xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 97549c34ecaf74580941fdc9c5bd1050e4b1f6ce)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164 
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167 
168 const uint8_t iwm_nvm_channels[] = {
169 	/* 2.4 GHz */
170 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171 	/* 5 GHz */
172 	36, 40, 44, 48, 52, 56, 60, 64,
173 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174 	149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178 
179 const uint8_t iwm_nvm_channels_8000[] = {
180 	/* 2.4 GHz */
181 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182 	/* 5 GHz */
183 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185 	149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189 
190 #define IWM_NUM_2GHZ_CHANNELS	14
191 #define IWM_N_HW_ADDR_MASK	0xF
192 
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198 	uint8_t rate;
199 	uint8_t plcp;
200 } iwm_rates[] = {
201 	{   2,	IWM_RATE_1M_PLCP  },
202 	{   4,	IWM_RATE_2M_PLCP  },
203 	{  11,	IWM_RATE_5M_PLCP  },
204 	{  22,	IWM_RATE_11M_PLCP },
205 	{  12,	IWM_RATE_6M_PLCP  },
206 	{  18,	IWM_RATE_9M_PLCP  },
207 	{  24,	IWM_RATE_12M_PLCP },
208 	{  36,	IWM_RATE_18M_PLCP },
209 	{  48,	IWM_RATE_24M_PLCP },
210 	{  72,	IWM_RATE_36M_PLCP },
211 	{  96,	IWM_RATE_48M_PLCP },
212 	{ 108,	IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK	0
215 #define IWM_RIDX_OFDM	4
216 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219 
220 struct iwm_nvm_section {
221 	uint16_t length;
222 	uint8_t *data;
223 };
224 
225 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int	iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void	iwm_fw_info_free(struct iwm_fw_info *);
231 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void	iwm_dma_contig_free(struct iwm_dma_info *);
236 static int	iwm_alloc_fwmem(struct iwm_softc *);
237 static int	iwm_alloc_sched(struct iwm_softc *);
238 static int	iwm_alloc_kw(struct iwm_softc *);
239 static int	iwm_alloc_ict(struct iwm_softc *);
240 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void	iwm_disable_rx_dma(struct iwm_softc *);
242 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void	iwm_enable_interrupts(struct iwm_softc *);
249 static void	iwm_restore_interrupts(struct iwm_softc *);
250 static void	iwm_disable_interrupts(struct iwm_softc *);
251 static void	iwm_ict_reset(struct iwm_softc *);
252 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void	iwm_stop_device(struct iwm_softc *);
254 static void	iwm_mvm_nic_config(struct iwm_softc *);
255 static int	iwm_nic_rx_init(struct iwm_softc *);
256 static int	iwm_nic_tx_init(struct iwm_softc *);
257 static int	iwm_nic_init(struct iwm_softc *);
258 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int	iwm_post_alive(struct iwm_softc *);
260 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263 				     uint16_t *, size_t);
264 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
265 static void	iwm_add_channel_band(struct iwm_softc *,
266 		    struct ieee80211_channel[], int, int *, int, size_t,
267 		    const uint8_t[]);
268 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
269 		    struct ieee80211_channel[]);
270 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271 				   const uint16_t *, const uint16_t *,
272 				   const uint16_t *, const uint16_t *,
273 				   const uint16_t *);
274 static void	iwm_set_hw_address_8000(struct iwm_softc *,
275 					struct iwm_nvm_data *,
276 					const uint16_t *, const uint16_t *);
277 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278 			    const uint16_t *);
279 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281 				  const uint16_t *);
282 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
283 				   const uint16_t *);
284 static void	iwm_set_radio_cfg(const struct iwm_softc *,
285 				  struct iwm_nvm_data *, uint32_t);
286 static int	iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int	iwm_nvm_init(struct iwm_softc *);
289 static int	iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int	iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int	iwm_load_cpu_sections_8000(struct iwm_softc *,
295 					   struct iwm_fw_sects *, int , int *);
296 static int	iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
307 					    struct iwm_rx_phy_info *);
308 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int	iwm_get_noise(struct iwm_softc *sc,
312 		    const struct iwm_mvm_statistics_rx_non_phy *);
313 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317 				         struct iwm_node *);
318 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327 			struct mbuf *, struct iwm_tx_cmd *);
328 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331 			     const struct ieee80211_bpf_params *);
332 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333 				      uint32_t tfd_msk, uint32_t flags);
334 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335 					        struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343 				           const uint8_t *, uint16_t, uint16_t);
344 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350 		iwm_node_alloc(struct ieee80211vap *,
351 		               const uint8_t[IEEE80211_ADDR_LEN]);
352 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_media_change(struct ifnet *);
354 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void	iwm_endscan_cb(void *, int);
356 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
357 					struct iwm_sf_cfg_cmd *,
358 					struct ieee80211_node *);
359 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int	iwm_send_bt_init_conf(struct iwm_softc *);
361 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int	iwm_init_hw(struct iwm_softc *);
364 static void	iwm_init(struct iwm_softc *);
365 static void	iwm_start(struct iwm_softc *);
366 static void	iwm_stop(struct iwm_softc *);
367 static void	iwm_watchdog(void *);
368 static void	iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371 		iwm_desc_lookup(uint32_t);
372 static void	iwm_nic_error(struct iwm_softc *);
373 static void	iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void	iwm_notif_intr(struct iwm_softc *);
376 static void	iwm_intr(void *);
377 static int	iwm_attach(device_t);
378 static int	iwm_is_valid_ether_addr(uint8_t *);
379 static void	iwm_preinit(void *);
380 static int	iwm_detach_local(struct iwm_softc *sc, int);
381 static void	iwm_init_task(void *);
382 static void	iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384 		iwm_vap_create(struct ieee80211com *,
385 		               const char [IFNAMSIZ], int,
386 		               enum ieee80211_opmode, int,
387 		               const uint8_t [IEEE80211_ADDR_LEN],
388 		               const uint8_t [IEEE80211_ADDR_LEN]);
389 static void	iwm_vap_delete(struct ieee80211vap *);
390 static void	iwm_scan_start(struct ieee80211com *);
391 static void	iwm_scan_end(struct ieee80211com *);
392 static void	iwm_update_mcast(struct ieee80211com *);
393 static void	iwm_set_channel(struct ieee80211com *);
394 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int	iwm_detach(device_t);
397 
398 /*
399  * Firmware parser.
400  */
401 
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405 	const struct iwm_fw_cscheme_list *l = (const void *)data;
406 
407 	if (dlen < sizeof(*l) ||
408 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409 		return EINVAL;
410 
411 	/* we don't actually store anything for now, always use s/w crypto */
412 
413 	return 0;
414 }
415 
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420 	struct iwm_fw_sects *fws;
421 	struct iwm_fw_onesect *fwone;
422 
423 	if (type >= IWM_UCODE_TYPE_MAX)
424 		return EINVAL;
425 	if (dlen < sizeof(uint32_t))
426 		return EINVAL;
427 
428 	fws = &sc->sc_fw.fw_sects[type];
429 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430 		return EINVAL;
431 
432 	fwone = &fws->fw_sect[fws->fw_count];
433 
434 	/* first 32bit are device load offset */
435 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436 
437 	/* rest is data */
438 	fwone->fws_data = data + sizeof(uint32_t);
439 	fwone->fws_len = dlen - sizeof(uint32_t);
440 
441 	fws->fw_count++;
442 
443 	return 0;
444 }
445 
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447 
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450 	uint32_t ucode_type;
451 	struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453 
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457 	const struct iwm_tlv_calib_data *def_calib = data;
458 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
459 
460 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461 		device_printf(sc->sc_dev,
462 		    "Wrong ucode_type %u for default "
463 		    "calibration.\n", ucode_type);
464 		return EINVAL;
465 	}
466 
467 	sc->sc_default_calib[ucode_type].flow_trigger =
468 	    def_calib->calib.flow_trigger;
469 	sc->sc_default_calib[ucode_type].event_trigger =
470 	    def_calib->calib.event_trigger;
471 
472 	return 0;
473 }
474 
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479 	fw->fw_fp = NULL;
480 	/* don't touch fw->fw_status */
481 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483 
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487 	struct iwm_fw_info *fw = &sc->sc_fw;
488 	const struct iwm_tlv_ucode_header *uhdr;
489 	struct iwm_ucode_tlv tlv;
490 	enum iwm_ucode_tlv_type tlv_type;
491 	const struct firmware *fwp;
492 	const uint8_t *data;
493 	int error = 0;
494 	size_t len;
495 
496 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
497 	    ucode_type != IWM_UCODE_TYPE_INIT)
498 		return 0;
499 
500 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503 
504 	if (fw->fw_fp != NULL)
505 		iwm_fw_info_free(fw);
506 
507 	/*
508 	 * Load firmware into driver memory.
509 	 * fw_fp will be set.
510 	 */
511 	IWM_UNLOCK(sc);
512 	fwp = firmware_get(sc->sc_fwname);
513 	IWM_LOCK(sc);
514 	if (fwp == NULL) {
515 		device_printf(sc->sc_dev,
516 		    "could not read firmware %s (error %d)\n",
517 		    sc->sc_fwname, error);
518 		goto out;
519 	}
520 	fw->fw_fp = fwp;
521 
522 	/* (Re-)Initialize default values. */
523 	sc->sc_capaflags = 0;
524 	sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525 	memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527 
528 	/*
529 	 * Parse firmware contents
530 	 */
531 
532 	uhdr = (const void *)fw->fw_fp->data;
533 	if (*(const uint32_t *)fw->fw_fp->data != 0
534 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535 		device_printf(sc->sc_dev, "invalid firmware %s\n",
536 		    sc->sc_fwname);
537 		error = EINVAL;
538 		goto out;
539 	}
540 
541 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544 	    IWM_UCODE_API(le32toh(uhdr->ver)));
545 	data = uhdr->data;
546 	len = fw->fw_fp->datasize - sizeof(*uhdr);
547 
548 	while (len >= sizeof(tlv)) {
549 		size_t tlv_len;
550 		const void *tlv_data;
551 
552 		memcpy(&tlv, data, sizeof(tlv));
553 		tlv_len = le32toh(tlv.length);
554 		tlv_type = le32toh(tlv.type);
555 
556 		len -= sizeof(tlv);
557 		data += sizeof(tlv);
558 		tlv_data = data;
559 
560 		if (len < tlv_len) {
561 			device_printf(sc->sc_dev,
562 			    "firmware too short: %zu bytes\n",
563 			    len);
564 			error = EINVAL;
565 			goto parse_out;
566 		}
567 
568 		switch ((int)tlv_type) {
569 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
570 			if (tlv_len < sizeof(uint32_t)) {
571 				device_printf(sc->sc_dev,
572 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573 				    __func__,
574 				    (int) tlv_len);
575 				error = EINVAL;
576 				goto parse_out;
577 			}
578 			sc->sc_capa_max_probe_len
579 			    = le32toh(*(const uint32_t *)tlv_data);
580 			/* limit it to something sensible */
581 			if (sc->sc_capa_max_probe_len >
582 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585 				    "ridiculous\n", __func__);
586 				error = EINVAL;
587 				goto parse_out;
588 			}
589 			break;
590 		case IWM_UCODE_TLV_PAN:
591 			if (tlv_len) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594 				    __func__,
595 				    (int) tlv_len);
596 				error = EINVAL;
597 				goto parse_out;
598 			}
599 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600 			break;
601 		case IWM_UCODE_TLV_FLAGS:
602 			if (tlv_len < sizeof(uint32_t)) {
603 				device_printf(sc->sc_dev,
604 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605 				    __func__,
606 				    (int) tlv_len);
607 				error = EINVAL;
608 				goto parse_out;
609 			}
610 			/*
611 			 * Apparently there can be many flags, but Linux driver
612 			 * parses only the first one, and so do we.
613 			 *
614 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
615 			 * Intentional or a bug?  Observations from
616 			 * current firmware file:
617 			 *  1) TLV_PAN is parsed first
618 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619 			 * ==> this resets TLV_PAN to itself... hnnnk
620 			 */
621 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622 			break;
623 		case IWM_UCODE_TLV_CSCHEME:
624 			if ((error = iwm_store_cscheme(sc,
625 			    tlv_data, tlv_len)) != 0) {
626 				device_printf(sc->sc_dev,
627 				    "%s: iwm_store_cscheme(): returned %d\n",
628 				    __func__,
629 				    error);
630 				goto parse_out;
631 			}
632 			break;
633 		case IWM_UCODE_TLV_NUM_OF_CPU: {
634 			uint32_t num_cpu;
635 			if (tlv_len != sizeof(uint32_t)) {
636 				device_printf(sc->sc_dev,
637 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638 				    __func__,
639 				    (int) tlv_len);
640 				error = EINVAL;
641 				goto parse_out;
642 			}
643 			num_cpu = le32toh(*(const uint32_t *)tlv_data);
644 			if (num_cpu < 1 || num_cpu > 2) {
645 				device_printf(sc->sc_dev,
646 				    "%s: Driver supports only 1 or 2 CPUs\n",
647 				    __func__);
648 				error = EINVAL;
649 				goto parse_out;
650 			}
651 			break;
652 		}
653 		case IWM_UCODE_TLV_SEC_RT:
654 			if ((error = iwm_firmware_store_section(sc,
655 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656 				device_printf(sc->sc_dev,
657 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658 				    __func__,
659 				    error);
660 				goto parse_out;
661 			}
662 			break;
663 		case IWM_UCODE_TLV_SEC_INIT:
664 			if ((error = iwm_firmware_store_section(sc,
665 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666 				device_printf(sc->sc_dev,
667 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668 				    __func__,
669 				    error);
670 				goto parse_out;
671 			}
672 			break;
673 		case IWM_UCODE_TLV_SEC_WOWLAN:
674 			if ((error = iwm_firmware_store_section(sc,
675 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676 				device_printf(sc->sc_dev,
677 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678 				    __func__,
679 				    error);
680 				goto parse_out;
681 			}
682 			break;
683 		case IWM_UCODE_TLV_DEF_CALIB:
684 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685 				device_printf(sc->sc_dev,
686 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687 				    __func__,
688 				    (int) tlv_len,
689 				    (int) sizeof(struct iwm_tlv_calib_data));
690 				error = EINVAL;
691 				goto parse_out;
692 			}
693 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_set_default_calib() failed: %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_PHY_SKU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				error = EINVAL;
704 				device_printf(sc->sc_dev,
705 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706 				    __func__,
707 				    (int) tlv_len);
708 				goto parse_out;
709 			}
710 			sc->sc_fw_phy_config =
711 			    le32toh(*(const uint32_t *)tlv_data);
712 			break;
713 
714 		case IWM_UCODE_TLV_API_CHANGES_SET: {
715 			const struct iwm_ucode_api *api;
716 			if (tlv_len != sizeof(*api)) {
717 				error = EINVAL;
718 				goto parse_out;
719 			}
720 			api = (const struct iwm_ucode_api *)tlv_data;
721 			/* Flags may exceed 32 bits in future firmware. */
722 			if (le32toh(api->api_index) > 0) {
723 				device_printf(sc->sc_dev,
724 				    "unsupported API index %d\n",
725 				    le32toh(api->api_index));
726 				goto parse_out;
727 			}
728 			sc->sc_ucode_api = le32toh(api->api_flags);
729 			break;
730 		}
731 
732 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733 			const struct iwm_ucode_capa *capa;
734 			int idx, i;
735 			if (tlv_len != sizeof(*capa)) {
736 				error = EINVAL;
737 				goto parse_out;
738 			}
739 			capa = (const struct iwm_ucode_capa *)tlv_data;
740 			idx = le32toh(capa->api_index);
741 			if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742 				device_printf(sc->sc_dev,
743 				    "unsupported API index %d\n", idx);
744 				goto parse_out;
745 			}
746 			for (i = 0; i < 32; i++) {
747 				if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748 					continue;
749 				setbit(sc->sc_enabled_capa, i + (32 * idx));
750 			}
751 			break;
752 		}
753 
754 		case 48: /* undocumented TLV */
755 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757 			/* ignore, not used by current driver */
758 			break;
759 
760 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761 			if ((error = iwm_firmware_store_section(sc,
762 			    IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763 			    tlv_len)) != 0)
764 				goto parse_out;
765 			break;
766 
767 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768 			if (tlv_len != sizeof(uint32_t)) {
769 				error = EINVAL;
770 				goto parse_out;
771 			}
772 			sc->sc_capa_n_scan_channels =
773 			  le32toh(*(const uint32_t *)tlv_data);
774 			break;
775 
776 		case IWM_UCODE_TLV_FW_VERSION:
777 			if (tlv_len != sizeof(uint32_t) * 3) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782 			    "%d.%d.%d",
783 			    le32toh(((const uint32_t *)tlv_data)[0]),
784 			    le32toh(((const uint32_t *)tlv_data)[1]),
785 			    le32toh(((const uint32_t *)tlv_data)[2]));
786 			break;
787 
788 		default:
789 			device_printf(sc->sc_dev,
790 			    "%s: unknown firmware section %d, abort\n",
791 			    __func__, tlv_type);
792 			error = EINVAL;
793 			goto parse_out;
794 		}
795 
796 		len -= roundup(tlv_len, 4);
797 		data += roundup(tlv_len, 4);
798 	}
799 
800 	KASSERT(error == 0, ("unhandled error"));
801 
802  parse_out:
803 	if (error) {
804 		device_printf(sc->sc_dev, "firmware parse error %d, "
805 		    "section type %d\n", error, tlv_type);
806 	}
807 
808 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809 		device_printf(sc->sc_dev,
810 		    "device uses unsupported power ops\n");
811 		error = ENOTSUP;
812 	}
813 
814  out:
815 	if (error) {
816 		fw->fw_status = IWM_FW_STATUS_NONE;
817 		if (fw->fw_fp != NULL)
818 			iwm_fw_info_free(fw);
819 	} else
820 		fw->fw_status = IWM_FW_STATUS_DONE;
821 	wakeup(&sc->sc_fw);
822 
823 	return error;
824 }
825 
826 /*
827  * DMA resource routines
828  */
829 
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843 	int error;
844 
845 	dma->tag = NULL;
846 	dma->map = NULL;
847 	dma->size = size;
848 	dma->vaddr = NULL;
849 
850 	error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855 
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860 
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865 		dma->vaddr = NULL;
866 		goto fail;
867 	}
868 
869 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870 
871 	return 0;
872 
873 fail:
874 	iwm_dma_contig_free(dma);
875 
876 	return error;
877 }
878 
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882 	if (dma->vaddr != NULL) {
883 		bus_dmamap_sync(dma->tag, dma->map,
884 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(dma->tag, dma->map);
886 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887 		dma->vaddr = NULL;
888 	}
889 	if (dma->tag != NULL) {
890 		bus_dma_tag_destroy(dma->tag);
891 		dma->tag = NULL;
892 	}
893 }
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    sc->sc_fwdmasegsz, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002 	/* XXX conditional nic locks are stupid */
1003 	/* XXX print out if we can't lock the NIC? */
1004 	if (iwm_nic_lock(sc)) {
1005 		/* XXX handle if RX stop doesn't finish? */
1006 		(void) iwm_pcie_rx_stop(sc);
1007 		iwm_nic_unlock(sc);
1008 	}
1009 }
1010 
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014 	/* Reset the ring state */
1015 	ring->cur = 0;
1016 
1017 	/*
1018 	 * The hw rx ring index in shared memory must also be cleared,
1019 	 * otherwise the discrepancy can cause reprocessing chaos.
1020 	 */
1021 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023 
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027 	int i;
1028 
1029 	iwm_dma_contig_free(&ring->desc_dma);
1030 	iwm_dma_contig_free(&ring->stat_dma);
1031 
1032 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033 		struct iwm_rx_data *data = &ring->data[i];
1034 
1035 		if (data->m != NULL) {
1036 			bus_dmamap_sync(ring->data_dmat, data->map,
1037 			    BUS_DMASYNC_POSTREAD);
1038 			bus_dmamap_unload(ring->data_dmat, data->map);
1039 			m_freem(data->m);
1040 			data->m = NULL;
1041 		}
1042 		if (data->map != NULL) {
1043 			bus_dmamap_destroy(ring->data_dmat, data->map);
1044 			data->map = NULL;
1045 		}
1046 	}
1047 	if (ring->spare_map != NULL) {
1048 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049 		ring->spare_map = NULL;
1050 	}
1051 	if (ring->data_dmat != NULL) {
1052 		bus_dma_tag_destroy(ring->data_dmat);
1053 		ring->data_dmat = NULL;
1054 	}
1055 }
1056 
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060 	bus_addr_t paddr;
1061 	bus_size_t size;
1062 	size_t maxsize;
1063 	int nsegments;
1064 	int i, error;
1065 
1066 	ring->qid = qid;
1067 	ring->queued = 0;
1068 	ring->cur = 0;
1069 
1070 	/* Allocate TX descriptors (256-byte aligned). */
1071 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073 	if (error != 0) {
1074 		device_printf(sc->sc_dev,
1075 		    "could not allocate TX ring DMA memory\n");
1076 		goto fail;
1077 	}
1078 	ring->desc = ring->desc_dma.vaddr;
1079 
1080 	/*
1081 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082 	 * to allocate commands space for other rings.
1083 	 */
1084 	if (qid > IWM_MVM_CMD_QUEUE)
1085 		return 0;
1086 
1087 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate TX cmd DMA memory\n");
1092 		goto fail;
1093 	}
1094 	ring->cmd = ring->cmd_dma.vaddr;
1095 
1096 	/* FW commands may require more mapped space than packets. */
1097 	if (qid == IWM_MVM_CMD_QUEUE) {
1098 		maxsize = IWM_RBUF_SIZE;
1099 		nsegments = 1;
1100 	} else {
1101 		maxsize = MCLBYTES;
1102 		nsegments = IWM_MAX_SCATTER - 2;
1103 	}
1104 
1105 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108 	if (error != 0) {
1109 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110 		goto fail;
1111 	}
1112 
1113 	paddr = ring->cmd_dma.paddr;
1114 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115 		struct iwm_tx_data *data = &ring->data[i];
1116 
1117 		data->cmd_paddr = paddr;
1118 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119 		    + offsetof(struct iwm_tx_cmd, scratch);
1120 		paddr += sizeof(struct iwm_device_cmd);
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create TX buf DMA map\n");
1126 			goto fail;
1127 		}
1128 	}
1129 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1130 	    ("invalid physical address"));
1131 	return 0;
1132 
1133 fail:	iwm_free_tx_ring(sc, ring);
1134 	return error;
1135 }
1136 
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143 		struct iwm_tx_data *data = &ring->data[i];
1144 
1145 		if (data->m != NULL) {
1146 			bus_dmamap_sync(ring->data_dmat, data->map,
1147 			    BUS_DMASYNC_POSTWRITE);
1148 			bus_dmamap_unload(ring->data_dmat, data->map);
1149 			m_freem(data->m);
1150 			data->m = NULL;
1151 		}
1152 	}
1153 	/* Clear TX descriptors. */
1154 	memset(ring->desc, 0, ring->desc_dma.size);
1155 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156 	    BUS_DMASYNC_PREWRITE);
1157 	sc->qfullmsk &= ~(1 << ring->qid);
1158 	ring->queued = 0;
1159 	ring->cur = 0;
1160 }
1161 
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165 	int i;
1166 
1167 	iwm_dma_contig_free(&ring->desc_dma);
1168 	iwm_dma_contig_free(&ring->cmd_dma);
1169 
1170 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171 		struct iwm_tx_data *data = &ring->data[i];
1172 
1173 		if (data->m != NULL) {
1174 			bus_dmamap_sync(ring->data_dmat, data->map,
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(ring->data_dmat, data->map);
1177 			m_freem(data->m);
1178 			data->m = NULL;
1179 		}
1180 		if (data->map != NULL) {
1181 			bus_dmamap_destroy(ring->data_dmat, data->map);
1182 			data->map = NULL;
1183 		}
1184 	}
1185 	if (ring->data_dmat != NULL) {
1186 		bus_dma_tag_destroy(ring->data_dmat);
1187 		ring->data_dmat = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194 
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201 
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207 
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211 	/* disable interrupts */
1212 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213 
1214 	/* acknowledge all interrupts */
1215 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218 
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222 	iwm_disable_interrupts(sc);
1223 
1224 	/* Reset ICT table. */
1225 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226 	sc->ict_cur = 0;
1227 
1228 	/* Set physical address of ICT table (4KB aligned). */
1229 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1231 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234 
1235 	/* Switch to ICT interrupt mode in driver. */
1236 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1237 
1238 	/* Re-enable interrupts. */
1239 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240 	iwm_enable_interrupts(sc);
1241 }
1242 
1243 /* iwlwifi pcie/trans.c */
1244 
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257 	int chnl, qid;
1258 	uint32_t mask = 0;
1259 
1260 	/* tell the device to stop sending interrupts */
1261 	iwm_disable_interrupts(sc);
1262 
1263 	/*
1264 	 * FreeBSD-local: mark the first vap as not-uploaded,
1265 	 * so the next transition through auth/assoc
1266 	 * will correctly populate the MAC context.
1267 	 */
1268 	if (vap) {
1269 		struct iwm_vap *iv = IWM_VAP(vap);
1270 		iv->is_uploaded = 0;
1271 	}
1272 
1273 	/* device going down, Stop using ICT table */
1274 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275 
1276 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277 
1278 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279 
1280 	if (iwm_nic_lock(sc)) {
1281 		/* Stop each Tx DMA channel */
1282 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283 			IWM_WRITE(sc,
1284 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286 		}
1287 
1288 		/* Wait for DMA channels to be idle */
1289 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290 		    5000)) {
1291 			device_printf(sc->sc_dev,
1292 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294 		}
1295 		iwm_nic_unlock(sc);
1296 	}
1297 	iwm_disable_rx_dma(sc);
1298 
1299 	/* Stop RX ring. */
1300 	iwm_reset_rx_ring(sc, &sc->rxq);
1301 
1302 	/* Reset all TX rings. */
1303 	for (qid = 0; qid < nitems(sc->txq); qid++)
1304 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305 
1306 	/*
1307 	 * Power-down device's busmaster DMA clocks
1308 	 */
1309 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310 	DELAY(5);
1311 
1312 	/* Make sure (redundant) we've released our request to stay awake */
1313 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315 
1316 	/* Stop the device, and put it in low power state */
1317 	iwm_apm_stop(sc);
1318 
1319 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * Clean again the interrupt here
1321 	 */
1322 	iwm_disable_interrupts(sc);
1323 	/* stop and reset the on-board processor */
1324 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325 
1326 	/*
1327 	 * Even if we stop the HW, we still want the RF kill
1328 	 * interrupt
1329 	 */
1330 	iwm_enable_rfkill_int(sc);
1331 	iwm_check_rfkill(sc);
1332 }
1333 
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339 	uint32_t reg_val = 0;
1340 
1341 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	if (!iwm_nic_lock(sc))
1381 		return EBUSY;
1382 
1383 	/*
1384 	 * Initialize RX ring.  This is from the iwn driver.
1385 	 */
1386 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387 
1388 	/* stop DMA */
1389 	iwm_disable_rx_dma(sc);
1390 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394 
1395 	/* Set physical address of RX ring (256-byte aligned). */
1396 	IWM_WRITE(sc,
1397 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398 
1399 	/* Set physical address of RX status (16-byte aligned). */
1400 	IWM_WRITE(sc,
1401 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402 
1403 	/* Enable RX. */
1404 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1406 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1407 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1408 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1409 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1411 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412 
1413 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414 
1415 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1416 	if (sc->host_interrupt_operation_mode)
1417 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418 
1419 	/*
1420 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1421 	 *
1422 	 * This value should initially be 0 (before preparing any
1423 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1424 	 */
1425 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426 
1427 	iwm_nic_unlock(sc);
1428 
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435 	int qid;
1436 
1437 	if (!iwm_nic_lock(sc))
1438 		return EBUSY;
1439 
1440 	/* Deactivate TX scheduler. */
1441 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442 
1443 	/* Set physical address of "keep warm" page (16-byte aligned). */
1444 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445 
1446 	/* Initialize TX rings. */
1447 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1448 		struct iwm_tx_ring *txq = &sc->txq[qid];
1449 
1450 		/* Set physical address of TX ring (256-byte aligned). */
1451 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452 		    txq->desc_dma.paddr >> 8);
1453 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1455 		    __func__,
1456 		    qid, txq->desc,
1457 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1458 	}
1459 
1460 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461 
1462 	iwm_nic_unlock(sc);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470 	int error;
1471 
1472 	iwm_apm_init(sc);
1473 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474 		iwm_set_pwr(sc);
1475 
1476 	iwm_mvm_nic_config(sc);
1477 
1478 	if ((error = iwm_nic_rx_init(sc)) != 0)
1479 		return error;
1480 
1481 	/*
1482 	 * Ditto for TX, from iwn
1483 	 */
1484 	if ((error = iwm_nic_tx_init(sc)) != 0)
1485 		return error;
1486 
1487 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488 	    "%s: shadow registers enabled\n", __func__);
1489 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490 
1491 	return 0;
1492 }
1493 
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495 	IWM_MVM_TX_FIFO_VO,
1496 	IWM_MVM_TX_FIFO_VI,
1497 	IWM_MVM_TX_FIFO_BE,
1498 	IWM_MVM_TX_FIFO_BK,
1499 };
1500 
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504 	if (!iwm_nic_lock(sc)) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: cannot enable txq %d\n",
1507 		    __func__,
1508 		    qid);
1509 		return EBUSY;
1510 	}
1511 
1512 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513 
1514 	if (qid == IWM_MVM_CMD_QUEUE) {
1515 		/* unactivate before configuration */
1516 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519 
1520 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521 
1522 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523 
1524 		iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525 		/* Set scheduler window size and frame limit. */
1526 		iwm_write_mem32(sc,
1527 		    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528 		    sizeof(uint32_t),
1529 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533 
1534 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1539 	} else {
1540 		struct iwm_scd_txq_cfg_cmd cmd;
1541 		int error;
1542 
1543 		iwm_nic_unlock(sc);
1544 
1545 		memset(&cmd, 0, sizeof(cmd));
1546 		cmd.scd_queue = qid;
1547 		cmd.enable = 1;
1548 		cmd.sta_id = sta_id;
1549 		cmd.tx_fifo = fifo;
1550 		cmd.aggregate = 0;
1551 		cmd.window = IWM_FRAME_LIMIT;
1552 
1553 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554 		    sizeof(cmd), &cmd);
1555 		if (error) {
1556 			device_printf(sc->sc_dev,
1557 			    "cannot enable txq %d\n", qid);
1558 			return error;
1559 		}
1560 
1561 		if (!iwm_nic_lock(sc))
1562 			return EBUSY;
1563 	}
1564 
1565 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567 
1568 	iwm_nic_unlock(sc);
1569 
1570 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571 	    __func__, qid, fifo);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579 	int nwords;
1580 	int error, chnl;
1581 	uint32_t base;
1582 
1583 	if (!iwm_nic_lock(sc))
1584 		return EBUSY;
1585 
1586 	base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587 	if (sc->sched_base != base) {
1588 		device_printf(sc->sc_dev,
1589 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590 		    __func__, sc->sched_base, base);
1591 	}
1592 
1593 	iwm_ict_reset(sc);
1594 
1595 	/* Clear TX scheduler state in SRAM. */
1596 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598 	    / sizeof(uint32_t);
1599 	error = iwm_write_mem(sc,
1600 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601 	    NULL, nwords);
1602 	if (error)
1603 		goto out;
1604 
1605 	/* Set physical address of TX scheduler rings (1KB aligned). */
1606 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607 
1608 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609 
1610 	iwm_nic_unlock(sc);
1611 
1612 	/* enable command channel */
1613 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614 	if (error)
1615 		return error;
1616 
1617 	if (!iwm_nic_lock(sc))
1618 		return EBUSY;
1619 
1620 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621 
1622 	/* Enable DMA channels. */
1623 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627 	}
1628 
1629 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631 
1632 	/* Enable L1-Active */
1633 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636 	}
1637 
1638  out:
1639 	iwm_nic_unlock(sc);
1640 	return error;
1641 }
1642 
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648 
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651 	IWM_NVM_SECTION_TYPE_HW,
1652 	IWM_NVM_SECTION_TYPE_SW,
1653 	IWM_NVM_SECTION_TYPE_REGULATORY,
1654 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1655 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1656 	IWM_NVM_SECTION_TYPE_HW_8000,
1657 	IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658 	IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660 
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE	8192
1664 
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667 
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED		0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS	1
1671 
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676 	offset = 0;
1677 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1678 		.offset = htole16(offset),
1679 		.length = htole16(length),
1680 		.type = htole16(section),
1681 		.op_code = IWM_NVM_READ_OPCODE,
1682 	};
1683 	struct iwm_nvm_access_resp *nvm_resp;
1684 	struct iwm_rx_packet *pkt;
1685 	struct iwm_host_cmd cmd = {
1686 		.id = IWM_NVM_ACCESS_CMD,
1687 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688 		    IWM_CMD_SEND_IN_RFKILL,
1689 		.data = { &nvm_access_cmd, },
1690 	};
1691 	int ret, offset_read;
1692 	size_t bytes_read;
1693 	uint8_t *resp_data;
1694 
1695 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696 
1697 	ret = iwm_send_cmd(sc, &cmd);
1698 	if (ret) {
1699 		device_printf(sc->sc_dev,
1700 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	pkt = cmd.resp_pkt;
1705 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706 		device_printf(sc->sc_dev,
1707 		    "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708 		    pkt->hdr.flags);
1709 		ret = EIO;
1710 		goto exit;
1711 	}
1712 
1713 	/* Extract NVM response */
1714 	nvm_resp = (void *)pkt->data;
1715 
1716 	ret = le16toh(nvm_resp->status);
1717 	bytes_read = le16toh(nvm_resp->length);
1718 	offset_read = le16toh(nvm_resp->offset);
1719 	resp_data = nvm_resp->data;
1720 	if (ret) {
1721 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722 		    "NVM access command failed with status %d\n", ret);
1723 		ret = EINVAL;
1724 		goto exit;
1725 	}
1726 
1727 	if (offset_read != offset) {
1728 		device_printf(sc->sc_dev,
1729 		    "NVM ACCESS response with invalid offset %d\n",
1730 		    offset_read);
1731 		ret = EINVAL;
1732 		goto exit;
1733 	}
1734 
1735 	if (bytes_read > length) {
1736 		device_printf(sc->sc_dev,
1737 		    "NVM ACCESS response with too much data "
1738 		    "(%d bytes requested, %zd bytes received)\n",
1739 		    length, bytes_read);
1740 		ret = EINVAL;
1741 		goto exit;
1742 	}
1743 
1744 	memcpy(data + offset, resp_data, bytes_read);
1745 	*len = bytes_read;
1746 
1747  exit:
1748 	iwm_free_resp(sc, &cmd);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764 	uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766 	uint16_t chunklen, seglen;
1767 	int error = 0;
1768 
1769 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770 	    "reading NVM section %d\n", section);
1771 
1772 	chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773 	*len = 0;
1774 
1775 	/* Read NVM chunks until exhausted (reading less than requested) */
1776 	while (seglen == chunklen && *len < max_len) {
1777 		error = iwm_nvm_read_chunk(sc,
1778 		    section, *len, chunklen, data, &seglen);
1779 		if (error) {
1780 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781 			    "Cannot read from NVM section "
1782 			    "%d at offset %d\n", section, *len);
1783 			return error;
1784 		}
1785 		*len += seglen;
1786 	}
1787 
1788 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789 	    "NVM section %d read completed (%d bytes, error=%d)\n",
1790 	    section, *len, error);
1791 	return error;
1792 }
1793 
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797 
1798 /* iwlwifi/iwl-nvm-parse.c */
1799 
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802 	/* NVM HW-Section offset (in words) definitions */
1803 	IWM_HW_ADDR = 0x15,
1804 
1805 /* NVM SW-Section offset (in words) definitions */
1806 	IWM_NVM_SW_SECTION = 0x1C0,
1807 	IWM_NVM_VERSION = 0,
1808 	IWM_RADIO_CFG = 1,
1809 	IWM_SKU = 2,
1810 	IWM_N_HW_ADDRS = 3,
1811 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812 
1813 /* NVM calibration section offset (in words) definitions */
1814 	IWM_NVM_CALIB_SECTION = 0x2B8,
1815 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817 
1818 enum iwm_8000_nvm_offsets {
1819 	/* NVM HW-Section offset (in words) definitions */
1820 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825 
1826 	/* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828 	IWM_NVM_VERSION_8000 = 0,
1829 	IWM_RADIO_CFG_8000 = 0,
1830 	IWM_SKU_8000 = 2,
1831 	IWM_N_HW_ADDRS_8000 = 3,
1832 
1833 	/* NVM REGULATORY -Section offset (in words) definitions */
1834 	IWM_NVM_CHANNELS_8000 = 0,
1835 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838 
1839 	/* NVM calibration section offset (in words) definitions */
1840 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843 
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1847 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1848 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1849 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1850 };
1851 
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859 
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1866 
1867 #define DEFAULT_MAX_TX_POWER 16
1868 
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1884 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1888 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893 
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900 	uint32_t nflags;
1901 
1902 	nflags = 0;
1903 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904 		nflags |= IEEE80211_CHAN_PASSIVE;
1905 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906 		nflags |= IEEE80211_CHAN_NOADHOC;
1907 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908 		nflags |= IEEE80211_CHAN_DFS;
1909 		/* Just in case. */
1910 		nflags |= IEEE80211_CHAN_NOADHOC;
1911 	}
1912 
1913 	return (nflags);
1914 }
1915 
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921 	const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922 	uint32_t nflags;
1923 	uint16_t ch_flags;
1924 	uint8_t ieee;
1925 	int error;
1926 
1927 	for (; ch_idx < ch_num; ch_idx++) {
1928 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930 			ieee = iwm_nvm_channels[ch_idx];
1931 		else
1932 			ieee = iwm_nvm_channels_8000[ch_idx];
1933 
1934 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937 			    ieee, ch_flags,
1938 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939 			    "5.2" : "2.4");
1940 			continue;
1941 		}
1942 
1943 		nflags = iwm_eeprom_channel_flags(ch_flags);
1944 		error = ieee80211_add_channel(chans, maxchans, nchans,
1945 		    ieee, 0, 0, nflags, bands);
1946 		if (error != 0)
1947 			break;
1948 
1949 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1951 		    ieee, ch_flags,
1952 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953 		    "5.2" : "2.4");
1954 	}
1955 }
1956 
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961 	struct iwm_softc *sc = ic->ic_softc;
1962 	struct iwm_nvm_data *data = &sc->sc_nvm;
1963 	uint8_t bands[IEEE80211_MODE_BYTES];
1964 	size_t ch_num;
1965 
1966 	memset(bands, 0, sizeof(bands));
1967 	/* 1-13: 11b/g channels. */
1968 	setbit(bands, IEEE80211_MODE_11B);
1969 	setbit(bands, IEEE80211_MODE_11G);
1970 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972 
1973 	/* 14: 11b channel only. */
1974 	clrbit(bands, IEEE80211_MODE_11G);
1975 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1976 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977 
1978 	if (data->sku_cap_band_52GHz_enable) {
1979 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980 			ch_num = nitems(iwm_nvm_channels);
1981 		else
1982 			ch_num = nitems(iwm_nvm_channels_8000);
1983 		memset(bands, 0, sizeof(bands));
1984 		setbit(bands, IEEE80211_MODE_11A);
1985 		iwm_add_channel_band(sc, chans, maxchans, nchans,
1986 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987 	}
1988 }
1989 
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992 	const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994 	const uint8_t *hw_addr;
1995 
1996 	if (mac_override) {
1997 		static const uint8_t reserved_mac[] = {
1998 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999 		};
2000 
2001 		hw_addr = (const uint8_t *)(mac_override +
2002 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2003 
2004 		/*
2005 		 * Store the MAC address from MAO section.
2006 		 * No byte swapping is required in MAO section
2007 		 */
2008 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009 
2010 		/*
2011 		 * Force the use of the OTP MAC address in case of reserved MAC
2012 		 * address in the NVM, or if address is given but invalid.
2013 		 */
2014 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2017 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2018 			return;
2019 
2020 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021 		    "%s: mac address from nvm override section invalid\n",
2022 		    __func__);
2023 	}
2024 
2025 	if (nvm_hw) {
2026 		/* read the mac address from WFMP registers */
2027 		uint32_t mac_addr0 =
2028 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029 		uint32_t mac_addr1 =
2030 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031 
2032 		hw_addr = (const uint8_t *)&mac_addr0;
2033 		data->hw_addr[0] = hw_addr[3];
2034 		data->hw_addr[1] = hw_addr[2];
2035 		data->hw_addr[2] = hw_addr[1];
2036 		data->hw_addr[3] = hw_addr[0];
2037 
2038 		hw_addr = (const uint8_t *)&mac_addr1;
2039 		data->hw_addr[4] = hw_addr[1];
2040 		data->hw_addr[5] = hw_addr[0];
2041 
2042 		return;
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048 
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051 	    const uint16_t *phy_sku)
2052 {
2053 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054 		return le16_to_cpup(nvm_sw + IWM_SKU);
2055 
2056 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058 
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064 	else
2065 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2066 						IWM_NVM_VERSION_8000));
2067 }
2068 
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071 		  const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075 
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078 
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082 	int n_hw_addr;
2083 
2084 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086 
2087 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088 
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091 
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094 		  uint32_t radio_cfg)
2095 {
2096 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101 		return;
2102 	}
2103 
2104 	/* set the radio configuration for family 8000 */
2105 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112 
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2117 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119 	struct iwm_nvm_data *data = &sc->sc_nvm;
2120 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121 	uint32_t sku, radio_cfg;
2122 
2123 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124 
2125 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126 	iwm_set_radio_cfg(sc, data, radio_cfg);
2127 
2128 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131 	data->sku_cap_11n_enable = 0;
2132 
2133 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134 
2135 	/* The byte order is little endian 16 bit, meaning 214365 */
2136 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137 		IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138 		data->hw_addr[0] = hw_addr[1];
2139 		data->hw_addr[1] = hw_addr[0];
2140 		data->hw_addr[2] = hw_addr[3];
2141 		data->hw_addr[3] = hw_addr[2];
2142 		data->hw_addr[4] = hw_addr[5];
2143 		data->hw_addr[5] = hw_addr[4];
2144 	} else {
2145 		iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146 	}
2147 
2148 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2151 	} else {
2152 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * END NVM PARSE
2161  */
2162 
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167 
2168 	/* Checking for required sections */
2169 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171 		    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172 			device_printf(sc->sc_dev,
2173 			    "Can't parse empty OTP/NVM sections\n");
2174 			return ENOENT;
2175 		}
2176 
2177 		hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178 	} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179 		/* SW and REGULATORY sections are mandatory */
2180 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182 			device_printf(sc->sc_dev,
2183 			    "Can't parse empty OTP/NVM sections\n");
2184 			return ENOENT;
2185 		}
2186 		/* MAC_OVERRIDE or at least HW section must exist */
2187 		if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189 			device_printf(sc->sc_dev,
2190 			    "Can't parse mac_address, empty sections\n");
2191 			return ENOENT;
2192 		}
2193 
2194 		/* PHY_SKU section is mandatory in B0 */
2195 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196 			device_printf(sc->sc_dev,
2197 			    "Can't parse phy_sku in B0, empty sections\n");
2198 			return ENOENT;
2199 		}
2200 
2201 		hw = (const uint16_t *)
2202 		    sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203 	} else {
2204 		panic("unknown device family %d\n", sc->sc_device_family);
2205 	}
2206 
2207 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208 	calib = (const uint16_t *)
2209 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210 	regulatory = (const uint16_t *)
2211 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212 	mac_override = (const uint16_t *)
2213 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215 
2216 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217 	    phy_sku, regulatory);
2218 }
2219 
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224 	int i, section, error;
2225 	uint16_t len;
2226 	uint8_t *buf;
2227 	const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228 
2229 	memset(nvm_sections, 0 , sizeof(nvm_sections));
2230 
2231 	buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232 	if (buf == NULL)
2233 		return ENOMEM;
2234 
2235 	for (i = 0; i < nitems(nvm_to_read); i++) {
2236 		section = nvm_to_read[i];
2237 		KASSERT(section <= nitems(nvm_sections),
2238 		    ("too many sections"));
2239 
2240 		error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241 		if (error) {
2242 			error = 0;
2243 			continue;
2244 		}
2245 		nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246 		if (nvm_sections[section].data == NULL) {
2247 			error = ENOMEM;
2248 			break;
2249 		}
2250 		memcpy(nvm_sections[section].data, buf, len);
2251 		nvm_sections[section].length = len;
2252 	}
2253 	free(buf, M_DEVBUF);
2254 	if (error == 0)
2255 		error = iwm_parse_nvm_sections(sc, nvm_sections);
2256 
2257 	for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258 		if (nvm_sections[i].data != NULL)
2259 			free(nvm_sections[i].data, M_DEVBUF);
2260 	}
2261 
2262 	return error;
2263 }
2264 
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269 
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272 	const uint8_t *section, uint32_t byte_cnt)
2273 {
2274 	int error = EINVAL;
2275 	uint32_t chunk_sz, offset;
2276 
2277 	chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278 
2279 	for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280 		uint32_t addr, len;
2281 		const uint8_t *data;
2282 
2283 		addr = dst_addr + offset;
2284 		len = MIN(chunk_sz, byte_cnt - offset);
2285 		data = section + offset;
2286 
2287 		error = iwm_firmware_load_chunk(sc, addr, data, len);
2288 		if (error)
2289 			break;
2290 	}
2291 
2292 	return error;
2293 }
2294 
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297 	const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299 	struct iwm_dma_info *dma = &sc->fw_dma;
2300 	int error;
2301 
2302 	/* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303 	memcpy(dma->vaddr, chunk, byte_cnt);
2304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305 
2306 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307 	    dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308 		iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310 	}
2311 
2312 	sc->sc_fw_chunk_done = 0;
2313 
2314 	if (!iwm_nic_lock(sc))
2315 		return EBUSY;
2316 
2317 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320 	    dst_addr);
2321 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324 	    (iwm_get_dma_hi_addr(dma->paddr)
2325 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334 
2335 	iwm_nic_unlock(sc);
2336 
2337 	/* wait 1s for this segment to load */
2338 	while (!sc->sc_fw_chunk_done)
2339 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340 			break;
2341 
2342 	if (!sc->sc_fw_chunk_done) {
2343 		device_printf(sc->sc_dev,
2344 		    "fw chunk addr 0x%x len %d failed to load\n",
2345 		    dst_addr, byte_cnt);
2346 	}
2347 
2348 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349 	    dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350 		iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352 		iwm_nic_unlock(sc);
2353 	}
2354 
2355 	return error;
2356 }
2357 
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362 	int shift_param;
2363 	int i, error = 0, sec_num = 0x1;
2364 	uint32_t val, last_read_idx = 0;
2365 	const void *data;
2366 	uint32_t dlen;
2367 	uint32_t offset;
2368 
2369 	if (cpu == 1) {
2370 		shift_param = 0;
2371 		*first_ucode_section = 0;
2372 	} else {
2373 		shift_param = 16;
2374 		(*first_ucode_section)++;
2375 	}
2376 
2377 	for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378 		last_read_idx = i;
2379 		data = fws->fw_sect[i].fws_data;
2380 		dlen = fws->fw_sect[i].fws_len;
2381 		offset = fws->fw_sect[i].fws_devoff;
2382 
2383 		/*
2384 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385 		 * CPU1 to CPU2.
2386 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2387 		 * CPU2 non paged to CPU2 paging sec.
2388 		 */
2389 		if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390 		    offset == IWM_PAGING_SEPARATOR_SECTION)
2391 			break;
2392 
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394 		    "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395 		    i, offset, dlen, cpu);
2396 
2397 		if (dlen > sc->sc_fwdmasegsz) {
2398 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399 			    "chunk %d too large (%d bytes)\n", i, dlen);
2400 			error = EFBIG;
2401 		} else {
2402 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403 		}
2404 		if (error) {
2405 			device_printf(sc->sc_dev,
2406 			    "could not load firmware chunk %d (error %d)\n",
2407 			    i, error);
2408 			return error;
2409 		}
2410 
2411 		/* Notify the ucode of the loaded section number and status */
2412 		if (iwm_nic_lock(sc)) {
2413 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414 			val = val | (sec_num << shift_param);
2415 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416 			sec_num = (sec_num << 1) | 0x1;
2417 			iwm_nic_unlock(sc);
2418 
2419 			/*
2420 			 * The firmware won't load correctly without this delay.
2421 			 */
2422 			DELAY(8000);
2423 		}
2424 	}
2425 
2426 	*first_ucode_section = last_read_idx;
2427 
2428 	if (iwm_nic_lock(sc)) {
2429 		if (cpu == 1)
2430 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431 		else
2432 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433 		iwm_nic_unlock(sc);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442 	struct iwm_fw_sects *fws;
2443 	int error = 0;
2444 	int first_ucode_section;
2445 
2446 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447 	    ucode_type);
2448 
2449 	fws = &sc->sc_fw.fw_sects[ucode_type];
2450 
2451 	/* configure the ucode to be ready to get the secured image */
2452 	/* release CPU reset */
2453 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454 
2455 	/* load to FW the binary Secured sections of CPU1 */
2456 	error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457 	if (error)
2458 		return error;
2459 
2460 	/* load to FW the binary sections of CPU2 */
2461 	return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463 
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467 	struct iwm_fw_sects *fws;
2468 	int error, i;
2469 	const void *data;
2470 	uint32_t dlen;
2471 	uint32_t offset;
2472 
2473 	sc->sc_uc.uc_intr = 0;
2474 
2475 	fws = &sc->sc_fw.fw_sects[ucode_type];
2476 	for (i = 0; i < fws->fw_count; i++) {
2477 		data = fws->fw_sect[i].fws_data;
2478 		dlen = fws->fw_sect[i].fws_len;
2479 		offset = fws->fw_sect[i].fws_devoff;
2480 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481 		    "LOAD FIRMWARE type %d offset %u len %d\n",
2482 		    ucode_type, offset, dlen);
2483 		if (dlen > sc->sc_fwdmasegsz) {
2484 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485 			    "chunk %d too large (%d bytes)\n", i, dlen);
2486 			error = EFBIG;
2487 		} else {
2488 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489 		}
2490 		if (error) {
2491 			device_printf(sc->sc_dev,
2492 			    "could not load firmware chunk %u of %u "
2493 			    "(error=%d)\n", i, fws->fw_count, error);
2494 			return error;
2495 		}
2496 	}
2497 
2498 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506 	int error, w;
2507 
2508 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509 		error = iwm_load_firmware_8000(sc, ucode_type);
2510 	else
2511 		error = iwm_load_firmware_7000(sc, ucode_type);
2512 	if (error)
2513 		return error;
2514 
2515 	/* wait for the firmware to load */
2516 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518 	}
2519 	if (error || !sc->sc_uc.uc_ok) {
2520 		device_printf(sc->sc_dev, "could not load firmware\n");
2521 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522 			device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524 			device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Give the firmware some time to initialize.
2531 	 * Accessing it too early causes errors.
2532 	 */
2533 	msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534 
2535 	return error;
2536 }
2537 
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542 	int error;
2543 
2544 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545 
2546 	if ((error = iwm_nic_init(sc)) != 0) {
2547 		device_printf(sc->sc_dev, "unable to init nic\n");
2548 		return error;
2549 	}
2550 
2551 	/* make sure rfkill handshake bits are cleared */
2552 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555 
2556 	/* clear (again), then enable host interrupts */
2557 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558 	iwm_enable_interrupts(sc);
2559 
2560 	/* really make sure rfkill handshake bits are cleared */
2561 	/* maybe we should write a few times more?  just to make sure */
2562 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564 
2565 	/* Load the given image to the HW */
2566 	return iwm_load_firmware(sc, ucode_type);
2567 }
2568 
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573 		.valid = htole32(valid_tx_ant),
2574 	};
2575 
2576 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579 
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586 
2587 	/* Set parameters */
2588 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589 	phy_cfg_cmd.calib_control.event_trigger =
2590 	    sc->sc_default_calib[ucode_type].event_trigger;
2591 	phy_cfg_cmd.calib_control.flow_trigger =
2592 	    sc->sc_default_calib[ucode_type].flow_trigger;
2593 
2594 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599 
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602 	enum iwm_ucode_type ucode_type)
2603 {
2604 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2605 	int error;
2606 
2607 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609 			error);
2610 		return error;
2611 	}
2612 
2613 	sc->sc_uc_current = ucode_type;
2614 	error = iwm_start_fw(sc, ucode_type);
2615 	if (error) {
2616 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617 		sc->sc_uc_current = old_type;
2618 		return error;
2619 	}
2620 
2621 	error = iwm_post_alive(sc);
2622 	if (error) {
2623 		device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624 	}
2625 	return error;
2626 }
2627 
2628 /*
2629  * mvm misc bits
2630  */
2631 
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638 	int error;
2639 
2640 	/* do not operate with rfkill switch turned on */
2641 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642 		device_printf(sc->sc_dev,
2643 		    "radio is disabled by hardware switch\n");
2644 		return EPERM;
2645 	}
2646 
2647 	sc->sc_init_complete = 0;
2648 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649 	    IWM_UCODE_TYPE_INIT)) != 0) {
2650 		device_printf(sc->sc_dev, "failed to load init firmware\n");
2651 		return error;
2652 	}
2653 
2654 	if (justnvm) {
2655 		if ((error = iwm_nvm_init(sc)) != 0) {
2656 			device_printf(sc->sc_dev, "failed to read nvm\n");
2657 			return error;
2658 		}
2659 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660 
2661 		return 0;
2662 	}
2663 
2664 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665 		device_printf(sc->sc_dev,
2666 		    "failed to send bt coex configuration: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	/* Init Smart FIFO. */
2671 	error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2676 	    "%s: phy_txant=0x%08x, nvm_valid_tx_ant=0x%02x, valid=0x%02x\n",
2677 	    __func__,
2678 	    ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
2679 	      >> IWM_FW_PHY_CFG_TX_CHAIN_POS),
2680 	    sc->sc_nvm.valid_tx_ant,
2681 	    iwm_fw_valid_tx_ant(sc));
2682 
2683 
2684 	/* Send TX valid antennas before triggering calibrations */
2685 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2686 		device_printf(sc->sc_dev,
2687 		    "failed to send antennas before calibration: %d\n", error);
2688 		return error;
2689 	}
2690 
2691 	/*
2692 	 * Send phy configurations command to init uCode
2693 	 * to start the 16.0 uCode init image internal calibrations.
2694 	 */
2695 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2696 		device_printf(sc->sc_dev,
2697 		    "%s: failed to run internal calibration: %d\n",
2698 		    __func__, error);
2699 		return error;
2700 	}
2701 
2702 	/*
2703 	 * Nothing to do but wait for the init complete notification
2704 	 * from the firmware
2705 	 */
2706 	while (!sc->sc_init_complete) {
2707 		error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2708 				 0, "iwminit", 2*hz);
2709 		if (error) {
2710 			device_printf(sc->sc_dev, "init complete failed: %d\n",
2711 				sc->sc_init_complete);
2712 			break;
2713 		}
2714 	}
2715 
2716 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2717 	    sc->sc_init_complete ? "" : "not ");
2718 
2719 	return error;
2720 }
2721 
2722 /*
2723  * receive side
2724  */
2725 
2726 /* (re)stock rx ring, called at init-time and at runtime */
2727 static int
2728 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2729 {
2730 	struct iwm_rx_ring *ring = &sc->rxq;
2731 	struct iwm_rx_data *data = &ring->data[idx];
2732 	struct mbuf *m;
2733 	bus_dmamap_t dmamap = NULL;
2734 	bus_dma_segment_t seg;
2735 	int nsegs, error;
2736 
2737 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2738 	if (m == NULL)
2739 		return ENOBUFS;
2740 
2741 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2742 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2743 	    &seg, &nsegs, BUS_DMA_NOWAIT);
2744 	if (error != 0) {
2745 		device_printf(sc->sc_dev,
2746 		    "%s: can't map mbuf, error %d\n", __func__, error);
2747 		goto fail;
2748 	}
2749 
2750 	if (data->m != NULL)
2751 		bus_dmamap_unload(ring->data_dmat, data->map);
2752 
2753 	/* Swap ring->spare_map with data->map */
2754 	dmamap = data->map;
2755 	data->map = ring->spare_map;
2756 	ring->spare_map = dmamap;
2757 
2758 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2759 	data->m = m;
2760 
2761 	/* Update RX descriptor. */
2762 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2763 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
2764 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 	    BUS_DMASYNC_PREWRITE);
2766 
2767 	return 0;
2768 fail:
2769 	m_freem(m);
2770 	return error;
2771 }
2772 
2773 /* iwlwifi: mvm/rx.c */
2774 #define IWM_RSSI_OFFSET 50
2775 static int
2776 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2777 {
2778 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2779 	uint32_t agc_a, agc_b;
2780 	uint32_t val;
2781 
2782 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2783 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2784 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2785 
2786 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2787 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2788 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2789 
2790 	/*
2791 	 * dBm = rssi dB - agc dB - constant.
2792 	 * Higher AGC (higher radio gain) means lower signal.
2793 	 */
2794 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2795 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2796 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2797 
2798 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2799 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2800 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2801 
2802 	return max_rssi_dbm;
2803 }
2804 
2805 /* iwlwifi: mvm/rx.c */
2806 /*
2807  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2808  * values are reported by the fw as positive values - need to negate
2809  * to obtain their dBM.  Account for missing antennas by replacing 0
2810  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2811  */
2812 static int
2813 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2814 {
2815 	int energy_a, energy_b, energy_c, max_energy;
2816 	uint32_t val;
2817 
2818 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2819 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2820 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2821 	energy_a = energy_a ? -energy_a : -256;
2822 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2823 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2824 	energy_b = energy_b ? -energy_b : -256;
2825 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2826 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2827 	energy_c = energy_c ? -energy_c : -256;
2828 	max_energy = MAX(energy_a, energy_b);
2829 	max_energy = MAX(max_energy, energy_c);
2830 
2831 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2832 	    "energy In A %d B %d C %d , and max %d\n",
2833 	    energy_a, energy_b, energy_c, max_energy);
2834 
2835 	return max_energy;
2836 }
2837 
2838 static void
2839 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2840 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2841 {
2842 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2843 
2844 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2845 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2846 
2847 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2848 }
2849 
2850 /*
2851  * Retrieve the average noise (in dBm) among receivers.
2852  */
2853 static int
2854 iwm_get_noise(struct iwm_softc *sc,
2855     const struct iwm_mvm_statistics_rx_non_phy *stats)
2856 {
2857 	int i, total, nbant, noise;
2858 
2859 	total = nbant = noise = 0;
2860 	for (i = 0; i < 3; i++) {
2861 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2862 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2863 		    __func__,
2864 		    i,
2865 		    noise);
2866 
2867 		if (noise) {
2868 			total += noise;
2869 			nbant++;
2870 		}
2871 	}
2872 
2873 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2874 	    __func__, nbant, total);
2875 #if 0
2876 	/* There should be at least one antenna but check anyway. */
2877 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2878 #else
2879 	/* For now, just hard-code it to -96 to be safe */
2880 	return (-96);
2881 #endif
2882 }
2883 
2884 /*
2885  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2886  *
2887  * Handles the actual data of the Rx packet from the fw
2888  */
2889 static void
2890 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2891 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2892 {
2893 	struct ieee80211com *ic = &sc->sc_ic;
2894 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2895 	struct ieee80211_frame *wh;
2896 	struct ieee80211_node *ni;
2897 	struct ieee80211_rx_stats rxs;
2898 	struct mbuf *m;
2899 	struct iwm_rx_phy_info *phy_info;
2900 	struct iwm_rx_mpdu_res_start *rx_res;
2901 	uint32_t len;
2902 	uint32_t rx_pkt_status;
2903 	int rssi;
2904 
2905 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2906 
2907 	phy_info = &sc->sc_last_phy_info;
2908 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2909 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2910 	len = le16toh(rx_res->byte_count);
2911 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2912 
2913 	m = data->m;
2914 	m->m_data = pkt->data + sizeof(*rx_res);
2915 	m->m_pkthdr.len = m->m_len = len;
2916 
2917 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2918 		device_printf(sc->sc_dev,
2919 		    "dsp size out of range [0,20]: %d\n",
2920 		    phy_info->cfg_phy_cnt);
2921 		return;
2922 	}
2923 
2924 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2925 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2926 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2927 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2928 		return; /* drop */
2929 	}
2930 
2931 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2932 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2933 	} else {
2934 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2935 	}
2936 
2937 	/* Note: RSSI is absolute (ie a -ve value) */
2938 	if (rssi < IWM_MIN_DBM)
2939 		rssi = IWM_MIN_DBM;
2940 	else if (rssi > IWM_MAX_DBM)
2941 		rssi = IWM_MAX_DBM;
2942 
2943 	/* Map it to relative value */
2944 	rssi = rssi - sc->sc_noise;
2945 
2946 	/* replenish ring for the buffer we're going to feed to the sharks */
2947 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2948 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2949 		    __func__);
2950 		return;
2951 	}
2952 
2953 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2954 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2955 
2956 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2957 
2958 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2959 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2960 	    __func__,
2961 	    le16toh(phy_info->channel),
2962 	    le16toh(phy_info->phy_flags));
2963 
2964 	/*
2965 	 * Populate an RX state struct with the provided information.
2966 	 */
2967 	bzero(&rxs, sizeof(rxs));
2968 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2969 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2970 	rxs.c_ieee = le16toh(phy_info->channel);
2971 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2972 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2973 	} else {
2974 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2975 	}
2976 
2977 	/* rssi is in 1/2db units */
2978 	rxs.rssi = rssi * 2;
2979 	rxs.nf = sc->sc_noise;
2980 
2981 	if (ieee80211_radiotap_active_vap(vap)) {
2982 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2983 
2984 		tap->wr_flags = 0;
2985 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2986 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2987 		tap->wr_chan_freq = htole16(rxs.c_freq);
2988 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2989 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2990 		tap->wr_dbm_antsignal = (int8_t)rssi;
2991 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2992 		tap->wr_tsft = phy_info->system_timestamp;
2993 		switch (phy_info->rate) {
2994 		/* CCK rates. */
2995 		case  10: tap->wr_rate =   2; break;
2996 		case  20: tap->wr_rate =   4; break;
2997 		case  55: tap->wr_rate =  11; break;
2998 		case 110: tap->wr_rate =  22; break;
2999 		/* OFDM rates. */
3000 		case 0xd: tap->wr_rate =  12; break;
3001 		case 0xf: tap->wr_rate =  18; break;
3002 		case 0x5: tap->wr_rate =  24; break;
3003 		case 0x7: tap->wr_rate =  36; break;
3004 		case 0x9: tap->wr_rate =  48; break;
3005 		case 0xb: tap->wr_rate =  72; break;
3006 		case 0x1: tap->wr_rate =  96; break;
3007 		case 0x3: tap->wr_rate = 108; break;
3008 		/* Unknown rate: should not happen. */
3009 		default:  tap->wr_rate =   0;
3010 		}
3011 	}
3012 
3013 	IWM_UNLOCK(sc);
3014 	if (ni != NULL) {
3015 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3016 		ieee80211_input_mimo(ni, m, &rxs);
3017 		ieee80211_free_node(ni);
3018 	} else {
3019 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3020 		ieee80211_input_mimo_all(ic, m, &rxs);
3021 	}
3022 	IWM_LOCK(sc);
3023 }
3024 
3025 static int
3026 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3027 	struct iwm_node *in)
3028 {
3029 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3030 	struct ieee80211_node *ni = &in->in_ni;
3031 	struct ieee80211vap *vap = ni->ni_vap;
3032 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3033 	int failack = tx_resp->failure_frame;
3034 
3035 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3036 
3037 	/* Update rate control statistics. */
3038 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3039 	    __func__,
3040 	    (int) le16toh(tx_resp->status.status),
3041 	    (int) le16toh(tx_resp->status.sequence),
3042 	    tx_resp->frame_count,
3043 	    tx_resp->bt_kill_count,
3044 	    tx_resp->failure_rts,
3045 	    tx_resp->failure_frame,
3046 	    le32toh(tx_resp->initial_rate),
3047 	    (int) le16toh(tx_resp->wireless_media_time));
3048 
3049 	if (status != IWM_TX_STATUS_SUCCESS &&
3050 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3051 		ieee80211_ratectl_tx_complete(vap, ni,
3052 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
3053 		return (1);
3054 	} else {
3055 		ieee80211_ratectl_tx_complete(vap, ni,
3056 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
3057 		return (0);
3058 	}
3059 }
3060 
3061 static void
3062 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3063 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3064 {
3065 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3066 	int idx = cmd_hdr->idx;
3067 	int qid = cmd_hdr->qid;
3068 	struct iwm_tx_ring *ring = &sc->txq[qid];
3069 	struct iwm_tx_data *txd = &ring->data[idx];
3070 	struct iwm_node *in = txd->in;
3071 	struct mbuf *m = txd->m;
3072 	int status;
3073 
3074 	KASSERT(txd->done == 0, ("txd not done"));
3075 	KASSERT(txd->in != NULL, ("txd without node"));
3076 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3077 
3078 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3079 
3080 	sc->sc_tx_timer = 0;
3081 
3082 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3083 
3084 	/* Unmap and free mbuf. */
3085 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3086 	bus_dmamap_unload(ring->data_dmat, txd->map);
3087 
3088 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3089 	    "free txd %p, in %p\n", txd, txd->in);
3090 	txd->done = 1;
3091 	txd->m = NULL;
3092 	txd->in = NULL;
3093 
3094 	ieee80211_tx_complete(&in->in_ni, m, status);
3095 
3096 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3097 		sc->qfullmsk &= ~(1 << ring->qid);
3098 		if (sc->qfullmsk == 0) {
3099 			/*
3100 			 * Well, we're in interrupt context, but then again
3101 			 * I guess net80211 does all sorts of stunts in
3102 			 * interrupt context, so maybe this is no biggie.
3103 			 */
3104 			iwm_start(sc);
3105 		}
3106 	}
3107 }
3108 
3109 /*
3110  * transmit side
3111  */
3112 
3113 /*
3114  * Process a "command done" firmware notification.  This is where we wakeup
3115  * processes waiting for a synchronous command completion.
3116  * from if_iwn
3117  */
3118 static void
3119 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3120 {
3121 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3122 	struct iwm_tx_data *data;
3123 
3124 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3125 		return;	/* Not a command ack. */
3126 	}
3127 
3128 	/* XXX wide commands? */
3129 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3130 	    "cmd notification type 0x%x qid %d idx %d\n",
3131 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3132 
3133 	data = &ring->data[pkt->hdr.idx];
3134 
3135 	/* If the command was mapped in an mbuf, free it. */
3136 	if (data->m != NULL) {
3137 		bus_dmamap_sync(ring->data_dmat, data->map,
3138 		    BUS_DMASYNC_POSTWRITE);
3139 		bus_dmamap_unload(ring->data_dmat, data->map);
3140 		m_freem(data->m);
3141 		data->m = NULL;
3142 	}
3143 	wakeup(&ring->desc[pkt->hdr.idx]);
3144 }
3145 
3146 #if 0
3147 /*
3148  * necessary only for block ack mode
3149  */
3150 void
3151 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3152 	uint16_t len)
3153 {
3154 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3155 	uint16_t w_val;
3156 
3157 	scd_bc_tbl = sc->sched_dma.vaddr;
3158 
3159 	len += 8; /* magic numbers came naturally from paris */
3160 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3161 		len = roundup(len, 4) / 4;
3162 
3163 	w_val = htole16(sta_id << 12 | len);
3164 
3165 	/* Update TX scheduler. */
3166 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3167 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3168 	    BUS_DMASYNC_PREWRITE);
3169 
3170 	/* I really wonder what this is ?!? */
3171 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3172 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3173 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3174 		    BUS_DMASYNC_PREWRITE);
3175 	}
3176 }
3177 #endif
3178 
3179 /*
3180  * Take an 802.11 (non-n) rate, find the relevant rate
3181  * table entry.  return the index into in_ridx[].
3182  *
3183  * The caller then uses that index back into in_ridx
3184  * to figure out the rate index programmed /into/
3185  * the firmware for this given node.
3186  */
3187 static int
3188 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3189     uint8_t rate)
3190 {
3191 	int i;
3192 	uint8_t r;
3193 
3194 	for (i = 0; i < nitems(in->in_ridx); i++) {
3195 		r = iwm_rates[in->in_ridx[i]].rate;
3196 		if (rate == r)
3197 			return (i);
3198 	}
3199 
3200 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3201 	    "%s: couldn't find an entry for rate=%d\n",
3202 	    __func__,
3203 	    rate);
3204 
3205 	/* XXX Return the first */
3206 	/* XXX TODO: have it return the /lowest/ */
3207 	return (0);
3208 }
3209 
3210 static int
3211 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3212 {
3213 	int i;
3214 
3215 	for (i = 0; i < nitems(iwm_rates); i++) {
3216 		if (iwm_rates[i].rate == rate)
3217 			return (i);
3218 	}
3219 	/* XXX error? */
3220 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3221 	    "%s: couldn't find an entry for rate=%d\n",
3222 	    __func__,
3223 	    rate);
3224 	return (0);
3225 }
3226 
3227 /*
3228  * Fill in the rate related information for a transmit command.
3229  */
3230 static const struct iwm_rate *
3231 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3232 	struct mbuf *m, struct iwm_tx_cmd *tx)
3233 {
3234 	struct ieee80211_node *ni = &in->in_ni;
3235 	struct ieee80211_frame *wh;
3236 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3237 	const struct iwm_rate *rinfo;
3238 	int type;
3239 	int ridx, rate_flags;
3240 
3241 	wh = mtod(m, struct ieee80211_frame *);
3242 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3243 
3244 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3245 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3246 
3247 	if (type == IEEE80211_FC0_TYPE_MGT) {
3248 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3249 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3250 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3251 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3252 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3253 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3254 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3255 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3256 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3257 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3258 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3259 	} else if (m->m_flags & M_EAPOL) {
3260 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3261 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3262 		    "%s: EAPOL\n", __func__);
3263 	} else if (type == IEEE80211_FC0_TYPE_DATA) {
3264 		int i;
3265 
3266 		/* for data frames, use RS table */
3267 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3268 		/* XXX pass pktlen */
3269 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3270 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3271 		ridx = in->in_ridx[i];
3272 
3273 		/* This is the index into the programmed table */
3274 		tx->initial_rate_index = i;
3275 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3276 
3277 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3278 		    "%s: start with i=%d, txrate %d\n",
3279 		    __func__, i, iwm_rates[ridx].rate);
3280 	} else {
3281 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3282 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3283 		    __func__, tp->mgmtrate);
3284 	}
3285 
3286 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3287 	    "%s: frame type=%d txrate %d\n",
3288 	        __func__, type, iwm_rates[ridx].rate);
3289 
3290 	rinfo = &iwm_rates[ridx];
3291 
3292 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3293 	    __func__, ridx,
3294 	    rinfo->rate,
3295 	    !! (IWM_RIDX_IS_CCK(ridx))
3296 	    );
3297 
3298 	/* XXX TODO: hard-coded TX antenna? */
3299 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3300 	if (IWM_RIDX_IS_CCK(ridx))
3301 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3302 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3303 
3304 	return rinfo;
3305 }
3306 
3307 #define TB0_SIZE 16
3308 static int
3309 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3310 {
3311 	struct ieee80211com *ic = &sc->sc_ic;
3312 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3313 	struct iwm_node *in = IWM_NODE(ni);
3314 	struct iwm_tx_ring *ring;
3315 	struct iwm_tx_data *data;
3316 	struct iwm_tfd *desc;
3317 	struct iwm_device_cmd *cmd;
3318 	struct iwm_tx_cmd *tx;
3319 	struct ieee80211_frame *wh;
3320 	struct ieee80211_key *k = NULL;
3321 	struct mbuf *m1;
3322 	const struct iwm_rate *rinfo;
3323 	uint32_t flags;
3324 	u_int hdrlen;
3325 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3326 	int nsegs;
3327 	uint8_t tid, type;
3328 	int i, totlen, error, pad;
3329 
3330 	wh = mtod(m, struct ieee80211_frame *);
3331 	hdrlen = ieee80211_anyhdrsize(wh);
3332 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3333 	tid = 0;
3334 	ring = &sc->txq[ac];
3335 	desc = &ring->desc[ring->cur];
3336 	memset(desc, 0, sizeof(*desc));
3337 	data = &ring->data[ring->cur];
3338 
3339 	/* Fill out iwm_tx_cmd to send to the firmware */
3340 	cmd = &ring->cmd[ring->cur];
3341 	cmd->hdr.code = IWM_TX_CMD;
3342 	cmd->hdr.flags = 0;
3343 	cmd->hdr.qid = ring->qid;
3344 	cmd->hdr.idx = ring->cur;
3345 
3346 	tx = (void *)cmd->data;
3347 	memset(tx, 0, sizeof(*tx));
3348 
3349 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3350 
3351 	/* Encrypt the frame if need be. */
3352 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3353 		/* Retrieve key for TX && do software encryption. */
3354 		k = ieee80211_crypto_encap(ni, m);
3355 		if (k == NULL) {
3356 			m_freem(m);
3357 			return (ENOBUFS);
3358 		}
3359 		/* 802.11 header may have moved. */
3360 		wh = mtod(m, struct ieee80211_frame *);
3361 	}
3362 
3363 	if (ieee80211_radiotap_active_vap(vap)) {
3364 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3365 
3366 		tap->wt_flags = 0;
3367 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3368 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3369 		tap->wt_rate = rinfo->rate;
3370 		if (k != NULL)
3371 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3372 		ieee80211_radiotap_tx(vap, m);
3373 	}
3374 
3375 
3376 	totlen = m->m_pkthdr.len;
3377 
3378 	flags = 0;
3379 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3380 		flags |= IWM_TX_CMD_FLG_ACK;
3381 	}
3382 
3383 	if (type == IEEE80211_FC0_TYPE_DATA
3384 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3385 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3386 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3387 	}
3388 
3389 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3390 	    type != IEEE80211_FC0_TYPE_DATA)
3391 		tx->sta_id = sc->sc_aux_sta.sta_id;
3392 	else
3393 		tx->sta_id = IWM_STATION_ID;
3394 
3395 	if (type == IEEE80211_FC0_TYPE_MGT) {
3396 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3397 
3398 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3399 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3400 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3401 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3402 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3403 		} else {
3404 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3405 		}
3406 	} else {
3407 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3408 	}
3409 
3410 	if (hdrlen & 3) {
3411 		/* First segment length must be a multiple of 4. */
3412 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3413 		pad = 4 - (hdrlen & 3);
3414 	} else
3415 		pad = 0;
3416 
3417 	tx->driver_txop = 0;
3418 	tx->next_frame_len = 0;
3419 
3420 	tx->len = htole16(totlen);
3421 	tx->tid_tspec = tid;
3422 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3423 
3424 	/* Set physical address of "scratch area". */
3425 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3426 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3427 
3428 	/* Copy 802.11 header in TX command. */
3429 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3430 
3431 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3432 
3433 	tx->sec_ctl = 0;
3434 	tx->tx_flags |= htole32(flags);
3435 
3436 	/* Trim 802.11 header. */
3437 	m_adj(m, hdrlen);
3438 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3439 	    segs, &nsegs, BUS_DMA_NOWAIT);
3440 	if (error != 0) {
3441 		if (error != EFBIG) {
3442 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3443 			    error);
3444 			m_freem(m);
3445 			return error;
3446 		}
3447 		/* Too many DMA segments, linearize mbuf. */
3448 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3449 		if (m1 == NULL) {
3450 			device_printf(sc->sc_dev,
3451 			    "%s: could not defrag mbuf\n", __func__);
3452 			m_freem(m);
3453 			return (ENOBUFS);
3454 		}
3455 		m = m1;
3456 
3457 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3458 		    segs, &nsegs, BUS_DMA_NOWAIT);
3459 		if (error != 0) {
3460 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3461 			    error);
3462 			m_freem(m);
3463 			return error;
3464 		}
3465 	}
3466 	data->m = m;
3467 	data->in = in;
3468 	data->done = 0;
3469 
3470 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3471 	    "sending txd %p, in %p\n", data, data->in);
3472 	KASSERT(data->in != NULL, ("node is NULL"));
3473 
3474 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3475 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3476 	    ring->qid, ring->cur, totlen, nsegs,
3477 	    le32toh(tx->tx_flags),
3478 	    le32toh(tx->rate_n_flags),
3479 	    tx->initial_rate_index
3480 	    );
3481 
3482 	/* Fill TX descriptor. */
3483 	desc->num_tbs = 2 + nsegs;
3484 
3485 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3486 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3487 	    (TB0_SIZE << 4);
3488 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3489 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3490 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3491 	      + hdrlen + pad - TB0_SIZE) << 4);
3492 
3493 	/* Other DMA segments are for data payload. */
3494 	for (i = 0; i < nsegs; i++) {
3495 		seg = &segs[i];
3496 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3497 		desc->tbs[i+2].hi_n_len = \
3498 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3499 		    | ((seg->ds_len) << 4);
3500 	}
3501 
3502 	bus_dmamap_sync(ring->data_dmat, data->map,
3503 	    BUS_DMASYNC_PREWRITE);
3504 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3505 	    BUS_DMASYNC_PREWRITE);
3506 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3507 	    BUS_DMASYNC_PREWRITE);
3508 
3509 #if 0
3510 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3511 #endif
3512 
3513 	/* Kick TX ring. */
3514 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3515 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3516 
3517 	/* Mark TX ring as full if we reach a certain threshold. */
3518 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3519 		sc->qfullmsk |= 1 << ring->qid;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int
3526 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3527     const struct ieee80211_bpf_params *params)
3528 {
3529 	struct ieee80211com *ic = ni->ni_ic;
3530 	struct iwm_softc *sc = ic->ic_softc;
3531 	int error = 0;
3532 
3533 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3534 	    "->%s begin\n", __func__);
3535 
3536 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3537 		m_freem(m);
3538 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3539 		    "<-%s not RUNNING\n", __func__);
3540 		return (ENETDOWN);
3541         }
3542 
3543 	IWM_LOCK(sc);
3544 	/* XXX fix this */
3545         if (params == NULL) {
3546 		error = iwm_tx(sc, m, ni, 0);
3547 	} else {
3548 		error = iwm_tx(sc, m, ni, 0);
3549 	}
3550 	sc->sc_tx_timer = 5;
3551 	IWM_UNLOCK(sc);
3552 
3553         return (error);
3554 }
3555 
3556 /*
3557  * mvm/tx.c
3558  */
3559 
3560 /*
3561  * Note that there are transports that buffer frames before they reach
3562  * the firmware. This means that after flush_tx_path is called, the
3563  * queue might not be empty. The race-free way to handle this is to:
3564  * 1) set the station as draining
3565  * 2) flush the Tx path
3566  * 3) wait for the transport queues to be empty
3567  */
3568 int
3569 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3570 {
3571 	int ret;
3572 	struct iwm_tx_path_flush_cmd flush_cmd = {
3573 		.queues_ctl = htole32(tfd_msk),
3574 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3575 	};
3576 
3577 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3578 	    sizeof(flush_cmd), &flush_cmd);
3579 	if (ret)
3580                 device_printf(sc->sc_dev,
3581 		    "Flushing tx queue failed: %d\n", ret);
3582 	return ret;
3583 }
3584 
3585 /*
3586  * BEGIN mvm/sta.c
3587  */
3588 
3589 static int
3590 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3591 	struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3592 {
3593 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3594 	    cmd, status);
3595 }
3596 
3597 /* send station add/update command to firmware */
3598 static int
3599 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3600 {
3601 	struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3602 	int ret;
3603 	uint32_t status;
3604 
3605 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3606 
3607 	add_sta_cmd.sta_id = IWM_STATION_ID;
3608 	add_sta_cmd.mac_id_n_color
3609 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3610 	        IWM_DEFAULT_COLOR));
3611 	if (!update) {
3612 		int ac;
3613 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3614 			add_sta_cmd.tfd_queue_msk |=
3615 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3616 		}
3617 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3618 	}
3619 	add_sta_cmd.add_modify = update ? 1 : 0;
3620 	add_sta_cmd.station_flags_msk
3621 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3622 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3623 	if (update)
3624 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3625 
3626 	status = IWM_ADD_STA_SUCCESS;
3627 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3628 	if (ret)
3629 		return ret;
3630 
3631 	switch (status) {
3632 	case IWM_ADD_STA_SUCCESS:
3633 		break;
3634 	default:
3635 		ret = EIO;
3636 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3637 		break;
3638 	}
3639 
3640 	return ret;
3641 }
3642 
3643 static int
3644 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3645 {
3646 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3647 }
3648 
3649 static int
3650 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3651 {
3652 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3653 }
3654 
3655 static int
3656 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3657 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3658 {
3659 	struct iwm_mvm_add_sta_cmd_v7 cmd;
3660 	int ret;
3661 	uint32_t status;
3662 
3663 	memset(&cmd, 0, sizeof(cmd));
3664 	cmd.sta_id = sta->sta_id;
3665 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3666 
3667 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3668 	cmd.tid_disable_tx = htole16(0xffff);
3669 
3670 	if (addr)
3671 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3672 
3673 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3674 	if (ret)
3675 		return ret;
3676 
3677 	switch (status) {
3678 	case IWM_ADD_STA_SUCCESS:
3679 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3680 		    "%s: Internal station added.\n", __func__);
3681 		return 0;
3682 	default:
3683 		device_printf(sc->sc_dev,
3684 		    "%s: Add internal station failed, status=0x%x\n",
3685 		    __func__, status);
3686 		ret = EIO;
3687 		break;
3688 	}
3689 	return ret;
3690 }
3691 
3692 static int
3693 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3694 {
3695 	int ret;
3696 
3697 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3698 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3699 
3700 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3701 	if (ret)
3702 		return ret;
3703 
3704 	ret = iwm_mvm_add_int_sta_common(sc,
3705 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3706 
3707 	if (ret)
3708 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3709 	return ret;
3710 }
3711 
3712 /*
3713  * END mvm/sta.c
3714  */
3715 
3716 /*
3717  * BEGIN mvm/quota.c
3718  */
3719 
3720 static int
3721 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3722 {
3723 	struct iwm_time_quota_cmd cmd;
3724 	int i, idx, ret, num_active_macs, quota, quota_rem;
3725 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3726 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3727 	uint16_t id;
3728 
3729 	memset(&cmd, 0, sizeof(cmd));
3730 
3731 	/* currently, PHY ID == binding ID */
3732 	if (in) {
3733 		id = in->in_phyctxt->id;
3734 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3735 		colors[id] = in->in_phyctxt->color;
3736 
3737 		if (1)
3738 			n_ifs[id] = 1;
3739 	}
3740 
3741 	/*
3742 	 * The FW's scheduling session consists of
3743 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3744 	 * equally between all the bindings that require quota
3745 	 */
3746 	num_active_macs = 0;
3747 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3748 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3749 		num_active_macs += n_ifs[i];
3750 	}
3751 
3752 	quota = 0;
3753 	quota_rem = 0;
3754 	if (num_active_macs) {
3755 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3756 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3757 	}
3758 
3759 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3760 		if (colors[i] < 0)
3761 			continue;
3762 
3763 		cmd.quotas[idx].id_and_color =
3764 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3765 
3766 		if (n_ifs[i] <= 0) {
3767 			cmd.quotas[idx].quota = htole32(0);
3768 			cmd.quotas[idx].max_duration = htole32(0);
3769 		} else {
3770 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3771 			cmd.quotas[idx].max_duration = htole32(0);
3772 		}
3773 		idx++;
3774 	}
3775 
3776 	/* Give the remainder of the session to the first binding */
3777 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3778 
3779 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3780 	    sizeof(cmd), &cmd);
3781 	if (ret)
3782 		device_printf(sc->sc_dev,
3783 		    "%s: Failed to send quota: %d\n", __func__, ret);
3784 	return ret;
3785 }
3786 
3787 /*
3788  * END mvm/quota.c
3789  */
3790 
3791 /*
3792  * ieee80211 routines
3793  */
3794 
3795 /*
3796  * Change to AUTH state in 80211 state machine.  Roughly matches what
3797  * Linux does in bss_info_changed().
3798  */
3799 static int
3800 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3801 {
3802 	struct ieee80211_node *ni;
3803 	struct iwm_node *in;
3804 	struct iwm_vap *iv = IWM_VAP(vap);
3805 	uint32_t duration;
3806 	int error;
3807 
3808 	/*
3809 	 * XXX i have a feeling that the vap node is being
3810 	 * freed from underneath us. Grr.
3811 	 */
3812 	ni = ieee80211_ref_node(vap->iv_bss);
3813 	in = IWM_NODE(ni);
3814 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3815 	    "%s: called; vap=%p, bss ni=%p\n",
3816 	    __func__,
3817 	    vap,
3818 	    ni);
3819 
3820 	in->in_assoc = 0;
3821 
3822 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3823 	if (error != 0)
3824 		return error;
3825 
3826 	error = iwm_allow_mcast(vap, sc);
3827 	if (error) {
3828 		device_printf(sc->sc_dev,
3829 		    "%s: failed to set multicast\n", __func__);
3830 		goto out;
3831 	}
3832 
3833 	/*
3834 	 * This is where it deviates from what Linux does.
3835 	 *
3836 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3837 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3838 	 * and always does a mac_ctx_changed().
3839 	 *
3840 	 * The openbsd port doesn't attempt to do that - it reset things
3841 	 * at odd states and does the add here.
3842 	 *
3843 	 * So, until the state handling is fixed (ie, we never reset
3844 	 * the NIC except for a firmware failure, which should drag
3845 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3846 	 * contexts that are required), let's do a dirty hack here.
3847 	 */
3848 	if (iv->is_uploaded) {
3849 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3850 			device_printf(sc->sc_dev,
3851 			    "%s: failed to update MAC\n", __func__);
3852 			goto out;
3853 		}
3854 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3855 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3856 			device_printf(sc->sc_dev,
3857 			    "%s: failed update phy ctxt\n", __func__);
3858 			goto out;
3859 		}
3860 		in->in_phyctxt = &sc->sc_phyctxt[0];
3861 
3862 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3863 			device_printf(sc->sc_dev,
3864 			    "%s: binding update cmd\n", __func__);
3865 			goto out;
3866 		}
3867 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3868 			device_printf(sc->sc_dev,
3869 			    "%s: failed to update sta\n", __func__);
3870 			goto out;
3871 		}
3872 	} else {
3873 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3874 			device_printf(sc->sc_dev,
3875 			    "%s: failed to add MAC\n", __func__);
3876 			goto out;
3877 		}
3878 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3879 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3880 			device_printf(sc->sc_dev,
3881 			    "%s: failed add phy ctxt!\n", __func__);
3882 			error = ETIMEDOUT;
3883 			goto out;
3884 		}
3885 		in->in_phyctxt = &sc->sc_phyctxt[0];
3886 
3887 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3888 			device_printf(sc->sc_dev,
3889 			    "%s: binding add cmd\n", __func__);
3890 			goto out;
3891 		}
3892 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3893 			device_printf(sc->sc_dev,
3894 			    "%s: failed to add sta\n", __func__);
3895 			goto out;
3896 		}
3897 	}
3898 
3899 	/*
3900 	 * Prevent the FW from wandering off channel during association
3901 	 * by "protecting" the session with a time event.
3902 	 */
3903 	/* XXX duration is in units of TU, not MS */
3904 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3905 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3906 	DELAY(100);
3907 
3908 	error = 0;
3909 out:
3910 	ieee80211_free_node(ni);
3911 	return (error);
3912 }
3913 
3914 static int
3915 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3916 {
3917 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3918 	int error;
3919 
3920 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3921 		device_printf(sc->sc_dev,
3922 		    "%s: failed to update STA\n", __func__);
3923 		return error;
3924 	}
3925 
3926 	in->in_assoc = 1;
3927 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3928 		device_printf(sc->sc_dev,
3929 		    "%s: failed to update MAC\n", __func__);
3930 		return error;
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static int
3937 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3938 {
3939 	uint32_t tfd_msk;
3940 
3941 	/*
3942 	 * Ok, so *technically* the proper set of calls for going
3943 	 * from RUN back to SCAN is:
3944 	 *
3945 	 * iwm_mvm_power_mac_disable(sc, in);
3946 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3947 	 * iwm_mvm_rm_sta(sc, in);
3948 	 * iwm_mvm_update_quotas(sc, NULL);
3949 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3950 	 * iwm_mvm_binding_remove_vif(sc, in);
3951 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3952 	 *
3953 	 * However, that freezes the device not matter which permutations
3954 	 * and modifications are attempted.  Obviously, this driver is missing
3955 	 * something since it works in the Linux driver, but figuring out what
3956 	 * is missing is a little more complicated.  Now, since we're going
3957 	 * back to nothing anyway, we'll just do a complete device reset.
3958 	 * Up your's, device!
3959 	 */
3960 	/*
3961 	 * Just using 0xf for the queues mask is fine as long as we only
3962 	 * get here from RUN state.
3963 	 */
3964 	tfd_msk = 0xf;
3965 	mbufq_drain(&sc->sc_snd);
3966 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3967 	/*
3968 	 * We seem to get away with just synchronously sending the
3969 	 * IWM_TXPATH_FLUSH command.
3970 	 */
3971 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3972 	iwm_stop_device(sc);
3973 	iwm_init_hw(sc);
3974 	if (in)
3975 		in->in_assoc = 0;
3976 	return 0;
3977 
3978 #if 0
3979 	int error;
3980 
3981 	iwm_mvm_power_mac_disable(sc, in);
3982 
3983 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3984 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3985 		return error;
3986 	}
3987 
3988 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3989 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3990 		return error;
3991 	}
3992 	error = iwm_mvm_rm_sta(sc, in);
3993 	in->in_assoc = 0;
3994 	iwm_mvm_update_quotas(sc, NULL);
3995 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3996 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3997 		return error;
3998 	}
3999 	iwm_mvm_binding_remove_vif(sc, in);
4000 
4001 	iwm_mvm_mac_ctxt_remove(sc, in);
4002 
4003 	return error;
4004 #endif
4005 }
4006 
4007 static struct ieee80211_node *
4008 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4009 {
4010 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4011 	    M_NOWAIT | M_ZERO);
4012 }
4013 
4014 static void
4015 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4016 {
4017 	struct ieee80211_node *ni = &in->in_ni;
4018 	struct iwm_lq_cmd *lq = &in->in_lq;
4019 	int nrates = ni->ni_rates.rs_nrates;
4020 	int i, ridx, tab = 0;
4021 //	int txant = 0;
4022 
4023 	if (nrates > nitems(lq->rs_table)) {
4024 		device_printf(sc->sc_dev,
4025 		    "%s: node supports %d rates, driver handles "
4026 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4027 		return;
4028 	}
4029 	if (nrates == 0) {
4030 		device_printf(sc->sc_dev,
4031 		    "%s: node supports 0 rates, odd!\n", __func__);
4032 		return;
4033 	}
4034 
4035 	/*
4036 	 * XXX .. and most of iwm_node is not initialised explicitly;
4037 	 * it's all just 0x0 passed to the firmware.
4038 	 */
4039 
4040 	/* first figure out which rates we should support */
4041 	/* XXX TODO: this isn't 11n aware /at all/ */
4042 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4043 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4044 	    "%s: nrates=%d\n", __func__, nrates);
4045 
4046 	/*
4047 	 * Loop over nrates and populate in_ridx from the highest
4048 	 * rate to the lowest rate.  Remember, in_ridx[] has
4049 	 * IEEE80211_RATE_MAXSIZE entries!
4050 	 */
4051 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4052 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4053 
4054 		/* Map 802.11 rate to HW rate index. */
4055 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4056 			if (iwm_rates[ridx].rate == rate)
4057 				break;
4058 		if (ridx > IWM_RIDX_MAX) {
4059 			device_printf(sc->sc_dev,
4060 			    "%s: WARNING: device rate for %d not found!\n",
4061 			    __func__, rate);
4062 		} else {
4063 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4064 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4065 			    __func__,
4066 			    i,
4067 			    rate,
4068 			    ridx);
4069 			in->in_ridx[i] = ridx;
4070 		}
4071 	}
4072 
4073 	/* then construct a lq_cmd based on those */
4074 	memset(lq, 0, sizeof(*lq));
4075 	lq->sta_id = IWM_STATION_ID;
4076 
4077 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4078 	if (ni->ni_flags & IEEE80211_NODE_HT)
4079 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4080 
4081 	/*
4082 	 * are these used? (we don't do SISO or MIMO)
4083 	 * need to set them to non-zero, though, or we get an error.
4084 	 */
4085 	lq->single_stream_ant_msk = 1;
4086 	lq->dual_stream_ant_msk = 1;
4087 
4088 	/*
4089 	 * Build the actual rate selection table.
4090 	 * The lowest bits are the rates.  Additionally,
4091 	 * CCK needs bit 9 to be set.  The rest of the bits
4092 	 * we add to the table select the tx antenna
4093 	 * Note that we add the rates in the highest rate first
4094 	 * (opposite of ni_rates).
4095 	 */
4096 	/*
4097 	 * XXX TODO: this should be looping over the min of nrates
4098 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4099 	 */
4100 	for (i = 0; i < nrates; i++) {
4101 		int nextant;
4102 
4103 #if 0
4104 		if (txant == 0)
4105 			txant = iwm_fw_valid_tx_ant(sc);
4106 		nextant = 1<<(ffs(txant)-1);
4107 		txant &= ~nextant;
4108 #else
4109 		nextant = iwm_fw_valid_tx_ant(sc);
4110 #endif
4111 		/*
4112 		 * Map the rate id into a rate index into
4113 		 * our hardware table containing the
4114 		 * configuration to use for this rate.
4115 		 */
4116 		ridx = in->in_ridx[i];
4117 		tab = iwm_rates[ridx].plcp;
4118 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4119 		if (IWM_RIDX_IS_CCK(ridx))
4120 			tab |= IWM_RATE_MCS_CCK_MSK;
4121 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4122 		    "station rate i=%d, rate=%d, hw=%x\n",
4123 		    i, iwm_rates[ridx].rate, tab);
4124 		lq->rs_table[i] = htole32(tab);
4125 	}
4126 	/* then fill the rest with the lowest possible rate */
4127 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4128 		KASSERT(tab != 0, ("invalid tab"));
4129 		lq->rs_table[i] = htole32(tab);
4130 	}
4131 }
4132 
4133 static int
4134 iwm_media_change(struct ifnet *ifp)
4135 {
4136 	struct ieee80211vap *vap = ifp->if_softc;
4137 	struct ieee80211com *ic = vap->iv_ic;
4138 	struct iwm_softc *sc = ic->ic_softc;
4139 	int error;
4140 
4141 	error = ieee80211_media_change(ifp);
4142 	if (error != ENETRESET)
4143 		return error;
4144 
4145 	IWM_LOCK(sc);
4146 	if (ic->ic_nrunning > 0) {
4147 		iwm_stop(sc);
4148 		iwm_init(sc);
4149 	}
4150 	IWM_UNLOCK(sc);
4151 	return error;
4152 }
4153 
4154 
4155 static int
4156 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4157 {
4158 	struct iwm_vap *ivp = IWM_VAP(vap);
4159 	struct ieee80211com *ic = vap->iv_ic;
4160 	struct iwm_softc *sc = ic->ic_softc;
4161 	struct iwm_node *in;
4162 	int error;
4163 
4164 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4165 	    "switching state %s -> %s\n",
4166 	    ieee80211_state_name[vap->iv_state],
4167 	    ieee80211_state_name[nstate]);
4168 	IEEE80211_UNLOCK(ic);
4169 	IWM_LOCK(sc);
4170 
4171 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4172 		iwm_led_blink_stop(sc);
4173 
4174 	/* disable beacon filtering if we're hopping out of RUN */
4175 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4176 		iwm_mvm_disable_beacon_filter(sc);
4177 
4178 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4179 			in->in_assoc = 0;
4180 
4181 		if (nstate == IEEE80211_S_INIT) {
4182 			IWM_UNLOCK(sc);
4183 			IEEE80211_LOCK(ic);
4184 			error = ivp->iv_newstate(vap, nstate, arg);
4185 			IEEE80211_UNLOCK(ic);
4186 			IWM_LOCK(sc);
4187 			iwm_release(sc, NULL);
4188 			IWM_UNLOCK(sc);
4189 			IEEE80211_LOCK(ic);
4190 			return error;
4191 		}
4192 
4193 		/*
4194 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4195 		 * above then the card will be completely reinitialized,
4196 		 * so the driver must do everything necessary to bring the card
4197 		 * from INIT to SCAN.
4198 		 *
4199 		 * Additionally, upon receiving deauth frame from AP,
4200 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4201 		 * state. This will also fail with this driver, so bring the FSM
4202 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4203 		 *
4204 		 * XXX TODO: fix this for FreeBSD!
4205 		 */
4206 		if (nstate == IEEE80211_S_SCAN ||
4207 		    nstate == IEEE80211_S_AUTH ||
4208 		    nstate == IEEE80211_S_ASSOC) {
4209 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4210 			    "Force transition to INIT; MGT=%d\n", arg);
4211 			IWM_UNLOCK(sc);
4212 			IEEE80211_LOCK(ic);
4213 			/* Always pass arg as -1 since we can't Tx right now. */
4214 			/*
4215 			 * XXX arg is just ignored anyway when transitioning
4216 			 *     to IEEE80211_S_INIT.
4217 			 */
4218 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4219 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4220 			    "Going INIT->SCAN\n");
4221 			nstate = IEEE80211_S_SCAN;
4222 			IEEE80211_UNLOCK(ic);
4223 			IWM_LOCK(sc);
4224 		}
4225 	}
4226 
4227 	switch (nstate) {
4228 	case IEEE80211_S_INIT:
4229 		break;
4230 
4231 	case IEEE80211_S_AUTH:
4232 		if ((error = iwm_auth(vap, sc)) != 0) {
4233 			device_printf(sc->sc_dev,
4234 			    "%s: could not move to auth state: %d\n",
4235 			    __func__, error);
4236 			break;
4237 		}
4238 		break;
4239 
4240 	case IEEE80211_S_ASSOC:
4241 		if ((error = iwm_assoc(vap, sc)) != 0) {
4242 			device_printf(sc->sc_dev,
4243 			    "%s: failed to associate: %d\n", __func__,
4244 			    error);
4245 			break;
4246 		}
4247 		break;
4248 
4249 	case IEEE80211_S_RUN:
4250 	{
4251 		struct iwm_host_cmd cmd = {
4252 			.id = IWM_LQ_CMD,
4253 			.len = { sizeof(in->in_lq), },
4254 			.flags = IWM_CMD_SYNC,
4255 		};
4256 
4257 		/* Update the association state, now we have it all */
4258 		/* (eg associd comes in at this point */
4259 		error = iwm_assoc(vap, sc);
4260 		if (error != 0) {
4261 			device_printf(sc->sc_dev,
4262 			    "%s: failed to update association state: %d\n",
4263 			    __func__,
4264 			    error);
4265 			break;
4266 		}
4267 
4268 		in = IWM_NODE(vap->iv_bss);
4269 		iwm_mvm_power_mac_update_mode(sc, in);
4270 		iwm_mvm_enable_beacon_filter(sc, in);
4271 		iwm_mvm_update_quotas(sc, in);
4272 		iwm_setrates(sc, in);
4273 
4274 		cmd.data[0] = &in->in_lq;
4275 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4276 			device_printf(sc->sc_dev,
4277 			    "%s: IWM_LQ_CMD failed\n", __func__);
4278 		}
4279 
4280 		iwm_mvm_led_enable(sc);
4281 		break;
4282 	}
4283 
4284 	default:
4285 		break;
4286 	}
4287 	IWM_UNLOCK(sc);
4288 	IEEE80211_LOCK(ic);
4289 
4290 	return (ivp->iv_newstate(vap, nstate, arg));
4291 }
4292 
4293 void
4294 iwm_endscan_cb(void *arg, int pending)
4295 {
4296 	struct iwm_softc *sc = arg;
4297 	struct ieee80211com *ic = &sc->sc_ic;
4298 
4299 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4300 	    "%s: scan ended\n",
4301 	    __func__);
4302 
4303 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4304 }
4305 
4306 /*
4307  * Aging and idle timeouts for the different possible scenarios
4308  * in default configuration
4309  */
4310 static const uint32_t
4311 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4312 	{
4313 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4314 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4315 	},
4316 	{
4317 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4318 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4319 	},
4320 	{
4321 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4322 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4323 	},
4324 	{
4325 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4326 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4327 	},
4328 	{
4329 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4330 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4331 	},
4332 };
4333 
4334 /*
4335  * Aging and idle timeouts for the different possible scenarios
4336  * in single BSS MAC configuration.
4337  */
4338 static const uint32_t
4339 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4340 	{
4341 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4342 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4343 	},
4344 	{
4345 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4346 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4347 	},
4348 	{
4349 		htole32(IWM_SF_MCAST_AGING_TIMER),
4350 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4351 	},
4352 	{
4353 		htole32(IWM_SF_BA_AGING_TIMER),
4354 		htole32(IWM_SF_BA_IDLE_TIMER)
4355 	},
4356 	{
4357 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4358 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4359 	},
4360 };
4361 
4362 static void
4363 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4364     struct ieee80211_node *ni)
4365 {
4366 	int i, j, watermark;
4367 
4368 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4369 
4370 	/*
4371 	 * If we are in association flow - check antenna configuration
4372 	 * capabilities of the AP station, and choose the watermark accordingly.
4373 	 */
4374 	if (ni) {
4375 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4376 #ifdef notyet
4377 			if (ni->ni_rxmcs[2] != 0)
4378 				watermark = IWM_SF_W_MARK_MIMO3;
4379 			else if (ni->ni_rxmcs[1] != 0)
4380 				watermark = IWM_SF_W_MARK_MIMO2;
4381 			else
4382 #endif
4383 				watermark = IWM_SF_W_MARK_SISO;
4384 		} else {
4385 			watermark = IWM_SF_W_MARK_LEGACY;
4386 		}
4387 	/* default watermark value for unassociated mode. */
4388 	} else {
4389 		watermark = IWM_SF_W_MARK_MIMO2;
4390 	}
4391 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4392 
4393 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4394 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4395 			sf_cmd->long_delay_timeouts[i][j] =
4396 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4397 		}
4398 	}
4399 
4400 	if (ni) {
4401 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4402 		       sizeof(iwm_sf_full_timeout));
4403 	} else {
4404 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4405 		       sizeof(iwm_sf_full_timeout_def));
4406 	}
4407 }
4408 
4409 static int
4410 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4411 {
4412 	struct ieee80211com *ic = &sc->sc_ic;
4413 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4414 	struct iwm_sf_cfg_cmd sf_cmd = {
4415 		.state = htole32(IWM_SF_FULL_ON),
4416 	};
4417 	int ret = 0;
4418 
4419 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4420 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4421 
4422 	switch (new_state) {
4423 	case IWM_SF_UNINIT:
4424 	case IWM_SF_INIT_OFF:
4425 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4426 		break;
4427 	case IWM_SF_FULL_ON:
4428 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4429 		break;
4430 	default:
4431 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4432 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4433 			  new_state);
4434 		return EINVAL;
4435 	}
4436 
4437 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4438 				   sizeof(sf_cmd), &sf_cmd);
4439 	return ret;
4440 }
4441 
4442 static int
4443 iwm_send_bt_init_conf(struct iwm_softc *sc)
4444 {
4445 	struct iwm_bt_coex_cmd bt_cmd;
4446 
4447 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4448 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4449 
4450 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4451 	    &bt_cmd);
4452 }
4453 
4454 static int
4455 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4456 {
4457 	struct iwm_mcc_update_cmd mcc_cmd;
4458 	struct iwm_host_cmd hcmd = {
4459 		.id = IWM_MCC_UPDATE_CMD,
4460 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4461 		.data = { &mcc_cmd },
4462 	};
4463 	int ret;
4464 #ifdef IWM_DEBUG
4465 	struct iwm_rx_packet *pkt;
4466 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4467 	struct iwm_mcc_update_resp *mcc_resp;
4468 	int n_channels;
4469 	uint16_t mcc;
4470 #endif
4471 	int resp_v2 = isset(sc->sc_enabled_capa,
4472 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4473 
4474 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4475 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4476 	if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4477 	    isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4478 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4479 	else
4480 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4481 
4482 	if (resp_v2)
4483 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4484 	else
4485 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4486 
4487 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4488 	    "send MCC update to FW with '%c%c' src = %d\n",
4489 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4490 
4491 	ret = iwm_send_cmd(sc, &hcmd);
4492 	if (ret)
4493 		return ret;
4494 
4495 #ifdef IWM_DEBUG
4496 	pkt = hcmd.resp_pkt;
4497 
4498 	/* Extract MCC response */
4499 	if (resp_v2) {
4500 		mcc_resp = (void *)pkt->data;
4501 		mcc = mcc_resp->mcc;
4502 		n_channels =  le32toh(mcc_resp->n_channels);
4503 	} else {
4504 		mcc_resp_v1 = (void *)pkt->data;
4505 		mcc = mcc_resp_v1->mcc;
4506 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4507 	}
4508 
4509 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4510 	if (mcc == 0)
4511 		mcc = 0x3030;  /* "00" - world */
4512 
4513 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4514 	    "regulatory domain '%c%c' (%d channels available)\n",
4515 	    mcc >> 8, mcc & 0xff, n_channels);
4516 #endif
4517 	iwm_free_resp(sc, &hcmd);
4518 
4519 	return 0;
4520 }
4521 
4522 static void
4523 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4524 {
4525 	struct iwm_host_cmd cmd = {
4526 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4527 		.len = { sizeof(uint32_t), },
4528 		.data = { &backoff, },
4529 	};
4530 
4531 	if (iwm_send_cmd(sc, &cmd) != 0) {
4532 		device_printf(sc->sc_dev,
4533 		    "failed to change thermal tx backoff\n");
4534 	}
4535 }
4536 
4537 static int
4538 iwm_init_hw(struct iwm_softc *sc)
4539 {
4540 	struct ieee80211com *ic = &sc->sc_ic;
4541 	int error, i, ac;
4542 
4543 	if ((error = iwm_start_hw(sc)) != 0) {
4544 		printf("iwm_start_hw: failed %d\n", error);
4545 		return error;
4546 	}
4547 
4548 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4549 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4550 		return error;
4551 	}
4552 
4553 	/*
4554 	 * should stop and start HW since that INIT
4555 	 * image just loaded
4556 	 */
4557 	iwm_stop_device(sc);
4558 	if ((error = iwm_start_hw(sc)) != 0) {
4559 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4560 		return error;
4561 	}
4562 
4563 	/* omstart, this time with the regular firmware */
4564 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4565 	if (error) {
4566 		device_printf(sc->sc_dev, "could not load firmware\n");
4567 		goto error;
4568 	}
4569 
4570 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4571 		device_printf(sc->sc_dev, "bt init conf failed\n");
4572 		goto error;
4573 	}
4574 
4575 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4576 		device_printf(sc->sc_dev, "antenna config failed\n");
4577 		goto error;
4578 	}
4579 
4580 	/* Send phy db control command and then phy db calibration*/
4581 	if ((error = iwm_send_phy_db_data(sc)) != 0) {
4582 		device_printf(sc->sc_dev, "phy_db_data failed\n");
4583 		goto error;
4584 	}
4585 
4586 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4587 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4588 		goto error;
4589 	}
4590 
4591 	/* Add auxiliary station for scanning */
4592 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4593 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4594 		goto error;
4595 	}
4596 
4597 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4598 		/*
4599 		 * The channel used here isn't relevant as it's
4600 		 * going to be overwritten in the other flows.
4601 		 * For now use the first channel we have.
4602 		 */
4603 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4604 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4605 			goto error;
4606 	}
4607 
4608 	/* Initialize tx backoffs to the minimum. */
4609 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4610 		iwm_mvm_tt_tx_backoff(sc, 0);
4611 
4612 	error = iwm_mvm_power_update_device(sc);
4613 	if (error)
4614 		goto error;
4615 
4616 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4617 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4618 			goto error;
4619 	}
4620 
4621 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4622 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4623 			goto error;
4624 	}
4625 
4626 	/* Enable Tx queues. */
4627 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4628 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4629 		    iwm_mvm_ac_to_tx_fifo[ac]);
4630 		if (error)
4631 			goto error;
4632 	}
4633 
4634 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4635 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4636 		goto error;
4637 	}
4638 
4639 	return 0;
4640 
4641  error:
4642 	iwm_stop_device(sc);
4643 	return error;
4644 }
4645 
4646 /* Allow multicast from our BSSID. */
4647 static int
4648 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4649 {
4650 	struct ieee80211_node *ni = vap->iv_bss;
4651 	struct iwm_mcast_filter_cmd *cmd;
4652 	size_t size;
4653 	int error;
4654 
4655 	size = roundup(sizeof(*cmd), 4);
4656 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4657 	if (cmd == NULL)
4658 		return ENOMEM;
4659 	cmd->filter_own = 1;
4660 	cmd->port_id = 0;
4661 	cmd->count = 0;
4662 	cmd->pass_all = 1;
4663 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4664 
4665 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4666 	    IWM_CMD_SYNC, size, cmd);
4667 	free(cmd, M_DEVBUF);
4668 
4669 	return (error);
4670 }
4671 
4672 /*
4673  * ifnet interfaces
4674  */
4675 
4676 static void
4677 iwm_init(struct iwm_softc *sc)
4678 {
4679 	int error;
4680 
4681 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4682 		return;
4683 	}
4684 	sc->sc_generation++;
4685 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4686 
4687 	if ((error = iwm_init_hw(sc)) != 0) {
4688 		printf("iwm_init_hw failed %d\n", error);
4689 		iwm_stop(sc);
4690 		return;
4691 	}
4692 
4693 	/*
4694 	 * Ok, firmware loaded and we are jogging
4695 	 */
4696 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4697 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4698 }
4699 
4700 static int
4701 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4702 {
4703 	struct iwm_softc *sc;
4704 	int error;
4705 
4706 	sc = ic->ic_softc;
4707 
4708 	IWM_LOCK(sc);
4709 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4710 		IWM_UNLOCK(sc);
4711 		return (ENXIO);
4712 	}
4713 	error = mbufq_enqueue(&sc->sc_snd, m);
4714 	if (error) {
4715 		IWM_UNLOCK(sc);
4716 		return (error);
4717 	}
4718 	iwm_start(sc);
4719 	IWM_UNLOCK(sc);
4720 	return (0);
4721 }
4722 
4723 /*
4724  * Dequeue packets from sendq and call send.
4725  */
4726 static void
4727 iwm_start(struct iwm_softc *sc)
4728 {
4729 	struct ieee80211_node *ni;
4730 	struct mbuf *m;
4731 	int ac = 0;
4732 
4733 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4734 	while (sc->qfullmsk == 0 &&
4735 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4736 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4737 		if (iwm_tx(sc, m, ni, ac) != 0) {
4738 			if_inc_counter(ni->ni_vap->iv_ifp,
4739 			    IFCOUNTER_OERRORS, 1);
4740 			ieee80211_free_node(ni);
4741 			continue;
4742 		}
4743 		sc->sc_tx_timer = 15;
4744 	}
4745 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4746 }
4747 
4748 static void
4749 iwm_stop(struct iwm_softc *sc)
4750 {
4751 
4752 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4753 	sc->sc_flags |= IWM_FLAG_STOPPED;
4754 	sc->sc_generation++;
4755 	iwm_led_blink_stop(sc);
4756 	sc->sc_tx_timer = 0;
4757 	iwm_stop_device(sc);
4758 }
4759 
4760 static void
4761 iwm_watchdog(void *arg)
4762 {
4763 	struct iwm_softc *sc = arg;
4764 	struct ieee80211com *ic = &sc->sc_ic;
4765 
4766 	if (sc->sc_tx_timer > 0) {
4767 		if (--sc->sc_tx_timer == 0) {
4768 			device_printf(sc->sc_dev, "device timeout\n");
4769 #ifdef IWM_DEBUG
4770 			iwm_nic_error(sc);
4771 #endif
4772 			ieee80211_restart_all(ic);
4773 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4774 			return;
4775 		}
4776 	}
4777 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4778 }
4779 
4780 static void
4781 iwm_parent(struct ieee80211com *ic)
4782 {
4783 	struct iwm_softc *sc = ic->ic_softc;
4784 	int startall = 0;
4785 
4786 	IWM_LOCK(sc);
4787 	if (ic->ic_nrunning > 0) {
4788 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4789 			iwm_init(sc);
4790 			startall = 1;
4791 		}
4792 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4793 		iwm_stop(sc);
4794 	IWM_UNLOCK(sc);
4795 	if (startall)
4796 		ieee80211_start_all(ic);
4797 }
4798 
4799 /*
4800  * The interrupt side of things
4801  */
4802 
4803 /*
4804  * error dumping routines are from iwlwifi/mvm/utils.c
4805  */
4806 
4807 /*
4808  * Note: This structure is read from the device with IO accesses,
4809  * and the reading already does the endian conversion. As it is
4810  * read with uint32_t-sized accesses, any members with a different size
4811  * need to be ordered correctly though!
4812  */
4813 struct iwm_error_event_table {
4814 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4815 	uint32_t error_id;		/* type of error */
4816 	uint32_t trm_hw_status0;	/* TRM HW status */
4817 	uint32_t trm_hw_status1;	/* TRM HW status */
4818 	uint32_t blink2;		/* branch link */
4819 	uint32_t ilink1;		/* interrupt link */
4820 	uint32_t ilink2;		/* interrupt link */
4821 	uint32_t data1;		/* error-specific data */
4822 	uint32_t data2;		/* error-specific data */
4823 	uint32_t data3;		/* error-specific data */
4824 	uint32_t bcon_time;		/* beacon timer */
4825 	uint32_t tsf_low;		/* network timestamp function timer */
4826 	uint32_t tsf_hi;		/* network timestamp function timer */
4827 	uint32_t gp1;		/* GP1 timer register */
4828 	uint32_t gp2;		/* GP2 timer register */
4829 	uint32_t fw_rev_type;	/* firmware revision type */
4830 	uint32_t major;		/* uCode version major */
4831 	uint32_t minor;		/* uCode version minor */
4832 	uint32_t hw_ver;		/* HW Silicon version */
4833 	uint32_t brd_ver;		/* HW board version */
4834 	uint32_t log_pc;		/* log program counter */
4835 	uint32_t frame_ptr;		/* frame pointer */
4836 	uint32_t stack_ptr;		/* stack pointer */
4837 	uint32_t hcmd;		/* last host command header */
4838 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4839 				 * rxtx_flag */
4840 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4841 				 * host_flag */
4842 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4843 				 * enc_flag */
4844 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4845 				 * time_flag */
4846 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4847 				 * wico interrupt */
4848 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4849 	uint32_t wait_event;		/* wait event() caller address */
4850 	uint32_t l2p_control;	/* L2pControlField */
4851 	uint32_t l2p_duration;	/* L2pDurationField */
4852 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4853 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4854 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4855 				 * (LMPM_PMG_SEL) */
4856 	uint32_t u_timestamp;	/* indicate when the date and time of the
4857 				 * compilation */
4858 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4859 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4860 
4861 /*
4862  * UMAC error struct - relevant starting from family 8000 chip.
4863  * Note: This structure is read from the device with IO accesses,
4864  * and the reading already does the endian conversion. As it is
4865  * read with u32-sized accesses, any members with a different size
4866  * need to be ordered correctly though!
4867  */
4868 struct iwm_umac_error_event_table {
4869 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4870 	uint32_t error_id;	/* type of error */
4871 	uint32_t blink1;	/* branch link */
4872 	uint32_t blink2;	/* branch link */
4873 	uint32_t ilink1;	/* interrupt link */
4874 	uint32_t ilink2;	/* interrupt link */
4875 	uint32_t data1;		/* error-specific data */
4876 	uint32_t data2;		/* error-specific data */
4877 	uint32_t data3;		/* error-specific data */
4878 	uint32_t umac_major;
4879 	uint32_t umac_minor;
4880 	uint32_t frame_pointer;	/* core register 27*/
4881 	uint32_t stack_pointer;	/* core register 28 */
4882 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4883 	uint32_t nic_isr_pref;	/* ISR status register */
4884 } __packed;
4885 
4886 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4887 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4888 
4889 #ifdef IWM_DEBUG
4890 struct {
4891 	const char *name;
4892 	uint8_t num;
4893 } advanced_lookup[] = {
4894 	{ "NMI_INTERRUPT_WDG", 0x34 },
4895 	{ "SYSASSERT", 0x35 },
4896 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4897 	{ "BAD_COMMAND", 0x38 },
4898 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4899 	{ "FATAL_ERROR", 0x3D },
4900 	{ "NMI_TRM_HW_ERR", 0x46 },
4901 	{ "NMI_INTERRUPT_TRM", 0x4C },
4902 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4903 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4904 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4905 	{ "NMI_INTERRUPT_HOST", 0x66 },
4906 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4907 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4908 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4909 	{ "ADVANCED_SYSASSERT", 0 },
4910 };
4911 
4912 static const char *
4913 iwm_desc_lookup(uint32_t num)
4914 {
4915 	int i;
4916 
4917 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4918 		if (advanced_lookup[i].num == num)
4919 			return advanced_lookup[i].name;
4920 
4921 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4922 	return advanced_lookup[i].name;
4923 }
4924 
4925 static void
4926 iwm_nic_umac_error(struct iwm_softc *sc)
4927 {
4928 	struct iwm_umac_error_event_table table;
4929 	uint32_t base;
4930 
4931 	base = sc->sc_uc.uc_umac_error_event_table;
4932 
4933 	if (base < 0x800000) {
4934 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4935 		    base);
4936 		return;
4937 	}
4938 
4939 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4940 		device_printf(sc->sc_dev, "reading errlog failed\n");
4941 		return;
4942 	}
4943 
4944 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4945 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4946 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4947 		    sc->sc_flags, table.valid);
4948 	}
4949 
4950 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4951 		iwm_desc_lookup(table.error_id));
4952 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4953 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4954 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4955 	    table.ilink1);
4956 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4957 	    table.ilink2);
4958 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4959 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4960 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4961 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4962 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4963 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4964 	    table.frame_pointer);
4965 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4966 	    table.stack_pointer);
4967 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4968 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4969 	    table.nic_isr_pref);
4970 }
4971 
4972 /*
4973  * Support for dumping the error log seemed like a good idea ...
4974  * but it's mostly hex junk and the only sensible thing is the
4975  * hw/ucode revision (which we know anyway).  Since it's here,
4976  * I'll just leave it in, just in case e.g. the Intel guys want to
4977  * help us decipher some "ADVANCED_SYSASSERT" later.
4978  */
4979 static void
4980 iwm_nic_error(struct iwm_softc *sc)
4981 {
4982 	struct iwm_error_event_table table;
4983 	uint32_t base;
4984 
4985 	device_printf(sc->sc_dev, "dumping device error log\n");
4986 	base = sc->sc_uc.uc_error_event_table;
4987 	if (base < 0x800000) {
4988 		device_printf(sc->sc_dev,
4989 		    "Invalid error log pointer 0x%08x\n", base);
4990 		return;
4991 	}
4992 
4993 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4994 		device_printf(sc->sc_dev, "reading errlog failed\n");
4995 		return;
4996 	}
4997 
4998 	if (!table.valid) {
4999 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5000 		return;
5001 	}
5002 
5003 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5004 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5005 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5006 		    sc->sc_flags, table.valid);
5007 	}
5008 
5009 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5010 	    iwm_desc_lookup(table.error_id));
5011 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5012 	    table.trm_hw_status0);
5013 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5014 	    table.trm_hw_status1);
5015 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5016 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5017 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5018 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5019 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5020 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5021 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5022 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5023 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5024 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5025 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5026 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5027 	    table.fw_rev_type);
5028 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5029 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5030 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5031 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5032 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5033 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5034 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5035 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5036 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5037 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5038 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5039 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5040 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5041 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5042 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5043 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5044 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5045 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5046 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5047 
5048 	if (sc->sc_uc.uc_umac_error_event_table)
5049 		iwm_nic_umac_error(sc);
5050 }
5051 #endif
5052 
5053 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
5054 do {									\
5055 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5056 	_var_ = (void *)((_pkt_)+1);					\
5057 } while (/*CONSTCOND*/0)
5058 
5059 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
5060 do {									\
5061 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5062 	_ptr_ = (void *)((_pkt_)+1);					\
5063 } while (/*CONSTCOND*/0)
5064 
5065 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5066 
5067 /*
5068  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5069  * Basic structure from if_iwn
5070  */
5071 static void
5072 iwm_notif_intr(struct iwm_softc *sc)
5073 {
5074 	struct ieee80211com *ic = &sc->sc_ic;
5075 	uint16_t hw;
5076 
5077 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5078 	    BUS_DMASYNC_POSTREAD);
5079 
5080 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5081 
5082 	/*
5083 	 * Process responses
5084 	 */
5085 	while (sc->rxq.cur != hw) {
5086 		struct iwm_rx_ring *ring = &sc->rxq;
5087 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
5088 		struct iwm_rx_packet *pkt;
5089 		struct iwm_cmd_response *cresp;
5090 		int qid, idx, code;
5091 
5092 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5093 		    BUS_DMASYNC_POSTREAD);
5094 		pkt = mtod(data->m, struct iwm_rx_packet *);
5095 
5096 		qid = pkt->hdr.qid & ~0x80;
5097 		idx = pkt->hdr.idx;
5098 
5099 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5100 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5101 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5102 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
5103 
5104 		/*
5105 		 * randomly get these from the firmware, no idea why.
5106 		 * they at least seem harmless, so just ignore them for now
5107 		 */
5108 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5109 		    || pkt->len_n_flags == htole32(0x55550000))) {
5110 			ADVANCE_RXQ(sc);
5111 			continue;
5112 		}
5113 
5114 		switch (code) {
5115 		case IWM_REPLY_RX_PHY_CMD:
5116 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5117 			break;
5118 
5119 		case IWM_REPLY_RX_MPDU_CMD:
5120 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5121 			break;
5122 
5123 		case IWM_TX_CMD:
5124 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5125 			break;
5126 
5127 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5128 			struct iwm_missed_beacons_notif *resp;
5129 			int missed;
5130 
5131 			/* XXX look at mac_id to determine interface ID */
5132 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5133 
5134 			SYNC_RESP_STRUCT(resp, pkt);
5135 			missed = le32toh(resp->consec_missed_beacons);
5136 
5137 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5138 			    "%s: MISSED_BEACON: mac_id=%d, "
5139 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5140 			    "num_rx=%d\n",
5141 			    __func__,
5142 			    le32toh(resp->mac_id),
5143 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5144 			    le32toh(resp->consec_missed_beacons),
5145 			    le32toh(resp->num_expected_beacons),
5146 			    le32toh(resp->num_recvd_beacons));
5147 
5148 			/* Be paranoid */
5149 			if (vap == NULL)
5150 				break;
5151 
5152 			/* XXX no net80211 locking? */
5153 			if (vap->iv_state == IEEE80211_S_RUN &&
5154 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5155 				if (missed > vap->iv_bmissthreshold) {
5156 					/* XXX bad locking; turn into task */
5157 					IWM_UNLOCK(sc);
5158 					ieee80211_beacon_miss(ic);
5159 					IWM_LOCK(sc);
5160 				}
5161 			}
5162 
5163 			break; }
5164 
5165 		case IWM_MFUART_LOAD_NOTIFICATION:
5166 			break;
5167 
5168 		case IWM_MVM_ALIVE: {
5169 			struct iwm_mvm_alive_resp_v1 *resp1;
5170 			struct iwm_mvm_alive_resp_v2 *resp2;
5171 			struct iwm_mvm_alive_resp_v3 *resp3;
5172 
5173 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5174 				SYNC_RESP_STRUCT(resp1, pkt);
5175 				sc->sc_uc.uc_error_event_table
5176 				    = le32toh(resp1->error_event_table_ptr);
5177 				sc->sc_uc.uc_log_event_table
5178 				    = le32toh(resp1->log_event_table_ptr);
5179 				sc->sched_base = le32toh(resp1->scd_base_ptr);
5180 				if (resp1->status == IWM_ALIVE_STATUS_OK)
5181 					sc->sc_uc.uc_ok = 1;
5182 				else
5183 					sc->sc_uc.uc_ok = 0;
5184 			}
5185 
5186 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5187 				SYNC_RESP_STRUCT(resp2, pkt);
5188 				sc->sc_uc.uc_error_event_table
5189 				    = le32toh(resp2->error_event_table_ptr);
5190 				sc->sc_uc.uc_log_event_table
5191 				    = le32toh(resp2->log_event_table_ptr);
5192 				sc->sched_base = le32toh(resp2->scd_base_ptr);
5193 				sc->sc_uc.uc_umac_error_event_table
5194 				    = le32toh(resp2->error_info_addr);
5195 				if (resp2->status == IWM_ALIVE_STATUS_OK)
5196 					sc->sc_uc.uc_ok = 1;
5197 				else
5198 					sc->sc_uc.uc_ok = 0;
5199 			}
5200 
5201 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5202 				SYNC_RESP_STRUCT(resp3, pkt);
5203 				sc->sc_uc.uc_error_event_table
5204 				    = le32toh(resp3->error_event_table_ptr);
5205 				sc->sc_uc.uc_log_event_table
5206 				    = le32toh(resp3->log_event_table_ptr);
5207 				sc->sched_base = le32toh(resp3->scd_base_ptr);
5208 				sc->sc_uc.uc_umac_error_event_table
5209 				    = le32toh(resp3->error_info_addr);
5210 				if (resp3->status == IWM_ALIVE_STATUS_OK)
5211 					sc->sc_uc.uc_ok = 1;
5212 				else
5213 					sc->sc_uc.uc_ok = 0;
5214 			}
5215 
5216 			sc->sc_uc.uc_intr = 1;
5217 			wakeup(&sc->sc_uc);
5218 			break; }
5219 
5220 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
5221 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
5222 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
5223 
5224 			iwm_phy_db_set_section(sc, phy_db_notif);
5225 
5226 			break; }
5227 
5228 		case IWM_STATISTICS_NOTIFICATION: {
5229 			struct iwm_notif_statistics *stats;
5230 			SYNC_RESP_STRUCT(stats, pkt);
5231 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5232 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5233 			break; }
5234 
5235 		case IWM_NVM_ACCESS_CMD:
5236 		case IWM_MCC_UPDATE_CMD:
5237 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5238 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5239 				    BUS_DMASYNC_POSTREAD);
5240 				memcpy(sc->sc_cmd_resp,
5241 				    pkt, sizeof(sc->sc_cmd_resp));
5242 			}
5243 			break;
5244 
5245 		case IWM_MCC_CHUB_UPDATE_CMD: {
5246 			struct iwm_mcc_chub_notif *notif;
5247 			SYNC_RESP_STRUCT(notif, pkt);
5248 
5249 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5250 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5251 			sc->sc_fw_mcc[2] = '\0';
5252 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5253 			    "fw source %d sent CC '%s'\n",
5254 			    notif->source_id, sc->sc_fw_mcc);
5255 			break; }
5256 
5257 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5258 			break;
5259 
5260 		case IWM_PHY_CONFIGURATION_CMD:
5261 		case IWM_TX_ANT_CONFIGURATION_CMD:
5262 		case IWM_ADD_STA:
5263 		case IWM_MAC_CONTEXT_CMD:
5264 		case IWM_REPLY_SF_CFG_CMD:
5265 		case IWM_POWER_TABLE_CMD:
5266 		case IWM_PHY_CONTEXT_CMD:
5267 		case IWM_BINDING_CONTEXT_CMD:
5268 		case IWM_TIME_EVENT_CMD:
5269 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5270 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5271 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5272 		case IWM_REPLY_BEACON_FILTERING_CMD:
5273 		case IWM_MAC_PM_POWER_TABLE:
5274 		case IWM_TIME_QUOTA_CMD:
5275 		case IWM_REMOVE_STA:
5276 		case IWM_TXPATH_FLUSH:
5277 		case IWM_LQ_CMD:
5278 		case IWM_BT_CONFIG:
5279 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5280 			SYNC_RESP_STRUCT(cresp, pkt);
5281 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5282 				memcpy(sc->sc_cmd_resp,
5283 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5284 			}
5285 			break;
5286 
5287 		/* ignore */
5288 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5289 			break;
5290 
5291 		case IWM_INIT_COMPLETE_NOTIF:
5292 			sc->sc_init_complete = 1;
5293 			wakeup(&sc->sc_init_complete);
5294 			break;
5295 
5296 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5297 			struct iwm_periodic_scan_complete *notif;
5298 			SYNC_RESP_STRUCT(notif, pkt);
5299 			break;
5300 		}
5301 
5302 		case IWM_SCAN_ITERATION_COMPLETE: {
5303 			struct iwm_lmac_scan_complete_notif *notif;
5304  			SYNC_RESP_STRUCT(notif, pkt);
5305 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5306  			break;
5307 		}
5308 
5309 		case IWM_SCAN_COMPLETE_UMAC: {
5310 			struct iwm_umac_scan_complete *notif;
5311 			SYNC_RESP_STRUCT(notif, pkt);
5312 
5313 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5314 			    "UMAC scan complete, status=0x%x\n",
5315 			    notif->status);
5316 #if 0	/* XXX This would be a duplicate scan end call */
5317 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5318 #endif
5319 			break;
5320 		}
5321 
5322 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5323 			struct iwm_umac_scan_iter_complete_notif *notif;
5324 			SYNC_RESP_STRUCT(notif, pkt);
5325 
5326 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5327 			    "complete, status=0x%x, %d channels scanned\n",
5328 			    notif->status, notif->scanned_channels);
5329 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5330 			break;
5331 		}
5332 
5333 		case IWM_REPLY_ERROR: {
5334 			struct iwm_error_resp *resp;
5335 			SYNC_RESP_STRUCT(resp, pkt);
5336 
5337 			device_printf(sc->sc_dev,
5338 			    "firmware error 0x%x, cmd 0x%x\n",
5339 			    le32toh(resp->error_type),
5340 			    resp->cmd_id);
5341 			break;
5342 		}
5343 
5344 		case IWM_TIME_EVENT_NOTIFICATION: {
5345 			struct iwm_time_event_notif *notif;
5346 			SYNC_RESP_STRUCT(notif, pkt);
5347 
5348 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5349 			    "TE notif status = 0x%x action = 0x%x\n",
5350 			    notif->status, notif->action);
5351 			break;
5352 		}
5353 
5354 		case IWM_MCAST_FILTER_CMD:
5355 			break;
5356 
5357 		case IWM_SCD_QUEUE_CFG: {
5358 			struct iwm_scd_txq_cfg_rsp *rsp;
5359 			SYNC_RESP_STRUCT(rsp, pkt);
5360 
5361 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5362 			    "queue cfg token=0x%x sta_id=%d "
5363 			    "tid=%d scd_queue=%d\n",
5364 			    rsp->token, rsp->sta_id, rsp->tid,
5365 			    rsp->scd_queue);
5366 			break;
5367 		}
5368 
5369 		default:
5370 			device_printf(sc->sc_dev,
5371 			    "frame %d/%d %x UNHANDLED (this should "
5372 			    "not happen)\n", qid, idx,
5373 			    pkt->len_n_flags);
5374 			break;
5375 		}
5376 
5377 		/*
5378 		 * Why test bit 0x80?  The Linux driver:
5379 		 *
5380 		 * There is one exception:  uCode sets bit 15 when it
5381 		 * originates the response/notification, i.e. when the
5382 		 * response/notification is not a direct response to a
5383 		 * command sent by the driver.  For example, uCode issues
5384 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5385 		 * it is not a direct response to any driver command.
5386 		 *
5387 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5388 		 * uses a slightly different format for pkt->hdr, and "qid"
5389 		 * is actually the upper byte of a two-byte field.
5390 		 */
5391 		if (!(pkt->hdr.qid & (1 << 7))) {
5392 			iwm_cmd_done(sc, pkt);
5393 		}
5394 
5395 		ADVANCE_RXQ(sc);
5396 	}
5397 
5398 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5399 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5400 
5401 	/*
5402 	 * Tell the firmware what we have processed.
5403 	 * Seems like the hardware gets upset unless we align
5404 	 * the write by 8??
5405 	 */
5406 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5407 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5408 }
5409 
5410 static void
5411 iwm_intr(void *arg)
5412 {
5413 	struct iwm_softc *sc = arg;
5414 	int handled = 0;
5415 	int r1, r2, rv = 0;
5416 	int isperiodic = 0;
5417 
5418 	IWM_LOCK(sc);
5419 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5420 
5421 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5422 		uint32_t *ict = sc->ict_dma.vaddr;
5423 		int tmp;
5424 
5425 		tmp = htole32(ict[sc->ict_cur]);
5426 		if (!tmp)
5427 			goto out_ena;
5428 
5429 		/*
5430 		 * ok, there was something.  keep plowing until we have all.
5431 		 */
5432 		r1 = r2 = 0;
5433 		while (tmp) {
5434 			r1 |= tmp;
5435 			ict[sc->ict_cur] = 0;
5436 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5437 			tmp = htole32(ict[sc->ict_cur]);
5438 		}
5439 
5440 		/* this is where the fun begins.  don't ask */
5441 		if (r1 == 0xffffffff)
5442 			r1 = 0;
5443 
5444 		/* i am not expected to understand this */
5445 		if (r1 & 0xc0000)
5446 			r1 |= 0x8000;
5447 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5448 	} else {
5449 		r1 = IWM_READ(sc, IWM_CSR_INT);
5450 		/* "hardware gone" (where, fishing?) */
5451 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5452 			goto out;
5453 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5454 	}
5455 	if (r1 == 0 && r2 == 0) {
5456 		goto out_ena;
5457 	}
5458 
5459 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5460 
5461 	/* ignored */
5462 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5463 
5464 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5465 		int i;
5466 		struct ieee80211com *ic = &sc->sc_ic;
5467 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5468 
5469 #ifdef IWM_DEBUG
5470 		iwm_nic_error(sc);
5471 #endif
5472 		/* Dump driver status (TX and RX rings) while we're here. */
5473 		device_printf(sc->sc_dev, "driver status:\n");
5474 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5475 			struct iwm_tx_ring *ring = &sc->txq[i];
5476 			device_printf(sc->sc_dev,
5477 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5478 			    "queued=%-3d\n",
5479 			    i, ring->qid, ring->cur, ring->queued);
5480 		}
5481 		device_printf(sc->sc_dev,
5482 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5483 		device_printf(sc->sc_dev,
5484 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5485 
5486 		/* Don't stop the device; just do a VAP restart */
5487 		IWM_UNLOCK(sc);
5488 
5489 		if (vap == NULL) {
5490 			printf("%s: null vap\n", __func__);
5491 			return;
5492 		}
5493 
5494 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5495 		    "restarting\n", __func__, vap->iv_state);
5496 
5497 		/* XXX TODO: turn this into a callout/taskqueue */
5498 		ieee80211_restart_all(ic);
5499 		return;
5500 	}
5501 
5502 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5503 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5504 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5505 		iwm_stop(sc);
5506 		rv = 1;
5507 		goto out;
5508 	}
5509 
5510 	/* firmware chunk loaded */
5511 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5512 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5513 		handled |= IWM_CSR_INT_BIT_FH_TX;
5514 		sc->sc_fw_chunk_done = 1;
5515 		wakeup(&sc->sc_fw);
5516 	}
5517 
5518 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5519 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5520 		if (iwm_check_rfkill(sc)) {
5521 			device_printf(sc->sc_dev,
5522 			    "%s: rfkill switch, disabling interface\n",
5523 			    __func__);
5524 			iwm_stop(sc);
5525 		}
5526 	}
5527 
5528 	/*
5529 	 * The Linux driver uses periodic interrupts to avoid races.
5530 	 * We cargo-cult like it's going out of fashion.
5531 	 */
5532 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5533 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5534 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5535 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5536 			IWM_WRITE_1(sc,
5537 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5538 		isperiodic = 1;
5539 	}
5540 
5541 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5542 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5543 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5544 
5545 		iwm_notif_intr(sc);
5546 
5547 		/* enable periodic interrupt, see above */
5548 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5549 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5550 			    IWM_CSR_INT_PERIODIC_ENA);
5551 	}
5552 
5553 	if (__predict_false(r1 & ~handled))
5554 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5555 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5556 	rv = 1;
5557 
5558  out_ena:
5559 	iwm_restore_interrupts(sc);
5560  out:
5561 	IWM_UNLOCK(sc);
5562 	return;
5563 }
5564 
5565 /*
5566  * Autoconf glue-sniffing
5567  */
5568 #define	PCI_VENDOR_INTEL		0x8086
5569 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5570 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5571 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5572 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5573 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5574 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5575 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5576 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5577 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5578 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5579 
5580 static const struct iwm_devices {
5581 	uint16_t	device;
5582 	const char	*name;
5583 } iwm_devices[] = {
5584 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5585 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5586 	{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5587 	{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5588 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5589 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5590 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5591 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5592 	{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5593 	{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5594 };
5595 
5596 static int
5597 iwm_probe(device_t dev)
5598 {
5599 	int i;
5600 
5601 	for (i = 0; i < nitems(iwm_devices); i++) {
5602 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5603 		    pci_get_device(dev) == iwm_devices[i].device) {
5604 			device_set_desc(dev, iwm_devices[i].name);
5605 			return (BUS_PROBE_DEFAULT);
5606 		}
5607 	}
5608 
5609 	return (ENXIO);
5610 }
5611 
5612 static int
5613 iwm_dev_check(device_t dev)
5614 {
5615 	struct iwm_softc *sc;
5616 
5617 	sc = device_get_softc(dev);
5618 
5619 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5620 	switch (pci_get_device(dev)) {
5621 	case PCI_PRODUCT_INTEL_WL_3160_1:
5622 	case PCI_PRODUCT_INTEL_WL_3160_2:
5623 		sc->sc_fwname = "iwm3160fw";
5624 		sc->host_interrupt_operation_mode = 1;
5625 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5626 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5627 		return (0);
5628 	case PCI_PRODUCT_INTEL_WL_3165_1:
5629 	case PCI_PRODUCT_INTEL_WL_3165_2:
5630 		sc->sc_fwname = "iwm7265fw";
5631 		sc->host_interrupt_operation_mode = 0;
5632 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5633 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5634 		return (0);
5635 	case PCI_PRODUCT_INTEL_WL_7260_1:
5636 	case PCI_PRODUCT_INTEL_WL_7260_2:
5637 		sc->sc_fwname = "iwm7260fw";
5638 		sc->host_interrupt_operation_mode = 1;
5639 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5640 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5641 		return (0);
5642 	case PCI_PRODUCT_INTEL_WL_7265_1:
5643 	case PCI_PRODUCT_INTEL_WL_7265_2:
5644 		sc->sc_fwname = "iwm7265fw";
5645 		sc->host_interrupt_operation_mode = 0;
5646 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5647 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5648 		return (0);
5649 	case PCI_PRODUCT_INTEL_WL_8260_1:
5650 	case PCI_PRODUCT_INTEL_WL_8260_2:
5651 		sc->sc_fwname = "iwm8000Cfw";
5652 		sc->host_interrupt_operation_mode = 0;
5653 		sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5654 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5655 		return (0);
5656 	default:
5657 		device_printf(dev, "unknown adapter type\n");
5658 		return ENXIO;
5659 	}
5660 }
5661 
5662 static int
5663 iwm_pci_attach(device_t dev)
5664 {
5665 	struct iwm_softc *sc;
5666 	int count, error, rid;
5667 	uint16_t reg;
5668 
5669 	sc = device_get_softc(dev);
5670 
5671 	/* Clear device-specific "PCI retry timeout" register (41h). */
5672 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5673 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5674 
5675 	/* Enable bus-mastering and hardware bug workaround. */
5676 	pci_enable_busmaster(dev);
5677 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5678 	/* if !MSI */
5679 	if (reg & PCIM_STATUS_INTxSTATE) {
5680 		reg &= ~PCIM_STATUS_INTxSTATE;
5681 	}
5682 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5683 
5684 	rid = PCIR_BAR(0);
5685 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5686 	    RF_ACTIVE);
5687 	if (sc->sc_mem == NULL) {
5688 		device_printf(sc->sc_dev, "can't map mem space\n");
5689 		return (ENXIO);
5690 	}
5691 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5692 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5693 
5694 	/* Install interrupt handler. */
5695 	count = 1;
5696 	rid = 0;
5697 	if (pci_alloc_msi(dev, &count) == 0)
5698 		rid = 1;
5699 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5700 	    (rid != 0 ? 0 : RF_SHAREABLE));
5701 	if (sc->sc_irq == NULL) {
5702 		device_printf(dev, "can't map interrupt\n");
5703 			return (ENXIO);
5704 	}
5705 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5706 	    NULL, iwm_intr, sc, &sc->sc_ih);
5707 	if (sc->sc_ih == NULL) {
5708 		device_printf(dev, "can't establish interrupt");
5709 			return (ENXIO);
5710 	}
5711 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5712 
5713 	return (0);
5714 }
5715 
5716 static void
5717 iwm_pci_detach(device_t dev)
5718 {
5719 	struct iwm_softc *sc = device_get_softc(dev);
5720 
5721 	if (sc->sc_irq != NULL) {
5722 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5723 		bus_release_resource(dev, SYS_RES_IRQ,
5724 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5725 		pci_release_msi(dev);
5726         }
5727 	if (sc->sc_mem != NULL)
5728 		bus_release_resource(dev, SYS_RES_MEMORY,
5729 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5730 }
5731 
5732 
5733 
5734 static int
5735 iwm_attach(device_t dev)
5736 {
5737 	struct iwm_softc *sc = device_get_softc(dev);
5738 	struct ieee80211com *ic = &sc->sc_ic;
5739 	int error;
5740 	int txq_i, i;
5741 
5742 	sc->sc_dev = dev;
5743 	IWM_LOCK_INIT(sc);
5744 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5745 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5746 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5747 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5748 
5749 	/* PCI attach */
5750 	error = iwm_pci_attach(dev);
5751 	if (error != 0)
5752 		goto fail;
5753 
5754 	sc->sc_wantresp = -1;
5755 
5756 	/* Check device type */
5757 	error = iwm_dev_check(dev);
5758 	if (error != 0)
5759 		goto fail;
5760 
5761 	/*
5762 	 * We now start fiddling with the hardware
5763 	 */
5764 	/*
5765 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5766 	 * changed, and now the revision step also includes bit 0-1 (no more
5767 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5768 	 * in the old format.
5769 	 */
5770 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5771 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5772 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5773 
5774 	if (iwm_prepare_card_hw(sc) != 0) {
5775 		device_printf(dev, "could not initialize hardware\n");
5776 		goto fail;
5777 	}
5778 
5779 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5780 		int ret;
5781 		uint32_t hw_step;
5782 
5783 		/*
5784 		 * In order to recognize C step the driver should read the
5785 		 * chip version id located at the AUX bus MISC address.
5786 		 */
5787 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5788 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5789 		DELAY(2);
5790 
5791 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5792 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5793 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5794 				   25000);
5795 		if (!ret) {
5796 			device_printf(sc->sc_dev,
5797 			    "Failed to wake up the nic\n");
5798 			goto fail;
5799 		}
5800 
5801 		if (iwm_nic_lock(sc)) {
5802 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5803 			hw_step |= IWM_ENABLE_WFPM;
5804 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5805 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5806 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5807 			if (hw_step == 0x3)
5808 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5809 						(IWM_SILICON_C_STEP << 2);
5810 			iwm_nic_unlock(sc);
5811 		} else {
5812 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5813 			goto fail;
5814 		}
5815 	}
5816 
5817 	/* Allocate DMA memory for firmware transfers. */
5818 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5819 		device_printf(dev, "could not allocate memory for firmware\n");
5820 		goto fail;
5821 	}
5822 
5823 	/* Allocate "Keep Warm" page. */
5824 	if ((error = iwm_alloc_kw(sc)) != 0) {
5825 		device_printf(dev, "could not allocate keep warm page\n");
5826 		goto fail;
5827 	}
5828 
5829 	/* We use ICT interrupts */
5830 	if ((error = iwm_alloc_ict(sc)) != 0) {
5831 		device_printf(dev, "could not allocate ICT table\n");
5832 		goto fail;
5833 	}
5834 
5835 	/* Allocate TX scheduler "rings". */
5836 	if ((error = iwm_alloc_sched(sc)) != 0) {
5837 		device_printf(dev, "could not allocate TX scheduler rings\n");
5838 		goto fail;
5839 	}
5840 
5841 	/* Allocate TX rings */
5842 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5843 		if ((error = iwm_alloc_tx_ring(sc,
5844 		    &sc->txq[txq_i], txq_i)) != 0) {
5845 			device_printf(dev,
5846 			    "could not allocate TX ring %d\n",
5847 			    txq_i);
5848 			goto fail;
5849 		}
5850 	}
5851 
5852 	/* Allocate RX ring. */
5853 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5854 		device_printf(dev, "could not allocate RX ring\n");
5855 		goto fail;
5856 	}
5857 
5858 	/* Clear pending interrupts. */
5859 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5860 
5861 	ic->ic_softc = sc;
5862 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5863 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5864 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5865 
5866 	/* Set device capabilities. */
5867 	ic->ic_caps =
5868 	    IEEE80211_C_STA |
5869 	    IEEE80211_C_WPA |		/* WPA/RSN */
5870 	    IEEE80211_C_WME |
5871 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5872 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5873 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5874 	    ;
5875 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5876 		sc->sc_phyctxt[i].id = i;
5877 		sc->sc_phyctxt[i].color = 0;
5878 		sc->sc_phyctxt[i].ref = 0;
5879 		sc->sc_phyctxt[i].channel = NULL;
5880 	}
5881 
5882 	/* Default noise floor */
5883 	sc->sc_noise = -96;
5884 
5885 	/* Max RSSI */
5886 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5887 
5888 	sc->sc_preinit_hook.ich_func = iwm_preinit;
5889 	sc->sc_preinit_hook.ich_arg = sc;
5890 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5891 		device_printf(dev, "config_intrhook_establish failed\n");
5892 		goto fail;
5893 	}
5894 
5895 #ifdef IWM_DEBUG
5896 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5897 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5898 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5899 #endif
5900 
5901 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5902 	    "<-%s\n", __func__);
5903 
5904 	return 0;
5905 
5906 	/* Free allocated memory if something failed during attachment. */
5907 fail:
5908 	iwm_detach_local(sc, 0);
5909 
5910 	return ENXIO;
5911 }
5912 
5913 static int
5914 iwm_is_valid_ether_addr(uint8_t *addr)
5915 {
5916 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5917 
5918 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5919 		return (FALSE);
5920 
5921 	return (TRUE);
5922 }
5923 
5924 static int
5925 iwm_update_edca(struct ieee80211com *ic)
5926 {
5927 	struct iwm_softc *sc = ic->ic_softc;
5928 
5929 	device_printf(sc->sc_dev, "%s: called\n", __func__);
5930 	return (0);
5931 }
5932 
5933 static void
5934 iwm_preinit(void *arg)
5935 {
5936 	struct iwm_softc *sc = arg;
5937 	device_t dev = sc->sc_dev;
5938 	struct ieee80211com *ic = &sc->sc_ic;
5939 	int error;
5940 
5941 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5942 	    "->%s\n", __func__);
5943 
5944 	IWM_LOCK(sc);
5945 	if ((error = iwm_start_hw(sc)) != 0) {
5946 		device_printf(dev, "could not initialize hardware\n");
5947 		IWM_UNLOCK(sc);
5948 		goto fail;
5949 	}
5950 
5951 	error = iwm_run_init_mvm_ucode(sc, 1);
5952 	iwm_stop_device(sc);
5953 	if (error) {
5954 		IWM_UNLOCK(sc);
5955 		goto fail;
5956 	}
5957 	device_printf(dev,
5958 	    "hw rev 0x%x, fw ver %s, address %s\n",
5959 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5960 	    sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5961 
5962 	/* not all hardware can do 5GHz band */
5963 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5964 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5965 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5966 	IWM_UNLOCK(sc);
5967 
5968 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5969 	    ic->ic_channels);
5970 
5971 	/*
5972 	 * At this point we've committed - if we fail to do setup,
5973 	 * we now also have to tear down the net80211 state.
5974 	 */
5975 	ieee80211_ifattach(ic);
5976 	ic->ic_vap_create = iwm_vap_create;
5977 	ic->ic_vap_delete = iwm_vap_delete;
5978 	ic->ic_raw_xmit = iwm_raw_xmit;
5979 	ic->ic_node_alloc = iwm_node_alloc;
5980 	ic->ic_scan_start = iwm_scan_start;
5981 	ic->ic_scan_end = iwm_scan_end;
5982 	ic->ic_update_mcast = iwm_update_mcast;
5983 	ic->ic_getradiocaps = iwm_init_channel_map;
5984 	ic->ic_set_channel = iwm_set_channel;
5985 	ic->ic_scan_curchan = iwm_scan_curchan;
5986 	ic->ic_scan_mindwell = iwm_scan_mindwell;
5987 	ic->ic_wme.wme_update = iwm_update_edca;
5988 	ic->ic_parent = iwm_parent;
5989 	ic->ic_transmit = iwm_transmit;
5990 	iwm_radiotap_attach(sc);
5991 	if (bootverbose)
5992 		ieee80211_announce(ic);
5993 
5994 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5995 	    "<-%s\n", __func__);
5996 	config_intrhook_disestablish(&sc->sc_preinit_hook);
5997 
5998 	return;
5999 fail:
6000 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6001 	iwm_detach_local(sc, 0);
6002 }
6003 
6004 /*
6005  * Attach the interface to 802.11 radiotap.
6006  */
6007 static void
6008 iwm_radiotap_attach(struct iwm_softc *sc)
6009 {
6010         struct ieee80211com *ic = &sc->sc_ic;
6011 
6012 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6013 	    "->%s begin\n", __func__);
6014         ieee80211_radiotap_attach(ic,
6015             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6016                 IWM_TX_RADIOTAP_PRESENT,
6017             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6018                 IWM_RX_RADIOTAP_PRESENT);
6019 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6020 	    "->%s end\n", __func__);
6021 }
6022 
6023 static struct ieee80211vap *
6024 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6025     enum ieee80211_opmode opmode, int flags,
6026     const uint8_t bssid[IEEE80211_ADDR_LEN],
6027     const uint8_t mac[IEEE80211_ADDR_LEN])
6028 {
6029 	struct iwm_vap *ivp;
6030 	struct ieee80211vap *vap;
6031 
6032 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6033 		return NULL;
6034 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6035 	vap = &ivp->iv_vap;
6036 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6037 	vap->iv_bmissthreshold = 10;            /* override default */
6038 	/* Override with driver methods. */
6039 	ivp->iv_newstate = vap->iv_newstate;
6040 	vap->iv_newstate = iwm_newstate;
6041 
6042 	ieee80211_ratectl_init(vap);
6043 	/* Complete setup. */
6044 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6045 	    mac);
6046 	ic->ic_opmode = opmode;
6047 
6048 	return vap;
6049 }
6050 
6051 static void
6052 iwm_vap_delete(struct ieee80211vap *vap)
6053 {
6054 	struct iwm_vap *ivp = IWM_VAP(vap);
6055 
6056 	ieee80211_ratectl_deinit(vap);
6057 	ieee80211_vap_detach(vap);
6058 	free(ivp, M_80211_VAP);
6059 }
6060 
6061 static void
6062 iwm_scan_start(struct ieee80211com *ic)
6063 {
6064 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6065 	struct iwm_softc *sc = ic->ic_softc;
6066 	int error;
6067 
6068 	IWM_LOCK(sc);
6069 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6070 		error = iwm_mvm_umac_scan(sc);
6071 	else
6072 		error = iwm_mvm_lmac_scan(sc);
6073 	if (error != 0) {
6074 		device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6075 		IWM_UNLOCK(sc);
6076 		ieee80211_cancel_scan(vap);
6077 	} else {
6078 		iwm_led_blink_start(sc);
6079 		IWM_UNLOCK(sc);
6080 	}
6081 }
6082 
6083 static void
6084 iwm_scan_end(struct ieee80211com *ic)
6085 {
6086 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6087 	struct iwm_softc *sc = ic->ic_softc;
6088 
6089 	IWM_LOCK(sc);
6090 	iwm_led_blink_stop(sc);
6091 	if (vap->iv_state == IEEE80211_S_RUN)
6092 		iwm_mvm_led_enable(sc);
6093 	IWM_UNLOCK(sc);
6094 }
6095 
6096 static void
6097 iwm_update_mcast(struct ieee80211com *ic)
6098 {
6099 }
6100 
6101 static void
6102 iwm_set_channel(struct ieee80211com *ic)
6103 {
6104 }
6105 
6106 static void
6107 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6108 {
6109 }
6110 
6111 static void
6112 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6113 {
6114 	return;
6115 }
6116 
6117 void
6118 iwm_init_task(void *arg1)
6119 {
6120 	struct iwm_softc *sc = arg1;
6121 
6122 	IWM_LOCK(sc);
6123 	while (sc->sc_flags & IWM_FLAG_BUSY)
6124 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6125 	sc->sc_flags |= IWM_FLAG_BUSY;
6126 	iwm_stop(sc);
6127 	if (sc->sc_ic.ic_nrunning > 0)
6128 		iwm_init(sc);
6129 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6130 	wakeup(&sc->sc_flags);
6131 	IWM_UNLOCK(sc);
6132 }
6133 
6134 static int
6135 iwm_resume(device_t dev)
6136 {
6137 	struct iwm_softc *sc = device_get_softc(dev);
6138 	int do_reinit = 0;
6139 	uint16_t reg;
6140 
6141 	/* Clear device-specific "PCI retry timeout" register (41h). */
6142 	reg = pci_read_config(dev, 0x40, sizeof(reg));
6143 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6144 	iwm_init_task(device_get_softc(dev));
6145 
6146 	IWM_LOCK(sc);
6147 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6148 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6149 		do_reinit = 1;
6150 	}
6151 	IWM_UNLOCK(sc);
6152 
6153 	if (do_reinit)
6154 		ieee80211_resume_all(&sc->sc_ic);
6155 
6156 	return 0;
6157 }
6158 
6159 static int
6160 iwm_suspend(device_t dev)
6161 {
6162 	int do_stop = 0;
6163 	struct iwm_softc *sc = device_get_softc(dev);
6164 
6165 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6166 
6167 	ieee80211_suspend_all(&sc->sc_ic);
6168 
6169 	if (do_stop) {
6170 		IWM_LOCK(sc);
6171 		iwm_stop(sc);
6172 		sc->sc_flags |= IWM_FLAG_SCANNING;
6173 		IWM_UNLOCK(sc);
6174 	}
6175 
6176 	return (0);
6177 }
6178 
6179 static int
6180 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6181 {
6182 	struct iwm_fw_info *fw = &sc->sc_fw;
6183 	device_t dev = sc->sc_dev;
6184 	int i;
6185 
6186 	ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6187 
6188 	callout_drain(&sc->sc_led_blink_to);
6189 	callout_drain(&sc->sc_watchdog_to);
6190 	iwm_stop_device(sc);
6191 	if (do_net80211) {
6192 		ieee80211_ifdetach(&sc->sc_ic);
6193 	}
6194 
6195 	iwm_phy_db_free(sc);
6196 
6197 	/* Free descriptor rings */
6198 	iwm_free_rx_ring(sc, &sc->rxq);
6199 	for (i = 0; i < nitems(sc->txq); i++)
6200 		iwm_free_tx_ring(sc, &sc->txq[i]);
6201 
6202 	/* Free firmware */
6203 	if (fw->fw_fp != NULL)
6204 		iwm_fw_info_free(fw);
6205 
6206 	/* Free scheduler */
6207 	iwm_dma_contig_free(&sc->sched_dma);
6208 	iwm_dma_contig_free(&sc->ict_dma);
6209 	iwm_dma_contig_free(&sc->kw_dma);
6210 	iwm_dma_contig_free(&sc->fw_dma);
6211 
6212 	/* Finished with the hardware - detach things */
6213 	iwm_pci_detach(dev);
6214 
6215 	mbufq_drain(&sc->sc_snd);
6216 	IWM_LOCK_DESTROY(sc);
6217 
6218 	return (0);
6219 }
6220 
6221 static int
6222 iwm_detach(device_t dev)
6223 {
6224 	struct iwm_softc *sc = device_get_softc(dev);
6225 
6226 	return (iwm_detach_local(sc, 1));
6227 }
6228 
6229 static device_method_t iwm_pci_methods[] = {
6230         /* Device interface */
6231         DEVMETHOD(device_probe,         iwm_probe),
6232         DEVMETHOD(device_attach,        iwm_attach),
6233         DEVMETHOD(device_detach,        iwm_detach),
6234         DEVMETHOD(device_suspend,       iwm_suspend),
6235         DEVMETHOD(device_resume,        iwm_resume),
6236 
6237         DEVMETHOD_END
6238 };
6239 
6240 static driver_t iwm_pci_driver = {
6241         "iwm",
6242         iwm_pci_methods,
6243         sizeof (struct iwm_softc)
6244 };
6245 
6246 static devclass_t iwm_devclass;
6247 
6248 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6249 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6250 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6251 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6252