xref: /freebsd/sys/dev/iwm/if_iwm.c (revision a907c6914c5879870b2597a63253cea0a5b7bdb8)
1 /*	$OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include <sys/param.h>
109 #include <sys/bus.h>
110 #include <sys/conf.h>
111 #include <sys/endian.h>
112 #include <sys/firmware.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/mbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/module.h>
118 #include <sys/proc.h>
119 #include <sys/rman.h>
120 #include <sys/socket.h>
121 #include <sys/sockio.h>
122 #include <sys/sysctl.h>
123 #include <sys/linker.h>
124 
125 #include <machine/bus.h>
126 #include <machine/endian.h>
127 #include <machine/resource.h>
128 
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcireg.h>
131 
132 #include <net/bpf.h>
133 
134 #include <net/if.h>
135 #include <net/if_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 
141 #include <netinet/in.h>
142 #include <netinet/in_systm.h>
143 #include <netinet/if_ether.h>
144 #include <netinet/ip.h>
145 
146 #include <net80211/ieee80211_var.h>
147 #include <net80211/ieee80211_regdomain.h>
148 #include <net80211/ieee80211_ratectl.h>
149 #include <net80211/ieee80211_radiotap.h>
150 
151 #include <dev/iwm/if_iwmreg.h>
152 #include <dev/iwm/if_iwmvar.h>
153 #include <dev/iwm/if_iwm_debug.h>
154 #include <dev/iwm/if_iwm_util.h>
155 #include <dev/iwm/if_iwm_binding.h>
156 #include <dev/iwm/if_iwm_phy_db.h>
157 #include <dev/iwm/if_iwm_mac_ctxt.h>
158 #include <dev/iwm/if_iwm_phy_ctxt.h>
159 #include <dev/iwm/if_iwm_time_event.h>
160 #include <dev/iwm/if_iwm_power.h>
161 #include <dev/iwm/if_iwm_scan.h>
162 
163 #include <dev/iwm/if_iwm_pcie_trans.h>
164 
165 const uint8_t iwm_nvm_channels[] = {
166 	/* 2.4 GHz */
167 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
168 	/* 5 GHz */
169 	36, 40, 44 , 48, 52, 56, 60, 64,
170 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
171 	149, 153, 157, 161, 165
172 };
173 #define IWM_NUM_2GHZ_CHANNELS	14
174 
175 /*
176  * XXX For now, there's simply a fixed set of rate table entries
177  * that are populated.
178  */
179 const struct iwm_rate {
180 	uint8_t rate;
181 	uint8_t plcp;
182 } iwm_rates[] = {
183 	{   2,	IWM_RATE_1M_PLCP  },
184 	{   4,	IWM_RATE_2M_PLCP  },
185 	{  11,	IWM_RATE_5M_PLCP  },
186 	{  22,	IWM_RATE_11M_PLCP },
187 	{  12,	IWM_RATE_6M_PLCP  },
188 	{  18,	IWM_RATE_9M_PLCP  },
189 	{  24,	IWM_RATE_12M_PLCP },
190 	{  36,	IWM_RATE_18M_PLCP },
191 	{  48,	IWM_RATE_24M_PLCP },
192 	{  72,	IWM_RATE_36M_PLCP },
193 	{  96,	IWM_RATE_48M_PLCP },
194 	{ 108,	IWM_RATE_54M_PLCP },
195 };
196 #define IWM_RIDX_CCK	0
197 #define IWM_RIDX_OFDM	4
198 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
201 
202 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
203 static int	iwm_firmware_store_section(struct iwm_softc *,
204                                            enum iwm_ucode_type,
205                                            const uint8_t *, size_t);
206 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
207 static void	iwm_fw_info_free(struct iwm_fw_info *);
208 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
209 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
210 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
211                                      bus_size_t, bus_size_t);
212 static void	iwm_dma_contig_free(struct iwm_dma_info *);
213 static int	iwm_alloc_fwmem(struct iwm_softc *);
214 static void	iwm_free_fwmem(struct iwm_softc *);
215 static int	iwm_alloc_sched(struct iwm_softc *);
216 static void	iwm_free_sched(struct iwm_softc *);
217 static int	iwm_alloc_kw(struct iwm_softc *);
218 static void	iwm_free_kw(struct iwm_softc *);
219 static int	iwm_alloc_ict(struct iwm_softc *);
220 static void	iwm_free_ict(struct iwm_softc *);
221 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
222 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
223 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
224 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
225                                   int);
226 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
227 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
228 static void	iwm_enable_interrupts(struct iwm_softc *);
229 static void	iwm_restore_interrupts(struct iwm_softc *);
230 static void	iwm_disable_interrupts(struct iwm_softc *);
231 static void	iwm_ict_reset(struct iwm_softc *);
232 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
233 static void	iwm_stop_device(struct iwm_softc *);
234 static void	iwm_mvm_nic_config(struct iwm_softc *);
235 static int	iwm_nic_rx_init(struct iwm_softc *);
236 static int	iwm_nic_tx_init(struct iwm_softc *);
237 static int	iwm_nic_init(struct iwm_softc *);
238 static void	iwm_enable_txq(struct iwm_softc *, int, int);
239 static int	iwm_post_alive(struct iwm_softc *);
240 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
241                                    uint16_t, uint8_t *, uint16_t *);
242 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
243 				     uint16_t *);
244 static void	iwm_init_channel_map(struct iwm_softc *,
245                                      const uint16_t * const);
246 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
247 			           const uint16_t *, const uint16_t *, uint8_t,
248 				   uint8_t);
249 struct iwm_nvm_section;
250 static int	iwm_parse_nvm_sections(struct iwm_softc *,
251                                        struct iwm_nvm_section *);
252 static int	iwm_nvm_init(struct iwm_softc *);
253 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
254                                         const uint8_t *, uint32_t);
255 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
256 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
257 static int	iwm_fw_alive(struct iwm_softc *, uint32_t);
258 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
259 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
260 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
261                                               enum iwm_ucode_type);
262 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
263 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
264 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
265 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
266 					    struct iwm_rx_phy_info *);
267 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
268                                       struct iwm_rx_packet *,
269                                       struct iwm_rx_data *);
270 static int	iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
271 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
272                                    struct iwm_rx_data *);
273 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
274                                          struct iwm_rx_packet *,
275 				         struct iwm_node *);
276 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
277                                   struct iwm_rx_data *);
278 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
279 #if 0
280 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
281                                  uint16_t);
282 #endif
283 static const struct iwm_rate *
284 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
285 			struct ieee80211_frame *, struct iwm_tx_cmd *);
286 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
287                        struct ieee80211_node *, int);
288 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
289 			     const struct ieee80211_bpf_params *);
290 static void	iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *,
291 					     struct iwm_mvm_add_sta_cmd_v5 *);
292 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
293 					        struct iwm_mvm_add_sta_cmd_v6 *,
294                                                 int *);
295 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
296                                        int);
297 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
298 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
299 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
300                                            struct iwm_int_sta *,
301 				           const uint8_t *, uint16_t, uint16_t);
302 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
303 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
304 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
305 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
306 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
307 static struct ieee80211_node *
308 		iwm_node_alloc(struct ieee80211vap *,
309 		               const uint8_t[IEEE80211_ADDR_LEN]);
310 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
311 static int	iwm_media_change(struct ifnet *);
312 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
313 static void	iwm_endscan_cb(void *, int);
314 static int	iwm_init_hw(struct iwm_softc *);
315 static void	iwm_init(struct iwm_softc *);
316 static void	iwm_start(struct iwm_softc *);
317 static void	iwm_stop(struct iwm_softc *);
318 static void	iwm_watchdog(void *);
319 static void	iwm_parent(struct ieee80211com *);
320 #ifdef IWM_DEBUG
321 static const char *
322 		iwm_desc_lookup(uint32_t);
323 static void	iwm_nic_error(struct iwm_softc *);
324 #endif
325 static void	iwm_notif_intr(struct iwm_softc *);
326 static void	iwm_intr(void *);
327 static int	iwm_attach(device_t);
328 static void	iwm_preinit(void *);
329 static int	iwm_detach_local(struct iwm_softc *sc, int);
330 static void	iwm_init_task(void *);
331 static void	iwm_radiotap_attach(struct iwm_softc *);
332 static struct ieee80211vap *
333 		iwm_vap_create(struct ieee80211com *,
334 		               const char [IFNAMSIZ], int,
335 		               enum ieee80211_opmode, int,
336 		               const uint8_t [IEEE80211_ADDR_LEN],
337 		               const uint8_t [IEEE80211_ADDR_LEN]);
338 static void	iwm_vap_delete(struct ieee80211vap *);
339 static void	iwm_scan_start(struct ieee80211com *);
340 static void	iwm_scan_end(struct ieee80211com *);
341 static void	iwm_update_mcast(struct ieee80211com *);
342 static void	iwm_set_channel(struct ieee80211com *);
343 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
344 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
345 static int	iwm_detach(device_t);
346 
347 /*
348  * Firmware parser.
349  */
350 
351 static int
352 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
353 {
354 	const struct iwm_fw_cscheme_list *l = (const void *)data;
355 
356 	if (dlen < sizeof(*l) ||
357 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
358 		return EINVAL;
359 
360 	/* we don't actually store anything for now, always use s/w crypto */
361 
362 	return 0;
363 }
364 
365 static int
366 iwm_firmware_store_section(struct iwm_softc *sc,
367     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
368 {
369 	struct iwm_fw_sects *fws;
370 	struct iwm_fw_onesect *fwone;
371 
372 	if (type >= IWM_UCODE_TYPE_MAX)
373 		return EINVAL;
374 	if (dlen < sizeof(uint32_t))
375 		return EINVAL;
376 
377 	fws = &sc->sc_fw.fw_sects[type];
378 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
379 		return EINVAL;
380 
381 	fwone = &fws->fw_sect[fws->fw_count];
382 
383 	/* first 32bit are device load offset */
384 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
385 
386 	/* rest is data */
387 	fwone->fws_data = data + sizeof(uint32_t);
388 	fwone->fws_len = dlen - sizeof(uint32_t);
389 
390 	fws->fw_count++;
391 	fws->fw_totlen += fwone->fws_len;
392 
393 	return 0;
394 }
395 
396 /* iwlwifi: iwl-drv.c */
397 struct iwm_tlv_calib_data {
398 	uint32_t ucode_type;
399 	struct iwm_tlv_calib_ctrl calib;
400 } __packed;
401 
402 static int
403 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
404 {
405 	const struct iwm_tlv_calib_data *def_calib = data;
406 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
407 
408 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
409 		device_printf(sc->sc_dev,
410 		    "Wrong ucode_type %u for default "
411 		    "calibration.\n", ucode_type);
412 		return EINVAL;
413 	}
414 
415 	sc->sc_default_calib[ucode_type].flow_trigger =
416 	    def_calib->calib.flow_trigger;
417 	sc->sc_default_calib[ucode_type].event_trigger =
418 	    def_calib->calib.event_trigger;
419 
420 	return 0;
421 }
422 
423 static void
424 iwm_fw_info_free(struct iwm_fw_info *fw)
425 {
426 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
427 	fw->fw_fp = NULL;
428 	/* don't touch fw->fw_status */
429 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
430 }
431 
432 static int
433 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
434 {
435 	struct iwm_fw_info *fw = &sc->sc_fw;
436 	const struct iwm_tlv_ucode_header *uhdr;
437 	struct iwm_ucode_tlv tlv;
438 	enum iwm_ucode_tlv_type tlv_type;
439 	const struct firmware *fwp;
440 	const uint8_t *data;
441 	int error = 0;
442 	size_t len;
443 
444 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
445 	    ucode_type != IWM_UCODE_TYPE_INIT)
446 		return 0;
447 
448 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
449 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
450 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
451 
452 	if (fw->fw_fp != NULL)
453 		iwm_fw_info_free(fw);
454 
455 	/*
456 	 * Load firmware into driver memory.
457 	 * fw_fp will be set.
458 	 */
459 	IWM_UNLOCK(sc);
460 	fwp = firmware_get(sc->sc_fwname);
461 	IWM_LOCK(sc);
462 	if (fwp == NULL) {
463 		device_printf(sc->sc_dev,
464 		    "could not read firmware %s (error %d)\n",
465 		    sc->sc_fwname, error);
466 		goto out;
467 	}
468 	fw->fw_fp = fwp;
469 
470 	/*
471 	 * Parse firmware contents
472 	 */
473 
474 	uhdr = (const void *)fw->fw_fp->data;
475 	if (*(const uint32_t *)fw->fw_fp->data != 0
476 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
477 		device_printf(sc->sc_dev, "invalid firmware %s\n",
478 		    sc->sc_fwname);
479 		error = EINVAL;
480 		goto out;
481 	}
482 
483 	sc->sc_fwver = le32toh(uhdr->ver);
484 	data = uhdr->data;
485 	len = fw->fw_fp->datasize - sizeof(*uhdr);
486 
487 	while (len >= sizeof(tlv)) {
488 		size_t tlv_len;
489 		const void *tlv_data;
490 
491 		memcpy(&tlv, data, sizeof(tlv));
492 		tlv_len = le32toh(tlv.length);
493 		tlv_type = le32toh(tlv.type);
494 
495 		len -= sizeof(tlv);
496 		data += sizeof(tlv);
497 		tlv_data = data;
498 
499 		if (len < tlv_len) {
500 			device_printf(sc->sc_dev,
501 			    "firmware too short: %zu bytes\n",
502 			    len);
503 			error = EINVAL;
504 			goto parse_out;
505 		}
506 
507 		switch ((int)tlv_type) {
508 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
509 			if (tlv_len < sizeof(uint32_t)) {
510 				device_printf(sc->sc_dev,
511 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
512 				    __func__,
513 				    (int) tlv_len);
514 				error = EINVAL;
515 				goto parse_out;
516 			}
517 			sc->sc_capa_max_probe_len
518 			    = le32toh(*(const uint32_t *)tlv_data);
519 			/* limit it to something sensible */
520 			if (sc->sc_capa_max_probe_len > (1<<16)) {
521 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
522 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
523 				    "ridiculous\n", __func__);
524 				error = EINVAL;
525 				goto parse_out;
526 			}
527 			break;
528 		case IWM_UCODE_TLV_PAN:
529 			if (tlv_len) {
530 				device_printf(sc->sc_dev,
531 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
532 				    __func__,
533 				    (int) tlv_len);
534 				error = EINVAL;
535 				goto parse_out;
536 			}
537 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
538 			break;
539 		case IWM_UCODE_TLV_FLAGS:
540 			if (tlv_len < sizeof(uint32_t)) {
541 				device_printf(sc->sc_dev,
542 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
543 				    __func__,
544 				    (int) tlv_len);
545 				error = EINVAL;
546 				goto parse_out;
547 			}
548 			/*
549 			 * Apparently there can be many flags, but Linux driver
550 			 * parses only the first one, and so do we.
551 			 *
552 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
553 			 * Intentional or a bug?  Observations from
554 			 * current firmware file:
555 			 *  1) TLV_PAN is parsed first
556 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
557 			 * ==> this resets TLV_PAN to itself... hnnnk
558 			 */
559 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
560 			break;
561 		case IWM_UCODE_TLV_CSCHEME:
562 			if ((error = iwm_store_cscheme(sc,
563 			    tlv_data, tlv_len)) != 0) {
564 				device_printf(sc->sc_dev,
565 				    "%s: iwm_store_cscheme(): returned %d\n",
566 				    __func__,
567 				    error);
568 				goto parse_out;
569 			}
570 			break;
571 		case IWM_UCODE_TLV_NUM_OF_CPU:
572 			if (tlv_len != sizeof(uint32_t)) {
573 				device_printf(sc->sc_dev,
574 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
575 				    __func__,
576 				    (int) tlv_len);
577 				error = EINVAL;
578 				goto parse_out;
579 			}
580 			if (le32toh(*(const uint32_t*)tlv_data) != 1) {
581 				device_printf(sc->sc_dev,
582 				    "%s: driver supports "
583 				    "only TLV_NUM_OF_CPU == 1",
584 				    __func__);
585 				error = EINVAL;
586 				goto parse_out;
587 			}
588 			break;
589 		case IWM_UCODE_TLV_SEC_RT:
590 			if ((error = iwm_firmware_store_section(sc,
591 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
594 				    __func__,
595 				    error);
596 				goto parse_out;
597 			}
598 			break;
599 		case IWM_UCODE_TLV_SEC_INIT:
600 			if ((error = iwm_firmware_store_section(sc,
601 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
602 				device_printf(sc->sc_dev,
603 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
604 				    __func__,
605 				    error);
606 				goto parse_out;
607 			}
608 			break;
609 		case IWM_UCODE_TLV_SEC_WOWLAN:
610 			if ((error = iwm_firmware_store_section(sc,
611 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
612 				device_printf(sc->sc_dev,
613 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
614 				    __func__,
615 				    error);
616 				goto parse_out;
617 			}
618 			break;
619 		case IWM_UCODE_TLV_DEF_CALIB:
620 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
621 				device_printf(sc->sc_dev,
622 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
623 				    __func__,
624 				    (int) tlv_len,
625 				    (int) sizeof(struct iwm_tlv_calib_data));
626 				error = EINVAL;
627 				goto parse_out;
628 			}
629 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
630 				device_printf(sc->sc_dev,
631 				    "%s: iwm_set_default_calib() failed: %d\n",
632 				    __func__,
633 				    error);
634 				goto parse_out;
635 			}
636 			break;
637 		case IWM_UCODE_TLV_PHY_SKU:
638 			if (tlv_len != sizeof(uint32_t)) {
639 				error = EINVAL;
640 				device_printf(sc->sc_dev,
641 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
642 				    __func__,
643 				    (int) tlv_len);
644 				goto parse_out;
645 			}
646 			sc->sc_fw_phy_config =
647 			    le32toh(*(const uint32_t *)tlv_data);
648 			break;
649 
650 		case IWM_UCODE_TLV_API_CHANGES_SET:
651 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES:
652 			/* ignore, not used by current driver */
653 			break;
654 
655 		default:
656 			device_printf(sc->sc_dev,
657 			    "%s: unknown firmware section %d, abort\n",
658 			    __func__, tlv_type);
659 			error = EINVAL;
660 			goto parse_out;
661 		}
662 
663 		len -= roundup(tlv_len, 4);
664 		data += roundup(tlv_len, 4);
665 	}
666 
667 	KASSERT(error == 0, ("unhandled error"));
668 
669  parse_out:
670 	if (error) {
671 		device_printf(sc->sc_dev, "firmware parse error %d, "
672 		    "section type %d\n", error, tlv_type);
673 	}
674 
675 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
676 		device_printf(sc->sc_dev,
677 		    "device uses unsupported power ops\n");
678 		error = ENOTSUP;
679 	}
680 
681  out:
682 	if (error) {
683 		fw->fw_status = IWM_FW_STATUS_NONE;
684 		if (fw->fw_fp != NULL)
685 			iwm_fw_info_free(fw);
686 	} else
687 		fw->fw_status = IWM_FW_STATUS_DONE;
688 	wakeup(&sc->sc_fw);
689 
690 	return error;
691 }
692 
693 /*
694  * DMA resource routines
695  */
696 
697 static void
698 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
699 {
700         if (error != 0)
701                 return;
702 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
703         *(bus_addr_t *)arg = segs[0].ds_addr;
704 }
705 
706 static int
707 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
708     bus_size_t size, bus_size_t alignment)
709 {
710 	int error;
711 
712 	dma->tag = NULL;
713 	dma->size = size;
714 
715 	error = bus_dma_tag_create(tag, alignment,
716             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
717             1, size, 0, NULL, NULL, &dma->tag);
718         if (error != 0)
719                 goto fail;
720 
721         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
722             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
723         if (error != 0)
724                 goto fail;
725 
726         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
727             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
728         if (error != 0)
729                 goto fail;
730 
731 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
732 
733 	return 0;
734 
735 fail:	iwm_dma_contig_free(dma);
736 	return error;
737 }
738 
739 static void
740 iwm_dma_contig_free(struct iwm_dma_info *dma)
741 {
742 	if (dma->map != NULL) {
743 		if (dma->vaddr != NULL) {
744 			bus_dmamap_sync(dma->tag, dma->map,
745 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
746 			bus_dmamap_unload(dma->tag, dma->map);
747 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
748 			dma->vaddr = NULL;
749 		}
750 		bus_dmamap_destroy(dma->tag, dma->map);
751 		dma->map = NULL;
752 	}
753 	if (dma->tag != NULL) {
754 		bus_dma_tag_destroy(dma->tag);
755 		dma->tag = NULL;
756 	}
757 
758 }
759 
760 /* fwmem is used to load firmware onto the card */
761 static int
762 iwm_alloc_fwmem(struct iwm_softc *sc)
763 {
764 	/* Must be aligned on a 16-byte boundary. */
765 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
766 	    sc->sc_fwdmasegsz, 16);
767 }
768 
769 static void
770 iwm_free_fwmem(struct iwm_softc *sc)
771 {
772 	iwm_dma_contig_free(&sc->fw_dma);
773 }
774 
775 /* tx scheduler rings.  not used? */
776 static int
777 iwm_alloc_sched(struct iwm_softc *sc)
778 {
779 	int rv;
780 
781 	/* TX scheduler rings must be aligned on a 1KB boundary. */
782 	rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
783 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
784 	return rv;
785 }
786 
787 static void
788 iwm_free_sched(struct iwm_softc *sc)
789 {
790 	iwm_dma_contig_free(&sc->sched_dma);
791 }
792 
793 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
794 static int
795 iwm_alloc_kw(struct iwm_softc *sc)
796 {
797 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
798 }
799 
800 static void
801 iwm_free_kw(struct iwm_softc *sc)
802 {
803 	iwm_dma_contig_free(&sc->kw_dma);
804 }
805 
806 /* interrupt cause table */
807 static int
808 iwm_alloc_ict(struct iwm_softc *sc)
809 {
810 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
811 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
812 }
813 
814 static void
815 iwm_free_ict(struct iwm_softc *sc)
816 {
817 	iwm_dma_contig_free(&sc->ict_dma);
818 }
819 
820 static int
821 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
822 {
823 	bus_size_t size;
824 	int i, error;
825 
826 	ring->cur = 0;
827 
828 	/* Allocate RX descriptors (256-byte aligned). */
829 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
830 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
831 	if (error != 0) {
832 		device_printf(sc->sc_dev,
833 		    "could not allocate RX ring DMA memory\n");
834 		goto fail;
835 	}
836 	ring->desc = ring->desc_dma.vaddr;
837 
838 	/* Allocate RX status area (16-byte aligned). */
839 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
840 	    sizeof(*ring->stat), 16);
841 	if (error != 0) {
842 		device_printf(sc->sc_dev,
843 		    "could not allocate RX status DMA memory\n");
844 		goto fail;
845 	}
846 	ring->stat = ring->stat_dma.vaddr;
847 
848         /* Create RX buffer DMA tag. */
849         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
850             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
851             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
852         if (error != 0) {
853                 device_printf(sc->sc_dev,
854                     "%s: could not create RX buf DMA tag, error %d\n",
855                     __func__, error);
856                 goto fail;
857         }
858 
859 	/*
860 	 * Allocate and map RX buffers.
861 	 */
862 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
863 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
864 			goto fail;
865 		}
866 	}
867 	return 0;
868 
869 fail:	iwm_free_rx_ring(sc, ring);
870 	return error;
871 }
872 
873 static void
874 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
875 {
876 
877 	/* XXX print out if we can't lock the NIC? */
878 	if (iwm_nic_lock(sc)) {
879 		/* XXX handle if RX stop doesn't finish? */
880 		(void) iwm_pcie_rx_stop(sc);
881 		iwm_nic_unlock(sc);
882 	}
883 	/* Reset the ring state */
884 	ring->cur = 0;
885 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
886 }
887 
888 static void
889 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
890 {
891 	int i;
892 
893 	iwm_dma_contig_free(&ring->desc_dma);
894 	iwm_dma_contig_free(&ring->stat_dma);
895 
896 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
897 		struct iwm_rx_data *data = &ring->data[i];
898 
899 		if (data->m != NULL) {
900 			bus_dmamap_sync(ring->data_dmat, data->map,
901 			    BUS_DMASYNC_POSTREAD);
902 			bus_dmamap_unload(ring->data_dmat, data->map);
903 			m_freem(data->m);
904 			data->m = NULL;
905 		}
906 		if (data->map != NULL) {
907 			bus_dmamap_destroy(ring->data_dmat, data->map);
908 			data->map = NULL;
909 		}
910 	}
911 	if (ring->data_dmat != NULL) {
912 		bus_dma_tag_destroy(ring->data_dmat);
913 		ring->data_dmat = NULL;
914 	}
915 }
916 
917 static int
918 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
919 {
920 	bus_addr_t paddr;
921 	bus_size_t size;
922 	int i, error;
923 
924 	ring->qid = qid;
925 	ring->queued = 0;
926 	ring->cur = 0;
927 
928 	/* Allocate TX descriptors (256-byte aligned). */
929 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
930 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
931 	if (error != 0) {
932 		device_printf(sc->sc_dev,
933 		    "could not allocate TX ring DMA memory\n");
934 		goto fail;
935 	}
936 	ring->desc = ring->desc_dma.vaddr;
937 
938 	/*
939 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
940 	 * to allocate commands space for other rings.
941 	 */
942 	if (qid > IWM_MVM_CMD_QUEUE)
943 		return 0;
944 
945 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
946 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
947 	if (error != 0) {
948 		device_printf(sc->sc_dev,
949 		    "could not allocate TX cmd DMA memory\n");
950 		goto fail;
951 	}
952 	ring->cmd = ring->cmd_dma.vaddr;
953 
954 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
955 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
956             IWM_MAX_SCATTER - 2, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
957 	if (error != 0) {
958 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
959 		goto fail;
960 	}
961 
962 	paddr = ring->cmd_dma.paddr;
963 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
964 		struct iwm_tx_data *data = &ring->data[i];
965 
966 		data->cmd_paddr = paddr;
967 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
968 		    + offsetof(struct iwm_tx_cmd, scratch);
969 		paddr += sizeof(struct iwm_device_cmd);
970 
971 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
972 		if (error != 0) {
973 			device_printf(sc->sc_dev,
974 			    "could not create TX buf DMA map\n");
975 			goto fail;
976 		}
977 	}
978 	KASSERT(paddr == ring->cmd_dma.paddr + size,
979 	    ("invalid physical address"));
980 	return 0;
981 
982 fail:	iwm_free_tx_ring(sc, ring);
983 	return error;
984 }
985 
986 static void
987 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
988 {
989 	int i;
990 
991 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
992 		struct iwm_tx_data *data = &ring->data[i];
993 
994 		if (data->m != NULL) {
995 			bus_dmamap_sync(ring->data_dmat, data->map,
996 			    BUS_DMASYNC_POSTWRITE);
997 			bus_dmamap_unload(ring->data_dmat, data->map);
998 			m_freem(data->m);
999 			data->m = NULL;
1000 		}
1001 	}
1002 	/* Clear TX descriptors. */
1003 	memset(ring->desc, 0, ring->desc_dma.size);
1004 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1005 	    BUS_DMASYNC_PREWRITE);
1006 	sc->qfullmsk &= ~(1 << ring->qid);
1007 	ring->queued = 0;
1008 	ring->cur = 0;
1009 }
1010 
1011 static void
1012 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1013 {
1014 	int i;
1015 
1016 	iwm_dma_contig_free(&ring->desc_dma);
1017 	iwm_dma_contig_free(&ring->cmd_dma);
1018 
1019 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1020 		struct iwm_tx_data *data = &ring->data[i];
1021 
1022 		if (data->m != NULL) {
1023 			bus_dmamap_sync(ring->data_dmat, data->map,
1024 			    BUS_DMASYNC_POSTWRITE);
1025 			bus_dmamap_unload(ring->data_dmat, data->map);
1026 			m_freem(data->m);
1027 			data->m = NULL;
1028 		}
1029 		if (data->map != NULL) {
1030 			bus_dmamap_destroy(ring->data_dmat, data->map);
1031 			data->map = NULL;
1032 		}
1033 	}
1034 	if (ring->data_dmat != NULL) {
1035 		bus_dma_tag_destroy(ring->data_dmat);
1036 		ring->data_dmat = NULL;
1037 	}
1038 }
1039 
1040 /*
1041  * High-level hardware frobbing routines
1042  */
1043 
1044 static void
1045 iwm_enable_interrupts(struct iwm_softc *sc)
1046 {
1047 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1048 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1049 }
1050 
1051 static void
1052 iwm_restore_interrupts(struct iwm_softc *sc)
1053 {
1054 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1055 }
1056 
1057 static void
1058 iwm_disable_interrupts(struct iwm_softc *sc)
1059 {
1060 	/* disable interrupts */
1061 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1062 
1063 	/* acknowledge all interrupts */
1064 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1065 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1066 }
1067 
1068 static void
1069 iwm_ict_reset(struct iwm_softc *sc)
1070 {
1071 	iwm_disable_interrupts(sc);
1072 
1073 	/* Reset ICT table. */
1074 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1075 	sc->ict_cur = 0;
1076 
1077 	/* Set physical address of ICT table (4KB aligned). */
1078 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1079 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1080 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1081 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1082 
1083 	/* Switch to ICT interrupt mode in driver. */
1084 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1085 
1086 	/* Re-enable interrupts. */
1087 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1088 	iwm_enable_interrupts(sc);
1089 }
1090 
1091 /* iwlwifi pcie/trans.c */
1092 
1093 /*
1094  * Since this .. hard-resets things, it's time to actually
1095  * mark the first vap (if any) as having no mac context.
1096  * It's annoying, but since the driver is potentially being
1097  * stop/start'ed whilst active (thanks openbsd port!) we
1098  * have to correctly track this.
1099  */
1100 static void
1101 iwm_stop_device(struct iwm_softc *sc)
1102 {
1103 	struct ieee80211com *ic = &sc->sc_ic;
1104 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1105 	int chnl, ntries;
1106 	int qid;
1107 
1108 	/* tell the device to stop sending interrupts */
1109 	iwm_disable_interrupts(sc);
1110 
1111 	/*
1112 	 * FreeBSD-local: mark the first vap as not-uploaded,
1113 	 * so the next transition through auth/assoc
1114 	 * will correctly populate the MAC context.
1115 	 */
1116 	if (vap) {
1117 		struct iwm_vap *iv = IWM_VAP(vap);
1118 		iv->is_uploaded = 0;
1119 	}
1120 
1121 	/* device going down, Stop using ICT table */
1122 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1123 
1124 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1125 
1126 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1127 
1128 	/* Stop all DMA channels. */
1129 	if (iwm_nic_lock(sc)) {
1130 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1131 			IWM_WRITE(sc,
1132 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1133 			for (ntries = 0; ntries < 200; ntries++) {
1134 				uint32_t r;
1135 
1136 				r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
1137 				if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
1138 				    chnl))
1139 					break;
1140 				DELAY(20);
1141 			}
1142 		}
1143 		iwm_nic_unlock(sc);
1144 	}
1145 
1146 	/* Stop RX ring. */
1147 	iwm_reset_rx_ring(sc, &sc->rxq);
1148 
1149 	/* Reset all TX rings. */
1150 	for (qid = 0; qid < nitems(sc->txq); qid++)
1151 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1152 
1153 	/*
1154 	 * Power-down device's busmaster DMA clocks
1155 	 */
1156 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1157 	DELAY(5);
1158 
1159 	/* Make sure (redundant) we've released our request to stay awake */
1160 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1161 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1162 
1163 	/* Stop the device, and put it in low power state */
1164 	iwm_apm_stop(sc);
1165 
1166 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1167 	 * Clean again the interrupt here
1168 	 */
1169 	iwm_disable_interrupts(sc);
1170 	/* stop and reset the on-board processor */
1171 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET);
1172 
1173 	/*
1174 	 * Even if we stop the HW, we still want the RF kill
1175 	 * interrupt
1176 	 */
1177 	iwm_enable_rfkill_int(sc);
1178 	iwm_check_rfkill(sc);
1179 }
1180 
1181 /* iwlwifi: mvm/ops.c */
1182 static void
1183 iwm_mvm_nic_config(struct iwm_softc *sc)
1184 {
1185 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1186 	uint32_t reg_val = 0;
1187 
1188 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1189 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1190 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1191 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1192 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1193 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1194 
1195 	/* SKU control */
1196 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1197 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1198 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1199 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1200 
1201 	/* radio configuration */
1202 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1203 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1204 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1205 
1206 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1207 
1208 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1209 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1210 	    radio_cfg_step, radio_cfg_dash);
1211 
1212 	/*
1213 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1214 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1215 	 * to lose ownership and not being able to obtain it back.
1216 	 */
1217 	iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1218 	    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1219 	    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1220 }
1221 
1222 static int
1223 iwm_nic_rx_init(struct iwm_softc *sc)
1224 {
1225 	if (!iwm_nic_lock(sc))
1226 		return EBUSY;
1227 
1228 	/*
1229 	 * Initialize RX ring.  This is from the iwn driver.
1230 	 */
1231 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1232 
1233 	/* stop DMA */
1234 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1235 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1236 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1237 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1238 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1239 
1240 	/* Set physical address of RX ring (256-byte aligned). */
1241 	IWM_WRITE(sc,
1242 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1243 
1244 	/* Set physical address of RX status (16-byte aligned). */
1245 	IWM_WRITE(sc,
1246 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1247 
1248 	/* Enable RX. */
1249 	/*
1250 	 * Note: Linux driver also sets this:
1251 	 *  (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1252 	 *
1253 	 * It causes weird behavior.  YMMV.
1254 	 */
1255 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1256 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1257 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1258 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1259 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1260 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1261 
1262 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1263 
1264 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1265 	if (sc->host_interrupt_operation_mode)
1266 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1267 
1268 	/*
1269 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1270 	 *
1271 	 * This value should initially be 0 (before preparing any
1272  	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1273 	 */
1274 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1275 
1276 	iwm_nic_unlock(sc);
1277 
1278 	return 0;
1279 }
1280 
1281 static int
1282 iwm_nic_tx_init(struct iwm_softc *sc)
1283 {
1284 	int qid;
1285 
1286 	if (!iwm_nic_lock(sc))
1287 		return EBUSY;
1288 
1289 	/* Deactivate TX scheduler. */
1290 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1291 
1292 	/* Set physical address of "keep warm" page (16-byte aligned). */
1293 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1294 
1295 	/* Initialize TX rings. */
1296 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1297 		struct iwm_tx_ring *txq = &sc->txq[qid];
1298 
1299 		/* Set physical address of TX ring (256-byte aligned). */
1300 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1301 		    txq->desc_dma.paddr >> 8);
1302 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1303 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1304 		    __func__,
1305 		    qid, txq->desc,
1306 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1307 	}
1308 	iwm_nic_unlock(sc);
1309 
1310 	return 0;
1311 }
1312 
1313 static int
1314 iwm_nic_init(struct iwm_softc *sc)
1315 {
1316 	int error;
1317 
1318 	iwm_apm_init(sc);
1319 	iwm_set_pwr(sc);
1320 
1321 	iwm_mvm_nic_config(sc);
1322 
1323 	if ((error = iwm_nic_rx_init(sc)) != 0)
1324 		return error;
1325 
1326 	/*
1327 	 * Ditto for TX, from iwn
1328 	 */
1329 	if ((error = iwm_nic_tx_init(sc)) != 0)
1330 		return error;
1331 
1332 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1333 	    "%s: shadow registers enabled\n", __func__);
1334 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1335 
1336 	return 0;
1337 }
1338 
1339 enum iwm_mvm_tx_fifo {
1340 	IWM_MVM_TX_FIFO_BK = 0,
1341 	IWM_MVM_TX_FIFO_BE,
1342 	IWM_MVM_TX_FIFO_VI,
1343 	IWM_MVM_TX_FIFO_VO,
1344 	IWM_MVM_TX_FIFO_MCAST = 5,
1345 };
1346 
1347 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1348 	IWM_MVM_TX_FIFO_VO,
1349 	IWM_MVM_TX_FIFO_VI,
1350 	IWM_MVM_TX_FIFO_BE,
1351 	IWM_MVM_TX_FIFO_BK,
1352 };
1353 
1354 static void
1355 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo)
1356 {
1357 	if (!iwm_nic_lock(sc)) {
1358 		device_printf(sc->sc_dev,
1359 		    "%s: cannot enable txq %d\n",
1360 		    __func__,
1361 		    qid);
1362 		return; /* XXX return EBUSY */
1363 	}
1364 
1365 	/* unactivate before configuration */
1366 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1367 	    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1368 	    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1369 
1370 	if (qid != IWM_MVM_CMD_QUEUE) {
1371 		iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid));
1372 	}
1373 
1374 	iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1375 
1376 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1377 	iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1378 
1379 	iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1380 	/* Set scheduler window size and frame limit. */
1381 	iwm_write_mem32(sc,
1382 	    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1383 	    sizeof(uint32_t),
1384 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1385 	    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1386 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1387 	    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1388 
1389 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1390 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1391 	    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1392 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1393 	    IWM_SCD_QUEUE_STTS_REG_MSK);
1394 
1395 	iwm_nic_unlock(sc);
1396 
1397 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1398 	    "%s: enabled txq %d FIFO %d\n",
1399 	    __func__, qid, fifo);
1400 }
1401 
1402 static int
1403 iwm_post_alive(struct iwm_softc *sc)
1404 {
1405 	int nwords;
1406 	int error, chnl;
1407 
1408 	if (!iwm_nic_lock(sc))
1409 		return EBUSY;
1410 
1411 	if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) {
1412 		device_printf(sc->sc_dev,
1413 		    "%s: sched addr mismatch",
1414 		    __func__);
1415 		error = EINVAL;
1416 		goto out;
1417 	}
1418 
1419 	iwm_ict_reset(sc);
1420 
1421 	/* Clear TX scheduler state in SRAM. */
1422 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1423 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1424 	    / sizeof(uint32_t);
1425 	error = iwm_write_mem(sc,
1426 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1427 	    NULL, nwords);
1428 	if (error)
1429 		goto out;
1430 
1431 	/* Set physical address of TX scheduler rings (1KB aligned). */
1432 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1433 
1434 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1435 
1436 	/* enable command channel */
1437 	iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7);
1438 
1439 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1440 
1441 	/* Enable DMA channels. */
1442 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1443 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1444 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1445 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1446 	}
1447 
1448 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1449 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1450 
1451 	/* Enable L1-Active */
1452 	iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1453 	    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1454 
1455  out:
1456  	iwm_nic_unlock(sc);
1457 	return error;
1458 }
1459 
1460 /*
1461  * NVM read access and content parsing.  We do not support
1462  * external NVM or writing NVM.
1463  * iwlwifi/mvm/nvm.c
1464  */
1465 
1466 /* list of NVM sections we are allowed/need to read */
1467 const int nvm_to_read[] = {
1468 	IWM_NVM_SECTION_TYPE_HW,
1469 	IWM_NVM_SECTION_TYPE_SW,
1470 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1471 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1472 };
1473 
1474 /* Default NVM size to read */
1475 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
1476 #define IWM_MAX_NVM_SECTION_SIZE 7000
1477 
1478 #define IWM_NVM_WRITE_OPCODE 1
1479 #define IWM_NVM_READ_OPCODE 0
1480 
1481 static int
1482 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1483 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1484 {
1485 	offset = 0;
1486 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1487 		.offset = htole16(offset),
1488 		.length = htole16(length),
1489 		.type = htole16(section),
1490 		.op_code = IWM_NVM_READ_OPCODE,
1491 	};
1492 	struct iwm_nvm_access_resp *nvm_resp;
1493 	struct iwm_rx_packet *pkt;
1494 	struct iwm_host_cmd cmd = {
1495 		.id = IWM_NVM_ACCESS_CMD,
1496 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1497 		    IWM_CMD_SEND_IN_RFKILL,
1498 		.data = { &nvm_access_cmd, },
1499 	};
1500 	int ret, bytes_read, offset_read;
1501 	uint8_t *resp_data;
1502 
1503 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1504 
1505 	ret = iwm_send_cmd(sc, &cmd);
1506 	if (ret)
1507 		return ret;
1508 
1509 	pkt = cmd.resp_pkt;
1510 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1511 		device_printf(sc->sc_dev,
1512 		    "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1513 		    __func__, pkt->hdr.flags);
1514 		ret = EIO;
1515 		goto exit;
1516 	}
1517 
1518 	/* Extract NVM response */
1519 	nvm_resp = (void *)pkt->data;
1520 
1521 	ret = le16toh(nvm_resp->status);
1522 	bytes_read = le16toh(nvm_resp->length);
1523 	offset_read = le16toh(nvm_resp->offset);
1524 	resp_data = nvm_resp->data;
1525 	if (ret) {
1526 		device_printf(sc->sc_dev,
1527 		    "%s: NVM access command failed with status %d\n",
1528 		    __func__, ret);
1529 		ret = EINVAL;
1530 		goto exit;
1531 	}
1532 
1533 	if (offset_read != offset) {
1534 		device_printf(sc->sc_dev,
1535 		    "%s: NVM ACCESS response with invalid offset %d\n",
1536 		    __func__, offset_read);
1537 		ret = EINVAL;
1538 		goto exit;
1539 	}
1540 
1541 	memcpy(data + offset, resp_data, bytes_read);
1542 	*len = bytes_read;
1543 
1544  exit:
1545 	iwm_free_resp(sc, &cmd);
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Reads an NVM section completely.
1551  * NICs prior to 7000 family doesn't have a real NVM, but just read
1552  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1553  * by uCode, we need to manually check in this case that we don't
1554  * overflow and try to read more than the EEPROM size.
1555  * For 7000 family NICs, we supply the maximal size we can read, and
1556  * the uCode fills the response with as much data as we can,
1557  * without overflowing, so no check is needed.
1558  */
1559 static int
1560 iwm_nvm_read_section(struct iwm_softc *sc,
1561 	uint16_t section, uint8_t *data, uint16_t *len)
1562 {
1563 	uint16_t length, seglen;
1564 	int error;
1565 
1566 	/* Set nvm section read length */
1567 	length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1568 	*len = 0;
1569 
1570 	/* Read the NVM until exhausted (reading less than requested) */
1571 	while (seglen == length) {
1572 		error = iwm_nvm_read_chunk(sc,
1573 		    section, *len, length, data, &seglen);
1574 		if (error) {
1575 			device_printf(sc->sc_dev,
1576 			    "Cannot read NVM from section "
1577 			    "%d offset %d, length %d\n",
1578 			    section, *len, length);
1579 			return error;
1580 		}
1581 		*len += seglen;
1582 	}
1583 
1584 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1585 	    "NVM section %d read completed\n", section);
1586 	return 0;
1587 }
1588 
1589 /*
1590  * BEGIN IWM_NVM_PARSE
1591  */
1592 
1593 /* iwlwifi/iwl-nvm-parse.c */
1594 
1595 /* NVM offsets (in words) definitions */
1596 enum wkp_nvm_offsets {
1597 	/* NVM HW-Section offset (in words) definitions */
1598 	IWM_HW_ADDR = 0x15,
1599 
1600 /* NVM SW-Section offset (in words) definitions */
1601 	IWM_NVM_SW_SECTION = 0x1C0,
1602 	IWM_NVM_VERSION = 0,
1603 	IWM_RADIO_CFG = 1,
1604 	IWM_SKU = 2,
1605 	IWM_N_HW_ADDRS = 3,
1606 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1607 
1608 /* NVM calibration section offset (in words) definitions */
1609 	IWM_NVM_CALIB_SECTION = 0x2B8,
1610 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1611 };
1612 
1613 /* SKU Capabilities (actual values from NVM definition) */
1614 enum nvm_sku_bits {
1615 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1616 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1617 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1618 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1619 };
1620 
1621 /* radio config bits (actual values from NVM definition) */
1622 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1623 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1624 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1625 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1626 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1627 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1628 
1629 #define DEFAULT_MAX_TX_POWER 16
1630 
1631 /**
1632  * enum iwm_nvm_channel_flags - channel flags in NVM
1633  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1634  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1635  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1636  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1637  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1638  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1639  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1640  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1641  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1642  */
1643 enum iwm_nvm_channel_flags {
1644 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1645 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1646 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1647 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1648 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1649 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1650 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1651 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1652 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1653 };
1654 
1655 /*
1656  * Add a channel to the net80211 channel list.
1657  *
1658  * ieee is the ieee channel number
1659  * ch_idx is channel index.
1660  * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G.
1661  * ch_flags is the iwm channel flags.
1662  *
1663  * Return 0 on OK, < 0 on error.
1664  */
1665 static int
1666 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx,
1667     int mode, uint16_t ch_flags)
1668 {
1669 	/* XXX for now, no overflow checking! */
1670 	struct ieee80211com *ic = &sc->sc_ic;
1671 	int is_5ghz, flags;
1672 	struct ieee80211_channel *channel;
1673 
1674 	channel = &ic->ic_channels[ic->ic_nchans++];
1675 	channel->ic_ieee = ieee;
1676 
1677 	is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
1678 	if (!is_5ghz) {
1679 		flags = IEEE80211_CHAN_2GHZ;
1680 		channel->ic_flags = mode;
1681 	} else {
1682 		flags = IEEE80211_CHAN_5GHZ;
1683 		channel->ic_flags = mode;
1684 	}
1685 	channel->ic_freq = ieee80211_ieee2mhz(ieee, flags);
1686 
1687 	if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
1688 		channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
1689 	return (0);
1690 }
1691 
1692 static void
1693 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags)
1694 {
1695 	struct ieee80211com *ic = &sc->sc_ic;
1696 	struct iwm_nvm_data *data = &sc->sc_nvm;
1697 	int ch_idx;
1698 	uint16_t ch_flags;
1699 	int hw_value;
1700 
1701 	for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) {
1702 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1703 
1704 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
1705 		    !data->sku_cap_band_52GHz_enable)
1706 			ch_flags &= ~IWM_NVM_CHANNEL_VALID;
1707 
1708 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1709 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1710 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1711 			    iwm_nvm_channels[ch_idx],
1712 			    ch_flags,
1713 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1714 			    "5.2" : "2.4");
1715 			continue;
1716 		}
1717 
1718 		hw_value = iwm_nvm_channels[ch_idx];
1719 
1720 		/* 5GHz? */
1721 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) {
1722 			(void) iwm_init_net80211_channel(sc, hw_value,
1723 			    ch_idx,
1724 			    IEEE80211_CHAN_A,
1725 			    ch_flags);
1726 		} else {
1727 			(void) iwm_init_net80211_channel(sc, hw_value,
1728 			    ch_idx,
1729 			    IEEE80211_CHAN_B,
1730 			    ch_flags);
1731 			/* If it's not channel 13, also add 11g */
1732 			if (hw_value != 13)
1733 				(void) iwm_init_net80211_channel(sc, hw_value,
1734 				    ch_idx,
1735 				    IEEE80211_CHAN_G,
1736 				    ch_flags);
1737 		}
1738 
1739 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1740 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1741 		    iwm_nvm_channels[ch_idx],
1742 		    ch_flags,
1743 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1744 		    "5.2" : "2.4");
1745 	}
1746 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1747 }
1748 
1749 static int
1750 iwm_parse_nvm_data(struct iwm_softc *sc,
1751 	const uint16_t *nvm_hw, const uint16_t *nvm_sw,
1752 	const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains)
1753 {
1754 	struct iwm_nvm_data *data = &sc->sc_nvm;
1755 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
1756 	uint16_t radio_cfg, sku;
1757 
1758 	data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
1759 
1760 	radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
1761 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1762 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
1763 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
1764 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
1765 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1766 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1767 
1768 	sku = le16_to_cpup(nvm_sw + IWM_SKU);
1769 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
1770 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
1771 	data->sku_cap_11n_enable = 0;
1772 
1773 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1774 		device_printf(sc->sc_dev,
1775 		    "%s: invalid antennas (0x%x, 0x%x)\n",
1776 		    __func__, data->valid_tx_ant,
1777 		    data->valid_rx_ant);
1778 		return EINVAL;
1779 	}
1780 
1781 	data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
1782 
1783 	data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB);
1784 	data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1);
1785 
1786 	/* The byte order is little endian 16 bit, meaning 214365 */
1787 	IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
1788 	data->hw_addr[0] = hw_addr[1];
1789 	data->hw_addr[1] = hw_addr[0];
1790 	data->hw_addr[2] = hw_addr[3];
1791 	data->hw_addr[3] = hw_addr[2];
1792 	data->hw_addr[4] = hw_addr[5];
1793 	data->hw_addr[5] = hw_addr[4];
1794 
1795 	iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]);
1796 	data->calib_version = 255;   /* TODO:
1797 					this value will prevent some checks from
1798 					failing, we need to check if this
1799 					field is still needed, and if it does,
1800 					where is it in the NVM */
1801 
1802 	return 0;
1803 }
1804 
1805 /*
1806  * END NVM PARSE
1807  */
1808 
1809 struct iwm_nvm_section {
1810 	uint16_t length;
1811 	const uint8_t *data;
1812 };
1813 
1814 static int
1815 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
1816 {
1817 	const uint16_t *hw, *sw, *calib;
1818 
1819 	/* Checking for required sections */
1820 	if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
1821 	    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
1822 		device_printf(sc->sc_dev,
1823 		    "%s: Can't parse empty NVM sections\n",
1824 		    __func__);
1825 		return ENOENT;
1826 	}
1827 
1828 	hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data;
1829 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
1830 	calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
1831 	return iwm_parse_nvm_data(sc, hw, sw, calib,
1832 	    IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc));
1833 }
1834 
1835 static int
1836 iwm_nvm_init(struct iwm_softc *sc)
1837 {
1838 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
1839 	int i, section, error;
1840 	uint16_t len;
1841 	uint8_t *nvm_buffer, *temp;
1842 
1843 	/* Read From FW NVM */
1844 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1845 	    "%s: Read NVM\n",
1846 	    __func__);
1847 
1848 	/* TODO: find correct NVM max size for a section */
1849 	nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT);
1850 	if (nvm_buffer == NULL)
1851 		return (ENOMEM);
1852 	for (i = 0; i < nitems(nvm_to_read); i++) {
1853 		section = nvm_to_read[i];
1854 		KASSERT(section <= nitems(nvm_sections),
1855 		    ("too many sections"));
1856 
1857 		error = iwm_nvm_read_section(sc, section, nvm_buffer, &len);
1858 		if (error)
1859 			break;
1860 
1861 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
1862 		if (temp == NULL) {
1863 			error = ENOMEM;
1864 			break;
1865 		}
1866 		memcpy(temp, nvm_buffer, len);
1867 		nvm_sections[section].data = temp;
1868 		nvm_sections[section].length = len;
1869 	}
1870 	free(nvm_buffer, M_DEVBUF);
1871 	if (error)
1872 		return error;
1873 
1874 	return iwm_parse_nvm_sections(sc, nvm_sections);
1875 }
1876 
1877 /*
1878  * Firmware loading gunk.  This is kind of a weird hybrid between the
1879  * iwn driver and the Linux iwlwifi driver.
1880  */
1881 
1882 static int
1883 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
1884 	const uint8_t *section, uint32_t byte_cnt)
1885 {
1886 	struct iwm_dma_info *dma = &sc->fw_dma;
1887 	int error;
1888 
1889 	/* Copy firmware section into pre-allocated DMA-safe memory. */
1890 	memcpy(dma->vaddr, section, byte_cnt);
1891 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1892 
1893 	if (!iwm_nic_lock(sc))
1894 		return EBUSY;
1895 
1896 	sc->sc_fw_chunk_done = 0;
1897 
1898 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1899 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
1900 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
1901 	    dst_addr);
1902 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
1903 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
1904 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
1905 	    (iwm_get_dma_hi_addr(dma->paddr)
1906 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
1907 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1908 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1909 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
1910 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
1911 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1912 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
1913 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
1914 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
1915 
1916 	iwm_nic_unlock(sc);
1917 
1918 	/* wait 1s for this segment to load */
1919 	while (!sc->sc_fw_chunk_done)
1920 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
1921 			break;
1922 
1923 	return error;
1924 }
1925 
1926 static int
1927 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1928 {
1929 	struct iwm_fw_sects *fws;
1930 	int error, i, w;
1931 	const void *data;
1932 	uint32_t dlen;
1933 	uint32_t offset;
1934 
1935 	sc->sc_uc.uc_intr = 0;
1936 
1937 	fws = &sc->sc_fw.fw_sects[ucode_type];
1938 	for (i = 0; i < fws->fw_count; i++) {
1939 		data = fws->fw_sect[i].fws_data;
1940 		dlen = fws->fw_sect[i].fws_len;
1941 		offset = fws->fw_sect[i].fws_devoff;
1942 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
1943 		    "LOAD FIRMWARE type %d offset %u len %d\n",
1944 		    ucode_type, offset, dlen);
1945 		error = iwm_firmware_load_chunk(sc, offset, data, dlen);
1946 		if (error) {
1947 			device_printf(sc->sc_dev,
1948 			    "%s: chunk %u of %u returned error %02d\n",
1949 			    __func__, i, fws->fw_count, error);
1950 			return error;
1951 		}
1952 	}
1953 
1954 	/* wait for the firmware to load */
1955 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
1956 
1957 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
1958 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
1959 	}
1960 
1961 	return error;
1962 }
1963 
1964 /* iwlwifi: pcie/trans.c */
1965 static int
1966 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1967 {
1968 	int error;
1969 
1970 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1971 
1972 	if ((error = iwm_nic_init(sc)) != 0) {
1973 		device_printf(sc->sc_dev, "unable to init nic\n");
1974 		return error;
1975 	}
1976 
1977 	/* make sure rfkill handshake bits are cleared */
1978 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1979 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
1980 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1981 
1982 	/* clear (again), then enable host interrupts */
1983 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1984 	iwm_enable_interrupts(sc);
1985 
1986 	/* really make sure rfkill handshake bits are cleared */
1987 	/* maybe we should write a few times more?  just to make sure */
1988 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1989 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1990 
1991 	/* Load the given image to the HW */
1992 	return iwm_load_firmware(sc, ucode_type);
1993 }
1994 
1995 static int
1996 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base)
1997 {
1998 	return iwm_post_alive(sc);
1999 }
2000 
2001 static int
2002 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2003 {
2004 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2005 		.valid = htole32(valid_tx_ant),
2006 	};
2007 
2008 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2009 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2010 }
2011 
2012 /* iwlwifi: mvm/fw.c */
2013 static int
2014 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2015 {
2016 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2017 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2018 
2019 	/* Set parameters */
2020 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2021 	phy_cfg_cmd.calib_control.event_trigger =
2022 	    sc->sc_default_calib[ucode_type].event_trigger;
2023 	phy_cfg_cmd.calib_control.flow_trigger =
2024 	    sc->sc_default_calib[ucode_type].flow_trigger;
2025 
2026 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2027 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2028 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2029 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2030 }
2031 
2032 static int
2033 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2034 	enum iwm_ucode_type ucode_type)
2035 {
2036 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2037 	int error;
2038 
2039 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0)
2040 		return error;
2041 
2042 	sc->sc_uc_current = ucode_type;
2043 	error = iwm_start_fw(sc, ucode_type);
2044 	if (error) {
2045 		sc->sc_uc_current = old_type;
2046 		return error;
2047 	}
2048 
2049 	return iwm_fw_alive(sc, sc->sched_base);
2050 }
2051 
2052 /*
2053  * mvm misc bits
2054  */
2055 
2056 /*
2057  * follows iwlwifi/fw.c
2058  */
2059 static int
2060 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2061 {
2062 	int error;
2063 
2064 	/* do not operate with rfkill switch turned on */
2065 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2066 		device_printf(sc->sc_dev,
2067 		    "radio is disabled by hardware switch\n");
2068 		return EPERM;
2069 	}
2070 
2071 	sc->sc_init_complete = 0;
2072 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2073 	    IWM_UCODE_TYPE_INIT)) != 0)
2074 		return error;
2075 
2076 	if (justnvm) {
2077 		if ((error = iwm_nvm_init(sc)) != 0) {
2078 			device_printf(sc->sc_dev, "failed to read nvm\n");
2079 			return error;
2080 		}
2081 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2082 
2083 		sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd)
2084 		    + sc->sc_capa_max_probe_len
2085 		    + IWM_MAX_NUM_SCAN_CHANNELS
2086 		    * sizeof(struct iwm_scan_channel);
2087 		sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF,
2088 		    M_NOWAIT);
2089 		if (sc->sc_scan_cmd == NULL)
2090 			return (ENOMEM);
2091 
2092 		return 0;
2093 	}
2094 
2095 	/* Send TX valid antennas before triggering calibrations */
2096 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
2097 		return error;
2098 
2099 	/*
2100 	* Send phy configurations command to init uCode
2101 	* to start the 16.0 uCode init image internal calibrations.
2102 	*/
2103 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2104 		device_printf(sc->sc_dev,
2105 		    "%s: failed to run internal calibration: %d\n",
2106 		    __func__, error);
2107 		return error;
2108 	}
2109 
2110 	/*
2111 	 * Nothing to do but wait for the init complete notification
2112 	 * from the firmware
2113 	 */
2114 	while (!sc->sc_init_complete)
2115 		if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2116 		    0, "iwminit", 2*hz)) != 0)
2117 			break;
2118 
2119 	return error;
2120 }
2121 
2122 /*
2123  * receive side
2124  */
2125 
2126 /* (re)stock rx ring, called at init-time and at runtime */
2127 static int
2128 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2129 {
2130 	struct iwm_rx_ring *ring = &sc->rxq;
2131 	struct iwm_rx_data *data = &ring->data[idx];
2132 	struct mbuf *m;
2133 	int error;
2134 	bus_addr_t paddr;
2135 
2136 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2137 	if (m == NULL)
2138 		return ENOBUFS;
2139 
2140 	if (data->m != NULL)
2141 		bus_dmamap_unload(ring->data_dmat, data->map);
2142 
2143 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2144 	error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2145 	if (error != 0) {
2146 		device_printf(sc->sc_dev,
2147 		    "%s: could not create RX buf DMA map, error %d\n",
2148 		    __func__, error);
2149 		goto fail;
2150 	}
2151 	data->m = m;
2152 	error = bus_dmamap_load(ring->data_dmat, data->map,
2153 	    mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr,
2154 	    &paddr, BUS_DMA_NOWAIT);
2155 	if (error != 0 && error != EFBIG) {
2156 		device_printf(sc->sc_dev,
2157 		    "%s: can't not map mbuf, error %d\n", __func__,
2158 		    error);
2159 		goto fail;
2160 	}
2161 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2162 
2163 	/* Update RX descriptor. */
2164 	ring->desc[idx] = htole32(paddr >> 8);
2165 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2166 	    BUS_DMASYNC_PREWRITE);
2167 
2168 	return 0;
2169 fail:
2170 	return error;
2171 }
2172 
2173 /* iwlwifi: mvm/rx.c */
2174 #define IWM_RSSI_OFFSET 50
2175 static int
2176 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2177 {
2178 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2179 	uint32_t agc_a, agc_b;
2180 	uint32_t val;
2181 
2182 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2183 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2184 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2185 
2186 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2187 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2188 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2189 
2190 	/*
2191 	 * dBm = rssi dB - agc dB - constant.
2192 	 * Higher AGC (higher radio gain) means lower signal.
2193 	 */
2194 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2195 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2196 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2197 
2198 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2199 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2200 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2201 
2202 	return max_rssi_dbm;
2203 }
2204 
2205 /* iwlwifi: mvm/rx.c */
2206 /*
2207  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2208  * values are reported by the fw as positive values - need to negate
2209  * to obtain their dBM.  Account for missing antennas by replacing 0
2210  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2211  */
2212 static int
2213 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2214 {
2215 	int energy_a, energy_b, energy_c, max_energy;
2216 	uint32_t val;
2217 
2218 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2219 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2220 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2221 	energy_a = energy_a ? -energy_a : -256;
2222 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2223 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2224 	energy_b = energy_b ? -energy_b : -256;
2225 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2226 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2227 	energy_c = energy_c ? -energy_c : -256;
2228 	max_energy = MAX(energy_a, energy_b);
2229 	max_energy = MAX(max_energy, energy_c);
2230 
2231 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2232 	    "energy In A %d B %d C %d , and max %d\n",
2233 	    energy_a, energy_b, energy_c, max_energy);
2234 
2235 	return max_energy;
2236 }
2237 
2238 static void
2239 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2240 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2241 {
2242 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2243 
2244 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2245 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2246 
2247 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2248 }
2249 
2250 /*
2251  * Retrieve the average noise (in dBm) among receivers.
2252  */
2253 static int
2254 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
2255 {
2256 	int i, total, nbant, noise;
2257 
2258 	total = nbant = noise = 0;
2259 	for (i = 0; i < 3; i++) {
2260 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2261 		if (noise) {
2262 			total += noise;
2263 			nbant++;
2264 		}
2265 	}
2266 
2267 	/* There should be at least one antenna but check anyway. */
2268 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2269 }
2270 
2271 /*
2272  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2273  *
2274  * Handles the actual data of the Rx packet from the fw
2275  */
2276 static void
2277 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2278 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2279 {
2280 	struct ieee80211com *ic = &sc->sc_ic;
2281 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2282 	struct ieee80211_frame *wh;
2283 	struct ieee80211_node *ni;
2284 	struct ieee80211_rx_stats rxs;
2285 	struct mbuf *m;
2286 	struct iwm_rx_phy_info *phy_info;
2287 	struct iwm_rx_mpdu_res_start *rx_res;
2288 	uint32_t len;
2289 	uint32_t rx_pkt_status;
2290 	int rssi;
2291 
2292 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2293 
2294 	phy_info = &sc->sc_last_phy_info;
2295 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2296 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2297 	len = le16toh(rx_res->byte_count);
2298 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2299 
2300 	m = data->m;
2301 	m->m_data = pkt->data + sizeof(*rx_res);
2302 	m->m_pkthdr.len = m->m_len = len;
2303 
2304 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2305 		device_printf(sc->sc_dev,
2306 		    "dsp size out of range [0,20]: %d\n",
2307 		    phy_info->cfg_phy_cnt);
2308 		return;
2309 	}
2310 
2311 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2312 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2313 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2314 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2315 		return; /* drop */
2316 	}
2317 
2318 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2319 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2320 	} else {
2321 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2322 	}
2323 	rssi = (0 - IWM_MIN_DBM) + rssi;	/* normalize */
2324 	rssi = MIN(rssi, sc->sc_max_rssi);	/* clip to max. 100% */
2325 
2326 	/* replenish ring for the buffer we're going to feed to the sharks */
2327 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2328 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2329 		    __func__);
2330 		return;
2331 	}
2332 
2333 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2334 
2335 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2336 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2337 	    __func__,
2338 	    le16toh(phy_info->channel),
2339 	    le16toh(phy_info->phy_flags));
2340 
2341 	/*
2342 	 * Populate an RX state struct with the provided information.
2343 	 */
2344 	bzero(&rxs, sizeof(rxs));
2345 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2346 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2347 	rxs.c_ieee = le16toh(phy_info->channel);
2348 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2349 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2350 	} else {
2351 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2352 	}
2353 	rxs.rssi = rssi - sc->sc_noise;
2354 	rxs.nf = sc->sc_noise;
2355 
2356 	if (ieee80211_radiotap_active_vap(vap)) {
2357 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2358 
2359 		tap->wr_flags = 0;
2360 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2361 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2362 		tap->wr_chan_freq = htole16(rxs.c_freq);
2363 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2364 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2365 		tap->wr_dbm_antsignal = (int8_t)rssi;
2366 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2367 		tap->wr_tsft = phy_info->system_timestamp;
2368 		switch (phy_info->rate) {
2369 		/* CCK rates. */
2370 		case  10: tap->wr_rate =   2; break;
2371 		case  20: tap->wr_rate =   4; break;
2372 		case  55: tap->wr_rate =  11; break;
2373 		case 110: tap->wr_rate =  22; break;
2374 		/* OFDM rates. */
2375 		case 0xd: tap->wr_rate =  12; break;
2376 		case 0xf: tap->wr_rate =  18; break;
2377 		case 0x5: tap->wr_rate =  24; break;
2378 		case 0x7: tap->wr_rate =  36; break;
2379 		case 0x9: tap->wr_rate =  48; break;
2380 		case 0xb: tap->wr_rate =  72; break;
2381 		case 0x1: tap->wr_rate =  96; break;
2382 		case 0x3: tap->wr_rate = 108; break;
2383 		/* Unknown rate: should not happen. */
2384 		default:  tap->wr_rate =   0;
2385 		}
2386 	}
2387 
2388 	IWM_UNLOCK(sc);
2389 	if (ni != NULL) {
2390 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
2391 		ieee80211_input_mimo(ni, m, &rxs);
2392 		ieee80211_free_node(ni);
2393 	} else {
2394 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
2395 		ieee80211_input_mimo_all(ic, m, &rxs);
2396 	}
2397 	IWM_LOCK(sc);
2398 }
2399 
2400 static int
2401 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
2402 	struct iwm_node *in)
2403 {
2404 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
2405 	struct ieee80211_node *ni = &in->in_ni;
2406 	struct ieee80211vap *vap = ni->ni_vap;
2407 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
2408 	int failack = tx_resp->failure_frame;
2409 
2410 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
2411 
2412 	/* Update rate control statistics. */
2413 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
2414 	    __func__,
2415 	    (int) le16toh(tx_resp->status.status),
2416 	    (int) le16toh(tx_resp->status.sequence),
2417 	    tx_resp->frame_count,
2418 	    tx_resp->bt_kill_count,
2419 	    tx_resp->failure_rts,
2420 	    tx_resp->failure_frame,
2421 	    le32toh(tx_resp->initial_rate),
2422 	    (int) le16toh(tx_resp->wireless_media_time));
2423 
2424 	if (status != IWM_TX_STATUS_SUCCESS &&
2425 	    status != IWM_TX_STATUS_DIRECT_DONE) {
2426 		ieee80211_ratectl_tx_complete(vap, ni,
2427 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
2428 		return (1);
2429 	} else {
2430 		ieee80211_ratectl_tx_complete(vap, ni,
2431 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
2432 		return (0);
2433 	}
2434 }
2435 
2436 static void
2437 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
2438 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2439 {
2440 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
2441 	int idx = cmd_hdr->idx;
2442 	int qid = cmd_hdr->qid;
2443 	struct iwm_tx_ring *ring = &sc->txq[qid];
2444 	struct iwm_tx_data *txd = &ring->data[idx];
2445 	struct iwm_node *in = txd->in;
2446 	struct mbuf *m = txd->m;
2447 	int status;
2448 
2449 	KASSERT(txd->done == 0, ("txd not done"));
2450 	KASSERT(txd->in != NULL, ("txd without node"));
2451 	KASSERT(txd->m != NULL, ("txd without mbuf"));
2452 
2453 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2454 
2455 	sc->sc_tx_timer = 0;
2456 
2457 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
2458 
2459 	/* Unmap and free mbuf. */
2460 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
2461 	bus_dmamap_unload(ring->data_dmat, txd->map);
2462 
2463 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2464 	    "free txd %p, in %p\n", txd, txd->in);
2465 	txd->done = 1;
2466 	txd->m = NULL;
2467 	txd->in = NULL;
2468 
2469 	ieee80211_tx_complete(&in->in_ni, m, status);
2470 
2471 	if (--ring->queued < IWM_TX_RING_LOMARK) {
2472 		sc->qfullmsk &= ~(1 << ring->qid);
2473 		if (sc->qfullmsk == 0) {
2474 			/*
2475 			 * Well, we're in interrupt context, but then again
2476 			 * I guess net80211 does all sorts of stunts in
2477 			 * interrupt context, so maybe this is no biggie.
2478 			 */
2479 			iwm_start(sc);
2480 		}
2481 	}
2482 }
2483 
2484 /*
2485  * transmit side
2486  */
2487 
2488 /*
2489  * Process a "command done" firmware notification.  This is where we wakeup
2490  * processes waiting for a synchronous command completion.
2491  * from if_iwn
2492  */
2493 static void
2494 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
2495 {
2496 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
2497 	struct iwm_tx_data *data;
2498 
2499 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
2500 		return;	/* Not a command ack. */
2501 	}
2502 
2503 	data = &ring->data[pkt->hdr.idx];
2504 
2505 	/* If the command was mapped in an mbuf, free it. */
2506 	if (data->m != NULL) {
2507 		bus_dmamap_sync(ring->data_dmat, data->map,
2508 		    BUS_DMASYNC_POSTWRITE);
2509 		bus_dmamap_unload(ring->data_dmat, data->map);
2510 		m_freem(data->m);
2511 		data->m = NULL;
2512 	}
2513 	wakeup(&ring->desc[pkt->hdr.idx]);
2514 }
2515 
2516 #if 0
2517 /*
2518  * necessary only for block ack mode
2519  */
2520 void
2521 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
2522 	uint16_t len)
2523 {
2524 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
2525 	uint16_t w_val;
2526 
2527 	scd_bc_tbl = sc->sched_dma.vaddr;
2528 
2529 	len += 8; /* magic numbers came naturally from paris */
2530 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
2531 		len = roundup(len, 4) / 4;
2532 
2533 	w_val = htole16(sta_id << 12 | len);
2534 
2535 	/* Update TX scheduler. */
2536 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
2537 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2538 	    BUS_DMASYNC_PREWRITE);
2539 
2540 	/* I really wonder what this is ?!? */
2541 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
2542 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
2543 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2544 		    BUS_DMASYNC_PREWRITE);
2545 	}
2546 }
2547 #endif
2548 
2549 /*
2550  * Take an 802.11 (non-n) rate, find the relevant rate
2551  * table entry.  return the index into in_ridx[].
2552  *
2553  * The caller then uses that index back into in_ridx
2554  * to figure out the rate index programmed /into/
2555  * the firmware for this given node.
2556  */
2557 static int
2558 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
2559     uint8_t rate)
2560 {
2561 	int i;
2562 	uint8_t r;
2563 
2564 	for (i = 0; i < nitems(in->in_ridx); i++) {
2565 		r = iwm_rates[in->in_ridx[i]].rate;
2566 		if (rate == r)
2567 			return (i);
2568 	}
2569 	/* XXX Return the first */
2570 	/* XXX TODO: have it return the /lowest/ */
2571 	return (0);
2572 }
2573 
2574 /*
2575  * Fill in various bit for management frames, and leave them
2576  * unfilled for data frames (firmware takes care of that).
2577  * Return the selected TX rate.
2578  */
2579 static const struct iwm_rate *
2580 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
2581 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
2582 {
2583 	struct ieee80211com *ic = &sc->sc_ic;
2584 	struct ieee80211_node *ni = &in->in_ni;
2585 	const struct iwm_rate *rinfo;
2586 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2587 	int ridx, rate_flags;
2588 
2589 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
2590 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
2591 
2592 	/*
2593 	 * XXX TODO: everything about the rate selection here is terrible!
2594 	 */
2595 
2596 	if (type == IEEE80211_FC0_TYPE_DATA) {
2597 		int i;
2598 		/* for data frames, use RS table */
2599 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2600 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
2601 		ridx = in->in_ridx[i];
2602 
2603 		/* This is the index into the programmed table */
2604 		tx->initial_rate_index = i;
2605 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
2606 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
2607 		    "%s: start with i=%d, txrate %d\n",
2608 		    __func__, i, iwm_rates[ridx].rate);
2609 		/* XXX no rate_n_flags? */
2610 		return &iwm_rates[ridx];
2611 	}
2612 
2613 	/*
2614 	 * For non-data, use the lowest supported rate for the given
2615 	 * operational mode.
2616 	 *
2617 	 * Note: there may not be any rate control information available.
2618 	 * This driver currently assumes if we're transmitting data
2619 	 * frames, use the rate control table.  Grr.
2620 	 *
2621 	 * XXX TODO: use the configured rate for the traffic type!
2622 	 */
2623 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2624 		/*
2625 		 * XXX this assumes the mode is either 11a or not 11a;
2626 		 * definitely won't work for 11n.
2627 		 */
2628 		ridx = IWM_RIDX_OFDM;
2629 	} else {
2630 		ridx = IWM_RIDX_CCK;
2631 	}
2632 
2633 	rinfo = &iwm_rates[ridx];
2634 
2635 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
2636 	    __func__, ridx,
2637 	    rinfo->rate,
2638 	    !! (IWM_RIDX_IS_CCK(ridx))
2639 	    );
2640 
2641 	/* XXX TODO: hard-coded TX antenna? */
2642 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
2643 	if (IWM_RIDX_IS_CCK(ridx))
2644 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
2645 	/* XXX hard-coded tx rate */
2646 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
2647 
2648 	return rinfo;
2649 }
2650 
2651 #define TB0_SIZE 16
2652 static int
2653 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2654 {
2655 	struct ieee80211com *ic = &sc->sc_ic;
2656 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2657 	struct iwm_node *in = IWM_NODE(ni);
2658 	struct iwm_tx_ring *ring;
2659 	struct iwm_tx_data *data;
2660 	struct iwm_tfd *desc;
2661 	struct iwm_device_cmd *cmd;
2662 	struct iwm_tx_cmd *tx;
2663 	struct ieee80211_frame *wh;
2664 	struct ieee80211_key *k = NULL;
2665 	struct mbuf *m1;
2666 	const struct iwm_rate *rinfo;
2667 	uint32_t flags;
2668 	u_int hdrlen;
2669 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
2670 	int nsegs;
2671 	uint8_t tid, type;
2672 	int i, totlen, error, pad;
2673 
2674 	wh = mtod(m, struct ieee80211_frame *);
2675 	hdrlen = ieee80211_anyhdrsize(wh);
2676 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2677 	tid = 0;
2678 	ring = &sc->txq[ac];
2679 	desc = &ring->desc[ring->cur];
2680 	memset(desc, 0, sizeof(*desc));
2681 	data = &ring->data[ring->cur];
2682 
2683 	/* Fill out iwm_tx_cmd to send to the firmware */
2684 	cmd = &ring->cmd[ring->cur];
2685 	cmd->hdr.code = IWM_TX_CMD;
2686 	cmd->hdr.flags = 0;
2687 	cmd->hdr.qid = ring->qid;
2688 	cmd->hdr.idx = ring->cur;
2689 
2690 	tx = (void *)cmd->data;
2691 	memset(tx, 0, sizeof(*tx));
2692 
2693 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
2694 
2695 	/* Encrypt the frame if need be. */
2696 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2697 		/* Retrieve key for TX && do software encryption. */
2698 		k = ieee80211_crypto_encap(ni, m);
2699 		if (k == NULL) {
2700 			m_freem(m);
2701 			return (ENOBUFS);
2702 		}
2703 		/* 802.11 header may have moved. */
2704 		wh = mtod(m, struct ieee80211_frame *);
2705 	}
2706 
2707 	if (ieee80211_radiotap_active_vap(vap)) {
2708 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
2709 
2710 		tap->wt_flags = 0;
2711 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2712 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2713 		tap->wt_rate = rinfo->rate;
2714 		if (k != NULL)
2715 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2716 		ieee80211_radiotap_tx(vap, m);
2717 	}
2718 
2719 
2720 	totlen = m->m_pkthdr.len;
2721 
2722 	flags = 0;
2723 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2724 		flags |= IWM_TX_CMD_FLG_ACK;
2725 	}
2726 
2727 	if (type != IEEE80211_FC0_TYPE_DATA
2728 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
2729 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2730 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
2731 	}
2732 
2733 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2734 	    type != IEEE80211_FC0_TYPE_DATA)
2735 		tx->sta_id = sc->sc_aux_sta.sta_id;
2736 	else
2737 		tx->sta_id = IWM_STATION_ID;
2738 
2739 	if (type == IEEE80211_FC0_TYPE_MGT) {
2740 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2741 
2742 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2743 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2744 			tx->pm_frame_timeout = htole16(3);
2745 		else
2746 			tx->pm_frame_timeout = htole16(2);
2747 	} else {
2748 		tx->pm_frame_timeout = htole16(0);
2749 	}
2750 
2751 	if (hdrlen & 3) {
2752 		/* First segment length must be a multiple of 4. */
2753 		flags |= IWM_TX_CMD_FLG_MH_PAD;
2754 		pad = 4 - (hdrlen & 3);
2755 	} else
2756 		pad = 0;
2757 
2758 	tx->driver_txop = 0;
2759 	tx->next_frame_len = 0;
2760 
2761 	tx->len = htole16(totlen);
2762 	tx->tid_tspec = tid;
2763 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
2764 
2765 	/* Set physical address of "scratch area". */
2766 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
2767 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
2768 
2769 	/* Copy 802.11 header in TX command. */
2770 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2771 
2772 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
2773 
2774 	tx->sec_ctl = 0;
2775 	tx->tx_flags |= htole32(flags);
2776 
2777 	/* Trim 802.11 header. */
2778 	m_adj(m, hdrlen);
2779 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2780 	    segs, &nsegs, BUS_DMA_NOWAIT);
2781 	if (error != 0) {
2782 		if (error != EFBIG) {
2783 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2784 			    error);
2785 			m_freem(m);
2786 			return error;
2787 		}
2788 		/* Too many DMA segments, linearize mbuf. */
2789 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
2790 		if (m1 == NULL) {
2791 			device_printf(sc->sc_dev,
2792 			    "%s: could not defrag mbuf\n", __func__);
2793 			m_freem(m);
2794 			return (ENOBUFS);
2795 		}
2796 		m = m1;
2797 
2798 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2799 		    segs, &nsegs, BUS_DMA_NOWAIT);
2800 		if (error != 0) {
2801 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2802 			    error);
2803 			m_freem(m);
2804 			return error;
2805 		}
2806 	}
2807 	data->m = m;
2808 	data->in = in;
2809 	data->done = 0;
2810 
2811 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2812 	    "sending txd %p, in %p\n", data, data->in);
2813 	KASSERT(data->in != NULL, ("node is NULL"));
2814 
2815 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2816 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%d\n",
2817 	    ring->qid, ring->cur, totlen, nsegs,
2818 	    le32toh(tx->tx_flags),
2819 	    le32toh(tx->rate_n_flags),
2820 	    (int) tx->initial_rate_index
2821 	    );
2822 
2823 	/* Fill TX descriptor. */
2824 	desc->num_tbs = 2 + nsegs;
2825 
2826 	desc->tbs[0].lo = htole32(data->cmd_paddr);
2827 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2828 	    (TB0_SIZE << 4);
2829 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
2830 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2831 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
2832 	      + hdrlen + pad - TB0_SIZE) << 4);
2833 
2834 	/* Other DMA segments are for data payload. */
2835 	for (i = 0; i < nsegs; i++) {
2836 		seg = &segs[i];
2837 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
2838 		desc->tbs[i+2].hi_n_len = \
2839 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
2840 		    | ((seg->ds_len) << 4);
2841 	}
2842 
2843 	bus_dmamap_sync(ring->data_dmat, data->map,
2844 	    BUS_DMASYNC_PREWRITE);
2845 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
2846 	    BUS_DMASYNC_PREWRITE);
2847 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2848 	    BUS_DMASYNC_PREWRITE);
2849 
2850 #if 0
2851 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
2852 #endif
2853 
2854 	/* Kick TX ring. */
2855 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
2856 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2857 
2858 	/* Mark TX ring as full if we reach a certain threshold. */
2859 	if (++ring->queued > IWM_TX_RING_HIMARK) {
2860 		sc->qfullmsk |= 1 << ring->qid;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static int
2867 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2868     const struct ieee80211_bpf_params *params)
2869 {
2870 	struct ieee80211com *ic = ni->ni_ic;
2871 	struct iwm_softc *sc = ic->ic_softc;
2872 	int error = 0;
2873 
2874 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2875 	    "->%s begin\n", __func__);
2876 
2877 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
2878 		m_freem(m);
2879 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2880 		    "<-%s not RUNNING\n", __func__);
2881 		return (ENETDOWN);
2882         }
2883 
2884 	IWM_LOCK(sc);
2885 	/* XXX fix this */
2886         if (params == NULL) {
2887 		error = iwm_tx(sc, m, ni, 0);
2888 	} else {
2889 		error = iwm_tx(sc, m, ni, 0);
2890 	}
2891 	sc->sc_tx_timer = 5;
2892 	IWM_UNLOCK(sc);
2893 
2894         return (error);
2895 }
2896 
2897 /*
2898  * mvm/tx.c
2899  */
2900 
2901 #if 0
2902 /*
2903  * Note that there are transports that buffer frames before they reach
2904  * the firmware. This means that after flush_tx_path is called, the
2905  * queue might not be empty. The race-free way to handle this is to:
2906  * 1) set the station as draining
2907  * 2) flush the Tx path
2908  * 3) wait for the transport queues to be empty
2909  */
2910 int
2911 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
2912 {
2913 	struct iwm_tx_path_flush_cmd flush_cmd = {
2914 		.queues_ctl = htole32(tfd_msk),
2915 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
2916 	};
2917 	int ret;
2918 
2919 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
2920 	    sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
2921 	    sizeof(flush_cmd), &flush_cmd);
2922 	if (ret)
2923                 device_printf(sc->sc_dev,
2924 		    "Flushing tx queue failed: %d\n", ret);
2925 	return ret;
2926 }
2927 #endif
2928 
2929 /*
2930  * BEGIN mvm/sta.c
2931  */
2932 
2933 static void
2934 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6,
2935 	struct iwm_mvm_add_sta_cmd_v5 *cmd_v5)
2936 {
2937 	memset(cmd_v5, 0, sizeof(*cmd_v5));
2938 
2939 	cmd_v5->add_modify = cmd_v6->add_modify;
2940 	cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx;
2941 	cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color;
2942 	IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr);
2943 	cmd_v5->sta_id = cmd_v6->sta_id;
2944 	cmd_v5->modify_mask = cmd_v6->modify_mask;
2945 	cmd_v5->station_flags = cmd_v6->station_flags;
2946 	cmd_v5->station_flags_msk = cmd_v6->station_flags_msk;
2947 	cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid;
2948 	cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid;
2949 	cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn;
2950 	cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count;
2951 	cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags;
2952 	cmd_v5->assoc_id = cmd_v6->assoc_id;
2953 	cmd_v5->beamform_flags = cmd_v6->beamform_flags;
2954 	cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk;
2955 }
2956 
2957 static int
2958 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
2959 	struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status)
2960 {
2961 	struct iwm_mvm_add_sta_cmd_v5 cmd_v5;
2962 
2963 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) {
2964 		return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA,
2965 		    sizeof(*cmd), cmd, status);
2966 	}
2967 
2968 	iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5);
2969 
2970 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5),
2971 	    &cmd_v5, status);
2972 }
2973 
2974 /* send station add/update command to firmware */
2975 static int
2976 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
2977 {
2978 	struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd;
2979 	int ret;
2980 	uint32_t status;
2981 
2982 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
2983 
2984 	add_sta_cmd.sta_id = IWM_STATION_ID;
2985 	add_sta_cmd.mac_id_n_color
2986 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
2987 	        IWM_DEFAULT_COLOR));
2988 	if (!update) {
2989 		add_sta_cmd.tfd_queue_msk = htole32(0xf);
2990 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
2991 	}
2992 	add_sta_cmd.add_modify = update ? 1 : 0;
2993 	add_sta_cmd.station_flags_msk
2994 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
2995 
2996 	status = IWM_ADD_STA_SUCCESS;
2997 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
2998 	if (ret)
2999 		return ret;
3000 
3001 	switch (status) {
3002 	case IWM_ADD_STA_SUCCESS:
3003 		break;
3004 	default:
3005 		ret = EIO;
3006 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3007 		break;
3008 	}
3009 
3010 	return ret;
3011 }
3012 
3013 static int
3014 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3015 {
3016 	int ret;
3017 
3018 	ret = iwm_mvm_sta_send_to_fw(sc, in, 0);
3019 	if (ret)
3020 		return ret;
3021 
3022 	return 0;
3023 }
3024 
3025 static int
3026 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3027 {
3028 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3029 }
3030 
3031 static int
3032 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3033 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3034 {
3035 	struct iwm_mvm_add_sta_cmd_v6 cmd;
3036 	int ret;
3037 	uint32_t status;
3038 
3039 	memset(&cmd, 0, sizeof(cmd));
3040 	cmd.sta_id = sta->sta_id;
3041 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3042 
3043 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3044 
3045 	if (addr)
3046 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3047 
3048 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3049 	if (ret)
3050 		return ret;
3051 
3052 	switch (status) {
3053 	case IWM_ADD_STA_SUCCESS:
3054 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3055 		    "%s: Internal station added.\n", __func__);
3056 		return 0;
3057 	default:
3058 		device_printf(sc->sc_dev,
3059 		    "%s: Add internal station failed, status=0x%x\n",
3060 		    __func__, status);
3061 		ret = EIO;
3062 		break;
3063 	}
3064 	return ret;
3065 }
3066 
3067 static int
3068 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3069 {
3070 	int ret;
3071 
3072 	sc->sc_aux_sta.sta_id = 3;
3073 	sc->sc_aux_sta.tfd_queue_msk = 0;
3074 
3075 	ret = iwm_mvm_add_int_sta_common(sc,
3076 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3077 
3078 	if (ret)
3079 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3080 	return ret;
3081 }
3082 
3083 /*
3084  * END mvm/sta.c
3085  */
3086 
3087 /*
3088  * BEGIN mvm/quota.c
3089  */
3090 
3091 static int
3092 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3093 {
3094 	struct iwm_time_quota_cmd cmd;
3095 	int i, idx, ret, num_active_macs, quota, quota_rem;
3096 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3097 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3098 	uint16_t id;
3099 
3100 	memset(&cmd, 0, sizeof(cmd));
3101 
3102 	/* currently, PHY ID == binding ID */
3103 	if (in) {
3104 		id = in->in_phyctxt->id;
3105 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3106 		colors[id] = in->in_phyctxt->color;
3107 
3108 		if (1)
3109 			n_ifs[id] = 1;
3110 	}
3111 
3112 	/*
3113 	 * The FW's scheduling session consists of
3114 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3115 	 * equally between all the bindings that require quota
3116 	 */
3117 	num_active_macs = 0;
3118 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3119 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3120 		num_active_macs += n_ifs[i];
3121 	}
3122 
3123 	quota = 0;
3124 	quota_rem = 0;
3125 	if (num_active_macs) {
3126 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3127 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3128 	}
3129 
3130 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3131 		if (colors[i] < 0)
3132 			continue;
3133 
3134 		cmd.quotas[idx].id_and_color =
3135 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3136 
3137 		if (n_ifs[i] <= 0) {
3138 			cmd.quotas[idx].quota = htole32(0);
3139 			cmd.quotas[idx].max_duration = htole32(0);
3140 		} else {
3141 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3142 			cmd.quotas[idx].max_duration = htole32(0);
3143 		}
3144 		idx++;
3145 	}
3146 
3147 	/* Give the remainder of the session to the first binding */
3148 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3149 
3150 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3151 	    sizeof(cmd), &cmd);
3152 	if (ret)
3153 		device_printf(sc->sc_dev,
3154 		    "%s: Failed to send quota: %d\n", __func__, ret);
3155 	return ret;
3156 }
3157 
3158 /*
3159  * END mvm/quota.c
3160  */
3161 
3162 /*
3163  * ieee80211 routines
3164  */
3165 
3166 /*
3167  * Change to AUTH state in 80211 state machine.  Roughly matches what
3168  * Linux does in bss_info_changed().
3169  */
3170 static int
3171 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3172 {
3173 	struct ieee80211_node *ni;
3174 	struct iwm_node *in;
3175 	struct iwm_vap *iv = IWM_VAP(vap);
3176 	uint32_t duration;
3177 	int error;
3178 
3179 	/*
3180 	 * XXX i have a feeling that the vap node is being
3181 	 * freed from underneath us. Grr.
3182 	 */
3183 	ni = ieee80211_ref_node(vap->iv_bss);
3184 	in = IWM_NODE(ni);
3185 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3186 	    "%s: called; vap=%p, bss ni=%p\n",
3187 	    __func__,
3188 	    vap,
3189 	    ni);
3190 
3191 	in->in_assoc = 0;
3192 
3193 	error = iwm_allow_mcast(vap, sc);
3194 	if (error) {
3195 		device_printf(sc->sc_dev,
3196 		    "%s: failed to set multicast\n", __func__);
3197 		goto out;
3198 	}
3199 
3200 	/*
3201 	 * This is where it deviates from what Linux does.
3202 	 *
3203 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3204 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3205 	 * and always does does a mac_ctx_changed().
3206 	 *
3207 	 * The openbsd port doesn't attempt to do that - it reset things
3208 	 * at odd states and does the add here.
3209 	 *
3210 	 * So, until the state handling is fixed (ie, we never reset
3211 	 * the NIC except for a firmware failure, which should drag
3212 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3213 	 * contexts that are required), let's do a dirty hack here.
3214 	 */
3215 	if (iv->is_uploaded) {
3216 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3217 			device_printf(sc->sc_dev,
3218 			    "%s: failed to update MAC\n", __func__);
3219 			goto out;
3220 		}
3221 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3222 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3223 			device_printf(sc->sc_dev,
3224 			    "%s: failed update phy ctxt\n", __func__);
3225 			goto out;
3226 		}
3227 		in->in_phyctxt = &sc->sc_phyctxt[0];
3228 
3229 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3230 			device_printf(sc->sc_dev,
3231 			    "%s: binding update cmd\n", __func__);
3232 			goto out;
3233 		}
3234 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3235 			device_printf(sc->sc_dev,
3236 			    "%s: failed to update sta\n", __func__);
3237 			goto out;
3238 		}
3239 	} else {
3240 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3241 			device_printf(sc->sc_dev,
3242 			    "%s: failed to add MAC\n", __func__);
3243 			goto out;
3244 		}
3245 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3246 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3247 			device_printf(sc->sc_dev,
3248 			    "%s: failed add phy ctxt!\n", __func__);
3249 			error = ETIMEDOUT;
3250 			goto out;
3251 		}
3252 		in->in_phyctxt = &sc->sc_phyctxt[0];
3253 
3254 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3255 			device_printf(sc->sc_dev,
3256 			    "%s: binding add cmd\n", __func__);
3257 			goto out;
3258 		}
3259 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3260 			device_printf(sc->sc_dev,
3261 			    "%s: failed to add sta\n", __func__);
3262 			goto out;
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * Prevent the FW from wandering off channel during association
3268 	 * by "protecting" the session with a time event.
3269 	 */
3270 	/* XXX duration is in units of TU, not MS */
3271 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3272 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3273 	DELAY(100);
3274 
3275 	error = 0;
3276 out:
3277 	ieee80211_free_node(ni);
3278 	return (error);
3279 }
3280 
3281 static int
3282 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3283 {
3284 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3285 	int error;
3286 
3287 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3288 		device_printf(sc->sc_dev,
3289 		    "%s: failed to update STA\n", __func__);
3290 		return error;
3291 	}
3292 
3293 	in->in_assoc = 1;
3294 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3295 		device_printf(sc->sc_dev,
3296 		    "%s: failed to update MAC\n", __func__);
3297 		return error;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 static int
3304 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3305 {
3306 	/*
3307 	 * Ok, so *technically* the proper set of calls for going
3308 	 * from RUN back to SCAN is:
3309 	 *
3310 	 * iwm_mvm_power_mac_disable(sc, in);
3311 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3312 	 * iwm_mvm_rm_sta(sc, in);
3313 	 * iwm_mvm_update_quotas(sc, NULL);
3314 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3315 	 * iwm_mvm_binding_remove_vif(sc, in);
3316 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3317 	 *
3318 	 * However, that freezes the device not matter which permutations
3319 	 * and modifications are attempted.  Obviously, this driver is missing
3320 	 * something since it works in the Linux driver, but figuring out what
3321 	 * is missing is a little more complicated.  Now, since we're going
3322 	 * back to nothing anyway, we'll just do a complete device reset.
3323 	 * Up your's, device!
3324 	 */
3325 	//iwm_mvm_flush_tx_path(sc, 0xf, 1);
3326 	iwm_stop_device(sc);
3327 	iwm_init_hw(sc);
3328 	if (in)
3329 		in->in_assoc = 0;
3330 	return 0;
3331 
3332 #if 0
3333 	int error;
3334 
3335 	iwm_mvm_power_mac_disable(sc, in);
3336 
3337 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3338 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3339 		return error;
3340 	}
3341 
3342 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3343 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3344 		return error;
3345 	}
3346 	error = iwm_mvm_rm_sta(sc, in);
3347 	in->in_assoc = 0;
3348 	iwm_mvm_update_quotas(sc, NULL);
3349 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3350 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3351 		return error;
3352 	}
3353 	iwm_mvm_binding_remove_vif(sc, in);
3354 
3355 	iwm_mvm_mac_ctxt_remove(sc, in);
3356 
3357 	return error;
3358 #endif
3359 }
3360 
3361 static struct ieee80211_node *
3362 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3363 {
3364 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3365 	    M_NOWAIT | M_ZERO);
3366 }
3367 
3368 static void
3369 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3370 {
3371 	struct ieee80211_node *ni = &in->in_ni;
3372 	struct iwm_lq_cmd *lq = &in->in_lq;
3373 	int nrates = ni->ni_rates.rs_nrates;
3374 	int i, ridx, tab = 0;
3375 	int txant = 0;
3376 
3377 	if (nrates > nitems(lq->rs_table)) {
3378 		device_printf(sc->sc_dev,
3379 		    "%s: node supports %d rates, driver handles "
3380 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3381 		return;
3382 	}
3383 	if (nrates == 0) {
3384 		device_printf(sc->sc_dev,
3385 		    "%s: node supports 0 rates, odd!\n", __func__);
3386 		return;
3387 	}
3388 
3389 	/*
3390 	 * XXX .. and most of iwm_node is not initialised explicitly;
3391 	 * it's all just 0x0 passed to the firmware.
3392 	 */
3393 
3394 	/* first figure out which rates we should support */
3395 	/* XXX TODO: this isn't 11n aware /at all/ */
3396 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3397 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3398 	    "%s: nrates=%d\n", __func__, nrates);
3399 
3400 	/*
3401 	 * Loop over nrates and populate in_ridx from the highest
3402 	 * rate to the lowest rate.  Remember, in_ridx[] has
3403 	 * IEEE80211_RATE_MAXSIZE entries!
3404 	 */
3405 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
3406 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
3407 
3408 		/* Map 802.11 rate to HW rate index. */
3409 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
3410 			if (iwm_rates[ridx].rate == rate)
3411 				break;
3412 		if (ridx > IWM_RIDX_MAX) {
3413 			device_printf(sc->sc_dev,
3414 			    "%s: WARNING: device rate for %d not found!\n",
3415 			    __func__, rate);
3416 		} else {
3417 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3418 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
3419 			    __func__,
3420 			    i,
3421 			    rate,
3422 			    ridx);
3423 			in->in_ridx[i] = ridx;
3424 		}
3425 	}
3426 
3427 	/* then construct a lq_cmd based on those */
3428 	memset(lq, 0, sizeof(*lq));
3429 	lq->sta_id = IWM_STATION_ID;
3430 
3431 	/*
3432 	 * are these used? (we don't do SISO or MIMO)
3433 	 * need to set them to non-zero, though, or we get an error.
3434 	 */
3435 	lq->single_stream_ant_msk = 1;
3436 	lq->dual_stream_ant_msk = 1;
3437 
3438 	/*
3439 	 * Build the actual rate selection table.
3440 	 * The lowest bits are the rates.  Additionally,
3441 	 * CCK needs bit 9 to be set.  The rest of the bits
3442 	 * we add to the table select the tx antenna
3443 	 * Note that we add the rates in the highest rate first
3444 	 * (opposite of ni_rates).
3445 	 */
3446 	/*
3447 	 * XXX TODO: this should be looping over the min of nrates
3448 	 * and LQ_MAX_RETRY_NUM.  Sigh.
3449 	 */
3450 	for (i = 0; i < nrates; i++) {
3451 		int nextant;
3452 
3453 		if (txant == 0)
3454 			txant = IWM_FW_VALID_TX_ANT(sc);
3455 		nextant = 1<<(ffs(txant)-1);
3456 		txant &= ~nextant;
3457 
3458 		/*
3459 		 * Map the rate id into a rate index into
3460 		 * our hardware table containing the
3461 		 * configuration to use for this rate.
3462 		 */
3463 		ridx = in->in_ridx[i];
3464 		tab = iwm_rates[ridx].plcp;
3465 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
3466 		if (IWM_RIDX_IS_CCK(ridx))
3467 			tab |= IWM_RATE_MCS_CCK_MSK;
3468 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3469 		    "station rate i=%d, rate=%d, hw=%x\n",
3470 		    i, iwm_rates[ridx].rate, tab);
3471 		lq->rs_table[i] = htole32(tab);
3472 	}
3473 	/* then fill the rest with the lowest possible rate */
3474 	for (i = nrates; i < nitems(lq->rs_table); i++) {
3475 		KASSERT(tab != 0, ("invalid tab"));
3476 		lq->rs_table[i] = htole32(tab);
3477 	}
3478 }
3479 
3480 static int
3481 iwm_media_change(struct ifnet *ifp)
3482 {
3483 	struct ieee80211vap *vap = ifp->if_softc;
3484 	struct ieee80211com *ic = vap->iv_ic;
3485 	struct iwm_softc *sc = ic->ic_softc;
3486 	int error;
3487 
3488 	error = ieee80211_media_change(ifp);
3489 	if (error != ENETRESET)
3490 		return error;
3491 
3492 	IWM_LOCK(sc);
3493 	if (ic->ic_nrunning > 0) {
3494 		iwm_stop(sc);
3495 		iwm_init(sc);
3496 	}
3497 	IWM_UNLOCK(sc);
3498 	return error;
3499 }
3500 
3501 
3502 static int
3503 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
3504 {
3505 	struct iwm_vap *ivp = IWM_VAP(vap);
3506 	struct ieee80211com *ic = vap->iv_ic;
3507 	struct iwm_softc *sc = ic->ic_softc;
3508 	struct iwm_node *in;
3509 	int error;
3510 
3511 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3512 	    "switching state %s -> %s\n",
3513 	    ieee80211_state_name[vap->iv_state],
3514 	    ieee80211_state_name[nstate]);
3515 	IEEE80211_UNLOCK(ic);
3516 	IWM_LOCK(sc);
3517 	/* disable beacon filtering if we're hopping out of RUN */
3518 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
3519 		iwm_mvm_disable_beacon_filter(sc);
3520 
3521 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
3522 			in->in_assoc = 0;
3523 
3524 		iwm_release(sc, NULL);
3525 
3526 		/*
3527 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
3528 		 * above then the card will be completely reinitialized,
3529 		 * so the driver must do everything necessary to bring the card
3530 		 * from INIT to SCAN.
3531 		 *
3532 		 * Additionally, upon receiving deauth frame from AP,
3533 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
3534 		 * state. This will also fail with this driver, so bring the FSM
3535 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
3536 		 *
3537 		 * XXX TODO: fix this for FreeBSD!
3538 		 */
3539 		if (nstate == IEEE80211_S_SCAN ||
3540 		    nstate == IEEE80211_S_AUTH ||
3541 		    nstate == IEEE80211_S_ASSOC) {
3542 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3543 			    "Force transition to INIT; MGT=%d\n", arg);
3544 			IWM_UNLOCK(sc);
3545 			IEEE80211_LOCK(ic);
3546 			vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
3547 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3548 			    "Going INIT->SCAN\n");
3549 			nstate = IEEE80211_S_SCAN;
3550 			IEEE80211_UNLOCK(ic);
3551 			IWM_LOCK(sc);
3552 		}
3553 	}
3554 
3555 	switch (nstate) {
3556 	case IEEE80211_S_INIT:
3557 		sc->sc_scanband = 0;
3558 		break;
3559 
3560 	case IEEE80211_S_AUTH:
3561 		if ((error = iwm_auth(vap, sc)) != 0) {
3562 			device_printf(sc->sc_dev,
3563 			    "%s: could not move to auth state: %d\n",
3564 			    __func__, error);
3565 			break;
3566 		}
3567 		break;
3568 
3569 	case IEEE80211_S_ASSOC:
3570 		if ((error = iwm_assoc(vap, sc)) != 0) {
3571 			device_printf(sc->sc_dev,
3572 			    "%s: failed to associate: %d\n", __func__,
3573 			    error);
3574 			break;
3575 		}
3576 		break;
3577 
3578 	case IEEE80211_S_RUN:
3579 	{
3580 		struct iwm_host_cmd cmd = {
3581 			.id = IWM_LQ_CMD,
3582 			.len = { sizeof(in->in_lq), },
3583 			.flags = IWM_CMD_SYNC,
3584 		};
3585 
3586 		/* Update the association state, now we have it all */
3587 		/* (eg associd comes in at this point */
3588 		error = iwm_assoc(vap, sc);
3589 		if (error != 0) {
3590 			device_printf(sc->sc_dev,
3591 			    "%s: failed to update association state: %d\n",
3592 			    __func__,
3593 			    error);
3594 			break;
3595 		}
3596 
3597 		in = IWM_NODE(vap->iv_bss);
3598 		iwm_mvm_power_mac_update_mode(sc, in);
3599 		iwm_mvm_enable_beacon_filter(sc, in);
3600 		iwm_mvm_update_quotas(sc, in);
3601 		iwm_setrates(sc, in);
3602 
3603 		cmd.data[0] = &in->in_lq;
3604 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
3605 			device_printf(sc->sc_dev,
3606 			    "%s: IWM_LQ_CMD failed\n", __func__);
3607 		}
3608 
3609 		break;
3610 	}
3611 
3612 	default:
3613 		break;
3614 	}
3615 	IWM_UNLOCK(sc);
3616 	IEEE80211_LOCK(ic);
3617 
3618 	return (ivp->iv_newstate(vap, nstate, arg));
3619 }
3620 
3621 void
3622 iwm_endscan_cb(void *arg, int pending)
3623 {
3624 	struct iwm_softc *sc = arg;
3625 	struct ieee80211com *ic = &sc->sc_ic;
3626 	int done;
3627 	int error;
3628 
3629 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
3630 	    "%s: scan ended\n",
3631 	    __func__);
3632 
3633 	IWM_LOCK(sc);
3634 	if (sc->sc_scanband == IEEE80211_CHAN_2GHZ &&
3635 	    sc->sc_nvm.sku_cap_band_52GHz_enable) {
3636 		done = 0;
3637 		if ((error = iwm_mvm_scan_request(sc,
3638 		    IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) {
3639 			device_printf(sc->sc_dev, "could not initiate scan\n");
3640 			done = 1;
3641 		}
3642 	} else {
3643 		done = 1;
3644 	}
3645 
3646 	if (done) {
3647 		IWM_UNLOCK(sc);
3648 		ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
3649 		IWM_LOCK(sc);
3650 		sc->sc_scanband = 0;
3651 	}
3652 	IWM_UNLOCK(sc);
3653 }
3654 
3655 static int
3656 iwm_init_hw(struct iwm_softc *sc)
3657 {
3658 	struct ieee80211com *ic = &sc->sc_ic;
3659 	int error, i, qid;
3660 
3661 	if ((error = iwm_start_hw(sc)) != 0)
3662 		return error;
3663 
3664 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
3665 		return error;
3666 	}
3667 
3668 	/*
3669 	 * should stop and start HW since that INIT
3670 	 * image just loaded
3671 	 */
3672 	iwm_stop_device(sc);
3673 	if ((error = iwm_start_hw(sc)) != 0) {
3674 		device_printf(sc->sc_dev, "could not initialize hardware\n");
3675 		return error;
3676 	}
3677 
3678 	/* omstart, this time with the regular firmware */
3679 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
3680 	if (error) {
3681 		device_printf(sc->sc_dev, "could not load firmware\n");
3682 		goto error;
3683 	}
3684 
3685 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
3686 		goto error;
3687 
3688 	/* Send phy db control command and then phy db calibration*/
3689 	if ((error = iwm_send_phy_db_data(sc)) != 0)
3690 		goto error;
3691 
3692 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0)
3693 		goto error;
3694 
3695 	/* Add auxiliary station for scanning */
3696 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0)
3697 		goto error;
3698 
3699 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
3700 		/*
3701 		 * The channel used here isn't relevant as it's
3702 		 * going to be overwritten in the other flows.
3703 		 * For now use the first channel we have.
3704 		 */
3705 		if ((error = iwm_mvm_phy_ctxt_add(sc,
3706 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
3707 			goto error;
3708 	}
3709 
3710 	error = iwm_mvm_power_update_device(sc);
3711 	if (error)
3712 		goto error;
3713 
3714 	/* Mark TX rings as active. */
3715 	for (qid = 0; qid < 4; qid++) {
3716 		iwm_enable_txq(sc, qid, qid);
3717 	}
3718 
3719 	return 0;
3720 
3721  error:
3722 	iwm_stop_device(sc);
3723 	return error;
3724 }
3725 
3726 /* Allow multicast from our BSSID. */
3727 static int
3728 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
3729 {
3730 	struct ieee80211_node *ni = vap->iv_bss;
3731 	struct iwm_mcast_filter_cmd *cmd;
3732 	size_t size;
3733 	int error;
3734 
3735 	size = roundup(sizeof(*cmd), 4);
3736 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
3737 	if (cmd == NULL)
3738 		return ENOMEM;
3739 	cmd->filter_own = 1;
3740 	cmd->port_id = 0;
3741 	cmd->count = 0;
3742 	cmd->pass_all = 1;
3743 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
3744 
3745 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
3746 	    IWM_CMD_SYNC, size, cmd);
3747 	free(cmd, M_DEVBUF);
3748 
3749 	return (error);
3750 }
3751 
3752 static void
3753 iwm_init(struct iwm_softc *sc)
3754 {
3755 	int error;
3756 
3757 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
3758 		return;
3759 	}
3760 	sc->sc_generation++;
3761 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
3762 
3763 	if ((error = iwm_init_hw(sc)) != 0) {
3764 		iwm_stop(sc);
3765 		return;
3766 	}
3767 
3768 	/*
3769  	 * Ok, firmware loaded and we are jogging
3770 	 */
3771 	sc->sc_flags |= IWM_FLAG_HW_INITED;
3772 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3773 }
3774 
3775 static int
3776 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
3777 {
3778 	struct iwm_softc *sc;
3779 	int error;
3780 
3781 	sc = ic->ic_softc;
3782 
3783 	IWM_LOCK(sc);
3784 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3785 		IWM_UNLOCK(sc);
3786 		return (ENXIO);
3787 	}
3788 	error = mbufq_enqueue(&sc->sc_snd, m);
3789 	if (error) {
3790 		IWM_UNLOCK(sc);
3791 		return (error);
3792 	}
3793 	iwm_start(sc);
3794 	IWM_UNLOCK(sc);
3795 	return (0);
3796 }
3797 
3798 /*
3799  * Dequeue packets from sendq and call send.
3800  */
3801 static void
3802 iwm_start(struct iwm_softc *sc)
3803 {
3804 	struct ieee80211_node *ni;
3805 	struct mbuf *m;
3806 	int ac = 0;
3807 
3808 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
3809 	while (sc->qfullmsk == 0 &&
3810 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
3811 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3812 		if (iwm_tx(sc, m, ni, ac) != 0) {
3813 			if_inc_counter(ni->ni_vap->iv_ifp,
3814 			    IFCOUNTER_OERRORS, 1);
3815 			ieee80211_free_node(ni);
3816 			continue;
3817 		}
3818 		sc->sc_tx_timer = 15;
3819 	}
3820 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
3821 }
3822 
3823 static void
3824 iwm_stop(struct iwm_softc *sc)
3825 {
3826 
3827 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
3828 	sc->sc_flags |= IWM_FLAG_STOPPED;
3829 	sc->sc_generation++;
3830 	sc->sc_scanband = 0;
3831 	sc->sc_auth_prot = 0;
3832 	sc->sc_tx_timer = 0;
3833 	iwm_stop_device(sc);
3834 }
3835 
3836 static void
3837 iwm_watchdog(void *arg)
3838 {
3839 	struct iwm_softc *sc = arg;
3840 
3841 	if (sc->sc_tx_timer > 0) {
3842 		if (--sc->sc_tx_timer == 0) {
3843 			device_printf(sc->sc_dev, "device timeout\n");
3844 #ifdef IWM_DEBUG
3845 			iwm_nic_error(sc);
3846 #endif
3847 			iwm_stop(sc);
3848 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
3849 			return;
3850 		}
3851 	}
3852 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3853 }
3854 
3855 static void
3856 iwm_parent(struct ieee80211com *ic)
3857 {
3858 	struct iwm_softc *sc = ic->ic_softc;
3859 	int startall = 0;
3860 
3861 	IWM_LOCK(sc);
3862 	if (ic->ic_nrunning > 0) {
3863 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
3864 			iwm_init(sc);
3865 			startall = 1;
3866 		}
3867 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
3868 		iwm_stop(sc);
3869 	IWM_UNLOCK(sc);
3870 	if (startall)
3871 		ieee80211_start_all(ic);
3872 }
3873 
3874 /*
3875  * The interrupt side of things
3876  */
3877 
3878 /*
3879  * error dumping routines are from iwlwifi/mvm/utils.c
3880  */
3881 
3882 /*
3883  * Note: This structure is read from the device with IO accesses,
3884  * and the reading already does the endian conversion. As it is
3885  * read with uint32_t-sized accesses, any members with a different size
3886  * need to be ordered correctly though!
3887  */
3888 struct iwm_error_event_table {
3889 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
3890 	uint32_t error_id;		/* type of error */
3891 	uint32_t pc;			/* program counter */
3892 	uint32_t blink1;		/* branch link */
3893 	uint32_t blink2;		/* branch link */
3894 	uint32_t ilink1;		/* interrupt link */
3895 	uint32_t ilink2;		/* interrupt link */
3896 	uint32_t data1;		/* error-specific data */
3897 	uint32_t data2;		/* error-specific data */
3898 	uint32_t data3;		/* error-specific data */
3899 	uint32_t bcon_time;		/* beacon timer */
3900 	uint32_t tsf_low;		/* network timestamp function timer */
3901 	uint32_t tsf_hi;		/* network timestamp function timer */
3902 	uint32_t gp1;		/* GP1 timer register */
3903 	uint32_t gp2;		/* GP2 timer register */
3904 	uint32_t gp3;		/* GP3 timer register */
3905 	uint32_t ucode_ver;		/* uCode version */
3906 	uint32_t hw_ver;		/* HW Silicon version */
3907 	uint32_t brd_ver;		/* HW board version */
3908 	uint32_t log_pc;		/* log program counter */
3909 	uint32_t frame_ptr;		/* frame pointer */
3910 	uint32_t stack_ptr;		/* stack pointer */
3911 	uint32_t hcmd;		/* last host command header */
3912 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
3913 				 * rxtx_flag */
3914 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
3915 				 * host_flag */
3916 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
3917 				 * enc_flag */
3918 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
3919 				 * time_flag */
3920 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
3921 				 * wico interrupt */
3922 	uint32_t isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
3923 	uint32_t wait_event;		/* wait event() caller address */
3924 	uint32_t l2p_control;	/* L2pControlField */
3925 	uint32_t l2p_duration;	/* L2pDurationField */
3926 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
3927 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
3928 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
3929 				 * (LMPM_PMG_SEL) */
3930 	uint32_t u_timestamp;	/* indicate when the date and time of the
3931 				 * compilation */
3932 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
3933 } __packed;
3934 
3935 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
3936 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
3937 
3938 #ifdef IWM_DEBUG
3939 struct {
3940 	const char *name;
3941 	uint8_t num;
3942 } advanced_lookup[] = {
3943 	{ "NMI_INTERRUPT_WDG", 0x34 },
3944 	{ "SYSASSERT", 0x35 },
3945 	{ "UCODE_VERSION_MISMATCH", 0x37 },
3946 	{ "BAD_COMMAND", 0x38 },
3947 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
3948 	{ "FATAL_ERROR", 0x3D },
3949 	{ "NMI_TRM_HW_ERR", 0x46 },
3950 	{ "NMI_INTERRUPT_TRM", 0x4C },
3951 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
3952 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
3953 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
3954 	{ "NMI_INTERRUPT_HOST", 0x66 },
3955 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
3956 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
3957 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
3958 	{ "ADVANCED_SYSASSERT", 0 },
3959 };
3960 
3961 static const char *
3962 iwm_desc_lookup(uint32_t num)
3963 {
3964 	int i;
3965 
3966 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
3967 		if (advanced_lookup[i].num == num)
3968 			return advanced_lookup[i].name;
3969 
3970 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
3971 	return advanced_lookup[i].name;
3972 }
3973 
3974 /*
3975  * Support for dumping the error log seemed like a good idea ...
3976  * but it's mostly hex junk and the only sensible thing is the
3977  * hw/ucode revision (which we know anyway).  Since it's here,
3978  * I'll just leave it in, just in case e.g. the Intel guys want to
3979  * help us decipher some "ADVANCED_SYSASSERT" later.
3980  */
3981 static void
3982 iwm_nic_error(struct iwm_softc *sc)
3983 {
3984 	struct iwm_error_event_table table;
3985 	uint32_t base;
3986 
3987 	device_printf(sc->sc_dev, "dumping device error log\n");
3988 	base = sc->sc_uc.uc_error_event_table;
3989 	if (base < 0x800000 || base >= 0x80C000) {
3990 		device_printf(sc->sc_dev,
3991 		    "Not valid error log pointer 0x%08x\n", base);
3992 		return;
3993 	}
3994 
3995 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) {
3996 		device_printf(sc->sc_dev, "reading errlog failed\n");
3997 		return;
3998 	}
3999 
4000 	if (!table.valid) {
4001 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
4002 		return;
4003 	}
4004 
4005 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4006 		device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n");
4007 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4008 		    sc->sc_flags, table.valid);
4009 	}
4010 
4011 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4012 		iwm_desc_lookup(table.error_id));
4013 	device_printf(sc->sc_dev, "%08X | uPc\n", table.pc);
4014 	device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1);
4015 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4016 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4017 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4018 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4019 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4020 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4021 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4022 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4023 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4024 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4025 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4026 	device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3);
4027 	device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver);
4028 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4029 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4030 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4031 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4032 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4033 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4034 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4035 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4036 	device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref);
4037 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4038 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4039 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4040 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4041 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4042 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4043 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4044 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4045 }
4046 #endif
4047 
4048 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
4049 do {									\
4050 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4051 	_var_ = (void *)((_pkt_)+1);					\
4052 } while (/*CONSTCOND*/0)
4053 
4054 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
4055 do {									\
4056 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4057 	_ptr_ = (void *)((_pkt_)+1);					\
4058 } while (/*CONSTCOND*/0)
4059 
4060 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
4061 
4062 /*
4063  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
4064  * Basic structure from if_iwn
4065  */
4066 static void
4067 iwm_notif_intr(struct iwm_softc *sc)
4068 {
4069 	uint16_t hw;
4070 
4071 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4072 	    BUS_DMASYNC_POSTREAD);
4073 
4074 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
4075 	while (sc->rxq.cur != hw) {
4076 		struct iwm_rx_ring *ring = &sc->rxq;
4077 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4078 		struct iwm_rx_packet *pkt;
4079 		struct iwm_cmd_response *cresp;
4080 		int qid, idx;
4081 
4082 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4083 		    BUS_DMASYNC_POSTREAD);
4084 		pkt = mtod(data->m, struct iwm_rx_packet *);
4085 
4086 		qid = pkt->hdr.qid & ~0x80;
4087 		idx = pkt->hdr.idx;
4088 
4089 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4090 		    "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n",
4091 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags,
4092 		    pkt->hdr.code, sc->rxq.cur, hw);
4093 
4094 		/*
4095 		 * randomly get these from the firmware, no idea why.
4096 		 * they at least seem harmless, so just ignore them for now
4097 		 */
4098 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
4099 		    || pkt->len_n_flags == htole32(0x55550000))) {
4100 			ADVANCE_RXQ(sc);
4101 			continue;
4102 		}
4103 
4104 		switch (pkt->hdr.code) {
4105 		case IWM_REPLY_RX_PHY_CMD:
4106 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
4107 			break;
4108 
4109 		case IWM_REPLY_RX_MPDU_CMD:
4110 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
4111 			break;
4112 
4113 		case IWM_TX_CMD:
4114 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
4115 			break;
4116 
4117 		case IWM_MISSED_BEACONS_NOTIFICATION: {
4118 			struct iwm_missed_beacons_notif *resp;
4119 			int missed;
4120 
4121 			/* XXX look at mac_id to determine interface ID */
4122 			struct ieee80211com *ic = &sc->sc_ic;
4123 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4124 
4125 			SYNC_RESP_STRUCT(resp, pkt);
4126 			missed = le32toh(resp->consec_missed_beacons);
4127 
4128 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
4129 			    "%s: MISSED_BEACON: mac_id=%d, "
4130 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
4131 			    "num_rx=%d\n",
4132 			    __func__,
4133 			    le32toh(resp->mac_id),
4134 			    le32toh(resp->consec_missed_beacons_since_last_rx),
4135 			    le32toh(resp->consec_missed_beacons),
4136 			    le32toh(resp->num_expected_beacons),
4137 			    le32toh(resp->num_recvd_beacons));
4138 
4139 			/* Be paranoid */
4140 			if (vap == NULL)
4141 				break;
4142 
4143 			/* XXX no net80211 locking? */
4144 			if (vap->iv_state == IEEE80211_S_RUN &&
4145 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4146 				if (missed > vap->iv_bmissthreshold) {
4147 					/* XXX bad locking; turn into task */
4148 					IWM_UNLOCK(sc);
4149 					ieee80211_beacon_miss(ic);
4150 					IWM_LOCK(sc);
4151 				}
4152 			}
4153 
4154 			break; }
4155 
4156 		case IWM_MVM_ALIVE: {
4157 			struct iwm_mvm_alive_resp *resp;
4158 			SYNC_RESP_STRUCT(resp, pkt);
4159 
4160 			sc->sc_uc.uc_error_event_table
4161 			    = le32toh(resp->error_event_table_ptr);
4162 			sc->sc_uc.uc_log_event_table
4163 			    = le32toh(resp->log_event_table_ptr);
4164 			sc->sched_base = le32toh(resp->scd_base_ptr);
4165 			sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK;
4166 
4167 			sc->sc_uc.uc_intr = 1;
4168 			wakeup(&sc->sc_uc);
4169 			break; }
4170 
4171 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
4172 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
4173 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
4174 
4175 			iwm_phy_db_set_section(sc, phy_db_notif);
4176 
4177 			break; }
4178 
4179 		case IWM_STATISTICS_NOTIFICATION: {
4180 			struct iwm_notif_statistics *stats;
4181 			SYNC_RESP_STRUCT(stats, pkt);
4182 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
4183 			sc->sc_noise = iwm_get_noise(&stats->rx.general);
4184 			break; }
4185 
4186 		case IWM_NVM_ACCESS_CMD:
4187 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4188 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4189 				    BUS_DMASYNC_POSTREAD);
4190 				memcpy(sc->sc_cmd_resp,
4191 				    pkt, sizeof(sc->sc_cmd_resp));
4192 			}
4193 			break;
4194 
4195 		case IWM_PHY_CONFIGURATION_CMD:
4196 		case IWM_TX_ANT_CONFIGURATION_CMD:
4197 		case IWM_ADD_STA:
4198 		case IWM_MAC_CONTEXT_CMD:
4199 		case IWM_REPLY_SF_CFG_CMD:
4200 		case IWM_POWER_TABLE_CMD:
4201 		case IWM_PHY_CONTEXT_CMD:
4202 		case IWM_BINDING_CONTEXT_CMD:
4203 		case IWM_TIME_EVENT_CMD:
4204 		case IWM_SCAN_REQUEST_CMD:
4205 		case IWM_REPLY_BEACON_FILTERING_CMD:
4206 		case IWM_MAC_PM_POWER_TABLE:
4207 		case IWM_TIME_QUOTA_CMD:
4208 		case IWM_REMOVE_STA:
4209 		case IWM_TXPATH_FLUSH:
4210 		case IWM_LQ_CMD:
4211 			SYNC_RESP_STRUCT(cresp, pkt);
4212 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4213 				memcpy(sc->sc_cmd_resp,
4214 				    pkt, sizeof(*pkt)+sizeof(*cresp));
4215 			}
4216 			break;
4217 
4218 		/* ignore */
4219 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
4220 			break;
4221 
4222 		case IWM_INIT_COMPLETE_NOTIF:
4223 			sc->sc_init_complete = 1;
4224 			wakeup(&sc->sc_init_complete);
4225 			break;
4226 
4227 		case IWM_SCAN_COMPLETE_NOTIFICATION: {
4228 			struct iwm_scan_complete_notif *notif;
4229 			SYNC_RESP_STRUCT(notif, pkt);
4230 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
4231 			break; }
4232 
4233 		case IWM_REPLY_ERROR: {
4234 			struct iwm_error_resp *resp;
4235 			SYNC_RESP_STRUCT(resp, pkt);
4236 
4237 			device_printf(sc->sc_dev,
4238 			    "firmware error 0x%x, cmd 0x%x\n",
4239 			    le32toh(resp->error_type),
4240 			    resp->cmd_id);
4241 			break; }
4242 
4243 		case IWM_TIME_EVENT_NOTIFICATION: {
4244 			struct iwm_time_event_notif *notif;
4245 			SYNC_RESP_STRUCT(notif, pkt);
4246 
4247 			if (notif->status) {
4248 				if (le32toh(notif->action) &
4249 				    IWM_TE_V2_NOTIF_HOST_EVENT_START)
4250 					sc->sc_auth_prot = 2;
4251 				else
4252 					sc->sc_auth_prot = 0;
4253 			} else {
4254 				sc->sc_auth_prot = -1;
4255 			}
4256 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4257 			    "%s: time event notification auth_prot=%d\n",
4258 				__func__, sc->sc_auth_prot);
4259 
4260 			wakeup(&sc->sc_auth_prot);
4261 			break; }
4262 
4263 		case IWM_MCAST_FILTER_CMD:
4264 			break;
4265 
4266 		default:
4267 			device_printf(sc->sc_dev,
4268 			    "frame %d/%d %x UNHANDLED (this should "
4269 			    "not happen)\n", qid, idx,
4270 			    pkt->len_n_flags);
4271 			break;
4272 		}
4273 
4274 		/*
4275 		 * Why test bit 0x80?  The Linux driver:
4276 		 *
4277 		 * There is one exception:  uCode sets bit 15 when it
4278 		 * originates the response/notification, i.e. when the
4279 		 * response/notification is not a direct response to a
4280 		 * command sent by the driver.  For example, uCode issues
4281 		 * IWM_REPLY_RX when it sends a received frame to the driver;
4282 		 * it is not a direct response to any driver command.
4283 		 *
4284 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
4285 		 * uses a slightly different format for pkt->hdr, and "qid"
4286 		 * is actually the upper byte of a two-byte field.
4287 		 */
4288 		if (!(pkt->hdr.qid & (1 << 7))) {
4289 			iwm_cmd_done(sc, pkt);
4290 		}
4291 
4292 		ADVANCE_RXQ(sc);
4293 	}
4294 
4295 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
4296 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
4297 
4298 	/*
4299 	 * Tell the firmware what we have processed.
4300 	 * Seems like the hardware gets upset unless we align
4301 	 * the write by 8??
4302 	 */
4303 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
4304 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
4305 }
4306 
4307 static void
4308 iwm_intr(void *arg)
4309 {
4310 	struct iwm_softc *sc = arg;
4311 	int handled = 0;
4312 	int r1, r2, rv = 0;
4313 	int isperiodic = 0;
4314 
4315 	IWM_LOCK(sc);
4316 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
4317 
4318 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
4319 		uint32_t *ict = sc->ict_dma.vaddr;
4320 		int tmp;
4321 
4322 		tmp = htole32(ict[sc->ict_cur]);
4323 		if (!tmp)
4324 			goto out_ena;
4325 
4326 		/*
4327 		 * ok, there was something.  keep plowing until we have all.
4328 		 */
4329 		r1 = r2 = 0;
4330 		while (tmp) {
4331 			r1 |= tmp;
4332 			ict[sc->ict_cur] = 0;
4333 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
4334 			tmp = htole32(ict[sc->ict_cur]);
4335 		}
4336 
4337 		/* this is where the fun begins.  don't ask */
4338 		if (r1 == 0xffffffff)
4339 			r1 = 0;
4340 
4341 		/* i am not expected to understand this */
4342 		if (r1 & 0xc0000)
4343 			r1 |= 0x8000;
4344 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
4345 	} else {
4346 		r1 = IWM_READ(sc, IWM_CSR_INT);
4347 		/* "hardware gone" (where, fishing?) */
4348 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4349 			goto out;
4350 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
4351 	}
4352 	if (r1 == 0 && r2 == 0) {
4353 		goto out_ena;
4354 	}
4355 
4356 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
4357 
4358 	/* ignored */
4359 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
4360 
4361 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
4362 		int i;
4363 		struct ieee80211com *ic = &sc->sc_ic;
4364 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4365 
4366 		iwm_nic_error(sc);
4367 
4368 		/* Dump driver status (TX and RX rings) while we're here. */
4369 		device_printf(sc->sc_dev, "driver status:\n");
4370 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
4371 			struct iwm_tx_ring *ring = &sc->txq[i];
4372 			device_printf(sc->sc_dev,
4373 			    "  tx ring %2d: qid=%-2d cur=%-3d "
4374 			    "queued=%-3d\n",
4375 			    i, ring->qid, ring->cur, ring->queued);
4376 		}
4377 		device_printf(sc->sc_dev,
4378 		    "  rx ring: cur=%d\n", sc->rxq.cur);
4379 		device_printf(sc->sc_dev,
4380 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
4381 
4382 		/* Don't stop the device; just do a VAP restart */
4383 		IWM_UNLOCK(sc);
4384 
4385 		if (vap == NULL) {
4386 			printf("%s: null vap\n", __func__);
4387 			return;
4388 		}
4389 
4390 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
4391 		    "restarting\n", __func__, vap->iv_state);
4392 
4393 		/* XXX TODO: turn this into a callout/taskqueue */
4394 		ieee80211_restart_all(ic);
4395 		return;
4396 	}
4397 
4398 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
4399 		handled |= IWM_CSR_INT_BIT_HW_ERR;
4400 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
4401 		iwm_stop(sc);
4402 		rv = 1;
4403 		goto out;
4404 	}
4405 
4406 	/* firmware chunk loaded */
4407 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
4408 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
4409 		handled |= IWM_CSR_INT_BIT_FH_TX;
4410 		sc->sc_fw_chunk_done = 1;
4411 		wakeup(&sc->sc_fw);
4412 	}
4413 
4414 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
4415 		handled |= IWM_CSR_INT_BIT_RF_KILL;
4416 		if (iwm_check_rfkill(sc)) {
4417 			device_printf(sc->sc_dev,
4418 			    "%s: rfkill switch, disabling interface\n",
4419 			    __func__);
4420 			iwm_stop(sc);
4421 		}
4422 	}
4423 
4424 	/*
4425 	 * The Linux driver uses periodic interrupts to avoid races.
4426 	 * We cargo-cult like it's going out of fashion.
4427 	 */
4428 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
4429 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
4430 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
4431 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
4432 			IWM_WRITE_1(sc,
4433 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
4434 		isperiodic = 1;
4435 	}
4436 
4437 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
4438 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
4439 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
4440 
4441 		iwm_notif_intr(sc);
4442 
4443 		/* enable periodic interrupt, see above */
4444 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
4445 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
4446 			    IWM_CSR_INT_PERIODIC_ENA);
4447 	}
4448 
4449 	if (__predict_false(r1 & ~handled))
4450 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4451 		    "%s: unhandled interrupts: %x\n", __func__, r1);
4452 	rv = 1;
4453 
4454  out_ena:
4455 	iwm_restore_interrupts(sc);
4456  out:
4457 	IWM_UNLOCK(sc);
4458 	return;
4459 }
4460 
4461 /*
4462  * Autoconf glue-sniffing
4463  */
4464 #define	PCI_VENDOR_INTEL		0x8086
4465 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
4466 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
4467 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
4468 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
4469 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
4470 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
4471 
4472 static const struct iwm_devices {
4473 	uint16_t	device;
4474 	const char	*name;
4475 } iwm_devices[] = {
4476 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
4477 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
4478 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
4479 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
4480 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
4481 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
4482 };
4483 
4484 static int
4485 iwm_probe(device_t dev)
4486 {
4487 	int i;
4488 
4489 	for (i = 0; i < nitems(iwm_devices); i++)
4490 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
4491 		    pci_get_device(dev) == iwm_devices[i].device) {
4492 			device_set_desc(dev, iwm_devices[i].name);
4493 			return (BUS_PROBE_DEFAULT);
4494 		}
4495 
4496 	return (ENXIO);
4497 }
4498 
4499 static int
4500 iwm_dev_check(device_t dev)
4501 {
4502 	struct iwm_softc *sc;
4503 
4504 	sc = device_get_softc(dev);
4505 
4506 	switch (pci_get_device(dev)) {
4507 	case PCI_PRODUCT_INTEL_WL_3160_1:
4508 	case PCI_PRODUCT_INTEL_WL_3160_2:
4509 		sc->sc_fwname = "iwm3160fw";
4510 		sc->host_interrupt_operation_mode = 1;
4511 		return (0);
4512 	case PCI_PRODUCT_INTEL_WL_7260_1:
4513 	case PCI_PRODUCT_INTEL_WL_7260_2:
4514 		sc->sc_fwname = "iwm7260fw";
4515 		sc->host_interrupt_operation_mode = 1;
4516 		return (0);
4517 	case PCI_PRODUCT_INTEL_WL_7265_1:
4518 	case PCI_PRODUCT_INTEL_WL_7265_2:
4519 		sc->sc_fwname = "iwm7265fw";
4520 		sc->host_interrupt_operation_mode = 0;
4521 		return (0);
4522 	default:
4523 		device_printf(dev, "unknown adapter type\n");
4524 		return ENXIO;
4525 	}
4526 }
4527 
4528 static int
4529 iwm_pci_attach(device_t dev)
4530 {
4531 	struct iwm_softc *sc;
4532 	int count, error, rid;
4533 	uint16_t reg;
4534 
4535 	sc = device_get_softc(dev);
4536 
4537 	/* Clear device-specific "PCI retry timeout" register (41h). */
4538 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4539 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4540 
4541 	/* Enable bus-mastering and hardware bug workaround. */
4542 	pci_enable_busmaster(dev);
4543 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
4544 	/* if !MSI */
4545 	if (reg & PCIM_STATUS_INTxSTATE) {
4546 		reg &= ~PCIM_STATUS_INTxSTATE;
4547 	}
4548 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
4549 
4550 	rid = PCIR_BAR(0);
4551 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
4552 	    RF_ACTIVE);
4553 	if (sc->sc_mem == NULL) {
4554 		device_printf(sc->sc_dev, "can't map mem space\n");
4555 		return (ENXIO);
4556 	}
4557 	sc->sc_st = rman_get_bustag(sc->sc_mem);
4558 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
4559 
4560 	/* Install interrupt handler. */
4561 	count = 1;
4562 	rid = 0;
4563 	if (pci_alloc_msi(dev, &count) == 0)
4564 		rid = 1;
4565 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
4566 	    (rid != 0 ? 0 : RF_SHAREABLE));
4567 	if (sc->sc_irq == NULL) {
4568 		device_printf(dev, "can't map interrupt\n");
4569 			return (ENXIO);
4570 	}
4571 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
4572 	    NULL, iwm_intr, sc, &sc->sc_ih);
4573 	if (sc->sc_ih == NULL) {
4574 		device_printf(dev, "can't establish interrupt");
4575 			return (ENXIO);
4576 	}
4577 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
4578 
4579 	return (0);
4580 }
4581 
4582 static void
4583 iwm_pci_detach(device_t dev)
4584 {
4585 	struct iwm_softc *sc = device_get_softc(dev);
4586 
4587 	if (sc->sc_irq != NULL) {
4588 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
4589 		bus_release_resource(dev, SYS_RES_IRQ,
4590 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
4591 		pci_release_msi(dev);
4592         }
4593 	if (sc->sc_mem != NULL)
4594 		bus_release_resource(dev, SYS_RES_MEMORY,
4595 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
4596 }
4597 
4598 
4599 
4600 static int
4601 iwm_attach(device_t dev)
4602 {
4603 	struct iwm_softc *sc = device_get_softc(dev);
4604 	struct ieee80211com *ic = &sc->sc_ic;
4605 	int error;
4606 	int txq_i, i;
4607 
4608 	sc->sc_dev = dev;
4609 	IWM_LOCK_INIT(sc);
4610 	mbufq_init(&sc->sc_snd, ifqmaxlen);
4611 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
4612 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
4613 	sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK,
4614             taskqueue_thread_enqueue, &sc->sc_tq);
4615         error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq");
4616         if (error != 0) {
4617                 device_printf(dev, "can't start threads, error %d\n",
4618 		    error);
4619 		goto fail;
4620         }
4621 
4622 	/* PCI attach */
4623 	error = iwm_pci_attach(dev);
4624 	if (error != 0)
4625 		goto fail;
4626 
4627 	sc->sc_wantresp = -1;
4628 
4629 	/* Check device type */
4630 	error = iwm_dev_check(dev);
4631 	if (error != 0)
4632 		goto fail;
4633 
4634 	sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
4635 
4636 	/*
4637 	 * We now start fiddling with the hardware
4638 	 */
4639 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
4640 	if (iwm_prepare_card_hw(sc) != 0) {
4641 		device_printf(dev, "could not initialize hardware\n");
4642 		goto fail;
4643 	}
4644 
4645 	/* Allocate DMA memory for firmware transfers. */
4646 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
4647 		device_printf(dev, "could not allocate memory for firmware\n");
4648 		goto fail;
4649 	}
4650 
4651 	/* Allocate "Keep Warm" page. */
4652 	if ((error = iwm_alloc_kw(sc)) != 0) {
4653 		device_printf(dev, "could not allocate keep warm page\n");
4654 		goto fail;
4655 	}
4656 
4657 	/* We use ICT interrupts */
4658 	if ((error = iwm_alloc_ict(sc)) != 0) {
4659 		device_printf(dev, "could not allocate ICT table\n");
4660 		goto fail;
4661 	}
4662 
4663 	/* Allocate TX scheduler "rings". */
4664 	if ((error = iwm_alloc_sched(sc)) != 0) {
4665 		device_printf(dev, "could not allocate TX scheduler rings\n");
4666 		goto fail;
4667 	}
4668 
4669 	/* Allocate TX rings */
4670 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
4671 		if ((error = iwm_alloc_tx_ring(sc,
4672 		    &sc->txq[txq_i], txq_i)) != 0) {
4673 			device_printf(dev,
4674 			    "could not allocate TX ring %d\n",
4675 			    txq_i);
4676 			goto fail;
4677 		}
4678 	}
4679 
4680 	/* Allocate RX ring. */
4681 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
4682 		device_printf(dev, "could not allocate RX ring\n");
4683 		goto fail;
4684 	}
4685 
4686 	/* Clear pending interrupts. */
4687 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
4688 
4689 	ic->ic_softc = sc;
4690 	ic->ic_name = device_get_nameunit(sc->sc_dev);
4691 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
4692 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
4693 
4694 	/* Set device capabilities. */
4695 	ic->ic_caps =
4696 	    IEEE80211_C_STA |
4697 	    IEEE80211_C_WPA |		/* WPA/RSN */
4698 	    IEEE80211_C_WME |
4699 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
4700 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
4701 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
4702 	    ;
4703 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
4704 		sc->sc_phyctxt[i].id = i;
4705 		sc->sc_phyctxt[i].color = 0;
4706 		sc->sc_phyctxt[i].ref = 0;
4707 		sc->sc_phyctxt[i].channel = NULL;
4708 	}
4709 
4710 	/* Max RSSI */
4711 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
4712 	sc->sc_preinit_hook.ich_func = iwm_preinit;
4713 	sc->sc_preinit_hook.ich_arg = sc;
4714 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
4715 		device_printf(dev, "config_intrhook_establish failed\n");
4716 		goto fail;
4717 	}
4718 
4719 #ifdef IWM_DEBUG
4720 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
4721 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
4722 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
4723 #endif
4724 
4725 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4726 	    "<-%s\n", __func__);
4727 
4728 	return 0;
4729 
4730 	/* Free allocated memory if something failed during attachment. */
4731 fail:
4732 	iwm_detach_local(sc, 0);
4733 
4734 	return ENXIO;
4735 }
4736 
4737 static int
4738 iwm_update_edca(struct ieee80211com *ic)
4739 {
4740 	struct iwm_softc *sc = ic->ic_softc;
4741 
4742 	device_printf(sc->sc_dev, "%s: called\n", __func__);
4743 	return (0);
4744 }
4745 
4746 static void
4747 iwm_preinit(void *arg)
4748 {
4749 	struct iwm_softc *sc = arg;
4750 	device_t dev = sc->sc_dev;
4751 	struct ieee80211com *ic = &sc->sc_ic;
4752 	int error;
4753 
4754 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4755 	    "->%s\n", __func__);
4756 
4757 	IWM_LOCK(sc);
4758 	if ((error = iwm_start_hw(sc)) != 0) {
4759 		device_printf(dev, "could not initialize hardware\n");
4760 		IWM_UNLOCK(sc);
4761 		goto fail;
4762 	}
4763 
4764 	error = iwm_run_init_mvm_ucode(sc, 1);
4765 	iwm_stop_device(sc);
4766 	if (error) {
4767 		IWM_UNLOCK(sc);
4768 		goto fail;
4769 	}
4770 	device_printf(dev,
4771 	    "revision: 0x%x, firmware %d.%d (API ver. %d)\n",
4772 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
4773 	    IWM_UCODE_MAJOR(sc->sc_fwver),
4774 	    IWM_UCODE_MINOR(sc->sc_fwver),
4775 	    IWM_UCODE_API(sc->sc_fwver));
4776 
4777 	/* not all hardware can do 5GHz band */
4778 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
4779 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
4780 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
4781 	IWM_UNLOCK(sc);
4782 
4783 	/*
4784 	 * At this point we've committed - if we fail to do setup,
4785 	 * we now also have to tear down the net80211 state.
4786 	 */
4787 	ieee80211_ifattach(ic);
4788 	ic->ic_vap_create = iwm_vap_create;
4789 	ic->ic_vap_delete = iwm_vap_delete;
4790 	ic->ic_raw_xmit = iwm_raw_xmit;
4791 	ic->ic_node_alloc = iwm_node_alloc;
4792 	ic->ic_scan_start = iwm_scan_start;
4793 	ic->ic_scan_end = iwm_scan_end;
4794 	ic->ic_update_mcast = iwm_update_mcast;
4795 	ic->ic_set_channel = iwm_set_channel;
4796 	ic->ic_scan_curchan = iwm_scan_curchan;
4797 	ic->ic_scan_mindwell = iwm_scan_mindwell;
4798 	ic->ic_wme.wme_update = iwm_update_edca;
4799 	ic->ic_parent = iwm_parent;
4800 	ic->ic_transmit = iwm_transmit;
4801 	iwm_radiotap_attach(sc);
4802 	if (bootverbose)
4803 		ieee80211_announce(ic);
4804 
4805 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4806 	    "<-%s\n", __func__);
4807 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4808 
4809 	return;
4810 fail:
4811 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4812 	iwm_detach_local(sc, 0);
4813 }
4814 
4815 /*
4816  * Attach the interface to 802.11 radiotap.
4817  */
4818 static void
4819 iwm_radiotap_attach(struct iwm_softc *sc)
4820 {
4821         struct ieee80211com *ic = &sc->sc_ic;
4822 
4823 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4824 	    "->%s begin\n", __func__);
4825         ieee80211_radiotap_attach(ic,
4826             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
4827                 IWM_TX_RADIOTAP_PRESENT,
4828             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
4829                 IWM_RX_RADIOTAP_PRESENT);
4830 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4831 	    "->%s end\n", __func__);
4832 }
4833 
4834 static struct ieee80211vap *
4835 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
4836     enum ieee80211_opmode opmode, int flags,
4837     const uint8_t bssid[IEEE80211_ADDR_LEN],
4838     const uint8_t mac[IEEE80211_ADDR_LEN])
4839 {
4840 	struct iwm_vap *ivp;
4841 	struct ieee80211vap *vap;
4842 
4843 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
4844 		return NULL;
4845 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
4846 	vap = &ivp->iv_vap;
4847 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
4848 	vap->iv_bmissthreshold = 10;            /* override default */
4849 	/* Override with driver methods. */
4850 	ivp->iv_newstate = vap->iv_newstate;
4851 	vap->iv_newstate = iwm_newstate;
4852 
4853 	ieee80211_ratectl_init(vap);
4854 	/* Complete setup. */
4855 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
4856 	    mac);
4857 	ic->ic_opmode = opmode;
4858 
4859 	return vap;
4860 }
4861 
4862 static void
4863 iwm_vap_delete(struct ieee80211vap *vap)
4864 {
4865 	struct iwm_vap *ivp = IWM_VAP(vap);
4866 
4867 	ieee80211_ratectl_deinit(vap);
4868 	ieee80211_vap_detach(vap);
4869 	free(ivp, M_80211_VAP);
4870 }
4871 
4872 static void
4873 iwm_scan_start(struct ieee80211com *ic)
4874 {
4875 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4876         struct iwm_softc *sc = ic->ic_softc;
4877 	int error;
4878 
4879 	if (sc->sc_scanband)
4880 		return;
4881 	IWM_LOCK(sc);
4882 	error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0);
4883 	if (error) {
4884 		device_printf(sc->sc_dev, "could not initiate scan\n");
4885 		IWM_UNLOCK(sc);
4886 		ieee80211_cancel_scan(vap);
4887 	} else
4888 		IWM_UNLOCK(sc);
4889 }
4890 
4891 static void
4892 iwm_scan_end(struct ieee80211com *ic)
4893 {
4894 }
4895 
4896 static void
4897 iwm_update_mcast(struct ieee80211com *ic)
4898 {
4899 }
4900 
4901 static void
4902 iwm_set_channel(struct ieee80211com *ic)
4903 {
4904 }
4905 
4906 static void
4907 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4908 {
4909 }
4910 
4911 static void
4912 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
4913 {
4914 	return;
4915 }
4916 
4917 void
4918 iwm_init_task(void *arg1)
4919 {
4920 	struct iwm_softc *sc = arg1;
4921 
4922 	IWM_LOCK(sc);
4923 	while (sc->sc_flags & IWM_FLAG_BUSY)
4924 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
4925 	sc->sc_flags |= IWM_FLAG_BUSY;
4926 	iwm_stop(sc);
4927 	if (sc->sc_ic.ic_nrunning > 0)
4928 		iwm_init(sc);
4929 	sc->sc_flags &= ~IWM_FLAG_BUSY;
4930 	wakeup(&sc->sc_flags);
4931 	IWM_UNLOCK(sc);
4932 }
4933 
4934 static int
4935 iwm_resume(device_t dev)
4936 {
4937 	struct iwm_softc *sc = device_get_softc(dev);
4938 	int do_reinit = 0;
4939 	uint16_t reg;
4940 
4941 	/* Clear device-specific "PCI retry timeout" register (41h). */
4942 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4943 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4944 	iwm_init_task(device_get_softc(dev));
4945 
4946 	IWM_LOCK(sc);
4947 	if (sc->sc_flags & IWM_FLAG_DORESUME) {
4948 		sc->sc_flags &= ~IWM_FLAG_DORESUME;
4949 		do_reinit = 1;
4950 	}
4951 	IWM_UNLOCK(sc);
4952 
4953 	if (do_reinit)
4954 		ieee80211_resume_all(&sc->sc_ic);
4955 
4956 	return 0;
4957 }
4958 
4959 static int
4960 iwm_suspend(device_t dev)
4961 {
4962 	int do_stop = 0;
4963 	struct iwm_softc *sc = device_get_softc(dev);
4964 
4965 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
4966 
4967 	ieee80211_suspend_all(&sc->sc_ic);
4968 
4969 	if (do_stop) {
4970 		IWM_LOCK(sc);
4971 		iwm_stop(sc);
4972 		sc->sc_flags |= IWM_FLAG_DORESUME;
4973 		IWM_UNLOCK(sc);
4974 	}
4975 
4976 	return (0);
4977 }
4978 
4979 static int
4980 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
4981 {
4982 	struct iwm_fw_info *fw = &sc->sc_fw;
4983 	device_t dev = sc->sc_dev;
4984 	int i;
4985 
4986 	if (sc->sc_tq) {
4987 		taskqueue_drain_all(sc->sc_tq);
4988 		taskqueue_free(sc->sc_tq);
4989 	}
4990 	callout_drain(&sc->sc_watchdog_to);
4991 	iwm_stop_device(sc);
4992 	if (do_net80211)
4993 		ieee80211_ifdetach(&sc->sc_ic);
4994 
4995 	/* Free descriptor rings */
4996 	for (i = 0; i < nitems(sc->txq); i++)
4997 		iwm_free_tx_ring(sc, &sc->txq[i]);
4998 
4999 	/* Free firmware */
5000 	if (fw->fw_fp != NULL)
5001 		iwm_fw_info_free(fw);
5002 
5003 	/* Free scheduler */
5004 	iwm_free_sched(sc);
5005 	if (sc->ict_dma.vaddr != NULL)
5006 		iwm_free_ict(sc);
5007 	if (sc->kw_dma.vaddr != NULL)
5008 		iwm_free_kw(sc);
5009 	if (sc->fw_dma.vaddr != NULL)
5010 		iwm_free_fwmem(sc);
5011 
5012 	/* Finished with the hardware - detach things */
5013 	iwm_pci_detach(dev);
5014 
5015 	mbufq_drain(&sc->sc_snd);
5016 	IWM_LOCK_DESTROY(sc);
5017 
5018 	return (0);
5019 }
5020 
5021 static int
5022 iwm_detach(device_t dev)
5023 {
5024 	struct iwm_softc *sc = device_get_softc(dev);
5025 
5026 	return (iwm_detach_local(sc, 1));
5027 }
5028 
5029 static device_method_t iwm_pci_methods[] = {
5030         /* Device interface */
5031         DEVMETHOD(device_probe,         iwm_probe),
5032         DEVMETHOD(device_attach,        iwm_attach),
5033         DEVMETHOD(device_detach,        iwm_detach),
5034         DEVMETHOD(device_suspend,       iwm_suspend),
5035         DEVMETHOD(device_resume,        iwm_resume),
5036 
5037         DEVMETHOD_END
5038 };
5039 
5040 static driver_t iwm_pci_driver = {
5041         "iwm",
5042         iwm_pci_methods,
5043         sizeof (struct iwm_softc)
5044 };
5045 
5046 static devclass_t iwm_devclass;
5047 
5048 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
5049 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
5050 MODULE_DEPEND(iwm, pci, 1, 1, 1);
5051 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
5052