xref: /freebsd/sys/dev/iwm/if_iwm.c (revision b54cfe0ae93eb56cf92d969fd76ba17e4ca36a32)
1 /*	$OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include <sys/param.h>
109 #include <sys/bus.h>
110 #include <sys/conf.h>
111 #include <sys/endian.h>
112 #include <sys/firmware.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/mbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/module.h>
118 #include <sys/proc.h>
119 #include <sys/rman.h>
120 #include <sys/socket.h>
121 #include <sys/sockio.h>
122 #include <sys/sysctl.h>
123 #include <sys/linker.h>
124 
125 #include <machine/bus.h>
126 #include <machine/endian.h>
127 #include <machine/resource.h>
128 
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcireg.h>
131 
132 #include <net/bpf.h>
133 
134 #include <net/if.h>
135 #include <net/if_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 
141 #include <netinet/in.h>
142 #include <netinet/in_systm.h>
143 #include <netinet/if_ether.h>
144 #include <netinet/ip.h>
145 
146 #include <net80211/ieee80211_var.h>
147 #include <net80211/ieee80211_regdomain.h>
148 #include <net80211/ieee80211_ratectl.h>
149 #include <net80211/ieee80211_radiotap.h>
150 
151 #include <dev/iwm/if_iwmreg.h>
152 #include <dev/iwm/if_iwmvar.h>
153 #include <dev/iwm/if_iwm_debug.h>
154 #include <dev/iwm/if_iwm_util.h>
155 #include <dev/iwm/if_iwm_binding.h>
156 #include <dev/iwm/if_iwm_phy_db.h>
157 #include <dev/iwm/if_iwm_mac_ctxt.h>
158 #include <dev/iwm/if_iwm_phy_ctxt.h>
159 #include <dev/iwm/if_iwm_time_event.h>
160 #include <dev/iwm/if_iwm_power.h>
161 #include <dev/iwm/if_iwm_scan.h>
162 
163 #include <dev/iwm/if_iwm_pcie_trans.h>
164 
165 const uint8_t iwm_nvm_channels[] = {
166 	/* 2.4 GHz */
167 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
168 	/* 5 GHz */
169 	36, 40, 44 , 48, 52, 56, 60, 64,
170 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
171 	149, 153, 157, 161, 165
172 };
173 #define IWM_NUM_2GHZ_CHANNELS	14
174 
175 /*
176  * XXX For now, there's simply a fixed set of rate table entries
177  * that are populated.
178  */
179 const struct iwm_rate {
180 	uint8_t rate;
181 	uint8_t plcp;
182 } iwm_rates[] = {
183 	{   2,	IWM_RATE_1M_PLCP  },
184 	{   4,	IWM_RATE_2M_PLCP  },
185 	{  11,	IWM_RATE_5M_PLCP  },
186 	{  22,	IWM_RATE_11M_PLCP },
187 	{  12,	IWM_RATE_6M_PLCP  },
188 	{  18,	IWM_RATE_9M_PLCP  },
189 	{  24,	IWM_RATE_12M_PLCP },
190 	{  36,	IWM_RATE_18M_PLCP },
191 	{  48,	IWM_RATE_24M_PLCP },
192 	{  72,	IWM_RATE_36M_PLCP },
193 	{  96,	IWM_RATE_48M_PLCP },
194 	{ 108,	IWM_RATE_54M_PLCP },
195 };
196 #define IWM_RIDX_CCK	0
197 #define IWM_RIDX_OFDM	4
198 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
201 
202 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
203 static int	iwm_firmware_store_section(struct iwm_softc *,
204                                            enum iwm_ucode_type,
205                                            const uint8_t *, size_t);
206 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
207 static void	iwm_fw_info_free(struct iwm_fw_info *);
208 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
209 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
210 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
211                                      bus_size_t, bus_size_t);
212 static void	iwm_dma_contig_free(struct iwm_dma_info *);
213 static int	iwm_alloc_fwmem(struct iwm_softc *);
214 static void	iwm_free_fwmem(struct iwm_softc *);
215 static int	iwm_alloc_sched(struct iwm_softc *);
216 static void	iwm_free_sched(struct iwm_softc *);
217 static int	iwm_alloc_kw(struct iwm_softc *);
218 static void	iwm_free_kw(struct iwm_softc *);
219 static int	iwm_alloc_ict(struct iwm_softc *);
220 static void	iwm_free_ict(struct iwm_softc *);
221 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
222 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
223 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
224 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
225                                   int);
226 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
227 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
228 static void	iwm_enable_interrupts(struct iwm_softc *);
229 static void	iwm_restore_interrupts(struct iwm_softc *);
230 static void	iwm_disable_interrupts(struct iwm_softc *);
231 static void	iwm_ict_reset(struct iwm_softc *);
232 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
233 static void	iwm_stop_device(struct iwm_softc *);
234 static void	iwm_mvm_nic_config(struct iwm_softc *);
235 static int	iwm_nic_rx_init(struct iwm_softc *);
236 static int	iwm_nic_tx_init(struct iwm_softc *);
237 static int	iwm_nic_init(struct iwm_softc *);
238 static void	iwm_enable_txq(struct iwm_softc *, int, int);
239 static int	iwm_post_alive(struct iwm_softc *);
240 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
241                                    uint16_t, uint8_t *, uint16_t *);
242 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
243 				     uint16_t *);
244 static void	iwm_init_channel_map(struct iwm_softc *,
245                                      const uint16_t * const);
246 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
247 			           const uint16_t *, const uint16_t *, uint8_t,
248 				   uint8_t);
249 struct iwm_nvm_section;
250 static int	iwm_parse_nvm_sections(struct iwm_softc *,
251                                        struct iwm_nvm_section *);
252 static int	iwm_nvm_init(struct iwm_softc *);
253 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
254                                         const uint8_t *, uint32_t);
255 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
256 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
257 static int	iwm_fw_alive(struct iwm_softc *, uint32_t);
258 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
259 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
260 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
261                                               enum iwm_ucode_type);
262 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
263 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
264 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
265 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
266 					    struct iwm_rx_phy_info *);
267 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
268                                       struct iwm_rx_packet *,
269                                       struct iwm_rx_data *);
270 static int	iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
271 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
272                                    struct iwm_rx_data *);
273 static void	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
274                                          struct iwm_rx_packet *,
275 				         struct iwm_node *);
276 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
277                                   struct iwm_rx_data *);
278 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
279 #if 0
280 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
281                                  uint16_t);
282 #endif
283 static const struct iwm_rate *
284 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
285 			struct ieee80211_frame *, struct iwm_tx_cmd *);
286 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
287                        struct ieee80211_node *, int);
288 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
289 			     const struct ieee80211_bpf_params *);
290 static void	iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *,
291 					     struct iwm_mvm_add_sta_cmd_v5 *);
292 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
293 					        struct iwm_mvm_add_sta_cmd_v6 *,
294                                                 int *);
295 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
296                                        int);
297 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
298 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
299 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
300                                            struct iwm_int_sta *,
301 				           const uint8_t *, uint16_t, uint16_t);
302 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
303 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
304 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
305 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
306 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
307 static struct ieee80211_node *
308 		iwm_node_alloc(struct ieee80211vap *,
309 		               const uint8_t[IEEE80211_ADDR_LEN]);
310 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
311 static int	iwm_media_change(struct ifnet *);
312 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
313 static void	iwm_endscan_cb(void *, int);
314 static int	iwm_init_hw(struct iwm_softc *);
315 static void	iwm_init(struct iwm_softc *);
316 static void	iwm_start(struct iwm_softc *);
317 static void	iwm_stop(struct iwm_softc *);
318 static void	iwm_watchdog(void *);
319 static void	iwm_parent(struct ieee80211com *);
320 #ifdef IWM_DEBUG
321 static const char *
322 		iwm_desc_lookup(uint32_t);
323 static void	iwm_nic_error(struct iwm_softc *);
324 #endif
325 static void	iwm_notif_intr(struct iwm_softc *);
326 static void	iwm_intr(void *);
327 static int	iwm_attach(device_t);
328 static void	iwm_preinit(void *);
329 static int	iwm_detach_local(struct iwm_softc *sc, int);
330 static void	iwm_init_task(void *);
331 static void	iwm_radiotap_attach(struct iwm_softc *);
332 static struct ieee80211vap *
333 		iwm_vap_create(struct ieee80211com *,
334 		               const char [IFNAMSIZ], int,
335 		               enum ieee80211_opmode, int,
336 		               const uint8_t [IEEE80211_ADDR_LEN],
337 		               const uint8_t [IEEE80211_ADDR_LEN]);
338 static void	iwm_vap_delete(struct ieee80211vap *);
339 static void	iwm_scan_start(struct ieee80211com *);
340 static void	iwm_scan_end(struct ieee80211com *);
341 static void	iwm_update_mcast(struct ieee80211com *);
342 static void	iwm_set_channel(struct ieee80211com *);
343 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
344 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
345 static int	iwm_detach(device_t);
346 
347 /*
348  * Firmware parser.
349  */
350 
351 static int
352 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
353 {
354 	const struct iwm_fw_cscheme_list *l = (const void *)data;
355 
356 	if (dlen < sizeof(*l) ||
357 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
358 		return EINVAL;
359 
360 	/* we don't actually store anything for now, always use s/w crypto */
361 
362 	return 0;
363 }
364 
365 static int
366 iwm_firmware_store_section(struct iwm_softc *sc,
367     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
368 {
369 	struct iwm_fw_sects *fws;
370 	struct iwm_fw_onesect *fwone;
371 
372 	if (type >= IWM_UCODE_TYPE_MAX)
373 		return EINVAL;
374 	if (dlen < sizeof(uint32_t))
375 		return EINVAL;
376 
377 	fws = &sc->sc_fw.fw_sects[type];
378 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
379 		return EINVAL;
380 
381 	fwone = &fws->fw_sect[fws->fw_count];
382 
383 	/* first 32bit are device load offset */
384 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
385 
386 	/* rest is data */
387 	fwone->fws_data = data + sizeof(uint32_t);
388 	fwone->fws_len = dlen - sizeof(uint32_t);
389 
390 	fws->fw_count++;
391 	fws->fw_totlen += fwone->fws_len;
392 
393 	return 0;
394 }
395 
396 /* iwlwifi: iwl-drv.c */
397 struct iwm_tlv_calib_data {
398 	uint32_t ucode_type;
399 	struct iwm_tlv_calib_ctrl calib;
400 } __packed;
401 
402 static int
403 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
404 {
405 	const struct iwm_tlv_calib_data *def_calib = data;
406 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
407 
408 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
409 		device_printf(sc->sc_dev,
410 		    "Wrong ucode_type %u for default "
411 		    "calibration.\n", ucode_type);
412 		return EINVAL;
413 	}
414 
415 	sc->sc_default_calib[ucode_type].flow_trigger =
416 	    def_calib->calib.flow_trigger;
417 	sc->sc_default_calib[ucode_type].event_trigger =
418 	    def_calib->calib.event_trigger;
419 
420 	return 0;
421 }
422 
423 static void
424 iwm_fw_info_free(struct iwm_fw_info *fw)
425 {
426 	firmware_put(fw->fw_rawdata, FIRMWARE_UNLOAD);
427 	fw->fw_rawdata = NULL;
428 	fw->fw_rawsize = 0;
429 	/* don't touch fw->fw_status */
430 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
431 }
432 
433 static int
434 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
435 {
436 	struct iwm_fw_info *fw = &sc->sc_fw;
437 	const struct iwm_tlv_ucode_header *uhdr;
438 	struct iwm_ucode_tlv tlv;
439 	enum iwm_ucode_tlv_type tlv_type;
440 	const struct firmware *fwp;
441 	const uint8_t *data;
442 	int error = 0;
443 	size_t len;
444 
445 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
446 	    ucode_type != IWM_UCODE_TYPE_INIT)
447 		return 0;
448 
449 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
450 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
451 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
452 
453 	if (fw->fw_rawdata != NULL)
454 		iwm_fw_info_free(fw);
455 
456 	/*
457 	 * Load firmware into driver memory.
458 	 * fw_rawdata and fw_rawsize will be set.
459 	 */
460 	IWM_UNLOCK(sc);
461 	fwp = firmware_get(sc->sc_fwname);
462 	if (fwp == NULL) {
463 		device_printf(sc->sc_dev,
464 		    "could not read firmware %s (error %d)\n",
465 		    sc->sc_fwname, error);
466 		IWM_LOCK(sc);
467 		goto out;
468 	}
469 	IWM_LOCK(sc);
470 	fw->fw_rawdata = fwp->data;
471 	fw->fw_rawsize = fwp->datasize;
472 
473 	/*
474 	 * Parse firmware contents
475 	 */
476 
477 	uhdr = (const void *)fw->fw_rawdata;
478 	if (*(const uint32_t *)fw->fw_rawdata != 0
479 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
480 		device_printf(sc->sc_dev, "invalid firmware %s\n",
481 		    sc->sc_fwname);
482 		error = EINVAL;
483 		goto out;
484 	}
485 
486 	sc->sc_fwver = le32toh(uhdr->ver);
487 	data = uhdr->data;
488 	len = fw->fw_rawsize - sizeof(*uhdr);
489 
490 	while (len >= sizeof(tlv)) {
491 		size_t tlv_len;
492 		const void *tlv_data;
493 
494 		memcpy(&tlv, data, sizeof(tlv));
495 		tlv_len = le32toh(tlv.length);
496 		tlv_type = le32toh(tlv.type);
497 
498 		len -= sizeof(tlv);
499 		data += sizeof(tlv);
500 		tlv_data = data;
501 
502 		if (len < tlv_len) {
503 			device_printf(sc->sc_dev,
504 			    "firmware too short: %zu bytes\n",
505 			    len);
506 			error = EINVAL;
507 			goto parse_out;
508 		}
509 
510 		switch ((int)tlv_type) {
511 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
512 			if (tlv_len < sizeof(uint32_t)) {
513 				device_printf(sc->sc_dev,
514 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
515 				    __func__,
516 				    (int) tlv_len);
517 				error = EINVAL;
518 				goto parse_out;
519 			}
520 			sc->sc_capa_max_probe_len
521 			    = le32toh(*(const uint32_t *)tlv_data);
522 			/* limit it to something sensible */
523 			if (sc->sc_capa_max_probe_len > (1<<16)) {
524 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
525 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
526 				    "ridiculous\n", __func__);
527 				error = EINVAL;
528 				goto parse_out;
529 			}
530 			break;
531 		case IWM_UCODE_TLV_PAN:
532 			if (tlv_len) {
533 				device_printf(sc->sc_dev,
534 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
535 				    __func__,
536 				    (int) tlv_len);
537 				error = EINVAL;
538 				goto parse_out;
539 			}
540 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
541 			break;
542 		case IWM_UCODE_TLV_FLAGS:
543 			if (tlv_len < sizeof(uint32_t)) {
544 				device_printf(sc->sc_dev,
545 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
546 				    __func__,
547 				    (int) tlv_len);
548 				error = EINVAL;
549 				goto parse_out;
550 			}
551 			/*
552 			 * Apparently there can be many flags, but Linux driver
553 			 * parses only the first one, and so do we.
554 			 *
555 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
556 			 * Intentional or a bug?  Observations from
557 			 * current firmware file:
558 			 *  1) TLV_PAN is parsed first
559 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
560 			 * ==> this resets TLV_PAN to itself... hnnnk
561 			 */
562 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
563 			break;
564 		case IWM_UCODE_TLV_CSCHEME:
565 			if ((error = iwm_store_cscheme(sc,
566 			    tlv_data, tlv_len)) != 0) {
567 				device_printf(sc->sc_dev,
568 				    "%s: iwm_store_cscheme(): returned %d\n",
569 				    __func__,
570 				    error);
571 				goto parse_out;
572 			}
573 			break;
574 		case IWM_UCODE_TLV_NUM_OF_CPU:
575 			if (tlv_len != sizeof(uint32_t)) {
576 				device_printf(sc->sc_dev,
577 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
578 				    __func__,
579 				    (int) tlv_len);
580 				error = EINVAL;
581 				goto parse_out;
582 			}
583 			if (le32toh(*(const uint32_t*)tlv_data) != 1) {
584 				device_printf(sc->sc_dev,
585 				    "%s: driver supports "
586 				    "only TLV_NUM_OF_CPU == 1",
587 				    __func__);
588 				error = EINVAL;
589 				goto parse_out;
590 			}
591 			break;
592 		case IWM_UCODE_TLV_SEC_RT:
593 			if ((error = iwm_firmware_store_section(sc,
594 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
595 				device_printf(sc->sc_dev,
596 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
597 				    __func__,
598 				    error);
599 				goto parse_out;
600 			}
601 			break;
602 		case IWM_UCODE_TLV_SEC_INIT:
603 			if ((error = iwm_firmware_store_section(sc,
604 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
605 				device_printf(sc->sc_dev,
606 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
607 				    __func__,
608 				    error);
609 				goto parse_out;
610 			}
611 			break;
612 		case IWM_UCODE_TLV_SEC_WOWLAN:
613 			if ((error = iwm_firmware_store_section(sc,
614 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
615 				device_printf(sc->sc_dev,
616 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
617 				    __func__,
618 				    error);
619 				goto parse_out;
620 			}
621 			break;
622 		case IWM_UCODE_TLV_DEF_CALIB:
623 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
624 				device_printf(sc->sc_dev,
625 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
626 				    __func__,
627 				    (int) tlv_len,
628 				    (int) sizeof(struct iwm_tlv_calib_data));
629 				error = EINVAL;
630 				goto parse_out;
631 			}
632 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
633 				device_printf(sc->sc_dev,
634 				    "%s: iwm_set_default_calib() failed: %d\n",
635 				    __func__,
636 				    error);
637 				goto parse_out;
638 			}
639 			break;
640 		case IWM_UCODE_TLV_PHY_SKU:
641 			if (tlv_len != sizeof(uint32_t)) {
642 				error = EINVAL;
643 				device_printf(sc->sc_dev,
644 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
645 				    __func__,
646 				    (int) tlv_len);
647 				goto parse_out;
648 			}
649 			sc->sc_fw_phy_config =
650 			    le32toh(*(const uint32_t *)tlv_data);
651 			break;
652 
653 		case IWM_UCODE_TLV_API_CHANGES_SET:
654 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES:
655 			/* ignore, not used by current driver */
656 			break;
657 
658 		default:
659 			device_printf(sc->sc_dev,
660 			    "%s: unknown firmware section %d, abort\n",
661 			    __func__, tlv_type);
662 			error = EINVAL;
663 			goto parse_out;
664 		}
665 
666 		len -= roundup(tlv_len, 4);
667 		data += roundup(tlv_len, 4);
668 	}
669 
670 	KASSERT(error == 0, ("unhandled error"));
671 
672  parse_out:
673 	if (error) {
674 		device_printf(sc->sc_dev, "firmware parse error %d, "
675 		    "section type %d\n", error, tlv_type);
676 	}
677 
678 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
679 		device_printf(sc->sc_dev,
680 		    "device uses unsupported power ops\n");
681 		error = ENOTSUP;
682 	}
683 
684  out:
685 	if (error) {
686 		fw->fw_status = IWM_FW_STATUS_NONE;
687 		if (fw->fw_rawdata != NULL)
688 			iwm_fw_info_free(fw);
689 	} else
690 		fw->fw_status = IWM_FW_STATUS_DONE;
691 	wakeup(&sc->sc_fw);
692 
693 	return error;
694 }
695 
696 /*
697  * DMA resource routines
698  */
699 
700 static void
701 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
702 {
703         if (error != 0)
704                 return;
705 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
706         *(bus_addr_t *)arg = segs[0].ds_addr;
707 }
708 
709 static int
710 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
711     bus_size_t size, bus_size_t alignment)
712 {
713 	int error;
714 
715 	dma->tag = NULL;
716 	dma->size = size;
717 
718 	error = bus_dma_tag_create(tag, alignment,
719             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
720             1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
721         if (error != 0)
722                 goto fail;
723 
724         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
725             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
726         if (error != 0)
727                 goto fail;
728 
729         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
730             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
731         if (error != 0)
732                 goto fail;
733 
734 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
735 
736 	return 0;
737 
738 fail:	iwm_dma_contig_free(dma);
739 	return error;
740 }
741 
742 static void
743 iwm_dma_contig_free(struct iwm_dma_info *dma)
744 {
745 	if (dma->map != NULL) {
746 		if (dma->vaddr != NULL) {
747 			bus_dmamap_sync(dma->tag, dma->map,
748 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
749 			bus_dmamap_unload(dma->tag, dma->map);
750 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
751 			dma->vaddr = NULL;
752 		}
753 		bus_dmamap_destroy(dma->tag, dma->map);
754 		dma->map = NULL;
755 	}
756 	if (dma->tag != NULL) {
757 		bus_dma_tag_destroy(dma->tag);
758 		dma->tag = NULL;
759 	}
760 
761 }
762 
763 /* fwmem is used to load firmware onto the card */
764 static int
765 iwm_alloc_fwmem(struct iwm_softc *sc)
766 {
767 	/* Must be aligned on a 16-byte boundary. */
768 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
769 	    sc->sc_fwdmasegsz, 16);
770 }
771 
772 static void
773 iwm_free_fwmem(struct iwm_softc *sc)
774 {
775 	iwm_dma_contig_free(&sc->fw_dma);
776 }
777 
778 /* tx scheduler rings.  not used? */
779 static int
780 iwm_alloc_sched(struct iwm_softc *sc)
781 {
782 	int rv;
783 
784 	/* TX scheduler rings must be aligned on a 1KB boundary. */
785 	rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
786 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
787 	return rv;
788 }
789 
790 static void
791 iwm_free_sched(struct iwm_softc *sc)
792 {
793 	iwm_dma_contig_free(&sc->sched_dma);
794 }
795 
796 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
797 static int
798 iwm_alloc_kw(struct iwm_softc *sc)
799 {
800 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
801 }
802 
803 static void
804 iwm_free_kw(struct iwm_softc *sc)
805 {
806 	iwm_dma_contig_free(&sc->kw_dma);
807 }
808 
809 /* interrupt cause table */
810 static int
811 iwm_alloc_ict(struct iwm_softc *sc)
812 {
813 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
814 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
815 }
816 
817 static void
818 iwm_free_ict(struct iwm_softc *sc)
819 {
820 	iwm_dma_contig_free(&sc->ict_dma);
821 }
822 
823 static int
824 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
825 {
826 	bus_size_t size;
827 	int i, error;
828 
829 	ring->cur = 0;
830 
831 	/* Allocate RX descriptors (256-byte aligned). */
832 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
833 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
834 	if (error != 0) {
835 		device_printf(sc->sc_dev,
836 		    "could not allocate RX ring DMA memory\n");
837 		goto fail;
838 	}
839 	ring->desc = ring->desc_dma.vaddr;
840 
841 	/* Allocate RX status area (16-byte aligned). */
842 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
843 	    sizeof(*ring->stat), 16);
844 	if (error != 0) {
845 		device_printf(sc->sc_dev,
846 		    "could not allocate RX status DMA memory\n");
847 		goto fail;
848 	}
849 	ring->stat = ring->stat_dma.vaddr;
850 
851         /* Create RX buffer DMA tag. */
852         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
853             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
854             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
855             &ring->data_dmat);
856         if (error != 0) {
857                 device_printf(sc->sc_dev,
858                     "%s: could not create RX buf DMA tag, error %d\n",
859                     __func__, error);
860                 goto fail;
861         }
862 
863 	/*
864 	 * Allocate and map RX buffers.
865 	 */
866 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
867 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
868 			goto fail;
869 		}
870 	}
871 	return 0;
872 
873 fail:	iwm_free_rx_ring(sc, ring);
874 	return error;
875 }
876 
877 static void
878 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
879 {
880 
881 	/* XXX print out if we can't lock the NIC? */
882 	if (iwm_nic_lock(sc)) {
883 		/* XXX handle if RX stop doesn't finish? */
884 		(void) iwm_pcie_rx_stop(sc);
885 		iwm_nic_unlock(sc);
886 	}
887 	/* Reset the ring state */
888 	ring->cur = 0;
889 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
890 }
891 
892 static void
893 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
894 {
895 	int i;
896 
897 	iwm_dma_contig_free(&ring->desc_dma);
898 	iwm_dma_contig_free(&ring->stat_dma);
899 
900 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
901 		struct iwm_rx_data *data = &ring->data[i];
902 
903 		if (data->m != NULL) {
904 			bus_dmamap_sync(ring->data_dmat, data->map,
905 			    BUS_DMASYNC_POSTREAD);
906 			bus_dmamap_unload(ring->data_dmat, data->map);
907 			m_freem(data->m);
908 			data->m = NULL;
909 		}
910 		if (data->map != NULL) {
911 			bus_dmamap_destroy(ring->data_dmat, data->map);
912 			data->map = NULL;
913 		}
914 	}
915 	if (ring->data_dmat != NULL) {
916 		bus_dma_tag_destroy(ring->data_dmat);
917 		ring->data_dmat = NULL;
918 	}
919 }
920 
921 static int
922 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
923 {
924 	bus_addr_t paddr;
925 	bus_size_t size;
926 	int i, error;
927 
928 	ring->qid = qid;
929 	ring->queued = 0;
930 	ring->cur = 0;
931 
932 	/* Allocate TX descriptors (256-byte aligned). */
933 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
934 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
935 	if (error != 0) {
936 		device_printf(sc->sc_dev,
937 		    "could not allocate TX ring DMA memory\n");
938 		goto fail;
939 	}
940 	ring->desc = ring->desc_dma.vaddr;
941 
942 	/*
943 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
944 	 * to allocate commands space for other rings.
945 	 */
946 	if (qid > IWM_MVM_CMD_QUEUE)
947 		return 0;
948 
949 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
950 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
951 	if (error != 0) {
952 		device_printf(sc->sc_dev,
953 		    "could not allocate TX cmd DMA memory\n");
954 		goto fail;
955 	}
956 	ring->cmd = ring->cmd_dma.vaddr;
957 
958 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
959 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
960             IWM_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
961             &ring->data_dmat);
962 	if (error != 0) {
963 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
964 		goto fail;
965 	}
966 
967 	paddr = ring->cmd_dma.paddr;
968 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
969 		struct iwm_tx_data *data = &ring->data[i];
970 
971 		data->cmd_paddr = paddr;
972 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
973 		    + offsetof(struct iwm_tx_cmd, scratch);
974 		paddr += sizeof(struct iwm_device_cmd);
975 
976 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
977 		if (error != 0) {
978 			device_printf(sc->sc_dev,
979 			    "could not create TX buf DMA map\n");
980 			goto fail;
981 		}
982 	}
983 	KASSERT(paddr == ring->cmd_dma.paddr + size,
984 	    ("invalid physical address"));
985 	return 0;
986 
987 fail:	iwm_free_tx_ring(sc, ring);
988 	return error;
989 }
990 
991 static void
992 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
993 {
994 	int i;
995 
996 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
997 		struct iwm_tx_data *data = &ring->data[i];
998 
999 		if (data->m != NULL) {
1000 			bus_dmamap_sync(ring->data_dmat, data->map,
1001 			    BUS_DMASYNC_POSTWRITE);
1002 			bus_dmamap_unload(ring->data_dmat, data->map);
1003 			m_freem(data->m);
1004 			data->m = NULL;
1005 		}
1006 	}
1007 	/* Clear TX descriptors. */
1008 	memset(ring->desc, 0, ring->desc_dma.size);
1009 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1010 	    BUS_DMASYNC_PREWRITE);
1011 	sc->qfullmsk &= ~(1 << ring->qid);
1012 	ring->queued = 0;
1013 	ring->cur = 0;
1014 }
1015 
1016 static void
1017 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1018 {
1019 	int i;
1020 
1021 	iwm_dma_contig_free(&ring->desc_dma);
1022 	iwm_dma_contig_free(&ring->cmd_dma);
1023 
1024 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1025 		struct iwm_tx_data *data = &ring->data[i];
1026 
1027 		if (data->m != NULL) {
1028 			bus_dmamap_sync(ring->data_dmat, data->map,
1029 			    BUS_DMASYNC_POSTWRITE);
1030 			bus_dmamap_unload(ring->data_dmat, data->map);
1031 			m_freem(data->m);
1032 			data->m = NULL;
1033 		}
1034 		if (data->map != NULL) {
1035 			bus_dmamap_destroy(ring->data_dmat, data->map);
1036 			data->map = NULL;
1037 		}
1038 	}
1039 	if (ring->data_dmat != NULL) {
1040 		bus_dma_tag_destroy(ring->data_dmat);
1041 		ring->data_dmat = NULL;
1042 	}
1043 }
1044 
1045 /*
1046  * High-level hardware frobbing routines
1047  */
1048 
1049 static void
1050 iwm_enable_interrupts(struct iwm_softc *sc)
1051 {
1052 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1053 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1054 }
1055 
1056 static void
1057 iwm_restore_interrupts(struct iwm_softc *sc)
1058 {
1059 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1060 }
1061 
1062 static void
1063 iwm_disable_interrupts(struct iwm_softc *sc)
1064 {
1065 	/* disable interrupts */
1066 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1067 
1068 	/* acknowledge all interrupts */
1069 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1070 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1071 }
1072 
1073 static void
1074 iwm_ict_reset(struct iwm_softc *sc)
1075 {
1076 	iwm_disable_interrupts(sc);
1077 
1078 	/* Reset ICT table. */
1079 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1080 	sc->ict_cur = 0;
1081 
1082 	/* Set physical address of ICT table (4KB aligned). */
1083 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1084 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1085 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1086 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1087 
1088 	/* Switch to ICT interrupt mode in driver. */
1089 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1090 
1091 	/* Re-enable interrupts. */
1092 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1093 	iwm_enable_interrupts(sc);
1094 }
1095 
1096 /* iwlwifi pcie/trans.c */
1097 
1098 /*
1099  * Since this .. hard-resets things, it's time to actually
1100  * mark the first vap (if any) as having no mac context.
1101  * It's annoying, but since the driver is potentially being
1102  * stop/start'ed whilst active (thanks openbsd port!) we
1103  * have to correctly track this.
1104  */
1105 static void
1106 iwm_stop_device(struct iwm_softc *sc)
1107 {
1108 	struct ieee80211com *ic = &sc->sc_ic;
1109 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1110 	int chnl, ntries;
1111 	int qid;
1112 
1113 	/* tell the device to stop sending interrupts */
1114 	iwm_disable_interrupts(sc);
1115 
1116 	/*
1117 	 * FreeBSD-local: mark the first vap as not-uploaded,
1118 	 * so the next transition through auth/assoc
1119 	 * will correctly populate the MAC context.
1120 	 */
1121 	if (vap) {
1122 		struct iwm_vap *iv = IWM_VAP(vap);
1123 		iv->is_uploaded = 0;
1124 	}
1125 
1126 	/* device going down, Stop using ICT table */
1127 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1128 
1129 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1130 
1131 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1132 
1133 	/* Stop all DMA channels. */
1134 	if (iwm_nic_lock(sc)) {
1135 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1136 			IWM_WRITE(sc,
1137 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1138 			for (ntries = 0; ntries < 200; ntries++) {
1139 				uint32_t r;
1140 
1141 				r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
1142 				if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
1143 				    chnl))
1144 					break;
1145 				DELAY(20);
1146 			}
1147 		}
1148 		iwm_nic_unlock(sc);
1149 	}
1150 
1151 	/* Stop RX ring. */
1152 	iwm_reset_rx_ring(sc, &sc->rxq);
1153 
1154 	/* Reset all TX rings. */
1155 	for (qid = 0; qid < nitems(sc->txq); qid++)
1156 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1157 
1158 	/*
1159 	 * Power-down device's busmaster DMA clocks
1160 	 */
1161 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1162 	DELAY(5);
1163 
1164 	/* Make sure (redundant) we've released our request to stay awake */
1165 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1166 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1167 
1168 	/* Stop the device, and put it in low power state */
1169 	iwm_apm_stop(sc);
1170 
1171 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1172 	 * Clean again the interrupt here
1173 	 */
1174 	iwm_disable_interrupts(sc);
1175 	/* stop and reset the on-board processor */
1176 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET);
1177 
1178 	/*
1179 	 * Even if we stop the HW, we still want the RF kill
1180 	 * interrupt
1181 	 */
1182 	iwm_enable_rfkill_int(sc);
1183 	iwm_check_rfkill(sc);
1184 }
1185 
1186 /* iwlwifi: mvm/ops.c */
1187 static void
1188 iwm_mvm_nic_config(struct iwm_softc *sc)
1189 {
1190 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1191 	uint32_t reg_val = 0;
1192 
1193 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1194 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1195 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1196 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1197 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1198 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1199 
1200 	/* SKU control */
1201 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1202 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1203 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1204 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1205 
1206 	/* radio configuration */
1207 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1208 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1209 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1210 
1211 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1212 
1213 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1214 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1215 	    radio_cfg_step, radio_cfg_dash);
1216 
1217 	/*
1218 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1219 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1220 	 * to lose ownership and not being able to obtain it back.
1221 	 */
1222 	iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1223 	    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1224 	    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1225 }
1226 
1227 static int
1228 iwm_nic_rx_init(struct iwm_softc *sc)
1229 {
1230 	if (!iwm_nic_lock(sc))
1231 		return EBUSY;
1232 
1233 	/*
1234 	 * Initialize RX ring.  This is from the iwn driver.
1235 	 */
1236 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1237 
1238 	/* stop DMA */
1239 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1240 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1241 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1242 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1243 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1244 
1245 	/* Set physical address of RX ring (256-byte aligned). */
1246 	IWM_WRITE(sc,
1247 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1248 
1249 	/* Set physical address of RX status (16-byte aligned). */
1250 	IWM_WRITE(sc,
1251 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1252 
1253 	/* Enable RX. */
1254 	/*
1255 	 * Note: Linux driver also sets this:
1256 	 *  (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1257 	 *
1258 	 * It causes weird behavior.  YMMV.
1259 	 */
1260 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1261 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1262 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1263 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1264 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1265 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1266 
1267 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1268 
1269 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1270 	if (sc->host_interrupt_operation_mode)
1271 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1272 
1273 	/*
1274 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1275 	 *
1276 	 * This value should initially be 0 (before preparing any
1277  	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1278 	 */
1279 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1280 
1281 	iwm_nic_unlock(sc);
1282 
1283 	return 0;
1284 }
1285 
1286 static int
1287 iwm_nic_tx_init(struct iwm_softc *sc)
1288 {
1289 	int qid;
1290 
1291 	if (!iwm_nic_lock(sc))
1292 		return EBUSY;
1293 
1294 	/* Deactivate TX scheduler. */
1295 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1296 
1297 	/* Set physical address of "keep warm" page (16-byte aligned). */
1298 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1299 
1300 	/* Initialize TX rings. */
1301 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1302 		struct iwm_tx_ring *txq = &sc->txq[qid];
1303 
1304 		/* Set physical address of TX ring (256-byte aligned). */
1305 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1306 		    txq->desc_dma.paddr >> 8);
1307 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1308 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1309 		    __func__,
1310 		    qid, txq->desc,
1311 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1312 	}
1313 	iwm_nic_unlock(sc);
1314 
1315 	return 0;
1316 }
1317 
1318 static int
1319 iwm_nic_init(struct iwm_softc *sc)
1320 {
1321 	int error;
1322 
1323 	iwm_apm_init(sc);
1324 	iwm_set_pwr(sc);
1325 
1326 	iwm_mvm_nic_config(sc);
1327 
1328 	if ((error = iwm_nic_rx_init(sc)) != 0)
1329 		return error;
1330 
1331 	/*
1332 	 * Ditto for TX, from iwn
1333 	 */
1334 	if ((error = iwm_nic_tx_init(sc)) != 0)
1335 		return error;
1336 
1337 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1338 	    "%s: shadow registers enabled\n", __func__);
1339 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1340 
1341 	return 0;
1342 }
1343 
1344 enum iwm_mvm_tx_fifo {
1345 	IWM_MVM_TX_FIFO_BK = 0,
1346 	IWM_MVM_TX_FIFO_BE,
1347 	IWM_MVM_TX_FIFO_VI,
1348 	IWM_MVM_TX_FIFO_VO,
1349 	IWM_MVM_TX_FIFO_MCAST = 5,
1350 };
1351 
1352 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1353 	IWM_MVM_TX_FIFO_VO,
1354 	IWM_MVM_TX_FIFO_VI,
1355 	IWM_MVM_TX_FIFO_BE,
1356 	IWM_MVM_TX_FIFO_BK,
1357 };
1358 
1359 static void
1360 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo)
1361 {
1362 	if (!iwm_nic_lock(sc)) {
1363 		device_printf(sc->sc_dev,
1364 		    "%s: cannot enable txq %d\n",
1365 		    __func__,
1366 		    qid);
1367 		return; /* XXX return EBUSY */
1368 	}
1369 
1370 	/* unactivate before configuration */
1371 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1372 	    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1373 	    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1374 
1375 	if (qid != IWM_MVM_CMD_QUEUE) {
1376 		iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid));
1377 	}
1378 
1379 	iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1380 
1381 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1382 	iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1383 
1384 	iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1385 	/* Set scheduler window size and frame limit. */
1386 	iwm_write_mem32(sc,
1387 	    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1388 	    sizeof(uint32_t),
1389 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1390 	    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1391 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1392 	    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1393 
1394 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1395 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1396 	    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1397 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1398 	    IWM_SCD_QUEUE_STTS_REG_MSK);
1399 
1400 	iwm_nic_unlock(sc);
1401 
1402 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1403 	    "%s: enabled txq %d FIFO %d\n",
1404 	    __func__, qid, fifo);
1405 }
1406 
1407 static int
1408 iwm_post_alive(struct iwm_softc *sc)
1409 {
1410 	int nwords;
1411 	int error, chnl;
1412 
1413 	if (!iwm_nic_lock(sc))
1414 		return EBUSY;
1415 
1416 	if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) {
1417 		device_printf(sc->sc_dev,
1418 		    "%s: sched addr mismatch",
1419 		    __func__);
1420 		error = EINVAL;
1421 		goto out;
1422 	}
1423 
1424 	iwm_ict_reset(sc);
1425 
1426 	/* Clear TX scheduler state in SRAM. */
1427 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1428 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1429 	    / sizeof(uint32_t);
1430 	error = iwm_write_mem(sc,
1431 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1432 	    NULL, nwords);
1433 	if (error)
1434 		goto out;
1435 
1436 	/* Set physical address of TX scheduler rings (1KB aligned). */
1437 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1438 
1439 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1440 
1441 	/* enable command channel */
1442 	iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7);
1443 
1444 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1445 
1446 	/* Enable DMA channels. */
1447 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1448 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1449 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1450 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1451 	}
1452 
1453 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1454 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1455 
1456 	/* Enable L1-Active */
1457 	iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1458 	    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1459 
1460  out:
1461  	iwm_nic_unlock(sc);
1462 	return error;
1463 }
1464 
1465 /*
1466  * NVM read access and content parsing.  We do not support
1467  * external NVM or writing NVM.
1468  * iwlwifi/mvm/nvm.c
1469  */
1470 
1471 /* list of NVM sections we are allowed/need to read */
1472 const int nvm_to_read[] = {
1473 	IWM_NVM_SECTION_TYPE_HW,
1474 	IWM_NVM_SECTION_TYPE_SW,
1475 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1476 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1477 };
1478 
1479 /* Default NVM size to read */
1480 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
1481 #define IWM_MAX_NVM_SECTION_SIZE 7000
1482 
1483 #define IWM_NVM_WRITE_OPCODE 1
1484 #define IWM_NVM_READ_OPCODE 0
1485 
1486 static int
1487 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1488 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1489 {
1490 	offset = 0;
1491 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1492 		.offset = htole16(offset),
1493 		.length = htole16(length),
1494 		.type = htole16(section),
1495 		.op_code = IWM_NVM_READ_OPCODE,
1496 	};
1497 	struct iwm_nvm_access_resp *nvm_resp;
1498 	struct iwm_rx_packet *pkt;
1499 	struct iwm_host_cmd cmd = {
1500 		.id = IWM_NVM_ACCESS_CMD,
1501 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1502 		    IWM_CMD_SEND_IN_RFKILL,
1503 		.data = { &nvm_access_cmd, },
1504 	};
1505 	int ret, bytes_read, offset_read;
1506 	uint8_t *resp_data;
1507 
1508 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1509 
1510 	ret = iwm_send_cmd(sc, &cmd);
1511 	if (ret)
1512 		return ret;
1513 
1514 	pkt = cmd.resp_pkt;
1515 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1516 		device_printf(sc->sc_dev,
1517 		    "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1518 		    __func__, pkt->hdr.flags);
1519 		ret = EIO;
1520 		goto exit;
1521 	}
1522 
1523 	/* Extract NVM response */
1524 	nvm_resp = (void *)pkt->data;
1525 
1526 	ret = le16toh(nvm_resp->status);
1527 	bytes_read = le16toh(nvm_resp->length);
1528 	offset_read = le16toh(nvm_resp->offset);
1529 	resp_data = nvm_resp->data;
1530 	if (ret) {
1531 		device_printf(sc->sc_dev,
1532 		    "%s: NVM access command failed with status %d\n",
1533 		    __func__, ret);
1534 		ret = EINVAL;
1535 		goto exit;
1536 	}
1537 
1538 	if (offset_read != offset) {
1539 		device_printf(sc->sc_dev,
1540 		    "%s: NVM ACCESS response with invalid offset %d\n",
1541 		    __func__, offset_read);
1542 		ret = EINVAL;
1543 		goto exit;
1544 	}
1545 
1546 	memcpy(data + offset, resp_data, bytes_read);
1547 	*len = bytes_read;
1548 
1549  exit:
1550 	iwm_free_resp(sc, &cmd);
1551 	return ret;
1552 }
1553 
1554 /*
1555  * Reads an NVM section completely.
1556  * NICs prior to 7000 family doesn't have a real NVM, but just read
1557  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1558  * by uCode, we need to manually check in this case that we don't
1559  * overflow and try to read more than the EEPROM size.
1560  * For 7000 family NICs, we supply the maximal size we can read, and
1561  * the uCode fills the response with as much data as we can,
1562  * without overflowing, so no check is needed.
1563  */
1564 static int
1565 iwm_nvm_read_section(struct iwm_softc *sc,
1566 	uint16_t section, uint8_t *data, uint16_t *len)
1567 {
1568 	uint16_t length, seglen;
1569 	int error;
1570 
1571 	/* Set nvm section read length */
1572 	length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1573 	*len = 0;
1574 
1575 	/* Read the NVM until exhausted (reading less than requested) */
1576 	while (seglen == length) {
1577 		error = iwm_nvm_read_chunk(sc,
1578 		    section, *len, length, data, &seglen);
1579 		if (error) {
1580 			device_printf(sc->sc_dev,
1581 			    "Cannot read NVM from section "
1582 			    "%d offset %d, length %d\n",
1583 			    section, *len, length);
1584 			return error;
1585 		}
1586 		*len += seglen;
1587 	}
1588 
1589 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1590 	    "NVM section %d read completed\n", section);
1591 	return 0;
1592 }
1593 
1594 /*
1595  * BEGIN IWM_NVM_PARSE
1596  */
1597 
1598 /* iwlwifi/iwl-nvm-parse.c */
1599 
1600 /* NVM offsets (in words) definitions */
1601 enum wkp_nvm_offsets {
1602 	/* NVM HW-Section offset (in words) definitions */
1603 	IWM_HW_ADDR = 0x15,
1604 
1605 /* NVM SW-Section offset (in words) definitions */
1606 	IWM_NVM_SW_SECTION = 0x1C0,
1607 	IWM_NVM_VERSION = 0,
1608 	IWM_RADIO_CFG = 1,
1609 	IWM_SKU = 2,
1610 	IWM_N_HW_ADDRS = 3,
1611 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1612 
1613 /* NVM calibration section offset (in words) definitions */
1614 	IWM_NVM_CALIB_SECTION = 0x2B8,
1615 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1616 };
1617 
1618 /* SKU Capabilities (actual values from NVM definition) */
1619 enum nvm_sku_bits {
1620 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1621 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1622 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1623 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1624 };
1625 
1626 /* radio config bits (actual values from NVM definition) */
1627 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1628 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1629 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1630 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1631 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1632 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1633 
1634 #define DEFAULT_MAX_TX_POWER 16
1635 
1636 /**
1637  * enum iwm_nvm_channel_flags - channel flags in NVM
1638  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1639  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1640  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1641  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1642  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1643  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1644  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1645  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1646  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1647  */
1648 enum iwm_nvm_channel_flags {
1649 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1650 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1651 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1652 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1653 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1654 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1655 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1656 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1657 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1658 };
1659 
1660 /*
1661  * Add a channel to the net80211 channel list.
1662  *
1663  * ieee is the ieee channel number
1664  * ch_idx is channel index.
1665  * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G.
1666  * ch_flags is the iwm channel flags.
1667  *
1668  * Return 0 on OK, < 0 on error.
1669  */
1670 static int
1671 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx,
1672     int mode, uint16_t ch_flags)
1673 {
1674 	/* XXX for now, no overflow checking! */
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	int is_5ghz, flags;
1677 	struct ieee80211_channel *channel;
1678 
1679 	channel = &ic->ic_channels[ic->ic_nchans++];
1680 	channel->ic_ieee = ieee;
1681 
1682 	is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
1683 	if (!is_5ghz) {
1684 		flags = IEEE80211_CHAN_2GHZ;
1685 		channel->ic_flags = mode;
1686 	} else {
1687 		flags = IEEE80211_CHAN_5GHZ;
1688 		channel->ic_flags = mode;
1689 	}
1690 	channel->ic_freq = ieee80211_ieee2mhz(ieee, flags);
1691 
1692 	if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
1693 		channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
1694 	return (0);
1695 }
1696 
1697 static void
1698 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags)
1699 {
1700 	struct ieee80211com *ic = &sc->sc_ic;
1701 	struct iwm_nvm_data *data = &sc->sc_nvm;
1702 	int ch_idx;
1703 	uint16_t ch_flags;
1704 	int hw_value;
1705 
1706 	for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) {
1707 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1708 
1709 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
1710 		    !data->sku_cap_band_52GHz_enable)
1711 			ch_flags &= ~IWM_NVM_CHANNEL_VALID;
1712 
1713 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1714 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1715 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1716 			    iwm_nvm_channels[ch_idx],
1717 			    ch_flags,
1718 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1719 			    "5.2" : "2.4");
1720 			continue;
1721 		}
1722 
1723 		hw_value = iwm_nvm_channels[ch_idx];
1724 
1725 		/* 5GHz? */
1726 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) {
1727 			(void) iwm_init_net80211_channel(sc, hw_value,
1728 			    ch_idx,
1729 			    IEEE80211_CHAN_A,
1730 			    ch_flags);
1731 		} else {
1732 			(void) iwm_init_net80211_channel(sc, hw_value,
1733 			    ch_idx,
1734 			    IEEE80211_CHAN_B,
1735 			    ch_flags);
1736 			/* If it's not channel 13, also add 11g */
1737 			if (hw_value != 13)
1738 				(void) iwm_init_net80211_channel(sc, hw_value,
1739 				    ch_idx,
1740 				    IEEE80211_CHAN_G,
1741 				    ch_flags);
1742 		}
1743 
1744 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1745 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1746 		    iwm_nvm_channels[ch_idx],
1747 		    ch_flags,
1748 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1749 		    "5.2" : "2.4");
1750 	}
1751 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1752 }
1753 
1754 static int
1755 iwm_parse_nvm_data(struct iwm_softc *sc,
1756 	const uint16_t *nvm_hw, const uint16_t *nvm_sw,
1757 	const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains)
1758 {
1759 	struct iwm_nvm_data *data = &sc->sc_nvm;
1760 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
1761 	uint16_t radio_cfg, sku;
1762 
1763 	data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
1764 
1765 	radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
1766 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1767 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
1768 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
1769 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
1770 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1771 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1772 
1773 	sku = le16_to_cpup(nvm_sw + IWM_SKU);
1774 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
1775 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
1776 	data->sku_cap_11n_enable = 0;
1777 
1778 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1779 		device_printf(sc->sc_dev,
1780 		    "%s: invalid antennas (0x%x, 0x%x)\n",
1781 		    __func__, data->valid_tx_ant,
1782 		    data->valid_rx_ant);
1783 		return EINVAL;
1784 	}
1785 
1786 	data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
1787 
1788 	data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB);
1789 	data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1);
1790 
1791 	/* The byte order is little endian 16 bit, meaning 214365 */
1792 	IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
1793 	data->hw_addr[0] = hw_addr[1];
1794 	data->hw_addr[1] = hw_addr[0];
1795 	data->hw_addr[2] = hw_addr[3];
1796 	data->hw_addr[3] = hw_addr[2];
1797 	data->hw_addr[4] = hw_addr[5];
1798 	data->hw_addr[5] = hw_addr[4];
1799 
1800 	iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]);
1801 	data->calib_version = 255;   /* TODO:
1802 					this value will prevent some checks from
1803 					failing, we need to check if this
1804 					field is still needed, and if it does,
1805 					where is it in the NVM */
1806 
1807 	return 0;
1808 }
1809 
1810 /*
1811  * END NVM PARSE
1812  */
1813 
1814 struct iwm_nvm_section {
1815 	uint16_t length;
1816 	const uint8_t *data;
1817 };
1818 
1819 static int
1820 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
1821 {
1822 	const uint16_t *hw, *sw, *calib;
1823 
1824 	/* Checking for required sections */
1825 	if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
1826 	    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
1827 		device_printf(sc->sc_dev,
1828 		    "%s: Can't parse empty NVM sections\n",
1829 		    __func__);
1830 		return ENOENT;
1831 	}
1832 
1833 	hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data;
1834 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
1835 	calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
1836 	return iwm_parse_nvm_data(sc, hw, sw, calib,
1837 	    IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc));
1838 }
1839 
1840 static int
1841 iwm_nvm_init(struct iwm_softc *sc)
1842 {
1843 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
1844 	int i, section, error;
1845 	uint16_t len;
1846 	uint8_t *nvm_buffer, *temp;
1847 
1848 	/* Read From FW NVM */
1849 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1850 	    "%s: Read NVM\n",
1851 	    __func__);
1852 
1853 	/* TODO: find correct NVM max size for a section */
1854 	nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT);
1855 	if (nvm_buffer == NULL)
1856 		return (ENOMEM);
1857 	for (i = 0; i < nitems(nvm_to_read); i++) {
1858 		section = nvm_to_read[i];
1859 		KASSERT(section <= nitems(nvm_sections),
1860 		    ("too many sections"));
1861 
1862 		error = iwm_nvm_read_section(sc, section, nvm_buffer, &len);
1863 		if (error)
1864 			break;
1865 
1866 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
1867 		if (temp == NULL) {
1868 			error = ENOMEM;
1869 			break;
1870 		}
1871 		memcpy(temp, nvm_buffer, len);
1872 		nvm_sections[section].data = temp;
1873 		nvm_sections[section].length = len;
1874 	}
1875 	free(nvm_buffer, M_DEVBUF);
1876 	if (error)
1877 		return error;
1878 
1879 	return iwm_parse_nvm_sections(sc, nvm_sections);
1880 }
1881 
1882 /*
1883  * Firmware loading gunk.  This is kind of a weird hybrid between the
1884  * iwn driver and the Linux iwlwifi driver.
1885  */
1886 
1887 static int
1888 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
1889 	const uint8_t *section, uint32_t byte_cnt)
1890 {
1891 	struct iwm_dma_info *dma = &sc->fw_dma;
1892 	int error;
1893 
1894 	/* Copy firmware section into pre-allocated DMA-safe memory. */
1895 	memcpy(dma->vaddr, section, byte_cnt);
1896 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1897 
1898 	if (!iwm_nic_lock(sc))
1899 		return EBUSY;
1900 
1901 	sc->sc_fw_chunk_done = 0;
1902 
1903 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1904 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
1905 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
1906 	    dst_addr);
1907 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
1908 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
1909 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
1910 	    (iwm_get_dma_hi_addr(dma->paddr)
1911 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
1912 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1913 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1914 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
1915 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
1916 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1917 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
1918 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
1919 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
1920 
1921 	iwm_nic_unlock(sc);
1922 
1923 	/* wait 1s for this segment to load */
1924 	while (!sc->sc_fw_chunk_done)
1925 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
1926 			break;
1927 
1928 	return error;
1929 }
1930 
1931 static int
1932 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1933 {
1934 	struct iwm_fw_sects *fws;
1935 	int error, i, w;
1936 	const void *data;
1937 	uint32_t dlen;
1938 	uint32_t offset;
1939 
1940 	sc->sc_uc.uc_intr = 0;
1941 
1942 	fws = &sc->sc_fw.fw_sects[ucode_type];
1943 	for (i = 0; i < fws->fw_count; i++) {
1944 		data = fws->fw_sect[i].fws_data;
1945 		dlen = fws->fw_sect[i].fws_len;
1946 		offset = fws->fw_sect[i].fws_devoff;
1947 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
1948 		    "LOAD FIRMWARE type %d offset %u len %d\n",
1949 		    ucode_type, offset, dlen);
1950 		error = iwm_firmware_load_chunk(sc, offset, data, dlen);
1951 		if (error) {
1952 			device_printf(sc->sc_dev,
1953 			    "%s: chunk %u of %u returned error %02d\n",
1954 			    __func__, i, fws->fw_count, error);
1955 			return error;
1956 		}
1957 	}
1958 
1959 	/* wait for the firmware to load */
1960 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
1961 
1962 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
1963 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
1964 	}
1965 
1966 	return error;
1967 }
1968 
1969 /* iwlwifi: pcie/trans.c */
1970 static int
1971 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1972 {
1973 	int error;
1974 
1975 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1976 
1977 	if ((error = iwm_nic_init(sc)) != 0) {
1978 		device_printf(sc->sc_dev, "unable to init nic\n");
1979 		return error;
1980 	}
1981 
1982 	/* make sure rfkill handshake bits are cleared */
1983 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1984 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
1985 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1986 
1987 	/* clear (again), then enable host interrupts */
1988 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1989 	iwm_enable_interrupts(sc);
1990 
1991 	/* really make sure rfkill handshake bits are cleared */
1992 	/* maybe we should write a few times more?  just to make sure */
1993 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1994 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1995 
1996 	/* Load the given image to the HW */
1997 	return iwm_load_firmware(sc, ucode_type);
1998 }
1999 
2000 static int
2001 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base)
2002 {
2003 	return iwm_post_alive(sc);
2004 }
2005 
2006 static int
2007 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2008 {
2009 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2010 		.valid = htole32(valid_tx_ant),
2011 	};
2012 
2013 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2014 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2015 }
2016 
2017 /* iwlwifi: mvm/fw.c */
2018 static int
2019 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2020 {
2021 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2022 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2023 
2024 	/* Set parameters */
2025 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2026 	phy_cfg_cmd.calib_control.event_trigger =
2027 	    sc->sc_default_calib[ucode_type].event_trigger;
2028 	phy_cfg_cmd.calib_control.flow_trigger =
2029 	    sc->sc_default_calib[ucode_type].flow_trigger;
2030 
2031 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2032 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2033 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2034 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2035 }
2036 
2037 static int
2038 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2039 	enum iwm_ucode_type ucode_type)
2040 {
2041 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2042 	int error;
2043 
2044 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0)
2045 		return error;
2046 
2047 	sc->sc_uc_current = ucode_type;
2048 	error = iwm_start_fw(sc, ucode_type);
2049 	if (error) {
2050 		sc->sc_uc_current = old_type;
2051 		return error;
2052 	}
2053 
2054 	return iwm_fw_alive(sc, sc->sched_base);
2055 }
2056 
2057 /*
2058  * mvm misc bits
2059  */
2060 
2061 /*
2062  * follows iwlwifi/fw.c
2063  */
2064 static int
2065 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2066 {
2067 	int error;
2068 
2069 	/* do not operate with rfkill switch turned on */
2070 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2071 		device_printf(sc->sc_dev,
2072 		    "radio is disabled by hardware switch\n");
2073 		return EPERM;
2074 	}
2075 
2076 	sc->sc_init_complete = 0;
2077 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2078 	    IWM_UCODE_TYPE_INIT)) != 0)
2079 		return error;
2080 
2081 	if (justnvm) {
2082 		if ((error = iwm_nvm_init(sc)) != 0) {
2083 			device_printf(sc->sc_dev, "failed to read nvm\n");
2084 			return error;
2085 		}
2086 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, &sc->sc_nvm.hw_addr);
2087 
2088 		sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd)
2089 		    + sc->sc_capa_max_probe_len
2090 		    + IWM_MAX_NUM_SCAN_CHANNELS
2091 		    * sizeof(struct iwm_scan_channel);
2092 		sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF,
2093 		    M_NOWAIT);
2094 		if (sc->sc_scan_cmd == NULL)
2095 			return (ENOMEM);
2096 
2097 		return 0;
2098 	}
2099 
2100 	/* Send TX valid antennas before triggering calibrations */
2101 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
2102 		return error;
2103 
2104 	/*
2105 	* Send phy configurations command to init uCode
2106 	* to start the 16.0 uCode init image internal calibrations.
2107 	*/
2108 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2109 		device_printf(sc->sc_dev,
2110 		    "%s: failed to run internal calibration: %d\n",
2111 		    __func__, error);
2112 		return error;
2113 	}
2114 
2115 	/*
2116 	 * Nothing to do but wait for the init complete notification
2117 	 * from the firmware
2118 	 */
2119 	while (!sc->sc_init_complete)
2120 		if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2121 		    0, "iwminit", 2*hz)) != 0)
2122 			break;
2123 
2124 	return error;
2125 }
2126 
2127 /*
2128  * receive side
2129  */
2130 
2131 /* (re)stock rx ring, called at init-time and at runtime */
2132 static int
2133 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2134 {
2135 	struct iwm_rx_ring *ring = &sc->rxq;
2136 	struct iwm_rx_data *data = &ring->data[idx];
2137 	struct mbuf *m;
2138 	int error;
2139 	bus_addr_t paddr;
2140 
2141 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2142 	if (m == NULL)
2143 		return ENOBUFS;
2144 
2145 	if (data->m != NULL)
2146 		bus_dmamap_unload(ring->data_dmat, data->map);
2147 
2148 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2149 	error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2150 	if (error != 0) {
2151 		device_printf(sc->sc_dev,
2152 		    "%s: could not create RX buf DMA map, error %d\n",
2153 		    __func__, error);
2154 		goto fail;
2155 	}
2156 	data->m = m;
2157 	error = bus_dmamap_load(ring->data_dmat, data->map,
2158 	    mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr,
2159 	    &paddr, BUS_DMA_NOWAIT);
2160 	if (error != 0 && error != EFBIG) {
2161 		device_printf(sc->sc_dev,
2162 		    "%s: can't not map mbuf, error %d\n", __func__,
2163 		    error);
2164 		goto fail;
2165 	}
2166 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2167 
2168 	/* Update RX descriptor. */
2169 	ring->desc[idx] = htole32(paddr >> 8);
2170 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2171 	    BUS_DMASYNC_PREWRITE);
2172 
2173 	return 0;
2174 fail:
2175 	return error;
2176 }
2177 
2178 /* iwlwifi: mvm/rx.c */
2179 #define IWM_RSSI_OFFSET 50
2180 static int
2181 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2182 {
2183 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2184 	uint32_t agc_a, agc_b;
2185 	uint32_t val;
2186 
2187 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2188 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2189 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2190 
2191 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2192 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2193 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2194 
2195 	/*
2196 	 * dBm = rssi dB - agc dB - constant.
2197 	 * Higher AGC (higher radio gain) means lower signal.
2198 	 */
2199 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2200 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2201 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2202 
2203 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2204 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2205 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2206 
2207 	return max_rssi_dbm;
2208 }
2209 
2210 /* iwlwifi: mvm/rx.c */
2211 /*
2212  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2213  * values are reported by the fw as positive values - need to negate
2214  * to obtain their dBM.  Account for missing antennas by replacing 0
2215  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2216  */
2217 static int
2218 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2219 {
2220 	int energy_a, energy_b, energy_c, max_energy;
2221 	uint32_t val;
2222 
2223 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2224 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2225 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2226 	energy_a = energy_a ? -energy_a : -256;
2227 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2228 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2229 	energy_b = energy_b ? -energy_b : -256;
2230 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2231 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2232 	energy_c = energy_c ? -energy_c : -256;
2233 	max_energy = MAX(energy_a, energy_b);
2234 	max_energy = MAX(max_energy, energy_c);
2235 
2236 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2237 	    "energy In A %d B %d C %d , and max %d\n",
2238 	    energy_a, energy_b, energy_c, max_energy);
2239 
2240 	return max_energy;
2241 }
2242 
2243 static void
2244 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2245 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2246 {
2247 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2248 
2249 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2250 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2251 
2252 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2253 }
2254 
2255 /*
2256  * Retrieve the average noise (in dBm) among receivers.
2257  */
2258 static int
2259 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
2260 {
2261 	int i, total, nbant, noise;
2262 
2263 	total = nbant = noise = 0;
2264 	for (i = 0; i < 3; i++) {
2265 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2266 		if (noise) {
2267 			total += noise;
2268 			nbant++;
2269 		}
2270 	}
2271 
2272 	/* There should be at least one antenna but check anyway. */
2273 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2274 }
2275 
2276 /*
2277  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2278  *
2279  * Handles the actual data of the Rx packet from the fw
2280  */
2281 static void
2282 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2283 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2284 {
2285 	struct ieee80211com *ic = &sc->sc_ic;
2286 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2287 	struct ieee80211_frame *wh;
2288 	struct ieee80211_node *ni;
2289 	struct ieee80211_rx_stats rxs;
2290 	struct mbuf *m;
2291 	struct iwm_rx_phy_info *phy_info;
2292 	struct iwm_rx_mpdu_res_start *rx_res;
2293 	uint32_t len;
2294 	uint32_t rx_pkt_status;
2295 	int rssi;
2296 
2297 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2298 
2299 	phy_info = &sc->sc_last_phy_info;
2300 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2301 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2302 	len = le16toh(rx_res->byte_count);
2303 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2304 
2305 	m = data->m;
2306 	m->m_data = pkt->data + sizeof(*rx_res);
2307 	m->m_pkthdr.len = m->m_len = len;
2308 
2309 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2310 		device_printf(sc->sc_dev,
2311 		    "dsp size out of range [0,20]: %d\n",
2312 		    phy_info->cfg_phy_cnt);
2313 		return;
2314 	}
2315 
2316 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2317 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2318 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2319 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2320 		return; /* drop */
2321 	}
2322 
2323 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2324 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2325 	} else {
2326 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2327 	}
2328 	rssi = (0 - IWM_MIN_DBM) + rssi;	/* normalize */
2329 	rssi = MIN(rssi, sc->sc_max_rssi);	/* clip to max. 100% */
2330 
2331 	/* replenish ring for the buffer we're going to feed to the sharks */
2332 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2333 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2334 		    __func__);
2335 		return;
2336 	}
2337 
2338 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2339 
2340 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2341 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2342 	    __func__,
2343 	    le16toh(phy_info->channel),
2344 	    le16toh(phy_info->phy_flags));
2345 
2346 	/*
2347 	 * Populate an RX state struct with the provided information.
2348 	 */
2349 	bzero(&rxs, sizeof(rxs));
2350 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2351 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2352 	rxs.c_ieee = le16toh(phy_info->channel);
2353 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2354 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2355 	} else {
2356 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2357 	}
2358 	rxs.rssi = rssi - sc->sc_noise;
2359 	rxs.nf = sc->sc_noise;
2360 
2361 	if (ieee80211_radiotap_active_vap(vap)) {
2362 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2363 
2364 		tap->wr_flags = 0;
2365 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2366 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2367 		tap->wr_chan_freq = htole16(rxs.c_freq);
2368 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2369 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2370 		tap->wr_dbm_antsignal = (int8_t)rssi;
2371 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2372 		tap->wr_tsft = phy_info->system_timestamp;
2373 		switch (phy_info->rate) {
2374 		/* CCK rates. */
2375 		case  10: tap->wr_rate =   2; break;
2376 		case  20: tap->wr_rate =   4; break;
2377 		case  55: tap->wr_rate =  11; break;
2378 		case 110: tap->wr_rate =  22; break;
2379 		/* OFDM rates. */
2380 		case 0xd: tap->wr_rate =  12; break;
2381 		case 0xf: tap->wr_rate =  18; break;
2382 		case 0x5: tap->wr_rate =  24; break;
2383 		case 0x7: tap->wr_rate =  36; break;
2384 		case 0x9: tap->wr_rate =  48; break;
2385 		case 0xb: tap->wr_rate =  72; break;
2386 		case 0x1: tap->wr_rate =  96; break;
2387 		case 0x3: tap->wr_rate = 108; break;
2388 		/* Unknown rate: should not happen. */
2389 		default:  tap->wr_rate =   0;
2390 		}
2391 	}
2392 
2393 	IWM_UNLOCK(sc);
2394 	if (ni != NULL) {
2395 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
2396 		ieee80211_input_mimo(ni, m, &rxs);
2397 		ieee80211_free_node(ni);
2398 	} else {
2399 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
2400 		ieee80211_input_mimo_all(ic, m, &rxs);
2401 	}
2402 	IWM_LOCK(sc);
2403 }
2404 
2405 static void
2406 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
2407 	struct iwm_node *in)
2408 {
2409 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
2410 	struct ieee80211vap *vap = in->in_ni.ni_vap;
2411 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
2412 	int failack = tx_resp->failure_frame;
2413 
2414 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
2415 
2416 	/* Update rate control statistics. */
2417 	if (status != IWM_TX_STATUS_SUCCESS &&
2418 	    status != IWM_TX_STATUS_DIRECT_DONE) {
2419 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
2420 		ieee80211_ratectl_tx_complete(vap, &in->in_ni,
2421 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
2422 	} else {
2423 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OPACKETS, 1);
2424 		ieee80211_ratectl_tx_complete(vap, &in->in_ni,
2425 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
2426 
2427 	}
2428 }
2429 
2430 static void
2431 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
2432 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2433 {
2434 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
2435 	int idx = cmd_hdr->idx;
2436 	int qid = cmd_hdr->qid;
2437 	struct iwm_tx_ring *ring = &sc->txq[qid];
2438 	struct iwm_tx_data *txd = &ring->data[idx];
2439 	struct iwm_node *in = txd->in;
2440 
2441 	if (txd->done) {
2442 		device_printf(sc->sc_dev,
2443 		    "%s: got tx interrupt that's already been handled!\n",
2444 		    __func__);
2445 		return;
2446 	}
2447 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2448 
2449 	sc->sc_tx_timer = 0;
2450 
2451 	iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
2452 
2453 	/* Unmap and free mbuf. */
2454 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
2455 	bus_dmamap_unload(ring->data_dmat, txd->map);
2456 	m_freem(txd->m);
2457 
2458 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2459 	    "free txd %p, in %p\n", txd, txd->in);
2460 	KASSERT(txd->done == 0, ("txd not done"));
2461 	txd->done = 1;
2462 	KASSERT(txd->in, ("txd without node"));
2463 
2464 	txd->m = NULL;
2465 	txd->in = NULL;
2466 	ieee80211_free_node((struct ieee80211_node *)in);
2467 
2468 	if (--ring->queued < IWM_TX_RING_LOMARK) {
2469 		sc->qfullmsk &= ~(1 << ring->qid);
2470 		if (sc->qfullmsk == 0) {
2471 			/*
2472 			 * Well, we're in interrupt context, but then again
2473 			 * I guess net80211 does all sorts of stunts in
2474 			 * interrupt context, so maybe this is no biggie.
2475 			 */
2476 			iwm_start(sc);
2477 		}
2478 	}
2479 }
2480 
2481 /*
2482  * transmit side
2483  */
2484 
2485 /*
2486  * Process a "command done" firmware notification.  This is where we wakeup
2487  * processes waiting for a synchronous command completion.
2488  * from if_iwn
2489  */
2490 static void
2491 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
2492 {
2493 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
2494 	struct iwm_tx_data *data;
2495 
2496 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
2497 		return;	/* Not a command ack. */
2498 	}
2499 
2500 	data = &ring->data[pkt->hdr.idx];
2501 
2502 	/* If the command was mapped in an mbuf, free it. */
2503 	if (data->m != NULL) {
2504 		bus_dmamap_sync(ring->data_dmat, data->map,
2505 		    BUS_DMASYNC_POSTWRITE);
2506 		bus_dmamap_unload(ring->data_dmat, data->map);
2507 		m_freem(data->m);
2508 		data->m = NULL;
2509 	}
2510 	wakeup(&ring->desc[pkt->hdr.idx]);
2511 }
2512 
2513 #if 0
2514 /*
2515  * necessary only for block ack mode
2516  */
2517 void
2518 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
2519 	uint16_t len)
2520 {
2521 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
2522 	uint16_t w_val;
2523 
2524 	scd_bc_tbl = sc->sched_dma.vaddr;
2525 
2526 	len += 8; /* magic numbers came naturally from paris */
2527 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
2528 		len = roundup(len, 4) / 4;
2529 
2530 	w_val = htole16(sta_id << 12 | len);
2531 
2532 	/* Update TX scheduler. */
2533 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
2534 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2535 	    BUS_DMASYNC_PREWRITE);
2536 
2537 	/* I really wonder what this is ?!? */
2538 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
2539 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
2540 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2541 		    BUS_DMASYNC_PREWRITE);
2542 	}
2543 }
2544 #endif
2545 
2546 /*
2547  * Take an 802.11 (non-n) rate, find the relevant rate
2548  * table entry.  return the index into in_ridx[].
2549  *
2550  * The caller then uses that index back into in_ridx
2551  * to figure out the rate index programmed /into/
2552  * the firmware for this given node.
2553  */
2554 static int
2555 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
2556     uint8_t rate)
2557 {
2558 	int i;
2559 	uint8_t r;
2560 
2561 	for (i = 0; i < nitems(in->in_ridx); i++) {
2562 		r = iwm_rates[in->in_ridx[i]].rate;
2563 		if (rate == r)
2564 			return (i);
2565 	}
2566 	/* XXX Return the first */
2567 	/* XXX TODO: have it return the /lowest/ */
2568 	return (0);
2569 }
2570 
2571 /*
2572  * Fill in various bit for management frames, and leave them
2573  * unfilled for data frames (firmware takes care of that).
2574  * Return the selected TX rate.
2575  */
2576 static const struct iwm_rate *
2577 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
2578 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
2579 {
2580 	struct ieee80211com *ic = &sc->sc_ic;
2581 	struct ieee80211_node *ni = &in->in_ni;
2582 	const struct iwm_rate *rinfo;
2583 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2584 	int ridx, rate_flags;
2585 
2586 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
2587 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
2588 
2589 	/*
2590 	 * XXX TODO: everything about the rate selection here is terrible!
2591 	 */
2592 
2593 	if (type == IEEE80211_FC0_TYPE_DATA) {
2594 		int i;
2595 		/* for data frames, use RS table */
2596 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2597 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
2598 		ridx = in->in_ridx[i];
2599 
2600 		/* This is the index into the programmed table */
2601 		tx->initial_rate_index = i;
2602 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
2603 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
2604 		    "%s: start with i=%d, txrate %d\n",
2605 		    __func__, i, iwm_rates[ridx].rate);
2606 		/* XXX no rate_n_flags? */
2607 		return &iwm_rates[ridx];
2608 	}
2609 
2610 	/*
2611 	 * For non-data, use the lowest supported rate for the given
2612 	 * operational mode.
2613 	 *
2614 	 * Note: there may not be any rate control information available.
2615 	 * This driver currently assumes if we're transmitting data
2616 	 * frames, use the rate control table.  Grr.
2617 	 *
2618 	 * XXX TODO: use the configured rate for the traffic type!
2619 	 */
2620 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2621 		/*
2622 		 * XXX this assumes the mode is either 11a or not 11a;
2623 		 * definitely won't work for 11n.
2624 		 */
2625 		ridx = IWM_RIDX_OFDM;
2626 	} else {
2627 		ridx = IWM_RIDX_CCK;
2628 	}
2629 
2630 	rinfo = &iwm_rates[ridx];
2631 
2632 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
2633 	    __func__, ridx,
2634 	    rinfo->rate,
2635 	    !! (IWM_RIDX_IS_CCK(ridx))
2636 	    );
2637 
2638 	/* XXX TODO: hard-coded TX antenna? */
2639 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
2640 	if (IWM_RIDX_IS_CCK(ridx))
2641 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
2642 	/* XXX hard-coded tx rate */
2643 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
2644 
2645 	return rinfo;
2646 }
2647 
2648 #define TB0_SIZE 16
2649 static int
2650 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2651 {
2652 	struct ieee80211com *ic = &sc->sc_ic;
2653 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2654 	struct iwm_node *in = (struct iwm_node *)ni;
2655 	struct iwm_tx_ring *ring;
2656 	struct iwm_tx_data *data;
2657 	struct iwm_tfd *desc;
2658 	struct iwm_device_cmd *cmd;
2659 	struct iwm_tx_cmd *tx;
2660 	struct ieee80211_frame *wh;
2661 	struct ieee80211_key *k = NULL;
2662 	struct mbuf *m1;
2663 	const struct iwm_rate *rinfo;
2664 	uint32_t flags;
2665 	u_int hdrlen;
2666 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
2667 	int nsegs;
2668 	uint8_t tid, type;
2669 	int i, totlen, error, pad;
2670 
2671 	wh = mtod(m, struct ieee80211_frame *);
2672 	hdrlen = ieee80211_anyhdrsize(wh);
2673 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2674 	tid = 0;
2675 	ring = &sc->txq[ac];
2676 	desc = &ring->desc[ring->cur];
2677 	memset(desc, 0, sizeof(*desc));
2678 	data = &ring->data[ring->cur];
2679 
2680 	/* Fill out iwm_tx_cmd to send to the firmware */
2681 	cmd = &ring->cmd[ring->cur];
2682 	cmd->hdr.code = IWM_TX_CMD;
2683 	cmd->hdr.flags = 0;
2684 	cmd->hdr.qid = ring->qid;
2685 	cmd->hdr.idx = ring->cur;
2686 
2687 	tx = (void *)cmd->data;
2688 	memset(tx, 0, sizeof(*tx));
2689 
2690 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
2691 
2692 	/* Encrypt the frame if need be. */
2693 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2694 		/* Retrieve key for TX && do software encryption. */
2695 		k = ieee80211_crypto_encap(ni, m);
2696 		if (k == NULL) {
2697 			m_freem(m);
2698 			return (ENOBUFS);
2699 		}
2700 		/* 802.11 header may have moved. */
2701 		wh = mtod(m, struct ieee80211_frame *);
2702 	}
2703 
2704 	if (ieee80211_radiotap_active_vap(vap)) {
2705 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
2706 
2707 		tap->wt_flags = 0;
2708 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2709 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2710 		tap->wt_rate = rinfo->rate;
2711 		tap->wt_hwqueue = ac;
2712 		if (k != NULL)
2713 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2714 		ieee80211_radiotap_tx(vap, m);
2715 	}
2716 
2717 
2718 	totlen = m->m_pkthdr.len;
2719 
2720 	flags = 0;
2721 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2722 		flags |= IWM_TX_CMD_FLG_ACK;
2723 	}
2724 
2725 	if (type != IEEE80211_FC0_TYPE_DATA
2726 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
2727 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2728 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
2729 	}
2730 
2731 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2732 	    type != IEEE80211_FC0_TYPE_DATA)
2733 		tx->sta_id = sc->sc_aux_sta.sta_id;
2734 	else
2735 		tx->sta_id = IWM_STATION_ID;
2736 
2737 	if (type == IEEE80211_FC0_TYPE_MGT) {
2738 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2739 
2740 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2741 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2742 			tx->pm_frame_timeout = htole16(3);
2743 		else
2744 			tx->pm_frame_timeout = htole16(2);
2745 	} else {
2746 		tx->pm_frame_timeout = htole16(0);
2747 	}
2748 
2749 	if (hdrlen & 3) {
2750 		/* First segment length must be a multiple of 4. */
2751 		flags |= IWM_TX_CMD_FLG_MH_PAD;
2752 		pad = 4 - (hdrlen & 3);
2753 	} else
2754 		pad = 0;
2755 
2756 	tx->driver_txop = 0;
2757 	tx->next_frame_len = 0;
2758 
2759 	tx->len = htole16(totlen);
2760 	tx->tid_tspec = tid;
2761 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
2762 
2763 	/* Set physical address of "scratch area". */
2764 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
2765 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
2766 
2767 	/* Copy 802.11 header in TX command. */
2768 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2769 
2770 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
2771 
2772 	tx->sec_ctl = 0;
2773 	tx->tx_flags |= htole32(flags);
2774 
2775 	/* Trim 802.11 header. */
2776 	m_adj(m, hdrlen);
2777 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2778 	    segs, &nsegs, BUS_DMA_NOWAIT);
2779 	if (error != 0) {
2780 		if (error != EFBIG) {
2781 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2782 			    error);
2783 			m_freem(m);
2784 			return error;
2785 		}
2786 		/* Too many DMA segments, linearize mbuf. */
2787 		MGETHDR(m1, M_NOWAIT, MT_DATA);
2788 		if (m1 == NULL) {
2789 			m_freem(m);
2790 			return ENOBUFS;
2791 		}
2792 		if (m->m_pkthdr.len > MHLEN) {
2793 			MCLGET(m1, M_NOWAIT);
2794 			if (!(m1->m_flags & M_EXT)) {
2795 				m_freem(m);
2796 				m_freem(m1);
2797 				return ENOBUFS;
2798 			}
2799 		}
2800 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2801 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2802 		m_freem(m);
2803 		m = m1;
2804 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2805 		    segs, &nsegs, BUS_DMA_NOWAIT);
2806 		if (error != 0) {
2807 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2808 			    error);
2809 			m_freem(m);
2810 			return error;
2811 		}
2812 	}
2813 	data->m = m;
2814 	data->in = in;
2815 	data->done = 0;
2816 
2817 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2818 	    "sending txd %p, in %p\n", data, data->in);
2819 	KASSERT(data->in != NULL, ("node is NULL"));
2820 
2821 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2822 	    "sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2823 	    ring->qid, ring->cur, totlen, nsegs);
2824 
2825 	/* Fill TX descriptor. */
2826 	desc->num_tbs = 2 + nsegs;
2827 
2828 	desc->tbs[0].lo = htole32(data->cmd_paddr);
2829 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2830 	    (TB0_SIZE << 4);
2831 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
2832 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2833 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
2834 	      + hdrlen + pad - TB0_SIZE) << 4);
2835 
2836 	/* Other DMA segments are for data payload. */
2837 	for (i = 0; i < nsegs; i++) {
2838 		seg = &segs[i];
2839 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
2840 		desc->tbs[i+2].hi_n_len = \
2841 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
2842 		    | ((seg->ds_len) << 4);
2843 	}
2844 
2845 	bus_dmamap_sync(ring->data_dmat, data->map,
2846 	    BUS_DMASYNC_PREWRITE);
2847 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
2848 	    BUS_DMASYNC_PREWRITE);
2849 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2850 	    BUS_DMASYNC_PREWRITE);
2851 
2852 #if 0
2853 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
2854 #endif
2855 
2856 	/* Kick TX ring. */
2857 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
2858 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2859 
2860 	/* Mark TX ring as full if we reach a certain threshold. */
2861 	if (++ring->queued > IWM_TX_RING_HIMARK) {
2862 		sc->qfullmsk |= 1 << ring->qid;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 static int
2869 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2870     const struct ieee80211_bpf_params *params)
2871 {
2872 	struct ieee80211com *ic = ni->ni_ic;
2873 	struct iwm_softc *sc = ic->ic_softc;
2874 	int error = 0;
2875 
2876 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2877 	    "->%s begin\n", __func__);
2878 
2879 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
2880 		m_freem(m);
2881 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2882 		    "<-%s not RUNNING\n", __func__);
2883 		return (ENETDOWN);
2884         }
2885 
2886 	IWM_LOCK(sc);
2887 	/* XXX fix this */
2888         if (params == NULL) {
2889 		error = iwm_tx(sc, m, ni, 0);
2890 	} else {
2891 		error = iwm_tx(sc, m, ni, 0);
2892 	}
2893 	sc->sc_tx_timer = 5;
2894 	IWM_UNLOCK(sc);
2895 
2896         return (error);
2897 }
2898 
2899 /*
2900  * mvm/tx.c
2901  */
2902 
2903 #if 0
2904 /*
2905  * Note that there are transports that buffer frames before they reach
2906  * the firmware. This means that after flush_tx_path is called, the
2907  * queue might not be empty. The race-free way to handle this is to:
2908  * 1) set the station as draining
2909  * 2) flush the Tx path
2910  * 3) wait for the transport queues to be empty
2911  */
2912 int
2913 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
2914 {
2915 	struct iwm_tx_path_flush_cmd flush_cmd = {
2916 		.queues_ctl = htole32(tfd_msk),
2917 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
2918 	};
2919 	int ret;
2920 
2921 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
2922 	    sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
2923 	    sizeof(flush_cmd), &flush_cmd);
2924 	if (ret)
2925                 device_printf(sc->sc_dev,
2926 		    "Flushing tx queue failed: %d\n", ret);
2927 	return ret;
2928 }
2929 #endif
2930 
2931 /*
2932  * BEGIN mvm/sta.c
2933  */
2934 
2935 static void
2936 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6,
2937 	struct iwm_mvm_add_sta_cmd_v5 *cmd_v5)
2938 {
2939 	memset(cmd_v5, 0, sizeof(*cmd_v5));
2940 
2941 	cmd_v5->add_modify = cmd_v6->add_modify;
2942 	cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx;
2943 	cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color;
2944 	IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr);
2945 	cmd_v5->sta_id = cmd_v6->sta_id;
2946 	cmd_v5->modify_mask = cmd_v6->modify_mask;
2947 	cmd_v5->station_flags = cmd_v6->station_flags;
2948 	cmd_v5->station_flags_msk = cmd_v6->station_flags_msk;
2949 	cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid;
2950 	cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid;
2951 	cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn;
2952 	cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count;
2953 	cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags;
2954 	cmd_v5->assoc_id = cmd_v6->assoc_id;
2955 	cmd_v5->beamform_flags = cmd_v6->beamform_flags;
2956 	cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk;
2957 }
2958 
2959 static int
2960 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
2961 	struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status)
2962 {
2963 	struct iwm_mvm_add_sta_cmd_v5 cmd_v5;
2964 
2965 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) {
2966 		return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA,
2967 		    sizeof(*cmd), cmd, status);
2968 	}
2969 
2970 	iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5);
2971 
2972 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5),
2973 	    &cmd_v5, status);
2974 }
2975 
2976 /* send station add/update command to firmware */
2977 static int
2978 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
2979 {
2980 	struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd;
2981 	int ret;
2982 	uint32_t status;
2983 
2984 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
2985 
2986 	add_sta_cmd.sta_id = IWM_STATION_ID;
2987 	add_sta_cmd.mac_id_n_color
2988 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
2989 	        IWM_DEFAULT_COLOR));
2990 	if (!update) {
2991 		add_sta_cmd.tfd_queue_msk = htole32(0xf);
2992 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
2993 	}
2994 	add_sta_cmd.add_modify = update ? 1 : 0;
2995 	add_sta_cmd.station_flags_msk
2996 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
2997 
2998 	status = IWM_ADD_STA_SUCCESS;
2999 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3000 	if (ret)
3001 		return ret;
3002 
3003 	switch (status) {
3004 	case IWM_ADD_STA_SUCCESS:
3005 		break;
3006 	default:
3007 		ret = EIO;
3008 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3009 		break;
3010 	}
3011 
3012 	return ret;
3013 }
3014 
3015 static int
3016 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3017 {
3018 	int ret;
3019 
3020 	ret = iwm_mvm_sta_send_to_fw(sc, in, 0);
3021 	if (ret)
3022 		return ret;
3023 
3024 	return 0;
3025 }
3026 
3027 static int
3028 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3029 {
3030 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3031 }
3032 
3033 static int
3034 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3035 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3036 {
3037 	struct iwm_mvm_add_sta_cmd_v6 cmd;
3038 	int ret;
3039 	uint32_t status;
3040 
3041 	memset(&cmd, 0, sizeof(cmd));
3042 	cmd.sta_id = sta->sta_id;
3043 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3044 
3045 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3046 
3047 	if (addr)
3048 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3049 
3050 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3051 	if (ret)
3052 		return ret;
3053 
3054 	switch (status) {
3055 	case IWM_ADD_STA_SUCCESS:
3056 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3057 		    "%s: Internal station added.\n", __func__);
3058 		return 0;
3059 	default:
3060 		device_printf(sc->sc_dev,
3061 		    "%s: Add internal station failed, status=0x%x\n",
3062 		    __func__, status);
3063 		ret = EIO;
3064 		break;
3065 	}
3066 	return ret;
3067 }
3068 
3069 static int
3070 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3071 {
3072 	int ret;
3073 
3074 	sc->sc_aux_sta.sta_id = 3;
3075 	sc->sc_aux_sta.tfd_queue_msk = 0;
3076 
3077 	ret = iwm_mvm_add_int_sta_common(sc,
3078 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3079 
3080 	if (ret)
3081 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3082 	return ret;
3083 }
3084 
3085 /*
3086  * END mvm/sta.c
3087  */
3088 
3089 /*
3090  * BEGIN mvm/quota.c
3091  */
3092 
3093 static int
3094 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3095 {
3096 	struct iwm_time_quota_cmd cmd;
3097 	int i, idx, ret, num_active_macs, quota, quota_rem;
3098 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3099 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3100 	uint16_t id;
3101 
3102 	memset(&cmd, 0, sizeof(cmd));
3103 
3104 	/* currently, PHY ID == binding ID */
3105 	if (in) {
3106 		id = in->in_phyctxt->id;
3107 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3108 		colors[id] = in->in_phyctxt->color;
3109 
3110 		if (1)
3111 			n_ifs[id] = 1;
3112 	}
3113 
3114 	/*
3115 	 * The FW's scheduling session consists of
3116 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3117 	 * equally between all the bindings that require quota
3118 	 */
3119 	num_active_macs = 0;
3120 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3121 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3122 		num_active_macs += n_ifs[i];
3123 	}
3124 
3125 	quota = 0;
3126 	quota_rem = 0;
3127 	if (num_active_macs) {
3128 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3129 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3130 	}
3131 
3132 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3133 		if (colors[i] < 0)
3134 			continue;
3135 
3136 		cmd.quotas[idx].id_and_color =
3137 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3138 
3139 		if (n_ifs[i] <= 0) {
3140 			cmd.quotas[idx].quota = htole32(0);
3141 			cmd.quotas[idx].max_duration = htole32(0);
3142 		} else {
3143 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3144 			cmd.quotas[idx].max_duration = htole32(0);
3145 		}
3146 		idx++;
3147 	}
3148 
3149 	/* Give the remainder of the session to the first binding */
3150 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3151 
3152 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3153 	    sizeof(cmd), &cmd);
3154 	if (ret)
3155 		device_printf(sc->sc_dev,
3156 		    "%s: Failed to send quota: %d\n", __func__, ret);
3157 	return ret;
3158 }
3159 
3160 /*
3161  * END mvm/quota.c
3162  */
3163 
3164 /*
3165  * ieee80211 routines
3166  */
3167 
3168 /*
3169  * Change to AUTH state in 80211 state machine.  Roughly matches what
3170  * Linux does in bss_info_changed().
3171  */
3172 static int
3173 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3174 {
3175 	struct ieee80211_node *ni;
3176 	struct iwm_node *in;
3177 	struct iwm_vap *iv = IWM_VAP(vap);
3178 	uint32_t duration;
3179 	uint32_t min_duration;
3180 	int error;
3181 
3182 	/*
3183 	 * XXX i have a feeling that the vap node is being
3184 	 * freed from underneath us. Grr.
3185 	 */
3186 	ni = ieee80211_ref_node(vap->iv_bss);
3187 	in = (struct iwm_node *) ni;
3188 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3189 	    "%s: called; vap=%p, bss ni=%p\n",
3190 	    __func__,
3191 	    vap,
3192 	    ni);
3193 
3194 	in->in_assoc = 0;
3195 
3196 	error = iwm_allow_mcast(vap, sc);
3197 	if (error) {
3198 		device_printf(sc->sc_dev,
3199 		    "%s: failed to set multicast\n", __func__);
3200 		goto out;
3201 	}
3202 
3203 	/*
3204 	 * This is where it deviates from what Linux does.
3205 	 *
3206 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3207 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3208 	 * and always does does a mac_ctx_changed().
3209 	 *
3210 	 * The openbsd port doesn't attempt to do that - it reset things
3211 	 * at odd states and does the add here.
3212 	 *
3213 	 * So, until the state handling is fixed (ie, we never reset
3214 	 * the NIC except for a firmware failure, which should drag
3215 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3216 	 * contexts that are required), let's do a dirty hack here.
3217 	 */
3218 	if (iv->is_uploaded) {
3219 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3220 			device_printf(sc->sc_dev,
3221 			    "%s: failed to add MAC\n", __func__);
3222 			goto out;
3223 		}
3224 	} else {
3225 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3226 			device_printf(sc->sc_dev,
3227 			    "%s: failed to add MAC\n", __func__);
3228 			goto out;
3229 		}
3230 	}
3231 
3232 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3233 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3234 		device_printf(sc->sc_dev,
3235 		    "%s: failed add phy ctxt\n", __func__);
3236 		goto out;
3237 	}
3238 	in->in_phyctxt = &sc->sc_phyctxt[0];
3239 
3240 	if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3241 		device_printf(sc->sc_dev,
3242 		    "%s: binding cmd\n", __func__);
3243 		goto out;
3244 	}
3245 
3246 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3247 		device_printf(sc->sc_dev,
3248 		    "%s: failed to add MAC\n", __func__);
3249 		goto out;
3250 	}
3251 
3252 	/* a bit superfluous? */
3253 	while (sc->sc_auth_prot)
3254 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmauth", 0);
3255 	sc->sc_auth_prot = 1;
3256 
3257 	duration = min(IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS,
3258 	    200 + in->in_ni.ni_intval);
3259 	min_duration = min(IWM_MVM_TE_SESSION_PROTECTION_MIN_TIME_MS,
3260 	    100 + in->in_ni.ni_intval);
3261 	iwm_mvm_protect_session(sc, in, duration, min_duration, 500);
3262 
3263 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3264 	    "%s: waiting for auth_prot\n", __func__);
3265 	while (sc->sc_auth_prot != 2) {
3266 		/*
3267 		 * well, meh, but if the kernel is sleeping for half a
3268 		 * second, we have bigger problems
3269 		 */
3270 		if (sc->sc_auth_prot == 0) {
3271 			device_printf(sc->sc_dev,
3272 			    "%s: missed auth window!\n", __func__);
3273 			error = ETIMEDOUT;
3274 			goto out;
3275 		} else if (sc->sc_auth_prot == -1) {
3276 			device_printf(sc->sc_dev,
3277 			    "%s: no time event, denied!\n", __func__);
3278 			sc->sc_auth_prot = 0;
3279 			error = EAUTH;
3280 			goto out;
3281 		}
3282 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmau2", 0);
3283 	}
3284 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "<-%s\n", __func__);
3285 	error = 0;
3286 out:
3287 	ieee80211_free_node(ni);
3288 	return (error);
3289 }
3290 
3291 static int
3292 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3293 {
3294 	struct iwm_node *in = (struct iwm_node *)vap->iv_bss;
3295 	int error;
3296 
3297 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3298 		device_printf(sc->sc_dev,
3299 		    "%s: failed to update STA\n", __func__);
3300 		return error;
3301 	}
3302 
3303 	in->in_assoc = 1;
3304 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3305 		device_printf(sc->sc_dev,
3306 		    "%s: failed to update MAC\n", __func__);
3307 		return error;
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 static int
3314 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3315 {
3316 	/*
3317 	 * Ok, so *technically* the proper set of calls for going
3318 	 * from RUN back to SCAN is:
3319 	 *
3320 	 * iwm_mvm_power_mac_disable(sc, in);
3321 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3322 	 * iwm_mvm_rm_sta(sc, in);
3323 	 * iwm_mvm_update_quotas(sc, NULL);
3324 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3325 	 * iwm_mvm_binding_remove_vif(sc, in);
3326 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3327 	 *
3328 	 * However, that freezes the device not matter which permutations
3329 	 * and modifications are attempted.  Obviously, this driver is missing
3330 	 * something since it works in the Linux driver, but figuring out what
3331 	 * is missing is a little more complicated.  Now, since we're going
3332 	 * back to nothing anyway, we'll just do a complete device reset.
3333 	 * Up your's, device!
3334 	 */
3335 	//iwm_mvm_flush_tx_path(sc, 0xf, 1);
3336 	iwm_stop_device(sc);
3337 	iwm_init_hw(sc);
3338 	if (in)
3339 		in->in_assoc = 0;
3340 	return 0;
3341 
3342 #if 0
3343 	int error;
3344 
3345 	iwm_mvm_power_mac_disable(sc, in);
3346 
3347 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3348 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3349 		return error;
3350 	}
3351 
3352 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3353 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3354 		return error;
3355 	}
3356 	error = iwm_mvm_rm_sta(sc, in);
3357 	in->in_assoc = 0;
3358 	iwm_mvm_update_quotas(sc, NULL);
3359 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3360 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3361 		return error;
3362 	}
3363 	iwm_mvm_binding_remove_vif(sc, in);
3364 
3365 	iwm_mvm_mac_ctxt_remove(sc, in);
3366 
3367 	return error;
3368 #endif
3369 }
3370 
3371 static struct ieee80211_node *
3372 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3373 {
3374 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3375 	    M_NOWAIT | M_ZERO);
3376 }
3377 
3378 static void
3379 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3380 {
3381 	struct ieee80211_node *ni = &in->in_ni;
3382 	struct iwm_lq_cmd *lq = &in->in_lq;
3383 	int nrates = ni->ni_rates.rs_nrates;
3384 	int i, ridx, tab = 0;
3385 	int txant = 0;
3386 
3387 	if (nrates > nitems(lq->rs_table)) {
3388 		device_printf(sc->sc_dev,
3389 		    "%s: node supports %d rates, driver handles "
3390 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3391 		return;
3392 	}
3393 
3394 	/*
3395 	 * XXX .. and most of iwm_node is not initialised explicitly;
3396 	 * it's all just 0x0 passed to the firmware.
3397 	 */
3398 
3399 	/* first figure out which rates we should support */
3400 	/* XXX TODO: this isn't 11n aware /at all/ */
3401 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3402 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3403 	    "%s: nrates=%d\n", __func__, nrates);
3404 	for (i = 0; i < nrates; i++) {
3405 		int rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
3406 
3407 		/* Map 802.11 rate to HW rate index. */
3408 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
3409 			if (iwm_rates[ridx].rate == rate)
3410 				break;
3411 		if (ridx > IWM_RIDX_MAX) {
3412 			device_printf(sc->sc_dev,
3413 			    "%s: WARNING: device rate for %d not found!\n",
3414 			    __func__, rate);
3415 		} else {
3416 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3417 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
3418 			    __func__,
3419 			    i,
3420 			    rate,
3421 			    ridx);
3422 			in->in_ridx[i] = ridx;
3423 		}
3424 	}
3425 
3426 	/* then construct a lq_cmd based on those */
3427 	memset(lq, 0, sizeof(*lq));
3428 	lq->sta_id = IWM_STATION_ID;
3429 
3430 	/*
3431 	 * are these used? (we don't do SISO or MIMO)
3432 	 * need to set them to non-zero, though, or we get an error.
3433 	 */
3434 	lq->single_stream_ant_msk = 1;
3435 	lq->dual_stream_ant_msk = 1;
3436 
3437 	/*
3438 	 * Build the actual rate selection table.
3439 	 * The lowest bits are the rates.  Additionally,
3440 	 * CCK needs bit 9 to be set.  The rest of the bits
3441 	 * we add to the table select the tx antenna
3442 	 * Note that we add the rates in the highest rate first
3443 	 * (opposite of ni_rates).
3444 	 */
3445 	/*
3446 	 * XXX TODO: this should be looping over the min of nrates
3447 	 * and LQ_MAX_RETRY_NUM.  Sigh.
3448 	 */
3449 	for (i = 0; i < nrates; i++) {
3450 		int nextant;
3451 
3452 		if (txant == 0)
3453 			txant = IWM_FW_VALID_TX_ANT(sc);
3454 		nextant = 1<<(ffs(txant)-1);
3455 		txant &= ~nextant;
3456 
3457 		/*
3458 		 * Map the rate id into a rate index into
3459 		 * our hardware table containing the
3460 		 * configuration to use for this rate.
3461 		 */
3462 		ridx = in->in_ridx[(nrates-1)-i];
3463 		tab = iwm_rates[ridx].plcp;
3464 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
3465 		if (IWM_RIDX_IS_CCK(ridx))
3466 			tab |= IWM_RATE_MCS_CCK_MSK;
3467 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3468 		    "station rate i=%d, rate=%d, hw=%x\n",
3469 		    i, iwm_rates[ridx].rate, tab);
3470 		lq->rs_table[i] = htole32(tab);
3471 	}
3472 	/* then fill the rest with the lowest possible rate */
3473 	for (i = nrates; i < nitems(lq->rs_table); i++) {
3474 		KASSERT(tab != 0, ("invalid tab"));
3475 		lq->rs_table[i] = htole32(tab);
3476 	}
3477 }
3478 
3479 static int
3480 iwm_media_change(struct ifnet *ifp)
3481 {
3482 	struct ieee80211vap *vap = ifp->if_softc;
3483 	struct ieee80211com *ic = vap->iv_ic;
3484 	struct iwm_softc *sc = ic->ic_softc;
3485 	int error;
3486 
3487 	error = ieee80211_media_change(ifp);
3488 	if (error != ENETRESET)
3489 		return error;
3490 
3491 	IWM_LOCK(sc);
3492 	if (ic->ic_nrunning > 0) {
3493 		iwm_stop(sc);
3494 		iwm_init(sc);
3495 	}
3496 	IWM_UNLOCK(sc);
3497 	return error;
3498 }
3499 
3500 
3501 static int
3502 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
3503 {
3504 	struct iwm_vap *ivp = IWM_VAP(vap);
3505 	struct ieee80211com *ic = vap->iv_ic;
3506 	struct iwm_softc *sc = ic->ic_softc;
3507 	struct iwm_node *in;
3508 	int error;
3509 
3510 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3511 	    "switching state %s -> %s\n",
3512 	    ieee80211_state_name[vap->iv_state],
3513 	    ieee80211_state_name[nstate]);
3514 	IEEE80211_UNLOCK(ic);
3515 	IWM_LOCK(sc);
3516 	/* disable beacon filtering if we're hopping out of RUN */
3517 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
3518 		iwm_mvm_disable_beacon_filter(sc);
3519 
3520 		if (((in = (void *)vap->iv_bss) != NULL))
3521 			in->in_assoc = 0;
3522 
3523 		iwm_release(sc, NULL);
3524 
3525 		/*
3526 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
3527 		 * above then the card will be completely reinitialized,
3528 		 * so the driver must do everything necessary to bring the card
3529 		 * from INIT to SCAN.
3530 		 *
3531 		 * Additionally, upon receiving deauth frame from AP,
3532 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
3533 		 * state. This will also fail with this driver, so bring the FSM
3534 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
3535 		 *
3536 		 * XXX TODO: fix this for FreeBSD!
3537 		 */
3538 		if (nstate == IEEE80211_S_SCAN ||
3539 		    nstate == IEEE80211_S_AUTH ||
3540 		    nstate == IEEE80211_S_ASSOC) {
3541 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3542 			    "Force transition to INIT; MGT=%d\n", arg);
3543 			IWM_UNLOCK(sc);
3544 			IEEE80211_LOCK(ic);
3545 			vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
3546 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3547 			    "Going INIT->SCAN\n");
3548 			nstate = IEEE80211_S_SCAN;
3549 			IEEE80211_UNLOCK(ic);
3550 			IWM_LOCK(sc);
3551 		}
3552 	}
3553 
3554 	switch (nstate) {
3555 	case IEEE80211_S_INIT:
3556 		sc->sc_scanband = 0;
3557 		break;
3558 
3559 	case IEEE80211_S_AUTH:
3560 		if ((error = iwm_auth(vap, sc)) != 0) {
3561 			device_printf(sc->sc_dev,
3562 			    "%s: could not move to auth state: %d\n",
3563 			    __func__, error);
3564 			break;
3565 		}
3566 		break;
3567 
3568 	case IEEE80211_S_ASSOC:
3569 		if ((error = iwm_assoc(vap, sc)) != 0) {
3570 			device_printf(sc->sc_dev,
3571 			    "%s: failed to associate: %d\n", __func__,
3572 			    error);
3573 			break;
3574 		}
3575 		break;
3576 
3577 	case IEEE80211_S_RUN:
3578 	{
3579 		struct iwm_host_cmd cmd = {
3580 			.id = IWM_LQ_CMD,
3581 			.len = { sizeof(in->in_lq), },
3582 			.flags = IWM_CMD_SYNC,
3583 		};
3584 
3585 		/* Update the association state, now we have it all */
3586 		/* (eg associd comes in at this point */
3587 		error = iwm_assoc(vap, sc);
3588 		if (error != 0) {
3589 			device_printf(sc->sc_dev,
3590 			    "%s: failed to update association state: %d\n",
3591 			    __func__,
3592 			    error);
3593 			break;
3594 		}
3595 
3596 		in = (struct iwm_node *)vap->iv_bss;
3597 		iwm_mvm_power_mac_update_mode(sc, in);
3598 		iwm_mvm_enable_beacon_filter(sc, in);
3599 		iwm_mvm_update_quotas(sc, in);
3600 		iwm_setrates(sc, in);
3601 
3602 		cmd.data[0] = &in->in_lq;
3603 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
3604 			device_printf(sc->sc_dev,
3605 			    "%s: IWM_LQ_CMD failed\n", __func__);
3606 		}
3607 
3608 		break;
3609 	}
3610 
3611 	default:
3612 		break;
3613 	}
3614 	IWM_UNLOCK(sc);
3615 	IEEE80211_LOCK(ic);
3616 
3617 	return (ivp->iv_newstate(vap, nstate, arg));
3618 }
3619 
3620 void
3621 iwm_endscan_cb(void *arg, int pending)
3622 {
3623 	struct iwm_softc *sc = arg;
3624 	struct ieee80211com *ic = &sc->sc_ic;
3625 	int done;
3626 	int error;
3627 
3628 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
3629 	    "%s: scan ended\n",
3630 	    __func__);
3631 
3632 	IWM_LOCK(sc);
3633 	if (sc->sc_scanband == IEEE80211_CHAN_2GHZ &&
3634 	    sc->sc_nvm.sku_cap_band_52GHz_enable) {
3635 		done = 0;
3636 		if ((error = iwm_mvm_scan_request(sc,
3637 		    IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) {
3638 			device_printf(sc->sc_dev, "could not initiate scan\n");
3639 			done = 1;
3640 		}
3641 	} else {
3642 		done = 1;
3643 	}
3644 
3645 	if (done) {
3646 		IWM_UNLOCK(sc);
3647 		ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
3648 		IWM_LOCK(sc);
3649 		sc->sc_scanband = 0;
3650 	}
3651 	IWM_UNLOCK(sc);
3652 }
3653 
3654 static int
3655 iwm_init_hw(struct iwm_softc *sc)
3656 {
3657 	struct ieee80211com *ic = &sc->sc_ic;
3658 	int error, i, qid;
3659 
3660 	if ((error = iwm_start_hw(sc)) != 0)
3661 		return error;
3662 
3663 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
3664 		return error;
3665 	}
3666 
3667 	/*
3668 	 * should stop and start HW since that INIT
3669 	 * image just loaded
3670 	 */
3671 	iwm_stop_device(sc);
3672 	if ((error = iwm_start_hw(sc)) != 0) {
3673 		device_printf(sc->sc_dev, "could not initialize hardware\n");
3674 		return error;
3675 	}
3676 
3677 	/* omstart, this time with the regular firmware */
3678 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
3679 	if (error) {
3680 		device_printf(sc->sc_dev, "could not load firmware\n");
3681 		goto error;
3682 	}
3683 
3684 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
3685 		goto error;
3686 
3687 	/* Send phy db control command and then phy db calibration*/
3688 	if ((error = iwm_send_phy_db_data(sc)) != 0)
3689 		goto error;
3690 
3691 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0)
3692 		goto error;
3693 
3694 	/* Add auxiliary station for scanning */
3695 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0)
3696 		goto error;
3697 
3698 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
3699 		/*
3700 		 * The channel used here isn't relevant as it's
3701 		 * going to be overwritten in the other flows.
3702 		 * For now use the first channel we have.
3703 		 */
3704 		if ((error = iwm_mvm_phy_ctxt_add(sc,
3705 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
3706 			goto error;
3707 	}
3708 
3709 	error = iwm_mvm_power_update_device(sc);
3710 	if (error)
3711 		goto error;
3712 
3713 	/* Mark TX rings as active. */
3714 	for (qid = 0; qid < 4; qid++) {
3715 		iwm_enable_txq(sc, qid, qid);
3716 	}
3717 
3718 	return 0;
3719 
3720  error:
3721 	iwm_stop_device(sc);
3722 	return error;
3723 }
3724 
3725 /* Allow multicast from our BSSID. */
3726 static int
3727 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
3728 {
3729 	struct ieee80211_node *ni = vap->iv_bss;
3730 	struct iwm_mcast_filter_cmd *cmd;
3731 	size_t size;
3732 	int error;
3733 
3734 	size = roundup(sizeof(*cmd), 4);
3735 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
3736 	if (cmd == NULL)
3737 		return ENOMEM;
3738 	cmd->filter_own = 1;
3739 	cmd->port_id = 0;
3740 	cmd->count = 0;
3741 	cmd->pass_all = 1;
3742 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
3743 
3744 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
3745 	    IWM_CMD_SYNC, size, cmd);
3746 	free(cmd, M_DEVBUF);
3747 
3748 	return (error);
3749 }
3750 
3751 static void
3752 iwm_init(struct iwm_softc *sc)
3753 {
3754 	int error;
3755 
3756 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
3757 		return;
3758 	}
3759 	sc->sc_generation++;
3760 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
3761 
3762 	if ((error = iwm_init_hw(sc)) != 0) {
3763 		iwm_stop(sc);
3764 		return;
3765 	}
3766 
3767 	/*
3768  	 * Ok, firmware loaded and we are jogging
3769 	 */
3770 	sc->sc_flags |= IWM_FLAG_HW_INITED;
3771 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3772 }
3773 
3774 static int
3775 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
3776 {
3777 	struct iwm_softc *sc;
3778 	int error;
3779 
3780 	sc = ic->ic_softc;
3781 
3782 	IWM_LOCK(sc);
3783 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3784 		IWM_UNLOCK(sc);
3785 		return (ENXIO);
3786 	}
3787 	error = mbufq_enqueue(&sc->sc_snd, m);
3788 	if (error) {
3789 		IWM_UNLOCK(sc);
3790 		return (error);
3791 	}
3792 	iwm_start(sc);
3793 	IWM_UNLOCK(sc);
3794 	return (0);
3795 }
3796 
3797 /*
3798  * Dequeue packets from sendq and call send.
3799  */
3800 static void
3801 iwm_start(struct iwm_softc *sc)
3802 {
3803 	struct ieee80211_node *ni;
3804 	struct mbuf *m;
3805 	int ac = 0;
3806 
3807 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
3808 	while (sc->qfullmsk == 0 &&
3809 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
3810 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3811 		if (iwm_tx(sc, m, ni, ac) != 0) {
3812 			if_inc_counter(ni->ni_vap->iv_ifp,
3813 			    IFCOUNTER_OERRORS, 1);
3814 			ieee80211_free_node(ni);
3815 			continue;
3816 		}
3817 		sc->sc_tx_timer = 15;
3818 	}
3819 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
3820 }
3821 
3822 static void
3823 iwm_stop(struct iwm_softc *sc)
3824 {
3825 
3826 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
3827 	sc->sc_flags |= IWM_FLAG_STOPPED;
3828 	sc->sc_generation++;
3829 	sc->sc_scanband = 0;
3830 	sc->sc_auth_prot = 0;
3831 	sc->sc_tx_timer = 0;
3832 	iwm_stop_device(sc);
3833 }
3834 
3835 static void
3836 iwm_watchdog(void *arg)
3837 {
3838 	struct iwm_softc *sc = arg;
3839 
3840 	if (sc->sc_tx_timer > 0) {
3841 		if (--sc->sc_tx_timer == 0) {
3842 			device_printf(sc->sc_dev, "device timeout\n");
3843 #ifdef IWM_DEBUG
3844 			iwm_nic_error(sc);
3845 #endif
3846 			iwm_stop(sc);
3847 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
3848 			return;
3849 		}
3850 	}
3851 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3852 }
3853 
3854 static void
3855 iwm_parent(struct ieee80211com *ic)
3856 {
3857 	struct iwm_softc *sc = ic->ic_softc;
3858 	int startall = 0;
3859 
3860 	IWM_LOCK(sc);
3861 	if (ic->ic_nrunning > 0) {
3862 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
3863 			iwm_init(sc);
3864 			startall = 1;
3865 		}
3866 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
3867 		iwm_stop(sc);
3868 	IWM_UNLOCK(sc);
3869 	if (startall)
3870 		ieee80211_start_all(ic);
3871 }
3872 
3873 /*
3874  * The interrupt side of things
3875  */
3876 
3877 /*
3878  * error dumping routines are from iwlwifi/mvm/utils.c
3879  */
3880 
3881 /*
3882  * Note: This structure is read from the device with IO accesses,
3883  * and the reading already does the endian conversion. As it is
3884  * read with uint32_t-sized accesses, any members with a different size
3885  * need to be ordered correctly though!
3886  */
3887 struct iwm_error_event_table {
3888 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
3889 	uint32_t error_id;		/* type of error */
3890 	uint32_t pc;			/* program counter */
3891 	uint32_t blink1;		/* branch link */
3892 	uint32_t blink2;		/* branch link */
3893 	uint32_t ilink1;		/* interrupt link */
3894 	uint32_t ilink2;		/* interrupt link */
3895 	uint32_t data1;		/* error-specific data */
3896 	uint32_t data2;		/* error-specific data */
3897 	uint32_t data3;		/* error-specific data */
3898 	uint32_t bcon_time;		/* beacon timer */
3899 	uint32_t tsf_low;		/* network timestamp function timer */
3900 	uint32_t tsf_hi;		/* network timestamp function timer */
3901 	uint32_t gp1;		/* GP1 timer register */
3902 	uint32_t gp2;		/* GP2 timer register */
3903 	uint32_t gp3;		/* GP3 timer register */
3904 	uint32_t ucode_ver;		/* uCode version */
3905 	uint32_t hw_ver;		/* HW Silicon version */
3906 	uint32_t brd_ver;		/* HW board version */
3907 	uint32_t log_pc;		/* log program counter */
3908 	uint32_t frame_ptr;		/* frame pointer */
3909 	uint32_t stack_ptr;		/* stack pointer */
3910 	uint32_t hcmd;		/* last host command header */
3911 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
3912 				 * rxtx_flag */
3913 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
3914 				 * host_flag */
3915 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
3916 				 * enc_flag */
3917 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
3918 				 * time_flag */
3919 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
3920 				 * wico interrupt */
3921 	uint32_t isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
3922 	uint32_t wait_event;		/* wait event() caller address */
3923 	uint32_t l2p_control;	/* L2pControlField */
3924 	uint32_t l2p_duration;	/* L2pDurationField */
3925 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
3926 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
3927 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
3928 				 * (LMPM_PMG_SEL) */
3929 	uint32_t u_timestamp;	/* indicate when the date and time of the
3930 				 * compilation */
3931 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
3932 } __packed;
3933 
3934 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
3935 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
3936 
3937 #ifdef IWM_DEBUG
3938 struct {
3939 	const char *name;
3940 	uint8_t num;
3941 } advanced_lookup[] = {
3942 	{ "NMI_INTERRUPT_WDG", 0x34 },
3943 	{ "SYSASSERT", 0x35 },
3944 	{ "UCODE_VERSION_MISMATCH", 0x37 },
3945 	{ "BAD_COMMAND", 0x38 },
3946 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
3947 	{ "FATAL_ERROR", 0x3D },
3948 	{ "NMI_TRM_HW_ERR", 0x46 },
3949 	{ "NMI_INTERRUPT_TRM", 0x4C },
3950 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
3951 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
3952 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
3953 	{ "NMI_INTERRUPT_HOST", 0x66 },
3954 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
3955 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
3956 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
3957 	{ "ADVANCED_SYSASSERT", 0 },
3958 };
3959 
3960 static const char *
3961 iwm_desc_lookup(uint32_t num)
3962 {
3963 	int i;
3964 
3965 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
3966 		if (advanced_lookup[i].num == num)
3967 			return advanced_lookup[i].name;
3968 
3969 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
3970 	return advanced_lookup[i].name;
3971 }
3972 
3973 /*
3974  * Support for dumping the error log seemed like a good idea ...
3975  * but it's mostly hex junk and the only sensible thing is the
3976  * hw/ucode revision (which we know anyway).  Since it's here,
3977  * I'll just leave it in, just in case e.g. the Intel guys want to
3978  * help us decipher some "ADVANCED_SYSASSERT" later.
3979  */
3980 static void
3981 iwm_nic_error(struct iwm_softc *sc)
3982 {
3983 	struct iwm_error_event_table table;
3984 	uint32_t base;
3985 
3986 	device_printf(sc->sc_dev, "dumping device error log\n");
3987 	base = sc->sc_uc.uc_error_event_table;
3988 	if (base < 0x800000 || base >= 0x80C000) {
3989 		device_printf(sc->sc_dev,
3990 		    "Not valid error log pointer 0x%08x\n", base);
3991 		return;
3992 	}
3993 
3994 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) {
3995 		device_printf(sc->sc_dev, "reading errlog failed\n");
3996 		return;
3997 	}
3998 
3999 	if (!table.valid) {
4000 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
4001 		return;
4002 	}
4003 
4004 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4005 		device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n");
4006 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4007 		    sc->sc_flags, table.valid);
4008 	}
4009 
4010 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4011 		iwm_desc_lookup(table.error_id));
4012 	device_printf(sc->sc_dev, "%08X | uPc\n", table.pc);
4013 	device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1);
4014 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4015 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4016 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4017 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4018 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4019 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4020 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4021 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4022 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4023 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4024 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4025 	device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3);
4026 	device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver);
4027 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4028 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4029 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4030 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4031 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4032 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4033 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4034 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4035 	device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref);
4036 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4037 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4038 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4039 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4040 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4041 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4042 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4043 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4044 }
4045 #endif
4046 
4047 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
4048 do {									\
4049 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4050 	_var_ = (void *)((_pkt_)+1);					\
4051 } while (/*CONSTCOND*/0)
4052 
4053 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
4054 do {									\
4055 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4056 	_ptr_ = (void *)((_pkt_)+1);					\
4057 } while (/*CONSTCOND*/0)
4058 
4059 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
4060 
4061 /*
4062  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
4063  * Basic structure from if_iwn
4064  */
4065 static void
4066 iwm_notif_intr(struct iwm_softc *sc)
4067 {
4068 	uint16_t hw;
4069 
4070 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4071 	    BUS_DMASYNC_POSTREAD);
4072 
4073 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
4074 	while (sc->rxq.cur != hw) {
4075 		struct iwm_rx_ring *ring = &sc->rxq;
4076 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4077 		struct iwm_rx_packet *pkt;
4078 		struct iwm_cmd_response *cresp;
4079 		int qid, idx;
4080 
4081 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4082 		    BUS_DMASYNC_POSTREAD);
4083 		pkt = mtod(data->m, struct iwm_rx_packet *);
4084 
4085 		qid = pkt->hdr.qid & ~0x80;
4086 		idx = pkt->hdr.idx;
4087 
4088 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4089 		    "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n",
4090 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags,
4091 		    pkt->hdr.code, sc->rxq.cur, hw);
4092 
4093 		/*
4094 		 * randomly get these from the firmware, no idea why.
4095 		 * they at least seem harmless, so just ignore them for now
4096 		 */
4097 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
4098 		    || pkt->len_n_flags == htole32(0x55550000))) {
4099 			ADVANCE_RXQ(sc);
4100 			continue;
4101 		}
4102 
4103 		switch (pkt->hdr.code) {
4104 		case IWM_REPLY_RX_PHY_CMD:
4105 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
4106 			break;
4107 
4108 		case IWM_REPLY_RX_MPDU_CMD:
4109 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
4110 			break;
4111 
4112 		case IWM_TX_CMD:
4113 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
4114 			break;
4115 
4116 		case IWM_MISSED_BEACONS_NOTIFICATION: {
4117 			struct iwm_missed_beacons_notif *resp;
4118 			int missed;
4119 
4120 			/* XXX look at mac_id to determine interface ID */
4121 			struct ieee80211com *ic = &sc->sc_ic;
4122 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4123 
4124 			SYNC_RESP_STRUCT(resp, pkt);
4125 			missed = le32toh(resp->consec_missed_beacons);
4126 
4127 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
4128 			    "%s: MISSED_BEACON: mac_id=%d, "
4129 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
4130 			    "num_rx=%d\n",
4131 			    __func__,
4132 			    le32toh(resp->mac_id),
4133 			    le32toh(resp->consec_missed_beacons_since_last_rx),
4134 			    le32toh(resp->consec_missed_beacons),
4135 			    le32toh(resp->num_expected_beacons),
4136 			    le32toh(resp->num_recvd_beacons));
4137 
4138 			/* Be paranoid */
4139 			if (vap == NULL)
4140 				break;
4141 
4142 			/* XXX no net80211 locking? */
4143 			if (vap->iv_state == IEEE80211_S_RUN &&
4144 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4145 				if (missed > vap->iv_bmissthreshold) {
4146 					/* XXX bad locking; turn into task */
4147 					IWM_UNLOCK(sc);
4148 					ieee80211_beacon_miss(ic);
4149 					IWM_LOCK(sc);
4150 				}
4151 			}
4152 
4153 			break; }
4154 
4155 		case IWM_MVM_ALIVE: {
4156 			struct iwm_mvm_alive_resp *resp;
4157 			SYNC_RESP_STRUCT(resp, pkt);
4158 
4159 			sc->sc_uc.uc_error_event_table
4160 			    = le32toh(resp->error_event_table_ptr);
4161 			sc->sc_uc.uc_log_event_table
4162 			    = le32toh(resp->log_event_table_ptr);
4163 			sc->sched_base = le32toh(resp->scd_base_ptr);
4164 			sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK;
4165 
4166 			sc->sc_uc.uc_intr = 1;
4167 			wakeup(&sc->sc_uc);
4168 			break; }
4169 
4170 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
4171 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
4172 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
4173 
4174 			iwm_phy_db_set_section(sc, phy_db_notif);
4175 
4176 			break; }
4177 
4178 		case IWM_STATISTICS_NOTIFICATION: {
4179 			struct iwm_notif_statistics *stats;
4180 			SYNC_RESP_STRUCT(stats, pkt);
4181 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
4182 			sc->sc_noise = iwm_get_noise(&stats->rx.general);
4183 			break; }
4184 
4185 		case IWM_NVM_ACCESS_CMD:
4186 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4187 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4188 				    BUS_DMASYNC_POSTREAD);
4189 				memcpy(sc->sc_cmd_resp,
4190 				    pkt, sizeof(sc->sc_cmd_resp));
4191 			}
4192 			break;
4193 
4194 		case IWM_PHY_CONFIGURATION_CMD:
4195 		case IWM_TX_ANT_CONFIGURATION_CMD:
4196 		case IWM_ADD_STA:
4197 		case IWM_MAC_CONTEXT_CMD:
4198 		case IWM_REPLY_SF_CFG_CMD:
4199 		case IWM_POWER_TABLE_CMD:
4200 		case IWM_PHY_CONTEXT_CMD:
4201 		case IWM_BINDING_CONTEXT_CMD:
4202 		case IWM_TIME_EVENT_CMD:
4203 		case IWM_SCAN_REQUEST_CMD:
4204 		case IWM_REPLY_BEACON_FILTERING_CMD:
4205 		case IWM_MAC_PM_POWER_TABLE:
4206 		case IWM_TIME_QUOTA_CMD:
4207 		case IWM_REMOVE_STA:
4208 		case IWM_TXPATH_FLUSH:
4209 		case IWM_LQ_CMD:
4210 			SYNC_RESP_STRUCT(cresp, pkt);
4211 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4212 				memcpy(sc->sc_cmd_resp,
4213 				    pkt, sizeof(*pkt)+sizeof(*cresp));
4214 			}
4215 			break;
4216 
4217 		/* ignore */
4218 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
4219 			break;
4220 
4221 		case IWM_INIT_COMPLETE_NOTIF:
4222 			sc->sc_init_complete = 1;
4223 			wakeup(&sc->sc_init_complete);
4224 			break;
4225 
4226 		case IWM_SCAN_COMPLETE_NOTIFICATION: {
4227 			struct iwm_scan_complete_notif *notif;
4228 			SYNC_RESP_STRUCT(notif, pkt);
4229 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
4230 			break; }
4231 
4232 		case IWM_REPLY_ERROR: {
4233 			struct iwm_error_resp *resp;
4234 			SYNC_RESP_STRUCT(resp, pkt);
4235 
4236 			device_printf(sc->sc_dev,
4237 			    "firmware error 0x%x, cmd 0x%x\n",
4238 			    le32toh(resp->error_type),
4239 			    resp->cmd_id);
4240 			break; }
4241 
4242 		case IWM_TIME_EVENT_NOTIFICATION: {
4243 			struct iwm_time_event_notif *notif;
4244 			SYNC_RESP_STRUCT(notif, pkt);
4245 
4246 			if (notif->status) {
4247 				if (le32toh(notif->action) &
4248 				    IWM_TE_V2_NOTIF_HOST_EVENT_START)
4249 					sc->sc_auth_prot = 2;
4250 				else
4251 					sc->sc_auth_prot = 0;
4252 			} else {
4253 				sc->sc_auth_prot = -1;
4254 			}
4255 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4256 			    "%s: time event notification auth_prot=%d\n",
4257 				__func__, sc->sc_auth_prot);
4258 
4259 			wakeup(&sc->sc_auth_prot);
4260 			break; }
4261 
4262 		case IWM_MCAST_FILTER_CMD:
4263 			break;
4264 
4265 		default:
4266 			device_printf(sc->sc_dev,
4267 			    "frame %d/%d %x UNHANDLED (this should "
4268 			    "not happen)\n", qid, idx,
4269 			    pkt->len_n_flags);
4270 			break;
4271 		}
4272 
4273 		/*
4274 		 * Why test bit 0x80?  The Linux driver:
4275 		 *
4276 		 * There is one exception:  uCode sets bit 15 when it
4277 		 * originates the response/notification, i.e. when the
4278 		 * response/notification is not a direct response to a
4279 		 * command sent by the driver.  For example, uCode issues
4280 		 * IWM_REPLY_RX when it sends a received frame to the driver;
4281 		 * it is not a direct response to any driver command.
4282 		 *
4283 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
4284 		 * uses a slightly different format for pkt->hdr, and "qid"
4285 		 * is actually the upper byte of a two-byte field.
4286 		 */
4287 		if (!(pkt->hdr.qid & (1 << 7))) {
4288 			iwm_cmd_done(sc, pkt);
4289 		}
4290 
4291 		ADVANCE_RXQ(sc);
4292 	}
4293 
4294 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
4295 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
4296 
4297 	/*
4298 	 * Tell the firmware what we have processed.
4299 	 * Seems like the hardware gets upset unless we align
4300 	 * the write by 8??
4301 	 */
4302 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
4303 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
4304 }
4305 
4306 static void
4307 iwm_intr(void *arg)
4308 {
4309 	struct iwm_softc *sc = arg;
4310 	int handled = 0;
4311 	int r1, r2, rv = 0;
4312 	int isperiodic = 0;
4313 
4314 	IWM_LOCK(sc);
4315 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
4316 
4317 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
4318 		uint32_t *ict = sc->ict_dma.vaddr;
4319 		int tmp;
4320 
4321 		tmp = htole32(ict[sc->ict_cur]);
4322 		if (!tmp)
4323 			goto out_ena;
4324 
4325 		/*
4326 		 * ok, there was something.  keep plowing until we have all.
4327 		 */
4328 		r1 = r2 = 0;
4329 		while (tmp) {
4330 			r1 |= tmp;
4331 			ict[sc->ict_cur] = 0;
4332 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
4333 			tmp = htole32(ict[sc->ict_cur]);
4334 		}
4335 
4336 		/* this is where the fun begins.  don't ask */
4337 		if (r1 == 0xffffffff)
4338 			r1 = 0;
4339 
4340 		/* i am not expected to understand this */
4341 		if (r1 & 0xc0000)
4342 			r1 |= 0x8000;
4343 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
4344 	} else {
4345 		r1 = IWM_READ(sc, IWM_CSR_INT);
4346 		/* "hardware gone" (where, fishing?) */
4347 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4348 			goto out;
4349 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
4350 	}
4351 	if (r1 == 0 && r2 == 0) {
4352 		goto out_ena;
4353 	}
4354 
4355 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
4356 
4357 	/* ignored */
4358 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
4359 
4360 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
4361 #ifdef IWM_DEBUG
4362 		int i;
4363 		struct ieee80211com *ic = &sc->sc_ic;
4364 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4365 
4366 		iwm_nic_error(sc);
4367 
4368 		/* Dump driver status (TX and RX rings) while we're here. */
4369 		device_printf(sc->sc_dev, "driver status:\n");
4370 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
4371 			struct iwm_tx_ring *ring = &sc->txq[i];
4372 			device_printf(sc->sc_dev,
4373 			    "  tx ring %2d: qid=%-2d cur=%-3d "
4374 			    "queued=%-3d\n",
4375 			    i, ring->qid, ring->cur, ring->queued);
4376 		}
4377 		device_printf(sc->sc_dev,
4378 		    "  rx ring: cur=%d\n", sc->rxq.cur);
4379 		device_printf(sc->sc_dev,
4380 		    "  802.11 state %d\n", vap->iv_state);
4381 #endif
4382 
4383 		device_printf(sc->sc_dev, "fatal firmware error\n");
4384 		iwm_stop(sc);
4385 		rv = 1;
4386 		goto out;
4387 
4388 	}
4389 
4390 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
4391 		handled |= IWM_CSR_INT_BIT_HW_ERR;
4392 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
4393 		iwm_stop(sc);
4394 		rv = 1;
4395 		goto out;
4396 	}
4397 
4398 	/* firmware chunk loaded */
4399 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
4400 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
4401 		handled |= IWM_CSR_INT_BIT_FH_TX;
4402 		sc->sc_fw_chunk_done = 1;
4403 		wakeup(&sc->sc_fw);
4404 	}
4405 
4406 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
4407 		handled |= IWM_CSR_INT_BIT_RF_KILL;
4408 		if (iwm_check_rfkill(sc)) {
4409 			device_printf(sc->sc_dev,
4410 			    "%s: rfkill switch, disabling interface\n",
4411 			    __func__);
4412 			iwm_stop(sc);
4413 		}
4414 	}
4415 
4416 	/*
4417 	 * The Linux driver uses periodic interrupts to avoid races.
4418 	 * We cargo-cult like it's going out of fashion.
4419 	 */
4420 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
4421 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
4422 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
4423 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
4424 			IWM_WRITE_1(sc,
4425 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
4426 		isperiodic = 1;
4427 	}
4428 
4429 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
4430 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
4431 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
4432 
4433 		iwm_notif_intr(sc);
4434 
4435 		/* enable periodic interrupt, see above */
4436 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
4437 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
4438 			    IWM_CSR_INT_PERIODIC_ENA);
4439 	}
4440 
4441 	if (__predict_false(r1 & ~handled))
4442 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4443 		    "%s: unhandled interrupts: %x\n", __func__, r1);
4444 	rv = 1;
4445 
4446  out_ena:
4447 	iwm_restore_interrupts(sc);
4448  out:
4449 	IWM_UNLOCK(sc);
4450 	return;
4451 }
4452 
4453 /*
4454  * Autoconf glue-sniffing
4455  */
4456 #define	PCI_VENDOR_INTEL		0x8086
4457 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
4458 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
4459 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
4460 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
4461 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
4462 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
4463 
4464 static const struct iwm_devices {
4465 	uint16_t	device;
4466 	const char	*name;
4467 } iwm_devices[] = {
4468 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
4469 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
4470 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
4471 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
4472 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
4473 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
4474 };
4475 
4476 static int
4477 iwm_probe(device_t dev)
4478 {
4479 	int i;
4480 
4481 	for (i = 0; i < nitems(iwm_devices); i++)
4482 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
4483 		    pci_get_device(dev) == iwm_devices[i].device) {
4484 			device_set_desc(dev, iwm_devices[i].name);
4485 			return (BUS_PROBE_DEFAULT);
4486 		}
4487 
4488 	return (ENXIO);
4489 }
4490 
4491 static int
4492 iwm_dev_check(device_t dev)
4493 {
4494 	struct iwm_softc *sc;
4495 
4496 	sc = device_get_softc(dev);
4497 
4498 	switch (pci_get_device(dev)) {
4499 	case PCI_PRODUCT_INTEL_WL_3160_1:
4500 	case PCI_PRODUCT_INTEL_WL_3160_2:
4501 		sc->sc_fwname = "iwm3160fw";
4502 		sc->host_interrupt_operation_mode = 1;
4503 		return (0);
4504 	case PCI_PRODUCT_INTEL_WL_7260_1:
4505 	case PCI_PRODUCT_INTEL_WL_7260_2:
4506 		sc->sc_fwname = "iwm7260fw";
4507 		sc->host_interrupt_operation_mode = 1;
4508 		return (0);
4509 	case PCI_PRODUCT_INTEL_WL_7265_1:
4510 	case PCI_PRODUCT_INTEL_WL_7265_2:
4511 		sc->sc_fwname = "iwm7265fw";
4512 		sc->host_interrupt_operation_mode = 0;
4513 		return (0);
4514 	default:
4515 		device_printf(dev, "unknown adapter type\n");
4516 		return ENXIO;
4517 	}
4518 }
4519 
4520 static int
4521 iwm_pci_attach(device_t dev)
4522 {
4523 	struct iwm_softc *sc;
4524 	int count, error, rid;
4525 	uint16_t reg;
4526 
4527 	sc = device_get_softc(dev);
4528 
4529 	/* Clear device-specific "PCI retry timeout" register (41h). */
4530 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4531 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4532 
4533 	/* Enable bus-mastering and hardware bug workaround. */
4534 	pci_enable_busmaster(dev);
4535 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
4536 	/* if !MSI */
4537 	if (reg & PCIM_STATUS_INTxSTATE) {
4538 		reg &= ~PCIM_STATUS_INTxSTATE;
4539 	}
4540 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
4541 
4542 	rid = PCIR_BAR(0);
4543 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
4544 	    RF_ACTIVE);
4545 	if (sc->sc_mem == NULL) {
4546 		device_printf(sc->sc_dev, "can't map mem space\n");
4547 		return (ENXIO);
4548 	}
4549 	sc->sc_st = rman_get_bustag(sc->sc_mem);
4550 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
4551 
4552 	/* Install interrupt handler. */
4553 	count = 1;
4554 	rid = 0;
4555 	if (pci_alloc_msi(dev, &count) == 0)
4556 		rid = 1;
4557 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
4558 	    (rid != 0 ? 0 : RF_SHAREABLE));
4559 	if (sc->sc_irq == NULL) {
4560 		device_printf(dev, "can't map interrupt\n");
4561 			return (ENXIO);
4562 	}
4563 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
4564 	    NULL, iwm_intr, sc, &sc->sc_ih);
4565 	if (sc->sc_ih == NULL) {
4566 		device_printf(dev, "can't establish interrupt");
4567 			return (ENXIO);
4568 	}
4569 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
4570 
4571 	return (0);
4572 }
4573 
4574 static void
4575 iwm_pci_detach(device_t dev)
4576 {
4577 	struct iwm_softc *sc = device_get_softc(dev);
4578 
4579 	if (sc->sc_irq != NULL) {
4580 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
4581 		bus_release_resource(dev, SYS_RES_IRQ,
4582 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
4583 		pci_release_msi(dev);
4584         }
4585 	if (sc->sc_mem != NULL)
4586 		bus_release_resource(dev, SYS_RES_MEMORY,
4587 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
4588 }
4589 
4590 
4591 
4592 static int
4593 iwm_attach(device_t dev)
4594 {
4595 	struct iwm_softc *sc = device_get_softc(dev);
4596 	struct ieee80211com *ic = &sc->sc_ic;
4597 	int error;
4598 	int txq_i, i;
4599 
4600 	sc->sc_dev = dev;
4601 	mtx_init(&sc->sc_mtx, "iwm_mtx", MTX_DEF, 0);
4602 	mbufq_init(&sc->sc_snd, ifqmaxlen);
4603 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
4604 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
4605 	sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK,
4606             taskqueue_thread_enqueue, &sc->sc_tq);
4607         error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq");
4608         if (error != 0) {
4609                 device_printf(dev, "can't start threads, error %d\n",
4610 		    error);
4611 		goto fail;
4612         }
4613 
4614 	/* PCI attach */
4615 	error = iwm_pci_attach(dev);
4616 	if (error != 0)
4617 		goto fail;
4618 
4619 	sc->sc_wantresp = -1;
4620 
4621 	/* Check device type */
4622 	error = iwm_dev_check(dev);
4623 	if (error != 0)
4624 		goto fail;
4625 
4626 	sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
4627 
4628 	/*
4629 	 * We now start fiddling with the hardware
4630 	 */
4631 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
4632 	if (iwm_prepare_card_hw(sc) != 0) {
4633 		device_printf(dev, "could not initialize hardware\n");
4634 		goto fail;
4635 	}
4636 
4637 	/* Allocate DMA memory for firmware transfers. */
4638 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
4639 		device_printf(dev, "could not allocate memory for firmware\n");
4640 		goto fail;
4641 	}
4642 
4643 	/* Allocate "Keep Warm" page. */
4644 	if ((error = iwm_alloc_kw(sc)) != 0) {
4645 		device_printf(dev, "could not allocate keep warm page\n");
4646 		goto fail;
4647 	}
4648 
4649 	/* We use ICT interrupts */
4650 	if ((error = iwm_alloc_ict(sc)) != 0) {
4651 		device_printf(dev, "could not allocate ICT table\n");
4652 		goto fail;
4653 	}
4654 
4655 	/* Allocate TX scheduler "rings". */
4656 	if ((error = iwm_alloc_sched(sc)) != 0) {
4657 		device_printf(dev, "could not allocate TX scheduler rings\n");
4658 		goto fail;
4659 	}
4660 
4661 	/* Allocate TX rings */
4662 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
4663 		if ((error = iwm_alloc_tx_ring(sc,
4664 		    &sc->txq[txq_i], txq_i)) != 0) {
4665 			device_printf(dev,
4666 			    "could not allocate TX ring %d\n",
4667 			    txq_i);
4668 			goto fail;
4669 		}
4670 	}
4671 
4672 	/* Allocate RX ring. */
4673 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
4674 		device_printf(dev, "could not allocate RX ring\n");
4675 		goto fail;
4676 	}
4677 
4678 	/* Clear pending interrupts. */
4679 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
4680 
4681 	ic->ic_softc = sc;
4682 	ic->ic_name = device_get_nameunit(sc->sc_dev);
4683 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
4684 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
4685 
4686 	/* Set device capabilities. */
4687 	ic->ic_caps =
4688 	    IEEE80211_C_STA |
4689 	    IEEE80211_C_WPA |		/* WPA/RSN */
4690 	    IEEE80211_C_WME |
4691 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
4692 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
4693 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
4694 	    ;
4695 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
4696 		sc->sc_phyctxt[i].id = i;
4697 		sc->sc_phyctxt[i].color = 0;
4698 		sc->sc_phyctxt[i].ref = 0;
4699 		sc->sc_phyctxt[i].channel = NULL;
4700 	}
4701 
4702 	/* Max RSSI */
4703 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
4704 	sc->sc_preinit_hook.ich_func = iwm_preinit;
4705 	sc->sc_preinit_hook.ich_arg = sc;
4706 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
4707 		device_printf(dev, "config_intrhook_establish failed\n");
4708 		goto fail;
4709 	}
4710 
4711 #ifdef IWM_DEBUG
4712 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
4713 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
4714 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
4715 #endif
4716 
4717 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4718 	    "<-%s\n", __func__);
4719 
4720 	return 0;
4721 
4722 	/* Free allocated memory if something failed during attachment. */
4723 fail:
4724 	iwm_detach_local(sc, 0);
4725 
4726 	return ENXIO;
4727 }
4728 
4729 static int
4730 iwm_update_edca(struct ieee80211com *ic)
4731 {
4732 	struct iwm_softc *sc = ic->ic_softc;
4733 
4734 	device_printf(sc->sc_dev, "%s: called\n", __func__);
4735 	return (0);
4736 }
4737 
4738 static void
4739 iwm_preinit(void *arg)
4740 {
4741 	struct iwm_softc *sc = arg;
4742 	device_t dev = sc->sc_dev;
4743 	struct ieee80211com *ic = &sc->sc_ic;
4744 	int error;
4745 
4746 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4747 	    "->%s\n", __func__);
4748 
4749 	IWM_LOCK(sc);
4750 	if ((error = iwm_start_hw(sc)) != 0) {
4751 		device_printf(dev, "could not initialize hardware\n");
4752 		IWM_UNLOCK(sc);
4753 		goto fail;
4754 	}
4755 
4756 	error = iwm_run_init_mvm_ucode(sc, 1);
4757 	iwm_stop_device(sc);
4758 	if (error) {
4759 		IWM_UNLOCK(sc);
4760 		goto fail;
4761 	}
4762 	device_printf(dev,
4763 	    "revision: 0x%x, firmware %d.%d (API ver. %d)\n",
4764 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
4765 	    IWM_UCODE_MAJOR(sc->sc_fwver),
4766 	    IWM_UCODE_MINOR(sc->sc_fwver),
4767 	    IWM_UCODE_API(sc->sc_fwver));
4768 
4769 	/* not all hardware can do 5GHz band */
4770 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
4771 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
4772 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
4773 	IWM_UNLOCK(sc);
4774 
4775 	/*
4776 	 * At this point we've committed - if we fail to do setup,
4777 	 * we now also have to tear down the net80211 state.
4778 	 */
4779 	ieee80211_ifattach(ic);
4780 	ic->ic_vap_create = iwm_vap_create;
4781 	ic->ic_vap_delete = iwm_vap_delete;
4782 	ic->ic_raw_xmit = iwm_raw_xmit;
4783 	ic->ic_node_alloc = iwm_node_alloc;
4784 	ic->ic_scan_start = iwm_scan_start;
4785 	ic->ic_scan_end = iwm_scan_end;
4786 	ic->ic_update_mcast = iwm_update_mcast;
4787 	ic->ic_set_channel = iwm_set_channel;
4788 	ic->ic_scan_curchan = iwm_scan_curchan;
4789 	ic->ic_scan_mindwell = iwm_scan_mindwell;
4790 	ic->ic_wme.wme_update = iwm_update_edca;
4791 	ic->ic_parent = iwm_parent;
4792 	ic->ic_transmit = iwm_transmit;
4793 	iwm_radiotap_attach(sc);
4794 	if (bootverbose)
4795 		ieee80211_announce(ic);
4796 
4797 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4798 	    "<-%s\n", __func__);
4799 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4800 
4801 	return;
4802 fail:
4803 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4804 	iwm_detach_local(sc, 0);
4805 }
4806 
4807 /*
4808  * Attach the interface to 802.11 radiotap.
4809  */
4810 static void
4811 iwm_radiotap_attach(struct iwm_softc *sc)
4812 {
4813         struct ieee80211com *ic = &sc->sc_ic;
4814 
4815 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4816 	    "->%s begin\n", __func__);
4817         ieee80211_radiotap_attach(ic,
4818             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
4819                 IWM_TX_RADIOTAP_PRESENT,
4820             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
4821                 IWM_RX_RADIOTAP_PRESENT);
4822 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4823 	    "->%s end\n", __func__);
4824 }
4825 
4826 static struct ieee80211vap *
4827 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
4828     enum ieee80211_opmode opmode, int flags,
4829     const uint8_t bssid[IEEE80211_ADDR_LEN],
4830     const uint8_t mac[IEEE80211_ADDR_LEN])
4831 {
4832 	struct iwm_vap *ivp;
4833 	struct ieee80211vap *vap;
4834 
4835 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
4836 		return NULL;
4837 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
4838 	vap = &ivp->iv_vap;
4839 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
4840 	vap->iv_bmissthreshold = 10;            /* override default */
4841 	/* Override with driver methods. */
4842 	ivp->iv_newstate = vap->iv_newstate;
4843 	vap->iv_newstate = iwm_newstate;
4844 
4845 	ieee80211_ratectl_init(vap);
4846 	/* Complete setup. */
4847 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
4848 	    mac);
4849 	ic->ic_opmode = opmode;
4850 
4851 	return vap;
4852 }
4853 
4854 static void
4855 iwm_vap_delete(struct ieee80211vap *vap)
4856 {
4857 	struct iwm_vap *ivp = IWM_VAP(vap);
4858 
4859 	ieee80211_ratectl_deinit(vap);
4860 	ieee80211_vap_detach(vap);
4861 	free(ivp, M_80211_VAP);
4862 }
4863 
4864 static void
4865 iwm_scan_start(struct ieee80211com *ic)
4866 {
4867 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4868         struct iwm_softc *sc = ic->ic_softc;
4869 	int error;
4870 
4871 	if (sc->sc_scanband)
4872 		return;
4873 	IWM_LOCK(sc);
4874 	error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0);
4875 	if (error) {
4876 		device_printf(sc->sc_dev, "could not initiate scan\n");
4877 		IWM_UNLOCK(sc);
4878 		ieee80211_cancel_scan(vap);
4879 	} else
4880 		IWM_UNLOCK(sc);
4881 }
4882 
4883 static void
4884 iwm_scan_end(struct ieee80211com *ic)
4885 {
4886 }
4887 
4888 static void
4889 iwm_update_mcast(struct ieee80211com *ic)
4890 {
4891 }
4892 
4893 static void
4894 iwm_set_channel(struct ieee80211com *ic)
4895 {
4896 }
4897 
4898 static void
4899 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4900 {
4901 }
4902 
4903 static void
4904 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
4905 {
4906 	return;
4907 }
4908 
4909 void
4910 iwm_init_task(void *arg1)
4911 {
4912 	struct iwm_softc *sc = arg1;
4913 
4914 	IWM_LOCK(sc);
4915 	while (sc->sc_flags & IWM_FLAG_BUSY)
4916 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
4917 	sc->sc_flags |= IWM_FLAG_BUSY;
4918 	iwm_stop(sc);
4919 	if (sc->sc_ic.ic_nrunning > 0)
4920 		iwm_init(sc);
4921 	sc->sc_flags &= ~IWM_FLAG_BUSY;
4922 	wakeup(&sc->sc_flags);
4923 	IWM_UNLOCK(sc);
4924 }
4925 
4926 static int
4927 iwm_resume(device_t dev)
4928 {
4929 	uint16_t reg;
4930 
4931 	/* Clear device-specific "PCI retry timeout" register (41h). */
4932 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4933 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4934 	iwm_init_task(device_get_softc(dev));
4935 
4936 	return 0;
4937 }
4938 
4939 static int
4940 iwm_suspend(device_t dev)
4941 {
4942 	struct iwm_softc *sc = device_get_softc(dev);
4943 
4944 	if (sc->sc_ic.ic_nrunning > 0) {
4945 		IWM_LOCK(sc);
4946 		iwm_stop(sc);
4947 		IWM_UNLOCK(sc);
4948 	}
4949 
4950 	return (0);
4951 }
4952 
4953 static int
4954 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
4955 {
4956 	struct iwm_fw_info *fw = &sc->sc_fw;
4957 	device_t dev = sc->sc_dev;
4958 	int i;
4959 
4960 	if (sc->sc_tq) {
4961 		taskqueue_drain_all(sc->sc_tq);
4962 		taskqueue_free(sc->sc_tq);
4963 	}
4964 	callout_drain(&sc->sc_watchdog_to);
4965 	iwm_stop_device(sc);
4966 	if (do_net80211)
4967 		ieee80211_ifdetach(&sc->sc_ic);
4968 
4969 	/* Free descriptor rings */
4970 	for (i = 0; i < nitems(sc->txq); i++)
4971 		iwm_free_tx_ring(sc, &sc->txq[i]);
4972 
4973 	/* Free firmware */
4974 	if (fw->fw_rawdata != NULL)
4975 		iwm_fw_info_free(fw);
4976 
4977 	/* free scheduler */
4978 	iwm_free_sched(sc);
4979 	if (sc->ict_dma.vaddr != NULL)
4980 		iwm_free_ict(sc);
4981 	if (sc->kw_dma.vaddr != NULL)
4982 		iwm_free_kw(sc);
4983 	if (sc->fw_dma.vaddr != NULL)
4984 		iwm_free_fwmem(sc);
4985 
4986 	/* Finished with the hardware - detach things */
4987 	iwm_pci_detach(dev);
4988 
4989 	mbufq_drain(&sc->sc_snd);
4990 	mtx_destroy(&sc->sc_mtx);
4991 
4992 	return (0);
4993 }
4994 
4995 static int
4996 iwm_detach(device_t dev)
4997 {
4998 	struct iwm_softc *sc = device_get_softc(dev);
4999 
5000 	return (iwm_detach_local(sc, 1));
5001 }
5002 
5003 static device_method_t iwm_pci_methods[] = {
5004         /* Device interface */
5005         DEVMETHOD(device_probe,         iwm_probe),
5006         DEVMETHOD(device_attach,        iwm_attach),
5007         DEVMETHOD(device_detach,        iwm_detach),
5008         DEVMETHOD(device_suspend,       iwm_suspend),
5009         DEVMETHOD(device_resume,        iwm_resume),
5010 
5011         DEVMETHOD_END
5012 };
5013 
5014 static driver_t iwm_pci_driver = {
5015         "iwm",
5016         iwm_pci_methods,
5017         sizeof (struct iwm_softc)
5018 };
5019 
5020 static devclass_t iwm_devclass;
5021 
5022 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
5023 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
5024 MODULE_DEPEND(iwm, pci, 1, 1, 1);
5025 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
5026