xref: /freebsd/sys/dev/iwm/if_iwm.c (revision b626f5a73a48f44a31a200291b141e1da408a2ff)
1 /*	$OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include <sys/param.h>
109 #include <sys/bus.h>
110 #include <sys/conf.h>
111 #include <sys/endian.h>
112 #include <sys/firmware.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/mbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/module.h>
118 #include <sys/proc.h>
119 #include <sys/rman.h>
120 #include <sys/socket.h>
121 #include <sys/sockio.h>
122 #include <sys/sysctl.h>
123 #include <sys/linker.h>
124 
125 #include <machine/bus.h>
126 #include <machine/endian.h>
127 #include <machine/resource.h>
128 
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcireg.h>
131 
132 #include <net/bpf.h>
133 
134 #include <net/if.h>
135 #include <net/if_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 
141 #include <netinet/in.h>
142 #include <netinet/in_systm.h>
143 #include <netinet/if_ether.h>
144 #include <netinet/ip.h>
145 
146 #include <net80211/ieee80211_var.h>
147 #include <net80211/ieee80211_regdomain.h>
148 #include <net80211/ieee80211_ratectl.h>
149 #include <net80211/ieee80211_radiotap.h>
150 
151 #include <dev/iwm/if_iwmreg.h>
152 #include <dev/iwm/if_iwmvar.h>
153 #include <dev/iwm/if_iwm_debug.h>
154 #include <dev/iwm/if_iwm_util.h>
155 #include <dev/iwm/if_iwm_binding.h>
156 #include <dev/iwm/if_iwm_phy_db.h>
157 #include <dev/iwm/if_iwm_mac_ctxt.h>
158 #include <dev/iwm/if_iwm_phy_ctxt.h>
159 #include <dev/iwm/if_iwm_time_event.h>
160 #include <dev/iwm/if_iwm_power.h>
161 #include <dev/iwm/if_iwm_scan.h>
162 
163 #include <dev/iwm/if_iwm_pcie_trans.h>
164 
165 const uint8_t iwm_nvm_channels[] = {
166 	/* 2.4 GHz */
167 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
168 	/* 5 GHz */
169 	36, 40, 44 , 48, 52, 56, 60, 64,
170 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
171 	149, 153, 157, 161, 165
172 };
173 #define IWM_NUM_2GHZ_CHANNELS	14
174 
175 /*
176  * XXX For now, there's simply a fixed set of rate table entries
177  * that are populated.
178  */
179 const struct iwm_rate {
180 	uint8_t rate;
181 	uint8_t plcp;
182 } iwm_rates[] = {
183 	{   2,	IWM_RATE_1M_PLCP  },
184 	{   4,	IWM_RATE_2M_PLCP  },
185 	{  11,	IWM_RATE_5M_PLCP  },
186 	{  22,	IWM_RATE_11M_PLCP },
187 	{  12,	IWM_RATE_6M_PLCP  },
188 	{  18,	IWM_RATE_9M_PLCP  },
189 	{  24,	IWM_RATE_12M_PLCP },
190 	{  36,	IWM_RATE_18M_PLCP },
191 	{  48,	IWM_RATE_24M_PLCP },
192 	{  72,	IWM_RATE_36M_PLCP },
193 	{  96,	IWM_RATE_48M_PLCP },
194 	{ 108,	IWM_RATE_54M_PLCP },
195 };
196 #define IWM_RIDX_CCK	0
197 #define IWM_RIDX_OFDM	4
198 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
201 
202 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
203 static int	iwm_firmware_store_section(struct iwm_softc *,
204                                            enum iwm_ucode_type,
205                                            const uint8_t *, size_t);
206 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
207 static void	iwm_fw_info_free(struct iwm_fw_info *);
208 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
209 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
210 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
211                                      bus_size_t, bus_size_t);
212 static void	iwm_dma_contig_free(struct iwm_dma_info *);
213 static int	iwm_alloc_fwmem(struct iwm_softc *);
214 static void	iwm_free_fwmem(struct iwm_softc *);
215 static int	iwm_alloc_sched(struct iwm_softc *);
216 static void	iwm_free_sched(struct iwm_softc *);
217 static int	iwm_alloc_kw(struct iwm_softc *);
218 static void	iwm_free_kw(struct iwm_softc *);
219 static int	iwm_alloc_ict(struct iwm_softc *);
220 static void	iwm_free_ict(struct iwm_softc *);
221 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
222 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
223 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
224 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
225                                   int);
226 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
227 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
228 static void	iwm_enable_interrupts(struct iwm_softc *);
229 static void	iwm_restore_interrupts(struct iwm_softc *);
230 static void	iwm_disable_interrupts(struct iwm_softc *);
231 static void	iwm_ict_reset(struct iwm_softc *);
232 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
233 static void	iwm_stop_device(struct iwm_softc *);
234 static void	iwm_mvm_nic_config(struct iwm_softc *);
235 static int	iwm_nic_rx_init(struct iwm_softc *);
236 static int	iwm_nic_tx_init(struct iwm_softc *);
237 static int	iwm_nic_init(struct iwm_softc *);
238 static void	iwm_enable_txq(struct iwm_softc *, int, int);
239 static int	iwm_post_alive(struct iwm_softc *);
240 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
241                                    uint16_t, uint8_t *, uint16_t *);
242 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
243 				     uint16_t *);
244 static void	iwm_init_channel_map(struct iwm_softc *,
245                                      const uint16_t * const);
246 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
247 			           const uint16_t *, const uint16_t *, uint8_t,
248 				   uint8_t);
249 struct iwm_nvm_section;
250 static int	iwm_parse_nvm_sections(struct iwm_softc *,
251                                        struct iwm_nvm_section *);
252 static int	iwm_nvm_init(struct iwm_softc *);
253 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
254                                         const uint8_t *, uint32_t);
255 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
256 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
257 static int	iwm_fw_alive(struct iwm_softc *, uint32_t);
258 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
259 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
260 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
261                                               enum iwm_ucode_type);
262 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
263 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
264 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
265 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
266 					    struct iwm_rx_phy_info *);
267 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
268                                       struct iwm_rx_packet *,
269                                       struct iwm_rx_data *);
270 static int	iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
271 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
272                                    struct iwm_rx_data *);
273 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
274                                          struct iwm_rx_packet *,
275 				         struct iwm_node *);
276 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
277                                   struct iwm_rx_data *);
278 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
279 #if 0
280 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
281                                  uint16_t);
282 #endif
283 static const struct iwm_rate *
284 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
285 			struct ieee80211_frame *, struct iwm_tx_cmd *);
286 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
287                        struct ieee80211_node *, int);
288 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
289 			     const struct ieee80211_bpf_params *);
290 static void	iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *,
291 					     struct iwm_mvm_add_sta_cmd_v5 *);
292 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
293 					        struct iwm_mvm_add_sta_cmd_v6 *,
294                                                 int *);
295 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
296                                        int);
297 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
298 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
299 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
300                                            struct iwm_int_sta *,
301 				           const uint8_t *, uint16_t, uint16_t);
302 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
303 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
304 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
305 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
306 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
307 static struct ieee80211_node *
308 		iwm_node_alloc(struct ieee80211vap *,
309 		               const uint8_t[IEEE80211_ADDR_LEN]);
310 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
311 static int	iwm_media_change(struct ifnet *);
312 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
313 static void	iwm_endscan_cb(void *, int);
314 static int	iwm_init_hw(struct iwm_softc *);
315 static void	iwm_init(struct iwm_softc *);
316 static void	iwm_start(struct iwm_softc *);
317 static void	iwm_stop(struct iwm_softc *);
318 static void	iwm_watchdog(void *);
319 static void	iwm_parent(struct ieee80211com *);
320 #ifdef IWM_DEBUG
321 static const char *
322 		iwm_desc_lookup(uint32_t);
323 static void	iwm_nic_error(struct iwm_softc *);
324 #endif
325 static void	iwm_notif_intr(struct iwm_softc *);
326 static void	iwm_intr(void *);
327 static int	iwm_attach(device_t);
328 static void	iwm_preinit(void *);
329 static int	iwm_detach_local(struct iwm_softc *sc, int);
330 static void	iwm_init_task(void *);
331 static void	iwm_radiotap_attach(struct iwm_softc *);
332 static struct ieee80211vap *
333 		iwm_vap_create(struct ieee80211com *,
334 		               const char [IFNAMSIZ], int,
335 		               enum ieee80211_opmode, int,
336 		               const uint8_t [IEEE80211_ADDR_LEN],
337 		               const uint8_t [IEEE80211_ADDR_LEN]);
338 static void	iwm_vap_delete(struct ieee80211vap *);
339 static void	iwm_scan_start(struct ieee80211com *);
340 static void	iwm_scan_end(struct ieee80211com *);
341 static void	iwm_update_mcast(struct ieee80211com *);
342 static void	iwm_set_channel(struct ieee80211com *);
343 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
344 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
345 static int	iwm_detach(device_t);
346 
347 /*
348  * Firmware parser.
349  */
350 
351 static int
352 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
353 {
354 	const struct iwm_fw_cscheme_list *l = (const void *)data;
355 
356 	if (dlen < sizeof(*l) ||
357 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
358 		return EINVAL;
359 
360 	/* we don't actually store anything for now, always use s/w crypto */
361 
362 	return 0;
363 }
364 
365 static int
366 iwm_firmware_store_section(struct iwm_softc *sc,
367     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
368 {
369 	struct iwm_fw_sects *fws;
370 	struct iwm_fw_onesect *fwone;
371 
372 	if (type >= IWM_UCODE_TYPE_MAX)
373 		return EINVAL;
374 	if (dlen < sizeof(uint32_t))
375 		return EINVAL;
376 
377 	fws = &sc->sc_fw.fw_sects[type];
378 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
379 		return EINVAL;
380 
381 	fwone = &fws->fw_sect[fws->fw_count];
382 
383 	/* first 32bit are device load offset */
384 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
385 
386 	/* rest is data */
387 	fwone->fws_data = data + sizeof(uint32_t);
388 	fwone->fws_len = dlen - sizeof(uint32_t);
389 
390 	fws->fw_count++;
391 	fws->fw_totlen += fwone->fws_len;
392 
393 	return 0;
394 }
395 
396 /* iwlwifi: iwl-drv.c */
397 struct iwm_tlv_calib_data {
398 	uint32_t ucode_type;
399 	struct iwm_tlv_calib_ctrl calib;
400 } __packed;
401 
402 static int
403 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
404 {
405 	const struct iwm_tlv_calib_data *def_calib = data;
406 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
407 
408 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
409 		device_printf(sc->sc_dev,
410 		    "Wrong ucode_type %u for default "
411 		    "calibration.\n", ucode_type);
412 		return EINVAL;
413 	}
414 
415 	sc->sc_default_calib[ucode_type].flow_trigger =
416 	    def_calib->calib.flow_trigger;
417 	sc->sc_default_calib[ucode_type].event_trigger =
418 	    def_calib->calib.event_trigger;
419 
420 	return 0;
421 }
422 
423 static void
424 iwm_fw_info_free(struct iwm_fw_info *fw)
425 {
426 	firmware_put(fw->fw_rawdata, FIRMWARE_UNLOAD);
427 	fw->fw_rawdata = NULL;
428 	fw->fw_rawsize = 0;
429 	/* don't touch fw->fw_status */
430 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
431 }
432 
433 static int
434 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
435 {
436 	struct iwm_fw_info *fw = &sc->sc_fw;
437 	const struct iwm_tlv_ucode_header *uhdr;
438 	struct iwm_ucode_tlv tlv;
439 	enum iwm_ucode_tlv_type tlv_type;
440 	const struct firmware *fwp;
441 	const uint8_t *data;
442 	int error = 0;
443 	size_t len;
444 
445 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
446 	    ucode_type != IWM_UCODE_TYPE_INIT)
447 		return 0;
448 
449 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
450 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
451 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
452 
453 	if (fw->fw_rawdata != NULL)
454 		iwm_fw_info_free(fw);
455 
456 	/*
457 	 * Load firmware into driver memory.
458 	 * fw_rawdata and fw_rawsize will be set.
459 	 */
460 	IWM_UNLOCK(sc);
461 	fwp = firmware_get(sc->sc_fwname);
462 	if (fwp == NULL) {
463 		device_printf(sc->sc_dev,
464 		    "could not read firmware %s (error %d)\n",
465 		    sc->sc_fwname, error);
466 		IWM_LOCK(sc);
467 		goto out;
468 	}
469 	IWM_LOCK(sc);
470 	fw->fw_rawdata = fwp->data;
471 	fw->fw_rawsize = fwp->datasize;
472 
473 	/*
474 	 * Parse firmware contents
475 	 */
476 
477 	uhdr = (const void *)fw->fw_rawdata;
478 	if (*(const uint32_t *)fw->fw_rawdata != 0
479 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
480 		device_printf(sc->sc_dev, "invalid firmware %s\n",
481 		    sc->sc_fwname);
482 		error = EINVAL;
483 		goto out;
484 	}
485 
486 	sc->sc_fwver = le32toh(uhdr->ver);
487 	data = uhdr->data;
488 	len = fw->fw_rawsize - sizeof(*uhdr);
489 
490 	while (len >= sizeof(tlv)) {
491 		size_t tlv_len;
492 		const void *tlv_data;
493 
494 		memcpy(&tlv, data, sizeof(tlv));
495 		tlv_len = le32toh(tlv.length);
496 		tlv_type = le32toh(tlv.type);
497 
498 		len -= sizeof(tlv);
499 		data += sizeof(tlv);
500 		tlv_data = data;
501 
502 		if (len < tlv_len) {
503 			device_printf(sc->sc_dev,
504 			    "firmware too short: %zu bytes\n",
505 			    len);
506 			error = EINVAL;
507 			goto parse_out;
508 		}
509 
510 		switch ((int)tlv_type) {
511 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
512 			if (tlv_len < sizeof(uint32_t)) {
513 				device_printf(sc->sc_dev,
514 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
515 				    __func__,
516 				    (int) tlv_len);
517 				error = EINVAL;
518 				goto parse_out;
519 			}
520 			sc->sc_capa_max_probe_len
521 			    = le32toh(*(const uint32_t *)tlv_data);
522 			/* limit it to something sensible */
523 			if (sc->sc_capa_max_probe_len > (1<<16)) {
524 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
525 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
526 				    "ridiculous\n", __func__);
527 				error = EINVAL;
528 				goto parse_out;
529 			}
530 			break;
531 		case IWM_UCODE_TLV_PAN:
532 			if (tlv_len) {
533 				device_printf(sc->sc_dev,
534 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
535 				    __func__,
536 				    (int) tlv_len);
537 				error = EINVAL;
538 				goto parse_out;
539 			}
540 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
541 			break;
542 		case IWM_UCODE_TLV_FLAGS:
543 			if (tlv_len < sizeof(uint32_t)) {
544 				device_printf(sc->sc_dev,
545 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
546 				    __func__,
547 				    (int) tlv_len);
548 				error = EINVAL;
549 				goto parse_out;
550 			}
551 			/*
552 			 * Apparently there can be many flags, but Linux driver
553 			 * parses only the first one, and so do we.
554 			 *
555 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
556 			 * Intentional or a bug?  Observations from
557 			 * current firmware file:
558 			 *  1) TLV_PAN is parsed first
559 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
560 			 * ==> this resets TLV_PAN to itself... hnnnk
561 			 */
562 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
563 			break;
564 		case IWM_UCODE_TLV_CSCHEME:
565 			if ((error = iwm_store_cscheme(sc,
566 			    tlv_data, tlv_len)) != 0) {
567 				device_printf(sc->sc_dev,
568 				    "%s: iwm_store_cscheme(): returned %d\n",
569 				    __func__,
570 				    error);
571 				goto parse_out;
572 			}
573 			break;
574 		case IWM_UCODE_TLV_NUM_OF_CPU:
575 			if (tlv_len != sizeof(uint32_t)) {
576 				device_printf(sc->sc_dev,
577 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
578 				    __func__,
579 				    (int) tlv_len);
580 				error = EINVAL;
581 				goto parse_out;
582 			}
583 			if (le32toh(*(const uint32_t*)tlv_data) != 1) {
584 				device_printf(sc->sc_dev,
585 				    "%s: driver supports "
586 				    "only TLV_NUM_OF_CPU == 1",
587 				    __func__);
588 				error = EINVAL;
589 				goto parse_out;
590 			}
591 			break;
592 		case IWM_UCODE_TLV_SEC_RT:
593 			if ((error = iwm_firmware_store_section(sc,
594 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
595 				device_printf(sc->sc_dev,
596 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
597 				    __func__,
598 				    error);
599 				goto parse_out;
600 			}
601 			break;
602 		case IWM_UCODE_TLV_SEC_INIT:
603 			if ((error = iwm_firmware_store_section(sc,
604 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
605 				device_printf(sc->sc_dev,
606 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
607 				    __func__,
608 				    error);
609 				goto parse_out;
610 			}
611 			break;
612 		case IWM_UCODE_TLV_SEC_WOWLAN:
613 			if ((error = iwm_firmware_store_section(sc,
614 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
615 				device_printf(sc->sc_dev,
616 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
617 				    __func__,
618 				    error);
619 				goto parse_out;
620 			}
621 			break;
622 		case IWM_UCODE_TLV_DEF_CALIB:
623 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
624 				device_printf(sc->sc_dev,
625 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
626 				    __func__,
627 				    (int) tlv_len,
628 				    (int) sizeof(struct iwm_tlv_calib_data));
629 				error = EINVAL;
630 				goto parse_out;
631 			}
632 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
633 				device_printf(sc->sc_dev,
634 				    "%s: iwm_set_default_calib() failed: %d\n",
635 				    __func__,
636 				    error);
637 				goto parse_out;
638 			}
639 			break;
640 		case IWM_UCODE_TLV_PHY_SKU:
641 			if (tlv_len != sizeof(uint32_t)) {
642 				error = EINVAL;
643 				device_printf(sc->sc_dev,
644 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
645 				    __func__,
646 				    (int) tlv_len);
647 				goto parse_out;
648 			}
649 			sc->sc_fw_phy_config =
650 			    le32toh(*(const uint32_t *)tlv_data);
651 			break;
652 
653 		case IWM_UCODE_TLV_API_CHANGES_SET:
654 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES:
655 			/* ignore, not used by current driver */
656 			break;
657 
658 		default:
659 			device_printf(sc->sc_dev,
660 			    "%s: unknown firmware section %d, abort\n",
661 			    __func__, tlv_type);
662 			error = EINVAL;
663 			goto parse_out;
664 		}
665 
666 		len -= roundup(tlv_len, 4);
667 		data += roundup(tlv_len, 4);
668 	}
669 
670 	KASSERT(error == 0, ("unhandled error"));
671 
672  parse_out:
673 	if (error) {
674 		device_printf(sc->sc_dev, "firmware parse error %d, "
675 		    "section type %d\n", error, tlv_type);
676 	}
677 
678 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
679 		device_printf(sc->sc_dev,
680 		    "device uses unsupported power ops\n");
681 		error = ENOTSUP;
682 	}
683 
684  out:
685 	if (error) {
686 		fw->fw_status = IWM_FW_STATUS_NONE;
687 		if (fw->fw_rawdata != NULL)
688 			iwm_fw_info_free(fw);
689 	} else
690 		fw->fw_status = IWM_FW_STATUS_DONE;
691 	wakeup(&sc->sc_fw);
692 
693 	return error;
694 }
695 
696 /*
697  * DMA resource routines
698  */
699 
700 static void
701 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
702 {
703         if (error != 0)
704                 return;
705 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
706         *(bus_addr_t *)arg = segs[0].ds_addr;
707 }
708 
709 static int
710 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
711     bus_size_t size, bus_size_t alignment)
712 {
713 	int error;
714 
715 	dma->tag = NULL;
716 	dma->size = size;
717 
718 	error = bus_dma_tag_create(tag, alignment,
719             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
720             1, size, 0, NULL, NULL, &dma->tag);
721         if (error != 0)
722                 goto fail;
723 
724         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
725             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
726         if (error != 0)
727                 goto fail;
728 
729         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
730             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
731         if (error != 0)
732                 goto fail;
733 
734 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
735 
736 	return 0;
737 
738 fail:	iwm_dma_contig_free(dma);
739 	return error;
740 }
741 
742 static void
743 iwm_dma_contig_free(struct iwm_dma_info *dma)
744 {
745 	if (dma->map != NULL) {
746 		if (dma->vaddr != NULL) {
747 			bus_dmamap_sync(dma->tag, dma->map,
748 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
749 			bus_dmamap_unload(dma->tag, dma->map);
750 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
751 			dma->vaddr = NULL;
752 		}
753 		bus_dmamap_destroy(dma->tag, dma->map);
754 		dma->map = NULL;
755 	}
756 	if (dma->tag != NULL) {
757 		bus_dma_tag_destroy(dma->tag);
758 		dma->tag = NULL;
759 	}
760 
761 }
762 
763 /* fwmem is used to load firmware onto the card */
764 static int
765 iwm_alloc_fwmem(struct iwm_softc *sc)
766 {
767 	/* Must be aligned on a 16-byte boundary. */
768 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
769 	    sc->sc_fwdmasegsz, 16);
770 }
771 
772 static void
773 iwm_free_fwmem(struct iwm_softc *sc)
774 {
775 	iwm_dma_contig_free(&sc->fw_dma);
776 }
777 
778 /* tx scheduler rings.  not used? */
779 static int
780 iwm_alloc_sched(struct iwm_softc *sc)
781 {
782 	int rv;
783 
784 	/* TX scheduler rings must be aligned on a 1KB boundary. */
785 	rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
786 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
787 	return rv;
788 }
789 
790 static void
791 iwm_free_sched(struct iwm_softc *sc)
792 {
793 	iwm_dma_contig_free(&sc->sched_dma);
794 }
795 
796 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
797 static int
798 iwm_alloc_kw(struct iwm_softc *sc)
799 {
800 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
801 }
802 
803 static void
804 iwm_free_kw(struct iwm_softc *sc)
805 {
806 	iwm_dma_contig_free(&sc->kw_dma);
807 }
808 
809 /* interrupt cause table */
810 static int
811 iwm_alloc_ict(struct iwm_softc *sc)
812 {
813 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
814 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
815 }
816 
817 static void
818 iwm_free_ict(struct iwm_softc *sc)
819 {
820 	iwm_dma_contig_free(&sc->ict_dma);
821 }
822 
823 static int
824 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
825 {
826 	bus_size_t size;
827 	int i, error;
828 
829 	ring->cur = 0;
830 
831 	/* Allocate RX descriptors (256-byte aligned). */
832 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
833 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
834 	if (error != 0) {
835 		device_printf(sc->sc_dev,
836 		    "could not allocate RX ring DMA memory\n");
837 		goto fail;
838 	}
839 	ring->desc = ring->desc_dma.vaddr;
840 
841 	/* Allocate RX status area (16-byte aligned). */
842 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
843 	    sizeof(*ring->stat), 16);
844 	if (error != 0) {
845 		device_printf(sc->sc_dev,
846 		    "could not allocate RX status DMA memory\n");
847 		goto fail;
848 	}
849 	ring->stat = ring->stat_dma.vaddr;
850 
851         /* Create RX buffer DMA tag. */
852         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
853             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
854             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
855         if (error != 0) {
856                 device_printf(sc->sc_dev,
857                     "%s: could not create RX buf DMA tag, error %d\n",
858                     __func__, error);
859                 goto fail;
860         }
861 
862 	/*
863 	 * Allocate and map RX buffers.
864 	 */
865 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
866 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
867 			goto fail;
868 		}
869 	}
870 	return 0;
871 
872 fail:	iwm_free_rx_ring(sc, ring);
873 	return error;
874 }
875 
876 static void
877 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
878 {
879 
880 	/* XXX print out if we can't lock the NIC? */
881 	if (iwm_nic_lock(sc)) {
882 		/* XXX handle if RX stop doesn't finish? */
883 		(void) iwm_pcie_rx_stop(sc);
884 		iwm_nic_unlock(sc);
885 	}
886 	/* Reset the ring state */
887 	ring->cur = 0;
888 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
889 }
890 
891 static void
892 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
893 {
894 	int i;
895 
896 	iwm_dma_contig_free(&ring->desc_dma);
897 	iwm_dma_contig_free(&ring->stat_dma);
898 
899 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
900 		struct iwm_rx_data *data = &ring->data[i];
901 
902 		if (data->m != NULL) {
903 			bus_dmamap_sync(ring->data_dmat, data->map,
904 			    BUS_DMASYNC_POSTREAD);
905 			bus_dmamap_unload(ring->data_dmat, data->map);
906 			m_freem(data->m);
907 			data->m = NULL;
908 		}
909 		if (data->map != NULL) {
910 			bus_dmamap_destroy(ring->data_dmat, data->map);
911 			data->map = NULL;
912 		}
913 	}
914 	if (ring->data_dmat != NULL) {
915 		bus_dma_tag_destroy(ring->data_dmat);
916 		ring->data_dmat = NULL;
917 	}
918 }
919 
920 static int
921 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
922 {
923 	bus_addr_t paddr;
924 	bus_size_t size;
925 	int i, error;
926 
927 	ring->qid = qid;
928 	ring->queued = 0;
929 	ring->cur = 0;
930 
931 	/* Allocate TX descriptors (256-byte aligned). */
932 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
933 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
934 	if (error != 0) {
935 		device_printf(sc->sc_dev,
936 		    "could not allocate TX ring DMA memory\n");
937 		goto fail;
938 	}
939 	ring->desc = ring->desc_dma.vaddr;
940 
941 	/*
942 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
943 	 * to allocate commands space for other rings.
944 	 */
945 	if (qid > IWM_MVM_CMD_QUEUE)
946 		return 0;
947 
948 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
949 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
950 	if (error != 0) {
951 		device_printf(sc->sc_dev,
952 		    "could not allocate TX cmd DMA memory\n");
953 		goto fail;
954 	}
955 	ring->cmd = ring->cmd_dma.vaddr;
956 
957 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
959             IWM_MAX_SCATTER - 2, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
960 	if (error != 0) {
961 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
962 		goto fail;
963 	}
964 
965 	paddr = ring->cmd_dma.paddr;
966 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
967 		struct iwm_tx_data *data = &ring->data[i];
968 
969 		data->cmd_paddr = paddr;
970 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
971 		    + offsetof(struct iwm_tx_cmd, scratch);
972 		paddr += sizeof(struct iwm_device_cmd);
973 
974 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
975 		if (error != 0) {
976 			device_printf(sc->sc_dev,
977 			    "could not create TX buf DMA map\n");
978 			goto fail;
979 		}
980 	}
981 	KASSERT(paddr == ring->cmd_dma.paddr + size,
982 	    ("invalid physical address"));
983 	return 0;
984 
985 fail:	iwm_free_tx_ring(sc, ring);
986 	return error;
987 }
988 
989 static void
990 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
991 {
992 	int i;
993 
994 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
995 		struct iwm_tx_data *data = &ring->data[i];
996 
997 		if (data->m != NULL) {
998 			bus_dmamap_sync(ring->data_dmat, data->map,
999 			    BUS_DMASYNC_POSTWRITE);
1000 			bus_dmamap_unload(ring->data_dmat, data->map);
1001 			m_freem(data->m);
1002 			data->m = NULL;
1003 		}
1004 	}
1005 	/* Clear TX descriptors. */
1006 	memset(ring->desc, 0, ring->desc_dma.size);
1007 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1008 	    BUS_DMASYNC_PREWRITE);
1009 	sc->qfullmsk &= ~(1 << ring->qid);
1010 	ring->queued = 0;
1011 	ring->cur = 0;
1012 }
1013 
1014 static void
1015 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1016 {
1017 	int i;
1018 
1019 	iwm_dma_contig_free(&ring->desc_dma);
1020 	iwm_dma_contig_free(&ring->cmd_dma);
1021 
1022 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1023 		struct iwm_tx_data *data = &ring->data[i];
1024 
1025 		if (data->m != NULL) {
1026 			bus_dmamap_sync(ring->data_dmat, data->map,
1027 			    BUS_DMASYNC_POSTWRITE);
1028 			bus_dmamap_unload(ring->data_dmat, data->map);
1029 			m_freem(data->m);
1030 			data->m = NULL;
1031 		}
1032 		if (data->map != NULL) {
1033 			bus_dmamap_destroy(ring->data_dmat, data->map);
1034 			data->map = NULL;
1035 		}
1036 	}
1037 	if (ring->data_dmat != NULL) {
1038 		bus_dma_tag_destroy(ring->data_dmat);
1039 		ring->data_dmat = NULL;
1040 	}
1041 }
1042 
1043 /*
1044  * High-level hardware frobbing routines
1045  */
1046 
1047 static void
1048 iwm_enable_interrupts(struct iwm_softc *sc)
1049 {
1050 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1051 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1052 }
1053 
1054 static void
1055 iwm_restore_interrupts(struct iwm_softc *sc)
1056 {
1057 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1058 }
1059 
1060 static void
1061 iwm_disable_interrupts(struct iwm_softc *sc)
1062 {
1063 	/* disable interrupts */
1064 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1065 
1066 	/* acknowledge all interrupts */
1067 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1068 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1069 }
1070 
1071 static void
1072 iwm_ict_reset(struct iwm_softc *sc)
1073 {
1074 	iwm_disable_interrupts(sc);
1075 
1076 	/* Reset ICT table. */
1077 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1078 	sc->ict_cur = 0;
1079 
1080 	/* Set physical address of ICT table (4KB aligned). */
1081 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1082 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1083 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1084 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1085 
1086 	/* Switch to ICT interrupt mode in driver. */
1087 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1088 
1089 	/* Re-enable interrupts. */
1090 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1091 	iwm_enable_interrupts(sc);
1092 }
1093 
1094 /* iwlwifi pcie/trans.c */
1095 
1096 /*
1097  * Since this .. hard-resets things, it's time to actually
1098  * mark the first vap (if any) as having no mac context.
1099  * It's annoying, but since the driver is potentially being
1100  * stop/start'ed whilst active (thanks openbsd port!) we
1101  * have to correctly track this.
1102  */
1103 static void
1104 iwm_stop_device(struct iwm_softc *sc)
1105 {
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1108 	int chnl, ntries;
1109 	int qid;
1110 
1111 	/* tell the device to stop sending interrupts */
1112 	iwm_disable_interrupts(sc);
1113 
1114 	/*
1115 	 * FreeBSD-local: mark the first vap as not-uploaded,
1116 	 * so the next transition through auth/assoc
1117 	 * will correctly populate the MAC context.
1118 	 */
1119 	if (vap) {
1120 		struct iwm_vap *iv = IWM_VAP(vap);
1121 		iv->is_uploaded = 0;
1122 	}
1123 
1124 	/* device going down, Stop using ICT table */
1125 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1126 
1127 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1128 
1129 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1130 
1131 	/* Stop all DMA channels. */
1132 	if (iwm_nic_lock(sc)) {
1133 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1134 			IWM_WRITE(sc,
1135 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1136 			for (ntries = 0; ntries < 200; ntries++) {
1137 				uint32_t r;
1138 
1139 				r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
1140 				if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
1141 				    chnl))
1142 					break;
1143 				DELAY(20);
1144 			}
1145 		}
1146 		iwm_nic_unlock(sc);
1147 	}
1148 
1149 	/* Stop RX ring. */
1150 	iwm_reset_rx_ring(sc, &sc->rxq);
1151 
1152 	/* Reset all TX rings. */
1153 	for (qid = 0; qid < nitems(sc->txq); qid++)
1154 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1155 
1156 	/*
1157 	 * Power-down device's busmaster DMA clocks
1158 	 */
1159 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1160 	DELAY(5);
1161 
1162 	/* Make sure (redundant) we've released our request to stay awake */
1163 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1164 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1165 
1166 	/* Stop the device, and put it in low power state */
1167 	iwm_apm_stop(sc);
1168 
1169 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1170 	 * Clean again the interrupt here
1171 	 */
1172 	iwm_disable_interrupts(sc);
1173 	/* stop and reset the on-board processor */
1174 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET);
1175 
1176 	/*
1177 	 * Even if we stop the HW, we still want the RF kill
1178 	 * interrupt
1179 	 */
1180 	iwm_enable_rfkill_int(sc);
1181 	iwm_check_rfkill(sc);
1182 }
1183 
1184 /* iwlwifi: mvm/ops.c */
1185 static void
1186 iwm_mvm_nic_config(struct iwm_softc *sc)
1187 {
1188 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1189 	uint32_t reg_val = 0;
1190 
1191 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1192 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1193 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1194 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1195 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1196 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1197 
1198 	/* SKU control */
1199 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1200 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1201 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1202 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1203 
1204 	/* radio configuration */
1205 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1206 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1207 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1208 
1209 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1210 
1211 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1212 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1213 	    radio_cfg_step, radio_cfg_dash);
1214 
1215 	/*
1216 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1217 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1218 	 * to lose ownership and not being able to obtain it back.
1219 	 */
1220 	iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1221 	    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1222 	    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1223 }
1224 
1225 static int
1226 iwm_nic_rx_init(struct iwm_softc *sc)
1227 {
1228 	if (!iwm_nic_lock(sc))
1229 		return EBUSY;
1230 
1231 	/*
1232 	 * Initialize RX ring.  This is from the iwn driver.
1233 	 */
1234 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1235 
1236 	/* stop DMA */
1237 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1238 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1239 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1240 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1241 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1242 
1243 	/* Set physical address of RX ring (256-byte aligned). */
1244 	IWM_WRITE(sc,
1245 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1246 
1247 	/* Set physical address of RX status (16-byte aligned). */
1248 	IWM_WRITE(sc,
1249 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1250 
1251 	/* Enable RX. */
1252 	/*
1253 	 * Note: Linux driver also sets this:
1254 	 *  (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1255 	 *
1256 	 * It causes weird behavior.  YMMV.
1257 	 */
1258 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1259 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1260 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1261 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1262 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1263 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1264 
1265 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1266 
1267 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1268 	if (sc->host_interrupt_operation_mode)
1269 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1270 
1271 	/*
1272 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1273 	 *
1274 	 * This value should initially be 0 (before preparing any
1275  	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1276 	 */
1277 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1278 
1279 	iwm_nic_unlock(sc);
1280 
1281 	return 0;
1282 }
1283 
1284 static int
1285 iwm_nic_tx_init(struct iwm_softc *sc)
1286 {
1287 	int qid;
1288 
1289 	if (!iwm_nic_lock(sc))
1290 		return EBUSY;
1291 
1292 	/* Deactivate TX scheduler. */
1293 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1294 
1295 	/* Set physical address of "keep warm" page (16-byte aligned). */
1296 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1297 
1298 	/* Initialize TX rings. */
1299 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1300 		struct iwm_tx_ring *txq = &sc->txq[qid];
1301 
1302 		/* Set physical address of TX ring (256-byte aligned). */
1303 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1304 		    txq->desc_dma.paddr >> 8);
1305 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1306 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1307 		    __func__,
1308 		    qid, txq->desc,
1309 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1310 	}
1311 	iwm_nic_unlock(sc);
1312 
1313 	return 0;
1314 }
1315 
1316 static int
1317 iwm_nic_init(struct iwm_softc *sc)
1318 {
1319 	int error;
1320 
1321 	iwm_apm_init(sc);
1322 	iwm_set_pwr(sc);
1323 
1324 	iwm_mvm_nic_config(sc);
1325 
1326 	if ((error = iwm_nic_rx_init(sc)) != 0)
1327 		return error;
1328 
1329 	/*
1330 	 * Ditto for TX, from iwn
1331 	 */
1332 	if ((error = iwm_nic_tx_init(sc)) != 0)
1333 		return error;
1334 
1335 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1336 	    "%s: shadow registers enabled\n", __func__);
1337 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1338 
1339 	return 0;
1340 }
1341 
1342 enum iwm_mvm_tx_fifo {
1343 	IWM_MVM_TX_FIFO_BK = 0,
1344 	IWM_MVM_TX_FIFO_BE,
1345 	IWM_MVM_TX_FIFO_VI,
1346 	IWM_MVM_TX_FIFO_VO,
1347 	IWM_MVM_TX_FIFO_MCAST = 5,
1348 };
1349 
1350 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1351 	IWM_MVM_TX_FIFO_VO,
1352 	IWM_MVM_TX_FIFO_VI,
1353 	IWM_MVM_TX_FIFO_BE,
1354 	IWM_MVM_TX_FIFO_BK,
1355 };
1356 
1357 static void
1358 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo)
1359 {
1360 	if (!iwm_nic_lock(sc)) {
1361 		device_printf(sc->sc_dev,
1362 		    "%s: cannot enable txq %d\n",
1363 		    __func__,
1364 		    qid);
1365 		return; /* XXX return EBUSY */
1366 	}
1367 
1368 	/* unactivate before configuration */
1369 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1370 	    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1371 	    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1372 
1373 	if (qid != IWM_MVM_CMD_QUEUE) {
1374 		iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid));
1375 	}
1376 
1377 	iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1378 
1379 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1380 	iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1381 
1382 	iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1383 	/* Set scheduler window size and frame limit. */
1384 	iwm_write_mem32(sc,
1385 	    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1386 	    sizeof(uint32_t),
1387 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1388 	    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1389 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1390 	    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1391 
1392 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1393 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1394 	    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1395 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1396 	    IWM_SCD_QUEUE_STTS_REG_MSK);
1397 
1398 	iwm_nic_unlock(sc);
1399 
1400 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1401 	    "%s: enabled txq %d FIFO %d\n",
1402 	    __func__, qid, fifo);
1403 }
1404 
1405 static int
1406 iwm_post_alive(struct iwm_softc *sc)
1407 {
1408 	int nwords;
1409 	int error, chnl;
1410 
1411 	if (!iwm_nic_lock(sc))
1412 		return EBUSY;
1413 
1414 	if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) {
1415 		device_printf(sc->sc_dev,
1416 		    "%s: sched addr mismatch",
1417 		    __func__);
1418 		error = EINVAL;
1419 		goto out;
1420 	}
1421 
1422 	iwm_ict_reset(sc);
1423 
1424 	/* Clear TX scheduler state in SRAM. */
1425 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1426 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1427 	    / sizeof(uint32_t);
1428 	error = iwm_write_mem(sc,
1429 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1430 	    NULL, nwords);
1431 	if (error)
1432 		goto out;
1433 
1434 	/* Set physical address of TX scheduler rings (1KB aligned). */
1435 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1436 
1437 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1438 
1439 	/* enable command channel */
1440 	iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7);
1441 
1442 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1443 
1444 	/* Enable DMA channels. */
1445 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1446 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1447 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1448 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1449 	}
1450 
1451 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1452 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1453 
1454 	/* Enable L1-Active */
1455 	iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1456 	    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1457 
1458  out:
1459  	iwm_nic_unlock(sc);
1460 	return error;
1461 }
1462 
1463 /*
1464  * NVM read access and content parsing.  We do not support
1465  * external NVM or writing NVM.
1466  * iwlwifi/mvm/nvm.c
1467  */
1468 
1469 /* list of NVM sections we are allowed/need to read */
1470 const int nvm_to_read[] = {
1471 	IWM_NVM_SECTION_TYPE_HW,
1472 	IWM_NVM_SECTION_TYPE_SW,
1473 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1474 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1475 };
1476 
1477 /* Default NVM size to read */
1478 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
1479 #define IWM_MAX_NVM_SECTION_SIZE 7000
1480 
1481 #define IWM_NVM_WRITE_OPCODE 1
1482 #define IWM_NVM_READ_OPCODE 0
1483 
1484 static int
1485 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1486 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1487 {
1488 	offset = 0;
1489 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1490 		.offset = htole16(offset),
1491 		.length = htole16(length),
1492 		.type = htole16(section),
1493 		.op_code = IWM_NVM_READ_OPCODE,
1494 	};
1495 	struct iwm_nvm_access_resp *nvm_resp;
1496 	struct iwm_rx_packet *pkt;
1497 	struct iwm_host_cmd cmd = {
1498 		.id = IWM_NVM_ACCESS_CMD,
1499 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1500 		    IWM_CMD_SEND_IN_RFKILL,
1501 		.data = { &nvm_access_cmd, },
1502 	};
1503 	int ret, bytes_read, offset_read;
1504 	uint8_t *resp_data;
1505 
1506 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1507 
1508 	ret = iwm_send_cmd(sc, &cmd);
1509 	if (ret)
1510 		return ret;
1511 
1512 	pkt = cmd.resp_pkt;
1513 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1514 		device_printf(sc->sc_dev,
1515 		    "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1516 		    __func__, pkt->hdr.flags);
1517 		ret = EIO;
1518 		goto exit;
1519 	}
1520 
1521 	/* Extract NVM response */
1522 	nvm_resp = (void *)pkt->data;
1523 
1524 	ret = le16toh(nvm_resp->status);
1525 	bytes_read = le16toh(nvm_resp->length);
1526 	offset_read = le16toh(nvm_resp->offset);
1527 	resp_data = nvm_resp->data;
1528 	if (ret) {
1529 		device_printf(sc->sc_dev,
1530 		    "%s: NVM access command failed with status %d\n",
1531 		    __func__, ret);
1532 		ret = EINVAL;
1533 		goto exit;
1534 	}
1535 
1536 	if (offset_read != offset) {
1537 		device_printf(sc->sc_dev,
1538 		    "%s: NVM ACCESS response with invalid offset %d\n",
1539 		    __func__, offset_read);
1540 		ret = EINVAL;
1541 		goto exit;
1542 	}
1543 
1544 	memcpy(data + offset, resp_data, bytes_read);
1545 	*len = bytes_read;
1546 
1547  exit:
1548 	iwm_free_resp(sc, &cmd);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * Reads an NVM section completely.
1554  * NICs prior to 7000 family doesn't have a real NVM, but just read
1555  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1556  * by uCode, we need to manually check in this case that we don't
1557  * overflow and try to read more than the EEPROM size.
1558  * For 7000 family NICs, we supply the maximal size we can read, and
1559  * the uCode fills the response with as much data as we can,
1560  * without overflowing, so no check is needed.
1561  */
1562 static int
1563 iwm_nvm_read_section(struct iwm_softc *sc,
1564 	uint16_t section, uint8_t *data, uint16_t *len)
1565 {
1566 	uint16_t length, seglen;
1567 	int error;
1568 
1569 	/* Set nvm section read length */
1570 	length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1571 	*len = 0;
1572 
1573 	/* Read the NVM until exhausted (reading less than requested) */
1574 	while (seglen == length) {
1575 		error = iwm_nvm_read_chunk(sc,
1576 		    section, *len, length, data, &seglen);
1577 		if (error) {
1578 			device_printf(sc->sc_dev,
1579 			    "Cannot read NVM from section "
1580 			    "%d offset %d, length %d\n",
1581 			    section, *len, length);
1582 			return error;
1583 		}
1584 		*len += seglen;
1585 	}
1586 
1587 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1588 	    "NVM section %d read completed\n", section);
1589 	return 0;
1590 }
1591 
1592 /*
1593  * BEGIN IWM_NVM_PARSE
1594  */
1595 
1596 /* iwlwifi/iwl-nvm-parse.c */
1597 
1598 /* NVM offsets (in words) definitions */
1599 enum wkp_nvm_offsets {
1600 	/* NVM HW-Section offset (in words) definitions */
1601 	IWM_HW_ADDR = 0x15,
1602 
1603 /* NVM SW-Section offset (in words) definitions */
1604 	IWM_NVM_SW_SECTION = 0x1C0,
1605 	IWM_NVM_VERSION = 0,
1606 	IWM_RADIO_CFG = 1,
1607 	IWM_SKU = 2,
1608 	IWM_N_HW_ADDRS = 3,
1609 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1610 
1611 /* NVM calibration section offset (in words) definitions */
1612 	IWM_NVM_CALIB_SECTION = 0x2B8,
1613 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1614 };
1615 
1616 /* SKU Capabilities (actual values from NVM definition) */
1617 enum nvm_sku_bits {
1618 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1619 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1620 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1621 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1622 };
1623 
1624 /* radio config bits (actual values from NVM definition) */
1625 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1626 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1627 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1628 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1629 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1630 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1631 
1632 #define DEFAULT_MAX_TX_POWER 16
1633 
1634 /**
1635  * enum iwm_nvm_channel_flags - channel flags in NVM
1636  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1637  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1638  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1639  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1640  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1641  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1642  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1643  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1644  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1645  */
1646 enum iwm_nvm_channel_flags {
1647 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1648 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1649 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1650 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1651 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1652 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1653 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1654 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1655 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1656 };
1657 
1658 /*
1659  * Add a channel to the net80211 channel list.
1660  *
1661  * ieee is the ieee channel number
1662  * ch_idx is channel index.
1663  * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G.
1664  * ch_flags is the iwm channel flags.
1665  *
1666  * Return 0 on OK, < 0 on error.
1667  */
1668 static int
1669 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx,
1670     int mode, uint16_t ch_flags)
1671 {
1672 	/* XXX for now, no overflow checking! */
1673 	struct ieee80211com *ic = &sc->sc_ic;
1674 	int is_5ghz, flags;
1675 	struct ieee80211_channel *channel;
1676 
1677 	channel = &ic->ic_channels[ic->ic_nchans++];
1678 	channel->ic_ieee = ieee;
1679 
1680 	is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
1681 	if (!is_5ghz) {
1682 		flags = IEEE80211_CHAN_2GHZ;
1683 		channel->ic_flags = mode;
1684 	} else {
1685 		flags = IEEE80211_CHAN_5GHZ;
1686 		channel->ic_flags = mode;
1687 	}
1688 	channel->ic_freq = ieee80211_ieee2mhz(ieee, flags);
1689 
1690 	if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
1691 		channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
1692 	return (0);
1693 }
1694 
1695 static void
1696 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	struct iwm_nvm_data *data = &sc->sc_nvm;
1700 	int ch_idx;
1701 	uint16_t ch_flags;
1702 	int hw_value;
1703 
1704 	for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) {
1705 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1706 
1707 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
1708 		    !data->sku_cap_band_52GHz_enable)
1709 			ch_flags &= ~IWM_NVM_CHANNEL_VALID;
1710 
1711 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1712 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1713 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1714 			    iwm_nvm_channels[ch_idx],
1715 			    ch_flags,
1716 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1717 			    "5.2" : "2.4");
1718 			continue;
1719 		}
1720 
1721 		hw_value = iwm_nvm_channels[ch_idx];
1722 
1723 		/* 5GHz? */
1724 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) {
1725 			(void) iwm_init_net80211_channel(sc, hw_value,
1726 			    ch_idx,
1727 			    IEEE80211_CHAN_A,
1728 			    ch_flags);
1729 		} else {
1730 			(void) iwm_init_net80211_channel(sc, hw_value,
1731 			    ch_idx,
1732 			    IEEE80211_CHAN_B,
1733 			    ch_flags);
1734 			/* If it's not channel 13, also add 11g */
1735 			if (hw_value != 13)
1736 				(void) iwm_init_net80211_channel(sc, hw_value,
1737 				    ch_idx,
1738 				    IEEE80211_CHAN_G,
1739 				    ch_flags);
1740 		}
1741 
1742 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1743 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1744 		    iwm_nvm_channels[ch_idx],
1745 		    ch_flags,
1746 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1747 		    "5.2" : "2.4");
1748 	}
1749 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1750 }
1751 
1752 static int
1753 iwm_parse_nvm_data(struct iwm_softc *sc,
1754 	const uint16_t *nvm_hw, const uint16_t *nvm_sw,
1755 	const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains)
1756 {
1757 	struct iwm_nvm_data *data = &sc->sc_nvm;
1758 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
1759 	uint16_t radio_cfg, sku;
1760 
1761 	data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
1762 
1763 	radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
1764 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1765 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
1766 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
1767 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
1768 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1769 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1770 
1771 	sku = le16_to_cpup(nvm_sw + IWM_SKU);
1772 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
1773 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
1774 	data->sku_cap_11n_enable = 0;
1775 
1776 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1777 		device_printf(sc->sc_dev,
1778 		    "%s: invalid antennas (0x%x, 0x%x)\n",
1779 		    __func__, data->valid_tx_ant,
1780 		    data->valid_rx_ant);
1781 		return EINVAL;
1782 	}
1783 
1784 	data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
1785 
1786 	data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB);
1787 	data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1);
1788 
1789 	/* The byte order is little endian 16 bit, meaning 214365 */
1790 	IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
1791 	data->hw_addr[0] = hw_addr[1];
1792 	data->hw_addr[1] = hw_addr[0];
1793 	data->hw_addr[2] = hw_addr[3];
1794 	data->hw_addr[3] = hw_addr[2];
1795 	data->hw_addr[4] = hw_addr[5];
1796 	data->hw_addr[5] = hw_addr[4];
1797 
1798 	iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]);
1799 	data->calib_version = 255;   /* TODO:
1800 					this value will prevent some checks from
1801 					failing, we need to check if this
1802 					field is still needed, and if it does,
1803 					where is it in the NVM */
1804 
1805 	return 0;
1806 }
1807 
1808 /*
1809  * END NVM PARSE
1810  */
1811 
1812 struct iwm_nvm_section {
1813 	uint16_t length;
1814 	const uint8_t *data;
1815 };
1816 
1817 static int
1818 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
1819 {
1820 	const uint16_t *hw, *sw, *calib;
1821 
1822 	/* Checking for required sections */
1823 	if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
1824 	    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
1825 		device_printf(sc->sc_dev,
1826 		    "%s: Can't parse empty NVM sections\n",
1827 		    __func__);
1828 		return ENOENT;
1829 	}
1830 
1831 	hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data;
1832 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
1833 	calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
1834 	return iwm_parse_nvm_data(sc, hw, sw, calib,
1835 	    IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc));
1836 }
1837 
1838 static int
1839 iwm_nvm_init(struct iwm_softc *sc)
1840 {
1841 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
1842 	int i, section, error;
1843 	uint16_t len;
1844 	uint8_t *nvm_buffer, *temp;
1845 
1846 	/* Read From FW NVM */
1847 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1848 	    "%s: Read NVM\n",
1849 	    __func__);
1850 
1851 	/* TODO: find correct NVM max size for a section */
1852 	nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT);
1853 	if (nvm_buffer == NULL)
1854 		return (ENOMEM);
1855 	for (i = 0; i < nitems(nvm_to_read); i++) {
1856 		section = nvm_to_read[i];
1857 		KASSERT(section <= nitems(nvm_sections),
1858 		    ("too many sections"));
1859 
1860 		error = iwm_nvm_read_section(sc, section, nvm_buffer, &len);
1861 		if (error)
1862 			break;
1863 
1864 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
1865 		if (temp == NULL) {
1866 			error = ENOMEM;
1867 			break;
1868 		}
1869 		memcpy(temp, nvm_buffer, len);
1870 		nvm_sections[section].data = temp;
1871 		nvm_sections[section].length = len;
1872 	}
1873 	free(nvm_buffer, M_DEVBUF);
1874 	if (error)
1875 		return error;
1876 
1877 	return iwm_parse_nvm_sections(sc, nvm_sections);
1878 }
1879 
1880 /*
1881  * Firmware loading gunk.  This is kind of a weird hybrid between the
1882  * iwn driver and the Linux iwlwifi driver.
1883  */
1884 
1885 static int
1886 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
1887 	const uint8_t *section, uint32_t byte_cnt)
1888 {
1889 	struct iwm_dma_info *dma = &sc->fw_dma;
1890 	int error;
1891 
1892 	/* Copy firmware section into pre-allocated DMA-safe memory. */
1893 	memcpy(dma->vaddr, section, byte_cnt);
1894 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1895 
1896 	if (!iwm_nic_lock(sc))
1897 		return EBUSY;
1898 
1899 	sc->sc_fw_chunk_done = 0;
1900 
1901 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1902 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
1903 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
1904 	    dst_addr);
1905 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
1906 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
1907 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
1908 	    (iwm_get_dma_hi_addr(dma->paddr)
1909 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
1910 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1911 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1912 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
1913 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
1914 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1915 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
1916 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
1917 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
1918 
1919 	iwm_nic_unlock(sc);
1920 
1921 	/* wait 1s for this segment to load */
1922 	while (!sc->sc_fw_chunk_done)
1923 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
1924 			break;
1925 
1926 	return error;
1927 }
1928 
1929 static int
1930 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1931 {
1932 	struct iwm_fw_sects *fws;
1933 	int error, i, w;
1934 	const void *data;
1935 	uint32_t dlen;
1936 	uint32_t offset;
1937 
1938 	sc->sc_uc.uc_intr = 0;
1939 
1940 	fws = &sc->sc_fw.fw_sects[ucode_type];
1941 	for (i = 0; i < fws->fw_count; i++) {
1942 		data = fws->fw_sect[i].fws_data;
1943 		dlen = fws->fw_sect[i].fws_len;
1944 		offset = fws->fw_sect[i].fws_devoff;
1945 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
1946 		    "LOAD FIRMWARE type %d offset %u len %d\n",
1947 		    ucode_type, offset, dlen);
1948 		error = iwm_firmware_load_chunk(sc, offset, data, dlen);
1949 		if (error) {
1950 			device_printf(sc->sc_dev,
1951 			    "%s: chunk %u of %u returned error %02d\n",
1952 			    __func__, i, fws->fw_count, error);
1953 			return error;
1954 		}
1955 	}
1956 
1957 	/* wait for the firmware to load */
1958 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
1959 
1960 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
1961 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
1962 	}
1963 
1964 	return error;
1965 }
1966 
1967 /* iwlwifi: pcie/trans.c */
1968 static int
1969 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1970 {
1971 	int error;
1972 
1973 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1974 
1975 	if ((error = iwm_nic_init(sc)) != 0) {
1976 		device_printf(sc->sc_dev, "unable to init nic\n");
1977 		return error;
1978 	}
1979 
1980 	/* make sure rfkill handshake bits are cleared */
1981 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1982 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
1983 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1984 
1985 	/* clear (again), then enable host interrupts */
1986 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1987 	iwm_enable_interrupts(sc);
1988 
1989 	/* really make sure rfkill handshake bits are cleared */
1990 	/* maybe we should write a few times more?  just to make sure */
1991 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1992 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1993 
1994 	/* Load the given image to the HW */
1995 	return iwm_load_firmware(sc, ucode_type);
1996 }
1997 
1998 static int
1999 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base)
2000 {
2001 	return iwm_post_alive(sc);
2002 }
2003 
2004 static int
2005 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2006 {
2007 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2008 		.valid = htole32(valid_tx_ant),
2009 	};
2010 
2011 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2012 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2013 }
2014 
2015 /* iwlwifi: mvm/fw.c */
2016 static int
2017 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2018 {
2019 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2020 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2021 
2022 	/* Set parameters */
2023 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2024 	phy_cfg_cmd.calib_control.event_trigger =
2025 	    sc->sc_default_calib[ucode_type].event_trigger;
2026 	phy_cfg_cmd.calib_control.flow_trigger =
2027 	    sc->sc_default_calib[ucode_type].flow_trigger;
2028 
2029 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2030 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2031 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2032 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2033 }
2034 
2035 static int
2036 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2037 	enum iwm_ucode_type ucode_type)
2038 {
2039 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2040 	int error;
2041 
2042 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0)
2043 		return error;
2044 
2045 	sc->sc_uc_current = ucode_type;
2046 	error = iwm_start_fw(sc, ucode_type);
2047 	if (error) {
2048 		sc->sc_uc_current = old_type;
2049 		return error;
2050 	}
2051 
2052 	return iwm_fw_alive(sc, sc->sched_base);
2053 }
2054 
2055 /*
2056  * mvm misc bits
2057  */
2058 
2059 /*
2060  * follows iwlwifi/fw.c
2061  */
2062 static int
2063 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2064 {
2065 	int error;
2066 
2067 	/* do not operate with rfkill switch turned on */
2068 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2069 		device_printf(sc->sc_dev,
2070 		    "radio is disabled by hardware switch\n");
2071 		return EPERM;
2072 	}
2073 
2074 	sc->sc_init_complete = 0;
2075 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2076 	    IWM_UCODE_TYPE_INIT)) != 0)
2077 		return error;
2078 
2079 	if (justnvm) {
2080 		if ((error = iwm_nvm_init(sc)) != 0) {
2081 			device_printf(sc->sc_dev, "failed to read nvm\n");
2082 			return error;
2083 		}
2084 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2085 
2086 		sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd)
2087 		    + sc->sc_capa_max_probe_len
2088 		    + IWM_MAX_NUM_SCAN_CHANNELS
2089 		    * sizeof(struct iwm_scan_channel);
2090 		sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF,
2091 		    M_NOWAIT);
2092 		if (sc->sc_scan_cmd == NULL)
2093 			return (ENOMEM);
2094 
2095 		return 0;
2096 	}
2097 
2098 	/* Send TX valid antennas before triggering calibrations */
2099 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
2100 		return error;
2101 
2102 	/*
2103 	* Send phy configurations command to init uCode
2104 	* to start the 16.0 uCode init image internal calibrations.
2105 	*/
2106 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2107 		device_printf(sc->sc_dev,
2108 		    "%s: failed to run internal calibration: %d\n",
2109 		    __func__, error);
2110 		return error;
2111 	}
2112 
2113 	/*
2114 	 * Nothing to do but wait for the init complete notification
2115 	 * from the firmware
2116 	 */
2117 	while (!sc->sc_init_complete)
2118 		if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2119 		    0, "iwminit", 2*hz)) != 0)
2120 			break;
2121 
2122 	return error;
2123 }
2124 
2125 /*
2126  * receive side
2127  */
2128 
2129 /* (re)stock rx ring, called at init-time and at runtime */
2130 static int
2131 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2132 {
2133 	struct iwm_rx_ring *ring = &sc->rxq;
2134 	struct iwm_rx_data *data = &ring->data[idx];
2135 	struct mbuf *m;
2136 	int error;
2137 	bus_addr_t paddr;
2138 
2139 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2140 	if (m == NULL)
2141 		return ENOBUFS;
2142 
2143 	if (data->m != NULL)
2144 		bus_dmamap_unload(ring->data_dmat, data->map);
2145 
2146 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2147 	error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2148 	if (error != 0) {
2149 		device_printf(sc->sc_dev,
2150 		    "%s: could not create RX buf DMA map, error %d\n",
2151 		    __func__, error);
2152 		goto fail;
2153 	}
2154 	data->m = m;
2155 	error = bus_dmamap_load(ring->data_dmat, data->map,
2156 	    mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr,
2157 	    &paddr, BUS_DMA_NOWAIT);
2158 	if (error != 0 && error != EFBIG) {
2159 		device_printf(sc->sc_dev,
2160 		    "%s: can't not map mbuf, error %d\n", __func__,
2161 		    error);
2162 		goto fail;
2163 	}
2164 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2165 
2166 	/* Update RX descriptor. */
2167 	ring->desc[idx] = htole32(paddr >> 8);
2168 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2169 	    BUS_DMASYNC_PREWRITE);
2170 
2171 	return 0;
2172 fail:
2173 	return error;
2174 }
2175 
2176 /* iwlwifi: mvm/rx.c */
2177 #define IWM_RSSI_OFFSET 50
2178 static int
2179 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2180 {
2181 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2182 	uint32_t agc_a, agc_b;
2183 	uint32_t val;
2184 
2185 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2186 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2187 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2188 
2189 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2190 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2191 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2192 
2193 	/*
2194 	 * dBm = rssi dB - agc dB - constant.
2195 	 * Higher AGC (higher radio gain) means lower signal.
2196 	 */
2197 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2198 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2199 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2200 
2201 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2202 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2203 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2204 
2205 	return max_rssi_dbm;
2206 }
2207 
2208 /* iwlwifi: mvm/rx.c */
2209 /*
2210  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2211  * values are reported by the fw as positive values - need to negate
2212  * to obtain their dBM.  Account for missing antennas by replacing 0
2213  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2214  */
2215 static int
2216 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2217 {
2218 	int energy_a, energy_b, energy_c, max_energy;
2219 	uint32_t val;
2220 
2221 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2222 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2223 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2224 	energy_a = energy_a ? -energy_a : -256;
2225 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2226 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2227 	energy_b = energy_b ? -energy_b : -256;
2228 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2229 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2230 	energy_c = energy_c ? -energy_c : -256;
2231 	max_energy = MAX(energy_a, energy_b);
2232 	max_energy = MAX(max_energy, energy_c);
2233 
2234 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2235 	    "energy In A %d B %d C %d , and max %d\n",
2236 	    energy_a, energy_b, energy_c, max_energy);
2237 
2238 	return max_energy;
2239 }
2240 
2241 static void
2242 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2243 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2244 {
2245 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2246 
2247 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2248 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2249 
2250 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2251 }
2252 
2253 /*
2254  * Retrieve the average noise (in dBm) among receivers.
2255  */
2256 static int
2257 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
2258 {
2259 	int i, total, nbant, noise;
2260 
2261 	total = nbant = noise = 0;
2262 	for (i = 0; i < 3; i++) {
2263 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2264 		if (noise) {
2265 			total += noise;
2266 			nbant++;
2267 		}
2268 	}
2269 
2270 	/* There should be at least one antenna but check anyway. */
2271 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2272 }
2273 
2274 /*
2275  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2276  *
2277  * Handles the actual data of the Rx packet from the fw
2278  */
2279 static void
2280 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2281 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2282 {
2283 	struct ieee80211com *ic = &sc->sc_ic;
2284 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2285 	struct ieee80211_frame *wh;
2286 	struct ieee80211_node *ni;
2287 	struct ieee80211_rx_stats rxs;
2288 	struct mbuf *m;
2289 	struct iwm_rx_phy_info *phy_info;
2290 	struct iwm_rx_mpdu_res_start *rx_res;
2291 	uint32_t len;
2292 	uint32_t rx_pkt_status;
2293 	int rssi;
2294 
2295 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2296 
2297 	phy_info = &sc->sc_last_phy_info;
2298 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2299 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2300 	len = le16toh(rx_res->byte_count);
2301 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2302 
2303 	m = data->m;
2304 	m->m_data = pkt->data + sizeof(*rx_res);
2305 	m->m_pkthdr.len = m->m_len = len;
2306 
2307 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2308 		device_printf(sc->sc_dev,
2309 		    "dsp size out of range [0,20]: %d\n",
2310 		    phy_info->cfg_phy_cnt);
2311 		return;
2312 	}
2313 
2314 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2315 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2316 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2317 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2318 		return; /* drop */
2319 	}
2320 
2321 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2322 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2323 	} else {
2324 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2325 	}
2326 	rssi = (0 - IWM_MIN_DBM) + rssi;	/* normalize */
2327 	rssi = MIN(rssi, sc->sc_max_rssi);	/* clip to max. 100% */
2328 
2329 	/* replenish ring for the buffer we're going to feed to the sharks */
2330 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2331 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2332 		    __func__);
2333 		return;
2334 	}
2335 
2336 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2337 
2338 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2339 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2340 	    __func__,
2341 	    le16toh(phy_info->channel),
2342 	    le16toh(phy_info->phy_flags));
2343 
2344 	/*
2345 	 * Populate an RX state struct with the provided information.
2346 	 */
2347 	bzero(&rxs, sizeof(rxs));
2348 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2349 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2350 	rxs.c_ieee = le16toh(phy_info->channel);
2351 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2352 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2353 	} else {
2354 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2355 	}
2356 	rxs.rssi = rssi - sc->sc_noise;
2357 	rxs.nf = sc->sc_noise;
2358 
2359 	if (ieee80211_radiotap_active_vap(vap)) {
2360 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2361 
2362 		tap->wr_flags = 0;
2363 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2364 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2365 		tap->wr_chan_freq = htole16(rxs.c_freq);
2366 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2367 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2368 		tap->wr_dbm_antsignal = (int8_t)rssi;
2369 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2370 		tap->wr_tsft = phy_info->system_timestamp;
2371 		switch (phy_info->rate) {
2372 		/* CCK rates. */
2373 		case  10: tap->wr_rate =   2; break;
2374 		case  20: tap->wr_rate =   4; break;
2375 		case  55: tap->wr_rate =  11; break;
2376 		case 110: tap->wr_rate =  22; break;
2377 		/* OFDM rates. */
2378 		case 0xd: tap->wr_rate =  12; break;
2379 		case 0xf: tap->wr_rate =  18; break;
2380 		case 0x5: tap->wr_rate =  24; break;
2381 		case 0x7: tap->wr_rate =  36; break;
2382 		case 0x9: tap->wr_rate =  48; break;
2383 		case 0xb: tap->wr_rate =  72; break;
2384 		case 0x1: tap->wr_rate =  96; break;
2385 		case 0x3: tap->wr_rate = 108; break;
2386 		/* Unknown rate: should not happen. */
2387 		default:  tap->wr_rate =   0;
2388 		}
2389 	}
2390 
2391 	IWM_UNLOCK(sc);
2392 	if (ni != NULL) {
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
2394 		ieee80211_input_mimo(ni, m, &rxs);
2395 		ieee80211_free_node(ni);
2396 	} else {
2397 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
2398 		ieee80211_input_mimo_all(ic, m, &rxs);
2399 	}
2400 	IWM_LOCK(sc);
2401 }
2402 
2403 static int
2404 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
2405 	struct iwm_node *in)
2406 {
2407 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
2408 	struct ieee80211_node *ni = &in->in_ni;
2409 	struct ieee80211vap *vap = ni->ni_vap;
2410 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
2411 	int failack = tx_resp->failure_frame;
2412 
2413 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
2414 
2415 	/* Update rate control statistics. */
2416 	if (status != IWM_TX_STATUS_SUCCESS &&
2417 	    status != IWM_TX_STATUS_DIRECT_DONE) {
2418 		ieee80211_ratectl_tx_complete(vap, ni,
2419 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
2420 		return (1);
2421 	} else {
2422 		ieee80211_ratectl_tx_complete(vap, ni,
2423 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
2424 		return (0);
2425 	}
2426 }
2427 
2428 static void
2429 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
2430 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2431 {
2432 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
2433 	int idx = cmd_hdr->idx;
2434 	int qid = cmd_hdr->qid;
2435 	struct iwm_tx_ring *ring = &sc->txq[qid];
2436 	struct iwm_tx_data *txd = &ring->data[idx];
2437 	struct iwm_node *in = txd->in;
2438 	struct mbuf *m = txd->m;
2439 	int status;
2440 
2441 	KASSERT(txd->done == 0, ("txd not done"));
2442 	KASSERT(txd->in != NULL, ("txd without node"));
2443 	KASSERT(txd->m != NULL, ("txd without mbuf"));
2444 
2445 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2446 
2447 	sc->sc_tx_timer = 0;
2448 
2449 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
2450 
2451 	/* Unmap and free mbuf. */
2452 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
2453 	bus_dmamap_unload(ring->data_dmat, txd->map);
2454 
2455 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2456 	    "free txd %p, in %p\n", txd, txd->in);
2457 	txd->done = 1;
2458 	txd->m = NULL;
2459 	txd->in = NULL;
2460 
2461 	ieee80211_tx_complete(&in->in_ni, m, status);
2462 
2463 	if (--ring->queued < IWM_TX_RING_LOMARK) {
2464 		sc->qfullmsk &= ~(1 << ring->qid);
2465 		if (sc->qfullmsk == 0) {
2466 			/*
2467 			 * Well, we're in interrupt context, but then again
2468 			 * I guess net80211 does all sorts of stunts in
2469 			 * interrupt context, so maybe this is no biggie.
2470 			 */
2471 			iwm_start(sc);
2472 		}
2473 	}
2474 }
2475 
2476 /*
2477  * transmit side
2478  */
2479 
2480 /*
2481  * Process a "command done" firmware notification.  This is where we wakeup
2482  * processes waiting for a synchronous command completion.
2483  * from if_iwn
2484  */
2485 static void
2486 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
2487 {
2488 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
2489 	struct iwm_tx_data *data;
2490 
2491 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
2492 		return;	/* Not a command ack. */
2493 	}
2494 
2495 	data = &ring->data[pkt->hdr.idx];
2496 
2497 	/* If the command was mapped in an mbuf, free it. */
2498 	if (data->m != NULL) {
2499 		bus_dmamap_sync(ring->data_dmat, data->map,
2500 		    BUS_DMASYNC_POSTWRITE);
2501 		bus_dmamap_unload(ring->data_dmat, data->map);
2502 		m_freem(data->m);
2503 		data->m = NULL;
2504 	}
2505 	wakeup(&ring->desc[pkt->hdr.idx]);
2506 }
2507 
2508 #if 0
2509 /*
2510  * necessary only for block ack mode
2511  */
2512 void
2513 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
2514 	uint16_t len)
2515 {
2516 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
2517 	uint16_t w_val;
2518 
2519 	scd_bc_tbl = sc->sched_dma.vaddr;
2520 
2521 	len += 8; /* magic numbers came naturally from paris */
2522 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
2523 		len = roundup(len, 4) / 4;
2524 
2525 	w_val = htole16(sta_id << 12 | len);
2526 
2527 	/* Update TX scheduler. */
2528 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
2529 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2530 	    BUS_DMASYNC_PREWRITE);
2531 
2532 	/* I really wonder what this is ?!? */
2533 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
2534 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
2535 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2536 		    BUS_DMASYNC_PREWRITE);
2537 	}
2538 }
2539 #endif
2540 
2541 /*
2542  * Take an 802.11 (non-n) rate, find the relevant rate
2543  * table entry.  return the index into in_ridx[].
2544  *
2545  * The caller then uses that index back into in_ridx
2546  * to figure out the rate index programmed /into/
2547  * the firmware for this given node.
2548  */
2549 static int
2550 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
2551     uint8_t rate)
2552 {
2553 	int i;
2554 	uint8_t r;
2555 
2556 	for (i = 0; i < nitems(in->in_ridx); i++) {
2557 		r = iwm_rates[in->in_ridx[i]].rate;
2558 		if (rate == r)
2559 			return (i);
2560 	}
2561 	/* XXX Return the first */
2562 	/* XXX TODO: have it return the /lowest/ */
2563 	return (0);
2564 }
2565 
2566 /*
2567  * Fill in various bit for management frames, and leave them
2568  * unfilled for data frames (firmware takes care of that).
2569  * Return the selected TX rate.
2570  */
2571 static const struct iwm_rate *
2572 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
2573 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
2574 {
2575 	struct ieee80211com *ic = &sc->sc_ic;
2576 	struct ieee80211_node *ni = &in->in_ni;
2577 	const struct iwm_rate *rinfo;
2578 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2579 	int ridx, rate_flags;
2580 
2581 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
2582 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
2583 
2584 	/*
2585 	 * XXX TODO: everything about the rate selection here is terrible!
2586 	 */
2587 
2588 	if (type == IEEE80211_FC0_TYPE_DATA) {
2589 		int i;
2590 		/* for data frames, use RS table */
2591 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2592 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
2593 		ridx = in->in_ridx[i];
2594 
2595 		/* This is the index into the programmed table */
2596 		tx->initial_rate_index = i;
2597 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
2598 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
2599 		    "%s: start with i=%d, txrate %d\n",
2600 		    __func__, i, iwm_rates[ridx].rate);
2601 		/* XXX no rate_n_flags? */
2602 		return &iwm_rates[ridx];
2603 	}
2604 
2605 	/*
2606 	 * For non-data, use the lowest supported rate for the given
2607 	 * operational mode.
2608 	 *
2609 	 * Note: there may not be any rate control information available.
2610 	 * This driver currently assumes if we're transmitting data
2611 	 * frames, use the rate control table.  Grr.
2612 	 *
2613 	 * XXX TODO: use the configured rate for the traffic type!
2614 	 */
2615 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2616 		/*
2617 		 * XXX this assumes the mode is either 11a or not 11a;
2618 		 * definitely won't work for 11n.
2619 		 */
2620 		ridx = IWM_RIDX_OFDM;
2621 	} else {
2622 		ridx = IWM_RIDX_CCK;
2623 	}
2624 
2625 	rinfo = &iwm_rates[ridx];
2626 
2627 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
2628 	    __func__, ridx,
2629 	    rinfo->rate,
2630 	    !! (IWM_RIDX_IS_CCK(ridx))
2631 	    );
2632 
2633 	/* XXX TODO: hard-coded TX antenna? */
2634 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
2635 	if (IWM_RIDX_IS_CCK(ridx))
2636 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
2637 	/* XXX hard-coded tx rate */
2638 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
2639 
2640 	return rinfo;
2641 }
2642 
2643 #define TB0_SIZE 16
2644 static int
2645 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2646 {
2647 	struct ieee80211com *ic = &sc->sc_ic;
2648 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2649 	struct iwm_node *in = IWM_NODE(ni);
2650 	struct iwm_tx_ring *ring;
2651 	struct iwm_tx_data *data;
2652 	struct iwm_tfd *desc;
2653 	struct iwm_device_cmd *cmd;
2654 	struct iwm_tx_cmd *tx;
2655 	struct ieee80211_frame *wh;
2656 	struct ieee80211_key *k = NULL;
2657 	struct mbuf *m1;
2658 	const struct iwm_rate *rinfo;
2659 	uint32_t flags;
2660 	u_int hdrlen;
2661 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
2662 	int nsegs;
2663 	uint8_t tid, type;
2664 	int i, totlen, error, pad;
2665 
2666 	wh = mtod(m, struct ieee80211_frame *);
2667 	hdrlen = ieee80211_anyhdrsize(wh);
2668 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2669 	tid = 0;
2670 	ring = &sc->txq[ac];
2671 	desc = &ring->desc[ring->cur];
2672 	memset(desc, 0, sizeof(*desc));
2673 	data = &ring->data[ring->cur];
2674 
2675 	/* Fill out iwm_tx_cmd to send to the firmware */
2676 	cmd = &ring->cmd[ring->cur];
2677 	cmd->hdr.code = IWM_TX_CMD;
2678 	cmd->hdr.flags = 0;
2679 	cmd->hdr.qid = ring->qid;
2680 	cmd->hdr.idx = ring->cur;
2681 
2682 	tx = (void *)cmd->data;
2683 	memset(tx, 0, sizeof(*tx));
2684 
2685 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
2686 
2687 	/* Encrypt the frame if need be. */
2688 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2689 		/* Retrieve key for TX && do software encryption. */
2690 		k = ieee80211_crypto_encap(ni, m);
2691 		if (k == NULL) {
2692 			m_freem(m);
2693 			return (ENOBUFS);
2694 		}
2695 		/* 802.11 header may have moved. */
2696 		wh = mtod(m, struct ieee80211_frame *);
2697 	}
2698 
2699 	if (ieee80211_radiotap_active_vap(vap)) {
2700 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
2701 
2702 		tap->wt_flags = 0;
2703 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2704 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2705 		tap->wt_rate = rinfo->rate;
2706 		if (k != NULL)
2707 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2708 		ieee80211_radiotap_tx(vap, m);
2709 	}
2710 
2711 
2712 	totlen = m->m_pkthdr.len;
2713 
2714 	flags = 0;
2715 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2716 		flags |= IWM_TX_CMD_FLG_ACK;
2717 	}
2718 
2719 	if (type != IEEE80211_FC0_TYPE_DATA
2720 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
2721 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2722 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
2723 	}
2724 
2725 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2726 	    type != IEEE80211_FC0_TYPE_DATA)
2727 		tx->sta_id = sc->sc_aux_sta.sta_id;
2728 	else
2729 		tx->sta_id = IWM_STATION_ID;
2730 
2731 	if (type == IEEE80211_FC0_TYPE_MGT) {
2732 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2733 
2734 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2735 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2736 			tx->pm_frame_timeout = htole16(3);
2737 		else
2738 			tx->pm_frame_timeout = htole16(2);
2739 	} else {
2740 		tx->pm_frame_timeout = htole16(0);
2741 	}
2742 
2743 	if (hdrlen & 3) {
2744 		/* First segment length must be a multiple of 4. */
2745 		flags |= IWM_TX_CMD_FLG_MH_PAD;
2746 		pad = 4 - (hdrlen & 3);
2747 	} else
2748 		pad = 0;
2749 
2750 	tx->driver_txop = 0;
2751 	tx->next_frame_len = 0;
2752 
2753 	tx->len = htole16(totlen);
2754 	tx->tid_tspec = tid;
2755 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
2756 
2757 	/* Set physical address of "scratch area". */
2758 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
2759 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
2760 
2761 	/* Copy 802.11 header in TX command. */
2762 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2763 
2764 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
2765 
2766 	tx->sec_ctl = 0;
2767 	tx->tx_flags |= htole32(flags);
2768 
2769 	/* Trim 802.11 header. */
2770 	m_adj(m, hdrlen);
2771 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2772 	    segs, &nsegs, BUS_DMA_NOWAIT);
2773 	if (error != 0) {
2774 		if (error != EFBIG) {
2775 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2776 			    error);
2777 			m_freem(m);
2778 			return error;
2779 		}
2780 		/* Too many DMA segments, linearize mbuf. */
2781 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
2782 		if (m1 == NULL) {
2783 			device_printf(sc->sc_dev,
2784 			    "%s: could not defrag mbuf\n", __func__);
2785 			m_freem(m);
2786 			return (ENOBUFS);
2787 		}
2788 		m = m1;
2789 
2790 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2791 		    segs, &nsegs, BUS_DMA_NOWAIT);
2792 		if (error != 0) {
2793 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2794 			    error);
2795 			m_freem(m);
2796 			return error;
2797 		}
2798 	}
2799 	data->m = m;
2800 	data->in = in;
2801 	data->done = 0;
2802 
2803 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2804 	    "sending txd %p, in %p\n", data, data->in);
2805 	KASSERT(data->in != NULL, ("node is NULL"));
2806 
2807 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2808 	    "sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2809 	    ring->qid, ring->cur, totlen, nsegs);
2810 
2811 	/* Fill TX descriptor. */
2812 	desc->num_tbs = 2 + nsegs;
2813 
2814 	desc->tbs[0].lo = htole32(data->cmd_paddr);
2815 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2816 	    (TB0_SIZE << 4);
2817 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
2818 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2819 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
2820 	      + hdrlen + pad - TB0_SIZE) << 4);
2821 
2822 	/* Other DMA segments are for data payload. */
2823 	for (i = 0; i < nsegs; i++) {
2824 		seg = &segs[i];
2825 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
2826 		desc->tbs[i+2].hi_n_len = \
2827 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
2828 		    | ((seg->ds_len) << 4);
2829 	}
2830 
2831 	bus_dmamap_sync(ring->data_dmat, data->map,
2832 	    BUS_DMASYNC_PREWRITE);
2833 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
2834 	    BUS_DMASYNC_PREWRITE);
2835 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2836 	    BUS_DMASYNC_PREWRITE);
2837 
2838 #if 0
2839 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
2840 #endif
2841 
2842 	/* Kick TX ring. */
2843 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
2844 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2845 
2846 	/* Mark TX ring as full if we reach a certain threshold. */
2847 	if (++ring->queued > IWM_TX_RING_HIMARK) {
2848 		sc->qfullmsk |= 1 << ring->qid;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 static int
2855 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2856     const struct ieee80211_bpf_params *params)
2857 {
2858 	struct ieee80211com *ic = ni->ni_ic;
2859 	struct iwm_softc *sc = ic->ic_softc;
2860 	int error = 0;
2861 
2862 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2863 	    "->%s begin\n", __func__);
2864 
2865 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
2866 		m_freem(m);
2867 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2868 		    "<-%s not RUNNING\n", __func__);
2869 		return (ENETDOWN);
2870         }
2871 
2872 	IWM_LOCK(sc);
2873 	/* XXX fix this */
2874         if (params == NULL) {
2875 		error = iwm_tx(sc, m, ni, 0);
2876 	} else {
2877 		error = iwm_tx(sc, m, ni, 0);
2878 	}
2879 	sc->sc_tx_timer = 5;
2880 	IWM_UNLOCK(sc);
2881 
2882         return (error);
2883 }
2884 
2885 /*
2886  * mvm/tx.c
2887  */
2888 
2889 #if 0
2890 /*
2891  * Note that there are transports that buffer frames before they reach
2892  * the firmware. This means that after flush_tx_path is called, the
2893  * queue might not be empty. The race-free way to handle this is to:
2894  * 1) set the station as draining
2895  * 2) flush the Tx path
2896  * 3) wait for the transport queues to be empty
2897  */
2898 int
2899 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
2900 {
2901 	struct iwm_tx_path_flush_cmd flush_cmd = {
2902 		.queues_ctl = htole32(tfd_msk),
2903 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
2904 	};
2905 	int ret;
2906 
2907 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
2908 	    sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
2909 	    sizeof(flush_cmd), &flush_cmd);
2910 	if (ret)
2911                 device_printf(sc->sc_dev,
2912 		    "Flushing tx queue failed: %d\n", ret);
2913 	return ret;
2914 }
2915 #endif
2916 
2917 /*
2918  * BEGIN mvm/sta.c
2919  */
2920 
2921 static void
2922 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6,
2923 	struct iwm_mvm_add_sta_cmd_v5 *cmd_v5)
2924 {
2925 	memset(cmd_v5, 0, sizeof(*cmd_v5));
2926 
2927 	cmd_v5->add_modify = cmd_v6->add_modify;
2928 	cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx;
2929 	cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color;
2930 	IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr);
2931 	cmd_v5->sta_id = cmd_v6->sta_id;
2932 	cmd_v5->modify_mask = cmd_v6->modify_mask;
2933 	cmd_v5->station_flags = cmd_v6->station_flags;
2934 	cmd_v5->station_flags_msk = cmd_v6->station_flags_msk;
2935 	cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid;
2936 	cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid;
2937 	cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn;
2938 	cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count;
2939 	cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags;
2940 	cmd_v5->assoc_id = cmd_v6->assoc_id;
2941 	cmd_v5->beamform_flags = cmd_v6->beamform_flags;
2942 	cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk;
2943 }
2944 
2945 static int
2946 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
2947 	struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status)
2948 {
2949 	struct iwm_mvm_add_sta_cmd_v5 cmd_v5;
2950 
2951 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) {
2952 		return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA,
2953 		    sizeof(*cmd), cmd, status);
2954 	}
2955 
2956 	iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5);
2957 
2958 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5),
2959 	    &cmd_v5, status);
2960 }
2961 
2962 /* send station add/update command to firmware */
2963 static int
2964 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
2965 {
2966 	struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd;
2967 	int ret;
2968 	uint32_t status;
2969 
2970 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
2971 
2972 	add_sta_cmd.sta_id = IWM_STATION_ID;
2973 	add_sta_cmd.mac_id_n_color
2974 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
2975 	        IWM_DEFAULT_COLOR));
2976 	if (!update) {
2977 		add_sta_cmd.tfd_queue_msk = htole32(0xf);
2978 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
2979 	}
2980 	add_sta_cmd.add_modify = update ? 1 : 0;
2981 	add_sta_cmd.station_flags_msk
2982 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
2983 
2984 	status = IWM_ADD_STA_SUCCESS;
2985 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
2986 	if (ret)
2987 		return ret;
2988 
2989 	switch (status) {
2990 	case IWM_ADD_STA_SUCCESS:
2991 		break;
2992 	default:
2993 		ret = EIO;
2994 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
2995 		break;
2996 	}
2997 
2998 	return ret;
2999 }
3000 
3001 static int
3002 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3003 {
3004 	int ret;
3005 
3006 	ret = iwm_mvm_sta_send_to_fw(sc, in, 0);
3007 	if (ret)
3008 		return ret;
3009 
3010 	return 0;
3011 }
3012 
3013 static int
3014 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3015 {
3016 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3017 }
3018 
3019 static int
3020 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3021 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3022 {
3023 	struct iwm_mvm_add_sta_cmd_v6 cmd;
3024 	int ret;
3025 	uint32_t status;
3026 
3027 	memset(&cmd, 0, sizeof(cmd));
3028 	cmd.sta_id = sta->sta_id;
3029 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3030 
3031 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3032 
3033 	if (addr)
3034 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3035 
3036 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3037 	if (ret)
3038 		return ret;
3039 
3040 	switch (status) {
3041 	case IWM_ADD_STA_SUCCESS:
3042 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3043 		    "%s: Internal station added.\n", __func__);
3044 		return 0;
3045 	default:
3046 		device_printf(sc->sc_dev,
3047 		    "%s: Add internal station failed, status=0x%x\n",
3048 		    __func__, status);
3049 		ret = EIO;
3050 		break;
3051 	}
3052 	return ret;
3053 }
3054 
3055 static int
3056 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3057 {
3058 	int ret;
3059 
3060 	sc->sc_aux_sta.sta_id = 3;
3061 	sc->sc_aux_sta.tfd_queue_msk = 0;
3062 
3063 	ret = iwm_mvm_add_int_sta_common(sc,
3064 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3065 
3066 	if (ret)
3067 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3068 	return ret;
3069 }
3070 
3071 /*
3072  * END mvm/sta.c
3073  */
3074 
3075 /*
3076  * BEGIN mvm/quota.c
3077  */
3078 
3079 static int
3080 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3081 {
3082 	struct iwm_time_quota_cmd cmd;
3083 	int i, idx, ret, num_active_macs, quota, quota_rem;
3084 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3085 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3086 	uint16_t id;
3087 
3088 	memset(&cmd, 0, sizeof(cmd));
3089 
3090 	/* currently, PHY ID == binding ID */
3091 	if (in) {
3092 		id = in->in_phyctxt->id;
3093 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3094 		colors[id] = in->in_phyctxt->color;
3095 
3096 		if (1)
3097 			n_ifs[id] = 1;
3098 	}
3099 
3100 	/*
3101 	 * The FW's scheduling session consists of
3102 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3103 	 * equally between all the bindings that require quota
3104 	 */
3105 	num_active_macs = 0;
3106 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3107 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3108 		num_active_macs += n_ifs[i];
3109 	}
3110 
3111 	quota = 0;
3112 	quota_rem = 0;
3113 	if (num_active_macs) {
3114 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3115 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3116 	}
3117 
3118 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3119 		if (colors[i] < 0)
3120 			continue;
3121 
3122 		cmd.quotas[idx].id_and_color =
3123 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3124 
3125 		if (n_ifs[i] <= 0) {
3126 			cmd.quotas[idx].quota = htole32(0);
3127 			cmd.quotas[idx].max_duration = htole32(0);
3128 		} else {
3129 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3130 			cmd.quotas[idx].max_duration = htole32(0);
3131 		}
3132 		idx++;
3133 	}
3134 
3135 	/* Give the remainder of the session to the first binding */
3136 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3137 
3138 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3139 	    sizeof(cmd), &cmd);
3140 	if (ret)
3141 		device_printf(sc->sc_dev,
3142 		    "%s: Failed to send quota: %d\n", __func__, ret);
3143 	return ret;
3144 }
3145 
3146 /*
3147  * END mvm/quota.c
3148  */
3149 
3150 /*
3151  * ieee80211 routines
3152  */
3153 
3154 /*
3155  * Change to AUTH state in 80211 state machine.  Roughly matches what
3156  * Linux does in bss_info_changed().
3157  */
3158 static int
3159 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3160 {
3161 	struct ieee80211_node *ni;
3162 	struct iwm_node *in;
3163 	struct iwm_vap *iv = IWM_VAP(vap);
3164 	uint32_t duration;
3165 	uint32_t min_duration;
3166 	int error;
3167 
3168 	/*
3169 	 * XXX i have a feeling that the vap node is being
3170 	 * freed from underneath us. Grr.
3171 	 */
3172 	ni = ieee80211_ref_node(vap->iv_bss);
3173 	in = IWM_NODE(ni);
3174 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3175 	    "%s: called; vap=%p, bss ni=%p\n",
3176 	    __func__,
3177 	    vap,
3178 	    ni);
3179 
3180 	in->in_assoc = 0;
3181 
3182 	error = iwm_allow_mcast(vap, sc);
3183 	if (error) {
3184 		device_printf(sc->sc_dev,
3185 		    "%s: failed to set multicast\n", __func__);
3186 		goto out;
3187 	}
3188 
3189 	/*
3190 	 * This is where it deviates from what Linux does.
3191 	 *
3192 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3193 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3194 	 * and always does does a mac_ctx_changed().
3195 	 *
3196 	 * The openbsd port doesn't attempt to do that - it reset things
3197 	 * at odd states and does the add here.
3198 	 *
3199 	 * So, until the state handling is fixed (ie, we never reset
3200 	 * the NIC except for a firmware failure, which should drag
3201 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3202 	 * contexts that are required), let's do a dirty hack here.
3203 	 */
3204 	if (iv->is_uploaded) {
3205 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3206 			device_printf(sc->sc_dev,
3207 			    "%s: failed to add MAC\n", __func__);
3208 			goto out;
3209 		}
3210 	} else {
3211 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3212 			device_printf(sc->sc_dev,
3213 			    "%s: failed to add MAC\n", __func__);
3214 			goto out;
3215 		}
3216 	}
3217 
3218 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3219 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3220 		device_printf(sc->sc_dev,
3221 		    "%s: failed add phy ctxt\n", __func__);
3222 		goto out;
3223 	}
3224 	in->in_phyctxt = &sc->sc_phyctxt[0];
3225 
3226 	if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3227 		device_printf(sc->sc_dev,
3228 		    "%s: binding cmd\n", __func__);
3229 		goto out;
3230 	}
3231 
3232 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3233 		device_printf(sc->sc_dev,
3234 		    "%s: failed to add MAC\n", __func__);
3235 		goto out;
3236 	}
3237 
3238 	/* a bit superfluous? */
3239 	while (sc->sc_auth_prot)
3240 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmauth", 0);
3241 	sc->sc_auth_prot = 1;
3242 
3243 	duration = min(IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS,
3244 	    200 + in->in_ni.ni_intval);
3245 	min_duration = min(IWM_MVM_TE_SESSION_PROTECTION_MIN_TIME_MS,
3246 	    100 + in->in_ni.ni_intval);
3247 	iwm_mvm_protect_session(sc, in, duration, min_duration, 500);
3248 
3249 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3250 	    "%s: waiting for auth_prot\n", __func__);
3251 	while (sc->sc_auth_prot != 2) {
3252 		/*
3253 		 * well, meh, but if the kernel is sleeping for half a
3254 		 * second, we have bigger problems
3255 		 */
3256 		if (sc->sc_auth_prot == 0) {
3257 			device_printf(sc->sc_dev,
3258 			    "%s: missed auth window!\n", __func__);
3259 			error = ETIMEDOUT;
3260 			goto out;
3261 		} else if (sc->sc_auth_prot == -1) {
3262 			device_printf(sc->sc_dev,
3263 			    "%s: no time event, denied!\n", __func__);
3264 			sc->sc_auth_prot = 0;
3265 			error = EAUTH;
3266 			goto out;
3267 		}
3268 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmau2", 0);
3269 	}
3270 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "<-%s\n", __func__);
3271 	error = 0;
3272 out:
3273 	ieee80211_free_node(ni);
3274 	return (error);
3275 }
3276 
3277 static int
3278 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3279 {
3280 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3281 	int error;
3282 
3283 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3284 		device_printf(sc->sc_dev,
3285 		    "%s: failed to update STA\n", __func__);
3286 		return error;
3287 	}
3288 
3289 	in->in_assoc = 1;
3290 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3291 		device_printf(sc->sc_dev,
3292 		    "%s: failed to update MAC\n", __func__);
3293 		return error;
3294 	}
3295 
3296 	return 0;
3297 }
3298 
3299 static int
3300 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3301 {
3302 	/*
3303 	 * Ok, so *technically* the proper set of calls for going
3304 	 * from RUN back to SCAN is:
3305 	 *
3306 	 * iwm_mvm_power_mac_disable(sc, in);
3307 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3308 	 * iwm_mvm_rm_sta(sc, in);
3309 	 * iwm_mvm_update_quotas(sc, NULL);
3310 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3311 	 * iwm_mvm_binding_remove_vif(sc, in);
3312 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3313 	 *
3314 	 * However, that freezes the device not matter which permutations
3315 	 * and modifications are attempted.  Obviously, this driver is missing
3316 	 * something since it works in the Linux driver, but figuring out what
3317 	 * is missing is a little more complicated.  Now, since we're going
3318 	 * back to nothing anyway, we'll just do a complete device reset.
3319 	 * Up your's, device!
3320 	 */
3321 	//iwm_mvm_flush_tx_path(sc, 0xf, 1);
3322 	iwm_stop_device(sc);
3323 	iwm_init_hw(sc);
3324 	if (in)
3325 		in->in_assoc = 0;
3326 	return 0;
3327 
3328 #if 0
3329 	int error;
3330 
3331 	iwm_mvm_power_mac_disable(sc, in);
3332 
3333 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3334 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3335 		return error;
3336 	}
3337 
3338 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3339 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3340 		return error;
3341 	}
3342 	error = iwm_mvm_rm_sta(sc, in);
3343 	in->in_assoc = 0;
3344 	iwm_mvm_update_quotas(sc, NULL);
3345 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3346 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3347 		return error;
3348 	}
3349 	iwm_mvm_binding_remove_vif(sc, in);
3350 
3351 	iwm_mvm_mac_ctxt_remove(sc, in);
3352 
3353 	return error;
3354 #endif
3355 }
3356 
3357 static struct ieee80211_node *
3358 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3359 {
3360 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3361 	    M_NOWAIT | M_ZERO);
3362 }
3363 
3364 static void
3365 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3366 {
3367 	struct ieee80211_node *ni = &in->in_ni;
3368 	struct iwm_lq_cmd *lq = &in->in_lq;
3369 	int nrates = ni->ni_rates.rs_nrates;
3370 	int i, ridx, tab = 0;
3371 	int txant = 0;
3372 
3373 	if (nrates > nitems(lq->rs_table)) {
3374 		device_printf(sc->sc_dev,
3375 		    "%s: node supports %d rates, driver handles "
3376 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3377 		return;
3378 	}
3379 
3380 	/*
3381 	 * XXX .. and most of iwm_node is not initialised explicitly;
3382 	 * it's all just 0x0 passed to the firmware.
3383 	 */
3384 
3385 	/* first figure out which rates we should support */
3386 	/* XXX TODO: this isn't 11n aware /at all/ */
3387 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3388 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3389 	    "%s: nrates=%d\n", __func__, nrates);
3390 	for (i = 0; i < nrates; i++) {
3391 		int rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
3392 
3393 		/* Map 802.11 rate to HW rate index. */
3394 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
3395 			if (iwm_rates[ridx].rate == rate)
3396 				break;
3397 		if (ridx > IWM_RIDX_MAX) {
3398 			device_printf(sc->sc_dev,
3399 			    "%s: WARNING: device rate for %d not found!\n",
3400 			    __func__, rate);
3401 		} else {
3402 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3403 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
3404 			    __func__,
3405 			    i,
3406 			    rate,
3407 			    ridx);
3408 			in->in_ridx[i] = ridx;
3409 		}
3410 	}
3411 
3412 	/* then construct a lq_cmd based on those */
3413 	memset(lq, 0, sizeof(*lq));
3414 	lq->sta_id = IWM_STATION_ID;
3415 
3416 	/*
3417 	 * are these used? (we don't do SISO or MIMO)
3418 	 * need to set them to non-zero, though, or we get an error.
3419 	 */
3420 	lq->single_stream_ant_msk = 1;
3421 	lq->dual_stream_ant_msk = 1;
3422 
3423 	/*
3424 	 * Build the actual rate selection table.
3425 	 * The lowest bits are the rates.  Additionally,
3426 	 * CCK needs bit 9 to be set.  The rest of the bits
3427 	 * we add to the table select the tx antenna
3428 	 * Note that we add the rates in the highest rate first
3429 	 * (opposite of ni_rates).
3430 	 */
3431 	/*
3432 	 * XXX TODO: this should be looping over the min of nrates
3433 	 * and LQ_MAX_RETRY_NUM.  Sigh.
3434 	 */
3435 	for (i = 0; i < nrates; i++) {
3436 		int nextant;
3437 
3438 		if (txant == 0)
3439 			txant = IWM_FW_VALID_TX_ANT(sc);
3440 		nextant = 1<<(ffs(txant)-1);
3441 		txant &= ~nextant;
3442 
3443 		/*
3444 		 * Map the rate id into a rate index into
3445 		 * our hardware table containing the
3446 		 * configuration to use for this rate.
3447 		 */
3448 		ridx = in->in_ridx[(nrates-1)-i];
3449 		tab = iwm_rates[ridx].plcp;
3450 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
3451 		if (IWM_RIDX_IS_CCK(ridx))
3452 			tab |= IWM_RATE_MCS_CCK_MSK;
3453 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3454 		    "station rate i=%d, rate=%d, hw=%x\n",
3455 		    i, iwm_rates[ridx].rate, tab);
3456 		lq->rs_table[i] = htole32(tab);
3457 	}
3458 	/* then fill the rest with the lowest possible rate */
3459 	for (i = nrates; i < nitems(lq->rs_table); i++) {
3460 		KASSERT(tab != 0, ("invalid tab"));
3461 		lq->rs_table[i] = htole32(tab);
3462 	}
3463 }
3464 
3465 static int
3466 iwm_media_change(struct ifnet *ifp)
3467 {
3468 	struct ieee80211vap *vap = ifp->if_softc;
3469 	struct ieee80211com *ic = vap->iv_ic;
3470 	struct iwm_softc *sc = ic->ic_softc;
3471 	int error;
3472 
3473 	error = ieee80211_media_change(ifp);
3474 	if (error != ENETRESET)
3475 		return error;
3476 
3477 	IWM_LOCK(sc);
3478 	if (ic->ic_nrunning > 0) {
3479 		iwm_stop(sc);
3480 		iwm_init(sc);
3481 	}
3482 	IWM_UNLOCK(sc);
3483 	return error;
3484 }
3485 
3486 
3487 static int
3488 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
3489 {
3490 	struct iwm_vap *ivp = IWM_VAP(vap);
3491 	struct ieee80211com *ic = vap->iv_ic;
3492 	struct iwm_softc *sc = ic->ic_softc;
3493 	struct iwm_node *in;
3494 	int error;
3495 
3496 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3497 	    "switching state %s -> %s\n",
3498 	    ieee80211_state_name[vap->iv_state],
3499 	    ieee80211_state_name[nstate]);
3500 	IEEE80211_UNLOCK(ic);
3501 	IWM_LOCK(sc);
3502 	/* disable beacon filtering if we're hopping out of RUN */
3503 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
3504 		iwm_mvm_disable_beacon_filter(sc);
3505 
3506 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
3507 			in->in_assoc = 0;
3508 
3509 		iwm_release(sc, NULL);
3510 
3511 		/*
3512 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
3513 		 * above then the card will be completely reinitialized,
3514 		 * so the driver must do everything necessary to bring the card
3515 		 * from INIT to SCAN.
3516 		 *
3517 		 * Additionally, upon receiving deauth frame from AP,
3518 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
3519 		 * state. This will also fail with this driver, so bring the FSM
3520 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
3521 		 *
3522 		 * XXX TODO: fix this for FreeBSD!
3523 		 */
3524 		if (nstate == IEEE80211_S_SCAN ||
3525 		    nstate == IEEE80211_S_AUTH ||
3526 		    nstate == IEEE80211_S_ASSOC) {
3527 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3528 			    "Force transition to INIT; MGT=%d\n", arg);
3529 			IWM_UNLOCK(sc);
3530 			IEEE80211_LOCK(ic);
3531 			vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
3532 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3533 			    "Going INIT->SCAN\n");
3534 			nstate = IEEE80211_S_SCAN;
3535 			IEEE80211_UNLOCK(ic);
3536 			IWM_LOCK(sc);
3537 		}
3538 	}
3539 
3540 	switch (nstate) {
3541 	case IEEE80211_S_INIT:
3542 		sc->sc_scanband = 0;
3543 		break;
3544 
3545 	case IEEE80211_S_AUTH:
3546 		if ((error = iwm_auth(vap, sc)) != 0) {
3547 			device_printf(sc->sc_dev,
3548 			    "%s: could not move to auth state: %d\n",
3549 			    __func__, error);
3550 			break;
3551 		}
3552 		break;
3553 
3554 	case IEEE80211_S_ASSOC:
3555 		if ((error = iwm_assoc(vap, sc)) != 0) {
3556 			device_printf(sc->sc_dev,
3557 			    "%s: failed to associate: %d\n", __func__,
3558 			    error);
3559 			break;
3560 		}
3561 		break;
3562 
3563 	case IEEE80211_S_RUN:
3564 	{
3565 		struct iwm_host_cmd cmd = {
3566 			.id = IWM_LQ_CMD,
3567 			.len = { sizeof(in->in_lq), },
3568 			.flags = IWM_CMD_SYNC,
3569 		};
3570 
3571 		/* Update the association state, now we have it all */
3572 		/* (eg associd comes in at this point */
3573 		error = iwm_assoc(vap, sc);
3574 		if (error != 0) {
3575 			device_printf(sc->sc_dev,
3576 			    "%s: failed to update association state: %d\n",
3577 			    __func__,
3578 			    error);
3579 			break;
3580 		}
3581 
3582 		in = IWM_NODE(vap->iv_bss);
3583 		iwm_mvm_power_mac_update_mode(sc, in);
3584 		iwm_mvm_enable_beacon_filter(sc, in);
3585 		iwm_mvm_update_quotas(sc, in);
3586 		iwm_setrates(sc, in);
3587 
3588 		cmd.data[0] = &in->in_lq;
3589 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
3590 			device_printf(sc->sc_dev,
3591 			    "%s: IWM_LQ_CMD failed\n", __func__);
3592 		}
3593 
3594 		break;
3595 	}
3596 
3597 	default:
3598 		break;
3599 	}
3600 	IWM_UNLOCK(sc);
3601 	IEEE80211_LOCK(ic);
3602 
3603 	return (ivp->iv_newstate(vap, nstate, arg));
3604 }
3605 
3606 void
3607 iwm_endscan_cb(void *arg, int pending)
3608 {
3609 	struct iwm_softc *sc = arg;
3610 	struct ieee80211com *ic = &sc->sc_ic;
3611 	int done;
3612 	int error;
3613 
3614 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
3615 	    "%s: scan ended\n",
3616 	    __func__);
3617 
3618 	IWM_LOCK(sc);
3619 	if (sc->sc_scanband == IEEE80211_CHAN_2GHZ &&
3620 	    sc->sc_nvm.sku_cap_band_52GHz_enable) {
3621 		done = 0;
3622 		if ((error = iwm_mvm_scan_request(sc,
3623 		    IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) {
3624 			device_printf(sc->sc_dev, "could not initiate scan\n");
3625 			done = 1;
3626 		}
3627 	} else {
3628 		done = 1;
3629 	}
3630 
3631 	if (done) {
3632 		IWM_UNLOCK(sc);
3633 		ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
3634 		IWM_LOCK(sc);
3635 		sc->sc_scanband = 0;
3636 	}
3637 	IWM_UNLOCK(sc);
3638 }
3639 
3640 static int
3641 iwm_init_hw(struct iwm_softc *sc)
3642 {
3643 	struct ieee80211com *ic = &sc->sc_ic;
3644 	int error, i, qid;
3645 
3646 	if ((error = iwm_start_hw(sc)) != 0)
3647 		return error;
3648 
3649 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
3650 		return error;
3651 	}
3652 
3653 	/*
3654 	 * should stop and start HW since that INIT
3655 	 * image just loaded
3656 	 */
3657 	iwm_stop_device(sc);
3658 	if ((error = iwm_start_hw(sc)) != 0) {
3659 		device_printf(sc->sc_dev, "could not initialize hardware\n");
3660 		return error;
3661 	}
3662 
3663 	/* omstart, this time with the regular firmware */
3664 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
3665 	if (error) {
3666 		device_printf(sc->sc_dev, "could not load firmware\n");
3667 		goto error;
3668 	}
3669 
3670 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
3671 		goto error;
3672 
3673 	/* Send phy db control command and then phy db calibration*/
3674 	if ((error = iwm_send_phy_db_data(sc)) != 0)
3675 		goto error;
3676 
3677 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0)
3678 		goto error;
3679 
3680 	/* Add auxiliary station for scanning */
3681 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0)
3682 		goto error;
3683 
3684 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
3685 		/*
3686 		 * The channel used here isn't relevant as it's
3687 		 * going to be overwritten in the other flows.
3688 		 * For now use the first channel we have.
3689 		 */
3690 		if ((error = iwm_mvm_phy_ctxt_add(sc,
3691 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
3692 			goto error;
3693 	}
3694 
3695 	error = iwm_mvm_power_update_device(sc);
3696 	if (error)
3697 		goto error;
3698 
3699 	/* Mark TX rings as active. */
3700 	for (qid = 0; qid < 4; qid++) {
3701 		iwm_enable_txq(sc, qid, qid);
3702 	}
3703 
3704 	return 0;
3705 
3706  error:
3707 	iwm_stop_device(sc);
3708 	return error;
3709 }
3710 
3711 /* Allow multicast from our BSSID. */
3712 static int
3713 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
3714 {
3715 	struct ieee80211_node *ni = vap->iv_bss;
3716 	struct iwm_mcast_filter_cmd *cmd;
3717 	size_t size;
3718 	int error;
3719 
3720 	size = roundup(sizeof(*cmd), 4);
3721 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
3722 	if (cmd == NULL)
3723 		return ENOMEM;
3724 	cmd->filter_own = 1;
3725 	cmd->port_id = 0;
3726 	cmd->count = 0;
3727 	cmd->pass_all = 1;
3728 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
3729 
3730 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
3731 	    IWM_CMD_SYNC, size, cmd);
3732 	free(cmd, M_DEVBUF);
3733 
3734 	return (error);
3735 }
3736 
3737 static void
3738 iwm_init(struct iwm_softc *sc)
3739 {
3740 	int error;
3741 
3742 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
3743 		return;
3744 	}
3745 	sc->sc_generation++;
3746 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
3747 
3748 	if ((error = iwm_init_hw(sc)) != 0) {
3749 		iwm_stop(sc);
3750 		return;
3751 	}
3752 
3753 	/*
3754  	 * Ok, firmware loaded and we are jogging
3755 	 */
3756 	sc->sc_flags |= IWM_FLAG_HW_INITED;
3757 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3758 }
3759 
3760 static int
3761 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
3762 {
3763 	struct iwm_softc *sc;
3764 	int error;
3765 
3766 	sc = ic->ic_softc;
3767 
3768 	IWM_LOCK(sc);
3769 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3770 		IWM_UNLOCK(sc);
3771 		return (ENXIO);
3772 	}
3773 	error = mbufq_enqueue(&sc->sc_snd, m);
3774 	if (error) {
3775 		IWM_UNLOCK(sc);
3776 		return (error);
3777 	}
3778 	iwm_start(sc);
3779 	IWM_UNLOCK(sc);
3780 	return (0);
3781 }
3782 
3783 /*
3784  * Dequeue packets from sendq and call send.
3785  */
3786 static void
3787 iwm_start(struct iwm_softc *sc)
3788 {
3789 	struct ieee80211_node *ni;
3790 	struct mbuf *m;
3791 	int ac = 0;
3792 
3793 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
3794 	while (sc->qfullmsk == 0 &&
3795 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
3796 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3797 		if (iwm_tx(sc, m, ni, ac) != 0) {
3798 			if_inc_counter(ni->ni_vap->iv_ifp,
3799 			    IFCOUNTER_OERRORS, 1);
3800 			ieee80211_free_node(ni);
3801 			continue;
3802 		}
3803 		sc->sc_tx_timer = 15;
3804 	}
3805 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
3806 }
3807 
3808 static void
3809 iwm_stop(struct iwm_softc *sc)
3810 {
3811 
3812 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
3813 	sc->sc_flags |= IWM_FLAG_STOPPED;
3814 	sc->sc_generation++;
3815 	sc->sc_scanband = 0;
3816 	sc->sc_auth_prot = 0;
3817 	sc->sc_tx_timer = 0;
3818 	iwm_stop_device(sc);
3819 }
3820 
3821 static void
3822 iwm_watchdog(void *arg)
3823 {
3824 	struct iwm_softc *sc = arg;
3825 
3826 	if (sc->sc_tx_timer > 0) {
3827 		if (--sc->sc_tx_timer == 0) {
3828 			device_printf(sc->sc_dev, "device timeout\n");
3829 #ifdef IWM_DEBUG
3830 			iwm_nic_error(sc);
3831 #endif
3832 			iwm_stop(sc);
3833 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
3834 			return;
3835 		}
3836 	}
3837 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3838 }
3839 
3840 static void
3841 iwm_parent(struct ieee80211com *ic)
3842 {
3843 	struct iwm_softc *sc = ic->ic_softc;
3844 	int startall = 0;
3845 
3846 	IWM_LOCK(sc);
3847 	if (ic->ic_nrunning > 0) {
3848 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
3849 			iwm_init(sc);
3850 			startall = 1;
3851 		}
3852 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
3853 		iwm_stop(sc);
3854 	IWM_UNLOCK(sc);
3855 	if (startall)
3856 		ieee80211_start_all(ic);
3857 }
3858 
3859 /*
3860  * The interrupt side of things
3861  */
3862 
3863 /*
3864  * error dumping routines are from iwlwifi/mvm/utils.c
3865  */
3866 
3867 /*
3868  * Note: This structure is read from the device with IO accesses,
3869  * and the reading already does the endian conversion. As it is
3870  * read with uint32_t-sized accesses, any members with a different size
3871  * need to be ordered correctly though!
3872  */
3873 struct iwm_error_event_table {
3874 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
3875 	uint32_t error_id;		/* type of error */
3876 	uint32_t pc;			/* program counter */
3877 	uint32_t blink1;		/* branch link */
3878 	uint32_t blink2;		/* branch link */
3879 	uint32_t ilink1;		/* interrupt link */
3880 	uint32_t ilink2;		/* interrupt link */
3881 	uint32_t data1;		/* error-specific data */
3882 	uint32_t data2;		/* error-specific data */
3883 	uint32_t data3;		/* error-specific data */
3884 	uint32_t bcon_time;		/* beacon timer */
3885 	uint32_t tsf_low;		/* network timestamp function timer */
3886 	uint32_t tsf_hi;		/* network timestamp function timer */
3887 	uint32_t gp1;		/* GP1 timer register */
3888 	uint32_t gp2;		/* GP2 timer register */
3889 	uint32_t gp3;		/* GP3 timer register */
3890 	uint32_t ucode_ver;		/* uCode version */
3891 	uint32_t hw_ver;		/* HW Silicon version */
3892 	uint32_t brd_ver;		/* HW board version */
3893 	uint32_t log_pc;		/* log program counter */
3894 	uint32_t frame_ptr;		/* frame pointer */
3895 	uint32_t stack_ptr;		/* stack pointer */
3896 	uint32_t hcmd;		/* last host command header */
3897 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
3898 				 * rxtx_flag */
3899 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
3900 				 * host_flag */
3901 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
3902 				 * enc_flag */
3903 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
3904 				 * time_flag */
3905 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
3906 				 * wico interrupt */
3907 	uint32_t isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
3908 	uint32_t wait_event;		/* wait event() caller address */
3909 	uint32_t l2p_control;	/* L2pControlField */
3910 	uint32_t l2p_duration;	/* L2pDurationField */
3911 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
3912 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
3913 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
3914 				 * (LMPM_PMG_SEL) */
3915 	uint32_t u_timestamp;	/* indicate when the date and time of the
3916 				 * compilation */
3917 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
3918 } __packed;
3919 
3920 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
3921 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
3922 
3923 #ifdef IWM_DEBUG
3924 struct {
3925 	const char *name;
3926 	uint8_t num;
3927 } advanced_lookup[] = {
3928 	{ "NMI_INTERRUPT_WDG", 0x34 },
3929 	{ "SYSASSERT", 0x35 },
3930 	{ "UCODE_VERSION_MISMATCH", 0x37 },
3931 	{ "BAD_COMMAND", 0x38 },
3932 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
3933 	{ "FATAL_ERROR", 0x3D },
3934 	{ "NMI_TRM_HW_ERR", 0x46 },
3935 	{ "NMI_INTERRUPT_TRM", 0x4C },
3936 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
3937 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
3938 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
3939 	{ "NMI_INTERRUPT_HOST", 0x66 },
3940 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
3941 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
3942 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
3943 	{ "ADVANCED_SYSASSERT", 0 },
3944 };
3945 
3946 static const char *
3947 iwm_desc_lookup(uint32_t num)
3948 {
3949 	int i;
3950 
3951 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
3952 		if (advanced_lookup[i].num == num)
3953 			return advanced_lookup[i].name;
3954 
3955 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
3956 	return advanced_lookup[i].name;
3957 }
3958 
3959 /*
3960  * Support for dumping the error log seemed like a good idea ...
3961  * but it's mostly hex junk and the only sensible thing is the
3962  * hw/ucode revision (which we know anyway).  Since it's here,
3963  * I'll just leave it in, just in case e.g. the Intel guys want to
3964  * help us decipher some "ADVANCED_SYSASSERT" later.
3965  */
3966 static void
3967 iwm_nic_error(struct iwm_softc *sc)
3968 {
3969 	struct iwm_error_event_table table;
3970 	uint32_t base;
3971 
3972 	device_printf(sc->sc_dev, "dumping device error log\n");
3973 	base = sc->sc_uc.uc_error_event_table;
3974 	if (base < 0x800000 || base >= 0x80C000) {
3975 		device_printf(sc->sc_dev,
3976 		    "Not valid error log pointer 0x%08x\n", base);
3977 		return;
3978 	}
3979 
3980 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) {
3981 		device_printf(sc->sc_dev, "reading errlog failed\n");
3982 		return;
3983 	}
3984 
3985 	if (!table.valid) {
3986 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
3987 		return;
3988 	}
3989 
3990 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
3991 		device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n");
3992 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
3993 		    sc->sc_flags, table.valid);
3994 	}
3995 
3996 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
3997 		iwm_desc_lookup(table.error_id));
3998 	device_printf(sc->sc_dev, "%08X | uPc\n", table.pc);
3999 	device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1);
4000 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4001 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4002 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4003 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4004 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4005 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4006 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4007 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4008 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4009 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4010 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4011 	device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3);
4012 	device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver);
4013 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4014 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4015 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4016 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4017 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4018 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4019 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4020 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4021 	device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref);
4022 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4023 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4024 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4025 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4026 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4027 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4028 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4029 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4030 }
4031 #endif
4032 
4033 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
4034 do {									\
4035 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4036 	_var_ = (void *)((_pkt_)+1);					\
4037 } while (/*CONSTCOND*/0)
4038 
4039 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
4040 do {									\
4041 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4042 	_ptr_ = (void *)((_pkt_)+1);					\
4043 } while (/*CONSTCOND*/0)
4044 
4045 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
4046 
4047 /*
4048  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
4049  * Basic structure from if_iwn
4050  */
4051 static void
4052 iwm_notif_intr(struct iwm_softc *sc)
4053 {
4054 	uint16_t hw;
4055 
4056 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4057 	    BUS_DMASYNC_POSTREAD);
4058 
4059 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
4060 	while (sc->rxq.cur != hw) {
4061 		struct iwm_rx_ring *ring = &sc->rxq;
4062 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4063 		struct iwm_rx_packet *pkt;
4064 		struct iwm_cmd_response *cresp;
4065 		int qid, idx;
4066 
4067 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4068 		    BUS_DMASYNC_POSTREAD);
4069 		pkt = mtod(data->m, struct iwm_rx_packet *);
4070 
4071 		qid = pkt->hdr.qid & ~0x80;
4072 		idx = pkt->hdr.idx;
4073 
4074 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4075 		    "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n",
4076 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags,
4077 		    pkt->hdr.code, sc->rxq.cur, hw);
4078 
4079 		/*
4080 		 * randomly get these from the firmware, no idea why.
4081 		 * they at least seem harmless, so just ignore them for now
4082 		 */
4083 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
4084 		    || pkt->len_n_flags == htole32(0x55550000))) {
4085 			ADVANCE_RXQ(sc);
4086 			continue;
4087 		}
4088 
4089 		switch (pkt->hdr.code) {
4090 		case IWM_REPLY_RX_PHY_CMD:
4091 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
4092 			break;
4093 
4094 		case IWM_REPLY_RX_MPDU_CMD:
4095 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
4096 			break;
4097 
4098 		case IWM_TX_CMD:
4099 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
4100 			break;
4101 
4102 		case IWM_MISSED_BEACONS_NOTIFICATION: {
4103 			struct iwm_missed_beacons_notif *resp;
4104 			int missed;
4105 
4106 			/* XXX look at mac_id to determine interface ID */
4107 			struct ieee80211com *ic = &sc->sc_ic;
4108 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4109 
4110 			SYNC_RESP_STRUCT(resp, pkt);
4111 			missed = le32toh(resp->consec_missed_beacons);
4112 
4113 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
4114 			    "%s: MISSED_BEACON: mac_id=%d, "
4115 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
4116 			    "num_rx=%d\n",
4117 			    __func__,
4118 			    le32toh(resp->mac_id),
4119 			    le32toh(resp->consec_missed_beacons_since_last_rx),
4120 			    le32toh(resp->consec_missed_beacons),
4121 			    le32toh(resp->num_expected_beacons),
4122 			    le32toh(resp->num_recvd_beacons));
4123 
4124 			/* Be paranoid */
4125 			if (vap == NULL)
4126 				break;
4127 
4128 			/* XXX no net80211 locking? */
4129 			if (vap->iv_state == IEEE80211_S_RUN &&
4130 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4131 				if (missed > vap->iv_bmissthreshold) {
4132 					/* XXX bad locking; turn into task */
4133 					IWM_UNLOCK(sc);
4134 					ieee80211_beacon_miss(ic);
4135 					IWM_LOCK(sc);
4136 				}
4137 			}
4138 
4139 			break; }
4140 
4141 		case IWM_MVM_ALIVE: {
4142 			struct iwm_mvm_alive_resp *resp;
4143 			SYNC_RESP_STRUCT(resp, pkt);
4144 
4145 			sc->sc_uc.uc_error_event_table
4146 			    = le32toh(resp->error_event_table_ptr);
4147 			sc->sc_uc.uc_log_event_table
4148 			    = le32toh(resp->log_event_table_ptr);
4149 			sc->sched_base = le32toh(resp->scd_base_ptr);
4150 			sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK;
4151 
4152 			sc->sc_uc.uc_intr = 1;
4153 			wakeup(&sc->sc_uc);
4154 			break; }
4155 
4156 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
4157 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
4158 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
4159 
4160 			iwm_phy_db_set_section(sc, phy_db_notif);
4161 
4162 			break; }
4163 
4164 		case IWM_STATISTICS_NOTIFICATION: {
4165 			struct iwm_notif_statistics *stats;
4166 			SYNC_RESP_STRUCT(stats, pkt);
4167 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
4168 			sc->sc_noise = iwm_get_noise(&stats->rx.general);
4169 			break; }
4170 
4171 		case IWM_NVM_ACCESS_CMD:
4172 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4173 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4174 				    BUS_DMASYNC_POSTREAD);
4175 				memcpy(sc->sc_cmd_resp,
4176 				    pkt, sizeof(sc->sc_cmd_resp));
4177 			}
4178 			break;
4179 
4180 		case IWM_PHY_CONFIGURATION_CMD:
4181 		case IWM_TX_ANT_CONFIGURATION_CMD:
4182 		case IWM_ADD_STA:
4183 		case IWM_MAC_CONTEXT_CMD:
4184 		case IWM_REPLY_SF_CFG_CMD:
4185 		case IWM_POWER_TABLE_CMD:
4186 		case IWM_PHY_CONTEXT_CMD:
4187 		case IWM_BINDING_CONTEXT_CMD:
4188 		case IWM_TIME_EVENT_CMD:
4189 		case IWM_SCAN_REQUEST_CMD:
4190 		case IWM_REPLY_BEACON_FILTERING_CMD:
4191 		case IWM_MAC_PM_POWER_TABLE:
4192 		case IWM_TIME_QUOTA_CMD:
4193 		case IWM_REMOVE_STA:
4194 		case IWM_TXPATH_FLUSH:
4195 		case IWM_LQ_CMD:
4196 			SYNC_RESP_STRUCT(cresp, pkt);
4197 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4198 				memcpy(sc->sc_cmd_resp,
4199 				    pkt, sizeof(*pkt)+sizeof(*cresp));
4200 			}
4201 			break;
4202 
4203 		/* ignore */
4204 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
4205 			break;
4206 
4207 		case IWM_INIT_COMPLETE_NOTIF:
4208 			sc->sc_init_complete = 1;
4209 			wakeup(&sc->sc_init_complete);
4210 			break;
4211 
4212 		case IWM_SCAN_COMPLETE_NOTIFICATION: {
4213 			struct iwm_scan_complete_notif *notif;
4214 			SYNC_RESP_STRUCT(notif, pkt);
4215 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
4216 			break; }
4217 
4218 		case IWM_REPLY_ERROR: {
4219 			struct iwm_error_resp *resp;
4220 			SYNC_RESP_STRUCT(resp, pkt);
4221 
4222 			device_printf(sc->sc_dev,
4223 			    "firmware error 0x%x, cmd 0x%x\n",
4224 			    le32toh(resp->error_type),
4225 			    resp->cmd_id);
4226 			break; }
4227 
4228 		case IWM_TIME_EVENT_NOTIFICATION: {
4229 			struct iwm_time_event_notif *notif;
4230 			SYNC_RESP_STRUCT(notif, pkt);
4231 
4232 			if (notif->status) {
4233 				if (le32toh(notif->action) &
4234 				    IWM_TE_V2_NOTIF_HOST_EVENT_START)
4235 					sc->sc_auth_prot = 2;
4236 				else
4237 					sc->sc_auth_prot = 0;
4238 			} else {
4239 				sc->sc_auth_prot = -1;
4240 			}
4241 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4242 			    "%s: time event notification auth_prot=%d\n",
4243 				__func__, sc->sc_auth_prot);
4244 
4245 			wakeup(&sc->sc_auth_prot);
4246 			break; }
4247 
4248 		case IWM_MCAST_FILTER_CMD:
4249 			break;
4250 
4251 		default:
4252 			device_printf(sc->sc_dev,
4253 			    "frame %d/%d %x UNHANDLED (this should "
4254 			    "not happen)\n", qid, idx,
4255 			    pkt->len_n_flags);
4256 			break;
4257 		}
4258 
4259 		/*
4260 		 * Why test bit 0x80?  The Linux driver:
4261 		 *
4262 		 * There is one exception:  uCode sets bit 15 when it
4263 		 * originates the response/notification, i.e. when the
4264 		 * response/notification is not a direct response to a
4265 		 * command sent by the driver.  For example, uCode issues
4266 		 * IWM_REPLY_RX when it sends a received frame to the driver;
4267 		 * it is not a direct response to any driver command.
4268 		 *
4269 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
4270 		 * uses a slightly different format for pkt->hdr, and "qid"
4271 		 * is actually the upper byte of a two-byte field.
4272 		 */
4273 		if (!(pkt->hdr.qid & (1 << 7))) {
4274 			iwm_cmd_done(sc, pkt);
4275 		}
4276 
4277 		ADVANCE_RXQ(sc);
4278 	}
4279 
4280 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
4281 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
4282 
4283 	/*
4284 	 * Tell the firmware what we have processed.
4285 	 * Seems like the hardware gets upset unless we align
4286 	 * the write by 8??
4287 	 */
4288 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
4289 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
4290 }
4291 
4292 static void
4293 iwm_intr(void *arg)
4294 {
4295 	struct iwm_softc *sc = arg;
4296 	int handled = 0;
4297 	int r1, r2, rv = 0;
4298 	int isperiodic = 0;
4299 
4300 	IWM_LOCK(sc);
4301 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
4302 
4303 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
4304 		uint32_t *ict = sc->ict_dma.vaddr;
4305 		int tmp;
4306 
4307 		tmp = htole32(ict[sc->ict_cur]);
4308 		if (!tmp)
4309 			goto out_ena;
4310 
4311 		/*
4312 		 * ok, there was something.  keep plowing until we have all.
4313 		 */
4314 		r1 = r2 = 0;
4315 		while (tmp) {
4316 			r1 |= tmp;
4317 			ict[sc->ict_cur] = 0;
4318 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
4319 			tmp = htole32(ict[sc->ict_cur]);
4320 		}
4321 
4322 		/* this is where the fun begins.  don't ask */
4323 		if (r1 == 0xffffffff)
4324 			r1 = 0;
4325 
4326 		/* i am not expected to understand this */
4327 		if (r1 & 0xc0000)
4328 			r1 |= 0x8000;
4329 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
4330 	} else {
4331 		r1 = IWM_READ(sc, IWM_CSR_INT);
4332 		/* "hardware gone" (where, fishing?) */
4333 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4334 			goto out;
4335 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
4336 	}
4337 	if (r1 == 0 && r2 == 0) {
4338 		goto out_ena;
4339 	}
4340 
4341 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
4342 
4343 	/* ignored */
4344 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
4345 
4346 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
4347 #ifdef IWM_DEBUG
4348 		int i;
4349 		struct ieee80211com *ic = &sc->sc_ic;
4350 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4351 
4352 		iwm_nic_error(sc);
4353 
4354 		/* Dump driver status (TX and RX rings) while we're here. */
4355 		device_printf(sc->sc_dev, "driver status:\n");
4356 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
4357 			struct iwm_tx_ring *ring = &sc->txq[i];
4358 			device_printf(sc->sc_dev,
4359 			    "  tx ring %2d: qid=%-2d cur=%-3d "
4360 			    "queued=%-3d\n",
4361 			    i, ring->qid, ring->cur, ring->queued);
4362 		}
4363 		device_printf(sc->sc_dev,
4364 		    "  rx ring: cur=%d\n", sc->rxq.cur);
4365 		device_printf(sc->sc_dev,
4366 		    "  802.11 state %d\n", vap->iv_state);
4367 #endif
4368 
4369 		device_printf(sc->sc_dev, "fatal firmware error\n");
4370 		iwm_stop(sc);
4371 		rv = 1;
4372 		goto out;
4373 
4374 	}
4375 
4376 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
4377 		handled |= IWM_CSR_INT_BIT_HW_ERR;
4378 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
4379 		iwm_stop(sc);
4380 		rv = 1;
4381 		goto out;
4382 	}
4383 
4384 	/* firmware chunk loaded */
4385 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
4386 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
4387 		handled |= IWM_CSR_INT_BIT_FH_TX;
4388 		sc->sc_fw_chunk_done = 1;
4389 		wakeup(&sc->sc_fw);
4390 	}
4391 
4392 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
4393 		handled |= IWM_CSR_INT_BIT_RF_KILL;
4394 		if (iwm_check_rfkill(sc)) {
4395 			device_printf(sc->sc_dev,
4396 			    "%s: rfkill switch, disabling interface\n",
4397 			    __func__);
4398 			iwm_stop(sc);
4399 		}
4400 	}
4401 
4402 	/*
4403 	 * The Linux driver uses periodic interrupts to avoid races.
4404 	 * We cargo-cult like it's going out of fashion.
4405 	 */
4406 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
4407 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
4408 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
4409 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
4410 			IWM_WRITE_1(sc,
4411 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
4412 		isperiodic = 1;
4413 	}
4414 
4415 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
4416 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
4417 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
4418 
4419 		iwm_notif_intr(sc);
4420 
4421 		/* enable periodic interrupt, see above */
4422 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
4423 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
4424 			    IWM_CSR_INT_PERIODIC_ENA);
4425 	}
4426 
4427 	if (__predict_false(r1 & ~handled))
4428 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4429 		    "%s: unhandled interrupts: %x\n", __func__, r1);
4430 	rv = 1;
4431 
4432  out_ena:
4433 	iwm_restore_interrupts(sc);
4434  out:
4435 	IWM_UNLOCK(sc);
4436 	return;
4437 }
4438 
4439 /*
4440  * Autoconf glue-sniffing
4441  */
4442 #define	PCI_VENDOR_INTEL		0x8086
4443 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
4444 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
4445 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
4446 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
4447 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
4448 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
4449 
4450 static const struct iwm_devices {
4451 	uint16_t	device;
4452 	const char	*name;
4453 } iwm_devices[] = {
4454 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
4455 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
4456 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
4457 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
4458 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
4459 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
4460 };
4461 
4462 static int
4463 iwm_probe(device_t dev)
4464 {
4465 	int i;
4466 
4467 	for (i = 0; i < nitems(iwm_devices); i++)
4468 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
4469 		    pci_get_device(dev) == iwm_devices[i].device) {
4470 			device_set_desc(dev, iwm_devices[i].name);
4471 			return (BUS_PROBE_DEFAULT);
4472 		}
4473 
4474 	return (ENXIO);
4475 }
4476 
4477 static int
4478 iwm_dev_check(device_t dev)
4479 {
4480 	struct iwm_softc *sc;
4481 
4482 	sc = device_get_softc(dev);
4483 
4484 	switch (pci_get_device(dev)) {
4485 	case PCI_PRODUCT_INTEL_WL_3160_1:
4486 	case PCI_PRODUCT_INTEL_WL_3160_2:
4487 		sc->sc_fwname = "iwm3160fw";
4488 		sc->host_interrupt_operation_mode = 1;
4489 		return (0);
4490 	case PCI_PRODUCT_INTEL_WL_7260_1:
4491 	case PCI_PRODUCT_INTEL_WL_7260_2:
4492 		sc->sc_fwname = "iwm7260fw";
4493 		sc->host_interrupt_operation_mode = 1;
4494 		return (0);
4495 	case PCI_PRODUCT_INTEL_WL_7265_1:
4496 	case PCI_PRODUCT_INTEL_WL_7265_2:
4497 		sc->sc_fwname = "iwm7265fw";
4498 		sc->host_interrupt_operation_mode = 0;
4499 		return (0);
4500 	default:
4501 		device_printf(dev, "unknown adapter type\n");
4502 		return ENXIO;
4503 	}
4504 }
4505 
4506 static int
4507 iwm_pci_attach(device_t dev)
4508 {
4509 	struct iwm_softc *sc;
4510 	int count, error, rid;
4511 	uint16_t reg;
4512 
4513 	sc = device_get_softc(dev);
4514 
4515 	/* Clear device-specific "PCI retry timeout" register (41h). */
4516 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4517 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4518 
4519 	/* Enable bus-mastering and hardware bug workaround. */
4520 	pci_enable_busmaster(dev);
4521 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
4522 	/* if !MSI */
4523 	if (reg & PCIM_STATUS_INTxSTATE) {
4524 		reg &= ~PCIM_STATUS_INTxSTATE;
4525 	}
4526 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
4527 
4528 	rid = PCIR_BAR(0);
4529 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
4530 	    RF_ACTIVE);
4531 	if (sc->sc_mem == NULL) {
4532 		device_printf(sc->sc_dev, "can't map mem space\n");
4533 		return (ENXIO);
4534 	}
4535 	sc->sc_st = rman_get_bustag(sc->sc_mem);
4536 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
4537 
4538 	/* Install interrupt handler. */
4539 	count = 1;
4540 	rid = 0;
4541 	if (pci_alloc_msi(dev, &count) == 0)
4542 		rid = 1;
4543 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
4544 	    (rid != 0 ? 0 : RF_SHAREABLE));
4545 	if (sc->sc_irq == NULL) {
4546 		device_printf(dev, "can't map interrupt\n");
4547 			return (ENXIO);
4548 	}
4549 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
4550 	    NULL, iwm_intr, sc, &sc->sc_ih);
4551 	if (sc->sc_ih == NULL) {
4552 		device_printf(dev, "can't establish interrupt");
4553 			return (ENXIO);
4554 	}
4555 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
4556 
4557 	return (0);
4558 }
4559 
4560 static void
4561 iwm_pci_detach(device_t dev)
4562 {
4563 	struct iwm_softc *sc = device_get_softc(dev);
4564 
4565 	if (sc->sc_irq != NULL) {
4566 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
4567 		bus_release_resource(dev, SYS_RES_IRQ,
4568 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
4569 		pci_release_msi(dev);
4570         }
4571 	if (sc->sc_mem != NULL)
4572 		bus_release_resource(dev, SYS_RES_MEMORY,
4573 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
4574 }
4575 
4576 
4577 
4578 static int
4579 iwm_attach(device_t dev)
4580 {
4581 	struct iwm_softc *sc = device_get_softc(dev);
4582 	struct ieee80211com *ic = &sc->sc_ic;
4583 	int error;
4584 	int txq_i, i;
4585 
4586 	sc->sc_dev = dev;
4587 	IWM_LOCK_INIT(sc);
4588 	mbufq_init(&sc->sc_snd, ifqmaxlen);
4589 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
4590 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
4591 	sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK,
4592             taskqueue_thread_enqueue, &sc->sc_tq);
4593         error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq");
4594         if (error != 0) {
4595                 device_printf(dev, "can't start threads, error %d\n",
4596 		    error);
4597 		goto fail;
4598         }
4599 
4600 	/* PCI attach */
4601 	error = iwm_pci_attach(dev);
4602 	if (error != 0)
4603 		goto fail;
4604 
4605 	sc->sc_wantresp = -1;
4606 
4607 	/* Check device type */
4608 	error = iwm_dev_check(dev);
4609 	if (error != 0)
4610 		goto fail;
4611 
4612 	sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
4613 
4614 	/*
4615 	 * We now start fiddling with the hardware
4616 	 */
4617 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
4618 	if (iwm_prepare_card_hw(sc) != 0) {
4619 		device_printf(dev, "could not initialize hardware\n");
4620 		goto fail;
4621 	}
4622 
4623 	/* Allocate DMA memory for firmware transfers. */
4624 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
4625 		device_printf(dev, "could not allocate memory for firmware\n");
4626 		goto fail;
4627 	}
4628 
4629 	/* Allocate "Keep Warm" page. */
4630 	if ((error = iwm_alloc_kw(sc)) != 0) {
4631 		device_printf(dev, "could not allocate keep warm page\n");
4632 		goto fail;
4633 	}
4634 
4635 	/* We use ICT interrupts */
4636 	if ((error = iwm_alloc_ict(sc)) != 0) {
4637 		device_printf(dev, "could not allocate ICT table\n");
4638 		goto fail;
4639 	}
4640 
4641 	/* Allocate TX scheduler "rings". */
4642 	if ((error = iwm_alloc_sched(sc)) != 0) {
4643 		device_printf(dev, "could not allocate TX scheduler rings\n");
4644 		goto fail;
4645 	}
4646 
4647 	/* Allocate TX rings */
4648 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
4649 		if ((error = iwm_alloc_tx_ring(sc,
4650 		    &sc->txq[txq_i], txq_i)) != 0) {
4651 			device_printf(dev,
4652 			    "could not allocate TX ring %d\n",
4653 			    txq_i);
4654 			goto fail;
4655 		}
4656 	}
4657 
4658 	/* Allocate RX ring. */
4659 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
4660 		device_printf(dev, "could not allocate RX ring\n");
4661 		goto fail;
4662 	}
4663 
4664 	/* Clear pending interrupts. */
4665 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
4666 
4667 	ic->ic_softc = sc;
4668 	ic->ic_name = device_get_nameunit(sc->sc_dev);
4669 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
4670 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
4671 
4672 	/* Set device capabilities. */
4673 	ic->ic_caps =
4674 	    IEEE80211_C_STA |
4675 	    IEEE80211_C_WPA |		/* WPA/RSN */
4676 	    IEEE80211_C_WME |
4677 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
4678 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
4679 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
4680 	    ;
4681 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
4682 		sc->sc_phyctxt[i].id = i;
4683 		sc->sc_phyctxt[i].color = 0;
4684 		sc->sc_phyctxt[i].ref = 0;
4685 		sc->sc_phyctxt[i].channel = NULL;
4686 	}
4687 
4688 	/* Max RSSI */
4689 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
4690 	sc->sc_preinit_hook.ich_func = iwm_preinit;
4691 	sc->sc_preinit_hook.ich_arg = sc;
4692 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
4693 		device_printf(dev, "config_intrhook_establish failed\n");
4694 		goto fail;
4695 	}
4696 
4697 #ifdef IWM_DEBUG
4698 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
4699 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
4700 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
4701 #endif
4702 
4703 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4704 	    "<-%s\n", __func__);
4705 
4706 	return 0;
4707 
4708 	/* Free allocated memory if something failed during attachment. */
4709 fail:
4710 	iwm_detach_local(sc, 0);
4711 
4712 	return ENXIO;
4713 }
4714 
4715 static int
4716 iwm_update_edca(struct ieee80211com *ic)
4717 {
4718 	struct iwm_softc *sc = ic->ic_softc;
4719 
4720 	device_printf(sc->sc_dev, "%s: called\n", __func__);
4721 	return (0);
4722 }
4723 
4724 static void
4725 iwm_preinit(void *arg)
4726 {
4727 	struct iwm_softc *sc = arg;
4728 	device_t dev = sc->sc_dev;
4729 	struct ieee80211com *ic = &sc->sc_ic;
4730 	int error;
4731 
4732 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4733 	    "->%s\n", __func__);
4734 
4735 	IWM_LOCK(sc);
4736 	if ((error = iwm_start_hw(sc)) != 0) {
4737 		device_printf(dev, "could not initialize hardware\n");
4738 		IWM_UNLOCK(sc);
4739 		goto fail;
4740 	}
4741 
4742 	error = iwm_run_init_mvm_ucode(sc, 1);
4743 	iwm_stop_device(sc);
4744 	if (error) {
4745 		IWM_UNLOCK(sc);
4746 		goto fail;
4747 	}
4748 	device_printf(dev,
4749 	    "revision: 0x%x, firmware %d.%d (API ver. %d)\n",
4750 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
4751 	    IWM_UCODE_MAJOR(sc->sc_fwver),
4752 	    IWM_UCODE_MINOR(sc->sc_fwver),
4753 	    IWM_UCODE_API(sc->sc_fwver));
4754 
4755 	/* not all hardware can do 5GHz band */
4756 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
4757 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
4758 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
4759 	IWM_UNLOCK(sc);
4760 
4761 	/*
4762 	 * At this point we've committed - if we fail to do setup,
4763 	 * we now also have to tear down the net80211 state.
4764 	 */
4765 	ieee80211_ifattach(ic);
4766 	ic->ic_vap_create = iwm_vap_create;
4767 	ic->ic_vap_delete = iwm_vap_delete;
4768 	ic->ic_raw_xmit = iwm_raw_xmit;
4769 	ic->ic_node_alloc = iwm_node_alloc;
4770 	ic->ic_scan_start = iwm_scan_start;
4771 	ic->ic_scan_end = iwm_scan_end;
4772 	ic->ic_update_mcast = iwm_update_mcast;
4773 	ic->ic_set_channel = iwm_set_channel;
4774 	ic->ic_scan_curchan = iwm_scan_curchan;
4775 	ic->ic_scan_mindwell = iwm_scan_mindwell;
4776 	ic->ic_wme.wme_update = iwm_update_edca;
4777 	ic->ic_parent = iwm_parent;
4778 	ic->ic_transmit = iwm_transmit;
4779 	iwm_radiotap_attach(sc);
4780 	if (bootverbose)
4781 		ieee80211_announce(ic);
4782 
4783 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4784 	    "<-%s\n", __func__);
4785 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4786 
4787 	return;
4788 fail:
4789 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4790 	iwm_detach_local(sc, 0);
4791 }
4792 
4793 /*
4794  * Attach the interface to 802.11 radiotap.
4795  */
4796 static void
4797 iwm_radiotap_attach(struct iwm_softc *sc)
4798 {
4799         struct ieee80211com *ic = &sc->sc_ic;
4800 
4801 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4802 	    "->%s begin\n", __func__);
4803         ieee80211_radiotap_attach(ic,
4804             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
4805                 IWM_TX_RADIOTAP_PRESENT,
4806             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
4807                 IWM_RX_RADIOTAP_PRESENT);
4808 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4809 	    "->%s end\n", __func__);
4810 }
4811 
4812 static struct ieee80211vap *
4813 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
4814     enum ieee80211_opmode opmode, int flags,
4815     const uint8_t bssid[IEEE80211_ADDR_LEN],
4816     const uint8_t mac[IEEE80211_ADDR_LEN])
4817 {
4818 	struct iwm_vap *ivp;
4819 	struct ieee80211vap *vap;
4820 
4821 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
4822 		return NULL;
4823 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
4824 	vap = &ivp->iv_vap;
4825 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
4826 	vap->iv_bmissthreshold = 10;            /* override default */
4827 	/* Override with driver methods. */
4828 	ivp->iv_newstate = vap->iv_newstate;
4829 	vap->iv_newstate = iwm_newstate;
4830 
4831 	ieee80211_ratectl_init(vap);
4832 	/* Complete setup. */
4833 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
4834 	    mac);
4835 	ic->ic_opmode = opmode;
4836 
4837 	return vap;
4838 }
4839 
4840 static void
4841 iwm_vap_delete(struct ieee80211vap *vap)
4842 {
4843 	struct iwm_vap *ivp = IWM_VAP(vap);
4844 
4845 	ieee80211_ratectl_deinit(vap);
4846 	ieee80211_vap_detach(vap);
4847 	free(ivp, M_80211_VAP);
4848 }
4849 
4850 static void
4851 iwm_scan_start(struct ieee80211com *ic)
4852 {
4853 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4854         struct iwm_softc *sc = ic->ic_softc;
4855 	int error;
4856 
4857 	if (sc->sc_scanband)
4858 		return;
4859 	IWM_LOCK(sc);
4860 	error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0);
4861 	if (error) {
4862 		device_printf(sc->sc_dev, "could not initiate scan\n");
4863 		IWM_UNLOCK(sc);
4864 		ieee80211_cancel_scan(vap);
4865 	} else
4866 		IWM_UNLOCK(sc);
4867 }
4868 
4869 static void
4870 iwm_scan_end(struct ieee80211com *ic)
4871 {
4872 }
4873 
4874 static void
4875 iwm_update_mcast(struct ieee80211com *ic)
4876 {
4877 }
4878 
4879 static void
4880 iwm_set_channel(struct ieee80211com *ic)
4881 {
4882 }
4883 
4884 static void
4885 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4886 {
4887 }
4888 
4889 static void
4890 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
4891 {
4892 	return;
4893 }
4894 
4895 void
4896 iwm_init_task(void *arg1)
4897 {
4898 	struct iwm_softc *sc = arg1;
4899 
4900 	IWM_LOCK(sc);
4901 	while (sc->sc_flags & IWM_FLAG_BUSY)
4902 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
4903 	sc->sc_flags |= IWM_FLAG_BUSY;
4904 	iwm_stop(sc);
4905 	if (sc->sc_ic.ic_nrunning > 0)
4906 		iwm_init(sc);
4907 	sc->sc_flags &= ~IWM_FLAG_BUSY;
4908 	wakeup(&sc->sc_flags);
4909 	IWM_UNLOCK(sc);
4910 }
4911 
4912 static int
4913 iwm_resume(device_t dev)
4914 {
4915 	uint16_t reg;
4916 
4917 	/* Clear device-specific "PCI retry timeout" register (41h). */
4918 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4919 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4920 	iwm_init_task(device_get_softc(dev));
4921 
4922 	return 0;
4923 }
4924 
4925 static int
4926 iwm_suspend(device_t dev)
4927 {
4928 	struct iwm_softc *sc = device_get_softc(dev);
4929 
4930 	if (sc->sc_ic.ic_nrunning > 0) {
4931 		IWM_LOCK(sc);
4932 		iwm_stop(sc);
4933 		IWM_UNLOCK(sc);
4934 	}
4935 
4936 	return (0);
4937 }
4938 
4939 static int
4940 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
4941 {
4942 	struct iwm_fw_info *fw = &sc->sc_fw;
4943 	device_t dev = sc->sc_dev;
4944 	int i;
4945 
4946 	if (sc->sc_tq) {
4947 		taskqueue_drain_all(sc->sc_tq);
4948 		taskqueue_free(sc->sc_tq);
4949 	}
4950 	callout_drain(&sc->sc_watchdog_to);
4951 	iwm_stop_device(sc);
4952 	if (do_net80211)
4953 		ieee80211_ifdetach(&sc->sc_ic);
4954 
4955 	/* Free descriptor rings */
4956 	for (i = 0; i < nitems(sc->txq); i++)
4957 		iwm_free_tx_ring(sc, &sc->txq[i]);
4958 
4959 	/* Free firmware */
4960 	if (fw->fw_rawdata != NULL)
4961 		iwm_fw_info_free(fw);
4962 
4963 	/* free scheduler */
4964 	iwm_free_sched(sc);
4965 	if (sc->ict_dma.vaddr != NULL)
4966 		iwm_free_ict(sc);
4967 	if (sc->kw_dma.vaddr != NULL)
4968 		iwm_free_kw(sc);
4969 	if (sc->fw_dma.vaddr != NULL)
4970 		iwm_free_fwmem(sc);
4971 
4972 	/* Finished with the hardware - detach things */
4973 	iwm_pci_detach(dev);
4974 
4975 	mbufq_drain(&sc->sc_snd);
4976 	IWM_LOCK_DESTROY(sc);
4977 
4978 	return (0);
4979 }
4980 
4981 static int
4982 iwm_detach(device_t dev)
4983 {
4984 	struct iwm_softc *sc = device_get_softc(dev);
4985 
4986 	return (iwm_detach_local(sc, 1));
4987 }
4988 
4989 static device_method_t iwm_pci_methods[] = {
4990         /* Device interface */
4991         DEVMETHOD(device_probe,         iwm_probe),
4992         DEVMETHOD(device_attach,        iwm_attach),
4993         DEVMETHOD(device_detach,        iwm_detach),
4994         DEVMETHOD(device_suspend,       iwm_suspend),
4995         DEVMETHOD(device_resume,        iwm_resume),
4996 
4997         DEVMETHOD_END
4998 };
4999 
5000 static driver_t iwm_pci_driver = {
5001         "iwm",
5002         iwm_pci_methods,
5003         sizeof (struct iwm_softc)
5004 };
5005 
5006 static devclass_t iwm_devclass;
5007 
5008 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
5009 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
5010 MODULE_DEPEND(iwm, pci, 1, 1, 1);
5011 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
5012