xref: /freebsd/sys/dev/iwm/if_iwm.c (revision eaa797943eeac5614edfdc8f6309f332343c3dd2)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164 
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167 
168 const uint8_t iwm_nvm_channels[] = {
169 	/* 2.4 GHz */
170 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171 	/* 5 GHz */
172 	36, 40, 44, 48, 52, 56, 60, 64,
173 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174 	149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178 
179 const uint8_t iwm_nvm_channels_8000[] = {
180 	/* 2.4 GHz */
181 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182 	/* 5 GHz */
183 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185 	149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189 
190 #define IWM_NUM_2GHZ_CHANNELS	14
191 #define IWM_N_HW_ADDR_MASK	0xF
192 
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198 	uint8_t rate;
199 	uint8_t plcp;
200 } iwm_rates[] = {
201 	{   2,	IWM_RATE_1M_PLCP  },
202 	{   4,	IWM_RATE_2M_PLCP  },
203 	{  11,	IWM_RATE_5M_PLCP  },
204 	{  22,	IWM_RATE_11M_PLCP },
205 	{  12,	IWM_RATE_6M_PLCP  },
206 	{  18,	IWM_RATE_9M_PLCP  },
207 	{  24,	IWM_RATE_12M_PLCP },
208 	{  36,	IWM_RATE_18M_PLCP },
209 	{  48,	IWM_RATE_24M_PLCP },
210 	{  72,	IWM_RATE_36M_PLCP },
211 	{  96,	IWM_RATE_48M_PLCP },
212 	{ 108,	IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK	0
215 #define IWM_RIDX_OFDM	4
216 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219 
220 struct iwm_nvm_section {
221 	uint16_t length;
222 	uint8_t *data;
223 };
224 
225 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int	iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void	iwm_fw_info_free(struct iwm_fw_info *);
231 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void	iwm_dma_contig_free(struct iwm_dma_info *);
236 static int	iwm_alloc_fwmem(struct iwm_softc *);
237 static int	iwm_alloc_sched(struct iwm_softc *);
238 static int	iwm_alloc_kw(struct iwm_softc *);
239 static int	iwm_alloc_ict(struct iwm_softc *);
240 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void	iwm_disable_rx_dma(struct iwm_softc *);
242 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void	iwm_enable_interrupts(struct iwm_softc *);
249 static void	iwm_restore_interrupts(struct iwm_softc *);
250 static void	iwm_disable_interrupts(struct iwm_softc *);
251 static void	iwm_ict_reset(struct iwm_softc *);
252 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void	iwm_stop_device(struct iwm_softc *);
254 static void	iwm_mvm_nic_config(struct iwm_softc *);
255 static int	iwm_nic_rx_init(struct iwm_softc *);
256 static int	iwm_nic_tx_init(struct iwm_softc *);
257 static int	iwm_nic_init(struct iwm_softc *);
258 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int	iwm_post_alive(struct iwm_softc *);
260 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263 				     uint16_t *, size_t);
264 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
265 static void	iwm_add_channel_band(struct iwm_softc *,
266 		    struct ieee80211_channel[], int, int *, int, size_t,
267 		    const uint8_t[]);
268 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
269 		    struct ieee80211_channel[]);
270 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271 				   const uint16_t *, const uint16_t *,
272 				   const uint16_t *, const uint16_t *,
273 				   const uint16_t *);
274 static void	iwm_set_hw_address_8000(struct iwm_softc *,
275 					struct iwm_nvm_data *,
276 					const uint16_t *, const uint16_t *);
277 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278 			    const uint16_t *);
279 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281 				  const uint16_t *);
282 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
283 				   const uint16_t *);
284 static void	iwm_set_radio_cfg(const struct iwm_softc *,
285 				  struct iwm_nvm_data *, uint32_t);
286 static int	iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int	iwm_nvm_init(struct iwm_softc *);
289 static int	iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int	iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int	iwm_load_cpu_sections_8000(struct iwm_softc *,
295 					   struct iwm_fw_sects *, int , int *);
296 static int	iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
307 					    struct iwm_rx_phy_info *);
308 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int	iwm_get_noise(struct iwm_softc *sc,
312 		    const struct iwm_mvm_statistics_rx_non_phy *);
313 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317 				         struct iwm_node *);
318 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327 			struct ieee80211_frame *, struct iwm_tx_cmd *);
328 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331 			     const struct ieee80211_bpf_params *);
332 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333 				      uint32_t tfd_msk, uint32_t flags);
334 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335 					        struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343 				           const uint8_t *, uint16_t, uint16_t);
344 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350 		iwm_node_alloc(struct ieee80211vap *,
351 		               const uint8_t[IEEE80211_ADDR_LEN]);
352 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_media_change(struct ifnet *);
354 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void	iwm_endscan_cb(void *, int);
356 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
357 					struct iwm_sf_cfg_cmd *,
358 					struct ieee80211_node *);
359 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int	iwm_send_bt_init_conf(struct iwm_softc *);
361 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int	iwm_init_hw(struct iwm_softc *);
364 static void	iwm_init(struct iwm_softc *);
365 static void	iwm_start(struct iwm_softc *);
366 static void	iwm_stop(struct iwm_softc *);
367 static void	iwm_watchdog(void *);
368 static void	iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371 		iwm_desc_lookup(uint32_t);
372 static void	iwm_nic_error(struct iwm_softc *);
373 static void	iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void	iwm_notif_intr(struct iwm_softc *);
376 static void	iwm_intr(void *);
377 static int	iwm_attach(device_t);
378 static int	iwm_is_valid_ether_addr(uint8_t *);
379 static void	iwm_preinit(void *);
380 static int	iwm_detach_local(struct iwm_softc *sc, int);
381 static void	iwm_init_task(void *);
382 static void	iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384 		iwm_vap_create(struct ieee80211com *,
385 		               const char [IFNAMSIZ], int,
386 		               enum ieee80211_opmode, int,
387 		               const uint8_t [IEEE80211_ADDR_LEN],
388 		               const uint8_t [IEEE80211_ADDR_LEN]);
389 static void	iwm_vap_delete(struct ieee80211vap *);
390 static void	iwm_scan_start(struct ieee80211com *);
391 static void	iwm_scan_end(struct ieee80211com *);
392 static void	iwm_update_mcast(struct ieee80211com *);
393 static void	iwm_set_channel(struct ieee80211com *);
394 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int	iwm_detach(device_t);
397 
398 /*
399  * Firmware parser.
400  */
401 
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405 	const struct iwm_fw_cscheme_list *l = (const void *)data;
406 
407 	if (dlen < sizeof(*l) ||
408 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409 		return EINVAL;
410 
411 	/* we don't actually store anything for now, always use s/w crypto */
412 
413 	return 0;
414 }
415 
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420 	struct iwm_fw_sects *fws;
421 	struct iwm_fw_onesect *fwone;
422 
423 	if (type >= IWM_UCODE_TYPE_MAX)
424 		return EINVAL;
425 	if (dlen < sizeof(uint32_t))
426 		return EINVAL;
427 
428 	fws = &sc->sc_fw.fw_sects[type];
429 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430 		return EINVAL;
431 
432 	fwone = &fws->fw_sect[fws->fw_count];
433 
434 	/* first 32bit are device load offset */
435 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436 
437 	/* rest is data */
438 	fwone->fws_data = data + sizeof(uint32_t);
439 	fwone->fws_len = dlen - sizeof(uint32_t);
440 
441 	fws->fw_count++;
442 
443 	return 0;
444 }
445 
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447 
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450 	uint32_t ucode_type;
451 	struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453 
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457 	const struct iwm_tlv_calib_data *def_calib = data;
458 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
459 
460 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461 		device_printf(sc->sc_dev,
462 		    "Wrong ucode_type %u for default "
463 		    "calibration.\n", ucode_type);
464 		return EINVAL;
465 	}
466 
467 	sc->sc_default_calib[ucode_type].flow_trigger =
468 	    def_calib->calib.flow_trigger;
469 	sc->sc_default_calib[ucode_type].event_trigger =
470 	    def_calib->calib.event_trigger;
471 
472 	return 0;
473 }
474 
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479 	fw->fw_fp = NULL;
480 	/* don't touch fw->fw_status */
481 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483 
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487 	struct iwm_fw_info *fw = &sc->sc_fw;
488 	const struct iwm_tlv_ucode_header *uhdr;
489 	struct iwm_ucode_tlv tlv;
490 	enum iwm_ucode_tlv_type tlv_type;
491 	const struct firmware *fwp;
492 	const uint8_t *data;
493 	int error = 0;
494 	size_t len;
495 
496 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
497 	    ucode_type != IWM_UCODE_TYPE_INIT)
498 		return 0;
499 
500 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503 
504 	if (fw->fw_fp != NULL)
505 		iwm_fw_info_free(fw);
506 
507 	/*
508 	 * Load firmware into driver memory.
509 	 * fw_fp will be set.
510 	 */
511 	IWM_UNLOCK(sc);
512 	fwp = firmware_get(sc->sc_fwname);
513 	IWM_LOCK(sc);
514 	if (fwp == NULL) {
515 		device_printf(sc->sc_dev,
516 		    "could not read firmware %s (error %d)\n",
517 		    sc->sc_fwname, error);
518 		goto out;
519 	}
520 	fw->fw_fp = fwp;
521 
522 	/* (Re-)Initialize default values. */
523 	sc->sc_capaflags = 0;
524 	sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525 	memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527 
528 	/*
529 	 * Parse firmware contents
530 	 */
531 
532 	uhdr = (const void *)fw->fw_fp->data;
533 	if (*(const uint32_t *)fw->fw_fp->data != 0
534 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535 		device_printf(sc->sc_dev, "invalid firmware %s\n",
536 		    sc->sc_fwname);
537 		error = EINVAL;
538 		goto out;
539 	}
540 
541 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544 	    IWM_UCODE_API(le32toh(uhdr->ver)));
545 	data = uhdr->data;
546 	len = fw->fw_fp->datasize - sizeof(*uhdr);
547 
548 	while (len >= sizeof(tlv)) {
549 		size_t tlv_len;
550 		const void *tlv_data;
551 
552 		memcpy(&tlv, data, sizeof(tlv));
553 		tlv_len = le32toh(tlv.length);
554 		tlv_type = le32toh(tlv.type);
555 
556 		len -= sizeof(tlv);
557 		data += sizeof(tlv);
558 		tlv_data = data;
559 
560 		if (len < tlv_len) {
561 			device_printf(sc->sc_dev,
562 			    "firmware too short: %zu bytes\n",
563 			    len);
564 			error = EINVAL;
565 			goto parse_out;
566 		}
567 
568 		switch ((int)tlv_type) {
569 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
570 			if (tlv_len < sizeof(uint32_t)) {
571 				device_printf(sc->sc_dev,
572 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573 				    __func__,
574 				    (int) tlv_len);
575 				error = EINVAL;
576 				goto parse_out;
577 			}
578 			sc->sc_capa_max_probe_len
579 			    = le32toh(*(const uint32_t *)tlv_data);
580 			/* limit it to something sensible */
581 			if (sc->sc_capa_max_probe_len >
582 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585 				    "ridiculous\n", __func__);
586 				error = EINVAL;
587 				goto parse_out;
588 			}
589 			break;
590 		case IWM_UCODE_TLV_PAN:
591 			if (tlv_len) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594 				    __func__,
595 				    (int) tlv_len);
596 				error = EINVAL;
597 				goto parse_out;
598 			}
599 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600 			break;
601 		case IWM_UCODE_TLV_FLAGS:
602 			if (tlv_len < sizeof(uint32_t)) {
603 				device_printf(sc->sc_dev,
604 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605 				    __func__,
606 				    (int) tlv_len);
607 				error = EINVAL;
608 				goto parse_out;
609 			}
610 			/*
611 			 * Apparently there can be many flags, but Linux driver
612 			 * parses only the first one, and so do we.
613 			 *
614 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
615 			 * Intentional or a bug?  Observations from
616 			 * current firmware file:
617 			 *  1) TLV_PAN is parsed first
618 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619 			 * ==> this resets TLV_PAN to itself... hnnnk
620 			 */
621 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622 			break;
623 		case IWM_UCODE_TLV_CSCHEME:
624 			if ((error = iwm_store_cscheme(sc,
625 			    tlv_data, tlv_len)) != 0) {
626 				device_printf(sc->sc_dev,
627 				    "%s: iwm_store_cscheme(): returned %d\n",
628 				    __func__,
629 				    error);
630 				goto parse_out;
631 			}
632 			break;
633 		case IWM_UCODE_TLV_NUM_OF_CPU: {
634 			uint32_t num_cpu;
635 			if (tlv_len != sizeof(uint32_t)) {
636 				device_printf(sc->sc_dev,
637 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638 				    __func__,
639 				    (int) tlv_len);
640 				error = EINVAL;
641 				goto parse_out;
642 			}
643 			num_cpu = le32toh(*(const uint32_t *)tlv_data);
644 			if (num_cpu < 1 || num_cpu > 2) {
645 				device_printf(sc->sc_dev,
646 				    "%s: Driver supports only 1 or 2 CPUs\n",
647 				    __func__);
648 				error = EINVAL;
649 				goto parse_out;
650 			}
651 			break;
652 		}
653 		case IWM_UCODE_TLV_SEC_RT:
654 			if ((error = iwm_firmware_store_section(sc,
655 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656 				device_printf(sc->sc_dev,
657 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658 				    __func__,
659 				    error);
660 				goto parse_out;
661 			}
662 			break;
663 		case IWM_UCODE_TLV_SEC_INIT:
664 			if ((error = iwm_firmware_store_section(sc,
665 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666 				device_printf(sc->sc_dev,
667 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668 				    __func__,
669 				    error);
670 				goto parse_out;
671 			}
672 			break;
673 		case IWM_UCODE_TLV_SEC_WOWLAN:
674 			if ((error = iwm_firmware_store_section(sc,
675 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676 				device_printf(sc->sc_dev,
677 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678 				    __func__,
679 				    error);
680 				goto parse_out;
681 			}
682 			break;
683 		case IWM_UCODE_TLV_DEF_CALIB:
684 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685 				device_printf(sc->sc_dev,
686 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687 				    __func__,
688 				    (int) tlv_len,
689 				    (int) sizeof(struct iwm_tlv_calib_data));
690 				error = EINVAL;
691 				goto parse_out;
692 			}
693 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_set_default_calib() failed: %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_PHY_SKU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				error = EINVAL;
704 				device_printf(sc->sc_dev,
705 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706 				    __func__,
707 				    (int) tlv_len);
708 				goto parse_out;
709 			}
710 			sc->sc_fw_phy_config =
711 			    le32toh(*(const uint32_t *)tlv_data);
712 			break;
713 
714 		case IWM_UCODE_TLV_API_CHANGES_SET: {
715 			const struct iwm_ucode_api *api;
716 			if (tlv_len != sizeof(*api)) {
717 				error = EINVAL;
718 				goto parse_out;
719 			}
720 			api = (const struct iwm_ucode_api *)tlv_data;
721 			/* Flags may exceed 32 bits in future firmware. */
722 			if (le32toh(api->api_index) > 0) {
723 				device_printf(sc->sc_dev,
724 				    "unsupported API index %d\n",
725 				    le32toh(api->api_index));
726 				goto parse_out;
727 			}
728 			sc->sc_ucode_api = le32toh(api->api_flags);
729 			break;
730 		}
731 
732 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733 			const struct iwm_ucode_capa *capa;
734 			int idx, i;
735 			if (tlv_len != sizeof(*capa)) {
736 				error = EINVAL;
737 				goto parse_out;
738 			}
739 			capa = (const struct iwm_ucode_capa *)tlv_data;
740 			idx = le32toh(capa->api_index);
741 			if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742 				device_printf(sc->sc_dev,
743 				    "unsupported API index %d\n", idx);
744 				goto parse_out;
745 			}
746 			for (i = 0; i < 32; i++) {
747 				if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748 					continue;
749 				setbit(sc->sc_enabled_capa, i + (32 * idx));
750 			}
751 			break;
752 		}
753 
754 		case 48: /* undocumented TLV */
755 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757 			/* ignore, not used by current driver */
758 			break;
759 
760 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761 			if ((error = iwm_firmware_store_section(sc,
762 			    IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763 			    tlv_len)) != 0)
764 				goto parse_out;
765 			break;
766 
767 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768 			if (tlv_len != sizeof(uint32_t)) {
769 				error = EINVAL;
770 				goto parse_out;
771 			}
772 			sc->sc_capa_n_scan_channels =
773 			  le32toh(*(const uint32_t *)tlv_data);
774 			break;
775 
776 		case IWM_UCODE_TLV_FW_VERSION:
777 			if (tlv_len != sizeof(uint32_t) * 3) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782 			    "%d.%d.%d",
783 			    le32toh(((const uint32_t *)tlv_data)[0]),
784 			    le32toh(((const uint32_t *)tlv_data)[1]),
785 			    le32toh(((const uint32_t *)tlv_data)[2]));
786 			break;
787 
788 		default:
789 			device_printf(sc->sc_dev,
790 			    "%s: unknown firmware section %d, abort\n",
791 			    __func__, tlv_type);
792 			error = EINVAL;
793 			goto parse_out;
794 		}
795 
796 		len -= roundup(tlv_len, 4);
797 		data += roundup(tlv_len, 4);
798 	}
799 
800 	KASSERT(error == 0, ("unhandled error"));
801 
802  parse_out:
803 	if (error) {
804 		device_printf(sc->sc_dev, "firmware parse error %d, "
805 		    "section type %d\n", error, tlv_type);
806 	}
807 
808 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809 		device_printf(sc->sc_dev,
810 		    "device uses unsupported power ops\n");
811 		error = ENOTSUP;
812 	}
813 
814  out:
815 	if (error) {
816 		fw->fw_status = IWM_FW_STATUS_NONE;
817 		if (fw->fw_fp != NULL)
818 			iwm_fw_info_free(fw);
819 	} else
820 		fw->fw_status = IWM_FW_STATUS_DONE;
821 	wakeup(&sc->sc_fw);
822 
823 	return error;
824 }
825 
826 /*
827  * DMA resource routines
828  */
829 
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843 	int error;
844 
845 	dma->tag = NULL;
846 	dma->map = NULL;
847 	dma->size = size;
848 	dma->vaddr = NULL;
849 
850 	error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855 
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860 
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865 		dma->vaddr = NULL;
866 		goto fail;
867 	}
868 
869 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870 
871 	return 0;
872 
873 fail:
874 	iwm_dma_contig_free(dma);
875 
876 	return error;
877 }
878 
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882 	if (dma->vaddr != NULL) {
883 		bus_dmamap_sync(dma->tag, dma->map,
884 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(dma->tag, dma->map);
886 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887 		dma->vaddr = NULL;
888 	}
889 	if (dma->tag != NULL) {
890 		bus_dma_tag_destroy(dma->tag);
891 		dma->tag = NULL;
892 	}
893 }
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    sc->sc_fwdmasegsz, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002 	/* XXX conditional nic locks are stupid */
1003 	/* XXX print out if we can't lock the NIC? */
1004 	if (iwm_nic_lock(sc)) {
1005 		/* XXX handle if RX stop doesn't finish? */
1006 		(void) iwm_pcie_rx_stop(sc);
1007 		iwm_nic_unlock(sc);
1008 	}
1009 }
1010 
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014 	/* Reset the ring state */
1015 	ring->cur = 0;
1016 
1017 	/*
1018 	 * The hw rx ring index in shared memory must also be cleared,
1019 	 * otherwise the discrepancy can cause reprocessing chaos.
1020 	 */
1021 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023 
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027 	int i;
1028 
1029 	iwm_dma_contig_free(&ring->desc_dma);
1030 	iwm_dma_contig_free(&ring->stat_dma);
1031 
1032 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033 		struct iwm_rx_data *data = &ring->data[i];
1034 
1035 		if (data->m != NULL) {
1036 			bus_dmamap_sync(ring->data_dmat, data->map,
1037 			    BUS_DMASYNC_POSTREAD);
1038 			bus_dmamap_unload(ring->data_dmat, data->map);
1039 			m_freem(data->m);
1040 			data->m = NULL;
1041 		}
1042 		if (data->map != NULL) {
1043 			bus_dmamap_destroy(ring->data_dmat, data->map);
1044 			data->map = NULL;
1045 		}
1046 	}
1047 	if (ring->spare_map != NULL) {
1048 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049 		ring->spare_map = NULL;
1050 	}
1051 	if (ring->data_dmat != NULL) {
1052 		bus_dma_tag_destroy(ring->data_dmat);
1053 		ring->data_dmat = NULL;
1054 	}
1055 }
1056 
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060 	bus_addr_t paddr;
1061 	bus_size_t size;
1062 	size_t maxsize;
1063 	int nsegments;
1064 	int i, error;
1065 
1066 	ring->qid = qid;
1067 	ring->queued = 0;
1068 	ring->cur = 0;
1069 
1070 	/* Allocate TX descriptors (256-byte aligned). */
1071 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073 	if (error != 0) {
1074 		device_printf(sc->sc_dev,
1075 		    "could not allocate TX ring DMA memory\n");
1076 		goto fail;
1077 	}
1078 	ring->desc = ring->desc_dma.vaddr;
1079 
1080 	/*
1081 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082 	 * to allocate commands space for other rings.
1083 	 */
1084 	if (qid > IWM_MVM_CMD_QUEUE)
1085 		return 0;
1086 
1087 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate TX cmd DMA memory\n");
1092 		goto fail;
1093 	}
1094 	ring->cmd = ring->cmd_dma.vaddr;
1095 
1096 	/* FW commands may require more mapped space than packets. */
1097 	if (qid == IWM_MVM_CMD_QUEUE) {
1098 		maxsize = IWM_RBUF_SIZE;
1099 		nsegments = 1;
1100 	} else {
1101 		maxsize = MCLBYTES;
1102 		nsegments = IWM_MAX_SCATTER - 2;
1103 	}
1104 
1105 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108 	if (error != 0) {
1109 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110 		goto fail;
1111 	}
1112 
1113 	paddr = ring->cmd_dma.paddr;
1114 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115 		struct iwm_tx_data *data = &ring->data[i];
1116 
1117 		data->cmd_paddr = paddr;
1118 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119 		    + offsetof(struct iwm_tx_cmd, scratch);
1120 		paddr += sizeof(struct iwm_device_cmd);
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create TX buf DMA map\n");
1126 			goto fail;
1127 		}
1128 	}
1129 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1130 	    ("invalid physical address"));
1131 	return 0;
1132 
1133 fail:	iwm_free_tx_ring(sc, ring);
1134 	return error;
1135 }
1136 
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143 		struct iwm_tx_data *data = &ring->data[i];
1144 
1145 		if (data->m != NULL) {
1146 			bus_dmamap_sync(ring->data_dmat, data->map,
1147 			    BUS_DMASYNC_POSTWRITE);
1148 			bus_dmamap_unload(ring->data_dmat, data->map);
1149 			m_freem(data->m);
1150 			data->m = NULL;
1151 		}
1152 	}
1153 	/* Clear TX descriptors. */
1154 	memset(ring->desc, 0, ring->desc_dma.size);
1155 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156 	    BUS_DMASYNC_PREWRITE);
1157 	sc->qfullmsk &= ~(1 << ring->qid);
1158 	ring->queued = 0;
1159 	ring->cur = 0;
1160 }
1161 
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165 	int i;
1166 
1167 	iwm_dma_contig_free(&ring->desc_dma);
1168 	iwm_dma_contig_free(&ring->cmd_dma);
1169 
1170 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171 		struct iwm_tx_data *data = &ring->data[i];
1172 
1173 		if (data->m != NULL) {
1174 			bus_dmamap_sync(ring->data_dmat, data->map,
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(ring->data_dmat, data->map);
1177 			m_freem(data->m);
1178 			data->m = NULL;
1179 		}
1180 		if (data->map != NULL) {
1181 			bus_dmamap_destroy(ring->data_dmat, data->map);
1182 			data->map = NULL;
1183 		}
1184 	}
1185 	if (ring->data_dmat != NULL) {
1186 		bus_dma_tag_destroy(ring->data_dmat);
1187 		ring->data_dmat = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194 
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201 
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207 
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211 	/* disable interrupts */
1212 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213 
1214 	/* acknowledge all interrupts */
1215 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218 
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222 	iwm_disable_interrupts(sc);
1223 
1224 	/* Reset ICT table. */
1225 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226 	sc->ict_cur = 0;
1227 
1228 	/* Set physical address of ICT table (4KB aligned). */
1229 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1231 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234 
1235 	/* Switch to ICT interrupt mode in driver. */
1236 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1237 
1238 	/* Re-enable interrupts. */
1239 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240 	iwm_enable_interrupts(sc);
1241 }
1242 
1243 /* iwlwifi pcie/trans.c */
1244 
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257 	int chnl, qid;
1258 	uint32_t mask = 0;
1259 
1260 	/* tell the device to stop sending interrupts */
1261 	iwm_disable_interrupts(sc);
1262 
1263 	/*
1264 	 * FreeBSD-local: mark the first vap as not-uploaded,
1265 	 * so the next transition through auth/assoc
1266 	 * will correctly populate the MAC context.
1267 	 */
1268 	if (vap) {
1269 		struct iwm_vap *iv = IWM_VAP(vap);
1270 		iv->is_uploaded = 0;
1271 	}
1272 
1273 	/* device going down, Stop using ICT table */
1274 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275 
1276 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277 
1278 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279 
1280 	if (iwm_nic_lock(sc)) {
1281 		/* Stop each Tx DMA channel */
1282 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283 			IWM_WRITE(sc,
1284 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286 		}
1287 
1288 		/* Wait for DMA channels to be idle */
1289 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290 		    5000)) {
1291 			device_printf(sc->sc_dev,
1292 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294 		}
1295 		iwm_nic_unlock(sc);
1296 	}
1297 	iwm_disable_rx_dma(sc);
1298 
1299 	/* Stop RX ring. */
1300 	iwm_reset_rx_ring(sc, &sc->rxq);
1301 
1302 	/* Reset all TX rings. */
1303 	for (qid = 0; qid < nitems(sc->txq); qid++)
1304 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305 
1306 	/*
1307 	 * Power-down device's busmaster DMA clocks
1308 	 */
1309 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310 	DELAY(5);
1311 
1312 	/* Make sure (redundant) we've released our request to stay awake */
1313 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315 
1316 	/* Stop the device, and put it in low power state */
1317 	iwm_apm_stop(sc);
1318 
1319 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * Clean again the interrupt here
1321 	 */
1322 	iwm_disable_interrupts(sc);
1323 	/* stop and reset the on-board processor */
1324 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325 
1326 	/*
1327 	 * Even if we stop the HW, we still want the RF kill
1328 	 * interrupt
1329 	 */
1330 	iwm_enable_rfkill_int(sc);
1331 	iwm_check_rfkill(sc);
1332 }
1333 
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339 	uint32_t reg_val = 0;
1340 
1341 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	if (!iwm_nic_lock(sc))
1381 		return EBUSY;
1382 
1383 	/*
1384 	 * Initialize RX ring.  This is from the iwn driver.
1385 	 */
1386 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387 
1388 	/* stop DMA */
1389 	iwm_disable_rx_dma(sc);
1390 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394 
1395 	/* Set physical address of RX ring (256-byte aligned). */
1396 	IWM_WRITE(sc,
1397 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398 
1399 	/* Set physical address of RX status (16-byte aligned). */
1400 	IWM_WRITE(sc,
1401 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402 
1403 	/* Enable RX. */
1404 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1406 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1407 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1408 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1409 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1411 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412 
1413 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414 
1415 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1416 	if (sc->host_interrupt_operation_mode)
1417 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418 
1419 	/*
1420 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1421 	 *
1422 	 * This value should initially be 0 (before preparing any
1423 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1424 	 */
1425 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426 
1427 	iwm_nic_unlock(sc);
1428 
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435 	int qid;
1436 
1437 	if (!iwm_nic_lock(sc))
1438 		return EBUSY;
1439 
1440 	/* Deactivate TX scheduler. */
1441 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442 
1443 	/* Set physical address of "keep warm" page (16-byte aligned). */
1444 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445 
1446 	/* Initialize TX rings. */
1447 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1448 		struct iwm_tx_ring *txq = &sc->txq[qid];
1449 
1450 		/* Set physical address of TX ring (256-byte aligned). */
1451 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452 		    txq->desc_dma.paddr >> 8);
1453 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1455 		    __func__,
1456 		    qid, txq->desc,
1457 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1458 	}
1459 
1460 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461 
1462 	iwm_nic_unlock(sc);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470 	int error;
1471 
1472 	iwm_apm_init(sc);
1473 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474 		iwm_set_pwr(sc);
1475 
1476 	iwm_mvm_nic_config(sc);
1477 
1478 	if ((error = iwm_nic_rx_init(sc)) != 0)
1479 		return error;
1480 
1481 	/*
1482 	 * Ditto for TX, from iwn
1483 	 */
1484 	if ((error = iwm_nic_tx_init(sc)) != 0)
1485 		return error;
1486 
1487 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488 	    "%s: shadow registers enabled\n", __func__);
1489 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490 
1491 	return 0;
1492 }
1493 
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495 	IWM_MVM_TX_FIFO_VO,
1496 	IWM_MVM_TX_FIFO_VI,
1497 	IWM_MVM_TX_FIFO_BE,
1498 	IWM_MVM_TX_FIFO_BK,
1499 };
1500 
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504 	if (!iwm_nic_lock(sc)) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: cannot enable txq %d\n",
1507 		    __func__,
1508 		    qid);
1509 		return EBUSY;
1510 	}
1511 
1512 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513 
1514 	if (qid == IWM_MVM_CMD_QUEUE) {
1515 		/* unactivate before configuration */
1516 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519 
1520 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521 
1522 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523 
1524 		iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525 		/* Set scheduler window size and frame limit. */
1526 		iwm_write_mem32(sc,
1527 		    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528 		    sizeof(uint32_t),
1529 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533 
1534 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1539 	} else {
1540 		struct iwm_scd_txq_cfg_cmd cmd;
1541 		int error;
1542 
1543 		iwm_nic_unlock(sc);
1544 
1545 		memset(&cmd, 0, sizeof(cmd));
1546 		cmd.scd_queue = qid;
1547 		cmd.enable = 1;
1548 		cmd.sta_id = sta_id;
1549 		cmd.tx_fifo = fifo;
1550 		cmd.aggregate = 0;
1551 		cmd.window = IWM_FRAME_LIMIT;
1552 
1553 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554 		    sizeof(cmd), &cmd);
1555 		if (error) {
1556 			device_printf(sc->sc_dev,
1557 			    "cannot enable txq %d\n", qid);
1558 			return error;
1559 		}
1560 
1561 		if (!iwm_nic_lock(sc))
1562 			return EBUSY;
1563 	}
1564 
1565 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567 
1568 	iwm_nic_unlock(sc);
1569 
1570 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571 	    __func__, qid, fifo);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579 	int nwords;
1580 	int error, chnl;
1581 	uint32_t base;
1582 
1583 	if (!iwm_nic_lock(sc))
1584 		return EBUSY;
1585 
1586 	base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587 	if (sc->sched_base != base) {
1588 		device_printf(sc->sc_dev,
1589 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590 		    __func__, sc->sched_base, base);
1591 	}
1592 
1593 	iwm_ict_reset(sc);
1594 
1595 	/* Clear TX scheduler state in SRAM. */
1596 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598 	    / sizeof(uint32_t);
1599 	error = iwm_write_mem(sc,
1600 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601 	    NULL, nwords);
1602 	if (error)
1603 		goto out;
1604 
1605 	/* Set physical address of TX scheduler rings (1KB aligned). */
1606 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607 
1608 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609 
1610 	iwm_nic_unlock(sc);
1611 
1612 	/* enable command channel */
1613 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614 	if (error)
1615 		return error;
1616 
1617 	if (!iwm_nic_lock(sc))
1618 		return EBUSY;
1619 
1620 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621 
1622 	/* Enable DMA channels. */
1623 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627 	}
1628 
1629 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631 
1632 	/* Enable L1-Active */
1633 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636 	}
1637 
1638  out:
1639 	iwm_nic_unlock(sc);
1640 	return error;
1641 }
1642 
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648 
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651 	IWM_NVM_SECTION_TYPE_HW,
1652 	IWM_NVM_SECTION_TYPE_SW,
1653 	IWM_NVM_SECTION_TYPE_REGULATORY,
1654 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1655 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1656 	IWM_NVM_SECTION_TYPE_HW_8000,
1657 	IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658 	IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660 
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE	8192
1664 
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667 
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED		0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS	1
1671 
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676 	offset = 0;
1677 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1678 		.offset = htole16(offset),
1679 		.length = htole16(length),
1680 		.type = htole16(section),
1681 		.op_code = IWM_NVM_READ_OPCODE,
1682 	};
1683 	struct iwm_nvm_access_resp *nvm_resp;
1684 	struct iwm_rx_packet *pkt;
1685 	struct iwm_host_cmd cmd = {
1686 		.id = IWM_NVM_ACCESS_CMD,
1687 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688 		    IWM_CMD_SEND_IN_RFKILL,
1689 		.data = { &nvm_access_cmd, },
1690 	};
1691 	int ret, offset_read;
1692 	size_t bytes_read;
1693 	uint8_t *resp_data;
1694 
1695 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696 
1697 	ret = iwm_send_cmd(sc, &cmd);
1698 	if (ret) {
1699 		device_printf(sc->sc_dev,
1700 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	pkt = cmd.resp_pkt;
1705 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706 		device_printf(sc->sc_dev,
1707 		    "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708 		    pkt->hdr.flags);
1709 		ret = EIO;
1710 		goto exit;
1711 	}
1712 
1713 	/* Extract NVM response */
1714 	nvm_resp = (void *)pkt->data;
1715 
1716 	ret = le16toh(nvm_resp->status);
1717 	bytes_read = le16toh(nvm_resp->length);
1718 	offset_read = le16toh(nvm_resp->offset);
1719 	resp_data = nvm_resp->data;
1720 	if (ret) {
1721 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722 		    "NVM access command failed with status %d\n", ret);
1723 		ret = EINVAL;
1724 		goto exit;
1725 	}
1726 
1727 	if (offset_read != offset) {
1728 		device_printf(sc->sc_dev,
1729 		    "NVM ACCESS response with invalid offset %d\n",
1730 		    offset_read);
1731 		ret = EINVAL;
1732 		goto exit;
1733 	}
1734 
1735 	if (bytes_read > length) {
1736 		device_printf(sc->sc_dev,
1737 		    "NVM ACCESS response with too much data "
1738 		    "(%d bytes requested, %zd bytes received)\n",
1739 		    length, bytes_read);
1740 		ret = EINVAL;
1741 		goto exit;
1742 	}
1743 
1744 	memcpy(data + offset, resp_data, bytes_read);
1745 	*len = bytes_read;
1746 
1747  exit:
1748 	iwm_free_resp(sc, &cmd);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764 	uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766 	uint16_t chunklen, seglen;
1767 	int error = 0;
1768 
1769 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770 	    "reading NVM section %d\n", section);
1771 
1772 	chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773 	*len = 0;
1774 
1775 	/* Read NVM chunks until exhausted (reading less than requested) */
1776 	while (seglen == chunklen && *len < max_len) {
1777 		error = iwm_nvm_read_chunk(sc,
1778 		    section, *len, chunklen, data, &seglen);
1779 		if (error) {
1780 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781 			    "Cannot read from NVM section "
1782 			    "%d at offset %d\n", section, *len);
1783 			return error;
1784 		}
1785 		*len += seglen;
1786 	}
1787 
1788 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789 	    "NVM section %d read completed (%d bytes, error=%d)\n",
1790 	    section, *len, error);
1791 	return error;
1792 }
1793 
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797 
1798 /* iwlwifi/iwl-nvm-parse.c */
1799 
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802 	/* NVM HW-Section offset (in words) definitions */
1803 	IWM_HW_ADDR = 0x15,
1804 
1805 /* NVM SW-Section offset (in words) definitions */
1806 	IWM_NVM_SW_SECTION = 0x1C0,
1807 	IWM_NVM_VERSION = 0,
1808 	IWM_RADIO_CFG = 1,
1809 	IWM_SKU = 2,
1810 	IWM_N_HW_ADDRS = 3,
1811 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812 
1813 /* NVM calibration section offset (in words) definitions */
1814 	IWM_NVM_CALIB_SECTION = 0x2B8,
1815 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817 
1818 enum iwm_8000_nvm_offsets {
1819 	/* NVM HW-Section offset (in words) definitions */
1820 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825 
1826 	/* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828 	IWM_NVM_VERSION_8000 = 0,
1829 	IWM_RADIO_CFG_8000 = 0,
1830 	IWM_SKU_8000 = 2,
1831 	IWM_N_HW_ADDRS_8000 = 3,
1832 
1833 	/* NVM REGULATORY -Section offset (in words) definitions */
1834 	IWM_NVM_CHANNELS_8000 = 0,
1835 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838 
1839 	/* NVM calibration section offset (in words) definitions */
1840 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843 
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1847 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1848 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1849 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1850 };
1851 
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859 
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1866 
1867 #define DEFAULT_MAX_TX_POWER 16
1868 
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1884 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1888 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893 
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900 	uint32_t nflags;
1901 
1902 	nflags = 0;
1903 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904 		nflags |= IEEE80211_CHAN_PASSIVE;
1905 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906 		nflags |= IEEE80211_CHAN_NOADHOC;
1907 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908 		nflags |= IEEE80211_CHAN_DFS;
1909 		/* Just in case. */
1910 		nflags |= IEEE80211_CHAN_NOADHOC;
1911 	}
1912 
1913 	return (nflags);
1914 }
1915 
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921 	const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922 	uint32_t nflags;
1923 	uint16_t ch_flags;
1924 	uint8_t ieee;
1925 	int error;
1926 
1927 	for (; ch_idx < ch_num; ch_idx++) {
1928 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930 			ieee = iwm_nvm_channels[ch_idx];
1931 		else
1932 			ieee = iwm_nvm_channels_8000[ch_idx];
1933 
1934 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937 			    ieee, ch_flags,
1938 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939 			    "5.2" : "2.4");
1940 			continue;
1941 		}
1942 
1943 		nflags = iwm_eeprom_channel_flags(ch_flags);
1944 		error = ieee80211_add_channel(chans, maxchans, nchans,
1945 		    ieee, 0, 0, nflags, bands);
1946 		if (error != 0)
1947 			break;
1948 
1949 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1951 		    ieee, ch_flags,
1952 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953 		    "5.2" : "2.4");
1954 	}
1955 }
1956 
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961 	struct iwm_softc *sc = ic->ic_softc;
1962 	struct iwm_nvm_data *data = &sc->sc_nvm;
1963 	uint8_t bands[IEEE80211_MODE_BYTES];
1964 	size_t ch_num;
1965 
1966 	memset(bands, 0, sizeof(bands));
1967 	/* 1-13: 11b/g channels. */
1968 	setbit(bands, IEEE80211_MODE_11B);
1969 	setbit(bands, IEEE80211_MODE_11G);
1970 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972 
1973 	/* 14: 11b channel only. */
1974 	clrbit(bands, IEEE80211_MODE_11G);
1975 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1976 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977 
1978 	if (data->sku_cap_band_52GHz_enable) {
1979 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980 			ch_num = nitems(iwm_nvm_channels);
1981 		else
1982 			ch_num = nitems(iwm_nvm_channels_8000);
1983 		memset(bands, 0, sizeof(bands));
1984 		setbit(bands, IEEE80211_MODE_11A);
1985 		iwm_add_channel_band(sc, chans, maxchans, nchans,
1986 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987 	}
1988 }
1989 
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992 	const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994 	const uint8_t *hw_addr;
1995 
1996 	if (mac_override) {
1997 		static const uint8_t reserved_mac[] = {
1998 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999 		};
2000 
2001 		hw_addr = (const uint8_t *)(mac_override +
2002 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2003 
2004 		/*
2005 		 * Store the MAC address from MAO section.
2006 		 * No byte swapping is required in MAO section
2007 		 */
2008 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009 
2010 		/*
2011 		 * Force the use of the OTP MAC address in case of reserved MAC
2012 		 * address in the NVM, or if address is given but invalid.
2013 		 */
2014 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2017 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2018 			return;
2019 
2020 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021 		    "%s: mac address from nvm override section invalid\n",
2022 		    __func__);
2023 	}
2024 
2025 	if (nvm_hw) {
2026 		/* read the mac address from WFMP registers */
2027 		uint32_t mac_addr0 =
2028 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029 		uint32_t mac_addr1 =
2030 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031 
2032 		hw_addr = (const uint8_t *)&mac_addr0;
2033 		data->hw_addr[0] = hw_addr[3];
2034 		data->hw_addr[1] = hw_addr[2];
2035 		data->hw_addr[2] = hw_addr[1];
2036 		data->hw_addr[3] = hw_addr[0];
2037 
2038 		hw_addr = (const uint8_t *)&mac_addr1;
2039 		data->hw_addr[4] = hw_addr[1];
2040 		data->hw_addr[5] = hw_addr[0];
2041 
2042 		return;
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048 
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051 	    const uint16_t *phy_sku)
2052 {
2053 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054 		return le16_to_cpup(nvm_sw + IWM_SKU);
2055 
2056 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058 
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064 	else
2065 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2066 						IWM_NVM_VERSION_8000));
2067 }
2068 
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071 		  const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075 
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078 
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082 	int n_hw_addr;
2083 
2084 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086 
2087 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088 
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091 
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094 		  uint32_t radio_cfg)
2095 {
2096 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101 		return;
2102 	}
2103 
2104 	/* set the radio configuration for family 8000 */
2105 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112 
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2117 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119 	struct iwm_nvm_data *data = &sc->sc_nvm;
2120 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121 	uint32_t sku, radio_cfg;
2122 
2123 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124 
2125 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126 	iwm_set_radio_cfg(sc, data, radio_cfg);
2127 
2128 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131 	data->sku_cap_11n_enable = 0;
2132 
2133 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134 
2135 	/* The byte order is little endian 16 bit, meaning 214365 */
2136 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137 		IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138 		data->hw_addr[0] = hw_addr[1];
2139 		data->hw_addr[1] = hw_addr[0];
2140 		data->hw_addr[2] = hw_addr[3];
2141 		data->hw_addr[3] = hw_addr[2];
2142 		data->hw_addr[4] = hw_addr[5];
2143 		data->hw_addr[5] = hw_addr[4];
2144 	} else {
2145 		iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146 	}
2147 
2148 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2151 	} else {
2152 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * END NVM PARSE
2161  */
2162 
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167 
2168 	/* Checking for required sections */
2169 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171 		    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172 			device_printf(sc->sc_dev,
2173 			    "Can't parse empty OTP/NVM sections\n");
2174 			return ENOENT;
2175 		}
2176 
2177 		hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178 	} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179 		/* SW and REGULATORY sections are mandatory */
2180 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182 			device_printf(sc->sc_dev,
2183 			    "Can't parse empty OTP/NVM sections\n");
2184 			return ENOENT;
2185 		}
2186 		/* MAC_OVERRIDE or at least HW section must exist */
2187 		if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189 			device_printf(sc->sc_dev,
2190 			    "Can't parse mac_address, empty sections\n");
2191 			return ENOENT;
2192 		}
2193 
2194 		/* PHY_SKU section is mandatory in B0 */
2195 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196 			device_printf(sc->sc_dev,
2197 			    "Can't parse phy_sku in B0, empty sections\n");
2198 			return ENOENT;
2199 		}
2200 
2201 		hw = (const uint16_t *)
2202 		    sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203 	} else {
2204 		panic("unknown device family %d\n", sc->sc_device_family);
2205 	}
2206 
2207 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208 	calib = (const uint16_t *)
2209 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210 	regulatory = (const uint16_t *)
2211 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212 	mac_override = (const uint16_t *)
2213 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215 
2216 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217 	    phy_sku, regulatory);
2218 }
2219 
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224 	int i, section, error;
2225 	uint16_t len;
2226 	uint8_t *buf;
2227 	const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228 
2229 	memset(nvm_sections, 0 , sizeof(nvm_sections));
2230 
2231 	buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232 	if (buf == NULL)
2233 		return ENOMEM;
2234 
2235 	for (i = 0; i < nitems(nvm_to_read); i++) {
2236 		section = nvm_to_read[i];
2237 		KASSERT(section <= nitems(nvm_sections),
2238 		    ("too many sections"));
2239 
2240 		error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241 		if (error) {
2242 			error = 0;
2243 			continue;
2244 		}
2245 		nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246 		if (nvm_sections[section].data == NULL) {
2247 			error = ENOMEM;
2248 			break;
2249 		}
2250 		memcpy(nvm_sections[section].data, buf, len);
2251 		nvm_sections[section].length = len;
2252 	}
2253 	free(buf, M_DEVBUF);
2254 	if (error == 0)
2255 		error = iwm_parse_nvm_sections(sc, nvm_sections);
2256 
2257 	for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258 		if (nvm_sections[i].data != NULL)
2259 			free(nvm_sections[i].data, M_DEVBUF);
2260 	}
2261 
2262 	return error;
2263 }
2264 
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269 
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272 	const uint8_t *section, uint32_t byte_cnt)
2273 {
2274 	int error = EINVAL;
2275 	uint32_t chunk_sz, offset;
2276 
2277 	chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278 
2279 	for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280 		uint32_t addr, len;
2281 		const uint8_t *data;
2282 
2283 		addr = dst_addr + offset;
2284 		len = MIN(chunk_sz, byte_cnt - offset);
2285 		data = section + offset;
2286 
2287 		error = iwm_firmware_load_chunk(sc, addr, data, len);
2288 		if (error)
2289 			break;
2290 	}
2291 
2292 	return error;
2293 }
2294 
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297 	const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299 	struct iwm_dma_info *dma = &sc->fw_dma;
2300 	int error;
2301 
2302 	/* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303 	memcpy(dma->vaddr, chunk, byte_cnt);
2304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305 
2306 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307 	    dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308 		iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310 	}
2311 
2312 	sc->sc_fw_chunk_done = 0;
2313 
2314 	if (!iwm_nic_lock(sc))
2315 		return EBUSY;
2316 
2317 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320 	    dst_addr);
2321 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324 	    (iwm_get_dma_hi_addr(dma->paddr)
2325 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334 
2335 	iwm_nic_unlock(sc);
2336 
2337 	/* wait 1s for this segment to load */
2338 	while (!sc->sc_fw_chunk_done)
2339 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340 			break;
2341 
2342 	if (!sc->sc_fw_chunk_done) {
2343 		device_printf(sc->sc_dev,
2344 		    "fw chunk addr 0x%x len %d failed to load\n",
2345 		    dst_addr, byte_cnt);
2346 	}
2347 
2348 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349 	    dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350 		iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352 		iwm_nic_unlock(sc);
2353 	}
2354 
2355 	return error;
2356 }
2357 
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362 	int shift_param;
2363 	int i, error = 0, sec_num = 0x1;
2364 	uint32_t val, last_read_idx = 0;
2365 	const void *data;
2366 	uint32_t dlen;
2367 	uint32_t offset;
2368 
2369 	if (cpu == 1) {
2370 		shift_param = 0;
2371 		*first_ucode_section = 0;
2372 	} else {
2373 		shift_param = 16;
2374 		(*first_ucode_section)++;
2375 	}
2376 
2377 	for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378 		last_read_idx = i;
2379 		data = fws->fw_sect[i].fws_data;
2380 		dlen = fws->fw_sect[i].fws_len;
2381 		offset = fws->fw_sect[i].fws_devoff;
2382 
2383 		/*
2384 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385 		 * CPU1 to CPU2.
2386 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2387 		 * CPU2 non paged to CPU2 paging sec.
2388 		 */
2389 		if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390 		    offset == IWM_PAGING_SEPARATOR_SECTION)
2391 			break;
2392 
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394 		    "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395 		    i, offset, dlen, cpu);
2396 
2397 		if (dlen > sc->sc_fwdmasegsz) {
2398 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399 			    "chunk %d too large (%d bytes)\n", i, dlen);
2400 			error = EFBIG;
2401 		} else {
2402 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403 		}
2404 		if (error) {
2405 			device_printf(sc->sc_dev,
2406 			    "could not load firmware chunk %d (error %d)\n",
2407 			    i, error);
2408 			return error;
2409 		}
2410 
2411 		/* Notify the ucode of the loaded section number and status */
2412 		if (iwm_nic_lock(sc)) {
2413 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414 			val = val | (sec_num << shift_param);
2415 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416 			sec_num = (sec_num << 1) | 0x1;
2417 			iwm_nic_unlock(sc);
2418 
2419 			/*
2420 			 * The firmware won't load correctly without this delay.
2421 			 */
2422 			DELAY(8000);
2423 		}
2424 	}
2425 
2426 	*first_ucode_section = last_read_idx;
2427 
2428 	if (iwm_nic_lock(sc)) {
2429 		if (cpu == 1)
2430 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431 		else
2432 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433 		iwm_nic_unlock(sc);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442 	struct iwm_fw_sects *fws;
2443 	int error = 0;
2444 	int first_ucode_section;
2445 
2446 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447 	    ucode_type);
2448 
2449 	fws = &sc->sc_fw.fw_sects[ucode_type];
2450 
2451 	/* configure the ucode to be ready to get the secured image */
2452 	/* release CPU reset */
2453 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454 
2455 	/* load to FW the binary Secured sections of CPU1 */
2456 	error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457 	if (error)
2458 		return error;
2459 
2460 	/* load to FW the binary sections of CPU2 */
2461 	return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463 
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467 	struct iwm_fw_sects *fws;
2468 	int error, i;
2469 	const void *data;
2470 	uint32_t dlen;
2471 	uint32_t offset;
2472 
2473 	sc->sc_uc.uc_intr = 0;
2474 
2475 	fws = &sc->sc_fw.fw_sects[ucode_type];
2476 	for (i = 0; i < fws->fw_count; i++) {
2477 		data = fws->fw_sect[i].fws_data;
2478 		dlen = fws->fw_sect[i].fws_len;
2479 		offset = fws->fw_sect[i].fws_devoff;
2480 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481 		    "LOAD FIRMWARE type %d offset %u len %d\n",
2482 		    ucode_type, offset, dlen);
2483 		if (dlen > sc->sc_fwdmasegsz) {
2484 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485 			    "chunk %d too large (%d bytes)\n", i, dlen);
2486 			error = EFBIG;
2487 		} else {
2488 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489 		}
2490 		if (error) {
2491 			device_printf(sc->sc_dev,
2492 			    "could not load firmware chunk %u of %u "
2493 			    "(error=%d)\n", i, fws->fw_count, error);
2494 			return error;
2495 		}
2496 	}
2497 
2498 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506 	int error, w;
2507 
2508 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509 		error = iwm_load_firmware_8000(sc, ucode_type);
2510 	else
2511 		error = iwm_load_firmware_7000(sc, ucode_type);
2512 	if (error)
2513 		return error;
2514 
2515 	/* wait for the firmware to load */
2516 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518 	}
2519 	if (error || !sc->sc_uc.uc_ok) {
2520 		device_printf(sc->sc_dev, "could not load firmware\n");
2521 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522 			device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524 			device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Give the firmware some time to initialize.
2531 	 * Accessing it too early causes errors.
2532 	 */
2533 	msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534 
2535 	return error;
2536 }
2537 
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542 	int error;
2543 
2544 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545 
2546 	if ((error = iwm_nic_init(sc)) != 0) {
2547 		device_printf(sc->sc_dev, "unable to init nic\n");
2548 		return error;
2549 	}
2550 
2551 	/* make sure rfkill handshake bits are cleared */
2552 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555 
2556 	/* clear (again), then enable host interrupts */
2557 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558 	iwm_enable_interrupts(sc);
2559 
2560 	/* really make sure rfkill handshake bits are cleared */
2561 	/* maybe we should write a few times more?  just to make sure */
2562 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564 
2565 	/* Load the given image to the HW */
2566 	return iwm_load_firmware(sc, ucode_type);
2567 }
2568 
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573 		.valid = htole32(valid_tx_ant),
2574 	};
2575 
2576 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579 
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586 
2587 	/* Set parameters */
2588 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589 	phy_cfg_cmd.calib_control.event_trigger =
2590 	    sc->sc_default_calib[ucode_type].event_trigger;
2591 	phy_cfg_cmd.calib_control.flow_trigger =
2592 	    sc->sc_default_calib[ucode_type].flow_trigger;
2593 
2594 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599 
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602 	enum iwm_ucode_type ucode_type)
2603 {
2604 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2605 	int error;
2606 
2607 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609 			error);
2610 		return error;
2611 	}
2612 
2613 	sc->sc_uc_current = ucode_type;
2614 	error = iwm_start_fw(sc, ucode_type);
2615 	if (error) {
2616 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617 		sc->sc_uc_current = old_type;
2618 		return error;
2619 	}
2620 
2621 	error = iwm_post_alive(sc);
2622 	if (error) {
2623 		device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624 	}
2625 	return error;
2626 }
2627 
2628 /*
2629  * mvm misc bits
2630  */
2631 
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638 	int error;
2639 
2640 	/* do not operate with rfkill switch turned on */
2641 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642 		device_printf(sc->sc_dev,
2643 		    "radio is disabled by hardware switch\n");
2644 		return EPERM;
2645 	}
2646 
2647 	sc->sc_init_complete = 0;
2648 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649 	    IWM_UCODE_TYPE_INIT)) != 0) {
2650 		device_printf(sc->sc_dev, "failed to load init firmware\n");
2651 		return error;
2652 	}
2653 
2654 	if (justnvm) {
2655 		if ((error = iwm_nvm_init(sc)) != 0) {
2656 			device_printf(sc->sc_dev, "failed to read nvm\n");
2657 			return error;
2658 		}
2659 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660 
2661 		return 0;
2662 	}
2663 
2664 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665 		device_printf(sc->sc_dev,
2666 		    "failed to send bt coex configuration: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	/* Init Smart FIFO. */
2671 	error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	/* Send TX valid antennas before triggering calibrations */
2676 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2677 		device_printf(sc->sc_dev,
2678 		    "failed to send antennas before calibration: %d\n", error);
2679 		return error;
2680 	}
2681 
2682 	/*
2683 	 * Send phy configurations command to init uCode
2684 	 * to start the 16.0 uCode init image internal calibrations.
2685 	 */
2686 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2687 		device_printf(sc->sc_dev,
2688 		    "%s: failed to run internal calibration: %d\n",
2689 		    __func__, error);
2690 		return error;
2691 	}
2692 
2693 	/*
2694 	 * Nothing to do but wait for the init complete notification
2695 	 * from the firmware
2696 	 */
2697 	while (!sc->sc_init_complete) {
2698 		error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2699 				 0, "iwminit", 2*hz);
2700 		if (error) {
2701 			device_printf(sc->sc_dev, "init complete failed: %d\n",
2702 				sc->sc_init_complete);
2703 			break;
2704 		}
2705 	}
2706 
2707 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2708 	    sc->sc_init_complete ? "" : "not ");
2709 
2710 	return error;
2711 }
2712 
2713 /*
2714  * receive side
2715  */
2716 
2717 /* (re)stock rx ring, called at init-time and at runtime */
2718 static int
2719 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2720 {
2721 	struct iwm_rx_ring *ring = &sc->rxq;
2722 	struct iwm_rx_data *data = &ring->data[idx];
2723 	struct mbuf *m;
2724 	bus_dmamap_t dmamap = NULL;
2725 	bus_dma_segment_t seg;
2726 	int nsegs, error;
2727 
2728 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2729 	if (m == NULL)
2730 		return ENOBUFS;
2731 
2732 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2733 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2734 	    &seg, &nsegs, BUS_DMA_NOWAIT);
2735 	if (error != 0) {
2736 		device_printf(sc->sc_dev,
2737 		    "%s: can't map mbuf, error %d\n", __func__, error);
2738 		goto fail;
2739 	}
2740 
2741 	if (data->m != NULL)
2742 		bus_dmamap_unload(ring->data_dmat, data->map);
2743 
2744 	/* Swap ring->spare_map with data->map */
2745 	dmamap = data->map;
2746 	data->map = ring->spare_map;
2747 	ring->spare_map = dmamap;
2748 
2749 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2750 	data->m = m;
2751 
2752 	/* Update RX descriptor. */
2753 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2754 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
2755 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2756 	    BUS_DMASYNC_PREWRITE);
2757 
2758 	return 0;
2759 fail:
2760 	m_freem(m);
2761 	return error;
2762 }
2763 
2764 /* iwlwifi: mvm/rx.c */
2765 #define IWM_RSSI_OFFSET 50
2766 static int
2767 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2768 {
2769 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2770 	uint32_t agc_a, agc_b;
2771 	uint32_t val;
2772 
2773 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2774 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2775 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2776 
2777 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2778 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2779 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2780 
2781 	/*
2782 	 * dBm = rssi dB - agc dB - constant.
2783 	 * Higher AGC (higher radio gain) means lower signal.
2784 	 */
2785 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2786 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2787 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2788 
2789 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2790 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2791 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2792 
2793 	return max_rssi_dbm;
2794 }
2795 
2796 /* iwlwifi: mvm/rx.c */
2797 /*
2798  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2799  * values are reported by the fw as positive values - need to negate
2800  * to obtain their dBM.  Account for missing antennas by replacing 0
2801  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2802  */
2803 static int
2804 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2805 {
2806 	int energy_a, energy_b, energy_c, max_energy;
2807 	uint32_t val;
2808 
2809 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2810 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2811 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2812 	energy_a = energy_a ? -energy_a : -256;
2813 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2814 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2815 	energy_b = energy_b ? -energy_b : -256;
2816 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2817 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2818 	energy_c = energy_c ? -energy_c : -256;
2819 	max_energy = MAX(energy_a, energy_b);
2820 	max_energy = MAX(max_energy, energy_c);
2821 
2822 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2823 	    "energy In A %d B %d C %d , and max %d\n",
2824 	    energy_a, energy_b, energy_c, max_energy);
2825 
2826 	return max_energy;
2827 }
2828 
2829 static void
2830 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2831 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2832 {
2833 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2834 
2835 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2836 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2837 
2838 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2839 }
2840 
2841 /*
2842  * Retrieve the average noise (in dBm) among receivers.
2843  */
2844 static int
2845 iwm_get_noise(struct iwm_softc *sc,
2846     const struct iwm_mvm_statistics_rx_non_phy *stats)
2847 {
2848 	int i, total, nbant, noise;
2849 
2850 	total = nbant = noise = 0;
2851 	for (i = 0; i < 3; i++) {
2852 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2853 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2854 		    __func__,
2855 		    i,
2856 		    noise);
2857 
2858 		if (noise) {
2859 			total += noise;
2860 			nbant++;
2861 		}
2862 	}
2863 
2864 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2865 	    __func__, nbant, total);
2866 #if 0
2867 	/* There should be at least one antenna but check anyway. */
2868 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2869 #else
2870 	/* For now, just hard-code it to -96 to be safe */
2871 	return (-96);
2872 #endif
2873 }
2874 
2875 /*
2876  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2877  *
2878  * Handles the actual data of the Rx packet from the fw
2879  */
2880 static void
2881 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2882 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2883 {
2884 	struct ieee80211com *ic = &sc->sc_ic;
2885 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2886 	struct ieee80211_frame *wh;
2887 	struct ieee80211_node *ni;
2888 	struct ieee80211_rx_stats rxs;
2889 	struct mbuf *m;
2890 	struct iwm_rx_phy_info *phy_info;
2891 	struct iwm_rx_mpdu_res_start *rx_res;
2892 	uint32_t len;
2893 	uint32_t rx_pkt_status;
2894 	int rssi;
2895 
2896 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2897 
2898 	phy_info = &sc->sc_last_phy_info;
2899 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2900 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2901 	len = le16toh(rx_res->byte_count);
2902 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2903 
2904 	m = data->m;
2905 	m->m_data = pkt->data + sizeof(*rx_res);
2906 	m->m_pkthdr.len = m->m_len = len;
2907 
2908 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2909 		device_printf(sc->sc_dev,
2910 		    "dsp size out of range [0,20]: %d\n",
2911 		    phy_info->cfg_phy_cnt);
2912 		return;
2913 	}
2914 
2915 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2916 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2917 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2918 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2919 		return; /* drop */
2920 	}
2921 
2922 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2923 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2924 	} else {
2925 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2926 	}
2927 
2928 	/* Note: RSSI is absolute (ie a -ve value) */
2929 	if (rssi < IWM_MIN_DBM)
2930 		rssi = IWM_MIN_DBM;
2931 	else if (rssi > IWM_MAX_DBM)
2932 		rssi = IWM_MAX_DBM;
2933 
2934 	/* Map it to relative value */
2935 	rssi = rssi - sc->sc_noise;
2936 
2937 	/* replenish ring for the buffer we're going to feed to the sharks */
2938 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2939 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2940 		    __func__);
2941 		return;
2942 	}
2943 
2944 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2945 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2946 
2947 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2948 
2949 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2950 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2951 	    __func__,
2952 	    le16toh(phy_info->channel),
2953 	    le16toh(phy_info->phy_flags));
2954 
2955 	/*
2956 	 * Populate an RX state struct with the provided information.
2957 	 */
2958 	bzero(&rxs, sizeof(rxs));
2959 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2960 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2961 	rxs.c_ieee = le16toh(phy_info->channel);
2962 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2963 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2964 	} else {
2965 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2966 	}
2967 
2968 	/* rssi is in 1/2db units */
2969 	rxs.rssi = rssi * 2;
2970 	rxs.nf = sc->sc_noise;
2971 
2972 	if (ieee80211_radiotap_active_vap(vap)) {
2973 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2974 
2975 		tap->wr_flags = 0;
2976 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2977 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2978 		tap->wr_chan_freq = htole16(rxs.c_freq);
2979 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2980 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2981 		tap->wr_dbm_antsignal = (int8_t)rssi;
2982 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2983 		tap->wr_tsft = phy_info->system_timestamp;
2984 		switch (phy_info->rate) {
2985 		/* CCK rates. */
2986 		case  10: tap->wr_rate =   2; break;
2987 		case  20: tap->wr_rate =   4; break;
2988 		case  55: tap->wr_rate =  11; break;
2989 		case 110: tap->wr_rate =  22; break;
2990 		/* OFDM rates. */
2991 		case 0xd: tap->wr_rate =  12; break;
2992 		case 0xf: tap->wr_rate =  18; break;
2993 		case 0x5: tap->wr_rate =  24; break;
2994 		case 0x7: tap->wr_rate =  36; break;
2995 		case 0x9: tap->wr_rate =  48; break;
2996 		case 0xb: tap->wr_rate =  72; break;
2997 		case 0x1: tap->wr_rate =  96; break;
2998 		case 0x3: tap->wr_rate = 108; break;
2999 		/* Unknown rate: should not happen. */
3000 		default:  tap->wr_rate =   0;
3001 		}
3002 	}
3003 
3004 	IWM_UNLOCK(sc);
3005 	if (ni != NULL) {
3006 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3007 		ieee80211_input_mimo(ni, m, &rxs);
3008 		ieee80211_free_node(ni);
3009 	} else {
3010 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3011 		ieee80211_input_mimo_all(ic, m, &rxs);
3012 	}
3013 	IWM_LOCK(sc);
3014 }
3015 
3016 static int
3017 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3018 	struct iwm_node *in)
3019 {
3020 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3021 	struct ieee80211_node *ni = &in->in_ni;
3022 	struct ieee80211vap *vap = ni->ni_vap;
3023 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3024 	int failack = tx_resp->failure_frame;
3025 
3026 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3027 
3028 	/* Update rate control statistics. */
3029 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3030 	    __func__,
3031 	    (int) le16toh(tx_resp->status.status),
3032 	    (int) le16toh(tx_resp->status.sequence),
3033 	    tx_resp->frame_count,
3034 	    tx_resp->bt_kill_count,
3035 	    tx_resp->failure_rts,
3036 	    tx_resp->failure_frame,
3037 	    le32toh(tx_resp->initial_rate),
3038 	    (int) le16toh(tx_resp->wireless_media_time));
3039 
3040 	if (status != IWM_TX_STATUS_SUCCESS &&
3041 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3042 		ieee80211_ratectl_tx_complete(vap, ni,
3043 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
3044 		return (1);
3045 	} else {
3046 		ieee80211_ratectl_tx_complete(vap, ni,
3047 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
3048 		return (0);
3049 	}
3050 }
3051 
3052 static void
3053 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3054 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3055 {
3056 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3057 	int idx = cmd_hdr->idx;
3058 	int qid = cmd_hdr->qid;
3059 	struct iwm_tx_ring *ring = &sc->txq[qid];
3060 	struct iwm_tx_data *txd = &ring->data[idx];
3061 	struct iwm_node *in = txd->in;
3062 	struct mbuf *m = txd->m;
3063 	int status;
3064 
3065 	KASSERT(txd->done == 0, ("txd not done"));
3066 	KASSERT(txd->in != NULL, ("txd without node"));
3067 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3068 
3069 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3070 
3071 	sc->sc_tx_timer = 0;
3072 
3073 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3074 
3075 	/* Unmap and free mbuf. */
3076 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3077 	bus_dmamap_unload(ring->data_dmat, txd->map);
3078 
3079 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3080 	    "free txd %p, in %p\n", txd, txd->in);
3081 	txd->done = 1;
3082 	txd->m = NULL;
3083 	txd->in = NULL;
3084 
3085 	ieee80211_tx_complete(&in->in_ni, m, status);
3086 
3087 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3088 		sc->qfullmsk &= ~(1 << ring->qid);
3089 		if (sc->qfullmsk == 0) {
3090 			/*
3091 			 * Well, we're in interrupt context, but then again
3092 			 * I guess net80211 does all sorts of stunts in
3093 			 * interrupt context, so maybe this is no biggie.
3094 			 */
3095 			iwm_start(sc);
3096 		}
3097 	}
3098 }
3099 
3100 /*
3101  * transmit side
3102  */
3103 
3104 /*
3105  * Process a "command done" firmware notification.  This is where we wakeup
3106  * processes waiting for a synchronous command completion.
3107  * from if_iwn
3108  */
3109 static void
3110 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3111 {
3112 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3113 	struct iwm_tx_data *data;
3114 
3115 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3116 		return;	/* Not a command ack. */
3117 	}
3118 
3119 	/* XXX wide commands? */
3120 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3121 	    "cmd notification type 0x%x qid %d idx %d\n",
3122 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3123 
3124 	data = &ring->data[pkt->hdr.idx];
3125 
3126 	/* If the command was mapped in an mbuf, free it. */
3127 	if (data->m != NULL) {
3128 		bus_dmamap_sync(ring->data_dmat, data->map,
3129 		    BUS_DMASYNC_POSTWRITE);
3130 		bus_dmamap_unload(ring->data_dmat, data->map);
3131 		m_freem(data->m);
3132 		data->m = NULL;
3133 	}
3134 	wakeup(&ring->desc[pkt->hdr.idx]);
3135 }
3136 
3137 #if 0
3138 /*
3139  * necessary only for block ack mode
3140  */
3141 void
3142 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3143 	uint16_t len)
3144 {
3145 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3146 	uint16_t w_val;
3147 
3148 	scd_bc_tbl = sc->sched_dma.vaddr;
3149 
3150 	len += 8; /* magic numbers came naturally from paris */
3151 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3152 		len = roundup(len, 4) / 4;
3153 
3154 	w_val = htole16(sta_id << 12 | len);
3155 
3156 	/* Update TX scheduler. */
3157 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3158 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3159 	    BUS_DMASYNC_PREWRITE);
3160 
3161 	/* I really wonder what this is ?!? */
3162 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3163 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3164 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3165 		    BUS_DMASYNC_PREWRITE);
3166 	}
3167 }
3168 #endif
3169 
3170 /*
3171  * Take an 802.11 (non-n) rate, find the relevant rate
3172  * table entry.  return the index into in_ridx[].
3173  *
3174  * The caller then uses that index back into in_ridx
3175  * to figure out the rate index programmed /into/
3176  * the firmware for this given node.
3177  */
3178 static int
3179 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3180     uint8_t rate)
3181 {
3182 	int i;
3183 	uint8_t r;
3184 
3185 	for (i = 0; i < nitems(in->in_ridx); i++) {
3186 		r = iwm_rates[in->in_ridx[i]].rate;
3187 		if (rate == r)
3188 			return (i);
3189 	}
3190 	/* XXX Return the first */
3191 	/* XXX TODO: have it return the /lowest/ */
3192 	return (0);
3193 }
3194 
3195 /*
3196  * Fill in the rate related information for a transmit command.
3197  */
3198 static const struct iwm_rate *
3199 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3200 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
3201 {
3202 	struct ieee80211com *ic = &sc->sc_ic;
3203 	struct ieee80211_node *ni = &in->in_ni;
3204 	const struct iwm_rate *rinfo;
3205 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3206 	int ridx, rate_flags;
3207 
3208 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3209 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3210 
3211 	/*
3212 	 * XXX TODO: everything about the rate selection here is terrible!
3213 	 */
3214 
3215 	if (type == IEEE80211_FC0_TYPE_DATA) {
3216 		int i;
3217 		/* for data frames, use RS table */
3218 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3219 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3220 		ridx = in->in_ridx[i];
3221 
3222 		/* This is the index into the programmed table */
3223 		tx->initial_rate_index = i;
3224 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3225 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3226 		    "%s: start with i=%d, txrate %d\n",
3227 		    __func__, i, iwm_rates[ridx].rate);
3228 	} else {
3229 		/*
3230 		 * For non-data, use the lowest supported rate for the given
3231 		 * operational mode.
3232 		 *
3233 		 * Note: there may not be any rate control information available.
3234 		 * This driver currently assumes if we're transmitting data
3235 		 * frames, use the rate control table.  Grr.
3236 		 *
3237 		 * XXX TODO: use the configured rate for the traffic type!
3238 		 * XXX TODO: this should be per-vap, not curmode; as we later
3239 		 * on we'll want to handle off-channel stuff (eg TDLS).
3240 		 */
3241 		if (ic->ic_curmode == IEEE80211_MODE_11A) {
3242 			/*
3243 			 * XXX this assumes the mode is either 11a or not 11a;
3244 			 * definitely won't work for 11n.
3245 			 */
3246 			ridx = IWM_RIDX_OFDM;
3247 		} else {
3248 			ridx = IWM_RIDX_CCK;
3249 		}
3250 	}
3251 
3252 	rinfo = &iwm_rates[ridx];
3253 
3254 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3255 	    __func__, ridx,
3256 	    rinfo->rate,
3257 	    !! (IWM_RIDX_IS_CCK(ridx))
3258 	    );
3259 
3260 	/* XXX TODO: hard-coded TX antenna? */
3261 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3262 	if (IWM_RIDX_IS_CCK(ridx))
3263 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3264 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3265 
3266 	return rinfo;
3267 }
3268 
3269 #define TB0_SIZE 16
3270 static int
3271 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3272 {
3273 	struct ieee80211com *ic = &sc->sc_ic;
3274 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3275 	struct iwm_node *in = IWM_NODE(ni);
3276 	struct iwm_tx_ring *ring;
3277 	struct iwm_tx_data *data;
3278 	struct iwm_tfd *desc;
3279 	struct iwm_device_cmd *cmd;
3280 	struct iwm_tx_cmd *tx;
3281 	struct ieee80211_frame *wh;
3282 	struct ieee80211_key *k = NULL;
3283 	struct mbuf *m1;
3284 	const struct iwm_rate *rinfo;
3285 	uint32_t flags;
3286 	u_int hdrlen;
3287 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3288 	int nsegs;
3289 	uint8_t tid, type;
3290 	int i, totlen, error, pad;
3291 
3292 	wh = mtod(m, struct ieee80211_frame *);
3293 	hdrlen = ieee80211_anyhdrsize(wh);
3294 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3295 	tid = 0;
3296 	ring = &sc->txq[ac];
3297 	desc = &ring->desc[ring->cur];
3298 	memset(desc, 0, sizeof(*desc));
3299 	data = &ring->data[ring->cur];
3300 
3301 	/* Fill out iwm_tx_cmd to send to the firmware */
3302 	cmd = &ring->cmd[ring->cur];
3303 	cmd->hdr.code = IWM_TX_CMD;
3304 	cmd->hdr.flags = 0;
3305 	cmd->hdr.qid = ring->qid;
3306 	cmd->hdr.idx = ring->cur;
3307 
3308 	tx = (void *)cmd->data;
3309 	memset(tx, 0, sizeof(*tx));
3310 
3311 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
3312 
3313 	/* Encrypt the frame if need be. */
3314 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3315 		/* Retrieve key for TX && do software encryption. */
3316 		k = ieee80211_crypto_encap(ni, m);
3317 		if (k == NULL) {
3318 			m_freem(m);
3319 			return (ENOBUFS);
3320 		}
3321 		/* 802.11 header may have moved. */
3322 		wh = mtod(m, struct ieee80211_frame *);
3323 	}
3324 
3325 	if (ieee80211_radiotap_active_vap(vap)) {
3326 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3327 
3328 		tap->wt_flags = 0;
3329 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3330 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3331 		tap->wt_rate = rinfo->rate;
3332 		if (k != NULL)
3333 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3334 		ieee80211_radiotap_tx(vap, m);
3335 	}
3336 
3337 
3338 	totlen = m->m_pkthdr.len;
3339 
3340 	flags = 0;
3341 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3342 		flags |= IWM_TX_CMD_FLG_ACK;
3343 	}
3344 
3345 	if (type == IEEE80211_FC0_TYPE_DATA
3346 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3347 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3348 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3349 	}
3350 
3351 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3352 	    type != IEEE80211_FC0_TYPE_DATA)
3353 		tx->sta_id = sc->sc_aux_sta.sta_id;
3354 	else
3355 		tx->sta_id = IWM_STATION_ID;
3356 
3357 	if (type == IEEE80211_FC0_TYPE_MGT) {
3358 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3359 
3360 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3361 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3362 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3363 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3364 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3365 		} else {
3366 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3367 		}
3368 	} else {
3369 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3370 	}
3371 
3372 	if (hdrlen & 3) {
3373 		/* First segment length must be a multiple of 4. */
3374 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3375 		pad = 4 - (hdrlen & 3);
3376 	} else
3377 		pad = 0;
3378 
3379 	tx->driver_txop = 0;
3380 	tx->next_frame_len = 0;
3381 
3382 	tx->len = htole16(totlen);
3383 	tx->tid_tspec = tid;
3384 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3385 
3386 	/* Set physical address of "scratch area". */
3387 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3388 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3389 
3390 	/* Copy 802.11 header in TX command. */
3391 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3392 
3393 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3394 
3395 	tx->sec_ctl = 0;
3396 	tx->tx_flags |= htole32(flags);
3397 
3398 	/* Trim 802.11 header. */
3399 	m_adj(m, hdrlen);
3400 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3401 	    segs, &nsegs, BUS_DMA_NOWAIT);
3402 	if (error != 0) {
3403 		if (error != EFBIG) {
3404 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3405 			    error);
3406 			m_freem(m);
3407 			return error;
3408 		}
3409 		/* Too many DMA segments, linearize mbuf. */
3410 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3411 		if (m1 == NULL) {
3412 			device_printf(sc->sc_dev,
3413 			    "%s: could not defrag mbuf\n", __func__);
3414 			m_freem(m);
3415 			return (ENOBUFS);
3416 		}
3417 		m = m1;
3418 
3419 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3420 		    segs, &nsegs, BUS_DMA_NOWAIT);
3421 		if (error != 0) {
3422 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3423 			    error);
3424 			m_freem(m);
3425 			return error;
3426 		}
3427 	}
3428 	data->m = m;
3429 	data->in = in;
3430 	data->done = 0;
3431 
3432 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3433 	    "sending txd %p, in %p\n", data, data->in);
3434 	KASSERT(data->in != NULL, ("node is NULL"));
3435 
3436 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3437 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3438 	    ring->qid, ring->cur, totlen, nsegs,
3439 	    le32toh(tx->tx_flags),
3440 	    le32toh(tx->rate_n_flags),
3441 	    tx->initial_rate_index
3442 	    );
3443 
3444 	/* Fill TX descriptor. */
3445 	desc->num_tbs = 2 + nsegs;
3446 
3447 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3448 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3449 	    (TB0_SIZE << 4);
3450 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3451 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3452 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3453 	      + hdrlen + pad - TB0_SIZE) << 4);
3454 
3455 	/* Other DMA segments are for data payload. */
3456 	for (i = 0; i < nsegs; i++) {
3457 		seg = &segs[i];
3458 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3459 		desc->tbs[i+2].hi_n_len = \
3460 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3461 		    | ((seg->ds_len) << 4);
3462 	}
3463 
3464 	bus_dmamap_sync(ring->data_dmat, data->map,
3465 	    BUS_DMASYNC_PREWRITE);
3466 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3467 	    BUS_DMASYNC_PREWRITE);
3468 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3469 	    BUS_DMASYNC_PREWRITE);
3470 
3471 #if 0
3472 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3473 #endif
3474 
3475 	/* Kick TX ring. */
3476 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3477 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3478 
3479 	/* Mark TX ring as full if we reach a certain threshold. */
3480 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3481 		sc->qfullmsk |= 1 << ring->qid;
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 static int
3488 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3489     const struct ieee80211_bpf_params *params)
3490 {
3491 	struct ieee80211com *ic = ni->ni_ic;
3492 	struct iwm_softc *sc = ic->ic_softc;
3493 	int error = 0;
3494 
3495 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3496 	    "->%s begin\n", __func__);
3497 
3498 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3499 		m_freem(m);
3500 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3501 		    "<-%s not RUNNING\n", __func__);
3502 		return (ENETDOWN);
3503         }
3504 
3505 	IWM_LOCK(sc);
3506 	/* XXX fix this */
3507         if (params == NULL) {
3508 		error = iwm_tx(sc, m, ni, 0);
3509 	} else {
3510 		error = iwm_tx(sc, m, ni, 0);
3511 	}
3512 	sc->sc_tx_timer = 5;
3513 	IWM_UNLOCK(sc);
3514 
3515         return (error);
3516 }
3517 
3518 /*
3519  * mvm/tx.c
3520  */
3521 
3522 /*
3523  * Note that there are transports that buffer frames before they reach
3524  * the firmware. This means that after flush_tx_path is called, the
3525  * queue might not be empty. The race-free way to handle this is to:
3526  * 1) set the station as draining
3527  * 2) flush the Tx path
3528  * 3) wait for the transport queues to be empty
3529  */
3530 int
3531 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3532 {
3533 	int ret;
3534 	struct iwm_tx_path_flush_cmd flush_cmd = {
3535 		.queues_ctl = htole32(tfd_msk),
3536 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3537 	};
3538 
3539 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3540 	    sizeof(flush_cmd), &flush_cmd);
3541 	if (ret)
3542                 device_printf(sc->sc_dev,
3543 		    "Flushing tx queue failed: %d\n", ret);
3544 	return ret;
3545 }
3546 
3547 /*
3548  * BEGIN mvm/sta.c
3549  */
3550 
3551 static int
3552 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3553 	struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3554 {
3555 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3556 	    cmd, status);
3557 }
3558 
3559 /* send station add/update command to firmware */
3560 static int
3561 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3562 {
3563 	struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3564 	int ret;
3565 	uint32_t status;
3566 
3567 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3568 
3569 	add_sta_cmd.sta_id = IWM_STATION_ID;
3570 	add_sta_cmd.mac_id_n_color
3571 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3572 	        IWM_DEFAULT_COLOR));
3573 	if (!update) {
3574 		int ac;
3575 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3576 			add_sta_cmd.tfd_queue_msk |=
3577 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3578 		}
3579 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3580 	}
3581 	add_sta_cmd.add_modify = update ? 1 : 0;
3582 	add_sta_cmd.station_flags_msk
3583 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3584 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3585 	if (update)
3586 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3587 
3588 	status = IWM_ADD_STA_SUCCESS;
3589 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3590 	if (ret)
3591 		return ret;
3592 
3593 	switch (status) {
3594 	case IWM_ADD_STA_SUCCESS:
3595 		break;
3596 	default:
3597 		ret = EIO;
3598 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3599 		break;
3600 	}
3601 
3602 	return ret;
3603 }
3604 
3605 static int
3606 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3607 {
3608 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3609 }
3610 
3611 static int
3612 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3613 {
3614 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3615 }
3616 
3617 static int
3618 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3619 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3620 {
3621 	struct iwm_mvm_add_sta_cmd_v7 cmd;
3622 	int ret;
3623 	uint32_t status;
3624 
3625 	memset(&cmd, 0, sizeof(cmd));
3626 	cmd.sta_id = sta->sta_id;
3627 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3628 
3629 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3630 	cmd.tid_disable_tx = htole16(0xffff);
3631 
3632 	if (addr)
3633 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3634 
3635 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3636 	if (ret)
3637 		return ret;
3638 
3639 	switch (status) {
3640 	case IWM_ADD_STA_SUCCESS:
3641 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3642 		    "%s: Internal station added.\n", __func__);
3643 		return 0;
3644 	default:
3645 		device_printf(sc->sc_dev,
3646 		    "%s: Add internal station failed, status=0x%x\n",
3647 		    __func__, status);
3648 		ret = EIO;
3649 		break;
3650 	}
3651 	return ret;
3652 }
3653 
3654 static int
3655 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3656 {
3657 	int ret;
3658 
3659 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3660 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3661 
3662 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3663 	if (ret)
3664 		return ret;
3665 
3666 	ret = iwm_mvm_add_int_sta_common(sc,
3667 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3668 
3669 	if (ret)
3670 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3671 	return ret;
3672 }
3673 
3674 /*
3675  * END mvm/sta.c
3676  */
3677 
3678 /*
3679  * BEGIN mvm/quota.c
3680  */
3681 
3682 static int
3683 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3684 {
3685 	struct iwm_time_quota_cmd cmd;
3686 	int i, idx, ret, num_active_macs, quota, quota_rem;
3687 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3688 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3689 	uint16_t id;
3690 
3691 	memset(&cmd, 0, sizeof(cmd));
3692 
3693 	/* currently, PHY ID == binding ID */
3694 	if (in) {
3695 		id = in->in_phyctxt->id;
3696 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3697 		colors[id] = in->in_phyctxt->color;
3698 
3699 		if (1)
3700 			n_ifs[id] = 1;
3701 	}
3702 
3703 	/*
3704 	 * The FW's scheduling session consists of
3705 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3706 	 * equally between all the bindings that require quota
3707 	 */
3708 	num_active_macs = 0;
3709 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3710 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3711 		num_active_macs += n_ifs[i];
3712 	}
3713 
3714 	quota = 0;
3715 	quota_rem = 0;
3716 	if (num_active_macs) {
3717 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3718 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3719 	}
3720 
3721 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3722 		if (colors[i] < 0)
3723 			continue;
3724 
3725 		cmd.quotas[idx].id_and_color =
3726 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3727 
3728 		if (n_ifs[i] <= 0) {
3729 			cmd.quotas[idx].quota = htole32(0);
3730 			cmd.quotas[idx].max_duration = htole32(0);
3731 		} else {
3732 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3733 			cmd.quotas[idx].max_duration = htole32(0);
3734 		}
3735 		idx++;
3736 	}
3737 
3738 	/* Give the remainder of the session to the first binding */
3739 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3740 
3741 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3742 	    sizeof(cmd), &cmd);
3743 	if (ret)
3744 		device_printf(sc->sc_dev,
3745 		    "%s: Failed to send quota: %d\n", __func__, ret);
3746 	return ret;
3747 }
3748 
3749 /*
3750  * END mvm/quota.c
3751  */
3752 
3753 /*
3754  * ieee80211 routines
3755  */
3756 
3757 /*
3758  * Change to AUTH state in 80211 state machine.  Roughly matches what
3759  * Linux does in bss_info_changed().
3760  */
3761 static int
3762 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3763 {
3764 	struct ieee80211_node *ni;
3765 	struct iwm_node *in;
3766 	struct iwm_vap *iv = IWM_VAP(vap);
3767 	uint32_t duration;
3768 	int error;
3769 
3770 	/*
3771 	 * XXX i have a feeling that the vap node is being
3772 	 * freed from underneath us. Grr.
3773 	 */
3774 	ni = ieee80211_ref_node(vap->iv_bss);
3775 	in = IWM_NODE(ni);
3776 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3777 	    "%s: called; vap=%p, bss ni=%p\n",
3778 	    __func__,
3779 	    vap,
3780 	    ni);
3781 
3782 	in->in_assoc = 0;
3783 
3784 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3785 	if (error != 0)
3786 		return error;
3787 
3788 	error = iwm_allow_mcast(vap, sc);
3789 	if (error) {
3790 		device_printf(sc->sc_dev,
3791 		    "%s: failed to set multicast\n", __func__);
3792 		goto out;
3793 	}
3794 
3795 	/*
3796 	 * This is where it deviates from what Linux does.
3797 	 *
3798 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3799 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3800 	 * and always does a mac_ctx_changed().
3801 	 *
3802 	 * The openbsd port doesn't attempt to do that - it reset things
3803 	 * at odd states and does the add here.
3804 	 *
3805 	 * So, until the state handling is fixed (ie, we never reset
3806 	 * the NIC except for a firmware failure, which should drag
3807 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3808 	 * contexts that are required), let's do a dirty hack here.
3809 	 */
3810 	if (iv->is_uploaded) {
3811 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3812 			device_printf(sc->sc_dev,
3813 			    "%s: failed to update MAC\n", __func__);
3814 			goto out;
3815 		}
3816 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3817 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3818 			device_printf(sc->sc_dev,
3819 			    "%s: failed update phy ctxt\n", __func__);
3820 			goto out;
3821 		}
3822 		in->in_phyctxt = &sc->sc_phyctxt[0];
3823 
3824 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3825 			device_printf(sc->sc_dev,
3826 			    "%s: binding update cmd\n", __func__);
3827 			goto out;
3828 		}
3829 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3830 			device_printf(sc->sc_dev,
3831 			    "%s: failed to update sta\n", __func__);
3832 			goto out;
3833 		}
3834 	} else {
3835 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3836 			device_printf(sc->sc_dev,
3837 			    "%s: failed to add MAC\n", __func__);
3838 			goto out;
3839 		}
3840 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3841 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3842 			device_printf(sc->sc_dev,
3843 			    "%s: failed add phy ctxt!\n", __func__);
3844 			error = ETIMEDOUT;
3845 			goto out;
3846 		}
3847 		in->in_phyctxt = &sc->sc_phyctxt[0];
3848 
3849 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3850 			device_printf(sc->sc_dev,
3851 			    "%s: binding add cmd\n", __func__);
3852 			goto out;
3853 		}
3854 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3855 			device_printf(sc->sc_dev,
3856 			    "%s: failed to add sta\n", __func__);
3857 			goto out;
3858 		}
3859 	}
3860 
3861 	/*
3862 	 * Prevent the FW from wandering off channel during association
3863 	 * by "protecting" the session with a time event.
3864 	 */
3865 	/* XXX duration is in units of TU, not MS */
3866 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3867 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3868 	DELAY(100);
3869 
3870 	error = 0;
3871 out:
3872 	ieee80211_free_node(ni);
3873 	return (error);
3874 }
3875 
3876 static int
3877 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3878 {
3879 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3880 	int error;
3881 
3882 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3883 		device_printf(sc->sc_dev,
3884 		    "%s: failed to update STA\n", __func__);
3885 		return error;
3886 	}
3887 
3888 	in->in_assoc = 1;
3889 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3890 		device_printf(sc->sc_dev,
3891 		    "%s: failed to update MAC\n", __func__);
3892 		return error;
3893 	}
3894 
3895 	return 0;
3896 }
3897 
3898 static int
3899 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3900 {
3901 	uint32_t tfd_msk;
3902 
3903 	/*
3904 	 * Ok, so *technically* the proper set of calls for going
3905 	 * from RUN back to SCAN is:
3906 	 *
3907 	 * iwm_mvm_power_mac_disable(sc, in);
3908 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3909 	 * iwm_mvm_rm_sta(sc, in);
3910 	 * iwm_mvm_update_quotas(sc, NULL);
3911 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3912 	 * iwm_mvm_binding_remove_vif(sc, in);
3913 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3914 	 *
3915 	 * However, that freezes the device not matter which permutations
3916 	 * and modifications are attempted.  Obviously, this driver is missing
3917 	 * something since it works in the Linux driver, but figuring out what
3918 	 * is missing is a little more complicated.  Now, since we're going
3919 	 * back to nothing anyway, we'll just do a complete device reset.
3920 	 * Up your's, device!
3921 	 */
3922 	/*
3923 	 * Just using 0xf for the queues mask is fine as long as we only
3924 	 * get here from RUN state.
3925 	 */
3926 	tfd_msk = 0xf;
3927 	mbufq_drain(&sc->sc_snd);
3928 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3929 	/*
3930 	 * We seem to get away with just synchronously sending the
3931 	 * IWM_TXPATH_FLUSH command.
3932 	 */
3933 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3934 	iwm_stop_device(sc);
3935 	iwm_init_hw(sc);
3936 	if (in)
3937 		in->in_assoc = 0;
3938 	return 0;
3939 
3940 #if 0
3941 	int error;
3942 
3943 	iwm_mvm_power_mac_disable(sc, in);
3944 
3945 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3946 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3947 		return error;
3948 	}
3949 
3950 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3951 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3952 		return error;
3953 	}
3954 	error = iwm_mvm_rm_sta(sc, in);
3955 	in->in_assoc = 0;
3956 	iwm_mvm_update_quotas(sc, NULL);
3957 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3958 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3959 		return error;
3960 	}
3961 	iwm_mvm_binding_remove_vif(sc, in);
3962 
3963 	iwm_mvm_mac_ctxt_remove(sc, in);
3964 
3965 	return error;
3966 #endif
3967 }
3968 
3969 static struct ieee80211_node *
3970 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3971 {
3972 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3973 	    M_NOWAIT | M_ZERO);
3974 }
3975 
3976 static void
3977 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3978 {
3979 	struct ieee80211_node *ni = &in->in_ni;
3980 	struct iwm_lq_cmd *lq = &in->in_lq;
3981 	int nrates = ni->ni_rates.rs_nrates;
3982 	int i, ridx, tab = 0;
3983 	int txant = 0;
3984 
3985 	if (nrates > nitems(lq->rs_table)) {
3986 		device_printf(sc->sc_dev,
3987 		    "%s: node supports %d rates, driver handles "
3988 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3989 		return;
3990 	}
3991 	if (nrates == 0) {
3992 		device_printf(sc->sc_dev,
3993 		    "%s: node supports 0 rates, odd!\n", __func__);
3994 		return;
3995 	}
3996 
3997 	/*
3998 	 * XXX .. and most of iwm_node is not initialised explicitly;
3999 	 * it's all just 0x0 passed to the firmware.
4000 	 */
4001 
4002 	/* first figure out which rates we should support */
4003 	/* XXX TODO: this isn't 11n aware /at all/ */
4004 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4005 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4006 	    "%s: nrates=%d\n", __func__, nrates);
4007 
4008 	/*
4009 	 * Loop over nrates and populate in_ridx from the highest
4010 	 * rate to the lowest rate.  Remember, in_ridx[] has
4011 	 * IEEE80211_RATE_MAXSIZE entries!
4012 	 */
4013 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4014 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4015 
4016 		/* Map 802.11 rate to HW rate index. */
4017 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4018 			if (iwm_rates[ridx].rate == rate)
4019 				break;
4020 		if (ridx > IWM_RIDX_MAX) {
4021 			device_printf(sc->sc_dev,
4022 			    "%s: WARNING: device rate for %d not found!\n",
4023 			    __func__, rate);
4024 		} else {
4025 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4026 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4027 			    __func__,
4028 			    i,
4029 			    rate,
4030 			    ridx);
4031 			in->in_ridx[i] = ridx;
4032 		}
4033 	}
4034 
4035 	/* then construct a lq_cmd based on those */
4036 	memset(lq, 0, sizeof(*lq));
4037 	lq->sta_id = IWM_STATION_ID;
4038 
4039 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4040 	if (ni->ni_flags & IEEE80211_NODE_HT)
4041 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4042 
4043 	/*
4044 	 * are these used? (we don't do SISO or MIMO)
4045 	 * need to set them to non-zero, though, or we get an error.
4046 	 */
4047 	lq->single_stream_ant_msk = 1;
4048 	lq->dual_stream_ant_msk = 1;
4049 
4050 	/*
4051 	 * Build the actual rate selection table.
4052 	 * The lowest bits are the rates.  Additionally,
4053 	 * CCK needs bit 9 to be set.  The rest of the bits
4054 	 * we add to the table select the tx antenna
4055 	 * Note that we add the rates in the highest rate first
4056 	 * (opposite of ni_rates).
4057 	 */
4058 	/*
4059 	 * XXX TODO: this should be looping over the min of nrates
4060 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4061 	 */
4062 	for (i = 0; i < nrates; i++) {
4063 		int nextant;
4064 
4065 		if (txant == 0)
4066 			txant = iwm_fw_valid_tx_ant(sc);
4067 		nextant = 1<<(ffs(txant)-1);
4068 		txant &= ~nextant;
4069 
4070 		/*
4071 		 * Map the rate id into a rate index into
4072 		 * our hardware table containing the
4073 		 * configuration to use for this rate.
4074 		 */
4075 		ridx = in->in_ridx[i];
4076 		tab = iwm_rates[ridx].plcp;
4077 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4078 		if (IWM_RIDX_IS_CCK(ridx))
4079 			tab |= IWM_RATE_MCS_CCK_MSK;
4080 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4081 		    "station rate i=%d, rate=%d, hw=%x\n",
4082 		    i, iwm_rates[ridx].rate, tab);
4083 		lq->rs_table[i] = htole32(tab);
4084 	}
4085 	/* then fill the rest with the lowest possible rate */
4086 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4087 		KASSERT(tab != 0, ("invalid tab"));
4088 		lq->rs_table[i] = htole32(tab);
4089 	}
4090 }
4091 
4092 static int
4093 iwm_media_change(struct ifnet *ifp)
4094 {
4095 	struct ieee80211vap *vap = ifp->if_softc;
4096 	struct ieee80211com *ic = vap->iv_ic;
4097 	struct iwm_softc *sc = ic->ic_softc;
4098 	int error;
4099 
4100 	error = ieee80211_media_change(ifp);
4101 	if (error != ENETRESET)
4102 		return error;
4103 
4104 	IWM_LOCK(sc);
4105 	if (ic->ic_nrunning > 0) {
4106 		iwm_stop(sc);
4107 		iwm_init(sc);
4108 	}
4109 	IWM_UNLOCK(sc);
4110 	return error;
4111 }
4112 
4113 
4114 static int
4115 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4116 {
4117 	struct iwm_vap *ivp = IWM_VAP(vap);
4118 	struct ieee80211com *ic = vap->iv_ic;
4119 	struct iwm_softc *sc = ic->ic_softc;
4120 	struct iwm_node *in;
4121 	int error;
4122 
4123 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4124 	    "switching state %s -> %s\n",
4125 	    ieee80211_state_name[vap->iv_state],
4126 	    ieee80211_state_name[nstate]);
4127 	IEEE80211_UNLOCK(ic);
4128 	IWM_LOCK(sc);
4129 
4130 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4131 		iwm_led_blink_stop(sc);
4132 
4133 	/* disable beacon filtering if we're hopping out of RUN */
4134 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4135 		iwm_mvm_disable_beacon_filter(sc);
4136 
4137 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4138 			in->in_assoc = 0;
4139 
4140 		if (nstate == IEEE80211_S_INIT) {
4141 			IWM_UNLOCK(sc);
4142 			IEEE80211_LOCK(ic);
4143 			error = ivp->iv_newstate(vap, nstate, arg);
4144 			IEEE80211_UNLOCK(ic);
4145 			IWM_LOCK(sc);
4146 			iwm_release(sc, NULL);
4147 			IWM_UNLOCK(sc);
4148 			IEEE80211_LOCK(ic);
4149 			return error;
4150 		}
4151 
4152 		/*
4153 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4154 		 * above then the card will be completely reinitialized,
4155 		 * so the driver must do everything necessary to bring the card
4156 		 * from INIT to SCAN.
4157 		 *
4158 		 * Additionally, upon receiving deauth frame from AP,
4159 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4160 		 * state. This will also fail with this driver, so bring the FSM
4161 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4162 		 *
4163 		 * XXX TODO: fix this for FreeBSD!
4164 		 */
4165 		if (nstate == IEEE80211_S_SCAN ||
4166 		    nstate == IEEE80211_S_AUTH ||
4167 		    nstate == IEEE80211_S_ASSOC) {
4168 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4169 			    "Force transition to INIT; MGT=%d\n", arg);
4170 			IWM_UNLOCK(sc);
4171 			IEEE80211_LOCK(ic);
4172 			/* Always pass arg as -1 since we can't Tx right now. */
4173 			/*
4174 			 * XXX arg is just ignored anyway when transitioning
4175 			 *     to IEEE80211_S_INIT.
4176 			 */
4177 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4178 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4179 			    "Going INIT->SCAN\n");
4180 			nstate = IEEE80211_S_SCAN;
4181 			IEEE80211_UNLOCK(ic);
4182 			IWM_LOCK(sc);
4183 		}
4184 	}
4185 
4186 	switch (nstate) {
4187 	case IEEE80211_S_INIT:
4188 		break;
4189 
4190 	case IEEE80211_S_AUTH:
4191 		if ((error = iwm_auth(vap, sc)) != 0) {
4192 			device_printf(sc->sc_dev,
4193 			    "%s: could not move to auth state: %d\n",
4194 			    __func__, error);
4195 			break;
4196 		}
4197 		break;
4198 
4199 	case IEEE80211_S_ASSOC:
4200 		if ((error = iwm_assoc(vap, sc)) != 0) {
4201 			device_printf(sc->sc_dev,
4202 			    "%s: failed to associate: %d\n", __func__,
4203 			    error);
4204 			break;
4205 		}
4206 		break;
4207 
4208 	case IEEE80211_S_RUN:
4209 	{
4210 		struct iwm_host_cmd cmd = {
4211 			.id = IWM_LQ_CMD,
4212 			.len = { sizeof(in->in_lq), },
4213 			.flags = IWM_CMD_SYNC,
4214 		};
4215 
4216 		/* Update the association state, now we have it all */
4217 		/* (eg associd comes in at this point */
4218 		error = iwm_assoc(vap, sc);
4219 		if (error != 0) {
4220 			device_printf(sc->sc_dev,
4221 			    "%s: failed to update association state: %d\n",
4222 			    __func__,
4223 			    error);
4224 			break;
4225 		}
4226 
4227 		in = IWM_NODE(vap->iv_bss);
4228 		iwm_mvm_power_mac_update_mode(sc, in);
4229 		iwm_mvm_enable_beacon_filter(sc, in);
4230 		iwm_mvm_update_quotas(sc, in);
4231 		iwm_setrates(sc, in);
4232 
4233 		cmd.data[0] = &in->in_lq;
4234 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4235 			device_printf(sc->sc_dev,
4236 			    "%s: IWM_LQ_CMD failed\n", __func__);
4237 		}
4238 
4239 		iwm_mvm_led_enable(sc);
4240 		break;
4241 	}
4242 
4243 	default:
4244 		break;
4245 	}
4246 	IWM_UNLOCK(sc);
4247 	IEEE80211_LOCK(ic);
4248 
4249 	return (ivp->iv_newstate(vap, nstate, arg));
4250 }
4251 
4252 void
4253 iwm_endscan_cb(void *arg, int pending)
4254 {
4255 	struct iwm_softc *sc = arg;
4256 	struct ieee80211com *ic = &sc->sc_ic;
4257 
4258 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4259 	    "%s: scan ended\n",
4260 	    __func__);
4261 
4262 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4263 }
4264 
4265 /*
4266  * Aging and idle timeouts for the different possible scenarios
4267  * in default configuration
4268  */
4269 static const uint32_t
4270 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4271 	{
4272 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4273 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4274 	},
4275 	{
4276 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4277 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4278 	},
4279 	{
4280 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4281 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4282 	},
4283 	{
4284 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4285 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4286 	},
4287 	{
4288 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4289 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4290 	},
4291 };
4292 
4293 /*
4294  * Aging and idle timeouts for the different possible scenarios
4295  * in single BSS MAC configuration.
4296  */
4297 static const uint32_t
4298 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4299 	{
4300 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4301 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4302 	},
4303 	{
4304 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4305 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4306 	},
4307 	{
4308 		htole32(IWM_SF_MCAST_AGING_TIMER),
4309 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4310 	},
4311 	{
4312 		htole32(IWM_SF_BA_AGING_TIMER),
4313 		htole32(IWM_SF_BA_IDLE_TIMER)
4314 	},
4315 	{
4316 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4317 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4318 	},
4319 };
4320 
4321 static void
4322 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4323     struct ieee80211_node *ni)
4324 {
4325 	int i, j, watermark;
4326 
4327 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4328 
4329 	/*
4330 	 * If we are in association flow - check antenna configuration
4331 	 * capabilities of the AP station, and choose the watermark accordingly.
4332 	 */
4333 	if (ni) {
4334 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4335 #ifdef notyet
4336 			if (ni->ni_rxmcs[2] != 0)
4337 				watermark = IWM_SF_W_MARK_MIMO3;
4338 			else if (ni->ni_rxmcs[1] != 0)
4339 				watermark = IWM_SF_W_MARK_MIMO2;
4340 			else
4341 #endif
4342 				watermark = IWM_SF_W_MARK_SISO;
4343 		} else {
4344 			watermark = IWM_SF_W_MARK_LEGACY;
4345 		}
4346 	/* default watermark value for unassociated mode. */
4347 	} else {
4348 		watermark = IWM_SF_W_MARK_MIMO2;
4349 	}
4350 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4351 
4352 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4353 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4354 			sf_cmd->long_delay_timeouts[i][j] =
4355 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4356 		}
4357 	}
4358 
4359 	if (ni) {
4360 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4361 		       sizeof(iwm_sf_full_timeout));
4362 	} else {
4363 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4364 		       sizeof(iwm_sf_full_timeout_def));
4365 	}
4366 }
4367 
4368 static int
4369 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4370 {
4371 	struct ieee80211com *ic = &sc->sc_ic;
4372 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4373 	struct iwm_sf_cfg_cmd sf_cmd = {
4374 		.state = htole32(IWM_SF_FULL_ON),
4375 	};
4376 	int ret = 0;
4377 
4378 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4379 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4380 
4381 	switch (new_state) {
4382 	case IWM_SF_UNINIT:
4383 	case IWM_SF_INIT_OFF:
4384 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4385 		break;
4386 	case IWM_SF_FULL_ON:
4387 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4388 		break;
4389 	default:
4390 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4391 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4392 			  new_state);
4393 		return EINVAL;
4394 	}
4395 
4396 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4397 				   sizeof(sf_cmd), &sf_cmd);
4398 	return ret;
4399 }
4400 
4401 static int
4402 iwm_send_bt_init_conf(struct iwm_softc *sc)
4403 {
4404 	struct iwm_bt_coex_cmd bt_cmd;
4405 
4406 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4407 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4408 
4409 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4410 	    &bt_cmd);
4411 }
4412 
4413 static int
4414 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4415 {
4416 	struct iwm_mcc_update_cmd mcc_cmd;
4417 	struct iwm_host_cmd hcmd = {
4418 		.id = IWM_MCC_UPDATE_CMD,
4419 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4420 		.data = { &mcc_cmd },
4421 	};
4422 	int ret;
4423 #ifdef IWM_DEBUG
4424 	struct iwm_rx_packet *pkt;
4425 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4426 	struct iwm_mcc_update_resp *mcc_resp;
4427 	int n_channels;
4428 	uint16_t mcc;
4429 #endif
4430 	int resp_v2 = isset(sc->sc_enabled_capa,
4431 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4432 
4433 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4434 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4435 	if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4436 	    isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4437 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4438 	else
4439 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4440 
4441 	if (resp_v2)
4442 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4443 	else
4444 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4445 
4446 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4447 	    "send MCC update to FW with '%c%c' src = %d\n",
4448 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4449 
4450 	ret = iwm_send_cmd(sc, &hcmd);
4451 	if (ret)
4452 		return ret;
4453 
4454 #ifdef IWM_DEBUG
4455 	pkt = hcmd.resp_pkt;
4456 
4457 	/* Extract MCC response */
4458 	if (resp_v2) {
4459 		mcc_resp = (void *)pkt->data;
4460 		mcc = mcc_resp->mcc;
4461 		n_channels =  le32toh(mcc_resp->n_channels);
4462 	} else {
4463 		mcc_resp_v1 = (void *)pkt->data;
4464 		mcc = mcc_resp_v1->mcc;
4465 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4466 	}
4467 
4468 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4469 	if (mcc == 0)
4470 		mcc = 0x3030;  /* "00" - world */
4471 
4472 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4473 	    "regulatory domain '%c%c' (%d channels available)\n",
4474 	    mcc >> 8, mcc & 0xff, n_channels);
4475 #endif
4476 	iwm_free_resp(sc, &hcmd);
4477 
4478 	return 0;
4479 }
4480 
4481 static void
4482 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4483 {
4484 	struct iwm_host_cmd cmd = {
4485 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4486 		.len = { sizeof(uint32_t), },
4487 		.data = { &backoff, },
4488 	};
4489 
4490 	if (iwm_send_cmd(sc, &cmd) != 0) {
4491 		device_printf(sc->sc_dev,
4492 		    "failed to change thermal tx backoff\n");
4493 	}
4494 }
4495 
4496 static int
4497 iwm_init_hw(struct iwm_softc *sc)
4498 {
4499 	struct ieee80211com *ic = &sc->sc_ic;
4500 	int error, i, ac;
4501 
4502 	if ((error = iwm_start_hw(sc)) != 0) {
4503 		printf("iwm_start_hw: failed %d\n", error);
4504 		return error;
4505 	}
4506 
4507 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4508 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4509 		return error;
4510 	}
4511 
4512 	/*
4513 	 * should stop and start HW since that INIT
4514 	 * image just loaded
4515 	 */
4516 	iwm_stop_device(sc);
4517 	if ((error = iwm_start_hw(sc)) != 0) {
4518 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4519 		return error;
4520 	}
4521 
4522 	/* omstart, this time with the regular firmware */
4523 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4524 	if (error) {
4525 		device_printf(sc->sc_dev, "could not load firmware\n");
4526 		goto error;
4527 	}
4528 
4529 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4530 		device_printf(sc->sc_dev, "bt init conf failed\n");
4531 		goto error;
4532 	}
4533 
4534 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4535 		device_printf(sc->sc_dev, "antenna config failed\n");
4536 		goto error;
4537 	}
4538 
4539 	/* Send phy db control command and then phy db calibration*/
4540 	if ((error = iwm_send_phy_db_data(sc)) != 0) {
4541 		device_printf(sc->sc_dev, "phy_db_data failed\n");
4542 		goto error;
4543 	}
4544 
4545 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4546 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4547 		goto error;
4548 	}
4549 
4550 	/* Add auxiliary station for scanning */
4551 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4552 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4553 		goto error;
4554 	}
4555 
4556 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4557 		/*
4558 		 * The channel used here isn't relevant as it's
4559 		 * going to be overwritten in the other flows.
4560 		 * For now use the first channel we have.
4561 		 */
4562 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4563 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4564 			goto error;
4565 	}
4566 
4567 	/* Initialize tx backoffs to the minimum. */
4568 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4569 		iwm_mvm_tt_tx_backoff(sc, 0);
4570 
4571 	error = iwm_mvm_power_update_device(sc);
4572 	if (error)
4573 		goto error;
4574 
4575 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4576 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4577 			goto error;
4578 	}
4579 
4580 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4581 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4582 			goto error;
4583 	}
4584 
4585 	/* Enable Tx queues. */
4586 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4587 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4588 		    iwm_mvm_ac_to_tx_fifo[ac]);
4589 		if (error)
4590 			goto error;
4591 	}
4592 
4593 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4594 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4595 		goto error;
4596 	}
4597 
4598 	return 0;
4599 
4600  error:
4601 	iwm_stop_device(sc);
4602 	return error;
4603 }
4604 
4605 /* Allow multicast from our BSSID. */
4606 static int
4607 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4608 {
4609 	struct ieee80211_node *ni = vap->iv_bss;
4610 	struct iwm_mcast_filter_cmd *cmd;
4611 	size_t size;
4612 	int error;
4613 
4614 	size = roundup(sizeof(*cmd), 4);
4615 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4616 	if (cmd == NULL)
4617 		return ENOMEM;
4618 	cmd->filter_own = 1;
4619 	cmd->port_id = 0;
4620 	cmd->count = 0;
4621 	cmd->pass_all = 1;
4622 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4623 
4624 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4625 	    IWM_CMD_SYNC, size, cmd);
4626 	free(cmd, M_DEVBUF);
4627 
4628 	return (error);
4629 }
4630 
4631 /*
4632  * ifnet interfaces
4633  */
4634 
4635 static void
4636 iwm_init(struct iwm_softc *sc)
4637 {
4638 	int error;
4639 
4640 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4641 		return;
4642 	}
4643 	sc->sc_generation++;
4644 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4645 
4646 	if ((error = iwm_init_hw(sc)) != 0) {
4647 		printf("iwm_init_hw failed %d\n", error);
4648 		iwm_stop(sc);
4649 		return;
4650 	}
4651 
4652 	/*
4653 	 * Ok, firmware loaded and we are jogging
4654 	 */
4655 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4656 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4657 }
4658 
4659 static int
4660 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4661 {
4662 	struct iwm_softc *sc;
4663 	int error;
4664 
4665 	sc = ic->ic_softc;
4666 
4667 	IWM_LOCK(sc);
4668 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4669 		IWM_UNLOCK(sc);
4670 		return (ENXIO);
4671 	}
4672 	error = mbufq_enqueue(&sc->sc_snd, m);
4673 	if (error) {
4674 		IWM_UNLOCK(sc);
4675 		return (error);
4676 	}
4677 	iwm_start(sc);
4678 	IWM_UNLOCK(sc);
4679 	return (0);
4680 }
4681 
4682 /*
4683  * Dequeue packets from sendq and call send.
4684  */
4685 static void
4686 iwm_start(struct iwm_softc *sc)
4687 {
4688 	struct ieee80211_node *ni;
4689 	struct mbuf *m;
4690 	int ac = 0;
4691 
4692 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4693 	while (sc->qfullmsk == 0 &&
4694 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4695 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4696 		if (iwm_tx(sc, m, ni, ac) != 0) {
4697 			if_inc_counter(ni->ni_vap->iv_ifp,
4698 			    IFCOUNTER_OERRORS, 1);
4699 			ieee80211_free_node(ni);
4700 			continue;
4701 		}
4702 		sc->sc_tx_timer = 15;
4703 	}
4704 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4705 }
4706 
4707 static void
4708 iwm_stop(struct iwm_softc *sc)
4709 {
4710 
4711 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4712 	sc->sc_flags |= IWM_FLAG_STOPPED;
4713 	sc->sc_generation++;
4714 	iwm_led_blink_stop(sc);
4715 	sc->sc_tx_timer = 0;
4716 	iwm_stop_device(sc);
4717 }
4718 
4719 static void
4720 iwm_watchdog(void *arg)
4721 {
4722 	struct iwm_softc *sc = arg;
4723 	struct ieee80211com *ic = &sc->sc_ic;
4724 
4725 	if (sc->sc_tx_timer > 0) {
4726 		if (--sc->sc_tx_timer == 0) {
4727 			device_printf(sc->sc_dev, "device timeout\n");
4728 #ifdef IWM_DEBUG
4729 			iwm_nic_error(sc);
4730 #endif
4731 			ieee80211_restart_all(ic);
4732 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4733 			return;
4734 		}
4735 	}
4736 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4737 }
4738 
4739 static void
4740 iwm_parent(struct ieee80211com *ic)
4741 {
4742 	struct iwm_softc *sc = ic->ic_softc;
4743 	int startall = 0;
4744 
4745 	IWM_LOCK(sc);
4746 	if (ic->ic_nrunning > 0) {
4747 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4748 			iwm_init(sc);
4749 			startall = 1;
4750 		}
4751 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4752 		iwm_stop(sc);
4753 	IWM_UNLOCK(sc);
4754 	if (startall)
4755 		ieee80211_start_all(ic);
4756 }
4757 
4758 /*
4759  * The interrupt side of things
4760  */
4761 
4762 /*
4763  * error dumping routines are from iwlwifi/mvm/utils.c
4764  */
4765 
4766 /*
4767  * Note: This structure is read from the device with IO accesses,
4768  * and the reading already does the endian conversion. As it is
4769  * read with uint32_t-sized accesses, any members with a different size
4770  * need to be ordered correctly though!
4771  */
4772 struct iwm_error_event_table {
4773 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4774 	uint32_t error_id;		/* type of error */
4775 	uint32_t trm_hw_status0;	/* TRM HW status */
4776 	uint32_t trm_hw_status1;	/* TRM HW status */
4777 	uint32_t blink2;		/* branch link */
4778 	uint32_t ilink1;		/* interrupt link */
4779 	uint32_t ilink2;		/* interrupt link */
4780 	uint32_t data1;		/* error-specific data */
4781 	uint32_t data2;		/* error-specific data */
4782 	uint32_t data3;		/* error-specific data */
4783 	uint32_t bcon_time;		/* beacon timer */
4784 	uint32_t tsf_low;		/* network timestamp function timer */
4785 	uint32_t tsf_hi;		/* network timestamp function timer */
4786 	uint32_t gp1;		/* GP1 timer register */
4787 	uint32_t gp2;		/* GP2 timer register */
4788 	uint32_t fw_rev_type;	/* firmware revision type */
4789 	uint32_t major;		/* uCode version major */
4790 	uint32_t minor;		/* uCode version minor */
4791 	uint32_t hw_ver;		/* HW Silicon version */
4792 	uint32_t brd_ver;		/* HW board version */
4793 	uint32_t log_pc;		/* log program counter */
4794 	uint32_t frame_ptr;		/* frame pointer */
4795 	uint32_t stack_ptr;		/* stack pointer */
4796 	uint32_t hcmd;		/* last host command header */
4797 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4798 				 * rxtx_flag */
4799 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4800 				 * host_flag */
4801 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4802 				 * enc_flag */
4803 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4804 				 * time_flag */
4805 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4806 				 * wico interrupt */
4807 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4808 	uint32_t wait_event;		/* wait event() caller address */
4809 	uint32_t l2p_control;	/* L2pControlField */
4810 	uint32_t l2p_duration;	/* L2pDurationField */
4811 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4812 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4813 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4814 				 * (LMPM_PMG_SEL) */
4815 	uint32_t u_timestamp;	/* indicate when the date and time of the
4816 				 * compilation */
4817 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4818 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4819 
4820 /*
4821  * UMAC error struct - relevant starting from family 8000 chip.
4822  * Note: This structure is read from the device with IO accesses,
4823  * and the reading already does the endian conversion. As it is
4824  * read with u32-sized accesses, any members with a different size
4825  * need to be ordered correctly though!
4826  */
4827 struct iwm_umac_error_event_table {
4828 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4829 	uint32_t error_id;	/* type of error */
4830 	uint32_t blink1;	/* branch link */
4831 	uint32_t blink2;	/* branch link */
4832 	uint32_t ilink1;	/* interrupt link */
4833 	uint32_t ilink2;	/* interrupt link */
4834 	uint32_t data1;		/* error-specific data */
4835 	uint32_t data2;		/* error-specific data */
4836 	uint32_t data3;		/* error-specific data */
4837 	uint32_t umac_major;
4838 	uint32_t umac_minor;
4839 	uint32_t frame_pointer;	/* core register 27*/
4840 	uint32_t stack_pointer;	/* core register 28 */
4841 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4842 	uint32_t nic_isr_pref;	/* ISR status register */
4843 } __packed;
4844 
4845 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4846 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4847 
4848 #ifdef IWM_DEBUG
4849 struct {
4850 	const char *name;
4851 	uint8_t num;
4852 } advanced_lookup[] = {
4853 	{ "NMI_INTERRUPT_WDG", 0x34 },
4854 	{ "SYSASSERT", 0x35 },
4855 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4856 	{ "BAD_COMMAND", 0x38 },
4857 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4858 	{ "FATAL_ERROR", 0x3D },
4859 	{ "NMI_TRM_HW_ERR", 0x46 },
4860 	{ "NMI_INTERRUPT_TRM", 0x4C },
4861 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4862 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4863 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4864 	{ "NMI_INTERRUPT_HOST", 0x66 },
4865 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4866 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4867 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4868 	{ "ADVANCED_SYSASSERT", 0 },
4869 };
4870 
4871 static const char *
4872 iwm_desc_lookup(uint32_t num)
4873 {
4874 	int i;
4875 
4876 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4877 		if (advanced_lookup[i].num == num)
4878 			return advanced_lookup[i].name;
4879 
4880 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4881 	return advanced_lookup[i].name;
4882 }
4883 
4884 static void
4885 iwm_nic_umac_error(struct iwm_softc *sc)
4886 {
4887 	struct iwm_umac_error_event_table table;
4888 	uint32_t base;
4889 
4890 	base = sc->sc_uc.uc_umac_error_event_table;
4891 
4892 	if (base < 0x800000) {
4893 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4894 		    base);
4895 		return;
4896 	}
4897 
4898 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4899 		device_printf(sc->sc_dev, "reading errlog failed\n");
4900 		return;
4901 	}
4902 
4903 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4904 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4905 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4906 		    sc->sc_flags, table.valid);
4907 	}
4908 
4909 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4910 		iwm_desc_lookup(table.error_id));
4911 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4912 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4913 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4914 	    table.ilink1);
4915 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4916 	    table.ilink2);
4917 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4918 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4919 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4920 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4921 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4922 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4923 	    table.frame_pointer);
4924 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4925 	    table.stack_pointer);
4926 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4927 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4928 	    table.nic_isr_pref);
4929 }
4930 
4931 /*
4932  * Support for dumping the error log seemed like a good idea ...
4933  * but it's mostly hex junk and the only sensible thing is the
4934  * hw/ucode revision (which we know anyway).  Since it's here,
4935  * I'll just leave it in, just in case e.g. the Intel guys want to
4936  * help us decipher some "ADVANCED_SYSASSERT" later.
4937  */
4938 static void
4939 iwm_nic_error(struct iwm_softc *sc)
4940 {
4941 	struct iwm_error_event_table table;
4942 	uint32_t base;
4943 
4944 	device_printf(sc->sc_dev, "dumping device error log\n");
4945 	base = sc->sc_uc.uc_error_event_table;
4946 	if (base < 0x800000) {
4947 		device_printf(sc->sc_dev,
4948 		    "Invalid error log pointer 0x%08x\n", base);
4949 		return;
4950 	}
4951 
4952 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4953 		device_printf(sc->sc_dev, "reading errlog failed\n");
4954 		return;
4955 	}
4956 
4957 	if (!table.valid) {
4958 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
4959 		return;
4960 	}
4961 
4962 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4963 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
4964 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4965 		    sc->sc_flags, table.valid);
4966 	}
4967 
4968 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4969 	    iwm_desc_lookup(table.error_id));
4970 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
4971 	    table.trm_hw_status0);
4972 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
4973 	    table.trm_hw_status1);
4974 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4975 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4976 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4977 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4978 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4979 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4980 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4981 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4982 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4983 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4984 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4985 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
4986 	    table.fw_rev_type);
4987 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
4988 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
4989 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4990 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4991 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4992 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4993 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4994 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4995 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4996 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4997 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
4998 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4999 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5000 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5001 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5002 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5003 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5004 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5005 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5006 
5007 	if (sc->sc_uc.uc_umac_error_event_table)
5008 		iwm_nic_umac_error(sc);
5009 }
5010 #endif
5011 
5012 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
5013 do {									\
5014 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5015 	_var_ = (void *)((_pkt_)+1);					\
5016 } while (/*CONSTCOND*/0)
5017 
5018 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
5019 do {									\
5020 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5021 	_ptr_ = (void *)((_pkt_)+1);					\
5022 } while (/*CONSTCOND*/0)
5023 
5024 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5025 
5026 /*
5027  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5028  * Basic structure from if_iwn
5029  */
5030 static void
5031 iwm_notif_intr(struct iwm_softc *sc)
5032 {
5033 	struct ieee80211com *ic = &sc->sc_ic;
5034 	uint16_t hw;
5035 
5036 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5037 	    BUS_DMASYNC_POSTREAD);
5038 
5039 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5040 
5041 	/*
5042 	 * Process responses
5043 	 */
5044 	while (sc->rxq.cur != hw) {
5045 		struct iwm_rx_ring *ring = &sc->rxq;
5046 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
5047 		struct iwm_rx_packet *pkt;
5048 		struct iwm_cmd_response *cresp;
5049 		int qid, idx, code;
5050 
5051 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5052 		    BUS_DMASYNC_POSTREAD);
5053 		pkt = mtod(data->m, struct iwm_rx_packet *);
5054 
5055 		qid = pkt->hdr.qid & ~0x80;
5056 		idx = pkt->hdr.idx;
5057 
5058 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5059 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5060 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5061 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
5062 
5063 		/*
5064 		 * randomly get these from the firmware, no idea why.
5065 		 * they at least seem harmless, so just ignore them for now
5066 		 */
5067 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5068 		    || pkt->len_n_flags == htole32(0x55550000))) {
5069 			ADVANCE_RXQ(sc);
5070 			continue;
5071 		}
5072 
5073 		switch (code) {
5074 		case IWM_REPLY_RX_PHY_CMD:
5075 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5076 			break;
5077 
5078 		case IWM_REPLY_RX_MPDU_CMD:
5079 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5080 			break;
5081 
5082 		case IWM_TX_CMD:
5083 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5084 			break;
5085 
5086 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5087 			struct iwm_missed_beacons_notif *resp;
5088 			int missed;
5089 
5090 			/* XXX look at mac_id to determine interface ID */
5091 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5092 
5093 			SYNC_RESP_STRUCT(resp, pkt);
5094 			missed = le32toh(resp->consec_missed_beacons);
5095 
5096 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5097 			    "%s: MISSED_BEACON: mac_id=%d, "
5098 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5099 			    "num_rx=%d\n",
5100 			    __func__,
5101 			    le32toh(resp->mac_id),
5102 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5103 			    le32toh(resp->consec_missed_beacons),
5104 			    le32toh(resp->num_expected_beacons),
5105 			    le32toh(resp->num_recvd_beacons));
5106 
5107 			/* Be paranoid */
5108 			if (vap == NULL)
5109 				break;
5110 
5111 			/* XXX no net80211 locking? */
5112 			if (vap->iv_state == IEEE80211_S_RUN &&
5113 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5114 				if (missed > vap->iv_bmissthreshold) {
5115 					/* XXX bad locking; turn into task */
5116 					IWM_UNLOCK(sc);
5117 					ieee80211_beacon_miss(ic);
5118 					IWM_LOCK(sc);
5119 				}
5120 			}
5121 
5122 			break; }
5123 
5124 		case IWM_MFUART_LOAD_NOTIFICATION:
5125 			break;
5126 
5127 		case IWM_MVM_ALIVE: {
5128 			struct iwm_mvm_alive_resp_v1 *resp1;
5129 			struct iwm_mvm_alive_resp_v2 *resp2;
5130 			struct iwm_mvm_alive_resp_v3 *resp3;
5131 
5132 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5133 				SYNC_RESP_STRUCT(resp1, pkt);
5134 				sc->sc_uc.uc_error_event_table
5135 				    = le32toh(resp1->error_event_table_ptr);
5136 				sc->sc_uc.uc_log_event_table
5137 				    = le32toh(resp1->log_event_table_ptr);
5138 				sc->sched_base = le32toh(resp1->scd_base_ptr);
5139 				if (resp1->status == IWM_ALIVE_STATUS_OK)
5140 					sc->sc_uc.uc_ok = 1;
5141 				else
5142 					sc->sc_uc.uc_ok = 0;
5143 			}
5144 
5145 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5146 				SYNC_RESP_STRUCT(resp2, pkt);
5147 				sc->sc_uc.uc_error_event_table
5148 				    = le32toh(resp2->error_event_table_ptr);
5149 				sc->sc_uc.uc_log_event_table
5150 				    = le32toh(resp2->log_event_table_ptr);
5151 				sc->sched_base = le32toh(resp2->scd_base_ptr);
5152 				sc->sc_uc.uc_umac_error_event_table
5153 				    = le32toh(resp2->error_info_addr);
5154 				if (resp2->status == IWM_ALIVE_STATUS_OK)
5155 					sc->sc_uc.uc_ok = 1;
5156 				else
5157 					sc->sc_uc.uc_ok = 0;
5158 			}
5159 
5160 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5161 				SYNC_RESP_STRUCT(resp3, pkt);
5162 				sc->sc_uc.uc_error_event_table
5163 				    = le32toh(resp3->error_event_table_ptr);
5164 				sc->sc_uc.uc_log_event_table
5165 				    = le32toh(resp3->log_event_table_ptr);
5166 				sc->sched_base = le32toh(resp3->scd_base_ptr);
5167 				sc->sc_uc.uc_umac_error_event_table
5168 				    = le32toh(resp3->error_info_addr);
5169 				if (resp3->status == IWM_ALIVE_STATUS_OK)
5170 					sc->sc_uc.uc_ok = 1;
5171 				else
5172 					sc->sc_uc.uc_ok = 0;
5173 			}
5174 
5175 			sc->sc_uc.uc_intr = 1;
5176 			wakeup(&sc->sc_uc);
5177 			break; }
5178 
5179 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
5180 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
5181 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
5182 
5183 			iwm_phy_db_set_section(sc, phy_db_notif);
5184 
5185 			break; }
5186 
5187 		case IWM_STATISTICS_NOTIFICATION: {
5188 			struct iwm_notif_statistics *stats;
5189 			SYNC_RESP_STRUCT(stats, pkt);
5190 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5191 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5192 			break; }
5193 
5194 		case IWM_NVM_ACCESS_CMD:
5195 		case IWM_MCC_UPDATE_CMD:
5196 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5197 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5198 				    BUS_DMASYNC_POSTREAD);
5199 				memcpy(sc->sc_cmd_resp,
5200 				    pkt, sizeof(sc->sc_cmd_resp));
5201 			}
5202 			break;
5203 
5204 		case IWM_MCC_CHUB_UPDATE_CMD: {
5205 			struct iwm_mcc_chub_notif *notif;
5206 			SYNC_RESP_STRUCT(notif, pkt);
5207 
5208 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5209 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5210 			sc->sc_fw_mcc[2] = '\0';
5211 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5212 			    "fw source %d sent CC '%s'\n",
5213 			    notif->source_id, sc->sc_fw_mcc);
5214 			break; }
5215 
5216 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5217 			break;
5218 
5219 		case IWM_PHY_CONFIGURATION_CMD:
5220 		case IWM_TX_ANT_CONFIGURATION_CMD:
5221 		case IWM_ADD_STA:
5222 		case IWM_MAC_CONTEXT_CMD:
5223 		case IWM_REPLY_SF_CFG_CMD:
5224 		case IWM_POWER_TABLE_CMD:
5225 		case IWM_PHY_CONTEXT_CMD:
5226 		case IWM_BINDING_CONTEXT_CMD:
5227 		case IWM_TIME_EVENT_CMD:
5228 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5229 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5230 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5231 		case IWM_REPLY_BEACON_FILTERING_CMD:
5232 		case IWM_MAC_PM_POWER_TABLE:
5233 		case IWM_TIME_QUOTA_CMD:
5234 		case IWM_REMOVE_STA:
5235 		case IWM_TXPATH_FLUSH:
5236 		case IWM_LQ_CMD:
5237 		case IWM_BT_CONFIG:
5238 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5239 			SYNC_RESP_STRUCT(cresp, pkt);
5240 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5241 				memcpy(sc->sc_cmd_resp,
5242 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5243 			}
5244 			break;
5245 
5246 		/* ignore */
5247 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5248 			break;
5249 
5250 		case IWM_INIT_COMPLETE_NOTIF:
5251 			sc->sc_init_complete = 1;
5252 			wakeup(&sc->sc_init_complete);
5253 			break;
5254 
5255 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5256 			struct iwm_periodic_scan_complete *notif;
5257 			SYNC_RESP_STRUCT(notif, pkt);
5258 			break;
5259 		}
5260 
5261 		case IWM_SCAN_ITERATION_COMPLETE: {
5262 			struct iwm_lmac_scan_complete_notif *notif;
5263  			SYNC_RESP_STRUCT(notif, pkt);
5264 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5265  			break;
5266 		}
5267 
5268 		case IWM_SCAN_COMPLETE_UMAC: {
5269 			struct iwm_umac_scan_complete *notif;
5270 			SYNC_RESP_STRUCT(notif, pkt);
5271 
5272 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5273 			    "UMAC scan complete, status=0x%x\n",
5274 			    notif->status);
5275 #if 0	/* XXX This would be a duplicate scan end call */
5276 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5277 #endif
5278 			break;
5279 		}
5280 
5281 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5282 			struct iwm_umac_scan_iter_complete_notif *notif;
5283 			SYNC_RESP_STRUCT(notif, pkt);
5284 
5285 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5286 			    "complete, status=0x%x, %d channels scanned\n",
5287 			    notif->status, notif->scanned_channels);
5288 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5289 			break;
5290 		}
5291 
5292 		case IWM_REPLY_ERROR: {
5293 			struct iwm_error_resp *resp;
5294 			SYNC_RESP_STRUCT(resp, pkt);
5295 
5296 			device_printf(sc->sc_dev,
5297 			    "firmware error 0x%x, cmd 0x%x\n",
5298 			    le32toh(resp->error_type),
5299 			    resp->cmd_id);
5300 			break;
5301 		}
5302 
5303 		case IWM_TIME_EVENT_NOTIFICATION: {
5304 			struct iwm_time_event_notif *notif;
5305 			SYNC_RESP_STRUCT(notif, pkt);
5306 
5307 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5308 			    "TE notif status = 0x%x action = 0x%x\n",
5309 			    notif->status, notif->action);
5310 			break;
5311 		}
5312 
5313 		case IWM_MCAST_FILTER_CMD:
5314 			break;
5315 
5316 		case IWM_SCD_QUEUE_CFG: {
5317 			struct iwm_scd_txq_cfg_rsp *rsp;
5318 			SYNC_RESP_STRUCT(rsp, pkt);
5319 
5320 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5321 			    "queue cfg token=0x%x sta_id=%d "
5322 			    "tid=%d scd_queue=%d\n",
5323 			    rsp->token, rsp->sta_id, rsp->tid,
5324 			    rsp->scd_queue);
5325 			break;
5326 		}
5327 
5328 		default:
5329 			device_printf(sc->sc_dev,
5330 			    "frame %d/%d %x UNHANDLED (this should "
5331 			    "not happen)\n", qid, idx,
5332 			    pkt->len_n_flags);
5333 			break;
5334 		}
5335 
5336 		/*
5337 		 * Why test bit 0x80?  The Linux driver:
5338 		 *
5339 		 * There is one exception:  uCode sets bit 15 when it
5340 		 * originates the response/notification, i.e. when the
5341 		 * response/notification is not a direct response to a
5342 		 * command sent by the driver.  For example, uCode issues
5343 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5344 		 * it is not a direct response to any driver command.
5345 		 *
5346 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5347 		 * uses a slightly different format for pkt->hdr, and "qid"
5348 		 * is actually the upper byte of a two-byte field.
5349 		 */
5350 		if (!(pkt->hdr.qid & (1 << 7))) {
5351 			iwm_cmd_done(sc, pkt);
5352 		}
5353 
5354 		ADVANCE_RXQ(sc);
5355 	}
5356 
5357 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5358 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5359 
5360 	/*
5361 	 * Tell the firmware what we have processed.
5362 	 * Seems like the hardware gets upset unless we align
5363 	 * the write by 8??
5364 	 */
5365 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5366 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5367 }
5368 
5369 static void
5370 iwm_intr(void *arg)
5371 {
5372 	struct iwm_softc *sc = arg;
5373 	int handled = 0;
5374 	int r1, r2, rv = 0;
5375 	int isperiodic = 0;
5376 
5377 	IWM_LOCK(sc);
5378 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5379 
5380 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5381 		uint32_t *ict = sc->ict_dma.vaddr;
5382 		int tmp;
5383 
5384 		tmp = htole32(ict[sc->ict_cur]);
5385 		if (!tmp)
5386 			goto out_ena;
5387 
5388 		/*
5389 		 * ok, there was something.  keep plowing until we have all.
5390 		 */
5391 		r1 = r2 = 0;
5392 		while (tmp) {
5393 			r1 |= tmp;
5394 			ict[sc->ict_cur] = 0;
5395 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5396 			tmp = htole32(ict[sc->ict_cur]);
5397 		}
5398 
5399 		/* this is where the fun begins.  don't ask */
5400 		if (r1 == 0xffffffff)
5401 			r1 = 0;
5402 
5403 		/* i am not expected to understand this */
5404 		if (r1 & 0xc0000)
5405 			r1 |= 0x8000;
5406 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5407 	} else {
5408 		r1 = IWM_READ(sc, IWM_CSR_INT);
5409 		/* "hardware gone" (where, fishing?) */
5410 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5411 			goto out;
5412 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5413 	}
5414 	if (r1 == 0 && r2 == 0) {
5415 		goto out_ena;
5416 	}
5417 
5418 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5419 
5420 	/* ignored */
5421 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5422 
5423 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5424 		int i;
5425 		struct ieee80211com *ic = &sc->sc_ic;
5426 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5427 
5428 #ifdef IWM_DEBUG
5429 		iwm_nic_error(sc);
5430 #endif
5431 		/* Dump driver status (TX and RX rings) while we're here. */
5432 		device_printf(sc->sc_dev, "driver status:\n");
5433 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5434 			struct iwm_tx_ring *ring = &sc->txq[i];
5435 			device_printf(sc->sc_dev,
5436 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5437 			    "queued=%-3d\n",
5438 			    i, ring->qid, ring->cur, ring->queued);
5439 		}
5440 		device_printf(sc->sc_dev,
5441 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5442 		device_printf(sc->sc_dev,
5443 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5444 
5445 		/* Don't stop the device; just do a VAP restart */
5446 		IWM_UNLOCK(sc);
5447 
5448 		if (vap == NULL) {
5449 			printf("%s: null vap\n", __func__);
5450 			return;
5451 		}
5452 
5453 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5454 		    "restarting\n", __func__, vap->iv_state);
5455 
5456 		/* XXX TODO: turn this into a callout/taskqueue */
5457 		ieee80211_restart_all(ic);
5458 		return;
5459 	}
5460 
5461 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5462 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5463 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5464 		iwm_stop(sc);
5465 		rv = 1;
5466 		goto out;
5467 	}
5468 
5469 	/* firmware chunk loaded */
5470 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5471 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5472 		handled |= IWM_CSR_INT_BIT_FH_TX;
5473 		sc->sc_fw_chunk_done = 1;
5474 		wakeup(&sc->sc_fw);
5475 	}
5476 
5477 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5478 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5479 		if (iwm_check_rfkill(sc)) {
5480 			device_printf(sc->sc_dev,
5481 			    "%s: rfkill switch, disabling interface\n",
5482 			    __func__);
5483 			iwm_stop(sc);
5484 		}
5485 	}
5486 
5487 	/*
5488 	 * The Linux driver uses periodic interrupts to avoid races.
5489 	 * We cargo-cult like it's going out of fashion.
5490 	 */
5491 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5492 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5493 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5494 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5495 			IWM_WRITE_1(sc,
5496 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5497 		isperiodic = 1;
5498 	}
5499 
5500 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5501 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5502 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5503 
5504 		iwm_notif_intr(sc);
5505 
5506 		/* enable periodic interrupt, see above */
5507 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5508 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5509 			    IWM_CSR_INT_PERIODIC_ENA);
5510 	}
5511 
5512 	if (__predict_false(r1 & ~handled))
5513 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5514 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5515 	rv = 1;
5516 
5517  out_ena:
5518 	iwm_restore_interrupts(sc);
5519  out:
5520 	IWM_UNLOCK(sc);
5521 	return;
5522 }
5523 
5524 /*
5525  * Autoconf glue-sniffing
5526  */
5527 #define	PCI_VENDOR_INTEL		0x8086
5528 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5529 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5530 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5531 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5532 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5533 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5534 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5535 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5536 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5537 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5538 
5539 static const struct iwm_devices {
5540 	uint16_t	device;
5541 	const char	*name;
5542 } iwm_devices[] = {
5543 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5544 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5545 	{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5546 	{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5547 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5548 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5549 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5550 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5551 	{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5552 	{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5553 };
5554 
5555 static int
5556 iwm_probe(device_t dev)
5557 {
5558 	int i;
5559 
5560 	for (i = 0; i < nitems(iwm_devices); i++) {
5561 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5562 		    pci_get_device(dev) == iwm_devices[i].device) {
5563 			device_set_desc(dev, iwm_devices[i].name);
5564 			return (BUS_PROBE_DEFAULT);
5565 		}
5566 	}
5567 
5568 	return (ENXIO);
5569 }
5570 
5571 static int
5572 iwm_dev_check(device_t dev)
5573 {
5574 	struct iwm_softc *sc;
5575 
5576 	sc = device_get_softc(dev);
5577 
5578 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5579 	switch (pci_get_device(dev)) {
5580 	case PCI_PRODUCT_INTEL_WL_3160_1:
5581 	case PCI_PRODUCT_INTEL_WL_3160_2:
5582 		sc->sc_fwname = "iwm3160fw";
5583 		sc->host_interrupt_operation_mode = 1;
5584 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5585 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5586 		return (0);
5587 	case PCI_PRODUCT_INTEL_WL_3165_1:
5588 	case PCI_PRODUCT_INTEL_WL_3165_2:
5589 		sc->sc_fwname = "iwm7265fw";
5590 		sc->host_interrupt_operation_mode = 0;
5591 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5592 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5593 		return (0);
5594 	case PCI_PRODUCT_INTEL_WL_7260_1:
5595 	case PCI_PRODUCT_INTEL_WL_7260_2:
5596 		sc->sc_fwname = "iwm7260fw";
5597 		sc->host_interrupt_operation_mode = 1;
5598 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5599 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5600 		return (0);
5601 	case PCI_PRODUCT_INTEL_WL_7265_1:
5602 	case PCI_PRODUCT_INTEL_WL_7265_2:
5603 		sc->sc_fwname = "iwm7265fw";
5604 		sc->host_interrupt_operation_mode = 0;
5605 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5606 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5607 		return (0);
5608 	case PCI_PRODUCT_INTEL_WL_8260_1:
5609 	case PCI_PRODUCT_INTEL_WL_8260_2:
5610 		sc->sc_fwname = "iwm8000Cfw";
5611 		sc->host_interrupt_operation_mode = 0;
5612 		sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5613 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5614 		return (0);
5615 	default:
5616 		device_printf(dev, "unknown adapter type\n");
5617 		return ENXIO;
5618 	}
5619 }
5620 
5621 static int
5622 iwm_pci_attach(device_t dev)
5623 {
5624 	struct iwm_softc *sc;
5625 	int count, error, rid;
5626 	uint16_t reg;
5627 
5628 	sc = device_get_softc(dev);
5629 
5630 	/* Clear device-specific "PCI retry timeout" register (41h). */
5631 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5632 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5633 
5634 	/* Enable bus-mastering and hardware bug workaround. */
5635 	pci_enable_busmaster(dev);
5636 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5637 	/* if !MSI */
5638 	if (reg & PCIM_STATUS_INTxSTATE) {
5639 		reg &= ~PCIM_STATUS_INTxSTATE;
5640 	}
5641 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5642 
5643 	rid = PCIR_BAR(0);
5644 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5645 	    RF_ACTIVE);
5646 	if (sc->sc_mem == NULL) {
5647 		device_printf(sc->sc_dev, "can't map mem space\n");
5648 		return (ENXIO);
5649 	}
5650 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5651 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5652 
5653 	/* Install interrupt handler. */
5654 	count = 1;
5655 	rid = 0;
5656 	if (pci_alloc_msi(dev, &count) == 0)
5657 		rid = 1;
5658 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5659 	    (rid != 0 ? 0 : RF_SHAREABLE));
5660 	if (sc->sc_irq == NULL) {
5661 		device_printf(dev, "can't map interrupt\n");
5662 			return (ENXIO);
5663 	}
5664 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5665 	    NULL, iwm_intr, sc, &sc->sc_ih);
5666 	if (sc->sc_ih == NULL) {
5667 		device_printf(dev, "can't establish interrupt");
5668 			return (ENXIO);
5669 	}
5670 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5671 
5672 	return (0);
5673 }
5674 
5675 static void
5676 iwm_pci_detach(device_t dev)
5677 {
5678 	struct iwm_softc *sc = device_get_softc(dev);
5679 
5680 	if (sc->sc_irq != NULL) {
5681 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5682 		bus_release_resource(dev, SYS_RES_IRQ,
5683 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5684 		pci_release_msi(dev);
5685         }
5686 	if (sc->sc_mem != NULL)
5687 		bus_release_resource(dev, SYS_RES_MEMORY,
5688 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5689 }
5690 
5691 
5692 
5693 static int
5694 iwm_attach(device_t dev)
5695 {
5696 	struct iwm_softc *sc = device_get_softc(dev);
5697 	struct ieee80211com *ic = &sc->sc_ic;
5698 	int error;
5699 	int txq_i, i;
5700 
5701 	sc->sc_dev = dev;
5702 	IWM_LOCK_INIT(sc);
5703 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5704 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5705 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5706 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5707 
5708 	/* PCI attach */
5709 	error = iwm_pci_attach(dev);
5710 	if (error != 0)
5711 		goto fail;
5712 
5713 	sc->sc_wantresp = -1;
5714 
5715 	/* Check device type */
5716 	error = iwm_dev_check(dev);
5717 	if (error != 0)
5718 		goto fail;
5719 
5720 	/*
5721 	 * We now start fiddling with the hardware
5722 	 */
5723 	/*
5724 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5725 	 * changed, and now the revision step also includes bit 0-1 (no more
5726 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5727 	 * in the old format.
5728 	 */
5729 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5730 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5731 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5732 
5733 	if (iwm_prepare_card_hw(sc) != 0) {
5734 		device_printf(dev, "could not initialize hardware\n");
5735 		goto fail;
5736 	}
5737 
5738 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5739 		int ret;
5740 		uint32_t hw_step;
5741 
5742 		/*
5743 		 * In order to recognize C step the driver should read the
5744 		 * chip version id located at the AUX bus MISC address.
5745 		 */
5746 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5747 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5748 		DELAY(2);
5749 
5750 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5751 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5752 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5753 				   25000);
5754 		if (!ret) {
5755 			device_printf(sc->sc_dev,
5756 			    "Failed to wake up the nic\n");
5757 			goto fail;
5758 		}
5759 
5760 		if (iwm_nic_lock(sc)) {
5761 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5762 			hw_step |= IWM_ENABLE_WFPM;
5763 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5764 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5765 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5766 			if (hw_step == 0x3)
5767 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5768 						(IWM_SILICON_C_STEP << 2);
5769 			iwm_nic_unlock(sc);
5770 		} else {
5771 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5772 			goto fail;
5773 		}
5774 	}
5775 
5776 	/* Allocate DMA memory for firmware transfers. */
5777 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5778 		device_printf(dev, "could not allocate memory for firmware\n");
5779 		goto fail;
5780 	}
5781 
5782 	/* Allocate "Keep Warm" page. */
5783 	if ((error = iwm_alloc_kw(sc)) != 0) {
5784 		device_printf(dev, "could not allocate keep warm page\n");
5785 		goto fail;
5786 	}
5787 
5788 	/* We use ICT interrupts */
5789 	if ((error = iwm_alloc_ict(sc)) != 0) {
5790 		device_printf(dev, "could not allocate ICT table\n");
5791 		goto fail;
5792 	}
5793 
5794 	/* Allocate TX scheduler "rings". */
5795 	if ((error = iwm_alloc_sched(sc)) != 0) {
5796 		device_printf(dev, "could not allocate TX scheduler rings\n");
5797 		goto fail;
5798 	}
5799 
5800 	/* Allocate TX rings */
5801 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5802 		if ((error = iwm_alloc_tx_ring(sc,
5803 		    &sc->txq[txq_i], txq_i)) != 0) {
5804 			device_printf(dev,
5805 			    "could not allocate TX ring %d\n",
5806 			    txq_i);
5807 			goto fail;
5808 		}
5809 	}
5810 
5811 	/* Allocate RX ring. */
5812 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5813 		device_printf(dev, "could not allocate RX ring\n");
5814 		goto fail;
5815 	}
5816 
5817 	/* Clear pending interrupts. */
5818 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5819 
5820 	ic->ic_softc = sc;
5821 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5822 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5823 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5824 
5825 	/* Set device capabilities. */
5826 	ic->ic_caps =
5827 	    IEEE80211_C_STA |
5828 	    IEEE80211_C_WPA |		/* WPA/RSN */
5829 	    IEEE80211_C_WME |
5830 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5831 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5832 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5833 	    ;
5834 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5835 		sc->sc_phyctxt[i].id = i;
5836 		sc->sc_phyctxt[i].color = 0;
5837 		sc->sc_phyctxt[i].ref = 0;
5838 		sc->sc_phyctxt[i].channel = NULL;
5839 	}
5840 
5841 	/* Default noise floor */
5842 	sc->sc_noise = -96;
5843 
5844 	/* Max RSSI */
5845 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5846 
5847 	sc->sc_preinit_hook.ich_func = iwm_preinit;
5848 	sc->sc_preinit_hook.ich_arg = sc;
5849 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5850 		device_printf(dev, "config_intrhook_establish failed\n");
5851 		goto fail;
5852 	}
5853 
5854 #ifdef IWM_DEBUG
5855 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5856 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5857 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5858 #endif
5859 
5860 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5861 	    "<-%s\n", __func__);
5862 
5863 	return 0;
5864 
5865 	/* Free allocated memory if something failed during attachment. */
5866 fail:
5867 	iwm_detach_local(sc, 0);
5868 
5869 	return ENXIO;
5870 }
5871 
5872 static int
5873 iwm_is_valid_ether_addr(uint8_t *addr)
5874 {
5875 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5876 
5877 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5878 		return (FALSE);
5879 
5880 	return (TRUE);
5881 }
5882 
5883 static int
5884 iwm_update_edca(struct ieee80211com *ic)
5885 {
5886 	struct iwm_softc *sc = ic->ic_softc;
5887 
5888 	device_printf(sc->sc_dev, "%s: called\n", __func__);
5889 	return (0);
5890 }
5891 
5892 static void
5893 iwm_preinit(void *arg)
5894 {
5895 	struct iwm_softc *sc = arg;
5896 	device_t dev = sc->sc_dev;
5897 	struct ieee80211com *ic = &sc->sc_ic;
5898 	int error;
5899 
5900 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5901 	    "->%s\n", __func__);
5902 
5903 	IWM_LOCK(sc);
5904 	if ((error = iwm_start_hw(sc)) != 0) {
5905 		device_printf(dev, "could not initialize hardware\n");
5906 		IWM_UNLOCK(sc);
5907 		goto fail;
5908 	}
5909 
5910 	error = iwm_run_init_mvm_ucode(sc, 1);
5911 	iwm_stop_device(sc);
5912 	if (error) {
5913 		IWM_UNLOCK(sc);
5914 		goto fail;
5915 	}
5916 	device_printf(dev,
5917 	    "hw rev 0x%x, fw ver %s, address %s\n",
5918 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5919 	    sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5920 
5921 	/* not all hardware can do 5GHz band */
5922 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5923 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5924 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5925 	IWM_UNLOCK(sc);
5926 
5927 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5928 	    ic->ic_channels);
5929 
5930 	/*
5931 	 * At this point we've committed - if we fail to do setup,
5932 	 * we now also have to tear down the net80211 state.
5933 	 */
5934 	ieee80211_ifattach(ic);
5935 	ic->ic_vap_create = iwm_vap_create;
5936 	ic->ic_vap_delete = iwm_vap_delete;
5937 	ic->ic_raw_xmit = iwm_raw_xmit;
5938 	ic->ic_node_alloc = iwm_node_alloc;
5939 	ic->ic_scan_start = iwm_scan_start;
5940 	ic->ic_scan_end = iwm_scan_end;
5941 	ic->ic_update_mcast = iwm_update_mcast;
5942 	ic->ic_getradiocaps = iwm_init_channel_map;
5943 	ic->ic_set_channel = iwm_set_channel;
5944 	ic->ic_scan_curchan = iwm_scan_curchan;
5945 	ic->ic_scan_mindwell = iwm_scan_mindwell;
5946 	ic->ic_wme.wme_update = iwm_update_edca;
5947 	ic->ic_parent = iwm_parent;
5948 	ic->ic_transmit = iwm_transmit;
5949 	iwm_radiotap_attach(sc);
5950 	if (bootverbose)
5951 		ieee80211_announce(ic);
5952 
5953 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5954 	    "<-%s\n", __func__);
5955 	config_intrhook_disestablish(&sc->sc_preinit_hook);
5956 
5957 	return;
5958 fail:
5959 	config_intrhook_disestablish(&sc->sc_preinit_hook);
5960 	iwm_detach_local(sc, 0);
5961 }
5962 
5963 /*
5964  * Attach the interface to 802.11 radiotap.
5965  */
5966 static void
5967 iwm_radiotap_attach(struct iwm_softc *sc)
5968 {
5969         struct ieee80211com *ic = &sc->sc_ic;
5970 
5971 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5972 	    "->%s begin\n", __func__);
5973         ieee80211_radiotap_attach(ic,
5974             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
5975                 IWM_TX_RADIOTAP_PRESENT,
5976             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
5977                 IWM_RX_RADIOTAP_PRESENT);
5978 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5979 	    "->%s end\n", __func__);
5980 }
5981 
5982 static struct ieee80211vap *
5983 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
5984     enum ieee80211_opmode opmode, int flags,
5985     const uint8_t bssid[IEEE80211_ADDR_LEN],
5986     const uint8_t mac[IEEE80211_ADDR_LEN])
5987 {
5988 	struct iwm_vap *ivp;
5989 	struct ieee80211vap *vap;
5990 
5991 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
5992 		return NULL;
5993 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
5994 	vap = &ivp->iv_vap;
5995 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
5996 	vap->iv_bmissthreshold = 10;            /* override default */
5997 	/* Override with driver methods. */
5998 	ivp->iv_newstate = vap->iv_newstate;
5999 	vap->iv_newstate = iwm_newstate;
6000 
6001 	ieee80211_ratectl_init(vap);
6002 	/* Complete setup. */
6003 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6004 	    mac);
6005 	ic->ic_opmode = opmode;
6006 
6007 	return vap;
6008 }
6009 
6010 static void
6011 iwm_vap_delete(struct ieee80211vap *vap)
6012 {
6013 	struct iwm_vap *ivp = IWM_VAP(vap);
6014 
6015 	ieee80211_ratectl_deinit(vap);
6016 	ieee80211_vap_detach(vap);
6017 	free(ivp, M_80211_VAP);
6018 }
6019 
6020 static void
6021 iwm_scan_start(struct ieee80211com *ic)
6022 {
6023 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6024 	struct iwm_softc *sc = ic->ic_softc;
6025 	int error;
6026 
6027 	IWM_LOCK(sc);
6028 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6029 		error = iwm_mvm_umac_scan(sc);
6030 	else
6031 		error = iwm_mvm_lmac_scan(sc);
6032 	if (error != 0) {
6033 		device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6034 		IWM_UNLOCK(sc);
6035 		ieee80211_cancel_scan(vap);
6036 	} else {
6037 		iwm_led_blink_start(sc);
6038 		IWM_UNLOCK(sc);
6039 	}
6040 }
6041 
6042 static void
6043 iwm_scan_end(struct ieee80211com *ic)
6044 {
6045 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6046 	struct iwm_softc *sc = ic->ic_softc;
6047 
6048 	IWM_LOCK(sc);
6049 	iwm_led_blink_stop(sc);
6050 	if (vap->iv_state == IEEE80211_S_RUN)
6051 		iwm_mvm_led_enable(sc);
6052 	IWM_UNLOCK(sc);
6053 }
6054 
6055 static void
6056 iwm_update_mcast(struct ieee80211com *ic)
6057 {
6058 }
6059 
6060 static void
6061 iwm_set_channel(struct ieee80211com *ic)
6062 {
6063 }
6064 
6065 static void
6066 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6067 {
6068 }
6069 
6070 static void
6071 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6072 {
6073 	return;
6074 }
6075 
6076 void
6077 iwm_init_task(void *arg1)
6078 {
6079 	struct iwm_softc *sc = arg1;
6080 
6081 	IWM_LOCK(sc);
6082 	while (sc->sc_flags & IWM_FLAG_BUSY)
6083 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6084 	sc->sc_flags |= IWM_FLAG_BUSY;
6085 	iwm_stop(sc);
6086 	if (sc->sc_ic.ic_nrunning > 0)
6087 		iwm_init(sc);
6088 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6089 	wakeup(&sc->sc_flags);
6090 	IWM_UNLOCK(sc);
6091 }
6092 
6093 static int
6094 iwm_resume(device_t dev)
6095 {
6096 	struct iwm_softc *sc = device_get_softc(dev);
6097 	int do_reinit = 0;
6098 	uint16_t reg;
6099 
6100 	/* Clear device-specific "PCI retry timeout" register (41h). */
6101 	reg = pci_read_config(dev, 0x40, sizeof(reg));
6102 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6103 	iwm_init_task(device_get_softc(dev));
6104 
6105 	IWM_LOCK(sc);
6106 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6107 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6108 		do_reinit = 1;
6109 	}
6110 	IWM_UNLOCK(sc);
6111 
6112 	if (do_reinit)
6113 		ieee80211_resume_all(&sc->sc_ic);
6114 
6115 	return 0;
6116 }
6117 
6118 static int
6119 iwm_suspend(device_t dev)
6120 {
6121 	int do_stop = 0;
6122 	struct iwm_softc *sc = device_get_softc(dev);
6123 
6124 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6125 
6126 	ieee80211_suspend_all(&sc->sc_ic);
6127 
6128 	if (do_stop) {
6129 		IWM_LOCK(sc);
6130 		iwm_stop(sc);
6131 		sc->sc_flags |= IWM_FLAG_SCANNING;
6132 		IWM_UNLOCK(sc);
6133 	}
6134 
6135 	return (0);
6136 }
6137 
6138 static int
6139 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6140 {
6141 	struct iwm_fw_info *fw = &sc->sc_fw;
6142 	device_t dev = sc->sc_dev;
6143 	int i;
6144 
6145 	ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6146 
6147 	callout_drain(&sc->sc_led_blink_to);
6148 	callout_drain(&sc->sc_watchdog_to);
6149 	iwm_stop_device(sc);
6150 	if (do_net80211) {
6151 		ieee80211_ifdetach(&sc->sc_ic);
6152 	}
6153 
6154 	iwm_phy_db_free(sc);
6155 
6156 	/* Free descriptor rings */
6157 	iwm_free_rx_ring(sc, &sc->rxq);
6158 	for (i = 0; i < nitems(sc->txq); i++)
6159 		iwm_free_tx_ring(sc, &sc->txq[i]);
6160 
6161 	/* Free firmware */
6162 	if (fw->fw_fp != NULL)
6163 		iwm_fw_info_free(fw);
6164 
6165 	/* Free scheduler */
6166 	iwm_dma_contig_free(&sc->sched_dma);
6167 	iwm_dma_contig_free(&sc->ict_dma);
6168 	iwm_dma_contig_free(&sc->kw_dma);
6169 	iwm_dma_contig_free(&sc->fw_dma);
6170 
6171 	/* Finished with the hardware - detach things */
6172 	iwm_pci_detach(dev);
6173 
6174 	mbufq_drain(&sc->sc_snd);
6175 	IWM_LOCK_DESTROY(sc);
6176 
6177 	return (0);
6178 }
6179 
6180 static int
6181 iwm_detach(device_t dev)
6182 {
6183 	struct iwm_softc *sc = device_get_softc(dev);
6184 
6185 	return (iwm_detach_local(sc, 1));
6186 }
6187 
6188 static device_method_t iwm_pci_methods[] = {
6189         /* Device interface */
6190         DEVMETHOD(device_probe,         iwm_probe),
6191         DEVMETHOD(device_attach,        iwm_attach),
6192         DEVMETHOD(device_detach,        iwm_detach),
6193         DEVMETHOD(device_suspend,       iwm_suspend),
6194         DEVMETHOD(device_resume,        iwm_resume),
6195 
6196         DEVMETHOD_END
6197 };
6198 
6199 static driver_t iwm_pci_driver = {
6200         "iwm",
6201         iwm_pci_methods,
6202         sizeof (struct iwm_softc)
6203 };
6204 
6205 static devclass_t iwm_devclass;
6206 
6207 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6208 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6209 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6210 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6211