1 /* $OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $ */ 2 3 /* 4 * Copyright (c) 2014 genua mbh <info@genua.de> 5 * Copyright (c) 2014 Fixup Software Ltd. 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Based on BSD-licensed source modules in the Linux iwlwifi driver, 22 * which were used as the reference documentation for this implementation. 23 * 24 * Driver version we are currently based off of is 25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) 26 * 27 *********************************************************************** 28 * 29 * This file is provided under a dual BSD/GPLv2 license. When using or 30 * redistributing this file, you may do so under either license. 31 * 32 * GPL LICENSE SUMMARY 33 * 34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. 35 * 36 * This program is free software; you can redistribute it and/or modify 37 * it under the terms of version 2 of the GNU General Public License as 38 * published by the Free Software Foundation. 39 * 40 * This program is distributed in the hope that it will be useful, but 41 * WITHOUT ANY WARRANTY; without even the implied warranty of 42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 43 * General Public License for more details. 44 * 45 * You should have received a copy of the GNU General Public License 46 * along with this program; if not, write to the Free Software 47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 48 * USA 49 * 50 * The full GNU General Public License is included in this distribution 51 * in the file called COPYING. 52 * 53 * Contact Information: 54 * Intel Linux Wireless <ilw@linux.intel.com> 55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 56 * 57 * 58 * BSD LICENSE 59 * 60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. 61 * All rights reserved. 62 * 63 * Redistribution and use in source and binary forms, with or without 64 * modification, are permitted provided that the following conditions 65 * are met: 66 * 67 * * Redistributions of source code must retain the above copyright 68 * notice, this list of conditions and the following disclaimer. 69 * * Redistributions in binary form must reproduce the above copyright 70 * notice, this list of conditions and the following disclaimer in 71 * the documentation and/or other materials provided with the 72 * distribution. 73 * * Neither the name Intel Corporation nor the names of its 74 * contributors may be used to endorse or promote products derived 75 * from this software without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 88 */ 89 90 /*- 91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 92 * 93 * Permission to use, copy, modify, and distribute this software for any 94 * purpose with or without fee is hereby granted, provided that the above 95 * copyright notice and this permission notice appear in all copies. 96 * 97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 104 */ 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include <sys/param.h> 109 #include <sys/bus.h> 110 #include <sys/conf.h> 111 #include <sys/endian.h> 112 #include <sys/firmware.h> 113 #include <sys/kernel.h> 114 #include <sys/malloc.h> 115 #include <sys/mbuf.h> 116 #include <sys/mutex.h> 117 #include <sys/module.h> 118 #include <sys/proc.h> 119 #include <sys/rman.h> 120 #include <sys/socket.h> 121 #include <sys/sockio.h> 122 #include <sys/sysctl.h> 123 #include <sys/linker.h> 124 125 #include <machine/bus.h> 126 #include <machine/endian.h> 127 #include <machine/resource.h> 128 129 #include <dev/pci/pcivar.h> 130 #include <dev/pci/pcireg.h> 131 132 #include <net/bpf.h> 133 134 #include <net/if.h> 135 #include <net/if_var.h> 136 #include <net/if_arp.h> 137 #include <net/if_dl.h> 138 #include <net/if_media.h> 139 #include <net/if_types.h> 140 141 #include <netinet/in.h> 142 #include <netinet/in_systm.h> 143 #include <netinet/if_ether.h> 144 #include <netinet/ip.h> 145 146 #include <net80211/ieee80211_var.h> 147 #include <net80211/ieee80211_regdomain.h> 148 #include <net80211/ieee80211_ratectl.h> 149 #include <net80211/ieee80211_radiotap.h> 150 151 #include <dev/iwm/if_iwmreg.h> 152 #include <dev/iwm/if_iwmvar.h> 153 #include <dev/iwm/if_iwm_debug.h> 154 #include <dev/iwm/if_iwm_util.h> 155 #include <dev/iwm/if_iwm_binding.h> 156 #include <dev/iwm/if_iwm_phy_db.h> 157 #include <dev/iwm/if_iwm_mac_ctxt.h> 158 #include <dev/iwm/if_iwm_phy_ctxt.h> 159 #include <dev/iwm/if_iwm_time_event.h> 160 #include <dev/iwm/if_iwm_power.h> 161 #include <dev/iwm/if_iwm_scan.h> 162 163 #include <dev/iwm/if_iwm_pcie_trans.h> 164 165 const uint8_t iwm_nvm_channels[] = { 166 /* 2.4 GHz */ 167 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 168 /* 5 GHz */ 169 36, 40, 44 , 48, 52, 56, 60, 64, 170 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 171 149, 153, 157, 161, 165 172 }; 173 #define IWM_NUM_2GHZ_CHANNELS 14 174 175 /* 176 * XXX For now, there's simply a fixed set of rate table entries 177 * that are populated. 178 */ 179 const struct iwm_rate { 180 uint8_t rate; 181 uint8_t plcp; 182 } iwm_rates[] = { 183 { 2, IWM_RATE_1M_PLCP }, 184 { 4, IWM_RATE_2M_PLCP }, 185 { 11, IWM_RATE_5M_PLCP }, 186 { 22, IWM_RATE_11M_PLCP }, 187 { 12, IWM_RATE_6M_PLCP }, 188 { 18, IWM_RATE_9M_PLCP }, 189 { 24, IWM_RATE_12M_PLCP }, 190 { 36, IWM_RATE_18M_PLCP }, 191 { 48, IWM_RATE_24M_PLCP }, 192 { 72, IWM_RATE_36M_PLCP }, 193 { 96, IWM_RATE_48M_PLCP }, 194 { 108, IWM_RATE_54M_PLCP }, 195 }; 196 #define IWM_RIDX_CCK 0 197 #define IWM_RIDX_OFDM 4 198 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) 199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) 200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) 201 202 static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); 203 static int iwm_firmware_store_section(struct iwm_softc *, 204 enum iwm_ucode_type, 205 const uint8_t *, size_t); 206 static int iwm_set_default_calib(struct iwm_softc *, const void *); 207 static void iwm_fw_info_free(struct iwm_fw_info *); 208 static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type); 209 static void iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int); 210 static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, 211 bus_size_t, bus_size_t); 212 static void iwm_dma_contig_free(struct iwm_dma_info *); 213 static int iwm_alloc_fwmem(struct iwm_softc *); 214 static void iwm_free_fwmem(struct iwm_softc *); 215 static int iwm_alloc_sched(struct iwm_softc *); 216 static void iwm_free_sched(struct iwm_softc *); 217 static int iwm_alloc_kw(struct iwm_softc *); 218 static void iwm_free_kw(struct iwm_softc *); 219 static int iwm_alloc_ict(struct iwm_softc *); 220 static void iwm_free_ict(struct iwm_softc *); 221 static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 222 static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 223 static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 224 static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, 225 int); 226 static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 227 static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 228 static void iwm_enable_interrupts(struct iwm_softc *); 229 static void iwm_restore_interrupts(struct iwm_softc *); 230 static void iwm_disable_interrupts(struct iwm_softc *); 231 static void iwm_ict_reset(struct iwm_softc *); 232 static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); 233 static void iwm_stop_device(struct iwm_softc *); 234 static void iwm_mvm_nic_config(struct iwm_softc *); 235 static int iwm_nic_rx_init(struct iwm_softc *); 236 static int iwm_nic_tx_init(struct iwm_softc *); 237 static int iwm_nic_init(struct iwm_softc *); 238 static void iwm_enable_txq(struct iwm_softc *, int, int); 239 static int iwm_post_alive(struct iwm_softc *); 240 static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, 241 uint16_t, uint8_t *, uint16_t *); 242 static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, 243 uint16_t *); 244 static void iwm_init_channel_map(struct iwm_softc *, 245 const uint16_t * const); 246 static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, 247 const uint16_t *, const uint16_t *, uint8_t, 248 uint8_t); 249 struct iwm_nvm_section; 250 static int iwm_parse_nvm_sections(struct iwm_softc *, 251 struct iwm_nvm_section *); 252 static int iwm_nvm_init(struct iwm_softc *); 253 static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, 254 const uint8_t *, uint32_t); 255 static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type); 256 static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type); 257 static int iwm_fw_alive(struct iwm_softc *, uint32_t); 258 static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); 259 static int iwm_send_phy_cfg_cmd(struct iwm_softc *); 260 static int iwm_mvm_load_ucode_wait_alive(struct iwm_softc *, 261 enum iwm_ucode_type); 262 static int iwm_run_init_mvm_ucode(struct iwm_softc *, int); 263 static int iwm_rx_addbuf(struct iwm_softc *, int, int); 264 static int iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *); 265 static int iwm_mvm_get_signal_strength(struct iwm_softc *, 266 struct iwm_rx_phy_info *); 267 static void iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *, 268 struct iwm_rx_packet *, 269 struct iwm_rx_data *); 270 static int iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *); 271 static void iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *, 272 struct iwm_rx_data *); 273 static int iwm_mvm_rx_tx_cmd_single(struct iwm_softc *, 274 struct iwm_rx_packet *, 275 struct iwm_node *); 276 static void iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *, 277 struct iwm_rx_data *); 278 static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); 279 #if 0 280 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, 281 uint16_t); 282 #endif 283 static const struct iwm_rate * 284 iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, 285 struct ieee80211_frame *, struct iwm_tx_cmd *); 286 static int iwm_tx(struct iwm_softc *, struct mbuf *, 287 struct ieee80211_node *, int); 288 static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, 289 const struct ieee80211_bpf_params *); 290 static void iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *, 291 struct iwm_mvm_add_sta_cmd_v5 *); 292 static int iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *, 293 struct iwm_mvm_add_sta_cmd_v6 *, 294 int *); 295 static int iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *, 296 int); 297 static int iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *); 298 static int iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *); 299 static int iwm_mvm_add_int_sta_common(struct iwm_softc *, 300 struct iwm_int_sta *, 301 const uint8_t *, uint16_t, uint16_t); 302 static int iwm_mvm_add_aux_sta(struct iwm_softc *); 303 static int iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *); 304 static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); 305 static int iwm_assoc(struct ieee80211vap *, struct iwm_softc *); 306 static int iwm_release(struct iwm_softc *, struct iwm_node *); 307 static struct ieee80211_node * 308 iwm_node_alloc(struct ieee80211vap *, 309 const uint8_t[IEEE80211_ADDR_LEN]); 310 static void iwm_setrates(struct iwm_softc *, struct iwm_node *); 311 static int iwm_media_change(struct ifnet *); 312 static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); 313 static void iwm_endscan_cb(void *, int); 314 static int iwm_init_hw(struct iwm_softc *); 315 static void iwm_init(struct iwm_softc *); 316 static void iwm_start(struct iwm_softc *); 317 static void iwm_stop(struct iwm_softc *); 318 static void iwm_watchdog(void *); 319 static void iwm_parent(struct ieee80211com *); 320 #ifdef IWM_DEBUG 321 static const char * 322 iwm_desc_lookup(uint32_t); 323 static void iwm_nic_error(struct iwm_softc *); 324 #endif 325 static void iwm_notif_intr(struct iwm_softc *); 326 static void iwm_intr(void *); 327 static int iwm_attach(device_t); 328 static void iwm_preinit(void *); 329 static int iwm_detach_local(struct iwm_softc *sc, int); 330 static void iwm_init_task(void *); 331 static void iwm_radiotap_attach(struct iwm_softc *); 332 static struct ieee80211vap * 333 iwm_vap_create(struct ieee80211com *, 334 const char [IFNAMSIZ], int, 335 enum ieee80211_opmode, int, 336 const uint8_t [IEEE80211_ADDR_LEN], 337 const uint8_t [IEEE80211_ADDR_LEN]); 338 static void iwm_vap_delete(struct ieee80211vap *); 339 static void iwm_scan_start(struct ieee80211com *); 340 static void iwm_scan_end(struct ieee80211com *); 341 static void iwm_update_mcast(struct ieee80211com *); 342 static void iwm_set_channel(struct ieee80211com *); 343 static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); 344 static void iwm_scan_mindwell(struct ieee80211_scan_state *); 345 static int iwm_detach(device_t); 346 347 /* 348 * Firmware parser. 349 */ 350 351 static int 352 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) 353 { 354 const struct iwm_fw_cscheme_list *l = (const void *)data; 355 356 if (dlen < sizeof(*l) || 357 dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) 358 return EINVAL; 359 360 /* we don't actually store anything for now, always use s/w crypto */ 361 362 return 0; 363 } 364 365 static int 366 iwm_firmware_store_section(struct iwm_softc *sc, 367 enum iwm_ucode_type type, const uint8_t *data, size_t dlen) 368 { 369 struct iwm_fw_sects *fws; 370 struct iwm_fw_onesect *fwone; 371 372 if (type >= IWM_UCODE_TYPE_MAX) 373 return EINVAL; 374 if (dlen < sizeof(uint32_t)) 375 return EINVAL; 376 377 fws = &sc->sc_fw.fw_sects[type]; 378 if (fws->fw_count >= IWM_UCODE_SECT_MAX) 379 return EINVAL; 380 381 fwone = &fws->fw_sect[fws->fw_count]; 382 383 /* first 32bit are device load offset */ 384 memcpy(&fwone->fws_devoff, data, sizeof(uint32_t)); 385 386 /* rest is data */ 387 fwone->fws_data = data + sizeof(uint32_t); 388 fwone->fws_len = dlen - sizeof(uint32_t); 389 390 fws->fw_count++; 391 fws->fw_totlen += fwone->fws_len; 392 393 return 0; 394 } 395 396 /* iwlwifi: iwl-drv.c */ 397 struct iwm_tlv_calib_data { 398 uint32_t ucode_type; 399 struct iwm_tlv_calib_ctrl calib; 400 } __packed; 401 402 static int 403 iwm_set_default_calib(struct iwm_softc *sc, const void *data) 404 { 405 const struct iwm_tlv_calib_data *def_calib = data; 406 uint32_t ucode_type = le32toh(def_calib->ucode_type); 407 408 if (ucode_type >= IWM_UCODE_TYPE_MAX) { 409 device_printf(sc->sc_dev, 410 "Wrong ucode_type %u for default " 411 "calibration.\n", ucode_type); 412 return EINVAL; 413 } 414 415 sc->sc_default_calib[ucode_type].flow_trigger = 416 def_calib->calib.flow_trigger; 417 sc->sc_default_calib[ucode_type].event_trigger = 418 def_calib->calib.event_trigger; 419 420 return 0; 421 } 422 423 static void 424 iwm_fw_info_free(struct iwm_fw_info *fw) 425 { 426 firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); 427 fw->fw_fp = NULL; 428 /* don't touch fw->fw_status */ 429 memset(fw->fw_sects, 0, sizeof(fw->fw_sects)); 430 } 431 432 static int 433 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 434 { 435 struct iwm_fw_info *fw = &sc->sc_fw; 436 const struct iwm_tlv_ucode_header *uhdr; 437 struct iwm_ucode_tlv tlv; 438 enum iwm_ucode_tlv_type tlv_type; 439 const struct firmware *fwp; 440 const uint8_t *data; 441 int error = 0; 442 size_t len; 443 444 if (fw->fw_status == IWM_FW_STATUS_DONE && 445 ucode_type != IWM_UCODE_TYPE_INIT) 446 return 0; 447 448 while (fw->fw_status == IWM_FW_STATUS_INPROGRESS) 449 msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0); 450 fw->fw_status = IWM_FW_STATUS_INPROGRESS; 451 452 if (fw->fw_fp != NULL) 453 iwm_fw_info_free(fw); 454 455 /* 456 * Load firmware into driver memory. 457 * fw_fp will be set. 458 */ 459 IWM_UNLOCK(sc); 460 fwp = firmware_get(sc->sc_fwname); 461 IWM_LOCK(sc); 462 if (fwp == NULL) { 463 device_printf(sc->sc_dev, 464 "could not read firmware %s (error %d)\n", 465 sc->sc_fwname, error); 466 goto out; 467 } 468 fw->fw_fp = fwp; 469 470 /* 471 * Parse firmware contents 472 */ 473 474 uhdr = (const void *)fw->fw_fp->data; 475 if (*(const uint32_t *)fw->fw_fp->data != 0 476 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { 477 device_printf(sc->sc_dev, "invalid firmware %s\n", 478 sc->sc_fwname); 479 error = EINVAL; 480 goto out; 481 } 482 483 sc->sc_fwver = le32toh(uhdr->ver); 484 data = uhdr->data; 485 len = fw->fw_fp->datasize - sizeof(*uhdr); 486 487 while (len >= sizeof(tlv)) { 488 size_t tlv_len; 489 const void *tlv_data; 490 491 memcpy(&tlv, data, sizeof(tlv)); 492 tlv_len = le32toh(tlv.length); 493 tlv_type = le32toh(tlv.type); 494 495 len -= sizeof(tlv); 496 data += sizeof(tlv); 497 tlv_data = data; 498 499 if (len < tlv_len) { 500 device_printf(sc->sc_dev, 501 "firmware too short: %zu bytes\n", 502 len); 503 error = EINVAL; 504 goto parse_out; 505 } 506 507 switch ((int)tlv_type) { 508 case IWM_UCODE_TLV_PROBE_MAX_LEN: 509 if (tlv_len < sizeof(uint32_t)) { 510 device_printf(sc->sc_dev, 511 "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n", 512 __func__, 513 (int) tlv_len); 514 error = EINVAL; 515 goto parse_out; 516 } 517 sc->sc_capa_max_probe_len 518 = le32toh(*(const uint32_t *)tlv_data); 519 /* limit it to something sensible */ 520 if (sc->sc_capa_max_probe_len > (1<<16)) { 521 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 522 "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " 523 "ridiculous\n", __func__); 524 error = EINVAL; 525 goto parse_out; 526 } 527 break; 528 case IWM_UCODE_TLV_PAN: 529 if (tlv_len) { 530 device_printf(sc->sc_dev, 531 "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n", 532 __func__, 533 (int) tlv_len); 534 error = EINVAL; 535 goto parse_out; 536 } 537 sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN; 538 break; 539 case IWM_UCODE_TLV_FLAGS: 540 if (tlv_len < sizeof(uint32_t)) { 541 device_printf(sc->sc_dev, 542 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n", 543 __func__, 544 (int) tlv_len); 545 error = EINVAL; 546 goto parse_out; 547 } 548 /* 549 * Apparently there can be many flags, but Linux driver 550 * parses only the first one, and so do we. 551 * 552 * XXX: why does this override IWM_UCODE_TLV_PAN? 553 * Intentional or a bug? Observations from 554 * current firmware file: 555 * 1) TLV_PAN is parsed first 556 * 2) TLV_FLAGS contains TLV_FLAGS_PAN 557 * ==> this resets TLV_PAN to itself... hnnnk 558 */ 559 sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data); 560 break; 561 case IWM_UCODE_TLV_CSCHEME: 562 if ((error = iwm_store_cscheme(sc, 563 tlv_data, tlv_len)) != 0) { 564 device_printf(sc->sc_dev, 565 "%s: iwm_store_cscheme(): returned %d\n", 566 __func__, 567 error); 568 goto parse_out; 569 } 570 break; 571 case IWM_UCODE_TLV_NUM_OF_CPU: 572 if (tlv_len != sizeof(uint32_t)) { 573 device_printf(sc->sc_dev, 574 "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n", 575 __func__, 576 (int) tlv_len); 577 error = EINVAL; 578 goto parse_out; 579 } 580 if (le32toh(*(const uint32_t*)tlv_data) != 1) { 581 device_printf(sc->sc_dev, 582 "%s: driver supports " 583 "only TLV_NUM_OF_CPU == 1", 584 __func__); 585 error = EINVAL; 586 goto parse_out; 587 } 588 break; 589 case IWM_UCODE_TLV_SEC_RT: 590 if ((error = iwm_firmware_store_section(sc, 591 IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) { 592 device_printf(sc->sc_dev, 593 "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n", 594 __func__, 595 error); 596 goto parse_out; 597 } 598 break; 599 case IWM_UCODE_TLV_SEC_INIT: 600 if ((error = iwm_firmware_store_section(sc, 601 IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) { 602 device_printf(sc->sc_dev, 603 "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n", 604 __func__, 605 error); 606 goto parse_out; 607 } 608 break; 609 case IWM_UCODE_TLV_SEC_WOWLAN: 610 if ((error = iwm_firmware_store_section(sc, 611 IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) { 612 device_printf(sc->sc_dev, 613 "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n", 614 __func__, 615 error); 616 goto parse_out; 617 } 618 break; 619 case IWM_UCODE_TLV_DEF_CALIB: 620 if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { 621 device_printf(sc->sc_dev, 622 "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n", 623 __func__, 624 (int) tlv_len, 625 (int) sizeof(struct iwm_tlv_calib_data)); 626 error = EINVAL; 627 goto parse_out; 628 } 629 if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { 630 device_printf(sc->sc_dev, 631 "%s: iwm_set_default_calib() failed: %d\n", 632 __func__, 633 error); 634 goto parse_out; 635 } 636 break; 637 case IWM_UCODE_TLV_PHY_SKU: 638 if (tlv_len != sizeof(uint32_t)) { 639 error = EINVAL; 640 device_printf(sc->sc_dev, 641 "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n", 642 __func__, 643 (int) tlv_len); 644 goto parse_out; 645 } 646 sc->sc_fw_phy_config = 647 le32toh(*(const uint32_t *)tlv_data); 648 break; 649 650 case IWM_UCODE_TLV_API_CHANGES_SET: 651 case IWM_UCODE_TLV_ENABLED_CAPABILITIES: 652 /* ignore, not used by current driver */ 653 break; 654 655 default: 656 device_printf(sc->sc_dev, 657 "%s: unknown firmware section %d, abort\n", 658 __func__, tlv_type); 659 error = EINVAL; 660 goto parse_out; 661 } 662 663 len -= roundup(tlv_len, 4); 664 data += roundup(tlv_len, 4); 665 } 666 667 KASSERT(error == 0, ("unhandled error")); 668 669 parse_out: 670 if (error) { 671 device_printf(sc->sc_dev, "firmware parse error %d, " 672 "section type %d\n", error, tlv_type); 673 } 674 675 if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) { 676 device_printf(sc->sc_dev, 677 "device uses unsupported power ops\n"); 678 error = ENOTSUP; 679 } 680 681 out: 682 if (error) { 683 fw->fw_status = IWM_FW_STATUS_NONE; 684 if (fw->fw_fp != NULL) 685 iwm_fw_info_free(fw); 686 } else 687 fw->fw_status = IWM_FW_STATUS_DONE; 688 wakeup(&sc->sc_fw); 689 690 return error; 691 } 692 693 /* 694 * DMA resource routines 695 */ 696 697 static void 698 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 699 { 700 if (error != 0) 701 return; 702 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 703 *(bus_addr_t *)arg = segs[0].ds_addr; 704 } 705 706 static int 707 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma, 708 bus_size_t size, bus_size_t alignment) 709 { 710 int error; 711 712 dma->tag = NULL; 713 dma->size = size; 714 715 error = bus_dma_tag_create(tag, alignment, 716 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 717 1, size, 0, NULL, NULL, &dma->tag); 718 if (error != 0) 719 goto fail; 720 721 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 722 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 723 if (error != 0) 724 goto fail; 725 726 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 727 iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 728 if (error != 0) 729 goto fail; 730 731 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 732 733 return 0; 734 735 fail: iwm_dma_contig_free(dma); 736 return error; 737 } 738 739 static void 740 iwm_dma_contig_free(struct iwm_dma_info *dma) 741 { 742 if (dma->map != NULL) { 743 if (dma->vaddr != NULL) { 744 bus_dmamap_sync(dma->tag, dma->map, 745 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 746 bus_dmamap_unload(dma->tag, dma->map); 747 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 748 dma->vaddr = NULL; 749 } 750 bus_dmamap_destroy(dma->tag, dma->map); 751 dma->map = NULL; 752 } 753 if (dma->tag != NULL) { 754 bus_dma_tag_destroy(dma->tag); 755 dma->tag = NULL; 756 } 757 758 } 759 760 /* fwmem is used to load firmware onto the card */ 761 static int 762 iwm_alloc_fwmem(struct iwm_softc *sc) 763 { 764 /* Must be aligned on a 16-byte boundary. */ 765 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, 766 sc->sc_fwdmasegsz, 16); 767 } 768 769 static void 770 iwm_free_fwmem(struct iwm_softc *sc) 771 { 772 iwm_dma_contig_free(&sc->fw_dma); 773 } 774 775 /* tx scheduler rings. not used? */ 776 static int 777 iwm_alloc_sched(struct iwm_softc *sc) 778 { 779 int rv; 780 781 /* TX scheduler rings must be aligned on a 1KB boundary. */ 782 rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 783 nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); 784 return rv; 785 } 786 787 static void 788 iwm_free_sched(struct iwm_softc *sc) 789 { 790 iwm_dma_contig_free(&sc->sched_dma); 791 } 792 793 /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ 794 static int 795 iwm_alloc_kw(struct iwm_softc *sc) 796 { 797 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); 798 } 799 800 static void 801 iwm_free_kw(struct iwm_softc *sc) 802 { 803 iwm_dma_contig_free(&sc->kw_dma); 804 } 805 806 /* interrupt cause table */ 807 static int 808 iwm_alloc_ict(struct iwm_softc *sc) 809 { 810 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 811 IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT); 812 } 813 814 static void 815 iwm_free_ict(struct iwm_softc *sc) 816 { 817 iwm_dma_contig_free(&sc->ict_dma); 818 } 819 820 static int 821 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 822 { 823 bus_size_t size; 824 int i, error; 825 826 ring->cur = 0; 827 828 /* Allocate RX descriptors (256-byte aligned). */ 829 size = IWM_RX_RING_COUNT * sizeof(uint32_t); 830 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 831 if (error != 0) { 832 device_printf(sc->sc_dev, 833 "could not allocate RX ring DMA memory\n"); 834 goto fail; 835 } 836 ring->desc = ring->desc_dma.vaddr; 837 838 /* Allocate RX status area (16-byte aligned). */ 839 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 840 sizeof(*ring->stat), 16); 841 if (error != 0) { 842 device_printf(sc->sc_dev, 843 "could not allocate RX status DMA memory\n"); 844 goto fail; 845 } 846 ring->stat = ring->stat_dma.vaddr; 847 848 /* Create RX buffer DMA tag. */ 849 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 850 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 851 IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 852 if (error != 0) { 853 device_printf(sc->sc_dev, 854 "%s: could not create RX buf DMA tag, error %d\n", 855 __func__, error); 856 goto fail; 857 } 858 859 /* 860 * Allocate and map RX buffers. 861 */ 862 for (i = 0; i < IWM_RX_RING_COUNT; i++) { 863 if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { 864 goto fail; 865 } 866 } 867 return 0; 868 869 fail: iwm_free_rx_ring(sc, ring); 870 return error; 871 } 872 873 static void 874 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 875 { 876 877 /* XXX print out if we can't lock the NIC? */ 878 if (iwm_nic_lock(sc)) { 879 /* XXX handle if RX stop doesn't finish? */ 880 (void) iwm_pcie_rx_stop(sc); 881 iwm_nic_unlock(sc); 882 } 883 /* Reset the ring state */ 884 ring->cur = 0; 885 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 886 } 887 888 static void 889 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 890 { 891 int i; 892 893 iwm_dma_contig_free(&ring->desc_dma); 894 iwm_dma_contig_free(&ring->stat_dma); 895 896 for (i = 0; i < IWM_RX_RING_COUNT; i++) { 897 struct iwm_rx_data *data = &ring->data[i]; 898 899 if (data->m != NULL) { 900 bus_dmamap_sync(ring->data_dmat, data->map, 901 BUS_DMASYNC_POSTREAD); 902 bus_dmamap_unload(ring->data_dmat, data->map); 903 m_freem(data->m); 904 data->m = NULL; 905 } 906 if (data->map != NULL) { 907 bus_dmamap_destroy(ring->data_dmat, data->map); 908 data->map = NULL; 909 } 910 } 911 if (ring->data_dmat != NULL) { 912 bus_dma_tag_destroy(ring->data_dmat); 913 ring->data_dmat = NULL; 914 } 915 } 916 917 static int 918 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) 919 { 920 bus_addr_t paddr; 921 bus_size_t size; 922 int i, error; 923 924 ring->qid = qid; 925 ring->queued = 0; 926 ring->cur = 0; 927 928 /* Allocate TX descriptors (256-byte aligned). */ 929 size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); 930 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 931 if (error != 0) { 932 device_printf(sc->sc_dev, 933 "could not allocate TX ring DMA memory\n"); 934 goto fail; 935 } 936 ring->desc = ring->desc_dma.vaddr; 937 938 /* 939 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need 940 * to allocate commands space for other rings. 941 */ 942 if (qid > IWM_MVM_CMD_QUEUE) 943 return 0; 944 945 size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); 946 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); 947 if (error != 0) { 948 device_printf(sc->sc_dev, 949 "could not allocate TX cmd DMA memory\n"); 950 goto fail; 951 } 952 ring->cmd = ring->cmd_dma.vaddr; 953 954 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 955 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 956 IWM_MAX_SCATTER - 2, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 957 if (error != 0) { 958 device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); 959 goto fail; 960 } 961 962 paddr = ring->cmd_dma.paddr; 963 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 964 struct iwm_tx_data *data = &ring->data[i]; 965 966 data->cmd_paddr = paddr; 967 data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) 968 + offsetof(struct iwm_tx_cmd, scratch); 969 paddr += sizeof(struct iwm_device_cmd); 970 971 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 972 if (error != 0) { 973 device_printf(sc->sc_dev, 974 "could not create TX buf DMA map\n"); 975 goto fail; 976 } 977 } 978 KASSERT(paddr == ring->cmd_dma.paddr + size, 979 ("invalid physical address")); 980 return 0; 981 982 fail: iwm_free_tx_ring(sc, ring); 983 return error; 984 } 985 986 static void 987 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 988 { 989 int i; 990 991 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 992 struct iwm_tx_data *data = &ring->data[i]; 993 994 if (data->m != NULL) { 995 bus_dmamap_sync(ring->data_dmat, data->map, 996 BUS_DMASYNC_POSTWRITE); 997 bus_dmamap_unload(ring->data_dmat, data->map); 998 m_freem(data->m); 999 data->m = NULL; 1000 } 1001 } 1002 /* Clear TX descriptors. */ 1003 memset(ring->desc, 0, ring->desc_dma.size); 1004 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1005 BUS_DMASYNC_PREWRITE); 1006 sc->qfullmsk &= ~(1 << ring->qid); 1007 ring->queued = 0; 1008 ring->cur = 0; 1009 } 1010 1011 static void 1012 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1013 { 1014 int i; 1015 1016 iwm_dma_contig_free(&ring->desc_dma); 1017 iwm_dma_contig_free(&ring->cmd_dma); 1018 1019 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1020 struct iwm_tx_data *data = &ring->data[i]; 1021 1022 if (data->m != NULL) { 1023 bus_dmamap_sync(ring->data_dmat, data->map, 1024 BUS_DMASYNC_POSTWRITE); 1025 bus_dmamap_unload(ring->data_dmat, data->map); 1026 m_freem(data->m); 1027 data->m = NULL; 1028 } 1029 if (data->map != NULL) { 1030 bus_dmamap_destroy(ring->data_dmat, data->map); 1031 data->map = NULL; 1032 } 1033 } 1034 if (ring->data_dmat != NULL) { 1035 bus_dma_tag_destroy(ring->data_dmat); 1036 ring->data_dmat = NULL; 1037 } 1038 } 1039 1040 /* 1041 * High-level hardware frobbing routines 1042 */ 1043 1044 static void 1045 iwm_enable_interrupts(struct iwm_softc *sc) 1046 { 1047 sc->sc_intmask = IWM_CSR_INI_SET_MASK; 1048 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1049 } 1050 1051 static void 1052 iwm_restore_interrupts(struct iwm_softc *sc) 1053 { 1054 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1055 } 1056 1057 static void 1058 iwm_disable_interrupts(struct iwm_softc *sc) 1059 { 1060 /* disable interrupts */ 1061 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 1062 1063 /* acknowledge all interrupts */ 1064 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1065 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); 1066 } 1067 1068 static void 1069 iwm_ict_reset(struct iwm_softc *sc) 1070 { 1071 iwm_disable_interrupts(sc); 1072 1073 /* Reset ICT table. */ 1074 memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); 1075 sc->ict_cur = 0; 1076 1077 /* Set physical address of ICT table (4KB aligned). */ 1078 IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, 1079 IWM_CSR_DRAM_INT_TBL_ENABLE 1080 | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK 1081 | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); 1082 1083 /* Switch to ICT interrupt mode in driver. */ 1084 sc->sc_flags |= IWM_FLAG_USE_ICT; 1085 1086 /* Re-enable interrupts. */ 1087 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1088 iwm_enable_interrupts(sc); 1089 } 1090 1091 /* iwlwifi pcie/trans.c */ 1092 1093 /* 1094 * Since this .. hard-resets things, it's time to actually 1095 * mark the first vap (if any) as having no mac context. 1096 * It's annoying, but since the driver is potentially being 1097 * stop/start'ed whilst active (thanks openbsd port!) we 1098 * have to correctly track this. 1099 */ 1100 static void 1101 iwm_stop_device(struct iwm_softc *sc) 1102 { 1103 struct ieee80211com *ic = &sc->sc_ic; 1104 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1105 int chnl, ntries; 1106 int qid; 1107 1108 /* tell the device to stop sending interrupts */ 1109 iwm_disable_interrupts(sc); 1110 1111 /* 1112 * FreeBSD-local: mark the first vap as not-uploaded, 1113 * so the next transition through auth/assoc 1114 * will correctly populate the MAC context. 1115 */ 1116 if (vap) { 1117 struct iwm_vap *iv = IWM_VAP(vap); 1118 iv->is_uploaded = 0; 1119 } 1120 1121 /* device going down, Stop using ICT table */ 1122 sc->sc_flags &= ~IWM_FLAG_USE_ICT; 1123 1124 /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ 1125 1126 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1127 1128 /* Stop all DMA channels. */ 1129 if (iwm_nic_lock(sc)) { 1130 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1131 IWM_WRITE(sc, 1132 IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); 1133 for (ntries = 0; ntries < 200; ntries++) { 1134 uint32_t r; 1135 1136 r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG); 1137 if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE( 1138 chnl)) 1139 break; 1140 DELAY(20); 1141 } 1142 } 1143 iwm_nic_unlock(sc); 1144 } 1145 1146 /* Stop RX ring. */ 1147 iwm_reset_rx_ring(sc, &sc->rxq); 1148 1149 /* Reset all TX rings. */ 1150 for (qid = 0; qid < nitems(sc->txq); qid++) 1151 iwm_reset_tx_ring(sc, &sc->txq[qid]); 1152 1153 /* 1154 * Power-down device's busmaster DMA clocks 1155 */ 1156 iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); 1157 DELAY(5); 1158 1159 /* Make sure (redundant) we've released our request to stay awake */ 1160 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 1161 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 1162 1163 /* Stop the device, and put it in low power state */ 1164 iwm_apm_stop(sc); 1165 1166 /* Upon stop, the APM issues an interrupt if HW RF kill is set. 1167 * Clean again the interrupt here 1168 */ 1169 iwm_disable_interrupts(sc); 1170 /* stop and reset the on-board processor */ 1171 IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET); 1172 1173 /* 1174 * Even if we stop the HW, we still want the RF kill 1175 * interrupt 1176 */ 1177 iwm_enable_rfkill_int(sc); 1178 iwm_check_rfkill(sc); 1179 } 1180 1181 /* iwlwifi: mvm/ops.c */ 1182 static void 1183 iwm_mvm_nic_config(struct iwm_softc *sc) 1184 { 1185 uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; 1186 uint32_t reg_val = 0; 1187 1188 radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> 1189 IWM_FW_PHY_CFG_RADIO_TYPE_POS; 1190 radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> 1191 IWM_FW_PHY_CFG_RADIO_STEP_POS; 1192 radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> 1193 IWM_FW_PHY_CFG_RADIO_DASH_POS; 1194 1195 /* SKU control */ 1196 reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << 1197 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; 1198 reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << 1199 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; 1200 1201 /* radio configuration */ 1202 reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; 1203 reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; 1204 reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; 1205 1206 IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val); 1207 1208 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1209 "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, 1210 radio_cfg_step, radio_cfg_dash); 1211 1212 /* 1213 * W/A : NIC is stuck in a reset state after Early PCIe power off 1214 * (PCIe power is lost before PERST# is asserted), causing ME FW 1215 * to lose ownership and not being able to obtain it back. 1216 */ 1217 iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, 1218 IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, 1219 ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); 1220 } 1221 1222 static int 1223 iwm_nic_rx_init(struct iwm_softc *sc) 1224 { 1225 if (!iwm_nic_lock(sc)) 1226 return EBUSY; 1227 1228 /* 1229 * Initialize RX ring. This is from the iwn driver. 1230 */ 1231 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 1232 1233 /* stop DMA */ 1234 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 1235 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 1236 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 1237 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); 1238 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 1239 1240 /* Set physical address of RX ring (256-byte aligned). */ 1241 IWM_WRITE(sc, 1242 IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8); 1243 1244 /* Set physical address of RX status (16-byte aligned). */ 1245 IWM_WRITE(sc, 1246 IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); 1247 1248 /* Enable RX. */ 1249 /* 1250 * Note: Linux driver also sets this: 1251 * (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 1252 * 1253 * It causes weird behavior. YMMV. 1254 */ 1255 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 1256 IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 1257 IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ 1258 IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 1259 IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | 1260 IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); 1261 1262 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1263 1264 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 1265 if (sc->host_interrupt_operation_mode) 1266 IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); 1267 1268 /* 1269 * Thus sayeth el jefe (iwlwifi) via a comment: 1270 * 1271 * This value should initially be 0 (before preparing any 1272 * RBs), should be 8 after preparing the first 8 RBs (for example) 1273 */ 1274 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); 1275 1276 iwm_nic_unlock(sc); 1277 1278 return 0; 1279 } 1280 1281 static int 1282 iwm_nic_tx_init(struct iwm_softc *sc) 1283 { 1284 int qid; 1285 1286 if (!iwm_nic_lock(sc)) 1287 return EBUSY; 1288 1289 /* Deactivate TX scheduler. */ 1290 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1291 1292 /* Set physical address of "keep warm" page (16-byte aligned). */ 1293 IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); 1294 1295 /* Initialize TX rings. */ 1296 for (qid = 0; qid < nitems(sc->txq); qid++) { 1297 struct iwm_tx_ring *txq = &sc->txq[qid]; 1298 1299 /* Set physical address of TX ring (256-byte aligned). */ 1300 IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), 1301 txq->desc_dma.paddr >> 8); 1302 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 1303 "%s: loading ring %d descriptors (%p) at %lx\n", 1304 __func__, 1305 qid, txq->desc, 1306 (unsigned long) (txq->desc_dma.paddr >> 8)); 1307 } 1308 iwm_nic_unlock(sc); 1309 1310 return 0; 1311 } 1312 1313 static int 1314 iwm_nic_init(struct iwm_softc *sc) 1315 { 1316 int error; 1317 1318 iwm_apm_init(sc); 1319 iwm_set_pwr(sc); 1320 1321 iwm_mvm_nic_config(sc); 1322 1323 if ((error = iwm_nic_rx_init(sc)) != 0) 1324 return error; 1325 1326 /* 1327 * Ditto for TX, from iwn 1328 */ 1329 if ((error = iwm_nic_tx_init(sc)) != 0) 1330 return error; 1331 1332 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1333 "%s: shadow registers enabled\n", __func__); 1334 IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); 1335 1336 return 0; 1337 } 1338 1339 enum iwm_mvm_tx_fifo { 1340 IWM_MVM_TX_FIFO_BK = 0, 1341 IWM_MVM_TX_FIFO_BE, 1342 IWM_MVM_TX_FIFO_VI, 1343 IWM_MVM_TX_FIFO_VO, 1344 IWM_MVM_TX_FIFO_MCAST = 5, 1345 }; 1346 1347 const uint8_t iwm_mvm_ac_to_tx_fifo[] = { 1348 IWM_MVM_TX_FIFO_VO, 1349 IWM_MVM_TX_FIFO_VI, 1350 IWM_MVM_TX_FIFO_BE, 1351 IWM_MVM_TX_FIFO_BK, 1352 }; 1353 1354 static void 1355 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo) 1356 { 1357 if (!iwm_nic_lock(sc)) { 1358 device_printf(sc->sc_dev, 1359 "%s: cannot enable txq %d\n", 1360 __func__, 1361 qid); 1362 return; /* XXX return EBUSY */ 1363 } 1364 1365 /* unactivate before configuration */ 1366 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1367 (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) 1368 | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); 1369 1370 if (qid != IWM_MVM_CMD_QUEUE) { 1371 iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid)); 1372 } 1373 1374 iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid)); 1375 1376 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); 1377 iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); 1378 1379 iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); 1380 /* Set scheduler window size and frame limit. */ 1381 iwm_write_mem32(sc, 1382 sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + 1383 sizeof(uint32_t), 1384 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & 1385 IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | 1386 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & 1387 IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); 1388 1389 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1390 (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1391 (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | 1392 (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | 1393 IWM_SCD_QUEUE_STTS_REG_MSK); 1394 1395 iwm_nic_unlock(sc); 1396 1397 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 1398 "%s: enabled txq %d FIFO %d\n", 1399 __func__, qid, fifo); 1400 } 1401 1402 static int 1403 iwm_post_alive(struct iwm_softc *sc) 1404 { 1405 int nwords; 1406 int error, chnl; 1407 1408 if (!iwm_nic_lock(sc)) 1409 return EBUSY; 1410 1411 if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) { 1412 device_printf(sc->sc_dev, 1413 "%s: sched addr mismatch", 1414 __func__); 1415 error = EINVAL; 1416 goto out; 1417 } 1418 1419 iwm_ict_reset(sc); 1420 1421 /* Clear TX scheduler state in SRAM. */ 1422 nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - 1423 IWM_SCD_CONTEXT_MEM_LOWER_BOUND) 1424 / sizeof(uint32_t); 1425 error = iwm_write_mem(sc, 1426 sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, 1427 NULL, nwords); 1428 if (error) 1429 goto out; 1430 1431 /* Set physical address of TX scheduler rings (1KB aligned). */ 1432 iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); 1433 1434 iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); 1435 1436 /* enable command channel */ 1437 iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7); 1438 1439 iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); 1440 1441 /* Enable DMA channels. */ 1442 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1443 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 1444 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1445 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); 1446 } 1447 1448 IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, 1449 IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); 1450 1451 /* Enable L1-Active */ 1452 iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, 1453 IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); 1454 1455 out: 1456 iwm_nic_unlock(sc); 1457 return error; 1458 } 1459 1460 /* 1461 * NVM read access and content parsing. We do not support 1462 * external NVM or writing NVM. 1463 * iwlwifi/mvm/nvm.c 1464 */ 1465 1466 /* list of NVM sections we are allowed/need to read */ 1467 const int nvm_to_read[] = { 1468 IWM_NVM_SECTION_TYPE_HW, 1469 IWM_NVM_SECTION_TYPE_SW, 1470 IWM_NVM_SECTION_TYPE_CALIBRATION, 1471 IWM_NVM_SECTION_TYPE_PRODUCTION, 1472 }; 1473 1474 /* Default NVM size to read */ 1475 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) 1476 #define IWM_MAX_NVM_SECTION_SIZE 7000 1477 1478 #define IWM_NVM_WRITE_OPCODE 1 1479 #define IWM_NVM_READ_OPCODE 0 1480 1481 static int 1482 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, 1483 uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) 1484 { 1485 offset = 0; 1486 struct iwm_nvm_access_cmd nvm_access_cmd = { 1487 .offset = htole16(offset), 1488 .length = htole16(length), 1489 .type = htole16(section), 1490 .op_code = IWM_NVM_READ_OPCODE, 1491 }; 1492 struct iwm_nvm_access_resp *nvm_resp; 1493 struct iwm_rx_packet *pkt; 1494 struct iwm_host_cmd cmd = { 1495 .id = IWM_NVM_ACCESS_CMD, 1496 .flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB | 1497 IWM_CMD_SEND_IN_RFKILL, 1498 .data = { &nvm_access_cmd, }, 1499 }; 1500 int ret, bytes_read, offset_read; 1501 uint8_t *resp_data; 1502 1503 cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); 1504 1505 ret = iwm_send_cmd(sc, &cmd); 1506 if (ret) 1507 return ret; 1508 1509 pkt = cmd.resp_pkt; 1510 if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { 1511 device_printf(sc->sc_dev, 1512 "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n", 1513 __func__, pkt->hdr.flags); 1514 ret = EIO; 1515 goto exit; 1516 } 1517 1518 /* Extract NVM response */ 1519 nvm_resp = (void *)pkt->data; 1520 1521 ret = le16toh(nvm_resp->status); 1522 bytes_read = le16toh(nvm_resp->length); 1523 offset_read = le16toh(nvm_resp->offset); 1524 resp_data = nvm_resp->data; 1525 if (ret) { 1526 device_printf(sc->sc_dev, 1527 "%s: NVM access command failed with status %d\n", 1528 __func__, ret); 1529 ret = EINVAL; 1530 goto exit; 1531 } 1532 1533 if (offset_read != offset) { 1534 device_printf(sc->sc_dev, 1535 "%s: NVM ACCESS response with invalid offset %d\n", 1536 __func__, offset_read); 1537 ret = EINVAL; 1538 goto exit; 1539 } 1540 1541 memcpy(data + offset, resp_data, bytes_read); 1542 *len = bytes_read; 1543 1544 exit: 1545 iwm_free_resp(sc, &cmd); 1546 return ret; 1547 } 1548 1549 /* 1550 * Reads an NVM section completely. 1551 * NICs prior to 7000 family doesn't have a real NVM, but just read 1552 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited 1553 * by uCode, we need to manually check in this case that we don't 1554 * overflow and try to read more than the EEPROM size. 1555 * For 7000 family NICs, we supply the maximal size we can read, and 1556 * the uCode fills the response with as much data as we can, 1557 * without overflowing, so no check is needed. 1558 */ 1559 static int 1560 iwm_nvm_read_section(struct iwm_softc *sc, 1561 uint16_t section, uint8_t *data, uint16_t *len) 1562 { 1563 uint16_t length, seglen; 1564 int error; 1565 1566 /* Set nvm section read length */ 1567 length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE; 1568 *len = 0; 1569 1570 /* Read the NVM until exhausted (reading less than requested) */ 1571 while (seglen == length) { 1572 error = iwm_nvm_read_chunk(sc, 1573 section, *len, length, data, &seglen); 1574 if (error) { 1575 device_printf(sc->sc_dev, 1576 "Cannot read NVM from section " 1577 "%d offset %d, length %d\n", 1578 section, *len, length); 1579 return error; 1580 } 1581 *len += seglen; 1582 } 1583 1584 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1585 "NVM section %d read completed\n", section); 1586 return 0; 1587 } 1588 1589 /* 1590 * BEGIN IWM_NVM_PARSE 1591 */ 1592 1593 /* iwlwifi/iwl-nvm-parse.c */ 1594 1595 /* NVM offsets (in words) definitions */ 1596 enum wkp_nvm_offsets { 1597 /* NVM HW-Section offset (in words) definitions */ 1598 IWM_HW_ADDR = 0x15, 1599 1600 /* NVM SW-Section offset (in words) definitions */ 1601 IWM_NVM_SW_SECTION = 0x1C0, 1602 IWM_NVM_VERSION = 0, 1603 IWM_RADIO_CFG = 1, 1604 IWM_SKU = 2, 1605 IWM_N_HW_ADDRS = 3, 1606 IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, 1607 1608 /* NVM calibration section offset (in words) definitions */ 1609 IWM_NVM_CALIB_SECTION = 0x2B8, 1610 IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION 1611 }; 1612 1613 /* SKU Capabilities (actual values from NVM definition) */ 1614 enum nvm_sku_bits { 1615 IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), 1616 IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), 1617 IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), 1618 IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), 1619 }; 1620 1621 /* radio config bits (actual values from NVM definition) */ 1622 #define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ 1623 #define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ 1624 #define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ 1625 #define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ 1626 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ 1627 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ 1628 1629 #define DEFAULT_MAX_TX_POWER 16 1630 1631 /** 1632 * enum iwm_nvm_channel_flags - channel flags in NVM 1633 * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo 1634 * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel 1635 * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed 1636 * @IWM_NVM_CHANNEL_RADAR: radar detection required 1637 * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate 1638 * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) 1639 * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) 1640 * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) 1641 * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) 1642 */ 1643 enum iwm_nvm_channel_flags { 1644 IWM_NVM_CHANNEL_VALID = (1 << 0), 1645 IWM_NVM_CHANNEL_IBSS = (1 << 1), 1646 IWM_NVM_CHANNEL_ACTIVE = (1 << 3), 1647 IWM_NVM_CHANNEL_RADAR = (1 << 4), 1648 IWM_NVM_CHANNEL_DFS = (1 << 7), 1649 IWM_NVM_CHANNEL_WIDE = (1 << 8), 1650 IWM_NVM_CHANNEL_40MHZ = (1 << 9), 1651 IWM_NVM_CHANNEL_80MHZ = (1 << 10), 1652 IWM_NVM_CHANNEL_160MHZ = (1 << 11), 1653 }; 1654 1655 /* 1656 * Add a channel to the net80211 channel list. 1657 * 1658 * ieee is the ieee channel number 1659 * ch_idx is channel index. 1660 * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G. 1661 * ch_flags is the iwm channel flags. 1662 * 1663 * Return 0 on OK, < 0 on error. 1664 */ 1665 static int 1666 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx, 1667 int mode, uint16_t ch_flags) 1668 { 1669 /* XXX for now, no overflow checking! */ 1670 struct ieee80211com *ic = &sc->sc_ic; 1671 int is_5ghz, flags; 1672 struct ieee80211_channel *channel; 1673 1674 channel = &ic->ic_channels[ic->ic_nchans++]; 1675 channel->ic_ieee = ieee; 1676 1677 is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS; 1678 if (!is_5ghz) { 1679 flags = IEEE80211_CHAN_2GHZ; 1680 channel->ic_flags = mode; 1681 } else { 1682 flags = IEEE80211_CHAN_5GHZ; 1683 channel->ic_flags = mode; 1684 } 1685 channel->ic_freq = ieee80211_ieee2mhz(ieee, flags); 1686 1687 if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE)) 1688 channel->ic_flags |= IEEE80211_CHAN_PASSIVE; 1689 return (0); 1690 } 1691 1692 static void 1693 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags) 1694 { 1695 struct ieee80211com *ic = &sc->sc_ic; 1696 struct iwm_nvm_data *data = &sc->sc_nvm; 1697 int ch_idx; 1698 uint16_t ch_flags; 1699 int hw_value; 1700 1701 for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) { 1702 ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); 1703 1704 if (ch_idx >= IWM_NUM_2GHZ_CHANNELS && 1705 !data->sku_cap_band_52GHz_enable) 1706 ch_flags &= ~IWM_NVM_CHANNEL_VALID; 1707 1708 if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { 1709 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1710 "Ch. %d Flags %x [%sGHz] - No traffic\n", 1711 iwm_nvm_channels[ch_idx], 1712 ch_flags, 1713 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1714 "5.2" : "2.4"); 1715 continue; 1716 } 1717 1718 hw_value = iwm_nvm_channels[ch_idx]; 1719 1720 /* 5GHz? */ 1721 if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) { 1722 (void) iwm_init_net80211_channel(sc, hw_value, 1723 ch_idx, 1724 IEEE80211_CHAN_A, 1725 ch_flags); 1726 } else { 1727 (void) iwm_init_net80211_channel(sc, hw_value, 1728 ch_idx, 1729 IEEE80211_CHAN_B, 1730 ch_flags); 1731 /* If it's not channel 13, also add 11g */ 1732 if (hw_value != 13) 1733 (void) iwm_init_net80211_channel(sc, hw_value, 1734 ch_idx, 1735 IEEE80211_CHAN_G, 1736 ch_flags); 1737 } 1738 1739 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1740 "Ch. %d Flags %x [%sGHz] - Added\n", 1741 iwm_nvm_channels[ch_idx], 1742 ch_flags, 1743 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1744 "5.2" : "2.4"); 1745 } 1746 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1747 } 1748 1749 static int 1750 iwm_parse_nvm_data(struct iwm_softc *sc, 1751 const uint16_t *nvm_hw, const uint16_t *nvm_sw, 1752 const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains) 1753 { 1754 struct iwm_nvm_data *data = &sc->sc_nvm; 1755 uint8_t hw_addr[IEEE80211_ADDR_LEN]; 1756 uint16_t radio_cfg, sku; 1757 1758 data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION); 1759 1760 radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG); 1761 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); 1762 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); 1763 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); 1764 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); 1765 data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); 1766 data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); 1767 1768 sku = le16_to_cpup(nvm_sw + IWM_SKU); 1769 data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; 1770 data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; 1771 data->sku_cap_11n_enable = 0; 1772 1773 if (!data->valid_tx_ant || !data->valid_rx_ant) { 1774 device_printf(sc->sc_dev, 1775 "%s: invalid antennas (0x%x, 0x%x)\n", 1776 __func__, data->valid_tx_ant, 1777 data->valid_rx_ant); 1778 return EINVAL; 1779 } 1780 1781 data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); 1782 1783 data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB); 1784 data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1); 1785 1786 /* The byte order is little endian 16 bit, meaning 214365 */ 1787 IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR); 1788 data->hw_addr[0] = hw_addr[1]; 1789 data->hw_addr[1] = hw_addr[0]; 1790 data->hw_addr[2] = hw_addr[3]; 1791 data->hw_addr[3] = hw_addr[2]; 1792 data->hw_addr[4] = hw_addr[5]; 1793 data->hw_addr[5] = hw_addr[4]; 1794 1795 iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]); 1796 data->calib_version = 255; /* TODO: 1797 this value will prevent some checks from 1798 failing, we need to check if this 1799 field is still needed, and if it does, 1800 where is it in the NVM */ 1801 1802 return 0; 1803 } 1804 1805 /* 1806 * END NVM PARSE 1807 */ 1808 1809 struct iwm_nvm_section { 1810 uint16_t length; 1811 const uint8_t *data; 1812 }; 1813 1814 static int 1815 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) 1816 { 1817 const uint16_t *hw, *sw, *calib; 1818 1819 /* Checking for required sections */ 1820 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 1821 !sections[IWM_NVM_SECTION_TYPE_HW].data) { 1822 device_printf(sc->sc_dev, 1823 "%s: Can't parse empty NVM sections\n", 1824 __func__); 1825 return ENOENT; 1826 } 1827 1828 hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data; 1829 sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; 1830 calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; 1831 return iwm_parse_nvm_data(sc, hw, sw, calib, 1832 IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc)); 1833 } 1834 1835 static int 1836 iwm_nvm_init(struct iwm_softc *sc) 1837 { 1838 struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; 1839 int i, section, error; 1840 uint16_t len; 1841 uint8_t *nvm_buffer, *temp; 1842 1843 /* Read From FW NVM */ 1844 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1845 "%s: Read NVM\n", 1846 __func__); 1847 1848 /* TODO: find correct NVM max size for a section */ 1849 nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT); 1850 if (nvm_buffer == NULL) 1851 return (ENOMEM); 1852 for (i = 0; i < nitems(nvm_to_read); i++) { 1853 section = nvm_to_read[i]; 1854 KASSERT(section <= nitems(nvm_sections), 1855 ("too many sections")); 1856 1857 error = iwm_nvm_read_section(sc, section, nvm_buffer, &len); 1858 if (error) 1859 break; 1860 1861 temp = malloc(len, M_DEVBUF, M_NOWAIT); 1862 if (temp == NULL) { 1863 error = ENOMEM; 1864 break; 1865 } 1866 memcpy(temp, nvm_buffer, len); 1867 nvm_sections[section].data = temp; 1868 nvm_sections[section].length = len; 1869 } 1870 free(nvm_buffer, M_DEVBUF); 1871 if (error) 1872 return error; 1873 1874 return iwm_parse_nvm_sections(sc, nvm_sections); 1875 } 1876 1877 /* 1878 * Firmware loading gunk. This is kind of a weird hybrid between the 1879 * iwn driver and the Linux iwlwifi driver. 1880 */ 1881 1882 static int 1883 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr, 1884 const uint8_t *section, uint32_t byte_cnt) 1885 { 1886 struct iwm_dma_info *dma = &sc->fw_dma; 1887 int error; 1888 1889 /* Copy firmware section into pre-allocated DMA-safe memory. */ 1890 memcpy(dma->vaddr, section, byte_cnt); 1891 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1892 1893 if (!iwm_nic_lock(sc)) 1894 return EBUSY; 1895 1896 sc->sc_fw_chunk_done = 0; 1897 1898 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 1899 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); 1900 IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), 1901 dst_addr); 1902 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), 1903 dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); 1904 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), 1905 (iwm_get_dma_hi_addr(dma->paddr) 1906 << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); 1907 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 1908 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1909 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | 1910 IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); 1911 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 1912 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1913 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | 1914 IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); 1915 1916 iwm_nic_unlock(sc); 1917 1918 /* wait 1s for this segment to load */ 1919 while (!sc->sc_fw_chunk_done) 1920 if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0) 1921 break; 1922 1923 return error; 1924 } 1925 1926 static int 1927 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 1928 { 1929 struct iwm_fw_sects *fws; 1930 int error, i, w; 1931 const void *data; 1932 uint32_t dlen; 1933 uint32_t offset; 1934 1935 sc->sc_uc.uc_intr = 0; 1936 1937 fws = &sc->sc_fw.fw_sects[ucode_type]; 1938 for (i = 0; i < fws->fw_count; i++) { 1939 data = fws->fw_sect[i].fws_data; 1940 dlen = fws->fw_sect[i].fws_len; 1941 offset = fws->fw_sect[i].fws_devoff; 1942 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 1943 "LOAD FIRMWARE type %d offset %u len %d\n", 1944 ucode_type, offset, dlen); 1945 error = iwm_firmware_load_chunk(sc, offset, data, dlen); 1946 if (error) { 1947 device_printf(sc->sc_dev, 1948 "%s: chunk %u of %u returned error %02d\n", 1949 __func__, i, fws->fw_count, error); 1950 return error; 1951 } 1952 } 1953 1954 /* wait for the firmware to load */ 1955 IWM_WRITE(sc, IWM_CSR_RESET, 0); 1956 1957 for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) { 1958 error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10); 1959 } 1960 1961 return error; 1962 } 1963 1964 /* iwlwifi: pcie/trans.c */ 1965 static int 1966 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) 1967 { 1968 int error; 1969 1970 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1971 1972 if ((error = iwm_nic_init(sc)) != 0) { 1973 device_printf(sc->sc_dev, "unable to init nic\n"); 1974 return error; 1975 } 1976 1977 /* make sure rfkill handshake bits are cleared */ 1978 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 1979 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, 1980 IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); 1981 1982 /* clear (again), then enable host interrupts */ 1983 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1984 iwm_enable_interrupts(sc); 1985 1986 /* really make sure rfkill handshake bits are cleared */ 1987 /* maybe we should write a few times more? just to make sure */ 1988 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 1989 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 1990 1991 /* Load the given image to the HW */ 1992 return iwm_load_firmware(sc, ucode_type); 1993 } 1994 1995 static int 1996 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base) 1997 { 1998 return iwm_post_alive(sc); 1999 } 2000 2001 static int 2002 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) 2003 { 2004 struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { 2005 .valid = htole32(valid_tx_ant), 2006 }; 2007 2008 return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 2009 IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); 2010 } 2011 2012 /* iwlwifi: mvm/fw.c */ 2013 static int 2014 iwm_send_phy_cfg_cmd(struct iwm_softc *sc) 2015 { 2016 struct iwm_phy_cfg_cmd phy_cfg_cmd; 2017 enum iwm_ucode_type ucode_type = sc->sc_uc_current; 2018 2019 /* Set parameters */ 2020 phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config); 2021 phy_cfg_cmd.calib_control.event_trigger = 2022 sc->sc_default_calib[ucode_type].event_trigger; 2023 phy_cfg_cmd.calib_control.flow_trigger = 2024 sc->sc_default_calib[ucode_type].flow_trigger; 2025 2026 IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, 2027 "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); 2028 return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, 2029 sizeof(phy_cfg_cmd), &phy_cfg_cmd); 2030 } 2031 2032 static int 2033 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc, 2034 enum iwm_ucode_type ucode_type) 2035 { 2036 enum iwm_ucode_type old_type = sc->sc_uc_current; 2037 int error; 2038 2039 if ((error = iwm_read_firmware(sc, ucode_type)) != 0) 2040 return error; 2041 2042 sc->sc_uc_current = ucode_type; 2043 error = iwm_start_fw(sc, ucode_type); 2044 if (error) { 2045 sc->sc_uc_current = old_type; 2046 return error; 2047 } 2048 2049 return iwm_fw_alive(sc, sc->sched_base); 2050 } 2051 2052 /* 2053 * mvm misc bits 2054 */ 2055 2056 /* 2057 * follows iwlwifi/fw.c 2058 */ 2059 static int 2060 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm) 2061 { 2062 int error; 2063 2064 /* do not operate with rfkill switch turned on */ 2065 if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { 2066 device_printf(sc->sc_dev, 2067 "radio is disabled by hardware switch\n"); 2068 return EPERM; 2069 } 2070 2071 sc->sc_init_complete = 0; 2072 if ((error = iwm_mvm_load_ucode_wait_alive(sc, 2073 IWM_UCODE_TYPE_INIT)) != 0) 2074 return error; 2075 2076 if (justnvm) { 2077 if ((error = iwm_nvm_init(sc)) != 0) { 2078 device_printf(sc->sc_dev, "failed to read nvm\n"); 2079 return error; 2080 } 2081 IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr); 2082 2083 sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd) 2084 + sc->sc_capa_max_probe_len 2085 + IWM_MAX_NUM_SCAN_CHANNELS 2086 * sizeof(struct iwm_scan_channel); 2087 sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF, 2088 M_NOWAIT); 2089 if (sc->sc_scan_cmd == NULL) 2090 return (ENOMEM); 2091 2092 return 0; 2093 } 2094 2095 /* Send TX valid antennas before triggering calibrations */ 2096 if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0) 2097 return error; 2098 2099 /* 2100 * Send phy configurations command to init uCode 2101 * to start the 16.0 uCode init image internal calibrations. 2102 */ 2103 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) { 2104 device_printf(sc->sc_dev, 2105 "%s: failed to run internal calibration: %d\n", 2106 __func__, error); 2107 return error; 2108 } 2109 2110 /* 2111 * Nothing to do but wait for the init complete notification 2112 * from the firmware 2113 */ 2114 while (!sc->sc_init_complete) 2115 if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx, 2116 0, "iwminit", 2*hz)) != 0) 2117 break; 2118 2119 return error; 2120 } 2121 2122 /* 2123 * receive side 2124 */ 2125 2126 /* (re)stock rx ring, called at init-time and at runtime */ 2127 static int 2128 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) 2129 { 2130 struct iwm_rx_ring *ring = &sc->rxq; 2131 struct iwm_rx_data *data = &ring->data[idx]; 2132 struct mbuf *m; 2133 int error; 2134 bus_addr_t paddr; 2135 2136 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); 2137 if (m == NULL) 2138 return ENOBUFS; 2139 2140 if (data->m != NULL) 2141 bus_dmamap_unload(ring->data_dmat, data->map); 2142 2143 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 2144 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2145 if (error != 0) { 2146 device_printf(sc->sc_dev, 2147 "%s: could not create RX buf DMA map, error %d\n", 2148 __func__, error); 2149 goto fail; 2150 } 2151 data->m = m; 2152 error = bus_dmamap_load(ring->data_dmat, data->map, 2153 mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr, 2154 &paddr, BUS_DMA_NOWAIT); 2155 if (error != 0 && error != EFBIG) { 2156 device_printf(sc->sc_dev, 2157 "%s: can't not map mbuf, error %d\n", __func__, 2158 error); 2159 goto fail; 2160 } 2161 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); 2162 2163 /* Update RX descriptor. */ 2164 ring->desc[idx] = htole32(paddr >> 8); 2165 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2166 BUS_DMASYNC_PREWRITE); 2167 2168 return 0; 2169 fail: 2170 return error; 2171 } 2172 2173 /* iwlwifi: mvm/rx.c */ 2174 #define IWM_RSSI_OFFSET 50 2175 static int 2176 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) 2177 { 2178 int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm; 2179 uint32_t agc_a, agc_b; 2180 uint32_t val; 2181 2182 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]); 2183 agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS; 2184 agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS; 2185 2186 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]); 2187 rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS; 2188 rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS; 2189 2190 /* 2191 * dBm = rssi dB - agc dB - constant. 2192 * Higher AGC (higher radio gain) means lower signal. 2193 */ 2194 rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a; 2195 rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b; 2196 max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm); 2197 2198 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2199 "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n", 2200 rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b); 2201 2202 return max_rssi_dbm; 2203 } 2204 2205 /* iwlwifi: mvm/rx.c */ 2206 /* 2207 * iwm_mvm_get_signal_strength - use new rx PHY INFO API 2208 * values are reported by the fw as positive values - need to negate 2209 * to obtain their dBM. Account for missing antennas by replacing 0 2210 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. 2211 */ 2212 static int 2213 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) 2214 { 2215 int energy_a, energy_b, energy_c, max_energy; 2216 uint32_t val; 2217 2218 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); 2219 energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> 2220 IWM_RX_INFO_ENERGY_ANT_A_POS; 2221 energy_a = energy_a ? -energy_a : -256; 2222 energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> 2223 IWM_RX_INFO_ENERGY_ANT_B_POS; 2224 energy_b = energy_b ? -energy_b : -256; 2225 energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> 2226 IWM_RX_INFO_ENERGY_ANT_C_POS; 2227 energy_c = energy_c ? -energy_c : -256; 2228 max_energy = MAX(energy_a, energy_b); 2229 max_energy = MAX(max_energy, energy_c); 2230 2231 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2232 "energy In A %d B %d C %d , and max %d\n", 2233 energy_a, energy_b, energy_c, max_energy); 2234 2235 return max_energy; 2236 } 2237 2238 static void 2239 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, 2240 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 2241 { 2242 struct iwm_rx_phy_info *phy_info = (void *)pkt->data; 2243 2244 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); 2245 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2246 2247 memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); 2248 } 2249 2250 /* 2251 * Retrieve the average noise (in dBm) among receivers. 2252 */ 2253 static int 2254 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats) 2255 { 2256 int i, total, nbant, noise; 2257 2258 total = nbant = noise = 0; 2259 for (i = 0; i < 3; i++) { 2260 noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; 2261 if (noise) { 2262 total += noise; 2263 nbant++; 2264 } 2265 } 2266 2267 /* There should be at least one antenna but check anyway. */ 2268 return (nbant == 0) ? -127 : (total / nbant) - 107; 2269 } 2270 2271 /* 2272 * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler 2273 * 2274 * Handles the actual data of the Rx packet from the fw 2275 */ 2276 static void 2277 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, 2278 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 2279 { 2280 struct ieee80211com *ic = &sc->sc_ic; 2281 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2282 struct ieee80211_frame *wh; 2283 struct ieee80211_node *ni; 2284 struct ieee80211_rx_stats rxs; 2285 struct mbuf *m; 2286 struct iwm_rx_phy_info *phy_info; 2287 struct iwm_rx_mpdu_res_start *rx_res; 2288 uint32_t len; 2289 uint32_t rx_pkt_status; 2290 int rssi; 2291 2292 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2293 2294 phy_info = &sc->sc_last_phy_info; 2295 rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; 2296 wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); 2297 len = le16toh(rx_res->byte_count); 2298 rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); 2299 2300 m = data->m; 2301 m->m_data = pkt->data + sizeof(*rx_res); 2302 m->m_pkthdr.len = m->m_len = len; 2303 2304 if (__predict_false(phy_info->cfg_phy_cnt > 20)) { 2305 device_printf(sc->sc_dev, 2306 "dsp size out of range [0,20]: %d\n", 2307 phy_info->cfg_phy_cnt); 2308 return; 2309 } 2310 2311 if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || 2312 !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { 2313 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2314 "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); 2315 return; /* drop */ 2316 } 2317 2318 if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) { 2319 rssi = iwm_mvm_get_signal_strength(sc, phy_info); 2320 } else { 2321 rssi = iwm_mvm_calc_rssi(sc, phy_info); 2322 } 2323 rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */ 2324 rssi = MIN(rssi, sc->sc_max_rssi); /* clip to max. 100% */ 2325 2326 /* replenish ring for the buffer we're going to feed to the sharks */ 2327 if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 2328 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 2329 __func__); 2330 return; 2331 } 2332 2333 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2334 2335 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 2336 "%s: phy_info: channel=%d, flags=0x%08x\n", 2337 __func__, 2338 le16toh(phy_info->channel), 2339 le16toh(phy_info->phy_flags)); 2340 2341 /* 2342 * Populate an RX state struct with the provided information. 2343 */ 2344 bzero(&rxs, sizeof(rxs)); 2345 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 2346 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 2347 rxs.c_ieee = le16toh(phy_info->channel); 2348 if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { 2349 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); 2350 } else { 2351 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); 2352 } 2353 rxs.rssi = rssi - sc->sc_noise; 2354 rxs.nf = sc->sc_noise; 2355 2356 if (ieee80211_radiotap_active_vap(vap)) { 2357 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 2358 2359 tap->wr_flags = 0; 2360 if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) 2361 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2362 tap->wr_chan_freq = htole16(rxs.c_freq); 2363 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 2364 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 2365 tap->wr_dbm_antsignal = (int8_t)rssi; 2366 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 2367 tap->wr_tsft = phy_info->system_timestamp; 2368 switch (phy_info->rate) { 2369 /* CCK rates. */ 2370 case 10: tap->wr_rate = 2; break; 2371 case 20: tap->wr_rate = 4; break; 2372 case 55: tap->wr_rate = 11; break; 2373 case 110: tap->wr_rate = 22; break; 2374 /* OFDM rates. */ 2375 case 0xd: tap->wr_rate = 12; break; 2376 case 0xf: tap->wr_rate = 18; break; 2377 case 0x5: tap->wr_rate = 24; break; 2378 case 0x7: tap->wr_rate = 36; break; 2379 case 0x9: tap->wr_rate = 48; break; 2380 case 0xb: tap->wr_rate = 72; break; 2381 case 0x1: tap->wr_rate = 96; break; 2382 case 0x3: tap->wr_rate = 108; break; 2383 /* Unknown rate: should not happen. */ 2384 default: tap->wr_rate = 0; 2385 } 2386 } 2387 2388 IWM_UNLOCK(sc); 2389 if (ni != NULL) { 2390 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); 2391 ieee80211_input_mimo(ni, m, &rxs); 2392 ieee80211_free_node(ni); 2393 } else { 2394 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); 2395 ieee80211_input_mimo_all(ic, m, &rxs); 2396 } 2397 IWM_LOCK(sc); 2398 } 2399 2400 static int 2401 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, 2402 struct iwm_node *in) 2403 { 2404 struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data; 2405 struct ieee80211_node *ni = &in->in_ni; 2406 struct ieee80211vap *vap = ni->ni_vap; 2407 int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; 2408 int failack = tx_resp->failure_frame; 2409 2410 KASSERT(tx_resp->frame_count == 1, ("too many frames")); 2411 2412 /* Update rate control statistics. */ 2413 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", 2414 __func__, 2415 (int) le16toh(tx_resp->status.status), 2416 (int) le16toh(tx_resp->status.sequence), 2417 tx_resp->frame_count, 2418 tx_resp->bt_kill_count, 2419 tx_resp->failure_rts, 2420 tx_resp->failure_frame, 2421 le32toh(tx_resp->initial_rate), 2422 (int) le16toh(tx_resp->wireless_media_time)); 2423 2424 if (status != IWM_TX_STATUS_SUCCESS && 2425 status != IWM_TX_STATUS_DIRECT_DONE) { 2426 ieee80211_ratectl_tx_complete(vap, ni, 2427 IEEE80211_RATECTL_TX_FAILURE, &failack, NULL); 2428 return (1); 2429 } else { 2430 ieee80211_ratectl_tx_complete(vap, ni, 2431 IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL); 2432 return (0); 2433 } 2434 } 2435 2436 static void 2437 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, 2438 struct iwm_rx_packet *pkt, struct iwm_rx_data *data) 2439 { 2440 struct iwm_cmd_header *cmd_hdr = &pkt->hdr; 2441 int idx = cmd_hdr->idx; 2442 int qid = cmd_hdr->qid; 2443 struct iwm_tx_ring *ring = &sc->txq[qid]; 2444 struct iwm_tx_data *txd = &ring->data[idx]; 2445 struct iwm_node *in = txd->in; 2446 struct mbuf *m = txd->m; 2447 int status; 2448 2449 KASSERT(txd->done == 0, ("txd not done")); 2450 KASSERT(txd->in != NULL, ("txd without node")); 2451 KASSERT(txd->m != NULL, ("txd without mbuf")); 2452 2453 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2454 2455 sc->sc_tx_timer = 0; 2456 2457 status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in); 2458 2459 /* Unmap and free mbuf. */ 2460 bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); 2461 bus_dmamap_unload(ring->data_dmat, txd->map); 2462 2463 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 2464 "free txd %p, in %p\n", txd, txd->in); 2465 txd->done = 1; 2466 txd->m = NULL; 2467 txd->in = NULL; 2468 2469 ieee80211_tx_complete(&in->in_ni, m, status); 2470 2471 if (--ring->queued < IWM_TX_RING_LOMARK) { 2472 sc->qfullmsk &= ~(1 << ring->qid); 2473 if (sc->qfullmsk == 0) { 2474 /* 2475 * Well, we're in interrupt context, but then again 2476 * I guess net80211 does all sorts of stunts in 2477 * interrupt context, so maybe this is no biggie. 2478 */ 2479 iwm_start(sc); 2480 } 2481 } 2482 } 2483 2484 /* 2485 * transmit side 2486 */ 2487 2488 /* 2489 * Process a "command done" firmware notification. This is where we wakeup 2490 * processes waiting for a synchronous command completion. 2491 * from if_iwn 2492 */ 2493 static void 2494 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 2495 { 2496 struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE]; 2497 struct iwm_tx_data *data; 2498 2499 if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) { 2500 return; /* Not a command ack. */ 2501 } 2502 2503 data = &ring->data[pkt->hdr.idx]; 2504 2505 /* If the command was mapped in an mbuf, free it. */ 2506 if (data->m != NULL) { 2507 bus_dmamap_sync(ring->data_dmat, data->map, 2508 BUS_DMASYNC_POSTWRITE); 2509 bus_dmamap_unload(ring->data_dmat, data->map); 2510 m_freem(data->m); 2511 data->m = NULL; 2512 } 2513 wakeup(&ring->desc[pkt->hdr.idx]); 2514 } 2515 2516 #if 0 2517 /* 2518 * necessary only for block ack mode 2519 */ 2520 void 2521 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, 2522 uint16_t len) 2523 { 2524 struct iwm_agn_scd_bc_tbl *scd_bc_tbl; 2525 uint16_t w_val; 2526 2527 scd_bc_tbl = sc->sched_dma.vaddr; 2528 2529 len += 8; /* magic numbers came naturally from paris */ 2530 if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE) 2531 len = roundup(len, 4) / 4; 2532 2533 w_val = htole16(sta_id << 12 | len); 2534 2535 /* Update TX scheduler. */ 2536 scd_bc_tbl[qid].tfd_offset[idx] = w_val; 2537 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2538 BUS_DMASYNC_PREWRITE); 2539 2540 /* I really wonder what this is ?!? */ 2541 if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { 2542 scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; 2543 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2544 BUS_DMASYNC_PREWRITE); 2545 } 2546 } 2547 #endif 2548 2549 /* 2550 * Take an 802.11 (non-n) rate, find the relevant rate 2551 * table entry. return the index into in_ridx[]. 2552 * 2553 * The caller then uses that index back into in_ridx 2554 * to figure out the rate index programmed /into/ 2555 * the firmware for this given node. 2556 */ 2557 static int 2558 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in, 2559 uint8_t rate) 2560 { 2561 int i; 2562 uint8_t r; 2563 2564 for (i = 0; i < nitems(in->in_ridx); i++) { 2565 r = iwm_rates[in->in_ridx[i]].rate; 2566 if (rate == r) 2567 return (i); 2568 } 2569 /* XXX Return the first */ 2570 /* XXX TODO: have it return the /lowest/ */ 2571 return (0); 2572 } 2573 2574 /* 2575 * Fill in various bit for management frames, and leave them 2576 * unfilled for data frames (firmware takes care of that). 2577 * Return the selected TX rate. 2578 */ 2579 static const struct iwm_rate * 2580 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, 2581 struct ieee80211_frame *wh, struct iwm_tx_cmd *tx) 2582 { 2583 struct ieee80211com *ic = &sc->sc_ic; 2584 struct ieee80211_node *ni = &in->in_ni; 2585 const struct iwm_rate *rinfo; 2586 int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2587 int ridx, rate_flags; 2588 2589 tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; 2590 tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; 2591 2592 /* 2593 * XXX TODO: everything about the rate selection here is terrible! 2594 */ 2595 2596 if (type == IEEE80211_FC0_TYPE_DATA) { 2597 int i; 2598 /* for data frames, use RS table */ 2599 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2600 i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate); 2601 ridx = in->in_ridx[i]; 2602 2603 /* This is the index into the programmed table */ 2604 tx->initial_rate_index = i; 2605 tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); 2606 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 2607 "%s: start with i=%d, txrate %d\n", 2608 __func__, i, iwm_rates[ridx].rate); 2609 /* XXX no rate_n_flags? */ 2610 return &iwm_rates[ridx]; 2611 } 2612 2613 /* 2614 * For non-data, use the lowest supported rate for the given 2615 * operational mode. 2616 * 2617 * Note: there may not be any rate control information available. 2618 * This driver currently assumes if we're transmitting data 2619 * frames, use the rate control table. Grr. 2620 * 2621 * XXX TODO: use the configured rate for the traffic type! 2622 */ 2623 if (ic->ic_curmode == IEEE80211_MODE_11A) { 2624 /* 2625 * XXX this assumes the mode is either 11a or not 11a; 2626 * definitely won't work for 11n. 2627 */ 2628 ridx = IWM_RIDX_OFDM; 2629 } else { 2630 ridx = IWM_RIDX_CCK; 2631 } 2632 2633 rinfo = &iwm_rates[ridx]; 2634 2635 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", 2636 __func__, ridx, 2637 rinfo->rate, 2638 !! (IWM_RIDX_IS_CCK(ridx)) 2639 ); 2640 2641 /* XXX TODO: hard-coded TX antenna? */ 2642 rate_flags = 1 << IWM_RATE_MCS_ANT_POS; 2643 if (IWM_RIDX_IS_CCK(ridx)) 2644 rate_flags |= IWM_RATE_MCS_CCK_MSK; 2645 /* XXX hard-coded tx rate */ 2646 tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); 2647 2648 return rinfo; 2649 } 2650 2651 #define TB0_SIZE 16 2652 static int 2653 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 2654 { 2655 struct ieee80211com *ic = &sc->sc_ic; 2656 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2657 struct iwm_node *in = IWM_NODE(ni); 2658 struct iwm_tx_ring *ring; 2659 struct iwm_tx_data *data; 2660 struct iwm_tfd *desc; 2661 struct iwm_device_cmd *cmd; 2662 struct iwm_tx_cmd *tx; 2663 struct ieee80211_frame *wh; 2664 struct ieee80211_key *k = NULL; 2665 struct mbuf *m1; 2666 const struct iwm_rate *rinfo; 2667 uint32_t flags; 2668 u_int hdrlen; 2669 bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; 2670 int nsegs; 2671 uint8_t tid, type; 2672 int i, totlen, error, pad; 2673 2674 wh = mtod(m, struct ieee80211_frame *); 2675 hdrlen = ieee80211_anyhdrsize(wh); 2676 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2677 tid = 0; 2678 ring = &sc->txq[ac]; 2679 desc = &ring->desc[ring->cur]; 2680 memset(desc, 0, sizeof(*desc)); 2681 data = &ring->data[ring->cur]; 2682 2683 /* Fill out iwm_tx_cmd to send to the firmware */ 2684 cmd = &ring->cmd[ring->cur]; 2685 cmd->hdr.code = IWM_TX_CMD; 2686 cmd->hdr.flags = 0; 2687 cmd->hdr.qid = ring->qid; 2688 cmd->hdr.idx = ring->cur; 2689 2690 tx = (void *)cmd->data; 2691 memset(tx, 0, sizeof(*tx)); 2692 2693 rinfo = iwm_tx_fill_cmd(sc, in, wh, tx); 2694 2695 /* Encrypt the frame if need be. */ 2696 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2697 /* Retrieve key for TX && do software encryption. */ 2698 k = ieee80211_crypto_encap(ni, m); 2699 if (k == NULL) { 2700 m_freem(m); 2701 return (ENOBUFS); 2702 } 2703 /* 802.11 header may have moved. */ 2704 wh = mtod(m, struct ieee80211_frame *); 2705 } 2706 2707 if (ieee80211_radiotap_active_vap(vap)) { 2708 struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; 2709 2710 tap->wt_flags = 0; 2711 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2712 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2713 tap->wt_rate = rinfo->rate; 2714 if (k != NULL) 2715 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2716 ieee80211_radiotap_tx(vap, m); 2717 } 2718 2719 2720 totlen = m->m_pkthdr.len; 2721 2722 flags = 0; 2723 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2724 flags |= IWM_TX_CMD_FLG_ACK; 2725 } 2726 2727 if (type != IEEE80211_FC0_TYPE_DATA 2728 && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 2729 && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2730 flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; 2731 } 2732 2733 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2734 type != IEEE80211_FC0_TYPE_DATA) 2735 tx->sta_id = sc->sc_aux_sta.sta_id; 2736 else 2737 tx->sta_id = IWM_STATION_ID; 2738 2739 if (type == IEEE80211_FC0_TYPE_MGT) { 2740 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2741 2742 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2743 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2744 tx->pm_frame_timeout = htole16(3); 2745 else 2746 tx->pm_frame_timeout = htole16(2); 2747 } else { 2748 tx->pm_frame_timeout = htole16(0); 2749 } 2750 2751 if (hdrlen & 3) { 2752 /* First segment length must be a multiple of 4. */ 2753 flags |= IWM_TX_CMD_FLG_MH_PAD; 2754 pad = 4 - (hdrlen & 3); 2755 } else 2756 pad = 0; 2757 2758 tx->driver_txop = 0; 2759 tx->next_frame_len = 0; 2760 2761 tx->len = htole16(totlen); 2762 tx->tid_tspec = tid; 2763 tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); 2764 2765 /* Set physical address of "scratch area". */ 2766 tx->dram_lsb_ptr = htole32(data->scratch_paddr); 2767 tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); 2768 2769 /* Copy 802.11 header in TX command. */ 2770 memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); 2771 2772 flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; 2773 2774 tx->sec_ctl = 0; 2775 tx->tx_flags |= htole32(flags); 2776 2777 /* Trim 802.11 header. */ 2778 m_adj(m, hdrlen); 2779 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 2780 segs, &nsegs, BUS_DMA_NOWAIT); 2781 if (error != 0) { 2782 if (error != EFBIG) { 2783 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 2784 error); 2785 m_freem(m); 2786 return error; 2787 } 2788 /* Too many DMA segments, linearize mbuf. */ 2789 m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); 2790 if (m1 == NULL) { 2791 device_printf(sc->sc_dev, 2792 "%s: could not defrag mbuf\n", __func__); 2793 m_freem(m); 2794 return (ENOBUFS); 2795 } 2796 m = m1; 2797 2798 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 2799 segs, &nsegs, BUS_DMA_NOWAIT); 2800 if (error != 0) { 2801 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 2802 error); 2803 m_freem(m); 2804 return error; 2805 } 2806 } 2807 data->m = m; 2808 data->in = in; 2809 data->done = 0; 2810 2811 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 2812 "sending txd %p, in %p\n", data, data->in); 2813 KASSERT(data->in != NULL, ("node is NULL")); 2814 2815 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 2816 "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%d\n", 2817 ring->qid, ring->cur, totlen, nsegs, 2818 le32toh(tx->tx_flags), 2819 le32toh(tx->rate_n_flags), 2820 (int) tx->initial_rate_index 2821 ); 2822 2823 /* Fill TX descriptor. */ 2824 desc->num_tbs = 2 + nsegs; 2825 2826 desc->tbs[0].lo = htole32(data->cmd_paddr); 2827 desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | 2828 (TB0_SIZE << 4); 2829 desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); 2830 desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | 2831 ((sizeof(struct iwm_cmd_header) + sizeof(*tx) 2832 + hdrlen + pad - TB0_SIZE) << 4); 2833 2834 /* Other DMA segments are for data payload. */ 2835 for (i = 0; i < nsegs; i++) { 2836 seg = &segs[i]; 2837 desc->tbs[i+2].lo = htole32(seg->ds_addr); 2838 desc->tbs[i+2].hi_n_len = \ 2839 htole16(iwm_get_dma_hi_addr(seg->ds_addr)) 2840 | ((seg->ds_len) << 4); 2841 } 2842 2843 bus_dmamap_sync(ring->data_dmat, data->map, 2844 BUS_DMASYNC_PREWRITE); 2845 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 2846 BUS_DMASYNC_PREWRITE); 2847 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2848 BUS_DMASYNC_PREWRITE); 2849 2850 #if 0 2851 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); 2852 #endif 2853 2854 /* Kick TX ring. */ 2855 ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; 2856 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 2857 2858 /* Mark TX ring as full if we reach a certain threshold. */ 2859 if (++ring->queued > IWM_TX_RING_HIMARK) { 2860 sc->qfullmsk |= 1 << ring->qid; 2861 } 2862 2863 return 0; 2864 } 2865 2866 static int 2867 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2868 const struct ieee80211_bpf_params *params) 2869 { 2870 struct ieee80211com *ic = ni->ni_ic; 2871 struct iwm_softc *sc = ic->ic_softc; 2872 int error = 0; 2873 2874 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 2875 "->%s begin\n", __func__); 2876 2877 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 2878 m_freem(m); 2879 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 2880 "<-%s not RUNNING\n", __func__); 2881 return (ENETDOWN); 2882 } 2883 2884 IWM_LOCK(sc); 2885 /* XXX fix this */ 2886 if (params == NULL) { 2887 error = iwm_tx(sc, m, ni, 0); 2888 } else { 2889 error = iwm_tx(sc, m, ni, 0); 2890 } 2891 sc->sc_tx_timer = 5; 2892 IWM_UNLOCK(sc); 2893 2894 return (error); 2895 } 2896 2897 /* 2898 * mvm/tx.c 2899 */ 2900 2901 #if 0 2902 /* 2903 * Note that there are transports that buffer frames before they reach 2904 * the firmware. This means that after flush_tx_path is called, the 2905 * queue might not be empty. The race-free way to handle this is to: 2906 * 1) set the station as draining 2907 * 2) flush the Tx path 2908 * 3) wait for the transport queues to be empty 2909 */ 2910 int 2911 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync) 2912 { 2913 struct iwm_tx_path_flush_cmd flush_cmd = { 2914 .queues_ctl = htole32(tfd_msk), 2915 .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), 2916 }; 2917 int ret; 2918 2919 ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, 2920 sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC, 2921 sizeof(flush_cmd), &flush_cmd); 2922 if (ret) 2923 device_printf(sc->sc_dev, 2924 "Flushing tx queue failed: %d\n", ret); 2925 return ret; 2926 } 2927 #endif 2928 2929 /* 2930 * BEGIN mvm/sta.c 2931 */ 2932 2933 static void 2934 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6, 2935 struct iwm_mvm_add_sta_cmd_v5 *cmd_v5) 2936 { 2937 memset(cmd_v5, 0, sizeof(*cmd_v5)); 2938 2939 cmd_v5->add_modify = cmd_v6->add_modify; 2940 cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx; 2941 cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color; 2942 IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr); 2943 cmd_v5->sta_id = cmd_v6->sta_id; 2944 cmd_v5->modify_mask = cmd_v6->modify_mask; 2945 cmd_v5->station_flags = cmd_v6->station_flags; 2946 cmd_v5->station_flags_msk = cmd_v6->station_flags_msk; 2947 cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid; 2948 cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid; 2949 cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn; 2950 cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count; 2951 cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags; 2952 cmd_v5->assoc_id = cmd_v6->assoc_id; 2953 cmd_v5->beamform_flags = cmd_v6->beamform_flags; 2954 cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk; 2955 } 2956 2957 static int 2958 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc, 2959 struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status) 2960 { 2961 struct iwm_mvm_add_sta_cmd_v5 cmd_v5; 2962 2963 if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) { 2964 return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, 2965 sizeof(*cmd), cmd, status); 2966 } 2967 2968 iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5); 2969 2970 return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5), 2971 &cmd_v5, status); 2972 } 2973 2974 /* send station add/update command to firmware */ 2975 static int 2976 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update) 2977 { 2978 struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd; 2979 int ret; 2980 uint32_t status; 2981 2982 memset(&add_sta_cmd, 0, sizeof(add_sta_cmd)); 2983 2984 add_sta_cmd.sta_id = IWM_STATION_ID; 2985 add_sta_cmd.mac_id_n_color 2986 = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID, 2987 IWM_DEFAULT_COLOR)); 2988 if (!update) { 2989 add_sta_cmd.tfd_queue_msk = htole32(0xf); 2990 IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid); 2991 } 2992 add_sta_cmd.add_modify = update ? 1 : 0; 2993 add_sta_cmd.station_flags_msk 2994 |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK); 2995 2996 status = IWM_ADD_STA_SUCCESS; 2997 ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status); 2998 if (ret) 2999 return ret; 3000 3001 switch (status) { 3002 case IWM_ADD_STA_SUCCESS: 3003 break; 3004 default: 3005 ret = EIO; 3006 device_printf(sc->sc_dev, "IWM_ADD_STA failed\n"); 3007 break; 3008 } 3009 3010 return ret; 3011 } 3012 3013 static int 3014 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in) 3015 { 3016 int ret; 3017 3018 ret = iwm_mvm_sta_send_to_fw(sc, in, 0); 3019 if (ret) 3020 return ret; 3021 3022 return 0; 3023 } 3024 3025 static int 3026 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in) 3027 { 3028 return iwm_mvm_sta_send_to_fw(sc, in, 1); 3029 } 3030 3031 static int 3032 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta, 3033 const uint8_t *addr, uint16_t mac_id, uint16_t color) 3034 { 3035 struct iwm_mvm_add_sta_cmd_v6 cmd; 3036 int ret; 3037 uint32_t status; 3038 3039 memset(&cmd, 0, sizeof(cmd)); 3040 cmd.sta_id = sta->sta_id; 3041 cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color)); 3042 3043 cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk); 3044 3045 if (addr) 3046 IEEE80211_ADDR_COPY(cmd.addr, addr); 3047 3048 ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status); 3049 if (ret) 3050 return ret; 3051 3052 switch (status) { 3053 case IWM_ADD_STA_SUCCESS: 3054 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 3055 "%s: Internal station added.\n", __func__); 3056 return 0; 3057 default: 3058 device_printf(sc->sc_dev, 3059 "%s: Add internal station failed, status=0x%x\n", 3060 __func__, status); 3061 ret = EIO; 3062 break; 3063 } 3064 return ret; 3065 } 3066 3067 static int 3068 iwm_mvm_add_aux_sta(struct iwm_softc *sc) 3069 { 3070 int ret; 3071 3072 sc->sc_aux_sta.sta_id = 3; 3073 sc->sc_aux_sta.tfd_queue_msk = 0; 3074 3075 ret = iwm_mvm_add_int_sta_common(sc, 3076 &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0); 3077 3078 if (ret) 3079 memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta)); 3080 return ret; 3081 } 3082 3083 /* 3084 * END mvm/sta.c 3085 */ 3086 3087 /* 3088 * BEGIN mvm/quota.c 3089 */ 3090 3091 static int 3092 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in) 3093 { 3094 struct iwm_time_quota_cmd cmd; 3095 int i, idx, ret, num_active_macs, quota, quota_rem; 3096 int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; 3097 int n_ifs[IWM_MAX_BINDINGS] = {0, }; 3098 uint16_t id; 3099 3100 memset(&cmd, 0, sizeof(cmd)); 3101 3102 /* currently, PHY ID == binding ID */ 3103 if (in) { 3104 id = in->in_phyctxt->id; 3105 KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); 3106 colors[id] = in->in_phyctxt->color; 3107 3108 if (1) 3109 n_ifs[id] = 1; 3110 } 3111 3112 /* 3113 * The FW's scheduling session consists of 3114 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments 3115 * equally between all the bindings that require quota 3116 */ 3117 num_active_macs = 0; 3118 for (i = 0; i < IWM_MAX_BINDINGS; i++) { 3119 cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); 3120 num_active_macs += n_ifs[i]; 3121 } 3122 3123 quota = 0; 3124 quota_rem = 0; 3125 if (num_active_macs) { 3126 quota = IWM_MVM_MAX_QUOTA / num_active_macs; 3127 quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs; 3128 } 3129 3130 for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { 3131 if (colors[i] < 0) 3132 continue; 3133 3134 cmd.quotas[idx].id_and_color = 3135 htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); 3136 3137 if (n_ifs[i] <= 0) { 3138 cmd.quotas[idx].quota = htole32(0); 3139 cmd.quotas[idx].max_duration = htole32(0); 3140 } else { 3141 cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); 3142 cmd.quotas[idx].max_duration = htole32(0); 3143 } 3144 idx++; 3145 } 3146 3147 /* Give the remainder of the session to the first binding */ 3148 cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); 3149 3150 ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, 3151 sizeof(cmd), &cmd); 3152 if (ret) 3153 device_printf(sc->sc_dev, 3154 "%s: Failed to send quota: %d\n", __func__, ret); 3155 return ret; 3156 } 3157 3158 /* 3159 * END mvm/quota.c 3160 */ 3161 3162 /* 3163 * ieee80211 routines 3164 */ 3165 3166 /* 3167 * Change to AUTH state in 80211 state machine. Roughly matches what 3168 * Linux does in bss_info_changed(). 3169 */ 3170 static int 3171 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) 3172 { 3173 struct ieee80211_node *ni; 3174 struct iwm_node *in; 3175 struct iwm_vap *iv = IWM_VAP(vap); 3176 uint32_t duration; 3177 int error; 3178 3179 /* 3180 * XXX i have a feeling that the vap node is being 3181 * freed from underneath us. Grr. 3182 */ 3183 ni = ieee80211_ref_node(vap->iv_bss); 3184 in = IWM_NODE(ni); 3185 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, 3186 "%s: called; vap=%p, bss ni=%p\n", 3187 __func__, 3188 vap, 3189 ni); 3190 3191 in->in_assoc = 0; 3192 3193 error = iwm_allow_mcast(vap, sc); 3194 if (error) { 3195 device_printf(sc->sc_dev, 3196 "%s: failed to set multicast\n", __func__); 3197 goto out; 3198 } 3199 3200 /* 3201 * This is where it deviates from what Linux does. 3202 * 3203 * Linux iwlwifi doesn't reset the nic each time, nor does it 3204 * call ctxt_add() here. Instead, it adds it during vap creation, 3205 * and always does does a mac_ctx_changed(). 3206 * 3207 * The openbsd port doesn't attempt to do that - it reset things 3208 * at odd states and does the add here. 3209 * 3210 * So, until the state handling is fixed (ie, we never reset 3211 * the NIC except for a firmware failure, which should drag 3212 * the NIC back to IDLE, re-setup and re-add all the mac/phy 3213 * contexts that are required), let's do a dirty hack here. 3214 */ 3215 if (iv->is_uploaded) { 3216 if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) { 3217 device_printf(sc->sc_dev, 3218 "%s: failed to update MAC\n", __func__); 3219 goto out; 3220 } 3221 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 3222 in->in_ni.ni_chan, 1, 1)) != 0) { 3223 device_printf(sc->sc_dev, 3224 "%s: failed update phy ctxt\n", __func__); 3225 goto out; 3226 } 3227 in->in_phyctxt = &sc->sc_phyctxt[0]; 3228 3229 if ((error = iwm_mvm_binding_update(sc, in)) != 0) { 3230 device_printf(sc->sc_dev, 3231 "%s: binding update cmd\n", __func__); 3232 goto out; 3233 } 3234 if ((error = iwm_mvm_update_sta(sc, in)) != 0) { 3235 device_printf(sc->sc_dev, 3236 "%s: failed to update sta\n", __func__); 3237 goto out; 3238 } 3239 } else { 3240 if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) { 3241 device_printf(sc->sc_dev, 3242 "%s: failed to add MAC\n", __func__); 3243 goto out; 3244 } 3245 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 3246 in->in_ni.ni_chan, 1, 1)) != 0) { 3247 device_printf(sc->sc_dev, 3248 "%s: failed add phy ctxt!\n", __func__); 3249 error = ETIMEDOUT; 3250 goto out; 3251 } 3252 in->in_phyctxt = &sc->sc_phyctxt[0]; 3253 3254 if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) { 3255 device_printf(sc->sc_dev, 3256 "%s: binding add cmd\n", __func__); 3257 goto out; 3258 } 3259 if ((error = iwm_mvm_add_sta(sc, in)) != 0) { 3260 device_printf(sc->sc_dev, 3261 "%s: failed to add sta\n", __func__); 3262 goto out; 3263 } 3264 } 3265 3266 /* 3267 * Prevent the FW from wandering off channel during association 3268 * by "protecting" the session with a time event. 3269 */ 3270 /* XXX duration is in units of TU, not MS */ 3271 duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS; 3272 iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */); 3273 DELAY(100); 3274 3275 error = 0; 3276 out: 3277 ieee80211_free_node(ni); 3278 return (error); 3279 } 3280 3281 static int 3282 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc) 3283 { 3284 struct iwm_node *in = IWM_NODE(vap->iv_bss); 3285 int error; 3286 3287 if ((error = iwm_mvm_update_sta(sc, in)) != 0) { 3288 device_printf(sc->sc_dev, 3289 "%s: failed to update STA\n", __func__); 3290 return error; 3291 } 3292 3293 in->in_assoc = 1; 3294 if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) { 3295 device_printf(sc->sc_dev, 3296 "%s: failed to update MAC\n", __func__); 3297 return error; 3298 } 3299 3300 return 0; 3301 } 3302 3303 static int 3304 iwm_release(struct iwm_softc *sc, struct iwm_node *in) 3305 { 3306 /* 3307 * Ok, so *technically* the proper set of calls for going 3308 * from RUN back to SCAN is: 3309 * 3310 * iwm_mvm_power_mac_disable(sc, in); 3311 * iwm_mvm_mac_ctxt_changed(sc, in); 3312 * iwm_mvm_rm_sta(sc, in); 3313 * iwm_mvm_update_quotas(sc, NULL); 3314 * iwm_mvm_mac_ctxt_changed(sc, in); 3315 * iwm_mvm_binding_remove_vif(sc, in); 3316 * iwm_mvm_mac_ctxt_remove(sc, in); 3317 * 3318 * However, that freezes the device not matter which permutations 3319 * and modifications are attempted. Obviously, this driver is missing 3320 * something since it works in the Linux driver, but figuring out what 3321 * is missing is a little more complicated. Now, since we're going 3322 * back to nothing anyway, we'll just do a complete device reset. 3323 * Up your's, device! 3324 */ 3325 //iwm_mvm_flush_tx_path(sc, 0xf, 1); 3326 iwm_stop_device(sc); 3327 iwm_init_hw(sc); 3328 if (in) 3329 in->in_assoc = 0; 3330 return 0; 3331 3332 #if 0 3333 int error; 3334 3335 iwm_mvm_power_mac_disable(sc, in); 3336 3337 if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { 3338 device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error); 3339 return error; 3340 } 3341 3342 if ((error = iwm_mvm_rm_sta(sc, in)) != 0) { 3343 device_printf(sc->sc_dev, "sta remove fail %d\n", error); 3344 return error; 3345 } 3346 error = iwm_mvm_rm_sta(sc, in); 3347 in->in_assoc = 0; 3348 iwm_mvm_update_quotas(sc, NULL); 3349 if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { 3350 device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error); 3351 return error; 3352 } 3353 iwm_mvm_binding_remove_vif(sc, in); 3354 3355 iwm_mvm_mac_ctxt_remove(sc, in); 3356 3357 return error; 3358 #endif 3359 } 3360 3361 static struct ieee80211_node * 3362 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3363 { 3364 return malloc(sizeof (struct iwm_node), M_80211_NODE, 3365 M_NOWAIT | M_ZERO); 3366 } 3367 3368 static void 3369 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in) 3370 { 3371 struct ieee80211_node *ni = &in->in_ni; 3372 struct iwm_lq_cmd *lq = &in->in_lq; 3373 int nrates = ni->ni_rates.rs_nrates; 3374 int i, ridx, tab = 0; 3375 int txant = 0; 3376 3377 if (nrates > nitems(lq->rs_table)) { 3378 device_printf(sc->sc_dev, 3379 "%s: node supports %d rates, driver handles " 3380 "only %zu\n", __func__, nrates, nitems(lq->rs_table)); 3381 return; 3382 } 3383 if (nrates == 0) { 3384 device_printf(sc->sc_dev, 3385 "%s: node supports 0 rates, odd!\n", __func__); 3386 return; 3387 } 3388 3389 /* 3390 * XXX .. and most of iwm_node is not initialised explicitly; 3391 * it's all just 0x0 passed to the firmware. 3392 */ 3393 3394 /* first figure out which rates we should support */ 3395 /* XXX TODO: this isn't 11n aware /at all/ */ 3396 memset(&in->in_ridx, -1, sizeof(in->in_ridx)); 3397 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3398 "%s: nrates=%d\n", __func__, nrates); 3399 3400 /* 3401 * Loop over nrates and populate in_ridx from the highest 3402 * rate to the lowest rate. Remember, in_ridx[] has 3403 * IEEE80211_RATE_MAXSIZE entries! 3404 */ 3405 for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) { 3406 int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL; 3407 3408 /* Map 802.11 rate to HW rate index. */ 3409 for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++) 3410 if (iwm_rates[ridx].rate == rate) 3411 break; 3412 if (ridx > IWM_RIDX_MAX) { 3413 device_printf(sc->sc_dev, 3414 "%s: WARNING: device rate for %d not found!\n", 3415 __func__, rate); 3416 } else { 3417 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3418 "%s: rate: i: %d, rate=%d, ridx=%d\n", 3419 __func__, 3420 i, 3421 rate, 3422 ridx); 3423 in->in_ridx[i] = ridx; 3424 } 3425 } 3426 3427 /* then construct a lq_cmd based on those */ 3428 memset(lq, 0, sizeof(*lq)); 3429 lq->sta_id = IWM_STATION_ID; 3430 3431 /* 3432 * are these used? (we don't do SISO or MIMO) 3433 * need to set them to non-zero, though, or we get an error. 3434 */ 3435 lq->single_stream_ant_msk = 1; 3436 lq->dual_stream_ant_msk = 1; 3437 3438 /* 3439 * Build the actual rate selection table. 3440 * The lowest bits are the rates. Additionally, 3441 * CCK needs bit 9 to be set. The rest of the bits 3442 * we add to the table select the tx antenna 3443 * Note that we add the rates in the highest rate first 3444 * (opposite of ni_rates). 3445 */ 3446 /* 3447 * XXX TODO: this should be looping over the min of nrates 3448 * and LQ_MAX_RETRY_NUM. Sigh. 3449 */ 3450 for (i = 0; i < nrates; i++) { 3451 int nextant; 3452 3453 if (txant == 0) 3454 txant = IWM_FW_VALID_TX_ANT(sc); 3455 nextant = 1<<(ffs(txant)-1); 3456 txant &= ~nextant; 3457 3458 /* 3459 * Map the rate id into a rate index into 3460 * our hardware table containing the 3461 * configuration to use for this rate. 3462 */ 3463 ridx = in->in_ridx[i]; 3464 tab = iwm_rates[ridx].plcp; 3465 tab |= nextant << IWM_RATE_MCS_ANT_POS; 3466 if (IWM_RIDX_IS_CCK(ridx)) 3467 tab |= IWM_RATE_MCS_CCK_MSK; 3468 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3469 "station rate i=%d, rate=%d, hw=%x\n", 3470 i, iwm_rates[ridx].rate, tab); 3471 lq->rs_table[i] = htole32(tab); 3472 } 3473 /* then fill the rest with the lowest possible rate */ 3474 for (i = nrates; i < nitems(lq->rs_table); i++) { 3475 KASSERT(tab != 0, ("invalid tab")); 3476 lq->rs_table[i] = htole32(tab); 3477 } 3478 } 3479 3480 static int 3481 iwm_media_change(struct ifnet *ifp) 3482 { 3483 struct ieee80211vap *vap = ifp->if_softc; 3484 struct ieee80211com *ic = vap->iv_ic; 3485 struct iwm_softc *sc = ic->ic_softc; 3486 int error; 3487 3488 error = ieee80211_media_change(ifp); 3489 if (error != ENETRESET) 3490 return error; 3491 3492 IWM_LOCK(sc); 3493 if (ic->ic_nrunning > 0) { 3494 iwm_stop(sc); 3495 iwm_init(sc); 3496 } 3497 IWM_UNLOCK(sc); 3498 return error; 3499 } 3500 3501 3502 static int 3503 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 3504 { 3505 struct iwm_vap *ivp = IWM_VAP(vap); 3506 struct ieee80211com *ic = vap->iv_ic; 3507 struct iwm_softc *sc = ic->ic_softc; 3508 struct iwm_node *in; 3509 int error; 3510 3511 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 3512 "switching state %s -> %s\n", 3513 ieee80211_state_name[vap->iv_state], 3514 ieee80211_state_name[nstate]); 3515 IEEE80211_UNLOCK(ic); 3516 IWM_LOCK(sc); 3517 /* disable beacon filtering if we're hopping out of RUN */ 3518 if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) { 3519 iwm_mvm_disable_beacon_filter(sc); 3520 3521 if (((in = IWM_NODE(vap->iv_bss)) != NULL)) 3522 in->in_assoc = 0; 3523 3524 iwm_release(sc, NULL); 3525 3526 /* 3527 * It's impossible to directly go RUN->SCAN. If we iwm_release() 3528 * above then the card will be completely reinitialized, 3529 * so the driver must do everything necessary to bring the card 3530 * from INIT to SCAN. 3531 * 3532 * Additionally, upon receiving deauth frame from AP, 3533 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH 3534 * state. This will also fail with this driver, so bring the FSM 3535 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well. 3536 * 3537 * XXX TODO: fix this for FreeBSD! 3538 */ 3539 if (nstate == IEEE80211_S_SCAN || 3540 nstate == IEEE80211_S_AUTH || 3541 nstate == IEEE80211_S_ASSOC) { 3542 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 3543 "Force transition to INIT; MGT=%d\n", arg); 3544 IWM_UNLOCK(sc); 3545 IEEE80211_LOCK(ic); 3546 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 3547 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 3548 "Going INIT->SCAN\n"); 3549 nstate = IEEE80211_S_SCAN; 3550 IEEE80211_UNLOCK(ic); 3551 IWM_LOCK(sc); 3552 } 3553 } 3554 3555 switch (nstate) { 3556 case IEEE80211_S_INIT: 3557 sc->sc_scanband = 0; 3558 break; 3559 3560 case IEEE80211_S_AUTH: 3561 if ((error = iwm_auth(vap, sc)) != 0) { 3562 device_printf(sc->sc_dev, 3563 "%s: could not move to auth state: %d\n", 3564 __func__, error); 3565 break; 3566 } 3567 break; 3568 3569 case IEEE80211_S_ASSOC: 3570 if ((error = iwm_assoc(vap, sc)) != 0) { 3571 device_printf(sc->sc_dev, 3572 "%s: failed to associate: %d\n", __func__, 3573 error); 3574 break; 3575 } 3576 break; 3577 3578 case IEEE80211_S_RUN: 3579 { 3580 struct iwm_host_cmd cmd = { 3581 .id = IWM_LQ_CMD, 3582 .len = { sizeof(in->in_lq), }, 3583 .flags = IWM_CMD_SYNC, 3584 }; 3585 3586 /* Update the association state, now we have it all */ 3587 /* (eg associd comes in at this point */ 3588 error = iwm_assoc(vap, sc); 3589 if (error != 0) { 3590 device_printf(sc->sc_dev, 3591 "%s: failed to update association state: %d\n", 3592 __func__, 3593 error); 3594 break; 3595 } 3596 3597 in = IWM_NODE(vap->iv_bss); 3598 iwm_mvm_power_mac_update_mode(sc, in); 3599 iwm_mvm_enable_beacon_filter(sc, in); 3600 iwm_mvm_update_quotas(sc, in); 3601 iwm_setrates(sc, in); 3602 3603 cmd.data[0] = &in->in_lq; 3604 if ((error = iwm_send_cmd(sc, &cmd)) != 0) { 3605 device_printf(sc->sc_dev, 3606 "%s: IWM_LQ_CMD failed\n", __func__); 3607 } 3608 3609 break; 3610 } 3611 3612 default: 3613 break; 3614 } 3615 IWM_UNLOCK(sc); 3616 IEEE80211_LOCK(ic); 3617 3618 return (ivp->iv_newstate(vap, nstate, arg)); 3619 } 3620 3621 void 3622 iwm_endscan_cb(void *arg, int pending) 3623 { 3624 struct iwm_softc *sc = arg; 3625 struct ieee80211com *ic = &sc->sc_ic; 3626 int done; 3627 int error; 3628 3629 IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, 3630 "%s: scan ended\n", 3631 __func__); 3632 3633 IWM_LOCK(sc); 3634 if (sc->sc_scanband == IEEE80211_CHAN_2GHZ && 3635 sc->sc_nvm.sku_cap_band_52GHz_enable) { 3636 done = 0; 3637 if ((error = iwm_mvm_scan_request(sc, 3638 IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) { 3639 device_printf(sc->sc_dev, "could not initiate scan\n"); 3640 done = 1; 3641 } 3642 } else { 3643 done = 1; 3644 } 3645 3646 if (done) { 3647 IWM_UNLOCK(sc); 3648 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 3649 IWM_LOCK(sc); 3650 sc->sc_scanband = 0; 3651 } 3652 IWM_UNLOCK(sc); 3653 } 3654 3655 static int 3656 iwm_init_hw(struct iwm_softc *sc) 3657 { 3658 struct ieee80211com *ic = &sc->sc_ic; 3659 int error, i, qid; 3660 3661 if ((error = iwm_start_hw(sc)) != 0) 3662 return error; 3663 3664 if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) { 3665 return error; 3666 } 3667 3668 /* 3669 * should stop and start HW since that INIT 3670 * image just loaded 3671 */ 3672 iwm_stop_device(sc); 3673 if ((error = iwm_start_hw(sc)) != 0) { 3674 device_printf(sc->sc_dev, "could not initialize hardware\n"); 3675 return error; 3676 } 3677 3678 /* omstart, this time with the regular firmware */ 3679 error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR); 3680 if (error) { 3681 device_printf(sc->sc_dev, "could not load firmware\n"); 3682 goto error; 3683 } 3684 3685 if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0) 3686 goto error; 3687 3688 /* Send phy db control command and then phy db calibration*/ 3689 if ((error = iwm_send_phy_db_data(sc)) != 0) 3690 goto error; 3691 3692 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) 3693 goto error; 3694 3695 /* Add auxiliary station for scanning */ 3696 if ((error = iwm_mvm_add_aux_sta(sc)) != 0) 3697 goto error; 3698 3699 for (i = 0; i < IWM_NUM_PHY_CTX; i++) { 3700 /* 3701 * The channel used here isn't relevant as it's 3702 * going to be overwritten in the other flows. 3703 * For now use the first channel we have. 3704 */ 3705 if ((error = iwm_mvm_phy_ctxt_add(sc, 3706 &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) 3707 goto error; 3708 } 3709 3710 error = iwm_mvm_power_update_device(sc); 3711 if (error) 3712 goto error; 3713 3714 /* Mark TX rings as active. */ 3715 for (qid = 0; qid < 4; qid++) { 3716 iwm_enable_txq(sc, qid, qid); 3717 } 3718 3719 return 0; 3720 3721 error: 3722 iwm_stop_device(sc); 3723 return error; 3724 } 3725 3726 /* Allow multicast from our BSSID. */ 3727 static int 3728 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) 3729 { 3730 struct ieee80211_node *ni = vap->iv_bss; 3731 struct iwm_mcast_filter_cmd *cmd; 3732 size_t size; 3733 int error; 3734 3735 size = roundup(sizeof(*cmd), 4); 3736 cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 3737 if (cmd == NULL) 3738 return ENOMEM; 3739 cmd->filter_own = 1; 3740 cmd->port_id = 0; 3741 cmd->count = 0; 3742 cmd->pass_all = 1; 3743 IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); 3744 3745 error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 3746 IWM_CMD_SYNC, size, cmd); 3747 free(cmd, M_DEVBUF); 3748 3749 return (error); 3750 } 3751 3752 static void 3753 iwm_init(struct iwm_softc *sc) 3754 { 3755 int error; 3756 3757 if (sc->sc_flags & IWM_FLAG_HW_INITED) { 3758 return; 3759 } 3760 sc->sc_generation++; 3761 sc->sc_flags &= ~IWM_FLAG_STOPPED; 3762 3763 if ((error = iwm_init_hw(sc)) != 0) { 3764 iwm_stop(sc); 3765 return; 3766 } 3767 3768 /* 3769 * Ok, firmware loaded and we are jogging 3770 */ 3771 sc->sc_flags |= IWM_FLAG_HW_INITED; 3772 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 3773 } 3774 3775 static int 3776 iwm_transmit(struct ieee80211com *ic, struct mbuf *m) 3777 { 3778 struct iwm_softc *sc; 3779 int error; 3780 3781 sc = ic->ic_softc; 3782 3783 IWM_LOCK(sc); 3784 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 3785 IWM_UNLOCK(sc); 3786 return (ENXIO); 3787 } 3788 error = mbufq_enqueue(&sc->sc_snd, m); 3789 if (error) { 3790 IWM_UNLOCK(sc); 3791 return (error); 3792 } 3793 iwm_start(sc); 3794 IWM_UNLOCK(sc); 3795 return (0); 3796 } 3797 3798 /* 3799 * Dequeue packets from sendq and call send. 3800 */ 3801 static void 3802 iwm_start(struct iwm_softc *sc) 3803 { 3804 struct ieee80211_node *ni; 3805 struct mbuf *m; 3806 int ac = 0; 3807 3808 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); 3809 while (sc->qfullmsk == 0 && 3810 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 3811 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3812 if (iwm_tx(sc, m, ni, ac) != 0) { 3813 if_inc_counter(ni->ni_vap->iv_ifp, 3814 IFCOUNTER_OERRORS, 1); 3815 ieee80211_free_node(ni); 3816 continue; 3817 } 3818 sc->sc_tx_timer = 15; 3819 } 3820 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); 3821 } 3822 3823 static void 3824 iwm_stop(struct iwm_softc *sc) 3825 { 3826 3827 sc->sc_flags &= ~IWM_FLAG_HW_INITED; 3828 sc->sc_flags |= IWM_FLAG_STOPPED; 3829 sc->sc_generation++; 3830 sc->sc_scanband = 0; 3831 sc->sc_auth_prot = 0; 3832 sc->sc_tx_timer = 0; 3833 iwm_stop_device(sc); 3834 } 3835 3836 static void 3837 iwm_watchdog(void *arg) 3838 { 3839 struct iwm_softc *sc = arg; 3840 3841 if (sc->sc_tx_timer > 0) { 3842 if (--sc->sc_tx_timer == 0) { 3843 device_printf(sc->sc_dev, "device timeout\n"); 3844 #ifdef IWM_DEBUG 3845 iwm_nic_error(sc); 3846 #endif 3847 iwm_stop(sc); 3848 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 3849 return; 3850 } 3851 } 3852 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 3853 } 3854 3855 static void 3856 iwm_parent(struct ieee80211com *ic) 3857 { 3858 struct iwm_softc *sc = ic->ic_softc; 3859 int startall = 0; 3860 3861 IWM_LOCK(sc); 3862 if (ic->ic_nrunning > 0) { 3863 if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { 3864 iwm_init(sc); 3865 startall = 1; 3866 } 3867 } else if (sc->sc_flags & IWM_FLAG_HW_INITED) 3868 iwm_stop(sc); 3869 IWM_UNLOCK(sc); 3870 if (startall) 3871 ieee80211_start_all(ic); 3872 } 3873 3874 /* 3875 * The interrupt side of things 3876 */ 3877 3878 /* 3879 * error dumping routines are from iwlwifi/mvm/utils.c 3880 */ 3881 3882 /* 3883 * Note: This structure is read from the device with IO accesses, 3884 * and the reading already does the endian conversion. As it is 3885 * read with uint32_t-sized accesses, any members with a different size 3886 * need to be ordered correctly though! 3887 */ 3888 struct iwm_error_event_table { 3889 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 3890 uint32_t error_id; /* type of error */ 3891 uint32_t pc; /* program counter */ 3892 uint32_t blink1; /* branch link */ 3893 uint32_t blink2; /* branch link */ 3894 uint32_t ilink1; /* interrupt link */ 3895 uint32_t ilink2; /* interrupt link */ 3896 uint32_t data1; /* error-specific data */ 3897 uint32_t data2; /* error-specific data */ 3898 uint32_t data3; /* error-specific data */ 3899 uint32_t bcon_time; /* beacon timer */ 3900 uint32_t tsf_low; /* network timestamp function timer */ 3901 uint32_t tsf_hi; /* network timestamp function timer */ 3902 uint32_t gp1; /* GP1 timer register */ 3903 uint32_t gp2; /* GP2 timer register */ 3904 uint32_t gp3; /* GP3 timer register */ 3905 uint32_t ucode_ver; /* uCode version */ 3906 uint32_t hw_ver; /* HW Silicon version */ 3907 uint32_t brd_ver; /* HW board version */ 3908 uint32_t log_pc; /* log program counter */ 3909 uint32_t frame_ptr; /* frame pointer */ 3910 uint32_t stack_ptr; /* stack pointer */ 3911 uint32_t hcmd; /* last host command header */ 3912 uint32_t isr0; /* isr status register LMPM_NIC_ISR0: 3913 * rxtx_flag */ 3914 uint32_t isr1; /* isr status register LMPM_NIC_ISR1: 3915 * host_flag */ 3916 uint32_t isr2; /* isr status register LMPM_NIC_ISR2: 3917 * enc_flag */ 3918 uint32_t isr3; /* isr status register LMPM_NIC_ISR3: 3919 * time_flag */ 3920 uint32_t isr4; /* isr status register LMPM_NIC_ISR4: 3921 * wico interrupt */ 3922 uint32_t isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 3923 uint32_t wait_event; /* wait event() caller address */ 3924 uint32_t l2p_control; /* L2pControlField */ 3925 uint32_t l2p_duration; /* L2pDurationField */ 3926 uint32_t l2p_mhvalid; /* L2pMhValidBits */ 3927 uint32_t l2p_addr_match; /* L2pAddrMatchStat */ 3928 uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on 3929 * (LMPM_PMG_SEL) */ 3930 uint32_t u_timestamp; /* indicate when the date and time of the 3931 * compilation */ 3932 uint32_t flow_handler; /* FH read/write pointers, RX credit */ 3933 } __packed; 3934 3935 #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) 3936 #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) 3937 3938 #ifdef IWM_DEBUG 3939 struct { 3940 const char *name; 3941 uint8_t num; 3942 } advanced_lookup[] = { 3943 { "NMI_INTERRUPT_WDG", 0x34 }, 3944 { "SYSASSERT", 0x35 }, 3945 { "UCODE_VERSION_MISMATCH", 0x37 }, 3946 { "BAD_COMMAND", 0x38 }, 3947 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 3948 { "FATAL_ERROR", 0x3D }, 3949 { "NMI_TRM_HW_ERR", 0x46 }, 3950 { "NMI_INTERRUPT_TRM", 0x4C }, 3951 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 3952 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 3953 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 3954 { "NMI_INTERRUPT_HOST", 0x66 }, 3955 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 3956 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 3957 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 3958 { "ADVANCED_SYSASSERT", 0 }, 3959 }; 3960 3961 static const char * 3962 iwm_desc_lookup(uint32_t num) 3963 { 3964 int i; 3965 3966 for (i = 0; i < nitems(advanced_lookup) - 1; i++) 3967 if (advanced_lookup[i].num == num) 3968 return advanced_lookup[i].name; 3969 3970 /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ 3971 return advanced_lookup[i].name; 3972 } 3973 3974 /* 3975 * Support for dumping the error log seemed like a good idea ... 3976 * but it's mostly hex junk and the only sensible thing is the 3977 * hw/ucode revision (which we know anyway). Since it's here, 3978 * I'll just leave it in, just in case e.g. the Intel guys want to 3979 * help us decipher some "ADVANCED_SYSASSERT" later. 3980 */ 3981 static void 3982 iwm_nic_error(struct iwm_softc *sc) 3983 { 3984 struct iwm_error_event_table table; 3985 uint32_t base; 3986 3987 device_printf(sc->sc_dev, "dumping device error log\n"); 3988 base = sc->sc_uc.uc_error_event_table; 3989 if (base < 0x800000 || base >= 0x80C000) { 3990 device_printf(sc->sc_dev, 3991 "Not valid error log pointer 0x%08x\n", base); 3992 return; 3993 } 3994 3995 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) { 3996 device_printf(sc->sc_dev, "reading errlog failed\n"); 3997 return; 3998 } 3999 4000 if (!table.valid) { 4001 device_printf(sc->sc_dev, "errlog not found, skipping\n"); 4002 return; 4003 } 4004 4005 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 4006 device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n"); 4007 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 4008 sc->sc_flags, table.valid); 4009 } 4010 4011 device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, 4012 iwm_desc_lookup(table.error_id)); 4013 device_printf(sc->sc_dev, "%08X | uPc\n", table.pc); 4014 device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1); 4015 device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); 4016 device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); 4017 device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); 4018 device_printf(sc->sc_dev, "%08X | data1\n", table.data1); 4019 device_printf(sc->sc_dev, "%08X | data2\n", table.data2); 4020 device_printf(sc->sc_dev, "%08X | data3\n", table.data3); 4021 device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); 4022 device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); 4023 device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); 4024 device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); 4025 device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); 4026 device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3); 4027 device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver); 4028 device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); 4029 device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); 4030 device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); 4031 device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); 4032 device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); 4033 device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); 4034 device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); 4035 device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); 4036 device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref); 4037 device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); 4038 device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); 4039 device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); 4040 device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); 4041 device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); 4042 device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 4043 device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); 4044 device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); 4045 } 4046 #endif 4047 4048 #define SYNC_RESP_STRUCT(_var_, _pkt_) \ 4049 do { \ 4050 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\ 4051 _var_ = (void *)((_pkt_)+1); \ 4052 } while (/*CONSTCOND*/0) 4053 4054 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \ 4055 do { \ 4056 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\ 4057 _ptr_ = (void *)((_pkt_)+1); \ 4058 } while (/*CONSTCOND*/0) 4059 4060 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT); 4061 4062 /* 4063 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. 4064 * Basic structure from if_iwn 4065 */ 4066 static void 4067 iwm_notif_intr(struct iwm_softc *sc) 4068 { 4069 uint16_t hw; 4070 4071 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 4072 BUS_DMASYNC_POSTREAD); 4073 4074 hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; 4075 while (sc->rxq.cur != hw) { 4076 struct iwm_rx_ring *ring = &sc->rxq; 4077 struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 4078 struct iwm_rx_packet *pkt; 4079 struct iwm_cmd_response *cresp; 4080 int qid, idx; 4081 4082 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 4083 BUS_DMASYNC_POSTREAD); 4084 pkt = mtod(data->m, struct iwm_rx_packet *); 4085 4086 qid = pkt->hdr.qid & ~0x80; 4087 idx = pkt->hdr.idx; 4088 4089 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 4090 "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n", 4091 pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags, 4092 pkt->hdr.code, sc->rxq.cur, hw); 4093 4094 /* 4095 * randomly get these from the firmware, no idea why. 4096 * they at least seem harmless, so just ignore them for now 4097 */ 4098 if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0) 4099 || pkt->len_n_flags == htole32(0x55550000))) { 4100 ADVANCE_RXQ(sc); 4101 continue; 4102 } 4103 4104 switch (pkt->hdr.code) { 4105 case IWM_REPLY_RX_PHY_CMD: 4106 iwm_mvm_rx_rx_phy_cmd(sc, pkt, data); 4107 break; 4108 4109 case IWM_REPLY_RX_MPDU_CMD: 4110 iwm_mvm_rx_rx_mpdu(sc, pkt, data); 4111 break; 4112 4113 case IWM_TX_CMD: 4114 iwm_mvm_rx_tx_cmd(sc, pkt, data); 4115 break; 4116 4117 case IWM_MISSED_BEACONS_NOTIFICATION: { 4118 struct iwm_missed_beacons_notif *resp; 4119 int missed; 4120 4121 /* XXX look at mac_id to determine interface ID */ 4122 struct ieee80211com *ic = &sc->sc_ic; 4123 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4124 4125 SYNC_RESP_STRUCT(resp, pkt); 4126 missed = le32toh(resp->consec_missed_beacons); 4127 4128 IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, 4129 "%s: MISSED_BEACON: mac_id=%d, " 4130 "consec_since_last_rx=%d, consec=%d, num_expect=%d " 4131 "num_rx=%d\n", 4132 __func__, 4133 le32toh(resp->mac_id), 4134 le32toh(resp->consec_missed_beacons_since_last_rx), 4135 le32toh(resp->consec_missed_beacons), 4136 le32toh(resp->num_expected_beacons), 4137 le32toh(resp->num_recvd_beacons)); 4138 4139 /* Be paranoid */ 4140 if (vap == NULL) 4141 break; 4142 4143 /* XXX no net80211 locking? */ 4144 if (vap->iv_state == IEEE80211_S_RUN && 4145 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 4146 if (missed > vap->iv_bmissthreshold) { 4147 /* XXX bad locking; turn into task */ 4148 IWM_UNLOCK(sc); 4149 ieee80211_beacon_miss(ic); 4150 IWM_LOCK(sc); 4151 } 4152 } 4153 4154 break; } 4155 4156 case IWM_MVM_ALIVE: { 4157 struct iwm_mvm_alive_resp *resp; 4158 SYNC_RESP_STRUCT(resp, pkt); 4159 4160 sc->sc_uc.uc_error_event_table 4161 = le32toh(resp->error_event_table_ptr); 4162 sc->sc_uc.uc_log_event_table 4163 = le32toh(resp->log_event_table_ptr); 4164 sc->sched_base = le32toh(resp->scd_base_ptr); 4165 sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK; 4166 4167 sc->sc_uc.uc_intr = 1; 4168 wakeup(&sc->sc_uc); 4169 break; } 4170 4171 case IWM_CALIB_RES_NOTIF_PHY_DB: { 4172 struct iwm_calib_res_notif_phy_db *phy_db_notif; 4173 SYNC_RESP_STRUCT(phy_db_notif, pkt); 4174 4175 iwm_phy_db_set_section(sc, phy_db_notif); 4176 4177 break; } 4178 4179 case IWM_STATISTICS_NOTIFICATION: { 4180 struct iwm_notif_statistics *stats; 4181 SYNC_RESP_STRUCT(stats, pkt); 4182 memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); 4183 sc->sc_noise = iwm_get_noise(&stats->rx.general); 4184 break; } 4185 4186 case IWM_NVM_ACCESS_CMD: 4187 if (sc->sc_wantresp == ((qid << 16) | idx)) { 4188 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 4189 BUS_DMASYNC_POSTREAD); 4190 memcpy(sc->sc_cmd_resp, 4191 pkt, sizeof(sc->sc_cmd_resp)); 4192 } 4193 break; 4194 4195 case IWM_PHY_CONFIGURATION_CMD: 4196 case IWM_TX_ANT_CONFIGURATION_CMD: 4197 case IWM_ADD_STA: 4198 case IWM_MAC_CONTEXT_CMD: 4199 case IWM_REPLY_SF_CFG_CMD: 4200 case IWM_POWER_TABLE_CMD: 4201 case IWM_PHY_CONTEXT_CMD: 4202 case IWM_BINDING_CONTEXT_CMD: 4203 case IWM_TIME_EVENT_CMD: 4204 case IWM_SCAN_REQUEST_CMD: 4205 case IWM_REPLY_BEACON_FILTERING_CMD: 4206 case IWM_MAC_PM_POWER_TABLE: 4207 case IWM_TIME_QUOTA_CMD: 4208 case IWM_REMOVE_STA: 4209 case IWM_TXPATH_FLUSH: 4210 case IWM_LQ_CMD: 4211 SYNC_RESP_STRUCT(cresp, pkt); 4212 if (sc->sc_wantresp == ((qid << 16) | idx)) { 4213 memcpy(sc->sc_cmd_resp, 4214 pkt, sizeof(*pkt)+sizeof(*cresp)); 4215 } 4216 break; 4217 4218 /* ignore */ 4219 case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */ 4220 break; 4221 4222 case IWM_INIT_COMPLETE_NOTIF: 4223 sc->sc_init_complete = 1; 4224 wakeup(&sc->sc_init_complete); 4225 break; 4226 4227 case IWM_SCAN_COMPLETE_NOTIFICATION: { 4228 struct iwm_scan_complete_notif *notif; 4229 SYNC_RESP_STRUCT(notif, pkt); 4230 taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task); 4231 break; } 4232 4233 case IWM_REPLY_ERROR: { 4234 struct iwm_error_resp *resp; 4235 SYNC_RESP_STRUCT(resp, pkt); 4236 4237 device_printf(sc->sc_dev, 4238 "firmware error 0x%x, cmd 0x%x\n", 4239 le32toh(resp->error_type), 4240 resp->cmd_id); 4241 break; } 4242 4243 case IWM_TIME_EVENT_NOTIFICATION: { 4244 struct iwm_time_event_notif *notif; 4245 SYNC_RESP_STRUCT(notif, pkt); 4246 4247 if (notif->status) { 4248 if (le32toh(notif->action) & 4249 IWM_TE_V2_NOTIF_HOST_EVENT_START) 4250 sc->sc_auth_prot = 2; 4251 else 4252 sc->sc_auth_prot = 0; 4253 } else { 4254 sc->sc_auth_prot = -1; 4255 } 4256 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 4257 "%s: time event notification auth_prot=%d\n", 4258 __func__, sc->sc_auth_prot); 4259 4260 wakeup(&sc->sc_auth_prot); 4261 break; } 4262 4263 case IWM_MCAST_FILTER_CMD: 4264 break; 4265 4266 default: 4267 device_printf(sc->sc_dev, 4268 "frame %d/%d %x UNHANDLED (this should " 4269 "not happen)\n", qid, idx, 4270 pkt->len_n_flags); 4271 break; 4272 } 4273 4274 /* 4275 * Why test bit 0x80? The Linux driver: 4276 * 4277 * There is one exception: uCode sets bit 15 when it 4278 * originates the response/notification, i.e. when the 4279 * response/notification is not a direct response to a 4280 * command sent by the driver. For example, uCode issues 4281 * IWM_REPLY_RX when it sends a received frame to the driver; 4282 * it is not a direct response to any driver command. 4283 * 4284 * Ok, so since when is 7 == 15? Well, the Linux driver 4285 * uses a slightly different format for pkt->hdr, and "qid" 4286 * is actually the upper byte of a two-byte field. 4287 */ 4288 if (!(pkt->hdr.qid & (1 << 7))) { 4289 iwm_cmd_done(sc, pkt); 4290 } 4291 4292 ADVANCE_RXQ(sc); 4293 } 4294 4295 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 4296 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 4297 4298 /* 4299 * Tell the firmware what we have processed. 4300 * Seems like the hardware gets upset unless we align 4301 * the write by 8?? 4302 */ 4303 hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1; 4304 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7); 4305 } 4306 4307 static void 4308 iwm_intr(void *arg) 4309 { 4310 struct iwm_softc *sc = arg; 4311 int handled = 0; 4312 int r1, r2, rv = 0; 4313 int isperiodic = 0; 4314 4315 IWM_LOCK(sc); 4316 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 4317 4318 if (sc->sc_flags & IWM_FLAG_USE_ICT) { 4319 uint32_t *ict = sc->ict_dma.vaddr; 4320 int tmp; 4321 4322 tmp = htole32(ict[sc->ict_cur]); 4323 if (!tmp) 4324 goto out_ena; 4325 4326 /* 4327 * ok, there was something. keep plowing until we have all. 4328 */ 4329 r1 = r2 = 0; 4330 while (tmp) { 4331 r1 |= tmp; 4332 ict[sc->ict_cur] = 0; 4333 sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; 4334 tmp = htole32(ict[sc->ict_cur]); 4335 } 4336 4337 /* this is where the fun begins. don't ask */ 4338 if (r1 == 0xffffffff) 4339 r1 = 0; 4340 4341 /* i am not expected to understand this */ 4342 if (r1 & 0xc0000) 4343 r1 |= 0x8000; 4344 r1 = (0xff & r1) | ((0xff00 & r1) << 16); 4345 } else { 4346 r1 = IWM_READ(sc, IWM_CSR_INT); 4347 /* "hardware gone" (where, fishing?) */ 4348 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 4349 goto out; 4350 r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); 4351 } 4352 if (r1 == 0 && r2 == 0) { 4353 goto out_ena; 4354 } 4355 4356 IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); 4357 4358 /* ignored */ 4359 handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/)); 4360 4361 if (r1 & IWM_CSR_INT_BIT_SW_ERR) { 4362 int i; 4363 struct ieee80211com *ic = &sc->sc_ic; 4364 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4365 4366 iwm_nic_error(sc); 4367 4368 /* Dump driver status (TX and RX rings) while we're here. */ 4369 device_printf(sc->sc_dev, "driver status:\n"); 4370 for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) { 4371 struct iwm_tx_ring *ring = &sc->txq[i]; 4372 device_printf(sc->sc_dev, 4373 " tx ring %2d: qid=%-2d cur=%-3d " 4374 "queued=%-3d\n", 4375 i, ring->qid, ring->cur, ring->queued); 4376 } 4377 device_printf(sc->sc_dev, 4378 " rx ring: cur=%d\n", sc->rxq.cur); 4379 device_printf(sc->sc_dev, 4380 " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); 4381 4382 /* Don't stop the device; just do a VAP restart */ 4383 IWM_UNLOCK(sc); 4384 4385 if (vap == NULL) { 4386 printf("%s: null vap\n", __func__); 4387 return; 4388 } 4389 4390 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 4391 "restarting\n", __func__, vap->iv_state); 4392 4393 /* XXX TODO: turn this into a callout/taskqueue */ 4394 ieee80211_restart_all(ic); 4395 return; 4396 } 4397 4398 if (r1 & IWM_CSR_INT_BIT_HW_ERR) { 4399 handled |= IWM_CSR_INT_BIT_HW_ERR; 4400 device_printf(sc->sc_dev, "hardware error, stopping device\n"); 4401 iwm_stop(sc); 4402 rv = 1; 4403 goto out; 4404 } 4405 4406 /* firmware chunk loaded */ 4407 if (r1 & IWM_CSR_INT_BIT_FH_TX) { 4408 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); 4409 handled |= IWM_CSR_INT_BIT_FH_TX; 4410 sc->sc_fw_chunk_done = 1; 4411 wakeup(&sc->sc_fw); 4412 } 4413 4414 if (r1 & IWM_CSR_INT_BIT_RF_KILL) { 4415 handled |= IWM_CSR_INT_BIT_RF_KILL; 4416 if (iwm_check_rfkill(sc)) { 4417 device_printf(sc->sc_dev, 4418 "%s: rfkill switch, disabling interface\n", 4419 __func__); 4420 iwm_stop(sc); 4421 } 4422 } 4423 4424 /* 4425 * The Linux driver uses periodic interrupts to avoid races. 4426 * We cargo-cult like it's going out of fashion. 4427 */ 4428 if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { 4429 handled |= IWM_CSR_INT_BIT_RX_PERIODIC; 4430 IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); 4431 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) 4432 IWM_WRITE_1(sc, 4433 IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); 4434 isperiodic = 1; 4435 } 4436 4437 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { 4438 handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); 4439 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); 4440 4441 iwm_notif_intr(sc); 4442 4443 /* enable periodic interrupt, see above */ 4444 if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) 4445 IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, 4446 IWM_CSR_INT_PERIODIC_ENA); 4447 } 4448 4449 if (__predict_false(r1 & ~handled)) 4450 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 4451 "%s: unhandled interrupts: %x\n", __func__, r1); 4452 rv = 1; 4453 4454 out_ena: 4455 iwm_restore_interrupts(sc); 4456 out: 4457 IWM_UNLOCK(sc); 4458 return; 4459 } 4460 4461 /* 4462 * Autoconf glue-sniffing 4463 */ 4464 #define PCI_VENDOR_INTEL 0x8086 4465 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 4466 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 4467 #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 4468 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 4469 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a 4470 #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b 4471 4472 static const struct iwm_devices { 4473 uint16_t device; 4474 const char *name; 4475 } iwm_devices[] = { 4476 { PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" }, 4477 { PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" }, 4478 { PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" }, 4479 { PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" }, 4480 { PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" }, 4481 { PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" }, 4482 }; 4483 4484 static int 4485 iwm_probe(device_t dev) 4486 { 4487 int i; 4488 4489 for (i = 0; i < nitems(iwm_devices); i++) 4490 if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && 4491 pci_get_device(dev) == iwm_devices[i].device) { 4492 device_set_desc(dev, iwm_devices[i].name); 4493 return (BUS_PROBE_DEFAULT); 4494 } 4495 4496 return (ENXIO); 4497 } 4498 4499 static int 4500 iwm_dev_check(device_t dev) 4501 { 4502 struct iwm_softc *sc; 4503 4504 sc = device_get_softc(dev); 4505 4506 switch (pci_get_device(dev)) { 4507 case PCI_PRODUCT_INTEL_WL_3160_1: 4508 case PCI_PRODUCT_INTEL_WL_3160_2: 4509 sc->sc_fwname = "iwm3160fw"; 4510 sc->host_interrupt_operation_mode = 1; 4511 return (0); 4512 case PCI_PRODUCT_INTEL_WL_7260_1: 4513 case PCI_PRODUCT_INTEL_WL_7260_2: 4514 sc->sc_fwname = "iwm7260fw"; 4515 sc->host_interrupt_operation_mode = 1; 4516 return (0); 4517 case PCI_PRODUCT_INTEL_WL_7265_1: 4518 case PCI_PRODUCT_INTEL_WL_7265_2: 4519 sc->sc_fwname = "iwm7265fw"; 4520 sc->host_interrupt_operation_mode = 0; 4521 return (0); 4522 default: 4523 device_printf(dev, "unknown adapter type\n"); 4524 return ENXIO; 4525 } 4526 } 4527 4528 static int 4529 iwm_pci_attach(device_t dev) 4530 { 4531 struct iwm_softc *sc; 4532 int count, error, rid; 4533 uint16_t reg; 4534 4535 sc = device_get_softc(dev); 4536 4537 /* Clear device-specific "PCI retry timeout" register (41h). */ 4538 reg = pci_read_config(dev, 0x40, sizeof(reg)); 4539 pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg)); 4540 4541 /* Enable bus-mastering and hardware bug workaround. */ 4542 pci_enable_busmaster(dev); 4543 reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); 4544 /* if !MSI */ 4545 if (reg & PCIM_STATUS_INTxSTATE) { 4546 reg &= ~PCIM_STATUS_INTxSTATE; 4547 } 4548 pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); 4549 4550 rid = PCIR_BAR(0); 4551 sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 4552 RF_ACTIVE); 4553 if (sc->sc_mem == NULL) { 4554 device_printf(sc->sc_dev, "can't map mem space\n"); 4555 return (ENXIO); 4556 } 4557 sc->sc_st = rman_get_bustag(sc->sc_mem); 4558 sc->sc_sh = rman_get_bushandle(sc->sc_mem); 4559 4560 /* Install interrupt handler. */ 4561 count = 1; 4562 rid = 0; 4563 if (pci_alloc_msi(dev, &count) == 0) 4564 rid = 1; 4565 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 4566 (rid != 0 ? 0 : RF_SHAREABLE)); 4567 if (sc->sc_irq == NULL) { 4568 device_printf(dev, "can't map interrupt\n"); 4569 return (ENXIO); 4570 } 4571 error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, 4572 NULL, iwm_intr, sc, &sc->sc_ih); 4573 if (sc->sc_ih == NULL) { 4574 device_printf(dev, "can't establish interrupt"); 4575 return (ENXIO); 4576 } 4577 sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); 4578 4579 return (0); 4580 } 4581 4582 static void 4583 iwm_pci_detach(device_t dev) 4584 { 4585 struct iwm_softc *sc = device_get_softc(dev); 4586 4587 if (sc->sc_irq != NULL) { 4588 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 4589 bus_release_resource(dev, SYS_RES_IRQ, 4590 rman_get_rid(sc->sc_irq), sc->sc_irq); 4591 pci_release_msi(dev); 4592 } 4593 if (sc->sc_mem != NULL) 4594 bus_release_resource(dev, SYS_RES_MEMORY, 4595 rman_get_rid(sc->sc_mem), sc->sc_mem); 4596 } 4597 4598 4599 4600 static int 4601 iwm_attach(device_t dev) 4602 { 4603 struct iwm_softc *sc = device_get_softc(dev); 4604 struct ieee80211com *ic = &sc->sc_ic; 4605 int error; 4606 int txq_i, i; 4607 4608 sc->sc_dev = dev; 4609 IWM_LOCK_INIT(sc); 4610 mbufq_init(&sc->sc_snd, ifqmaxlen); 4611 callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); 4612 TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); 4613 sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK, 4614 taskqueue_thread_enqueue, &sc->sc_tq); 4615 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq"); 4616 if (error != 0) { 4617 device_printf(dev, "can't start threads, error %d\n", 4618 error); 4619 goto fail; 4620 } 4621 4622 /* PCI attach */ 4623 error = iwm_pci_attach(dev); 4624 if (error != 0) 4625 goto fail; 4626 4627 sc->sc_wantresp = -1; 4628 4629 /* Check device type */ 4630 error = iwm_dev_check(dev); 4631 if (error != 0) 4632 goto fail; 4633 4634 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; 4635 4636 /* 4637 * We now start fiddling with the hardware 4638 */ 4639 sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); 4640 if (iwm_prepare_card_hw(sc) != 0) { 4641 device_printf(dev, "could not initialize hardware\n"); 4642 goto fail; 4643 } 4644 4645 /* Allocate DMA memory for firmware transfers. */ 4646 if ((error = iwm_alloc_fwmem(sc)) != 0) { 4647 device_printf(dev, "could not allocate memory for firmware\n"); 4648 goto fail; 4649 } 4650 4651 /* Allocate "Keep Warm" page. */ 4652 if ((error = iwm_alloc_kw(sc)) != 0) { 4653 device_printf(dev, "could not allocate keep warm page\n"); 4654 goto fail; 4655 } 4656 4657 /* We use ICT interrupts */ 4658 if ((error = iwm_alloc_ict(sc)) != 0) { 4659 device_printf(dev, "could not allocate ICT table\n"); 4660 goto fail; 4661 } 4662 4663 /* Allocate TX scheduler "rings". */ 4664 if ((error = iwm_alloc_sched(sc)) != 0) { 4665 device_printf(dev, "could not allocate TX scheduler rings\n"); 4666 goto fail; 4667 } 4668 4669 /* Allocate TX rings */ 4670 for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { 4671 if ((error = iwm_alloc_tx_ring(sc, 4672 &sc->txq[txq_i], txq_i)) != 0) { 4673 device_printf(dev, 4674 "could not allocate TX ring %d\n", 4675 txq_i); 4676 goto fail; 4677 } 4678 } 4679 4680 /* Allocate RX ring. */ 4681 if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { 4682 device_printf(dev, "could not allocate RX ring\n"); 4683 goto fail; 4684 } 4685 4686 /* Clear pending interrupts. */ 4687 IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); 4688 4689 ic->ic_softc = sc; 4690 ic->ic_name = device_get_nameunit(sc->sc_dev); 4691 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 4692 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 4693 4694 /* Set device capabilities. */ 4695 ic->ic_caps = 4696 IEEE80211_C_STA | 4697 IEEE80211_C_WPA | /* WPA/RSN */ 4698 IEEE80211_C_WME | 4699 IEEE80211_C_SHSLOT | /* short slot time supported */ 4700 IEEE80211_C_SHPREAMBLE /* short preamble supported */ 4701 // IEEE80211_C_BGSCAN /* capable of bg scanning */ 4702 ; 4703 for (i = 0; i < nitems(sc->sc_phyctxt); i++) { 4704 sc->sc_phyctxt[i].id = i; 4705 sc->sc_phyctxt[i].color = 0; 4706 sc->sc_phyctxt[i].ref = 0; 4707 sc->sc_phyctxt[i].channel = NULL; 4708 } 4709 4710 /* Max RSSI */ 4711 sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; 4712 sc->sc_preinit_hook.ich_func = iwm_preinit; 4713 sc->sc_preinit_hook.ich_arg = sc; 4714 if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { 4715 device_printf(dev, "config_intrhook_establish failed\n"); 4716 goto fail; 4717 } 4718 4719 #ifdef IWM_DEBUG 4720 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 4721 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", 4722 CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); 4723 #endif 4724 4725 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 4726 "<-%s\n", __func__); 4727 4728 return 0; 4729 4730 /* Free allocated memory if something failed during attachment. */ 4731 fail: 4732 iwm_detach_local(sc, 0); 4733 4734 return ENXIO; 4735 } 4736 4737 static int 4738 iwm_update_edca(struct ieee80211com *ic) 4739 { 4740 struct iwm_softc *sc = ic->ic_softc; 4741 4742 device_printf(sc->sc_dev, "%s: called\n", __func__); 4743 return (0); 4744 } 4745 4746 static void 4747 iwm_preinit(void *arg) 4748 { 4749 struct iwm_softc *sc = arg; 4750 device_t dev = sc->sc_dev; 4751 struct ieee80211com *ic = &sc->sc_ic; 4752 int error; 4753 4754 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 4755 "->%s\n", __func__); 4756 4757 IWM_LOCK(sc); 4758 if ((error = iwm_start_hw(sc)) != 0) { 4759 device_printf(dev, "could not initialize hardware\n"); 4760 IWM_UNLOCK(sc); 4761 goto fail; 4762 } 4763 4764 error = iwm_run_init_mvm_ucode(sc, 1); 4765 iwm_stop_device(sc); 4766 if (error) { 4767 IWM_UNLOCK(sc); 4768 goto fail; 4769 } 4770 device_printf(dev, 4771 "revision: 0x%x, firmware %d.%d (API ver. %d)\n", 4772 sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, 4773 IWM_UCODE_MAJOR(sc->sc_fwver), 4774 IWM_UCODE_MINOR(sc->sc_fwver), 4775 IWM_UCODE_API(sc->sc_fwver)); 4776 4777 /* not all hardware can do 5GHz band */ 4778 if (!sc->sc_nvm.sku_cap_band_52GHz_enable) 4779 memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, 4780 sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); 4781 IWM_UNLOCK(sc); 4782 4783 /* 4784 * At this point we've committed - if we fail to do setup, 4785 * we now also have to tear down the net80211 state. 4786 */ 4787 ieee80211_ifattach(ic); 4788 ic->ic_vap_create = iwm_vap_create; 4789 ic->ic_vap_delete = iwm_vap_delete; 4790 ic->ic_raw_xmit = iwm_raw_xmit; 4791 ic->ic_node_alloc = iwm_node_alloc; 4792 ic->ic_scan_start = iwm_scan_start; 4793 ic->ic_scan_end = iwm_scan_end; 4794 ic->ic_update_mcast = iwm_update_mcast; 4795 ic->ic_set_channel = iwm_set_channel; 4796 ic->ic_scan_curchan = iwm_scan_curchan; 4797 ic->ic_scan_mindwell = iwm_scan_mindwell; 4798 ic->ic_wme.wme_update = iwm_update_edca; 4799 ic->ic_parent = iwm_parent; 4800 ic->ic_transmit = iwm_transmit; 4801 iwm_radiotap_attach(sc); 4802 if (bootverbose) 4803 ieee80211_announce(ic); 4804 4805 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 4806 "<-%s\n", __func__); 4807 config_intrhook_disestablish(&sc->sc_preinit_hook); 4808 4809 return; 4810 fail: 4811 config_intrhook_disestablish(&sc->sc_preinit_hook); 4812 iwm_detach_local(sc, 0); 4813 } 4814 4815 /* 4816 * Attach the interface to 802.11 radiotap. 4817 */ 4818 static void 4819 iwm_radiotap_attach(struct iwm_softc *sc) 4820 { 4821 struct ieee80211com *ic = &sc->sc_ic; 4822 4823 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 4824 "->%s begin\n", __func__); 4825 ieee80211_radiotap_attach(ic, 4826 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 4827 IWM_TX_RADIOTAP_PRESENT, 4828 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 4829 IWM_RX_RADIOTAP_PRESENT); 4830 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 4831 "->%s end\n", __func__); 4832 } 4833 4834 static struct ieee80211vap * 4835 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 4836 enum ieee80211_opmode opmode, int flags, 4837 const uint8_t bssid[IEEE80211_ADDR_LEN], 4838 const uint8_t mac[IEEE80211_ADDR_LEN]) 4839 { 4840 struct iwm_vap *ivp; 4841 struct ieee80211vap *vap; 4842 4843 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 4844 return NULL; 4845 ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); 4846 vap = &ivp->iv_vap; 4847 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 4848 vap->iv_bmissthreshold = 10; /* override default */ 4849 /* Override with driver methods. */ 4850 ivp->iv_newstate = vap->iv_newstate; 4851 vap->iv_newstate = iwm_newstate; 4852 4853 ieee80211_ratectl_init(vap); 4854 /* Complete setup. */ 4855 ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status, 4856 mac); 4857 ic->ic_opmode = opmode; 4858 4859 return vap; 4860 } 4861 4862 static void 4863 iwm_vap_delete(struct ieee80211vap *vap) 4864 { 4865 struct iwm_vap *ivp = IWM_VAP(vap); 4866 4867 ieee80211_ratectl_deinit(vap); 4868 ieee80211_vap_detach(vap); 4869 free(ivp, M_80211_VAP); 4870 } 4871 4872 static void 4873 iwm_scan_start(struct ieee80211com *ic) 4874 { 4875 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4876 struct iwm_softc *sc = ic->ic_softc; 4877 int error; 4878 4879 if (sc->sc_scanband) 4880 return; 4881 IWM_LOCK(sc); 4882 error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0); 4883 if (error) { 4884 device_printf(sc->sc_dev, "could not initiate scan\n"); 4885 IWM_UNLOCK(sc); 4886 ieee80211_cancel_scan(vap); 4887 } else 4888 IWM_UNLOCK(sc); 4889 } 4890 4891 static void 4892 iwm_scan_end(struct ieee80211com *ic) 4893 { 4894 } 4895 4896 static void 4897 iwm_update_mcast(struct ieee80211com *ic) 4898 { 4899 } 4900 4901 static void 4902 iwm_set_channel(struct ieee80211com *ic) 4903 { 4904 } 4905 4906 static void 4907 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 4908 { 4909 } 4910 4911 static void 4912 iwm_scan_mindwell(struct ieee80211_scan_state *ss) 4913 { 4914 return; 4915 } 4916 4917 void 4918 iwm_init_task(void *arg1) 4919 { 4920 struct iwm_softc *sc = arg1; 4921 4922 IWM_LOCK(sc); 4923 while (sc->sc_flags & IWM_FLAG_BUSY) 4924 msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); 4925 sc->sc_flags |= IWM_FLAG_BUSY; 4926 iwm_stop(sc); 4927 if (sc->sc_ic.ic_nrunning > 0) 4928 iwm_init(sc); 4929 sc->sc_flags &= ~IWM_FLAG_BUSY; 4930 wakeup(&sc->sc_flags); 4931 IWM_UNLOCK(sc); 4932 } 4933 4934 static int 4935 iwm_resume(device_t dev) 4936 { 4937 struct iwm_softc *sc = device_get_softc(dev); 4938 int do_reinit = 0; 4939 uint16_t reg; 4940 4941 /* Clear device-specific "PCI retry timeout" register (41h). */ 4942 reg = pci_read_config(dev, 0x40, sizeof(reg)); 4943 pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg)); 4944 iwm_init_task(device_get_softc(dev)); 4945 4946 IWM_LOCK(sc); 4947 if (sc->sc_flags & IWM_FLAG_DORESUME) { 4948 sc->sc_flags &= ~IWM_FLAG_DORESUME; 4949 do_reinit = 1; 4950 } 4951 IWM_UNLOCK(sc); 4952 4953 if (do_reinit) 4954 ieee80211_resume_all(&sc->sc_ic); 4955 4956 return 0; 4957 } 4958 4959 static int 4960 iwm_suspend(device_t dev) 4961 { 4962 int do_stop = 0; 4963 struct iwm_softc *sc = device_get_softc(dev); 4964 4965 do_stop = !! (sc->sc_ic.ic_nrunning > 0); 4966 4967 ieee80211_suspend_all(&sc->sc_ic); 4968 4969 if (do_stop) { 4970 IWM_LOCK(sc); 4971 iwm_stop(sc); 4972 sc->sc_flags |= IWM_FLAG_DORESUME; 4973 IWM_UNLOCK(sc); 4974 } 4975 4976 return (0); 4977 } 4978 4979 static int 4980 iwm_detach_local(struct iwm_softc *sc, int do_net80211) 4981 { 4982 struct iwm_fw_info *fw = &sc->sc_fw; 4983 device_t dev = sc->sc_dev; 4984 int i; 4985 4986 if (sc->sc_tq) { 4987 taskqueue_drain_all(sc->sc_tq); 4988 taskqueue_free(sc->sc_tq); 4989 } 4990 callout_drain(&sc->sc_watchdog_to); 4991 iwm_stop_device(sc); 4992 if (do_net80211) 4993 ieee80211_ifdetach(&sc->sc_ic); 4994 4995 /* Free descriptor rings */ 4996 for (i = 0; i < nitems(sc->txq); i++) 4997 iwm_free_tx_ring(sc, &sc->txq[i]); 4998 4999 /* Free firmware */ 5000 if (fw->fw_fp != NULL) 5001 iwm_fw_info_free(fw); 5002 5003 /* Free scheduler */ 5004 iwm_free_sched(sc); 5005 if (sc->ict_dma.vaddr != NULL) 5006 iwm_free_ict(sc); 5007 if (sc->kw_dma.vaddr != NULL) 5008 iwm_free_kw(sc); 5009 if (sc->fw_dma.vaddr != NULL) 5010 iwm_free_fwmem(sc); 5011 5012 /* Finished with the hardware - detach things */ 5013 iwm_pci_detach(dev); 5014 5015 mbufq_drain(&sc->sc_snd); 5016 IWM_LOCK_DESTROY(sc); 5017 5018 return (0); 5019 } 5020 5021 static int 5022 iwm_detach(device_t dev) 5023 { 5024 struct iwm_softc *sc = device_get_softc(dev); 5025 5026 return (iwm_detach_local(sc, 1)); 5027 } 5028 5029 static device_method_t iwm_pci_methods[] = { 5030 /* Device interface */ 5031 DEVMETHOD(device_probe, iwm_probe), 5032 DEVMETHOD(device_attach, iwm_attach), 5033 DEVMETHOD(device_detach, iwm_detach), 5034 DEVMETHOD(device_suspend, iwm_suspend), 5035 DEVMETHOD(device_resume, iwm_resume), 5036 5037 DEVMETHOD_END 5038 }; 5039 5040 static driver_t iwm_pci_driver = { 5041 "iwm", 5042 iwm_pci_methods, 5043 sizeof (struct iwm_softc) 5044 }; 5045 5046 static devclass_t iwm_devclass; 5047 5048 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); 5049 MODULE_DEPEND(iwm, firmware, 1, 1, 1); 5050 MODULE_DEPEND(iwm, pci, 1, 1, 1); 5051 MODULE_DEPEND(iwm, wlan, 1, 1, 1); 5052