xref: /freebsd/sys/dev/iwm/if_iwm.c (revision d1a0d267b78b542fbd7e6553af2493760f49bfa8)
1 /*	$OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include <sys/param.h>
109 #include <sys/bus.h>
110 #include <sys/conf.h>
111 #include <sys/endian.h>
112 #include <sys/firmware.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/mbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/module.h>
118 #include <sys/proc.h>
119 #include <sys/rman.h>
120 #include <sys/socket.h>
121 #include <sys/sockio.h>
122 #include <sys/sysctl.h>
123 #include <sys/linker.h>
124 
125 #include <machine/bus.h>
126 #include <machine/endian.h>
127 #include <machine/resource.h>
128 
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcireg.h>
131 
132 #include <net/bpf.h>
133 
134 #include <net/if.h>
135 #include <net/if_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 
141 #include <netinet/in.h>
142 #include <netinet/in_systm.h>
143 #include <netinet/if_ether.h>
144 #include <netinet/ip.h>
145 
146 #include <net80211/ieee80211_var.h>
147 #include <net80211/ieee80211_regdomain.h>
148 #include <net80211/ieee80211_ratectl.h>
149 #include <net80211/ieee80211_radiotap.h>
150 
151 #include <dev/iwm/if_iwmreg.h>
152 #include <dev/iwm/if_iwmvar.h>
153 #include <dev/iwm/if_iwm_debug.h>
154 #include <dev/iwm/if_iwm_util.h>
155 #include <dev/iwm/if_iwm_binding.h>
156 #include <dev/iwm/if_iwm_phy_db.h>
157 #include <dev/iwm/if_iwm_mac_ctxt.h>
158 #include <dev/iwm/if_iwm_phy_ctxt.h>
159 #include <dev/iwm/if_iwm_time_event.h>
160 #include <dev/iwm/if_iwm_power.h>
161 #include <dev/iwm/if_iwm_scan.h>
162 
163 #include <dev/iwm/if_iwm_pcie_trans.h>
164 
165 const uint8_t iwm_nvm_channels[] = {
166 	/* 2.4 GHz */
167 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
168 	/* 5 GHz */
169 	36, 40, 44 , 48, 52, 56, 60, 64,
170 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
171 	149, 153, 157, 161, 165
172 };
173 #define IWM_NUM_2GHZ_CHANNELS	14
174 
175 /*
176  * XXX For now, there's simply a fixed set of rate table entries
177  * that are populated.
178  */
179 const struct iwm_rate {
180 	uint8_t rate;
181 	uint8_t plcp;
182 } iwm_rates[] = {
183 	{   2,	IWM_RATE_1M_PLCP  },
184 	{   4,	IWM_RATE_2M_PLCP  },
185 	{  11,	IWM_RATE_5M_PLCP  },
186 	{  22,	IWM_RATE_11M_PLCP },
187 	{  12,	IWM_RATE_6M_PLCP  },
188 	{  18,	IWM_RATE_9M_PLCP  },
189 	{  24,	IWM_RATE_12M_PLCP },
190 	{  36,	IWM_RATE_18M_PLCP },
191 	{  48,	IWM_RATE_24M_PLCP },
192 	{  72,	IWM_RATE_36M_PLCP },
193 	{  96,	IWM_RATE_48M_PLCP },
194 	{ 108,	IWM_RATE_54M_PLCP },
195 };
196 #define IWM_RIDX_CCK	0
197 #define IWM_RIDX_OFDM	4
198 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
201 
202 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
203 static int	iwm_firmware_store_section(struct iwm_softc *,
204                                            enum iwm_ucode_type,
205                                            const uint8_t *, size_t);
206 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
207 static void	iwm_fw_info_free(struct iwm_fw_info *);
208 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
209 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
210 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
211                                      bus_size_t, bus_size_t);
212 static void	iwm_dma_contig_free(struct iwm_dma_info *);
213 static int	iwm_alloc_fwmem(struct iwm_softc *);
214 static void	iwm_free_fwmem(struct iwm_softc *);
215 static int	iwm_alloc_sched(struct iwm_softc *);
216 static void	iwm_free_sched(struct iwm_softc *);
217 static int	iwm_alloc_kw(struct iwm_softc *);
218 static void	iwm_free_kw(struct iwm_softc *);
219 static int	iwm_alloc_ict(struct iwm_softc *);
220 static void	iwm_free_ict(struct iwm_softc *);
221 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
222 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
223 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
224 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
225                                   int);
226 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
227 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
228 static void	iwm_enable_interrupts(struct iwm_softc *);
229 static void	iwm_restore_interrupts(struct iwm_softc *);
230 static void	iwm_disable_interrupts(struct iwm_softc *);
231 static void	iwm_ict_reset(struct iwm_softc *);
232 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
233 static void	iwm_stop_device(struct iwm_softc *);
234 static void	iwm_mvm_nic_config(struct iwm_softc *);
235 static int	iwm_nic_rx_init(struct iwm_softc *);
236 static int	iwm_nic_tx_init(struct iwm_softc *);
237 static int	iwm_nic_init(struct iwm_softc *);
238 static void	iwm_enable_txq(struct iwm_softc *, int, int);
239 static int	iwm_post_alive(struct iwm_softc *);
240 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
241                                    uint16_t, uint8_t *, uint16_t *);
242 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
243 				     uint16_t *);
244 static void	iwm_init_channel_map(struct iwm_softc *,
245                                      const uint16_t * const);
246 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
247 			           const uint16_t *, const uint16_t *, uint8_t,
248 				   uint8_t);
249 struct iwm_nvm_section;
250 static int	iwm_parse_nvm_sections(struct iwm_softc *,
251                                        struct iwm_nvm_section *);
252 static int	iwm_nvm_init(struct iwm_softc *);
253 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
254                                         const uint8_t *, uint32_t);
255 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
256 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
257 static int	iwm_fw_alive(struct iwm_softc *, uint32_t);
258 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
259 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
260 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
261                                               enum iwm_ucode_type);
262 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
263 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
264 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
265 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
266 					    struct iwm_rx_phy_info *);
267 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
268                                       struct iwm_rx_packet *,
269                                       struct iwm_rx_data *);
270 static int	iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
271 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
272                                    struct iwm_rx_data *);
273 static void	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
274                                          struct iwm_rx_packet *,
275 				         struct iwm_node *);
276 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
277                                   struct iwm_rx_data *);
278 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
279 #if 0
280 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
281                                  uint16_t);
282 #endif
283 static const struct iwm_rate *
284 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
285 			struct ieee80211_frame *, struct iwm_tx_cmd *);
286 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
287                        struct ieee80211_node *, int);
288 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
289 			     const struct ieee80211_bpf_params *);
290 static void	iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *,
291 					     struct iwm_mvm_add_sta_cmd_v5 *);
292 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
293 					        struct iwm_mvm_add_sta_cmd_v6 *,
294                                                 int *);
295 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
296                                        int);
297 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
298 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
299 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
300                                            struct iwm_int_sta *,
301 				           const uint8_t *, uint16_t, uint16_t);
302 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
303 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
304 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
305 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
306 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
307 static struct ieee80211_node *
308 		iwm_node_alloc(struct ieee80211vap *,
309 		               const uint8_t[IEEE80211_ADDR_LEN]);
310 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
311 static int	iwm_media_change(struct ifnet *);
312 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
313 static void	iwm_endscan_cb(void *, int);
314 static int	iwm_init_hw(struct iwm_softc *);
315 static void	iwm_init(void *);
316 static void	iwm_init_locked(struct iwm_softc *);
317 static void	iwm_start(struct ifnet *);
318 static void	iwm_start_locked(struct ifnet *);
319 static void	iwm_stop(struct ifnet *, int);
320 static void	iwm_stop_locked(struct ifnet *);
321 static void	iwm_watchdog(void *);
322 static int	iwm_ioctl(struct ifnet *, u_long, iwm_caddr_t);
323 #ifdef IWM_DEBUG
324 static const char *
325 		iwm_desc_lookup(uint32_t);
326 static void	iwm_nic_error(struct iwm_softc *);
327 #endif
328 static void	iwm_notif_intr(struct iwm_softc *);
329 static void	iwm_intr(void *);
330 static int	iwm_attach(device_t);
331 static void	iwm_preinit(void *);
332 static int	iwm_detach_local(struct iwm_softc *sc, int);
333 static void	iwm_init_task(void *);
334 static void	iwm_radiotap_attach(struct iwm_softc *);
335 static struct ieee80211vap *
336 		iwm_vap_create(struct ieee80211com *,
337 		               const char [IFNAMSIZ], int,
338 		               enum ieee80211_opmode, int,
339 		               const uint8_t [IEEE80211_ADDR_LEN],
340 		               const uint8_t [IEEE80211_ADDR_LEN]);
341 static void	iwm_vap_delete(struct ieee80211vap *);
342 static void	iwm_scan_start(struct ieee80211com *);
343 static void	iwm_scan_end(struct ieee80211com *);
344 static void	iwm_update_mcast(struct ieee80211com *);
345 static void	iwm_set_channel(struct ieee80211com *);
346 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
347 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
348 static int	iwm_detach(device_t);
349 
350 /*
351  * Firmware parser.
352  */
353 
354 static int
355 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
356 {
357 	const struct iwm_fw_cscheme_list *l = (const void *)data;
358 
359 	if (dlen < sizeof(*l) ||
360 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
361 		return EINVAL;
362 
363 	/* we don't actually store anything for now, always use s/w crypto */
364 
365 	return 0;
366 }
367 
368 static int
369 iwm_firmware_store_section(struct iwm_softc *sc,
370     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
371 {
372 	struct iwm_fw_sects *fws;
373 	struct iwm_fw_onesect *fwone;
374 
375 	if (type >= IWM_UCODE_TYPE_MAX)
376 		return EINVAL;
377 	if (dlen < sizeof(uint32_t))
378 		return EINVAL;
379 
380 	fws = &sc->sc_fw.fw_sects[type];
381 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
382 		return EINVAL;
383 
384 	fwone = &fws->fw_sect[fws->fw_count];
385 
386 	/* first 32bit are device load offset */
387 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
388 
389 	/* rest is data */
390 	fwone->fws_data = data + sizeof(uint32_t);
391 	fwone->fws_len = dlen - sizeof(uint32_t);
392 
393 	fws->fw_count++;
394 	fws->fw_totlen += fwone->fws_len;
395 
396 	return 0;
397 }
398 
399 /* iwlwifi: iwl-drv.c */
400 struct iwm_tlv_calib_data {
401 	uint32_t ucode_type;
402 	struct iwm_tlv_calib_ctrl calib;
403 } __packed;
404 
405 static int
406 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
407 {
408 	const struct iwm_tlv_calib_data *def_calib = data;
409 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
410 
411 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
412 		device_printf(sc->sc_dev,
413 		    "Wrong ucode_type %u for default "
414 		    "calibration.\n", ucode_type);
415 		return EINVAL;
416 	}
417 
418 	sc->sc_default_calib[ucode_type].flow_trigger =
419 	    def_calib->calib.flow_trigger;
420 	sc->sc_default_calib[ucode_type].event_trigger =
421 	    def_calib->calib.event_trigger;
422 
423 	return 0;
424 }
425 
426 static void
427 iwm_fw_info_free(struct iwm_fw_info *fw)
428 {
429 	firmware_put(fw->fw_rawdata, FIRMWARE_UNLOAD);
430 	fw->fw_rawdata = NULL;
431 	fw->fw_rawsize = 0;
432 	/* don't touch fw->fw_status */
433 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
434 }
435 
436 static int
437 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
438 {
439 	struct iwm_fw_info *fw = &sc->sc_fw;
440 	const struct iwm_tlv_ucode_header *uhdr;
441 	struct iwm_ucode_tlv tlv;
442 	enum iwm_ucode_tlv_type tlv_type;
443 	const struct firmware *fwp;
444 	const uint8_t *data;
445 	int error = 0;
446 	size_t len;
447 
448 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
449 	    ucode_type != IWM_UCODE_TYPE_INIT)
450 		return 0;
451 
452 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
453 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
454 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
455 
456 	if (fw->fw_rawdata != NULL)
457 		iwm_fw_info_free(fw);
458 
459 	/*
460 	 * Load firmware into driver memory.
461 	 * fw_rawdata and fw_rawsize will be set.
462 	 */
463 	IWM_UNLOCK(sc);
464 	fwp = firmware_get(sc->sc_fwname);
465 	if (fwp == NULL) {
466 		device_printf(sc->sc_dev,
467 		    "could not read firmware %s (error %d)\n",
468 		    sc->sc_fwname, error);
469 		IWM_LOCK(sc);
470 		goto out;
471 	}
472 	IWM_LOCK(sc);
473 	fw->fw_rawdata = fwp->data;
474 	fw->fw_rawsize = fwp->datasize;
475 
476 	/*
477 	 * Parse firmware contents
478 	 */
479 
480 	uhdr = (const void *)fw->fw_rawdata;
481 	if (*(const uint32_t *)fw->fw_rawdata != 0
482 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
483 		device_printf(sc->sc_dev, "invalid firmware %s\n",
484 		    sc->sc_fwname);
485 		error = EINVAL;
486 		goto out;
487 	}
488 
489 	sc->sc_fwver = le32toh(uhdr->ver);
490 	data = uhdr->data;
491 	len = fw->fw_rawsize - sizeof(*uhdr);
492 
493 	while (len >= sizeof(tlv)) {
494 		size_t tlv_len;
495 		const void *tlv_data;
496 
497 		memcpy(&tlv, data, sizeof(tlv));
498 		tlv_len = le32toh(tlv.length);
499 		tlv_type = le32toh(tlv.type);
500 
501 		len -= sizeof(tlv);
502 		data += sizeof(tlv);
503 		tlv_data = data;
504 
505 		if (len < tlv_len) {
506 			device_printf(sc->sc_dev,
507 			    "firmware too short: %zu bytes\n",
508 			    len);
509 			error = EINVAL;
510 			goto parse_out;
511 		}
512 
513 		switch ((int)tlv_type) {
514 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
515 			if (tlv_len < sizeof(uint32_t)) {
516 				device_printf(sc->sc_dev,
517 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
518 				    __func__,
519 				    (int) tlv_len);
520 				error = EINVAL;
521 				goto parse_out;
522 			}
523 			sc->sc_capa_max_probe_len
524 			    = le32toh(*(const uint32_t *)tlv_data);
525 			/* limit it to something sensible */
526 			if (sc->sc_capa_max_probe_len > (1<<16)) {
527 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
528 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
529 				    "ridiculous\n", __func__);
530 				error = EINVAL;
531 				goto parse_out;
532 			}
533 			break;
534 		case IWM_UCODE_TLV_PAN:
535 			if (tlv_len) {
536 				device_printf(sc->sc_dev,
537 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
538 				    __func__,
539 				    (int) tlv_len);
540 				error = EINVAL;
541 				goto parse_out;
542 			}
543 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
544 			break;
545 		case IWM_UCODE_TLV_FLAGS:
546 			if (tlv_len < sizeof(uint32_t)) {
547 				device_printf(sc->sc_dev,
548 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
549 				    __func__,
550 				    (int) tlv_len);
551 				error = EINVAL;
552 				goto parse_out;
553 			}
554 			/*
555 			 * Apparently there can be many flags, but Linux driver
556 			 * parses only the first one, and so do we.
557 			 *
558 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
559 			 * Intentional or a bug?  Observations from
560 			 * current firmware file:
561 			 *  1) TLV_PAN is parsed first
562 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
563 			 * ==> this resets TLV_PAN to itself... hnnnk
564 			 */
565 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
566 			break;
567 		case IWM_UCODE_TLV_CSCHEME:
568 			if ((error = iwm_store_cscheme(sc,
569 			    tlv_data, tlv_len)) != 0) {
570 				device_printf(sc->sc_dev,
571 				    "%s: iwm_store_cscheme(): returned %d\n",
572 				    __func__,
573 				    error);
574 				goto parse_out;
575 			}
576 			break;
577 		case IWM_UCODE_TLV_NUM_OF_CPU:
578 			if (tlv_len != sizeof(uint32_t)) {
579 				device_printf(sc->sc_dev,
580 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
581 				    __func__,
582 				    (int) tlv_len);
583 				error = EINVAL;
584 				goto parse_out;
585 			}
586 			if (le32toh(*(const uint32_t*)tlv_data) != 1) {
587 				device_printf(sc->sc_dev,
588 				    "%s: driver supports "
589 				    "only TLV_NUM_OF_CPU == 1",
590 				    __func__);
591 				error = EINVAL;
592 				goto parse_out;
593 			}
594 			break;
595 		case IWM_UCODE_TLV_SEC_RT:
596 			if ((error = iwm_firmware_store_section(sc,
597 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
598 				device_printf(sc->sc_dev,
599 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
600 				    __func__,
601 				    error);
602 				goto parse_out;
603 			}
604 			break;
605 		case IWM_UCODE_TLV_SEC_INIT:
606 			if ((error = iwm_firmware_store_section(sc,
607 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
608 				device_printf(sc->sc_dev,
609 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
610 				    __func__,
611 				    error);
612 				goto parse_out;
613 			}
614 			break;
615 		case IWM_UCODE_TLV_SEC_WOWLAN:
616 			if ((error = iwm_firmware_store_section(sc,
617 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
618 				device_printf(sc->sc_dev,
619 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
620 				    __func__,
621 				    error);
622 				goto parse_out;
623 			}
624 			break;
625 		case IWM_UCODE_TLV_DEF_CALIB:
626 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
627 				device_printf(sc->sc_dev,
628 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
629 				    __func__,
630 				    (int) tlv_len,
631 				    (int) sizeof(struct iwm_tlv_calib_data));
632 				error = EINVAL;
633 				goto parse_out;
634 			}
635 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
636 				device_printf(sc->sc_dev,
637 				    "%s: iwm_set_default_calib() failed: %d\n",
638 				    __func__,
639 				    error);
640 				goto parse_out;
641 			}
642 			break;
643 		case IWM_UCODE_TLV_PHY_SKU:
644 			if (tlv_len != sizeof(uint32_t)) {
645 				error = EINVAL;
646 				device_printf(sc->sc_dev,
647 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
648 				    __func__,
649 				    (int) tlv_len);
650 				goto parse_out;
651 			}
652 			sc->sc_fw_phy_config =
653 			    le32toh(*(const uint32_t *)tlv_data);
654 			break;
655 
656 		case IWM_UCODE_TLV_API_CHANGES_SET:
657 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES:
658 			/* ignore, not used by current driver */
659 			break;
660 
661 		default:
662 			device_printf(sc->sc_dev,
663 			    "%s: unknown firmware section %d, abort\n",
664 			    __func__, tlv_type);
665 			error = EINVAL;
666 			goto parse_out;
667 		}
668 
669 		len -= roundup(tlv_len, 4);
670 		data += roundup(tlv_len, 4);
671 	}
672 
673 	KASSERT(error == 0, ("unhandled error"));
674 
675  parse_out:
676 	if (error) {
677 		device_printf(sc->sc_dev, "firmware parse error %d, "
678 		    "section type %d\n", error, tlv_type);
679 	}
680 
681 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
682 		device_printf(sc->sc_dev,
683 		    "device uses unsupported power ops\n");
684 		error = ENOTSUP;
685 	}
686 
687  out:
688 	if (error) {
689 		fw->fw_status = IWM_FW_STATUS_NONE;
690 		if (fw->fw_rawdata != NULL)
691 			iwm_fw_info_free(fw);
692 	} else
693 		fw->fw_status = IWM_FW_STATUS_DONE;
694 	wakeup(&sc->sc_fw);
695 
696 	return error;
697 }
698 
699 /*
700  * DMA resource routines
701  */
702 
703 static void
704 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
705 {
706         if (error != 0)
707                 return;
708 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
709         *(bus_addr_t *)arg = segs[0].ds_addr;
710 }
711 
712 static int
713 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
714     bus_size_t size, bus_size_t alignment)
715 {
716 	int error;
717 
718 	dma->tag = NULL;
719 	dma->size = size;
720 
721 	error = bus_dma_tag_create(tag, alignment,
722             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
723             1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
724         if (error != 0)
725                 goto fail;
726 
727         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
728             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
729         if (error != 0)
730                 goto fail;
731 
732         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
733             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
734         if (error != 0)
735                 goto fail;
736 
737 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
738 
739 	return 0;
740 
741 fail:	iwm_dma_contig_free(dma);
742 	return error;
743 }
744 
745 static void
746 iwm_dma_contig_free(struct iwm_dma_info *dma)
747 {
748 	if (dma->map != NULL) {
749 		if (dma->vaddr != NULL) {
750 			bus_dmamap_sync(dma->tag, dma->map,
751 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
752 			bus_dmamap_unload(dma->tag, dma->map);
753 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
754 			dma->vaddr = NULL;
755 		}
756 		bus_dmamap_destroy(dma->tag, dma->map);
757 		dma->map = NULL;
758 	}
759 	if (dma->tag != NULL) {
760 		bus_dma_tag_destroy(dma->tag);
761 		dma->tag = NULL;
762 	}
763 
764 }
765 
766 /* fwmem is used to load firmware onto the card */
767 static int
768 iwm_alloc_fwmem(struct iwm_softc *sc)
769 {
770 	/* Must be aligned on a 16-byte boundary. */
771 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
772 	    sc->sc_fwdmasegsz, 16);
773 }
774 
775 static void
776 iwm_free_fwmem(struct iwm_softc *sc)
777 {
778 	iwm_dma_contig_free(&sc->fw_dma);
779 }
780 
781 /* tx scheduler rings.  not used? */
782 static int
783 iwm_alloc_sched(struct iwm_softc *sc)
784 {
785 	int rv;
786 
787 	/* TX scheduler rings must be aligned on a 1KB boundary. */
788 	rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
789 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
790 	return rv;
791 }
792 
793 static void
794 iwm_free_sched(struct iwm_softc *sc)
795 {
796 	iwm_dma_contig_free(&sc->sched_dma);
797 }
798 
799 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
800 static int
801 iwm_alloc_kw(struct iwm_softc *sc)
802 {
803 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
804 }
805 
806 static void
807 iwm_free_kw(struct iwm_softc *sc)
808 {
809 	iwm_dma_contig_free(&sc->kw_dma);
810 }
811 
812 /* interrupt cause table */
813 static int
814 iwm_alloc_ict(struct iwm_softc *sc)
815 {
816 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
817 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
818 }
819 
820 static void
821 iwm_free_ict(struct iwm_softc *sc)
822 {
823 	iwm_dma_contig_free(&sc->ict_dma);
824 }
825 
826 static int
827 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
828 {
829 	bus_size_t size;
830 	int i, error;
831 
832 	ring->cur = 0;
833 
834 	/* Allocate RX descriptors (256-byte aligned). */
835 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
836 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
837 	if (error != 0) {
838 		device_printf(sc->sc_dev,
839 		    "could not allocate RX ring DMA memory\n");
840 		goto fail;
841 	}
842 	ring->desc = ring->desc_dma.vaddr;
843 
844 	/* Allocate RX status area (16-byte aligned). */
845 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
846 	    sizeof(*ring->stat), 16);
847 	if (error != 0) {
848 		device_printf(sc->sc_dev,
849 		    "could not allocate RX status DMA memory\n");
850 		goto fail;
851 	}
852 	ring->stat = ring->stat_dma.vaddr;
853 
854         /* Create RX buffer DMA tag. */
855         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
856             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
857             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
858             &ring->data_dmat);
859         if (error != 0) {
860                 device_printf(sc->sc_dev,
861                     "%s: could not create RX buf DMA tag, error %d\n",
862                     __func__, error);
863                 goto fail;
864         }
865 
866 	/*
867 	 * Allocate and map RX buffers.
868 	 */
869 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
870 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
871 			goto fail;
872 		}
873 	}
874 	return 0;
875 
876 fail:	iwm_free_rx_ring(sc, ring);
877 	return error;
878 }
879 
880 static void
881 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
882 {
883 
884 	/* XXX print out if we can't lock the NIC? */
885 	if (iwm_nic_lock(sc)) {
886 		/* XXX handle if RX stop doesn't finish? */
887 		(void) iwm_pcie_rx_stop(sc);
888 		iwm_nic_unlock(sc);
889 	}
890 	ring->cur = 0;
891 }
892 
893 static void
894 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
895 {
896 	int i;
897 
898 	iwm_dma_contig_free(&ring->desc_dma);
899 	iwm_dma_contig_free(&ring->stat_dma);
900 
901 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
902 		struct iwm_rx_data *data = &ring->data[i];
903 
904 		if (data->m != NULL) {
905 			bus_dmamap_sync(ring->data_dmat, data->map,
906 			    BUS_DMASYNC_POSTREAD);
907 			bus_dmamap_unload(ring->data_dmat, data->map);
908 			m_freem(data->m);
909 			data->m = NULL;
910 		}
911 		if (data->map != NULL) {
912 			bus_dmamap_destroy(ring->data_dmat, data->map);
913 			data->map = NULL;
914 		}
915 	}
916 	if (ring->data_dmat != NULL) {
917 		bus_dma_tag_destroy(ring->data_dmat);
918 		ring->data_dmat = NULL;
919 	}
920 }
921 
922 static int
923 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
924 {
925 	bus_addr_t paddr;
926 	bus_size_t size;
927 	int i, error;
928 
929 	ring->qid = qid;
930 	ring->queued = 0;
931 	ring->cur = 0;
932 
933 	/* Allocate TX descriptors (256-byte aligned). */
934 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
935 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
936 	if (error != 0) {
937 		device_printf(sc->sc_dev,
938 		    "could not allocate TX ring DMA memory\n");
939 		goto fail;
940 	}
941 	ring->desc = ring->desc_dma.vaddr;
942 
943 	/*
944 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
945 	 * to allocate commands space for other rings.
946 	 */
947 	if (qid > IWM_MVM_CMD_QUEUE)
948 		return 0;
949 
950 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
951 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
952 	if (error != 0) {
953 		device_printf(sc->sc_dev,
954 		    "could not allocate TX cmd DMA memory\n");
955 		goto fail;
956 	}
957 	ring->cmd = ring->cmd_dma.vaddr;
958 
959 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
960 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
961             IWM_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
962             &ring->data_dmat);
963 	if (error != 0) {
964 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
965 		goto fail;
966 	}
967 
968 	paddr = ring->cmd_dma.paddr;
969 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
970 		struct iwm_tx_data *data = &ring->data[i];
971 
972 		data->cmd_paddr = paddr;
973 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
974 		    + offsetof(struct iwm_tx_cmd, scratch);
975 		paddr += sizeof(struct iwm_device_cmd);
976 
977 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
978 		if (error != 0) {
979 			device_printf(sc->sc_dev,
980 			    "could not create TX buf DMA map\n");
981 			goto fail;
982 		}
983 	}
984 	KASSERT(paddr == ring->cmd_dma.paddr + size,
985 	    ("invalid physical address"));
986 	return 0;
987 
988 fail:	iwm_free_tx_ring(sc, ring);
989 	return error;
990 }
991 
992 static void
993 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
994 {
995 	int i;
996 
997 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
998 		struct iwm_tx_data *data = &ring->data[i];
999 
1000 		if (data->m != NULL) {
1001 			bus_dmamap_sync(ring->data_dmat, data->map,
1002 			    BUS_DMASYNC_POSTWRITE);
1003 			bus_dmamap_unload(ring->data_dmat, data->map);
1004 			m_freem(data->m);
1005 			data->m = NULL;
1006 		}
1007 	}
1008 	/* Clear TX descriptors. */
1009 	memset(ring->desc, 0, ring->desc_dma.size);
1010 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1011 	    BUS_DMASYNC_PREWRITE);
1012 	sc->qfullmsk &= ~(1 << ring->qid);
1013 	ring->queued = 0;
1014 	ring->cur = 0;
1015 }
1016 
1017 static void
1018 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1019 {
1020 	int i;
1021 
1022 	iwm_dma_contig_free(&ring->desc_dma);
1023 	iwm_dma_contig_free(&ring->cmd_dma);
1024 
1025 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1026 		struct iwm_tx_data *data = &ring->data[i];
1027 
1028 		if (data->m != NULL) {
1029 			bus_dmamap_sync(ring->data_dmat, data->map,
1030 			    BUS_DMASYNC_POSTWRITE);
1031 			bus_dmamap_unload(ring->data_dmat, data->map);
1032 			m_freem(data->m);
1033 			data->m = NULL;
1034 		}
1035 		if (data->map != NULL) {
1036 			bus_dmamap_destroy(ring->data_dmat, data->map);
1037 			data->map = NULL;
1038 		}
1039 	}
1040 	if (ring->data_dmat != NULL) {
1041 		bus_dma_tag_destroy(ring->data_dmat);
1042 		ring->data_dmat = NULL;
1043 	}
1044 }
1045 
1046 /*
1047  * High-level hardware frobbing routines
1048  */
1049 
1050 static void
1051 iwm_enable_interrupts(struct iwm_softc *sc)
1052 {
1053 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1054 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1055 }
1056 
1057 static void
1058 iwm_restore_interrupts(struct iwm_softc *sc)
1059 {
1060 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1061 }
1062 
1063 static void
1064 iwm_disable_interrupts(struct iwm_softc *sc)
1065 {
1066 	/* disable interrupts */
1067 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1068 
1069 	/* acknowledge all interrupts */
1070 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1071 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1072 }
1073 
1074 static void
1075 iwm_ict_reset(struct iwm_softc *sc)
1076 {
1077 	iwm_disable_interrupts(sc);
1078 
1079 	/* Reset ICT table. */
1080 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1081 	sc->ict_cur = 0;
1082 
1083 	/* Set physical address of ICT table (4KB aligned). */
1084 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1085 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1086 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1087 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1088 
1089 	/* Switch to ICT interrupt mode in driver. */
1090 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1091 
1092 	/* Re-enable interrupts. */
1093 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1094 	iwm_enable_interrupts(sc);
1095 }
1096 
1097 /* iwlwifi pcie/trans.c */
1098 
1099 /*
1100  * Since this .. hard-resets things, it's time to actually
1101  * mark the first vap (if any) as having no mac context.
1102  * It's annoying, but since the driver is potentially being
1103  * stop/start'ed whilst active (thanks openbsd port!) we
1104  * have to correctly track this.
1105  */
1106 static void
1107 iwm_stop_device(struct iwm_softc *sc)
1108 {
1109 	struct ieee80211com *ic = sc->sc_ic;
1110 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1111 	int chnl, ntries;
1112 	int qid;
1113 
1114 	/* tell the device to stop sending interrupts */
1115 	iwm_disable_interrupts(sc);
1116 
1117 	/*
1118 	 * FreeBSD-local: mark the first vap as not-uploaded,
1119 	 * so the next transition through auth/assoc
1120 	 * will correctly populate the MAC context.
1121 	 */
1122 	if (vap) {
1123 		struct iwm_vap *iv = IWM_VAP(vap);
1124 		iv->is_uploaded = 0;
1125 	}
1126 
1127 	/* device going down, Stop using ICT table */
1128 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1129 
1130 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1131 
1132 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1133 
1134 	/* Stop all DMA channels. */
1135 	if (iwm_nic_lock(sc)) {
1136 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1137 			IWM_WRITE(sc,
1138 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1139 			for (ntries = 0; ntries < 200; ntries++) {
1140 				uint32_t r;
1141 
1142 				r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
1143 				if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
1144 				    chnl))
1145 					break;
1146 				DELAY(20);
1147 			}
1148 		}
1149 		iwm_nic_unlock(sc);
1150 	}
1151 
1152 	/* Stop RX ring. */
1153 	iwm_reset_rx_ring(sc, &sc->rxq);
1154 
1155 	/* Reset all TX rings. */
1156 	for (qid = 0; qid < nitems(sc->txq); qid++)
1157 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1158 
1159 	/*
1160 	 * Power-down device's busmaster DMA clocks
1161 	 */
1162 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1163 	DELAY(5);
1164 
1165 	/* Make sure (redundant) we've released our request to stay awake */
1166 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1167 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1168 
1169 	/* Stop the device, and put it in low power state */
1170 	iwm_apm_stop(sc);
1171 
1172 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1173 	 * Clean again the interrupt here
1174 	 */
1175 	iwm_disable_interrupts(sc);
1176 	/* stop and reset the on-board processor */
1177 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET);
1178 
1179 	/*
1180 	 * Even if we stop the HW, we still want the RF kill
1181 	 * interrupt
1182 	 */
1183 	iwm_enable_rfkill_int(sc);
1184 	iwm_check_rfkill(sc);
1185 }
1186 
1187 /* iwlwifi: mvm/ops.c */
1188 static void
1189 iwm_mvm_nic_config(struct iwm_softc *sc)
1190 {
1191 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1192 	uint32_t reg_val = 0;
1193 
1194 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1195 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1196 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1197 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1198 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1199 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1200 
1201 	/* SKU control */
1202 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1203 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1204 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1205 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1206 
1207 	/* radio configuration */
1208 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1209 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1210 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1211 
1212 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1213 
1214 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1215 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1216 	    radio_cfg_step, radio_cfg_dash);
1217 
1218 	/*
1219 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1220 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1221 	 * to lose ownership and not being able to obtain it back.
1222 	 */
1223 	iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1224 	    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1225 	    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1226 }
1227 
1228 static int
1229 iwm_nic_rx_init(struct iwm_softc *sc)
1230 {
1231 	if (!iwm_nic_lock(sc))
1232 		return EBUSY;
1233 
1234 	/*
1235 	 * Initialize RX ring.  This is from the iwn driver.
1236 	 */
1237 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1238 
1239 	/* stop DMA */
1240 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1241 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1242 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1243 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1244 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1245 
1246 	/* Set physical address of RX ring (256-byte aligned). */
1247 	IWM_WRITE(sc,
1248 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1249 
1250 	/* Set physical address of RX status (16-byte aligned). */
1251 	IWM_WRITE(sc,
1252 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1253 
1254 	/* Enable RX. */
1255 	/*
1256 	 * Note: Linux driver also sets this:
1257 	 *  (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1258 	 *
1259 	 * It causes weird behavior.  YMMV.
1260 	 */
1261 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1262 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1263 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1264 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1265 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1266 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1267 
1268 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1269 
1270 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1271 	if (sc->host_interrupt_operation_mode)
1272 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1273 
1274 	/*
1275 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1276 	 *
1277 	 * This value should initially be 0 (before preparing any
1278  	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1279 	 */
1280 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1281 
1282 	iwm_nic_unlock(sc);
1283 
1284 	return 0;
1285 }
1286 
1287 static int
1288 iwm_nic_tx_init(struct iwm_softc *sc)
1289 {
1290 	int qid;
1291 
1292 	if (!iwm_nic_lock(sc))
1293 		return EBUSY;
1294 
1295 	/* Deactivate TX scheduler. */
1296 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1297 
1298 	/* Set physical address of "keep warm" page (16-byte aligned). */
1299 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1300 
1301 	/* Initialize TX rings. */
1302 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1303 		struct iwm_tx_ring *txq = &sc->txq[qid];
1304 
1305 		/* Set physical address of TX ring (256-byte aligned). */
1306 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1307 		    txq->desc_dma.paddr >> 8);
1308 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1309 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1310 		    __func__,
1311 		    qid, txq->desc,
1312 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1313 	}
1314 	iwm_nic_unlock(sc);
1315 
1316 	return 0;
1317 }
1318 
1319 static int
1320 iwm_nic_init(struct iwm_softc *sc)
1321 {
1322 	int error;
1323 
1324 	iwm_apm_init(sc);
1325 	iwm_set_pwr(sc);
1326 
1327 	iwm_mvm_nic_config(sc);
1328 
1329 	if ((error = iwm_nic_rx_init(sc)) != 0)
1330 		return error;
1331 
1332 	/*
1333 	 * Ditto for TX, from iwn
1334 	 */
1335 	if ((error = iwm_nic_tx_init(sc)) != 0)
1336 		return error;
1337 
1338 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1339 	    "%s: shadow registers enabled\n", __func__);
1340 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1341 
1342 	return 0;
1343 }
1344 
1345 enum iwm_mvm_tx_fifo {
1346 	IWM_MVM_TX_FIFO_BK = 0,
1347 	IWM_MVM_TX_FIFO_BE,
1348 	IWM_MVM_TX_FIFO_VI,
1349 	IWM_MVM_TX_FIFO_VO,
1350 	IWM_MVM_TX_FIFO_MCAST = 5,
1351 };
1352 
1353 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1354 	IWM_MVM_TX_FIFO_VO,
1355 	IWM_MVM_TX_FIFO_VI,
1356 	IWM_MVM_TX_FIFO_BE,
1357 	IWM_MVM_TX_FIFO_BK,
1358 };
1359 
1360 static void
1361 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo)
1362 {
1363 	if (!iwm_nic_lock(sc)) {
1364 		device_printf(sc->sc_dev,
1365 		    "%s: cannot enable txq %d\n",
1366 		    __func__,
1367 		    qid);
1368 		return; /* XXX return EBUSY */
1369 	}
1370 
1371 	/* unactivate before configuration */
1372 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1373 	    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1374 	    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1375 
1376 	if (qid != IWM_MVM_CMD_QUEUE) {
1377 		iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid));
1378 	}
1379 
1380 	iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1381 
1382 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1383 	iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1384 
1385 	iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1386 	/* Set scheduler window size and frame limit. */
1387 	iwm_write_mem32(sc,
1388 	    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1389 	    sizeof(uint32_t),
1390 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1391 	    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1392 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1393 	    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1394 
1395 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1396 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1397 	    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1398 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1399 	    IWM_SCD_QUEUE_STTS_REG_MSK);
1400 
1401 	iwm_nic_unlock(sc);
1402 
1403 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1404 	    "%s: enabled txq %d FIFO %d\n",
1405 	    __func__, qid, fifo);
1406 }
1407 
1408 static int
1409 iwm_post_alive(struct iwm_softc *sc)
1410 {
1411 	int nwords;
1412 	int error, chnl;
1413 
1414 	if (!iwm_nic_lock(sc))
1415 		return EBUSY;
1416 
1417 	if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) {
1418 		device_printf(sc->sc_dev,
1419 		    "%s: sched addr mismatch",
1420 		    __func__);
1421 		error = EINVAL;
1422 		goto out;
1423 	}
1424 
1425 	iwm_ict_reset(sc);
1426 
1427 	/* Clear TX scheduler state in SRAM. */
1428 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1429 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1430 	    / sizeof(uint32_t);
1431 	error = iwm_write_mem(sc,
1432 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1433 	    NULL, nwords);
1434 	if (error)
1435 		goto out;
1436 
1437 	/* Set physical address of TX scheduler rings (1KB aligned). */
1438 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1439 
1440 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1441 
1442 	/* enable command channel */
1443 	iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7);
1444 
1445 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1446 
1447 	/* Enable DMA channels. */
1448 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1449 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1450 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1451 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1452 	}
1453 
1454 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1455 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1456 
1457 	/* Enable L1-Active */
1458 	iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1459 	    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1460 
1461  out:
1462  	iwm_nic_unlock(sc);
1463 	return error;
1464 }
1465 
1466 /*
1467  * NVM read access and content parsing.  We do not support
1468  * external NVM or writing NVM.
1469  * iwlwifi/mvm/nvm.c
1470  */
1471 
1472 /* list of NVM sections we are allowed/need to read */
1473 const int nvm_to_read[] = {
1474 	IWM_NVM_SECTION_TYPE_HW,
1475 	IWM_NVM_SECTION_TYPE_SW,
1476 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1477 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1478 };
1479 
1480 /* Default NVM size to read */
1481 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
1482 #define IWM_MAX_NVM_SECTION_SIZE 7000
1483 
1484 #define IWM_NVM_WRITE_OPCODE 1
1485 #define IWM_NVM_READ_OPCODE 0
1486 
1487 static int
1488 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1489 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1490 {
1491 	offset = 0;
1492 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1493 		.offset = htole16(offset),
1494 		.length = htole16(length),
1495 		.type = htole16(section),
1496 		.op_code = IWM_NVM_READ_OPCODE,
1497 	};
1498 	struct iwm_nvm_access_resp *nvm_resp;
1499 	struct iwm_rx_packet *pkt;
1500 	struct iwm_host_cmd cmd = {
1501 		.id = IWM_NVM_ACCESS_CMD,
1502 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1503 		    IWM_CMD_SEND_IN_RFKILL,
1504 		.data = { &nvm_access_cmd, },
1505 	};
1506 	int ret, bytes_read, offset_read;
1507 	uint8_t *resp_data;
1508 
1509 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1510 
1511 	ret = iwm_send_cmd(sc, &cmd);
1512 	if (ret)
1513 		return ret;
1514 
1515 	pkt = cmd.resp_pkt;
1516 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1517 		device_printf(sc->sc_dev,
1518 		    "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1519 		    __func__, pkt->hdr.flags);
1520 		ret = EIO;
1521 		goto exit;
1522 	}
1523 
1524 	/* Extract NVM response */
1525 	nvm_resp = (void *)pkt->data;
1526 
1527 	ret = le16toh(nvm_resp->status);
1528 	bytes_read = le16toh(nvm_resp->length);
1529 	offset_read = le16toh(nvm_resp->offset);
1530 	resp_data = nvm_resp->data;
1531 	if (ret) {
1532 		device_printf(sc->sc_dev,
1533 		    "%s: NVM access command failed with status %d\n",
1534 		    __func__, ret);
1535 		ret = EINVAL;
1536 		goto exit;
1537 	}
1538 
1539 	if (offset_read != offset) {
1540 		device_printf(sc->sc_dev,
1541 		    "%s: NVM ACCESS response with invalid offset %d\n",
1542 		    __func__, offset_read);
1543 		ret = EINVAL;
1544 		goto exit;
1545 	}
1546 
1547 	memcpy(data + offset, resp_data, bytes_read);
1548 	*len = bytes_read;
1549 
1550  exit:
1551 	iwm_free_resp(sc, &cmd);
1552 	return ret;
1553 }
1554 
1555 /*
1556  * Reads an NVM section completely.
1557  * NICs prior to 7000 family doesn't have a real NVM, but just read
1558  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1559  * by uCode, we need to manually check in this case that we don't
1560  * overflow and try to read more than the EEPROM size.
1561  * For 7000 family NICs, we supply the maximal size we can read, and
1562  * the uCode fills the response with as much data as we can,
1563  * without overflowing, so no check is needed.
1564  */
1565 static int
1566 iwm_nvm_read_section(struct iwm_softc *sc,
1567 	uint16_t section, uint8_t *data, uint16_t *len)
1568 {
1569 	uint16_t length, seglen;
1570 	int error;
1571 
1572 	/* Set nvm section read length */
1573 	length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1574 	*len = 0;
1575 
1576 	/* Read the NVM until exhausted (reading less than requested) */
1577 	while (seglen == length) {
1578 		error = iwm_nvm_read_chunk(sc,
1579 		    section, *len, length, data, &seglen);
1580 		if (error) {
1581 			device_printf(sc->sc_dev,
1582 			    "Cannot read NVM from section "
1583 			    "%d offset %d, length %d\n",
1584 			    section, *len, length);
1585 			return error;
1586 		}
1587 		*len += seglen;
1588 	}
1589 
1590 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1591 	    "NVM section %d read completed\n", section);
1592 	return 0;
1593 }
1594 
1595 /*
1596  * BEGIN IWM_NVM_PARSE
1597  */
1598 
1599 /* iwlwifi/iwl-nvm-parse.c */
1600 
1601 /* NVM offsets (in words) definitions */
1602 enum wkp_nvm_offsets {
1603 	/* NVM HW-Section offset (in words) definitions */
1604 	IWM_HW_ADDR = 0x15,
1605 
1606 /* NVM SW-Section offset (in words) definitions */
1607 	IWM_NVM_SW_SECTION = 0x1C0,
1608 	IWM_NVM_VERSION = 0,
1609 	IWM_RADIO_CFG = 1,
1610 	IWM_SKU = 2,
1611 	IWM_N_HW_ADDRS = 3,
1612 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1613 
1614 /* NVM calibration section offset (in words) definitions */
1615 	IWM_NVM_CALIB_SECTION = 0x2B8,
1616 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1617 };
1618 
1619 /* SKU Capabilities (actual values from NVM definition) */
1620 enum nvm_sku_bits {
1621 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1622 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1623 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1624 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1625 };
1626 
1627 /* radio config bits (actual values from NVM definition) */
1628 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1629 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1630 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1631 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1632 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1633 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1634 
1635 #define DEFAULT_MAX_TX_POWER 16
1636 
1637 /**
1638  * enum iwm_nvm_channel_flags - channel flags in NVM
1639  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1640  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1641  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1642  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1643  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1644  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1645  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1646  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1647  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1648  */
1649 enum iwm_nvm_channel_flags {
1650 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1651 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1652 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1653 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1654 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1655 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1656 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1657 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1658 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1659 };
1660 
1661 /*
1662  * Add a channel to the net80211 channel list.
1663  *
1664  * ieee is the ieee channel number
1665  * ch_idx is channel index.
1666  * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G.
1667  * ch_flags is the iwm channel flags.
1668  *
1669  * Return 0 on OK, < 0 on error.
1670  */
1671 static int
1672 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx,
1673     int mode, uint16_t ch_flags)
1674 {
1675 	/* XXX for now, no overflow checking! */
1676 	struct ieee80211com *ic =  sc->sc_ic;
1677 	int is_5ghz, flags;
1678 	struct ieee80211_channel *channel;
1679 
1680 	channel = &ic->ic_channels[ic->ic_nchans++];
1681 	channel->ic_ieee = ieee;
1682 
1683 	is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
1684 	if (!is_5ghz) {
1685 		flags = IEEE80211_CHAN_2GHZ;
1686 		channel->ic_flags = mode;
1687 	} else {
1688 		flags = IEEE80211_CHAN_5GHZ;
1689 		channel->ic_flags = mode;
1690 	}
1691 	channel->ic_freq = ieee80211_ieee2mhz(ieee, flags);
1692 
1693 	if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
1694 		channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
1695 	return (0);
1696 }
1697 
1698 static void
1699 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags)
1700 {
1701 	struct ieee80211com *ic =  sc->sc_ic;
1702 	struct iwm_nvm_data *data = &sc->sc_nvm;
1703 	int ch_idx;
1704 	uint16_t ch_flags;
1705 	int hw_value;
1706 
1707 	for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) {
1708 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1709 
1710 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
1711 		    !data->sku_cap_band_52GHz_enable)
1712 			ch_flags &= ~IWM_NVM_CHANNEL_VALID;
1713 
1714 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1715 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1716 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1717 			    iwm_nvm_channels[ch_idx],
1718 			    ch_flags,
1719 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1720 			    "5.2" : "2.4");
1721 			continue;
1722 		}
1723 
1724 		hw_value = iwm_nvm_channels[ch_idx];
1725 
1726 		/* 5GHz? */
1727 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) {
1728 			(void) iwm_init_net80211_channel(sc, hw_value,
1729 			    ch_idx,
1730 			    IEEE80211_CHAN_A,
1731 			    ch_flags);
1732 		} else {
1733 			(void) iwm_init_net80211_channel(sc, hw_value,
1734 			    ch_idx,
1735 			    IEEE80211_CHAN_B,
1736 			    ch_flags);
1737 			/* If it's not channel 13, also add 11g */
1738 			if (hw_value != 13)
1739 				(void) iwm_init_net80211_channel(sc, hw_value,
1740 				    ch_idx,
1741 				    IEEE80211_CHAN_G,
1742 				    ch_flags);
1743 		}
1744 
1745 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1746 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1747 		    iwm_nvm_channels[ch_idx],
1748 		    ch_flags,
1749 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1750 		    "5.2" : "2.4");
1751 	}
1752 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1753 }
1754 
1755 static int
1756 iwm_parse_nvm_data(struct iwm_softc *sc,
1757 	const uint16_t *nvm_hw, const uint16_t *nvm_sw,
1758 	const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains)
1759 {
1760 	struct iwm_nvm_data *data = &sc->sc_nvm;
1761 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
1762 	uint16_t radio_cfg, sku;
1763 
1764 	data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
1765 
1766 	radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
1767 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1768 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
1769 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
1770 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
1771 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1772 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1773 
1774 	sku = le16_to_cpup(nvm_sw + IWM_SKU);
1775 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
1776 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
1777 	data->sku_cap_11n_enable = 0;
1778 
1779 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1780 		device_printf(sc->sc_dev,
1781 		    "%s: invalid antennas (0x%x, 0x%x)\n",
1782 		    __func__, data->valid_tx_ant,
1783 		    data->valid_rx_ant);
1784 		return EINVAL;
1785 	}
1786 
1787 	data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
1788 
1789 	data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB);
1790 	data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1);
1791 
1792 	/* The byte order is little endian 16 bit, meaning 214365 */
1793 	IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
1794 	data->hw_addr[0] = hw_addr[1];
1795 	data->hw_addr[1] = hw_addr[0];
1796 	data->hw_addr[2] = hw_addr[3];
1797 	data->hw_addr[3] = hw_addr[2];
1798 	data->hw_addr[4] = hw_addr[5];
1799 	data->hw_addr[5] = hw_addr[4];
1800 
1801 	iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]);
1802 	data->calib_version = 255;   /* TODO:
1803 					this value will prevent some checks from
1804 					failing, we need to check if this
1805 					field is still needed, and if it does,
1806 					where is it in the NVM */
1807 
1808 	return 0;
1809 }
1810 
1811 /*
1812  * END NVM PARSE
1813  */
1814 
1815 struct iwm_nvm_section {
1816 	uint16_t length;
1817 	const uint8_t *data;
1818 };
1819 
1820 static int
1821 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
1822 {
1823 	const uint16_t *hw, *sw, *calib;
1824 
1825 	/* Checking for required sections */
1826 	if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
1827 	    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
1828 		device_printf(sc->sc_dev,
1829 		    "%s: Can't parse empty NVM sections\n",
1830 		    __func__);
1831 		return ENOENT;
1832 	}
1833 
1834 	hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data;
1835 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
1836 	calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
1837 	return iwm_parse_nvm_data(sc, hw, sw, calib,
1838 	    IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc));
1839 }
1840 
1841 static int
1842 iwm_nvm_init(struct iwm_softc *sc)
1843 {
1844 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
1845 	int i, section, error;
1846 	uint16_t len;
1847 	uint8_t *nvm_buffer, *temp;
1848 
1849 	/* Read From FW NVM */
1850 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1851 	    "%s: Read NVM\n",
1852 	    __func__);
1853 
1854 	/* TODO: find correct NVM max size for a section */
1855 	nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT);
1856 	if (nvm_buffer == NULL)
1857 		return (ENOMEM);
1858 	for (i = 0; i < nitems(nvm_to_read); i++) {
1859 		section = nvm_to_read[i];
1860 		KASSERT(section <= nitems(nvm_sections),
1861 		    ("too many sections"));
1862 
1863 		error = iwm_nvm_read_section(sc, section, nvm_buffer, &len);
1864 		if (error)
1865 			break;
1866 
1867 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
1868 		if (temp == NULL) {
1869 			error = ENOMEM;
1870 			break;
1871 		}
1872 		memcpy(temp, nvm_buffer, len);
1873 		nvm_sections[section].data = temp;
1874 		nvm_sections[section].length = len;
1875 	}
1876 	free(nvm_buffer, M_DEVBUF);
1877 	if (error)
1878 		return error;
1879 
1880 	return iwm_parse_nvm_sections(sc, nvm_sections);
1881 }
1882 
1883 /*
1884  * Firmware loading gunk.  This is kind of a weird hybrid between the
1885  * iwn driver and the Linux iwlwifi driver.
1886  */
1887 
1888 static int
1889 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
1890 	const uint8_t *section, uint32_t byte_cnt)
1891 {
1892 	struct iwm_dma_info *dma = &sc->fw_dma;
1893 	int error;
1894 
1895 	/* Copy firmware section into pre-allocated DMA-safe memory. */
1896 	memcpy(dma->vaddr, section, byte_cnt);
1897 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1898 
1899 	if (!iwm_nic_lock(sc))
1900 		return EBUSY;
1901 
1902 	sc->sc_fw_chunk_done = 0;
1903 
1904 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1905 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
1906 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
1907 	    dst_addr);
1908 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
1909 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
1910 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
1911 	    (iwm_get_dma_hi_addr(dma->paddr)
1912 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
1913 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1914 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1915 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
1916 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
1917 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1918 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
1919 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
1920 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
1921 
1922 	iwm_nic_unlock(sc);
1923 
1924 	/* wait 1s for this segment to load */
1925 	while (!sc->sc_fw_chunk_done)
1926 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
1927 			break;
1928 
1929 	return error;
1930 }
1931 
1932 static int
1933 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1934 {
1935 	struct iwm_fw_sects *fws;
1936 	int error, i, w;
1937 	const void *data;
1938 	uint32_t dlen;
1939 	uint32_t offset;
1940 
1941 	sc->sc_uc.uc_intr = 0;
1942 
1943 	fws = &sc->sc_fw.fw_sects[ucode_type];
1944 	for (i = 0; i < fws->fw_count; i++) {
1945 		data = fws->fw_sect[i].fws_data;
1946 		dlen = fws->fw_sect[i].fws_len;
1947 		offset = fws->fw_sect[i].fws_devoff;
1948 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
1949 		    "LOAD FIRMWARE type %d offset %u len %d\n",
1950 		    ucode_type, offset, dlen);
1951 		error = iwm_firmware_load_chunk(sc, offset, data, dlen);
1952 		if (error) {
1953 			device_printf(sc->sc_dev,
1954 			    "%s: chunk %u of %u returned error %02d\n",
1955 			    __func__, i, fws->fw_count, error);
1956 			return error;
1957 		}
1958 	}
1959 
1960 	/* wait for the firmware to load */
1961 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
1962 
1963 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
1964 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
1965 	}
1966 
1967 	return error;
1968 }
1969 
1970 /* iwlwifi: pcie/trans.c */
1971 static int
1972 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1973 {
1974 	int error;
1975 
1976 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1977 
1978 	if ((error = iwm_nic_init(sc)) != 0) {
1979 		device_printf(sc->sc_dev, "unable to init nic\n");
1980 		return error;
1981 	}
1982 
1983 	/* make sure rfkill handshake bits are cleared */
1984 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1985 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
1986 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1987 
1988 	/* clear (again), then enable host interrupts */
1989 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1990 	iwm_enable_interrupts(sc);
1991 
1992 	/* really make sure rfkill handshake bits are cleared */
1993 	/* maybe we should write a few times more?  just to make sure */
1994 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1995 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1996 
1997 	/* Load the given image to the HW */
1998 	return iwm_load_firmware(sc, ucode_type);
1999 }
2000 
2001 static int
2002 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base)
2003 {
2004 	return iwm_post_alive(sc);
2005 }
2006 
2007 static int
2008 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2009 {
2010 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2011 		.valid = htole32(valid_tx_ant),
2012 	};
2013 
2014 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2015 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2016 }
2017 
2018 /* iwlwifi: mvm/fw.c */
2019 static int
2020 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2021 {
2022 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2023 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2024 
2025 	/* Set parameters */
2026 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2027 	phy_cfg_cmd.calib_control.event_trigger =
2028 	    sc->sc_default_calib[ucode_type].event_trigger;
2029 	phy_cfg_cmd.calib_control.flow_trigger =
2030 	    sc->sc_default_calib[ucode_type].flow_trigger;
2031 
2032 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2033 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2034 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2035 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2036 }
2037 
2038 static int
2039 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2040 	enum iwm_ucode_type ucode_type)
2041 {
2042 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2043 	int error;
2044 
2045 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0)
2046 		return error;
2047 
2048 	sc->sc_uc_current = ucode_type;
2049 	error = iwm_start_fw(sc, ucode_type);
2050 	if (error) {
2051 		sc->sc_uc_current = old_type;
2052 		return error;
2053 	}
2054 
2055 	return iwm_fw_alive(sc, sc->sched_base);
2056 }
2057 
2058 /*
2059  * mvm misc bits
2060  */
2061 
2062 /*
2063  * follows iwlwifi/fw.c
2064  */
2065 static int
2066 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2067 {
2068 	int error;
2069 
2070 	/* do not operate with rfkill switch turned on */
2071 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2072 		device_printf(sc->sc_dev,
2073 		    "radio is disabled by hardware switch\n");
2074 		return EPERM;
2075 	}
2076 
2077 	sc->sc_init_complete = 0;
2078 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2079 	    IWM_UCODE_TYPE_INIT)) != 0)
2080 		return error;
2081 
2082 	if (justnvm) {
2083 		if ((error = iwm_nvm_init(sc)) != 0) {
2084 			device_printf(sc->sc_dev, "failed to read nvm\n");
2085 			return error;
2086 		}
2087 		IEEE80211_ADDR_COPY(sc->sc_bssid, &sc->sc_nvm.hw_addr);
2088 
2089 		sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd)
2090 		    + sc->sc_capa_max_probe_len
2091 		    + IWM_MAX_NUM_SCAN_CHANNELS
2092 		    * sizeof(struct iwm_scan_channel);
2093 		sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF,
2094 		    M_NOWAIT);
2095 		if (sc->sc_scan_cmd == NULL)
2096 			return (ENOMEM);
2097 
2098 		return 0;
2099 	}
2100 
2101 	/* Send TX valid antennas before triggering calibrations */
2102 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
2103 		return error;
2104 
2105 	/*
2106 	* Send phy configurations command to init uCode
2107 	* to start the 16.0 uCode init image internal calibrations.
2108 	*/
2109 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2110 		device_printf(sc->sc_dev,
2111 		    "%s: failed to run internal calibration: %d\n",
2112 		    __func__, error);
2113 		return error;
2114 	}
2115 
2116 	/*
2117 	 * Nothing to do but wait for the init complete notification
2118 	 * from the firmware
2119 	 */
2120 	while (!sc->sc_init_complete)
2121 		if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2122 		    0, "iwminit", 2*hz)) != 0)
2123 			break;
2124 
2125 	return error;
2126 }
2127 
2128 /*
2129  * receive side
2130  */
2131 
2132 /* (re)stock rx ring, called at init-time and at runtime */
2133 static int
2134 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2135 {
2136 	struct iwm_rx_ring *ring = &sc->rxq;
2137 	struct iwm_rx_data *data = &ring->data[idx];
2138 	struct mbuf *m;
2139 	int error;
2140 	bus_addr_t paddr;
2141 
2142 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2143 	if (m == NULL)
2144 		return ENOBUFS;
2145 
2146 	if (data->m != NULL)
2147 		bus_dmamap_unload(ring->data_dmat, data->map);
2148 
2149 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2150 	error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2151 	if (error != 0) {
2152 		device_printf(sc->sc_dev,
2153 		    "%s: could not create RX buf DMA map, error %d\n",
2154 		    __func__, error);
2155 		goto fail;
2156 	}
2157 	data->m = m;
2158 	error = bus_dmamap_load(ring->data_dmat, data->map,
2159 	    mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr,
2160 	    &paddr, BUS_DMA_NOWAIT);
2161 	if (error != 0 && error != EFBIG) {
2162 		device_printf(sc->sc_dev,
2163 		    "%s: can't not map mbuf, error %d\n", __func__,
2164 		    error);
2165 		goto fail;
2166 	}
2167 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2168 
2169 	/* Update RX descriptor. */
2170 	ring->desc[idx] = htole32(paddr >> 8);
2171 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2172 	    BUS_DMASYNC_PREWRITE);
2173 
2174 	return 0;
2175 fail:
2176 	return error;
2177 }
2178 
2179 /* iwlwifi: mvm/rx.c */
2180 #define IWM_RSSI_OFFSET 50
2181 static int
2182 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2183 {
2184 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2185 	uint32_t agc_a, agc_b;
2186 	uint32_t val;
2187 
2188 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2189 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2190 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2191 
2192 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2193 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2194 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2195 
2196 	/*
2197 	 * dBm = rssi dB - agc dB - constant.
2198 	 * Higher AGC (higher radio gain) means lower signal.
2199 	 */
2200 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2201 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2202 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2203 
2204 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2205 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2206 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2207 
2208 	return max_rssi_dbm;
2209 }
2210 
2211 /* iwlwifi: mvm/rx.c */
2212 /*
2213  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2214  * values are reported by the fw as positive values - need to negate
2215  * to obtain their dBM.  Account for missing antennas by replacing 0
2216  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2217  */
2218 static int
2219 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2220 {
2221 	int energy_a, energy_b, energy_c, max_energy;
2222 	uint32_t val;
2223 
2224 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2225 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2226 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2227 	energy_a = energy_a ? -energy_a : -256;
2228 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2229 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2230 	energy_b = energy_b ? -energy_b : -256;
2231 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2232 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2233 	energy_c = energy_c ? -energy_c : -256;
2234 	max_energy = MAX(energy_a, energy_b);
2235 	max_energy = MAX(max_energy, energy_c);
2236 
2237 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2238 	    "energy In A %d B %d C %d , and max %d\n",
2239 	    energy_a, energy_b, energy_c, max_energy);
2240 
2241 	return max_energy;
2242 }
2243 
2244 static void
2245 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2246 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2247 {
2248 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2249 
2250 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2251 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2252 
2253 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2254 }
2255 
2256 /*
2257  * Retrieve the average noise (in dBm) among receivers.
2258  */
2259 static int
2260 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
2261 {
2262 	int i, total, nbant, noise;
2263 
2264 	total = nbant = noise = 0;
2265 	for (i = 0; i < 3; i++) {
2266 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2267 		if (noise) {
2268 			total += noise;
2269 			nbant++;
2270 		}
2271 	}
2272 
2273 	/* There should be at least one antenna but check anyway. */
2274 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2275 }
2276 
2277 /*
2278  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2279  *
2280  * Handles the actual data of the Rx packet from the fw
2281  */
2282 static void
2283 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2284 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2285 {
2286 	struct ieee80211com *ic = sc->sc_ic;
2287 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2288 	struct ieee80211_frame *wh;
2289 	struct ieee80211_node *ni;
2290 	struct ieee80211_rx_stats rxs;
2291 	struct mbuf *m;
2292 	struct iwm_rx_phy_info *phy_info;
2293 	struct iwm_rx_mpdu_res_start *rx_res;
2294 	uint32_t len;
2295 	uint32_t rx_pkt_status;
2296 	int rssi;
2297 
2298 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2299 
2300 	phy_info = &sc->sc_last_phy_info;
2301 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2302 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2303 	len = le16toh(rx_res->byte_count);
2304 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2305 
2306 	m = data->m;
2307 	m->m_data = pkt->data + sizeof(*rx_res);
2308 	m->m_pkthdr.len = m->m_len = len;
2309 
2310 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2311 		device_printf(sc->sc_dev,
2312 		    "dsp size out of range [0,20]: %d\n",
2313 		    phy_info->cfg_phy_cnt);
2314 		return;
2315 	}
2316 
2317 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2318 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2319 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2320 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2321 		return; /* drop */
2322 	}
2323 
2324 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2325 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2326 	} else {
2327 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2328 	}
2329 	rssi = (0 - IWM_MIN_DBM) + rssi;	/* normalize */
2330 	rssi = MIN(rssi, sc->sc_max_rssi);	/* clip to max. 100% */
2331 
2332 	/* replenish ring for the buffer we're going to feed to the sharks */
2333 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2334 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2335 		    __func__);
2336 		return;
2337 	}
2338 
2339 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2340 
2341 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2342 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2343 	    __func__,
2344 	    le16toh(phy_info->channel),
2345 	    le16toh(phy_info->phy_flags));
2346 
2347 	/*
2348 	 * Populate an RX state struct with the provided information.
2349 	 */
2350 	bzero(&rxs, sizeof(rxs));
2351 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2352 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2353 	rxs.c_ieee = le16toh(phy_info->channel);
2354 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2355 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2356 	} else {
2357 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2358 	}
2359 	rxs.rssi = rssi - sc->sc_noise;
2360 	rxs.nf = sc->sc_noise;
2361 
2362 	if (ieee80211_radiotap_active_vap(vap)) {
2363 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2364 
2365 		tap->wr_flags = 0;
2366 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2367 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2368 		tap->wr_chan_freq = htole16(rxs.c_freq);
2369 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2370 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2371 		tap->wr_dbm_antsignal = (int8_t)rssi;
2372 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2373 		tap->wr_tsft = phy_info->system_timestamp;
2374 		switch (phy_info->rate) {
2375 		/* CCK rates. */
2376 		case  10: tap->wr_rate =   2; break;
2377 		case  20: tap->wr_rate =   4; break;
2378 		case  55: tap->wr_rate =  11; break;
2379 		case 110: tap->wr_rate =  22; break;
2380 		/* OFDM rates. */
2381 		case 0xd: tap->wr_rate =  12; break;
2382 		case 0xf: tap->wr_rate =  18; break;
2383 		case 0x5: tap->wr_rate =  24; break;
2384 		case 0x7: tap->wr_rate =  36; break;
2385 		case 0x9: tap->wr_rate =  48; break;
2386 		case 0xb: tap->wr_rate =  72; break;
2387 		case 0x1: tap->wr_rate =  96; break;
2388 		case 0x3: tap->wr_rate = 108; break;
2389 		/* Unknown rate: should not happen. */
2390 		default:  tap->wr_rate =   0;
2391 		}
2392 	}
2393 
2394 	IWM_UNLOCK(sc);
2395 	if (ni != NULL) {
2396 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
2397 		ieee80211_input_mimo(ni, m, &rxs);
2398 		ieee80211_free_node(ni);
2399 	} else {
2400 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
2401 		ieee80211_input_mimo_all(ic, m, &rxs);
2402 	}
2403 	IWM_LOCK(sc);
2404 }
2405 
2406 static void
2407 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
2408 	struct iwm_node *in)
2409 {
2410 	struct ifnet *ifp = sc->sc_ifp;
2411 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
2412 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
2413 	int failack = tx_resp->failure_frame;
2414 
2415 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
2416 
2417 	/* Update rate control statistics. */
2418 	if (status != IWM_TX_STATUS_SUCCESS &&
2419 	    status != IWM_TX_STATUS_DIRECT_DONE) {
2420 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2421 		ieee80211_ratectl_tx_complete(in->in_ni.ni_vap, &in->in_ni,
2422 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
2423 	} else {
2424 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2425 		ieee80211_ratectl_tx_complete(in->in_ni.ni_vap, &in->in_ni,
2426 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
2427 
2428 	}
2429 }
2430 
2431 static void
2432 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
2433 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2434 {
2435 	struct ifnet *ifp = sc->sc_ifp;
2436 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
2437 	int idx = cmd_hdr->idx;
2438 	int qid = cmd_hdr->qid;
2439 	struct iwm_tx_ring *ring = &sc->txq[qid];
2440 	struct iwm_tx_data *txd = &ring->data[idx];
2441 	struct iwm_node *in = txd->in;
2442 
2443 	if (txd->done) {
2444 		device_printf(sc->sc_dev,
2445 		    "%s: got tx interrupt that's already been handled!\n",
2446 		    __func__);
2447 		return;
2448 	}
2449 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2450 
2451 	sc->sc_tx_timer = 0;
2452 
2453 	iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
2454 
2455 	/* Unmap and free mbuf. */
2456 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
2457 	bus_dmamap_unload(ring->data_dmat, txd->map);
2458 	m_freem(txd->m);
2459 
2460 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2461 	    "free txd %p, in %p\n", txd, txd->in);
2462 	KASSERT(txd->done == 0, ("txd not done"));
2463 	txd->done = 1;
2464 	KASSERT(txd->in, ("txd without node"));
2465 
2466 	txd->m = NULL;
2467 	txd->in = NULL;
2468 	ieee80211_free_node((struct ieee80211_node *)in);
2469 
2470 	if (--ring->queued < IWM_TX_RING_LOMARK) {
2471 		sc->qfullmsk &= ~(1 << ring->qid);
2472 		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_DRV_OACTIVE)) {
2473 			ifp->if_flags &= ~IFF_DRV_OACTIVE;
2474 			/*
2475 			 * Well, we're in interrupt context, but then again
2476 			 * I guess net80211 does all sorts of stunts in
2477 			 * interrupt context, so maybe this is no biggie.
2478 			 */
2479 			iwm_start_locked(ifp);
2480 		}
2481 	}
2482 }
2483 
2484 /*
2485  * transmit side
2486  */
2487 
2488 /*
2489  * Process a "command done" firmware notification.  This is where we wakeup
2490  * processes waiting for a synchronous command completion.
2491  * from if_iwn
2492  */
2493 static void
2494 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
2495 {
2496 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
2497 	struct iwm_tx_data *data;
2498 
2499 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
2500 		return;	/* Not a command ack. */
2501 	}
2502 
2503 	data = &ring->data[pkt->hdr.idx];
2504 
2505 	/* If the command was mapped in an mbuf, free it. */
2506 	if (data->m != NULL) {
2507 		bus_dmamap_sync(ring->data_dmat, data->map,
2508 		    BUS_DMASYNC_POSTWRITE);
2509 		bus_dmamap_unload(ring->data_dmat, data->map);
2510 		m_freem(data->m);
2511 		data->m = NULL;
2512 	}
2513 	wakeup(&ring->desc[pkt->hdr.idx]);
2514 }
2515 
2516 #if 0
2517 /*
2518  * necessary only for block ack mode
2519  */
2520 void
2521 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
2522 	uint16_t len)
2523 {
2524 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
2525 	uint16_t w_val;
2526 
2527 	scd_bc_tbl = sc->sched_dma.vaddr;
2528 
2529 	len += 8; /* magic numbers came naturally from paris */
2530 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
2531 		len = roundup(len, 4) / 4;
2532 
2533 	w_val = htole16(sta_id << 12 | len);
2534 
2535 	/* Update TX scheduler. */
2536 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
2537 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2538 	    BUS_DMASYNC_PREWRITE);
2539 
2540 	/* I really wonder what this is ?!? */
2541 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
2542 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
2543 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2544 		    BUS_DMASYNC_PREWRITE);
2545 	}
2546 }
2547 #endif
2548 
2549 /*
2550  * Take an 802.11 (non-n) rate, find the relevant rate
2551  * table entry.  return the index into in_ridx[].
2552  *
2553  * The caller then uses that index back into in_ridx
2554  * to figure out the rate index programmed /into/
2555  * the firmware for this given node.
2556  */
2557 static int
2558 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
2559     uint8_t rate)
2560 {
2561 	int i;
2562 	uint8_t r;
2563 
2564 	for (i = 0; i < nitems(in->in_ridx); i++) {
2565 		r = iwm_rates[in->in_ridx[i]].rate;
2566 		if (rate == r)
2567 			return (i);
2568 	}
2569 	/* XXX Return the first */
2570 	/* XXX TODO: have it return the /lowest/ */
2571 	return (0);
2572 }
2573 
2574 /*
2575  * Fill in various bit for management frames, and leave them
2576  * unfilled for data frames (firmware takes care of that).
2577  * Return the selected TX rate.
2578  */
2579 static const struct iwm_rate *
2580 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
2581 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
2582 {
2583 	struct ieee80211com *ic = sc->sc_ic;
2584 	struct ieee80211_node *ni = &in->in_ni;
2585 	const struct iwm_rate *rinfo;
2586 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2587 	int ridx, rate_flags;
2588 
2589 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
2590 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
2591 
2592 	/*
2593 	 * XXX TODO: everything about the rate selection here is terrible!
2594 	 */
2595 
2596 	if (type == IEEE80211_FC0_TYPE_DATA) {
2597 		int i;
2598 		/* for data frames, use RS table */
2599 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2600 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
2601 		ridx = in->in_ridx[i];
2602 
2603 		/* This is the index into the programmed table */
2604 		tx->initial_rate_index = i;
2605 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
2606 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
2607 		    "%s: start with i=%d, txrate %d\n",
2608 		    __func__, i, iwm_rates[ridx].rate);
2609 		/* XXX no rate_n_flags? */
2610 		return &iwm_rates[ridx];
2611 	}
2612 
2613 	/*
2614 	 * For non-data, use the lowest supported rate for the given
2615 	 * operational mode.
2616 	 *
2617 	 * Note: there may not be any rate control information available.
2618 	 * This driver currently assumes if we're transmitting data
2619 	 * frames, use the rate control table.  Grr.
2620 	 *
2621 	 * XXX TODO: use the configured rate for the traffic type!
2622 	 */
2623 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2624 		/*
2625 		 * XXX this assumes the mode is either 11a or not 11a;
2626 		 * definitely won't work for 11n.
2627 		 */
2628 		ridx = IWM_RIDX_OFDM;
2629 	} else {
2630 		ridx = IWM_RIDX_CCK;
2631 	}
2632 
2633 	rinfo = &iwm_rates[ridx];
2634 
2635 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
2636 	    __func__, ridx,
2637 	    rinfo->rate,
2638 	    !! (IWM_RIDX_IS_CCK(ridx))
2639 	    );
2640 
2641 	/* XXX TODO: hard-coded TX antenna? */
2642 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
2643 	if (IWM_RIDX_IS_CCK(ridx))
2644 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
2645 	/* XXX hard-coded tx rate */
2646 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
2647 
2648 	return rinfo;
2649 }
2650 
2651 #define TB0_SIZE 16
2652 static int
2653 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2654 {
2655 	struct ieee80211com *ic = sc->sc_ic;
2656 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2657 	struct iwm_node *in = (struct iwm_node *)ni;
2658 	struct iwm_tx_ring *ring;
2659 	struct iwm_tx_data *data;
2660 	struct iwm_tfd *desc;
2661 	struct iwm_device_cmd *cmd;
2662 	struct iwm_tx_cmd *tx;
2663 	struct ieee80211_frame *wh;
2664 	struct ieee80211_key *k = NULL;
2665 	struct mbuf *m1;
2666 	const struct iwm_rate *rinfo;
2667 	uint32_t flags;
2668 	u_int hdrlen;
2669 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
2670 	int nsegs;
2671 	uint8_t tid, type;
2672 	int i, totlen, error, pad;
2673 
2674 	wh = mtod(m, struct ieee80211_frame *);
2675 	hdrlen = ieee80211_anyhdrsize(wh);
2676 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2677 	tid = 0;
2678 	ring = &sc->txq[ac];
2679 	desc = &ring->desc[ring->cur];
2680 	memset(desc, 0, sizeof(*desc));
2681 	data = &ring->data[ring->cur];
2682 
2683 	/* Fill out iwm_tx_cmd to send to the firmware */
2684 	cmd = &ring->cmd[ring->cur];
2685 	cmd->hdr.code = IWM_TX_CMD;
2686 	cmd->hdr.flags = 0;
2687 	cmd->hdr.qid = ring->qid;
2688 	cmd->hdr.idx = ring->cur;
2689 
2690 	tx = (void *)cmd->data;
2691 	memset(tx, 0, sizeof(*tx));
2692 
2693 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
2694 
2695 	/* Encrypt the frame if need be. */
2696 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2697 		/* Retrieve key for TX && do software encryption. */
2698 		k = ieee80211_crypto_encap(ni, m);
2699 		if (k == NULL) {
2700 			m_freem(m);
2701 			return (ENOBUFS);
2702 		}
2703 		/* 802.11 header may have moved. */
2704 		wh = mtod(m, struct ieee80211_frame *);
2705 	}
2706 
2707 	if (ieee80211_radiotap_active_vap(vap)) {
2708 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
2709 
2710 		tap->wt_flags = 0;
2711 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2712 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2713 		tap->wt_rate = rinfo->rate;
2714 		tap->wt_hwqueue = ac;
2715 		if (k != NULL)
2716 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2717 		ieee80211_radiotap_tx(vap, m);
2718 	}
2719 
2720 
2721 	totlen = m->m_pkthdr.len;
2722 
2723 	flags = 0;
2724 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2725 		flags |= IWM_TX_CMD_FLG_ACK;
2726 	}
2727 
2728 	if (type != IEEE80211_FC0_TYPE_DATA
2729 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
2730 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2731 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
2732 	}
2733 
2734 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2735 	    type != IEEE80211_FC0_TYPE_DATA)
2736 		tx->sta_id = sc->sc_aux_sta.sta_id;
2737 	else
2738 		tx->sta_id = IWM_STATION_ID;
2739 
2740 	if (type == IEEE80211_FC0_TYPE_MGT) {
2741 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2742 
2743 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2744 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2745 			tx->pm_frame_timeout = htole16(3);
2746 		else
2747 			tx->pm_frame_timeout = htole16(2);
2748 	} else {
2749 		tx->pm_frame_timeout = htole16(0);
2750 	}
2751 
2752 	if (hdrlen & 3) {
2753 		/* First segment length must be a multiple of 4. */
2754 		flags |= IWM_TX_CMD_FLG_MH_PAD;
2755 		pad = 4 - (hdrlen & 3);
2756 	} else
2757 		pad = 0;
2758 
2759 	tx->driver_txop = 0;
2760 	tx->next_frame_len = 0;
2761 
2762 	tx->len = htole16(totlen);
2763 	tx->tid_tspec = tid;
2764 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
2765 
2766 	/* Set physical address of "scratch area". */
2767 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
2768 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
2769 
2770 	/* Copy 802.11 header in TX command. */
2771 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2772 
2773 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
2774 
2775 	tx->sec_ctl = 0;
2776 	tx->tx_flags |= htole32(flags);
2777 
2778 	/* Trim 802.11 header. */
2779 	m_adj(m, hdrlen);
2780 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2781 	    segs, &nsegs, BUS_DMA_NOWAIT);
2782 	if (error != 0) {
2783 		if (error != EFBIG) {
2784 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2785 			    error);
2786 			m_freem(m);
2787 			return error;
2788 		}
2789 		/* Too many DMA segments, linearize mbuf. */
2790 		MGETHDR(m1, M_NOWAIT, MT_DATA);
2791 		if (m1 == NULL) {
2792 			m_freem(m);
2793 			return ENOBUFS;
2794 		}
2795 		if (m->m_pkthdr.len > MHLEN) {
2796 			MCLGET(m1, M_NOWAIT);
2797 			if (!(m1->m_flags & M_EXT)) {
2798 				m_freem(m);
2799 				m_freem(m1);
2800 				return ENOBUFS;
2801 			}
2802 		}
2803 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2804 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2805 		m_freem(m);
2806 		m = m1;
2807 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2808 		    segs, &nsegs, BUS_DMA_NOWAIT);
2809 		if (error != 0) {
2810 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2811 			    error);
2812 			m_freem(m);
2813 			return error;
2814 		}
2815 	}
2816 	data->m = m;
2817 	data->in = in;
2818 	data->done = 0;
2819 
2820 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2821 	    "sending txd %p, in %p\n", data, data->in);
2822 	KASSERT(data->in != NULL, ("node is NULL"));
2823 
2824 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2825 	    "sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2826 	    ring->qid, ring->cur, totlen, nsegs);
2827 
2828 	/* Fill TX descriptor. */
2829 	desc->num_tbs = 2 + nsegs;
2830 
2831 	desc->tbs[0].lo = htole32(data->cmd_paddr);
2832 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2833 	    (TB0_SIZE << 4);
2834 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
2835 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2836 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
2837 	      + hdrlen + pad - TB0_SIZE) << 4);
2838 
2839 	/* Other DMA segments are for data payload. */
2840 	for (i = 0; i < nsegs; i++) {
2841 		seg = &segs[i];
2842 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
2843 		desc->tbs[i+2].hi_n_len = \
2844 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
2845 		    | ((seg->ds_len) << 4);
2846 	}
2847 
2848 	bus_dmamap_sync(ring->data_dmat, data->map,
2849 	    BUS_DMASYNC_PREWRITE);
2850 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
2851 	    BUS_DMASYNC_PREWRITE);
2852 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2853 	    BUS_DMASYNC_PREWRITE);
2854 
2855 #if 0
2856 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
2857 #endif
2858 
2859 	/* Kick TX ring. */
2860 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
2861 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2862 
2863 	/* Mark TX ring as full if we reach a certain threshold. */
2864 	if (++ring->queued > IWM_TX_RING_HIMARK) {
2865 		sc->qfullmsk |= 1 << ring->qid;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static int
2872 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2873     const struct ieee80211_bpf_params *params)
2874 {
2875 	struct ieee80211com *ic = ni->ni_ic;
2876 	struct ifnet *ifp = ic->ic_ifp;
2877 	struct iwm_softc *sc = ic->ic_softc;
2878 	int error = 0;
2879 
2880 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2881 	    "->%s begin\n", __func__);
2882 
2883 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2884 		ieee80211_free_node(ni);
2885 		m_freem(m);
2886 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2887 		    "<-%s not RUNNING\n", __func__);
2888 		return (ENETDOWN);
2889         }
2890 
2891 	IWM_LOCK(sc);
2892 	/* XXX fix this */
2893         if (params == NULL) {
2894 		error = iwm_tx(sc, m, ni, 0);
2895 	} else {
2896 		error = iwm_tx(sc, m, ni, 0);
2897 	}
2898 	if (error != 0) {
2899 		/* NB: m is reclaimed on tx failure */
2900 		ieee80211_free_node(ni);
2901 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2902 	}
2903 	sc->sc_tx_timer = 5;
2904 	IWM_UNLOCK(sc);
2905 
2906         return (error);
2907 }
2908 
2909 /*
2910  * mvm/tx.c
2911  */
2912 
2913 #if 0
2914 /*
2915  * Note that there are transports that buffer frames before they reach
2916  * the firmware. This means that after flush_tx_path is called, the
2917  * queue might not be empty. The race-free way to handle this is to:
2918  * 1) set the station as draining
2919  * 2) flush the Tx path
2920  * 3) wait for the transport queues to be empty
2921  */
2922 int
2923 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
2924 {
2925 	struct iwm_tx_path_flush_cmd flush_cmd = {
2926 		.queues_ctl = htole32(tfd_msk),
2927 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
2928 	};
2929 	int ret;
2930 
2931 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
2932 	    sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
2933 	    sizeof(flush_cmd), &flush_cmd);
2934 	if (ret)
2935                 device_printf(sc->sc_dev,
2936 		    "Flushing tx queue failed: %d\n", ret);
2937 	return ret;
2938 }
2939 #endif
2940 
2941 /*
2942  * BEGIN mvm/sta.c
2943  */
2944 
2945 static void
2946 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6,
2947 	struct iwm_mvm_add_sta_cmd_v5 *cmd_v5)
2948 {
2949 	memset(cmd_v5, 0, sizeof(*cmd_v5));
2950 
2951 	cmd_v5->add_modify = cmd_v6->add_modify;
2952 	cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx;
2953 	cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color;
2954 	IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr);
2955 	cmd_v5->sta_id = cmd_v6->sta_id;
2956 	cmd_v5->modify_mask = cmd_v6->modify_mask;
2957 	cmd_v5->station_flags = cmd_v6->station_flags;
2958 	cmd_v5->station_flags_msk = cmd_v6->station_flags_msk;
2959 	cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid;
2960 	cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid;
2961 	cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn;
2962 	cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count;
2963 	cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags;
2964 	cmd_v5->assoc_id = cmd_v6->assoc_id;
2965 	cmd_v5->beamform_flags = cmd_v6->beamform_flags;
2966 	cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk;
2967 }
2968 
2969 static int
2970 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
2971 	struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status)
2972 {
2973 	struct iwm_mvm_add_sta_cmd_v5 cmd_v5;
2974 
2975 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) {
2976 		return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA,
2977 		    sizeof(*cmd), cmd, status);
2978 	}
2979 
2980 	iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5);
2981 
2982 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5),
2983 	    &cmd_v5, status);
2984 }
2985 
2986 /* send station add/update command to firmware */
2987 static int
2988 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
2989 {
2990 	struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd;
2991 	int ret;
2992 	uint32_t status;
2993 
2994 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
2995 
2996 	add_sta_cmd.sta_id = IWM_STATION_ID;
2997 	add_sta_cmd.mac_id_n_color
2998 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
2999 	        IWM_DEFAULT_COLOR));
3000 	if (!update) {
3001 		add_sta_cmd.tfd_queue_msk = htole32(0xf);
3002 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3003 	}
3004 	add_sta_cmd.add_modify = update ? 1 : 0;
3005 	add_sta_cmd.station_flags_msk
3006 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3007 
3008 	status = IWM_ADD_STA_SUCCESS;
3009 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3010 	if (ret)
3011 		return ret;
3012 
3013 	switch (status) {
3014 	case IWM_ADD_STA_SUCCESS:
3015 		break;
3016 	default:
3017 		ret = EIO;
3018 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3019 		break;
3020 	}
3021 
3022 	return ret;
3023 }
3024 
3025 static int
3026 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3027 {
3028 	int ret;
3029 
3030 	ret = iwm_mvm_sta_send_to_fw(sc, in, 0);
3031 	if (ret)
3032 		return ret;
3033 
3034 	return 0;
3035 }
3036 
3037 static int
3038 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3039 {
3040 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3041 }
3042 
3043 static int
3044 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3045 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3046 {
3047 	struct iwm_mvm_add_sta_cmd_v6 cmd;
3048 	int ret;
3049 	uint32_t status;
3050 
3051 	memset(&cmd, 0, sizeof(cmd));
3052 	cmd.sta_id = sta->sta_id;
3053 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3054 
3055 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3056 
3057 	if (addr)
3058 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3059 
3060 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3061 	if (ret)
3062 		return ret;
3063 
3064 	switch (status) {
3065 	case IWM_ADD_STA_SUCCESS:
3066 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3067 		    "%s: Internal station added.\n", __func__);
3068 		return 0;
3069 	default:
3070 		device_printf(sc->sc_dev,
3071 		    "%s: Add internal station failed, status=0x%x\n",
3072 		    __func__, status);
3073 		ret = EIO;
3074 		break;
3075 	}
3076 	return ret;
3077 }
3078 
3079 static int
3080 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3081 {
3082 	int ret;
3083 
3084 	sc->sc_aux_sta.sta_id = 3;
3085 	sc->sc_aux_sta.tfd_queue_msk = 0;
3086 
3087 	ret = iwm_mvm_add_int_sta_common(sc,
3088 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3089 
3090 	if (ret)
3091 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3092 	return ret;
3093 }
3094 
3095 /*
3096  * END mvm/sta.c
3097  */
3098 
3099 /*
3100  * BEGIN mvm/quota.c
3101  */
3102 
3103 static int
3104 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3105 {
3106 	struct iwm_time_quota_cmd cmd;
3107 	int i, idx, ret, num_active_macs, quota, quota_rem;
3108 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3109 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3110 	uint16_t id;
3111 
3112 	memset(&cmd, 0, sizeof(cmd));
3113 
3114 	/* currently, PHY ID == binding ID */
3115 	if (in) {
3116 		id = in->in_phyctxt->id;
3117 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3118 		colors[id] = in->in_phyctxt->color;
3119 
3120 		if (1)
3121 			n_ifs[id] = 1;
3122 	}
3123 
3124 	/*
3125 	 * The FW's scheduling session consists of
3126 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3127 	 * equally between all the bindings that require quota
3128 	 */
3129 	num_active_macs = 0;
3130 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3131 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3132 		num_active_macs += n_ifs[i];
3133 	}
3134 
3135 	quota = 0;
3136 	quota_rem = 0;
3137 	if (num_active_macs) {
3138 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3139 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3140 	}
3141 
3142 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3143 		if (colors[i] < 0)
3144 			continue;
3145 
3146 		cmd.quotas[idx].id_and_color =
3147 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3148 
3149 		if (n_ifs[i] <= 0) {
3150 			cmd.quotas[idx].quota = htole32(0);
3151 			cmd.quotas[idx].max_duration = htole32(0);
3152 		} else {
3153 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3154 			cmd.quotas[idx].max_duration = htole32(0);
3155 		}
3156 		idx++;
3157 	}
3158 
3159 	/* Give the remainder of the session to the first binding */
3160 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3161 
3162 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3163 	    sizeof(cmd), &cmd);
3164 	if (ret)
3165 		device_printf(sc->sc_dev,
3166 		    "%s: Failed to send quota: %d\n", __func__, ret);
3167 	return ret;
3168 }
3169 
3170 /*
3171  * END mvm/quota.c
3172  */
3173 
3174 /*
3175  * ieee80211 routines
3176  */
3177 
3178 /*
3179  * Change to AUTH state in 80211 state machine.  Roughly matches what
3180  * Linux does in bss_info_changed().
3181  */
3182 static int
3183 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3184 {
3185 	struct ieee80211_node *ni;
3186 	struct iwm_node *in;
3187 	struct iwm_vap *iv = IWM_VAP(vap);
3188 	uint32_t duration;
3189 	uint32_t min_duration;
3190 	int error;
3191 
3192 	/*
3193 	 * XXX i have a feeling that the vap node is being
3194 	 * freed from underneath us. Grr.
3195 	 */
3196 	ni = ieee80211_ref_node(vap->iv_bss);
3197 	in = (struct iwm_node *) ni;
3198 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3199 	    "%s: called; vap=%p, bss ni=%p\n",
3200 	    __func__,
3201 	    vap,
3202 	    ni);
3203 
3204 	in->in_assoc = 0;
3205 
3206 	error = iwm_allow_mcast(vap, sc);
3207 	if (error) {
3208 		device_printf(sc->sc_dev,
3209 		    "%s: failed to set multicast\n", __func__);
3210 		goto out;
3211 	}
3212 
3213 	/*
3214 	 * This is where it deviates from what Linux does.
3215 	 *
3216 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3217 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3218 	 * and always does does a mac_ctx_changed().
3219 	 *
3220 	 * The openbsd port doesn't attempt to do that - it reset things
3221 	 * at odd states and does the add here.
3222 	 *
3223 	 * So, until the state handling is fixed (ie, we never reset
3224 	 * the NIC except for a firmware failure, which should drag
3225 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3226 	 * contexts that are required), let's do a dirty hack here.
3227 	 */
3228 	if (iv->is_uploaded) {
3229 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3230 			device_printf(sc->sc_dev,
3231 			    "%s: failed to add MAC\n", __func__);
3232 			goto out;
3233 		}
3234 	} else {
3235 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3236 			device_printf(sc->sc_dev,
3237 			    "%s: failed to add MAC\n", __func__);
3238 			goto out;
3239 		}
3240 	}
3241 
3242 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3243 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3244 		device_printf(sc->sc_dev,
3245 		    "%s: failed add phy ctxt\n", __func__);
3246 		goto out;
3247 	}
3248 	in->in_phyctxt = &sc->sc_phyctxt[0];
3249 
3250 	if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3251 		device_printf(sc->sc_dev,
3252 		    "%s: binding cmd\n", __func__);
3253 		goto out;
3254 	}
3255 
3256 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3257 		device_printf(sc->sc_dev,
3258 		    "%s: failed to add MAC\n", __func__);
3259 		goto out;
3260 	}
3261 
3262 	/* a bit superfluous? */
3263 	while (sc->sc_auth_prot)
3264 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmauth", 0);
3265 	sc->sc_auth_prot = 1;
3266 
3267 	duration = min(IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS,
3268 	    200 + in->in_ni.ni_intval);
3269 	min_duration = min(IWM_MVM_TE_SESSION_PROTECTION_MIN_TIME_MS,
3270 	    100 + in->in_ni.ni_intval);
3271 	iwm_mvm_protect_session(sc, in, duration, min_duration, 500);
3272 
3273 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3274 	    "%s: waiting for auth_prot\n", __func__);
3275 	while (sc->sc_auth_prot != 2) {
3276 		/*
3277 		 * well, meh, but if the kernel is sleeping for half a
3278 		 * second, we have bigger problems
3279 		 */
3280 		if (sc->sc_auth_prot == 0) {
3281 			device_printf(sc->sc_dev,
3282 			    "%s: missed auth window!\n", __func__);
3283 			error = ETIMEDOUT;
3284 			goto out;
3285 		} else if (sc->sc_auth_prot == -1) {
3286 			device_printf(sc->sc_dev,
3287 			    "%s: no time event, denied!\n", __func__);
3288 			sc->sc_auth_prot = 0;
3289 			error = EAUTH;
3290 			goto out;
3291 		}
3292 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmau2", 0);
3293 	}
3294 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "<-%s\n", __func__);
3295 	error = 0;
3296 out:
3297 	ieee80211_free_node(ni);
3298 	return (error);
3299 }
3300 
3301 static int
3302 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3303 {
3304 	struct iwm_node *in = (struct iwm_node *)vap->iv_bss;
3305 	int error;
3306 
3307 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3308 		device_printf(sc->sc_dev,
3309 		    "%s: failed to update STA\n", __func__);
3310 		return error;
3311 	}
3312 
3313 	in->in_assoc = 1;
3314 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3315 		device_printf(sc->sc_dev,
3316 		    "%s: failed to update MAC\n", __func__);
3317 		return error;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static int
3324 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3325 {
3326 	/*
3327 	 * Ok, so *technically* the proper set of calls for going
3328 	 * from RUN back to SCAN is:
3329 	 *
3330 	 * iwm_mvm_power_mac_disable(sc, in);
3331 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3332 	 * iwm_mvm_rm_sta(sc, in);
3333 	 * iwm_mvm_update_quotas(sc, NULL);
3334 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3335 	 * iwm_mvm_binding_remove_vif(sc, in);
3336 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3337 	 *
3338 	 * However, that freezes the device not matter which permutations
3339 	 * and modifications are attempted.  Obviously, this driver is missing
3340 	 * something since it works in the Linux driver, but figuring out what
3341 	 * is missing is a little more complicated.  Now, since we're going
3342 	 * back to nothing anyway, we'll just do a complete device reset.
3343 	 * Up your's, device!
3344 	 */
3345 	//iwm_mvm_flush_tx_path(sc, 0xf, 1);
3346 	iwm_stop_device(sc);
3347 	iwm_init_hw(sc);
3348 	if (in)
3349 		in->in_assoc = 0;
3350 	return 0;
3351 
3352 #if 0
3353 	int error;
3354 
3355 	iwm_mvm_power_mac_disable(sc, in);
3356 
3357 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3358 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3359 		return error;
3360 	}
3361 
3362 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3363 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3364 		return error;
3365 	}
3366 	error = iwm_mvm_rm_sta(sc, in);
3367 	in->in_assoc = 0;
3368 	iwm_mvm_update_quotas(sc, NULL);
3369 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3370 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3371 		return error;
3372 	}
3373 	iwm_mvm_binding_remove_vif(sc, in);
3374 
3375 	iwm_mvm_mac_ctxt_remove(sc, in);
3376 
3377 	return error;
3378 #endif
3379 }
3380 
3381 static struct ieee80211_node *
3382 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3383 {
3384 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3385 	    M_NOWAIT | M_ZERO);
3386 }
3387 
3388 static void
3389 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3390 {
3391 	struct ieee80211_node *ni = &in->in_ni;
3392 	struct iwm_lq_cmd *lq = &in->in_lq;
3393 	int nrates = ni->ni_rates.rs_nrates;
3394 	int i, ridx, tab = 0;
3395 	int txant = 0;
3396 
3397 	if (nrates > nitems(lq->rs_table)) {
3398 		device_printf(sc->sc_dev,
3399 		    "%s: node supports %d rates, driver handles "
3400 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3401 		return;
3402 	}
3403 
3404 	/*
3405 	 * XXX .. and most of iwm_node is not initialised explicitly;
3406 	 * it's all just 0x0 passed to the firmware.
3407 	 */
3408 
3409 	/* first figure out which rates we should support */
3410 	/* XXX TODO: this isn't 11n aware /at all/ */
3411 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3412 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3413 	    "%s: nrates=%d\n", __func__, nrates);
3414 	for (i = 0; i < nrates; i++) {
3415 		int rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
3416 
3417 		/* Map 802.11 rate to HW rate index. */
3418 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
3419 			if (iwm_rates[ridx].rate == rate)
3420 				break;
3421 		if (ridx > IWM_RIDX_MAX) {
3422 			device_printf(sc->sc_dev,
3423 			    "%s: WARNING: device rate for %d not found!\n",
3424 			    __func__, rate);
3425 		} else {
3426 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3427 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
3428 			    __func__,
3429 			    i,
3430 			    rate,
3431 			    ridx);
3432 			in->in_ridx[i] = ridx;
3433 		}
3434 	}
3435 
3436 	/* then construct a lq_cmd based on those */
3437 	memset(lq, 0, sizeof(*lq));
3438 	lq->sta_id = IWM_STATION_ID;
3439 
3440 	/*
3441 	 * are these used? (we don't do SISO or MIMO)
3442 	 * need to set them to non-zero, though, or we get an error.
3443 	 */
3444 	lq->single_stream_ant_msk = 1;
3445 	lq->dual_stream_ant_msk = 1;
3446 
3447 	/*
3448 	 * Build the actual rate selection table.
3449 	 * The lowest bits are the rates.  Additionally,
3450 	 * CCK needs bit 9 to be set.  The rest of the bits
3451 	 * we add to the table select the tx antenna
3452 	 * Note that we add the rates in the highest rate first
3453 	 * (opposite of ni_rates).
3454 	 */
3455 	/*
3456 	 * XXX TODO: this should be looping over the min of nrates
3457 	 * and LQ_MAX_RETRY_NUM.  Sigh.
3458 	 */
3459 	for (i = 0; i < nrates; i++) {
3460 		int nextant;
3461 
3462 		if (txant == 0)
3463 			txant = IWM_FW_VALID_TX_ANT(sc);
3464 		nextant = 1<<(ffs(txant)-1);
3465 		txant &= ~nextant;
3466 
3467 		/*
3468 		 * Map the rate id into a rate index into
3469 		 * our hardware table containing the
3470 		 * configuration to use for this rate.
3471 		 */
3472 		ridx = in->in_ridx[(nrates-1)-i];
3473 		tab = iwm_rates[ridx].plcp;
3474 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
3475 		if (IWM_RIDX_IS_CCK(ridx))
3476 			tab |= IWM_RATE_MCS_CCK_MSK;
3477 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3478 		    "station rate i=%d, rate=%d, hw=%x\n",
3479 		    i, iwm_rates[ridx].rate, tab);
3480 		lq->rs_table[i] = htole32(tab);
3481 	}
3482 	/* then fill the rest with the lowest possible rate */
3483 	for (i = nrates; i < nitems(lq->rs_table); i++) {
3484 		KASSERT(tab != 0, ("invalid tab"));
3485 		lq->rs_table[i] = htole32(tab);
3486 	}
3487 }
3488 
3489 static int
3490 iwm_media_change(struct ifnet *ifp)
3491 {
3492 	struct iwm_softc *sc = ifp->if_softc;
3493 	int error;
3494 
3495 	error = ieee80211_media_change(ifp);
3496 	if (error != ENETRESET)
3497 		return error;
3498 
3499 	if ((ifp->if_flags & IFF_UP) &&
3500 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3501 		iwm_stop(ifp, 0);
3502 		iwm_init(sc);
3503 	}
3504 	return error;
3505 }
3506 
3507 
3508 static int
3509 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
3510 {
3511 	struct iwm_vap *ivp = IWM_VAP(vap);
3512 	struct ieee80211com *ic = vap->iv_ic;
3513 	struct iwm_softc *sc = ic->ic_softc;
3514 	struct iwm_node *in;
3515 	int error;
3516 
3517 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3518 	    "switching state %s -> %s\n",
3519 	    ieee80211_state_name[vap->iv_state],
3520 	    ieee80211_state_name[nstate]);
3521 	IEEE80211_UNLOCK(ic);
3522 	IWM_LOCK(sc);
3523 	/* disable beacon filtering if we're hopping out of RUN */
3524 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
3525 		iwm_mvm_disable_beacon_filter(sc);
3526 
3527 		if (((in = (void *)vap->iv_bss) != NULL))
3528 			in->in_assoc = 0;
3529 
3530 		iwm_release(sc, NULL);
3531 
3532 		/*
3533 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
3534 		 * above then the card will be completely reinitialized,
3535 		 * so the driver must do everything necessary to bring the card
3536 		 * from INIT to SCAN.
3537 		 *
3538 		 * Additionally, upon receiving deauth frame from AP,
3539 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
3540 		 * state. This will also fail with this driver, so bring the FSM
3541 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
3542 		 *
3543 		 * XXX TODO: fix this for FreeBSD!
3544 		 */
3545 		if (nstate == IEEE80211_S_SCAN ||
3546 		    nstate == IEEE80211_S_AUTH ||
3547 		    nstate == IEEE80211_S_ASSOC) {
3548 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3549 			    "Force transition to INIT; MGT=%d\n", arg);
3550 			IWM_UNLOCK(sc);
3551 			IEEE80211_LOCK(ic);
3552 			vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
3553 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3554 			    "Going INIT->SCAN\n");
3555 			nstate = IEEE80211_S_SCAN;
3556 			IEEE80211_UNLOCK(ic);
3557 			IWM_LOCK(sc);
3558 		}
3559 	}
3560 
3561 	switch (nstate) {
3562 	case IEEE80211_S_INIT:
3563 		sc->sc_scanband = 0;
3564 		break;
3565 
3566 	case IEEE80211_S_AUTH:
3567 		if ((error = iwm_auth(vap, sc)) != 0) {
3568 			device_printf(sc->sc_dev,
3569 			    "%s: could not move to auth state: %d\n",
3570 			    __func__, error);
3571 			break;
3572 		}
3573 		break;
3574 
3575 	case IEEE80211_S_ASSOC:
3576 		if ((error = iwm_assoc(vap, sc)) != 0) {
3577 			device_printf(sc->sc_dev,
3578 			    "%s: failed to associate: %d\n", __func__,
3579 			    error);
3580 			break;
3581 		}
3582 		break;
3583 
3584 	case IEEE80211_S_RUN:
3585 	{
3586 		struct iwm_host_cmd cmd = {
3587 			.id = IWM_LQ_CMD,
3588 			.len = { sizeof(in->in_lq), },
3589 			.flags = IWM_CMD_SYNC,
3590 		};
3591 
3592 		/* Update the association state, now we have it all */
3593 		/* (eg associd comes in at this point */
3594 		error = iwm_assoc(vap, sc);
3595 		if (error != 0) {
3596 			device_printf(sc->sc_dev,
3597 			    "%s: failed to update association state: %d\n",
3598 			    __func__,
3599 			    error);
3600 			break;
3601 		}
3602 
3603 		in = (struct iwm_node *)vap->iv_bss;
3604 		iwm_mvm_power_mac_update_mode(sc, in);
3605 		iwm_mvm_enable_beacon_filter(sc, in);
3606 		iwm_mvm_update_quotas(sc, in);
3607 		iwm_setrates(sc, in);
3608 
3609 		cmd.data[0] = &in->in_lq;
3610 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
3611 			device_printf(sc->sc_dev,
3612 			    "%s: IWM_LQ_CMD failed\n", __func__);
3613 		}
3614 
3615 		break;
3616 	}
3617 
3618 	default:
3619 		break;
3620 	}
3621 	IWM_UNLOCK(sc);
3622 	IEEE80211_LOCK(ic);
3623 
3624 	return (ivp->iv_newstate(vap, nstate, arg));
3625 }
3626 
3627 void
3628 iwm_endscan_cb(void *arg, int pending)
3629 {
3630 	struct iwm_softc *sc = arg;
3631 	struct ieee80211com *ic = sc->sc_ic;
3632 	int done;
3633 	int error;
3634 
3635 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
3636 	    "%s: scan ended\n",
3637 	    __func__);
3638 
3639 	IWM_LOCK(sc);
3640 	if (sc->sc_scanband == IEEE80211_CHAN_2GHZ &&
3641 	    sc->sc_nvm.sku_cap_band_52GHz_enable) {
3642 		done = 0;
3643 		if ((error = iwm_mvm_scan_request(sc,
3644 		    IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) {
3645 			device_printf(sc->sc_dev, "could not initiate scan\n");
3646 			done = 1;
3647 		}
3648 	} else {
3649 		done = 1;
3650 	}
3651 
3652 	if (done) {
3653 		IWM_UNLOCK(sc);
3654 		ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
3655 		IWM_LOCK(sc);
3656 		sc->sc_scanband = 0;
3657 	}
3658 	IWM_UNLOCK(sc);
3659 }
3660 
3661 static int
3662 iwm_init_hw(struct iwm_softc *sc)
3663 {
3664 	struct ieee80211com *ic = sc->sc_ic;
3665 	int error, i, qid;
3666 
3667 	if ((error = iwm_start_hw(sc)) != 0)
3668 		return error;
3669 
3670 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
3671 		return error;
3672 	}
3673 
3674 	/*
3675 	 * should stop and start HW since that INIT
3676 	 * image just loaded
3677 	 */
3678 	iwm_stop_device(sc);
3679 	if ((error = iwm_start_hw(sc)) != 0) {
3680 		device_printf(sc->sc_dev, "could not initialize hardware\n");
3681 		return error;
3682 	}
3683 
3684 	/* omstart, this time with the regular firmware */
3685 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
3686 	if (error) {
3687 		device_printf(sc->sc_dev, "could not load firmware\n");
3688 		goto error;
3689 	}
3690 
3691 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
3692 		goto error;
3693 
3694 	/* Send phy db control command and then phy db calibration*/
3695 	if ((error = iwm_send_phy_db_data(sc)) != 0)
3696 		goto error;
3697 
3698 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0)
3699 		goto error;
3700 
3701 	/* Add auxiliary station for scanning */
3702 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0)
3703 		goto error;
3704 
3705 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
3706 		/*
3707 		 * The channel used here isn't relevant as it's
3708 		 * going to be overwritten in the other flows.
3709 		 * For now use the first channel we have.
3710 		 */
3711 		if ((error = iwm_mvm_phy_ctxt_add(sc,
3712 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
3713 			goto error;
3714 	}
3715 
3716 	error = iwm_mvm_power_update_device(sc);
3717 	if (error)
3718 		goto error;
3719 
3720 	/* Mark TX rings as active. */
3721 	for (qid = 0; qid < 4; qid++) {
3722 		iwm_enable_txq(sc, qid, qid);
3723 	}
3724 
3725 	return 0;
3726 
3727  error:
3728 	iwm_stop_device(sc);
3729 	return error;
3730 }
3731 
3732 /* Allow multicast from our BSSID. */
3733 static int
3734 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
3735 {
3736 	struct ieee80211_node *ni = vap->iv_bss;
3737 	struct iwm_mcast_filter_cmd *cmd;
3738 	size_t size;
3739 	int error;
3740 
3741 	size = roundup(sizeof(*cmd), 4);
3742 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
3743 	if (cmd == NULL)
3744 		return ENOMEM;
3745 	cmd->filter_own = 1;
3746 	cmd->port_id = 0;
3747 	cmd->count = 0;
3748 	cmd->pass_all = 1;
3749 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
3750 
3751 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
3752 	    IWM_CMD_SYNC, size, cmd);
3753 	free(cmd, M_DEVBUF);
3754 
3755 	return (error);
3756 }
3757 
3758 /*
3759  * ifnet interfaces
3760  */
3761 
3762 static void
3763 iwm_init(void *arg)
3764 {
3765 	struct iwm_softc *sc = arg;
3766 
3767 	IWM_LOCK(sc);
3768 	iwm_init_locked(sc);
3769 	IWM_UNLOCK(sc);
3770 }
3771 
3772 static void
3773 iwm_init_locked(struct iwm_softc *sc)
3774 {
3775 	struct ifnet *ifp = sc->sc_ifp;
3776 	int error;
3777 
3778 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
3779 		return;
3780 	}
3781 	sc->sc_generation++;
3782 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
3783 
3784 	if ((error = iwm_init_hw(sc)) != 0) {
3785 		iwm_stop_locked(ifp);
3786 		return;
3787 	}
3788 
3789 	/*
3790  	 * Ok, firmware loaded and we are jogging
3791 	 */
3792 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3793 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3794 	sc->sc_flags |= IWM_FLAG_HW_INITED;
3795 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3796 }
3797 
3798 /*
3799  * Dequeue packets from sendq and call send.
3800  * mostly from iwn
3801  */
3802 static void
3803 iwm_start(struct ifnet *ifp)
3804 {
3805 	struct iwm_softc *sc = ifp->if_softc;
3806 
3807 	IWM_LOCK(sc);
3808 	iwm_start_locked(ifp);
3809 	IWM_UNLOCK(sc);
3810 }
3811 
3812 static void
3813 iwm_start_locked(struct ifnet *ifp)
3814 {
3815 	struct iwm_softc *sc = ifp->if_softc;
3816 	struct ieee80211_node *ni;
3817 	struct mbuf *m;
3818 	int ac = 0;
3819 
3820 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING)
3821 		return;
3822 
3823 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
3824 	for (;;) {
3825 		/* why isn't this done per-queue? */
3826 		if (sc->qfullmsk != 0) {
3827 			ifp->if_flags |= IFF_DRV_OACTIVE;
3828 			break;
3829 		}
3830 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3831 		if (!m)
3832 			break;
3833 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3834 		if (iwm_tx(sc, m, ni, ac) != 0) {
3835 			ieee80211_free_node(ni);
3836 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3837 			continue;
3838 		}
3839 
3840 		if (ifp->if_flags & IFF_UP) {
3841 			sc->sc_tx_timer = 15;
3842 		}
3843 	}
3844 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
3845 
3846 	return;
3847 }
3848 
3849 static void
3850 iwm_stop(struct ifnet *ifp, int disable)
3851 {
3852 	struct iwm_softc *sc = ifp->if_softc;
3853 
3854 	IWM_LOCK(sc);
3855 	iwm_stop_locked(ifp);
3856 	IWM_UNLOCK(sc);
3857 }
3858 
3859 static void
3860 iwm_stop_locked(struct ifnet *ifp)
3861 {
3862 	struct iwm_softc *sc = ifp->if_softc;
3863 
3864 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
3865 	sc->sc_flags |= IWM_FLAG_STOPPED;
3866 	sc->sc_generation++;
3867 	sc->sc_scanband = 0;
3868 	sc->sc_auth_prot = 0;
3869 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3870 	sc->sc_tx_timer = 0;
3871 	iwm_stop_device(sc);
3872 }
3873 
3874 static void
3875 iwm_watchdog(void *arg)
3876 {
3877 	struct iwm_softc *sc = arg;
3878 	struct ifnet *ifp = sc->sc_ifp;
3879 
3880 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3881 	if (sc->sc_tx_timer > 0) {
3882 		if (--sc->sc_tx_timer == 0) {
3883 			device_printf(sc->sc_dev, "device timeout\n");
3884 #ifdef IWM_DEBUG
3885 			iwm_nic_error(sc);
3886 #endif
3887 			ifp->if_flags &= ~IFF_UP;
3888 			iwm_stop_locked(ifp);
3889 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3890 			return;
3891 		}
3892 	}
3893 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3894 }
3895 
3896 static int
3897 iwm_ioctl(struct ifnet *ifp, u_long cmd, iwm_caddr_t data)
3898 {
3899 	struct iwm_softc *sc = ifp->if_softc;
3900 	struct ieee80211com *ic = sc->sc_ic;
3901         struct ifreq *ifr = (struct ifreq *) data;
3902 	int error = 0, startall = 0;
3903 
3904 	switch (cmd) {
3905 	case SIOCGIFADDR:
3906 		error = ether_ioctl(ifp, cmd, data);
3907 		break;
3908         case SIOCGIFMEDIA:
3909                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3910                 break;
3911 	case SIOCSIFFLAGS:
3912 		IWM_LOCK(sc);
3913 		if (ifp->if_flags & IFF_UP) {
3914 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3915 				iwm_init_locked(sc);
3916 				startall = 1;
3917 			}
3918 		} else {
3919 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3920 				iwm_stop_locked(ifp);
3921 		}
3922 		IWM_UNLOCK(sc);
3923 		if (startall)
3924 			ieee80211_start_all(ic);
3925 
3926 		break;
3927 	default:
3928 		error = EINVAL;
3929 		break;
3930 	}
3931 
3932 	return error;
3933 }
3934 
3935 /*
3936  * The interrupt side of things
3937  */
3938 
3939 /*
3940  * error dumping routines are from iwlwifi/mvm/utils.c
3941  */
3942 
3943 /*
3944  * Note: This structure is read from the device with IO accesses,
3945  * and the reading already does the endian conversion. As it is
3946  * read with uint32_t-sized accesses, any members with a different size
3947  * need to be ordered correctly though!
3948  */
3949 struct iwm_error_event_table {
3950 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
3951 	uint32_t error_id;		/* type of error */
3952 	uint32_t pc;			/* program counter */
3953 	uint32_t blink1;		/* branch link */
3954 	uint32_t blink2;		/* branch link */
3955 	uint32_t ilink1;		/* interrupt link */
3956 	uint32_t ilink2;		/* interrupt link */
3957 	uint32_t data1;		/* error-specific data */
3958 	uint32_t data2;		/* error-specific data */
3959 	uint32_t data3;		/* error-specific data */
3960 	uint32_t bcon_time;		/* beacon timer */
3961 	uint32_t tsf_low;		/* network timestamp function timer */
3962 	uint32_t tsf_hi;		/* network timestamp function timer */
3963 	uint32_t gp1;		/* GP1 timer register */
3964 	uint32_t gp2;		/* GP2 timer register */
3965 	uint32_t gp3;		/* GP3 timer register */
3966 	uint32_t ucode_ver;		/* uCode version */
3967 	uint32_t hw_ver;		/* HW Silicon version */
3968 	uint32_t brd_ver;		/* HW board version */
3969 	uint32_t log_pc;		/* log program counter */
3970 	uint32_t frame_ptr;		/* frame pointer */
3971 	uint32_t stack_ptr;		/* stack pointer */
3972 	uint32_t hcmd;		/* last host command header */
3973 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
3974 				 * rxtx_flag */
3975 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
3976 				 * host_flag */
3977 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
3978 				 * enc_flag */
3979 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
3980 				 * time_flag */
3981 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
3982 				 * wico interrupt */
3983 	uint32_t isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
3984 	uint32_t wait_event;		/* wait event() caller address */
3985 	uint32_t l2p_control;	/* L2pControlField */
3986 	uint32_t l2p_duration;	/* L2pDurationField */
3987 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
3988 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
3989 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
3990 				 * (LMPM_PMG_SEL) */
3991 	uint32_t u_timestamp;	/* indicate when the date and time of the
3992 				 * compilation */
3993 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
3994 } __packed;
3995 
3996 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
3997 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
3998 
3999 #ifdef IWM_DEBUG
4000 struct {
4001 	const char *name;
4002 	uint8_t num;
4003 } advanced_lookup[] = {
4004 	{ "NMI_INTERRUPT_WDG", 0x34 },
4005 	{ "SYSASSERT", 0x35 },
4006 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4007 	{ "BAD_COMMAND", 0x38 },
4008 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4009 	{ "FATAL_ERROR", 0x3D },
4010 	{ "NMI_TRM_HW_ERR", 0x46 },
4011 	{ "NMI_INTERRUPT_TRM", 0x4C },
4012 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4013 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4014 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4015 	{ "NMI_INTERRUPT_HOST", 0x66 },
4016 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4017 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4018 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4019 	{ "ADVANCED_SYSASSERT", 0 },
4020 };
4021 
4022 static const char *
4023 iwm_desc_lookup(uint32_t num)
4024 {
4025 	int i;
4026 
4027 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4028 		if (advanced_lookup[i].num == num)
4029 			return advanced_lookup[i].name;
4030 
4031 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4032 	return advanced_lookup[i].name;
4033 }
4034 
4035 /*
4036  * Support for dumping the error log seemed like a good idea ...
4037  * but it's mostly hex junk and the only sensible thing is the
4038  * hw/ucode revision (which we know anyway).  Since it's here,
4039  * I'll just leave it in, just in case e.g. the Intel guys want to
4040  * help us decipher some "ADVANCED_SYSASSERT" later.
4041  */
4042 static void
4043 iwm_nic_error(struct iwm_softc *sc)
4044 {
4045 	struct iwm_error_event_table table;
4046 	uint32_t base;
4047 
4048 	device_printf(sc->sc_dev, "dumping device error log\n");
4049 	base = sc->sc_uc.uc_error_event_table;
4050 	if (base < 0x800000 || base >= 0x80C000) {
4051 		device_printf(sc->sc_dev,
4052 		    "Not valid error log pointer 0x%08x\n", base);
4053 		return;
4054 	}
4055 
4056 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) {
4057 		device_printf(sc->sc_dev, "reading errlog failed\n");
4058 		return;
4059 	}
4060 
4061 	if (!table.valid) {
4062 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
4063 		return;
4064 	}
4065 
4066 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4067 		device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n");
4068 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4069 		    sc->sc_flags, table.valid);
4070 	}
4071 
4072 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4073 		iwm_desc_lookup(table.error_id));
4074 	device_printf(sc->sc_dev, "%08X | uPc\n", table.pc);
4075 	device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1);
4076 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4077 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4078 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4079 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4080 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4081 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4082 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4083 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4084 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4085 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4086 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4087 	device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3);
4088 	device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver);
4089 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4090 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4091 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4092 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4093 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4094 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4095 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4096 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4097 	device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref);
4098 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4099 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4100 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4101 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4102 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4103 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4104 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4105 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4106 }
4107 #endif
4108 
4109 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
4110 do {									\
4111 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4112 	_var_ = (void *)((_pkt_)+1);					\
4113 } while (/*CONSTCOND*/0)
4114 
4115 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
4116 do {									\
4117 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4118 	_ptr_ = (void *)((_pkt_)+1);					\
4119 } while (/*CONSTCOND*/0)
4120 
4121 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
4122 
4123 /*
4124  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
4125  * Basic structure from if_iwn
4126  */
4127 static void
4128 iwm_notif_intr(struct iwm_softc *sc)
4129 {
4130 	uint16_t hw;
4131 
4132 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4133 	    BUS_DMASYNC_POSTREAD);
4134 
4135 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
4136 	while (sc->rxq.cur != hw) {
4137 		struct iwm_rx_ring *ring = &sc->rxq;
4138 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4139 		struct iwm_rx_packet *pkt;
4140 		struct iwm_cmd_response *cresp;
4141 		int qid, idx;
4142 
4143 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4144 		    BUS_DMASYNC_POSTREAD);
4145 		pkt = mtod(data->m, struct iwm_rx_packet *);
4146 
4147 		qid = pkt->hdr.qid & ~0x80;
4148 		idx = pkt->hdr.idx;
4149 
4150 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4151 		    "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n",
4152 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags,
4153 		    pkt->hdr.code, sc->rxq.cur, hw);
4154 
4155 		/*
4156 		 * randomly get these from the firmware, no idea why.
4157 		 * they at least seem harmless, so just ignore them for now
4158 		 */
4159 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
4160 		    || pkt->len_n_flags == htole32(0x55550000))) {
4161 			ADVANCE_RXQ(sc);
4162 			continue;
4163 		}
4164 
4165 		switch (pkt->hdr.code) {
4166 		case IWM_REPLY_RX_PHY_CMD:
4167 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
4168 			break;
4169 
4170 		case IWM_REPLY_RX_MPDU_CMD:
4171 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
4172 			break;
4173 
4174 		case IWM_TX_CMD:
4175 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
4176 			break;
4177 
4178 		case IWM_MISSED_BEACONS_NOTIFICATION: {
4179 			struct iwm_missed_beacons_notif *resp;
4180 			int missed;
4181 
4182 			/* XXX look at mac_id to determine interface ID */
4183 			struct ieee80211com *ic = sc->sc_ic;
4184 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4185 
4186 			SYNC_RESP_STRUCT(resp, pkt);
4187 			missed = le32toh(resp->consec_missed_beacons);
4188 
4189 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
4190 			    "%s: MISSED_BEACON: mac_id=%d, "
4191 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
4192 			    "num_rx=%d\n",
4193 			    __func__,
4194 			    le32toh(resp->mac_id),
4195 			    le32toh(resp->consec_missed_beacons_since_last_rx),
4196 			    le32toh(resp->consec_missed_beacons),
4197 			    le32toh(resp->num_expected_beacons),
4198 			    le32toh(resp->num_recvd_beacons));
4199 
4200 			/* Be paranoid */
4201 			if (vap == NULL)
4202 				break;
4203 
4204 			/* XXX no net80211 locking? */
4205 			if (vap->iv_state == IEEE80211_S_RUN &&
4206 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4207 				if (missed > vap->iv_bmissthreshold) {
4208 					/* XXX bad locking; turn into task */
4209 					IWM_UNLOCK(sc);
4210 					ieee80211_beacon_miss(ic);
4211 					IWM_LOCK(sc);
4212 				}
4213 			}
4214 
4215 			break; }
4216 
4217 		case IWM_MVM_ALIVE: {
4218 			struct iwm_mvm_alive_resp *resp;
4219 			SYNC_RESP_STRUCT(resp, pkt);
4220 
4221 			sc->sc_uc.uc_error_event_table
4222 			    = le32toh(resp->error_event_table_ptr);
4223 			sc->sc_uc.uc_log_event_table
4224 			    = le32toh(resp->log_event_table_ptr);
4225 			sc->sched_base = le32toh(resp->scd_base_ptr);
4226 			sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK;
4227 
4228 			sc->sc_uc.uc_intr = 1;
4229 			wakeup(&sc->sc_uc);
4230 			break; }
4231 
4232 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
4233 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
4234 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
4235 
4236 			iwm_phy_db_set_section(sc, phy_db_notif);
4237 
4238 			break; }
4239 
4240 		case IWM_STATISTICS_NOTIFICATION: {
4241 			struct iwm_notif_statistics *stats;
4242 			SYNC_RESP_STRUCT(stats, pkt);
4243 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
4244 			sc->sc_noise = iwm_get_noise(&stats->rx.general);
4245 			break; }
4246 
4247 		case IWM_NVM_ACCESS_CMD:
4248 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4249 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4250 				    BUS_DMASYNC_POSTREAD);
4251 				memcpy(sc->sc_cmd_resp,
4252 				    pkt, sizeof(sc->sc_cmd_resp));
4253 			}
4254 			break;
4255 
4256 		case IWM_PHY_CONFIGURATION_CMD:
4257 		case IWM_TX_ANT_CONFIGURATION_CMD:
4258 		case IWM_ADD_STA:
4259 		case IWM_MAC_CONTEXT_CMD:
4260 		case IWM_REPLY_SF_CFG_CMD:
4261 		case IWM_POWER_TABLE_CMD:
4262 		case IWM_PHY_CONTEXT_CMD:
4263 		case IWM_BINDING_CONTEXT_CMD:
4264 		case IWM_TIME_EVENT_CMD:
4265 		case IWM_SCAN_REQUEST_CMD:
4266 		case IWM_REPLY_BEACON_FILTERING_CMD:
4267 		case IWM_MAC_PM_POWER_TABLE:
4268 		case IWM_TIME_QUOTA_CMD:
4269 		case IWM_REMOVE_STA:
4270 		case IWM_TXPATH_FLUSH:
4271 		case IWM_LQ_CMD:
4272 			SYNC_RESP_STRUCT(cresp, pkt);
4273 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4274 				memcpy(sc->sc_cmd_resp,
4275 				    pkt, sizeof(*pkt)+sizeof(*cresp));
4276 			}
4277 			break;
4278 
4279 		/* ignore */
4280 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
4281 			break;
4282 
4283 		case IWM_INIT_COMPLETE_NOTIF:
4284 			sc->sc_init_complete = 1;
4285 			wakeup(&sc->sc_init_complete);
4286 			break;
4287 
4288 		case IWM_SCAN_COMPLETE_NOTIFICATION: {
4289 			struct iwm_scan_complete_notif *notif;
4290 			SYNC_RESP_STRUCT(notif, pkt);
4291 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
4292 			break; }
4293 
4294 		case IWM_REPLY_ERROR: {
4295 			struct iwm_error_resp *resp;
4296 			SYNC_RESP_STRUCT(resp, pkt);
4297 
4298 			device_printf(sc->sc_dev,
4299 			    "firmware error 0x%x, cmd 0x%x\n",
4300 			    le32toh(resp->error_type),
4301 			    resp->cmd_id);
4302 			break; }
4303 
4304 		case IWM_TIME_EVENT_NOTIFICATION: {
4305 			struct iwm_time_event_notif *notif;
4306 			SYNC_RESP_STRUCT(notif, pkt);
4307 
4308 			if (notif->status) {
4309 				if (le32toh(notif->action) &
4310 				    IWM_TE_V2_NOTIF_HOST_EVENT_START)
4311 					sc->sc_auth_prot = 2;
4312 				else
4313 					sc->sc_auth_prot = 0;
4314 			} else {
4315 				sc->sc_auth_prot = -1;
4316 			}
4317 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4318 			    "%s: time event notification auth_prot=%d\n",
4319 				__func__, sc->sc_auth_prot);
4320 
4321 			wakeup(&sc->sc_auth_prot);
4322 			break; }
4323 
4324 		case IWM_MCAST_FILTER_CMD:
4325 			break;
4326 
4327 		default:
4328 			device_printf(sc->sc_dev,
4329 			    "frame %d/%d %x UNHANDLED (this should "
4330 			    "not happen)\n", qid, idx,
4331 			    pkt->len_n_flags);
4332 			break;
4333 		}
4334 
4335 		/*
4336 		 * Why test bit 0x80?  The Linux driver:
4337 		 *
4338 		 * There is one exception:  uCode sets bit 15 when it
4339 		 * originates the response/notification, i.e. when the
4340 		 * response/notification is not a direct response to a
4341 		 * command sent by the driver.  For example, uCode issues
4342 		 * IWM_REPLY_RX when it sends a received frame to the driver;
4343 		 * it is not a direct response to any driver command.
4344 		 *
4345 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
4346 		 * uses a slightly different format for pkt->hdr, and "qid"
4347 		 * is actually the upper byte of a two-byte field.
4348 		 */
4349 		if (!(pkt->hdr.qid & (1 << 7))) {
4350 			iwm_cmd_done(sc, pkt);
4351 		}
4352 
4353 		ADVANCE_RXQ(sc);
4354 	}
4355 
4356 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
4357 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
4358 
4359 	/*
4360 	 * Tell the firmware what we have processed.
4361 	 * Seems like the hardware gets upset unless we align
4362 	 * the write by 8??
4363 	 */
4364 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
4365 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
4366 }
4367 
4368 static void
4369 iwm_intr(void *arg)
4370 {
4371 	struct iwm_softc *sc = arg;
4372 	struct ifnet *ifp = sc->sc_ifp;
4373 	int handled = 0;
4374 	int r1, r2, rv = 0;
4375 	int isperiodic = 0;
4376 
4377 	IWM_LOCK(sc);
4378 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
4379 
4380 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
4381 		uint32_t *ict = sc->ict_dma.vaddr;
4382 		int tmp;
4383 
4384 		tmp = htole32(ict[sc->ict_cur]);
4385 		if (!tmp)
4386 			goto out_ena;
4387 
4388 		/*
4389 		 * ok, there was something.  keep plowing until we have all.
4390 		 */
4391 		r1 = r2 = 0;
4392 		while (tmp) {
4393 			r1 |= tmp;
4394 			ict[sc->ict_cur] = 0;
4395 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
4396 			tmp = htole32(ict[sc->ict_cur]);
4397 		}
4398 
4399 		/* this is where the fun begins.  don't ask */
4400 		if (r1 == 0xffffffff)
4401 			r1 = 0;
4402 
4403 		/* i am not expected to understand this */
4404 		if (r1 & 0xc0000)
4405 			r1 |= 0x8000;
4406 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
4407 	} else {
4408 		r1 = IWM_READ(sc, IWM_CSR_INT);
4409 		/* "hardware gone" (where, fishing?) */
4410 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4411 			goto out;
4412 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
4413 	}
4414 	if (r1 == 0 && r2 == 0) {
4415 		goto out_ena;
4416 	}
4417 
4418 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
4419 
4420 	/* ignored */
4421 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
4422 
4423 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
4424 #ifdef IWM_DEBUG
4425 		int i;
4426 		struct ieee80211com *ic = sc->sc_ic;
4427 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4428 
4429 		iwm_nic_error(sc);
4430 
4431 		/* Dump driver status (TX and RX rings) while we're here. */
4432 		device_printf(sc->sc_dev, "driver status:\n");
4433 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
4434 			struct iwm_tx_ring *ring = &sc->txq[i];
4435 			device_printf(sc->sc_dev,
4436 			    "  tx ring %2d: qid=%-2d cur=%-3d "
4437 			    "queued=%-3d\n",
4438 			    i, ring->qid, ring->cur, ring->queued);
4439 		}
4440 		device_printf(sc->sc_dev,
4441 		    "  rx ring: cur=%d\n", sc->rxq.cur);
4442 		device_printf(sc->sc_dev,
4443 		    "  802.11 state %d\n", vap->iv_state);
4444 #endif
4445 
4446 		device_printf(sc->sc_dev, "fatal firmware error\n");
4447 		ifp->if_flags &= ~IFF_UP;
4448 		iwm_stop_locked(ifp);
4449 		rv = 1;
4450 		goto out;
4451 
4452 	}
4453 
4454 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
4455 		handled |= IWM_CSR_INT_BIT_HW_ERR;
4456 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
4457 		ifp->if_flags &= ~IFF_UP;
4458 		iwm_stop_locked(ifp);
4459 		rv = 1;
4460 		goto out;
4461 	}
4462 
4463 	/* firmware chunk loaded */
4464 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
4465 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
4466 		handled |= IWM_CSR_INT_BIT_FH_TX;
4467 		sc->sc_fw_chunk_done = 1;
4468 		wakeup(&sc->sc_fw);
4469 	}
4470 
4471 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
4472 		handled |= IWM_CSR_INT_BIT_RF_KILL;
4473 		if (iwm_check_rfkill(sc) && (ifp->if_flags & IFF_UP)) {
4474 			device_printf(sc->sc_dev,
4475 			    "%s: rfkill switch, disabling interface\n",
4476 			    __func__);
4477 			ifp->if_flags &= ~IFF_UP;
4478 			iwm_stop_locked(ifp);
4479 		}
4480 	}
4481 
4482 	/*
4483 	 * The Linux driver uses periodic interrupts to avoid races.
4484 	 * We cargo-cult like it's going out of fashion.
4485 	 */
4486 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
4487 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
4488 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
4489 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
4490 			IWM_WRITE_1(sc,
4491 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
4492 		isperiodic = 1;
4493 	}
4494 
4495 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
4496 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
4497 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
4498 
4499 		iwm_notif_intr(sc);
4500 
4501 		/* enable periodic interrupt, see above */
4502 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
4503 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
4504 			    IWM_CSR_INT_PERIODIC_ENA);
4505 	}
4506 
4507 	if (__predict_false(r1 & ~handled))
4508 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4509 		    "%s: unhandled interrupts: %x\n", __func__, r1);
4510 	rv = 1;
4511 
4512  out_ena:
4513 	iwm_restore_interrupts(sc);
4514  out:
4515 	IWM_UNLOCK(sc);
4516 	return;
4517 }
4518 
4519 /*
4520  * Autoconf glue-sniffing
4521  */
4522 #define	PCI_VENDOR_INTEL		0x8086
4523 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
4524 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
4525 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
4526 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
4527 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
4528 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
4529 
4530 static const struct iwm_devices {
4531 	uint16_t	device;
4532 	const char	*name;
4533 } iwm_devices[] = {
4534 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
4535 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
4536 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
4537 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
4538 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
4539 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
4540 };
4541 
4542 static int
4543 iwm_probe(device_t dev)
4544 {
4545 	int i;
4546 
4547 	for (i = 0; i < nitems(iwm_devices); i++)
4548 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
4549 		    pci_get_device(dev) == iwm_devices[i].device) {
4550 			device_set_desc(dev, iwm_devices[i].name);
4551 			return (BUS_PROBE_DEFAULT);
4552 		}
4553 
4554 	return (ENXIO);
4555 }
4556 
4557 static int
4558 iwm_dev_check(device_t dev)
4559 {
4560 	struct iwm_softc *sc;
4561 
4562 	sc = device_get_softc(dev);
4563 
4564 	switch (pci_get_device(dev)) {
4565 	case PCI_PRODUCT_INTEL_WL_3160_1:
4566 	case PCI_PRODUCT_INTEL_WL_3160_2:
4567 		sc->sc_fwname = "iwm3160fw";
4568 		sc->host_interrupt_operation_mode = 1;
4569 		return (0);
4570 	case PCI_PRODUCT_INTEL_WL_7260_1:
4571 	case PCI_PRODUCT_INTEL_WL_7260_2:
4572 		sc->sc_fwname = "iwm7260fw";
4573 		sc->host_interrupt_operation_mode = 1;
4574 		return (0);
4575 	case PCI_PRODUCT_INTEL_WL_7265_1:
4576 	case PCI_PRODUCT_INTEL_WL_7265_2:
4577 		sc->sc_fwname = "iwm7265fw";
4578 		sc->host_interrupt_operation_mode = 0;
4579 		return (0);
4580 	default:
4581 		device_printf(dev, "unknown adapter type\n");
4582 		return ENXIO;
4583 	}
4584 }
4585 
4586 static int
4587 iwm_pci_attach(device_t dev)
4588 {
4589 	struct iwm_softc *sc;
4590 	int count, error, rid;
4591 	uint16_t reg;
4592 
4593 	sc = device_get_softc(dev);
4594 
4595 	/* Clear device-specific "PCI retry timeout" register (41h). */
4596 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4597 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4598 
4599 	/* Enable bus-mastering and hardware bug workaround. */
4600 	pci_enable_busmaster(dev);
4601 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
4602 	/* if !MSI */
4603 	if (reg & PCIM_STATUS_INTxSTATE) {
4604 		reg &= ~PCIM_STATUS_INTxSTATE;
4605 	}
4606 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
4607 
4608 	rid = PCIR_BAR(0);
4609 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
4610 	    RF_ACTIVE);
4611 	if (sc->sc_mem == NULL) {
4612 		device_printf(sc->sc_dev, "can't map mem space\n");
4613 		return (ENXIO);
4614 	}
4615 	sc->sc_st = rman_get_bustag(sc->sc_mem);
4616 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
4617 
4618 	/* Install interrupt handler. */
4619 	count = 1;
4620 	rid = 0;
4621 	if (pci_alloc_msi(dev, &count) == 0)
4622 		rid = 1;
4623 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
4624 	    (rid != 0 ? 0 : RF_SHAREABLE));
4625 	if (sc->sc_irq == NULL) {
4626 		device_printf(dev, "can't map interrupt\n");
4627 			return (ENXIO);
4628 	}
4629 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
4630 	    NULL, iwm_intr, sc, &sc->sc_ih);
4631 	if (sc->sc_ih == NULL) {
4632 		device_printf(dev, "can't establish interrupt");
4633 			return (ENXIO);
4634 	}
4635 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
4636 
4637 	return (0);
4638 }
4639 
4640 static void
4641 iwm_pci_detach(device_t dev)
4642 {
4643 	struct iwm_softc *sc = device_get_softc(dev);
4644 
4645 	if (sc->sc_irq != NULL) {
4646 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
4647 		bus_release_resource(dev, SYS_RES_IRQ,
4648 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
4649 		pci_release_msi(dev);
4650         }
4651 	if (sc->sc_mem != NULL)
4652 		bus_release_resource(dev, SYS_RES_MEMORY,
4653 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
4654 }
4655 
4656 
4657 
4658 static int
4659 iwm_attach(device_t dev)
4660 {
4661 	struct iwm_softc *sc;
4662 	struct ieee80211com *ic;
4663 	struct ifnet *ifp;
4664 	int error;
4665 	int txq_i, i;
4666 
4667 	sc = device_get_softc(dev);
4668 	sc->sc_dev = dev;
4669 	mtx_init(&sc->sc_mtx, "iwm_mtx", MTX_DEF, 0);
4670 
4671 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
4672 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
4673 	sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK,
4674             taskqueue_thread_enqueue, &sc->sc_tq);
4675         error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq");
4676         if (error != 0) {
4677                 device_printf(dev, "can't start threads, error %d\n",
4678 		    error);
4679 		goto fail;
4680         }
4681 
4682 	/* PCI attach */
4683 	error = iwm_pci_attach(dev);
4684 	if (error != 0)
4685 		goto fail;
4686 
4687 	sc->sc_wantresp = -1;
4688 
4689 	/* Check device type */
4690 	error = iwm_dev_check(dev);
4691 	if (error != 0)
4692 		goto fail;
4693 
4694 	sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
4695 
4696 	/*
4697 	 * We now start fiddling with the hardware
4698 	 */
4699 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
4700 	if (iwm_prepare_card_hw(sc) != 0) {
4701 		device_printf(dev, "could not initialize hardware\n");
4702 		goto fail;
4703 	}
4704 
4705 	/* Allocate DMA memory for firmware transfers. */
4706 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
4707 		device_printf(dev, "could not allocate memory for firmware\n");
4708 		goto fail;
4709 	}
4710 
4711 	/* Allocate "Keep Warm" page. */
4712 	if ((error = iwm_alloc_kw(sc)) != 0) {
4713 		device_printf(dev, "could not allocate keep warm page\n");
4714 		goto fail;
4715 	}
4716 
4717 	/* We use ICT interrupts */
4718 	if ((error = iwm_alloc_ict(sc)) != 0) {
4719 		device_printf(dev, "could not allocate ICT table\n");
4720 		goto fail;
4721 	}
4722 
4723 	/* Allocate TX scheduler "rings". */
4724 	if ((error = iwm_alloc_sched(sc)) != 0) {
4725 		device_printf(dev, "could not allocate TX scheduler rings\n");
4726 		goto fail;
4727 	}
4728 
4729 	/* Allocate TX rings */
4730 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
4731 		if ((error = iwm_alloc_tx_ring(sc,
4732 		    &sc->txq[txq_i], txq_i)) != 0) {
4733 			device_printf(dev,
4734 			    "could not allocate TX ring %d\n",
4735 			    txq_i);
4736 			goto fail;
4737 		}
4738 	}
4739 
4740 	/* Allocate RX ring. */
4741 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
4742 		device_printf(dev, "could not allocate RX ring\n");
4743 		goto fail;
4744 	}
4745 
4746 	/* Clear pending interrupts. */
4747 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
4748 
4749 	sc->sc_ifp = ifp = if_alloc(IFT_IEEE80211);
4750 	if (ifp == NULL) {
4751 		goto fail;
4752 	}
4753 	ifp->if_softc = sc;
4754 	if_initname(ifp, "iwm", device_get_unit(dev));
4755 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
4756 	ifp->if_init = iwm_init;
4757 	ifp->if_ioctl = iwm_ioctl;
4758 	ifp->if_start = iwm_start;
4759 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
4760 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
4761 	IFQ_SET_READY(&ifp->if_snd);
4762 
4763 	/*
4764 	 * Set it here so we can initialise net80211.
4765 	 * But, if we fail before we call net80211_ifattach(),
4766 	 * we can't just call iwm_detach() or it'll free
4767 	 * net80211 without it having been setup.
4768 	 */
4769 	sc->sc_ic = ic = ifp->if_l2com;
4770 	ic->ic_ifp = ifp;
4771 	ic->ic_softc = sc;
4772 	ic->ic_name = device_get_nameunit(sc->sc_dev);
4773 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
4774 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
4775 
4776 	/* Set device capabilities. */
4777 	ic->ic_caps =
4778 	    IEEE80211_C_STA |
4779 	    IEEE80211_C_WPA |		/* WPA/RSN */
4780 	    IEEE80211_C_WME |
4781 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
4782 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
4783 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
4784 	    ;
4785 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
4786 		sc->sc_phyctxt[i].id = i;
4787 		sc->sc_phyctxt[i].color = 0;
4788 		sc->sc_phyctxt[i].ref = 0;
4789 		sc->sc_phyctxt[i].channel = NULL;
4790 	}
4791 
4792 	/* Max RSSI */
4793 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
4794 	sc->sc_preinit_hook.ich_func = iwm_preinit;
4795 	sc->sc_preinit_hook.ich_arg = sc;
4796 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
4797 		device_printf(dev, "config_intrhook_establish failed\n");
4798 		goto fail;
4799 	}
4800 
4801 #ifdef IWM_DEBUG
4802 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
4803 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
4804 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
4805 #endif
4806 
4807 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4808 	    "<-%s\n", __func__);
4809 
4810 	return 0;
4811 
4812 	/* Free allocated memory if something failed during attachment. */
4813 fail:
4814 	iwm_detach_local(sc, 0);
4815 
4816 	return ENXIO;
4817 }
4818 
4819 static int
4820 iwm_update_edca(struct ieee80211com *ic)
4821 {
4822 	struct iwm_softc *sc = ic->ic_softc;
4823 
4824 	device_printf(sc->sc_dev, "%s: called\n", __func__);
4825 	return (0);
4826 }
4827 
4828 static void
4829 iwm_preinit(void *arg)
4830 {
4831 	struct iwm_softc *sc = arg;
4832 	device_t dev = sc->sc_dev;
4833 	struct ieee80211com *ic = sc->sc_ic;
4834 	int error;
4835 
4836 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4837 	    "->%s\n", __func__);
4838 
4839 	IWM_LOCK(sc);
4840 	if ((error = iwm_start_hw(sc)) != 0) {
4841 		device_printf(dev, "could not initialize hardware\n");
4842 		IWM_UNLOCK(sc);
4843 		goto fail;
4844 	}
4845 
4846 	error = iwm_run_init_mvm_ucode(sc, 1);
4847 	iwm_stop_device(sc);
4848 	if (error) {
4849 		IWM_UNLOCK(sc);
4850 		goto fail;
4851 	}
4852 	device_printf(dev,
4853 	    "revision: 0x%x, firmware %d.%d (API ver. %d)\n",
4854 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
4855 	    IWM_UCODE_MAJOR(sc->sc_fwver),
4856 	    IWM_UCODE_MINOR(sc->sc_fwver),
4857 	    IWM_UCODE_API(sc->sc_fwver));
4858 
4859 	/* not all hardware can do 5GHz band */
4860 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
4861 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
4862 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
4863 	IWM_UNLOCK(sc);
4864 
4865 	/*
4866 	 * At this point we've committed - if we fail to do setup,
4867 	 * we now also have to tear down the net80211 state.
4868 	 */
4869 	ieee80211_ifattach(ic, sc->sc_bssid);
4870 	ic->ic_vap_create = iwm_vap_create;
4871 	ic->ic_vap_delete = iwm_vap_delete;
4872 	ic->ic_raw_xmit = iwm_raw_xmit;
4873 	ic->ic_node_alloc = iwm_node_alloc;
4874 	ic->ic_scan_start = iwm_scan_start;
4875 	ic->ic_scan_end = iwm_scan_end;
4876 	ic->ic_update_mcast = iwm_update_mcast;
4877 	ic->ic_set_channel = iwm_set_channel;
4878 	ic->ic_scan_curchan = iwm_scan_curchan;
4879 	ic->ic_scan_mindwell = iwm_scan_mindwell;
4880 	ic->ic_wme.wme_update = iwm_update_edca;
4881 	iwm_radiotap_attach(sc);
4882 	if (bootverbose)
4883 		ieee80211_announce(ic);
4884 
4885 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4886 	    "<-%s\n", __func__);
4887 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4888 
4889 	return;
4890 fail:
4891 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4892 	iwm_detach_local(sc, 0);
4893 }
4894 
4895 /*
4896  * Attach the interface to 802.11 radiotap.
4897  */
4898 static void
4899 iwm_radiotap_attach(struct iwm_softc *sc)
4900 {
4901 	struct ifnet *ifp = sc->sc_ifp;
4902         struct ieee80211com *ic = ifp->if_l2com;
4903 
4904 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4905 	    "->%s begin\n", __func__);
4906         ieee80211_radiotap_attach(ic,
4907             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
4908                 IWM_TX_RADIOTAP_PRESENT,
4909             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
4910                 IWM_RX_RADIOTAP_PRESENT);
4911 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4912 	    "->%s end\n", __func__);
4913 }
4914 
4915 static struct ieee80211vap *
4916 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
4917     enum ieee80211_opmode opmode, int flags,
4918     const uint8_t bssid[IEEE80211_ADDR_LEN],
4919     const uint8_t mac[IEEE80211_ADDR_LEN])
4920 {
4921 	struct iwm_vap *ivp;
4922 	struct ieee80211vap *vap;
4923 	uint8_t mac1[IEEE80211_ADDR_LEN];
4924 
4925 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
4926 		return NULL;
4927 	IEEE80211_ADDR_COPY(mac1, mac);
4928 	ivp = (struct iwm_vap *) malloc(sizeof(struct iwm_vap),
4929 	    M_80211_VAP, M_NOWAIT | M_ZERO);
4930 	if (ivp == NULL)
4931 		return NULL;
4932 	vap = &ivp->iv_vap;
4933 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
4934 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
4935 	vap->iv_bmissthreshold = 10;            /* override default */
4936 	/* Override with driver methods. */
4937 	ivp->iv_newstate = vap->iv_newstate;
4938 	vap->iv_newstate = iwm_newstate;
4939 
4940 	ieee80211_ratectl_init(vap);
4941 	/* Complete setup. */
4942 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status);
4943 	ic->ic_opmode = opmode;
4944 
4945 	return vap;
4946 }
4947 
4948 static void
4949 iwm_vap_delete(struct ieee80211vap *vap)
4950 {
4951 	struct iwm_vap *ivp = IWM_VAP(vap);
4952 
4953 	ieee80211_ratectl_deinit(vap);
4954 	ieee80211_vap_detach(vap);
4955 	free(ivp, M_80211_VAP);
4956 }
4957 
4958 static void
4959 iwm_scan_start(struct ieee80211com *ic)
4960 {
4961 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4962         struct iwm_softc *sc = ic->ic_softc;
4963 	int error;
4964 
4965 	if (sc->sc_scanband)
4966 		return;
4967 	IWM_LOCK(sc);
4968 	error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0);
4969 	if (error) {
4970 		device_printf(sc->sc_dev, "could not initiate scan\n");
4971 		IWM_UNLOCK(sc);
4972 		ieee80211_cancel_scan(vap);
4973 	} else
4974 		IWM_UNLOCK(sc);
4975 }
4976 
4977 static void
4978 iwm_scan_end(struct ieee80211com *ic)
4979 {
4980 }
4981 
4982 static void
4983 iwm_update_mcast(struct ieee80211com *ic)
4984 {
4985 }
4986 
4987 static void
4988 iwm_set_channel(struct ieee80211com *ic)
4989 {
4990 }
4991 
4992 static void
4993 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4994 {
4995 }
4996 
4997 static void
4998 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
4999 {
5000 	return;
5001 }
5002 
5003 void
5004 iwm_init_task(void *arg1)
5005 {
5006 	struct iwm_softc *sc = arg1;
5007 	struct ifnet *ifp = sc->sc_ifp;
5008 
5009 	IWM_LOCK(sc);
5010 	while (sc->sc_flags & IWM_FLAG_BUSY)
5011 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
5012 	sc->sc_flags |= IWM_FLAG_BUSY;
5013 	iwm_stop_locked(ifp);
5014 	if ((ifp->if_flags & IFF_UP) &&
5015 	    (ifp->if_drv_flags & IFF_DRV_RUNNING))
5016 		iwm_init(sc);
5017 	sc->sc_flags &= ~IWM_FLAG_BUSY;
5018 	wakeup(&sc->sc_flags);
5019 	IWM_UNLOCK(sc);
5020 }
5021 
5022 static int
5023 iwm_resume(device_t dev)
5024 {
5025 	uint16_t reg;
5026 
5027 	/* Clear device-specific "PCI retry timeout" register (41h). */
5028 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5029 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5030 	iwm_init_task(device_get_softc(dev));
5031 
5032 	return 0;
5033 }
5034 
5035 static int
5036 iwm_suspend(device_t dev)
5037 {
5038 	struct iwm_softc *sc = device_get_softc(dev);
5039 	struct ifnet *ifp = sc->sc_ifp;
5040 
5041 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5042 		iwm_stop(ifp, 0);
5043 
5044 	return (0);
5045 }
5046 
5047 static int
5048 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
5049 {
5050 	struct ifnet *ifp = sc->sc_ifp;
5051 	struct ieee80211com *ic;
5052 	struct iwm_fw_info *fw = &sc->sc_fw;
5053 	device_t dev = sc->sc_dev;
5054 	int i;
5055 
5056 	if (sc->sc_tq) {
5057 		taskqueue_drain_all(sc->sc_tq);
5058 		taskqueue_free(sc->sc_tq);
5059 	}
5060 	if (ifp) {
5061 		callout_drain(&sc->sc_watchdog_to);
5062 		ic = sc->sc_ic;
5063 		iwm_stop_device(sc);
5064 		if (ic && do_net80211)
5065 			ieee80211_ifdetach(ic);
5066 		if_free(ifp);
5067 	}
5068 
5069 	/* Free descriptor rings */
5070 	for (i = 0; i < nitems(sc->txq); i++)
5071 		iwm_free_tx_ring(sc, &sc->txq[i]);
5072 
5073 	/* Free firmware */
5074 	if (fw->fw_rawdata != NULL)
5075 		iwm_fw_info_free(fw);
5076 
5077 	/* free scheduler */
5078 	iwm_free_sched(sc);
5079 	if (sc->ict_dma.vaddr != NULL)
5080 		iwm_free_ict(sc);
5081 	if (sc->kw_dma.vaddr != NULL)
5082 		iwm_free_kw(sc);
5083 	if (sc->fw_dma.vaddr != NULL)
5084 		iwm_free_fwmem(sc);
5085 
5086 	/* Finished with the hardware - detach things */
5087 	iwm_pci_detach(dev);
5088 
5089 	mtx_destroy(&sc->sc_mtx);
5090 
5091 	return (0);
5092 }
5093 
5094 static int
5095 iwm_detach(device_t dev)
5096 {
5097 	struct iwm_softc *sc = device_get_softc(dev);
5098 
5099 	return (iwm_detach_local(sc, 1));
5100 }
5101 
5102 static device_method_t iwm_pci_methods[] = {
5103         /* Device interface */
5104         DEVMETHOD(device_probe,         iwm_probe),
5105         DEVMETHOD(device_attach,        iwm_attach),
5106         DEVMETHOD(device_detach,        iwm_detach),
5107         DEVMETHOD(device_suspend,       iwm_suspend),
5108         DEVMETHOD(device_resume,        iwm_resume),
5109 
5110         DEVMETHOD_END
5111 };
5112 
5113 static driver_t iwm_pci_driver = {
5114         "iwm",
5115         iwm_pci_methods,
5116         sizeof (struct iwm_softc)
5117 };
5118 
5119 static devclass_t iwm_devclass;
5120 
5121 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
5122 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
5123 MODULE_DEPEND(iwm, pci, 1, 1, 1);
5124 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
5125