xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 3ac125068a211377f0b3817c37cf1db95a87e8fb)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164 
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167 
168 const uint8_t iwm_nvm_channels[] = {
169 	/* 2.4 GHz */
170 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171 	/* 5 GHz */
172 	36, 40, 44, 48, 52, 56, 60, 64,
173 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174 	149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178 
179 const uint8_t iwm_nvm_channels_8000[] = {
180 	/* 2.4 GHz */
181 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182 	/* 5 GHz */
183 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185 	149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189 
190 #define IWM_NUM_2GHZ_CHANNELS	14
191 #define IWM_N_HW_ADDR_MASK	0xF
192 
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198 	uint8_t rate;
199 	uint8_t plcp;
200 } iwm_rates[] = {
201 	{   2,	IWM_RATE_1M_PLCP  },
202 	{   4,	IWM_RATE_2M_PLCP  },
203 	{  11,	IWM_RATE_5M_PLCP  },
204 	{  22,	IWM_RATE_11M_PLCP },
205 	{  12,	IWM_RATE_6M_PLCP  },
206 	{  18,	IWM_RATE_9M_PLCP  },
207 	{  24,	IWM_RATE_12M_PLCP },
208 	{  36,	IWM_RATE_18M_PLCP },
209 	{  48,	IWM_RATE_24M_PLCP },
210 	{  72,	IWM_RATE_36M_PLCP },
211 	{  96,	IWM_RATE_48M_PLCP },
212 	{ 108,	IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK	0
215 #define IWM_RIDX_OFDM	4
216 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219 
220 struct iwm_nvm_section {
221 	uint16_t length;
222 	uint8_t *data;
223 };
224 
225 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int	iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void	iwm_fw_info_free(struct iwm_fw_info *);
231 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void	iwm_dma_contig_free(struct iwm_dma_info *);
236 static int	iwm_alloc_fwmem(struct iwm_softc *);
237 static int	iwm_alloc_sched(struct iwm_softc *);
238 static int	iwm_alloc_kw(struct iwm_softc *);
239 static int	iwm_alloc_ict(struct iwm_softc *);
240 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void	iwm_disable_rx_dma(struct iwm_softc *);
242 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void	iwm_enable_interrupts(struct iwm_softc *);
249 static void	iwm_restore_interrupts(struct iwm_softc *);
250 static void	iwm_disable_interrupts(struct iwm_softc *);
251 static void	iwm_ict_reset(struct iwm_softc *);
252 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void	iwm_stop_device(struct iwm_softc *);
254 static void	iwm_mvm_nic_config(struct iwm_softc *);
255 static int	iwm_nic_rx_init(struct iwm_softc *);
256 static int	iwm_nic_tx_init(struct iwm_softc *);
257 static int	iwm_nic_init(struct iwm_softc *);
258 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int	iwm_post_alive(struct iwm_softc *);
260 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263 				     uint16_t *, size_t);
264 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
265 static void	iwm_add_channel_band(struct iwm_softc *,
266 		    struct ieee80211_channel[], int, int *, int, size_t,
267 		    const uint8_t[]);
268 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
269 		    struct ieee80211_channel[]);
270 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271 				   const uint16_t *, const uint16_t *,
272 				   const uint16_t *, const uint16_t *,
273 				   const uint16_t *);
274 static void	iwm_set_hw_address_8000(struct iwm_softc *,
275 					struct iwm_nvm_data *,
276 					const uint16_t *, const uint16_t *);
277 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278 			    const uint16_t *);
279 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281 				  const uint16_t *);
282 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
283 				   const uint16_t *);
284 static void	iwm_set_radio_cfg(const struct iwm_softc *,
285 				  struct iwm_nvm_data *, uint32_t);
286 static int	iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int	iwm_nvm_init(struct iwm_softc *);
289 static int	iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int	iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int	iwm_load_cpu_sections_8000(struct iwm_softc *,
295 					   struct iwm_fw_sects *, int , int *);
296 static int	iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
307 					    struct iwm_rx_phy_info *);
308 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int	iwm_get_noise(struct iwm_softc *sc,
312 		    const struct iwm_mvm_statistics_rx_non_phy *);
313 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317 				         struct iwm_node *);
318 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327 			struct mbuf *, struct iwm_tx_cmd *);
328 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331 			     const struct ieee80211_bpf_params *);
332 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333 				      uint32_t tfd_msk, uint32_t flags);
334 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335 					        struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343 				           const uint8_t *, uint16_t, uint16_t);
344 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350 		iwm_node_alloc(struct ieee80211vap *,
351 		               const uint8_t[IEEE80211_ADDR_LEN]);
352 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_media_change(struct ifnet *);
354 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void	iwm_endscan_cb(void *, int);
356 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
357 					struct iwm_sf_cfg_cmd *,
358 					struct ieee80211_node *);
359 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int	iwm_send_bt_init_conf(struct iwm_softc *);
361 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int	iwm_init_hw(struct iwm_softc *);
364 static void	iwm_init(struct iwm_softc *);
365 static void	iwm_start(struct iwm_softc *);
366 static void	iwm_stop(struct iwm_softc *);
367 static void	iwm_watchdog(void *);
368 static void	iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371 		iwm_desc_lookup(uint32_t);
372 static void	iwm_nic_error(struct iwm_softc *);
373 static void	iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void	iwm_notif_intr(struct iwm_softc *);
376 static void	iwm_intr(void *);
377 static int	iwm_attach(device_t);
378 static int	iwm_is_valid_ether_addr(uint8_t *);
379 static void	iwm_preinit(void *);
380 static int	iwm_detach_local(struct iwm_softc *sc, int);
381 static void	iwm_init_task(void *);
382 static void	iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384 		iwm_vap_create(struct ieee80211com *,
385 		               const char [IFNAMSIZ], int,
386 		               enum ieee80211_opmode, int,
387 		               const uint8_t [IEEE80211_ADDR_LEN],
388 		               const uint8_t [IEEE80211_ADDR_LEN]);
389 static void	iwm_vap_delete(struct ieee80211vap *);
390 static void	iwm_scan_start(struct ieee80211com *);
391 static void	iwm_scan_end(struct ieee80211com *);
392 static void	iwm_update_mcast(struct ieee80211com *);
393 static void	iwm_set_channel(struct ieee80211com *);
394 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int	iwm_detach(device_t);
397 
398 /*
399  * Firmware parser.
400  */
401 
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405 	const struct iwm_fw_cscheme_list *l = (const void *)data;
406 
407 	if (dlen < sizeof(*l) ||
408 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409 		return EINVAL;
410 
411 	/* we don't actually store anything for now, always use s/w crypto */
412 
413 	return 0;
414 }
415 
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420 	struct iwm_fw_sects *fws;
421 	struct iwm_fw_onesect *fwone;
422 
423 	if (type >= IWM_UCODE_TYPE_MAX)
424 		return EINVAL;
425 	if (dlen < sizeof(uint32_t))
426 		return EINVAL;
427 
428 	fws = &sc->sc_fw.fw_sects[type];
429 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430 		return EINVAL;
431 
432 	fwone = &fws->fw_sect[fws->fw_count];
433 
434 	/* first 32bit are device load offset */
435 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436 
437 	/* rest is data */
438 	fwone->fws_data = data + sizeof(uint32_t);
439 	fwone->fws_len = dlen - sizeof(uint32_t);
440 
441 	fws->fw_count++;
442 
443 	return 0;
444 }
445 
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447 
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450 	uint32_t ucode_type;
451 	struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453 
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457 	const struct iwm_tlv_calib_data *def_calib = data;
458 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
459 
460 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461 		device_printf(sc->sc_dev,
462 		    "Wrong ucode_type %u for default "
463 		    "calibration.\n", ucode_type);
464 		return EINVAL;
465 	}
466 
467 	sc->sc_default_calib[ucode_type].flow_trigger =
468 	    def_calib->calib.flow_trigger;
469 	sc->sc_default_calib[ucode_type].event_trigger =
470 	    def_calib->calib.event_trigger;
471 
472 	return 0;
473 }
474 
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479 	fw->fw_fp = NULL;
480 	/* don't touch fw->fw_status */
481 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483 
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487 	struct iwm_fw_info *fw = &sc->sc_fw;
488 	const struct iwm_tlv_ucode_header *uhdr;
489 	struct iwm_ucode_tlv tlv;
490 	enum iwm_ucode_tlv_type tlv_type;
491 	const struct firmware *fwp;
492 	const uint8_t *data;
493 	int error = 0;
494 	size_t len;
495 
496 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
497 	    ucode_type != IWM_UCODE_TYPE_INIT)
498 		return 0;
499 
500 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503 
504 	if (fw->fw_fp != NULL)
505 		iwm_fw_info_free(fw);
506 
507 	/*
508 	 * Load firmware into driver memory.
509 	 * fw_fp will be set.
510 	 */
511 	IWM_UNLOCK(sc);
512 	fwp = firmware_get(sc->sc_fwname);
513 	IWM_LOCK(sc);
514 	if (fwp == NULL) {
515 		device_printf(sc->sc_dev,
516 		    "could not read firmware %s (error %d)\n",
517 		    sc->sc_fwname, error);
518 		goto out;
519 	}
520 	fw->fw_fp = fwp;
521 
522 	/* (Re-)Initialize default values. */
523 	sc->sc_capaflags = 0;
524 	sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525 	memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527 
528 	/*
529 	 * Parse firmware contents
530 	 */
531 
532 	uhdr = (const void *)fw->fw_fp->data;
533 	if (*(const uint32_t *)fw->fw_fp->data != 0
534 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535 		device_printf(sc->sc_dev, "invalid firmware %s\n",
536 		    sc->sc_fwname);
537 		error = EINVAL;
538 		goto out;
539 	}
540 
541 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544 	    IWM_UCODE_API(le32toh(uhdr->ver)));
545 	data = uhdr->data;
546 	len = fw->fw_fp->datasize - sizeof(*uhdr);
547 
548 	while (len >= sizeof(tlv)) {
549 		size_t tlv_len;
550 		const void *tlv_data;
551 
552 		memcpy(&tlv, data, sizeof(tlv));
553 		tlv_len = le32toh(tlv.length);
554 		tlv_type = le32toh(tlv.type);
555 
556 		len -= sizeof(tlv);
557 		data += sizeof(tlv);
558 		tlv_data = data;
559 
560 		if (len < tlv_len) {
561 			device_printf(sc->sc_dev,
562 			    "firmware too short: %zu bytes\n",
563 			    len);
564 			error = EINVAL;
565 			goto parse_out;
566 		}
567 
568 		switch ((int)tlv_type) {
569 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
570 			if (tlv_len < sizeof(uint32_t)) {
571 				device_printf(sc->sc_dev,
572 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573 				    __func__,
574 				    (int) tlv_len);
575 				error = EINVAL;
576 				goto parse_out;
577 			}
578 			sc->sc_capa_max_probe_len
579 			    = le32toh(*(const uint32_t *)tlv_data);
580 			/* limit it to something sensible */
581 			if (sc->sc_capa_max_probe_len >
582 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585 				    "ridiculous\n", __func__);
586 				error = EINVAL;
587 				goto parse_out;
588 			}
589 			break;
590 		case IWM_UCODE_TLV_PAN:
591 			if (tlv_len) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594 				    __func__,
595 				    (int) tlv_len);
596 				error = EINVAL;
597 				goto parse_out;
598 			}
599 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600 			break;
601 		case IWM_UCODE_TLV_FLAGS:
602 			if (tlv_len < sizeof(uint32_t)) {
603 				device_printf(sc->sc_dev,
604 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605 				    __func__,
606 				    (int) tlv_len);
607 				error = EINVAL;
608 				goto parse_out;
609 			}
610 			/*
611 			 * Apparently there can be many flags, but Linux driver
612 			 * parses only the first one, and so do we.
613 			 *
614 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
615 			 * Intentional or a bug?  Observations from
616 			 * current firmware file:
617 			 *  1) TLV_PAN is parsed first
618 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619 			 * ==> this resets TLV_PAN to itself... hnnnk
620 			 */
621 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622 			break;
623 		case IWM_UCODE_TLV_CSCHEME:
624 			if ((error = iwm_store_cscheme(sc,
625 			    tlv_data, tlv_len)) != 0) {
626 				device_printf(sc->sc_dev,
627 				    "%s: iwm_store_cscheme(): returned %d\n",
628 				    __func__,
629 				    error);
630 				goto parse_out;
631 			}
632 			break;
633 		case IWM_UCODE_TLV_NUM_OF_CPU: {
634 			uint32_t num_cpu;
635 			if (tlv_len != sizeof(uint32_t)) {
636 				device_printf(sc->sc_dev,
637 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638 				    __func__,
639 				    (int) tlv_len);
640 				error = EINVAL;
641 				goto parse_out;
642 			}
643 			num_cpu = le32toh(*(const uint32_t *)tlv_data);
644 			if (num_cpu < 1 || num_cpu > 2) {
645 				device_printf(sc->sc_dev,
646 				    "%s: Driver supports only 1 or 2 CPUs\n",
647 				    __func__);
648 				error = EINVAL;
649 				goto parse_out;
650 			}
651 			break;
652 		}
653 		case IWM_UCODE_TLV_SEC_RT:
654 			if ((error = iwm_firmware_store_section(sc,
655 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656 				device_printf(sc->sc_dev,
657 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658 				    __func__,
659 				    error);
660 				goto parse_out;
661 			}
662 			break;
663 		case IWM_UCODE_TLV_SEC_INIT:
664 			if ((error = iwm_firmware_store_section(sc,
665 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666 				device_printf(sc->sc_dev,
667 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668 				    __func__,
669 				    error);
670 				goto parse_out;
671 			}
672 			break;
673 		case IWM_UCODE_TLV_SEC_WOWLAN:
674 			if ((error = iwm_firmware_store_section(sc,
675 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676 				device_printf(sc->sc_dev,
677 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678 				    __func__,
679 				    error);
680 				goto parse_out;
681 			}
682 			break;
683 		case IWM_UCODE_TLV_DEF_CALIB:
684 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685 				device_printf(sc->sc_dev,
686 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687 				    __func__,
688 				    (int) tlv_len,
689 				    (int) sizeof(struct iwm_tlv_calib_data));
690 				error = EINVAL;
691 				goto parse_out;
692 			}
693 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_set_default_calib() failed: %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_PHY_SKU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				error = EINVAL;
704 				device_printf(sc->sc_dev,
705 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706 				    __func__,
707 				    (int) tlv_len);
708 				goto parse_out;
709 			}
710 			sc->sc_fw_phy_config =
711 			    le32toh(*(const uint32_t *)tlv_data);
712 			break;
713 
714 		case IWM_UCODE_TLV_API_CHANGES_SET: {
715 			const struct iwm_ucode_api *api;
716 			if (tlv_len != sizeof(*api)) {
717 				error = EINVAL;
718 				goto parse_out;
719 			}
720 			api = (const struct iwm_ucode_api *)tlv_data;
721 			/* Flags may exceed 32 bits in future firmware. */
722 			if (le32toh(api->api_index) > 0) {
723 				device_printf(sc->sc_dev,
724 				    "unsupported API index %d\n",
725 				    le32toh(api->api_index));
726 				goto parse_out;
727 			}
728 			sc->sc_ucode_api = le32toh(api->api_flags);
729 			break;
730 		}
731 
732 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733 			const struct iwm_ucode_capa *capa;
734 			int idx, i;
735 			if (tlv_len != sizeof(*capa)) {
736 				error = EINVAL;
737 				goto parse_out;
738 			}
739 			capa = (const struct iwm_ucode_capa *)tlv_data;
740 			idx = le32toh(capa->api_index);
741 			if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742 				device_printf(sc->sc_dev,
743 				    "unsupported API index %d\n", idx);
744 				goto parse_out;
745 			}
746 			for (i = 0; i < 32; i++) {
747 				if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748 					continue;
749 				setbit(sc->sc_enabled_capa, i + (32 * idx));
750 			}
751 			break;
752 		}
753 
754 		case 48: /* undocumented TLV */
755 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757 			/* ignore, not used by current driver */
758 			break;
759 
760 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761 			if ((error = iwm_firmware_store_section(sc,
762 			    IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763 			    tlv_len)) != 0)
764 				goto parse_out;
765 			break;
766 
767 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768 			if (tlv_len != sizeof(uint32_t)) {
769 				error = EINVAL;
770 				goto parse_out;
771 			}
772 			sc->sc_capa_n_scan_channels =
773 			  le32toh(*(const uint32_t *)tlv_data);
774 			break;
775 
776 		case IWM_UCODE_TLV_FW_VERSION:
777 			if (tlv_len != sizeof(uint32_t) * 3) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782 			    "%d.%d.%d",
783 			    le32toh(((const uint32_t *)tlv_data)[0]),
784 			    le32toh(((const uint32_t *)tlv_data)[1]),
785 			    le32toh(((const uint32_t *)tlv_data)[2]));
786 			break;
787 
788 		default:
789 			device_printf(sc->sc_dev,
790 			    "%s: unknown firmware section %d, abort\n",
791 			    __func__, tlv_type);
792 			error = EINVAL;
793 			goto parse_out;
794 		}
795 
796 		len -= roundup(tlv_len, 4);
797 		data += roundup(tlv_len, 4);
798 	}
799 
800 	KASSERT(error == 0, ("unhandled error"));
801 
802  parse_out:
803 	if (error) {
804 		device_printf(sc->sc_dev, "firmware parse error %d, "
805 		    "section type %d\n", error, tlv_type);
806 	}
807 
808 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809 		device_printf(sc->sc_dev,
810 		    "device uses unsupported power ops\n");
811 		error = ENOTSUP;
812 	}
813 
814  out:
815 	if (error) {
816 		fw->fw_status = IWM_FW_STATUS_NONE;
817 		if (fw->fw_fp != NULL)
818 			iwm_fw_info_free(fw);
819 	} else
820 		fw->fw_status = IWM_FW_STATUS_DONE;
821 	wakeup(&sc->sc_fw);
822 
823 	return error;
824 }
825 
826 /*
827  * DMA resource routines
828  */
829 
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843 	int error;
844 
845 	dma->tag = NULL;
846 	dma->map = NULL;
847 	dma->size = size;
848 	dma->vaddr = NULL;
849 
850 	error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855 
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860 
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865 		dma->vaddr = NULL;
866 		goto fail;
867 	}
868 
869 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870 
871 	return 0;
872 
873 fail:
874 	iwm_dma_contig_free(dma);
875 
876 	return error;
877 }
878 
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882 	if (dma->vaddr != NULL) {
883 		bus_dmamap_sync(dma->tag, dma->map,
884 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(dma->tag, dma->map);
886 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887 		dma->vaddr = NULL;
888 	}
889 	if (dma->tag != NULL) {
890 		bus_dma_tag_destroy(dma->tag);
891 		dma->tag = NULL;
892 	}
893 }
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    sc->sc_fwdmasegsz, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002 	/* XXX conditional nic locks are stupid */
1003 	/* XXX print out if we can't lock the NIC? */
1004 	if (iwm_nic_lock(sc)) {
1005 		/* XXX handle if RX stop doesn't finish? */
1006 		(void) iwm_pcie_rx_stop(sc);
1007 		iwm_nic_unlock(sc);
1008 	}
1009 }
1010 
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014 	/* Reset the ring state */
1015 	ring->cur = 0;
1016 
1017 	/*
1018 	 * The hw rx ring index in shared memory must also be cleared,
1019 	 * otherwise the discrepancy can cause reprocessing chaos.
1020 	 */
1021 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023 
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027 	int i;
1028 
1029 	iwm_dma_contig_free(&ring->desc_dma);
1030 	iwm_dma_contig_free(&ring->stat_dma);
1031 
1032 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033 		struct iwm_rx_data *data = &ring->data[i];
1034 
1035 		if (data->m != NULL) {
1036 			bus_dmamap_sync(ring->data_dmat, data->map,
1037 			    BUS_DMASYNC_POSTREAD);
1038 			bus_dmamap_unload(ring->data_dmat, data->map);
1039 			m_freem(data->m);
1040 			data->m = NULL;
1041 		}
1042 		if (data->map != NULL) {
1043 			bus_dmamap_destroy(ring->data_dmat, data->map);
1044 			data->map = NULL;
1045 		}
1046 	}
1047 	if (ring->spare_map != NULL) {
1048 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049 		ring->spare_map = NULL;
1050 	}
1051 	if (ring->data_dmat != NULL) {
1052 		bus_dma_tag_destroy(ring->data_dmat);
1053 		ring->data_dmat = NULL;
1054 	}
1055 }
1056 
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060 	bus_addr_t paddr;
1061 	bus_size_t size;
1062 	size_t maxsize;
1063 	int nsegments;
1064 	int i, error;
1065 
1066 	ring->qid = qid;
1067 	ring->queued = 0;
1068 	ring->cur = 0;
1069 
1070 	/* Allocate TX descriptors (256-byte aligned). */
1071 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073 	if (error != 0) {
1074 		device_printf(sc->sc_dev,
1075 		    "could not allocate TX ring DMA memory\n");
1076 		goto fail;
1077 	}
1078 	ring->desc = ring->desc_dma.vaddr;
1079 
1080 	/*
1081 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082 	 * to allocate commands space for other rings.
1083 	 */
1084 	if (qid > IWM_MVM_CMD_QUEUE)
1085 		return 0;
1086 
1087 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate TX cmd DMA memory\n");
1092 		goto fail;
1093 	}
1094 	ring->cmd = ring->cmd_dma.vaddr;
1095 
1096 	/* FW commands may require more mapped space than packets. */
1097 	if (qid == IWM_MVM_CMD_QUEUE) {
1098 		maxsize = IWM_RBUF_SIZE;
1099 		nsegments = 1;
1100 	} else {
1101 		maxsize = MCLBYTES;
1102 		nsegments = IWM_MAX_SCATTER - 2;
1103 	}
1104 
1105 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108 	if (error != 0) {
1109 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110 		goto fail;
1111 	}
1112 
1113 	paddr = ring->cmd_dma.paddr;
1114 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115 		struct iwm_tx_data *data = &ring->data[i];
1116 
1117 		data->cmd_paddr = paddr;
1118 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119 		    + offsetof(struct iwm_tx_cmd, scratch);
1120 		paddr += sizeof(struct iwm_device_cmd);
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create TX buf DMA map\n");
1126 			goto fail;
1127 		}
1128 	}
1129 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1130 	    ("invalid physical address"));
1131 	return 0;
1132 
1133 fail:	iwm_free_tx_ring(sc, ring);
1134 	return error;
1135 }
1136 
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143 		struct iwm_tx_data *data = &ring->data[i];
1144 
1145 		if (data->m != NULL) {
1146 			bus_dmamap_sync(ring->data_dmat, data->map,
1147 			    BUS_DMASYNC_POSTWRITE);
1148 			bus_dmamap_unload(ring->data_dmat, data->map);
1149 			m_freem(data->m);
1150 			data->m = NULL;
1151 		}
1152 	}
1153 	/* Clear TX descriptors. */
1154 	memset(ring->desc, 0, ring->desc_dma.size);
1155 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156 	    BUS_DMASYNC_PREWRITE);
1157 	sc->qfullmsk &= ~(1 << ring->qid);
1158 	ring->queued = 0;
1159 	ring->cur = 0;
1160 }
1161 
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165 	int i;
1166 
1167 	iwm_dma_contig_free(&ring->desc_dma);
1168 	iwm_dma_contig_free(&ring->cmd_dma);
1169 
1170 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171 		struct iwm_tx_data *data = &ring->data[i];
1172 
1173 		if (data->m != NULL) {
1174 			bus_dmamap_sync(ring->data_dmat, data->map,
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(ring->data_dmat, data->map);
1177 			m_freem(data->m);
1178 			data->m = NULL;
1179 		}
1180 		if (data->map != NULL) {
1181 			bus_dmamap_destroy(ring->data_dmat, data->map);
1182 			data->map = NULL;
1183 		}
1184 	}
1185 	if (ring->data_dmat != NULL) {
1186 		bus_dma_tag_destroy(ring->data_dmat);
1187 		ring->data_dmat = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194 
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201 
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207 
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211 	/* disable interrupts */
1212 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213 
1214 	/* acknowledge all interrupts */
1215 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218 
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222 	iwm_disable_interrupts(sc);
1223 
1224 	/* Reset ICT table. */
1225 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226 	sc->ict_cur = 0;
1227 
1228 	/* Set physical address of ICT table (4KB aligned). */
1229 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1231 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234 
1235 	/* Switch to ICT interrupt mode in driver. */
1236 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1237 
1238 	/* Re-enable interrupts. */
1239 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240 	iwm_enable_interrupts(sc);
1241 }
1242 
1243 /* iwlwifi pcie/trans.c */
1244 
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257 	int chnl, qid;
1258 	uint32_t mask = 0;
1259 
1260 	/* tell the device to stop sending interrupts */
1261 	iwm_disable_interrupts(sc);
1262 
1263 	/*
1264 	 * FreeBSD-local: mark the first vap as not-uploaded,
1265 	 * so the next transition through auth/assoc
1266 	 * will correctly populate the MAC context.
1267 	 */
1268 	if (vap) {
1269 		struct iwm_vap *iv = IWM_VAP(vap);
1270 		iv->is_uploaded = 0;
1271 	}
1272 
1273 	/* device going down, Stop using ICT table */
1274 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275 
1276 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277 
1278 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279 
1280 	if (iwm_nic_lock(sc)) {
1281 		/* Stop each Tx DMA channel */
1282 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283 			IWM_WRITE(sc,
1284 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286 		}
1287 
1288 		/* Wait for DMA channels to be idle */
1289 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290 		    5000)) {
1291 			device_printf(sc->sc_dev,
1292 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294 		}
1295 		iwm_nic_unlock(sc);
1296 	}
1297 	iwm_disable_rx_dma(sc);
1298 
1299 	/* Stop RX ring. */
1300 	iwm_reset_rx_ring(sc, &sc->rxq);
1301 
1302 	/* Reset all TX rings. */
1303 	for (qid = 0; qid < nitems(sc->txq); qid++)
1304 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305 
1306 	/*
1307 	 * Power-down device's busmaster DMA clocks
1308 	 */
1309 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310 	DELAY(5);
1311 
1312 	/* Make sure (redundant) we've released our request to stay awake */
1313 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315 
1316 	/* Stop the device, and put it in low power state */
1317 	iwm_apm_stop(sc);
1318 
1319 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * Clean again the interrupt here
1321 	 */
1322 	iwm_disable_interrupts(sc);
1323 	/* stop and reset the on-board processor */
1324 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325 
1326 	/*
1327 	 * Even if we stop the HW, we still want the RF kill
1328 	 * interrupt
1329 	 */
1330 	iwm_enable_rfkill_int(sc);
1331 	iwm_check_rfkill(sc);
1332 }
1333 
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339 	uint32_t reg_val = 0;
1340 
1341 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	if (!iwm_nic_lock(sc))
1381 		return EBUSY;
1382 
1383 	/*
1384 	 * Initialize RX ring.  This is from the iwn driver.
1385 	 */
1386 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387 
1388 	/* stop DMA */
1389 	iwm_disable_rx_dma(sc);
1390 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394 
1395 	/* Set physical address of RX ring (256-byte aligned). */
1396 	IWM_WRITE(sc,
1397 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398 
1399 	/* Set physical address of RX status (16-byte aligned). */
1400 	IWM_WRITE(sc,
1401 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402 
1403 	/* Enable RX. */
1404 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1406 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1407 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1408 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1409 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1411 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412 
1413 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414 
1415 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1416 	if (sc->host_interrupt_operation_mode)
1417 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418 
1419 	/*
1420 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1421 	 *
1422 	 * This value should initially be 0 (before preparing any
1423 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1424 	 */
1425 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426 
1427 	iwm_nic_unlock(sc);
1428 
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435 	int qid;
1436 
1437 	if (!iwm_nic_lock(sc))
1438 		return EBUSY;
1439 
1440 	/* Deactivate TX scheduler. */
1441 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442 
1443 	/* Set physical address of "keep warm" page (16-byte aligned). */
1444 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445 
1446 	/* Initialize TX rings. */
1447 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1448 		struct iwm_tx_ring *txq = &sc->txq[qid];
1449 
1450 		/* Set physical address of TX ring (256-byte aligned). */
1451 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452 		    txq->desc_dma.paddr >> 8);
1453 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1455 		    __func__,
1456 		    qid, txq->desc,
1457 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1458 	}
1459 
1460 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461 
1462 	iwm_nic_unlock(sc);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470 	int error;
1471 
1472 	iwm_apm_init(sc);
1473 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474 		iwm_set_pwr(sc);
1475 
1476 	iwm_mvm_nic_config(sc);
1477 
1478 	if ((error = iwm_nic_rx_init(sc)) != 0)
1479 		return error;
1480 
1481 	/*
1482 	 * Ditto for TX, from iwn
1483 	 */
1484 	if ((error = iwm_nic_tx_init(sc)) != 0)
1485 		return error;
1486 
1487 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488 	    "%s: shadow registers enabled\n", __func__);
1489 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490 
1491 	return 0;
1492 }
1493 
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495 	IWM_MVM_TX_FIFO_VO,
1496 	IWM_MVM_TX_FIFO_VI,
1497 	IWM_MVM_TX_FIFO_BE,
1498 	IWM_MVM_TX_FIFO_BK,
1499 };
1500 
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504 	if (!iwm_nic_lock(sc)) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: cannot enable txq %d\n",
1507 		    __func__,
1508 		    qid);
1509 		return EBUSY;
1510 	}
1511 
1512 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513 
1514 	if (qid == IWM_MVM_CMD_QUEUE) {
1515 		/* unactivate before configuration */
1516 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519 
1520 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521 
1522 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523 
1524 		iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525 		/* Set scheduler window size and frame limit. */
1526 		iwm_write_mem32(sc,
1527 		    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528 		    sizeof(uint32_t),
1529 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533 
1534 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1539 	} else {
1540 		struct iwm_scd_txq_cfg_cmd cmd;
1541 		int error;
1542 
1543 		iwm_nic_unlock(sc);
1544 
1545 		memset(&cmd, 0, sizeof(cmd));
1546 		cmd.scd_queue = qid;
1547 		cmd.enable = 1;
1548 		cmd.sta_id = sta_id;
1549 		cmd.tx_fifo = fifo;
1550 		cmd.aggregate = 0;
1551 		cmd.window = IWM_FRAME_LIMIT;
1552 
1553 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554 		    sizeof(cmd), &cmd);
1555 		if (error) {
1556 			device_printf(sc->sc_dev,
1557 			    "cannot enable txq %d\n", qid);
1558 			return error;
1559 		}
1560 
1561 		if (!iwm_nic_lock(sc))
1562 			return EBUSY;
1563 	}
1564 
1565 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567 
1568 	iwm_nic_unlock(sc);
1569 
1570 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571 	    __func__, qid, fifo);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579 	int nwords;
1580 	int error, chnl;
1581 	uint32_t base;
1582 
1583 	if (!iwm_nic_lock(sc))
1584 		return EBUSY;
1585 
1586 	base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587 	if (sc->sched_base != base) {
1588 		device_printf(sc->sc_dev,
1589 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590 		    __func__, sc->sched_base, base);
1591 	}
1592 
1593 	iwm_ict_reset(sc);
1594 
1595 	/* Clear TX scheduler state in SRAM. */
1596 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598 	    / sizeof(uint32_t);
1599 	error = iwm_write_mem(sc,
1600 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601 	    NULL, nwords);
1602 	if (error)
1603 		goto out;
1604 
1605 	/* Set physical address of TX scheduler rings (1KB aligned). */
1606 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607 
1608 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609 
1610 	iwm_nic_unlock(sc);
1611 
1612 	/* enable command channel */
1613 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614 	if (error)
1615 		return error;
1616 
1617 	if (!iwm_nic_lock(sc))
1618 		return EBUSY;
1619 
1620 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621 
1622 	/* Enable DMA channels. */
1623 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627 	}
1628 
1629 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631 
1632 	/* Enable L1-Active */
1633 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636 	}
1637 
1638  out:
1639 	iwm_nic_unlock(sc);
1640 	return error;
1641 }
1642 
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648 
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651 	IWM_NVM_SECTION_TYPE_HW,
1652 	IWM_NVM_SECTION_TYPE_SW,
1653 	IWM_NVM_SECTION_TYPE_REGULATORY,
1654 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1655 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1656 	IWM_NVM_SECTION_TYPE_HW_8000,
1657 	IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658 	IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660 
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE	8192
1664 
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667 
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED		0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS	1
1671 
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676 	offset = 0;
1677 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1678 		.offset = htole16(offset),
1679 		.length = htole16(length),
1680 		.type = htole16(section),
1681 		.op_code = IWM_NVM_READ_OPCODE,
1682 	};
1683 	struct iwm_nvm_access_resp *nvm_resp;
1684 	struct iwm_rx_packet *pkt;
1685 	struct iwm_host_cmd cmd = {
1686 		.id = IWM_NVM_ACCESS_CMD,
1687 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688 		    IWM_CMD_SEND_IN_RFKILL,
1689 		.data = { &nvm_access_cmd, },
1690 	};
1691 	int ret, offset_read;
1692 	size_t bytes_read;
1693 	uint8_t *resp_data;
1694 
1695 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696 
1697 	ret = iwm_send_cmd(sc, &cmd);
1698 	if (ret) {
1699 		device_printf(sc->sc_dev,
1700 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	pkt = cmd.resp_pkt;
1705 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706 		device_printf(sc->sc_dev,
1707 		    "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708 		    pkt->hdr.flags);
1709 		ret = EIO;
1710 		goto exit;
1711 	}
1712 
1713 	/* Extract NVM response */
1714 	nvm_resp = (void *)pkt->data;
1715 
1716 	ret = le16toh(nvm_resp->status);
1717 	bytes_read = le16toh(nvm_resp->length);
1718 	offset_read = le16toh(nvm_resp->offset);
1719 	resp_data = nvm_resp->data;
1720 	if (ret) {
1721 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722 		    "NVM access command failed with status %d\n", ret);
1723 		ret = EINVAL;
1724 		goto exit;
1725 	}
1726 
1727 	if (offset_read != offset) {
1728 		device_printf(sc->sc_dev,
1729 		    "NVM ACCESS response with invalid offset %d\n",
1730 		    offset_read);
1731 		ret = EINVAL;
1732 		goto exit;
1733 	}
1734 
1735 	if (bytes_read > length) {
1736 		device_printf(sc->sc_dev,
1737 		    "NVM ACCESS response with too much data "
1738 		    "(%d bytes requested, %zd bytes received)\n",
1739 		    length, bytes_read);
1740 		ret = EINVAL;
1741 		goto exit;
1742 	}
1743 
1744 	memcpy(data + offset, resp_data, bytes_read);
1745 	*len = bytes_read;
1746 
1747  exit:
1748 	iwm_free_resp(sc, &cmd);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764 	uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766 	uint16_t chunklen, seglen;
1767 	int error = 0;
1768 
1769 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770 	    "reading NVM section %d\n", section);
1771 
1772 	chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773 	*len = 0;
1774 
1775 	/* Read NVM chunks until exhausted (reading less than requested) */
1776 	while (seglen == chunklen && *len < max_len) {
1777 		error = iwm_nvm_read_chunk(sc,
1778 		    section, *len, chunklen, data, &seglen);
1779 		if (error) {
1780 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781 			    "Cannot read from NVM section "
1782 			    "%d at offset %d\n", section, *len);
1783 			return error;
1784 		}
1785 		*len += seglen;
1786 	}
1787 
1788 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789 	    "NVM section %d read completed (%d bytes, error=%d)\n",
1790 	    section, *len, error);
1791 	return error;
1792 }
1793 
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797 
1798 /* iwlwifi/iwl-nvm-parse.c */
1799 
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802 	/* NVM HW-Section offset (in words) definitions */
1803 	IWM_HW_ADDR = 0x15,
1804 
1805 /* NVM SW-Section offset (in words) definitions */
1806 	IWM_NVM_SW_SECTION = 0x1C0,
1807 	IWM_NVM_VERSION = 0,
1808 	IWM_RADIO_CFG = 1,
1809 	IWM_SKU = 2,
1810 	IWM_N_HW_ADDRS = 3,
1811 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812 
1813 /* NVM calibration section offset (in words) definitions */
1814 	IWM_NVM_CALIB_SECTION = 0x2B8,
1815 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817 
1818 enum iwm_8000_nvm_offsets {
1819 	/* NVM HW-Section offset (in words) definitions */
1820 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825 
1826 	/* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828 	IWM_NVM_VERSION_8000 = 0,
1829 	IWM_RADIO_CFG_8000 = 0,
1830 	IWM_SKU_8000 = 2,
1831 	IWM_N_HW_ADDRS_8000 = 3,
1832 
1833 	/* NVM REGULATORY -Section offset (in words) definitions */
1834 	IWM_NVM_CHANNELS_8000 = 0,
1835 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838 
1839 	/* NVM calibration section offset (in words) definitions */
1840 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843 
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1847 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1848 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1849 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1850 };
1851 
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859 
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1866 
1867 #define DEFAULT_MAX_TX_POWER 16
1868 
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1884 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1888 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893 
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900 	uint32_t nflags;
1901 
1902 	nflags = 0;
1903 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904 		nflags |= IEEE80211_CHAN_PASSIVE;
1905 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906 		nflags |= IEEE80211_CHAN_NOADHOC;
1907 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908 		nflags |= IEEE80211_CHAN_DFS;
1909 		/* Just in case. */
1910 		nflags |= IEEE80211_CHAN_NOADHOC;
1911 	}
1912 
1913 	return (nflags);
1914 }
1915 
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921 	const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922 	uint32_t nflags;
1923 	uint16_t ch_flags;
1924 	uint8_t ieee;
1925 	int error;
1926 
1927 	for (; ch_idx < ch_num; ch_idx++) {
1928 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930 			ieee = iwm_nvm_channels[ch_idx];
1931 		else
1932 			ieee = iwm_nvm_channels_8000[ch_idx];
1933 
1934 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937 			    ieee, ch_flags,
1938 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939 			    "5.2" : "2.4");
1940 			continue;
1941 		}
1942 
1943 		nflags = iwm_eeprom_channel_flags(ch_flags);
1944 		error = ieee80211_add_channel(chans, maxchans, nchans,
1945 		    ieee, 0, 0, nflags, bands);
1946 		if (error != 0)
1947 			break;
1948 
1949 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1951 		    ieee, ch_flags,
1952 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953 		    "5.2" : "2.4");
1954 	}
1955 }
1956 
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961 	struct iwm_softc *sc = ic->ic_softc;
1962 	struct iwm_nvm_data *data = &sc->sc_nvm;
1963 	uint8_t bands[IEEE80211_MODE_BYTES];
1964 	size_t ch_num;
1965 
1966 	memset(bands, 0, sizeof(bands));
1967 	/* 1-13: 11b/g channels. */
1968 	setbit(bands, IEEE80211_MODE_11B);
1969 	setbit(bands, IEEE80211_MODE_11G);
1970 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972 
1973 	/* 14: 11b channel only. */
1974 	clrbit(bands, IEEE80211_MODE_11G);
1975 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1976 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977 
1978 	if (data->sku_cap_band_52GHz_enable) {
1979 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980 			ch_num = nitems(iwm_nvm_channels);
1981 		else
1982 			ch_num = nitems(iwm_nvm_channels_8000);
1983 		memset(bands, 0, sizeof(bands));
1984 		setbit(bands, IEEE80211_MODE_11A);
1985 		iwm_add_channel_band(sc, chans, maxchans, nchans,
1986 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987 	}
1988 }
1989 
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992 	const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994 	const uint8_t *hw_addr;
1995 
1996 	if (mac_override) {
1997 		static const uint8_t reserved_mac[] = {
1998 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999 		};
2000 
2001 		hw_addr = (const uint8_t *)(mac_override +
2002 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2003 
2004 		/*
2005 		 * Store the MAC address from MAO section.
2006 		 * No byte swapping is required in MAO section
2007 		 */
2008 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009 
2010 		/*
2011 		 * Force the use of the OTP MAC address in case of reserved MAC
2012 		 * address in the NVM, or if address is given but invalid.
2013 		 */
2014 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2017 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2018 			return;
2019 
2020 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021 		    "%s: mac address from nvm override section invalid\n",
2022 		    __func__);
2023 	}
2024 
2025 	if (nvm_hw) {
2026 		/* read the mac address from WFMP registers */
2027 		uint32_t mac_addr0 =
2028 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029 		uint32_t mac_addr1 =
2030 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031 
2032 		hw_addr = (const uint8_t *)&mac_addr0;
2033 		data->hw_addr[0] = hw_addr[3];
2034 		data->hw_addr[1] = hw_addr[2];
2035 		data->hw_addr[2] = hw_addr[1];
2036 		data->hw_addr[3] = hw_addr[0];
2037 
2038 		hw_addr = (const uint8_t *)&mac_addr1;
2039 		data->hw_addr[4] = hw_addr[1];
2040 		data->hw_addr[5] = hw_addr[0];
2041 
2042 		return;
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048 
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051 	    const uint16_t *phy_sku)
2052 {
2053 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054 		return le16_to_cpup(nvm_sw + IWM_SKU);
2055 
2056 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058 
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064 	else
2065 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2066 						IWM_NVM_VERSION_8000));
2067 }
2068 
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071 		  const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075 
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078 
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082 	int n_hw_addr;
2083 
2084 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086 
2087 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088 
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091 
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094 		  uint32_t radio_cfg)
2095 {
2096 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101 		return;
2102 	}
2103 
2104 	/* set the radio configuration for family 8000 */
2105 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112 
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2117 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119 	struct iwm_nvm_data *data = &sc->sc_nvm;
2120 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121 	uint32_t sku, radio_cfg;
2122 
2123 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124 
2125 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126 	iwm_set_radio_cfg(sc, data, radio_cfg);
2127 
2128 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131 	data->sku_cap_11n_enable = 0;
2132 
2133 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134 
2135 	/* The byte order is little endian 16 bit, meaning 214365 */
2136 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137 		IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138 		data->hw_addr[0] = hw_addr[1];
2139 		data->hw_addr[1] = hw_addr[0];
2140 		data->hw_addr[2] = hw_addr[3];
2141 		data->hw_addr[3] = hw_addr[2];
2142 		data->hw_addr[4] = hw_addr[5];
2143 		data->hw_addr[5] = hw_addr[4];
2144 	} else {
2145 		iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146 	}
2147 
2148 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2151 	} else {
2152 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * END NVM PARSE
2161  */
2162 
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167 
2168 	/* Checking for required sections */
2169 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171 		    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172 			device_printf(sc->sc_dev,
2173 			    "Can't parse empty OTP/NVM sections\n");
2174 			return ENOENT;
2175 		}
2176 
2177 		hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178 	} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179 		/* SW and REGULATORY sections are mandatory */
2180 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182 			device_printf(sc->sc_dev,
2183 			    "Can't parse empty OTP/NVM sections\n");
2184 			return ENOENT;
2185 		}
2186 		/* MAC_OVERRIDE or at least HW section must exist */
2187 		if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189 			device_printf(sc->sc_dev,
2190 			    "Can't parse mac_address, empty sections\n");
2191 			return ENOENT;
2192 		}
2193 
2194 		/* PHY_SKU section is mandatory in B0 */
2195 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196 			device_printf(sc->sc_dev,
2197 			    "Can't parse phy_sku in B0, empty sections\n");
2198 			return ENOENT;
2199 		}
2200 
2201 		hw = (const uint16_t *)
2202 		    sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203 	} else {
2204 		panic("unknown device family %d\n", sc->sc_device_family);
2205 	}
2206 
2207 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208 	calib = (const uint16_t *)
2209 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210 	regulatory = (const uint16_t *)
2211 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212 	mac_override = (const uint16_t *)
2213 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215 
2216 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217 	    phy_sku, regulatory);
2218 }
2219 
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224 	int i, section, error;
2225 	uint16_t len;
2226 	uint8_t *buf;
2227 	const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228 
2229 	memset(nvm_sections, 0 , sizeof(nvm_sections));
2230 
2231 	buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232 	if (buf == NULL)
2233 		return ENOMEM;
2234 
2235 	for (i = 0; i < nitems(nvm_to_read); i++) {
2236 		section = nvm_to_read[i];
2237 		KASSERT(section <= nitems(nvm_sections),
2238 		    ("too many sections"));
2239 
2240 		error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241 		if (error) {
2242 			error = 0;
2243 			continue;
2244 		}
2245 		nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246 		if (nvm_sections[section].data == NULL) {
2247 			error = ENOMEM;
2248 			break;
2249 		}
2250 		memcpy(nvm_sections[section].data, buf, len);
2251 		nvm_sections[section].length = len;
2252 	}
2253 	free(buf, M_DEVBUF);
2254 	if (error == 0)
2255 		error = iwm_parse_nvm_sections(sc, nvm_sections);
2256 
2257 	for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258 		if (nvm_sections[i].data != NULL)
2259 			free(nvm_sections[i].data, M_DEVBUF);
2260 	}
2261 
2262 	return error;
2263 }
2264 
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269 
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272 	const uint8_t *section, uint32_t byte_cnt)
2273 {
2274 	int error = EINVAL;
2275 	uint32_t chunk_sz, offset;
2276 
2277 	chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278 
2279 	for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280 		uint32_t addr, len;
2281 		const uint8_t *data;
2282 
2283 		addr = dst_addr + offset;
2284 		len = MIN(chunk_sz, byte_cnt - offset);
2285 		data = section + offset;
2286 
2287 		error = iwm_firmware_load_chunk(sc, addr, data, len);
2288 		if (error)
2289 			break;
2290 	}
2291 
2292 	return error;
2293 }
2294 
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297 	const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299 	struct iwm_dma_info *dma = &sc->fw_dma;
2300 	int error;
2301 
2302 	/* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303 	memcpy(dma->vaddr, chunk, byte_cnt);
2304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305 
2306 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307 	    dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308 		iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310 	}
2311 
2312 	sc->sc_fw_chunk_done = 0;
2313 
2314 	if (!iwm_nic_lock(sc))
2315 		return EBUSY;
2316 
2317 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320 	    dst_addr);
2321 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324 	    (iwm_get_dma_hi_addr(dma->paddr)
2325 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334 
2335 	iwm_nic_unlock(sc);
2336 
2337 	/* wait 1s for this segment to load */
2338 	while (!sc->sc_fw_chunk_done)
2339 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340 			break;
2341 
2342 	if (!sc->sc_fw_chunk_done) {
2343 		device_printf(sc->sc_dev,
2344 		    "fw chunk addr 0x%x len %d failed to load\n",
2345 		    dst_addr, byte_cnt);
2346 	}
2347 
2348 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349 	    dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350 		iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352 		iwm_nic_unlock(sc);
2353 	}
2354 
2355 	return error;
2356 }
2357 
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362 	int shift_param;
2363 	int i, error = 0, sec_num = 0x1;
2364 	uint32_t val, last_read_idx = 0;
2365 	const void *data;
2366 	uint32_t dlen;
2367 	uint32_t offset;
2368 
2369 	if (cpu == 1) {
2370 		shift_param = 0;
2371 		*first_ucode_section = 0;
2372 	} else {
2373 		shift_param = 16;
2374 		(*first_ucode_section)++;
2375 	}
2376 
2377 	for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378 		last_read_idx = i;
2379 		data = fws->fw_sect[i].fws_data;
2380 		dlen = fws->fw_sect[i].fws_len;
2381 		offset = fws->fw_sect[i].fws_devoff;
2382 
2383 		/*
2384 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385 		 * CPU1 to CPU2.
2386 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2387 		 * CPU2 non paged to CPU2 paging sec.
2388 		 */
2389 		if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390 		    offset == IWM_PAGING_SEPARATOR_SECTION)
2391 			break;
2392 
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394 		    "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395 		    i, offset, dlen, cpu);
2396 
2397 		if (dlen > sc->sc_fwdmasegsz) {
2398 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399 			    "chunk %d too large (%d bytes)\n", i, dlen);
2400 			error = EFBIG;
2401 		} else {
2402 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403 		}
2404 		if (error) {
2405 			device_printf(sc->sc_dev,
2406 			    "could not load firmware chunk %d (error %d)\n",
2407 			    i, error);
2408 			return error;
2409 		}
2410 
2411 		/* Notify the ucode of the loaded section number and status */
2412 		if (iwm_nic_lock(sc)) {
2413 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414 			val = val | (sec_num << shift_param);
2415 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416 			sec_num = (sec_num << 1) | 0x1;
2417 			iwm_nic_unlock(sc);
2418 
2419 			/*
2420 			 * The firmware won't load correctly without this delay.
2421 			 */
2422 			DELAY(8000);
2423 		}
2424 	}
2425 
2426 	*first_ucode_section = last_read_idx;
2427 
2428 	if (iwm_nic_lock(sc)) {
2429 		if (cpu == 1)
2430 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431 		else
2432 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433 		iwm_nic_unlock(sc);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442 	struct iwm_fw_sects *fws;
2443 	int error = 0;
2444 	int first_ucode_section;
2445 
2446 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447 	    ucode_type);
2448 
2449 	fws = &sc->sc_fw.fw_sects[ucode_type];
2450 
2451 	/* configure the ucode to be ready to get the secured image */
2452 	/* release CPU reset */
2453 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454 
2455 	/* load to FW the binary Secured sections of CPU1 */
2456 	error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457 	if (error)
2458 		return error;
2459 
2460 	/* load to FW the binary sections of CPU2 */
2461 	return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463 
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467 	struct iwm_fw_sects *fws;
2468 	int error, i;
2469 	const void *data;
2470 	uint32_t dlen;
2471 	uint32_t offset;
2472 
2473 	sc->sc_uc.uc_intr = 0;
2474 
2475 	fws = &sc->sc_fw.fw_sects[ucode_type];
2476 	for (i = 0; i < fws->fw_count; i++) {
2477 		data = fws->fw_sect[i].fws_data;
2478 		dlen = fws->fw_sect[i].fws_len;
2479 		offset = fws->fw_sect[i].fws_devoff;
2480 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481 		    "LOAD FIRMWARE type %d offset %u len %d\n",
2482 		    ucode_type, offset, dlen);
2483 		if (dlen > sc->sc_fwdmasegsz) {
2484 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485 			    "chunk %d too large (%d bytes)\n", i, dlen);
2486 			error = EFBIG;
2487 		} else {
2488 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489 		}
2490 		if (error) {
2491 			device_printf(sc->sc_dev,
2492 			    "could not load firmware chunk %u of %u "
2493 			    "(error=%d)\n", i, fws->fw_count, error);
2494 			return error;
2495 		}
2496 	}
2497 
2498 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506 	int error, w;
2507 
2508 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509 		error = iwm_load_firmware_8000(sc, ucode_type);
2510 	else
2511 		error = iwm_load_firmware_7000(sc, ucode_type);
2512 	if (error)
2513 		return error;
2514 
2515 	/* wait for the firmware to load */
2516 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518 	}
2519 	if (error || !sc->sc_uc.uc_ok) {
2520 		device_printf(sc->sc_dev, "could not load firmware\n");
2521 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522 			device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524 			device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Give the firmware some time to initialize.
2531 	 * Accessing it too early causes errors.
2532 	 */
2533 	msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534 
2535 	return error;
2536 }
2537 
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542 	int error;
2543 
2544 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545 
2546 	if ((error = iwm_nic_init(sc)) != 0) {
2547 		device_printf(sc->sc_dev, "unable to init nic\n");
2548 		return error;
2549 	}
2550 
2551 	/* make sure rfkill handshake bits are cleared */
2552 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555 
2556 	/* clear (again), then enable host interrupts */
2557 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558 	iwm_enable_interrupts(sc);
2559 
2560 	/* really make sure rfkill handshake bits are cleared */
2561 	/* maybe we should write a few times more?  just to make sure */
2562 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564 
2565 	/* Load the given image to the HW */
2566 	return iwm_load_firmware(sc, ucode_type);
2567 }
2568 
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573 		.valid = htole32(valid_tx_ant),
2574 	};
2575 
2576 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579 
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586 
2587 	/* Set parameters */
2588 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589 	phy_cfg_cmd.calib_control.event_trigger =
2590 	    sc->sc_default_calib[ucode_type].event_trigger;
2591 	phy_cfg_cmd.calib_control.flow_trigger =
2592 	    sc->sc_default_calib[ucode_type].flow_trigger;
2593 
2594 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599 
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602 	enum iwm_ucode_type ucode_type)
2603 {
2604 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2605 	int error;
2606 
2607 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609 			error);
2610 		return error;
2611 	}
2612 
2613 	sc->sc_uc_current = ucode_type;
2614 	error = iwm_start_fw(sc, ucode_type);
2615 	if (error) {
2616 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617 		sc->sc_uc_current = old_type;
2618 		return error;
2619 	}
2620 
2621 	error = iwm_post_alive(sc);
2622 	if (error) {
2623 		device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624 	}
2625 	return error;
2626 }
2627 
2628 /*
2629  * mvm misc bits
2630  */
2631 
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638 	int error;
2639 
2640 	/* do not operate with rfkill switch turned on */
2641 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642 		device_printf(sc->sc_dev,
2643 		    "radio is disabled by hardware switch\n");
2644 		return EPERM;
2645 	}
2646 
2647 	sc->sc_init_complete = 0;
2648 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649 	    IWM_UCODE_TYPE_INIT)) != 0) {
2650 		device_printf(sc->sc_dev, "failed to load init firmware\n");
2651 		return error;
2652 	}
2653 
2654 	if (justnvm) {
2655 		if ((error = iwm_nvm_init(sc)) != 0) {
2656 			device_printf(sc->sc_dev, "failed to read nvm\n");
2657 			return error;
2658 		}
2659 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660 
2661 		return 0;
2662 	}
2663 
2664 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665 		device_printf(sc->sc_dev,
2666 		    "failed to send bt coex configuration: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	/* Init Smart FIFO. */
2671 	error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2676 	    "%s: phy_txant=0x%08x, nvm_valid_tx_ant=0x%02x, valid=0x%02x\n",
2677 	    __func__,
2678 	    ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
2679 	      >> IWM_FW_PHY_CFG_TX_CHAIN_POS),
2680 	    sc->sc_nvm.valid_tx_ant,
2681 	    iwm_fw_valid_tx_ant(sc));
2682 
2683 
2684 	/* Send TX valid antennas before triggering calibrations */
2685 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2686 		device_printf(sc->sc_dev,
2687 		    "failed to send antennas before calibration: %d\n", error);
2688 		return error;
2689 	}
2690 
2691 	/*
2692 	 * Send phy configurations command to init uCode
2693 	 * to start the 16.0 uCode init image internal calibrations.
2694 	 */
2695 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2696 		device_printf(sc->sc_dev,
2697 		    "%s: failed to run internal calibration: %d\n",
2698 		    __func__, error);
2699 		return error;
2700 	}
2701 
2702 	/*
2703 	 * Nothing to do but wait for the init complete notification
2704 	 * from the firmware
2705 	 */
2706 	while (!sc->sc_init_complete) {
2707 		error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2708 				 0, "iwminit", 2*hz);
2709 		if (error) {
2710 			device_printf(sc->sc_dev, "init complete failed: %d\n",
2711 				sc->sc_init_complete);
2712 			break;
2713 		}
2714 	}
2715 
2716 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2717 	    sc->sc_init_complete ? "" : "not ");
2718 
2719 	return error;
2720 }
2721 
2722 /*
2723  * receive side
2724  */
2725 
2726 /* (re)stock rx ring, called at init-time and at runtime */
2727 static int
2728 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2729 {
2730 	struct iwm_rx_ring *ring = &sc->rxq;
2731 	struct iwm_rx_data *data = &ring->data[idx];
2732 	struct mbuf *m;
2733 	bus_dmamap_t dmamap = NULL;
2734 	bus_dma_segment_t seg;
2735 	int nsegs, error;
2736 
2737 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2738 	if (m == NULL)
2739 		return ENOBUFS;
2740 
2741 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2742 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2743 	    &seg, &nsegs, BUS_DMA_NOWAIT);
2744 	if (error != 0) {
2745 		device_printf(sc->sc_dev,
2746 		    "%s: can't map mbuf, error %d\n", __func__, error);
2747 		goto fail;
2748 	}
2749 
2750 	if (data->m != NULL)
2751 		bus_dmamap_unload(ring->data_dmat, data->map);
2752 
2753 	/* Swap ring->spare_map with data->map */
2754 	dmamap = data->map;
2755 	data->map = ring->spare_map;
2756 	ring->spare_map = dmamap;
2757 
2758 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2759 	data->m = m;
2760 
2761 	/* Update RX descriptor. */
2762 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2763 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
2764 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 	    BUS_DMASYNC_PREWRITE);
2766 
2767 	return 0;
2768 fail:
2769 	m_freem(m);
2770 	return error;
2771 }
2772 
2773 /* iwlwifi: mvm/rx.c */
2774 #define IWM_RSSI_OFFSET 50
2775 static int
2776 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2777 {
2778 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2779 	uint32_t agc_a, agc_b;
2780 	uint32_t val;
2781 
2782 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2783 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2784 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2785 
2786 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2787 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2788 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2789 
2790 	/*
2791 	 * dBm = rssi dB - agc dB - constant.
2792 	 * Higher AGC (higher radio gain) means lower signal.
2793 	 */
2794 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2795 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2796 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2797 
2798 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2799 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2800 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2801 
2802 	return max_rssi_dbm;
2803 }
2804 
2805 /* iwlwifi: mvm/rx.c */
2806 /*
2807  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2808  * values are reported by the fw as positive values - need to negate
2809  * to obtain their dBM.  Account for missing antennas by replacing 0
2810  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2811  */
2812 static int
2813 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2814 {
2815 	int energy_a, energy_b, energy_c, max_energy;
2816 	uint32_t val;
2817 
2818 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2819 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2820 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2821 	energy_a = energy_a ? -energy_a : -256;
2822 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2823 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2824 	energy_b = energy_b ? -energy_b : -256;
2825 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2826 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2827 	energy_c = energy_c ? -energy_c : -256;
2828 	max_energy = MAX(energy_a, energy_b);
2829 	max_energy = MAX(max_energy, energy_c);
2830 
2831 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2832 	    "energy In A %d B %d C %d , and max %d\n",
2833 	    energy_a, energy_b, energy_c, max_energy);
2834 
2835 	return max_energy;
2836 }
2837 
2838 static void
2839 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2840 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2841 {
2842 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2843 
2844 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2845 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2846 
2847 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2848 }
2849 
2850 /*
2851  * Retrieve the average noise (in dBm) among receivers.
2852  */
2853 static int
2854 iwm_get_noise(struct iwm_softc *sc,
2855     const struct iwm_mvm_statistics_rx_non_phy *stats)
2856 {
2857 	int i, total, nbant, noise;
2858 
2859 	total = nbant = noise = 0;
2860 	for (i = 0; i < 3; i++) {
2861 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2862 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2863 		    __func__,
2864 		    i,
2865 		    noise);
2866 
2867 		if (noise) {
2868 			total += noise;
2869 			nbant++;
2870 		}
2871 	}
2872 
2873 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2874 	    __func__, nbant, total);
2875 #if 0
2876 	/* There should be at least one antenna but check anyway. */
2877 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2878 #else
2879 	/* For now, just hard-code it to -96 to be safe */
2880 	return (-96);
2881 #endif
2882 }
2883 
2884 /*
2885  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2886  *
2887  * Handles the actual data of the Rx packet from the fw
2888  */
2889 static void
2890 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2891 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2892 {
2893 	struct ieee80211com *ic = &sc->sc_ic;
2894 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2895 	struct ieee80211_frame *wh;
2896 	struct ieee80211_node *ni;
2897 	struct ieee80211_rx_stats rxs;
2898 	struct mbuf *m;
2899 	struct iwm_rx_phy_info *phy_info;
2900 	struct iwm_rx_mpdu_res_start *rx_res;
2901 	uint32_t len;
2902 	uint32_t rx_pkt_status;
2903 	int rssi;
2904 
2905 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2906 
2907 	phy_info = &sc->sc_last_phy_info;
2908 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2909 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2910 	len = le16toh(rx_res->byte_count);
2911 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2912 
2913 	m = data->m;
2914 	m->m_data = pkt->data + sizeof(*rx_res);
2915 	m->m_pkthdr.len = m->m_len = len;
2916 
2917 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2918 		device_printf(sc->sc_dev,
2919 		    "dsp size out of range [0,20]: %d\n",
2920 		    phy_info->cfg_phy_cnt);
2921 		return;
2922 	}
2923 
2924 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2925 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2926 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2927 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2928 		return; /* drop */
2929 	}
2930 
2931 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2932 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2933 	} else {
2934 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2935 	}
2936 
2937 	/* Note: RSSI is absolute (ie a -ve value) */
2938 	if (rssi < IWM_MIN_DBM)
2939 		rssi = IWM_MIN_DBM;
2940 	else if (rssi > IWM_MAX_DBM)
2941 		rssi = IWM_MAX_DBM;
2942 
2943 	/* Map it to relative value */
2944 	rssi = rssi - sc->sc_noise;
2945 
2946 	/* replenish ring for the buffer we're going to feed to the sharks */
2947 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2948 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2949 		    __func__);
2950 		return;
2951 	}
2952 
2953 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2954 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2955 
2956 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2957 
2958 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2959 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2960 	    __func__,
2961 	    le16toh(phy_info->channel),
2962 	    le16toh(phy_info->phy_flags));
2963 
2964 	/*
2965 	 * Populate an RX state struct with the provided information.
2966 	 */
2967 	bzero(&rxs, sizeof(rxs));
2968 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2969 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2970 	rxs.c_ieee = le16toh(phy_info->channel);
2971 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2972 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2973 	} else {
2974 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2975 	}
2976 
2977 	/* rssi is in 1/2db units */
2978 	rxs.rssi = rssi * 2;
2979 	rxs.nf = sc->sc_noise;
2980 
2981 	if (ieee80211_radiotap_active_vap(vap)) {
2982 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2983 
2984 		tap->wr_flags = 0;
2985 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2986 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2987 		tap->wr_chan_freq = htole16(rxs.c_freq);
2988 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2989 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2990 		tap->wr_dbm_antsignal = (int8_t)rssi;
2991 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2992 		tap->wr_tsft = phy_info->system_timestamp;
2993 		switch (phy_info->rate) {
2994 		/* CCK rates. */
2995 		case  10: tap->wr_rate =   2; break;
2996 		case  20: tap->wr_rate =   4; break;
2997 		case  55: tap->wr_rate =  11; break;
2998 		case 110: tap->wr_rate =  22; break;
2999 		/* OFDM rates. */
3000 		case 0xd: tap->wr_rate =  12; break;
3001 		case 0xf: tap->wr_rate =  18; break;
3002 		case 0x5: tap->wr_rate =  24; break;
3003 		case 0x7: tap->wr_rate =  36; break;
3004 		case 0x9: tap->wr_rate =  48; break;
3005 		case 0xb: tap->wr_rate =  72; break;
3006 		case 0x1: tap->wr_rate =  96; break;
3007 		case 0x3: tap->wr_rate = 108; break;
3008 		/* Unknown rate: should not happen. */
3009 		default:  tap->wr_rate =   0;
3010 		}
3011 	}
3012 
3013 	IWM_UNLOCK(sc);
3014 	if (ni != NULL) {
3015 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3016 		ieee80211_input_mimo(ni, m, &rxs);
3017 		ieee80211_free_node(ni);
3018 	} else {
3019 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3020 		ieee80211_input_mimo_all(ic, m, &rxs);
3021 	}
3022 	IWM_LOCK(sc);
3023 }
3024 
3025 static int
3026 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3027 	struct iwm_node *in)
3028 {
3029 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3030 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3031 	struct ieee80211_node *ni = &in->in_ni;
3032 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3033 
3034 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3035 
3036 	/* Update rate control statistics. */
3037 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3038 	    __func__,
3039 	    (int) le16toh(tx_resp->status.status),
3040 	    (int) le16toh(tx_resp->status.sequence),
3041 	    tx_resp->frame_count,
3042 	    tx_resp->bt_kill_count,
3043 	    tx_resp->failure_rts,
3044 	    tx_resp->failure_frame,
3045 	    le32toh(tx_resp->initial_rate),
3046 	    (int) le16toh(tx_resp->wireless_media_time));
3047 
3048 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3049 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3050 	txs->short_retries = tx_resp->failure_rts;
3051 	txs->long_retries = tx_resp->failure_frame;
3052 	if (status != IWM_TX_STATUS_SUCCESS &&
3053 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3054 		switch (status) {
3055 		case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3056 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3057 			break;
3058 		case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3059 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3060 			break;
3061 		case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3062 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3063 			break;
3064 		default:
3065 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3066 			break;
3067 		}
3068 	} else {
3069 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3070 	}
3071 	ieee80211_ratectl_tx_complete(ni, txs);
3072 
3073 	return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3074 }
3075 
3076 static void
3077 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3078 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3079 {
3080 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3081 	int idx = cmd_hdr->idx;
3082 	int qid = cmd_hdr->qid;
3083 	struct iwm_tx_ring *ring = &sc->txq[qid];
3084 	struct iwm_tx_data *txd = &ring->data[idx];
3085 	struct iwm_node *in = txd->in;
3086 	struct mbuf *m = txd->m;
3087 	int status;
3088 
3089 	KASSERT(txd->done == 0, ("txd not done"));
3090 	KASSERT(txd->in != NULL, ("txd without node"));
3091 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3092 
3093 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3094 
3095 	sc->sc_tx_timer = 0;
3096 
3097 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3098 
3099 	/* Unmap and free mbuf. */
3100 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3101 	bus_dmamap_unload(ring->data_dmat, txd->map);
3102 
3103 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3104 	    "free txd %p, in %p\n", txd, txd->in);
3105 	txd->done = 1;
3106 	txd->m = NULL;
3107 	txd->in = NULL;
3108 
3109 	ieee80211_tx_complete(&in->in_ni, m, status);
3110 
3111 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3112 		sc->qfullmsk &= ~(1 << ring->qid);
3113 		if (sc->qfullmsk == 0) {
3114 			/*
3115 			 * Well, we're in interrupt context, but then again
3116 			 * I guess net80211 does all sorts of stunts in
3117 			 * interrupt context, so maybe this is no biggie.
3118 			 */
3119 			iwm_start(sc);
3120 		}
3121 	}
3122 }
3123 
3124 /*
3125  * transmit side
3126  */
3127 
3128 /*
3129  * Process a "command done" firmware notification.  This is where we wakeup
3130  * processes waiting for a synchronous command completion.
3131  * from if_iwn
3132  */
3133 static void
3134 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3135 {
3136 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3137 	struct iwm_tx_data *data;
3138 
3139 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3140 		return;	/* Not a command ack. */
3141 	}
3142 
3143 	/* XXX wide commands? */
3144 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3145 	    "cmd notification type 0x%x qid %d idx %d\n",
3146 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3147 
3148 	data = &ring->data[pkt->hdr.idx];
3149 
3150 	/* If the command was mapped in an mbuf, free it. */
3151 	if (data->m != NULL) {
3152 		bus_dmamap_sync(ring->data_dmat, data->map,
3153 		    BUS_DMASYNC_POSTWRITE);
3154 		bus_dmamap_unload(ring->data_dmat, data->map);
3155 		m_freem(data->m);
3156 		data->m = NULL;
3157 	}
3158 	wakeup(&ring->desc[pkt->hdr.idx]);
3159 }
3160 
3161 #if 0
3162 /*
3163  * necessary only for block ack mode
3164  */
3165 void
3166 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3167 	uint16_t len)
3168 {
3169 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3170 	uint16_t w_val;
3171 
3172 	scd_bc_tbl = sc->sched_dma.vaddr;
3173 
3174 	len += 8; /* magic numbers came naturally from paris */
3175 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3176 		len = roundup(len, 4) / 4;
3177 
3178 	w_val = htole16(sta_id << 12 | len);
3179 
3180 	/* Update TX scheduler. */
3181 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3182 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3183 	    BUS_DMASYNC_PREWRITE);
3184 
3185 	/* I really wonder what this is ?!? */
3186 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3187 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3188 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3189 		    BUS_DMASYNC_PREWRITE);
3190 	}
3191 }
3192 #endif
3193 
3194 /*
3195  * Take an 802.11 (non-n) rate, find the relevant rate
3196  * table entry.  return the index into in_ridx[].
3197  *
3198  * The caller then uses that index back into in_ridx
3199  * to figure out the rate index programmed /into/
3200  * the firmware for this given node.
3201  */
3202 static int
3203 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3204     uint8_t rate)
3205 {
3206 	int i;
3207 	uint8_t r;
3208 
3209 	for (i = 0; i < nitems(in->in_ridx); i++) {
3210 		r = iwm_rates[in->in_ridx[i]].rate;
3211 		if (rate == r)
3212 			return (i);
3213 	}
3214 
3215 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3216 	    "%s: couldn't find an entry for rate=%d\n",
3217 	    __func__,
3218 	    rate);
3219 
3220 	/* XXX Return the first */
3221 	/* XXX TODO: have it return the /lowest/ */
3222 	return (0);
3223 }
3224 
3225 static int
3226 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3227 {
3228 	int i;
3229 
3230 	for (i = 0; i < nitems(iwm_rates); i++) {
3231 		if (iwm_rates[i].rate == rate)
3232 			return (i);
3233 	}
3234 	/* XXX error? */
3235 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3236 	    "%s: couldn't find an entry for rate=%d\n",
3237 	    __func__,
3238 	    rate);
3239 	return (0);
3240 }
3241 
3242 /*
3243  * Fill in the rate related information for a transmit command.
3244  */
3245 static const struct iwm_rate *
3246 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3247 	struct mbuf *m, struct iwm_tx_cmd *tx)
3248 {
3249 	struct ieee80211_node *ni = &in->in_ni;
3250 	struct ieee80211_frame *wh;
3251 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3252 	const struct iwm_rate *rinfo;
3253 	int type;
3254 	int ridx, rate_flags;
3255 
3256 	wh = mtod(m, struct ieee80211_frame *);
3257 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3258 
3259 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3260 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3261 
3262 	if (type == IEEE80211_FC0_TYPE_MGT) {
3263 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3264 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3265 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3266 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3267 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3268 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3269 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3270 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3271 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3272 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3273 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3274 	} else if (m->m_flags & M_EAPOL) {
3275 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3276 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3277 		    "%s: EAPOL\n", __func__);
3278 	} else if (type == IEEE80211_FC0_TYPE_DATA) {
3279 		int i;
3280 
3281 		/* for data frames, use RS table */
3282 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3283 		/* XXX pass pktlen */
3284 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3285 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3286 		ridx = in->in_ridx[i];
3287 
3288 		/* This is the index into the programmed table */
3289 		tx->initial_rate_index = i;
3290 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3291 
3292 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3293 		    "%s: start with i=%d, txrate %d\n",
3294 		    __func__, i, iwm_rates[ridx].rate);
3295 	} else {
3296 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3297 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3298 		    __func__, tp->mgmtrate);
3299 	}
3300 
3301 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3302 	    "%s: frame type=%d txrate %d\n",
3303 	        __func__, type, iwm_rates[ridx].rate);
3304 
3305 	rinfo = &iwm_rates[ridx];
3306 
3307 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3308 	    __func__, ridx,
3309 	    rinfo->rate,
3310 	    !! (IWM_RIDX_IS_CCK(ridx))
3311 	    );
3312 
3313 	/* XXX TODO: hard-coded TX antenna? */
3314 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3315 	if (IWM_RIDX_IS_CCK(ridx))
3316 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3317 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3318 
3319 	return rinfo;
3320 }
3321 
3322 #define TB0_SIZE 16
3323 static int
3324 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3325 {
3326 	struct ieee80211com *ic = &sc->sc_ic;
3327 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3328 	struct iwm_node *in = IWM_NODE(ni);
3329 	struct iwm_tx_ring *ring;
3330 	struct iwm_tx_data *data;
3331 	struct iwm_tfd *desc;
3332 	struct iwm_device_cmd *cmd;
3333 	struct iwm_tx_cmd *tx;
3334 	struct ieee80211_frame *wh;
3335 	struct ieee80211_key *k = NULL;
3336 	struct mbuf *m1;
3337 	const struct iwm_rate *rinfo;
3338 	uint32_t flags;
3339 	u_int hdrlen;
3340 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3341 	int nsegs;
3342 	uint8_t tid, type;
3343 	int i, totlen, error, pad;
3344 
3345 	wh = mtod(m, struct ieee80211_frame *);
3346 	hdrlen = ieee80211_anyhdrsize(wh);
3347 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3348 	tid = 0;
3349 	ring = &sc->txq[ac];
3350 	desc = &ring->desc[ring->cur];
3351 	memset(desc, 0, sizeof(*desc));
3352 	data = &ring->data[ring->cur];
3353 
3354 	/* Fill out iwm_tx_cmd to send to the firmware */
3355 	cmd = &ring->cmd[ring->cur];
3356 	cmd->hdr.code = IWM_TX_CMD;
3357 	cmd->hdr.flags = 0;
3358 	cmd->hdr.qid = ring->qid;
3359 	cmd->hdr.idx = ring->cur;
3360 
3361 	tx = (void *)cmd->data;
3362 	memset(tx, 0, sizeof(*tx));
3363 
3364 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3365 
3366 	/* Encrypt the frame if need be. */
3367 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3368 		/* Retrieve key for TX && do software encryption. */
3369 		k = ieee80211_crypto_encap(ni, m);
3370 		if (k == NULL) {
3371 			m_freem(m);
3372 			return (ENOBUFS);
3373 		}
3374 		/* 802.11 header may have moved. */
3375 		wh = mtod(m, struct ieee80211_frame *);
3376 	}
3377 
3378 	if (ieee80211_radiotap_active_vap(vap)) {
3379 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3380 
3381 		tap->wt_flags = 0;
3382 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3383 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3384 		tap->wt_rate = rinfo->rate;
3385 		if (k != NULL)
3386 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3387 		ieee80211_radiotap_tx(vap, m);
3388 	}
3389 
3390 
3391 	totlen = m->m_pkthdr.len;
3392 
3393 	flags = 0;
3394 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3395 		flags |= IWM_TX_CMD_FLG_ACK;
3396 	}
3397 
3398 	if (type == IEEE80211_FC0_TYPE_DATA
3399 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3400 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3401 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3402 	}
3403 
3404 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3405 	    type != IEEE80211_FC0_TYPE_DATA)
3406 		tx->sta_id = sc->sc_aux_sta.sta_id;
3407 	else
3408 		tx->sta_id = IWM_STATION_ID;
3409 
3410 	if (type == IEEE80211_FC0_TYPE_MGT) {
3411 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3412 
3413 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3414 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3415 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3416 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3417 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3418 		} else {
3419 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3420 		}
3421 	} else {
3422 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3423 	}
3424 
3425 	if (hdrlen & 3) {
3426 		/* First segment length must be a multiple of 4. */
3427 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3428 		pad = 4 - (hdrlen & 3);
3429 	} else
3430 		pad = 0;
3431 
3432 	tx->driver_txop = 0;
3433 	tx->next_frame_len = 0;
3434 
3435 	tx->len = htole16(totlen);
3436 	tx->tid_tspec = tid;
3437 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3438 
3439 	/* Set physical address of "scratch area". */
3440 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3441 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3442 
3443 	/* Copy 802.11 header in TX command. */
3444 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3445 
3446 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3447 
3448 	tx->sec_ctl = 0;
3449 	tx->tx_flags |= htole32(flags);
3450 
3451 	/* Trim 802.11 header. */
3452 	m_adj(m, hdrlen);
3453 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3454 	    segs, &nsegs, BUS_DMA_NOWAIT);
3455 	if (error != 0) {
3456 		if (error != EFBIG) {
3457 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3458 			    error);
3459 			m_freem(m);
3460 			return error;
3461 		}
3462 		/* Too many DMA segments, linearize mbuf. */
3463 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3464 		if (m1 == NULL) {
3465 			device_printf(sc->sc_dev,
3466 			    "%s: could not defrag mbuf\n", __func__);
3467 			m_freem(m);
3468 			return (ENOBUFS);
3469 		}
3470 		m = m1;
3471 
3472 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3473 		    segs, &nsegs, BUS_DMA_NOWAIT);
3474 		if (error != 0) {
3475 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3476 			    error);
3477 			m_freem(m);
3478 			return error;
3479 		}
3480 	}
3481 	data->m = m;
3482 	data->in = in;
3483 	data->done = 0;
3484 
3485 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3486 	    "sending txd %p, in %p\n", data, data->in);
3487 	KASSERT(data->in != NULL, ("node is NULL"));
3488 
3489 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3490 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3491 	    ring->qid, ring->cur, totlen, nsegs,
3492 	    le32toh(tx->tx_flags),
3493 	    le32toh(tx->rate_n_flags),
3494 	    tx->initial_rate_index
3495 	    );
3496 
3497 	/* Fill TX descriptor. */
3498 	desc->num_tbs = 2 + nsegs;
3499 
3500 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3501 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3502 	    (TB0_SIZE << 4);
3503 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3504 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3505 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3506 	      + hdrlen + pad - TB0_SIZE) << 4);
3507 
3508 	/* Other DMA segments are for data payload. */
3509 	for (i = 0; i < nsegs; i++) {
3510 		seg = &segs[i];
3511 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3512 		desc->tbs[i+2].hi_n_len = \
3513 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3514 		    | ((seg->ds_len) << 4);
3515 	}
3516 
3517 	bus_dmamap_sync(ring->data_dmat, data->map,
3518 	    BUS_DMASYNC_PREWRITE);
3519 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3520 	    BUS_DMASYNC_PREWRITE);
3521 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3522 	    BUS_DMASYNC_PREWRITE);
3523 
3524 #if 0
3525 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3526 #endif
3527 
3528 	/* Kick TX ring. */
3529 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3530 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3531 
3532 	/* Mark TX ring as full if we reach a certain threshold. */
3533 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3534 		sc->qfullmsk |= 1 << ring->qid;
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static int
3541 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3542     const struct ieee80211_bpf_params *params)
3543 {
3544 	struct ieee80211com *ic = ni->ni_ic;
3545 	struct iwm_softc *sc = ic->ic_softc;
3546 	int error = 0;
3547 
3548 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3549 	    "->%s begin\n", __func__);
3550 
3551 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3552 		m_freem(m);
3553 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3554 		    "<-%s not RUNNING\n", __func__);
3555 		return (ENETDOWN);
3556         }
3557 
3558 	IWM_LOCK(sc);
3559 	/* XXX fix this */
3560         if (params == NULL) {
3561 		error = iwm_tx(sc, m, ni, 0);
3562 	} else {
3563 		error = iwm_tx(sc, m, ni, 0);
3564 	}
3565 	sc->sc_tx_timer = 5;
3566 	IWM_UNLOCK(sc);
3567 
3568         return (error);
3569 }
3570 
3571 /*
3572  * mvm/tx.c
3573  */
3574 
3575 /*
3576  * Note that there are transports that buffer frames before they reach
3577  * the firmware. This means that after flush_tx_path is called, the
3578  * queue might not be empty. The race-free way to handle this is to:
3579  * 1) set the station as draining
3580  * 2) flush the Tx path
3581  * 3) wait for the transport queues to be empty
3582  */
3583 int
3584 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3585 {
3586 	int ret;
3587 	struct iwm_tx_path_flush_cmd flush_cmd = {
3588 		.queues_ctl = htole32(tfd_msk),
3589 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3590 	};
3591 
3592 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3593 	    sizeof(flush_cmd), &flush_cmd);
3594 	if (ret)
3595                 device_printf(sc->sc_dev,
3596 		    "Flushing tx queue failed: %d\n", ret);
3597 	return ret;
3598 }
3599 
3600 /*
3601  * BEGIN mvm/sta.c
3602  */
3603 
3604 static int
3605 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3606 	struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3607 {
3608 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3609 	    cmd, status);
3610 }
3611 
3612 /* send station add/update command to firmware */
3613 static int
3614 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3615 {
3616 	struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3617 	int ret;
3618 	uint32_t status;
3619 
3620 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3621 
3622 	add_sta_cmd.sta_id = IWM_STATION_ID;
3623 	add_sta_cmd.mac_id_n_color
3624 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3625 	        IWM_DEFAULT_COLOR));
3626 	if (!update) {
3627 		int ac;
3628 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3629 			add_sta_cmd.tfd_queue_msk |=
3630 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3631 		}
3632 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3633 	}
3634 	add_sta_cmd.add_modify = update ? 1 : 0;
3635 	add_sta_cmd.station_flags_msk
3636 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3637 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3638 	if (update)
3639 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3640 
3641 	status = IWM_ADD_STA_SUCCESS;
3642 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3643 	if (ret)
3644 		return ret;
3645 
3646 	switch (status) {
3647 	case IWM_ADD_STA_SUCCESS:
3648 		break;
3649 	default:
3650 		ret = EIO;
3651 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3652 		break;
3653 	}
3654 
3655 	return ret;
3656 }
3657 
3658 static int
3659 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3660 {
3661 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3662 }
3663 
3664 static int
3665 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3666 {
3667 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3668 }
3669 
3670 static int
3671 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3672 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3673 {
3674 	struct iwm_mvm_add_sta_cmd_v7 cmd;
3675 	int ret;
3676 	uint32_t status;
3677 
3678 	memset(&cmd, 0, sizeof(cmd));
3679 	cmd.sta_id = sta->sta_id;
3680 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3681 
3682 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3683 	cmd.tid_disable_tx = htole16(0xffff);
3684 
3685 	if (addr)
3686 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3687 
3688 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3689 	if (ret)
3690 		return ret;
3691 
3692 	switch (status) {
3693 	case IWM_ADD_STA_SUCCESS:
3694 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3695 		    "%s: Internal station added.\n", __func__);
3696 		return 0;
3697 	default:
3698 		device_printf(sc->sc_dev,
3699 		    "%s: Add internal station failed, status=0x%x\n",
3700 		    __func__, status);
3701 		ret = EIO;
3702 		break;
3703 	}
3704 	return ret;
3705 }
3706 
3707 static int
3708 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3709 {
3710 	int ret;
3711 
3712 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3713 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3714 
3715 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3716 	if (ret)
3717 		return ret;
3718 
3719 	ret = iwm_mvm_add_int_sta_common(sc,
3720 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3721 
3722 	if (ret)
3723 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3724 	return ret;
3725 }
3726 
3727 /*
3728  * END mvm/sta.c
3729  */
3730 
3731 /*
3732  * BEGIN mvm/quota.c
3733  */
3734 
3735 static int
3736 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3737 {
3738 	struct iwm_time_quota_cmd cmd;
3739 	int i, idx, ret, num_active_macs, quota, quota_rem;
3740 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3741 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3742 	uint16_t id;
3743 
3744 	memset(&cmd, 0, sizeof(cmd));
3745 
3746 	/* currently, PHY ID == binding ID */
3747 	if (in) {
3748 		id = in->in_phyctxt->id;
3749 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3750 		colors[id] = in->in_phyctxt->color;
3751 
3752 		if (1)
3753 			n_ifs[id] = 1;
3754 	}
3755 
3756 	/*
3757 	 * The FW's scheduling session consists of
3758 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3759 	 * equally between all the bindings that require quota
3760 	 */
3761 	num_active_macs = 0;
3762 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3763 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3764 		num_active_macs += n_ifs[i];
3765 	}
3766 
3767 	quota = 0;
3768 	quota_rem = 0;
3769 	if (num_active_macs) {
3770 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3771 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3772 	}
3773 
3774 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3775 		if (colors[i] < 0)
3776 			continue;
3777 
3778 		cmd.quotas[idx].id_and_color =
3779 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3780 
3781 		if (n_ifs[i] <= 0) {
3782 			cmd.quotas[idx].quota = htole32(0);
3783 			cmd.quotas[idx].max_duration = htole32(0);
3784 		} else {
3785 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3786 			cmd.quotas[idx].max_duration = htole32(0);
3787 		}
3788 		idx++;
3789 	}
3790 
3791 	/* Give the remainder of the session to the first binding */
3792 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3793 
3794 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3795 	    sizeof(cmd), &cmd);
3796 	if (ret)
3797 		device_printf(sc->sc_dev,
3798 		    "%s: Failed to send quota: %d\n", __func__, ret);
3799 	return ret;
3800 }
3801 
3802 /*
3803  * END mvm/quota.c
3804  */
3805 
3806 /*
3807  * ieee80211 routines
3808  */
3809 
3810 /*
3811  * Change to AUTH state in 80211 state machine.  Roughly matches what
3812  * Linux does in bss_info_changed().
3813  */
3814 static int
3815 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3816 {
3817 	struct ieee80211_node *ni;
3818 	struct iwm_node *in;
3819 	struct iwm_vap *iv = IWM_VAP(vap);
3820 	uint32_t duration;
3821 	int error;
3822 
3823 	/*
3824 	 * XXX i have a feeling that the vap node is being
3825 	 * freed from underneath us. Grr.
3826 	 */
3827 	ni = ieee80211_ref_node(vap->iv_bss);
3828 	in = IWM_NODE(ni);
3829 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3830 	    "%s: called; vap=%p, bss ni=%p\n",
3831 	    __func__,
3832 	    vap,
3833 	    ni);
3834 
3835 	in->in_assoc = 0;
3836 
3837 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3838 	if (error != 0)
3839 		return error;
3840 
3841 	error = iwm_allow_mcast(vap, sc);
3842 	if (error) {
3843 		device_printf(sc->sc_dev,
3844 		    "%s: failed to set multicast\n", __func__);
3845 		goto out;
3846 	}
3847 
3848 	/*
3849 	 * This is where it deviates from what Linux does.
3850 	 *
3851 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3852 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3853 	 * and always does a mac_ctx_changed().
3854 	 *
3855 	 * The openbsd port doesn't attempt to do that - it reset things
3856 	 * at odd states and does the add here.
3857 	 *
3858 	 * So, until the state handling is fixed (ie, we never reset
3859 	 * the NIC except for a firmware failure, which should drag
3860 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3861 	 * contexts that are required), let's do a dirty hack here.
3862 	 */
3863 	if (iv->is_uploaded) {
3864 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3865 			device_printf(sc->sc_dev,
3866 			    "%s: failed to update MAC\n", __func__);
3867 			goto out;
3868 		}
3869 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3870 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3871 			device_printf(sc->sc_dev,
3872 			    "%s: failed update phy ctxt\n", __func__);
3873 			goto out;
3874 		}
3875 		in->in_phyctxt = &sc->sc_phyctxt[0];
3876 
3877 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3878 			device_printf(sc->sc_dev,
3879 			    "%s: binding update cmd\n", __func__);
3880 			goto out;
3881 		}
3882 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3883 			device_printf(sc->sc_dev,
3884 			    "%s: failed to update sta\n", __func__);
3885 			goto out;
3886 		}
3887 	} else {
3888 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3889 			device_printf(sc->sc_dev,
3890 			    "%s: failed to add MAC\n", __func__);
3891 			goto out;
3892 		}
3893 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3894 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3895 			device_printf(sc->sc_dev,
3896 			    "%s: failed add phy ctxt!\n", __func__);
3897 			error = ETIMEDOUT;
3898 			goto out;
3899 		}
3900 		in->in_phyctxt = &sc->sc_phyctxt[0];
3901 
3902 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3903 			device_printf(sc->sc_dev,
3904 			    "%s: binding add cmd\n", __func__);
3905 			goto out;
3906 		}
3907 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3908 			device_printf(sc->sc_dev,
3909 			    "%s: failed to add sta\n", __func__);
3910 			goto out;
3911 		}
3912 	}
3913 
3914 	/*
3915 	 * Prevent the FW from wandering off channel during association
3916 	 * by "protecting" the session with a time event.
3917 	 */
3918 	/* XXX duration is in units of TU, not MS */
3919 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3920 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3921 	DELAY(100);
3922 
3923 	error = 0;
3924 out:
3925 	ieee80211_free_node(ni);
3926 	return (error);
3927 }
3928 
3929 static int
3930 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3931 {
3932 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3933 	int error;
3934 
3935 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3936 		device_printf(sc->sc_dev,
3937 		    "%s: failed to update STA\n", __func__);
3938 		return error;
3939 	}
3940 
3941 	in->in_assoc = 1;
3942 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3943 		device_printf(sc->sc_dev,
3944 		    "%s: failed to update MAC\n", __func__);
3945 		return error;
3946 	}
3947 
3948 	return 0;
3949 }
3950 
3951 static int
3952 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3953 {
3954 	uint32_t tfd_msk;
3955 
3956 	/*
3957 	 * Ok, so *technically* the proper set of calls for going
3958 	 * from RUN back to SCAN is:
3959 	 *
3960 	 * iwm_mvm_power_mac_disable(sc, in);
3961 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3962 	 * iwm_mvm_rm_sta(sc, in);
3963 	 * iwm_mvm_update_quotas(sc, NULL);
3964 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3965 	 * iwm_mvm_binding_remove_vif(sc, in);
3966 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3967 	 *
3968 	 * However, that freezes the device not matter which permutations
3969 	 * and modifications are attempted.  Obviously, this driver is missing
3970 	 * something since it works in the Linux driver, but figuring out what
3971 	 * is missing is a little more complicated.  Now, since we're going
3972 	 * back to nothing anyway, we'll just do a complete device reset.
3973 	 * Up your's, device!
3974 	 */
3975 	/*
3976 	 * Just using 0xf for the queues mask is fine as long as we only
3977 	 * get here from RUN state.
3978 	 */
3979 	tfd_msk = 0xf;
3980 	mbufq_drain(&sc->sc_snd);
3981 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3982 	/*
3983 	 * We seem to get away with just synchronously sending the
3984 	 * IWM_TXPATH_FLUSH command.
3985 	 */
3986 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3987 	iwm_stop_device(sc);
3988 	iwm_init_hw(sc);
3989 	if (in)
3990 		in->in_assoc = 0;
3991 	return 0;
3992 
3993 #if 0
3994 	int error;
3995 
3996 	iwm_mvm_power_mac_disable(sc, in);
3997 
3998 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3999 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4000 		return error;
4001 	}
4002 
4003 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4004 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4005 		return error;
4006 	}
4007 	error = iwm_mvm_rm_sta(sc, in);
4008 	in->in_assoc = 0;
4009 	iwm_mvm_update_quotas(sc, NULL);
4010 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4011 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4012 		return error;
4013 	}
4014 	iwm_mvm_binding_remove_vif(sc, in);
4015 
4016 	iwm_mvm_mac_ctxt_remove(sc, in);
4017 
4018 	return error;
4019 #endif
4020 }
4021 
4022 static struct ieee80211_node *
4023 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4024 {
4025 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4026 	    M_NOWAIT | M_ZERO);
4027 }
4028 
4029 static void
4030 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4031 {
4032 	struct ieee80211_node *ni = &in->in_ni;
4033 	struct iwm_lq_cmd *lq = &in->in_lq;
4034 	int nrates = ni->ni_rates.rs_nrates;
4035 	int i, ridx, tab = 0;
4036 //	int txant = 0;
4037 
4038 	if (nrates > nitems(lq->rs_table)) {
4039 		device_printf(sc->sc_dev,
4040 		    "%s: node supports %d rates, driver handles "
4041 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4042 		return;
4043 	}
4044 	if (nrates == 0) {
4045 		device_printf(sc->sc_dev,
4046 		    "%s: node supports 0 rates, odd!\n", __func__);
4047 		return;
4048 	}
4049 
4050 	/*
4051 	 * XXX .. and most of iwm_node is not initialised explicitly;
4052 	 * it's all just 0x0 passed to the firmware.
4053 	 */
4054 
4055 	/* first figure out which rates we should support */
4056 	/* XXX TODO: this isn't 11n aware /at all/ */
4057 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4058 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4059 	    "%s: nrates=%d\n", __func__, nrates);
4060 
4061 	/*
4062 	 * Loop over nrates and populate in_ridx from the highest
4063 	 * rate to the lowest rate.  Remember, in_ridx[] has
4064 	 * IEEE80211_RATE_MAXSIZE entries!
4065 	 */
4066 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4067 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4068 
4069 		/* Map 802.11 rate to HW rate index. */
4070 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4071 			if (iwm_rates[ridx].rate == rate)
4072 				break;
4073 		if (ridx > IWM_RIDX_MAX) {
4074 			device_printf(sc->sc_dev,
4075 			    "%s: WARNING: device rate for %d not found!\n",
4076 			    __func__, rate);
4077 		} else {
4078 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4079 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4080 			    __func__,
4081 			    i,
4082 			    rate,
4083 			    ridx);
4084 			in->in_ridx[i] = ridx;
4085 		}
4086 	}
4087 
4088 	/* then construct a lq_cmd based on those */
4089 	memset(lq, 0, sizeof(*lq));
4090 	lq->sta_id = IWM_STATION_ID;
4091 
4092 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4093 	if (ni->ni_flags & IEEE80211_NODE_HT)
4094 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4095 
4096 	/*
4097 	 * are these used? (we don't do SISO or MIMO)
4098 	 * need to set them to non-zero, though, or we get an error.
4099 	 */
4100 	lq->single_stream_ant_msk = 1;
4101 	lq->dual_stream_ant_msk = 1;
4102 
4103 	/*
4104 	 * Build the actual rate selection table.
4105 	 * The lowest bits are the rates.  Additionally,
4106 	 * CCK needs bit 9 to be set.  The rest of the bits
4107 	 * we add to the table select the tx antenna
4108 	 * Note that we add the rates in the highest rate first
4109 	 * (opposite of ni_rates).
4110 	 */
4111 	/*
4112 	 * XXX TODO: this should be looping over the min of nrates
4113 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4114 	 */
4115 	for (i = 0; i < nrates; i++) {
4116 		int nextant;
4117 
4118 #if 0
4119 		if (txant == 0)
4120 			txant = iwm_fw_valid_tx_ant(sc);
4121 		nextant = 1<<(ffs(txant)-1);
4122 		txant &= ~nextant;
4123 #else
4124 		nextant = iwm_fw_valid_tx_ant(sc);
4125 #endif
4126 		/*
4127 		 * Map the rate id into a rate index into
4128 		 * our hardware table containing the
4129 		 * configuration to use for this rate.
4130 		 */
4131 		ridx = in->in_ridx[i];
4132 		tab = iwm_rates[ridx].plcp;
4133 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4134 		if (IWM_RIDX_IS_CCK(ridx))
4135 			tab |= IWM_RATE_MCS_CCK_MSK;
4136 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4137 		    "station rate i=%d, rate=%d, hw=%x\n",
4138 		    i, iwm_rates[ridx].rate, tab);
4139 		lq->rs_table[i] = htole32(tab);
4140 	}
4141 	/* then fill the rest with the lowest possible rate */
4142 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4143 		KASSERT(tab != 0, ("invalid tab"));
4144 		lq->rs_table[i] = htole32(tab);
4145 	}
4146 }
4147 
4148 static int
4149 iwm_media_change(struct ifnet *ifp)
4150 {
4151 	struct ieee80211vap *vap = ifp->if_softc;
4152 	struct ieee80211com *ic = vap->iv_ic;
4153 	struct iwm_softc *sc = ic->ic_softc;
4154 	int error;
4155 
4156 	error = ieee80211_media_change(ifp);
4157 	if (error != ENETRESET)
4158 		return error;
4159 
4160 	IWM_LOCK(sc);
4161 	if (ic->ic_nrunning > 0) {
4162 		iwm_stop(sc);
4163 		iwm_init(sc);
4164 	}
4165 	IWM_UNLOCK(sc);
4166 	return error;
4167 }
4168 
4169 
4170 static int
4171 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4172 {
4173 	struct iwm_vap *ivp = IWM_VAP(vap);
4174 	struct ieee80211com *ic = vap->iv_ic;
4175 	struct iwm_softc *sc = ic->ic_softc;
4176 	struct iwm_node *in;
4177 	int error;
4178 
4179 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4180 	    "switching state %s -> %s\n",
4181 	    ieee80211_state_name[vap->iv_state],
4182 	    ieee80211_state_name[nstate]);
4183 	IEEE80211_UNLOCK(ic);
4184 	IWM_LOCK(sc);
4185 
4186 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4187 		iwm_led_blink_stop(sc);
4188 
4189 	/* disable beacon filtering if we're hopping out of RUN */
4190 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4191 		iwm_mvm_disable_beacon_filter(sc);
4192 
4193 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4194 			in->in_assoc = 0;
4195 
4196 		if (nstate == IEEE80211_S_INIT) {
4197 			IWM_UNLOCK(sc);
4198 			IEEE80211_LOCK(ic);
4199 			error = ivp->iv_newstate(vap, nstate, arg);
4200 			IEEE80211_UNLOCK(ic);
4201 			IWM_LOCK(sc);
4202 			iwm_release(sc, NULL);
4203 			IWM_UNLOCK(sc);
4204 			IEEE80211_LOCK(ic);
4205 			return error;
4206 		}
4207 
4208 		/*
4209 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4210 		 * above then the card will be completely reinitialized,
4211 		 * so the driver must do everything necessary to bring the card
4212 		 * from INIT to SCAN.
4213 		 *
4214 		 * Additionally, upon receiving deauth frame from AP,
4215 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4216 		 * state. This will also fail with this driver, so bring the FSM
4217 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4218 		 *
4219 		 * XXX TODO: fix this for FreeBSD!
4220 		 */
4221 		if (nstate == IEEE80211_S_SCAN ||
4222 		    nstate == IEEE80211_S_AUTH ||
4223 		    nstate == IEEE80211_S_ASSOC) {
4224 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4225 			    "Force transition to INIT; MGT=%d\n", arg);
4226 			IWM_UNLOCK(sc);
4227 			IEEE80211_LOCK(ic);
4228 			/* Always pass arg as -1 since we can't Tx right now. */
4229 			/*
4230 			 * XXX arg is just ignored anyway when transitioning
4231 			 *     to IEEE80211_S_INIT.
4232 			 */
4233 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4234 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4235 			    "Going INIT->SCAN\n");
4236 			nstate = IEEE80211_S_SCAN;
4237 			IEEE80211_UNLOCK(ic);
4238 			IWM_LOCK(sc);
4239 		}
4240 	}
4241 
4242 	switch (nstate) {
4243 	case IEEE80211_S_INIT:
4244 		break;
4245 
4246 	case IEEE80211_S_AUTH:
4247 		if ((error = iwm_auth(vap, sc)) != 0) {
4248 			device_printf(sc->sc_dev,
4249 			    "%s: could not move to auth state: %d\n",
4250 			    __func__, error);
4251 			break;
4252 		}
4253 		break;
4254 
4255 	case IEEE80211_S_ASSOC:
4256 		if ((error = iwm_assoc(vap, sc)) != 0) {
4257 			device_printf(sc->sc_dev,
4258 			    "%s: failed to associate: %d\n", __func__,
4259 			    error);
4260 			break;
4261 		}
4262 		break;
4263 
4264 	case IEEE80211_S_RUN:
4265 	{
4266 		struct iwm_host_cmd cmd = {
4267 			.id = IWM_LQ_CMD,
4268 			.len = { sizeof(in->in_lq), },
4269 			.flags = IWM_CMD_SYNC,
4270 		};
4271 
4272 		/* Update the association state, now we have it all */
4273 		/* (eg associd comes in at this point */
4274 		error = iwm_assoc(vap, sc);
4275 		if (error != 0) {
4276 			device_printf(sc->sc_dev,
4277 			    "%s: failed to update association state: %d\n",
4278 			    __func__,
4279 			    error);
4280 			break;
4281 		}
4282 
4283 		in = IWM_NODE(vap->iv_bss);
4284 		iwm_mvm_power_mac_update_mode(sc, in);
4285 		iwm_mvm_enable_beacon_filter(sc, in);
4286 		iwm_mvm_update_quotas(sc, in);
4287 		iwm_setrates(sc, in);
4288 
4289 		cmd.data[0] = &in->in_lq;
4290 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4291 			device_printf(sc->sc_dev,
4292 			    "%s: IWM_LQ_CMD failed\n", __func__);
4293 		}
4294 
4295 		iwm_mvm_led_enable(sc);
4296 		break;
4297 	}
4298 
4299 	default:
4300 		break;
4301 	}
4302 	IWM_UNLOCK(sc);
4303 	IEEE80211_LOCK(ic);
4304 
4305 	return (ivp->iv_newstate(vap, nstate, arg));
4306 }
4307 
4308 void
4309 iwm_endscan_cb(void *arg, int pending)
4310 {
4311 	struct iwm_softc *sc = arg;
4312 	struct ieee80211com *ic = &sc->sc_ic;
4313 
4314 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4315 	    "%s: scan ended\n",
4316 	    __func__);
4317 
4318 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4319 }
4320 
4321 /*
4322  * Aging and idle timeouts for the different possible scenarios
4323  * in default configuration
4324  */
4325 static const uint32_t
4326 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4327 	{
4328 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4329 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4330 	},
4331 	{
4332 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4333 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4334 	},
4335 	{
4336 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4337 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4338 	},
4339 	{
4340 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4341 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4342 	},
4343 	{
4344 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4345 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4346 	},
4347 };
4348 
4349 /*
4350  * Aging and idle timeouts for the different possible scenarios
4351  * in single BSS MAC configuration.
4352  */
4353 static const uint32_t
4354 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4355 	{
4356 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4357 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4358 	},
4359 	{
4360 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4361 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4362 	},
4363 	{
4364 		htole32(IWM_SF_MCAST_AGING_TIMER),
4365 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4366 	},
4367 	{
4368 		htole32(IWM_SF_BA_AGING_TIMER),
4369 		htole32(IWM_SF_BA_IDLE_TIMER)
4370 	},
4371 	{
4372 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4373 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4374 	},
4375 };
4376 
4377 static void
4378 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4379     struct ieee80211_node *ni)
4380 {
4381 	int i, j, watermark;
4382 
4383 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4384 
4385 	/*
4386 	 * If we are in association flow - check antenna configuration
4387 	 * capabilities of the AP station, and choose the watermark accordingly.
4388 	 */
4389 	if (ni) {
4390 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4391 #ifdef notyet
4392 			if (ni->ni_rxmcs[2] != 0)
4393 				watermark = IWM_SF_W_MARK_MIMO3;
4394 			else if (ni->ni_rxmcs[1] != 0)
4395 				watermark = IWM_SF_W_MARK_MIMO2;
4396 			else
4397 #endif
4398 				watermark = IWM_SF_W_MARK_SISO;
4399 		} else {
4400 			watermark = IWM_SF_W_MARK_LEGACY;
4401 		}
4402 	/* default watermark value for unassociated mode. */
4403 	} else {
4404 		watermark = IWM_SF_W_MARK_MIMO2;
4405 	}
4406 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4407 
4408 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4409 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4410 			sf_cmd->long_delay_timeouts[i][j] =
4411 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4412 		}
4413 	}
4414 
4415 	if (ni) {
4416 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4417 		       sizeof(iwm_sf_full_timeout));
4418 	} else {
4419 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4420 		       sizeof(iwm_sf_full_timeout_def));
4421 	}
4422 }
4423 
4424 static int
4425 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4426 {
4427 	struct ieee80211com *ic = &sc->sc_ic;
4428 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4429 	struct iwm_sf_cfg_cmd sf_cmd = {
4430 		.state = htole32(IWM_SF_FULL_ON),
4431 	};
4432 	int ret = 0;
4433 
4434 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4435 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4436 
4437 	switch (new_state) {
4438 	case IWM_SF_UNINIT:
4439 	case IWM_SF_INIT_OFF:
4440 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4441 		break;
4442 	case IWM_SF_FULL_ON:
4443 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4444 		break;
4445 	default:
4446 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4447 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4448 			  new_state);
4449 		return EINVAL;
4450 	}
4451 
4452 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4453 				   sizeof(sf_cmd), &sf_cmd);
4454 	return ret;
4455 }
4456 
4457 static int
4458 iwm_send_bt_init_conf(struct iwm_softc *sc)
4459 {
4460 	struct iwm_bt_coex_cmd bt_cmd;
4461 
4462 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4463 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4464 
4465 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4466 	    &bt_cmd);
4467 }
4468 
4469 static int
4470 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4471 {
4472 	struct iwm_mcc_update_cmd mcc_cmd;
4473 	struct iwm_host_cmd hcmd = {
4474 		.id = IWM_MCC_UPDATE_CMD,
4475 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4476 		.data = { &mcc_cmd },
4477 	};
4478 	int ret;
4479 #ifdef IWM_DEBUG
4480 	struct iwm_rx_packet *pkt;
4481 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4482 	struct iwm_mcc_update_resp *mcc_resp;
4483 	int n_channels;
4484 	uint16_t mcc;
4485 #endif
4486 	int resp_v2 = isset(sc->sc_enabled_capa,
4487 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4488 
4489 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4490 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4491 	if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4492 	    isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4493 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4494 	else
4495 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4496 
4497 	if (resp_v2)
4498 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4499 	else
4500 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4501 
4502 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4503 	    "send MCC update to FW with '%c%c' src = %d\n",
4504 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4505 
4506 	ret = iwm_send_cmd(sc, &hcmd);
4507 	if (ret)
4508 		return ret;
4509 
4510 #ifdef IWM_DEBUG
4511 	pkt = hcmd.resp_pkt;
4512 
4513 	/* Extract MCC response */
4514 	if (resp_v2) {
4515 		mcc_resp = (void *)pkt->data;
4516 		mcc = mcc_resp->mcc;
4517 		n_channels =  le32toh(mcc_resp->n_channels);
4518 	} else {
4519 		mcc_resp_v1 = (void *)pkt->data;
4520 		mcc = mcc_resp_v1->mcc;
4521 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4522 	}
4523 
4524 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4525 	if (mcc == 0)
4526 		mcc = 0x3030;  /* "00" - world */
4527 
4528 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4529 	    "regulatory domain '%c%c' (%d channels available)\n",
4530 	    mcc >> 8, mcc & 0xff, n_channels);
4531 #endif
4532 	iwm_free_resp(sc, &hcmd);
4533 
4534 	return 0;
4535 }
4536 
4537 static void
4538 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4539 {
4540 	struct iwm_host_cmd cmd = {
4541 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4542 		.len = { sizeof(uint32_t), },
4543 		.data = { &backoff, },
4544 	};
4545 
4546 	if (iwm_send_cmd(sc, &cmd) != 0) {
4547 		device_printf(sc->sc_dev,
4548 		    "failed to change thermal tx backoff\n");
4549 	}
4550 }
4551 
4552 static int
4553 iwm_init_hw(struct iwm_softc *sc)
4554 {
4555 	struct ieee80211com *ic = &sc->sc_ic;
4556 	int error, i, ac;
4557 
4558 	if ((error = iwm_start_hw(sc)) != 0) {
4559 		printf("iwm_start_hw: failed %d\n", error);
4560 		return error;
4561 	}
4562 
4563 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4564 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4565 		return error;
4566 	}
4567 
4568 	/*
4569 	 * should stop and start HW since that INIT
4570 	 * image just loaded
4571 	 */
4572 	iwm_stop_device(sc);
4573 	if ((error = iwm_start_hw(sc)) != 0) {
4574 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4575 		return error;
4576 	}
4577 
4578 	/* omstart, this time with the regular firmware */
4579 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4580 	if (error) {
4581 		device_printf(sc->sc_dev, "could not load firmware\n");
4582 		goto error;
4583 	}
4584 
4585 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4586 		device_printf(sc->sc_dev, "bt init conf failed\n");
4587 		goto error;
4588 	}
4589 
4590 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4591 		device_printf(sc->sc_dev, "antenna config failed\n");
4592 		goto error;
4593 	}
4594 
4595 	/* Send phy db control command and then phy db calibration*/
4596 	if ((error = iwm_send_phy_db_data(sc)) != 0) {
4597 		device_printf(sc->sc_dev, "phy_db_data failed\n");
4598 		goto error;
4599 	}
4600 
4601 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4602 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4603 		goto error;
4604 	}
4605 
4606 	/* Add auxiliary station for scanning */
4607 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4608 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4609 		goto error;
4610 	}
4611 
4612 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4613 		/*
4614 		 * The channel used here isn't relevant as it's
4615 		 * going to be overwritten in the other flows.
4616 		 * For now use the first channel we have.
4617 		 */
4618 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4619 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4620 			goto error;
4621 	}
4622 
4623 	/* Initialize tx backoffs to the minimum. */
4624 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4625 		iwm_mvm_tt_tx_backoff(sc, 0);
4626 
4627 	error = iwm_mvm_power_update_device(sc);
4628 	if (error)
4629 		goto error;
4630 
4631 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4632 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4633 			goto error;
4634 	}
4635 
4636 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4637 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4638 			goto error;
4639 	}
4640 
4641 	/* Enable Tx queues. */
4642 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4643 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4644 		    iwm_mvm_ac_to_tx_fifo[ac]);
4645 		if (error)
4646 			goto error;
4647 	}
4648 
4649 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4650 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4651 		goto error;
4652 	}
4653 
4654 	return 0;
4655 
4656  error:
4657 	iwm_stop_device(sc);
4658 	return error;
4659 }
4660 
4661 /* Allow multicast from our BSSID. */
4662 static int
4663 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4664 {
4665 	struct ieee80211_node *ni = vap->iv_bss;
4666 	struct iwm_mcast_filter_cmd *cmd;
4667 	size_t size;
4668 	int error;
4669 
4670 	size = roundup(sizeof(*cmd), 4);
4671 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4672 	if (cmd == NULL)
4673 		return ENOMEM;
4674 	cmd->filter_own = 1;
4675 	cmd->port_id = 0;
4676 	cmd->count = 0;
4677 	cmd->pass_all = 1;
4678 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4679 
4680 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4681 	    IWM_CMD_SYNC, size, cmd);
4682 	free(cmd, M_DEVBUF);
4683 
4684 	return (error);
4685 }
4686 
4687 /*
4688  * ifnet interfaces
4689  */
4690 
4691 static void
4692 iwm_init(struct iwm_softc *sc)
4693 {
4694 	int error;
4695 
4696 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4697 		return;
4698 	}
4699 	sc->sc_generation++;
4700 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4701 
4702 	if ((error = iwm_init_hw(sc)) != 0) {
4703 		printf("iwm_init_hw failed %d\n", error);
4704 		iwm_stop(sc);
4705 		return;
4706 	}
4707 
4708 	/*
4709 	 * Ok, firmware loaded and we are jogging
4710 	 */
4711 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4712 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4713 }
4714 
4715 static int
4716 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4717 {
4718 	struct iwm_softc *sc;
4719 	int error;
4720 
4721 	sc = ic->ic_softc;
4722 
4723 	IWM_LOCK(sc);
4724 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4725 		IWM_UNLOCK(sc);
4726 		return (ENXIO);
4727 	}
4728 	error = mbufq_enqueue(&sc->sc_snd, m);
4729 	if (error) {
4730 		IWM_UNLOCK(sc);
4731 		return (error);
4732 	}
4733 	iwm_start(sc);
4734 	IWM_UNLOCK(sc);
4735 	return (0);
4736 }
4737 
4738 /*
4739  * Dequeue packets from sendq and call send.
4740  */
4741 static void
4742 iwm_start(struct iwm_softc *sc)
4743 {
4744 	struct ieee80211_node *ni;
4745 	struct mbuf *m;
4746 	int ac = 0;
4747 
4748 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4749 	while (sc->qfullmsk == 0 &&
4750 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4751 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4752 		if (iwm_tx(sc, m, ni, ac) != 0) {
4753 			if_inc_counter(ni->ni_vap->iv_ifp,
4754 			    IFCOUNTER_OERRORS, 1);
4755 			ieee80211_free_node(ni);
4756 			continue;
4757 		}
4758 		sc->sc_tx_timer = 15;
4759 	}
4760 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4761 }
4762 
4763 static void
4764 iwm_stop(struct iwm_softc *sc)
4765 {
4766 
4767 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4768 	sc->sc_flags |= IWM_FLAG_STOPPED;
4769 	sc->sc_generation++;
4770 	iwm_led_blink_stop(sc);
4771 	sc->sc_tx_timer = 0;
4772 	iwm_stop_device(sc);
4773 }
4774 
4775 static void
4776 iwm_watchdog(void *arg)
4777 {
4778 	struct iwm_softc *sc = arg;
4779 	struct ieee80211com *ic = &sc->sc_ic;
4780 
4781 	if (sc->sc_tx_timer > 0) {
4782 		if (--sc->sc_tx_timer == 0) {
4783 			device_printf(sc->sc_dev, "device timeout\n");
4784 #ifdef IWM_DEBUG
4785 			iwm_nic_error(sc);
4786 #endif
4787 			ieee80211_restart_all(ic);
4788 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4789 			return;
4790 		}
4791 	}
4792 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4793 }
4794 
4795 static void
4796 iwm_parent(struct ieee80211com *ic)
4797 {
4798 	struct iwm_softc *sc = ic->ic_softc;
4799 	int startall = 0;
4800 
4801 	IWM_LOCK(sc);
4802 	if (ic->ic_nrunning > 0) {
4803 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4804 			iwm_init(sc);
4805 			startall = 1;
4806 		}
4807 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4808 		iwm_stop(sc);
4809 	IWM_UNLOCK(sc);
4810 	if (startall)
4811 		ieee80211_start_all(ic);
4812 }
4813 
4814 /*
4815  * The interrupt side of things
4816  */
4817 
4818 /*
4819  * error dumping routines are from iwlwifi/mvm/utils.c
4820  */
4821 
4822 /*
4823  * Note: This structure is read from the device with IO accesses,
4824  * and the reading already does the endian conversion. As it is
4825  * read with uint32_t-sized accesses, any members with a different size
4826  * need to be ordered correctly though!
4827  */
4828 struct iwm_error_event_table {
4829 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4830 	uint32_t error_id;		/* type of error */
4831 	uint32_t trm_hw_status0;	/* TRM HW status */
4832 	uint32_t trm_hw_status1;	/* TRM HW status */
4833 	uint32_t blink2;		/* branch link */
4834 	uint32_t ilink1;		/* interrupt link */
4835 	uint32_t ilink2;		/* interrupt link */
4836 	uint32_t data1;		/* error-specific data */
4837 	uint32_t data2;		/* error-specific data */
4838 	uint32_t data3;		/* error-specific data */
4839 	uint32_t bcon_time;		/* beacon timer */
4840 	uint32_t tsf_low;		/* network timestamp function timer */
4841 	uint32_t tsf_hi;		/* network timestamp function timer */
4842 	uint32_t gp1;		/* GP1 timer register */
4843 	uint32_t gp2;		/* GP2 timer register */
4844 	uint32_t fw_rev_type;	/* firmware revision type */
4845 	uint32_t major;		/* uCode version major */
4846 	uint32_t minor;		/* uCode version minor */
4847 	uint32_t hw_ver;		/* HW Silicon version */
4848 	uint32_t brd_ver;		/* HW board version */
4849 	uint32_t log_pc;		/* log program counter */
4850 	uint32_t frame_ptr;		/* frame pointer */
4851 	uint32_t stack_ptr;		/* stack pointer */
4852 	uint32_t hcmd;		/* last host command header */
4853 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4854 				 * rxtx_flag */
4855 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4856 				 * host_flag */
4857 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4858 				 * enc_flag */
4859 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4860 				 * time_flag */
4861 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4862 				 * wico interrupt */
4863 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4864 	uint32_t wait_event;		/* wait event() caller address */
4865 	uint32_t l2p_control;	/* L2pControlField */
4866 	uint32_t l2p_duration;	/* L2pDurationField */
4867 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4868 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4869 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4870 				 * (LMPM_PMG_SEL) */
4871 	uint32_t u_timestamp;	/* indicate when the date and time of the
4872 				 * compilation */
4873 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4874 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4875 
4876 /*
4877  * UMAC error struct - relevant starting from family 8000 chip.
4878  * Note: This structure is read from the device with IO accesses,
4879  * and the reading already does the endian conversion. As it is
4880  * read with u32-sized accesses, any members with a different size
4881  * need to be ordered correctly though!
4882  */
4883 struct iwm_umac_error_event_table {
4884 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4885 	uint32_t error_id;	/* type of error */
4886 	uint32_t blink1;	/* branch link */
4887 	uint32_t blink2;	/* branch link */
4888 	uint32_t ilink1;	/* interrupt link */
4889 	uint32_t ilink2;	/* interrupt link */
4890 	uint32_t data1;		/* error-specific data */
4891 	uint32_t data2;		/* error-specific data */
4892 	uint32_t data3;		/* error-specific data */
4893 	uint32_t umac_major;
4894 	uint32_t umac_minor;
4895 	uint32_t frame_pointer;	/* core register 27*/
4896 	uint32_t stack_pointer;	/* core register 28 */
4897 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4898 	uint32_t nic_isr_pref;	/* ISR status register */
4899 } __packed;
4900 
4901 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4902 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4903 
4904 #ifdef IWM_DEBUG
4905 struct {
4906 	const char *name;
4907 	uint8_t num;
4908 } advanced_lookup[] = {
4909 	{ "NMI_INTERRUPT_WDG", 0x34 },
4910 	{ "SYSASSERT", 0x35 },
4911 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4912 	{ "BAD_COMMAND", 0x38 },
4913 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4914 	{ "FATAL_ERROR", 0x3D },
4915 	{ "NMI_TRM_HW_ERR", 0x46 },
4916 	{ "NMI_INTERRUPT_TRM", 0x4C },
4917 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4918 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4919 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4920 	{ "NMI_INTERRUPT_HOST", 0x66 },
4921 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4922 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4923 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4924 	{ "ADVANCED_SYSASSERT", 0 },
4925 };
4926 
4927 static const char *
4928 iwm_desc_lookup(uint32_t num)
4929 {
4930 	int i;
4931 
4932 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4933 		if (advanced_lookup[i].num == num)
4934 			return advanced_lookup[i].name;
4935 
4936 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4937 	return advanced_lookup[i].name;
4938 }
4939 
4940 static void
4941 iwm_nic_umac_error(struct iwm_softc *sc)
4942 {
4943 	struct iwm_umac_error_event_table table;
4944 	uint32_t base;
4945 
4946 	base = sc->sc_uc.uc_umac_error_event_table;
4947 
4948 	if (base < 0x800000) {
4949 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4950 		    base);
4951 		return;
4952 	}
4953 
4954 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4955 		device_printf(sc->sc_dev, "reading errlog failed\n");
4956 		return;
4957 	}
4958 
4959 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4960 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4961 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4962 		    sc->sc_flags, table.valid);
4963 	}
4964 
4965 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4966 		iwm_desc_lookup(table.error_id));
4967 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4968 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4969 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4970 	    table.ilink1);
4971 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4972 	    table.ilink2);
4973 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4974 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4975 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4976 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4977 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4978 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4979 	    table.frame_pointer);
4980 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4981 	    table.stack_pointer);
4982 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4983 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4984 	    table.nic_isr_pref);
4985 }
4986 
4987 /*
4988  * Support for dumping the error log seemed like a good idea ...
4989  * but it's mostly hex junk and the only sensible thing is the
4990  * hw/ucode revision (which we know anyway).  Since it's here,
4991  * I'll just leave it in, just in case e.g. the Intel guys want to
4992  * help us decipher some "ADVANCED_SYSASSERT" later.
4993  */
4994 static void
4995 iwm_nic_error(struct iwm_softc *sc)
4996 {
4997 	struct iwm_error_event_table table;
4998 	uint32_t base;
4999 
5000 	device_printf(sc->sc_dev, "dumping device error log\n");
5001 	base = sc->sc_uc.uc_error_event_table;
5002 	if (base < 0x800000) {
5003 		device_printf(sc->sc_dev,
5004 		    "Invalid error log pointer 0x%08x\n", base);
5005 		return;
5006 	}
5007 
5008 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5009 		device_printf(sc->sc_dev, "reading errlog failed\n");
5010 		return;
5011 	}
5012 
5013 	if (!table.valid) {
5014 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5015 		return;
5016 	}
5017 
5018 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5019 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5020 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5021 		    sc->sc_flags, table.valid);
5022 	}
5023 
5024 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5025 	    iwm_desc_lookup(table.error_id));
5026 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5027 	    table.trm_hw_status0);
5028 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5029 	    table.trm_hw_status1);
5030 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5031 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5032 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5033 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5034 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5035 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5036 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5037 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5038 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5039 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5040 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5041 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5042 	    table.fw_rev_type);
5043 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5044 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5045 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5046 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5047 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5048 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5049 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5050 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5051 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5052 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5053 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5054 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5055 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5056 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5057 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5058 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5059 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5060 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5061 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5062 
5063 	if (sc->sc_uc.uc_umac_error_event_table)
5064 		iwm_nic_umac_error(sc);
5065 }
5066 #endif
5067 
5068 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
5069 do {									\
5070 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5071 	_var_ = (void *)((_pkt_)+1);					\
5072 } while (/*CONSTCOND*/0)
5073 
5074 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
5075 do {									\
5076 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5077 	_ptr_ = (void *)((_pkt_)+1);					\
5078 } while (/*CONSTCOND*/0)
5079 
5080 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5081 
5082 /*
5083  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5084  * Basic structure from if_iwn
5085  */
5086 static void
5087 iwm_notif_intr(struct iwm_softc *sc)
5088 {
5089 	struct ieee80211com *ic = &sc->sc_ic;
5090 	uint16_t hw;
5091 
5092 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5093 	    BUS_DMASYNC_POSTREAD);
5094 
5095 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5096 
5097 	/*
5098 	 * Process responses
5099 	 */
5100 	while (sc->rxq.cur != hw) {
5101 		struct iwm_rx_ring *ring = &sc->rxq;
5102 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
5103 		struct iwm_rx_packet *pkt;
5104 		struct iwm_cmd_response *cresp;
5105 		int qid, idx, code;
5106 
5107 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5108 		    BUS_DMASYNC_POSTREAD);
5109 		pkt = mtod(data->m, struct iwm_rx_packet *);
5110 
5111 		qid = pkt->hdr.qid & ~0x80;
5112 		idx = pkt->hdr.idx;
5113 
5114 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5115 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5116 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5117 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
5118 
5119 		/*
5120 		 * randomly get these from the firmware, no idea why.
5121 		 * they at least seem harmless, so just ignore them for now
5122 		 */
5123 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5124 		    || pkt->len_n_flags == htole32(0x55550000))) {
5125 			ADVANCE_RXQ(sc);
5126 			continue;
5127 		}
5128 
5129 		switch (code) {
5130 		case IWM_REPLY_RX_PHY_CMD:
5131 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5132 			break;
5133 
5134 		case IWM_REPLY_RX_MPDU_CMD:
5135 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5136 			break;
5137 
5138 		case IWM_TX_CMD:
5139 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5140 			break;
5141 
5142 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5143 			struct iwm_missed_beacons_notif *resp;
5144 			int missed;
5145 
5146 			/* XXX look at mac_id to determine interface ID */
5147 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5148 
5149 			SYNC_RESP_STRUCT(resp, pkt);
5150 			missed = le32toh(resp->consec_missed_beacons);
5151 
5152 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5153 			    "%s: MISSED_BEACON: mac_id=%d, "
5154 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5155 			    "num_rx=%d\n",
5156 			    __func__,
5157 			    le32toh(resp->mac_id),
5158 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5159 			    le32toh(resp->consec_missed_beacons),
5160 			    le32toh(resp->num_expected_beacons),
5161 			    le32toh(resp->num_recvd_beacons));
5162 
5163 			/* Be paranoid */
5164 			if (vap == NULL)
5165 				break;
5166 
5167 			/* XXX no net80211 locking? */
5168 			if (vap->iv_state == IEEE80211_S_RUN &&
5169 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5170 				if (missed > vap->iv_bmissthreshold) {
5171 					/* XXX bad locking; turn into task */
5172 					IWM_UNLOCK(sc);
5173 					ieee80211_beacon_miss(ic);
5174 					IWM_LOCK(sc);
5175 				}
5176 			}
5177 
5178 			break; }
5179 
5180 		case IWM_MFUART_LOAD_NOTIFICATION:
5181 			break;
5182 
5183 		case IWM_MVM_ALIVE: {
5184 			struct iwm_mvm_alive_resp_v1 *resp1;
5185 			struct iwm_mvm_alive_resp_v2 *resp2;
5186 			struct iwm_mvm_alive_resp_v3 *resp3;
5187 
5188 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5189 				SYNC_RESP_STRUCT(resp1, pkt);
5190 				sc->sc_uc.uc_error_event_table
5191 				    = le32toh(resp1->error_event_table_ptr);
5192 				sc->sc_uc.uc_log_event_table
5193 				    = le32toh(resp1->log_event_table_ptr);
5194 				sc->sched_base = le32toh(resp1->scd_base_ptr);
5195 				if (resp1->status == IWM_ALIVE_STATUS_OK)
5196 					sc->sc_uc.uc_ok = 1;
5197 				else
5198 					sc->sc_uc.uc_ok = 0;
5199 			}
5200 
5201 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5202 				SYNC_RESP_STRUCT(resp2, pkt);
5203 				sc->sc_uc.uc_error_event_table
5204 				    = le32toh(resp2->error_event_table_ptr);
5205 				sc->sc_uc.uc_log_event_table
5206 				    = le32toh(resp2->log_event_table_ptr);
5207 				sc->sched_base = le32toh(resp2->scd_base_ptr);
5208 				sc->sc_uc.uc_umac_error_event_table
5209 				    = le32toh(resp2->error_info_addr);
5210 				if (resp2->status == IWM_ALIVE_STATUS_OK)
5211 					sc->sc_uc.uc_ok = 1;
5212 				else
5213 					sc->sc_uc.uc_ok = 0;
5214 			}
5215 
5216 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5217 				SYNC_RESP_STRUCT(resp3, pkt);
5218 				sc->sc_uc.uc_error_event_table
5219 				    = le32toh(resp3->error_event_table_ptr);
5220 				sc->sc_uc.uc_log_event_table
5221 				    = le32toh(resp3->log_event_table_ptr);
5222 				sc->sched_base = le32toh(resp3->scd_base_ptr);
5223 				sc->sc_uc.uc_umac_error_event_table
5224 				    = le32toh(resp3->error_info_addr);
5225 				if (resp3->status == IWM_ALIVE_STATUS_OK)
5226 					sc->sc_uc.uc_ok = 1;
5227 				else
5228 					sc->sc_uc.uc_ok = 0;
5229 			}
5230 
5231 			sc->sc_uc.uc_intr = 1;
5232 			wakeup(&sc->sc_uc);
5233 			break; }
5234 
5235 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
5236 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
5237 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
5238 
5239 			iwm_phy_db_set_section(sc, phy_db_notif);
5240 
5241 			break; }
5242 
5243 		case IWM_STATISTICS_NOTIFICATION: {
5244 			struct iwm_notif_statistics *stats;
5245 			SYNC_RESP_STRUCT(stats, pkt);
5246 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5247 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5248 			break; }
5249 
5250 		case IWM_NVM_ACCESS_CMD:
5251 		case IWM_MCC_UPDATE_CMD:
5252 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5253 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5254 				    BUS_DMASYNC_POSTREAD);
5255 				memcpy(sc->sc_cmd_resp,
5256 				    pkt, sizeof(sc->sc_cmd_resp));
5257 			}
5258 			break;
5259 
5260 		case IWM_MCC_CHUB_UPDATE_CMD: {
5261 			struct iwm_mcc_chub_notif *notif;
5262 			SYNC_RESP_STRUCT(notif, pkt);
5263 
5264 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5265 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5266 			sc->sc_fw_mcc[2] = '\0';
5267 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5268 			    "fw source %d sent CC '%s'\n",
5269 			    notif->source_id, sc->sc_fw_mcc);
5270 			break; }
5271 
5272 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5273 			break;
5274 
5275 		case IWM_PHY_CONFIGURATION_CMD:
5276 		case IWM_TX_ANT_CONFIGURATION_CMD:
5277 		case IWM_ADD_STA:
5278 		case IWM_MAC_CONTEXT_CMD:
5279 		case IWM_REPLY_SF_CFG_CMD:
5280 		case IWM_POWER_TABLE_CMD:
5281 		case IWM_PHY_CONTEXT_CMD:
5282 		case IWM_BINDING_CONTEXT_CMD:
5283 		case IWM_TIME_EVENT_CMD:
5284 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5285 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5286 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5287 		case IWM_REPLY_BEACON_FILTERING_CMD:
5288 		case IWM_MAC_PM_POWER_TABLE:
5289 		case IWM_TIME_QUOTA_CMD:
5290 		case IWM_REMOVE_STA:
5291 		case IWM_TXPATH_FLUSH:
5292 		case IWM_LQ_CMD:
5293 		case IWM_BT_CONFIG:
5294 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5295 			SYNC_RESP_STRUCT(cresp, pkt);
5296 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5297 				memcpy(sc->sc_cmd_resp,
5298 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5299 			}
5300 			break;
5301 
5302 		/* ignore */
5303 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5304 			break;
5305 
5306 		case IWM_INIT_COMPLETE_NOTIF:
5307 			sc->sc_init_complete = 1;
5308 			wakeup(&sc->sc_init_complete);
5309 			break;
5310 
5311 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5312 			struct iwm_periodic_scan_complete *notif;
5313 			SYNC_RESP_STRUCT(notif, pkt);
5314 			break;
5315 		}
5316 
5317 		case IWM_SCAN_ITERATION_COMPLETE: {
5318 			struct iwm_lmac_scan_complete_notif *notif;
5319  			SYNC_RESP_STRUCT(notif, pkt);
5320 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5321  			break;
5322 		}
5323 
5324 		case IWM_SCAN_COMPLETE_UMAC: {
5325 			struct iwm_umac_scan_complete *notif;
5326 			SYNC_RESP_STRUCT(notif, pkt);
5327 
5328 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5329 			    "UMAC scan complete, status=0x%x\n",
5330 			    notif->status);
5331 #if 0	/* XXX This would be a duplicate scan end call */
5332 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5333 #endif
5334 			break;
5335 		}
5336 
5337 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5338 			struct iwm_umac_scan_iter_complete_notif *notif;
5339 			SYNC_RESP_STRUCT(notif, pkt);
5340 
5341 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5342 			    "complete, status=0x%x, %d channels scanned\n",
5343 			    notif->status, notif->scanned_channels);
5344 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5345 			break;
5346 		}
5347 
5348 		case IWM_REPLY_ERROR: {
5349 			struct iwm_error_resp *resp;
5350 			SYNC_RESP_STRUCT(resp, pkt);
5351 
5352 			device_printf(sc->sc_dev,
5353 			    "firmware error 0x%x, cmd 0x%x\n",
5354 			    le32toh(resp->error_type),
5355 			    resp->cmd_id);
5356 			break;
5357 		}
5358 
5359 		case IWM_TIME_EVENT_NOTIFICATION: {
5360 			struct iwm_time_event_notif *notif;
5361 			SYNC_RESP_STRUCT(notif, pkt);
5362 
5363 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5364 			    "TE notif status = 0x%x action = 0x%x\n",
5365 			    notif->status, notif->action);
5366 			break;
5367 		}
5368 
5369 		case IWM_MCAST_FILTER_CMD:
5370 			break;
5371 
5372 		case IWM_SCD_QUEUE_CFG: {
5373 			struct iwm_scd_txq_cfg_rsp *rsp;
5374 			SYNC_RESP_STRUCT(rsp, pkt);
5375 
5376 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5377 			    "queue cfg token=0x%x sta_id=%d "
5378 			    "tid=%d scd_queue=%d\n",
5379 			    rsp->token, rsp->sta_id, rsp->tid,
5380 			    rsp->scd_queue);
5381 			break;
5382 		}
5383 
5384 		default:
5385 			device_printf(sc->sc_dev,
5386 			    "frame %d/%d %x UNHANDLED (this should "
5387 			    "not happen)\n", qid, idx,
5388 			    pkt->len_n_flags);
5389 			break;
5390 		}
5391 
5392 		/*
5393 		 * Why test bit 0x80?  The Linux driver:
5394 		 *
5395 		 * There is one exception:  uCode sets bit 15 when it
5396 		 * originates the response/notification, i.e. when the
5397 		 * response/notification is not a direct response to a
5398 		 * command sent by the driver.  For example, uCode issues
5399 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5400 		 * it is not a direct response to any driver command.
5401 		 *
5402 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5403 		 * uses a slightly different format for pkt->hdr, and "qid"
5404 		 * is actually the upper byte of a two-byte field.
5405 		 */
5406 		if (!(pkt->hdr.qid & (1 << 7))) {
5407 			iwm_cmd_done(sc, pkt);
5408 		}
5409 
5410 		ADVANCE_RXQ(sc);
5411 	}
5412 
5413 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5414 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5415 
5416 	/*
5417 	 * Tell the firmware what we have processed.
5418 	 * Seems like the hardware gets upset unless we align
5419 	 * the write by 8??
5420 	 */
5421 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5422 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5423 }
5424 
5425 static void
5426 iwm_intr(void *arg)
5427 {
5428 	struct iwm_softc *sc = arg;
5429 	int handled = 0;
5430 	int r1, r2, rv = 0;
5431 	int isperiodic = 0;
5432 
5433 	IWM_LOCK(sc);
5434 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5435 
5436 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5437 		uint32_t *ict = sc->ict_dma.vaddr;
5438 		int tmp;
5439 
5440 		tmp = htole32(ict[sc->ict_cur]);
5441 		if (!tmp)
5442 			goto out_ena;
5443 
5444 		/*
5445 		 * ok, there was something.  keep plowing until we have all.
5446 		 */
5447 		r1 = r2 = 0;
5448 		while (tmp) {
5449 			r1 |= tmp;
5450 			ict[sc->ict_cur] = 0;
5451 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5452 			tmp = htole32(ict[sc->ict_cur]);
5453 		}
5454 
5455 		/* this is where the fun begins.  don't ask */
5456 		if (r1 == 0xffffffff)
5457 			r1 = 0;
5458 
5459 		/* i am not expected to understand this */
5460 		if (r1 & 0xc0000)
5461 			r1 |= 0x8000;
5462 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5463 	} else {
5464 		r1 = IWM_READ(sc, IWM_CSR_INT);
5465 		/* "hardware gone" (where, fishing?) */
5466 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5467 			goto out;
5468 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5469 	}
5470 	if (r1 == 0 && r2 == 0) {
5471 		goto out_ena;
5472 	}
5473 
5474 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5475 
5476 	/* ignored */
5477 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5478 
5479 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5480 		int i;
5481 		struct ieee80211com *ic = &sc->sc_ic;
5482 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5483 
5484 #ifdef IWM_DEBUG
5485 		iwm_nic_error(sc);
5486 #endif
5487 		/* Dump driver status (TX and RX rings) while we're here. */
5488 		device_printf(sc->sc_dev, "driver status:\n");
5489 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5490 			struct iwm_tx_ring *ring = &sc->txq[i];
5491 			device_printf(sc->sc_dev,
5492 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5493 			    "queued=%-3d\n",
5494 			    i, ring->qid, ring->cur, ring->queued);
5495 		}
5496 		device_printf(sc->sc_dev,
5497 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5498 		device_printf(sc->sc_dev,
5499 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5500 
5501 		/* Don't stop the device; just do a VAP restart */
5502 		IWM_UNLOCK(sc);
5503 
5504 		if (vap == NULL) {
5505 			printf("%s: null vap\n", __func__);
5506 			return;
5507 		}
5508 
5509 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5510 		    "restarting\n", __func__, vap->iv_state);
5511 
5512 		/* XXX TODO: turn this into a callout/taskqueue */
5513 		ieee80211_restart_all(ic);
5514 		return;
5515 	}
5516 
5517 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5518 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5519 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5520 		iwm_stop(sc);
5521 		rv = 1;
5522 		goto out;
5523 	}
5524 
5525 	/* firmware chunk loaded */
5526 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5527 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5528 		handled |= IWM_CSR_INT_BIT_FH_TX;
5529 		sc->sc_fw_chunk_done = 1;
5530 		wakeup(&sc->sc_fw);
5531 	}
5532 
5533 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5534 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5535 		if (iwm_check_rfkill(sc)) {
5536 			device_printf(sc->sc_dev,
5537 			    "%s: rfkill switch, disabling interface\n",
5538 			    __func__);
5539 			iwm_stop(sc);
5540 		}
5541 	}
5542 
5543 	/*
5544 	 * The Linux driver uses periodic interrupts to avoid races.
5545 	 * We cargo-cult like it's going out of fashion.
5546 	 */
5547 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5548 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5549 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5550 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5551 			IWM_WRITE_1(sc,
5552 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5553 		isperiodic = 1;
5554 	}
5555 
5556 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5557 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5558 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5559 
5560 		iwm_notif_intr(sc);
5561 
5562 		/* enable periodic interrupt, see above */
5563 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5564 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5565 			    IWM_CSR_INT_PERIODIC_ENA);
5566 	}
5567 
5568 	if (__predict_false(r1 & ~handled))
5569 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5570 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5571 	rv = 1;
5572 
5573  out_ena:
5574 	iwm_restore_interrupts(sc);
5575  out:
5576 	IWM_UNLOCK(sc);
5577 	return;
5578 }
5579 
5580 /*
5581  * Autoconf glue-sniffing
5582  */
5583 #define	PCI_VENDOR_INTEL		0x8086
5584 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5585 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5586 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5587 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5588 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5589 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5590 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5591 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5592 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5593 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5594 
5595 static const struct iwm_devices {
5596 	uint16_t	device;
5597 	const char	*name;
5598 } iwm_devices[] = {
5599 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5600 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5601 	{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5602 	{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5603 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5604 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5605 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5606 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5607 	{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5608 	{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5609 };
5610 
5611 static int
5612 iwm_probe(device_t dev)
5613 {
5614 	int i;
5615 
5616 	for (i = 0; i < nitems(iwm_devices); i++) {
5617 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5618 		    pci_get_device(dev) == iwm_devices[i].device) {
5619 			device_set_desc(dev, iwm_devices[i].name);
5620 			return (BUS_PROBE_DEFAULT);
5621 		}
5622 	}
5623 
5624 	return (ENXIO);
5625 }
5626 
5627 static int
5628 iwm_dev_check(device_t dev)
5629 {
5630 	struct iwm_softc *sc;
5631 
5632 	sc = device_get_softc(dev);
5633 
5634 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5635 	switch (pci_get_device(dev)) {
5636 	case PCI_PRODUCT_INTEL_WL_3160_1:
5637 	case PCI_PRODUCT_INTEL_WL_3160_2:
5638 		sc->sc_fwname = "iwm3160fw";
5639 		sc->host_interrupt_operation_mode = 1;
5640 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5641 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5642 		return (0);
5643 	case PCI_PRODUCT_INTEL_WL_3165_1:
5644 	case PCI_PRODUCT_INTEL_WL_3165_2:
5645 		sc->sc_fwname = "iwm7265fw";
5646 		sc->host_interrupt_operation_mode = 0;
5647 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5648 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5649 		return (0);
5650 	case PCI_PRODUCT_INTEL_WL_7260_1:
5651 	case PCI_PRODUCT_INTEL_WL_7260_2:
5652 		sc->sc_fwname = "iwm7260fw";
5653 		sc->host_interrupt_operation_mode = 1;
5654 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5655 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5656 		return (0);
5657 	case PCI_PRODUCT_INTEL_WL_7265_1:
5658 	case PCI_PRODUCT_INTEL_WL_7265_2:
5659 		sc->sc_fwname = "iwm7265fw";
5660 		sc->host_interrupt_operation_mode = 0;
5661 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5662 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5663 		return (0);
5664 	case PCI_PRODUCT_INTEL_WL_8260_1:
5665 	case PCI_PRODUCT_INTEL_WL_8260_2:
5666 		sc->sc_fwname = "iwm8000Cfw";
5667 		sc->host_interrupt_operation_mode = 0;
5668 		sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5669 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5670 		return (0);
5671 	default:
5672 		device_printf(dev, "unknown adapter type\n");
5673 		return ENXIO;
5674 	}
5675 }
5676 
5677 static int
5678 iwm_pci_attach(device_t dev)
5679 {
5680 	struct iwm_softc *sc;
5681 	int count, error, rid;
5682 	uint16_t reg;
5683 
5684 	sc = device_get_softc(dev);
5685 
5686 	/* Clear device-specific "PCI retry timeout" register (41h). */
5687 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5688 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5689 
5690 	/* Enable bus-mastering and hardware bug workaround. */
5691 	pci_enable_busmaster(dev);
5692 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5693 	/* if !MSI */
5694 	if (reg & PCIM_STATUS_INTxSTATE) {
5695 		reg &= ~PCIM_STATUS_INTxSTATE;
5696 	}
5697 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5698 
5699 	rid = PCIR_BAR(0);
5700 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5701 	    RF_ACTIVE);
5702 	if (sc->sc_mem == NULL) {
5703 		device_printf(sc->sc_dev, "can't map mem space\n");
5704 		return (ENXIO);
5705 	}
5706 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5707 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5708 
5709 	/* Install interrupt handler. */
5710 	count = 1;
5711 	rid = 0;
5712 	if (pci_alloc_msi(dev, &count) == 0)
5713 		rid = 1;
5714 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5715 	    (rid != 0 ? 0 : RF_SHAREABLE));
5716 	if (sc->sc_irq == NULL) {
5717 		device_printf(dev, "can't map interrupt\n");
5718 			return (ENXIO);
5719 	}
5720 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5721 	    NULL, iwm_intr, sc, &sc->sc_ih);
5722 	if (sc->sc_ih == NULL) {
5723 		device_printf(dev, "can't establish interrupt");
5724 			return (ENXIO);
5725 	}
5726 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5727 
5728 	return (0);
5729 }
5730 
5731 static void
5732 iwm_pci_detach(device_t dev)
5733 {
5734 	struct iwm_softc *sc = device_get_softc(dev);
5735 
5736 	if (sc->sc_irq != NULL) {
5737 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5738 		bus_release_resource(dev, SYS_RES_IRQ,
5739 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5740 		pci_release_msi(dev);
5741         }
5742 	if (sc->sc_mem != NULL)
5743 		bus_release_resource(dev, SYS_RES_MEMORY,
5744 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5745 }
5746 
5747 
5748 
5749 static int
5750 iwm_attach(device_t dev)
5751 {
5752 	struct iwm_softc *sc = device_get_softc(dev);
5753 	struct ieee80211com *ic = &sc->sc_ic;
5754 	int error;
5755 	int txq_i, i;
5756 
5757 	sc->sc_dev = dev;
5758 	IWM_LOCK_INIT(sc);
5759 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5760 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5761 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5762 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5763 
5764 	/* PCI attach */
5765 	error = iwm_pci_attach(dev);
5766 	if (error != 0)
5767 		goto fail;
5768 
5769 	sc->sc_wantresp = -1;
5770 
5771 	/* Check device type */
5772 	error = iwm_dev_check(dev);
5773 	if (error != 0)
5774 		goto fail;
5775 
5776 	/*
5777 	 * We now start fiddling with the hardware
5778 	 */
5779 	/*
5780 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5781 	 * changed, and now the revision step also includes bit 0-1 (no more
5782 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5783 	 * in the old format.
5784 	 */
5785 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5786 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5787 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5788 
5789 	if (iwm_prepare_card_hw(sc) != 0) {
5790 		device_printf(dev, "could not initialize hardware\n");
5791 		goto fail;
5792 	}
5793 
5794 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5795 		int ret;
5796 		uint32_t hw_step;
5797 
5798 		/*
5799 		 * In order to recognize C step the driver should read the
5800 		 * chip version id located at the AUX bus MISC address.
5801 		 */
5802 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5803 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5804 		DELAY(2);
5805 
5806 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5807 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5808 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5809 				   25000);
5810 		if (!ret) {
5811 			device_printf(sc->sc_dev,
5812 			    "Failed to wake up the nic\n");
5813 			goto fail;
5814 		}
5815 
5816 		if (iwm_nic_lock(sc)) {
5817 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5818 			hw_step |= IWM_ENABLE_WFPM;
5819 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5820 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5821 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5822 			if (hw_step == 0x3)
5823 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5824 						(IWM_SILICON_C_STEP << 2);
5825 			iwm_nic_unlock(sc);
5826 		} else {
5827 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5828 			goto fail;
5829 		}
5830 	}
5831 
5832 	/* Allocate DMA memory for firmware transfers. */
5833 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5834 		device_printf(dev, "could not allocate memory for firmware\n");
5835 		goto fail;
5836 	}
5837 
5838 	/* Allocate "Keep Warm" page. */
5839 	if ((error = iwm_alloc_kw(sc)) != 0) {
5840 		device_printf(dev, "could not allocate keep warm page\n");
5841 		goto fail;
5842 	}
5843 
5844 	/* We use ICT interrupts */
5845 	if ((error = iwm_alloc_ict(sc)) != 0) {
5846 		device_printf(dev, "could not allocate ICT table\n");
5847 		goto fail;
5848 	}
5849 
5850 	/* Allocate TX scheduler "rings". */
5851 	if ((error = iwm_alloc_sched(sc)) != 0) {
5852 		device_printf(dev, "could not allocate TX scheduler rings\n");
5853 		goto fail;
5854 	}
5855 
5856 	/* Allocate TX rings */
5857 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5858 		if ((error = iwm_alloc_tx_ring(sc,
5859 		    &sc->txq[txq_i], txq_i)) != 0) {
5860 			device_printf(dev,
5861 			    "could not allocate TX ring %d\n",
5862 			    txq_i);
5863 			goto fail;
5864 		}
5865 	}
5866 
5867 	/* Allocate RX ring. */
5868 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5869 		device_printf(dev, "could not allocate RX ring\n");
5870 		goto fail;
5871 	}
5872 
5873 	/* Clear pending interrupts. */
5874 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5875 
5876 	ic->ic_softc = sc;
5877 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5878 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5879 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5880 
5881 	/* Set device capabilities. */
5882 	ic->ic_caps =
5883 	    IEEE80211_C_STA |
5884 	    IEEE80211_C_WPA |		/* WPA/RSN */
5885 	    IEEE80211_C_WME |
5886 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5887 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5888 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5889 	    ;
5890 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5891 		sc->sc_phyctxt[i].id = i;
5892 		sc->sc_phyctxt[i].color = 0;
5893 		sc->sc_phyctxt[i].ref = 0;
5894 		sc->sc_phyctxt[i].channel = NULL;
5895 	}
5896 
5897 	/* Default noise floor */
5898 	sc->sc_noise = -96;
5899 
5900 	/* Max RSSI */
5901 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5902 
5903 	sc->sc_preinit_hook.ich_func = iwm_preinit;
5904 	sc->sc_preinit_hook.ich_arg = sc;
5905 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5906 		device_printf(dev, "config_intrhook_establish failed\n");
5907 		goto fail;
5908 	}
5909 
5910 #ifdef IWM_DEBUG
5911 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5912 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5913 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5914 #endif
5915 
5916 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5917 	    "<-%s\n", __func__);
5918 
5919 	return 0;
5920 
5921 	/* Free allocated memory if something failed during attachment. */
5922 fail:
5923 	iwm_detach_local(sc, 0);
5924 
5925 	return ENXIO;
5926 }
5927 
5928 static int
5929 iwm_is_valid_ether_addr(uint8_t *addr)
5930 {
5931 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5932 
5933 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5934 		return (FALSE);
5935 
5936 	return (TRUE);
5937 }
5938 
5939 static int
5940 iwm_update_edca(struct ieee80211com *ic)
5941 {
5942 	struct iwm_softc *sc = ic->ic_softc;
5943 
5944 	device_printf(sc->sc_dev, "%s: called\n", __func__);
5945 	return (0);
5946 }
5947 
5948 static void
5949 iwm_preinit(void *arg)
5950 {
5951 	struct iwm_softc *sc = arg;
5952 	device_t dev = sc->sc_dev;
5953 	struct ieee80211com *ic = &sc->sc_ic;
5954 	int error;
5955 
5956 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5957 	    "->%s\n", __func__);
5958 
5959 	IWM_LOCK(sc);
5960 	if ((error = iwm_start_hw(sc)) != 0) {
5961 		device_printf(dev, "could not initialize hardware\n");
5962 		IWM_UNLOCK(sc);
5963 		goto fail;
5964 	}
5965 
5966 	error = iwm_run_init_mvm_ucode(sc, 1);
5967 	iwm_stop_device(sc);
5968 	if (error) {
5969 		IWM_UNLOCK(sc);
5970 		goto fail;
5971 	}
5972 	device_printf(dev,
5973 	    "hw rev 0x%x, fw ver %s, address %s\n",
5974 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5975 	    sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5976 
5977 	/* not all hardware can do 5GHz band */
5978 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5979 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5980 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5981 	IWM_UNLOCK(sc);
5982 
5983 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5984 	    ic->ic_channels);
5985 
5986 	/*
5987 	 * At this point we've committed - if we fail to do setup,
5988 	 * we now also have to tear down the net80211 state.
5989 	 */
5990 	ieee80211_ifattach(ic);
5991 	ic->ic_vap_create = iwm_vap_create;
5992 	ic->ic_vap_delete = iwm_vap_delete;
5993 	ic->ic_raw_xmit = iwm_raw_xmit;
5994 	ic->ic_node_alloc = iwm_node_alloc;
5995 	ic->ic_scan_start = iwm_scan_start;
5996 	ic->ic_scan_end = iwm_scan_end;
5997 	ic->ic_update_mcast = iwm_update_mcast;
5998 	ic->ic_getradiocaps = iwm_init_channel_map;
5999 	ic->ic_set_channel = iwm_set_channel;
6000 	ic->ic_scan_curchan = iwm_scan_curchan;
6001 	ic->ic_scan_mindwell = iwm_scan_mindwell;
6002 	ic->ic_wme.wme_update = iwm_update_edca;
6003 	ic->ic_parent = iwm_parent;
6004 	ic->ic_transmit = iwm_transmit;
6005 	iwm_radiotap_attach(sc);
6006 	if (bootverbose)
6007 		ieee80211_announce(ic);
6008 
6009 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6010 	    "<-%s\n", __func__);
6011 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6012 
6013 	return;
6014 fail:
6015 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6016 	iwm_detach_local(sc, 0);
6017 }
6018 
6019 /*
6020  * Attach the interface to 802.11 radiotap.
6021  */
6022 static void
6023 iwm_radiotap_attach(struct iwm_softc *sc)
6024 {
6025         struct ieee80211com *ic = &sc->sc_ic;
6026 
6027 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6028 	    "->%s begin\n", __func__);
6029         ieee80211_radiotap_attach(ic,
6030             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6031                 IWM_TX_RADIOTAP_PRESENT,
6032             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6033                 IWM_RX_RADIOTAP_PRESENT);
6034 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6035 	    "->%s end\n", __func__);
6036 }
6037 
6038 static struct ieee80211vap *
6039 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6040     enum ieee80211_opmode opmode, int flags,
6041     const uint8_t bssid[IEEE80211_ADDR_LEN],
6042     const uint8_t mac[IEEE80211_ADDR_LEN])
6043 {
6044 	struct iwm_vap *ivp;
6045 	struct ieee80211vap *vap;
6046 
6047 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6048 		return NULL;
6049 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6050 	vap = &ivp->iv_vap;
6051 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6052 	vap->iv_bmissthreshold = 10;            /* override default */
6053 	/* Override with driver methods. */
6054 	ivp->iv_newstate = vap->iv_newstate;
6055 	vap->iv_newstate = iwm_newstate;
6056 
6057 	ieee80211_ratectl_init(vap);
6058 	/* Complete setup. */
6059 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6060 	    mac);
6061 	ic->ic_opmode = opmode;
6062 
6063 	return vap;
6064 }
6065 
6066 static void
6067 iwm_vap_delete(struct ieee80211vap *vap)
6068 {
6069 	struct iwm_vap *ivp = IWM_VAP(vap);
6070 
6071 	ieee80211_ratectl_deinit(vap);
6072 	ieee80211_vap_detach(vap);
6073 	free(ivp, M_80211_VAP);
6074 }
6075 
6076 static void
6077 iwm_scan_start(struct ieee80211com *ic)
6078 {
6079 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6080 	struct iwm_softc *sc = ic->ic_softc;
6081 	int error;
6082 
6083 	IWM_LOCK(sc);
6084 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6085 		error = iwm_mvm_umac_scan(sc);
6086 	else
6087 		error = iwm_mvm_lmac_scan(sc);
6088 	if (error != 0) {
6089 		device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6090 		IWM_UNLOCK(sc);
6091 		ieee80211_cancel_scan(vap);
6092 	} else {
6093 		iwm_led_blink_start(sc);
6094 		IWM_UNLOCK(sc);
6095 	}
6096 }
6097 
6098 static void
6099 iwm_scan_end(struct ieee80211com *ic)
6100 {
6101 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6102 	struct iwm_softc *sc = ic->ic_softc;
6103 
6104 	IWM_LOCK(sc);
6105 	iwm_led_blink_stop(sc);
6106 	if (vap->iv_state == IEEE80211_S_RUN)
6107 		iwm_mvm_led_enable(sc);
6108 	IWM_UNLOCK(sc);
6109 }
6110 
6111 static void
6112 iwm_update_mcast(struct ieee80211com *ic)
6113 {
6114 }
6115 
6116 static void
6117 iwm_set_channel(struct ieee80211com *ic)
6118 {
6119 }
6120 
6121 static void
6122 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6123 {
6124 }
6125 
6126 static void
6127 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6128 {
6129 	return;
6130 }
6131 
6132 void
6133 iwm_init_task(void *arg1)
6134 {
6135 	struct iwm_softc *sc = arg1;
6136 
6137 	IWM_LOCK(sc);
6138 	while (sc->sc_flags & IWM_FLAG_BUSY)
6139 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6140 	sc->sc_flags |= IWM_FLAG_BUSY;
6141 	iwm_stop(sc);
6142 	if (sc->sc_ic.ic_nrunning > 0)
6143 		iwm_init(sc);
6144 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6145 	wakeup(&sc->sc_flags);
6146 	IWM_UNLOCK(sc);
6147 }
6148 
6149 static int
6150 iwm_resume(device_t dev)
6151 {
6152 	struct iwm_softc *sc = device_get_softc(dev);
6153 	int do_reinit = 0;
6154 	uint16_t reg;
6155 
6156 	/* Clear device-specific "PCI retry timeout" register (41h). */
6157 	reg = pci_read_config(dev, 0x40, sizeof(reg));
6158 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6159 	iwm_init_task(device_get_softc(dev));
6160 
6161 	IWM_LOCK(sc);
6162 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6163 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6164 		do_reinit = 1;
6165 	}
6166 	IWM_UNLOCK(sc);
6167 
6168 	if (do_reinit)
6169 		ieee80211_resume_all(&sc->sc_ic);
6170 
6171 	return 0;
6172 }
6173 
6174 static int
6175 iwm_suspend(device_t dev)
6176 {
6177 	int do_stop = 0;
6178 	struct iwm_softc *sc = device_get_softc(dev);
6179 
6180 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6181 
6182 	ieee80211_suspend_all(&sc->sc_ic);
6183 
6184 	if (do_stop) {
6185 		IWM_LOCK(sc);
6186 		iwm_stop(sc);
6187 		sc->sc_flags |= IWM_FLAG_SCANNING;
6188 		IWM_UNLOCK(sc);
6189 	}
6190 
6191 	return (0);
6192 }
6193 
6194 static int
6195 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6196 {
6197 	struct iwm_fw_info *fw = &sc->sc_fw;
6198 	device_t dev = sc->sc_dev;
6199 	int i;
6200 
6201 	ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6202 
6203 	callout_drain(&sc->sc_led_blink_to);
6204 	callout_drain(&sc->sc_watchdog_to);
6205 	iwm_stop_device(sc);
6206 	if (do_net80211) {
6207 		ieee80211_ifdetach(&sc->sc_ic);
6208 	}
6209 
6210 	iwm_phy_db_free(sc);
6211 
6212 	/* Free descriptor rings */
6213 	iwm_free_rx_ring(sc, &sc->rxq);
6214 	for (i = 0; i < nitems(sc->txq); i++)
6215 		iwm_free_tx_ring(sc, &sc->txq[i]);
6216 
6217 	/* Free firmware */
6218 	if (fw->fw_fp != NULL)
6219 		iwm_fw_info_free(fw);
6220 
6221 	/* Free scheduler */
6222 	iwm_dma_contig_free(&sc->sched_dma);
6223 	iwm_dma_contig_free(&sc->ict_dma);
6224 	iwm_dma_contig_free(&sc->kw_dma);
6225 	iwm_dma_contig_free(&sc->fw_dma);
6226 
6227 	/* Finished with the hardware - detach things */
6228 	iwm_pci_detach(dev);
6229 
6230 	mbufq_drain(&sc->sc_snd);
6231 	IWM_LOCK_DESTROY(sc);
6232 
6233 	return (0);
6234 }
6235 
6236 static int
6237 iwm_detach(device_t dev)
6238 {
6239 	struct iwm_softc *sc = device_get_softc(dev);
6240 
6241 	return (iwm_detach_local(sc, 1));
6242 }
6243 
6244 static device_method_t iwm_pci_methods[] = {
6245         /* Device interface */
6246         DEVMETHOD(device_probe,         iwm_probe),
6247         DEVMETHOD(device_attach,        iwm_attach),
6248         DEVMETHOD(device_detach,        iwm_detach),
6249         DEVMETHOD(device_suspend,       iwm_suspend),
6250         DEVMETHOD(device_resume,        iwm_resume),
6251 
6252         DEVMETHOD_END
6253 };
6254 
6255 static driver_t iwm_pci_driver = {
6256         "iwm",
6257         iwm_pci_methods,
6258         sizeof (struct iwm_softc)
6259 };
6260 
6261 static devclass_t iwm_devclass;
6262 
6263 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6264 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6265 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6266 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6267