		device_printf(sc->sc_dev, "invalid firmware %s\n",
604 		    sc->cfg->fw_name);
605 		error = EINVAL;
606 		goto out;
607 	}
608 
609 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
610 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
611 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
612 	    IWM_UCODE_API(le32toh(uhdr->ver)));
613 	data = uhdr->data;
614 	len = fw->fw_fp->datasize - sizeof(*uhdr);
615 
616 	while (len >= sizeof(tlv)) {
617 		size_t tlv_len;
618 		const void *tlv_data;
619 
620 		memcpy(&tlv, data, sizeof(tlv));
621 		tlv_len = le32toh(tlv.length);
622 		tlv_type = le32toh(tlv.type);
623 
624 		len -= sizeof(tlv);
625 		data += sizeof(tlv);
626 		tlv_data = data;
627 
628 		if (len < tlv_len) {
629 			device_printf(sc->sc_dev,
630 			    "firmware too short: %zu bytes\n",
631 			    len);
632 			error = EINVAL;
633 			goto parse_out;
634 		}
635 
636 		switch ((int)tlv_type) {
637 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
638 			if (tlv_len < sizeof(uint32_t)) {
639 				device_printf(sc->sc_dev,
640 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
641 				    __func__,
642 				    (int) tlv_len);
643 				error = EINVAL;
644 				goto parse_out;
645 			}
646 			capa->max_probe_length =
647 			    le32toh(*(const uint32_t *)tlv_data);
648 			/* limit it to something sensible */
649 			if (capa->max_probe_length >
650 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
651 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
652 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
653 				    "ridiculous\n", __func__);
654 				error = EINVAL;
655 				goto parse_out;
656 			}
657 			break;
658 		case IWM_UCODE_TLV_PAN:
659 			if (tlv_len) {
660 				device_printf(sc->sc_dev,
661 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
662 				    __func__,
663 				    (int) tlv_len);
664 				error = EINVAL;
665 				goto parse_out;
666 			}
667 			capa->flags |= IWM_UCODE_TLV_FLAGS_PAN;
668 			break;
669 		case IWM_UCODE_TLV_FLAGS:
670 			if (tlv_len < sizeof(uint32_t)) {
671 				device_printf(sc->sc_dev,
672 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
673 				    __func__,
674 				    (int) tlv_len);
675 				error = EINVAL;
676 				goto parse_out;
677 			}
678 			/*
679 			 * Apparently there can be many flags, but Linux driver
680 			 * parses only the first one, and so do we.
681 			 *
682 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
683 			 * Intentional or a bug?  Observations from
684 			 * current firmware file:
685 			 *  1) TLV_PAN is parsed first
686 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
687 			 * ==> this resets TLV_PAN to itself... hnnnk
688 			 */
689 			capa->flags = le32toh(*(const uint32_t *)tlv_data);
690 			break;
691 		case IWM_UCODE_TLV_CSCHEME:
692 			if ((error = iwm_store_cscheme(sc,
693 			    tlv_data, tlv_len)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_store_cscheme(): returned %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_NUM_OF_CPU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				device_printf(sc->sc_dev,
704 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) != sizeof(uint32_t)\n",
705 				    __func__,
706 				    (int) tlv_len);
707 				error = EINVAL;
708 				goto parse_out;
709 			}
710 			num_of_cpus = le32toh(*(const uint32_t *)tlv_data);
711 			if (num_of_cpus == 2) {
712 				fw->fw_sects[IWM_UCODE_REGULAR].is_dual_cpus =
713 					TRUE;
714 				fw->fw_sects[IWM_UCODE_INIT].is_dual_cpus =
715 					TRUE;
716 				fw->fw_sects[IWM_UCODE_WOWLAN].is_dual_cpus =
717 					TRUE;
718 			} else if ((num_of_cpus > 2) || (num_of_cpus < 1)) {
719 				device_printf(sc->sc_dev,
720 				    "%s: Driver supports only 1 or 2 CPUs\n",
721 				    __func__);
722 				error = EINVAL;
723 				goto parse_out;
724 			}
725 			break;
726 		case IWM_UCODE_TLV_SEC_RT:
727 			if ((error = iwm_firmware_store_section(sc,
728 			    IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) {
729 				device_printf(sc->sc_dev,
730 				    "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n",
731 				    __func__,
732 				    error);
733 				goto parse_out;
734 			}
735 			break;
736 		case IWM_UCODE_TLV_SEC_INIT:
737 			if ((error = iwm_firmware_store_section(sc,
738 			    IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) {
739 				device_printf(sc->sc_dev,
740 				    "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n",
741 				    __func__,
742 				    error);
743 				goto parse_out;
744 			}
745 			break;
746 		case IWM_UCODE_TLV_SEC_WOWLAN:
747 			if ((error = iwm_firmware_store_section(sc,
748 			    IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) {
749 				device_printf(sc->sc_dev,
750 				    "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n",
751 				    __func__,
752 				    error);
753 				goto parse_out;
754 			}
755 			break;
756 		case IWM_UCODE_TLV_DEF_CALIB:
757 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
758 				device_printf(sc->sc_dev,
759 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
760 				    __func__,
761 				    (int) tlv_len,
762 				    (int) sizeof(struct iwm_tlv_calib_data));
763 				error = EINVAL;
764 				goto parse_out;
765 			}
766 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
767 				device_printf(sc->sc_dev,
768 				    "%s: iwm_set_default_calib() failed: %d\n",
769 				    __func__,
770 				    error);
771 				goto parse_out;
772 			}
773 			break;
774 		case IWM_UCODE_TLV_PHY_SKU:
775 			if (tlv_len != sizeof(uint32_t)) {
776 				error = EINVAL;
777 				device_printf(sc->sc_dev,
778 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
779 				    __func__,
780 				    (int) tlv_len);
781 				goto parse_out;
782 			}
783 			sc->sc_fw.phy_config =
784 			    le32toh(*(const uint32_t *)tlv_data);
785 			sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config &
786 						  IWM_FW_PHY_CFG_TX_CHAIN) >>
787 						  IWM_FW_PHY_CFG_TX_CHAIN_POS;
788 			sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config &
789 						  IWM_FW_PHY_CFG_RX_CHAIN) >>
790 						  IWM_FW_PHY_CFG_RX_CHAIN_POS;
791 			break;
792 
793 		case IWM_UCODE_TLV_API_CHANGES_SET: {
794 			if (tlv_len != sizeof(struct iwm_ucode_api)) {
795 				error = EINVAL;
796 				goto parse_out;
797 			}
798 			if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) {
799 				error = EINVAL;
800 				goto parse_out;
801 			}
802 			break;
803 		}
804 
805 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
806 			if (tlv_len != sizeof(struct iwm_ucode_capa)) {
807 				error = EINVAL;
808 				goto parse_out;
809 			}
810 			if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) {
811 				error = EINVAL;
812 				goto parse_out;
813 			}
814 			break;
815 		}
816 
817 		case 48: /* undocumented TLV */
818 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
819 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
820 			/* ignore, not used by current driver */
821 			break;
822 
823 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
824 			if ((error = iwm_firmware_store_section(sc,
825 			    IWM_UCODE_REGULAR_USNIFFER, tlv_data,
826 			    tlv_len)) != 0)
827 				goto parse_out;
828 			break;
829 
830 		case IWM_UCODE_TLV_PAGING:
831 			if (tlv_len != sizeof(uint32_t)) {
832 				error = EINVAL;
833 				goto parse_out;
834 			}
835 			paging_mem_size = le32toh(*(const uint32_t *)tlv_data);
836 
837 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
838 			    "%s: Paging: paging enabled (size = %u bytes)\n",
839 			    __func__, paging_mem_size);
840 			if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
841 				device_printf(sc->sc_dev,
842 					"%s: Paging: driver supports up to %u bytes for paging image\n",
843 					__func__, IWM_MAX_PAGING_IMAGE_SIZE);
844 				error = EINVAL;
845 				goto out;
846 			}
847 			if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
848 				device_printf(sc->sc_dev,
849 				    "%s: Paging: image isn't multiple %u\n",
850 				    __func__, IWM_FW_PAGING_SIZE);
851 				error = EINVAL;
852 				goto out;
853 			}
854 
855 			sc->sc_fw.fw_sects[IWM_UCODE_REGULAR].paging_mem_size =
856 			    paging_mem_size;
857 			usniffer_img = IWM_UCODE_REGULAR_USNIFFER;
858 			sc->sc_fw.fw_sects[usniffer_img].paging_mem_size =
859 			    paging_mem_size;
860 			break;
861 
862 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
863 			if (tlv_len != sizeof(uint32_t)) {
864 				error = EINVAL;
865 				goto parse_out;
866 			}
867 			capa->n_scan_channels =
868 			    le32toh(*(const uint32_t *)tlv_data);
869 			break;
870 
871 		case IWM_UCODE_TLV_FW_VERSION:
872 			if (tlv_len != sizeof(uint32_t) * 3) {
873 				error = EINVAL;
874 				goto parse_out;
875 			}
876 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
877 			    "%d.%d.%d",
878 			    le32toh(((const uint32_t *)tlv_data)[0]),
879 			    le32toh(((const uint32_t *)tlv_data)[1]),
880 			    le32toh(((const uint32_t *)tlv_data)[2]));
881 			break;
882 
883 		case IWM_UCODE_TLV_FW_MEM_SEG:
884 			break;
885 
886 		default:
887 			device_printf(sc->sc_dev,
888 			    "%s: unknown firmware section %d, abort\n",
889 			    __func__, tlv_type);
890 			error = EINVAL;
891 			goto parse_out;
892 		}
893 
894 		len -= roundup(tlv_len, 4);
895 		data += roundup(tlv_len, 4);
896 	}
897 
898 	KASSERT(error == 0, ("unhandled error"));
899 
900  parse_out:
901 	if (error) {
902 		device_printf(sc->sc_dev, "firmware parse error %d, "
903 		    "section type %d\n", error, tlv_type);
904 	}
905 
906  out:
907 	if (error) {
908 		fw->fw_status = IWM_FW_STATUS_NONE;
909 		if (fw->fw_fp != NULL)
910 			iwm_fw_info_free(fw);
911 	} else
912 		fw->fw_status = IWM_FW_STATUS_DONE;
913 	wakeup(&sc->sc_fw);
914 
915 	return error;
916 }
917 
918 /*
919  * DMA resource routines
920  */
921 
922 /* fwmem is used to load firmware onto the card */
923 static int
924 iwm_alloc_fwmem(struct iwm_softc *sc)
925 {
926 	/* Must be aligned on a 16-byte boundary. */
927 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
928 	    IWM_FH_MEM_TB_MAX_LENGTH, 16);
929 }
930 
931 /* tx scheduler rings.  not used? */
932 static int
933 iwm_alloc_sched(struct iwm_softc *sc)
934 {
935 	/* TX scheduler rings must be aligned on a 1KB boundary. */
936 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
937 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
938 }
939 
940 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
941 static int
942 iwm_alloc_kw(struct iwm_softc *sc)
943 {
944 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
945 }
946 
947 /* interrupt cause table */
948 static int
949 iwm_alloc_ict(struct iwm_softc *sc)
950 {
951 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
952 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
953 }
954 
955 static int
956 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
957 {
958 	bus_size_t size;
959 	int i, error;
960 
961 	ring->cur = 0;
962 
963 	/* Allocate RX descriptors (256-byte aligned). */
964 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
965 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
966 	if (error != 0) {
967 		device_printf(sc->sc_dev,
968 		    "could not allocate RX ring DMA memory\n");
969 		goto fail;
970 	}
971 	ring->desc = ring->desc_dma.vaddr;
972 
973 	/* Allocate RX status area (16-byte aligned). */
974 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
975 	    sizeof(*ring->stat), 16);
976 	if (error != 0) {
977 		device_printf(sc->sc_dev,
978 		    "could not allocate RX status DMA memory\n");
979 		goto fail;
980 	}
981 	ring->stat = ring->stat_dma.vaddr;
982 
983         /* Create RX buffer DMA tag. */
984         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
985             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
986             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
987         if (error != 0) {
988                 device_printf(sc->sc_dev,
989                     "%s: could not create RX buf DMA tag, error %d\n",
990                     __func__, error);
991                 goto fail;
992         }
993 
994 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
995 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
996 	if (error != 0) {
997 		device_printf(sc->sc_dev,
998 		    "%s: could not create RX buf DMA map, error %d\n",
999 		    __func__, error);
1000 		goto fail;
1001 	}
1002 	/*
1003 	 * Allocate and map RX buffers.
1004 	 */
1005 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1006 		struct iwm_rx_data *data = &ring->data[i];
1007 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1008 		if (error != 0) {
1009 			device_printf(sc->sc_dev,
1010 			    "%s: could not create RX buf DMA map, error %d\n",
1011 			    __func__, error);
1012 			goto fail;
1013 		}
1014 		data->m = NULL;
1015 
1016 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
1017 			goto fail;
1018 		}
1019 	}
1020 	return 0;
1021 
1022 fail:	iwm_free_rx_ring(sc, ring);
1023 	return error;
1024 }
1025 
1026 static void
1027 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1028 {
1029 	/* Reset the ring state */
1030 	ring->cur = 0;
1031 
1032 	/*
1033 	 * The hw rx ring index in shared memory must also be cleared,
1034 	 * otherwise the discrepancy can cause reprocessing chaos.
1035 	 */
1036 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1037 }
1038 
1039 static void
1040 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1041 {
1042 	int i;
1043 
1044 	iwm_dma_contig_free(&ring->desc_dma);
1045 	iwm_dma_contig_free(&ring->stat_dma);
1046 
1047 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1048 		struct iwm_rx_data *data = &ring->data[i];
1049 
1050 		if (data->m != NULL) {
1051 			bus_dmamap_sync(ring->data_dmat, data->map,
1052 			    BUS_DMASYNC_POSTREAD);
1053 			bus_dmamap_unload(ring->data_dmat, data->map);
1054 			m_freem(data->m);
1055 			data->m = NULL;
1056 		}
1057 		if (data->map != NULL) {
1058 			bus_dmamap_destroy(ring->data_dmat, data->map);
1059 			data->map = NULL;
1060 		}
1061 	}
1062 	if (ring->spare_map != NULL) {
1063 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1064 		ring->spare_map = NULL;
1065 	}
1066 	if (ring->data_dmat != NULL) {
1067 		bus_dma_tag_destroy(ring->data_dmat);
1068 		ring->data_dmat = NULL;
1069 	}
1070 }
1071 
1072 static int
1073 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1074 {
1075 	bus_addr_t paddr;
1076 	bus_size_t size;
1077 	size_t maxsize;
1078 	int nsegments;
1079 	int i, error;
1080 
1081 	ring->qid = qid;
1082 	ring->queued = 0;
1083 	ring->cur = 0;
1084 
1085 	/* Allocate TX descriptors (256-byte aligned). */
1086 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1087 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1088 	if (error != 0) {
1089 		device_printf(sc->sc_dev,
1090 		    "could not allocate TX ring DMA memory\n");
1091 		goto fail;
1092 	}
1093 	ring->desc = ring->desc_dma.vaddr;
1094 
1095 	/*
1096 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1097 	 * to allocate commands space for other rings.
1098 	 */
1099 	if (qid > IWM_MVM_CMD_QUEUE)
1100 		return 0;
1101 
1102 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1103 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1104 	if (error != 0) {
1105 		device_printf(sc->sc_dev,
1106 		    "could not allocate TX cmd DMA memory\n");
1107 		goto fail;
1108 	}
1109 	ring->cmd = ring->cmd_dma.vaddr;
1110 
1111 	/* FW commands may require more mapped space than packets. */
1112 	if (qid == IWM_MVM_CMD_QUEUE) {
1113 		maxsize = IWM_RBUF_SIZE;
1114 		nsegments = 1;
1115 	} else {
1116 		maxsize = MCLBYTES;
1117 		nsegments = IWM_MAX_SCATTER - 2;
1118 	}
1119 
1120 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1121 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1122             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1123 	if (error != 0) {
1124 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1125 		goto fail;
1126 	}
1127 
1128 	paddr = ring->cmd_dma.paddr;
1129 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1130 		struct iwm_tx_data *data = &ring->data[i];
1131 
1132 		data->cmd_paddr = paddr;
1133 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1134 		    + offsetof(struct iwm_tx_cmd, scratch);
1135 		paddr += sizeof(struct iwm_device_cmd);
1136 
1137 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1138 		if (error != 0) {
1139 			device_printf(sc->sc_dev,
1140 			    "could not create TX buf DMA map\n");
1141 			goto fail;
1142 		}
1143 	}
1144 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1145 	    ("invalid physical address"));
1146 	return 0;
1147 
1148 fail:	iwm_free_tx_ring(sc, ring);
1149 	return error;
1150 }
1151 
1152 static void
1153 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1154 {
1155 	int i;
1156 
1157 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1158 		struct iwm_tx_data *data = &ring->data[i];
1159 
1160 		if (data->m != NULL) {
1161 			bus_dmamap_sync(ring->data_dmat, data->map,
1162 			    BUS_DMASYNC_POSTWRITE);
1163 			bus_dmamap_unload(ring->data_dmat, data->map);
1164 			m_freem(data->m);
1165 			data->m = NULL;
1166 		}
1167 	}
1168 	/* Clear TX descriptors. */
1169 	memset(ring->desc, 0, ring->desc_dma.size);
1170 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1171 	    BUS_DMASYNC_PREWRITE);
1172 	sc->qfullmsk &= ~(1 << ring->qid);
1173 	ring->queued = 0;
1174 	ring->cur = 0;
1175 
1176 	if (ring->qid == IWM_MVM_CMD_QUEUE && sc->cmd_hold_nic_awake)
1177 		iwm_pcie_clear_cmd_in_flight(sc);
1178 }
1179 
1180 static void
1181 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1182 {
1183 	int i;
1184 
1185 	iwm_dma_contig_free(&ring->desc_dma);
1186 	iwm_dma_contig_free(&ring->cmd_dma);
1187 
1188 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1189 		struct iwm_tx_data *data = &ring->data[i];
1190 
1191 		if (data->m != NULL) {
1192 			bus_dmamap_sync(ring->data_dmat, data->map,
1193 			    BUS_DMASYNC_POSTWRITE);
1194 			bus_dmamap_unload(ring->data_dmat, data->map);
1195 			m_freem(data->m);
1196 			data->m = NULL;
1197 		}
1198 		if (data->map != NULL) {
1199 			bus_dmamap_destroy(ring->data_dmat, data->map);
1200 			data->map = NULL;
1201 		}
1202 	}
1203 	if (ring->data_dmat != NULL) {
1204 		bus_dma_tag_destroy(ring->data_dmat);
1205 		ring->data_dmat = NULL;
1206 	}
1207 }
1208 
1209 /*
1210  * High-level hardware frobbing routines
1211  */
1212 
1213 static void
1214 iwm_enable_interrupts(struct iwm_softc *sc)
1215 {
1216 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1217 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1218 }
1219 
1220 static void
1221 iwm_restore_interrupts(struct iwm_softc *sc)
1222 {
1223 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1224 }
1225 
1226 static void
1227 iwm_disable_interrupts(struct iwm_softc *sc)
1228 {
1229 	/* disable interrupts */
1230 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1231 
1232 	/* acknowledge all interrupts */
1233 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1234 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1235 }
1236 
1237 static void
1238 iwm_ict_reset(struct iwm_softc *sc)
1239 {
1240 	iwm_disable_interrupts(sc);
1241 
1242 	/* Reset ICT table. */
1243 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1244 	sc->ict_cur = 0;
1245 
1246 	/* Set physical address of ICT table (4KB aligned). */
1247 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1248 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1249 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1250 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1251 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1252 
1253 	/* Switch to ICT interrupt mode in driver. */
1254 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1255 
1256 	/* Re-enable interrupts. */
1257 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1258 	iwm_enable_interrupts(sc);
1259 }
1260 
1261 /* iwlwifi pcie/trans.c */
1262 
1263 /*
1264  * Since this .. hard-resets things, it's time to actually
1265  * mark the first vap (if any) as having no mac context.
1266  * It's annoying, but since the driver is potentially being
1267  * stop/start'ed whilst active (thanks openbsd port!) we
1268  * have to correctly track this.
1269  */
1270 static void
1271 iwm_stop_device(struct iwm_softc *sc)
1272 {
1273 	struct ieee80211com *ic = &sc->sc_ic;
1274 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1275 	int chnl, qid;
1276 	uint32_t mask = 0;
1277 
1278 	/* tell the device to stop sending interrupts */
1279 	iwm_disable_interrupts(sc);
1280 
1281 	/*
1282 	 * FreeBSD-local: mark the first vap as not-uploaded,
1283 	 * so the next transition through auth/assoc
1284 	 * will correctly populate the MAC context.
1285 	 */
1286 	if (vap) {
1287 		struct iwm_vap *iv = IWM_VAP(vap);
1288 		iv->is_uploaded = 0;
1289 	}
1290 
1291 	/* device going down, Stop using ICT table */
1292 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1293 
1294 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1295 
1296 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1297 
1298 	if (iwm_nic_lock(sc)) {
1299 		/* Stop each Tx DMA channel */
1300 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1301 			IWM_WRITE(sc,
1302 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1303 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1304 		}
1305 
1306 		/* Wait for DMA channels to be idle */
1307 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1308 		    5000)) {
1309 			device_printf(sc->sc_dev,
1310 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1311 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1312 		}
1313 		iwm_nic_unlock(sc);
1314 	}
1315 	iwm_pcie_rx_stop(sc);
1316 
1317 	/* Stop RX ring. */
1318 	iwm_reset_rx_ring(sc, &sc->rxq);
1319 
1320 	/* Reset all TX rings. */
1321 	for (qid = 0; qid < nitems(sc->txq); qid++)
1322 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1323 
1324 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1325 		/* Power-down device's busmaster DMA clocks */
1326 		iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
1327 		    IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1328 		DELAY(5);
1329 	}
1330 
1331 	/* Make sure (redundant) we've released our request to stay awake */
1332 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1333 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1334 
1335 	/* Stop the device, and put it in low power state */
1336 	iwm_apm_stop(sc);
1337 
1338 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1339 	 * Clean again the interrupt here
1340 	 */
1341 	iwm_disable_interrupts(sc);
1342 	/* stop and reset the on-board processor */
1343 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1344 
1345 	/*
1346 	 * Even if we stop the HW, we still want the RF kill
1347 	 * interrupt
1348 	 */
1349 	iwm_enable_rfkill_int(sc);
1350 	iwm_check_rfkill(sc);
1351 }
1352 
1353 /* iwlwifi: mvm/ops.c */
1354 static void
1355 iwm_mvm_nic_config(struct iwm_softc *sc)
1356 {
1357 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1358 	uint32_t reg_val = 0;
1359 	uint32_t phy_config = iwm_mvm_get_phy_config(sc);
1360 
1361 	radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1362 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1363 	radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1364 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1365 	radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1366 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1367 
1368 	/* SKU control */
1369 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1370 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1371 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1372 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1373 
1374 	/* radio configuration */
1375 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1376 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1377 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1378 
1379 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1380 
1381 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1382 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1383 	    radio_cfg_step, radio_cfg_dash);
1384 
1385 	/*
1386 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1387 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1388 	 * to lose ownership and not being able to obtain it back.
1389 	 */
1390 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1391 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1392 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1393 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1394 	}
1395 }
1396 
1397 static int
1398 iwm_nic_rx_init(struct iwm_softc *sc)
1399 {
1400 	/*
1401 	 * Initialize RX ring.  This is from the iwn driver.
1402 	 */
1403 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1404 
1405 	/* Stop Rx DMA */
1406 	iwm_pcie_rx_stop(sc);
1407 
1408 	if (!iwm_nic_lock(sc))
1409 		return EBUSY;
1410 
1411 	/* reset and flush pointers */
1412 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1413 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1414 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1415 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1416 
1417 	/* Set physical address of RX ring (256-byte aligned). */
1418 	IWM_WRITE(sc,
1419 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1420 
1421 	/* Set physical address of RX status (16-byte aligned). */
1422 	IWM_WRITE(sc,
1423 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1424 
1425 	/* Enable RX. */
1426 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1427 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1428 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1429 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1430 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1431 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1432 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1433 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1434 
1435 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1436 
1437 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1438 	if (sc->cfg->host_interrupt_operation_mode)
1439 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1440 
1441 	/*
1442 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1443 	 *
1444 	 * This value should initially be 0 (before preparing any
1445 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1446 	 */
1447 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1448 
1449 	iwm_nic_unlock(sc);
1450 
1451 	return 0;
1452 }
1453 
1454 static int
1455 iwm_nic_tx_init(struct iwm_softc *sc)
1456 {
1457 	int qid;
1458 
1459 	if (!iwm_nic_lock(sc))
1460 		return EBUSY;
1461 
1462 	/* Deactivate TX scheduler. */
1463 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1464 
1465 	/* Set physical address of "keep warm" page (16-byte aligned). */
1466 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1467 
1468 	/* Initialize TX rings. */
1469 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1470 		struct iwm_tx_ring *txq = &sc->txq[qid];
1471 
1472 		/* Set physical address of TX ring (256-byte aligned). */
1473 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1474 		    txq->desc_dma.paddr >> 8);
1475 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1476 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1477 		    __func__,
1478 		    qid, txq->desc,
1479 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1480 	}
1481 
1482 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1483 
1484 	iwm_nic_unlock(sc);
1485 
1486 	return 0;
1487 }
1488 
1489 static int
1490 iwm_nic_init(struct iwm_softc *sc)
1491 {
1492 	int error;
1493 
1494 	iwm_apm_init(sc);
1495 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1496 		iwm_set_pwr(sc);
1497 
1498 	iwm_mvm_nic_config(sc);
1499 
1500 	if ((error = iwm_nic_rx_init(sc)) != 0)
1501 		return error;
1502 
1503 	/*
1504 	 * Ditto for TX, from iwn
1505 	 */
1506 	if ((error = iwm_nic_tx_init(sc)) != 0)
1507 		return error;
1508 
1509 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1510 	    "%s: shadow registers enabled\n", __func__);
1511 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1512 
1513 	return 0;
1514 }
1515 
1516 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1517 	IWM_MVM_TX_FIFO_VO,
1518 	IWM_MVM_TX_FIFO_VI,
1519 	IWM_MVM_TX_FIFO_BE,
1520 	IWM_MVM_TX_FIFO_BK,
1521 };
1522 
1523 static int
1524 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1525 {
1526 	if (!iwm_nic_lock(sc)) {
1527 		device_printf(sc->sc_dev,
1528 		    "%s: cannot enable txq %d\n",
1529 		    __func__,
1530 		    qid);
1531 		return EBUSY;
1532 	}
1533 
1534 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1535 
1536 	if (qid == IWM_MVM_CMD_QUEUE) {
1537 		/* unactivate before configuration */
1538 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1539 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1540 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1541 
1542 		iwm_nic_unlock(sc);
1543 
1544 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1545 
1546 		if (!iwm_nic_lock(sc)) {
1547 			device_printf(sc->sc_dev,
1548 			    "%s: cannot enable txq %d\n", __func__, qid);
1549 			return EBUSY;
1550 		}
1551 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1552 		iwm_nic_unlock(sc);
1553 
1554 		iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1555 		/* Set scheduler window size and frame limit. */
1556 		iwm_write_mem32(sc,
1557 		    sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1558 		    sizeof(uint32_t),
1559 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1560 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1561 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1562 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1563 
1564 		if (!iwm_nic_lock(sc)) {
1565 			device_printf(sc->sc_dev,
1566 			    "%s: cannot enable txq %d\n", __func__, qid);
1567 			return EBUSY;
1568 		}
1569 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1570 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1571 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1572 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1573 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1574 	} else {
1575 		struct iwm_scd_txq_cfg_cmd cmd;
1576 		int error;
1577 
1578 		iwm_nic_unlock(sc);
1579 
1580 		memset(&cmd, 0, sizeof(cmd));
1581 		cmd.scd_queue = qid;
1582 		cmd.enable = 1;
1583 		cmd.sta_id = sta_id;
1584 		cmd.tx_fifo = fifo;
1585 		cmd.aggregate = 0;
1586 		cmd.window = IWM_FRAME_LIMIT;
1587 
1588 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1589 		    sizeof(cmd), &cmd);
1590 		if (error) {
1591 			device_printf(sc->sc_dev,
1592 			    "cannot enable txq %d\n", qid);
1593 			return error;
1594 		}
1595 
1596 		if (!iwm_nic_lock(sc))
1597 			return EBUSY;
1598 	}
1599 
1600 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1601 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1602 
1603 	iwm_nic_unlock(sc);
1604 
1605 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1606 	    __func__, qid, fifo);
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr)
1613 {
1614 	int error, chnl;
1615 
1616 	int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1617 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
1618 
1619 	if (!iwm_nic_lock(sc))
1620 		return EBUSY;
1621 
1622 	iwm_ict_reset(sc);
1623 
1624 	iwm_nic_unlock(sc);
1625 
1626 	sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1627 	if (scd_base_addr != 0 &&
1628 	    scd_base_addr != sc->scd_base_addr) {
1629 		device_printf(sc->sc_dev,
1630 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1631 		    __func__, sc->scd_base_addr, scd_base_addr);
1632 	}
1633 
1634 	/* reset context data, TX status and translation data */
1635 	error = iwm_write_mem(sc,
1636 	    sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1637 	    NULL, clear_dwords);
1638 	if (error)
1639 		return EBUSY;
1640 
1641 	if (!iwm_nic_lock(sc))
1642 		return EBUSY;
1643 
1644 	/* Set physical address of TX scheduler rings (1KB aligned). */
1645 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1646 
1647 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1648 
1649 	iwm_nic_unlock(sc);
1650 
1651 	/* enable command channel */
1652 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1653 	if (error)
1654 		return error;
1655 
1656 	if (!iwm_nic_lock(sc))
1657 		return EBUSY;
1658 
1659 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1660 
1661 	/* Enable DMA channels. */
1662 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1663 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1664 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1665 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1666 	}
1667 
1668 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1669 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1670 
1671 	iwm_nic_unlock(sc);
1672 
1673 	/* Enable L1-Active */
1674 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
1675 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1676 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1677 	}
1678 
1679 	return error;
1680 }
1681 
1682 /*
1683  * NVM read access and content parsing.  We do not support
1684  * external NVM or writing NVM.
1685  * iwlwifi/mvm/nvm.c
1686  */
1687 
1688 /* Default NVM size to read */
1689 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1690 
1691 #define IWM_NVM_WRITE_OPCODE 1
1692 #define IWM_NVM_READ_OPCODE 0
1693 
1694 /* load nvm chunk response */
1695 enum {
1696 	IWM_READ_NVM_CHUNK_SUCCEED = 0,
1697 	IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
1698 };
1699 
1700 static int
1701 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1702 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1703 {
1704 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1705 		.offset = htole16(offset),
1706 		.length = htole16(length),
1707 		.type = htole16(section),
1708 		.op_code = IWM_NVM_READ_OPCODE,
1709 	};
1710 	struct iwm_nvm_access_resp *nvm_resp;
1711 	struct iwm_rx_packet *pkt;
1712 	struct iwm_host_cmd cmd = {
1713 		.id = IWM_NVM_ACCESS_CMD,
1714 		.flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL,
1715 		.data = { &nvm_access_cmd, },
1716 	};
1717 	int ret, bytes_read, offset_read;
1718 	uint8_t *resp_data;
1719 
1720 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1721 
1722 	ret = iwm_send_cmd(sc, &cmd);
1723 	if (ret) {
1724 		device_printf(sc->sc_dev,
1725 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1726 		return ret;
1727 	}
1728 
1729 	pkt = cmd.resp_pkt;
1730 
1731 	/* Extract NVM response */
1732 	nvm_resp = (void *)pkt->data;
1733 	ret = le16toh(nvm_resp->status);
1734 	bytes_read = le16toh(nvm_resp->length);
1735 	offset_read = le16toh(nvm_resp->offset);
1736 	resp_data = nvm_resp->data;
1737 	if (ret) {
1738 		if ((offset != 0) &&
1739 		    (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
1740 			/*
1741 			 * meaning of NOT_VALID_ADDRESS:
1742 			 * driver try to read chunk from address that is
1743 			 * multiple of 2K and got an error since addr is empty.
1744 			 * meaning of (offset != 0): driver already
1745 			 * read valid data from another chunk so this case
1746 			 * is not an error.
1747 			 */
1748 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1749 				    "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
1750 				    offset);
1751 			*len = 0;
1752 			ret = 0;
1753 		} else {
1754 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1755 				    "NVM access command failed with status %d\n", ret);
1756 			ret = EIO;
1757 		}
1758 		goto exit;
1759 	}
1760 
1761 	if (offset_read != offset) {
1762 		device_printf(sc->sc_dev,
1763 		    "NVM ACCESS response with invalid offset %d\n",
1764 		    offset_read);
1765 		ret = EINVAL;
1766 		goto exit;
1767 	}
1768 
1769 	if (bytes_read > length) {
1770 		device_printf(sc->sc_dev,
1771 		    "NVM ACCESS response with too much data "
1772 		    "(%d bytes requested, %d bytes received)\n",
1773 		    length, bytes_read);
1774 		ret = EINVAL;
1775 		goto exit;
1776 	}
1777 
1778 	/* Write data to NVM */
1779 	memcpy(data + offset, resp_data, bytes_read);
1780 	*len = bytes_read;
1781 
1782  exit:
1783 	iwm_free_resp(sc, &cmd);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Reads an NVM section completely.
1789  * NICs prior to 7000 family don't have a real NVM, but just read
1790  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1791  * by uCode, we need to manually check in this case that we don't
1792  * overflow and try to read more than the EEPROM size.
1793  * For 7000 family NICs, we supply the maximal size we can read, and
1794  * the uCode fills the response with as much data as we can,
1795  * without overflowing, so no check is needed.
1796  */
1797 static int
1798 iwm_nvm_read_section(struct iwm_softc *sc,
1799 	uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read)
1800 {
1801 	uint16_t seglen, length, offset = 0;
1802 	int ret;
1803 
1804 	/* Set nvm section read length */
1805 	length = IWM_NVM_DEFAULT_CHUNK_SIZE;
1806 
1807 	seglen = length;
1808 
1809 	/* Read the NVM until exhausted (reading less than requested) */
1810 	while (seglen == length) {
1811 		/* Check no memory assumptions fail and cause an overflow */
1812 		if ((size_read + offset + length) >
1813 		    sc->cfg->eeprom_size) {
1814 			device_printf(sc->sc_dev,
1815 			    "EEPROM size is too small for NVM\n");
1816 			return ENOBUFS;
1817 		}
1818 
1819 		ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen);
1820 		if (ret) {
1821 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1822 				    "Cannot read NVM from section %d offset %d, length %d\n",
1823 				    section, offset, length);
1824 			return ret;
1825 		}
1826 		offset += seglen;
1827 	}
1828 
1829 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1830 		    "NVM section %d read completed\n", section);
1831 	*len = offset;
1832 	return 0;
1833 }
1834 
1835 /*
1836  * BEGIN IWM_NVM_PARSE
1837  */
1838 
1839 /* iwlwifi/iwl-nvm-parse.c */
1840 
1841 /* NVM offsets (in words) definitions */
1842 enum iwm_nvm_offsets {
1843 	/* NVM HW-Section offset (in words) definitions */
1844 	IWM_HW_ADDR = 0x15,
1845 
1846 /* NVM SW-Section offset (in words) definitions */
1847 	IWM_NVM_SW_SECTION = 0x1C0,
1848 	IWM_NVM_VERSION = 0,
1849 	IWM_RADIO_CFG = 1,
1850 	IWM_SKU = 2,
1851 	IWM_N_HW_ADDRS = 3,
1852 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1853 
1854 /* NVM calibration section offset (in words) definitions */
1855 	IWM_NVM_CALIB_SECTION = 0x2B8,
1856 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1857 };
1858 
1859 enum iwm_8000_nvm_offsets {
1860 	/* NVM HW-Section offset (in words) definitions */
1861 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1862 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1863 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1864 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1865 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1866 
1867 	/* NVM SW-Section offset (in words) definitions */
1868 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1869 	IWM_NVM_VERSION_8000 = 0,
1870 	IWM_RADIO_CFG_8000 = 0,
1871 	IWM_SKU_8000 = 2,
1872 	IWM_N_HW_ADDRS_8000 = 3,
1873 
1874 	/* NVM REGULATORY -Section offset (in words) definitions */
1875 	IWM_NVM_CHANNELS_8000 = 0,
1876 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1877 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1878 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1879 
1880 	/* NVM calibration section offset (in words) definitions */
1881 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1882 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1883 };
1884 
1885 /* SKU Capabilities (actual values from NVM definition) */
1886 enum nvm_sku_bits {
1887 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1888 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1889 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1890 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1891 };
1892 
1893 /* radio config bits (actual values from NVM definition) */
1894 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1895 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1896 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1897 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1898 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1899 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1900 
1901 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1902 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1903 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1904 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1905 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1906 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1907 
1908 #define DEFAULT_MAX_TX_POWER 16
1909 
1910 /**
1911  * enum iwm_nvm_channel_flags - channel flags in NVM
1912  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1913  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1914  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1915  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1916  * XXX cannot find this (DFS) flag in iwm-nvm-parse.c
1917  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1918  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1919  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1920  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1921  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1922  */
1923 enum iwm_nvm_channel_flags {
1924 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1925 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1926 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1927 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1928 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1929 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1930 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1931 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1932 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1933 };
1934 
1935 /*
1936  * Translate EEPROM flags to net80211.
1937  */
1938 static uint32_t
1939 iwm_eeprom_channel_flags(uint16_t ch_flags)
1940 {
1941 	uint32_t nflags;
1942 
1943 	nflags = 0;
1944 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1945 		nflags |= IEEE80211_CHAN_PASSIVE;
1946 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1947 		nflags |= IEEE80211_CHAN_NOADHOC;
1948 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1949 		nflags |= IEEE80211_CHAN_DFS;
1950 		/* Just in case. */
1951 		nflags |= IEEE80211_CHAN_NOADHOC;
1952 	}
1953 
1954 	return (nflags);
1955 }
1956 
1957 static void
1958 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1959     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1960     const uint8_t bands[])
1961 {
1962 	const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags;
1963 	uint32_t nflags;
1964 	uint16_t ch_flags;
1965 	uint8_t ieee;
1966 	int error;
1967 
1968 	for (; ch_idx < ch_num; ch_idx++) {
1969 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1970 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1971 			ieee = iwm_nvm_channels[ch_idx];
1972 		else
1973 			ieee = iwm_nvm_channels_8000[ch_idx];
1974 
1975 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1976 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1977 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1978 			    ieee, ch_flags,
1979 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1980 			    "5.2" : "2.4");
1981 			continue;
1982 		}
1983 
1984 		nflags = iwm_eeprom_channel_flags(ch_flags);
1985 		error = ieee80211_add_channel(chans, maxchans, nchans,
1986 		    ieee, 0, 0, nflags, bands);
1987 		if (error != 0)
1988 			break;
1989 
1990 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1991 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1992 		    ieee, ch_flags,
1993 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1994 		    "5.2" : "2.4");
1995 	}
1996 }
1997 
1998 static void
1999 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
2000     struct ieee80211_channel chans[])
2001 {
2002 	struct iwm_softc *sc = ic->ic_softc;
2003 	struct iwm_nvm_data *data = sc->nvm_data;
2004 	uint8_t bands[IEEE80211_MODE_BYTES];
2005 	size_t ch_num;
2006 
2007 	memset(bands, 0, sizeof(bands));
2008 	/* 1-13: 11b/g channels. */
2009 	setbit(bands, IEEE80211_MODE_11B);
2010 	setbit(bands, IEEE80211_MODE_11G);
2011 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
2012 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
2013 
2014 	/* 14: 11b channel only. */
2015 	clrbit(bands, IEEE80211_MODE_11G);
2016 	iwm_add_channel_band(sc, chans, maxchans, nchans,
2017 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
2018 
2019 	if (data->sku_cap_band_52GHz_enable) {
2020 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
2021 			ch_num = nitems(iwm_nvm_channels);
2022 		else
2023 			ch_num = nitems(iwm_nvm_channels_8000);
2024 		memset(bands, 0, sizeof(bands));
2025 		setbit(bands, IEEE80211_MODE_11A);
2026 		iwm_add_channel_band(sc, chans, maxchans, nchans,
2027 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
2028 	}
2029 }
2030 
2031 static void
2032 iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
2033 	const uint16_t *mac_override, const uint16_t *nvm_hw)
2034 {
2035 	const uint8_t *hw_addr;
2036 
2037 	if (mac_override) {
2038 		static const uint8_t reserved_mac[] = {
2039 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
2040 		};
2041 
2042 		hw_addr = (const uint8_t *)(mac_override +
2043 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2044 
2045 		/*
2046 		 * Store the MAC address from MAO section.
2047 		 * No byte swapping is required in MAO section
2048 		 */
2049 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2050 
2051 		/*
2052 		 * Force the use of the OTP MAC address in case of reserved MAC
2053 		 * address in the NVM, or if address is given but invalid.
2054 		 */
2055 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2056 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2057 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2058 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2059 			return;
2060 
2061 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2062 		    "%s: mac address from nvm override section invalid\n",
2063 		    __func__);
2064 	}
2065 
2066 	if (nvm_hw) {
2067 		/* read the mac address from WFMP registers */
2068 		uint32_t mac_addr0 =
2069 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2070 		uint32_t mac_addr1 =
2071 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2072 
2073 		hw_addr = (const uint8_t *)&mac_addr0;
2074 		data->hw_addr[0] = hw_addr[3];
2075 		data->hw_addr[1] = hw_addr[2];
2076 		data->hw_addr[2] = hw_addr[1];
2077 		data->hw_addr[3] = hw_addr[0];
2078 
2079 		hw_addr = (const uint8_t *)&mac_addr1;
2080 		data->hw_addr[4] = hw_addr[1];
2081 		data->hw_addr[5] = hw_addr[0];
2082 
2083 		return;
2084 	}
2085 
2086 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2087 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2088 }
2089 
2090 static int
2091 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2092 	    const uint16_t *phy_sku)
2093 {
2094 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2095 		return le16_to_cpup(nvm_sw + IWM_SKU);
2096 
2097 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2098 }
2099 
2100 static int
2101 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2102 {
2103 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2104 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2105 	else
2106 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2107 						IWM_NVM_VERSION_8000));
2108 }
2109 
2110 static int
2111 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2112 		  const uint16_t *phy_sku)
2113 {
2114         if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2115                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2116 
2117         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2118 }
2119 
2120 static int
2121 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2122 {
2123 	int n_hw_addr;
2124 
2125 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2126 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2127 
2128 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2129 
2130         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2131 }
2132 
2133 static void
2134 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2135 		  uint32_t radio_cfg)
2136 {
2137 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2138 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2139 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2140 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2141 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2142 		return;
2143 	}
2144 
2145 	/* set the radio configuration for family 8000 */
2146 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2147 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2148 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2149 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2150 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2151 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2152 }
2153 
2154 static int
2155 iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data,
2156 		   const uint16_t *nvm_hw, const uint16_t *mac_override)
2157 {
2158 #ifdef notyet /* for FAMILY 9000 */
2159 	if (cfg->mac_addr_from_csr) {
2160 		iwm_set_hw_address_from_csr(sc, data);
2161         } else
2162 #endif
2163 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2164 		const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR);
2165 
2166 		/* The byte order is little endian 16 bit, meaning 214365 */
2167 		data->hw_addr[0] = hw_addr[1];
2168 		data->hw_addr[1] = hw_addr[0];
2169 		data->hw_addr[2] = hw_addr[3];
2170 		data->hw_addr[3] = hw_addr[2];
2171 		data->hw_addr[4] = hw_addr[5];
2172 		data->hw_addr[5] = hw_addr[4];
2173 	} else {
2174 		iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw);
2175 	}
2176 
2177 	if (!iwm_is_valid_ether_addr(data->hw_addr)) {
2178 		device_printf(sc->sc_dev, "no valid mac address was found\n");
2179 		return EINVAL;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static struct iwm_nvm_data *
2186 iwm_parse_nvm_data(struct iwm_softc *sc,
2187 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2188 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2189 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2190 {
2191 	struct iwm_nvm_data *data;
2192 	uint32_t sku, radio_cfg;
2193 
2194 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2195 		data = malloc(sizeof(*data) +
2196 		    IWM_NUM_CHANNELS * sizeof(uint16_t),
2197 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2198 	} else {
2199 		data = malloc(sizeof(*data) +
2200 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t),
2201 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2202 	}
2203 	if (!data)
2204 		return NULL;
2205 
2206 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2207 
2208 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2209 	iwm_set_radio_cfg(sc, data, radio_cfg);
2210 
2211 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2212 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2213 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2214 	data->sku_cap_11n_enable = 0;
2215 
2216 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2217 
2218 	/* If no valid mac address was found - bail out */
2219 	if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) {
2220 		free(data, M_DEVBUF);
2221 		return NULL;
2222 	}
2223 
2224 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2225 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2226 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2227 	} else {
2228 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2229 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2230 	}
2231 
2232 	return data;
2233 }
2234 
2235 static void
2236 iwm_free_nvm_data(struct iwm_nvm_data *data)
2237 {
2238 	if (data != NULL)
2239 		free(data, M_DEVBUF);
2240 }
2241 
2242 static struct iwm_nvm_data *
2243 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2244 {
2245 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2246 
2247 	/* Checking for required sections */
2248 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2249 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2250 		    !sections[sc->cfg->nvm_hw_section_num].data) {
2251 			device_printf(sc->sc_dev,
2252 			    "Can't parse empty OTP/NVM sections\n");
2253 			return NULL;
2254 		}
2255 	} else if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2256 		/* SW and REGULATORY sections are mandatory */
2257 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2258 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2259 			device_printf(sc->sc_dev,
2260 			    "Can't parse empty OTP/NVM sections\n");
2261 			return NULL;
2262 		}
2263 		/* MAC_OVERRIDE or at least HW section must exist */
2264 		if (!sections[sc->cfg->nvm_hw_section_num].data &&
2265 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2266 			device_printf(sc->sc_dev,
2267 			    "Can't parse mac_address, empty sections\n");
2268 			return NULL;
2269 		}
2270 
2271 		/* PHY_SKU section is mandatory in B0 */
2272 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2273 			device_printf(sc->sc_dev,
2274 			    "Can't parse phy_sku in B0, empty sections\n");
2275 			return NULL;
2276 		}
2277 	} else {
2278 		panic("unknown device family %d\n", sc->cfg->device_family);
2279 	}
2280 
2281 	hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data;
2282 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2283 	calib = (const uint16_t *)
2284 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2285 	regulatory = (const uint16_t *)
2286 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2287 	mac_override = (const uint16_t *)
2288 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2289 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2290 
2291 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2292 	    phy_sku, regulatory);
2293 }
2294 
2295 static int
2296 iwm_nvm_init(struct iwm_softc *sc)
2297 {
2298 	struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS];
2299 	int i, ret, section;
2300 	uint32_t size_read = 0;
2301 	uint8_t *nvm_buffer, *temp;
2302 	uint16_t len;
2303 
2304 	memset(nvm_sections, 0, sizeof(nvm_sections));
2305 
2306 	if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS)
2307 		return EINVAL;
2308 
2309 	/* load NVM values from nic */
2310 	/* Read From FW NVM */
2311 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n");
2312 
2313 	nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO);
2314 	if (!nvm_buffer)
2315 		return ENOMEM;
2316 	for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) {
2317 		/* we override the constness for initial read */
2318 		ret = iwm_nvm_read_section(sc, section, nvm_buffer,
2319 					   &len, size_read);
2320 		if (ret)
2321 			continue;
2322 		size_read += len;
2323 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
2324 		if (!temp) {
2325 			ret = ENOMEM;
2326 			break;
2327 		}
2328 		memcpy(temp, nvm_buffer, len);
2329 
2330 		nvm_sections[section].data = temp;
2331 		nvm_sections[section].length = len;
2332 	}
2333 	if (!size_read)
2334 		device_printf(sc->sc_dev, "OTP is blank\n");
2335 	free(nvm_buffer, M_DEVBUF);
2336 
2337 	sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections);
2338 	if (!sc->nvm_data)
2339 		return EINVAL;
2340 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
2341 		    "nvm version = %x\n", sc->nvm_data->nvm_version);
2342 
2343 	for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) {
2344 		if (nvm_sections[i].data != NULL)
2345 			free(nvm_sections[i].data, M_DEVBUF);
2346 	}
2347 
2348 	return 0;
2349 }
2350 
2351 static int
2352 iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num,
2353 	const struct iwm_fw_desc *section)
2354 {
2355 	struct iwm_dma_info *dma = &sc->fw_dma;
2356 	uint8_t *v_addr;
2357 	bus_addr_t p_addr;
2358 	uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len);
2359 	int ret = 0;
2360 
2361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2362 		    "%s: [%d] uCode section being loaded...\n",
2363 		    __func__, section_num);
2364 
2365 	v_addr = dma->vaddr;
2366 	p_addr = dma->paddr;
2367 
2368 	for (offset = 0; offset < section->len; offset += chunk_sz) {
2369 		uint32_t copy_size, dst_addr;
2370 		int extended_addr = FALSE;
2371 
2372 		copy_size = MIN(chunk_sz, section->len - offset);
2373 		dst_addr = section->offset + offset;
2374 
2375 		if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2376 		    dst_addr <= IWM_FW_MEM_EXTENDED_END)
2377 			extended_addr = TRUE;
2378 
2379 		if (extended_addr)
2380 			iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2381 					  IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2382 
2383 		memcpy(v_addr, (const uint8_t *)section->data + offset,
2384 		    copy_size);
2385 		bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2386 		ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr,
2387 						   copy_size);
2388 
2389 		if (extended_addr)
2390 			iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2391 					    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2392 
2393 		if (ret) {
2394 			device_printf(sc->sc_dev,
2395 			    "%s: Could not load the [%d] uCode section\n",
2396 			    __func__, section_num);
2397 			break;
2398 		}
2399 	}
2400 
2401 	return ret;
2402 }
2403 
2404 /*
2405  * ucode
2406  */
2407 static int
2408 iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2409 			     bus_addr_t phy_addr, uint32_t byte_cnt)
2410 {
2411 	int ret;
2412 
2413 	sc->sc_fw_chunk_done = 0;
2414 
2415 	if (!iwm_nic_lock(sc))
2416 		return EBUSY;
2417 
2418 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2419 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2420 
2421 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2422 	    dst_addr);
2423 
2424 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2425 	    phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2426 
2427 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2428 	    (iwm_get_dma_hi_addr(phy_addr)
2429 	     << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2430 
2431 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2432 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2433 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2434 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2435 
2436 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2437 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2438 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2439 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2440 
2441 	iwm_nic_unlock(sc);
2442 
2443 	/* wait up to 5s for this segment to load */
2444 	ret = 0;
2445 	while (!sc->sc_fw_chunk_done) {
2446 		ret = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz);
2447 		if (ret)
2448 			break;
2449 	}
2450 
2451 	if (ret != 0) {
2452 		device_printf(sc->sc_dev,
2453 		    "fw chunk addr 0x%x len %d failed to load\n",
2454 		    dst_addr, byte_cnt);
2455 		return ETIMEDOUT;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int
2462 iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
2463 	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2464 {
2465 	int shift_param;
2466 	int i, ret = 0, sec_num = 0x1;
2467 	uint32_t val, last_read_idx = 0;
2468 
2469 	if (cpu == 1) {
2470 		shift_param = 0;
2471 		*first_ucode_section = 0;
2472 	} else {
2473 		shift_param = 16;
2474 		(*first_ucode_section)++;
2475 	}
2476 
2477 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2478 		last_read_idx = i;
2479 
2480 		/*
2481 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2482 		 * CPU1 to CPU2.
2483 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2484 		 * CPU2 non paged to CPU2 paging sec.
2485 		 */
2486 		if (!image->fw_sect[i].data ||
2487 		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2488 		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2489 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2490 				    "Break since Data not valid or Empty section, sec = %d\n",
2491 				    i);
2492 			break;
2493 		}
2494 		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2495 		if (ret)
2496 			return ret;
2497 
2498 		/* Notify the ucode of the loaded section number and status */
2499 		if (iwm_nic_lock(sc)) {
2500 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2501 			val = val | (sec_num << shift_param);
2502 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2503 			sec_num = (sec_num << 1) | 0x1;
2504 			iwm_nic_unlock(sc);
2505 		}
2506 	}
2507 
2508 	*first_ucode_section = last_read_idx;
2509 
2510 	iwm_enable_interrupts(sc);
2511 
2512 	if (iwm_nic_lock(sc)) {
2513 		if (cpu == 1)
2514 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2515 		else
2516 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2517 		iwm_nic_unlock(sc);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int
2524 iwm_pcie_load_cpu_sections(struct iwm_softc *sc,
2525 	const struct iwm_fw_sects *image, int cpu, int *first_ucode_section)
2526 {
2527 	int shift_param;
2528 	int i, ret = 0;
2529 	uint32_t last_read_idx = 0;
2530 
2531 	if (cpu == 1) {
2532 		shift_param = 0;
2533 		*first_ucode_section = 0;
2534 	} else {
2535 		shift_param = 16;
2536 		(*first_ucode_section)++;
2537 	}
2538 
2539 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2540 		last_read_idx = i;
2541 
2542 		/*
2543 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2544 		 * CPU1 to CPU2.
2545 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2546 		 * CPU2 non paged to CPU2 paging sec.
2547 		 */
2548 		if (!image->fw_sect[i].data ||
2549 		    image->fw_sect[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2550 		    image->fw_sect[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2551 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2552 				    "Break since Data not valid or Empty section, sec = %d\n",
2553 				     i);
2554 			break;
2555 		}
2556 
2557 		ret = iwm_pcie_load_section(sc, i, &image->fw_sect[i]);
2558 		if (ret)
2559 			return ret;
2560 	}
2561 
2562 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2563 		iwm_set_bits_prph(sc,
2564 				  IWM_CSR_UCODE_LOAD_STATUS_ADDR,
2565 				  (IWM_LMPM_CPU_UCODE_LOADING_COMPLETED |
2566 				   IWM_LMPM_CPU_HDRS_LOADING_COMPLETED |
2567 				   IWM_LMPM_CPU_UCODE_LOADING_STARTED) <<
2568 					shift_param);
2569 
2570 	*first_ucode_section = last_read_idx;
2571 
2572 	return 0;
2573 
2574 }
2575 
2576 static int
2577 iwm_pcie_load_given_ucode(struct iwm_softc *sc,
2578 	const struct iwm_fw_sects *image)
2579 {
2580 	int ret = 0;
2581 	int first_ucode_section;
2582 
2583 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2584 		     image->is_dual_cpus ? "Dual" : "Single");
2585 
2586 	/* load to FW the binary non secured sections of CPU1 */
2587 	ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section);
2588 	if (ret)
2589 		return ret;
2590 
2591 	if (image->is_dual_cpus) {
2592 		/* set CPU2 header address */
2593                 iwm_write_prph(sc,
2594 			       IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
2595 			       IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
2596 
2597 		/* load to FW the binary sections of CPU2 */
2598 		ret = iwm_pcie_load_cpu_sections(sc, image, 2,
2599 						 &first_ucode_section);
2600 		if (ret)
2601 			return ret;
2602 	}
2603 
2604 	iwm_enable_interrupts(sc);
2605 
2606 	/* release CPU reset */
2607 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2608 
2609 	return 0;
2610 }
2611 
2612 int
2613 iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc,
2614 	const struct iwm_fw_sects *image)
2615 {
2616 	int ret = 0;
2617 	int first_ucode_section;
2618 
2619 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2620 		    image->is_dual_cpus ? "Dual" : "Single");
2621 
2622 	/* configure the ucode to be ready to get the secured image */
2623 	/* release CPU reset */
2624 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2625 
2626 	/* load to FW the binary Secured sections of CPU1 */
2627 	ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1,
2628 	    &first_ucode_section);
2629 	if (ret)
2630 		return ret;
2631 
2632 	/* load to FW the binary sections of CPU2 */
2633 	return iwm_pcie_load_cpu_sections_8000(sc, image, 2,
2634 	    &first_ucode_section);
2635 }
2636 
2637 /* XXX Get rid of this definition */
2638 static inline void
2639 iwm_enable_fw_load_int(struct iwm_softc *sc)
2640 {
2641 	IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n");
2642 	sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
2643 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
2644 }
2645 
2646 /* XXX Add proper rfkill support code */
2647 static int
2648 iwm_start_fw(struct iwm_softc *sc,
2649 	const struct iwm_fw_sects *fw)
2650 {
2651 	int ret;
2652 
2653 	/* This may fail if AMT took ownership of the device */
2654 	if (iwm_prepare_card_hw(sc)) {
2655 		device_printf(sc->sc_dev,
2656 		    "%s: Exit HW not ready\n", __func__);
2657 		ret = EIO;
2658 		goto out;
2659 	}
2660 
2661 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2662 
2663 	iwm_disable_interrupts(sc);
2664 
2665 	/* make sure rfkill handshake bits are cleared */
2666 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2667 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2668 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2669 
2670 	/* clear (again), then enable host interrupts */
2671 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2672 
2673 	ret = iwm_nic_init(sc);
2674 	if (ret) {
2675 		device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__);
2676 		goto out;
2677 	}
2678 
2679 	/*
2680 	 * Now, we load the firmware and don't want to be interrupted, even
2681 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
2682 	 * FH_TX interrupt which is needed to load the firmware). If the
2683 	 * RF-Kill switch is toggled, we will find out after having loaded
2684 	 * the firmware and return the proper value to the caller.
2685 	 */
2686 	iwm_enable_fw_load_int(sc);
2687 
2688 	/* really make sure rfkill handshake bits are cleared */
2689 	/* maybe we should write a few times more?  just to make sure */
2690 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2691 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2692 
2693 	/* Load the given image to the HW */
2694 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2695 		ret = iwm_pcie_load_given_ucode_8000(sc, fw);
2696 	else
2697 		ret = iwm_pcie_load_given_ucode(sc, fw);
2698 
2699 	/* XXX re-check RF-Kill state */
2700 
2701 out:
2702 	return ret;
2703 }
2704 
2705 static int
2706 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2707 {
2708 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2709 		.valid = htole32(valid_tx_ant),
2710 	};
2711 
2712 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2713 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2714 }
2715 
2716 /* iwlwifi: mvm/fw.c */
2717 static int
2718 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2719 {
2720 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2721 	enum iwm_ucode_type ucode_type = sc->cur_ucode;
2722 
2723 	/* Set parameters */
2724 	phy_cfg_cmd.phy_cfg = htole32(iwm_mvm_get_phy_config(sc));
2725 	phy_cfg_cmd.calib_control.event_trigger =
2726 	    sc->sc_default_calib[ucode_type].event_trigger;
2727 	phy_cfg_cmd.calib_control.flow_trigger =
2728 	    sc->sc_default_calib[ucode_type].flow_trigger;
2729 
2730 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2731 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2732 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2733 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2734 }
2735 
2736 static int
2737 iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data)
2738 {
2739 	struct iwm_mvm_alive_data *alive_data = data;
2740 	struct iwm_mvm_alive_resp_ver1 *palive1;
2741 	struct iwm_mvm_alive_resp_ver2 *palive2;
2742 	struct iwm_mvm_alive_resp *palive;
2743 
2744 	if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive1)) {
2745 		palive1 = (void *)pkt->data;
2746 
2747 		sc->support_umac_log = FALSE;
2748                 sc->error_event_table =
2749                         le32toh(palive1->error_event_table_ptr);
2750                 sc->log_event_table =
2751                         le32toh(palive1->log_event_table_ptr);
2752                 alive_data->scd_base_addr = le32toh(palive1->scd_base_ptr);
2753 
2754                 alive_data->valid = le16toh(palive1->status) ==
2755                                     IWM_ALIVE_STATUS_OK;
2756                 IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2757 			    "Alive VER1 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2758 			     le16toh(palive1->status), palive1->ver_type,
2759                              palive1->ver_subtype, palive1->flags);
2760 	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive2)) {
2761 		palive2 = (void *)pkt->data;
2762 		sc->error_event_table =
2763 			le32toh(palive2->error_event_table_ptr);
2764 		sc->log_event_table =
2765 			le32toh(palive2->log_event_table_ptr);
2766 		alive_data->scd_base_addr = le32toh(palive2->scd_base_ptr);
2767 		sc->umac_error_event_table =
2768                         le32toh(palive2->error_info_addr);
2769 
2770 		alive_data->valid = le16toh(palive2->status) ==
2771 				    IWM_ALIVE_STATUS_OK;
2772 		if (sc->umac_error_event_table)
2773 			sc->support_umac_log = TRUE;
2774 
2775 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2776 			    "Alive VER2 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2777 			    le16toh(palive2->status), palive2->ver_type,
2778 			    palive2->ver_subtype, palive2->flags);
2779 
2780 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2781 			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2782 			    palive2->umac_major, palive2->umac_minor);
2783 	} else if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) {
2784 		palive = (void *)pkt->data;
2785 
2786 		sc->error_event_table =
2787 			le32toh(palive->error_event_table_ptr);
2788 		sc->log_event_table =
2789 			le32toh(palive->log_event_table_ptr);
2790 		alive_data->scd_base_addr = le32toh(palive->scd_base_ptr);
2791 		sc->umac_error_event_table =
2792 			le32toh(palive->error_info_addr);
2793 
2794 		alive_data->valid = le16toh(palive->status) ==
2795 				    IWM_ALIVE_STATUS_OK;
2796 		if (sc->umac_error_event_table)
2797 			sc->support_umac_log = TRUE;
2798 
2799 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2800 			    "Alive VER3 ucode status 0x%04x revision 0x%01X 0x%01X flags 0x%01X\n",
2801 			    le16toh(palive->status), palive->ver_type,
2802 			    palive->ver_subtype, palive->flags);
2803 
2804 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2805 			    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2806 			    le32toh(palive->umac_major),
2807 			    le32toh(palive->umac_minor));
2808 	}
2809 
2810 	return TRUE;
2811 }
2812 
2813 static int
2814 iwm_wait_phy_db_entry(struct iwm_softc *sc,
2815 	struct iwm_rx_packet *pkt, void *data)
2816 {
2817 	struct iwm_phy_db *phy_db = data;
2818 
2819 	if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) {
2820 		if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) {
2821 			device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n",
2822 			    __func__, pkt->hdr.code);
2823 		}
2824 		return TRUE;
2825 	}
2826 
2827 	if (iwm_phy_db_set_section(phy_db, pkt)) {
2828 		device_printf(sc->sc_dev,
2829 		    "%s: iwm_phy_db_set_section failed\n", __func__);
2830 	}
2831 
2832 	return FALSE;
2833 }
2834 
2835 static int
2836 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2837 	enum iwm_ucode_type ucode_type)
2838 {
2839 	struct iwm_notification_wait alive_wait;
2840 	struct iwm_mvm_alive_data alive_data;
2841 	const struct iwm_fw_sects *fw;
2842 	enum iwm_ucode_type old_type = sc->cur_ucode;
2843 	int error;
2844 	static const uint16_t alive_cmd[] = { IWM_MVM_ALIVE };
2845 
2846 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2847 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2848 			error);
2849 		return error;
2850 	}
2851 	fw = &sc->sc_fw.fw_sects[ucode_type];
2852 	sc->cur_ucode = ucode_type;
2853 	sc->ucode_loaded = FALSE;
2854 
2855 	memset(&alive_data, 0, sizeof(alive_data));
2856 	iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait,
2857 				   alive_cmd, nitems(alive_cmd),
2858 				   iwm_alive_fn, &alive_data);
2859 
2860 	error = iwm_start_fw(sc, fw);
2861 	if (error) {
2862 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2863 		sc->cur_ucode = old_type;
2864 		iwm_remove_notification(sc->sc_notif_wait, &alive_wait);
2865 		return error;
2866 	}
2867 
2868 	/*
2869 	 * Some things may run in the background now, but we
2870 	 * just wait for the ALIVE notification here.
2871 	 */
2872 	IWM_UNLOCK(sc);
2873 	error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait,
2874 				      IWM_MVM_UCODE_ALIVE_TIMEOUT);
2875 	IWM_LOCK(sc);
2876 	if (error) {
2877 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2878 			device_printf(sc->sc_dev,
2879 			    "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n",
2880 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS),
2881 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2882 		}
2883 		sc->cur_ucode = old_type;
2884 		return error;
2885 	}
2886 
2887 	if (!alive_data.valid) {
2888 		device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n",
2889 		    __func__);
2890 		sc->cur_ucode = old_type;
2891 		return EIO;
2892 	}
2893 
2894 	iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr);
2895 
2896 	/*
2897 	 * configure and operate fw paging mechanism.
2898 	 * driver configures the paging flow only once, CPU2 paging image
2899 	 * included in the IWM_UCODE_INIT image.
2900 	 */
2901 	if (fw->paging_mem_size) {
2902 		error = iwm_save_fw_paging(sc, fw);
2903 		if (error) {
2904 			device_printf(sc->sc_dev,
2905 			    "%s: failed to save the FW paging image\n",
2906 			    __func__);
2907 			return error;
2908 		}
2909 
2910 		error = iwm_send_paging_cmd(sc, fw);
2911 		if (error) {
2912 			device_printf(sc->sc_dev,
2913 			    "%s: failed to send the paging cmd\n", __func__);
2914 			iwm_free_fw_paging(sc);
2915 			return error;
2916 		}
2917 	}
2918 
2919 	if (!error)
2920 		sc->ucode_loaded = TRUE;
2921 	return error;
2922 }
2923 
2924 /*
2925  * mvm misc bits
2926  */
2927 
2928 /*
2929  * follows iwlwifi/fw.c
2930  */
2931 static int
2932 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2933 {
2934 	struct iwm_notification_wait calib_wait;
2935 	static const uint16_t init_complete[] = {
2936 		IWM_INIT_COMPLETE_NOTIF,
2937 		IWM_CALIB_RES_NOTIF_PHY_DB
2938 	};
2939 	int ret;
2940 
2941 	/* do not operate with rfkill switch turned on */
2942 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2943 		device_printf(sc->sc_dev,
2944 		    "radio is disabled by hardware switch\n");
2945 		return EPERM;
2946 	}
2947 
2948 	iwm_init_notification_wait(sc->sc_notif_wait,
2949 				   &calib_wait,
2950 				   init_complete,
2951 				   nitems(init_complete),
2952 				   iwm_wait_phy_db_entry,
2953 				   sc->sc_phy_db);
2954 
2955 	/* Will also start the device */
2956 	ret = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_INIT);
2957 	if (ret) {
2958 		device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n",
2959 		    ret);
2960 		goto error;
2961 	}
2962 
2963 	if (justnvm) {
2964 		/* Read nvm */
2965 		ret = iwm_nvm_init(sc);
2966 		if (ret) {
2967 			device_printf(sc->sc_dev, "failed to read nvm\n");
2968 			goto error;
2969 		}
2970 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr);
2971 		goto error;
2972 	}
2973 
2974 	ret = iwm_send_bt_init_conf(sc);
2975 	if (ret) {
2976 		device_printf(sc->sc_dev,
2977 		    "failed to send bt coex configuration: %d\n", ret);
2978 		goto error;
2979 	}
2980 
2981 	/* Init Smart FIFO. */
2982 	ret = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2983 	if (ret)
2984 		goto error;
2985 
2986 	/* Send TX valid antennas before triggering calibrations */
2987 	ret = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
2988 	if (ret) {
2989 		device_printf(sc->sc_dev,
2990 		    "failed to send antennas before calibration: %d\n", ret);
2991 		goto error;
2992 	}
2993 
2994 	/*
2995 	 * Send phy configurations command to init uCode
2996 	 * to start the 16.0 uCode init image internal calibrations.
2997 	 */
2998 	ret = iwm_send_phy_cfg_cmd(sc);
2999 	if (ret) {
3000 		device_printf(sc->sc_dev,
3001 		    "%s: Failed to run INIT calibrations: %d\n",
3002 		    __func__, ret);
3003 		goto error;
3004 	}
3005 
3006 	/*
3007 	 * Nothing to do but wait for the init complete notification
3008 	 * from the firmware.
3009 	 */
3010 	IWM_UNLOCK(sc);
3011 	ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait,
3012 	    IWM_MVM_UCODE_CALIB_TIMEOUT);
3013 	IWM_LOCK(sc);
3014 
3015 
3016 	goto out;
3017 
3018 error:
3019 	iwm_remove_notification(sc->sc_notif_wait, &calib_wait);
3020 out:
3021 	return ret;
3022 }
3023 
3024 /*
3025  * receive side
3026  */
3027 
3028 /* (re)stock rx ring, called at init-time and at runtime */
3029 static int
3030 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
3031 {
3032 	struct iwm_rx_ring *ring = &sc->rxq;
3033 	struct iwm_rx_data *data = &ring->data[idx];
3034 	struct mbuf *m;
3035 	bus_dmamap_t dmamap = NULL;
3036 	bus_dma_segment_t seg;
3037 	int nsegs, error;
3038 
3039 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
3040 	if (m == NULL)
3041 		return ENOBUFS;
3042 
3043 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3044 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
3045 	    &seg, &nsegs, BUS_DMA_NOWAIT);
3046 	if (error != 0) {
3047 		device_printf(sc->sc_dev,
3048 		    "%s: can't map mbuf, error %d\n", __func__, error);
3049 		goto fail;
3050 	}
3051 
3052 	if (data->m != NULL)
3053 		bus_dmamap_unload(ring->data_dmat, data->map);
3054 
3055 	/* Swap ring->spare_map with data->map */
3056 	dmamap = data->map;
3057 	data->map = ring->spare_map;
3058 	ring->spare_map = dmamap;
3059 
3060 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
3061 	data->m = m;
3062 
3063 	/* Update RX descriptor. */
3064 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
3065 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
3066 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3067 	    BUS_DMASYNC_PREWRITE);
3068 
3069 	return 0;
3070 fail:
3071 	m_freem(m);
3072 	return error;
3073 }
3074 
3075 /* iwlwifi: mvm/rx.c */
3076 /*
3077  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
3078  * values are reported by the fw as positive values - need to negate
3079  * to obtain their dBM.  Account for missing antennas by replacing 0
3080  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
3081  */
3082 static int
3083 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
3084 {
3085 	int energy_a, energy_b, energy_c, max_energy;
3086 	uint32_t val;
3087 
3088 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
3089 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
3090 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
3091 	energy_a = energy_a ? -energy_a : -256;
3092 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
3093 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
3094 	energy_b = energy_b ? -energy_b : -256;
3095 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
3096 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
3097 	energy_c = energy_c ? -energy_c : -256;
3098 	max_energy = MAX(energy_a, energy_b);
3099 	max_energy = MAX(max_energy, energy_c);
3100 
3101 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3102 	    "energy In A %d B %d C %d , and max %d\n",
3103 	    energy_a, energy_b, energy_c, max_energy);
3104 
3105 	return max_energy;
3106 }
3107 
3108 static void
3109 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
3110 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3111 {
3112 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
3113 
3114 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
3115 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3116 
3117 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
3118 }
3119 
3120 /*
3121  * Retrieve the average noise (in dBm) among receivers.
3122  */
3123 static int
3124 iwm_get_noise(struct iwm_softc *sc,
3125     const struct iwm_mvm_statistics_rx_non_phy *stats)
3126 {
3127 	int i, total, nbant, noise;
3128 
3129 	total = nbant = noise = 0;
3130 	for (i = 0; i < 3; i++) {
3131 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
3132 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
3133 		    __func__,
3134 		    i,
3135 		    noise);
3136 
3137 		if (noise) {
3138 			total += noise;
3139 			nbant++;
3140 		}
3141 	}
3142 
3143 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
3144 	    __func__, nbant, total);
3145 #if 0
3146 	/* There should be at least one antenna but check anyway. */
3147 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3148 #else
3149 	/* For now, just hard-code it to -96 to be safe */
3150 	return (-96);
3151 #endif
3152 }
3153 
3154 /*
3155  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
3156  *
3157  * Handles the actual data of the Rx packet from the fw
3158  */
3159 static void
3160 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m)
3161 {
3162 	struct ieee80211com *ic = &sc->sc_ic;
3163 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3164 	struct ieee80211_frame *wh;
3165 	struct ieee80211_node *ni;
3166 	struct ieee80211_rx_stats rxs;
3167 	struct iwm_rx_phy_info *phy_info;
3168 	struct iwm_rx_mpdu_res_start *rx_res;
3169 	struct iwm_rx_packet *pkt = mtod(m, struct iwm_rx_packet *);
3170 	uint32_t len;
3171 	uint32_t rx_pkt_status;
3172 	int rssi;
3173 
3174 	phy_info = &sc->sc_last_phy_info;
3175 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
3176 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
3177 	len = le16toh(rx_res->byte_count);
3178 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
3179 
3180 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
3181 		device_printf(sc->sc_dev,
3182 		    "dsp size out of range [0,20]: %d\n",
3183 		    phy_info->cfg_phy_cnt);
3184 		goto fail;
3185 	}
3186 
3187 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
3188 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
3189 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3190 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
3191 		goto fail;
3192 	}
3193 
3194 	rssi = iwm_mvm_get_signal_strength(sc, phy_info);
3195 
3196 	/* Map it to relative value */
3197 	rssi = rssi - sc->sc_noise;
3198 
3199 	/* replenish ring for the buffer we're going to feed to the sharks */
3200 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
3201 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
3202 		    __func__);
3203 		goto fail;
3204 	}
3205 
3206 	m->m_data = pkt->data + sizeof(*rx_res);
3207 	m->m_pkthdr.len = m->m_len = len;
3208 
3209 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3210 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
3211 
3212 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3213 
3214 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3215 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
3216 	    __func__,
3217 	    le16toh(phy_info->channel),
3218 	    le16toh(phy_info->phy_flags));
3219 
3220 	/*
3221 	 * Populate an RX state struct with the provided information.
3222 	 */
3223 	bzero(&rxs, sizeof(rxs));
3224 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
3225 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
3226 	rxs.c_ieee = le16toh(phy_info->channel);
3227 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
3228 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
3229 	} else {
3230 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
3231 	}
3232 
3233 	/* rssi is in 1/2db units */
3234 	rxs.c_rssi = rssi * 2;
3235 	rxs.c_nf = sc->sc_noise;
3236 	if (ieee80211_add_rx_params(m, &rxs) == 0) {
3237 		if (ni)
3238 			ieee80211_free_node(ni);
3239 		goto fail;
3240 	}
3241 
3242 	if (ieee80211_radiotap_active_vap(vap)) {
3243 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
3244 
3245 		tap->wr_flags = 0;
3246 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
3247 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3248 		tap->wr_chan_freq = htole16(rxs.c_freq);
3249 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
3250 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
3251 		tap->wr_dbm_antsignal = (int8_t)rssi;
3252 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
3253 		tap->wr_tsft = phy_info->system_timestamp;
3254 		switch (phy_info->rate) {
3255 		/* CCK rates. */
3256 		case  10: tap->wr_rate =   2; break;
3257 		case  20: tap->wr_rate =   4; break;
3258 		case  55: tap->wr_rate =  11; break;
3259 		case 110: tap->wr_rate =  22; break;
3260 		/* OFDM rates. */
3261 		case 0xd: tap->wr_rate =  12; break;
3262 		case 0xf: tap->wr_rate =  18; break;
3263 		case 0x5: tap->wr_rate =  24; break;
3264 		case 0x7: tap->wr_rate =  36; break;
3265 		case 0x9: tap->wr_rate =  48; break;
3266 		case 0xb: tap->wr_rate =  72; break;
3267 		case 0x1: tap->wr_rate =  96; break;
3268 		case 0x3: tap->wr_rate = 108; break;
3269 		/* Unknown rate: should not happen. */
3270 		default:  tap->wr_rate =   0;
3271 		}
3272 	}
3273 
3274 	IWM_UNLOCK(sc);
3275 	if (ni != NULL) {
3276 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3277 		ieee80211_input_mimo(ni, m);
3278 		ieee80211_free_node(ni);
3279 	} else {
3280 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3281 		ieee80211_input_mimo_all(ic, m);
3282 	}
3283 	IWM_LOCK(sc);
3284 
3285 	return;
3286 
3287 fail:
3288 	counter_u64_add(ic->ic_ierrors, 1);
3289 }
3290 
3291 static int
3292 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3293 	struct iwm_node *in)
3294 {
3295 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3296 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3297 	struct ieee80211_node *ni = &in->in_ni;
3298 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3299 
3300 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3301 
3302 	/* Update rate control statistics. */
3303 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3304 	    __func__,
3305 	    (int) le16toh(tx_resp->status.status),
3306 	    (int) le16toh(tx_resp->status.sequence),
3307 	    tx_resp->frame_count,
3308 	    tx_resp->bt_kill_count,
3309 	    tx_resp->failure_rts,
3310 	    tx_resp->failure_frame,
3311 	    le32toh(tx_resp->initial_rate),
3312 	    (int) le16toh(tx_resp->wireless_media_time));
3313 
3314 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3315 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3316 	txs->short_retries = tx_resp->failure_rts;
3317 	txs->long_retries = tx_resp->failure_frame;
3318 	if (status != IWM_TX_STATUS_SUCCESS &&
3319 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3320 		switch (status) {
3321 		case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3322 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3323 			break;
3324 		case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3325 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3326 			break;
3327 		case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3328 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3329 			break;
3330 		default:
3331 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3332 			break;
3333 		}
3334 	} else {
3335 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3336 	}
3337 	ieee80211_ratectl_tx_complete(ni, txs);
3338 
3339 	return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3340 }
3341 
3342 static void
3343 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3344 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3345 {
3346 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3347 	int idx = cmd_hdr->idx;
3348 	int qid = cmd_hdr->qid;
3349 	struct iwm_tx_ring *ring = &sc->txq[qid];
3350 	struct iwm_tx_data *txd = &ring->data[idx];
3351 	struct iwm_node *in = txd->in;
3352 	struct mbuf *m = txd->m;
3353 	int status;
3354 
3355 	KASSERT(txd->done == 0, ("txd not done"));
3356 	KASSERT(txd->in != NULL, ("txd without node"));
3357 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3358 
3359 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3360 
3361 	sc->sc_tx_timer = 0;
3362 
3363 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3364 
3365 	/* Unmap and free mbuf. */
3366 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3367 	bus_dmamap_unload(ring->data_dmat, txd->map);
3368 
3369 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3370 	    "free txd %p, in %p\n", txd, txd->in);
3371 	txd->done = 1;
3372 	txd->m = NULL;
3373 	txd->in = NULL;
3374 
3375 	ieee80211_tx_complete(&in->in_ni, m, status);
3376 
3377 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3378 		sc->qfullmsk &= ~(1 << ring->qid);
3379 		if (sc->qfullmsk == 0) {
3380 			iwm_start(sc);
3381 		}
3382 	}
3383 }
3384 
3385 /*
3386  * transmit side
3387  */
3388 
3389 /*
3390  * Process a "command done" firmware notification.  This is where we wakeup
3391  * processes waiting for a synchronous command completion.
3392  * from if_iwn
3393  */
3394 static void
3395 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3396 {
3397 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3398 	struct iwm_tx_data *data;
3399 
3400 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3401 		return;	/* Not a command ack. */
3402 	}
3403 
3404 	/* XXX wide commands? */
3405 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3406 	    "cmd notification type 0x%x qid %d idx %d\n",
3407 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3408 
3409 	data = &ring->data[pkt->hdr.idx];
3410 
3411 	/* If the command was mapped in an mbuf, free it. */
3412 	if (data->m != NULL) {
3413 		bus_dmamap_sync(ring->data_dmat, data->map,
3414 		    BUS_DMASYNC_POSTWRITE);
3415 		bus_dmamap_unload(ring->data_dmat, data->map);
3416 		m_freem(data->m);
3417 		data->m = NULL;
3418 	}
3419 	wakeup(&ring->desc[pkt->hdr.idx]);
3420 
3421 	if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
3422 		device_printf(sc->sc_dev,
3423 		    "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
3424 		    __func__, pkt->hdr.idx, ring->queued, ring->cur);
3425 		/* XXX call iwm_force_nmi() */
3426 	}
3427 
3428 	KASSERT(ring->queued > 0, ("ring->queued is empty?"));
3429 	ring->queued--;
3430 	if (ring->queued == 0)
3431 		iwm_pcie_clear_cmd_in_flight(sc);
3432 }
3433 
3434 #if 0
3435 /*
3436  * necessary only for block ack mode
3437  */
3438 void
3439 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3440 	uint16_t len)
3441 {
3442 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3443 	uint16_t w_val;
3444 
3445 	scd_bc_tbl = sc->sched_dma.vaddr;
3446 
3447 	len += 8; /* magic numbers came naturally from paris */
3448 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3449 		len = roundup(len, 4) / 4;
3450 
3451 	w_val = htole16(sta_id << 12 | len);
3452 
3453 	/* Update TX scheduler. */
3454 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3455 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3456 	    BUS_DMASYNC_PREWRITE);
3457 
3458 	/* I really wonder what this is ?!? */
3459 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3460 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3461 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3462 		    BUS_DMASYNC_PREWRITE);
3463 	}
3464 }
3465 #endif
3466 
3467 /*
3468  * Take an 802.11 (non-n) rate, find the relevant rate
3469  * table entry.  return the index into in_ridx[].
3470  *
3471  * The caller then uses that index back into in_ridx
3472  * to figure out the rate index programmed /into/
3473  * the firmware for this given node.
3474  */
3475 static int
3476 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3477     uint8_t rate)
3478 {
3479 	int i;
3480 	uint8_t r;
3481 
3482 	for (i = 0; i < nitems(in->in_ridx); i++) {
3483 		r = iwm_rates[in->in_ridx[i]].rate;
3484 		if (rate == r)
3485 			return (i);
3486 	}
3487 
3488 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3489 	    "%s: couldn't find an entry for rate=%d\n",
3490 	    __func__,
3491 	    rate);
3492 
3493 	/* XXX Return the first */
3494 	/* XXX TODO: have it return the /lowest/ */
3495 	return (0);
3496 }
3497 
3498 static int
3499 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3500 {
3501 	int i;
3502 
3503 	for (i = 0; i < nitems(iwm_rates); i++) {
3504 		if (iwm_rates[i].rate == rate)
3505 			return (i);
3506 	}
3507 	/* XXX error? */
3508 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3509 	    "%s: couldn't find an entry for rate=%d\n",
3510 	    __func__,
3511 	    rate);
3512 	return (0);
3513 }
3514 
3515 /*
3516  * Fill in the rate related information for a transmit command.
3517  */
3518 static const struct iwm_rate *
3519 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3520 	struct mbuf *m, struct iwm_tx_cmd *tx)
3521 {
3522 	struct ieee80211_node *ni = &in->in_ni;
3523 	struct ieee80211_frame *wh;
3524 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3525 	const struct iwm_rate *rinfo;
3526 	int type;
3527 	int ridx, rate_flags;
3528 
3529 	wh = mtod(m, struct ieee80211_frame *);
3530 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3531 
3532 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3533 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3534 
3535 	if (type == IEEE80211_FC0_TYPE_MGT ||
3536 	    type == IEEE80211_FC0_TYPE_CTL ||
3537 	    (m->m_flags & M_EAPOL) != 0) {
3538 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3539 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3540 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3541 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3542 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3543 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3544 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3545 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3546 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3547 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3548 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3549 	} else {
3550 		int i;
3551 
3552 		/* for data frames, use RS table */
3553 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3554 		/* XXX pass pktlen */
3555 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3556 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3557 		ridx = in->in_ridx[i];
3558 
3559 		/* This is the index into the programmed table */
3560 		tx->initial_rate_index = i;
3561 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3562 
3563 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3564 		    "%s: start with i=%d, txrate %d\n",
3565 		    __func__, i, iwm_rates[ridx].rate);
3566 	}
3567 
3568 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3569 	    "%s: frame type=%d txrate %d\n",
3570 	        __func__, type, iwm_rates[ridx].rate);
3571 
3572 	rinfo = &iwm_rates[ridx];
3573 
3574 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3575 	    __func__, ridx,
3576 	    rinfo->rate,
3577 	    !! (IWM_RIDX_IS_CCK(ridx))
3578 	    );
3579 
3580 	/* XXX TODO: hard-coded TX antenna? */
3581 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3582 	if (IWM_RIDX_IS_CCK(ridx))
3583 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3584 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3585 
3586 	return rinfo;
3587 }
3588 
3589 #define TB0_SIZE 16
3590 static int
3591 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3592 {
3593 	struct ieee80211com *ic = &sc->sc_ic;
3594 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3595 	struct iwm_node *in = IWM_NODE(ni);
3596 	struct iwm_tx_ring *ring;
3597 	struct iwm_tx_data *data;
3598 	struct iwm_tfd *desc;
3599 	struct iwm_device_cmd *cmd;
3600 	struct iwm_tx_cmd *tx;
3601 	struct ieee80211_frame *wh;
3602 	struct ieee80211_key *k = NULL;
3603 	struct mbuf *m1;
3604 	const struct iwm_rate *rinfo;
3605 	uint32_t flags;
3606 	u_int hdrlen;
3607 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3608 	int nsegs;
3609 	uint8_t tid, type;
3610 	int i, totlen, error, pad;
3611 
3612 	wh = mtod(m, struct ieee80211_frame *);
3613 	hdrlen = ieee80211_anyhdrsize(wh);
3614 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3615 	tid = 0;
3616 	ring = &sc->txq[ac];
3617 	desc = &ring->desc[ring->cur];
3618 	memset(desc, 0, sizeof(*desc));
3619 	data = &ring->data[ring->cur];
3620 
3621 	/* Fill out iwm_tx_cmd to send to the firmware */
3622 	cmd = &ring->cmd[ring->cur];
3623 	cmd->hdr.code = IWM_TX_CMD;
3624 	cmd->hdr.flags = 0;
3625 	cmd->hdr.qid = ring->qid;
3626 	cmd->hdr.idx = ring->cur;
3627 
3628 	tx = (void *)cmd->data;
3629 	memset(tx, 0, sizeof(*tx));
3630 
3631 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3632 
3633 	/* Encrypt the frame if need be. */
3634 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3635 		/* Retrieve key for TX && do software encryption. */
3636 		k = ieee80211_crypto_encap(ni, m);
3637 		if (k == NULL) {
3638 			m_freem(m);
3639 			return (ENOBUFS);
3640 		}
3641 		/* 802.11 header may have moved. */
3642 		wh = mtod(m, struct ieee80211_frame *);
3643 	}
3644 
3645 	if (ieee80211_radiotap_active_vap(vap)) {
3646 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3647 
3648 		tap->wt_flags = 0;
3649 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3650 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3651 		tap->wt_rate = rinfo->rate;
3652 		if (k != NULL)
3653 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3654 		ieee80211_radiotap_tx(vap, m);
3655 	}
3656 
3657 
3658 	totlen = m->m_pkthdr.len;
3659 
3660 	flags = 0;
3661 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3662 		flags |= IWM_TX_CMD_FLG_ACK;
3663 	}
3664 
3665 	if (type == IEEE80211_FC0_TYPE_DATA
3666 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3667 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3668 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3669 	}
3670 
3671 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3672 	    type != IEEE80211_FC0_TYPE_DATA)
3673 		tx->sta_id = sc->sc_aux_sta.sta_id;
3674 	else
3675 		tx->sta_id = IWM_STATION_ID;
3676 
3677 	if (type == IEEE80211_FC0_TYPE_MGT) {
3678 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3679 
3680 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3681 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3682 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3683 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3684 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3685 		} else {
3686 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3687 		}
3688 	} else {
3689 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3690 	}
3691 
3692 	if (hdrlen & 3) {
3693 		/* First segment length must be a multiple of 4. */
3694 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3695 		pad = 4 - (hdrlen & 3);
3696 	} else
3697 		pad = 0;
3698 
3699 	tx->driver_txop = 0;
3700 	tx->next_frame_len = 0;
3701 
3702 	tx->len = htole16(totlen);
3703 	tx->tid_tspec = tid;
3704 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3705 
3706 	/* Set physical address of "scratch area". */
3707 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3708 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3709 
3710 	/* Copy 802.11 header in TX command. */
3711 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3712 
3713 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3714 
3715 	tx->sec_ctl = 0;
3716 	tx->tx_flags |= htole32(flags);
3717 
3718 	/* Trim 802.11 header. */
3719 	m_adj(m, hdrlen);
3720 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3721 	    segs, &nsegs, BUS_DMA_NOWAIT);
3722 	if (error != 0) {
3723 		if (error != EFBIG) {
3724 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3725 			    error);
3726 			m_freem(m);
3727 			return error;
3728 		}
3729 		/* Too many DMA segments, linearize mbuf. */
3730 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3731 		if (m1 == NULL) {
3732 			device_printf(sc->sc_dev,
3733 			    "%s: could not defrag mbuf\n", __func__);
3734 			m_freem(m);
3735 			return (ENOBUFS);
3736 		}
3737 		m = m1;
3738 
3739 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3740 		    segs, &nsegs, BUS_DMA_NOWAIT);
3741 		if (error != 0) {
3742 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3743 			    error);
3744 			m_freem(m);
3745 			return error;
3746 		}
3747 	}
3748 	data->m = m;
3749 	data->in = in;
3750 	data->done = 0;
3751 
3752 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3753 	    "sending txd %p, in %p\n", data, data->in);
3754 	KASSERT(data->in != NULL, ("node is NULL"));
3755 
3756 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3757 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3758 	    ring->qid, ring->cur, totlen, nsegs,
3759 	    le32toh(tx->tx_flags),
3760 	    le32toh(tx->rate_n_flags),
3761 	    tx->initial_rate_index
3762 	    );
3763 
3764 	/* Fill TX descriptor. */
3765 	desc->num_tbs = 2 + nsegs;
3766 
3767 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3768 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3769 	    (TB0_SIZE << 4);
3770 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3771 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3772 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3773 	      + hdrlen + pad - TB0_SIZE) << 4);
3774 
3775 	/* Other DMA segments are for data payload. */
3776 	for (i = 0; i < nsegs; i++) {
3777 		seg = &segs[i];
3778 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3779 		desc->tbs[i+2].hi_n_len = \
3780 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3781 		    | ((seg->ds_len) << 4);
3782 	}
3783 
3784 	bus_dmamap_sync(ring->data_dmat, data->map,
3785 	    BUS_DMASYNC_PREWRITE);
3786 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3787 	    BUS_DMASYNC_PREWRITE);
3788 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3789 	    BUS_DMASYNC_PREWRITE);
3790 
3791 #if 0
3792 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3793 #endif
3794 
3795 	/* Kick TX ring. */
3796 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3797 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3798 
3799 	/* Mark TX ring as full if we reach a certain threshold. */
3800 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3801 		sc->qfullmsk |= 1 << ring->qid;
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static int
3808 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3809     const struct ieee80211_bpf_params *params)
3810 {
3811 	struct ieee80211com *ic = ni->ni_ic;
3812 	struct iwm_softc *sc = ic->ic_softc;
3813 	int error = 0;
3814 
3815 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3816 	    "->%s begin\n", __func__);
3817 
3818 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3819 		m_freem(m);
3820 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3821 		    "<-%s not RUNNING\n", __func__);
3822 		return (ENETDOWN);
3823         }
3824 
3825 	IWM_LOCK(sc);
3826 	/* XXX fix this */
3827         if (params == NULL) {
3828 		error = iwm_tx(sc, m, ni, 0);
3829 	} else {
3830 		error = iwm_tx(sc, m, ni, 0);
3831 	}
3832 	sc->sc_tx_timer = 5;
3833 	IWM_UNLOCK(sc);
3834 
3835         return (error);
3836 }
3837 
3838 /*
3839  * mvm/tx.c
3840  */
3841 
3842 /*
3843  * Note that there are transports that buffer frames before they reach
3844  * the firmware. This means that after flush_tx_path is called, the
3845  * queue might not be empty. The race-free way to handle this is to:
3846  * 1) set the station as draining
3847  * 2) flush the Tx path
3848  * 3) wait for the transport queues to be empty
3849  */
3850 int
3851 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3852 {
3853 	int ret;
3854 	struct iwm_tx_path_flush_cmd flush_cmd = {
3855 		.queues_ctl = htole32(tfd_msk),
3856 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3857 	};
3858 
3859 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3860 	    sizeof(flush_cmd), &flush_cmd);
3861 	if (ret)
3862                 device_printf(sc->sc_dev,
3863 		    "Flushing tx queue failed: %d\n", ret);
3864 	return ret;
3865 }
3866 
3867 /*
3868  * BEGIN mvm/sta.c
3869  */
3870 
3871 static int
3872 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3873 	struct iwm_mvm_add_sta_cmd *cmd, int *status)
3874 {
3875 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3876 	    cmd, status);
3877 }
3878 
3879 /* send station add/update command to firmware */
3880 static int
3881 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3882 {
3883 	struct iwm_mvm_add_sta_cmd add_sta_cmd;
3884 	int ret;
3885 	uint32_t status;
3886 
3887 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3888 
3889 	add_sta_cmd.sta_id = IWM_STATION_ID;
3890 	add_sta_cmd.mac_id_n_color
3891 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3892 	        IWM_DEFAULT_COLOR));
3893 	if (!update) {
3894 		int ac;
3895 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3896 			add_sta_cmd.tfd_queue_msk |=
3897 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3898 		}
3899 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3900 	}
3901 	add_sta_cmd.add_modify = update ? 1 : 0;
3902 	add_sta_cmd.station_flags_msk
3903 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3904 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3905 	if (update)
3906 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3907 
3908 	status = IWM_ADD_STA_SUCCESS;
3909 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3910 	if (ret)
3911 		return ret;
3912 
3913 	switch (status) {
3914 	case IWM_ADD_STA_SUCCESS:
3915 		break;
3916 	default:
3917 		ret = EIO;
3918 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3919 		break;
3920 	}
3921 
3922 	return ret;
3923 }
3924 
3925 static int
3926 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3927 {
3928 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3929 }
3930 
3931 static int
3932 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3933 {
3934 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3935 }
3936 
3937 static int
3938 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3939 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3940 {
3941 	struct iwm_mvm_add_sta_cmd cmd;
3942 	int ret;
3943 	uint32_t status;
3944 
3945 	memset(&cmd, 0, sizeof(cmd));
3946 	cmd.sta_id = sta->sta_id;
3947 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3948 
3949 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3950 	cmd.tid_disable_tx = htole16(0xffff);
3951 
3952 	if (addr)
3953 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3954 
3955 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3956 	if (ret)
3957 		return ret;
3958 
3959 	switch (status) {
3960 	case IWM_ADD_STA_SUCCESS:
3961 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3962 		    "%s: Internal station added.\n", __func__);
3963 		return 0;
3964 	default:
3965 		device_printf(sc->sc_dev,
3966 		    "%s: Add internal station failed, status=0x%x\n",
3967 		    __func__, status);
3968 		ret = EIO;
3969 		break;
3970 	}
3971 	return ret;
3972 }
3973 
3974 static int
3975 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3976 {
3977 	int ret;
3978 
3979 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3980 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3981 
3982 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3983 	if (ret)
3984 		return ret;
3985 
3986 	ret = iwm_mvm_add_int_sta_common(sc,
3987 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3988 
3989 	if (ret)
3990 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3991 	return ret;
3992 }
3993 
3994 /*
3995  * END mvm/sta.c
3996  */
3997 
3998 /*
3999  * BEGIN mvm/quota.c
4000  */
4001 
4002 static int
4003 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
4004 {
4005 	struct iwm_time_quota_cmd cmd;
4006 	int i, idx, ret, num_active_macs, quota, quota_rem;
4007 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
4008 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
4009 	uint16_t id;
4010 
4011 	memset(&cmd, 0, sizeof(cmd));
4012 
4013 	/* currently, PHY ID == binding ID */
4014 	if (in) {
4015 		id = in->in_phyctxt->id;
4016 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
4017 		colors[id] = in->in_phyctxt->color;
4018 
4019 		if (1)
4020 			n_ifs[id] = 1;
4021 	}
4022 
4023 	/*
4024 	 * The FW's scheduling session consists of
4025 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
4026 	 * equally between all the bindings that require quota
4027 	 */
4028 	num_active_macs = 0;
4029 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
4030 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
4031 		num_active_macs += n_ifs[i];
4032 	}
4033 
4034 	quota = 0;
4035 	quota_rem = 0;
4036 	if (num_active_macs) {
4037 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
4038 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
4039 	}
4040 
4041 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
4042 		if (colors[i] < 0)
4043 			continue;
4044 
4045 		cmd.quotas[idx].id_and_color =
4046 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
4047 
4048 		if (n_ifs[i] <= 0) {
4049 			cmd.quotas[idx].quota = htole32(0);
4050 			cmd.quotas[idx].max_duration = htole32(0);
4051 		} else {
4052 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
4053 			cmd.quotas[idx].max_duration = htole32(0);
4054 		}
4055 		idx++;
4056 	}
4057 
4058 	/* Give the remainder of the session to the first binding */
4059 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
4060 
4061 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
4062 	    sizeof(cmd), &cmd);
4063 	if (ret)
4064 		device_printf(sc->sc_dev,
4065 		    "%s: Failed to send quota: %d\n", __func__, ret);
4066 	return ret;
4067 }
4068 
4069 /*
4070  * END mvm/quota.c
4071  */
4072 
4073 /*
4074  * ieee80211 routines
4075  */
4076 
4077 /*
4078  * Change to AUTH state in 80211 state machine.  Roughly matches what
4079  * Linux does in bss_info_changed().
4080  */
4081 static int
4082 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
4083 {
4084 	struct ieee80211_node *ni;
4085 	struct iwm_node *in;
4086 	struct iwm_vap *iv = IWM_VAP(vap);
4087 	uint32_t duration;
4088 	int error;
4089 
4090 	/*
4091 	 * XXX i have a feeling that the vap node is being
4092 	 * freed from underneath us. Grr.
4093 	 */
4094 	ni = ieee80211_ref_node(vap->iv_bss);
4095 	in = IWM_NODE(ni);
4096 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
4097 	    "%s: called; vap=%p, bss ni=%p\n",
4098 	    __func__,
4099 	    vap,
4100 	    ni);
4101 
4102 	in->in_assoc = 0;
4103 
4104 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
4105 	if (error != 0)
4106 		return error;
4107 
4108 	error = iwm_allow_mcast(vap, sc);
4109 	if (error) {
4110 		device_printf(sc->sc_dev,
4111 		    "%s: failed to set multicast\n", __func__);
4112 		goto out;
4113 	}
4114 
4115 	/*
4116 	 * This is where it deviates from what Linux does.
4117 	 *
4118 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
4119 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
4120 	 * and always does a mac_ctx_changed().
4121 	 *
4122 	 * The openbsd port doesn't attempt to do that - it reset things
4123 	 * at odd states and does the add here.
4124 	 *
4125 	 * So, until the state handling is fixed (ie, we never reset
4126 	 * the NIC except for a firmware failure, which should drag
4127 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
4128 	 * contexts that are required), let's do a dirty hack here.
4129 	 */
4130 	if (iv->is_uploaded) {
4131 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4132 			device_printf(sc->sc_dev,
4133 			    "%s: failed to update MAC\n", __func__);
4134 			goto out;
4135 		}
4136 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4137 		    in->in_ni.ni_chan, 1, 1)) != 0) {
4138 			device_printf(sc->sc_dev,
4139 			    "%s: failed update phy ctxt\n", __func__);
4140 			goto out;
4141 		}
4142 		in->in_phyctxt = &sc->sc_phyctxt[0];
4143 
4144 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
4145 			device_printf(sc->sc_dev,
4146 			    "%s: binding update cmd\n", __func__);
4147 			goto out;
4148 		}
4149 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4150 			device_printf(sc->sc_dev,
4151 			    "%s: failed to update sta\n", __func__);
4152 			goto out;
4153 		}
4154 	} else {
4155 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
4156 			device_printf(sc->sc_dev,
4157 			    "%s: failed to add MAC\n", __func__);
4158 			goto out;
4159 		}
4160 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
4161 		    in->in_ni.ni_chan, 1, 1)) != 0) {
4162 			device_printf(sc->sc_dev,
4163 			    "%s: failed add phy ctxt!\n", __func__);
4164 			error = ETIMEDOUT;
4165 			goto out;
4166 		}
4167 		in->in_phyctxt = &sc->sc_phyctxt[0];
4168 
4169 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
4170 			device_printf(sc->sc_dev,
4171 			    "%s: binding add cmd\n", __func__);
4172 			goto out;
4173 		}
4174 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
4175 			device_printf(sc->sc_dev,
4176 			    "%s: failed to add sta\n", __func__);
4177 			goto out;
4178 		}
4179 	}
4180 
4181 	/*
4182 	 * Prevent the FW from wandering off channel during association
4183 	 * by "protecting" the session with a time event.
4184 	 */
4185 	/* XXX duration is in units of TU, not MS */
4186 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
4187 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
4188 	DELAY(100);
4189 
4190 	error = 0;
4191 out:
4192 	ieee80211_free_node(ni);
4193 	return (error);
4194 }
4195 
4196 static int
4197 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
4198 {
4199 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
4200 	int error;
4201 
4202 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
4203 		device_printf(sc->sc_dev,
4204 		    "%s: failed to update STA\n", __func__);
4205 		return error;
4206 	}
4207 
4208 	in->in_assoc = 1;
4209 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
4210 		device_printf(sc->sc_dev,
4211 		    "%s: failed to update MAC\n", __func__);
4212 		return error;
4213 	}
4214 
4215 	return 0;
4216 }
4217 
4218 static int
4219 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
4220 {
4221 	uint32_t tfd_msk;
4222 
4223 	/*
4224 	 * Ok, so *technically* the proper set of calls for going
4225 	 * from RUN back to SCAN is:
4226 	 *
4227 	 * iwm_mvm_power_mac_disable(sc, in);
4228 	 * iwm_mvm_mac_ctxt_changed(sc, in);
4229 	 * iwm_mvm_rm_sta(sc, in);
4230 	 * iwm_mvm_update_quotas(sc, NULL);
4231 	 * iwm_mvm_mac_ctxt_changed(sc, in);
4232 	 * iwm_mvm_binding_remove_vif(sc, in);
4233 	 * iwm_mvm_mac_ctxt_remove(sc, in);
4234 	 *
4235 	 * However, that freezes the device not matter which permutations
4236 	 * and modifications are attempted.  Obviously, this driver is missing
4237 	 * something since it works in the Linux driver, but figuring out what
4238 	 * is missing is a little more complicated.  Now, since we're going
4239 	 * back to nothing anyway, we'll just do a complete device reset.
4240 	 * Up your's, device!
4241 	 */
4242 	/*
4243 	 * Just using 0xf for the queues mask is fine as long as we only
4244 	 * get here from RUN state.
4245 	 */
4246 	tfd_msk = 0xf;
4247 	mbufq_drain(&sc->sc_snd);
4248 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
4249 	/*
4250 	 * We seem to get away with just synchronously sending the
4251 	 * IWM_TXPATH_FLUSH command.
4252 	 */
4253 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
4254 	iwm_stop_device(sc);
4255 	iwm_init_hw(sc);
4256 	if (in)
4257 		in->in_assoc = 0;
4258 	return 0;
4259 
4260 #if 0
4261 	int error;
4262 
4263 	iwm_mvm_power_mac_disable(sc, in);
4264 
4265 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4266 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4267 		return error;
4268 	}
4269 
4270 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4271 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4272 		return error;
4273 	}
4274 	error = iwm_mvm_rm_sta(sc, in);
4275 	in->in_assoc = 0;
4276 	iwm_mvm_update_quotas(sc, NULL);
4277 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4278 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4279 		return error;
4280 	}
4281 	iwm_mvm_binding_remove_vif(sc, in);
4282 
4283 	iwm_mvm_mac_ctxt_remove(sc, in);
4284 
4285 	return error;
4286 #endif
4287 }
4288 
4289 static struct ieee80211_node *
4290 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4291 {
4292 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4293 	    M_NOWAIT | M_ZERO);
4294 }
4295 
4296 static void
4297 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4298 {
4299 	struct ieee80211_node *ni = &in->in_ni;
4300 	struct iwm_lq_cmd *lq = &in->in_lq;
4301 	int nrates = ni->ni_rates.rs_nrates;
4302 	int i, ridx, tab = 0;
4303 //	int txant = 0;
4304 
4305 	if (nrates > nitems(lq->rs_table)) {
4306 		device_printf(sc->sc_dev,
4307 		    "%s: node supports %d rates, driver handles "
4308 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4309 		return;
4310 	}
4311 	if (nrates == 0) {
4312 		device_printf(sc->sc_dev,
4313 		    "%s: node supports 0 rates, odd!\n", __func__);
4314 		return;
4315 	}
4316 
4317 	/*
4318 	 * XXX .. and most of iwm_node is not initialised explicitly;
4319 	 * it's all just 0x0 passed to the firmware.
4320 	 */
4321 
4322 	/* first figure out which rates we should support */
4323 	/* XXX TODO: this isn't 11n aware /at all/ */
4324 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4325 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4326 	    "%s: nrates=%d\n", __func__, nrates);
4327 
4328 	/*
4329 	 * Loop over nrates and populate in_ridx from the highest
4330 	 * rate to the lowest rate.  Remember, in_ridx[] has
4331 	 * IEEE80211_RATE_MAXSIZE entries!
4332 	 */
4333 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4334 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4335 
4336 		/* Map 802.11 rate to HW rate index. */
4337 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4338 			if (iwm_rates[ridx].rate == rate)
4339 				break;
4340 		if (ridx > IWM_RIDX_MAX) {
4341 			device_printf(sc->sc_dev,
4342 			    "%s: WARNING: device rate for %d not found!\n",
4343 			    __func__, rate);
4344 		} else {
4345 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4346 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4347 			    __func__,
4348 			    i,
4349 			    rate,
4350 			    ridx);
4351 			in->in_ridx[i] = ridx;
4352 		}
4353 	}
4354 
4355 	/* then construct a lq_cmd based on those */
4356 	memset(lq, 0, sizeof(*lq));
4357 	lq->sta_id = IWM_STATION_ID;
4358 
4359 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4360 	if (ni->ni_flags & IEEE80211_NODE_HT)
4361 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4362 
4363 	/*
4364 	 * are these used? (we don't do SISO or MIMO)
4365 	 * need to set them to non-zero, though, or we get an error.
4366 	 */
4367 	lq->single_stream_ant_msk = 1;
4368 	lq->dual_stream_ant_msk = 1;
4369 
4370 	/*
4371 	 * Build the actual rate selection table.
4372 	 * The lowest bits are the rates.  Additionally,
4373 	 * CCK needs bit 9 to be set.  The rest of the bits
4374 	 * we add to the table select the tx antenna
4375 	 * Note that we add the rates in the highest rate first
4376 	 * (opposite of ni_rates).
4377 	 */
4378 	/*
4379 	 * XXX TODO: this should be looping over the min of nrates
4380 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4381 	 */
4382 	for (i = 0; i < nrates; i++) {
4383 		int nextant;
4384 
4385 #if 0
4386 		if (txant == 0)
4387 			txant = iwm_mvm_get_valid_tx_ant(sc);
4388 		nextant = 1<<(ffs(txant)-1);
4389 		txant &= ~nextant;
4390 #else
4391 		nextant = iwm_mvm_get_valid_tx_ant(sc);
4392 #endif
4393 		/*
4394 		 * Map the rate id into a rate index into
4395 		 * our hardware table containing the
4396 		 * configuration to use for this rate.
4397 		 */
4398 		ridx = in->in_ridx[i];
4399 		tab = iwm_rates[ridx].plcp;
4400 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4401 		if (IWM_RIDX_IS_CCK(ridx))
4402 			tab |= IWM_RATE_MCS_CCK_MSK;
4403 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4404 		    "station rate i=%d, rate=%d, hw=%x\n",
4405 		    i, iwm_rates[ridx].rate, tab);
4406 		lq->rs_table[i] = htole32(tab);
4407 	}
4408 	/* then fill the rest with the lowest possible rate */
4409 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4410 		KASSERT(tab != 0, ("invalid tab"));
4411 		lq->rs_table[i] = htole32(tab);
4412 	}
4413 }
4414 
4415 static int
4416 iwm_media_change(struct ifnet *ifp)
4417 {
4418 	struct ieee80211vap *vap = ifp->if_softc;
4419 	struct ieee80211com *ic = vap->iv_ic;
4420 	struct iwm_softc *sc = ic->ic_softc;
4421 	int error;
4422 
4423 	error = ieee80211_media_change(ifp);
4424 	if (error != ENETRESET)
4425 		return error;
4426 
4427 	IWM_LOCK(sc);
4428 	if (ic->ic_nrunning > 0) {
4429 		iwm_stop(sc);
4430 		iwm_init(sc);
4431 	}
4432 	IWM_UNLOCK(sc);
4433 	return error;
4434 }
4435 
4436 
4437 static int
4438 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4439 {
4440 	struct iwm_vap *ivp = IWM_VAP(vap);
4441 	struct ieee80211com *ic = vap->iv_ic;
4442 	struct iwm_softc *sc = ic->ic_softc;
4443 	struct iwm_node *in;
4444 	int error;
4445 
4446 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4447 	    "switching state %s -> %s\n",
4448 	    ieee80211_state_name[vap->iv_state],
4449 	    ieee80211_state_name[nstate]);
4450 	IEEE80211_UNLOCK(ic);
4451 	IWM_LOCK(sc);
4452 
4453 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4454 		iwm_led_blink_stop(sc);
4455 
4456 	/* disable beacon filtering if we're hopping out of RUN */
4457 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4458 		iwm_mvm_disable_beacon_filter(sc);
4459 
4460 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4461 			in->in_assoc = 0;
4462 
4463 		if (nstate == IEEE80211_S_INIT) {
4464 			IWM_UNLOCK(sc);
4465 			IEEE80211_LOCK(ic);
4466 			error = ivp->iv_newstate(vap, nstate, arg);
4467 			IEEE80211_UNLOCK(ic);
4468 			IWM_LOCK(sc);
4469 			iwm_release(sc, NULL);
4470 			IWM_UNLOCK(sc);
4471 			IEEE80211_LOCK(ic);
4472 			return error;
4473 		}
4474 
4475 		/*
4476 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4477 		 * above then the card will be completely reinitialized,
4478 		 * so the driver must do everything necessary to bring the card
4479 		 * from INIT to SCAN.
4480 		 *
4481 		 * Additionally, upon receiving deauth frame from AP,
4482 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4483 		 * state. This will also fail with this driver, so bring the FSM
4484 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4485 		 *
4486 		 * XXX TODO: fix this for FreeBSD!
4487 		 */
4488 		if (nstate == IEEE80211_S_SCAN ||
4489 		    nstate == IEEE80211_S_AUTH ||
4490 		    nstate == IEEE80211_S_ASSOC) {
4491 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4492 			    "Force transition to INIT; MGT=%d\n", arg);
4493 			IWM_UNLOCK(sc);
4494 			IEEE80211_LOCK(ic);
4495 			/* Always pass arg as -1 since we can't Tx right now. */
4496 			/*
4497 			 * XXX arg is just ignored anyway when transitioning
4498 			 *     to IEEE80211_S_INIT.
4499 			 */
4500 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4501 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4502 			    "Going INIT->SCAN\n");
4503 			nstate = IEEE80211_S_SCAN;
4504 			IEEE80211_UNLOCK(ic);
4505 			IWM_LOCK(sc);
4506 		}
4507 	}
4508 
4509 	switch (nstate) {
4510 	case IEEE80211_S_INIT:
4511 		break;
4512 
4513 	case IEEE80211_S_AUTH:
4514 		if ((error = iwm_auth(vap, sc)) != 0) {
4515 			device_printf(sc->sc_dev,
4516 			    "%s: could not move to auth state: %d\n",
4517 			    __func__, error);
4518 			break;
4519 		}
4520 		break;
4521 
4522 	case IEEE80211_S_ASSOC:
4523 		if ((error = iwm_assoc(vap, sc)) != 0) {
4524 			device_printf(sc->sc_dev,
4525 			    "%s: failed to associate: %d\n", __func__,
4526 			    error);
4527 			break;
4528 		}
4529 		break;
4530 
4531 	case IEEE80211_S_RUN:
4532 	{
4533 		struct iwm_host_cmd cmd = {
4534 			.id = IWM_LQ_CMD,
4535 			.len = { sizeof(in->in_lq), },
4536 			.flags = IWM_CMD_SYNC,
4537 		};
4538 
4539 		/* Update the association state, now we have it all */
4540 		/* (eg associd comes in at this point */
4541 		error = iwm_assoc(vap, sc);
4542 		if (error != 0) {
4543 			device_printf(sc->sc_dev,
4544 			    "%s: failed to update association state: %d\n",
4545 			    __func__,
4546 			    error);
4547 			break;
4548 		}
4549 
4550 		in = IWM_NODE(vap->iv_bss);
4551 		iwm_mvm_power_mac_update_mode(sc, in);
4552 		iwm_mvm_enable_beacon_filter(sc, in);
4553 		iwm_mvm_update_quotas(sc, in);
4554 		iwm_setrates(sc, in);
4555 
4556 		cmd.data[0] = &in->in_lq;
4557 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4558 			device_printf(sc->sc_dev,
4559 			    "%s: IWM_LQ_CMD failed\n", __func__);
4560 		}
4561 
4562 		iwm_mvm_led_enable(sc);
4563 		break;
4564 	}
4565 
4566 	default:
4567 		break;
4568 	}
4569 	IWM_UNLOCK(sc);
4570 	IEEE80211_LOCK(ic);
4571 
4572 	return (ivp->iv_newstate(vap, nstate, arg));
4573 }
4574 
4575 void
4576 iwm_endscan_cb(void *arg, int pending)
4577 {
4578 	struct iwm_softc *sc = arg;
4579 	struct ieee80211com *ic = &sc->sc_ic;
4580 
4581 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4582 	    "%s: scan ended\n",
4583 	    __func__);
4584 
4585 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4586 }
4587 
4588 /*
4589  * Aging and idle timeouts for the different possible scenarios
4590  * in default configuration
4591  */
4592 static const uint32_t
4593 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4594 	{
4595 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4596 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4597 	},
4598 	{
4599 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4600 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4601 	},
4602 	{
4603 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4604 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4605 	},
4606 	{
4607 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4608 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4609 	},
4610 	{
4611 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4612 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4613 	},
4614 };
4615 
4616 /*
4617  * Aging and idle timeouts for the different possible scenarios
4618  * in single BSS MAC configuration.
4619  */
4620 static const uint32_t
4621 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4622 	{
4623 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4624 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4625 	},
4626 	{
4627 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4628 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4629 	},
4630 	{
4631 		htole32(IWM_SF_MCAST_AGING_TIMER),
4632 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4633 	},
4634 	{
4635 		htole32(IWM_SF_BA_AGING_TIMER),
4636 		htole32(IWM_SF_BA_IDLE_TIMER)
4637 	},
4638 	{
4639 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4640 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4641 	},
4642 };
4643 
4644 static void
4645 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4646     struct ieee80211_node *ni)
4647 {
4648 	int i, j, watermark;
4649 
4650 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4651 
4652 	/*
4653 	 * If we are in association flow - check antenna configuration
4654 	 * capabilities of the AP station, and choose the watermark accordingly.
4655 	 */
4656 	if (ni) {
4657 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4658 #ifdef notyet
4659 			if (ni->ni_rxmcs[2] != 0)
4660 				watermark = IWM_SF_W_MARK_MIMO3;
4661 			else if (ni->ni_rxmcs[1] != 0)
4662 				watermark = IWM_SF_W_MARK_MIMO2;
4663 			else
4664 #endif
4665 				watermark = IWM_SF_W_MARK_SISO;
4666 		} else {
4667 			watermark = IWM_SF_W_MARK_LEGACY;
4668 		}
4669 	/* default watermark value for unassociated mode. */
4670 	} else {
4671 		watermark = IWM_SF_W_MARK_MIMO2;
4672 	}
4673 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4674 
4675 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4676 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4677 			sf_cmd->long_delay_timeouts[i][j] =
4678 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4679 		}
4680 	}
4681 
4682 	if (ni) {
4683 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4684 		       sizeof(iwm_sf_full_timeout));
4685 	} else {
4686 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4687 		       sizeof(iwm_sf_full_timeout_def));
4688 	}
4689 }
4690 
4691 static int
4692 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4693 {
4694 	struct ieee80211com *ic = &sc->sc_ic;
4695 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4696 	struct iwm_sf_cfg_cmd sf_cmd = {
4697 		.state = htole32(IWM_SF_FULL_ON),
4698 	};
4699 	int ret = 0;
4700 
4701 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4702 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4703 
4704 	switch (new_state) {
4705 	case IWM_SF_UNINIT:
4706 	case IWM_SF_INIT_OFF:
4707 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4708 		break;
4709 	case IWM_SF_FULL_ON:
4710 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4711 		break;
4712 	default:
4713 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4714 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4715 			  new_state);
4716 		return EINVAL;
4717 	}
4718 
4719 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4720 				   sizeof(sf_cmd), &sf_cmd);
4721 	return ret;
4722 }
4723 
4724 static int
4725 iwm_send_bt_init_conf(struct iwm_softc *sc)
4726 {
4727 	struct iwm_bt_coex_cmd bt_cmd;
4728 
4729 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4730 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4731 
4732 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4733 	    &bt_cmd);
4734 }
4735 
4736 static int
4737 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4738 {
4739 	struct iwm_mcc_update_cmd mcc_cmd;
4740 	struct iwm_host_cmd hcmd = {
4741 		.id = IWM_MCC_UPDATE_CMD,
4742 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4743 		.data = { &mcc_cmd },
4744 	};
4745 	int ret;
4746 #ifdef IWM_DEBUG
4747 	struct iwm_rx_packet *pkt;
4748 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4749 	struct iwm_mcc_update_resp *mcc_resp;
4750 	int n_channels;
4751 	uint16_t mcc;
4752 #endif
4753 	int resp_v2 = fw_has_capa(&sc->ucode_capa,
4754 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4755 
4756 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4757 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4758 	if (fw_has_api(&sc->ucode_capa, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4759 	    fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4760 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4761 	else
4762 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4763 
4764 	if (resp_v2)
4765 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4766 	else
4767 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4768 
4769 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4770 	    "send MCC update to FW with '%c%c' src = %d\n",
4771 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4772 
4773 	ret = iwm_send_cmd(sc, &hcmd);
4774 	if (ret)
4775 		return ret;
4776 
4777 #ifdef IWM_DEBUG
4778 	pkt = hcmd.resp_pkt;
4779 
4780 	/* Extract MCC response */
4781 	if (resp_v2) {
4782 		mcc_resp = (void *)pkt->data;
4783 		mcc = mcc_resp->mcc;
4784 		n_channels =  le32toh(mcc_resp->n_channels);
4785 	} else {
4786 		mcc_resp_v1 = (void *)pkt->data;
4787 		mcc = mcc_resp_v1->mcc;
4788 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4789 	}
4790 
4791 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4792 	if (mcc == 0)
4793 		mcc = 0x3030;  /* "00" - world */
4794 
4795 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4796 	    "regulatory domain '%c%c' (%d channels available)\n",
4797 	    mcc >> 8, mcc & 0xff, n_channels);
4798 #endif
4799 	iwm_free_resp(sc, &hcmd);
4800 
4801 	return 0;
4802 }
4803 
4804 static void
4805 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4806 {
4807 	struct iwm_host_cmd cmd = {
4808 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4809 		.len = { sizeof(uint32_t), },
4810 		.data = { &backoff, },
4811 	};
4812 
4813 	if (iwm_send_cmd(sc, &cmd) != 0) {
4814 		device_printf(sc->sc_dev,
4815 		    "failed to change thermal tx backoff\n");
4816 	}
4817 }
4818 
4819 static int
4820 iwm_init_hw(struct iwm_softc *sc)
4821 {
4822 	struct ieee80211com *ic = &sc->sc_ic;
4823 	int error, i, ac;
4824 
4825 	if ((error = iwm_start_hw(sc)) != 0) {
4826 		printf("iwm_start_hw: failed %d\n", error);
4827 		return error;
4828 	}
4829 
4830 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4831 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4832 		return error;
4833 	}
4834 
4835 	/*
4836 	 * should stop and start HW since that INIT
4837 	 * image just loaded
4838 	 */
4839 	iwm_stop_device(sc);
4840 	if ((error = iwm_start_hw(sc)) != 0) {
4841 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4842 		return error;
4843 	}
4844 
4845 	/* omstart, this time with the regular firmware */
4846 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR);
4847 	if (error) {
4848 		device_printf(sc->sc_dev, "could not load firmware\n");
4849 		goto error;
4850 	}
4851 
4852 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4853 		device_printf(sc->sc_dev, "bt init conf failed\n");
4854 		goto error;
4855 	}
4856 
4857 	error = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
4858 	if (error != 0) {
4859 		device_printf(sc->sc_dev, "antenna config failed\n");
4860 		goto error;
4861 	}
4862 
4863 	/* Send phy db control command and then phy db calibration */
4864 	if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0)
4865 		goto error;
4866 
4867 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4868 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4869 		goto error;
4870 	}
4871 
4872 	/* Add auxiliary station for scanning */
4873 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4874 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4875 		goto error;
4876 	}
4877 
4878 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4879 		/*
4880 		 * The channel used here isn't relevant as it's
4881 		 * going to be overwritten in the other flows.
4882 		 * For now use the first channel we have.
4883 		 */
4884 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4885 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4886 			goto error;
4887 	}
4888 
4889 	/* Initialize tx backoffs to the minimum. */
4890 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
4891 		iwm_mvm_tt_tx_backoff(sc, 0);
4892 
4893 	error = iwm_mvm_power_update_device(sc);
4894 	if (error)
4895 		goto error;
4896 
4897 	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4898 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4899 			goto error;
4900 	}
4901 
4902 	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4903 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4904 			goto error;
4905 	}
4906 
4907 	/* Enable Tx queues. */
4908 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4909 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4910 		    iwm_mvm_ac_to_tx_fifo[ac]);
4911 		if (error)
4912 			goto error;
4913 	}
4914 
4915 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4916 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4917 		goto error;
4918 	}
4919 
4920 	return 0;
4921 
4922  error:
4923 	iwm_stop_device(sc);
4924 	return error;
4925 }
4926 
4927 /* Allow multicast from our BSSID. */
4928 static int
4929 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4930 {
4931 	struct ieee80211_node *ni = vap->iv_bss;
4932 	struct iwm_mcast_filter_cmd *cmd;
4933 	size_t size;
4934 	int error;
4935 
4936 	size = roundup(sizeof(*cmd), 4);
4937 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4938 	if (cmd == NULL)
4939 		return ENOMEM;
4940 	cmd->filter_own = 1;
4941 	cmd->port_id = 0;
4942 	cmd->count = 0;
4943 	cmd->pass_all = 1;
4944 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4945 
4946 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4947 	    IWM_CMD_SYNC, size, cmd);
4948 	free(cmd, M_DEVBUF);
4949 
4950 	return (error);
4951 }
4952 
4953 /*
4954  * ifnet interfaces
4955  */
4956 
4957 static void
4958 iwm_init(struct iwm_softc *sc)
4959 {
4960 	int error;
4961 
4962 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4963 		return;
4964 	}
4965 	sc->sc_generation++;
4966 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4967 
4968 	if ((error = iwm_init_hw(sc)) != 0) {
4969 		printf("iwm_init_hw failed %d\n", error);
4970 		iwm_stop(sc);
4971 		return;
4972 	}
4973 
4974 	/*
4975 	 * Ok, firmware loaded and we are jogging
4976 	 */
4977 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4978 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4979 }
4980 
4981 static int
4982 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4983 {
4984 	struct iwm_softc *sc;
4985 	int error;
4986 
4987 	sc = ic->ic_softc;
4988 
4989 	IWM_LOCK(sc);
4990 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4991 		IWM_UNLOCK(sc);
4992 		return (ENXIO);
4993 	}
4994 	error = mbufq_enqueue(&sc->sc_snd, m);
4995 	if (error) {
4996 		IWM_UNLOCK(sc);
4997 		return (error);
4998 	}
4999 	iwm_start(sc);
5000 	IWM_UNLOCK(sc);
5001 	return (0);
5002 }
5003 
5004 /*
5005  * Dequeue packets from sendq and call send.
5006  */
5007 static void
5008 iwm_start(struct iwm_softc *sc)
5009 {
5010 	struct ieee80211_node *ni;
5011 	struct mbuf *m;
5012 	int ac = 0;
5013 
5014 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
5015 	while (sc->qfullmsk == 0 &&
5016 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
5017 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5018 		if (iwm_tx(sc, m, ni, ac) != 0) {
5019 			if_inc_counter(ni->ni_vap->iv_ifp,
5020 			    IFCOUNTER_OERRORS, 1);
5021 			ieee80211_free_node(ni);
5022 			continue;
5023 		}
5024 		sc->sc_tx_timer = 15;
5025 	}
5026 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
5027 }
5028 
5029 static void
5030 iwm_stop(struct iwm_softc *sc)
5031 {
5032 
5033 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
5034 	sc->sc_flags |= IWM_FLAG_STOPPED;
5035 	sc->sc_generation++;
5036 	iwm_led_blink_stop(sc);
5037 	sc->sc_tx_timer = 0;
5038 	iwm_stop_device(sc);
5039 	sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5040 }
5041 
5042 static void
5043 iwm_watchdog(void *arg)
5044 {
5045 	struct iwm_softc *sc = arg;
5046 	struct ieee80211com *ic = &sc->sc_ic;
5047 
5048 	if (sc->sc_tx_timer > 0) {
5049 		if (--sc->sc_tx_timer == 0) {
5050 			device_printf(sc->sc_dev, "device timeout\n");
5051 #ifdef IWM_DEBUG
5052 			iwm_nic_error(sc);
5053 #endif
5054 			ieee80211_restart_all(ic);
5055 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
5056 			return;
5057 		}
5058 	}
5059 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
5060 }
5061 
5062 static void
5063 iwm_parent(struct ieee80211com *ic)
5064 {
5065 	struct iwm_softc *sc = ic->ic_softc;
5066 	int startall = 0;
5067 
5068 	IWM_LOCK(sc);
5069 	if (ic->ic_nrunning > 0) {
5070 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
5071 			iwm_init(sc);
5072 			startall = 1;
5073 		}
5074 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
5075 		iwm_stop(sc);
5076 	IWM_UNLOCK(sc);
5077 	if (startall)
5078 		ieee80211_start_all(ic);
5079 }
5080 
5081 /*
5082  * The interrupt side of things
5083  */
5084 
5085 /*
5086  * error dumping routines are from iwlwifi/mvm/utils.c
5087  */
5088 
5089 /*
5090  * Note: This structure is read from the device with IO accesses,
5091  * and the reading already does the endian conversion. As it is
5092  * read with uint32_t-sized accesses, any members with a different size
5093  * need to be ordered correctly though!
5094  */
5095 struct iwm_error_event_table {
5096 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5097 	uint32_t error_id;		/* type of error */
5098 	uint32_t trm_hw_status0;	/* TRM HW status */
5099 	uint32_t trm_hw_status1;	/* TRM HW status */
5100 	uint32_t blink2;		/* branch link */
5101 	uint32_t ilink1;		/* interrupt link */
5102 	uint32_t ilink2;		/* interrupt link */
5103 	uint32_t data1;		/* error-specific data */
5104 	uint32_t data2;		/* error-specific data */
5105 	uint32_t data3;		/* error-specific data */
5106 	uint32_t bcon_time;		/* beacon timer */
5107 	uint32_t tsf_low;		/* network timestamp function timer */
5108 	uint32_t tsf_hi;		/* network timestamp function timer */
5109 	uint32_t gp1;		/* GP1 timer register */
5110 	uint32_t gp2;		/* GP2 timer register */
5111 	uint32_t fw_rev_type;	/* firmware revision type */
5112 	uint32_t major;		/* uCode version major */
5113 	uint32_t minor;		/* uCode version minor */
5114 	uint32_t hw_ver;		/* HW Silicon version */
5115 	uint32_t brd_ver;		/* HW board version */
5116 	uint32_t log_pc;		/* log program counter */
5117 	uint32_t frame_ptr;		/* frame pointer */
5118 	uint32_t stack_ptr;		/* stack pointer */
5119 	uint32_t hcmd;		/* last host command header */
5120 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
5121 				 * rxtx_flag */
5122 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
5123 				 * host_flag */
5124 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
5125 				 * enc_flag */
5126 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
5127 				 * time_flag */
5128 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
5129 				 * wico interrupt */
5130 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
5131 	uint32_t wait_event;		/* wait event() caller address */
5132 	uint32_t l2p_control;	/* L2pControlField */
5133 	uint32_t l2p_duration;	/* L2pDurationField */
5134 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
5135 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
5136 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
5137 				 * (LMPM_PMG_SEL) */
5138 	uint32_t u_timestamp;	/* indicate when the date and time of the
5139 				 * compilation */
5140 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
5141 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
5142 
5143 /*
5144  * UMAC error struct - relevant starting from family 8000 chip.
5145  * Note: This structure is read from the device with IO accesses,
5146  * and the reading already does the endian conversion. As it is
5147  * read with u32-sized accesses, any members with a different size
5148  * need to be ordered correctly though!
5149  */
5150 struct iwm_umac_error_event_table {
5151 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
5152 	uint32_t error_id;	/* type of error */
5153 	uint32_t blink1;	/* branch link */
5154 	uint32_t blink2;	/* branch link */
5155 	uint32_t ilink1;	/* interrupt link */
5156 	uint32_t ilink2;	/* interrupt link */
5157 	uint32_t data1;		/* error-specific data */
5158 	uint32_t data2;		/* error-specific data */
5159 	uint32_t data3;		/* error-specific data */
5160 	uint32_t umac_major;
5161 	uint32_t umac_minor;
5162 	uint32_t frame_pointer;	/* core register 27*/
5163 	uint32_t stack_pointer;	/* core register 28 */
5164 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
5165 	uint32_t nic_isr_pref;	/* ISR status register */
5166 } __packed;
5167 
5168 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
5169 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
5170 
5171 #ifdef IWM_DEBUG
5172 struct {
5173 	const char *name;
5174 	uint8_t num;
5175 } advanced_lookup[] = {
5176 	{ "NMI_INTERRUPT_WDG", 0x34 },
5177 	{ "SYSASSERT", 0x35 },
5178 	{ "UCODE_VERSION_MISMATCH", 0x37 },
5179 	{ "BAD_COMMAND", 0x38 },
5180 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
5181 	{ "FATAL_ERROR", 0x3D },
5182 	{ "NMI_TRM_HW_ERR", 0x46 },
5183 	{ "NMI_INTERRUPT_TRM", 0x4C },
5184 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
5185 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
5186 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
5187 	{ "NMI_INTERRUPT_HOST", 0x66 },
5188 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
5189 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
5190 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
5191 	{ "ADVANCED_SYSASSERT", 0 },
5192 };
5193 
5194 static const char *
5195 iwm_desc_lookup(uint32_t num)
5196 {
5197 	int i;
5198 
5199 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
5200 		if (advanced_lookup[i].num == num)
5201 			return advanced_lookup[i].name;
5202 
5203 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
5204 	return advanced_lookup[i].name;
5205 }
5206 
5207 static void
5208 iwm_nic_umac_error(struct iwm_softc *sc)
5209 {
5210 	struct iwm_umac_error_event_table table;
5211 	uint32_t base;
5212 
5213 	base = sc->umac_error_event_table;
5214 
5215 	if (base < 0x800000) {
5216 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
5217 		    base);
5218 		return;
5219 	}
5220 
5221 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5222 		device_printf(sc->sc_dev, "reading errlog failed\n");
5223 		return;
5224 	}
5225 
5226 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5227 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
5228 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5229 		    sc->sc_flags, table.valid);
5230 	}
5231 
5232 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
5233 		iwm_desc_lookup(table.error_id));
5234 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
5235 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
5236 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
5237 	    table.ilink1);
5238 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
5239 	    table.ilink2);
5240 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
5241 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
5242 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
5243 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
5244 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
5245 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
5246 	    table.frame_pointer);
5247 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
5248 	    table.stack_pointer);
5249 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
5250 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
5251 	    table.nic_isr_pref);
5252 }
5253 
5254 /*
5255  * Support for dumping the error log seemed like a good idea ...
5256  * but it's mostly hex junk and the only sensible thing is the
5257  * hw/ucode revision (which we know anyway).  Since it's here,
5258  * I'll just leave it in, just in case e.g. the Intel guys want to
5259  * help us decipher some "ADVANCED_SYSASSERT" later.
5260  */
5261 static void
5262 iwm_nic_error(struct iwm_softc *sc)
5263 {
5264 	struct iwm_error_event_table table;
5265 	uint32_t base;
5266 
5267 	device_printf(sc->sc_dev, "dumping device error log\n");
5268 	base = sc->error_event_table;
5269 	if (base < 0x800000) {
5270 		device_printf(sc->sc_dev,
5271 		    "Invalid error log pointer 0x%08x\n", base);
5272 		return;
5273 	}
5274 
5275 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5276 		device_printf(sc->sc_dev, "reading errlog failed\n");
5277 		return;
5278 	}
5279 
5280 	if (!table.valid) {
5281 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5282 		return;
5283 	}
5284 
5285 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5286 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5287 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5288 		    sc->sc_flags, table.valid);
5289 	}
5290 
5291 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5292 	    iwm_desc_lookup(table.error_id));
5293 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5294 	    table.trm_hw_status0);
5295 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5296 	    table.trm_hw_status1);
5297 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5298 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5299 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5300 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5301 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5302 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5303 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5304 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5305 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5306 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5307 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5308 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5309 	    table.fw_rev_type);
5310 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5311 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5312 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5313 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5314 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5315 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5316 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5317 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5318 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5319 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5320 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5321 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5322 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5323 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5324 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5325 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5326 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5327 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5328 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5329 
5330 	if (sc->umac_error_event_table)
5331 		iwm_nic_umac_error(sc);
5332 }
5333 #endif
5334 
5335 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5336 
5337 /*
5338  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5339  * Basic structure from if_iwn
5340  */
5341 static void
5342 iwm_notif_intr(struct iwm_softc *sc)
5343 {
5344 	struct ieee80211com *ic = &sc->sc_ic;
5345 	uint16_t hw;
5346 
5347 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5348 	    BUS_DMASYNC_POSTREAD);
5349 
5350 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5351 
5352 	/*
5353 	 * Process responses
5354 	 */
5355 	while (sc->rxq.cur != hw) {
5356 		struct iwm_rx_ring *ring = &sc->rxq;
5357 		struct iwm_rx_data *data = &ring->data[ring->cur];
5358 		struct iwm_rx_packet *pkt;
5359 		struct iwm_cmd_response *cresp;
5360 		int qid, idx, code;
5361 
5362 		bus_dmamap_sync(ring->data_dmat, data->map,
5363 		    BUS_DMASYNC_POSTREAD);
5364 		pkt = mtod(data->m, struct iwm_rx_packet *);
5365 
5366 		qid = pkt->hdr.qid & ~0x80;
5367 		idx = pkt->hdr.idx;
5368 
5369 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5370 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5371 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5372 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, ring->cur, hw);
5373 
5374 		/*
5375 		 * randomly get these from the firmware, no idea why.
5376 		 * they at least seem harmless, so just ignore them for now
5377 		 */
5378 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5379 		    || pkt->len_n_flags == htole32(0x55550000))) {
5380 			ADVANCE_RXQ(sc);
5381 			continue;
5382 		}
5383 
5384 		iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt);
5385 
5386 		switch (code) {
5387 		case IWM_REPLY_RX_PHY_CMD:
5388 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5389 			break;
5390 
5391 		case IWM_REPLY_RX_MPDU_CMD:
5392 			iwm_mvm_rx_rx_mpdu(sc, data->m);
5393 			break;
5394 
5395 		case IWM_TX_CMD:
5396 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5397 			break;
5398 
5399 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5400 			struct iwm_missed_beacons_notif *resp;
5401 			int missed;
5402 
5403 			/* XXX look at mac_id to determine interface ID */
5404 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5405 
5406 			resp = (void *)pkt->data;
5407 			missed = le32toh(resp->consec_missed_beacons);
5408 
5409 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5410 			    "%s: MISSED_BEACON: mac_id=%d, "
5411 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5412 			    "num_rx=%d\n",
5413 			    __func__,
5414 			    le32toh(resp->mac_id),
5415 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5416 			    le32toh(resp->consec_missed_beacons),
5417 			    le32toh(resp->num_expected_beacons),
5418 			    le32toh(resp->num_recvd_beacons));
5419 
5420 			/* Be paranoid */
5421 			if (vap == NULL)
5422 				break;
5423 
5424 			/* XXX no net80211 locking? */
5425 			if (vap->iv_state == IEEE80211_S_RUN &&
5426 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5427 				if (missed > vap->iv_bmissthreshold) {
5428 					/* XXX bad locking; turn into task */
5429 					IWM_UNLOCK(sc);
5430 					ieee80211_beacon_miss(ic);
5431 					IWM_LOCK(sc);
5432 				}
5433 			}
5434 
5435 			break;
5436 		}
5437 
5438 		case IWM_MFUART_LOAD_NOTIFICATION:
5439 			break;
5440 
5441 		case IWM_MVM_ALIVE:
5442 			break;
5443 
5444 		case IWM_CALIB_RES_NOTIF_PHY_DB:
5445 			break;
5446 
5447 		case IWM_STATISTICS_NOTIFICATION: {
5448 			struct iwm_notif_statistics *stats;
5449 			stats = (void *)pkt->data;
5450 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5451 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5452 			break;
5453 		}
5454 
5455 		case IWM_NVM_ACCESS_CMD:
5456 		case IWM_MCC_UPDATE_CMD:
5457 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5458 				memcpy(sc->sc_cmd_resp,
5459 				    pkt, sizeof(sc->sc_cmd_resp));
5460 			}
5461 			break;
5462 
5463 		case IWM_MCC_CHUB_UPDATE_CMD: {
5464 			struct iwm_mcc_chub_notif *notif;
5465 			notif = (void *)pkt->data;
5466 
5467 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5468 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5469 			sc->sc_fw_mcc[2] = '\0';
5470 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5471 			    "fw source %d sent CC '%s'\n",
5472 			    notif->source_id, sc->sc_fw_mcc);
5473 			break;
5474 		}
5475 
5476 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5477 		case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
5478 				 IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
5479 			struct iwm_dts_measurement_notif_v1 *notif;
5480 
5481 			if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) {
5482 				device_printf(sc->sc_dev,
5483 				    "Invalid DTS_MEASUREMENT_NOTIFICATION\n");
5484 				break;
5485 			}
5486 			notif = (void *)pkt->data;
5487 			IWM_DPRINTF(sc, IWM_DEBUG_TEMP,
5488 			    "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n",
5489 			    notif->temp);
5490 			break;
5491 		}
5492 
5493 		case IWM_PHY_CONFIGURATION_CMD:
5494 		case IWM_TX_ANT_CONFIGURATION_CMD:
5495 		case IWM_ADD_STA:
5496 		case IWM_MAC_CONTEXT_CMD:
5497 		case IWM_REPLY_SF_CFG_CMD:
5498 		case IWM_POWER_TABLE_CMD:
5499 		case IWM_PHY_CONTEXT_CMD:
5500 		case IWM_BINDING_CONTEXT_CMD:
5501 		case IWM_TIME_EVENT_CMD:
5502 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5503 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5504 		case IWM_SCAN_ABORT_UMAC:
5505 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5506 		case IWM_SCAN_OFFLOAD_ABORT_CMD:
5507 		case IWM_REPLY_BEACON_FILTERING_CMD:
5508 		case IWM_MAC_PM_POWER_TABLE:
5509 		case IWM_TIME_QUOTA_CMD:
5510 		case IWM_REMOVE_STA:
5511 		case IWM_TXPATH_FLUSH:
5512 		case IWM_LQ_CMD:
5513 		case IWM_FW_PAGING_BLOCK_CMD:
5514 		case IWM_BT_CONFIG:
5515 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5516 			cresp = (void *)pkt->data;
5517 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5518 				memcpy(sc->sc_cmd_resp,
5519 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5520 			}
5521 			break;
5522 
5523 		/* ignore */
5524 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5525 			break;
5526 
5527 		case IWM_INIT_COMPLETE_NOTIF:
5528 			break;
5529 
5530 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5531 			struct iwm_periodic_scan_complete *notif;
5532 			notif = (void *)pkt->data;
5533 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5534 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5535 				ieee80211_runtask(ic, &sc->sc_es_task);
5536 			}
5537 			break;
5538 		}
5539 
5540 		case IWM_SCAN_ITERATION_COMPLETE: {
5541 			struct iwm_lmac_scan_complete_notif *notif;
5542 			notif = (void *)pkt->data;
5543 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5544  			break;
5545 		}
5546 
5547 		case IWM_SCAN_COMPLETE_UMAC: {
5548 			struct iwm_umac_scan_complete *notif;
5549 			notif = (void *)pkt->data;
5550 
5551 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5552 			    "UMAC scan complete, status=0x%x\n",
5553 			    notif->status);
5554 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5555 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5556 				ieee80211_runtask(ic, &sc->sc_es_task);
5557 			}
5558 			break;
5559 		}
5560 
5561 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5562 			struct iwm_umac_scan_iter_complete_notif *notif;
5563 			notif = (void *)pkt->data;
5564 
5565 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5566 			    "complete, status=0x%x, %d channels scanned\n",
5567 			    notif->status, notif->scanned_channels);
5568 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5569 			break;
5570 		}
5571 
5572 		case IWM_REPLY_ERROR: {
5573 			struct iwm_error_resp *resp;
5574 			resp = (void *)pkt->data;
5575 
5576 			device_printf(sc->sc_dev,
5577 			    "firmware error 0x%x, cmd 0x%x\n",
5578 			    le32toh(resp->error_type),
5579 			    resp->cmd_id);
5580 			break;
5581 		}
5582 
5583 		case IWM_TIME_EVENT_NOTIFICATION: {
5584 			struct iwm_time_event_notif *notif;
5585 			notif = (void *)pkt->data;
5586 
5587 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5588 			    "TE notif status = 0x%x action = 0x%x\n",
5589 			    notif->status, notif->action);
5590 			break;
5591 		}
5592 
5593 		case IWM_MCAST_FILTER_CMD:
5594 			break;
5595 
5596 		case IWM_SCD_QUEUE_CFG: {
5597 			struct iwm_scd_txq_cfg_rsp *rsp;
5598 			rsp = (void *)pkt->data;
5599 
5600 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5601 			    "queue cfg token=0x%x sta_id=%d "
5602 			    "tid=%d scd_queue=%d\n",
5603 			    rsp->token, rsp->sta_id, rsp->tid,
5604 			    rsp->scd_queue);
5605 			break;
5606 		}
5607 
5608 		default:
5609 			device_printf(sc->sc_dev,
5610 			    "frame %d/%d %x UNHANDLED (this should "
5611 			    "not happen)\n", qid, idx,
5612 			    pkt->len_n_flags);
5613 			break;
5614 		}
5615 
5616 		/*
5617 		 * Why test bit 0x80?  The Linux driver:
5618 		 *
5619 		 * There is one exception:  uCode sets bit 15 when it
5620 		 * originates the response/notification, i.e. when the
5621 		 * response/notification is not a direct response to a
5622 		 * command sent by the driver.  For example, uCode issues
5623 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5624 		 * it is not a direct response to any driver command.
5625 		 *
5626 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5627 		 * uses a slightly different format for pkt->hdr, and "qid"
5628 		 * is actually the upper byte of a two-byte field.
5629 		 */
5630 		if (!(pkt->hdr.qid & (1 << 7))) {
5631 			iwm_cmd_done(sc, pkt);
5632 		}
5633 
5634 		ADVANCE_RXQ(sc);
5635 	}
5636 
5637 	/*
5638 	 * Tell the firmware what we have processed.
5639 	 * Seems like the hardware gets upset unless we align
5640 	 * the write by 8??
5641 	 */
5642 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5643 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5644 }
5645 
5646 static void
5647 iwm_intr(void *arg)
5648 {
5649 	struct iwm_softc *sc = arg;
5650 	int handled = 0;
5651 	int r1, r2, rv = 0;
5652 	int isperiodic = 0;
5653 
5654 	IWM_LOCK(sc);
5655 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5656 
5657 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5658 		uint32_t *ict = sc->ict_dma.vaddr;
5659 		int tmp;
5660 
5661 		tmp = htole32(ict[sc->ict_cur]);
5662 		if (!tmp)
5663 			goto out_ena;
5664 
5665 		/*
5666 		 * ok, there was something.  keep plowing until we have all.
5667 		 */
5668 		r1 = r2 = 0;
5669 		while (tmp) {
5670 			r1 |= tmp;
5671 			ict[sc->ict_cur] = 0;
5672 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5673 			tmp = htole32(ict[sc->ict_cur]);
5674 		}
5675 
5676 		/* this is where the fun begins.  don't ask */
5677 		if (r1 == 0xffffffff)
5678 			r1 = 0;
5679 
5680 		/* i am not expected to understand this */
5681 		if (r1 & 0xc0000)
5682 			r1 |= 0x8000;
5683 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5684 	} else {
5685 		r1 = IWM_READ(sc, IWM_CSR_INT);
5686 		/* "hardware gone" (where, fishing?) */
5687 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5688 			goto out;
5689 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5690 	}
5691 	if (r1 == 0 && r2 == 0) {
5692 		goto out_ena;
5693 	}
5694 
5695 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5696 
5697 	/* Safely ignore these bits for debug checks below */
5698 	r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD);
5699 
5700 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5701 		int i;
5702 		struct ieee80211com *ic = &sc->sc_ic;
5703 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5704 
5705 #ifdef IWM_DEBUG
5706 		iwm_nic_error(sc);
5707 #endif
5708 		/* Dump driver status (TX and RX rings) while we're here. */
5709 		device_printf(sc->sc_dev, "driver status:\n");
5710 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5711 			struct iwm_tx_ring *ring = &sc->txq[i];
5712 			device_printf(sc->sc_dev,
5713 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5714 			    "queued=%-3d\n",
5715 			    i, ring->qid, ring->cur, ring->queued);
5716 		}
5717 		device_printf(sc->sc_dev,
5718 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5719 		device_printf(sc->sc_dev,
5720 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5721 
5722 		/* Don't stop the device; just do a VAP restart */
5723 		IWM_UNLOCK(sc);
5724 
5725 		if (vap == NULL) {
5726 			printf("%s: null vap\n", __func__);
5727 			return;
5728 		}
5729 
5730 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5731 		    "restarting\n", __func__, vap->iv_state);
5732 
5733 		/* XXX TODO: turn this into a callout/taskqueue */
5734 		ieee80211_restart_all(ic);
5735 		return;
5736 	}
5737 
5738 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5739 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5740 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5741 		iwm_stop(sc);
5742 		rv = 1;
5743 		goto out;
5744 	}
5745 
5746 	/* firmware chunk loaded */
5747 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5748 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5749 		handled |= IWM_CSR_INT_BIT_FH_TX;
5750 		sc->sc_fw_chunk_done = 1;
5751 		wakeup(&sc->sc_fw);
5752 	}
5753 
5754 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5755 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5756 		if (iwm_check_rfkill(sc)) {
5757 			device_printf(sc->sc_dev,
5758 			    "%s: rfkill switch, disabling interface\n",
5759 			    __func__);
5760 			iwm_stop(sc);
5761 		}
5762 	}
5763 
5764 	/*
5765 	 * The Linux driver uses periodic interrupts to avoid races.
5766 	 * We cargo-cult like it's going out of fashion.
5767 	 */
5768 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5769 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5770 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5771 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5772 			IWM_WRITE_1(sc,
5773 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5774 		isperiodic = 1;
5775 	}
5776 
5777 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5778 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5779 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5780 
5781 		iwm_notif_intr(sc);
5782 
5783 		/* enable periodic interrupt, see above */
5784 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5785 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5786 			    IWM_CSR_INT_PERIODIC_ENA);
5787 	}
5788 
5789 	if (__predict_false(r1 & ~handled))
5790 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5791 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5792 	rv = 1;
5793 
5794  out_ena:
5795 	iwm_restore_interrupts(sc);
5796  out:
5797 	IWM_UNLOCK(sc);
5798 	return;
5799 }
5800 
5801 /*
5802  * Autoconf glue-sniffing
5803  */
5804 #define	PCI_VENDOR_INTEL		0x8086
5805 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5806 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5807 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5808 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5809 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5810 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5811 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5812 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5813 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5814 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5815 
5816 static const struct iwm_devices {
5817 	uint16_t		device;
5818 	const struct iwm_cfg	*cfg;
5819 } iwm_devices[] = {
5820 	{ PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg },
5821 	{ PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg },
5822 	{ PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg },
5823 	{ PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg },
5824 	{ PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg },
5825 	{ PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg },
5826 	{ PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg },
5827 	{ PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg },
5828 	{ PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg },
5829 	{ PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg },
5830 };
5831 
5832 static int
5833 iwm_probe(device_t dev)
5834 {
5835 	int i;
5836 
5837 	for (i = 0; i < nitems(iwm_devices); i++) {
5838 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5839 		    pci_get_device(dev) == iwm_devices[i].device) {
5840 			device_set_desc(dev, iwm_devices[i].cfg->name);
5841 			return (BUS_PROBE_DEFAULT);
5842 		}
5843 	}
5844 
5845 	return (ENXIO);
5846 }
5847 
5848 static int
5849 iwm_dev_check(device_t dev)
5850 {
5851 	struct iwm_softc *sc;
5852 	uint16_t devid;
5853 	int i;
5854 
5855 	sc = device_get_softc(dev);
5856 
5857 	devid = pci_get_device(dev);
5858 	for (i = 0; i < nitems(iwm_devices); i++) {
5859 		if (iwm_devices[i].device == devid) {
5860 			sc->cfg = iwm_devices[i].cfg;
5861 			return (0);
5862 		}
5863 	}
5864 	device_printf(dev, "unknown adapter type\n");
5865 	return ENXIO;
5866 }
5867 
5868 /* PCI registers */
5869 #define PCI_CFG_RETRY_TIMEOUT	0x041
5870 
5871 static int
5872 iwm_pci_attach(device_t dev)
5873 {
5874 	struct iwm_softc *sc;
5875 	int count, error, rid;
5876 	uint16_t reg;
5877 
5878 	sc = device_get_softc(dev);
5879 
5880 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
5881 	 * PCI Tx retries from interfering with C3 CPU state */
5882 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
5883 
5884 	/* Enable bus-mastering and hardware bug workaround. */
5885 	pci_enable_busmaster(dev);
5886 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5887 	/* if !MSI */
5888 	if (reg & PCIM_STATUS_INTxSTATE) {
5889 		reg &= ~PCIM_STATUS_INTxSTATE;
5890 	}
5891 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5892 
5893 	rid = PCIR_BAR(0);
5894 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5895 	    RF_ACTIVE);
5896 	if (sc->sc_mem == NULL) {
5897 		device_printf(sc->sc_dev, "can't map mem space\n");
5898 		return (ENXIO);
5899 	}
5900 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5901 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5902 
5903 	/* Install interrupt handler. */
5904 	count = 1;
5905 	rid = 0;
5906 	if (pci_alloc_msi(dev, &count) == 0)
5907 		rid = 1;
5908 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5909 	    (rid != 0 ? 0 : RF_SHAREABLE));
5910 	if (sc->sc_irq == NULL) {
5911 		device_printf(dev, "can't map interrupt\n");
5912 			return (ENXIO);
5913 	}
5914 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5915 	    NULL, iwm_intr, sc, &sc->sc_ih);
5916 	if (sc->sc_ih == NULL) {
5917 		device_printf(dev, "can't establish interrupt");
5918 			return (ENXIO);
5919 	}
5920 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5921 
5922 	return (0);
5923 }
5924 
5925 static void
5926 iwm_pci_detach(device_t dev)
5927 {
5928 	struct iwm_softc *sc = device_get_softc(dev);
5929 
5930 	if (sc->sc_irq != NULL) {
5931 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5932 		bus_release_resource(dev, SYS_RES_IRQ,
5933 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5934 		pci_release_msi(dev);
5935         }
5936 	if (sc->sc_mem != NULL)
5937 		bus_release_resource(dev, SYS_RES_MEMORY,
5938 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5939 }
5940 
5941 
5942 
5943 static int
5944 iwm_attach(device_t dev)
5945 {
5946 	struct iwm_softc *sc = device_get_softc(dev);
5947 	struct ieee80211com *ic = &sc->sc_ic;
5948 	int error;
5949 	int txq_i, i;
5950 
5951 	sc->sc_dev = dev;
5952 	sc->sc_attached = 1;
5953 	IWM_LOCK_INIT(sc);
5954 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5955 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5956 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5957 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5958 
5959 	sc->sc_notif_wait = iwm_notification_wait_init(sc);
5960 	if (sc->sc_notif_wait == NULL) {
5961 		device_printf(dev, "failed to init notification wait struct\n");
5962 		goto fail;
5963 	}
5964 
5965 	/* Init phy db */
5966 	sc->sc_phy_db = iwm_phy_db_init(sc);
5967 	if (!sc->sc_phy_db) {
5968 		device_printf(dev, "Cannot init phy_db\n");
5969 		goto fail;
5970 	}
5971 
5972 	/* PCI attach */
5973 	error = iwm_pci_attach(dev);
5974 	if (error != 0)
5975 		goto fail;
5976 
5977 	sc->sc_wantresp = -1;
5978 
5979 	/* Check device type */
5980 	error = iwm_dev_check(dev);
5981 	if (error != 0)
5982 		goto fail;
5983 
5984 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5985 	/*
5986 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5987 	 * changed, and now the revision step also includes bit 0-1 (no more
5988 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5989 	 * in the old format.
5990 	 */
5991 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
5992 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5993 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5994 
5995 	if (iwm_prepare_card_hw(sc) != 0) {
5996 		device_printf(dev, "could not initialize hardware\n");
5997 		goto fail;
5998 	}
5999 
6000 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
6001 		int ret;
6002 		uint32_t hw_step;
6003 
6004 		/*
6005 		 * In order to recognize C step the driver should read the
6006 		 * chip version id located at the AUX bus MISC address.
6007 		 */
6008 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
6009 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
6010 		DELAY(2);
6011 
6012 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
6013 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
6014 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
6015 				   25000);
6016 		if (!ret) {
6017 			device_printf(sc->sc_dev,
6018 			    "Failed to wake up the nic\n");
6019 			goto fail;
6020 		}
6021 
6022 		if (iwm_nic_lock(sc)) {
6023 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
6024 			hw_step |= IWM_ENABLE_WFPM;
6025 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
6026 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
6027 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
6028 			if (hw_step == 0x3)
6029 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
6030 						(IWM_SILICON_C_STEP << 2);
6031 			iwm_nic_unlock(sc);
6032 		} else {
6033 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
6034 			goto fail;
6035 		}
6036 	}
6037 
6038 	/* special-case 7265D, it has the same PCI IDs. */
6039 	if (sc->cfg == &iwm7265_cfg &&
6040 	    (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) {
6041 		sc->cfg = &iwm7265d_cfg;
6042 	}
6043 
6044 	/* Allocate DMA memory for firmware transfers. */
6045 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
6046 		device_printf(dev, "could not allocate memory for firmware\n");
6047 		goto fail;
6048 	}
6049 
6050 	/* Allocate "Keep Warm" page. */
6051 	if ((error = iwm_alloc_kw(sc)) != 0) {
6052 		device_printf(dev, "could not allocate keep warm page\n");
6053 		goto fail;
6054 	}
6055 
6056 	/* We use ICT interrupts */
6057 	if ((error = iwm_alloc_ict(sc)) != 0) {
6058 		device_printf(dev, "could not allocate ICT table\n");
6059 		goto fail;
6060 	}
6061 
6062 	/* Allocate TX scheduler "rings". */
6063 	if ((error = iwm_alloc_sched(sc)) != 0) {
6064 		device_printf(dev, "could not allocate TX scheduler rings\n");
6065 		goto fail;
6066 	}
6067 
6068 	/* Allocate TX rings */
6069 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
6070 		if ((error = iwm_alloc_tx_ring(sc,
6071 		    &sc->txq[txq_i], txq_i)) != 0) {
6072 			device_printf(dev,
6073 			    "could not allocate TX ring %d\n",
6074 			    txq_i);
6075 			goto fail;
6076 		}
6077 	}
6078 
6079 	/* Allocate RX ring. */
6080 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
6081 		device_printf(dev, "could not allocate RX ring\n");
6082 		goto fail;
6083 	}
6084 
6085 	/* Clear pending interrupts. */
6086 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
6087 
6088 	ic->ic_softc = sc;
6089 	ic->ic_name = device_get_nameunit(sc->sc_dev);
6090 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
6091 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
6092 
6093 	/* Set device capabilities. */
6094 	ic->ic_caps =
6095 	    IEEE80211_C_STA |
6096 	    IEEE80211_C_WPA |		/* WPA/RSN */
6097 	    IEEE80211_C_WME |
6098 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
6099 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
6100 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
6101 	    ;
6102 	/* Advertise full-offload scanning */
6103 	ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD;
6104 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
6105 		sc->sc_phyctxt[i].id = i;
6106 		sc->sc_phyctxt[i].color = 0;
6107 		sc->sc_phyctxt[i].ref = 0;
6108 		sc->sc_phyctxt[i].channel = NULL;
6109 	}
6110 
6111 	/* Default noise floor */
6112 	sc->sc_noise = -96;
6113 
6114 	/* Max RSSI */
6115 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
6116 
6117 	sc->sc_preinit_hook.ich_func = iwm_preinit;
6118 	sc->sc_preinit_hook.ich_arg = sc;
6119 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
6120 		device_printf(dev, "config_intrhook_establish failed\n");
6121 		goto fail;
6122 	}
6123 
6124 #ifdef IWM_DEBUG
6125 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
6126 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
6127 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
6128 #endif
6129 
6130 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6131 	    "<-%s\n", __func__);
6132 
6133 	return 0;
6134 
6135 	/* Free allocated memory if something failed during attachment. */
6136 fail:
6137 	iwm_detach_local(sc, 0);
6138 
6139 	return ENXIO;
6140 }
6141 
6142 static int
6143 iwm_is_valid_ether_addr(uint8_t *addr)
6144 {
6145 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
6146 
6147 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
6148 		return (FALSE);
6149 
6150 	return (TRUE);
6151 }
6152 
6153 static int
6154 iwm_update_edca(struct ieee80211com *ic)
6155 {
6156 	struct iwm_softc *sc = ic->ic_softc;
6157 
6158 	device_printf(sc->sc_dev, "%s: called\n", __func__);
6159 	return (0);
6160 }
6161 
6162 static void
6163 iwm_preinit(void *arg)
6164 {
6165 	struct iwm_softc *sc = arg;
6166 	device_t dev = sc->sc_dev;
6167 	struct ieee80211com *ic = &sc->sc_ic;
6168 	int error;
6169 
6170 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6171 	    "->%s\n", __func__);
6172 
6173 	IWM_LOCK(sc);
6174 	if ((error = iwm_start_hw(sc)) != 0) {
6175 		device_printf(dev, "could not initialize hardware\n");
6176 		IWM_UNLOCK(sc);
6177 		goto fail;
6178 	}
6179 
6180 	error = iwm_run_init_mvm_ucode(sc, 1);
6181 	iwm_stop_device(sc);
6182 	if (error) {
6183 		IWM_UNLOCK(sc);
6184 		goto fail;
6185 	}
6186 	device_printf(dev,
6187 	    "hw rev 0x%x, fw ver %s, address %s\n",
6188 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
6189 	    sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr));
6190 
6191 	/* not all hardware can do 5GHz band */
6192 	if (!sc->nvm_data->sku_cap_band_52GHz_enable)
6193 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
6194 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
6195 	IWM_UNLOCK(sc);
6196 
6197 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
6198 	    ic->ic_channels);
6199 
6200 	/*
6201 	 * At this point we've committed - if we fail to do setup,
6202 	 * we now also have to tear down the net80211 state.
6203 	 */
6204 	ieee80211_ifattach(ic);
6205 	ic->ic_vap_create = iwm_vap_create;
6206 	ic->ic_vap_delete = iwm_vap_delete;
6207 	ic->ic_raw_xmit = iwm_raw_xmit;
6208 	ic->ic_node_alloc = iwm_node_alloc;
6209 	ic->ic_scan_start = iwm_scan_start;
6210 	ic->ic_scan_end = iwm_scan_end;
6211 	ic->ic_update_mcast = iwm_update_mcast;
6212 	ic->ic_getradiocaps = iwm_init_channel_map;
6213 	ic->ic_set_channel = iwm_set_channel;
6214 	ic->ic_scan_curchan = iwm_scan_curchan;
6215 	ic->ic_scan_mindwell = iwm_scan_mindwell;
6216 	ic->ic_wme.wme_update = iwm_update_edca;
6217 	ic->ic_parent = iwm_parent;
6218 	ic->ic_transmit = iwm_transmit;
6219 	iwm_radiotap_attach(sc);
6220 	if (bootverbose)
6221 		ieee80211_announce(ic);
6222 
6223 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6224 	    "<-%s\n", __func__);
6225 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6226 
6227 	return;
6228 fail:
6229 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6230 	iwm_detach_local(sc, 0);
6231 }
6232 
6233 /*
6234  * Attach the interface to 802.11 radiotap.
6235  */
6236 static void
6237 iwm_radiotap_attach(struct iwm_softc *sc)
6238 {
6239         struct ieee80211com *ic = &sc->sc_ic;
6240 
6241 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6242 	    "->%s begin\n", __func__);
6243         ieee80211_radiotap_attach(ic,
6244             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6245                 IWM_TX_RADIOTAP_PRESENT,
6246             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6247                 IWM_RX_RADIOTAP_PRESENT);
6248 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6249 	    "->%s end\n", __func__);
6250 }
6251 
6252 static struct ieee80211vap *
6253 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6254     enum ieee80211_opmode opmode, int flags,
6255     const uint8_t bssid[IEEE80211_ADDR_LEN],
6256     const uint8_t mac[IEEE80211_ADDR_LEN])
6257 {
6258 	struct iwm_vap *ivp;
6259 	struct ieee80211vap *vap;
6260 
6261 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6262 		return NULL;
6263 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6264 	vap = &ivp->iv_vap;
6265 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6266 	vap->iv_bmissthreshold = 10;            /* override default */
6267 	/* Override with driver methods. */
6268 	ivp->iv_newstate = vap->iv_newstate;
6269 	vap->iv_newstate = iwm_newstate;
6270 
6271 	ieee80211_ratectl_init(vap);
6272 	/* Complete setup. */
6273 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6274 	    mac);
6275 	ic->ic_opmode = opmode;
6276 
6277 	return vap;
6278 }
6279 
6280 static void
6281 iwm_vap_delete(struct ieee80211vap *vap)
6282 {
6283 	struct iwm_vap *ivp = IWM_VAP(vap);
6284 
6285 	ieee80211_ratectl_deinit(vap);
6286 	ieee80211_vap_detach(vap);
6287 	free(ivp, M_80211_VAP);
6288 }
6289 
6290 static void
6291 iwm_scan_start(struct ieee80211com *ic)
6292 {
6293 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6294 	struct iwm_softc *sc = ic->ic_softc;
6295 	int error;
6296 
6297 	IWM_LOCK(sc);
6298 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6299 		/* This should not be possible */
6300 		device_printf(sc->sc_dev,
6301 		    "%s: Previous scan not completed yet\n", __func__);
6302 	}
6303 	if (fw_has_capa(&sc->ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6304 		error = iwm_mvm_umac_scan(sc);
6305 	else
6306 		error = iwm_mvm_lmac_scan(sc);
6307 	if (error != 0) {
6308 		device_printf(sc->sc_dev, "could not initiate scan\n");
6309 		IWM_UNLOCK(sc);
6310 		ieee80211_cancel_scan(vap);
6311 	} else {
6312 		sc->sc_flags |= IWM_FLAG_SCAN_RUNNING;
6313 		iwm_led_blink_start(sc);
6314 		IWM_UNLOCK(sc);
6315 	}
6316 }
6317 
6318 static void
6319 iwm_scan_end(struct ieee80211com *ic)
6320 {
6321 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6322 	struct iwm_softc *sc = ic->ic_softc;
6323 
6324 	IWM_LOCK(sc);
6325 	iwm_led_blink_stop(sc);
6326 	if (vap->iv_state == IEEE80211_S_RUN)
6327 		iwm_mvm_led_enable(sc);
6328 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6329 		/*
6330 		 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because
6331 		 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq
6332 		 * taskqueue.
6333 		 */
6334 		sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
6335 		iwm_mvm_scan_stop_wait(sc);
6336 	}
6337 	IWM_UNLOCK(sc);
6338 
6339 	/*
6340 	 * Make sure we don't race, if sc_es_task is still enqueued here.
6341 	 * This is to make sure that it won't call ieee80211_scan_done
6342 	 * when we have already started the next scan.
6343 	 */
6344 	taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL);
6345 }
6346 
6347 static void
6348 iwm_update_mcast(struct ieee80211com *ic)
6349 {
6350 }
6351 
6352 static void
6353 iwm_set_channel(struct ieee80211com *ic)
6354 {
6355 }
6356 
6357 static void
6358 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6359 {
6360 }
6361 
6362 static void
6363 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6364 {
6365 	return;
6366 }
6367 
6368 void
6369 iwm_init_task(void *arg1)
6370 {
6371 	struct iwm_softc *sc = arg1;
6372 
6373 	IWM_LOCK(sc);
6374 	while (sc->sc_flags & IWM_FLAG_BUSY)
6375 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6376 	sc->sc_flags |= IWM_FLAG_BUSY;
6377 	iwm_stop(sc);
6378 	if (sc->sc_ic.ic_nrunning > 0)
6379 		iwm_init(sc);
6380 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6381 	wakeup(&sc->sc_flags);
6382 	IWM_UNLOCK(sc);
6383 }
6384 
6385 static int
6386 iwm_resume(device_t dev)
6387 {
6388 	struct iwm_softc *sc = device_get_softc(dev);
6389 	int do_reinit = 0;
6390 
6391 	/*
6392 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
6393 	 * PCI Tx retries from interfering with C3 CPU state.
6394 	 */
6395 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
6396 	iwm_init_task(device_get_softc(dev));
6397 
6398 	IWM_LOCK(sc);
6399 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6400 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6401 		do_reinit = 1;
6402 	}
6403 	IWM_UNLOCK(sc);
6404 
6405 	if (do_reinit)
6406 		ieee80211_resume_all(&sc->sc_ic);
6407 
6408 	return 0;
6409 }
6410 
6411 static int
6412 iwm_suspend(device_t dev)
6413 {
6414 	int do_stop = 0;
6415 	struct iwm_softc *sc = device_get_softc(dev);
6416 
6417 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6418 
6419 	ieee80211_suspend_all(&sc->sc_ic);
6420 
6421 	if (do_stop) {
6422 		IWM_LOCK(sc);
6423 		iwm_stop(sc);
6424 		sc->sc_flags |= IWM_FLAG_SCANNING;
6425 		IWM_UNLOCK(sc);
6426 	}
6427 
6428 	return (0);
6429 }
6430 
6431 static int
6432 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6433 {
6434 	struct iwm_fw_info *fw = &sc->sc_fw;
6435 	device_t dev = sc->sc_dev;
6436 	int i;
6437 
6438 	if (!sc->sc_attached)
6439 		return 0;
6440 	sc->sc_attached = 0;
6441 
6442 	if (do_net80211)
6443 		ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6444 
6445 	callout_drain(&sc->sc_led_blink_to);
6446 	callout_drain(&sc->sc_watchdog_to);
6447 	iwm_stop_device(sc);
6448 	if (do_net80211) {
6449 		ieee80211_ifdetach(&sc->sc_ic);
6450 	}
6451 
6452 	iwm_phy_db_free(sc->sc_phy_db);
6453 	sc->sc_phy_db = NULL;
6454 
6455 	iwm_free_nvm_data(sc->nvm_data);
6456 
6457 	/* Free descriptor rings */
6458 	iwm_free_rx_ring(sc, &sc->rxq);
6459 	for (i = 0; i < nitems(sc->txq); i++)
6460 		iwm_free_tx_ring(sc, &sc->txq[i]);
6461 
6462 	/* Free firmware */
6463 	if (fw->fw_fp != NULL)
6464 		iwm_fw_info_free(fw);
6465 
6466 	/* Free scheduler */
6467 	iwm_dma_contig_free(&sc->sched_dma);
6468 	iwm_dma_contig_free(&sc->ict_dma);
6469 	iwm_dma_contig_free(&sc->kw_dma);
6470 	iwm_dma_contig_free(&sc->fw_dma);
6471 
6472 	iwm_free_fw_paging(sc);
6473 
6474 	/* Finished with the hardware - detach things */
6475 	iwm_pci_detach(dev);
6476 
6477 	if (sc->sc_notif_wait != NULL) {
6478 		iwm_notification_wait_free(sc->sc_notif_wait);
6479 		sc->sc_notif_wait = NULL;
6480 	}
6481 
6482 	mbufq_drain(&sc->sc_snd);
6483 	IWM_LOCK_DESTROY(sc);
6484 
6485 	return (0);
6486 }
6487 
6488 static int
6489 iwm_detach(device_t dev)
6490 {
6491 	struct iwm_softc *sc = device_get_softc(dev);
6492 
6493 	return (iwm_detach_local(sc, 1));
6494 }
6495 
6496 static device_method_t iwm_pci_methods[] = {
6497         /* Device interface */
6498         DEVMETHOD(device_probe,         iwm_probe),
6499         DEVMETHOD(device_attach,        iwm_attach),
6500         DEVMETHOD(device_detach,        iwm_detach),
6501         DEVMETHOD(device_suspend,       iwm_suspend),
6502         DEVMETHOD(device_resume,        iwm_resume),
6503 
6504         DEVMETHOD_END
6505 };
6506 
6507 static driver_t iwm_pci_driver = {
6508         "iwm",
6509         iwm_pci_methods,
6510         sizeof (struct iwm_softc)
6511 };
6512 
6513 static devclass_t iwm_devclass;
6514 
6515 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6516 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6517 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6518 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6519