1 /* $OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2014 genua mbh <info@genua.de> 5 * Copyright (c) 2014 Fixup Software Ltd. 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Based on BSD-licensed source modules in the Linux iwlwifi driver, 22 * which were used as the reference documentation for this implementation. 23 * 24 * Driver version we are currently based off of is 25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) 26 * 27 *********************************************************************** 28 * 29 * This file is provided under a dual BSD/GPLv2 license. When using or 30 * redistributing this file, you may do so under either license. 31 * 32 * GPL LICENSE SUMMARY 33 * 34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. 35 * 36 * This program is free software; you can redistribute it and/or modify 37 * it under the terms of version 2 of the GNU General Public License as 38 * published by the Free Software Foundation. 39 * 40 * This program is distributed in the hope that it will be useful, but 41 * WITHOUT ANY WARRANTY; without even the implied warranty of 42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 43 * General Public License for more details. 44 * 45 * You should have received a copy of the GNU General Public License 46 * along with this program; if not, write to the Free Software 47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 48 * USA 49 * 50 * The full GNU General Public License is included in this distribution 51 * in the file called COPYING. 52 * 53 * Contact Information: 54 * Intel Linux Wireless <ilw@linux.intel.com> 55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 56 * 57 * 58 * BSD LICENSE 59 * 60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. 61 * All rights reserved. 62 * 63 * Redistribution and use in source and binary forms, with or without 64 * modification, are permitted provided that the following conditions 65 * are met: 66 * 67 * * Redistributions of source code must retain the above copyright 68 * notice, this list of conditions and the following disclaimer. 69 * * Redistributions in binary form must reproduce the above copyright 70 * notice, this list of conditions and the following disclaimer in 71 * the documentation and/or other materials provided with the 72 * distribution. 73 * * Neither the name Intel Corporation nor the names of its 74 * contributors may be used to endorse or promote products derived 75 * from this software without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 88 */ 89 90 /*- 91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 92 * 93 * Permission to use, copy, modify, and distribute this software for any 94 * purpose with or without fee is hereby granted, provided that the above 95 * copyright notice and this permission notice appear in all copies. 96 * 97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 104 */ 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_wlan.h" 109 110 #include <sys/param.h> 111 #include <sys/bus.h> 112 #include <sys/conf.h> 113 #include <sys/endian.h> 114 #include <sys/firmware.h> 115 #include <sys/kernel.h> 116 #include <sys/malloc.h> 117 #include <sys/mbuf.h> 118 #include <sys/mutex.h> 119 #include <sys/module.h> 120 #include <sys/proc.h> 121 #include <sys/rman.h> 122 #include <sys/socket.h> 123 #include <sys/sockio.h> 124 #include <sys/sysctl.h> 125 #include <sys/linker.h> 126 127 #include <machine/bus.h> 128 #include <machine/endian.h> 129 #include <machine/resource.h> 130 131 #include <dev/pci/pcivar.h> 132 #include <dev/pci/pcireg.h> 133 134 #include <net/bpf.h> 135 136 #include <net/if.h> 137 #include <net/if_var.h> 138 #include <net/if_arp.h> 139 #include <net/if_dl.h> 140 #include <net/if_media.h> 141 #include <net/if_types.h> 142 143 #include <netinet/in.h> 144 #include <netinet/in_systm.h> 145 #include <netinet/if_ether.h> 146 #include <netinet/ip.h> 147 148 #include <net80211/ieee80211_var.h> 149 #include <net80211/ieee80211_regdomain.h> 150 #include <net80211/ieee80211_ratectl.h> 151 #include <net80211/ieee80211_radiotap.h> 152 153 #include <dev/iwm/if_iwmreg.h> 154 #include <dev/iwm/if_iwmvar.h> 155 #include <dev/iwm/if_iwm_debug.h> 156 #include <dev/iwm/if_iwm_util.h> 157 #include <dev/iwm/if_iwm_binding.h> 158 #include <dev/iwm/if_iwm_phy_db.h> 159 #include <dev/iwm/if_iwm_mac_ctxt.h> 160 #include <dev/iwm/if_iwm_phy_ctxt.h> 161 #include <dev/iwm/if_iwm_time_event.h> 162 #include <dev/iwm/if_iwm_power.h> 163 #include <dev/iwm/if_iwm_scan.h> 164 165 #include <dev/iwm/if_iwm_pcie_trans.h> 166 #include <dev/iwm/if_iwm_led.h> 167 168 const uint8_t iwm_nvm_channels[] = { 169 /* 2.4 GHz */ 170 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 171 /* 5 GHz */ 172 36, 40, 44, 48, 52, 56, 60, 64, 173 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 174 149, 153, 157, 161, 165 175 }; 176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS, 177 "IWM_NUM_CHANNELS is too small"); 178 179 const uint8_t iwm_nvm_channels_8000[] = { 180 /* 2.4 GHz */ 181 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 182 /* 5 GHz */ 183 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 184 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 185 149, 153, 157, 161, 165, 169, 173, 177, 181 186 }; 187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000, 188 "IWM_NUM_CHANNELS_8000 is too small"); 189 190 #define IWM_NUM_2GHZ_CHANNELS 14 191 #define IWM_N_HW_ADDR_MASK 0xF 192 193 /* 194 * XXX For now, there's simply a fixed set of rate table entries 195 * that are populated. 196 */ 197 const struct iwm_rate { 198 uint8_t rate; 199 uint8_t plcp; 200 } iwm_rates[] = { 201 { 2, IWM_RATE_1M_PLCP }, 202 { 4, IWM_RATE_2M_PLCP }, 203 { 11, IWM_RATE_5M_PLCP }, 204 { 22, IWM_RATE_11M_PLCP }, 205 { 12, IWM_RATE_6M_PLCP }, 206 { 18, IWM_RATE_9M_PLCP }, 207 { 24, IWM_RATE_12M_PLCP }, 208 { 36, IWM_RATE_18M_PLCP }, 209 { 48, IWM_RATE_24M_PLCP }, 210 { 72, IWM_RATE_36M_PLCP }, 211 { 96, IWM_RATE_48M_PLCP }, 212 { 108, IWM_RATE_54M_PLCP }, 213 }; 214 #define IWM_RIDX_CCK 0 215 #define IWM_RIDX_OFDM 4 216 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) 217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) 218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) 219 220 struct iwm_nvm_section { 221 uint16_t length; 222 uint8_t *data; 223 }; 224 225 static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); 226 static int iwm_firmware_store_section(struct iwm_softc *, 227 enum iwm_ucode_type, 228 const uint8_t *, size_t); 229 static int iwm_set_default_calib(struct iwm_softc *, const void *); 230 static void iwm_fw_info_free(struct iwm_fw_info *); 231 static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type); 232 static void iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int); 233 static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, 234 bus_size_t, bus_size_t); 235 static void iwm_dma_contig_free(struct iwm_dma_info *); 236 static int iwm_alloc_fwmem(struct iwm_softc *); 237 static int iwm_alloc_sched(struct iwm_softc *); 238 static int iwm_alloc_kw(struct iwm_softc *); 239 static int iwm_alloc_ict(struct iwm_softc *); 240 static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 241 static void iwm_disable_rx_dma(struct iwm_softc *); 242 static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 243 static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 244 static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, 245 int); 246 static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 247 static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 248 static void iwm_enable_interrupts(struct iwm_softc *); 249 static void iwm_restore_interrupts(struct iwm_softc *); 250 static void iwm_disable_interrupts(struct iwm_softc *); 251 static void iwm_ict_reset(struct iwm_softc *); 252 static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); 253 static void iwm_stop_device(struct iwm_softc *); 254 static void iwm_mvm_nic_config(struct iwm_softc *); 255 static int iwm_nic_rx_init(struct iwm_softc *); 256 static int iwm_nic_tx_init(struct iwm_softc *); 257 static int iwm_nic_init(struct iwm_softc *); 258 static int iwm_enable_txq(struct iwm_softc *, int, int, int); 259 static int iwm_post_alive(struct iwm_softc *); 260 static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, 261 uint16_t, uint8_t *, uint16_t *); 262 static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, 263 uint16_t *, size_t); 264 static uint32_t iwm_eeprom_channel_flags(uint16_t); 265 static void iwm_add_channel_band(struct iwm_softc *, 266 struct ieee80211_channel[], int, int *, int, size_t, 267 const uint8_t[]); 268 static void iwm_init_channel_map(struct ieee80211com *, int, int *, 269 struct ieee80211_channel[]); 270 static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, 271 const uint16_t *, const uint16_t *, 272 const uint16_t *, const uint16_t *, 273 const uint16_t *); 274 static void iwm_set_hw_address_8000(struct iwm_softc *, 275 struct iwm_nvm_data *, 276 const uint16_t *, const uint16_t *); 277 static int iwm_get_sku(const struct iwm_softc *, const uint16_t *, 278 const uint16_t *); 279 static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *); 280 static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *, 281 const uint16_t *); 282 static int iwm_get_n_hw_addrs(const struct iwm_softc *, 283 const uint16_t *); 284 static void iwm_set_radio_cfg(const struct iwm_softc *, 285 struct iwm_nvm_data *, uint32_t); 286 static int iwm_parse_nvm_sections(struct iwm_softc *, 287 struct iwm_nvm_section *); 288 static int iwm_nvm_init(struct iwm_softc *); 289 static int iwm_firmware_load_sect(struct iwm_softc *, uint32_t, 290 const uint8_t *, uint32_t); 291 static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, 292 const uint8_t *, uint32_t); 293 static int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type); 294 static int iwm_load_cpu_sections_8000(struct iwm_softc *, 295 struct iwm_fw_sects *, int , int *); 296 static int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type); 297 static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type); 298 static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type); 299 static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); 300 static int iwm_send_phy_cfg_cmd(struct iwm_softc *); 301 static int iwm_mvm_load_ucode_wait_alive(struct iwm_softc *, 302 enum iwm_ucode_type); 303 static int iwm_run_init_mvm_ucode(struct iwm_softc *, int); 304 static int iwm_rx_addbuf(struct iwm_softc *, int, int); 305 static int iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *); 306 static int iwm_mvm_get_signal_strength(struct iwm_softc *, 307 struct iwm_rx_phy_info *); 308 static void iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *, 309 struct iwm_rx_packet *, 310 struct iwm_rx_data *); 311 static int iwm_get_noise(struct iwm_softc *sc, 312 const struct iwm_mvm_statistics_rx_non_phy *); 313 static void iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *, 314 struct iwm_rx_data *); 315 static int iwm_mvm_rx_tx_cmd_single(struct iwm_softc *, 316 struct iwm_rx_packet *, 317 struct iwm_node *); 318 static void iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *, 319 struct iwm_rx_data *); 320 static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); 321 #if 0 322 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, 323 uint16_t); 324 #endif 325 static const struct iwm_rate * 326 iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, 327 struct ieee80211_frame *, struct iwm_tx_cmd *); 328 static int iwm_tx(struct iwm_softc *, struct mbuf *, 329 struct ieee80211_node *, int); 330 static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, 331 const struct ieee80211_bpf_params *); 332 static int iwm_mvm_flush_tx_path(struct iwm_softc *sc, 333 uint32_t tfd_msk, uint32_t flags); 334 static int iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *, 335 struct iwm_mvm_add_sta_cmd_v7 *, 336 int *); 337 static int iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *, 338 int); 339 static int iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *); 340 static int iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *); 341 static int iwm_mvm_add_int_sta_common(struct iwm_softc *, 342 struct iwm_int_sta *, 343 const uint8_t *, uint16_t, uint16_t); 344 static int iwm_mvm_add_aux_sta(struct iwm_softc *); 345 static int iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *); 346 static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); 347 static int iwm_assoc(struct ieee80211vap *, struct iwm_softc *); 348 static int iwm_release(struct iwm_softc *, struct iwm_node *); 349 static struct ieee80211_node * 350 iwm_node_alloc(struct ieee80211vap *, 351 const uint8_t[IEEE80211_ADDR_LEN]); 352 static void iwm_setrates(struct iwm_softc *, struct iwm_node *); 353 static int iwm_media_change(struct ifnet *); 354 static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); 355 static void iwm_endscan_cb(void *, int); 356 static void iwm_mvm_fill_sf_command(struct iwm_softc *, 357 struct iwm_sf_cfg_cmd *, 358 struct ieee80211_node *); 359 static int iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state); 360 static int iwm_send_bt_init_conf(struct iwm_softc *); 361 static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); 362 static void iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t); 363 static int iwm_init_hw(struct iwm_softc *); 364 static void iwm_init(struct iwm_softc *); 365 static void iwm_start(struct iwm_softc *); 366 static void iwm_stop(struct iwm_softc *); 367 static void iwm_watchdog(void *); 368 static void iwm_parent(struct ieee80211com *); 369 #ifdef IWM_DEBUG 370 static const char * 371 iwm_desc_lookup(uint32_t); 372 static void iwm_nic_error(struct iwm_softc *); 373 static void iwm_nic_umac_error(struct iwm_softc *); 374 #endif 375 static void iwm_notif_intr(struct iwm_softc *); 376 static void iwm_intr(void *); 377 static int iwm_attach(device_t); 378 static int iwm_is_valid_ether_addr(uint8_t *); 379 static void iwm_preinit(void *); 380 static int iwm_detach_local(struct iwm_softc *sc, int); 381 static void iwm_init_task(void *); 382 static void iwm_radiotap_attach(struct iwm_softc *); 383 static struct ieee80211vap * 384 iwm_vap_create(struct ieee80211com *, 385 const char [IFNAMSIZ], int, 386 enum ieee80211_opmode, int, 387 const uint8_t [IEEE80211_ADDR_LEN], 388 const uint8_t [IEEE80211_ADDR_LEN]); 389 static void iwm_vap_delete(struct ieee80211vap *); 390 static void iwm_scan_start(struct ieee80211com *); 391 static void iwm_scan_end(struct ieee80211com *); 392 static void iwm_update_mcast(struct ieee80211com *); 393 static void iwm_set_channel(struct ieee80211com *); 394 static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); 395 static void iwm_scan_mindwell(struct ieee80211_scan_state *); 396 static int iwm_detach(device_t); 397 398 /* 399 * Firmware parser. 400 */ 401 402 static int 403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) 404 { 405 const struct iwm_fw_cscheme_list *l = (const void *)data; 406 407 if (dlen < sizeof(*l) || 408 dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) 409 return EINVAL; 410 411 /* we don't actually store anything for now, always use s/w crypto */ 412 413 return 0; 414 } 415 416 static int 417 iwm_firmware_store_section(struct iwm_softc *sc, 418 enum iwm_ucode_type type, const uint8_t *data, size_t dlen) 419 { 420 struct iwm_fw_sects *fws; 421 struct iwm_fw_onesect *fwone; 422 423 if (type >= IWM_UCODE_TYPE_MAX) 424 return EINVAL; 425 if (dlen < sizeof(uint32_t)) 426 return EINVAL; 427 428 fws = &sc->sc_fw.fw_sects[type]; 429 if (fws->fw_count >= IWM_UCODE_SECT_MAX) 430 return EINVAL; 431 432 fwone = &fws->fw_sect[fws->fw_count]; 433 434 /* first 32bit are device load offset */ 435 memcpy(&fwone->fws_devoff, data, sizeof(uint32_t)); 436 437 /* rest is data */ 438 fwone->fws_data = data + sizeof(uint32_t); 439 fwone->fws_len = dlen - sizeof(uint32_t); 440 441 fws->fw_count++; 442 443 return 0; 444 } 445 446 #define IWM_DEFAULT_SCAN_CHANNELS 40 447 448 /* iwlwifi: iwl-drv.c */ 449 struct iwm_tlv_calib_data { 450 uint32_t ucode_type; 451 struct iwm_tlv_calib_ctrl calib; 452 } __packed; 453 454 static int 455 iwm_set_default_calib(struct iwm_softc *sc, const void *data) 456 { 457 const struct iwm_tlv_calib_data *def_calib = data; 458 uint32_t ucode_type = le32toh(def_calib->ucode_type); 459 460 if (ucode_type >= IWM_UCODE_TYPE_MAX) { 461 device_printf(sc->sc_dev, 462 "Wrong ucode_type %u for default " 463 "calibration.\n", ucode_type); 464 return EINVAL; 465 } 466 467 sc->sc_default_calib[ucode_type].flow_trigger = 468 def_calib->calib.flow_trigger; 469 sc->sc_default_calib[ucode_type].event_trigger = 470 def_calib->calib.event_trigger; 471 472 return 0; 473 } 474 475 static void 476 iwm_fw_info_free(struct iwm_fw_info *fw) 477 { 478 firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); 479 fw->fw_fp = NULL; 480 /* don't touch fw->fw_status */ 481 memset(fw->fw_sects, 0, sizeof(fw->fw_sects)); 482 } 483 484 static int 485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 486 { 487 struct iwm_fw_info *fw = &sc->sc_fw; 488 const struct iwm_tlv_ucode_header *uhdr; 489 struct iwm_ucode_tlv tlv; 490 enum iwm_ucode_tlv_type tlv_type; 491 const struct firmware *fwp; 492 const uint8_t *data; 493 int error = 0; 494 size_t len; 495 496 if (fw->fw_status == IWM_FW_STATUS_DONE && 497 ucode_type != IWM_UCODE_TYPE_INIT) 498 return 0; 499 500 while (fw->fw_status == IWM_FW_STATUS_INPROGRESS) 501 msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0); 502 fw->fw_status = IWM_FW_STATUS_INPROGRESS; 503 504 if (fw->fw_fp != NULL) 505 iwm_fw_info_free(fw); 506 507 /* 508 * Load firmware into driver memory. 509 * fw_fp will be set. 510 */ 511 IWM_UNLOCK(sc); 512 fwp = firmware_get(sc->sc_fwname); 513 IWM_LOCK(sc); 514 if (fwp == NULL) { 515 device_printf(sc->sc_dev, 516 "could not read firmware %s (error %d)\n", 517 sc->sc_fwname, error); 518 goto out; 519 } 520 fw->fw_fp = fwp; 521 522 /* (Re-)Initialize default values. */ 523 sc->sc_capaflags = 0; 524 sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS; 525 memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa)); 526 memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); 527 528 /* 529 * Parse firmware contents 530 */ 531 532 uhdr = (const void *)fw->fw_fp->data; 533 if (*(const uint32_t *)fw->fw_fp->data != 0 534 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { 535 device_printf(sc->sc_dev, "invalid firmware %s\n", 536 sc->sc_fwname); 537 error = EINVAL; 538 goto out; 539 } 540 541 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)", 542 IWM_UCODE_MAJOR(le32toh(uhdr->ver)), 543 IWM_UCODE_MINOR(le32toh(uhdr->ver)), 544 IWM_UCODE_API(le32toh(uhdr->ver))); 545 data = uhdr->data; 546 len = fw->fw_fp->datasize - sizeof(*uhdr); 547 548 while (len >= sizeof(tlv)) { 549 size_t tlv_len; 550 const void *tlv_data; 551 552 memcpy(&tlv, data, sizeof(tlv)); 553 tlv_len = le32toh(tlv.length); 554 tlv_type = le32toh(tlv.type); 555 556 len -= sizeof(tlv); 557 data += sizeof(tlv); 558 tlv_data = data; 559 560 if (len < tlv_len) { 561 device_printf(sc->sc_dev, 562 "firmware too short: %zu bytes\n", 563 len); 564 error = EINVAL; 565 goto parse_out; 566 } 567 568 switch ((int)tlv_type) { 569 case IWM_UCODE_TLV_PROBE_MAX_LEN: 570 if (tlv_len < sizeof(uint32_t)) { 571 device_printf(sc->sc_dev, 572 "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n", 573 __func__, 574 (int) tlv_len); 575 error = EINVAL; 576 goto parse_out; 577 } 578 sc->sc_capa_max_probe_len 579 = le32toh(*(const uint32_t *)tlv_data); 580 /* limit it to something sensible */ 581 if (sc->sc_capa_max_probe_len > 582 IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { 583 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 584 "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " 585 "ridiculous\n", __func__); 586 error = EINVAL; 587 goto parse_out; 588 } 589 break; 590 case IWM_UCODE_TLV_PAN: 591 if (tlv_len) { 592 device_printf(sc->sc_dev, 593 "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n", 594 __func__, 595 (int) tlv_len); 596 error = EINVAL; 597 goto parse_out; 598 } 599 sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN; 600 break; 601 case IWM_UCODE_TLV_FLAGS: 602 if (tlv_len < sizeof(uint32_t)) { 603 device_printf(sc->sc_dev, 604 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n", 605 __func__, 606 (int) tlv_len); 607 error = EINVAL; 608 goto parse_out; 609 } 610 /* 611 * Apparently there can be many flags, but Linux driver 612 * parses only the first one, and so do we. 613 * 614 * XXX: why does this override IWM_UCODE_TLV_PAN? 615 * Intentional or a bug? Observations from 616 * current firmware file: 617 * 1) TLV_PAN is parsed first 618 * 2) TLV_FLAGS contains TLV_FLAGS_PAN 619 * ==> this resets TLV_PAN to itself... hnnnk 620 */ 621 sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data); 622 break; 623 case IWM_UCODE_TLV_CSCHEME: 624 if ((error = iwm_store_cscheme(sc, 625 tlv_data, tlv_len)) != 0) { 626 device_printf(sc->sc_dev, 627 "%s: iwm_store_cscheme(): returned %d\n", 628 __func__, 629 error); 630 goto parse_out; 631 } 632 break; 633 case IWM_UCODE_TLV_NUM_OF_CPU: { 634 uint32_t num_cpu; 635 if (tlv_len != sizeof(uint32_t)) { 636 device_printf(sc->sc_dev, 637 "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n", 638 __func__, 639 (int) tlv_len); 640 error = EINVAL; 641 goto parse_out; 642 } 643 num_cpu = le32toh(*(const uint32_t *)tlv_data); 644 if (num_cpu < 1 || num_cpu > 2) { 645 device_printf(sc->sc_dev, 646 "%s: Driver supports only 1 or 2 CPUs\n", 647 __func__); 648 error = EINVAL; 649 goto parse_out; 650 } 651 break; 652 } 653 case IWM_UCODE_TLV_SEC_RT: 654 if ((error = iwm_firmware_store_section(sc, 655 IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) { 656 device_printf(sc->sc_dev, 657 "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n", 658 __func__, 659 error); 660 goto parse_out; 661 } 662 break; 663 case IWM_UCODE_TLV_SEC_INIT: 664 if ((error = iwm_firmware_store_section(sc, 665 IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) { 666 device_printf(sc->sc_dev, 667 "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n", 668 __func__, 669 error); 670 goto parse_out; 671 } 672 break; 673 case IWM_UCODE_TLV_SEC_WOWLAN: 674 if ((error = iwm_firmware_store_section(sc, 675 IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) { 676 device_printf(sc->sc_dev, 677 "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n", 678 __func__, 679 error); 680 goto parse_out; 681 } 682 break; 683 case IWM_UCODE_TLV_DEF_CALIB: 684 if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { 685 device_printf(sc->sc_dev, 686 "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n", 687 __func__, 688 (int) tlv_len, 689 (int) sizeof(struct iwm_tlv_calib_data)); 690 error = EINVAL; 691 goto parse_out; 692 } 693 if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { 694 device_printf(sc->sc_dev, 695 "%s: iwm_set_default_calib() failed: %d\n", 696 __func__, 697 error); 698 goto parse_out; 699 } 700 break; 701 case IWM_UCODE_TLV_PHY_SKU: 702 if (tlv_len != sizeof(uint32_t)) { 703 error = EINVAL; 704 device_printf(sc->sc_dev, 705 "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n", 706 __func__, 707 (int) tlv_len); 708 goto parse_out; 709 } 710 sc->sc_fw_phy_config = 711 le32toh(*(const uint32_t *)tlv_data); 712 break; 713 714 case IWM_UCODE_TLV_API_CHANGES_SET: { 715 const struct iwm_ucode_api *api; 716 if (tlv_len != sizeof(*api)) { 717 error = EINVAL; 718 goto parse_out; 719 } 720 api = (const struct iwm_ucode_api *)tlv_data; 721 /* Flags may exceed 32 bits in future firmware. */ 722 if (le32toh(api->api_index) > 0) { 723 device_printf(sc->sc_dev, 724 "unsupported API index %d\n", 725 le32toh(api->api_index)); 726 goto parse_out; 727 } 728 sc->sc_ucode_api = le32toh(api->api_flags); 729 break; 730 } 731 732 case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { 733 const struct iwm_ucode_capa *capa; 734 int idx, i; 735 if (tlv_len != sizeof(*capa)) { 736 error = EINVAL; 737 goto parse_out; 738 } 739 capa = (const struct iwm_ucode_capa *)tlv_data; 740 idx = le32toh(capa->api_index); 741 if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { 742 device_printf(sc->sc_dev, 743 "unsupported API index %d\n", idx); 744 goto parse_out; 745 } 746 for (i = 0; i < 32; i++) { 747 if ((le32toh(capa->api_capa) & (1U << i)) == 0) 748 continue; 749 setbit(sc->sc_enabled_capa, i + (32 * idx)); 750 } 751 break; 752 } 753 754 case 48: /* undocumented TLV */ 755 case IWM_UCODE_TLV_SDIO_ADMA_ADDR: 756 case IWM_UCODE_TLV_FW_GSCAN_CAPA: 757 /* ignore, not used by current driver */ 758 break; 759 760 case IWM_UCODE_TLV_SEC_RT_USNIFFER: 761 if ((error = iwm_firmware_store_section(sc, 762 IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data, 763 tlv_len)) != 0) 764 goto parse_out; 765 break; 766 767 case IWM_UCODE_TLV_N_SCAN_CHANNELS: 768 if (tlv_len != sizeof(uint32_t)) { 769 error = EINVAL; 770 goto parse_out; 771 } 772 sc->sc_capa_n_scan_channels = 773 le32toh(*(const uint32_t *)tlv_data); 774 break; 775 776 case IWM_UCODE_TLV_FW_VERSION: 777 if (tlv_len != sizeof(uint32_t) * 3) { 778 error = EINVAL; 779 goto parse_out; 780 } 781 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), 782 "%d.%d.%d", 783 le32toh(((const uint32_t *)tlv_data)[0]), 784 le32toh(((const uint32_t *)tlv_data)[1]), 785 le32toh(((const uint32_t *)tlv_data)[2])); 786 break; 787 788 default: 789 device_printf(sc->sc_dev, 790 "%s: unknown firmware section %d, abort\n", 791 __func__, tlv_type); 792 error = EINVAL; 793 goto parse_out; 794 } 795 796 len -= roundup(tlv_len, 4); 797 data += roundup(tlv_len, 4); 798 } 799 800 KASSERT(error == 0, ("unhandled error")); 801 802 parse_out: 803 if (error) { 804 device_printf(sc->sc_dev, "firmware parse error %d, " 805 "section type %d\n", error, tlv_type); 806 } 807 808 if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) { 809 device_printf(sc->sc_dev, 810 "device uses unsupported power ops\n"); 811 error = ENOTSUP; 812 } 813 814 out: 815 if (error) { 816 fw->fw_status = IWM_FW_STATUS_NONE; 817 if (fw->fw_fp != NULL) 818 iwm_fw_info_free(fw); 819 } else 820 fw->fw_status = IWM_FW_STATUS_DONE; 821 wakeup(&sc->sc_fw); 822 823 return error; 824 } 825 826 /* 827 * DMA resource routines 828 */ 829 830 static void 831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 832 { 833 if (error != 0) 834 return; 835 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 836 *(bus_addr_t *)arg = segs[0].ds_addr; 837 } 838 839 static int 840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma, 841 bus_size_t size, bus_size_t alignment) 842 { 843 int error; 844 845 dma->tag = NULL; 846 dma->map = NULL; 847 dma->size = size; 848 dma->vaddr = NULL; 849 850 error = bus_dma_tag_create(tag, alignment, 851 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 852 1, size, 0, NULL, NULL, &dma->tag); 853 if (error != 0) 854 goto fail; 855 856 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 857 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 858 if (error != 0) 859 goto fail; 860 861 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 862 iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 863 if (error != 0) { 864 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 865 dma->vaddr = NULL; 866 goto fail; 867 } 868 869 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 870 871 return 0; 872 873 fail: 874 iwm_dma_contig_free(dma); 875 876 return error; 877 } 878 879 static void 880 iwm_dma_contig_free(struct iwm_dma_info *dma) 881 { 882 if (dma->vaddr != NULL) { 883 bus_dmamap_sync(dma->tag, dma->map, 884 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 885 bus_dmamap_unload(dma->tag, dma->map); 886 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 887 dma->vaddr = NULL; 888 } 889 if (dma->tag != NULL) { 890 bus_dma_tag_destroy(dma->tag); 891 dma->tag = NULL; 892 } 893 } 894 895 /* fwmem is used to load firmware onto the card */ 896 static int 897 iwm_alloc_fwmem(struct iwm_softc *sc) 898 { 899 /* Must be aligned on a 16-byte boundary. */ 900 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, 901 sc->sc_fwdmasegsz, 16); 902 } 903 904 /* tx scheduler rings. not used? */ 905 static int 906 iwm_alloc_sched(struct iwm_softc *sc) 907 { 908 /* TX scheduler rings must be aligned on a 1KB boundary. */ 909 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 910 nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); 911 } 912 913 /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ 914 static int 915 iwm_alloc_kw(struct iwm_softc *sc) 916 { 917 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); 918 } 919 920 /* interrupt cause table */ 921 static int 922 iwm_alloc_ict(struct iwm_softc *sc) 923 { 924 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 925 IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT); 926 } 927 928 static int 929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 930 { 931 bus_size_t size; 932 int i, error; 933 934 ring->cur = 0; 935 936 /* Allocate RX descriptors (256-byte aligned). */ 937 size = IWM_RX_RING_COUNT * sizeof(uint32_t); 938 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 939 if (error != 0) { 940 device_printf(sc->sc_dev, 941 "could not allocate RX ring DMA memory\n"); 942 goto fail; 943 } 944 ring->desc = ring->desc_dma.vaddr; 945 946 /* Allocate RX status area (16-byte aligned). */ 947 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 948 sizeof(*ring->stat), 16); 949 if (error != 0) { 950 device_printf(sc->sc_dev, 951 "could not allocate RX status DMA memory\n"); 952 goto fail; 953 } 954 ring->stat = ring->stat_dma.vaddr; 955 956 /* Create RX buffer DMA tag. */ 957 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 958 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 959 IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 960 if (error != 0) { 961 device_printf(sc->sc_dev, 962 "%s: could not create RX buf DMA tag, error %d\n", 963 __func__, error); 964 goto fail; 965 } 966 967 /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */ 968 error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map); 969 if (error != 0) { 970 device_printf(sc->sc_dev, 971 "%s: could not create RX buf DMA map, error %d\n", 972 __func__, error); 973 goto fail; 974 } 975 /* 976 * Allocate and map RX buffers. 977 */ 978 for (i = 0; i < IWM_RX_RING_COUNT; i++) { 979 struct iwm_rx_data *data = &ring->data[i]; 980 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 981 if (error != 0) { 982 device_printf(sc->sc_dev, 983 "%s: could not create RX buf DMA map, error %d\n", 984 __func__, error); 985 goto fail; 986 } 987 data->m = NULL; 988 989 if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { 990 goto fail; 991 } 992 } 993 return 0; 994 995 fail: iwm_free_rx_ring(sc, ring); 996 return error; 997 } 998 999 static void 1000 iwm_disable_rx_dma(struct iwm_softc *sc) 1001 { 1002 /* XXX conditional nic locks are stupid */ 1003 /* XXX print out if we can't lock the NIC? */ 1004 if (iwm_nic_lock(sc)) { 1005 /* XXX handle if RX stop doesn't finish? */ 1006 (void) iwm_pcie_rx_stop(sc); 1007 iwm_nic_unlock(sc); 1008 } 1009 } 1010 1011 static void 1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1013 { 1014 /* Reset the ring state */ 1015 ring->cur = 0; 1016 1017 /* 1018 * The hw rx ring index in shared memory must also be cleared, 1019 * otherwise the discrepancy can cause reprocessing chaos. 1020 */ 1021 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 1022 } 1023 1024 static void 1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1026 { 1027 int i; 1028 1029 iwm_dma_contig_free(&ring->desc_dma); 1030 iwm_dma_contig_free(&ring->stat_dma); 1031 1032 for (i = 0; i < IWM_RX_RING_COUNT; i++) { 1033 struct iwm_rx_data *data = &ring->data[i]; 1034 1035 if (data->m != NULL) { 1036 bus_dmamap_sync(ring->data_dmat, data->map, 1037 BUS_DMASYNC_POSTREAD); 1038 bus_dmamap_unload(ring->data_dmat, data->map); 1039 m_freem(data->m); 1040 data->m = NULL; 1041 } 1042 if (data->map != NULL) { 1043 bus_dmamap_destroy(ring->data_dmat, data->map); 1044 data->map = NULL; 1045 } 1046 } 1047 if (ring->spare_map != NULL) { 1048 bus_dmamap_destroy(ring->data_dmat, ring->spare_map); 1049 ring->spare_map = NULL; 1050 } 1051 if (ring->data_dmat != NULL) { 1052 bus_dma_tag_destroy(ring->data_dmat); 1053 ring->data_dmat = NULL; 1054 } 1055 } 1056 1057 static int 1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) 1059 { 1060 bus_addr_t paddr; 1061 bus_size_t size; 1062 size_t maxsize; 1063 int nsegments; 1064 int i, error; 1065 1066 ring->qid = qid; 1067 ring->queued = 0; 1068 ring->cur = 0; 1069 1070 /* Allocate TX descriptors (256-byte aligned). */ 1071 size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); 1072 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 1073 if (error != 0) { 1074 device_printf(sc->sc_dev, 1075 "could not allocate TX ring DMA memory\n"); 1076 goto fail; 1077 } 1078 ring->desc = ring->desc_dma.vaddr; 1079 1080 /* 1081 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need 1082 * to allocate commands space for other rings. 1083 */ 1084 if (qid > IWM_MVM_CMD_QUEUE) 1085 return 0; 1086 1087 size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); 1088 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); 1089 if (error != 0) { 1090 device_printf(sc->sc_dev, 1091 "could not allocate TX cmd DMA memory\n"); 1092 goto fail; 1093 } 1094 ring->cmd = ring->cmd_dma.vaddr; 1095 1096 /* FW commands may require more mapped space than packets. */ 1097 if (qid == IWM_MVM_CMD_QUEUE) { 1098 maxsize = IWM_RBUF_SIZE; 1099 nsegments = 1; 1100 } else { 1101 maxsize = MCLBYTES; 1102 nsegments = IWM_MAX_SCATTER - 2; 1103 } 1104 1105 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 1106 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1107 nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat); 1108 if (error != 0) { 1109 device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); 1110 goto fail; 1111 } 1112 1113 paddr = ring->cmd_dma.paddr; 1114 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1115 struct iwm_tx_data *data = &ring->data[i]; 1116 1117 data->cmd_paddr = paddr; 1118 data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) 1119 + offsetof(struct iwm_tx_cmd, scratch); 1120 paddr += sizeof(struct iwm_device_cmd); 1121 1122 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1123 if (error != 0) { 1124 device_printf(sc->sc_dev, 1125 "could not create TX buf DMA map\n"); 1126 goto fail; 1127 } 1128 } 1129 KASSERT(paddr == ring->cmd_dma.paddr + size, 1130 ("invalid physical address")); 1131 return 0; 1132 1133 fail: iwm_free_tx_ring(sc, ring); 1134 return error; 1135 } 1136 1137 static void 1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1139 { 1140 int i; 1141 1142 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1143 struct iwm_tx_data *data = &ring->data[i]; 1144 1145 if (data->m != NULL) { 1146 bus_dmamap_sync(ring->data_dmat, data->map, 1147 BUS_DMASYNC_POSTWRITE); 1148 bus_dmamap_unload(ring->data_dmat, data->map); 1149 m_freem(data->m); 1150 data->m = NULL; 1151 } 1152 } 1153 /* Clear TX descriptors. */ 1154 memset(ring->desc, 0, ring->desc_dma.size); 1155 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1156 BUS_DMASYNC_PREWRITE); 1157 sc->qfullmsk &= ~(1 << ring->qid); 1158 ring->queued = 0; 1159 ring->cur = 0; 1160 } 1161 1162 static void 1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1164 { 1165 int i; 1166 1167 iwm_dma_contig_free(&ring->desc_dma); 1168 iwm_dma_contig_free(&ring->cmd_dma); 1169 1170 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1171 struct iwm_tx_data *data = &ring->data[i]; 1172 1173 if (data->m != NULL) { 1174 bus_dmamap_sync(ring->data_dmat, data->map, 1175 BUS_DMASYNC_POSTWRITE); 1176 bus_dmamap_unload(ring->data_dmat, data->map); 1177 m_freem(data->m); 1178 data->m = NULL; 1179 } 1180 if (data->map != NULL) { 1181 bus_dmamap_destroy(ring->data_dmat, data->map); 1182 data->map = NULL; 1183 } 1184 } 1185 if (ring->data_dmat != NULL) { 1186 bus_dma_tag_destroy(ring->data_dmat); 1187 ring->data_dmat = NULL; 1188 } 1189 } 1190 1191 /* 1192 * High-level hardware frobbing routines 1193 */ 1194 1195 static void 1196 iwm_enable_interrupts(struct iwm_softc *sc) 1197 { 1198 sc->sc_intmask = IWM_CSR_INI_SET_MASK; 1199 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1200 } 1201 1202 static void 1203 iwm_restore_interrupts(struct iwm_softc *sc) 1204 { 1205 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1206 } 1207 1208 static void 1209 iwm_disable_interrupts(struct iwm_softc *sc) 1210 { 1211 /* disable interrupts */ 1212 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 1213 1214 /* acknowledge all interrupts */ 1215 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1216 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); 1217 } 1218 1219 static void 1220 iwm_ict_reset(struct iwm_softc *sc) 1221 { 1222 iwm_disable_interrupts(sc); 1223 1224 /* Reset ICT table. */ 1225 memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); 1226 sc->ict_cur = 0; 1227 1228 /* Set physical address of ICT table (4KB aligned). */ 1229 IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, 1230 IWM_CSR_DRAM_INT_TBL_ENABLE 1231 | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER 1232 | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK 1233 | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); 1234 1235 /* Switch to ICT interrupt mode in driver. */ 1236 sc->sc_flags |= IWM_FLAG_USE_ICT; 1237 1238 /* Re-enable interrupts. */ 1239 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1240 iwm_enable_interrupts(sc); 1241 } 1242 1243 /* iwlwifi pcie/trans.c */ 1244 1245 /* 1246 * Since this .. hard-resets things, it's time to actually 1247 * mark the first vap (if any) as having no mac context. 1248 * It's annoying, but since the driver is potentially being 1249 * stop/start'ed whilst active (thanks openbsd port!) we 1250 * have to correctly track this. 1251 */ 1252 static void 1253 iwm_stop_device(struct iwm_softc *sc) 1254 { 1255 struct ieee80211com *ic = &sc->sc_ic; 1256 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1257 int chnl, qid; 1258 uint32_t mask = 0; 1259 1260 /* tell the device to stop sending interrupts */ 1261 iwm_disable_interrupts(sc); 1262 1263 /* 1264 * FreeBSD-local: mark the first vap as not-uploaded, 1265 * so the next transition through auth/assoc 1266 * will correctly populate the MAC context. 1267 */ 1268 if (vap) { 1269 struct iwm_vap *iv = IWM_VAP(vap); 1270 iv->is_uploaded = 0; 1271 } 1272 1273 /* device going down, Stop using ICT table */ 1274 sc->sc_flags &= ~IWM_FLAG_USE_ICT; 1275 1276 /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ 1277 1278 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1279 1280 if (iwm_nic_lock(sc)) { 1281 /* Stop each Tx DMA channel */ 1282 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1283 IWM_WRITE(sc, 1284 IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); 1285 mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl); 1286 } 1287 1288 /* Wait for DMA channels to be idle */ 1289 if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask, 1290 5000)) { 1291 device_printf(sc->sc_dev, 1292 "Failing on timeout while stopping DMA channel: [0x%08x]\n", 1293 IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)); 1294 } 1295 iwm_nic_unlock(sc); 1296 } 1297 iwm_disable_rx_dma(sc); 1298 1299 /* Stop RX ring. */ 1300 iwm_reset_rx_ring(sc, &sc->rxq); 1301 1302 /* Reset all TX rings. */ 1303 for (qid = 0; qid < nitems(sc->txq); qid++) 1304 iwm_reset_tx_ring(sc, &sc->txq[qid]); 1305 1306 /* 1307 * Power-down device's busmaster DMA clocks 1308 */ 1309 iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); 1310 DELAY(5); 1311 1312 /* Make sure (redundant) we've released our request to stay awake */ 1313 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 1314 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 1315 1316 /* Stop the device, and put it in low power state */ 1317 iwm_apm_stop(sc); 1318 1319 /* Upon stop, the APM issues an interrupt if HW RF kill is set. 1320 * Clean again the interrupt here 1321 */ 1322 iwm_disable_interrupts(sc); 1323 /* stop and reset the on-board processor */ 1324 IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); 1325 1326 /* 1327 * Even if we stop the HW, we still want the RF kill 1328 * interrupt 1329 */ 1330 iwm_enable_rfkill_int(sc); 1331 iwm_check_rfkill(sc); 1332 } 1333 1334 /* iwlwifi: mvm/ops.c */ 1335 static void 1336 iwm_mvm_nic_config(struct iwm_softc *sc) 1337 { 1338 uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; 1339 uint32_t reg_val = 0; 1340 1341 radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> 1342 IWM_FW_PHY_CFG_RADIO_TYPE_POS; 1343 radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> 1344 IWM_FW_PHY_CFG_RADIO_STEP_POS; 1345 radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> 1346 IWM_FW_PHY_CFG_RADIO_DASH_POS; 1347 1348 /* SKU control */ 1349 reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << 1350 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; 1351 reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << 1352 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; 1353 1354 /* radio configuration */ 1355 reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; 1356 reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; 1357 reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; 1358 1359 IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val); 1360 1361 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1362 "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, 1363 radio_cfg_step, radio_cfg_dash); 1364 1365 /* 1366 * W/A : NIC is stuck in a reset state after Early PCIe power off 1367 * (PCIe power is lost before PERST# is asserted), causing ME FW 1368 * to lose ownership and not being able to obtain it back. 1369 */ 1370 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { 1371 iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, 1372 IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, 1373 ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); 1374 } 1375 } 1376 1377 static int 1378 iwm_nic_rx_init(struct iwm_softc *sc) 1379 { 1380 if (!iwm_nic_lock(sc)) 1381 return EBUSY; 1382 1383 /* 1384 * Initialize RX ring. This is from the iwn driver. 1385 */ 1386 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 1387 1388 /* stop DMA */ 1389 iwm_disable_rx_dma(sc); 1390 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 1391 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 1392 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); 1393 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 1394 1395 /* Set physical address of RX ring (256-byte aligned). */ 1396 IWM_WRITE(sc, 1397 IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8); 1398 1399 /* Set physical address of RX status (16-byte aligned). */ 1400 IWM_WRITE(sc, 1401 IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); 1402 1403 /* Enable RX. */ 1404 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 1405 IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 1406 IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ 1407 IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 1408 IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK | 1409 (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 1410 IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | 1411 IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); 1412 1413 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1414 1415 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 1416 if (sc->host_interrupt_operation_mode) 1417 IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); 1418 1419 /* 1420 * Thus sayeth el jefe (iwlwifi) via a comment: 1421 * 1422 * This value should initially be 0 (before preparing any 1423 * RBs), should be 8 after preparing the first 8 RBs (for example) 1424 */ 1425 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); 1426 1427 iwm_nic_unlock(sc); 1428 1429 return 0; 1430 } 1431 1432 static int 1433 iwm_nic_tx_init(struct iwm_softc *sc) 1434 { 1435 int qid; 1436 1437 if (!iwm_nic_lock(sc)) 1438 return EBUSY; 1439 1440 /* Deactivate TX scheduler. */ 1441 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1442 1443 /* Set physical address of "keep warm" page (16-byte aligned). */ 1444 IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); 1445 1446 /* Initialize TX rings. */ 1447 for (qid = 0; qid < nitems(sc->txq); qid++) { 1448 struct iwm_tx_ring *txq = &sc->txq[qid]; 1449 1450 /* Set physical address of TX ring (256-byte aligned). */ 1451 IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), 1452 txq->desc_dma.paddr >> 8); 1453 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 1454 "%s: loading ring %d descriptors (%p) at %lx\n", 1455 __func__, 1456 qid, txq->desc, 1457 (unsigned long) (txq->desc_dma.paddr >> 8)); 1458 } 1459 1460 iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE); 1461 1462 iwm_nic_unlock(sc); 1463 1464 return 0; 1465 } 1466 1467 static int 1468 iwm_nic_init(struct iwm_softc *sc) 1469 { 1470 int error; 1471 1472 iwm_apm_init(sc); 1473 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) 1474 iwm_set_pwr(sc); 1475 1476 iwm_mvm_nic_config(sc); 1477 1478 if ((error = iwm_nic_rx_init(sc)) != 0) 1479 return error; 1480 1481 /* 1482 * Ditto for TX, from iwn 1483 */ 1484 if ((error = iwm_nic_tx_init(sc)) != 0) 1485 return error; 1486 1487 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1488 "%s: shadow registers enabled\n", __func__); 1489 IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); 1490 1491 return 0; 1492 } 1493 1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = { 1495 IWM_MVM_TX_FIFO_VO, 1496 IWM_MVM_TX_FIFO_VI, 1497 IWM_MVM_TX_FIFO_BE, 1498 IWM_MVM_TX_FIFO_BK, 1499 }; 1500 1501 static int 1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) 1503 { 1504 if (!iwm_nic_lock(sc)) { 1505 device_printf(sc->sc_dev, 1506 "%s: cannot enable txq %d\n", 1507 __func__, 1508 qid); 1509 return EBUSY; 1510 } 1511 1512 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); 1513 1514 if (qid == IWM_MVM_CMD_QUEUE) { 1515 /* unactivate before configuration */ 1516 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1517 (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) 1518 | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); 1519 1520 iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid)); 1521 1522 iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); 1523 1524 iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); 1525 /* Set scheduler window size and frame limit. */ 1526 iwm_write_mem32(sc, 1527 sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + 1528 sizeof(uint32_t), 1529 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & 1530 IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | 1531 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & 1532 IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); 1533 1534 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1535 (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1536 (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | 1537 (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | 1538 IWM_SCD_QUEUE_STTS_REG_MSK); 1539 } else { 1540 struct iwm_scd_txq_cfg_cmd cmd; 1541 int error; 1542 1543 iwm_nic_unlock(sc); 1544 1545 memset(&cmd, 0, sizeof(cmd)); 1546 cmd.scd_queue = qid; 1547 cmd.enable = 1; 1548 cmd.sta_id = sta_id; 1549 cmd.tx_fifo = fifo; 1550 cmd.aggregate = 0; 1551 cmd.window = IWM_FRAME_LIMIT; 1552 1553 error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC, 1554 sizeof(cmd), &cmd); 1555 if (error) { 1556 device_printf(sc->sc_dev, 1557 "cannot enable txq %d\n", qid); 1558 return error; 1559 } 1560 1561 if (!iwm_nic_lock(sc)) 1562 return EBUSY; 1563 } 1564 1565 iwm_write_prph(sc, IWM_SCD_EN_CTRL, 1566 iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid); 1567 1568 iwm_nic_unlock(sc); 1569 1570 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n", 1571 __func__, qid, fifo); 1572 1573 return 0; 1574 } 1575 1576 static int 1577 iwm_post_alive(struct iwm_softc *sc) 1578 { 1579 int nwords; 1580 int error, chnl; 1581 uint32_t base; 1582 1583 if (!iwm_nic_lock(sc)) 1584 return EBUSY; 1585 1586 base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); 1587 if (sc->sched_base != base) { 1588 device_printf(sc->sc_dev, 1589 "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n", 1590 __func__, sc->sched_base, base); 1591 } 1592 1593 iwm_ict_reset(sc); 1594 1595 /* Clear TX scheduler state in SRAM. */ 1596 nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - 1597 IWM_SCD_CONTEXT_MEM_LOWER_BOUND) 1598 / sizeof(uint32_t); 1599 error = iwm_write_mem(sc, 1600 sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, 1601 NULL, nwords); 1602 if (error) 1603 goto out; 1604 1605 /* Set physical address of TX scheduler rings (1KB aligned). */ 1606 iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); 1607 1608 iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); 1609 1610 iwm_nic_unlock(sc); 1611 1612 /* enable command channel */ 1613 error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7); 1614 if (error) 1615 return error; 1616 1617 if (!iwm_nic_lock(sc)) 1618 return EBUSY; 1619 1620 iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); 1621 1622 /* Enable DMA channels. */ 1623 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1624 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 1625 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1626 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); 1627 } 1628 1629 IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, 1630 IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); 1631 1632 /* Enable L1-Active */ 1633 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) { 1634 iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, 1635 IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); 1636 } 1637 1638 out: 1639 iwm_nic_unlock(sc); 1640 return error; 1641 } 1642 1643 /* 1644 * NVM read access and content parsing. We do not support 1645 * external NVM or writing NVM. 1646 * iwlwifi/mvm/nvm.c 1647 */ 1648 1649 /* list of NVM sections we are allowed/need to read */ 1650 const int nvm_to_read[] = { 1651 IWM_NVM_SECTION_TYPE_HW, 1652 IWM_NVM_SECTION_TYPE_SW, 1653 IWM_NVM_SECTION_TYPE_REGULATORY, 1654 IWM_NVM_SECTION_TYPE_CALIBRATION, 1655 IWM_NVM_SECTION_TYPE_PRODUCTION, 1656 IWM_NVM_SECTION_TYPE_HW_8000, 1657 IWM_NVM_SECTION_TYPE_MAC_OVERRIDE, 1658 IWM_NVM_SECTION_TYPE_PHY_SKU, 1659 }; 1660 1661 /* Default NVM size to read */ 1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) 1663 #define IWM_MAX_NVM_SECTION_SIZE 8192 1664 1665 #define IWM_NVM_WRITE_OPCODE 1 1666 #define IWM_NVM_READ_OPCODE 0 1667 1668 /* load nvm chunk response */ 1669 #define IWM_READ_NVM_CHUNK_SUCCEED 0 1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS 1 1671 1672 static int 1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, 1674 uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) 1675 { 1676 offset = 0; 1677 struct iwm_nvm_access_cmd nvm_access_cmd = { 1678 .offset = htole16(offset), 1679 .length = htole16(length), 1680 .type = htole16(section), 1681 .op_code = IWM_NVM_READ_OPCODE, 1682 }; 1683 struct iwm_nvm_access_resp *nvm_resp; 1684 struct iwm_rx_packet *pkt; 1685 struct iwm_host_cmd cmd = { 1686 .id = IWM_NVM_ACCESS_CMD, 1687 .flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB | 1688 IWM_CMD_SEND_IN_RFKILL, 1689 .data = { &nvm_access_cmd, }, 1690 }; 1691 int ret, offset_read; 1692 size_t bytes_read; 1693 uint8_t *resp_data; 1694 1695 cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); 1696 1697 ret = iwm_send_cmd(sc, &cmd); 1698 if (ret) { 1699 device_printf(sc->sc_dev, 1700 "Could not send NVM_ACCESS command (error=%d)\n", ret); 1701 return ret; 1702 } 1703 1704 pkt = cmd.resp_pkt; 1705 if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { 1706 device_printf(sc->sc_dev, 1707 "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n", 1708 pkt->hdr.flags); 1709 ret = EIO; 1710 goto exit; 1711 } 1712 1713 /* Extract NVM response */ 1714 nvm_resp = (void *)pkt->data; 1715 1716 ret = le16toh(nvm_resp->status); 1717 bytes_read = le16toh(nvm_resp->length); 1718 offset_read = le16toh(nvm_resp->offset); 1719 resp_data = nvm_resp->data; 1720 if (ret) { 1721 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1722 "NVM access command failed with status %d\n", ret); 1723 ret = EINVAL; 1724 goto exit; 1725 } 1726 1727 if (offset_read != offset) { 1728 device_printf(sc->sc_dev, 1729 "NVM ACCESS response with invalid offset %d\n", 1730 offset_read); 1731 ret = EINVAL; 1732 goto exit; 1733 } 1734 1735 if (bytes_read > length) { 1736 device_printf(sc->sc_dev, 1737 "NVM ACCESS response with too much data " 1738 "(%d bytes requested, %zd bytes received)\n", 1739 length, bytes_read); 1740 ret = EINVAL; 1741 goto exit; 1742 } 1743 1744 memcpy(data + offset, resp_data, bytes_read); 1745 *len = bytes_read; 1746 1747 exit: 1748 iwm_free_resp(sc, &cmd); 1749 return ret; 1750 } 1751 1752 /* 1753 * Reads an NVM section completely. 1754 * NICs prior to 7000 family don't have a real NVM, but just read 1755 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited 1756 * by uCode, we need to manually check in this case that we don't 1757 * overflow and try to read more than the EEPROM size. 1758 * For 7000 family NICs, we supply the maximal size we can read, and 1759 * the uCode fills the response with as much data as we can, 1760 * without overflowing, so no check is needed. 1761 */ 1762 static int 1763 iwm_nvm_read_section(struct iwm_softc *sc, 1764 uint16_t section, uint8_t *data, uint16_t *len, size_t max_len) 1765 { 1766 uint16_t chunklen, seglen; 1767 int error = 0; 1768 1769 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1770 "reading NVM section %d\n", section); 1771 1772 chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE; 1773 *len = 0; 1774 1775 /* Read NVM chunks until exhausted (reading less than requested) */ 1776 while (seglen == chunklen && *len < max_len) { 1777 error = iwm_nvm_read_chunk(sc, 1778 section, *len, chunklen, data, &seglen); 1779 if (error) { 1780 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1781 "Cannot read from NVM section " 1782 "%d at offset %d\n", section, *len); 1783 return error; 1784 } 1785 *len += seglen; 1786 } 1787 1788 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1789 "NVM section %d read completed (%d bytes, error=%d)\n", 1790 section, *len, error); 1791 return error; 1792 } 1793 1794 /* 1795 * BEGIN IWM_NVM_PARSE 1796 */ 1797 1798 /* iwlwifi/iwl-nvm-parse.c */ 1799 1800 /* NVM offsets (in words) definitions */ 1801 enum iwm_nvm_offsets { 1802 /* NVM HW-Section offset (in words) definitions */ 1803 IWM_HW_ADDR = 0x15, 1804 1805 /* NVM SW-Section offset (in words) definitions */ 1806 IWM_NVM_SW_SECTION = 0x1C0, 1807 IWM_NVM_VERSION = 0, 1808 IWM_RADIO_CFG = 1, 1809 IWM_SKU = 2, 1810 IWM_N_HW_ADDRS = 3, 1811 IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, 1812 1813 /* NVM calibration section offset (in words) definitions */ 1814 IWM_NVM_CALIB_SECTION = 0x2B8, 1815 IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION 1816 }; 1817 1818 enum iwm_8000_nvm_offsets { 1819 /* NVM HW-Section offset (in words) definitions */ 1820 IWM_HW_ADDR0_WFPM_8000 = 0x12, 1821 IWM_HW_ADDR1_WFPM_8000 = 0x16, 1822 IWM_HW_ADDR0_PCIE_8000 = 0x8A, 1823 IWM_HW_ADDR1_PCIE_8000 = 0x8E, 1824 IWM_MAC_ADDRESS_OVERRIDE_8000 = 1, 1825 1826 /* NVM SW-Section offset (in words) definitions */ 1827 IWM_NVM_SW_SECTION_8000 = 0x1C0, 1828 IWM_NVM_VERSION_8000 = 0, 1829 IWM_RADIO_CFG_8000 = 0, 1830 IWM_SKU_8000 = 2, 1831 IWM_N_HW_ADDRS_8000 = 3, 1832 1833 /* NVM REGULATORY -Section offset (in words) definitions */ 1834 IWM_NVM_CHANNELS_8000 = 0, 1835 IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7, 1836 IWM_NVM_LAR_OFFSET_8000 = 0x507, 1837 IWM_NVM_LAR_ENABLED_8000 = 0x7, 1838 1839 /* NVM calibration section offset (in words) definitions */ 1840 IWM_NVM_CALIB_SECTION_8000 = 0x2B8, 1841 IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000 1842 }; 1843 1844 /* SKU Capabilities (actual values from NVM definition) */ 1845 enum nvm_sku_bits { 1846 IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), 1847 IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), 1848 IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), 1849 IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), 1850 }; 1851 1852 /* radio config bits (actual values from NVM definition) */ 1853 #define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ 1854 #define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ 1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ 1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ 1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ 1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ 1859 1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x) (x & 0xF) 1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF) 1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF) 1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF) 1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF) 1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF) 1866 1867 #define DEFAULT_MAX_TX_POWER 16 1868 1869 /** 1870 * enum iwm_nvm_channel_flags - channel flags in NVM 1871 * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo 1872 * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel 1873 * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed 1874 * @IWM_NVM_CHANNEL_RADAR: radar detection required 1875 * XXX cannot find this (DFS) flag in iwl-nvm-parse.c 1876 * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate 1877 * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 1878 * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 1879 * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 1880 * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 1881 */ 1882 enum iwm_nvm_channel_flags { 1883 IWM_NVM_CHANNEL_VALID = (1 << 0), 1884 IWM_NVM_CHANNEL_IBSS = (1 << 1), 1885 IWM_NVM_CHANNEL_ACTIVE = (1 << 3), 1886 IWM_NVM_CHANNEL_RADAR = (1 << 4), 1887 IWM_NVM_CHANNEL_DFS = (1 << 7), 1888 IWM_NVM_CHANNEL_WIDE = (1 << 8), 1889 IWM_NVM_CHANNEL_40MHZ = (1 << 9), 1890 IWM_NVM_CHANNEL_80MHZ = (1 << 10), 1891 IWM_NVM_CHANNEL_160MHZ = (1 << 11), 1892 }; 1893 1894 /* 1895 * Translate EEPROM flags to net80211. 1896 */ 1897 static uint32_t 1898 iwm_eeprom_channel_flags(uint16_t ch_flags) 1899 { 1900 uint32_t nflags; 1901 1902 nflags = 0; 1903 if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0) 1904 nflags |= IEEE80211_CHAN_PASSIVE; 1905 if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0) 1906 nflags |= IEEE80211_CHAN_NOADHOC; 1907 if (ch_flags & IWM_NVM_CHANNEL_RADAR) { 1908 nflags |= IEEE80211_CHAN_DFS; 1909 /* Just in case. */ 1910 nflags |= IEEE80211_CHAN_NOADHOC; 1911 } 1912 1913 return (nflags); 1914 } 1915 1916 static void 1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[], 1918 int maxchans, int *nchans, int ch_idx, size_t ch_num, 1919 const uint8_t bands[]) 1920 { 1921 const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags; 1922 uint32_t nflags; 1923 uint16_t ch_flags; 1924 uint8_t ieee; 1925 int error; 1926 1927 for (; ch_idx < ch_num; ch_idx++) { 1928 ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); 1929 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) 1930 ieee = iwm_nvm_channels[ch_idx]; 1931 else 1932 ieee = iwm_nvm_channels_8000[ch_idx]; 1933 1934 if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { 1935 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1936 "Ch. %d Flags %x [%sGHz] - No traffic\n", 1937 ieee, ch_flags, 1938 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1939 "5.2" : "2.4"); 1940 continue; 1941 } 1942 1943 nflags = iwm_eeprom_channel_flags(ch_flags); 1944 error = ieee80211_add_channel(chans, maxchans, nchans, 1945 ieee, 0, 0, nflags, bands); 1946 if (error != 0) 1947 break; 1948 1949 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1950 "Ch. %d Flags %x [%sGHz] - Added\n", 1951 ieee, ch_flags, 1952 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1953 "5.2" : "2.4"); 1954 } 1955 } 1956 1957 static void 1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans, 1959 struct ieee80211_channel chans[]) 1960 { 1961 struct iwm_softc *sc = ic->ic_softc; 1962 struct iwm_nvm_data *data = &sc->sc_nvm; 1963 uint8_t bands[IEEE80211_MODE_BYTES]; 1964 size_t ch_num; 1965 1966 memset(bands, 0, sizeof(bands)); 1967 /* 1-13: 11b/g channels. */ 1968 setbit(bands, IEEE80211_MODE_11B); 1969 setbit(bands, IEEE80211_MODE_11G); 1970 iwm_add_channel_band(sc, chans, maxchans, nchans, 0, 1971 IWM_NUM_2GHZ_CHANNELS - 1, bands); 1972 1973 /* 14: 11b channel only. */ 1974 clrbit(bands, IEEE80211_MODE_11G); 1975 iwm_add_channel_band(sc, chans, maxchans, nchans, 1976 IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands); 1977 1978 if (data->sku_cap_band_52GHz_enable) { 1979 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) 1980 ch_num = nitems(iwm_nvm_channels); 1981 else 1982 ch_num = nitems(iwm_nvm_channels_8000); 1983 memset(bands, 0, sizeof(bands)); 1984 setbit(bands, IEEE80211_MODE_11A); 1985 iwm_add_channel_band(sc, chans, maxchans, nchans, 1986 IWM_NUM_2GHZ_CHANNELS, ch_num, bands); 1987 } 1988 } 1989 1990 static void 1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, 1992 const uint16_t *mac_override, const uint16_t *nvm_hw) 1993 { 1994 const uint8_t *hw_addr; 1995 1996 if (mac_override) { 1997 static const uint8_t reserved_mac[] = { 1998 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 1999 }; 2000 2001 hw_addr = (const uint8_t *)(mac_override + 2002 IWM_MAC_ADDRESS_OVERRIDE_8000); 2003 2004 /* 2005 * Store the MAC address from MAO section. 2006 * No byte swapping is required in MAO section 2007 */ 2008 IEEE80211_ADDR_COPY(data->hw_addr, hw_addr); 2009 2010 /* 2011 * Force the use of the OTP MAC address in case of reserved MAC 2012 * address in the NVM, or if address is given but invalid. 2013 */ 2014 if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) && 2015 !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) && 2016 iwm_is_valid_ether_addr(data->hw_addr) && 2017 !IEEE80211_IS_MULTICAST(data->hw_addr)) 2018 return; 2019 2020 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2021 "%s: mac address from nvm override section invalid\n", 2022 __func__); 2023 } 2024 2025 if (nvm_hw) { 2026 /* read the mac address from WFMP registers */ 2027 uint32_t mac_addr0 = 2028 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); 2029 uint32_t mac_addr1 = 2030 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); 2031 2032 hw_addr = (const uint8_t *)&mac_addr0; 2033 data->hw_addr[0] = hw_addr[3]; 2034 data->hw_addr[1] = hw_addr[2]; 2035 data->hw_addr[2] = hw_addr[1]; 2036 data->hw_addr[3] = hw_addr[0]; 2037 2038 hw_addr = (const uint8_t *)&mac_addr1; 2039 data->hw_addr[4] = hw_addr[1]; 2040 data->hw_addr[5] = hw_addr[0]; 2041 2042 return; 2043 } 2044 2045 device_printf(sc->sc_dev, "%s: mac address not found\n", __func__); 2046 memset(data->hw_addr, 0, sizeof(data->hw_addr)); 2047 } 2048 2049 static int 2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2051 const uint16_t *phy_sku) 2052 { 2053 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) 2054 return le16_to_cpup(nvm_sw + IWM_SKU); 2055 2056 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000)); 2057 } 2058 2059 static int 2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2061 { 2062 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) 2063 return le16_to_cpup(nvm_sw + IWM_NVM_VERSION); 2064 else 2065 return le32_to_cpup((const uint32_t *)(nvm_sw + 2066 IWM_NVM_VERSION_8000)); 2067 } 2068 2069 static int 2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2071 const uint16_t *phy_sku) 2072 { 2073 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) 2074 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG); 2075 2076 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000)); 2077 } 2078 2079 static int 2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2081 { 2082 int n_hw_addr; 2083 2084 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) 2085 return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); 2086 2087 n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000)); 2088 2089 return n_hw_addr & IWM_N_HW_ADDR_MASK; 2090 } 2091 2092 static void 2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data, 2094 uint32_t radio_cfg) 2095 { 2096 if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) { 2097 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); 2098 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); 2099 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); 2100 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); 2101 return; 2102 } 2103 2104 /* set the radio configuration for family 8000 */ 2105 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); 2106 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); 2107 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); 2108 data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg); 2109 data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); 2110 data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); 2111 } 2112 2113 static int 2114 iwm_parse_nvm_data(struct iwm_softc *sc, 2115 const uint16_t *nvm_hw, const uint16_t *nvm_sw, 2116 const uint16_t *nvm_calib, const uint16_t *mac_override, 2117 const uint16_t *phy_sku, const uint16_t *regulatory) 2118 { 2119 struct iwm_nvm_data *data = &sc->sc_nvm; 2120 uint8_t hw_addr[IEEE80211_ADDR_LEN]; 2121 uint32_t sku, radio_cfg; 2122 2123 data->nvm_version = iwm_get_nvm_version(sc, nvm_sw); 2124 2125 radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku); 2126 iwm_set_radio_cfg(sc, data, radio_cfg); 2127 2128 sku = iwm_get_sku(sc, nvm_sw, phy_sku); 2129 data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; 2130 data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; 2131 data->sku_cap_11n_enable = 0; 2132 2133 data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw); 2134 2135 /* The byte order is little endian 16 bit, meaning 214365 */ 2136 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { 2137 IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR); 2138 data->hw_addr[0] = hw_addr[1]; 2139 data->hw_addr[1] = hw_addr[0]; 2140 data->hw_addr[2] = hw_addr[3]; 2141 data->hw_addr[3] = hw_addr[2]; 2142 data->hw_addr[4] = hw_addr[5]; 2143 data->hw_addr[5] = hw_addr[4]; 2144 } else { 2145 iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw); 2146 } 2147 2148 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { 2149 memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS], 2150 IWM_NUM_CHANNELS * sizeof(uint16_t)); 2151 } else { 2152 memcpy(data->nvm_ch_flags, ®ulatory[IWM_NVM_CHANNELS_8000], 2153 IWM_NUM_CHANNELS_8000 * sizeof(uint16_t)); 2154 } 2155 2156 return 0; 2157 } 2158 2159 /* 2160 * END NVM PARSE 2161 */ 2162 2163 static int 2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) 2165 { 2166 const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku; 2167 2168 /* Checking for required sections */ 2169 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { 2170 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2171 !sections[IWM_NVM_SECTION_TYPE_HW].data) { 2172 device_printf(sc->sc_dev, 2173 "Can't parse empty OTP/NVM sections\n"); 2174 return ENOENT; 2175 } 2176 2177 hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data; 2178 } else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { 2179 /* SW and REGULATORY sections are mandatory */ 2180 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2181 !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { 2182 device_printf(sc->sc_dev, 2183 "Can't parse empty OTP/NVM sections\n"); 2184 return ENOENT; 2185 } 2186 /* MAC_OVERRIDE or at least HW section must exist */ 2187 if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data && 2188 !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { 2189 device_printf(sc->sc_dev, 2190 "Can't parse mac_address, empty sections\n"); 2191 return ENOENT; 2192 } 2193 2194 /* PHY_SKU section is mandatory in B0 */ 2195 if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { 2196 device_printf(sc->sc_dev, 2197 "Can't parse phy_sku in B0, empty sections\n"); 2198 return ENOENT; 2199 } 2200 2201 hw = (const uint16_t *) 2202 sections[IWM_NVM_SECTION_TYPE_HW_8000].data; 2203 } else { 2204 panic("unknown device family %d\n", sc->sc_device_family); 2205 } 2206 2207 sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; 2208 calib = (const uint16_t *) 2209 sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; 2210 regulatory = (const uint16_t *) 2211 sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; 2212 mac_override = (const uint16_t *) 2213 sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; 2214 phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; 2215 2216 return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, 2217 phy_sku, regulatory); 2218 } 2219 2220 static int 2221 iwm_nvm_init(struct iwm_softc *sc) 2222 { 2223 struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; 2224 int i, section, error; 2225 uint16_t len; 2226 uint8_t *buf; 2227 const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE; 2228 2229 memset(nvm_sections, 0 , sizeof(nvm_sections)); 2230 2231 buf = malloc(bufsz, M_DEVBUF, M_NOWAIT); 2232 if (buf == NULL) 2233 return ENOMEM; 2234 2235 for (i = 0; i < nitems(nvm_to_read); i++) { 2236 section = nvm_to_read[i]; 2237 KASSERT(section <= nitems(nvm_sections), 2238 ("too many sections")); 2239 2240 error = iwm_nvm_read_section(sc, section, buf, &len, bufsz); 2241 if (error) { 2242 error = 0; 2243 continue; 2244 } 2245 nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT); 2246 if (nvm_sections[section].data == NULL) { 2247 error = ENOMEM; 2248 break; 2249 } 2250 memcpy(nvm_sections[section].data, buf, len); 2251 nvm_sections[section].length = len; 2252 } 2253 free(buf, M_DEVBUF); 2254 if (error == 0) 2255 error = iwm_parse_nvm_sections(sc, nvm_sections); 2256 2257 for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) { 2258 if (nvm_sections[i].data != NULL) 2259 free(nvm_sections[i].data, M_DEVBUF); 2260 } 2261 2262 return error; 2263 } 2264 2265 /* 2266 * Firmware loading gunk. This is kind of a weird hybrid between the 2267 * iwn driver and the Linux iwlwifi driver. 2268 */ 2269 2270 static int 2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr, 2272 const uint8_t *section, uint32_t byte_cnt) 2273 { 2274 int error = EINVAL; 2275 uint32_t chunk_sz, offset; 2276 2277 chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt); 2278 2279 for (offset = 0; offset < byte_cnt; offset += chunk_sz) { 2280 uint32_t addr, len; 2281 const uint8_t *data; 2282 2283 addr = dst_addr + offset; 2284 len = MIN(chunk_sz, byte_cnt - offset); 2285 data = section + offset; 2286 2287 error = iwm_firmware_load_chunk(sc, addr, data, len); 2288 if (error) 2289 break; 2290 } 2291 2292 return error; 2293 } 2294 2295 static int 2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr, 2297 const uint8_t *chunk, uint32_t byte_cnt) 2298 { 2299 struct iwm_dma_info *dma = &sc->fw_dma; 2300 int error; 2301 2302 /* Copy firmware chunk into pre-allocated DMA-safe memory. */ 2303 memcpy(dma->vaddr, chunk, byte_cnt); 2304 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 2305 2306 if (dst_addr >= IWM_FW_MEM_EXTENDED_START && 2307 dst_addr <= IWM_FW_MEM_EXTENDED_END) { 2308 iwm_set_bits_prph(sc, IWM_LMPM_CHICK, 2309 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2310 } 2311 2312 sc->sc_fw_chunk_done = 0; 2313 2314 if (!iwm_nic_lock(sc)) 2315 return EBUSY; 2316 2317 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2318 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); 2319 IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), 2320 dst_addr); 2321 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), 2322 dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); 2323 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), 2324 (iwm_get_dma_hi_addr(dma->paddr) 2325 << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); 2326 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 2327 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 2328 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | 2329 IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); 2330 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2331 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 2332 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | 2333 IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); 2334 2335 iwm_nic_unlock(sc); 2336 2337 /* wait 1s for this segment to load */ 2338 while (!sc->sc_fw_chunk_done) 2339 if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0) 2340 break; 2341 2342 if (!sc->sc_fw_chunk_done) { 2343 device_printf(sc->sc_dev, 2344 "fw chunk addr 0x%x len %d failed to load\n", 2345 dst_addr, byte_cnt); 2346 } 2347 2348 if (dst_addr >= IWM_FW_MEM_EXTENDED_START && 2349 dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) { 2350 iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, 2351 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2352 iwm_nic_unlock(sc); 2353 } 2354 2355 return error; 2356 } 2357 2358 int 2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws, 2360 int cpu, int *first_ucode_section) 2361 { 2362 int shift_param; 2363 int i, error = 0, sec_num = 0x1; 2364 uint32_t val, last_read_idx = 0; 2365 const void *data; 2366 uint32_t dlen; 2367 uint32_t offset; 2368 2369 if (cpu == 1) { 2370 shift_param = 0; 2371 *first_ucode_section = 0; 2372 } else { 2373 shift_param = 16; 2374 (*first_ucode_section)++; 2375 } 2376 2377 for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) { 2378 last_read_idx = i; 2379 data = fws->fw_sect[i].fws_data; 2380 dlen = fws->fw_sect[i].fws_len; 2381 offset = fws->fw_sect[i].fws_devoff; 2382 2383 /* 2384 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between 2385 * CPU1 to CPU2. 2386 * PAGING_SEPARATOR_SECTION delimiter - separate between 2387 * CPU2 non paged to CPU2 paging sec. 2388 */ 2389 if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || 2390 offset == IWM_PAGING_SEPARATOR_SECTION) 2391 break; 2392 2393 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2394 "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n", 2395 i, offset, dlen, cpu); 2396 2397 if (dlen > sc->sc_fwdmasegsz) { 2398 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2399 "chunk %d too large (%d bytes)\n", i, dlen); 2400 error = EFBIG; 2401 } else { 2402 error = iwm_firmware_load_sect(sc, offset, data, dlen); 2403 } 2404 if (error) { 2405 device_printf(sc->sc_dev, 2406 "could not load firmware chunk %d (error %d)\n", 2407 i, error); 2408 return error; 2409 } 2410 2411 /* Notify the ucode of the loaded section number and status */ 2412 if (iwm_nic_lock(sc)) { 2413 val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); 2414 val = val | (sec_num << shift_param); 2415 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); 2416 sec_num = (sec_num << 1) | 0x1; 2417 iwm_nic_unlock(sc); 2418 2419 /* 2420 * The firmware won't load correctly without this delay. 2421 */ 2422 DELAY(8000); 2423 } 2424 } 2425 2426 *first_ucode_section = last_read_idx; 2427 2428 if (iwm_nic_lock(sc)) { 2429 if (cpu == 1) 2430 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); 2431 else 2432 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); 2433 iwm_nic_unlock(sc); 2434 } 2435 2436 return 0; 2437 } 2438 2439 int 2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 2441 { 2442 struct iwm_fw_sects *fws; 2443 int error = 0; 2444 int first_ucode_section; 2445 2446 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n", 2447 ucode_type); 2448 2449 fws = &sc->sc_fw.fw_sects[ucode_type]; 2450 2451 /* configure the ucode to be ready to get the secured image */ 2452 /* release CPU reset */ 2453 iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT); 2454 2455 /* load to FW the binary Secured sections of CPU1 */ 2456 error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section); 2457 if (error) 2458 return error; 2459 2460 /* load to FW the binary sections of CPU2 */ 2461 return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section); 2462 } 2463 2464 static int 2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 2466 { 2467 struct iwm_fw_sects *fws; 2468 int error, i; 2469 const void *data; 2470 uint32_t dlen; 2471 uint32_t offset; 2472 2473 sc->sc_uc.uc_intr = 0; 2474 2475 fws = &sc->sc_fw.fw_sects[ucode_type]; 2476 for (i = 0; i < fws->fw_count; i++) { 2477 data = fws->fw_sect[i].fws_data; 2478 dlen = fws->fw_sect[i].fws_len; 2479 offset = fws->fw_sect[i].fws_devoff; 2480 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 2481 "LOAD FIRMWARE type %d offset %u len %d\n", 2482 ucode_type, offset, dlen); 2483 if (dlen > sc->sc_fwdmasegsz) { 2484 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 2485 "chunk %d too large (%d bytes)\n", i, dlen); 2486 error = EFBIG; 2487 } else { 2488 error = iwm_firmware_load_sect(sc, offset, data, dlen); 2489 } 2490 if (error) { 2491 device_printf(sc->sc_dev, 2492 "could not load firmware chunk %u of %u " 2493 "(error=%d)\n", i, fws->fw_count, error); 2494 return error; 2495 } 2496 } 2497 2498 IWM_WRITE(sc, IWM_CSR_RESET, 0); 2499 2500 return 0; 2501 } 2502 2503 static int 2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 2505 { 2506 int error, w; 2507 2508 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) 2509 error = iwm_load_firmware_8000(sc, ucode_type); 2510 else 2511 error = iwm_load_firmware_7000(sc, ucode_type); 2512 if (error) 2513 return error; 2514 2515 /* wait for the firmware to load */ 2516 for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) { 2517 error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10); 2518 } 2519 if (error || !sc->sc_uc.uc_ok) { 2520 device_printf(sc->sc_dev, "could not load firmware\n"); 2521 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { 2522 device_printf(sc->sc_dev, "cpu1 status: 0x%x\n", 2523 iwm_read_prph(sc, IWM_SB_CPU_1_STATUS)); 2524 device_printf(sc->sc_dev, "cpu2 status: 0x%x\n", 2525 iwm_read_prph(sc, IWM_SB_CPU_2_STATUS)); 2526 } 2527 } 2528 2529 /* 2530 * Give the firmware some time to initialize. 2531 * Accessing it too early causes errors. 2532 */ 2533 msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz); 2534 2535 return error; 2536 } 2537 2538 /* iwlwifi: pcie/trans.c */ 2539 static int 2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 2541 { 2542 int error; 2543 2544 IWM_WRITE(sc, IWM_CSR_INT, ~0); 2545 2546 if ((error = iwm_nic_init(sc)) != 0) { 2547 device_printf(sc->sc_dev, "unable to init nic\n"); 2548 return error; 2549 } 2550 2551 /* make sure rfkill handshake bits are cleared */ 2552 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2553 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, 2554 IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); 2555 2556 /* clear (again), then enable host interrupts */ 2557 IWM_WRITE(sc, IWM_CSR_INT, ~0); 2558 iwm_enable_interrupts(sc); 2559 2560 /* really make sure rfkill handshake bits are cleared */ 2561 /* maybe we should write a few times more? just to make sure */ 2562 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2563 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2564 2565 /* Load the given image to the HW */ 2566 return iwm_load_firmware(sc, ucode_type); 2567 } 2568 2569 static int 2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) 2571 { 2572 struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { 2573 .valid = htole32(valid_tx_ant), 2574 }; 2575 2576 return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 2577 IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); 2578 } 2579 2580 /* iwlwifi: mvm/fw.c */ 2581 static int 2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc) 2583 { 2584 struct iwm_phy_cfg_cmd phy_cfg_cmd; 2585 enum iwm_ucode_type ucode_type = sc->sc_uc_current; 2586 2587 /* Set parameters */ 2588 phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config); 2589 phy_cfg_cmd.calib_control.event_trigger = 2590 sc->sc_default_calib[ucode_type].event_trigger; 2591 phy_cfg_cmd.calib_control.flow_trigger = 2592 sc->sc_default_calib[ucode_type].flow_trigger; 2593 2594 IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, 2595 "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); 2596 return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, 2597 sizeof(phy_cfg_cmd), &phy_cfg_cmd); 2598 } 2599 2600 static int 2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc, 2602 enum iwm_ucode_type ucode_type) 2603 { 2604 enum iwm_ucode_type old_type = sc->sc_uc_current; 2605 int error; 2606 2607 if ((error = iwm_read_firmware(sc, ucode_type)) != 0) { 2608 device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n", 2609 error); 2610 return error; 2611 } 2612 2613 sc->sc_uc_current = ucode_type; 2614 error = iwm_start_fw(sc, ucode_type); 2615 if (error) { 2616 device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error); 2617 sc->sc_uc_current = old_type; 2618 return error; 2619 } 2620 2621 error = iwm_post_alive(sc); 2622 if (error) { 2623 device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error); 2624 } 2625 return error; 2626 } 2627 2628 /* 2629 * mvm misc bits 2630 */ 2631 2632 /* 2633 * follows iwlwifi/fw.c 2634 */ 2635 static int 2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm) 2637 { 2638 int error; 2639 2640 /* do not operate with rfkill switch turned on */ 2641 if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { 2642 device_printf(sc->sc_dev, 2643 "radio is disabled by hardware switch\n"); 2644 return EPERM; 2645 } 2646 2647 sc->sc_init_complete = 0; 2648 if ((error = iwm_mvm_load_ucode_wait_alive(sc, 2649 IWM_UCODE_TYPE_INIT)) != 0) { 2650 device_printf(sc->sc_dev, "failed to load init firmware\n"); 2651 return error; 2652 } 2653 2654 if (justnvm) { 2655 if ((error = iwm_nvm_init(sc)) != 0) { 2656 device_printf(sc->sc_dev, "failed to read nvm\n"); 2657 return error; 2658 } 2659 IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr); 2660 2661 return 0; 2662 } 2663 2664 if ((error = iwm_send_bt_init_conf(sc)) != 0) { 2665 device_printf(sc->sc_dev, 2666 "failed to send bt coex configuration: %d\n", error); 2667 return error; 2668 } 2669 2670 /* Init Smart FIFO. */ 2671 error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF); 2672 if (error != 0) 2673 return error; 2674 2675 /* Send TX valid antennas before triggering calibrations */ 2676 if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) { 2677 device_printf(sc->sc_dev, 2678 "failed to send antennas before calibration: %d\n", error); 2679 return error; 2680 } 2681 2682 /* 2683 * Send phy configurations command to init uCode 2684 * to start the 16.0 uCode init image internal calibrations. 2685 */ 2686 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) { 2687 device_printf(sc->sc_dev, 2688 "%s: failed to run internal calibration: %d\n", 2689 __func__, error); 2690 return error; 2691 } 2692 2693 /* 2694 * Nothing to do but wait for the init complete notification 2695 * from the firmware 2696 */ 2697 while (!sc->sc_init_complete) { 2698 error = msleep(&sc->sc_init_complete, &sc->sc_mtx, 2699 0, "iwminit", 2*hz); 2700 if (error) { 2701 device_printf(sc->sc_dev, "init complete failed: %d\n", 2702 sc->sc_init_complete); 2703 break; 2704 } 2705 } 2706 2707 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n", 2708 sc->sc_init_complete ? "" : "not "); 2709 2710 return error; 2711 } 2712 2713 /* 2714 * receive side 2715 */ 2716 2717 /* (re)stock rx ring, called at init-time and at runtime */ 2718 static int 2719 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) 2720 { 2721 struct iwm_rx_ring *ring = &sc->rxq; 2722 struct iwm_rx_data *data = &ring->data[idx]; 2723 struct mbuf *m; 2724 bus_dmamap_t dmamap = NULL; 2725 bus_dma_segment_t seg; 2726 int nsegs, error; 2727 2728 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); 2729 if (m == NULL) 2730 return ENOBUFS; 2731 2732 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 2733 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m, 2734 &seg, &nsegs, BUS_DMA_NOWAIT); 2735 if (error != 0) { 2736 device_printf(sc->sc_dev, 2737 "%s: can't map mbuf, error %d\n", __func__, error); 2738 goto fail; 2739 } 2740 2741 if (data->m != NULL) 2742 bus_dmamap_unload(ring->data_dmat, data->map); 2743 2744 /* Swap ring->spare_map with data->map */ 2745 dmamap = data->map; 2746 data->map = ring->spare_map; 2747 ring->spare_map = dmamap; 2748 2749 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); 2750 data->m = m; 2751 2752 /* Update RX descriptor. */ 2753 KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned")); 2754 ring->desc[idx] = htole32(seg.ds_addr >> 8); 2755 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2756 BUS_DMASYNC_PREWRITE); 2757 2758 return 0; 2759 fail: 2760 m_freem(m); 2761 return error; 2762 } 2763 2764 /* iwlwifi: mvm/rx.c */ 2765 #define IWM_RSSI_OFFSET 50 2766 static int 2767 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) 2768 { 2769 int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm; 2770 uint32_t agc_a, agc_b; 2771 uint32_t val; 2772 2773 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]); 2774 agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS; 2775 agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS; 2776 2777 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]); 2778 rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS; 2779 rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS; 2780 2781 /* 2782 * dBm = rssi dB - agc dB - constant. 2783 * Higher AGC (higher radio gain) means lower signal. 2784 */ 2785 rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a; 2786 rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b; 2787 max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm); 2788 2789 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2790 "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n", 2791 rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b); 2792 2793 return max_rssi_dbm; 2794 } 2795 2796 /* iwlwifi: mvm/rx.c */ 2797 /* 2798 * iwm_mvm_get_signal_strength - use new rx PHY INFO API 2799 * values are reported by the fw as positive values - need to negate 2800 * to obtain their dBM. Account for missing antennas by replacing 0 2801 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. 2802 */ 2803 static int 2804 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) 2805 { 2806 int energy_a, energy_b, energy_c, max_energy; 2807 uint32_t val; 2808 2809 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); 2810 energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> 2811 IWM_RX_INFO_ENERGY_ANT_A_POS; 2812 energy_a = energy_a ? -energy_a : -256; 2813 energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> 2814 IWM_RX_INFO_ENERGY_ANT_B_POS; 2815 energy_b = energy_b ? -energy_b : -256; 2816 energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> 2817 IWM_RX_INFO_ENERGY_ANT_C_POS; 2818 energy_c = energy_c ? -energy_c : -256; 2819 max_energy = MAX(energy_a, energy_b); 2820 max_energy = MAX(max_energy, energy_c); 2821 2822 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2823 "energy In A %d B %d C %d , and max %d\n", 2824 energy_a, energy_b, energy_c, max_energy); 2825 2826 return max_energy; 2827 } 2828 2829 static void 2830 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, 2831 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 2832 { 2833 struct iwm_rx_phy_info *phy_info = (void *)pkt->data; 2834 2835 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); 2836 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2837 2838 memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); 2839 } 2840 2841 /* 2842 * Retrieve the average noise (in dBm) among receivers. 2843 */ 2844 static int 2845 iwm_get_noise(struct iwm_softc *sc, 2846 const struct iwm_mvm_statistics_rx_non_phy *stats) 2847 { 2848 int i, total, nbant, noise; 2849 2850 total = nbant = noise = 0; 2851 for (i = 0; i < 3; i++) { 2852 noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; 2853 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n", 2854 __func__, 2855 i, 2856 noise); 2857 2858 if (noise) { 2859 total += noise; 2860 nbant++; 2861 } 2862 } 2863 2864 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n", 2865 __func__, nbant, total); 2866 #if 0 2867 /* There should be at least one antenna but check anyway. */ 2868 return (nbant == 0) ? -127 : (total / nbant) - 107; 2869 #else 2870 /* For now, just hard-code it to -96 to be safe */ 2871 return (-96); 2872 #endif 2873 } 2874 2875 /* 2876 * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler 2877 * 2878 * Handles the actual data of the Rx packet from the fw 2879 */ 2880 static void 2881 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, 2882 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 2883 { 2884 struct ieee80211com *ic = &sc->sc_ic; 2885 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2886 struct ieee80211_frame *wh; 2887 struct ieee80211_node *ni; 2888 struct ieee80211_rx_stats rxs; 2889 struct mbuf *m; 2890 struct iwm_rx_phy_info *phy_info; 2891 struct iwm_rx_mpdu_res_start *rx_res; 2892 uint32_t len; 2893 uint32_t rx_pkt_status; 2894 int rssi; 2895 2896 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2897 2898 phy_info = &sc->sc_last_phy_info; 2899 rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; 2900 wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); 2901 len = le16toh(rx_res->byte_count); 2902 rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); 2903 2904 m = data->m; 2905 m->m_data = pkt->data + sizeof(*rx_res); 2906 m->m_pkthdr.len = m->m_len = len; 2907 2908 if (__predict_false(phy_info->cfg_phy_cnt > 20)) { 2909 device_printf(sc->sc_dev, 2910 "dsp size out of range [0,20]: %d\n", 2911 phy_info->cfg_phy_cnt); 2912 return; 2913 } 2914 2915 if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || 2916 !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { 2917 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2918 "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); 2919 return; /* drop */ 2920 } 2921 2922 if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) { 2923 rssi = iwm_mvm_get_signal_strength(sc, phy_info); 2924 } else { 2925 rssi = iwm_mvm_calc_rssi(sc, phy_info); 2926 } 2927 2928 /* Note: RSSI is absolute (ie a -ve value) */ 2929 if (rssi < IWM_MIN_DBM) 2930 rssi = IWM_MIN_DBM; 2931 else if (rssi > IWM_MAX_DBM) 2932 rssi = IWM_MAX_DBM; 2933 2934 /* Map it to relative value */ 2935 rssi = rssi - sc->sc_noise; 2936 2937 /* replenish ring for the buffer we're going to feed to the sharks */ 2938 if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 2939 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 2940 __func__); 2941 return; 2942 } 2943 2944 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2945 "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); 2946 2947 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2948 2949 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2950 "%s: phy_info: channel=%d, flags=0x%08x\n", 2951 __func__, 2952 le16toh(phy_info->channel), 2953 le16toh(phy_info->phy_flags)); 2954 2955 /* 2956 * Populate an RX state struct with the provided information. 2957 */ 2958 bzero(&rxs, sizeof(rxs)); 2959 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 2960 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 2961 rxs.c_ieee = le16toh(phy_info->channel); 2962 if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { 2963 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); 2964 } else { 2965 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); 2966 } 2967 2968 /* rssi is in 1/2db units */ 2969 rxs.rssi = rssi * 2; 2970 rxs.nf = sc->sc_noise; 2971 2972 if (ieee80211_radiotap_active_vap(vap)) { 2973 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 2974 2975 tap->wr_flags = 0; 2976 if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) 2977 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2978 tap->wr_chan_freq = htole16(rxs.c_freq); 2979 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 2980 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 2981 tap->wr_dbm_antsignal = (int8_t)rssi; 2982 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 2983 tap->wr_tsft = phy_info->system_timestamp; 2984 switch (phy_info->rate) { 2985 /* CCK rates. */ 2986 case 10: tap->wr_rate = 2; break; 2987 case 20: tap->wr_rate = 4; break; 2988 case 55: tap->wr_rate = 11; break; 2989 case 110: tap->wr_rate = 22; break; 2990 /* OFDM rates. */ 2991 case 0xd: tap->wr_rate = 12; break; 2992 case 0xf: tap->wr_rate = 18; break; 2993 case 0x5: tap->wr_rate = 24; break; 2994 case 0x7: tap->wr_rate = 36; break; 2995 case 0x9: tap->wr_rate = 48; break; 2996 case 0xb: tap->wr_rate = 72; break; 2997 case 0x1: tap->wr_rate = 96; break; 2998 case 0x3: tap->wr_rate = 108; break; 2999 /* Unknown rate: should not happen. */ 3000 default: tap->wr_rate = 0; 3001 } 3002 } 3003 3004 IWM_UNLOCK(sc); 3005 if (ni != NULL) { 3006 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); 3007 ieee80211_input_mimo(ni, m, &rxs); 3008 ieee80211_free_node(ni); 3009 } else { 3010 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); 3011 ieee80211_input_mimo_all(ic, m, &rxs); 3012 } 3013 IWM_LOCK(sc); 3014 } 3015 3016 static int 3017 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, 3018 struct iwm_node *in) 3019 { 3020 struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data; 3021 struct ieee80211_node *ni = &in->in_ni; 3022 struct ieee80211vap *vap = ni->ni_vap; 3023 int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; 3024 int failack = tx_resp->failure_frame; 3025 3026 KASSERT(tx_resp->frame_count == 1, ("too many frames")); 3027 3028 /* Update rate control statistics. */ 3029 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", 3030 __func__, 3031 (int) le16toh(tx_resp->status.status), 3032 (int) le16toh(tx_resp->status.sequence), 3033 tx_resp->frame_count, 3034 tx_resp->bt_kill_count, 3035 tx_resp->failure_rts, 3036 tx_resp->failure_frame, 3037 le32toh(tx_resp->initial_rate), 3038 (int) le16toh(tx_resp->wireless_media_time)); 3039 3040 if (status != IWM_TX_STATUS_SUCCESS && 3041 status != IWM_TX_STATUS_DIRECT_DONE) { 3042 ieee80211_ratectl_tx_complete(vap, ni, 3043 IEEE80211_RATECTL_TX_FAILURE, &failack, NULL); 3044 return (1); 3045 } else { 3046 ieee80211_ratectl_tx_complete(vap, ni, 3047 IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL); 3048 return (0); 3049 } 3050 } 3051 3052 static void 3053 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, 3054 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 3055 { 3056 struct iwm_cmd_header *cmd_hdr = &pkt->hdr; 3057 int idx = cmd_hdr->idx; 3058 int qid = cmd_hdr->qid; 3059 struct iwm_tx_ring *ring = &sc->txq[qid]; 3060 struct iwm_tx_data *txd = &ring->data[idx]; 3061 struct iwm_node *in = txd->in; 3062 struct mbuf *m = txd->m; 3063 int status; 3064 3065 KASSERT(txd->done == 0, ("txd not done")); 3066 KASSERT(txd->in != NULL, ("txd without node")); 3067 KASSERT(txd->m != NULL, ("txd without mbuf")); 3068 3069 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3070 3071 sc->sc_tx_timer = 0; 3072 3073 status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in); 3074 3075 /* Unmap and free mbuf. */ 3076 bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); 3077 bus_dmamap_unload(ring->data_dmat, txd->map); 3078 3079 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3080 "free txd %p, in %p\n", txd, txd->in); 3081 txd->done = 1; 3082 txd->m = NULL; 3083 txd->in = NULL; 3084 3085 ieee80211_tx_complete(&in->in_ni, m, status); 3086 3087 if (--ring->queued < IWM_TX_RING_LOMARK) { 3088 sc->qfullmsk &= ~(1 << ring->qid); 3089 if (sc->qfullmsk == 0) { 3090 /* 3091 * Well, we're in interrupt context, but then again 3092 * I guess net80211 does all sorts of stunts in 3093 * interrupt context, so maybe this is no biggie. 3094 */ 3095 iwm_start(sc); 3096 } 3097 } 3098 } 3099 3100 /* 3101 * transmit side 3102 */ 3103 3104 /* 3105 * Process a "command done" firmware notification. This is where we wakeup 3106 * processes waiting for a synchronous command completion. 3107 * from if_iwn 3108 */ 3109 static void 3110 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3111 { 3112 struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE]; 3113 struct iwm_tx_data *data; 3114 3115 if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) { 3116 return; /* Not a command ack. */ 3117 } 3118 3119 /* XXX wide commands? */ 3120 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 3121 "cmd notification type 0x%x qid %d idx %d\n", 3122 pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx); 3123 3124 data = &ring->data[pkt->hdr.idx]; 3125 3126 /* If the command was mapped in an mbuf, free it. */ 3127 if (data->m != NULL) { 3128 bus_dmamap_sync(ring->data_dmat, data->map, 3129 BUS_DMASYNC_POSTWRITE); 3130 bus_dmamap_unload(ring->data_dmat, data->map); 3131 m_freem(data->m); 3132 data->m = NULL; 3133 } 3134 wakeup(&ring->desc[pkt->hdr.idx]); 3135 } 3136 3137 #if 0 3138 /* 3139 * necessary only for block ack mode 3140 */ 3141 void 3142 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, 3143 uint16_t len) 3144 { 3145 struct iwm_agn_scd_bc_tbl *scd_bc_tbl; 3146 uint16_t w_val; 3147 3148 scd_bc_tbl = sc->sched_dma.vaddr; 3149 3150 len += 8; /* magic numbers came naturally from paris */ 3151 if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE) 3152 len = roundup(len, 4) / 4; 3153 3154 w_val = htole16(sta_id << 12 | len); 3155 3156 /* Update TX scheduler. */ 3157 scd_bc_tbl[qid].tfd_offset[idx] = w_val; 3158 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3159 BUS_DMASYNC_PREWRITE); 3160 3161 /* I really wonder what this is ?!? */ 3162 if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { 3163 scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; 3164 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3165 BUS_DMASYNC_PREWRITE); 3166 } 3167 } 3168 #endif 3169 3170 /* 3171 * Take an 802.11 (non-n) rate, find the relevant rate 3172 * table entry. return the index into in_ridx[]. 3173 * 3174 * The caller then uses that index back into in_ridx 3175 * to figure out the rate index programmed /into/ 3176 * the firmware for this given node. 3177 */ 3178 static int 3179 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in, 3180 uint8_t rate) 3181 { 3182 int i; 3183 uint8_t r; 3184 3185 for (i = 0; i < nitems(in->in_ridx); i++) { 3186 r = iwm_rates[in->in_ridx[i]].rate; 3187 if (rate == r) 3188 return (i); 3189 } 3190 /* XXX Return the first */ 3191 /* XXX TODO: have it return the /lowest/ */ 3192 return (0); 3193 } 3194 3195 /* 3196 * Fill in the rate related information for a transmit command. 3197 */ 3198 static const struct iwm_rate * 3199 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, 3200 struct ieee80211_frame *wh, struct iwm_tx_cmd *tx) 3201 { 3202 struct ieee80211com *ic = &sc->sc_ic; 3203 struct ieee80211_node *ni = &in->in_ni; 3204 const struct iwm_rate *rinfo; 3205 int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3206 int ridx, rate_flags; 3207 3208 tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; 3209 tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; 3210 3211 /* 3212 * XXX TODO: everything about the rate selection here is terrible! 3213 */ 3214 3215 if (type == IEEE80211_FC0_TYPE_DATA) { 3216 int i; 3217 /* for data frames, use RS table */ 3218 (void) ieee80211_ratectl_rate(ni, NULL, 0); 3219 i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate); 3220 ridx = in->in_ridx[i]; 3221 3222 /* This is the index into the programmed table */ 3223 tx->initial_rate_index = i; 3224 tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); 3225 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 3226 "%s: start with i=%d, txrate %d\n", 3227 __func__, i, iwm_rates[ridx].rate); 3228 } else { 3229 /* 3230 * For non-data, use the lowest supported rate for the given 3231 * operational mode. 3232 * 3233 * Note: there may not be any rate control information available. 3234 * This driver currently assumes if we're transmitting data 3235 * frames, use the rate control table. Grr. 3236 * 3237 * XXX TODO: use the configured rate for the traffic type! 3238 * XXX TODO: this should be per-vap, not curmode; as we later 3239 * on we'll want to handle off-channel stuff (eg TDLS). 3240 */ 3241 if (ic->ic_curmode == IEEE80211_MODE_11A) { 3242 /* 3243 * XXX this assumes the mode is either 11a or not 11a; 3244 * definitely won't work for 11n. 3245 */ 3246 ridx = IWM_RIDX_OFDM; 3247 } else { 3248 ridx = IWM_RIDX_CCK; 3249 } 3250 } 3251 3252 rinfo = &iwm_rates[ridx]; 3253 3254 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", 3255 __func__, ridx, 3256 rinfo->rate, 3257 !! (IWM_RIDX_IS_CCK(ridx)) 3258 ); 3259 3260 /* XXX TODO: hard-coded TX antenna? */ 3261 rate_flags = 1 << IWM_RATE_MCS_ANT_POS; 3262 if (IWM_RIDX_IS_CCK(ridx)) 3263 rate_flags |= IWM_RATE_MCS_CCK_MSK; 3264 tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); 3265 3266 return rinfo; 3267 } 3268 3269 #define TB0_SIZE 16 3270 static int 3271 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 3272 { 3273 struct ieee80211com *ic = &sc->sc_ic; 3274 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3275 struct iwm_node *in = IWM_NODE(ni); 3276 struct iwm_tx_ring *ring; 3277 struct iwm_tx_data *data; 3278 struct iwm_tfd *desc; 3279 struct iwm_device_cmd *cmd; 3280 struct iwm_tx_cmd *tx; 3281 struct ieee80211_frame *wh; 3282 struct ieee80211_key *k = NULL; 3283 struct mbuf *m1; 3284 const struct iwm_rate *rinfo; 3285 uint32_t flags; 3286 u_int hdrlen; 3287 bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; 3288 int nsegs; 3289 uint8_t tid, type; 3290 int i, totlen, error, pad; 3291 3292 wh = mtod(m, struct ieee80211_frame *); 3293 hdrlen = ieee80211_anyhdrsize(wh); 3294 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3295 tid = 0; 3296 ring = &sc->txq[ac]; 3297 desc = &ring->desc[ring->cur]; 3298 memset(desc, 0, sizeof(*desc)); 3299 data = &ring->data[ring->cur]; 3300 3301 /* Fill out iwm_tx_cmd to send to the firmware */ 3302 cmd = &ring->cmd[ring->cur]; 3303 cmd->hdr.code = IWM_TX_CMD; 3304 cmd->hdr.flags = 0; 3305 cmd->hdr.qid = ring->qid; 3306 cmd->hdr.idx = ring->cur; 3307 3308 tx = (void *)cmd->data; 3309 memset(tx, 0, sizeof(*tx)); 3310 3311 rinfo = iwm_tx_fill_cmd(sc, in, wh, tx); 3312 3313 /* Encrypt the frame if need be. */ 3314 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 3315 /* Retrieve key for TX && do software encryption. */ 3316 k = ieee80211_crypto_encap(ni, m); 3317 if (k == NULL) { 3318 m_freem(m); 3319 return (ENOBUFS); 3320 } 3321 /* 802.11 header may have moved. */ 3322 wh = mtod(m, struct ieee80211_frame *); 3323 } 3324 3325 if (ieee80211_radiotap_active_vap(vap)) { 3326 struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; 3327 3328 tap->wt_flags = 0; 3329 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3330 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3331 tap->wt_rate = rinfo->rate; 3332 if (k != NULL) 3333 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3334 ieee80211_radiotap_tx(vap, m); 3335 } 3336 3337 3338 totlen = m->m_pkthdr.len; 3339 3340 flags = 0; 3341 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3342 flags |= IWM_TX_CMD_FLG_ACK; 3343 } 3344 3345 if (type == IEEE80211_FC0_TYPE_DATA 3346 && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 3347 && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3348 flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; 3349 } 3350 3351 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3352 type != IEEE80211_FC0_TYPE_DATA) 3353 tx->sta_id = sc->sc_aux_sta.sta_id; 3354 else 3355 tx->sta_id = IWM_STATION_ID; 3356 3357 if (type == IEEE80211_FC0_TYPE_MGT) { 3358 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3359 3360 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3361 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 3362 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); 3363 } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) { 3364 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3365 } else { 3366 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); 3367 } 3368 } else { 3369 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3370 } 3371 3372 if (hdrlen & 3) { 3373 /* First segment length must be a multiple of 4. */ 3374 flags |= IWM_TX_CMD_FLG_MH_PAD; 3375 pad = 4 - (hdrlen & 3); 3376 } else 3377 pad = 0; 3378 3379 tx->driver_txop = 0; 3380 tx->next_frame_len = 0; 3381 3382 tx->len = htole16(totlen); 3383 tx->tid_tspec = tid; 3384 tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); 3385 3386 /* Set physical address of "scratch area". */ 3387 tx->dram_lsb_ptr = htole32(data->scratch_paddr); 3388 tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); 3389 3390 /* Copy 802.11 header in TX command. */ 3391 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 3392 3393 flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; 3394 3395 tx->sec_ctl = 0; 3396 tx->tx_flags |= htole32(flags); 3397 3398 /* Trim 802.11 header. */ 3399 m_adj(m, hdrlen); 3400 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3401 segs, &nsegs, BUS_DMA_NOWAIT); 3402 if (error != 0) { 3403 if (error != EFBIG) { 3404 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3405 error); 3406 m_freem(m); 3407 return error; 3408 } 3409 /* Too many DMA segments, linearize mbuf. */ 3410 m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); 3411 if (m1 == NULL) { 3412 device_printf(sc->sc_dev, 3413 "%s: could not defrag mbuf\n", __func__); 3414 m_freem(m); 3415 return (ENOBUFS); 3416 } 3417 m = m1; 3418 3419 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3420 segs, &nsegs, BUS_DMA_NOWAIT); 3421 if (error != 0) { 3422 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3423 error); 3424 m_freem(m); 3425 return error; 3426 } 3427 } 3428 data->m = m; 3429 data->in = in; 3430 data->done = 0; 3431 3432 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3433 "sending txd %p, in %p\n", data, data->in); 3434 KASSERT(data->in != NULL, ("node is NULL")); 3435 3436 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3437 "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n", 3438 ring->qid, ring->cur, totlen, nsegs, 3439 le32toh(tx->tx_flags), 3440 le32toh(tx->rate_n_flags), 3441 tx->initial_rate_index 3442 ); 3443 3444 /* Fill TX descriptor. */ 3445 desc->num_tbs = 2 + nsegs; 3446 3447 desc->tbs[0].lo = htole32(data->cmd_paddr); 3448 desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | 3449 (TB0_SIZE << 4); 3450 desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); 3451 desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | 3452 ((sizeof(struct iwm_cmd_header) + sizeof(*tx) 3453 + hdrlen + pad - TB0_SIZE) << 4); 3454 3455 /* Other DMA segments are for data payload. */ 3456 for (i = 0; i < nsegs; i++) { 3457 seg = &segs[i]; 3458 desc->tbs[i+2].lo = htole32(seg->ds_addr); 3459 desc->tbs[i+2].hi_n_len = \ 3460 htole16(iwm_get_dma_hi_addr(seg->ds_addr)) 3461 | ((seg->ds_len) << 4); 3462 } 3463 3464 bus_dmamap_sync(ring->data_dmat, data->map, 3465 BUS_DMASYNC_PREWRITE); 3466 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 3467 BUS_DMASYNC_PREWRITE); 3468 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3469 BUS_DMASYNC_PREWRITE); 3470 3471 #if 0 3472 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); 3473 #endif 3474 3475 /* Kick TX ring. */ 3476 ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; 3477 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3478 3479 /* Mark TX ring as full if we reach a certain threshold. */ 3480 if (++ring->queued > IWM_TX_RING_HIMARK) { 3481 sc->qfullmsk |= 1 << ring->qid; 3482 } 3483 3484 return 0; 3485 } 3486 3487 static int 3488 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3489 const struct ieee80211_bpf_params *params) 3490 { 3491 struct ieee80211com *ic = ni->ni_ic; 3492 struct iwm_softc *sc = ic->ic_softc; 3493 int error = 0; 3494 3495 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3496 "->%s begin\n", __func__); 3497 3498 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 3499 m_freem(m); 3500 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3501 "<-%s not RUNNING\n", __func__); 3502 return (ENETDOWN); 3503 } 3504 3505 IWM_LOCK(sc); 3506 /* XXX fix this */ 3507 if (params == NULL) { 3508 error = iwm_tx(sc, m, ni, 0); 3509 } else { 3510 error = iwm_tx(sc, m, ni, 0); 3511 } 3512 sc->sc_tx_timer = 5; 3513 IWM_UNLOCK(sc); 3514 3515 return (error); 3516 } 3517 3518 /* 3519 * mvm/tx.c 3520 */ 3521 3522 /* 3523 * Note that there are transports that buffer frames before they reach 3524 * the firmware. This means that after flush_tx_path is called, the 3525 * queue might not be empty. The race-free way to handle this is to: 3526 * 1) set the station as draining 3527 * 2) flush the Tx path 3528 * 3) wait for the transport queues to be empty 3529 */ 3530 int 3531 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags) 3532 { 3533 int ret; 3534 struct iwm_tx_path_flush_cmd flush_cmd = { 3535 .queues_ctl = htole32(tfd_msk), 3536 .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), 3537 }; 3538 3539 ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags, 3540 sizeof(flush_cmd), &flush_cmd); 3541 if (ret) 3542 device_printf(sc->sc_dev, 3543 "Flushing tx queue failed: %d\n", ret); 3544 return ret; 3545 } 3546 3547 /* 3548 * BEGIN mvm/sta.c 3549 */ 3550 3551 static int 3552 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc, 3553 struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status) 3554 { 3555 return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd), 3556 cmd, status); 3557 } 3558 3559 /* send station add/update command to firmware */ 3560 static int 3561 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update) 3562 { 3563 struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd; 3564 int ret; 3565 uint32_t status; 3566 3567 memset(&add_sta_cmd, 0, sizeof(add_sta_cmd)); 3568 3569 add_sta_cmd.sta_id = IWM_STATION_ID; 3570 add_sta_cmd.mac_id_n_color 3571 = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID, 3572 IWM_DEFAULT_COLOR)); 3573 if (!update) { 3574 int ac; 3575 for (ac = 0; ac < WME_NUM_AC; ac++) { 3576 add_sta_cmd.tfd_queue_msk |= 3577 htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]); 3578 } 3579 IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid); 3580 } 3581 add_sta_cmd.add_modify = update ? 1 : 0; 3582 add_sta_cmd.station_flags_msk 3583 |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK); 3584 add_sta_cmd.tid_disable_tx = htole16(0xffff); 3585 if (update) 3586 add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX); 3587 3588 status = IWM_ADD_STA_SUCCESS; 3589 ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status); 3590 if (ret) 3591 return ret; 3592 3593 switch (status) { 3594 case IWM_ADD_STA_SUCCESS: 3595 break; 3596 default: 3597 ret = EIO; 3598 device_printf(sc->sc_dev, "IWM_ADD_STA failed\n"); 3599 break; 3600 } 3601 3602 return ret; 3603 } 3604 3605 static int 3606 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in) 3607 { 3608 return iwm_mvm_sta_send_to_fw(sc, in, 0); 3609 } 3610 3611 static int 3612 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in) 3613 { 3614 return iwm_mvm_sta_send_to_fw(sc, in, 1); 3615 } 3616 3617 static int 3618 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta, 3619 const uint8_t *addr, uint16_t mac_id, uint16_t color) 3620 { 3621 struct iwm_mvm_add_sta_cmd_v7 cmd; 3622 int ret; 3623 uint32_t status; 3624 3625 memset(&cmd, 0, sizeof(cmd)); 3626 cmd.sta_id = sta->sta_id; 3627 cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color)); 3628 3629 cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk); 3630 cmd.tid_disable_tx = htole16(0xffff); 3631 3632 if (addr) 3633 IEEE80211_ADDR_COPY(cmd.addr, addr); 3634 3635 ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status); 3636 if (ret) 3637 return ret; 3638 3639 switch (status) { 3640 case IWM_ADD_STA_SUCCESS: 3641 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 3642 "%s: Internal station added.\n", __func__); 3643 return 0; 3644 default: 3645 device_printf(sc->sc_dev, 3646 "%s: Add internal station failed, status=0x%x\n", 3647 __func__, status); 3648 ret = EIO; 3649 break; 3650 } 3651 return ret; 3652 } 3653 3654 static int 3655 iwm_mvm_add_aux_sta(struct iwm_softc *sc) 3656 { 3657 int ret; 3658 3659 sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID; 3660 sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE); 3661 3662 ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST); 3663 if (ret) 3664 return ret; 3665 3666 ret = iwm_mvm_add_int_sta_common(sc, 3667 &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0); 3668 3669 if (ret) 3670 memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta)); 3671 return ret; 3672 } 3673 3674 /* 3675 * END mvm/sta.c 3676 */ 3677 3678 /* 3679 * BEGIN mvm/quota.c 3680 */ 3681 3682 static int 3683 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in) 3684 { 3685 struct iwm_time_quota_cmd cmd; 3686 int i, idx, ret, num_active_macs, quota, quota_rem; 3687 int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; 3688 int n_ifs[IWM_MAX_BINDINGS] = {0, }; 3689 uint16_t id; 3690 3691 memset(&cmd, 0, sizeof(cmd)); 3692 3693 /* currently, PHY ID == binding ID */ 3694 if (in) { 3695 id = in->in_phyctxt->id; 3696 KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); 3697 colors[id] = in->in_phyctxt->color; 3698 3699 if (1) 3700 n_ifs[id] = 1; 3701 } 3702 3703 /* 3704 * The FW's scheduling session consists of 3705 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments 3706 * equally between all the bindings that require quota 3707 */ 3708 num_active_macs = 0; 3709 for (i = 0; i < IWM_MAX_BINDINGS; i++) { 3710 cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); 3711 num_active_macs += n_ifs[i]; 3712 } 3713 3714 quota = 0; 3715 quota_rem = 0; 3716 if (num_active_macs) { 3717 quota = IWM_MVM_MAX_QUOTA / num_active_macs; 3718 quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs; 3719 } 3720 3721 for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { 3722 if (colors[i] < 0) 3723 continue; 3724 3725 cmd.quotas[idx].id_and_color = 3726 htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); 3727 3728 if (n_ifs[i] <= 0) { 3729 cmd.quotas[idx].quota = htole32(0); 3730 cmd.quotas[idx].max_duration = htole32(0); 3731 } else { 3732 cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); 3733 cmd.quotas[idx].max_duration = htole32(0); 3734 } 3735 idx++; 3736 } 3737 3738 /* Give the remainder of the session to the first binding */ 3739 cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); 3740 3741 ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, 3742 sizeof(cmd), &cmd); 3743 if (ret) 3744 device_printf(sc->sc_dev, 3745 "%s: Failed to send quota: %d\n", __func__, ret); 3746 return ret; 3747 } 3748 3749 /* 3750 * END mvm/quota.c 3751 */ 3752 3753 /* 3754 * ieee80211 routines 3755 */ 3756 3757 /* 3758 * Change to AUTH state in 80211 state machine. Roughly matches what 3759 * Linux does in bss_info_changed(). 3760 */ 3761 static int 3762 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) 3763 { 3764 struct ieee80211_node *ni; 3765 struct iwm_node *in; 3766 struct iwm_vap *iv = IWM_VAP(vap); 3767 uint32_t duration; 3768 int error; 3769 3770 /* 3771 * XXX i have a feeling that the vap node is being 3772 * freed from underneath us. Grr. 3773 */ 3774 ni = ieee80211_ref_node(vap->iv_bss); 3775 in = IWM_NODE(ni); 3776 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, 3777 "%s: called; vap=%p, bss ni=%p\n", 3778 __func__, 3779 vap, 3780 ni); 3781 3782 in->in_assoc = 0; 3783 3784 error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON); 3785 if (error != 0) 3786 return error; 3787 3788 error = iwm_allow_mcast(vap, sc); 3789 if (error) { 3790 device_printf(sc->sc_dev, 3791 "%s: failed to set multicast\n", __func__); 3792 goto out; 3793 } 3794 3795 /* 3796 * This is where it deviates from what Linux does. 3797 * 3798 * Linux iwlwifi doesn't reset the nic each time, nor does it 3799 * call ctxt_add() here. Instead, it adds it during vap creation, 3800 * and always does a mac_ctx_changed(). 3801 * 3802 * The openbsd port doesn't attempt to do that - it reset things 3803 * at odd states and does the add here. 3804 * 3805 * So, until the state handling is fixed (ie, we never reset 3806 * the NIC except for a firmware failure, which should drag 3807 * the NIC back to IDLE, re-setup and re-add all the mac/phy 3808 * contexts that are required), let's do a dirty hack here. 3809 */ 3810 if (iv->is_uploaded) { 3811 if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) { 3812 device_printf(sc->sc_dev, 3813 "%s: failed to update MAC\n", __func__); 3814 goto out; 3815 } 3816 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 3817 in->in_ni.ni_chan, 1, 1)) != 0) { 3818 device_printf(sc->sc_dev, 3819 "%s: failed update phy ctxt\n", __func__); 3820 goto out; 3821 } 3822 in->in_phyctxt = &sc->sc_phyctxt[0]; 3823 3824 if ((error = iwm_mvm_binding_update(sc, in)) != 0) { 3825 device_printf(sc->sc_dev, 3826 "%s: binding update cmd\n", __func__); 3827 goto out; 3828 } 3829 if ((error = iwm_mvm_update_sta(sc, in)) != 0) { 3830 device_printf(sc->sc_dev, 3831 "%s: failed to update sta\n", __func__); 3832 goto out; 3833 } 3834 } else { 3835 if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) { 3836 device_printf(sc->sc_dev, 3837 "%s: failed to add MAC\n", __func__); 3838 goto out; 3839 } 3840 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 3841 in->in_ni.ni_chan, 1, 1)) != 0) { 3842 device_printf(sc->sc_dev, 3843 "%s: failed add phy ctxt!\n", __func__); 3844 error = ETIMEDOUT; 3845 goto out; 3846 } 3847 in->in_phyctxt = &sc->sc_phyctxt[0]; 3848 3849 if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) { 3850 device_printf(sc->sc_dev, 3851 "%s: binding add cmd\n", __func__); 3852 goto out; 3853 } 3854 if ((error = iwm_mvm_add_sta(sc, in)) != 0) { 3855 device_printf(sc->sc_dev, 3856 "%s: failed to add sta\n", __func__); 3857 goto out; 3858 } 3859 } 3860 3861 /* 3862 * Prevent the FW from wandering off channel during association 3863 * by "protecting" the session with a time event. 3864 */ 3865 /* XXX duration is in units of TU, not MS */ 3866 duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS; 3867 iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */); 3868 DELAY(100); 3869 3870 error = 0; 3871 out: 3872 ieee80211_free_node(ni); 3873 return (error); 3874 } 3875 3876 static int 3877 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc) 3878 { 3879 struct iwm_node *in = IWM_NODE(vap->iv_bss); 3880 int error; 3881 3882 if ((error = iwm_mvm_update_sta(sc, in)) != 0) { 3883 device_printf(sc->sc_dev, 3884 "%s: failed to update STA\n", __func__); 3885 return error; 3886 } 3887 3888 in->in_assoc = 1; 3889 if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) { 3890 device_printf(sc->sc_dev, 3891 "%s: failed to update MAC\n", __func__); 3892 return error; 3893 } 3894 3895 return 0; 3896 } 3897 3898 static int 3899 iwm_release(struct iwm_softc *sc, struct iwm_node *in) 3900 { 3901 uint32_t tfd_msk; 3902 3903 /* 3904 * Ok, so *technically* the proper set of calls for going 3905 * from RUN back to SCAN is: 3906 * 3907 * iwm_mvm_power_mac_disable(sc, in); 3908 * iwm_mvm_mac_ctxt_changed(sc, in); 3909 * iwm_mvm_rm_sta(sc, in); 3910 * iwm_mvm_update_quotas(sc, NULL); 3911 * iwm_mvm_mac_ctxt_changed(sc, in); 3912 * iwm_mvm_binding_remove_vif(sc, in); 3913 * iwm_mvm_mac_ctxt_remove(sc, in); 3914 * 3915 * However, that freezes the device not matter which permutations 3916 * and modifications are attempted. Obviously, this driver is missing 3917 * something since it works in the Linux driver, but figuring out what 3918 * is missing is a little more complicated. Now, since we're going 3919 * back to nothing anyway, we'll just do a complete device reset. 3920 * Up your's, device! 3921 */ 3922 /* 3923 * Just using 0xf for the queues mask is fine as long as we only 3924 * get here from RUN state. 3925 */ 3926 tfd_msk = 0xf; 3927 mbufq_drain(&sc->sc_snd); 3928 iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC); 3929 /* 3930 * We seem to get away with just synchronously sending the 3931 * IWM_TXPATH_FLUSH command. 3932 */ 3933 // iwm_trans_wait_tx_queue_empty(sc, tfd_msk); 3934 iwm_stop_device(sc); 3935 iwm_init_hw(sc); 3936 if (in) 3937 in->in_assoc = 0; 3938 return 0; 3939 3940 #if 0 3941 int error; 3942 3943 iwm_mvm_power_mac_disable(sc, in); 3944 3945 if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { 3946 device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error); 3947 return error; 3948 } 3949 3950 if ((error = iwm_mvm_rm_sta(sc, in)) != 0) { 3951 device_printf(sc->sc_dev, "sta remove fail %d\n", error); 3952 return error; 3953 } 3954 error = iwm_mvm_rm_sta(sc, in); 3955 in->in_assoc = 0; 3956 iwm_mvm_update_quotas(sc, NULL); 3957 if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { 3958 device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error); 3959 return error; 3960 } 3961 iwm_mvm_binding_remove_vif(sc, in); 3962 3963 iwm_mvm_mac_ctxt_remove(sc, in); 3964 3965 return error; 3966 #endif 3967 } 3968 3969 static struct ieee80211_node * 3970 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3971 { 3972 return malloc(sizeof (struct iwm_node), M_80211_NODE, 3973 M_NOWAIT | M_ZERO); 3974 } 3975 3976 static void 3977 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in) 3978 { 3979 struct ieee80211_node *ni = &in->in_ni; 3980 struct iwm_lq_cmd *lq = &in->in_lq; 3981 int nrates = ni->ni_rates.rs_nrates; 3982 int i, ridx, tab = 0; 3983 int txant = 0; 3984 3985 if (nrates > nitems(lq->rs_table)) { 3986 device_printf(sc->sc_dev, 3987 "%s: node supports %d rates, driver handles " 3988 "only %zu\n", __func__, nrates, nitems(lq->rs_table)); 3989 return; 3990 } 3991 if (nrates == 0) { 3992 device_printf(sc->sc_dev, 3993 "%s: node supports 0 rates, odd!\n", __func__); 3994 return; 3995 } 3996 3997 /* 3998 * XXX .. and most of iwm_node is not initialised explicitly; 3999 * it's all just 0x0 passed to the firmware. 4000 */ 4001 4002 /* first figure out which rates we should support */ 4003 /* XXX TODO: this isn't 11n aware /at all/ */ 4004 memset(&in->in_ridx, -1, sizeof(in->in_ridx)); 4005 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4006 "%s: nrates=%d\n", __func__, nrates); 4007 4008 /* 4009 * Loop over nrates and populate in_ridx from the highest 4010 * rate to the lowest rate. Remember, in_ridx[] has 4011 * IEEE80211_RATE_MAXSIZE entries! 4012 */ 4013 for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) { 4014 int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL; 4015 4016 /* Map 802.11 rate to HW rate index. */ 4017 for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++) 4018 if (iwm_rates[ridx].rate == rate) 4019 break; 4020 if (ridx > IWM_RIDX_MAX) { 4021 device_printf(sc->sc_dev, 4022 "%s: WARNING: device rate for %d not found!\n", 4023 __func__, rate); 4024 } else { 4025 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4026 "%s: rate: i: %d, rate=%d, ridx=%d\n", 4027 __func__, 4028 i, 4029 rate, 4030 ridx); 4031 in->in_ridx[i] = ridx; 4032 } 4033 } 4034 4035 /* then construct a lq_cmd based on those */ 4036 memset(lq, 0, sizeof(*lq)); 4037 lq->sta_id = IWM_STATION_ID; 4038 4039 /* For HT, always enable RTS/CTS to avoid excessive retries. */ 4040 if (ni->ni_flags & IEEE80211_NODE_HT) 4041 lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; 4042 4043 /* 4044 * are these used? (we don't do SISO or MIMO) 4045 * need to set them to non-zero, though, or we get an error. 4046 */ 4047 lq->single_stream_ant_msk = 1; 4048 lq->dual_stream_ant_msk = 1; 4049 4050 /* 4051 * Build the actual rate selection table. 4052 * The lowest bits are the rates. Additionally, 4053 * CCK needs bit 9 to be set. The rest of the bits 4054 * we add to the table select the tx antenna 4055 * Note that we add the rates in the highest rate first 4056 * (opposite of ni_rates). 4057 */ 4058 /* 4059 * XXX TODO: this should be looping over the min of nrates 4060 * and LQ_MAX_RETRY_NUM. Sigh. 4061 */ 4062 for (i = 0; i < nrates; i++) { 4063 int nextant; 4064 4065 if (txant == 0) 4066 txant = iwm_fw_valid_tx_ant(sc); 4067 nextant = 1<<(ffs(txant)-1); 4068 txant &= ~nextant; 4069 4070 /* 4071 * Map the rate id into a rate index into 4072 * our hardware table containing the 4073 * configuration to use for this rate. 4074 */ 4075 ridx = in->in_ridx[i]; 4076 tab = iwm_rates[ridx].plcp; 4077 tab |= nextant << IWM_RATE_MCS_ANT_POS; 4078 if (IWM_RIDX_IS_CCK(ridx)) 4079 tab |= IWM_RATE_MCS_CCK_MSK; 4080 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4081 "station rate i=%d, rate=%d, hw=%x\n", 4082 i, iwm_rates[ridx].rate, tab); 4083 lq->rs_table[i] = htole32(tab); 4084 } 4085 /* then fill the rest with the lowest possible rate */ 4086 for (i = nrates; i < nitems(lq->rs_table); i++) { 4087 KASSERT(tab != 0, ("invalid tab")); 4088 lq->rs_table[i] = htole32(tab); 4089 } 4090 } 4091 4092 static int 4093 iwm_media_change(struct ifnet *ifp) 4094 { 4095 struct ieee80211vap *vap = ifp->if_softc; 4096 struct ieee80211com *ic = vap->iv_ic; 4097 struct iwm_softc *sc = ic->ic_softc; 4098 int error; 4099 4100 error = ieee80211_media_change(ifp); 4101 if (error != ENETRESET) 4102 return error; 4103 4104 IWM_LOCK(sc); 4105 if (ic->ic_nrunning > 0) { 4106 iwm_stop(sc); 4107 iwm_init(sc); 4108 } 4109 IWM_UNLOCK(sc); 4110 return error; 4111 } 4112 4113 4114 static int 4115 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4116 { 4117 struct iwm_vap *ivp = IWM_VAP(vap); 4118 struct ieee80211com *ic = vap->iv_ic; 4119 struct iwm_softc *sc = ic->ic_softc; 4120 struct iwm_node *in; 4121 int error; 4122 4123 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 4124 "switching state %s -> %s\n", 4125 ieee80211_state_name[vap->iv_state], 4126 ieee80211_state_name[nstate]); 4127 IEEE80211_UNLOCK(ic); 4128 IWM_LOCK(sc); 4129 4130 if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state) 4131 iwm_led_blink_stop(sc); 4132 4133 /* disable beacon filtering if we're hopping out of RUN */ 4134 if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) { 4135 iwm_mvm_disable_beacon_filter(sc); 4136 4137 if (((in = IWM_NODE(vap->iv_bss)) != NULL)) 4138 in->in_assoc = 0; 4139 4140 if (nstate == IEEE80211_S_INIT) { 4141 IWM_UNLOCK(sc); 4142 IEEE80211_LOCK(ic); 4143 error = ivp->iv_newstate(vap, nstate, arg); 4144 IEEE80211_UNLOCK(ic); 4145 IWM_LOCK(sc); 4146 iwm_release(sc, NULL); 4147 IWM_UNLOCK(sc); 4148 IEEE80211_LOCK(ic); 4149 return error; 4150 } 4151 4152 /* 4153 * It's impossible to directly go RUN->SCAN. If we iwm_release() 4154 * above then the card will be completely reinitialized, 4155 * so the driver must do everything necessary to bring the card 4156 * from INIT to SCAN. 4157 * 4158 * Additionally, upon receiving deauth frame from AP, 4159 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH 4160 * state. This will also fail with this driver, so bring the FSM 4161 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well. 4162 * 4163 * XXX TODO: fix this for FreeBSD! 4164 */ 4165 if (nstate == IEEE80211_S_SCAN || 4166 nstate == IEEE80211_S_AUTH || 4167 nstate == IEEE80211_S_ASSOC) { 4168 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 4169 "Force transition to INIT; MGT=%d\n", arg); 4170 IWM_UNLOCK(sc); 4171 IEEE80211_LOCK(ic); 4172 /* Always pass arg as -1 since we can't Tx right now. */ 4173 /* 4174 * XXX arg is just ignored anyway when transitioning 4175 * to IEEE80211_S_INIT. 4176 */ 4177 vap->iv_newstate(vap, IEEE80211_S_INIT, -1); 4178 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 4179 "Going INIT->SCAN\n"); 4180 nstate = IEEE80211_S_SCAN; 4181 IEEE80211_UNLOCK(ic); 4182 IWM_LOCK(sc); 4183 } 4184 } 4185 4186 switch (nstate) { 4187 case IEEE80211_S_INIT: 4188 break; 4189 4190 case IEEE80211_S_AUTH: 4191 if ((error = iwm_auth(vap, sc)) != 0) { 4192 device_printf(sc->sc_dev, 4193 "%s: could not move to auth state: %d\n", 4194 __func__, error); 4195 break; 4196 } 4197 break; 4198 4199 case IEEE80211_S_ASSOC: 4200 if ((error = iwm_assoc(vap, sc)) != 0) { 4201 device_printf(sc->sc_dev, 4202 "%s: failed to associate: %d\n", __func__, 4203 error); 4204 break; 4205 } 4206 break; 4207 4208 case IEEE80211_S_RUN: 4209 { 4210 struct iwm_host_cmd cmd = { 4211 .id = IWM_LQ_CMD, 4212 .len = { sizeof(in->in_lq), }, 4213 .flags = IWM_CMD_SYNC, 4214 }; 4215 4216 /* Update the association state, now we have it all */ 4217 /* (eg associd comes in at this point */ 4218 error = iwm_assoc(vap, sc); 4219 if (error != 0) { 4220 device_printf(sc->sc_dev, 4221 "%s: failed to update association state: %d\n", 4222 __func__, 4223 error); 4224 break; 4225 } 4226 4227 in = IWM_NODE(vap->iv_bss); 4228 iwm_mvm_power_mac_update_mode(sc, in); 4229 iwm_mvm_enable_beacon_filter(sc, in); 4230 iwm_mvm_update_quotas(sc, in); 4231 iwm_setrates(sc, in); 4232 4233 cmd.data[0] = &in->in_lq; 4234 if ((error = iwm_send_cmd(sc, &cmd)) != 0) { 4235 device_printf(sc->sc_dev, 4236 "%s: IWM_LQ_CMD failed\n", __func__); 4237 } 4238 4239 iwm_mvm_led_enable(sc); 4240 break; 4241 } 4242 4243 default: 4244 break; 4245 } 4246 IWM_UNLOCK(sc); 4247 IEEE80211_LOCK(ic); 4248 4249 return (ivp->iv_newstate(vap, nstate, arg)); 4250 } 4251 4252 void 4253 iwm_endscan_cb(void *arg, int pending) 4254 { 4255 struct iwm_softc *sc = arg; 4256 struct ieee80211com *ic = &sc->sc_ic; 4257 4258 IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, 4259 "%s: scan ended\n", 4260 __func__); 4261 4262 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 4263 } 4264 4265 /* 4266 * Aging and idle timeouts for the different possible scenarios 4267 * in default configuration 4268 */ 4269 static const uint32_t 4270 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = { 4271 { 4272 htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF), 4273 htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF) 4274 }, 4275 { 4276 htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF), 4277 htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF) 4278 }, 4279 { 4280 htole32(IWM_SF_MCAST_AGING_TIMER_DEF), 4281 htole32(IWM_SF_MCAST_IDLE_TIMER_DEF) 4282 }, 4283 { 4284 htole32(IWM_SF_BA_AGING_TIMER_DEF), 4285 htole32(IWM_SF_BA_IDLE_TIMER_DEF) 4286 }, 4287 { 4288 htole32(IWM_SF_TX_RE_AGING_TIMER_DEF), 4289 htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF) 4290 }, 4291 }; 4292 4293 /* 4294 * Aging and idle timeouts for the different possible scenarios 4295 * in single BSS MAC configuration. 4296 */ 4297 static const uint32_t 4298 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = { 4299 { 4300 htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER), 4301 htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER) 4302 }, 4303 { 4304 htole32(IWM_SF_AGG_UNICAST_AGING_TIMER), 4305 htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER) 4306 }, 4307 { 4308 htole32(IWM_SF_MCAST_AGING_TIMER), 4309 htole32(IWM_SF_MCAST_IDLE_TIMER) 4310 }, 4311 { 4312 htole32(IWM_SF_BA_AGING_TIMER), 4313 htole32(IWM_SF_BA_IDLE_TIMER) 4314 }, 4315 { 4316 htole32(IWM_SF_TX_RE_AGING_TIMER), 4317 htole32(IWM_SF_TX_RE_IDLE_TIMER) 4318 }, 4319 }; 4320 4321 static void 4322 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd, 4323 struct ieee80211_node *ni) 4324 { 4325 int i, j, watermark; 4326 4327 sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN); 4328 4329 /* 4330 * If we are in association flow - check antenna configuration 4331 * capabilities of the AP station, and choose the watermark accordingly. 4332 */ 4333 if (ni) { 4334 if (ni->ni_flags & IEEE80211_NODE_HT) { 4335 #ifdef notyet 4336 if (ni->ni_rxmcs[2] != 0) 4337 watermark = IWM_SF_W_MARK_MIMO3; 4338 else if (ni->ni_rxmcs[1] != 0) 4339 watermark = IWM_SF_W_MARK_MIMO2; 4340 else 4341 #endif 4342 watermark = IWM_SF_W_MARK_SISO; 4343 } else { 4344 watermark = IWM_SF_W_MARK_LEGACY; 4345 } 4346 /* default watermark value for unassociated mode. */ 4347 } else { 4348 watermark = IWM_SF_W_MARK_MIMO2; 4349 } 4350 sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark); 4351 4352 for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) { 4353 for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) { 4354 sf_cmd->long_delay_timeouts[i][j] = 4355 htole32(IWM_SF_LONG_DELAY_AGING_TIMER); 4356 } 4357 } 4358 4359 if (ni) { 4360 memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout, 4361 sizeof(iwm_sf_full_timeout)); 4362 } else { 4363 memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def, 4364 sizeof(iwm_sf_full_timeout_def)); 4365 } 4366 } 4367 4368 static int 4369 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state) 4370 { 4371 struct ieee80211com *ic = &sc->sc_ic; 4372 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4373 struct iwm_sf_cfg_cmd sf_cmd = { 4374 .state = htole32(IWM_SF_FULL_ON), 4375 }; 4376 int ret = 0; 4377 4378 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) 4379 sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF); 4380 4381 switch (new_state) { 4382 case IWM_SF_UNINIT: 4383 case IWM_SF_INIT_OFF: 4384 iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL); 4385 break; 4386 case IWM_SF_FULL_ON: 4387 iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss); 4388 break; 4389 default: 4390 IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE, 4391 "Invalid state: %d. not sending Smart Fifo cmd\n", 4392 new_state); 4393 return EINVAL; 4394 } 4395 4396 ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC, 4397 sizeof(sf_cmd), &sf_cmd); 4398 return ret; 4399 } 4400 4401 static int 4402 iwm_send_bt_init_conf(struct iwm_softc *sc) 4403 { 4404 struct iwm_bt_coex_cmd bt_cmd; 4405 4406 bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); 4407 bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); 4408 4409 return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), 4410 &bt_cmd); 4411 } 4412 4413 static int 4414 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) 4415 { 4416 struct iwm_mcc_update_cmd mcc_cmd; 4417 struct iwm_host_cmd hcmd = { 4418 .id = IWM_MCC_UPDATE_CMD, 4419 .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB), 4420 .data = { &mcc_cmd }, 4421 }; 4422 int ret; 4423 #ifdef IWM_DEBUG 4424 struct iwm_rx_packet *pkt; 4425 struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL; 4426 struct iwm_mcc_update_resp *mcc_resp; 4427 int n_channels; 4428 uint16_t mcc; 4429 #endif 4430 int resp_v2 = isset(sc->sc_enabled_capa, 4431 IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); 4432 4433 memset(&mcc_cmd, 0, sizeof(mcc_cmd)); 4434 mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); 4435 if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || 4436 isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC)) 4437 mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; 4438 else 4439 mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; 4440 4441 if (resp_v2) 4442 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); 4443 else 4444 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); 4445 4446 IWM_DPRINTF(sc, IWM_DEBUG_NODE, 4447 "send MCC update to FW with '%c%c' src = %d\n", 4448 alpha2[0], alpha2[1], mcc_cmd.source_id); 4449 4450 ret = iwm_send_cmd(sc, &hcmd); 4451 if (ret) 4452 return ret; 4453 4454 #ifdef IWM_DEBUG 4455 pkt = hcmd.resp_pkt; 4456 4457 /* Extract MCC response */ 4458 if (resp_v2) { 4459 mcc_resp = (void *)pkt->data; 4460 mcc = mcc_resp->mcc; 4461 n_channels = le32toh(mcc_resp->n_channels); 4462 } else { 4463 mcc_resp_v1 = (void *)pkt->data; 4464 mcc = mcc_resp_v1->mcc; 4465 n_channels = le32toh(mcc_resp_v1->n_channels); 4466 } 4467 4468 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ 4469 if (mcc == 0) 4470 mcc = 0x3030; /* "00" - world */ 4471 4472 IWM_DPRINTF(sc, IWM_DEBUG_NODE, 4473 "regulatory domain '%c%c' (%d channels available)\n", 4474 mcc >> 8, mcc & 0xff, n_channels); 4475 #endif 4476 iwm_free_resp(sc, &hcmd); 4477 4478 return 0; 4479 } 4480 4481 static void 4482 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) 4483 { 4484 struct iwm_host_cmd cmd = { 4485 .id = IWM_REPLY_THERMAL_MNG_BACKOFF, 4486 .len = { sizeof(uint32_t), }, 4487 .data = { &backoff, }, 4488 }; 4489 4490 if (iwm_send_cmd(sc, &cmd) != 0) { 4491 device_printf(sc->sc_dev, 4492 "failed to change thermal tx backoff\n"); 4493 } 4494 } 4495 4496 static int 4497 iwm_init_hw(struct iwm_softc *sc) 4498 { 4499 struct ieee80211com *ic = &sc->sc_ic; 4500 int error, i, ac; 4501 4502 if ((error = iwm_start_hw(sc)) != 0) { 4503 printf("iwm_start_hw: failed %d\n", error); 4504 return error; 4505 } 4506 4507 if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) { 4508 printf("iwm_run_init_mvm_ucode: failed %d\n", error); 4509 return error; 4510 } 4511 4512 /* 4513 * should stop and start HW since that INIT 4514 * image just loaded 4515 */ 4516 iwm_stop_device(sc); 4517 if ((error = iwm_start_hw(sc)) != 0) { 4518 device_printf(sc->sc_dev, "could not initialize hardware\n"); 4519 return error; 4520 } 4521 4522 /* omstart, this time with the regular firmware */ 4523 error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR); 4524 if (error) { 4525 device_printf(sc->sc_dev, "could not load firmware\n"); 4526 goto error; 4527 } 4528 4529 if ((error = iwm_send_bt_init_conf(sc)) != 0) { 4530 device_printf(sc->sc_dev, "bt init conf failed\n"); 4531 goto error; 4532 } 4533 4534 if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) { 4535 device_printf(sc->sc_dev, "antenna config failed\n"); 4536 goto error; 4537 } 4538 4539 /* Send phy db control command and then phy db calibration*/ 4540 if ((error = iwm_send_phy_db_data(sc)) != 0) { 4541 device_printf(sc->sc_dev, "phy_db_data failed\n"); 4542 goto error; 4543 } 4544 4545 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) { 4546 device_printf(sc->sc_dev, "phy_cfg_cmd failed\n"); 4547 goto error; 4548 } 4549 4550 /* Add auxiliary station for scanning */ 4551 if ((error = iwm_mvm_add_aux_sta(sc)) != 0) { 4552 device_printf(sc->sc_dev, "add_aux_sta failed\n"); 4553 goto error; 4554 } 4555 4556 for (i = 0; i < IWM_NUM_PHY_CTX; i++) { 4557 /* 4558 * The channel used here isn't relevant as it's 4559 * going to be overwritten in the other flows. 4560 * For now use the first channel we have. 4561 */ 4562 if ((error = iwm_mvm_phy_ctxt_add(sc, 4563 &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) 4564 goto error; 4565 } 4566 4567 /* Initialize tx backoffs to the minimum. */ 4568 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) 4569 iwm_mvm_tt_tx_backoff(sc, 0); 4570 4571 error = iwm_mvm_power_update_device(sc); 4572 if (error) 4573 goto error; 4574 4575 if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) { 4576 if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0) 4577 goto error; 4578 } 4579 4580 if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { 4581 if ((error = iwm_mvm_config_umac_scan(sc)) != 0) 4582 goto error; 4583 } 4584 4585 /* Enable Tx queues. */ 4586 for (ac = 0; ac < WME_NUM_AC; ac++) { 4587 error = iwm_enable_txq(sc, IWM_STATION_ID, ac, 4588 iwm_mvm_ac_to_tx_fifo[ac]); 4589 if (error) 4590 goto error; 4591 } 4592 4593 if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) { 4594 device_printf(sc->sc_dev, "failed to disable beacon filter\n"); 4595 goto error; 4596 } 4597 4598 return 0; 4599 4600 error: 4601 iwm_stop_device(sc); 4602 return error; 4603 } 4604 4605 /* Allow multicast from our BSSID. */ 4606 static int 4607 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) 4608 { 4609 struct ieee80211_node *ni = vap->iv_bss; 4610 struct iwm_mcast_filter_cmd *cmd; 4611 size_t size; 4612 int error; 4613 4614 size = roundup(sizeof(*cmd), 4); 4615 cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 4616 if (cmd == NULL) 4617 return ENOMEM; 4618 cmd->filter_own = 1; 4619 cmd->port_id = 0; 4620 cmd->count = 0; 4621 cmd->pass_all = 1; 4622 IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); 4623 4624 error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 4625 IWM_CMD_SYNC, size, cmd); 4626 free(cmd, M_DEVBUF); 4627 4628 return (error); 4629 } 4630 4631 /* 4632 * ifnet interfaces 4633 */ 4634 4635 static void 4636 iwm_init(struct iwm_softc *sc) 4637 { 4638 int error; 4639 4640 if (sc->sc_flags & IWM_FLAG_HW_INITED) { 4641 return; 4642 } 4643 sc->sc_generation++; 4644 sc->sc_flags &= ~IWM_FLAG_STOPPED; 4645 4646 if ((error = iwm_init_hw(sc)) != 0) { 4647 printf("iwm_init_hw failed %d\n", error); 4648 iwm_stop(sc); 4649 return; 4650 } 4651 4652 /* 4653 * Ok, firmware loaded and we are jogging 4654 */ 4655 sc->sc_flags |= IWM_FLAG_HW_INITED; 4656 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 4657 } 4658 4659 static int 4660 iwm_transmit(struct ieee80211com *ic, struct mbuf *m) 4661 { 4662 struct iwm_softc *sc; 4663 int error; 4664 4665 sc = ic->ic_softc; 4666 4667 IWM_LOCK(sc); 4668 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 4669 IWM_UNLOCK(sc); 4670 return (ENXIO); 4671 } 4672 error = mbufq_enqueue(&sc->sc_snd, m); 4673 if (error) { 4674 IWM_UNLOCK(sc); 4675 return (error); 4676 } 4677 iwm_start(sc); 4678 IWM_UNLOCK(sc); 4679 return (0); 4680 } 4681 4682 /* 4683 * Dequeue packets from sendq and call send. 4684 */ 4685 static void 4686 iwm_start(struct iwm_softc *sc) 4687 { 4688 struct ieee80211_node *ni; 4689 struct mbuf *m; 4690 int ac = 0; 4691 4692 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); 4693 while (sc->qfullmsk == 0 && 4694 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 4695 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4696 if (iwm_tx(sc, m, ni, ac) != 0) { 4697 if_inc_counter(ni->ni_vap->iv_ifp, 4698 IFCOUNTER_OERRORS, 1); 4699 ieee80211_free_node(ni); 4700 continue; 4701 } 4702 sc->sc_tx_timer = 15; 4703 } 4704 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); 4705 } 4706 4707 static void 4708 iwm_stop(struct iwm_softc *sc) 4709 { 4710 4711 sc->sc_flags &= ~IWM_FLAG_HW_INITED; 4712 sc->sc_flags |= IWM_FLAG_STOPPED; 4713 sc->sc_generation++; 4714 iwm_led_blink_stop(sc); 4715 sc->sc_tx_timer = 0; 4716 iwm_stop_device(sc); 4717 } 4718 4719 static void 4720 iwm_watchdog(void *arg) 4721 { 4722 struct iwm_softc *sc = arg; 4723 struct ieee80211com *ic = &sc->sc_ic; 4724 4725 if (sc->sc_tx_timer > 0) { 4726 if (--sc->sc_tx_timer == 0) { 4727 device_printf(sc->sc_dev, "device timeout\n"); 4728 #ifdef IWM_DEBUG 4729 iwm_nic_error(sc); 4730 #endif 4731 ieee80211_restart_all(ic); 4732 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 4733 return; 4734 } 4735 } 4736 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 4737 } 4738 4739 static void 4740 iwm_parent(struct ieee80211com *ic) 4741 { 4742 struct iwm_softc *sc = ic->ic_softc; 4743 int startall = 0; 4744 4745 IWM_LOCK(sc); 4746 if (ic->ic_nrunning > 0) { 4747 if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { 4748 iwm_init(sc); 4749 startall = 1; 4750 } 4751 } else if (sc->sc_flags & IWM_FLAG_HW_INITED) 4752 iwm_stop(sc); 4753 IWM_UNLOCK(sc); 4754 if (startall) 4755 ieee80211_start_all(ic); 4756 } 4757 4758 /* 4759 * The interrupt side of things 4760 */ 4761 4762 /* 4763 * error dumping routines are from iwlwifi/mvm/utils.c 4764 */ 4765 4766 /* 4767 * Note: This structure is read from the device with IO accesses, 4768 * and the reading already does the endian conversion. As it is 4769 * read with uint32_t-sized accesses, any members with a different size 4770 * need to be ordered correctly though! 4771 */ 4772 struct iwm_error_event_table { 4773 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 4774 uint32_t error_id; /* type of error */ 4775 uint32_t trm_hw_status0; /* TRM HW status */ 4776 uint32_t trm_hw_status1; /* TRM HW status */ 4777 uint32_t blink2; /* branch link */ 4778 uint32_t ilink1; /* interrupt link */ 4779 uint32_t ilink2; /* interrupt link */ 4780 uint32_t data1; /* error-specific data */ 4781 uint32_t data2; /* error-specific data */ 4782 uint32_t data3; /* error-specific data */ 4783 uint32_t bcon_time; /* beacon timer */ 4784 uint32_t tsf_low; /* network timestamp function timer */ 4785 uint32_t tsf_hi; /* network timestamp function timer */ 4786 uint32_t gp1; /* GP1 timer register */ 4787 uint32_t gp2; /* GP2 timer register */ 4788 uint32_t fw_rev_type; /* firmware revision type */ 4789 uint32_t major; /* uCode version major */ 4790 uint32_t minor; /* uCode version minor */ 4791 uint32_t hw_ver; /* HW Silicon version */ 4792 uint32_t brd_ver; /* HW board version */ 4793 uint32_t log_pc; /* log program counter */ 4794 uint32_t frame_ptr; /* frame pointer */ 4795 uint32_t stack_ptr; /* stack pointer */ 4796 uint32_t hcmd; /* last host command header */ 4797 uint32_t isr0; /* isr status register LMPM_NIC_ISR0: 4798 * rxtx_flag */ 4799 uint32_t isr1; /* isr status register LMPM_NIC_ISR1: 4800 * host_flag */ 4801 uint32_t isr2; /* isr status register LMPM_NIC_ISR2: 4802 * enc_flag */ 4803 uint32_t isr3; /* isr status register LMPM_NIC_ISR3: 4804 * time_flag */ 4805 uint32_t isr4; /* isr status register LMPM_NIC_ISR4: 4806 * wico interrupt */ 4807 uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ 4808 uint32_t wait_event; /* wait event() caller address */ 4809 uint32_t l2p_control; /* L2pControlField */ 4810 uint32_t l2p_duration; /* L2pDurationField */ 4811 uint32_t l2p_mhvalid; /* L2pMhValidBits */ 4812 uint32_t l2p_addr_match; /* L2pAddrMatchStat */ 4813 uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on 4814 * (LMPM_PMG_SEL) */ 4815 uint32_t u_timestamp; /* indicate when the date and time of the 4816 * compilation */ 4817 uint32_t flow_handler; /* FH read/write pointers, RX credit */ 4818 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; 4819 4820 /* 4821 * UMAC error struct - relevant starting from family 8000 chip. 4822 * Note: This structure is read from the device with IO accesses, 4823 * and the reading already does the endian conversion. As it is 4824 * read with u32-sized accesses, any members with a different size 4825 * need to be ordered correctly though! 4826 */ 4827 struct iwm_umac_error_event_table { 4828 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 4829 uint32_t error_id; /* type of error */ 4830 uint32_t blink1; /* branch link */ 4831 uint32_t blink2; /* branch link */ 4832 uint32_t ilink1; /* interrupt link */ 4833 uint32_t ilink2; /* interrupt link */ 4834 uint32_t data1; /* error-specific data */ 4835 uint32_t data2; /* error-specific data */ 4836 uint32_t data3; /* error-specific data */ 4837 uint32_t umac_major; 4838 uint32_t umac_minor; 4839 uint32_t frame_pointer; /* core register 27*/ 4840 uint32_t stack_pointer; /* core register 28 */ 4841 uint32_t cmd_header; /* latest host cmd sent to UMAC */ 4842 uint32_t nic_isr_pref; /* ISR status register */ 4843 } __packed; 4844 4845 #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) 4846 #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) 4847 4848 #ifdef IWM_DEBUG 4849 struct { 4850 const char *name; 4851 uint8_t num; 4852 } advanced_lookup[] = { 4853 { "NMI_INTERRUPT_WDG", 0x34 }, 4854 { "SYSASSERT", 0x35 }, 4855 { "UCODE_VERSION_MISMATCH", 0x37 }, 4856 { "BAD_COMMAND", 0x38 }, 4857 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 4858 { "FATAL_ERROR", 0x3D }, 4859 { "NMI_TRM_HW_ERR", 0x46 }, 4860 { "NMI_INTERRUPT_TRM", 0x4C }, 4861 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 4862 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 4863 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 4864 { "NMI_INTERRUPT_HOST", 0x66 }, 4865 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 4866 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 4867 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 4868 { "ADVANCED_SYSASSERT", 0 }, 4869 }; 4870 4871 static const char * 4872 iwm_desc_lookup(uint32_t num) 4873 { 4874 int i; 4875 4876 for (i = 0; i < nitems(advanced_lookup) - 1; i++) 4877 if (advanced_lookup[i].num == num) 4878 return advanced_lookup[i].name; 4879 4880 /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ 4881 return advanced_lookup[i].name; 4882 } 4883 4884 static void 4885 iwm_nic_umac_error(struct iwm_softc *sc) 4886 { 4887 struct iwm_umac_error_event_table table; 4888 uint32_t base; 4889 4890 base = sc->sc_uc.uc_umac_error_event_table; 4891 4892 if (base < 0x800000) { 4893 device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", 4894 base); 4895 return; 4896 } 4897 4898 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 4899 device_printf(sc->sc_dev, "reading errlog failed\n"); 4900 return; 4901 } 4902 4903 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 4904 device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n"); 4905 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 4906 sc->sc_flags, table.valid); 4907 } 4908 4909 device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id, 4910 iwm_desc_lookup(table.error_id)); 4911 device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1); 4912 device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2); 4913 device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n", 4914 table.ilink1); 4915 device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n", 4916 table.ilink2); 4917 device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1); 4918 device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2); 4919 device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3); 4920 device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major); 4921 device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor); 4922 device_printf(sc->sc_dev, "0x%08X | frame pointer\n", 4923 table.frame_pointer); 4924 device_printf(sc->sc_dev, "0x%08X | stack pointer\n", 4925 table.stack_pointer); 4926 device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header); 4927 device_printf(sc->sc_dev, "0x%08X | isr status reg\n", 4928 table.nic_isr_pref); 4929 } 4930 4931 /* 4932 * Support for dumping the error log seemed like a good idea ... 4933 * but it's mostly hex junk and the only sensible thing is the 4934 * hw/ucode revision (which we know anyway). Since it's here, 4935 * I'll just leave it in, just in case e.g. the Intel guys want to 4936 * help us decipher some "ADVANCED_SYSASSERT" later. 4937 */ 4938 static void 4939 iwm_nic_error(struct iwm_softc *sc) 4940 { 4941 struct iwm_error_event_table table; 4942 uint32_t base; 4943 4944 device_printf(sc->sc_dev, "dumping device error log\n"); 4945 base = sc->sc_uc.uc_error_event_table; 4946 if (base < 0x800000) { 4947 device_printf(sc->sc_dev, 4948 "Invalid error log pointer 0x%08x\n", base); 4949 return; 4950 } 4951 4952 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 4953 device_printf(sc->sc_dev, "reading errlog failed\n"); 4954 return; 4955 } 4956 4957 if (!table.valid) { 4958 device_printf(sc->sc_dev, "errlog not found, skipping\n"); 4959 return; 4960 } 4961 4962 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 4963 device_printf(sc->sc_dev, "Start Error Log Dump:\n"); 4964 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 4965 sc->sc_flags, table.valid); 4966 } 4967 4968 device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, 4969 iwm_desc_lookup(table.error_id)); 4970 device_printf(sc->sc_dev, "%08X | trm_hw_status0\n", 4971 table.trm_hw_status0); 4972 device_printf(sc->sc_dev, "%08X | trm_hw_status1\n", 4973 table.trm_hw_status1); 4974 device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); 4975 device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); 4976 device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); 4977 device_printf(sc->sc_dev, "%08X | data1\n", table.data1); 4978 device_printf(sc->sc_dev, "%08X | data2\n", table.data2); 4979 device_printf(sc->sc_dev, "%08X | data3\n", table.data3); 4980 device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); 4981 device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); 4982 device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); 4983 device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); 4984 device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); 4985 device_printf(sc->sc_dev, "%08X | uCode revision type\n", 4986 table.fw_rev_type); 4987 device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major); 4988 device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor); 4989 device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); 4990 device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); 4991 device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); 4992 device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); 4993 device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); 4994 device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); 4995 device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); 4996 device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); 4997 device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id); 4998 device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); 4999 device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); 5000 device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); 5001 device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); 5002 device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); 5003 device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 5004 device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); 5005 device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); 5006 5007 if (sc->sc_uc.uc_umac_error_event_table) 5008 iwm_nic_umac_error(sc); 5009 } 5010 #endif 5011 5012 #define SYNC_RESP_STRUCT(_var_, _pkt_) \ 5013 do { \ 5014 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\ 5015 _var_ = (void *)((_pkt_)+1); \ 5016 } while (/*CONSTCOND*/0) 5017 5018 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \ 5019 do { \ 5020 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\ 5021 _ptr_ = (void *)((_pkt_)+1); \ 5022 } while (/*CONSTCOND*/0) 5023 5024 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT); 5025 5026 /* 5027 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. 5028 * Basic structure from if_iwn 5029 */ 5030 static void 5031 iwm_notif_intr(struct iwm_softc *sc) 5032 { 5033 struct ieee80211com *ic = &sc->sc_ic; 5034 uint16_t hw; 5035 5036 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 5037 BUS_DMASYNC_POSTREAD); 5038 5039 hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; 5040 5041 /* 5042 * Process responses 5043 */ 5044 while (sc->rxq.cur != hw) { 5045 struct iwm_rx_ring *ring = &sc->rxq; 5046 struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 5047 struct iwm_rx_packet *pkt; 5048 struct iwm_cmd_response *cresp; 5049 int qid, idx, code; 5050 5051 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 5052 BUS_DMASYNC_POSTREAD); 5053 pkt = mtod(data->m, struct iwm_rx_packet *); 5054 5055 qid = pkt->hdr.qid & ~0x80; 5056 idx = pkt->hdr.idx; 5057 5058 code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); 5059 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5060 "rx packet qid=%d idx=%d type=%x %d %d\n", 5061 pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw); 5062 5063 /* 5064 * randomly get these from the firmware, no idea why. 5065 * they at least seem harmless, so just ignore them for now 5066 */ 5067 if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0) 5068 || pkt->len_n_flags == htole32(0x55550000))) { 5069 ADVANCE_RXQ(sc); 5070 continue; 5071 } 5072 5073 switch (code) { 5074 case IWM_REPLY_RX_PHY_CMD: 5075 iwm_mvm_rx_rx_phy_cmd(sc, pkt, data); 5076 break; 5077 5078 case IWM_REPLY_RX_MPDU_CMD: 5079 iwm_mvm_rx_rx_mpdu(sc, pkt, data); 5080 break; 5081 5082 case IWM_TX_CMD: 5083 iwm_mvm_rx_tx_cmd(sc, pkt, data); 5084 break; 5085 5086 case IWM_MISSED_BEACONS_NOTIFICATION: { 5087 struct iwm_missed_beacons_notif *resp; 5088 int missed; 5089 5090 /* XXX look at mac_id to determine interface ID */ 5091 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5092 5093 SYNC_RESP_STRUCT(resp, pkt); 5094 missed = le32toh(resp->consec_missed_beacons); 5095 5096 IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, 5097 "%s: MISSED_BEACON: mac_id=%d, " 5098 "consec_since_last_rx=%d, consec=%d, num_expect=%d " 5099 "num_rx=%d\n", 5100 __func__, 5101 le32toh(resp->mac_id), 5102 le32toh(resp->consec_missed_beacons_since_last_rx), 5103 le32toh(resp->consec_missed_beacons), 5104 le32toh(resp->num_expected_beacons), 5105 le32toh(resp->num_recvd_beacons)); 5106 5107 /* Be paranoid */ 5108 if (vap == NULL) 5109 break; 5110 5111 /* XXX no net80211 locking? */ 5112 if (vap->iv_state == IEEE80211_S_RUN && 5113 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 5114 if (missed > vap->iv_bmissthreshold) { 5115 /* XXX bad locking; turn into task */ 5116 IWM_UNLOCK(sc); 5117 ieee80211_beacon_miss(ic); 5118 IWM_LOCK(sc); 5119 } 5120 } 5121 5122 break; } 5123 5124 case IWM_MFUART_LOAD_NOTIFICATION: 5125 break; 5126 5127 case IWM_MVM_ALIVE: { 5128 struct iwm_mvm_alive_resp_v1 *resp1; 5129 struct iwm_mvm_alive_resp_v2 *resp2; 5130 struct iwm_mvm_alive_resp_v3 *resp3; 5131 5132 if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) { 5133 SYNC_RESP_STRUCT(resp1, pkt); 5134 sc->sc_uc.uc_error_event_table 5135 = le32toh(resp1->error_event_table_ptr); 5136 sc->sc_uc.uc_log_event_table 5137 = le32toh(resp1->log_event_table_ptr); 5138 sc->sched_base = le32toh(resp1->scd_base_ptr); 5139 if (resp1->status == IWM_ALIVE_STATUS_OK) 5140 sc->sc_uc.uc_ok = 1; 5141 else 5142 sc->sc_uc.uc_ok = 0; 5143 } 5144 5145 if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) { 5146 SYNC_RESP_STRUCT(resp2, pkt); 5147 sc->sc_uc.uc_error_event_table 5148 = le32toh(resp2->error_event_table_ptr); 5149 sc->sc_uc.uc_log_event_table 5150 = le32toh(resp2->log_event_table_ptr); 5151 sc->sched_base = le32toh(resp2->scd_base_ptr); 5152 sc->sc_uc.uc_umac_error_event_table 5153 = le32toh(resp2->error_info_addr); 5154 if (resp2->status == IWM_ALIVE_STATUS_OK) 5155 sc->sc_uc.uc_ok = 1; 5156 else 5157 sc->sc_uc.uc_ok = 0; 5158 } 5159 5160 if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) { 5161 SYNC_RESP_STRUCT(resp3, pkt); 5162 sc->sc_uc.uc_error_event_table 5163 = le32toh(resp3->error_event_table_ptr); 5164 sc->sc_uc.uc_log_event_table 5165 = le32toh(resp3->log_event_table_ptr); 5166 sc->sched_base = le32toh(resp3->scd_base_ptr); 5167 sc->sc_uc.uc_umac_error_event_table 5168 = le32toh(resp3->error_info_addr); 5169 if (resp3->status == IWM_ALIVE_STATUS_OK) 5170 sc->sc_uc.uc_ok = 1; 5171 else 5172 sc->sc_uc.uc_ok = 0; 5173 } 5174 5175 sc->sc_uc.uc_intr = 1; 5176 wakeup(&sc->sc_uc); 5177 break; } 5178 5179 case IWM_CALIB_RES_NOTIF_PHY_DB: { 5180 struct iwm_calib_res_notif_phy_db *phy_db_notif; 5181 SYNC_RESP_STRUCT(phy_db_notif, pkt); 5182 5183 iwm_phy_db_set_section(sc, phy_db_notif); 5184 5185 break; } 5186 5187 case IWM_STATISTICS_NOTIFICATION: { 5188 struct iwm_notif_statistics *stats; 5189 SYNC_RESP_STRUCT(stats, pkt); 5190 memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); 5191 sc->sc_noise = iwm_get_noise(sc, &stats->rx.general); 5192 break; } 5193 5194 case IWM_NVM_ACCESS_CMD: 5195 case IWM_MCC_UPDATE_CMD: 5196 if (sc->sc_wantresp == ((qid << 16) | idx)) { 5197 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 5198 BUS_DMASYNC_POSTREAD); 5199 memcpy(sc->sc_cmd_resp, 5200 pkt, sizeof(sc->sc_cmd_resp)); 5201 } 5202 break; 5203 5204 case IWM_MCC_CHUB_UPDATE_CMD: { 5205 struct iwm_mcc_chub_notif *notif; 5206 SYNC_RESP_STRUCT(notif, pkt); 5207 5208 sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; 5209 sc->sc_fw_mcc[1] = notif->mcc & 0xff; 5210 sc->sc_fw_mcc[2] = '\0'; 5211 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 5212 "fw source %d sent CC '%s'\n", 5213 notif->source_id, sc->sc_fw_mcc); 5214 break; } 5215 5216 case IWM_DTS_MEASUREMENT_NOTIFICATION: 5217 break; 5218 5219 case IWM_PHY_CONFIGURATION_CMD: 5220 case IWM_TX_ANT_CONFIGURATION_CMD: 5221 case IWM_ADD_STA: 5222 case IWM_MAC_CONTEXT_CMD: 5223 case IWM_REPLY_SF_CFG_CMD: 5224 case IWM_POWER_TABLE_CMD: 5225 case IWM_PHY_CONTEXT_CMD: 5226 case IWM_BINDING_CONTEXT_CMD: 5227 case IWM_TIME_EVENT_CMD: 5228 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): 5229 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): 5230 case IWM_SCAN_OFFLOAD_REQUEST_CMD: 5231 case IWM_REPLY_BEACON_FILTERING_CMD: 5232 case IWM_MAC_PM_POWER_TABLE: 5233 case IWM_TIME_QUOTA_CMD: 5234 case IWM_REMOVE_STA: 5235 case IWM_TXPATH_FLUSH: 5236 case IWM_LQ_CMD: 5237 case IWM_BT_CONFIG: 5238 case IWM_REPLY_THERMAL_MNG_BACKOFF: 5239 SYNC_RESP_STRUCT(cresp, pkt); 5240 if (sc->sc_wantresp == ((qid << 16) | idx)) { 5241 memcpy(sc->sc_cmd_resp, 5242 pkt, sizeof(*pkt)+sizeof(*cresp)); 5243 } 5244 break; 5245 5246 /* ignore */ 5247 case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */ 5248 break; 5249 5250 case IWM_INIT_COMPLETE_NOTIF: 5251 sc->sc_init_complete = 1; 5252 wakeup(&sc->sc_init_complete); 5253 break; 5254 5255 case IWM_SCAN_OFFLOAD_COMPLETE: { 5256 struct iwm_periodic_scan_complete *notif; 5257 SYNC_RESP_STRUCT(notif, pkt); 5258 break; 5259 } 5260 5261 case IWM_SCAN_ITERATION_COMPLETE: { 5262 struct iwm_lmac_scan_complete_notif *notif; 5263 SYNC_RESP_STRUCT(notif, pkt); 5264 ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task); 5265 break; 5266 } 5267 5268 case IWM_SCAN_COMPLETE_UMAC: { 5269 struct iwm_umac_scan_complete *notif; 5270 SYNC_RESP_STRUCT(notif, pkt); 5271 5272 IWM_DPRINTF(sc, IWM_DEBUG_SCAN, 5273 "UMAC scan complete, status=0x%x\n", 5274 notif->status); 5275 #if 0 /* XXX This would be a duplicate scan end call */ 5276 taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task); 5277 #endif 5278 break; 5279 } 5280 5281 case IWM_SCAN_ITERATION_COMPLETE_UMAC: { 5282 struct iwm_umac_scan_iter_complete_notif *notif; 5283 SYNC_RESP_STRUCT(notif, pkt); 5284 5285 IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration " 5286 "complete, status=0x%x, %d channels scanned\n", 5287 notif->status, notif->scanned_channels); 5288 ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task); 5289 break; 5290 } 5291 5292 case IWM_REPLY_ERROR: { 5293 struct iwm_error_resp *resp; 5294 SYNC_RESP_STRUCT(resp, pkt); 5295 5296 device_printf(sc->sc_dev, 5297 "firmware error 0x%x, cmd 0x%x\n", 5298 le32toh(resp->error_type), 5299 resp->cmd_id); 5300 break; 5301 } 5302 5303 case IWM_TIME_EVENT_NOTIFICATION: { 5304 struct iwm_time_event_notif *notif; 5305 SYNC_RESP_STRUCT(notif, pkt); 5306 5307 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5308 "TE notif status = 0x%x action = 0x%x\n", 5309 notif->status, notif->action); 5310 break; 5311 } 5312 5313 case IWM_MCAST_FILTER_CMD: 5314 break; 5315 5316 case IWM_SCD_QUEUE_CFG: { 5317 struct iwm_scd_txq_cfg_rsp *rsp; 5318 SYNC_RESP_STRUCT(rsp, pkt); 5319 5320 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 5321 "queue cfg token=0x%x sta_id=%d " 5322 "tid=%d scd_queue=%d\n", 5323 rsp->token, rsp->sta_id, rsp->tid, 5324 rsp->scd_queue); 5325 break; 5326 } 5327 5328 default: 5329 device_printf(sc->sc_dev, 5330 "frame %d/%d %x UNHANDLED (this should " 5331 "not happen)\n", qid, idx, 5332 pkt->len_n_flags); 5333 break; 5334 } 5335 5336 /* 5337 * Why test bit 0x80? The Linux driver: 5338 * 5339 * There is one exception: uCode sets bit 15 when it 5340 * originates the response/notification, i.e. when the 5341 * response/notification is not a direct response to a 5342 * command sent by the driver. For example, uCode issues 5343 * IWM_REPLY_RX when it sends a received frame to the driver; 5344 * it is not a direct response to any driver command. 5345 * 5346 * Ok, so since when is 7 == 15? Well, the Linux driver 5347 * uses a slightly different format for pkt->hdr, and "qid" 5348 * is actually the upper byte of a two-byte field. 5349 */ 5350 if (!(pkt->hdr.qid & (1 << 7))) { 5351 iwm_cmd_done(sc, pkt); 5352 } 5353 5354 ADVANCE_RXQ(sc); 5355 } 5356 5357 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 5358 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 5359 5360 /* 5361 * Tell the firmware what we have processed. 5362 * Seems like the hardware gets upset unless we align 5363 * the write by 8?? 5364 */ 5365 hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1; 5366 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7); 5367 } 5368 5369 static void 5370 iwm_intr(void *arg) 5371 { 5372 struct iwm_softc *sc = arg; 5373 int handled = 0; 5374 int r1, r2, rv = 0; 5375 int isperiodic = 0; 5376 5377 IWM_LOCK(sc); 5378 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 5379 5380 if (sc->sc_flags & IWM_FLAG_USE_ICT) { 5381 uint32_t *ict = sc->ict_dma.vaddr; 5382 int tmp; 5383 5384 tmp = htole32(ict[sc->ict_cur]); 5385 if (!tmp) 5386 goto out_ena; 5387 5388 /* 5389 * ok, there was something. keep plowing until we have all. 5390 */ 5391 r1 = r2 = 0; 5392 while (tmp) { 5393 r1 |= tmp; 5394 ict[sc->ict_cur] = 0; 5395 sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; 5396 tmp = htole32(ict[sc->ict_cur]); 5397 } 5398 5399 /* this is where the fun begins. don't ask */ 5400 if (r1 == 0xffffffff) 5401 r1 = 0; 5402 5403 /* i am not expected to understand this */ 5404 if (r1 & 0xc0000) 5405 r1 |= 0x8000; 5406 r1 = (0xff & r1) | ((0xff00 & r1) << 16); 5407 } else { 5408 r1 = IWM_READ(sc, IWM_CSR_INT); 5409 /* "hardware gone" (where, fishing?) */ 5410 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 5411 goto out; 5412 r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); 5413 } 5414 if (r1 == 0 && r2 == 0) { 5415 goto out_ena; 5416 } 5417 5418 IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); 5419 5420 /* ignored */ 5421 handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/)); 5422 5423 if (r1 & IWM_CSR_INT_BIT_SW_ERR) { 5424 int i; 5425 struct ieee80211com *ic = &sc->sc_ic; 5426 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5427 5428 #ifdef IWM_DEBUG 5429 iwm_nic_error(sc); 5430 #endif 5431 /* Dump driver status (TX and RX rings) while we're here. */ 5432 device_printf(sc->sc_dev, "driver status:\n"); 5433 for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) { 5434 struct iwm_tx_ring *ring = &sc->txq[i]; 5435 device_printf(sc->sc_dev, 5436 " tx ring %2d: qid=%-2d cur=%-3d " 5437 "queued=%-3d\n", 5438 i, ring->qid, ring->cur, ring->queued); 5439 } 5440 device_printf(sc->sc_dev, 5441 " rx ring: cur=%d\n", sc->rxq.cur); 5442 device_printf(sc->sc_dev, 5443 " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); 5444 5445 /* Don't stop the device; just do a VAP restart */ 5446 IWM_UNLOCK(sc); 5447 5448 if (vap == NULL) { 5449 printf("%s: null vap\n", __func__); 5450 return; 5451 } 5452 5453 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 5454 "restarting\n", __func__, vap->iv_state); 5455 5456 /* XXX TODO: turn this into a callout/taskqueue */ 5457 ieee80211_restart_all(ic); 5458 return; 5459 } 5460 5461 if (r1 & IWM_CSR_INT_BIT_HW_ERR) { 5462 handled |= IWM_CSR_INT_BIT_HW_ERR; 5463 device_printf(sc->sc_dev, "hardware error, stopping device\n"); 5464 iwm_stop(sc); 5465 rv = 1; 5466 goto out; 5467 } 5468 5469 /* firmware chunk loaded */ 5470 if (r1 & IWM_CSR_INT_BIT_FH_TX) { 5471 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); 5472 handled |= IWM_CSR_INT_BIT_FH_TX; 5473 sc->sc_fw_chunk_done = 1; 5474 wakeup(&sc->sc_fw); 5475 } 5476 5477 if (r1 & IWM_CSR_INT_BIT_RF_KILL) { 5478 handled |= IWM_CSR_INT_BIT_RF_KILL; 5479 if (iwm_check_rfkill(sc)) { 5480 device_printf(sc->sc_dev, 5481 "%s: rfkill switch, disabling interface\n", 5482 __func__); 5483 iwm_stop(sc); 5484 } 5485 } 5486 5487 /* 5488 * The Linux driver uses periodic interrupts to avoid races. 5489 * We cargo-cult like it's going out of fashion. 5490 */ 5491 if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { 5492 handled |= IWM_CSR_INT_BIT_RX_PERIODIC; 5493 IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); 5494 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) 5495 IWM_WRITE_1(sc, 5496 IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); 5497 isperiodic = 1; 5498 } 5499 5500 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { 5501 handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); 5502 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); 5503 5504 iwm_notif_intr(sc); 5505 5506 /* enable periodic interrupt, see above */ 5507 if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) 5508 IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, 5509 IWM_CSR_INT_PERIODIC_ENA); 5510 } 5511 5512 if (__predict_false(r1 & ~handled)) 5513 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5514 "%s: unhandled interrupts: %x\n", __func__, r1); 5515 rv = 1; 5516 5517 out_ena: 5518 iwm_restore_interrupts(sc); 5519 out: 5520 IWM_UNLOCK(sc); 5521 return; 5522 } 5523 5524 /* 5525 * Autoconf glue-sniffing 5526 */ 5527 #define PCI_VENDOR_INTEL 0x8086 5528 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 5529 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 5530 #define PCI_PRODUCT_INTEL_WL_3165_1 0x3165 5531 #define PCI_PRODUCT_INTEL_WL_3165_2 0x3166 5532 #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 5533 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 5534 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a 5535 #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b 5536 #define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3 5537 #define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4 5538 5539 static const struct iwm_devices { 5540 uint16_t device; 5541 const char *name; 5542 } iwm_devices[] = { 5543 { PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" }, 5544 { PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" }, 5545 { PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" }, 5546 { PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" }, 5547 { PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" }, 5548 { PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" }, 5549 { PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" }, 5550 { PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" }, 5551 { PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" }, 5552 { PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" }, 5553 }; 5554 5555 static int 5556 iwm_probe(device_t dev) 5557 { 5558 int i; 5559 5560 for (i = 0; i < nitems(iwm_devices); i++) { 5561 if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && 5562 pci_get_device(dev) == iwm_devices[i].device) { 5563 device_set_desc(dev, iwm_devices[i].name); 5564 return (BUS_PROBE_DEFAULT); 5565 } 5566 } 5567 5568 return (ENXIO); 5569 } 5570 5571 static int 5572 iwm_dev_check(device_t dev) 5573 { 5574 struct iwm_softc *sc; 5575 5576 sc = device_get_softc(dev); 5577 5578 sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); 5579 switch (pci_get_device(dev)) { 5580 case PCI_PRODUCT_INTEL_WL_3160_1: 5581 case PCI_PRODUCT_INTEL_WL_3160_2: 5582 sc->sc_fwname = "iwm3160fw"; 5583 sc->host_interrupt_operation_mode = 1; 5584 sc->sc_device_family = IWM_DEVICE_FAMILY_7000; 5585 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; 5586 return (0); 5587 case PCI_PRODUCT_INTEL_WL_3165_1: 5588 case PCI_PRODUCT_INTEL_WL_3165_2: 5589 sc->sc_fwname = "iwm7265fw"; 5590 sc->host_interrupt_operation_mode = 0; 5591 sc->sc_device_family = IWM_DEVICE_FAMILY_7000; 5592 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; 5593 return (0); 5594 case PCI_PRODUCT_INTEL_WL_7260_1: 5595 case PCI_PRODUCT_INTEL_WL_7260_2: 5596 sc->sc_fwname = "iwm7260fw"; 5597 sc->host_interrupt_operation_mode = 1; 5598 sc->sc_device_family = IWM_DEVICE_FAMILY_7000; 5599 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; 5600 return (0); 5601 case PCI_PRODUCT_INTEL_WL_7265_1: 5602 case PCI_PRODUCT_INTEL_WL_7265_2: 5603 sc->sc_fwname = "iwm7265fw"; 5604 sc->host_interrupt_operation_mode = 0; 5605 sc->sc_device_family = IWM_DEVICE_FAMILY_7000; 5606 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; 5607 return (0); 5608 case PCI_PRODUCT_INTEL_WL_8260_1: 5609 case PCI_PRODUCT_INTEL_WL_8260_2: 5610 sc->sc_fwname = "iwm8000Cfw"; 5611 sc->host_interrupt_operation_mode = 0; 5612 sc->sc_device_family = IWM_DEVICE_FAMILY_8000; 5613 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000; 5614 return (0); 5615 default: 5616 device_printf(dev, "unknown adapter type\n"); 5617 return ENXIO; 5618 } 5619 } 5620 5621 static int 5622 iwm_pci_attach(device_t dev) 5623 { 5624 struct iwm_softc *sc; 5625 int count, error, rid; 5626 uint16_t reg; 5627 5628 sc = device_get_softc(dev); 5629 5630 /* Clear device-specific "PCI retry timeout" register (41h). */ 5631 reg = pci_read_config(dev, 0x40, sizeof(reg)); 5632 pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg)); 5633 5634 /* Enable bus-mastering and hardware bug workaround. */ 5635 pci_enable_busmaster(dev); 5636 reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); 5637 /* if !MSI */ 5638 if (reg & PCIM_STATUS_INTxSTATE) { 5639 reg &= ~PCIM_STATUS_INTxSTATE; 5640 } 5641 pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); 5642 5643 rid = PCIR_BAR(0); 5644 sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 5645 RF_ACTIVE); 5646 if (sc->sc_mem == NULL) { 5647 device_printf(sc->sc_dev, "can't map mem space\n"); 5648 return (ENXIO); 5649 } 5650 sc->sc_st = rman_get_bustag(sc->sc_mem); 5651 sc->sc_sh = rman_get_bushandle(sc->sc_mem); 5652 5653 /* Install interrupt handler. */ 5654 count = 1; 5655 rid = 0; 5656 if (pci_alloc_msi(dev, &count) == 0) 5657 rid = 1; 5658 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 5659 (rid != 0 ? 0 : RF_SHAREABLE)); 5660 if (sc->sc_irq == NULL) { 5661 device_printf(dev, "can't map interrupt\n"); 5662 return (ENXIO); 5663 } 5664 error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, 5665 NULL, iwm_intr, sc, &sc->sc_ih); 5666 if (sc->sc_ih == NULL) { 5667 device_printf(dev, "can't establish interrupt"); 5668 return (ENXIO); 5669 } 5670 sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); 5671 5672 return (0); 5673 } 5674 5675 static void 5676 iwm_pci_detach(device_t dev) 5677 { 5678 struct iwm_softc *sc = device_get_softc(dev); 5679 5680 if (sc->sc_irq != NULL) { 5681 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 5682 bus_release_resource(dev, SYS_RES_IRQ, 5683 rman_get_rid(sc->sc_irq), sc->sc_irq); 5684 pci_release_msi(dev); 5685 } 5686 if (sc->sc_mem != NULL) 5687 bus_release_resource(dev, SYS_RES_MEMORY, 5688 rman_get_rid(sc->sc_mem), sc->sc_mem); 5689 } 5690 5691 5692 5693 static int 5694 iwm_attach(device_t dev) 5695 { 5696 struct iwm_softc *sc = device_get_softc(dev); 5697 struct ieee80211com *ic = &sc->sc_ic; 5698 int error; 5699 int txq_i, i; 5700 5701 sc->sc_dev = dev; 5702 IWM_LOCK_INIT(sc); 5703 mbufq_init(&sc->sc_snd, ifqmaxlen); 5704 callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); 5705 callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0); 5706 TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); 5707 5708 /* PCI attach */ 5709 error = iwm_pci_attach(dev); 5710 if (error != 0) 5711 goto fail; 5712 5713 sc->sc_wantresp = -1; 5714 5715 /* Check device type */ 5716 error = iwm_dev_check(dev); 5717 if (error != 0) 5718 goto fail; 5719 5720 /* 5721 * We now start fiddling with the hardware 5722 */ 5723 /* 5724 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have 5725 * changed, and now the revision step also includes bit 0-1 (no more 5726 * "dash" value). To keep hw_rev backwards compatible - we'll store it 5727 * in the old format. 5728 */ 5729 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) 5730 sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | 5731 (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); 5732 5733 if (iwm_prepare_card_hw(sc) != 0) { 5734 device_printf(dev, "could not initialize hardware\n"); 5735 goto fail; 5736 } 5737 5738 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { 5739 int ret; 5740 uint32_t hw_step; 5741 5742 /* 5743 * In order to recognize C step the driver should read the 5744 * chip version id located at the AUX bus MISC address. 5745 */ 5746 IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, 5747 IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); 5748 DELAY(2); 5749 5750 ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, 5751 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 5752 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 5753 25000); 5754 if (!ret) { 5755 device_printf(sc->sc_dev, 5756 "Failed to wake up the nic\n"); 5757 goto fail; 5758 } 5759 5760 if (iwm_nic_lock(sc)) { 5761 hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); 5762 hw_step |= IWM_ENABLE_WFPM; 5763 iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); 5764 hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); 5765 hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; 5766 if (hw_step == 0x3) 5767 sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | 5768 (IWM_SILICON_C_STEP << 2); 5769 iwm_nic_unlock(sc); 5770 } else { 5771 device_printf(sc->sc_dev, "Failed to lock the nic\n"); 5772 goto fail; 5773 } 5774 } 5775 5776 /* Allocate DMA memory for firmware transfers. */ 5777 if ((error = iwm_alloc_fwmem(sc)) != 0) { 5778 device_printf(dev, "could not allocate memory for firmware\n"); 5779 goto fail; 5780 } 5781 5782 /* Allocate "Keep Warm" page. */ 5783 if ((error = iwm_alloc_kw(sc)) != 0) { 5784 device_printf(dev, "could not allocate keep warm page\n"); 5785 goto fail; 5786 } 5787 5788 /* We use ICT interrupts */ 5789 if ((error = iwm_alloc_ict(sc)) != 0) { 5790 device_printf(dev, "could not allocate ICT table\n"); 5791 goto fail; 5792 } 5793 5794 /* Allocate TX scheduler "rings". */ 5795 if ((error = iwm_alloc_sched(sc)) != 0) { 5796 device_printf(dev, "could not allocate TX scheduler rings\n"); 5797 goto fail; 5798 } 5799 5800 /* Allocate TX rings */ 5801 for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { 5802 if ((error = iwm_alloc_tx_ring(sc, 5803 &sc->txq[txq_i], txq_i)) != 0) { 5804 device_printf(dev, 5805 "could not allocate TX ring %d\n", 5806 txq_i); 5807 goto fail; 5808 } 5809 } 5810 5811 /* Allocate RX ring. */ 5812 if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { 5813 device_printf(dev, "could not allocate RX ring\n"); 5814 goto fail; 5815 } 5816 5817 /* Clear pending interrupts. */ 5818 IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); 5819 5820 ic->ic_softc = sc; 5821 ic->ic_name = device_get_nameunit(sc->sc_dev); 5822 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 5823 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 5824 5825 /* Set device capabilities. */ 5826 ic->ic_caps = 5827 IEEE80211_C_STA | 5828 IEEE80211_C_WPA | /* WPA/RSN */ 5829 IEEE80211_C_WME | 5830 IEEE80211_C_SHSLOT | /* short slot time supported */ 5831 IEEE80211_C_SHPREAMBLE /* short preamble supported */ 5832 // IEEE80211_C_BGSCAN /* capable of bg scanning */ 5833 ; 5834 for (i = 0; i < nitems(sc->sc_phyctxt); i++) { 5835 sc->sc_phyctxt[i].id = i; 5836 sc->sc_phyctxt[i].color = 0; 5837 sc->sc_phyctxt[i].ref = 0; 5838 sc->sc_phyctxt[i].channel = NULL; 5839 } 5840 5841 /* Default noise floor */ 5842 sc->sc_noise = -96; 5843 5844 /* Max RSSI */ 5845 sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; 5846 5847 sc->sc_preinit_hook.ich_func = iwm_preinit; 5848 sc->sc_preinit_hook.ich_arg = sc; 5849 if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { 5850 device_printf(dev, "config_intrhook_establish failed\n"); 5851 goto fail; 5852 } 5853 5854 #ifdef IWM_DEBUG 5855 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 5856 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", 5857 CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); 5858 #endif 5859 5860 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 5861 "<-%s\n", __func__); 5862 5863 return 0; 5864 5865 /* Free allocated memory if something failed during attachment. */ 5866 fail: 5867 iwm_detach_local(sc, 0); 5868 5869 return ENXIO; 5870 } 5871 5872 static int 5873 iwm_is_valid_ether_addr(uint8_t *addr) 5874 { 5875 char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 }; 5876 5877 if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr)) 5878 return (FALSE); 5879 5880 return (TRUE); 5881 } 5882 5883 static int 5884 iwm_update_edca(struct ieee80211com *ic) 5885 { 5886 struct iwm_softc *sc = ic->ic_softc; 5887 5888 device_printf(sc->sc_dev, "%s: called\n", __func__); 5889 return (0); 5890 } 5891 5892 static void 5893 iwm_preinit(void *arg) 5894 { 5895 struct iwm_softc *sc = arg; 5896 device_t dev = sc->sc_dev; 5897 struct ieee80211com *ic = &sc->sc_ic; 5898 int error; 5899 5900 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 5901 "->%s\n", __func__); 5902 5903 IWM_LOCK(sc); 5904 if ((error = iwm_start_hw(sc)) != 0) { 5905 device_printf(dev, "could not initialize hardware\n"); 5906 IWM_UNLOCK(sc); 5907 goto fail; 5908 } 5909 5910 error = iwm_run_init_mvm_ucode(sc, 1); 5911 iwm_stop_device(sc); 5912 if (error) { 5913 IWM_UNLOCK(sc); 5914 goto fail; 5915 } 5916 device_printf(dev, 5917 "hw rev 0x%x, fw ver %s, address %s\n", 5918 sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, 5919 sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr)); 5920 5921 /* not all hardware can do 5GHz band */ 5922 if (!sc->sc_nvm.sku_cap_band_52GHz_enable) 5923 memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, 5924 sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); 5925 IWM_UNLOCK(sc); 5926 5927 iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 5928 ic->ic_channels); 5929 5930 /* 5931 * At this point we've committed - if we fail to do setup, 5932 * we now also have to tear down the net80211 state. 5933 */ 5934 ieee80211_ifattach(ic); 5935 ic->ic_vap_create = iwm_vap_create; 5936 ic->ic_vap_delete = iwm_vap_delete; 5937 ic->ic_raw_xmit = iwm_raw_xmit; 5938 ic->ic_node_alloc = iwm_node_alloc; 5939 ic->ic_scan_start = iwm_scan_start; 5940 ic->ic_scan_end = iwm_scan_end; 5941 ic->ic_update_mcast = iwm_update_mcast; 5942 ic->ic_getradiocaps = iwm_init_channel_map; 5943 ic->ic_set_channel = iwm_set_channel; 5944 ic->ic_scan_curchan = iwm_scan_curchan; 5945 ic->ic_scan_mindwell = iwm_scan_mindwell; 5946 ic->ic_wme.wme_update = iwm_update_edca; 5947 ic->ic_parent = iwm_parent; 5948 ic->ic_transmit = iwm_transmit; 5949 iwm_radiotap_attach(sc); 5950 if (bootverbose) 5951 ieee80211_announce(ic); 5952 5953 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 5954 "<-%s\n", __func__); 5955 config_intrhook_disestablish(&sc->sc_preinit_hook); 5956 5957 return; 5958 fail: 5959 config_intrhook_disestablish(&sc->sc_preinit_hook); 5960 iwm_detach_local(sc, 0); 5961 } 5962 5963 /* 5964 * Attach the interface to 802.11 radiotap. 5965 */ 5966 static void 5967 iwm_radiotap_attach(struct iwm_softc *sc) 5968 { 5969 struct ieee80211com *ic = &sc->sc_ic; 5970 5971 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 5972 "->%s begin\n", __func__); 5973 ieee80211_radiotap_attach(ic, 5974 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 5975 IWM_TX_RADIOTAP_PRESENT, 5976 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 5977 IWM_RX_RADIOTAP_PRESENT); 5978 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 5979 "->%s end\n", __func__); 5980 } 5981 5982 static struct ieee80211vap * 5983 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 5984 enum ieee80211_opmode opmode, int flags, 5985 const uint8_t bssid[IEEE80211_ADDR_LEN], 5986 const uint8_t mac[IEEE80211_ADDR_LEN]) 5987 { 5988 struct iwm_vap *ivp; 5989 struct ieee80211vap *vap; 5990 5991 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 5992 return NULL; 5993 ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); 5994 vap = &ivp->iv_vap; 5995 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 5996 vap->iv_bmissthreshold = 10; /* override default */ 5997 /* Override with driver methods. */ 5998 ivp->iv_newstate = vap->iv_newstate; 5999 vap->iv_newstate = iwm_newstate; 6000 6001 ieee80211_ratectl_init(vap); 6002 /* Complete setup. */ 6003 ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status, 6004 mac); 6005 ic->ic_opmode = opmode; 6006 6007 return vap; 6008 } 6009 6010 static void 6011 iwm_vap_delete(struct ieee80211vap *vap) 6012 { 6013 struct iwm_vap *ivp = IWM_VAP(vap); 6014 6015 ieee80211_ratectl_deinit(vap); 6016 ieee80211_vap_detach(vap); 6017 free(ivp, M_80211_VAP); 6018 } 6019 6020 static void 6021 iwm_scan_start(struct ieee80211com *ic) 6022 { 6023 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6024 struct iwm_softc *sc = ic->ic_softc; 6025 int error; 6026 6027 IWM_LOCK(sc); 6028 if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) 6029 error = iwm_mvm_umac_scan(sc); 6030 else 6031 error = iwm_mvm_lmac_scan(sc); 6032 if (error != 0) { 6033 device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n"); 6034 IWM_UNLOCK(sc); 6035 ieee80211_cancel_scan(vap); 6036 } else { 6037 iwm_led_blink_start(sc); 6038 IWM_UNLOCK(sc); 6039 } 6040 } 6041 6042 static void 6043 iwm_scan_end(struct ieee80211com *ic) 6044 { 6045 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6046 struct iwm_softc *sc = ic->ic_softc; 6047 6048 IWM_LOCK(sc); 6049 iwm_led_blink_stop(sc); 6050 if (vap->iv_state == IEEE80211_S_RUN) 6051 iwm_mvm_led_enable(sc); 6052 IWM_UNLOCK(sc); 6053 } 6054 6055 static void 6056 iwm_update_mcast(struct ieee80211com *ic) 6057 { 6058 } 6059 6060 static void 6061 iwm_set_channel(struct ieee80211com *ic) 6062 { 6063 } 6064 6065 static void 6066 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 6067 { 6068 } 6069 6070 static void 6071 iwm_scan_mindwell(struct ieee80211_scan_state *ss) 6072 { 6073 return; 6074 } 6075 6076 void 6077 iwm_init_task(void *arg1) 6078 { 6079 struct iwm_softc *sc = arg1; 6080 6081 IWM_LOCK(sc); 6082 while (sc->sc_flags & IWM_FLAG_BUSY) 6083 msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); 6084 sc->sc_flags |= IWM_FLAG_BUSY; 6085 iwm_stop(sc); 6086 if (sc->sc_ic.ic_nrunning > 0) 6087 iwm_init(sc); 6088 sc->sc_flags &= ~IWM_FLAG_BUSY; 6089 wakeup(&sc->sc_flags); 6090 IWM_UNLOCK(sc); 6091 } 6092 6093 static int 6094 iwm_resume(device_t dev) 6095 { 6096 struct iwm_softc *sc = device_get_softc(dev); 6097 int do_reinit = 0; 6098 uint16_t reg; 6099 6100 /* Clear device-specific "PCI retry timeout" register (41h). */ 6101 reg = pci_read_config(dev, 0x40, sizeof(reg)); 6102 pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg)); 6103 iwm_init_task(device_get_softc(dev)); 6104 6105 IWM_LOCK(sc); 6106 if (sc->sc_flags & IWM_FLAG_SCANNING) { 6107 sc->sc_flags &= ~IWM_FLAG_SCANNING; 6108 do_reinit = 1; 6109 } 6110 IWM_UNLOCK(sc); 6111 6112 if (do_reinit) 6113 ieee80211_resume_all(&sc->sc_ic); 6114 6115 return 0; 6116 } 6117 6118 static int 6119 iwm_suspend(device_t dev) 6120 { 6121 int do_stop = 0; 6122 struct iwm_softc *sc = device_get_softc(dev); 6123 6124 do_stop = !! (sc->sc_ic.ic_nrunning > 0); 6125 6126 ieee80211_suspend_all(&sc->sc_ic); 6127 6128 if (do_stop) { 6129 IWM_LOCK(sc); 6130 iwm_stop(sc); 6131 sc->sc_flags |= IWM_FLAG_SCANNING; 6132 IWM_UNLOCK(sc); 6133 } 6134 6135 return (0); 6136 } 6137 6138 static int 6139 iwm_detach_local(struct iwm_softc *sc, int do_net80211) 6140 { 6141 struct iwm_fw_info *fw = &sc->sc_fw; 6142 device_t dev = sc->sc_dev; 6143 int i; 6144 6145 ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task); 6146 6147 callout_drain(&sc->sc_led_blink_to); 6148 callout_drain(&sc->sc_watchdog_to); 6149 iwm_stop_device(sc); 6150 if (do_net80211) { 6151 ieee80211_ifdetach(&sc->sc_ic); 6152 } 6153 6154 iwm_phy_db_free(sc); 6155 6156 /* Free descriptor rings */ 6157 iwm_free_rx_ring(sc, &sc->rxq); 6158 for (i = 0; i < nitems(sc->txq); i++) 6159 iwm_free_tx_ring(sc, &sc->txq[i]); 6160 6161 /* Free firmware */ 6162 if (fw->fw_fp != NULL) 6163 iwm_fw_info_free(fw); 6164 6165 /* Free scheduler */ 6166 iwm_dma_contig_free(&sc->sched_dma); 6167 iwm_dma_contig_free(&sc->ict_dma); 6168 iwm_dma_contig_free(&sc->kw_dma); 6169 iwm_dma_contig_free(&sc->fw_dma); 6170 6171 /* Finished with the hardware - detach things */ 6172 iwm_pci_detach(dev); 6173 6174 mbufq_drain(&sc->sc_snd); 6175 IWM_LOCK_DESTROY(sc); 6176 6177 return (0); 6178 } 6179 6180 static int 6181 iwm_detach(device_t dev) 6182 { 6183 struct iwm_softc *sc = device_get_softc(dev); 6184 6185 return (iwm_detach_local(sc, 1)); 6186 } 6187 6188 static device_method_t iwm_pci_methods[] = { 6189 /* Device interface */ 6190 DEVMETHOD(device_probe, iwm_probe), 6191 DEVMETHOD(device_attach, iwm_attach), 6192 DEVMETHOD(device_detach, iwm_detach), 6193 DEVMETHOD(device_suspend, iwm_suspend), 6194 DEVMETHOD(device_resume, iwm_resume), 6195 6196 DEVMETHOD_END 6197 }; 6198 6199 static driver_t iwm_pci_driver = { 6200 "iwm", 6201 iwm_pci_methods, 6202 sizeof (struct iwm_softc) 6203 }; 6204 6205 static devclass_t iwm_devclass; 6206 6207 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); 6208 MODULE_DEPEND(iwm, firmware, 1, 1, 1); 6209 MODULE_DEPEND(iwm, pci, 1, 1, 1); 6210 MODULE_DEPEND(iwm, wlan, 1, 1, 1); 6211