xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 3a970562d7f8b2506f7bcbe378e3c02a408425d7)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164 
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167 
168 const uint8_t iwm_nvm_channels[] = {
169 	/* 2.4 GHz */
170 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171 	/* 5 GHz */
172 	36, 40, 44, 48, 52, 56, 60, 64,
173 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174 	149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178 
179 const uint8_t iwm_nvm_channels_8000[] = {
180 	/* 2.4 GHz */
181 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182 	/* 5 GHz */
183 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185 	149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189 
190 #define IWM_NUM_2GHZ_CHANNELS	14
191 #define IWM_N_HW_ADDR_MASK	0xF
192 
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198 	uint8_t rate;
199 	uint8_t plcp;
200 } iwm_rates[] = {
201 	{   2,	IWM_RATE_1M_PLCP  },
202 	{   4,	IWM_RATE_2M_PLCP  },
203 	{  11,	IWM_RATE_5M_PLCP  },
204 	{  22,	IWM_RATE_11M_PLCP },
205 	{  12,	IWM_RATE_6M_PLCP  },
206 	{  18,	IWM_RATE_9M_PLCP  },
207 	{  24,	IWM_RATE_12M_PLCP },
208 	{  36,	IWM_RATE_18M_PLCP },
209 	{  48,	IWM_RATE_24M_PLCP },
210 	{  72,	IWM_RATE_36M_PLCP },
211 	{  96,	IWM_RATE_48M_PLCP },
212 	{ 108,	IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK	0
215 #define IWM_RIDX_OFDM	4
216 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219 
220 struct iwm_nvm_section {
221 	uint16_t length;
222 	uint8_t *data;
223 };
224 
225 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int	iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void	iwm_fw_info_free(struct iwm_fw_info *);
231 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void	iwm_dma_contig_free(struct iwm_dma_info *);
236 static int	iwm_alloc_fwmem(struct iwm_softc *);
237 static int	iwm_alloc_sched(struct iwm_softc *);
238 static int	iwm_alloc_kw(struct iwm_softc *);
239 static int	iwm_alloc_ict(struct iwm_softc *);
240 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void	iwm_disable_rx_dma(struct iwm_softc *);
242 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void	iwm_enable_interrupts(struct iwm_softc *);
249 static void	iwm_restore_interrupts(struct iwm_softc *);
250 static void	iwm_disable_interrupts(struct iwm_softc *);
251 static void	iwm_ict_reset(struct iwm_softc *);
252 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void	iwm_stop_device(struct iwm_softc *);
254 static void	iwm_mvm_nic_config(struct iwm_softc *);
255 static int	iwm_nic_rx_init(struct iwm_softc *);
256 static int	iwm_nic_tx_init(struct iwm_softc *);
257 static int	iwm_nic_init(struct iwm_softc *);
258 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int	iwm_post_alive(struct iwm_softc *);
260 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263 				     uint16_t *, size_t);
264 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
265 static void	iwm_add_channel_band(struct iwm_softc *,
266 		    struct ieee80211_channel[], int, int *, int, size_t,
267 		    const uint8_t[]);
268 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
269 		    struct ieee80211_channel[]);
270 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271 				   const uint16_t *, const uint16_t *,
272 				   const uint16_t *, const uint16_t *,
273 				   const uint16_t *);
274 static void	iwm_set_hw_address_8000(struct iwm_softc *,
275 					struct iwm_nvm_data *,
276 					const uint16_t *, const uint16_t *);
277 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278 			    const uint16_t *);
279 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281 				  const uint16_t *);
282 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
283 				   const uint16_t *);
284 static void	iwm_set_radio_cfg(const struct iwm_softc *,
285 				  struct iwm_nvm_data *, uint32_t);
286 static int	iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int	iwm_nvm_init(struct iwm_softc *);
289 static int	iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int	iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int	iwm_load_cpu_sections_8000(struct iwm_softc *,
295 					   struct iwm_fw_sects *, int , int *);
296 static int	iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
307 					    struct iwm_rx_phy_info *);
308 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int	iwm_get_noise(struct iwm_softc *sc,
312 		    const struct iwm_mvm_statistics_rx_non_phy *);
313 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317 				         struct iwm_node *);
318 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327 			struct mbuf *, struct iwm_tx_cmd *);
328 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331 			     const struct ieee80211_bpf_params *);
332 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333 				      uint32_t tfd_msk, uint32_t flags);
334 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335 					        struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343 				           const uint8_t *, uint16_t, uint16_t);
344 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350 		iwm_node_alloc(struct ieee80211vap *,
351 		               const uint8_t[IEEE80211_ADDR_LEN]);
352 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_media_change(struct ifnet *);
354 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void	iwm_endscan_cb(void *, int);
356 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
357 					struct iwm_sf_cfg_cmd *,
358 					struct ieee80211_node *);
359 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int	iwm_send_bt_init_conf(struct iwm_softc *);
361 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int	iwm_init_hw(struct iwm_softc *);
364 static void	iwm_init(struct iwm_softc *);
365 static void	iwm_start(struct iwm_softc *);
366 static void	iwm_stop(struct iwm_softc *);
367 static void	iwm_watchdog(void *);
368 static void	iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371 		iwm_desc_lookup(uint32_t);
372 static void	iwm_nic_error(struct iwm_softc *);
373 static void	iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void	iwm_notif_intr(struct iwm_softc *);
376 static void	iwm_intr(void *);
377 static int	iwm_attach(device_t);
378 static int	iwm_is_valid_ether_addr(uint8_t *);
379 static void	iwm_preinit(void *);
380 static int	iwm_detach_local(struct iwm_softc *sc, int);
381 static void	iwm_init_task(void *);
382 static void	iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384 		iwm_vap_create(struct ieee80211com *,
385 		               const char [IFNAMSIZ], int,
386 		               enum ieee80211_opmode, int,
387 		               const uint8_t [IEEE80211_ADDR_LEN],
388 		               const uint8_t [IEEE80211_ADDR_LEN]);
389 static void	iwm_vap_delete(struct ieee80211vap *);
390 static void	iwm_scan_start(struct ieee80211com *);
391 static void	iwm_scan_end(struct ieee80211com *);
392 static void	iwm_update_mcast(struct ieee80211com *);
393 static void	iwm_set_channel(struct ieee80211com *);
394 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int	iwm_detach(device_t);
397 
398 /*
399  * Firmware parser.
400  */
401 
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405 	const struct iwm_fw_cscheme_list *l = (const void *)data;
406 
407 	if (dlen < sizeof(*l) ||
408 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409 		return EINVAL;
410 
411 	/* we don't actually store anything for now, always use s/w crypto */
412 
413 	return 0;
414 }
415 
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420 	struct iwm_fw_sects *fws;
421 	struct iwm_fw_onesect *fwone;
422 
423 	if (type >= IWM_UCODE_TYPE_MAX)
424 		return EINVAL;
425 	if (dlen < sizeof(uint32_t))
426 		return EINVAL;
427 
428 	fws = &sc->sc_fw.fw_sects[type];
429 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430 		return EINVAL;
431 
432 	fwone = &fws->fw_sect[fws->fw_count];
433 
434 	/* first 32bit are device load offset */
435 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436 
437 	/* rest is data */
438 	fwone->fws_data = data + sizeof(uint32_t);
439 	fwone->fws_len = dlen - sizeof(uint32_t);
440 
441 	fws->fw_count++;
442 
443 	return 0;
444 }
445 
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447 
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450 	uint32_t ucode_type;
451 	struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453 
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457 	const struct iwm_tlv_calib_data *def_calib = data;
458 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
459 
460 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461 		device_printf(sc->sc_dev,
462 		    "Wrong ucode_type %u for default "
463 		    "calibration.\n", ucode_type);
464 		return EINVAL;
465 	}
466 
467 	sc->sc_default_calib[ucode_type].flow_trigger =
468 	    def_calib->calib.flow_trigger;
469 	sc->sc_default_calib[ucode_type].event_trigger =
470 	    def_calib->calib.event_trigger;
471 
472 	return 0;
473 }
474 
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479 	fw->fw_fp = NULL;
480 	/* don't touch fw->fw_status */
481 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483 
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487 	struct iwm_fw_info *fw = &sc->sc_fw;
488 	const struct iwm_tlv_ucode_header *uhdr;
489 	struct iwm_ucode_tlv tlv;
490 	enum iwm_ucode_tlv_type tlv_type;
491 	const struct firmware *fwp;
492 	const uint8_t *data;
493 	int error = 0;
494 	size_t len;
495 
496 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
497 	    ucode_type != IWM_UCODE_TYPE_INIT)
498 		return 0;
499 
500 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503 
504 	if (fw->fw_fp != NULL)
505 		iwm_fw_info_free(fw);
506 
507 	/*
508 	 * Load firmware into driver memory.
509 	 * fw_fp will be set.
510 	 */
511 	IWM_UNLOCK(sc);
512 	fwp = firmware_get(sc->sc_fwname);
513 	IWM_LOCK(sc);
514 	if (fwp == NULL) {
515 		device_printf(sc->sc_dev,
516 		    "could not read firmware %s (error %d)\n",
517 		    sc->sc_fwname, error);
518 		goto out;
519 	}
520 	fw->fw_fp = fwp;
521 
522 	/* (Re-)Initialize default values. */
523 	sc->sc_capaflags = 0;
524 	sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525 	memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527 
528 	/*
529 	 * Parse firmware contents
530 	 */
531 
532 	uhdr = (const void *)fw->fw_fp->data;
533 	if (*(const uint32_t *)fw->fw_fp->data != 0
534 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535 		device_printf(sc->sc_dev, "invalid firmware %s\n",
536 		    sc->sc_fwname);
537 		error = EINVAL;
538 		goto out;
539 	}
540 
541 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544 	    IWM_UCODE_API(le32toh(uhdr->ver)));
545 	data = uhdr->data;
546 	len = fw->fw_fp->datasize - sizeof(*uhdr);
547 
548 	while (len >= sizeof(tlv)) {
549 		size_t tlv_len;
550 		const void *tlv_data;
551 
552 		memcpy(&tlv, data, sizeof(tlv));
553 		tlv_len = le32toh(tlv.length);
554 		tlv_type = le32toh(tlv.type);
555 
556 		len -= sizeof(tlv);
557 		data += sizeof(tlv);
558 		tlv_data = data;
559 
560 		if (len < tlv_len) {
561 			device_printf(sc->sc_dev,
562 			    "firmware too short: %zu bytes\n",
563 			    len);
564 			error = EINVAL;
565 			goto parse_out;
566 		}
567 
568 		switch ((int)tlv_type) {
569 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
570 			if (tlv_len < sizeof(uint32_t)) {
571 				device_printf(sc->sc_dev,
572 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573 				    __func__,
574 				    (int) tlv_len);
575 				error = EINVAL;
576 				goto parse_out;
577 			}
578 			sc->sc_capa_max_probe_len
579 			    = le32toh(*(const uint32_t *)tlv_data);
580 			/* limit it to something sensible */
581 			if (sc->sc_capa_max_probe_len >
582 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585 				    "ridiculous\n", __func__);
586 				error = EINVAL;
587 				goto parse_out;
588 			}
589 			break;
590 		case IWM_UCODE_TLV_PAN:
591 			if (tlv_len) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594 				    __func__,
595 				    (int) tlv_len);
596 				error = EINVAL;
597 				goto parse_out;
598 			}
599 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600 			break;
601 		case IWM_UCODE_TLV_FLAGS:
602 			if (tlv_len < sizeof(uint32_t)) {
603 				device_printf(sc->sc_dev,
604 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605 				    __func__,
606 				    (int) tlv_len);
607 				error = EINVAL;
608 				goto parse_out;
609 			}
610 			/*
611 			 * Apparently there can be many flags, but Linux driver
612 			 * parses only the first one, and so do we.
613 			 *
614 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
615 			 * Intentional or a bug?  Observations from
616 			 * current firmware file:
617 			 *  1) TLV_PAN is parsed first
618 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619 			 * ==> this resets TLV_PAN to itself... hnnnk
620 			 */
621 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622 			break;
623 		case IWM_UCODE_TLV_CSCHEME:
624 			if ((error = iwm_store_cscheme(sc,
625 			    tlv_data, tlv_len)) != 0) {
626 				device_printf(sc->sc_dev,
627 				    "%s: iwm_store_cscheme(): returned %d\n",
628 				    __func__,
629 				    error);
630 				goto parse_out;
631 			}
632 			break;
633 		case IWM_UCODE_TLV_NUM_OF_CPU: {
634 			uint32_t num_cpu;
635 			if (tlv_len != sizeof(uint32_t)) {
636 				device_printf(sc->sc_dev,
637 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638 				    __func__,
639 				    (int) tlv_len);
640 				error = EINVAL;
641 				goto parse_out;
642 			}
643 			num_cpu = le32toh(*(const uint32_t *)tlv_data);
644 			if (num_cpu < 1 || num_cpu > 2) {
645 				device_printf(sc->sc_dev,
646 				    "%s: Driver supports only 1 or 2 CPUs\n",
647 				    __func__);
648 				error = EINVAL;
649 				goto parse_out;
650 			}
651 			break;
652 		}
653 		case IWM_UCODE_TLV_SEC_RT:
654 			if ((error = iwm_firmware_store_section(sc,
655 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656 				device_printf(sc->sc_dev,
657 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658 				    __func__,
659 				    error);
660 				goto parse_out;
661 			}
662 			break;
663 		case IWM_UCODE_TLV_SEC_INIT:
664 			if ((error = iwm_firmware_store_section(sc,
665 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666 				device_printf(sc->sc_dev,
667 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668 				    __func__,
669 				    error);
670 				goto parse_out;
671 			}
672 			break;
673 		case IWM_UCODE_TLV_SEC_WOWLAN:
674 			if ((error = iwm_firmware_store_section(sc,
675 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676 				device_printf(sc->sc_dev,
677 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678 				    __func__,
679 				    error);
680 				goto parse_out;
681 			}
682 			break;
683 		case IWM_UCODE_TLV_DEF_CALIB:
684 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685 				device_printf(sc->sc_dev,
686 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687 				    __func__,
688 				    (int) tlv_len,
689 				    (int) sizeof(struct iwm_tlv_calib_data));
690 				error = EINVAL;
691 				goto parse_out;
692 			}
693 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_set_default_calib() failed: %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_PHY_SKU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				error = EINVAL;
704 				device_printf(sc->sc_dev,
705 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706 				    __func__,
707 				    (int) tlv_len);
708 				goto parse_out;
709 			}
710 			sc->sc_fw_phy_config =
711 			    le32toh(*(const uint32_t *)tlv_data);
712 			break;
713 
714 		case IWM_UCODE_TLV_API_CHANGES_SET: {
715 			const struct iwm_ucode_api *api;
716 			if (tlv_len != sizeof(*api)) {
717 				error = EINVAL;
718 				goto parse_out;
719 			}
720 			api = (const struct iwm_ucode_api *)tlv_data;
721 			/* Flags may exceed 32 bits in future firmware. */
722 			if (le32toh(api->api_index) > 0) {
723 				device_printf(sc->sc_dev,
724 				    "unsupported API index %d\n",
725 				    le32toh(api->api_index));
726 				goto parse_out;
727 			}
728 			sc->sc_ucode_api = le32toh(api->api_flags);
729 			break;
730 		}
731 
732 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733 			const struct iwm_ucode_capa *capa;
734 			int idx, i;
735 			if (tlv_len != sizeof(*capa)) {
736 				error = EINVAL;
737 				goto parse_out;
738 			}
739 			capa = (const struct iwm_ucode_capa *)tlv_data;
740 			idx = le32toh(capa->api_index);
741 			if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742 				device_printf(sc->sc_dev,
743 				    "unsupported API index %d\n", idx);
744 				goto parse_out;
745 			}
746 			for (i = 0; i < 32; i++) {
747 				if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748 					continue;
749 				setbit(sc->sc_enabled_capa, i + (32 * idx));
750 			}
751 			break;
752 		}
753 
754 		case 48: /* undocumented TLV */
755 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757 			/* ignore, not used by current driver */
758 			break;
759 
760 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761 			if ((error = iwm_firmware_store_section(sc,
762 			    IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763 			    tlv_len)) != 0)
764 				goto parse_out;
765 			break;
766 
767 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768 			if (tlv_len != sizeof(uint32_t)) {
769 				error = EINVAL;
770 				goto parse_out;
771 			}
772 			sc->sc_capa_n_scan_channels =
773 			  le32toh(*(const uint32_t *)tlv_data);
774 			break;
775 
776 		case IWM_UCODE_TLV_FW_VERSION:
777 			if (tlv_len != sizeof(uint32_t) * 3) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782 			    "%d.%d.%d",
783 			    le32toh(((const uint32_t *)tlv_data)[0]),
784 			    le32toh(((const uint32_t *)tlv_data)[1]),
785 			    le32toh(((const uint32_t *)tlv_data)[2]));
786 			break;
787 
788 		default:
789 			device_printf(sc->sc_dev,
790 			    "%s: unknown firmware section %d, abort\n",
791 			    __func__, tlv_type);
792 			error = EINVAL;
793 			goto parse_out;
794 		}
795 
796 		len -= roundup(tlv_len, 4);
797 		data += roundup(tlv_len, 4);
798 	}
799 
800 	KASSERT(error == 0, ("unhandled error"));
801 
802  parse_out:
803 	if (error) {
804 		device_printf(sc->sc_dev, "firmware parse error %d, "
805 		    "section type %d\n", error, tlv_type);
806 	}
807 
808 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809 		device_printf(sc->sc_dev,
810 		    "device uses unsupported power ops\n");
811 		error = ENOTSUP;
812 	}
813 
814  out:
815 	if (error) {
816 		fw->fw_status = IWM_FW_STATUS_NONE;
817 		if (fw->fw_fp != NULL)
818 			iwm_fw_info_free(fw);
819 	} else
820 		fw->fw_status = IWM_FW_STATUS_DONE;
821 	wakeup(&sc->sc_fw);
822 
823 	return error;
824 }
825 
826 /*
827  * DMA resource routines
828  */
829 
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843 	int error;
844 
845 	dma->tag = NULL;
846 	dma->map = NULL;
847 	dma->size = size;
848 	dma->vaddr = NULL;
849 
850 	error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855 
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860 
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865 		dma->vaddr = NULL;
866 		goto fail;
867 	}
868 
869 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870 
871 	return 0;
872 
873 fail:
874 	iwm_dma_contig_free(dma);
875 
876 	return error;
877 }
878 
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882 	if (dma->vaddr != NULL) {
883 		bus_dmamap_sync(dma->tag, dma->map,
884 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(dma->tag, dma->map);
886 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887 		dma->vaddr = NULL;
888 	}
889 	if (dma->tag != NULL) {
890 		bus_dma_tag_destroy(dma->tag);
891 		dma->tag = NULL;
892 	}
893 }
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    sc->sc_fwdmasegsz, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002 	/* XXX conditional nic locks are stupid */
1003 	/* XXX print out if we can't lock the NIC? */
1004 	if (iwm_nic_lock(sc)) {
1005 		/* XXX handle if RX stop doesn't finish? */
1006 		(void) iwm_pcie_rx_stop(sc);
1007 		iwm_nic_unlock(sc);
1008 	}
1009 }
1010 
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014 	/* Reset the ring state */
1015 	ring->cur = 0;
1016 
1017 	/*
1018 	 * The hw rx ring index in shared memory must also be cleared,
1019 	 * otherwise the discrepancy can cause reprocessing chaos.
1020 	 */
1021 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023 
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027 	int i;
1028 
1029 	iwm_dma_contig_free(&ring->desc_dma);
1030 	iwm_dma_contig_free(&ring->stat_dma);
1031 
1032 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033 		struct iwm_rx_data *data = &ring->data[i];
1034 
1035 		if (data->m != NULL) {
1036 			bus_dmamap_sync(ring->data_dmat, data->map,
1037 			    BUS_DMASYNC_POSTREAD);
1038 			bus_dmamap_unload(ring->data_dmat, data->map);
1039 			m_freem(data->m);
1040 			data->m = NULL;
1041 		}
1042 		if (data->map != NULL) {
1043 			bus_dmamap_destroy(ring->data_dmat, data->map);
1044 			data->map = NULL;
1045 		}
1046 	}
1047 	if (ring->spare_map != NULL) {
1048 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049 		ring->spare_map = NULL;
1050 	}
1051 	if (ring->data_dmat != NULL) {
1052 		bus_dma_tag_destroy(ring->data_dmat);
1053 		ring->data_dmat = NULL;
1054 	}
1055 }
1056 
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060 	bus_addr_t paddr;
1061 	bus_size_t size;
1062 	size_t maxsize;
1063 	int nsegments;
1064 	int i, error;
1065 
1066 	ring->qid = qid;
1067 	ring->queued = 0;
1068 	ring->cur = 0;
1069 
1070 	/* Allocate TX descriptors (256-byte aligned). */
1071 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073 	if (error != 0) {
1074 		device_printf(sc->sc_dev,
1075 		    "could not allocate TX ring DMA memory\n");
1076 		goto fail;
1077 	}
1078 	ring->desc = ring->desc_dma.vaddr;
1079 
1080 	/*
1081 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082 	 * to allocate commands space for other rings.
1083 	 */
1084 	if (qid > IWM_MVM_CMD_QUEUE)
1085 		return 0;
1086 
1087 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate TX cmd DMA memory\n");
1092 		goto fail;
1093 	}
1094 	ring->cmd = ring->cmd_dma.vaddr;
1095 
1096 	/* FW commands may require more mapped space than packets. */
1097 	if (qid == IWM_MVM_CMD_QUEUE) {
1098 		maxsize = IWM_RBUF_SIZE;
1099 		nsegments = 1;
1100 	} else {
1101 		maxsize = MCLBYTES;
1102 		nsegments = IWM_MAX_SCATTER - 2;
1103 	}
1104 
1105 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108 	if (error != 0) {
1109 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110 		goto fail;
1111 	}
1112 
1113 	paddr = ring->cmd_dma.paddr;
1114 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115 		struct iwm_tx_data *data = &ring->data[i];
1116 
1117 		data->cmd_paddr = paddr;
1118 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119 		    + offsetof(struct iwm_tx_cmd, scratch);
1120 		paddr += sizeof(struct iwm_device_cmd);
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create TX buf DMA map\n");
1126 			goto fail;
1127 		}
1128 	}
1129 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1130 	    ("invalid physical address"));
1131 	return 0;
1132 
1133 fail:	iwm_free_tx_ring(sc, ring);
1134 	return error;
1135 }
1136 
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143 		struct iwm_tx_data *data = &ring->data[i];
1144 
1145 		if (data->m != NULL) {
1146 			bus_dmamap_sync(ring->data_dmat, data->map,
1147 			    BUS_DMASYNC_POSTWRITE);
1148 			bus_dmamap_unload(ring->data_dmat, data->map);
1149 			m_freem(data->m);
1150 			data->m = NULL;
1151 		}
1152 	}
1153 	/* Clear TX descriptors. */
1154 	memset(ring->desc, 0, ring->desc_dma.size);
1155 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156 	    BUS_DMASYNC_PREWRITE);
1157 	sc->qfullmsk &= ~(1 << ring->qid);
1158 	ring->queued = 0;
1159 	ring->cur = 0;
1160 }
1161 
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165 	int i;
1166 
1167 	iwm_dma_contig_free(&ring->desc_dma);
1168 	iwm_dma_contig_free(&ring->cmd_dma);
1169 
1170 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171 		struct iwm_tx_data *data = &ring->data[i];
1172 
1173 		if (data->m != NULL) {
1174 			bus_dmamap_sync(ring->data_dmat, data->map,
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(ring->data_dmat, data->map);
1177 			m_freem(data->m);
1178 			data->m = NULL;
1179 		}
1180 		if (data->map != NULL) {
1181 			bus_dmamap_destroy(ring->data_dmat, data->map);
1182 			data->map = NULL;
1183 		}
1184 	}
1185 	if (ring->data_dmat != NULL) {
1186 		bus_dma_tag_destroy(ring->data_dmat);
1187 		ring->data_dmat = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194 
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201 
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207 
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211 	/* disable interrupts */
1212 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213 
1214 	/* acknowledge all interrupts */
1215 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218 
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222 	iwm_disable_interrupts(sc);
1223 
1224 	/* Reset ICT table. */
1225 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226 	sc->ict_cur = 0;
1227 
1228 	/* Set physical address of ICT table (4KB aligned). */
1229 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1231 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234 
1235 	/* Switch to ICT interrupt mode in driver. */
1236 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1237 
1238 	/* Re-enable interrupts. */
1239 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240 	iwm_enable_interrupts(sc);
1241 }
1242 
1243 /* iwlwifi pcie/trans.c */
1244 
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257 	int chnl, qid;
1258 	uint32_t mask = 0;
1259 
1260 	/* tell the device to stop sending interrupts */
1261 	iwm_disable_interrupts(sc);
1262 
1263 	/*
1264 	 * FreeBSD-local: mark the first vap as not-uploaded,
1265 	 * so the next transition through auth/assoc
1266 	 * will correctly populate the MAC context.
1267 	 */
1268 	if (vap) {
1269 		struct iwm_vap *iv = IWM_VAP(vap);
1270 		iv->is_uploaded = 0;
1271 	}
1272 
1273 	/* device going down, Stop using ICT table */
1274 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275 
1276 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277 
1278 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279 
1280 	if (iwm_nic_lock(sc)) {
1281 		/* Stop each Tx DMA channel */
1282 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283 			IWM_WRITE(sc,
1284 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286 		}
1287 
1288 		/* Wait for DMA channels to be idle */
1289 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290 		    5000)) {
1291 			device_printf(sc->sc_dev,
1292 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294 		}
1295 		iwm_nic_unlock(sc);
1296 	}
1297 	iwm_disable_rx_dma(sc);
1298 
1299 	/* Stop RX ring. */
1300 	iwm_reset_rx_ring(sc, &sc->rxq);
1301 
1302 	/* Reset all TX rings. */
1303 	for (qid = 0; qid < nitems(sc->txq); qid++)
1304 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305 
1306 	/*
1307 	 * Power-down device's busmaster DMA clocks
1308 	 */
1309 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310 	DELAY(5);
1311 
1312 	/* Make sure (redundant) we've released our request to stay awake */
1313 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315 
1316 	/* Stop the device, and put it in low power state */
1317 	iwm_apm_stop(sc);
1318 
1319 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * Clean again the interrupt here
1321 	 */
1322 	iwm_disable_interrupts(sc);
1323 	/* stop and reset the on-board processor */
1324 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325 
1326 	/*
1327 	 * Even if we stop the HW, we still want the RF kill
1328 	 * interrupt
1329 	 */
1330 	iwm_enable_rfkill_int(sc);
1331 	iwm_check_rfkill(sc);
1332 }
1333 
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339 	uint32_t reg_val = 0;
1340 
1341 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	if (!iwm_nic_lock(sc))
1381 		return EBUSY;
1382 
1383 	/*
1384 	 * Initialize RX ring.  This is from the iwn driver.
1385 	 */
1386 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387 
1388 	/* stop DMA */
1389 	iwm_disable_rx_dma(sc);
1390 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394 
1395 	/* Set physical address of RX ring (256-byte aligned). */
1396 	IWM_WRITE(sc,
1397 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398 
1399 	/* Set physical address of RX status (16-byte aligned). */
1400 	IWM_WRITE(sc,
1401 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402 
1403 	/* Enable RX. */
1404 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1406 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1407 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1408 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1409 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1411 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412 
1413 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414 
1415 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1416 	if (sc->host_interrupt_operation_mode)
1417 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418 
1419 	/*
1420 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1421 	 *
1422 	 * This value should initially be 0 (before preparing any
1423 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1424 	 */
1425 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426 
1427 	iwm_nic_unlock(sc);
1428 
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435 	int qid;
1436 
1437 	if (!iwm_nic_lock(sc))
1438 		return EBUSY;
1439 
1440 	/* Deactivate TX scheduler. */
1441 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442 
1443 	/* Set physical address of "keep warm" page (16-byte aligned). */
1444 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445 
1446 	/* Initialize TX rings. */
1447 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1448 		struct iwm_tx_ring *txq = &sc->txq[qid];
1449 
1450 		/* Set physical address of TX ring (256-byte aligned). */
1451 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452 		    txq->desc_dma.paddr >> 8);
1453 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1455 		    __func__,
1456 		    qid, txq->desc,
1457 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1458 	}
1459 
1460 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461 
1462 	iwm_nic_unlock(sc);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470 	int error;
1471 
1472 	iwm_apm_init(sc);
1473 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474 		iwm_set_pwr(sc);
1475 
1476 	iwm_mvm_nic_config(sc);
1477 
1478 	if ((error = iwm_nic_rx_init(sc)) != 0)
1479 		return error;
1480 
1481 	/*
1482 	 * Ditto for TX, from iwn
1483 	 */
1484 	if ((error = iwm_nic_tx_init(sc)) != 0)
1485 		return error;
1486 
1487 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488 	    "%s: shadow registers enabled\n", __func__);
1489 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490 
1491 	return 0;
1492 }
1493 
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495 	IWM_MVM_TX_FIFO_VO,
1496 	IWM_MVM_TX_FIFO_VI,
1497 	IWM_MVM_TX_FIFO_BE,
1498 	IWM_MVM_TX_FIFO_BK,
1499 };
1500 
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504 	if (!iwm_nic_lock(sc)) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: cannot enable txq %d\n",
1507 		    __func__,
1508 		    qid);
1509 		return EBUSY;
1510 	}
1511 
1512 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513 
1514 	if (qid == IWM_MVM_CMD_QUEUE) {
1515 		/* unactivate before configuration */
1516 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519 
1520 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521 
1522 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523 
1524 		iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525 		/* Set scheduler window size and frame limit. */
1526 		iwm_write_mem32(sc,
1527 		    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528 		    sizeof(uint32_t),
1529 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533 
1534 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1539 	} else {
1540 		struct iwm_scd_txq_cfg_cmd cmd;
1541 		int error;
1542 
1543 		iwm_nic_unlock(sc);
1544 
1545 		memset(&cmd, 0, sizeof(cmd));
1546 		cmd.scd_queue = qid;
1547 		cmd.enable = 1;
1548 		cmd.sta_id = sta_id;
1549 		cmd.tx_fifo = fifo;
1550 		cmd.aggregate = 0;
1551 		cmd.window = IWM_FRAME_LIMIT;
1552 
1553 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554 		    sizeof(cmd), &cmd);
1555 		if (error) {
1556 			device_printf(sc->sc_dev,
1557 			    "cannot enable txq %d\n", qid);
1558 			return error;
1559 		}
1560 
1561 		if (!iwm_nic_lock(sc))
1562 			return EBUSY;
1563 	}
1564 
1565 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567 
1568 	iwm_nic_unlock(sc);
1569 
1570 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571 	    __func__, qid, fifo);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579 	int nwords;
1580 	int error, chnl;
1581 	uint32_t base;
1582 
1583 	if (!iwm_nic_lock(sc))
1584 		return EBUSY;
1585 
1586 	base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587 	if (sc->sched_base != base) {
1588 		device_printf(sc->sc_dev,
1589 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590 		    __func__, sc->sched_base, base);
1591 	}
1592 
1593 	iwm_ict_reset(sc);
1594 
1595 	/* Clear TX scheduler state in SRAM. */
1596 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598 	    / sizeof(uint32_t);
1599 	error = iwm_write_mem(sc,
1600 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601 	    NULL, nwords);
1602 	if (error)
1603 		goto out;
1604 
1605 	/* Set physical address of TX scheduler rings (1KB aligned). */
1606 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607 
1608 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609 
1610 	iwm_nic_unlock(sc);
1611 
1612 	/* enable command channel */
1613 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614 	if (error)
1615 		return error;
1616 
1617 	if (!iwm_nic_lock(sc))
1618 		return EBUSY;
1619 
1620 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621 
1622 	/* Enable DMA channels. */
1623 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627 	}
1628 
1629 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631 
1632 	/* Enable L1-Active */
1633 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636 	}
1637 
1638  out:
1639 	iwm_nic_unlock(sc);
1640 	return error;
1641 }
1642 
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648 
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651 	IWM_NVM_SECTION_TYPE_HW,
1652 	IWM_NVM_SECTION_TYPE_SW,
1653 	IWM_NVM_SECTION_TYPE_REGULATORY,
1654 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1655 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1656 	IWM_NVM_SECTION_TYPE_HW_8000,
1657 	IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658 	IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660 
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE	8192
1664 
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667 
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED		0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS	1
1671 
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676 	offset = 0;
1677 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1678 		.offset = htole16(offset),
1679 		.length = htole16(length),
1680 		.type = htole16(section),
1681 		.op_code = IWM_NVM_READ_OPCODE,
1682 	};
1683 	struct iwm_nvm_access_resp *nvm_resp;
1684 	struct iwm_rx_packet *pkt;
1685 	struct iwm_host_cmd cmd = {
1686 		.id = IWM_NVM_ACCESS_CMD,
1687 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688 		    IWM_CMD_SEND_IN_RFKILL,
1689 		.data = { &nvm_access_cmd, },
1690 	};
1691 	int ret, offset_read;
1692 	size_t bytes_read;
1693 	uint8_t *resp_data;
1694 
1695 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696 
1697 	ret = iwm_send_cmd(sc, &cmd);
1698 	if (ret) {
1699 		device_printf(sc->sc_dev,
1700 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	pkt = cmd.resp_pkt;
1705 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706 		device_printf(sc->sc_dev,
1707 		    "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708 		    pkt->hdr.flags);
1709 		ret = EIO;
1710 		goto exit;
1711 	}
1712 
1713 	/* Extract NVM response */
1714 	nvm_resp = (void *)pkt->data;
1715 
1716 	ret = le16toh(nvm_resp->status);
1717 	bytes_read = le16toh(nvm_resp->length);
1718 	offset_read = le16toh(nvm_resp->offset);
1719 	resp_data = nvm_resp->data;
1720 	if (ret) {
1721 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722 		    "NVM access command failed with status %d\n", ret);
1723 		ret = EINVAL;
1724 		goto exit;
1725 	}
1726 
1727 	if (offset_read != offset) {
1728 		device_printf(sc->sc_dev,
1729 		    "NVM ACCESS response with invalid offset %d\n",
1730 		    offset_read);
1731 		ret = EINVAL;
1732 		goto exit;
1733 	}
1734 
1735 	if (bytes_read > length) {
1736 		device_printf(sc->sc_dev,
1737 		    "NVM ACCESS response with too much data "
1738 		    "(%d bytes requested, %zd bytes received)\n",
1739 		    length, bytes_read);
1740 		ret = EINVAL;
1741 		goto exit;
1742 	}
1743 
1744 	memcpy(data + offset, resp_data, bytes_read);
1745 	*len = bytes_read;
1746 
1747  exit:
1748 	iwm_free_resp(sc, &cmd);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764 	uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766 	uint16_t chunklen, seglen;
1767 	int error = 0;
1768 
1769 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770 	    "reading NVM section %d\n", section);
1771 
1772 	chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773 	*len = 0;
1774 
1775 	/* Read NVM chunks until exhausted (reading less than requested) */
1776 	while (seglen == chunklen && *len < max_len) {
1777 		error = iwm_nvm_read_chunk(sc,
1778 		    section, *len, chunklen, data, &seglen);
1779 		if (error) {
1780 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781 			    "Cannot read from NVM section "
1782 			    "%d at offset %d\n", section, *len);
1783 			return error;
1784 		}
1785 		*len += seglen;
1786 	}
1787 
1788 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789 	    "NVM section %d read completed (%d bytes, error=%d)\n",
1790 	    section, *len, error);
1791 	return error;
1792 }
1793 
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797 
1798 /* iwlwifi/iwl-nvm-parse.c */
1799 
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802 	/* NVM HW-Section offset (in words) definitions */
1803 	IWM_HW_ADDR = 0x15,
1804 
1805 /* NVM SW-Section offset (in words) definitions */
1806 	IWM_NVM_SW_SECTION = 0x1C0,
1807 	IWM_NVM_VERSION = 0,
1808 	IWM_RADIO_CFG = 1,
1809 	IWM_SKU = 2,
1810 	IWM_N_HW_ADDRS = 3,
1811 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812 
1813 /* NVM calibration section offset (in words) definitions */
1814 	IWM_NVM_CALIB_SECTION = 0x2B8,
1815 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817 
1818 enum iwm_8000_nvm_offsets {
1819 	/* NVM HW-Section offset (in words) definitions */
1820 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825 
1826 	/* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828 	IWM_NVM_VERSION_8000 = 0,
1829 	IWM_RADIO_CFG_8000 = 0,
1830 	IWM_SKU_8000 = 2,
1831 	IWM_N_HW_ADDRS_8000 = 3,
1832 
1833 	/* NVM REGULATORY -Section offset (in words) definitions */
1834 	IWM_NVM_CHANNELS_8000 = 0,
1835 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838 
1839 	/* NVM calibration section offset (in words) definitions */
1840 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843 
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1847 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1848 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1849 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1850 };
1851 
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859 
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1866 
1867 #define DEFAULT_MAX_TX_POWER 16
1868 
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1884 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1888 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893 
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900 	uint32_t nflags;
1901 
1902 	nflags = 0;
1903 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904 		nflags |= IEEE80211_CHAN_PASSIVE;
1905 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906 		nflags |= IEEE80211_CHAN_NOADHOC;
1907 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908 		nflags |= IEEE80211_CHAN_DFS;
1909 		/* Just in case. */
1910 		nflags |= IEEE80211_CHAN_NOADHOC;
1911 	}
1912 
1913 	return (nflags);
1914 }
1915 
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921 	const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922 	uint32_t nflags;
1923 	uint16_t ch_flags;
1924 	uint8_t ieee;
1925 	int error;
1926 
1927 	for (; ch_idx < ch_num; ch_idx++) {
1928 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930 			ieee = iwm_nvm_channels[ch_idx];
1931 		else
1932 			ieee = iwm_nvm_channels_8000[ch_idx];
1933 
1934 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937 			    ieee, ch_flags,
1938 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939 			    "5.2" : "2.4");
1940 			continue;
1941 		}
1942 
1943 		nflags = iwm_eeprom_channel_flags(ch_flags);
1944 		error = ieee80211_add_channel(chans, maxchans, nchans,
1945 		    ieee, 0, 0, nflags, bands);
1946 		if (error != 0)
1947 			break;
1948 
1949 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1951 		    ieee, ch_flags,
1952 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953 		    "5.2" : "2.4");
1954 	}
1955 }
1956 
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961 	struct iwm_softc *sc = ic->ic_softc;
1962 	struct iwm_nvm_data *data = &sc->sc_nvm;
1963 	uint8_t bands[IEEE80211_MODE_BYTES];
1964 	size_t ch_num;
1965 
1966 	memset(bands, 0, sizeof(bands));
1967 	/* 1-13: 11b/g channels. */
1968 	setbit(bands, IEEE80211_MODE_11B);
1969 	setbit(bands, IEEE80211_MODE_11G);
1970 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972 
1973 	/* 14: 11b channel only. */
1974 	clrbit(bands, IEEE80211_MODE_11G);
1975 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1976 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977 
1978 	if (data->sku_cap_band_52GHz_enable) {
1979 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980 			ch_num = nitems(iwm_nvm_channels);
1981 		else
1982 			ch_num = nitems(iwm_nvm_channels_8000);
1983 		memset(bands, 0, sizeof(bands));
1984 		setbit(bands, IEEE80211_MODE_11A);
1985 		iwm_add_channel_band(sc, chans, maxchans, nchans,
1986 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987 	}
1988 }
1989 
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992 	const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994 	const uint8_t *hw_addr;
1995 
1996 	if (mac_override) {
1997 		static const uint8_t reserved_mac[] = {
1998 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999 		};
2000 
2001 		hw_addr = (const uint8_t *)(mac_override +
2002 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2003 
2004 		/*
2005 		 * Store the MAC address from MAO section.
2006 		 * No byte swapping is required in MAO section
2007 		 */
2008 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009 
2010 		/*
2011 		 * Force the use of the OTP MAC address in case of reserved MAC
2012 		 * address in the NVM, or if address is given but invalid.
2013 		 */
2014 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2017 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2018 			return;
2019 
2020 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021 		    "%s: mac address from nvm override section invalid\n",
2022 		    __func__);
2023 	}
2024 
2025 	if (nvm_hw) {
2026 		/* read the mac address from WFMP registers */
2027 		uint32_t mac_addr0 =
2028 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029 		uint32_t mac_addr1 =
2030 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031 
2032 		hw_addr = (const uint8_t *)&mac_addr0;
2033 		data->hw_addr[0] = hw_addr[3];
2034 		data->hw_addr[1] = hw_addr[2];
2035 		data->hw_addr[2] = hw_addr[1];
2036 		data->hw_addr[3] = hw_addr[0];
2037 
2038 		hw_addr = (const uint8_t *)&mac_addr1;
2039 		data->hw_addr[4] = hw_addr[1];
2040 		data->hw_addr[5] = hw_addr[0];
2041 
2042 		return;
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048 
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051 	    const uint16_t *phy_sku)
2052 {
2053 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054 		return le16_to_cpup(nvm_sw + IWM_SKU);
2055 
2056 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058 
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064 	else
2065 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2066 						IWM_NVM_VERSION_8000));
2067 }
2068 
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071 		  const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075 
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078 
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082 	int n_hw_addr;
2083 
2084 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086 
2087 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088 
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091 
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094 		  uint32_t radio_cfg)
2095 {
2096 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101 		return;
2102 	}
2103 
2104 	/* set the radio configuration for family 8000 */
2105 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112 
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2117 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119 	struct iwm_nvm_data *data = &sc->sc_nvm;
2120 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121 	uint32_t sku, radio_cfg;
2122 
2123 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124 
2125 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126 	iwm_set_radio_cfg(sc, data, radio_cfg);
2127 
2128 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131 	data->sku_cap_11n_enable = 0;
2132 
2133 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134 
2135 	/* The byte order is little endian 16 bit, meaning 214365 */
2136 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137 		IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138 		data->hw_addr[0] = hw_addr[1];
2139 		data->hw_addr[1] = hw_addr[0];
2140 		data->hw_addr[2] = hw_addr[3];
2141 		data->hw_addr[3] = hw_addr[2];
2142 		data->hw_addr[4] = hw_addr[5];
2143 		data->hw_addr[5] = hw_addr[4];
2144 	} else {
2145 		iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146 	}
2147 
2148 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2151 	} else {
2152 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * END NVM PARSE
2161  */
2162 
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167 
2168 	/* Checking for required sections */
2169 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171 		    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172 			device_printf(sc->sc_dev,
2173 			    "Can't parse empty OTP/NVM sections\n");
2174 			return ENOENT;
2175 		}
2176 
2177 		hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178 	} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179 		/* SW and REGULATORY sections are mandatory */
2180 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182 			device_printf(sc->sc_dev,
2183 			    "Can't parse empty OTP/NVM sections\n");
2184 			return ENOENT;
2185 		}
2186 		/* MAC_OVERRIDE or at least HW section must exist */
2187 		if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189 			device_printf(sc->sc_dev,
2190 			    "Can't parse mac_address, empty sections\n");
2191 			return ENOENT;
2192 		}
2193 
2194 		/* PHY_SKU section is mandatory in B0 */
2195 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196 			device_printf(sc->sc_dev,
2197 			    "Can't parse phy_sku in B0, empty sections\n");
2198 			return ENOENT;
2199 		}
2200 
2201 		hw = (const uint16_t *)
2202 		    sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203 	} else {
2204 		panic("unknown device family %d\n", sc->sc_device_family);
2205 	}
2206 
2207 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208 	calib = (const uint16_t *)
2209 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210 	regulatory = (const uint16_t *)
2211 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212 	mac_override = (const uint16_t *)
2213 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215 
2216 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217 	    phy_sku, regulatory);
2218 }
2219 
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224 	int i, section, error;
2225 	uint16_t len;
2226 	uint8_t *buf;
2227 	const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228 
2229 	memset(nvm_sections, 0 , sizeof(nvm_sections));
2230 
2231 	buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232 	if (buf == NULL)
2233 		return ENOMEM;
2234 
2235 	for (i = 0; i < nitems(nvm_to_read); i++) {
2236 		section = nvm_to_read[i];
2237 		KASSERT(section <= nitems(nvm_sections),
2238 		    ("too many sections"));
2239 
2240 		error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241 		if (error) {
2242 			error = 0;
2243 			continue;
2244 		}
2245 		nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246 		if (nvm_sections[section].data == NULL) {
2247 			error = ENOMEM;
2248 			break;
2249 		}
2250 		memcpy(nvm_sections[section].data, buf, len);
2251 		nvm_sections[section].length = len;
2252 	}
2253 	free(buf, M_DEVBUF);
2254 	if (error == 0)
2255 		error = iwm_parse_nvm_sections(sc, nvm_sections);
2256 
2257 	for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258 		if (nvm_sections[i].data != NULL)
2259 			free(nvm_sections[i].data, M_DEVBUF);
2260 	}
2261 
2262 	return error;
2263 }
2264 
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269 
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272 	const uint8_t *section, uint32_t byte_cnt)
2273 {
2274 	int error = EINVAL;
2275 	uint32_t chunk_sz, offset;
2276 
2277 	chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278 
2279 	for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280 		uint32_t addr, len;
2281 		const uint8_t *data;
2282 
2283 		addr = dst_addr + offset;
2284 		len = MIN(chunk_sz, byte_cnt - offset);
2285 		data = section + offset;
2286 
2287 		error = iwm_firmware_load_chunk(sc, addr, data, len);
2288 		if (error)
2289 			break;
2290 	}
2291 
2292 	return error;
2293 }
2294 
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297 	const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299 	struct iwm_dma_info *dma = &sc->fw_dma;
2300 	int error;
2301 
2302 	/* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303 	memcpy(dma->vaddr, chunk, byte_cnt);
2304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305 
2306 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307 	    dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308 		iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310 	}
2311 
2312 	sc->sc_fw_chunk_done = 0;
2313 
2314 	if (!iwm_nic_lock(sc))
2315 		return EBUSY;
2316 
2317 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320 	    dst_addr);
2321 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324 	    (iwm_get_dma_hi_addr(dma->paddr)
2325 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334 
2335 	iwm_nic_unlock(sc);
2336 
2337 	/* wait 1s for this segment to load */
2338 	while (!sc->sc_fw_chunk_done)
2339 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340 			break;
2341 
2342 	if (!sc->sc_fw_chunk_done) {
2343 		device_printf(sc->sc_dev,
2344 		    "fw chunk addr 0x%x len %d failed to load\n",
2345 		    dst_addr, byte_cnt);
2346 	}
2347 
2348 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349 	    dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350 		iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352 		iwm_nic_unlock(sc);
2353 	}
2354 
2355 	return error;
2356 }
2357 
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362 	int shift_param;
2363 	int i, error = 0, sec_num = 0x1;
2364 	uint32_t val, last_read_idx = 0;
2365 	const void *data;
2366 	uint32_t dlen;
2367 	uint32_t offset;
2368 
2369 	if (cpu == 1) {
2370 		shift_param = 0;
2371 		*first_ucode_section = 0;
2372 	} else {
2373 		shift_param = 16;
2374 		(*first_ucode_section)++;
2375 	}
2376 
2377 	for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378 		last_read_idx = i;
2379 		data = fws->fw_sect[i].fws_data;
2380 		dlen = fws->fw_sect[i].fws_len;
2381 		offset = fws->fw_sect[i].fws_devoff;
2382 
2383 		/*
2384 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385 		 * CPU1 to CPU2.
2386 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2387 		 * CPU2 non paged to CPU2 paging sec.
2388 		 */
2389 		if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390 		    offset == IWM_PAGING_SEPARATOR_SECTION)
2391 			break;
2392 
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394 		    "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395 		    i, offset, dlen, cpu);
2396 
2397 		if (dlen > sc->sc_fwdmasegsz) {
2398 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399 			    "chunk %d too large (%d bytes)\n", i, dlen);
2400 			error = EFBIG;
2401 		} else {
2402 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403 		}
2404 		if (error) {
2405 			device_printf(sc->sc_dev,
2406 			    "could not load firmware chunk %d (error %d)\n",
2407 			    i, error);
2408 			return error;
2409 		}
2410 
2411 		/* Notify the ucode of the loaded section number and status */
2412 		if (iwm_nic_lock(sc)) {
2413 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414 			val = val | (sec_num << shift_param);
2415 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416 			sec_num = (sec_num << 1) | 0x1;
2417 			iwm_nic_unlock(sc);
2418 
2419 			/*
2420 			 * The firmware won't load correctly without this delay.
2421 			 */
2422 			DELAY(8000);
2423 		}
2424 	}
2425 
2426 	*first_ucode_section = last_read_idx;
2427 
2428 	if (iwm_nic_lock(sc)) {
2429 		if (cpu == 1)
2430 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431 		else
2432 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433 		iwm_nic_unlock(sc);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442 	struct iwm_fw_sects *fws;
2443 	int error = 0;
2444 	int first_ucode_section;
2445 
2446 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447 	    ucode_type);
2448 
2449 	fws = &sc->sc_fw.fw_sects[ucode_type];
2450 
2451 	/* configure the ucode to be ready to get the secured image */
2452 	/* release CPU reset */
2453 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454 
2455 	/* load to FW the binary Secured sections of CPU1 */
2456 	error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457 	if (error)
2458 		return error;
2459 
2460 	/* load to FW the binary sections of CPU2 */
2461 	return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463 
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467 	struct iwm_fw_sects *fws;
2468 	int error, i;
2469 	const void *data;
2470 	uint32_t dlen;
2471 	uint32_t offset;
2472 
2473 	sc->sc_uc.uc_intr = 0;
2474 
2475 	fws = &sc->sc_fw.fw_sects[ucode_type];
2476 	for (i = 0; i < fws->fw_count; i++) {
2477 		data = fws->fw_sect[i].fws_data;
2478 		dlen = fws->fw_sect[i].fws_len;
2479 		offset = fws->fw_sect[i].fws_devoff;
2480 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481 		    "LOAD FIRMWARE type %d offset %u len %d\n",
2482 		    ucode_type, offset, dlen);
2483 		if (dlen > sc->sc_fwdmasegsz) {
2484 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485 			    "chunk %d too large (%d bytes)\n", i, dlen);
2486 			error = EFBIG;
2487 		} else {
2488 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489 		}
2490 		if (error) {
2491 			device_printf(sc->sc_dev,
2492 			    "could not load firmware chunk %u of %u "
2493 			    "(error=%d)\n", i, fws->fw_count, error);
2494 			return error;
2495 		}
2496 	}
2497 
2498 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506 	int error, w;
2507 
2508 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509 		error = iwm_load_firmware_8000(sc, ucode_type);
2510 	else
2511 		error = iwm_load_firmware_7000(sc, ucode_type);
2512 	if (error)
2513 		return error;
2514 
2515 	/* wait for the firmware to load */
2516 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518 	}
2519 	if (error || !sc->sc_uc.uc_ok) {
2520 		device_printf(sc->sc_dev, "could not load firmware\n");
2521 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522 			device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524 			device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Give the firmware some time to initialize.
2531 	 * Accessing it too early causes errors.
2532 	 */
2533 	msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534 
2535 	return error;
2536 }
2537 
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542 	int error;
2543 
2544 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545 
2546 	if ((error = iwm_nic_init(sc)) != 0) {
2547 		device_printf(sc->sc_dev, "unable to init nic\n");
2548 		return error;
2549 	}
2550 
2551 	/* make sure rfkill handshake bits are cleared */
2552 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555 
2556 	/* clear (again), then enable host interrupts */
2557 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558 	iwm_enable_interrupts(sc);
2559 
2560 	/* really make sure rfkill handshake bits are cleared */
2561 	/* maybe we should write a few times more?  just to make sure */
2562 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564 
2565 	/* Load the given image to the HW */
2566 	return iwm_load_firmware(sc, ucode_type);
2567 }
2568 
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573 		.valid = htole32(valid_tx_ant),
2574 	};
2575 
2576 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579 
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586 
2587 	/* Set parameters */
2588 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589 	phy_cfg_cmd.calib_control.event_trigger =
2590 	    sc->sc_default_calib[ucode_type].event_trigger;
2591 	phy_cfg_cmd.calib_control.flow_trigger =
2592 	    sc->sc_default_calib[ucode_type].flow_trigger;
2593 
2594 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599 
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602 	enum iwm_ucode_type ucode_type)
2603 {
2604 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2605 	int error;
2606 
2607 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609 			error);
2610 		return error;
2611 	}
2612 
2613 	sc->sc_uc_current = ucode_type;
2614 	error = iwm_start_fw(sc, ucode_type);
2615 	if (error) {
2616 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617 		sc->sc_uc_current = old_type;
2618 		return error;
2619 	}
2620 
2621 	error = iwm_post_alive(sc);
2622 	if (error) {
2623 		device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624 	}
2625 	return error;
2626 }
2627 
2628 /*
2629  * mvm misc bits
2630  */
2631 
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638 	int error;
2639 
2640 	/* do not operate with rfkill switch turned on */
2641 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642 		device_printf(sc->sc_dev,
2643 		    "radio is disabled by hardware switch\n");
2644 		return EPERM;
2645 	}
2646 
2647 	sc->sc_init_complete = 0;
2648 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649 	    IWM_UCODE_TYPE_INIT)) != 0) {
2650 		device_printf(sc->sc_dev, "failed to load init firmware\n");
2651 		return error;
2652 	}
2653 
2654 	if (justnvm) {
2655 		if ((error = iwm_nvm_init(sc)) != 0) {
2656 			device_printf(sc->sc_dev, "failed to read nvm\n");
2657 			return error;
2658 		}
2659 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660 
2661 		return 0;
2662 	}
2663 
2664 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665 		device_printf(sc->sc_dev,
2666 		    "failed to send bt coex configuration: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	/* Init Smart FIFO. */
2671 	error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	/* Send TX valid antennas before triggering calibrations */
2676 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2677 		device_printf(sc->sc_dev,
2678 		    "failed to send antennas before calibration: %d\n", error);
2679 		return error;
2680 	}
2681 
2682 	/*
2683 	 * Send phy configurations command to init uCode
2684 	 * to start the 16.0 uCode init image internal calibrations.
2685 	 */
2686 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2687 		device_printf(sc->sc_dev,
2688 		    "%s: failed to run internal calibration: %d\n",
2689 		    __func__, error);
2690 		return error;
2691 	}
2692 
2693 	/*
2694 	 * Nothing to do but wait for the init complete notification
2695 	 * from the firmware
2696 	 */
2697 	while (!sc->sc_init_complete) {
2698 		error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2699 				 0, "iwminit", 2*hz);
2700 		if (error) {
2701 			device_printf(sc->sc_dev, "init complete failed: %d\n",
2702 				sc->sc_init_complete);
2703 			break;
2704 		}
2705 	}
2706 
2707 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2708 	    sc->sc_init_complete ? "" : "not ");
2709 
2710 	return error;
2711 }
2712 
2713 /*
2714  * receive side
2715  */
2716 
2717 /* (re)stock rx ring, called at init-time and at runtime */
2718 static int
2719 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2720 {
2721 	struct iwm_rx_ring *ring = &sc->rxq;
2722 	struct iwm_rx_data *data = &ring->data[idx];
2723 	struct mbuf *m;
2724 	bus_dmamap_t dmamap = NULL;
2725 	bus_dma_segment_t seg;
2726 	int nsegs, error;
2727 
2728 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2729 	if (m == NULL)
2730 		return ENOBUFS;
2731 
2732 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2733 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2734 	    &seg, &nsegs, BUS_DMA_NOWAIT);
2735 	if (error != 0) {
2736 		device_printf(sc->sc_dev,
2737 		    "%s: can't map mbuf, error %d\n", __func__, error);
2738 		goto fail;
2739 	}
2740 
2741 	if (data->m != NULL)
2742 		bus_dmamap_unload(ring->data_dmat, data->map);
2743 
2744 	/* Swap ring->spare_map with data->map */
2745 	dmamap = data->map;
2746 	data->map = ring->spare_map;
2747 	ring->spare_map = dmamap;
2748 
2749 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2750 	data->m = m;
2751 
2752 	/* Update RX descriptor. */
2753 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2754 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
2755 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2756 	    BUS_DMASYNC_PREWRITE);
2757 
2758 	return 0;
2759 fail:
2760 	m_freem(m);
2761 	return error;
2762 }
2763 
2764 /* iwlwifi: mvm/rx.c */
2765 #define IWM_RSSI_OFFSET 50
2766 static int
2767 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2768 {
2769 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2770 	uint32_t agc_a, agc_b;
2771 	uint32_t val;
2772 
2773 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2774 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2775 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2776 
2777 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2778 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2779 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2780 
2781 	/*
2782 	 * dBm = rssi dB - agc dB - constant.
2783 	 * Higher AGC (higher radio gain) means lower signal.
2784 	 */
2785 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2786 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2787 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2788 
2789 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2790 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2791 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2792 
2793 	return max_rssi_dbm;
2794 }
2795 
2796 /* iwlwifi: mvm/rx.c */
2797 /*
2798  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2799  * values are reported by the fw as positive values - need to negate
2800  * to obtain their dBM.  Account for missing antennas by replacing 0
2801  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2802  */
2803 static int
2804 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2805 {
2806 	int energy_a, energy_b, energy_c, max_energy;
2807 	uint32_t val;
2808 
2809 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2810 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2811 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2812 	energy_a = energy_a ? -energy_a : -256;
2813 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2814 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2815 	energy_b = energy_b ? -energy_b : -256;
2816 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2817 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2818 	energy_c = energy_c ? -energy_c : -256;
2819 	max_energy = MAX(energy_a, energy_b);
2820 	max_energy = MAX(max_energy, energy_c);
2821 
2822 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2823 	    "energy In A %d B %d C %d , and max %d\n",
2824 	    energy_a, energy_b, energy_c, max_energy);
2825 
2826 	return max_energy;
2827 }
2828 
2829 static void
2830 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2831 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2832 {
2833 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2834 
2835 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2836 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2837 
2838 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2839 }
2840 
2841 /*
2842  * Retrieve the average noise (in dBm) among receivers.
2843  */
2844 static int
2845 iwm_get_noise(struct iwm_softc *sc,
2846     const struct iwm_mvm_statistics_rx_non_phy *stats)
2847 {
2848 	int i, total, nbant, noise;
2849 
2850 	total = nbant = noise = 0;
2851 	for (i = 0; i < 3; i++) {
2852 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2853 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2854 		    __func__,
2855 		    i,
2856 		    noise);
2857 
2858 		if (noise) {
2859 			total += noise;
2860 			nbant++;
2861 		}
2862 	}
2863 
2864 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2865 	    __func__, nbant, total);
2866 #if 0
2867 	/* There should be at least one antenna but check anyway. */
2868 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2869 #else
2870 	/* For now, just hard-code it to -96 to be safe */
2871 	return (-96);
2872 #endif
2873 }
2874 
2875 /*
2876  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2877  *
2878  * Handles the actual data of the Rx packet from the fw
2879  */
2880 static void
2881 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2882 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2883 {
2884 	struct ieee80211com *ic = &sc->sc_ic;
2885 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2886 	struct ieee80211_frame *wh;
2887 	struct ieee80211_node *ni;
2888 	struct ieee80211_rx_stats rxs;
2889 	struct mbuf *m;
2890 	struct iwm_rx_phy_info *phy_info;
2891 	struct iwm_rx_mpdu_res_start *rx_res;
2892 	uint32_t len;
2893 	uint32_t rx_pkt_status;
2894 	int rssi;
2895 
2896 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2897 
2898 	phy_info = &sc->sc_last_phy_info;
2899 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2900 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2901 	len = le16toh(rx_res->byte_count);
2902 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2903 
2904 	m = data->m;
2905 	m->m_data = pkt->data + sizeof(*rx_res);
2906 	m->m_pkthdr.len = m->m_len = len;
2907 
2908 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2909 		device_printf(sc->sc_dev,
2910 		    "dsp size out of range [0,20]: %d\n",
2911 		    phy_info->cfg_phy_cnt);
2912 		return;
2913 	}
2914 
2915 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2916 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2917 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2918 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2919 		return; /* drop */
2920 	}
2921 
2922 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2923 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2924 	} else {
2925 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2926 	}
2927 
2928 	/* Note: RSSI is absolute (ie a -ve value) */
2929 	if (rssi < IWM_MIN_DBM)
2930 		rssi = IWM_MIN_DBM;
2931 	else if (rssi > IWM_MAX_DBM)
2932 		rssi = IWM_MAX_DBM;
2933 
2934 	/* Map it to relative value */
2935 	rssi = rssi - sc->sc_noise;
2936 
2937 	/* replenish ring for the buffer we're going to feed to the sharks */
2938 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2939 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2940 		    __func__);
2941 		return;
2942 	}
2943 
2944 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2945 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2946 
2947 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2948 
2949 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2950 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2951 	    __func__,
2952 	    le16toh(phy_info->channel),
2953 	    le16toh(phy_info->phy_flags));
2954 
2955 	/*
2956 	 * Populate an RX state struct with the provided information.
2957 	 */
2958 	bzero(&rxs, sizeof(rxs));
2959 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2960 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2961 	rxs.c_ieee = le16toh(phy_info->channel);
2962 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2963 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2964 	} else {
2965 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2966 	}
2967 
2968 	/* rssi is in 1/2db units */
2969 	rxs.rssi = rssi * 2;
2970 	rxs.nf = sc->sc_noise;
2971 
2972 	if (ieee80211_radiotap_active_vap(vap)) {
2973 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2974 
2975 		tap->wr_flags = 0;
2976 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2977 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2978 		tap->wr_chan_freq = htole16(rxs.c_freq);
2979 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2980 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2981 		tap->wr_dbm_antsignal = (int8_t)rssi;
2982 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2983 		tap->wr_tsft = phy_info->system_timestamp;
2984 		switch (phy_info->rate) {
2985 		/* CCK rates. */
2986 		case  10: tap->wr_rate =   2; break;
2987 		case  20: tap->wr_rate =   4; break;
2988 		case  55: tap->wr_rate =  11; break;
2989 		case 110: tap->wr_rate =  22; break;
2990 		/* OFDM rates. */
2991 		case 0xd: tap->wr_rate =  12; break;
2992 		case 0xf: tap->wr_rate =  18; break;
2993 		case 0x5: tap->wr_rate =  24; break;
2994 		case 0x7: tap->wr_rate =  36; break;
2995 		case 0x9: tap->wr_rate =  48; break;
2996 		case 0xb: tap->wr_rate =  72; break;
2997 		case 0x1: tap->wr_rate =  96; break;
2998 		case 0x3: tap->wr_rate = 108; break;
2999 		/* Unknown rate: should not happen. */
3000 		default:  tap->wr_rate =   0;
3001 		}
3002 	}
3003 
3004 	IWM_UNLOCK(sc);
3005 	if (ni != NULL) {
3006 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3007 		ieee80211_input_mimo(ni, m, &rxs);
3008 		ieee80211_free_node(ni);
3009 	} else {
3010 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3011 		ieee80211_input_mimo_all(ic, m, &rxs);
3012 	}
3013 	IWM_LOCK(sc);
3014 }
3015 
3016 static int
3017 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3018 	struct iwm_node *in)
3019 {
3020 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3021 	struct ieee80211_node *ni = &in->in_ni;
3022 	struct ieee80211vap *vap = ni->ni_vap;
3023 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3024 	int failack = tx_resp->failure_frame;
3025 
3026 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3027 
3028 	/* Update rate control statistics. */
3029 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3030 	    __func__,
3031 	    (int) le16toh(tx_resp->status.status),
3032 	    (int) le16toh(tx_resp->status.sequence),
3033 	    tx_resp->frame_count,
3034 	    tx_resp->bt_kill_count,
3035 	    tx_resp->failure_rts,
3036 	    tx_resp->failure_frame,
3037 	    le32toh(tx_resp->initial_rate),
3038 	    (int) le16toh(tx_resp->wireless_media_time));
3039 
3040 	if (status != IWM_TX_STATUS_SUCCESS &&
3041 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3042 		ieee80211_ratectl_tx_complete(vap, ni,
3043 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
3044 		return (1);
3045 	} else {
3046 		ieee80211_ratectl_tx_complete(vap, ni,
3047 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
3048 		return (0);
3049 	}
3050 }
3051 
3052 static void
3053 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3054 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3055 {
3056 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3057 	int idx = cmd_hdr->idx;
3058 	int qid = cmd_hdr->qid;
3059 	struct iwm_tx_ring *ring = &sc->txq[qid];
3060 	struct iwm_tx_data *txd = &ring->data[idx];
3061 	struct iwm_node *in = txd->in;
3062 	struct mbuf *m = txd->m;
3063 	int status;
3064 
3065 	KASSERT(txd->done == 0, ("txd not done"));
3066 	KASSERT(txd->in != NULL, ("txd without node"));
3067 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3068 
3069 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3070 
3071 	sc->sc_tx_timer = 0;
3072 
3073 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3074 
3075 	/* Unmap and free mbuf. */
3076 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3077 	bus_dmamap_unload(ring->data_dmat, txd->map);
3078 
3079 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3080 	    "free txd %p, in %p\n", txd, txd->in);
3081 	txd->done = 1;
3082 	txd->m = NULL;
3083 	txd->in = NULL;
3084 
3085 	ieee80211_tx_complete(&in->in_ni, m, status);
3086 
3087 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3088 		sc->qfullmsk &= ~(1 << ring->qid);
3089 		if (sc->qfullmsk == 0) {
3090 			/*
3091 			 * Well, we're in interrupt context, but then again
3092 			 * I guess net80211 does all sorts of stunts in
3093 			 * interrupt context, so maybe this is no biggie.
3094 			 */
3095 			iwm_start(sc);
3096 		}
3097 	}
3098 }
3099 
3100 /*
3101  * transmit side
3102  */
3103 
3104 /*
3105  * Process a "command done" firmware notification.  This is where we wakeup
3106  * processes waiting for a synchronous command completion.
3107  * from if_iwn
3108  */
3109 static void
3110 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3111 {
3112 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3113 	struct iwm_tx_data *data;
3114 
3115 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3116 		return;	/* Not a command ack. */
3117 	}
3118 
3119 	/* XXX wide commands? */
3120 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3121 	    "cmd notification type 0x%x qid %d idx %d\n",
3122 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3123 
3124 	data = &ring->data[pkt->hdr.idx];
3125 
3126 	/* If the command was mapped in an mbuf, free it. */
3127 	if (data->m != NULL) {
3128 		bus_dmamap_sync(ring->data_dmat, data->map,
3129 		    BUS_DMASYNC_POSTWRITE);
3130 		bus_dmamap_unload(ring->data_dmat, data->map);
3131 		m_freem(data->m);
3132 		data->m = NULL;
3133 	}
3134 	wakeup(&ring->desc[pkt->hdr.idx]);
3135 }
3136 
3137 #if 0
3138 /*
3139  * necessary only for block ack mode
3140  */
3141 void
3142 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3143 	uint16_t len)
3144 {
3145 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3146 	uint16_t w_val;
3147 
3148 	scd_bc_tbl = sc->sched_dma.vaddr;
3149 
3150 	len += 8; /* magic numbers came naturally from paris */
3151 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3152 		len = roundup(len, 4) / 4;
3153 
3154 	w_val = htole16(sta_id << 12 | len);
3155 
3156 	/* Update TX scheduler. */
3157 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3158 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3159 	    BUS_DMASYNC_PREWRITE);
3160 
3161 	/* I really wonder what this is ?!? */
3162 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3163 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3164 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3165 		    BUS_DMASYNC_PREWRITE);
3166 	}
3167 }
3168 #endif
3169 
3170 /*
3171  * Take an 802.11 (non-n) rate, find the relevant rate
3172  * table entry.  return the index into in_ridx[].
3173  *
3174  * The caller then uses that index back into in_ridx
3175  * to figure out the rate index programmed /into/
3176  * the firmware for this given node.
3177  */
3178 static int
3179 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3180     uint8_t rate)
3181 {
3182 	int i;
3183 	uint8_t r;
3184 
3185 	for (i = 0; i < nitems(in->in_ridx); i++) {
3186 		r = iwm_rates[in->in_ridx[i]].rate;
3187 		if (rate == r)
3188 			return (i);
3189 	}
3190 	/* XXX Return the first */
3191 	/* XXX TODO: have it return the /lowest/ */
3192 	return (0);
3193 }
3194 
3195 /*
3196  * Fill in the rate related information for a transmit command.
3197  */
3198 static const struct iwm_rate *
3199 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3200 	struct mbuf *m, struct iwm_tx_cmd *tx)
3201 {
3202 	struct ieee80211_node *ni = &in->in_ni;
3203 	struct ieee80211_frame *wh;
3204 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3205 	const struct iwm_rate *rinfo;
3206 	int type;
3207 	int ridx, rate_flags, i;
3208 
3209 	wh = mtod(m, struct ieee80211_frame *);
3210 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3211 
3212 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3213 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3214 
3215 	if (type == IEEE80211_FC0_TYPE_MGT) {
3216 		i = iwm_tx_rateidx_lookup(sc, in, tp->mgmtrate);
3217 		ridx = in->in_ridx[i];
3218 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3219 		i = iwm_tx_rateidx_lookup(sc, in, tp->mcastrate);
3220 		ridx = in->in_ridx[i];
3221 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3222 		i = iwm_tx_rateidx_lookup(sc, in, tp->ucastrate);
3223 		ridx = in->in_ridx[i];
3224 	} else if (m->m_flags & M_EAPOL) {
3225 		i = iwm_tx_rateidx_lookup(sc, in, tp->mgmtrate);
3226 		ridx = in->in_ridx[i];
3227 	} else {
3228 		/* for data frames, use RS table */
3229 		/* XXX pass pktlen */
3230 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3231 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3232 		ridx = in->in_ridx[i];
3233 
3234 		/* This is the index into the programmed table */
3235 		tx->initial_rate_index = i;
3236 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3237 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3238 		    "%s: start with i=%d, txrate %d\n",
3239 		    __func__, i, iwm_rates[ridx].rate);
3240 	}
3241 
3242 	rinfo = &iwm_rates[ridx];
3243 
3244 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3245 	    __func__, ridx,
3246 	    rinfo->rate,
3247 	    !! (IWM_RIDX_IS_CCK(ridx))
3248 	    );
3249 
3250 	/* XXX TODO: hard-coded TX antenna? */
3251 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3252 	if (IWM_RIDX_IS_CCK(ridx))
3253 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3254 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3255 
3256 	return rinfo;
3257 }
3258 
3259 #define TB0_SIZE 16
3260 static int
3261 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3262 {
3263 	struct ieee80211com *ic = &sc->sc_ic;
3264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265 	struct iwm_node *in = IWM_NODE(ni);
3266 	struct iwm_tx_ring *ring;
3267 	struct iwm_tx_data *data;
3268 	struct iwm_tfd *desc;
3269 	struct iwm_device_cmd *cmd;
3270 	struct iwm_tx_cmd *tx;
3271 	struct ieee80211_frame *wh;
3272 	struct ieee80211_key *k = NULL;
3273 	struct mbuf *m1;
3274 	const struct iwm_rate *rinfo;
3275 	uint32_t flags;
3276 	u_int hdrlen;
3277 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3278 	int nsegs;
3279 	uint8_t tid, type;
3280 	int i, totlen, error, pad;
3281 
3282 	wh = mtod(m, struct ieee80211_frame *);
3283 	hdrlen = ieee80211_anyhdrsize(wh);
3284 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3285 	tid = 0;
3286 	ring = &sc->txq[ac];
3287 	desc = &ring->desc[ring->cur];
3288 	memset(desc, 0, sizeof(*desc));
3289 	data = &ring->data[ring->cur];
3290 
3291 	/* Fill out iwm_tx_cmd to send to the firmware */
3292 	cmd = &ring->cmd[ring->cur];
3293 	cmd->hdr.code = IWM_TX_CMD;
3294 	cmd->hdr.flags = 0;
3295 	cmd->hdr.qid = ring->qid;
3296 	cmd->hdr.idx = ring->cur;
3297 
3298 	tx = (void *)cmd->data;
3299 	memset(tx, 0, sizeof(*tx));
3300 
3301 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3302 
3303 	/* Encrypt the frame if need be. */
3304 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3305 		/* Retrieve key for TX && do software encryption. */
3306 		k = ieee80211_crypto_encap(ni, m);
3307 		if (k == NULL) {
3308 			m_freem(m);
3309 			return (ENOBUFS);
3310 		}
3311 		/* 802.11 header may have moved. */
3312 		wh = mtod(m, struct ieee80211_frame *);
3313 	}
3314 
3315 	if (ieee80211_radiotap_active_vap(vap)) {
3316 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3317 
3318 		tap->wt_flags = 0;
3319 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3320 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3321 		tap->wt_rate = rinfo->rate;
3322 		if (k != NULL)
3323 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3324 		ieee80211_radiotap_tx(vap, m);
3325 	}
3326 
3327 
3328 	totlen = m->m_pkthdr.len;
3329 
3330 	flags = 0;
3331 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3332 		flags |= IWM_TX_CMD_FLG_ACK;
3333 	}
3334 
3335 	if (type == IEEE80211_FC0_TYPE_DATA
3336 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3337 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3338 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3339 	}
3340 
3341 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3342 	    type != IEEE80211_FC0_TYPE_DATA)
3343 		tx->sta_id = sc->sc_aux_sta.sta_id;
3344 	else
3345 		tx->sta_id = IWM_STATION_ID;
3346 
3347 	if (type == IEEE80211_FC0_TYPE_MGT) {
3348 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3349 
3350 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3351 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3352 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3353 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3354 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3355 		} else {
3356 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3357 		}
3358 	} else {
3359 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3360 	}
3361 
3362 	if (hdrlen & 3) {
3363 		/* First segment length must be a multiple of 4. */
3364 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3365 		pad = 4 - (hdrlen & 3);
3366 	} else
3367 		pad = 0;
3368 
3369 	tx->driver_txop = 0;
3370 	tx->next_frame_len = 0;
3371 
3372 	tx->len = htole16(totlen);
3373 	tx->tid_tspec = tid;
3374 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3375 
3376 	/* Set physical address of "scratch area". */
3377 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3378 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3379 
3380 	/* Copy 802.11 header in TX command. */
3381 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3382 
3383 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3384 
3385 	tx->sec_ctl = 0;
3386 	tx->tx_flags |= htole32(flags);
3387 
3388 	/* Trim 802.11 header. */
3389 	m_adj(m, hdrlen);
3390 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3391 	    segs, &nsegs, BUS_DMA_NOWAIT);
3392 	if (error != 0) {
3393 		if (error != EFBIG) {
3394 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3395 			    error);
3396 			m_freem(m);
3397 			return error;
3398 		}
3399 		/* Too many DMA segments, linearize mbuf. */
3400 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3401 		if (m1 == NULL) {
3402 			device_printf(sc->sc_dev,
3403 			    "%s: could not defrag mbuf\n", __func__);
3404 			m_freem(m);
3405 			return (ENOBUFS);
3406 		}
3407 		m = m1;
3408 
3409 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3410 		    segs, &nsegs, BUS_DMA_NOWAIT);
3411 		if (error != 0) {
3412 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3413 			    error);
3414 			m_freem(m);
3415 			return error;
3416 		}
3417 	}
3418 	data->m = m;
3419 	data->in = in;
3420 	data->done = 0;
3421 
3422 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3423 	    "sending txd %p, in %p\n", data, data->in);
3424 	KASSERT(data->in != NULL, ("node is NULL"));
3425 
3426 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3427 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3428 	    ring->qid, ring->cur, totlen, nsegs,
3429 	    le32toh(tx->tx_flags),
3430 	    le32toh(tx->rate_n_flags),
3431 	    tx->initial_rate_index
3432 	    );
3433 
3434 	/* Fill TX descriptor. */
3435 	desc->num_tbs = 2 + nsegs;
3436 
3437 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3438 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3439 	    (TB0_SIZE << 4);
3440 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3441 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3442 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3443 	      + hdrlen + pad - TB0_SIZE) << 4);
3444 
3445 	/* Other DMA segments are for data payload. */
3446 	for (i = 0; i < nsegs; i++) {
3447 		seg = &segs[i];
3448 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3449 		desc->tbs[i+2].hi_n_len = \
3450 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3451 		    | ((seg->ds_len) << 4);
3452 	}
3453 
3454 	bus_dmamap_sync(ring->data_dmat, data->map,
3455 	    BUS_DMASYNC_PREWRITE);
3456 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3457 	    BUS_DMASYNC_PREWRITE);
3458 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3459 	    BUS_DMASYNC_PREWRITE);
3460 
3461 #if 0
3462 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3463 #endif
3464 
3465 	/* Kick TX ring. */
3466 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3467 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3468 
3469 	/* Mark TX ring as full if we reach a certain threshold. */
3470 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3471 		sc->qfullmsk |= 1 << ring->qid;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static int
3478 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3479     const struct ieee80211_bpf_params *params)
3480 {
3481 	struct ieee80211com *ic = ni->ni_ic;
3482 	struct iwm_softc *sc = ic->ic_softc;
3483 	int error = 0;
3484 
3485 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3486 	    "->%s begin\n", __func__);
3487 
3488 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3489 		m_freem(m);
3490 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3491 		    "<-%s not RUNNING\n", __func__);
3492 		return (ENETDOWN);
3493         }
3494 
3495 	IWM_LOCK(sc);
3496 	/* XXX fix this */
3497         if (params == NULL) {
3498 		error = iwm_tx(sc, m, ni, 0);
3499 	} else {
3500 		error = iwm_tx(sc, m, ni, 0);
3501 	}
3502 	sc->sc_tx_timer = 5;
3503 	IWM_UNLOCK(sc);
3504 
3505         return (error);
3506 }
3507 
3508 /*
3509  * mvm/tx.c
3510  */
3511 
3512 /*
3513  * Note that there are transports that buffer frames before they reach
3514  * the firmware. This means that after flush_tx_path is called, the
3515  * queue might not be empty. The race-free way to handle this is to:
3516  * 1) set the station as draining
3517  * 2) flush the Tx path
3518  * 3) wait for the transport queues to be empty
3519  */
3520 int
3521 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3522 {
3523 	int ret;
3524 	struct iwm_tx_path_flush_cmd flush_cmd = {
3525 		.queues_ctl = htole32(tfd_msk),
3526 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3527 	};
3528 
3529 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3530 	    sizeof(flush_cmd), &flush_cmd);
3531 	if (ret)
3532                 device_printf(sc->sc_dev,
3533 		    "Flushing tx queue failed: %d\n", ret);
3534 	return ret;
3535 }
3536 
3537 /*
3538  * BEGIN mvm/sta.c
3539  */
3540 
3541 static int
3542 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3543 	struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3544 {
3545 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3546 	    cmd, status);
3547 }
3548 
3549 /* send station add/update command to firmware */
3550 static int
3551 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3552 {
3553 	struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3554 	int ret;
3555 	uint32_t status;
3556 
3557 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3558 
3559 	add_sta_cmd.sta_id = IWM_STATION_ID;
3560 	add_sta_cmd.mac_id_n_color
3561 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3562 	        IWM_DEFAULT_COLOR));
3563 	if (!update) {
3564 		int ac;
3565 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3566 			add_sta_cmd.tfd_queue_msk |=
3567 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3568 		}
3569 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3570 	}
3571 	add_sta_cmd.add_modify = update ? 1 : 0;
3572 	add_sta_cmd.station_flags_msk
3573 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3574 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3575 	if (update)
3576 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3577 
3578 	status = IWM_ADD_STA_SUCCESS;
3579 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3580 	if (ret)
3581 		return ret;
3582 
3583 	switch (status) {
3584 	case IWM_ADD_STA_SUCCESS:
3585 		break;
3586 	default:
3587 		ret = EIO;
3588 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3589 		break;
3590 	}
3591 
3592 	return ret;
3593 }
3594 
3595 static int
3596 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3597 {
3598 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3599 }
3600 
3601 static int
3602 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3603 {
3604 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3605 }
3606 
3607 static int
3608 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3609 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3610 {
3611 	struct iwm_mvm_add_sta_cmd_v7 cmd;
3612 	int ret;
3613 	uint32_t status;
3614 
3615 	memset(&cmd, 0, sizeof(cmd));
3616 	cmd.sta_id = sta->sta_id;
3617 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3618 
3619 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3620 	cmd.tid_disable_tx = htole16(0xffff);
3621 
3622 	if (addr)
3623 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3624 
3625 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3626 	if (ret)
3627 		return ret;
3628 
3629 	switch (status) {
3630 	case IWM_ADD_STA_SUCCESS:
3631 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3632 		    "%s: Internal station added.\n", __func__);
3633 		return 0;
3634 	default:
3635 		device_printf(sc->sc_dev,
3636 		    "%s: Add internal station failed, status=0x%x\n",
3637 		    __func__, status);
3638 		ret = EIO;
3639 		break;
3640 	}
3641 	return ret;
3642 }
3643 
3644 static int
3645 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3646 {
3647 	int ret;
3648 
3649 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3650 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3651 
3652 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3653 	if (ret)
3654 		return ret;
3655 
3656 	ret = iwm_mvm_add_int_sta_common(sc,
3657 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3658 
3659 	if (ret)
3660 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3661 	return ret;
3662 }
3663 
3664 /*
3665  * END mvm/sta.c
3666  */
3667 
3668 /*
3669  * BEGIN mvm/quota.c
3670  */
3671 
3672 static int
3673 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3674 {
3675 	struct iwm_time_quota_cmd cmd;
3676 	int i, idx, ret, num_active_macs, quota, quota_rem;
3677 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3678 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3679 	uint16_t id;
3680 
3681 	memset(&cmd, 0, sizeof(cmd));
3682 
3683 	/* currently, PHY ID == binding ID */
3684 	if (in) {
3685 		id = in->in_phyctxt->id;
3686 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3687 		colors[id] = in->in_phyctxt->color;
3688 
3689 		if (1)
3690 			n_ifs[id] = 1;
3691 	}
3692 
3693 	/*
3694 	 * The FW's scheduling session consists of
3695 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3696 	 * equally between all the bindings that require quota
3697 	 */
3698 	num_active_macs = 0;
3699 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3700 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3701 		num_active_macs += n_ifs[i];
3702 	}
3703 
3704 	quota = 0;
3705 	quota_rem = 0;
3706 	if (num_active_macs) {
3707 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3708 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3709 	}
3710 
3711 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3712 		if (colors[i] < 0)
3713 			continue;
3714 
3715 		cmd.quotas[idx].id_and_color =
3716 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3717 
3718 		if (n_ifs[i] <= 0) {
3719 			cmd.quotas[idx].quota = htole32(0);
3720 			cmd.quotas[idx].max_duration = htole32(0);
3721 		} else {
3722 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3723 			cmd.quotas[idx].max_duration = htole32(0);
3724 		}
3725 		idx++;
3726 	}
3727 
3728 	/* Give the remainder of the session to the first binding */
3729 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3730 
3731 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3732 	    sizeof(cmd), &cmd);
3733 	if (ret)
3734 		device_printf(sc->sc_dev,
3735 		    "%s: Failed to send quota: %d\n", __func__, ret);
3736 	return ret;
3737 }
3738 
3739 /*
3740  * END mvm/quota.c
3741  */
3742 
3743 /*
3744  * ieee80211 routines
3745  */
3746 
3747 /*
3748  * Change to AUTH state in 80211 state machine.  Roughly matches what
3749  * Linux does in bss_info_changed().
3750  */
3751 static int
3752 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3753 {
3754 	struct ieee80211_node *ni;
3755 	struct iwm_node *in;
3756 	struct iwm_vap *iv = IWM_VAP(vap);
3757 	uint32_t duration;
3758 	int error;
3759 
3760 	/*
3761 	 * XXX i have a feeling that the vap node is being
3762 	 * freed from underneath us. Grr.
3763 	 */
3764 	ni = ieee80211_ref_node(vap->iv_bss);
3765 	in = IWM_NODE(ni);
3766 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3767 	    "%s: called; vap=%p, bss ni=%p\n",
3768 	    __func__,
3769 	    vap,
3770 	    ni);
3771 
3772 	in->in_assoc = 0;
3773 
3774 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3775 	if (error != 0)
3776 		return error;
3777 
3778 	error = iwm_allow_mcast(vap, sc);
3779 	if (error) {
3780 		device_printf(sc->sc_dev,
3781 		    "%s: failed to set multicast\n", __func__);
3782 		goto out;
3783 	}
3784 
3785 	/*
3786 	 * This is where it deviates from what Linux does.
3787 	 *
3788 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3789 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3790 	 * and always does a mac_ctx_changed().
3791 	 *
3792 	 * The openbsd port doesn't attempt to do that - it reset things
3793 	 * at odd states and does the add here.
3794 	 *
3795 	 * So, until the state handling is fixed (ie, we never reset
3796 	 * the NIC except for a firmware failure, which should drag
3797 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3798 	 * contexts that are required), let's do a dirty hack here.
3799 	 */
3800 	if (iv->is_uploaded) {
3801 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3802 			device_printf(sc->sc_dev,
3803 			    "%s: failed to update MAC\n", __func__);
3804 			goto out;
3805 		}
3806 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3807 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3808 			device_printf(sc->sc_dev,
3809 			    "%s: failed update phy ctxt\n", __func__);
3810 			goto out;
3811 		}
3812 		in->in_phyctxt = &sc->sc_phyctxt[0];
3813 
3814 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3815 			device_printf(sc->sc_dev,
3816 			    "%s: binding update cmd\n", __func__);
3817 			goto out;
3818 		}
3819 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3820 			device_printf(sc->sc_dev,
3821 			    "%s: failed to update sta\n", __func__);
3822 			goto out;
3823 		}
3824 	} else {
3825 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3826 			device_printf(sc->sc_dev,
3827 			    "%s: failed to add MAC\n", __func__);
3828 			goto out;
3829 		}
3830 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3831 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3832 			device_printf(sc->sc_dev,
3833 			    "%s: failed add phy ctxt!\n", __func__);
3834 			error = ETIMEDOUT;
3835 			goto out;
3836 		}
3837 		in->in_phyctxt = &sc->sc_phyctxt[0];
3838 
3839 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3840 			device_printf(sc->sc_dev,
3841 			    "%s: binding add cmd\n", __func__);
3842 			goto out;
3843 		}
3844 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3845 			device_printf(sc->sc_dev,
3846 			    "%s: failed to add sta\n", __func__);
3847 			goto out;
3848 		}
3849 	}
3850 
3851 	/*
3852 	 * Prevent the FW from wandering off channel during association
3853 	 * by "protecting" the session with a time event.
3854 	 */
3855 	/* XXX duration is in units of TU, not MS */
3856 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3857 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3858 	DELAY(100);
3859 
3860 	error = 0;
3861 out:
3862 	ieee80211_free_node(ni);
3863 	return (error);
3864 }
3865 
3866 static int
3867 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3868 {
3869 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3870 	int error;
3871 
3872 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3873 		device_printf(sc->sc_dev,
3874 		    "%s: failed to update STA\n", __func__);
3875 		return error;
3876 	}
3877 
3878 	in->in_assoc = 1;
3879 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3880 		device_printf(sc->sc_dev,
3881 		    "%s: failed to update MAC\n", __func__);
3882 		return error;
3883 	}
3884 
3885 	return 0;
3886 }
3887 
3888 static int
3889 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3890 {
3891 	uint32_t tfd_msk;
3892 
3893 	/*
3894 	 * Ok, so *technically* the proper set of calls for going
3895 	 * from RUN back to SCAN is:
3896 	 *
3897 	 * iwm_mvm_power_mac_disable(sc, in);
3898 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3899 	 * iwm_mvm_rm_sta(sc, in);
3900 	 * iwm_mvm_update_quotas(sc, NULL);
3901 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3902 	 * iwm_mvm_binding_remove_vif(sc, in);
3903 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3904 	 *
3905 	 * However, that freezes the device not matter which permutations
3906 	 * and modifications are attempted.  Obviously, this driver is missing
3907 	 * something since it works in the Linux driver, but figuring out what
3908 	 * is missing is a little more complicated.  Now, since we're going
3909 	 * back to nothing anyway, we'll just do a complete device reset.
3910 	 * Up your's, device!
3911 	 */
3912 	/*
3913 	 * Just using 0xf for the queues mask is fine as long as we only
3914 	 * get here from RUN state.
3915 	 */
3916 	tfd_msk = 0xf;
3917 	mbufq_drain(&sc->sc_snd);
3918 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3919 	/*
3920 	 * We seem to get away with just synchronously sending the
3921 	 * IWM_TXPATH_FLUSH command.
3922 	 */
3923 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3924 	iwm_stop_device(sc);
3925 	iwm_init_hw(sc);
3926 	if (in)
3927 		in->in_assoc = 0;
3928 	return 0;
3929 
3930 #if 0
3931 	int error;
3932 
3933 	iwm_mvm_power_mac_disable(sc, in);
3934 
3935 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3936 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3937 		return error;
3938 	}
3939 
3940 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3941 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3942 		return error;
3943 	}
3944 	error = iwm_mvm_rm_sta(sc, in);
3945 	in->in_assoc = 0;
3946 	iwm_mvm_update_quotas(sc, NULL);
3947 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3948 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3949 		return error;
3950 	}
3951 	iwm_mvm_binding_remove_vif(sc, in);
3952 
3953 	iwm_mvm_mac_ctxt_remove(sc, in);
3954 
3955 	return error;
3956 #endif
3957 }
3958 
3959 static struct ieee80211_node *
3960 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3961 {
3962 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3963 	    M_NOWAIT | M_ZERO);
3964 }
3965 
3966 static void
3967 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3968 {
3969 	struct ieee80211_node *ni = &in->in_ni;
3970 	struct iwm_lq_cmd *lq = &in->in_lq;
3971 	int nrates = ni->ni_rates.rs_nrates;
3972 	int i, ridx, tab = 0;
3973 	int txant = 0;
3974 
3975 	if (nrates > nitems(lq->rs_table)) {
3976 		device_printf(sc->sc_dev,
3977 		    "%s: node supports %d rates, driver handles "
3978 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3979 		return;
3980 	}
3981 	if (nrates == 0) {
3982 		device_printf(sc->sc_dev,
3983 		    "%s: node supports 0 rates, odd!\n", __func__);
3984 		return;
3985 	}
3986 
3987 	/*
3988 	 * XXX .. and most of iwm_node is not initialised explicitly;
3989 	 * it's all just 0x0 passed to the firmware.
3990 	 */
3991 
3992 	/* first figure out which rates we should support */
3993 	/* XXX TODO: this isn't 11n aware /at all/ */
3994 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3995 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3996 	    "%s: nrates=%d\n", __func__, nrates);
3997 
3998 	/*
3999 	 * Loop over nrates and populate in_ridx from the highest
4000 	 * rate to the lowest rate.  Remember, in_ridx[] has
4001 	 * IEEE80211_RATE_MAXSIZE entries!
4002 	 */
4003 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4004 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4005 
4006 		/* Map 802.11 rate to HW rate index. */
4007 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4008 			if (iwm_rates[ridx].rate == rate)
4009 				break;
4010 		if (ridx > IWM_RIDX_MAX) {
4011 			device_printf(sc->sc_dev,
4012 			    "%s: WARNING: device rate for %d not found!\n",
4013 			    __func__, rate);
4014 		} else {
4015 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4016 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4017 			    __func__,
4018 			    i,
4019 			    rate,
4020 			    ridx);
4021 			in->in_ridx[i] = ridx;
4022 		}
4023 	}
4024 
4025 	/* then construct a lq_cmd based on those */
4026 	memset(lq, 0, sizeof(*lq));
4027 	lq->sta_id = IWM_STATION_ID;
4028 
4029 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4030 	if (ni->ni_flags & IEEE80211_NODE_HT)
4031 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4032 
4033 	/*
4034 	 * are these used? (we don't do SISO or MIMO)
4035 	 * need to set them to non-zero, though, or we get an error.
4036 	 */
4037 	lq->single_stream_ant_msk = 1;
4038 	lq->dual_stream_ant_msk = 1;
4039 
4040 	/*
4041 	 * Build the actual rate selection table.
4042 	 * The lowest bits are the rates.  Additionally,
4043 	 * CCK needs bit 9 to be set.  The rest of the bits
4044 	 * we add to the table select the tx antenna
4045 	 * Note that we add the rates in the highest rate first
4046 	 * (opposite of ni_rates).
4047 	 */
4048 	/*
4049 	 * XXX TODO: this should be looping over the min of nrates
4050 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4051 	 */
4052 	for (i = 0; i < nrates; i++) {
4053 		int nextant;
4054 
4055 		if (txant == 0)
4056 			txant = iwm_fw_valid_tx_ant(sc);
4057 		nextant = 1<<(ffs(txant)-1);
4058 		txant &= ~nextant;
4059 
4060 		/*
4061 		 * Map the rate id into a rate index into
4062 		 * our hardware table containing the
4063 		 * configuration to use for this rate.
4064 		 */
4065 		ridx = in->in_ridx[i];
4066 		tab = iwm_rates[ridx].plcp;
4067 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4068 		if (IWM_RIDX_IS_CCK(ridx))
4069 			tab |= IWM_RATE_MCS_CCK_MSK;
4070 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4071 		    "station rate i=%d, rate=%d, hw=%x\n",
4072 		    i, iwm_rates[ridx].rate, tab);
4073 		lq->rs_table[i] = htole32(tab);
4074 	}
4075 	/* then fill the rest with the lowest possible rate */
4076 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4077 		KASSERT(tab != 0, ("invalid tab"));
4078 		lq->rs_table[i] = htole32(tab);
4079 	}
4080 }
4081 
4082 static int
4083 iwm_media_change(struct ifnet *ifp)
4084 {
4085 	struct ieee80211vap *vap = ifp->if_softc;
4086 	struct ieee80211com *ic = vap->iv_ic;
4087 	struct iwm_softc *sc = ic->ic_softc;
4088 	int error;
4089 
4090 	error = ieee80211_media_change(ifp);
4091 	if (error != ENETRESET)
4092 		return error;
4093 
4094 	IWM_LOCK(sc);
4095 	if (ic->ic_nrunning > 0) {
4096 		iwm_stop(sc);
4097 		iwm_init(sc);
4098 	}
4099 	IWM_UNLOCK(sc);
4100 	return error;
4101 }
4102 
4103 
4104 static int
4105 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4106 {
4107 	struct iwm_vap *ivp = IWM_VAP(vap);
4108 	struct ieee80211com *ic = vap->iv_ic;
4109 	struct iwm_softc *sc = ic->ic_softc;
4110 	struct iwm_node *in;
4111 	int error;
4112 
4113 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4114 	    "switching state %s -> %s\n",
4115 	    ieee80211_state_name[vap->iv_state],
4116 	    ieee80211_state_name[nstate]);
4117 	IEEE80211_UNLOCK(ic);
4118 	IWM_LOCK(sc);
4119 
4120 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4121 		iwm_led_blink_stop(sc);
4122 
4123 	/* disable beacon filtering if we're hopping out of RUN */
4124 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4125 		iwm_mvm_disable_beacon_filter(sc);
4126 
4127 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4128 			in->in_assoc = 0;
4129 
4130 		if (nstate == IEEE80211_S_INIT) {
4131 			IWM_UNLOCK(sc);
4132 			IEEE80211_LOCK(ic);
4133 			error = ivp->iv_newstate(vap, nstate, arg);
4134 			IEEE80211_UNLOCK(ic);
4135 			IWM_LOCK(sc);
4136 			iwm_release(sc, NULL);
4137 			IWM_UNLOCK(sc);
4138 			IEEE80211_LOCK(ic);
4139 			return error;
4140 		}
4141 
4142 		/*
4143 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4144 		 * above then the card will be completely reinitialized,
4145 		 * so the driver must do everything necessary to bring the card
4146 		 * from INIT to SCAN.
4147 		 *
4148 		 * Additionally, upon receiving deauth frame from AP,
4149 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4150 		 * state. This will also fail with this driver, so bring the FSM
4151 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4152 		 *
4153 		 * XXX TODO: fix this for FreeBSD!
4154 		 */
4155 		if (nstate == IEEE80211_S_SCAN ||
4156 		    nstate == IEEE80211_S_AUTH ||
4157 		    nstate == IEEE80211_S_ASSOC) {
4158 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4159 			    "Force transition to INIT; MGT=%d\n", arg);
4160 			IWM_UNLOCK(sc);
4161 			IEEE80211_LOCK(ic);
4162 			/* Always pass arg as -1 since we can't Tx right now. */
4163 			/*
4164 			 * XXX arg is just ignored anyway when transitioning
4165 			 *     to IEEE80211_S_INIT.
4166 			 */
4167 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4168 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4169 			    "Going INIT->SCAN\n");
4170 			nstate = IEEE80211_S_SCAN;
4171 			IEEE80211_UNLOCK(ic);
4172 			IWM_LOCK(sc);
4173 		}
4174 	}
4175 
4176 	switch (nstate) {
4177 	case IEEE80211_S_INIT:
4178 		break;
4179 
4180 	case IEEE80211_S_AUTH:
4181 		if ((error = iwm_auth(vap, sc)) != 0) {
4182 			device_printf(sc->sc_dev,
4183 			    "%s: could not move to auth state: %d\n",
4184 			    __func__, error);
4185 			break;
4186 		}
4187 		break;
4188 
4189 	case IEEE80211_S_ASSOC:
4190 		if ((error = iwm_assoc(vap, sc)) != 0) {
4191 			device_printf(sc->sc_dev,
4192 			    "%s: failed to associate: %d\n", __func__,
4193 			    error);
4194 			break;
4195 		}
4196 		break;
4197 
4198 	case IEEE80211_S_RUN:
4199 	{
4200 		struct iwm_host_cmd cmd = {
4201 			.id = IWM_LQ_CMD,
4202 			.len = { sizeof(in->in_lq), },
4203 			.flags = IWM_CMD_SYNC,
4204 		};
4205 
4206 		/* Update the association state, now we have it all */
4207 		/* (eg associd comes in at this point */
4208 		error = iwm_assoc(vap, sc);
4209 		if (error != 0) {
4210 			device_printf(sc->sc_dev,
4211 			    "%s: failed to update association state: %d\n",
4212 			    __func__,
4213 			    error);
4214 			break;
4215 		}
4216 
4217 		in = IWM_NODE(vap->iv_bss);
4218 		iwm_mvm_power_mac_update_mode(sc, in);
4219 		iwm_mvm_enable_beacon_filter(sc, in);
4220 		iwm_mvm_update_quotas(sc, in);
4221 		iwm_setrates(sc, in);
4222 
4223 		cmd.data[0] = &in->in_lq;
4224 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4225 			device_printf(sc->sc_dev,
4226 			    "%s: IWM_LQ_CMD failed\n", __func__);
4227 		}
4228 
4229 		iwm_mvm_led_enable(sc);
4230 		break;
4231 	}
4232 
4233 	default:
4234 		break;
4235 	}
4236 	IWM_UNLOCK(sc);
4237 	IEEE80211_LOCK(ic);
4238 
4239 	return (ivp->iv_newstate(vap, nstate, arg));
4240 }
4241 
4242 void
4243 iwm_endscan_cb(void *arg, int pending)
4244 {
4245 	struct iwm_softc *sc = arg;
4246 	struct ieee80211com *ic = &sc->sc_ic;
4247 
4248 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4249 	    "%s: scan ended\n",
4250 	    __func__);
4251 
4252 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4253 }
4254 
4255 /*
4256  * Aging and idle timeouts for the different possible scenarios
4257  * in default configuration
4258  */
4259 static const uint32_t
4260 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4261 	{
4262 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4263 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4264 	},
4265 	{
4266 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4267 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4268 	},
4269 	{
4270 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4271 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4272 	},
4273 	{
4274 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4275 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4276 	},
4277 	{
4278 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4279 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4280 	},
4281 };
4282 
4283 /*
4284  * Aging and idle timeouts for the different possible scenarios
4285  * in single BSS MAC configuration.
4286  */
4287 static const uint32_t
4288 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4289 	{
4290 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4291 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4292 	},
4293 	{
4294 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4295 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4296 	},
4297 	{
4298 		htole32(IWM_SF_MCAST_AGING_TIMER),
4299 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4300 	},
4301 	{
4302 		htole32(IWM_SF_BA_AGING_TIMER),
4303 		htole32(IWM_SF_BA_IDLE_TIMER)
4304 	},
4305 	{
4306 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4307 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4308 	},
4309 };
4310 
4311 static void
4312 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4313     struct ieee80211_node *ni)
4314 {
4315 	int i, j, watermark;
4316 
4317 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4318 
4319 	/*
4320 	 * If we are in association flow - check antenna configuration
4321 	 * capabilities of the AP station, and choose the watermark accordingly.
4322 	 */
4323 	if (ni) {
4324 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4325 #ifdef notyet
4326 			if (ni->ni_rxmcs[2] != 0)
4327 				watermark = IWM_SF_W_MARK_MIMO3;
4328 			else if (ni->ni_rxmcs[1] != 0)
4329 				watermark = IWM_SF_W_MARK_MIMO2;
4330 			else
4331 #endif
4332 				watermark = IWM_SF_W_MARK_SISO;
4333 		} else {
4334 			watermark = IWM_SF_W_MARK_LEGACY;
4335 		}
4336 	/* default watermark value for unassociated mode. */
4337 	} else {
4338 		watermark = IWM_SF_W_MARK_MIMO2;
4339 	}
4340 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4341 
4342 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4343 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4344 			sf_cmd->long_delay_timeouts[i][j] =
4345 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4346 		}
4347 	}
4348 
4349 	if (ni) {
4350 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4351 		       sizeof(iwm_sf_full_timeout));
4352 	} else {
4353 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4354 		       sizeof(iwm_sf_full_timeout_def));
4355 	}
4356 }
4357 
4358 static int
4359 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4360 {
4361 	struct ieee80211com *ic = &sc->sc_ic;
4362 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4363 	struct iwm_sf_cfg_cmd sf_cmd = {
4364 		.state = htole32(IWM_SF_FULL_ON),
4365 	};
4366 	int ret = 0;
4367 
4368 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4369 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4370 
4371 	switch (new_state) {
4372 	case IWM_SF_UNINIT:
4373 	case IWM_SF_INIT_OFF:
4374 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4375 		break;
4376 	case IWM_SF_FULL_ON:
4377 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4378 		break;
4379 	default:
4380 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4381 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4382 			  new_state);
4383 		return EINVAL;
4384 	}
4385 
4386 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4387 				   sizeof(sf_cmd), &sf_cmd);
4388 	return ret;
4389 }
4390 
4391 static int
4392 iwm_send_bt_init_conf(struct iwm_softc *sc)
4393 {
4394 	struct iwm_bt_coex_cmd bt_cmd;
4395 
4396 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4397 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4398 
4399 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4400 	    &bt_cmd);
4401 }
4402 
4403 static int
4404 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4405 {
4406 	struct iwm_mcc_update_cmd mcc_cmd;
4407 	struct iwm_host_cmd hcmd = {
4408 		.id = IWM_MCC_UPDATE_CMD,
4409 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4410 		.data = { &mcc_cmd },
4411 	};
4412 	int ret;
4413 #ifdef IWM_DEBUG
4414 	struct iwm_rx_packet *pkt;
4415 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4416 	struct iwm_mcc_update_resp *mcc_resp;
4417 	int n_channels;
4418 	uint16_t mcc;
4419 #endif
4420 	int resp_v2 = isset(sc->sc_enabled_capa,
4421 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4422 
4423 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4424 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4425 	if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4426 	    isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4427 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4428 	else
4429 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4430 
4431 	if (resp_v2)
4432 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4433 	else
4434 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4435 
4436 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4437 	    "send MCC update to FW with '%c%c' src = %d\n",
4438 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4439 
4440 	ret = iwm_send_cmd(sc, &hcmd);
4441 	if (ret)
4442 		return ret;
4443 
4444 #ifdef IWM_DEBUG
4445 	pkt = hcmd.resp_pkt;
4446 
4447 	/* Extract MCC response */
4448 	if (resp_v2) {
4449 		mcc_resp = (void *)pkt->data;
4450 		mcc = mcc_resp->mcc;
4451 		n_channels =  le32toh(mcc_resp->n_channels);
4452 	} else {
4453 		mcc_resp_v1 = (void *)pkt->data;
4454 		mcc = mcc_resp_v1->mcc;
4455 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4456 	}
4457 
4458 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4459 	if (mcc == 0)
4460 		mcc = 0x3030;  /* "00" - world */
4461 
4462 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4463 	    "regulatory domain '%c%c' (%d channels available)\n",
4464 	    mcc >> 8, mcc & 0xff, n_channels);
4465 #endif
4466 	iwm_free_resp(sc, &hcmd);
4467 
4468 	return 0;
4469 }
4470 
4471 static void
4472 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4473 {
4474 	struct iwm_host_cmd cmd = {
4475 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4476 		.len = { sizeof(uint32_t), },
4477 		.data = { &backoff, },
4478 	};
4479 
4480 	if (iwm_send_cmd(sc, &cmd) != 0) {
4481 		device_printf(sc->sc_dev,
4482 		    "failed to change thermal tx backoff\n");
4483 	}
4484 }
4485 
4486 static int
4487 iwm_init_hw(struct iwm_softc *sc)
4488 {
4489 	struct ieee80211com *ic = &sc->sc_ic;
4490 	int error, i, ac;
4491 
4492 	if ((error = iwm_start_hw(sc)) != 0) {
4493 		printf("iwm_start_hw: failed %d\n", error);
4494 		return error;
4495 	}
4496 
4497 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4498 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4499 		return error;
4500 	}
4501 
4502 	/*
4503 	 * should stop and start HW since that INIT
4504 	 * image just loaded
4505 	 */
4506 	iwm_stop_device(sc);
4507 	if ((error = iwm_start_hw(sc)) != 0) {
4508 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4509 		return error;
4510 	}
4511 
4512 	/* omstart, this time with the regular firmware */
4513 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4514 	if (error) {
4515 		device_printf(sc->sc_dev, "could not load firmware\n");
4516 		goto error;
4517 	}
4518 
4519 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4520 		device_printf(sc->sc_dev, "bt init conf failed\n");
4521 		goto error;
4522 	}
4523 
4524 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4525 		device_printf(sc->sc_dev, "antenna config failed\n");
4526 		goto error;
4527 	}
4528 
4529 	/* Send phy db control command and then phy db calibration*/
4530 	if ((error = iwm_send_phy_db_data(sc)) != 0) {
4531 		device_printf(sc->sc_dev, "phy_db_data failed\n");
4532 		goto error;
4533 	}
4534 
4535 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4536 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4537 		goto error;
4538 	}
4539 
4540 	/* Add auxiliary station for scanning */
4541 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4542 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4543 		goto error;
4544 	}
4545 
4546 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4547 		/*
4548 		 * The channel used here isn't relevant as it's
4549 		 * going to be overwritten in the other flows.
4550 		 * For now use the first channel we have.
4551 		 */
4552 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4553 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4554 			goto error;
4555 	}
4556 
4557 	/* Initialize tx backoffs to the minimum. */
4558 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4559 		iwm_mvm_tt_tx_backoff(sc, 0);
4560 
4561 	error = iwm_mvm_power_update_device(sc);
4562 	if (error)
4563 		goto error;
4564 
4565 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4566 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4567 			goto error;
4568 	}
4569 
4570 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4571 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4572 			goto error;
4573 	}
4574 
4575 	/* Enable Tx queues. */
4576 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4577 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4578 		    iwm_mvm_ac_to_tx_fifo[ac]);
4579 		if (error)
4580 			goto error;
4581 	}
4582 
4583 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4584 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4585 		goto error;
4586 	}
4587 
4588 	return 0;
4589 
4590  error:
4591 	iwm_stop_device(sc);
4592 	return error;
4593 }
4594 
4595 /* Allow multicast from our BSSID. */
4596 static int
4597 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4598 {
4599 	struct ieee80211_node *ni = vap->iv_bss;
4600 	struct iwm_mcast_filter_cmd *cmd;
4601 	size_t size;
4602 	int error;
4603 
4604 	size = roundup(sizeof(*cmd), 4);
4605 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4606 	if (cmd == NULL)
4607 		return ENOMEM;
4608 	cmd->filter_own = 1;
4609 	cmd->port_id = 0;
4610 	cmd->count = 0;
4611 	cmd->pass_all = 1;
4612 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4613 
4614 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4615 	    IWM_CMD_SYNC, size, cmd);
4616 	free(cmd, M_DEVBUF);
4617 
4618 	return (error);
4619 }
4620 
4621 /*
4622  * ifnet interfaces
4623  */
4624 
4625 static void
4626 iwm_init(struct iwm_softc *sc)
4627 {
4628 	int error;
4629 
4630 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4631 		return;
4632 	}
4633 	sc->sc_generation++;
4634 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4635 
4636 	if ((error = iwm_init_hw(sc)) != 0) {
4637 		printf("iwm_init_hw failed %d\n", error);
4638 		iwm_stop(sc);
4639 		return;
4640 	}
4641 
4642 	/*
4643 	 * Ok, firmware loaded and we are jogging
4644 	 */
4645 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4646 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4647 }
4648 
4649 static int
4650 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4651 {
4652 	struct iwm_softc *sc;
4653 	int error;
4654 
4655 	sc = ic->ic_softc;
4656 
4657 	IWM_LOCK(sc);
4658 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4659 		IWM_UNLOCK(sc);
4660 		return (ENXIO);
4661 	}
4662 	error = mbufq_enqueue(&sc->sc_snd, m);
4663 	if (error) {
4664 		IWM_UNLOCK(sc);
4665 		return (error);
4666 	}
4667 	iwm_start(sc);
4668 	IWM_UNLOCK(sc);
4669 	return (0);
4670 }
4671 
4672 /*
4673  * Dequeue packets from sendq and call send.
4674  */
4675 static void
4676 iwm_start(struct iwm_softc *sc)
4677 {
4678 	struct ieee80211_node *ni;
4679 	struct mbuf *m;
4680 	int ac = 0;
4681 
4682 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4683 	while (sc->qfullmsk == 0 &&
4684 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4685 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4686 		if (iwm_tx(sc, m, ni, ac) != 0) {
4687 			if_inc_counter(ni->ni_vap->iv_ifp,
4688 			    IFCOUNTER_OERRORS, 1);
4689 			ieee80211_free_node(ni);
4690 			continue;
4691 		}
4692 		sc->sc_tx_timer = 15;
4693 	}
4694 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4695 }
4696 
4697 static void
4698 iwm_stop(struct iwm_softc *sc)
4699 {
4700 
4701 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4702 	sc->sc_flags |= IWM_FLAG_STOPPED;
4703 	sc->sc_generation++;
4704 	iwm_led_blink_stop(sc);
4705 	sc->sc_tx_timer = 0;
4706 	iwm_stop_device(sc);
4707 }
4708 
4709 static void
4710 iwm_watchdog(void *arg)
4711 {
4712 	struct iwm_softc *sc = arg;
4713 	struct ieee80211com *ic = &sc->sc_ic;
4714 
4715 	if (sc->sc_tx_timer > 0) {
4716 		if (--sc->sc_tx_timer == 0) {
4717 			device_printf(sc->sc_dev, "device timeout\n");
4718 #ifdef IWM_DEBUG
4719 			iwm_nic_error(sc);
4720 #endif
4721 			ieee80211_restart_all(ic);
4722 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4723 			return;
4724 		}
4725 	}
4726 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4727 }
4728 
4729 static void
4730 iwm_parent(struct ieee80211com *ic)
4731 {
4732 	struct iwm_softc *sc = ic->ic_softc;
4733 	int startall = 0;
4734 
4735 	IWM_LOCK(sc);
4736 	if (ic->ic_nrunning > 0) {
4737 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4738 			iwm_init(sc);
4739 			startall = 1;
4740 		}
4741 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4742 		iwm_stop(sc);
4743 	IWM_UNLOCK(sc);
4744 	if (startall)
4745 		ieee80211_start_all(ic);
4746 }
4747 
4748 /*
4749  * The interrupt side of things
4750  */
4751 
4752 /*
4753  * error dumping routines are from iwlwifi/mvm/utils.c
4754  */
4755 
4756 /*
4757  * Note: This structure is read from the device with IO accesses,
4758  * and the reading already does the endian conversion. As it is
4759  * read with uint32_t-sized accesses, any members with a different size
4760  * need to be ordered correctly though!
4761  */
4762 struct iwm_error_event_table {
4763 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4764 	uint32_t error_id;		/* type of error */
4765 	uint32_t trm_hw_status0;	/* TRM HW status */
4766 	uint32_t trm_hw_status1;	/* TRM HW status */
4767 	uint32_t blink2;		/* branch link */
4768 	uint32_t ilink1;		/* interrupt link */
4769 	uint32_t ilink2;		/* interrupt link */
4770 	uint32_t data1;		/* error-specific data */
4771 	uint32_t data2;		/* error-specific data */
4772 	uint32_t data3;		/* error-specific data */
4773 	uint32_t bcon_time;		/* beacon timer */
4774 	uint32_t tsf_low;		/* network timestamp function timer */
4775 	uint32_t tsf_hi;		/* network timestamp function timer */
4776 	uint32_t gp1;		/* GP1 timer register */
4777 	uint32_t gp2;		/* GP2 timer register */
4778 	uint32_t fw_rev_type;	/* firmware revision type */
4779 	uint32_t major;		/* uCode version major */
4780 	uint32_t minor;		/* uCode version minor */
4781 	uint32_t hw_ver;		/* HW Silicon version */
4782 	uint32_t brd_ver;		/* HW board version */
4783 	uint32_t log_pc;		/* log program counter */
4784 	uint32_t frame_ptr;		/* frame pointer */
4785 	uint32_t stack_ptr;		/* stack pointer */
4786 	uint32_t hcmd;		/* last host command header */
4787 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4788 				 * rxtx_flag */
4789 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4790 				 * host_flag */
4791 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4792 				 * enc_flag */
4793 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4794 				 * time_flag */
4795 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4796 				 * wico interrupt */
4797 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4798 	uint32_t wait_event;		/* wait event() caller address */
4799 	uint32_t l2p_control;	/* L2pControlField */
4800 	uint32_t l2p_duration;	/* L2pDurationField */
4801 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4802 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4803 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4804 				 * (LMPM_PMG_SEL) */
4805 	uint32_t u_timestamp;	/* indicate when the date and time of the
4806 				 * compilation */
4807 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4808 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4809 
4810 /*
4811  * UMAC error struct - relevant starting from family 8000 chip.
4812  * Note: This structure is read from the device with IO accesses,
4813  * and the reading already does the endian conversion. As it is
4814  * read with u32-sized accesses, any members with a different size
4815  * need to be ordered correctly though!
4816  */
4817 struct iwm_umac_error_event_table {
4818 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4819 	uint32_t error_id;	/* type of error */
4820 	uint32_t blink1;	/* branch link */
4821 	uint32_t blink2;	/* branch link */
4822 	uint32_t ilink1;	/* interrupt link */
4823 	uint32_t ilink2;	/* interrupt link */
4824 	uint32_t data1;		/* error-specific data */
4825 	uint32_t data2;		/* error-specific data */
4826 	uint32_t data3;		/* error-specific data */
4827 	uint32_t umac_major;
4828 	uint32_t umac_minor;
4829 	uint32_t frame_pointer;	/* core register 27*/
4830 	uint32_t stack_pointer;	/* core register 28 */
4831 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4832 	uint32_t nic_isr_pref;	/* ISR status register */
4833 } __packed;
4834 
4835 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4836 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4837 
4838 #ifdef IWM_DEBUG
4839 struct {
4840 	const char *name;
4841 	uint8_t num;
4842 } advanced_lookup[] = {
4843 	{ "NMI_INTERRUPT_WDG", 0x34 },
4844 	{ "SYSASSERT", 0x35 },
4845 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4846 	{ "BAD_COMMAND", 0x38 },
4847 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4848 	{ "FATAL_ERROR", 0x3D },
4849 	{ "NMI_TRM_HW_ERR", 0x46 },
4850 	{ "NMI_INTERRUPT_TRM", 0x4C },
4851 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4852 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4853 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4854 	{ "NMI_INTERRUPT_HOST", 0x66 },
4855 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4856 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4857 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4858 	{ "ADVANCED_SYSASSERT", 0 },
4859 };
4860 
4861 static const char *
4862 iwm_desc_lookup(uint32_t num)
4863 {
4864 	int i;
4865 
4866 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4867 		if (advanced_lookup[i].num == num)
4868 			return advanced_lookup[i].name;
4869 
4870 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4871 	return advanced_lookup[i].name;
4872 }
4873 
4874 static void
4875 iwm_nic_umac_error(struct iwm_softc *sc)
4876 {
4877 	struct iwm_umac_error_event_table table;
4878 	uint32_t base;
4879 
4880 	base = sc->sc_uc.uc_umac_error_event_table;
4881 
4882 	if (base < 0x800000) {
4883 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4884 		    base);
4885 		return;
4886 	}
4887 
4888 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4889 		device_printf(sc->sc_dev, "reading errlog failed\n");
4890 		return;
4891 	}
4892 
4893 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4894 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4895 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4896 		    sc->sc_flags, table.valid);
4897 	}
4898 
4899 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4900 		iwm_desc_lookup(table.error_id));
4901 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4902 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4903 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4904 	    table.ilink1);
4905 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4906 	    table.ilink2);
4907 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4908 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4909 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4910 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4911 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4912 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4913 	    table.frame_pointer);
4914 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4915 	    table.stack_pointer);
4916 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4917 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4918 	    table.nic_isr_pref);
4919 }
4920 
4921 /*
4922  * Support for dumping the error log seemed like a good idea ...
4923  * but it's mostly hex junk and the only sensible thing is the
4924  * hw/ucode revision (which we know anyway).  Since it's here,
4925  * I'll just leave it in, just in case e.g. the Intel guys want to
4926  * help us decipher some "ADVANCED_SYSASSERT" later.
4927  */
4928 static void
4929 iwm_nic_error(struct iwm_softc *sc)
4930 {
4931 	struct iwm_error_event_table table;
4932 	uint32_t base;
4933 
4934 	device_printf(sc->sc_dev, "dumping device error log\n");
4935 	base = sc->sc_uc.uc_error_event_table;
4936 	if (base < 0x800000) {
4937 		device_printf(sc->sc_dev,
4938 		    "Invalid error log pointer 0x%08x\n", base);
4939 		return;
4940 	}
4941 
4942 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4943 		device_printf(sc->sc_dev, "reading errlog failed\n");
4944 		return;
4945 	}
4946 
4947 	if (!table.valid) {
4948 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
4949 		return;
4950 	}
4951 
4952 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4953 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
4954 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4955 		    sc->sc_flags, table.valid);
4956 	}
4957 
4958 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4959 	    iwm_desc_lookup(table.error_id));
4960 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
4961 	    table.trm_hw_status0);
4962 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
4963 	    table.trm_hw_status1);
4964 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4965 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4966 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4967 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4968 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4969 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4970 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4971 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4972 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4973 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4974 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4975 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
4976 	    table.fw_rev_type);
4977 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
4978 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
4979 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4980 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4981 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4982 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4983 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4984 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4985 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4986 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4987 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
4988 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4989 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4990 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4991 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4992 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4993 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4994 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4995 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4996 
4997 	if (sc->sc_uc.uc_umac_error_event_table)
4998 		iwm_nic_umac_error(sc);
4999 }
5000 #endif
5001 
5002 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
5003 do {									\
5004 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5005 	_var_ = (void *)((_pkt_)+1);					\
5006 } while (/*CONSTCOND*/0)
5007 
5008 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
5009 do {									\
5010 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5011 	_ptr_ = (void *)((_pkt_)+1);					\
5012 } while (/*CONSTCOND*/0)
5013 
5014 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5015 
5016 /*
5017  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5018  * Basic structure from if_iwn
5019  */
5020 static void
5021 iwm_notif_intr(struct iwm_softc *sc)
5022 {
5023 	struct ieee80211com *ic = &sc->sc_ic;
5024 	uint16_t hw;
5025 
5026 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5027 	    BUS_DMASYNC_POSTREAD);
5028 
5029 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5030 
5031 	/*
5032 	 * Process responses
5033 	 */
5034 	while (sc->rxq.cur != hw) {
5035 		struct iwm_rx_ring *ring = &sc->rxq;
5036 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
5037 		struct iwm_rx_packet *pkt;
5038 		struct iwm_cmd_response *cresp;
5039 		int qid, idx, code;
5040 
5041 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5042 		    BUS_DMASYNC_POSTREAD);
5043 		pkt = mtod(data->m, struct iwm_rx_packet *);
5044 
5045 		qid = pkt->hdr.qid & ~0x80;
5046 		idx = pkt->hdr.idx;
5047 
5048 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5049 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5050 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5051 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
5052 
5053 		/*
5054 		 * randomly get these from the firmware, no idea why.
5055 		 * they at least seem harmless, so just ignore them for now
5056 		 */
5057 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5058 		    || pkt->len_n_flags == htole32(0x55550000))) {
5059 			ADVANCE_RXQ(sc);
5060 			continue;
5061 		}
5062 
5063 		switch (code) {
5064 		case IWM_REPLY_RX_PHY_CMD:
5065 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5066 			break;
5067 
5068 		case IWM_REPLY_RX_MPDU_CMD:
5069 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5070 			break;
5071 
5072 		case IWM_TX_CMD:
5073 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5074 			break;
5075 
5076 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5077 			struct iwm_missed_beacons_notif *resp;
5078 			int missed;
5079 
5080 			/* XXX look at mac_id to determine interface ID */
5081 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5082 
5083 			SYNC_RESP_STRUCT(resp, pkt);
5084 			missed = le32toh(resp->consec_missed_beacons);
5085 
5086 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5087 			    "%s: MISSED_BEACON: mac_id=%d, "
5088 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5089 			    "num_rx=%d\n",
5090 			    __func__,
5091 			    le32toh(resp->mac_id),
5092 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5093 			    le32toh(resp->consec_missed_beacons),
5094 			    le32toh(resp->num_expected_beacons),
5095 			    le32toh(resp->num_recvd_beacons));
5096 
5097 			/* Be paranoid */
5098 			if (vap == NULL)
5099 				break;
5100 
5101 			/* XXX no net80211 locking? */
5102 			if (vap->iv_state == IEEE80211_S_RUN &&
5103 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5104 				if (missed > vap->iv_bmissthreshold) {
5105 					/* XXX bad locking; turn into task */
5106 					IWM_UNLOCK(sc);
5107 					ieee80211_beacon_miss(ic);
5108 					IWM_LOCK(sc);
5109 				}
5110 			}
5111 
5112 			break; }
5113 
5114 		case IWM_MFUART_LOAD_NOTIFICATION:
5115 			break;
5116 
5117 		case IWM_MVM_ALIVE: {
5118 			struct iwm_mvm_alive_resp_v1 *resp1;
5119 			struct iwm_mvm_alive_resp_v2 *resp2;
5120 			struct iwm_mvm_alive_resp_v3 *resp3;
5121 
5122 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5123 				SYNC_RESP_STRUCT(resp1, pkt);
5124 				sc->sc_uc.uc_error_event_table
5125 				    = le32toh(resp1->error_event_table_ptr);
5126 				sc->sc_uc.uc_log_event_table
5127 				    = le32toh(resp1->log_event_table_ptr);
5128 				sc->sched_base = le32toh(resp1->scd_base_ptr);
5129 				if (resp1->status == IWM_ALIVE_STATUS_OK)
5130 					sc->sc_uc.uc_ok = 1;
5131 				else
5132 					sc->sc_uc.uc_ok = 0;
5133 			}
5134 
5135 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5136 				SYNC_RESP_STRUCT(resp2, pkt);
5137 				sc->sc_uc.uc_error_event_table
5138 				    = le32toh(resp2->error_event_table_ptr);
5139 				sc->sc_uc.uc_log_event_table
5140 				    = le32toh(resp2->log_event_table_ptr);
5141 				sc->sched_base = le32toh(resp2->scd_base_ptr);
5142 				sc->sc_uc.uc_umac_error_event_table
5143 				    = le32toh(resp2->error_info_addr);
5144 				if (resp2->status == IWM_ALIVE_STATUS_OK)
5145 					sc->sc_uc.uc_ok = 1;
5146 				else
5147 					sc->sc_uc.uc_ok = 0;
5148 			}
5149 
5150 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5151 				SYNC_RESP_STRUCT(resp3, pkt);
5152 				sc->sc_uc.uc_error_event_table
5153 				    = le32toh(resp3->error_event_table_ptr);
5154 				sc->sc_uc.uc_log_event_table
5155 				    = le32toh(resp3->log_event_table_ptr);
5156 				sc->sched_base = le32toh(resp3->scd_base_ptr);
5157 				sc->sc_uc.uc_umac_error_event_table
5158 				    = le32toh(resp3->error_info_addr);
5159 				if (resp3->status == IWM_ALIVE_STATUS_OK)
5160 					sc->sc_uc.uc_ok = 1;
5161 				else
5162 					sc->sc_uc.uc_ok = 0;
5163 			}
5164 
5165 			sc->sc_uc.uc_intr = 1;
5166 			wakeup(&sc->sc_uc);
5167 			break; }
5168 
5169 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
5170 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
5171 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
5172 
5173 			iwm_phy_db_set_section(sc, phy_db_notif);
5174 
5175 			break; }
5176 
5177 		case IWM_STATISTICS_NOTIFICATION: {
5178 			struct iwm_notif_statistics *stats;
5179 			SYNC_RESP_STRUCT(stats, pkt);
5180 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5181 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5182 			break; }
5183 
5184 		case IWM_NVM_ACCESS_CMD:
5185 		case IWM_MCC_UPDATE_CMD:
5186 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5187 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5188 				    BUS_DMASYNC_POSTREAD);
5189 				memcpy(sc->sc_cmd_resp,
5190 				    pkt, sizeof(sc->sc_cmd_resp));
5191 			}
5192 			break;
5193 
5194 		case IWM_MCC_CHUB_UPDATE_CMD: {
5195 			struct iwm_mcc_chub_notif *notif;
5196 			SYNC_RESP_STRUCT(notif, pkt);
5197 
5198 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5199 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5200 			sc->sc_fw_mcc[2] = '\0';
5201 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5202 			    "fw source %d sent CC '%s'\n",
5203 			    notif->source_id, sc->sc_fw_mcc);
5204 			break; }
5205 
5206 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5207 			break;
5208 
5209 		case IWM_PHY_CONFIGURATION_CMD:
5210 		case IWM_TX_ANT_CONFIGURATION_CMD:
5211 		case IWM_ADD_STA:
5212 		case IWM_MAC_CONTEXT_CMD:
5213 		case IWM_REPLY_SF_CFG_CMD:
5214 		case IWM_POWER_TABLE_CMD:
5215 		case IWM_PHY_CONTEXT_CMD:
5216 		case IWM_BINDING_CONTEXT_CMD:
5217 		case IWM_TIME_EVENT_CMD:
5218 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5219 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5220 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5221 		case IWM_REPLY_BEACON_FILTERING_CMD:
5222 		case IWM_MAC_PM_POWER_TABLE:
5223 		case IWM_TIME_QUOTA_CMD:
5224 		case IWM_REMOVE_STA:
5225 		case IWM_TXPATH_FLUSH:
5226 		case IWM_LQ_CMD:
5227 		case IWM_BT_CONFIG:
5228 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5229 			SYNC_RESP_STRUCT(cresp, pkt);
5230 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5231 				memcpy(sc->sc_cmd_resp,
5232 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5233 			}
5234 			break;
5235 
5236 		/* ignore */
5237 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5238 			break;
5239 
5240 		case IWM_INIT_COMPLETE_NOTIF:
5241 			sc->sc_init_complete = 1;
5242 			wakeup(&sc->sc_init_complete);
5243 			break;
5244 
5245 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5246 			struct iwm_periodic_scan_complete *notif;
5247 			SYNC_RESP_STRUCT(notif, pkt);
5248 			break;
5249 		}
5250 
5251 		case IWM_SCAN_ITERATION_COMPLETE: {
5252 			struct iwm_lmac_scan_complete_notif *notif;
5253  			SYNC_RESP_STRUCT(notif, pkt);
5254 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5255  			break;
5256 		}
5257 
5258 		case IWM_SCAN_COMPLETE_UMAC: {
5259 			struct iwm_umac_scan_complete *notif;
5260 			SYNC_RESP_STRUCT(notif, pkt);
5261 
5262 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5263 			    "UMAC scan complete, status=0x%x\n",
5264 			    notif->status);
5265 #if 0	/* XXX This would be a duplicate scan end call */
5266 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5267 #endif
5268 			break;
5269 		}
5270 
5271 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5272 			struct iwm_umac_scan_iter_complete_notif *notif;
5273 			SYNC_RESP_STRUCT(notif, pkt);
5274 
5275 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5276 			    "complete, status=0x%x, %d channels scanned\n",
5277 			    notif->status, notif->scanned_channels);
5278 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5279 			break;
5280 		}
5281 
5282 		case IWM_REPLY_ERROR: {
5283 			struct iwm_error_resp *resp;
5284 			SYNC_RESP_STRUCT(resp, pkt);
5285 
5286 			device_printf(sc->sc_dev,
5287 			    "firmware error 0x%x, cmd 0x%x\n",
5288 			    le32toh(resp->error_type),
5289 			    resp->cmd_id);
5290 			break;
5291 		}
5292 
5293 		case IWM_TIME_EVENT_NOTIFICATION: {
5294 			struct iwm_time_event_notif *notif;
5295 			SYNC_RESP_STRUCT(notif, pkt);
5296 
5297 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5298 			    "TE notif status = 0x%x action = 0x%x\n",
5299 			    notif->status, notif->action);
5300 			break;
5301 		}
5302 
5303 		case IWM_MCAST_FILTER_CMD:
5304 			break;
5305 
5306 		case IWM_SCD_QUEUE_CFG: {
5307 			struct iwm_scd_txq_cfg_rsp *rsp;
5308 			SYNC_RESP_STRUCT(rsp, pkt);
5309 
5310 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5311 			    "queue cfg token=0x%x sta_id=%d "
5312 			    "tid=%d scd_queue=%d\n",
5313 			    rsp->token, rsp->sta_id, rsp->tid,
5314 			    rsp->scd_queue);
5315 			break;
5316 		}
5317 
5318 		default:
5319 			device_printf(sc->sc_dev,
5320 			    "frame %d/%d %x UNHANDLED (this should "
5321 			    "not happen)\n", qid, idx,
5322 			    pkt->len_n_flags);
5323 			break;
5324 		}
5325 
5326 		/*
5327 		 * Why test bit 0x80?  The Linux driver:
5328 		 *
5329 		 * There is one exception:  uCode sets bit 15 when it
5330 		 * originates the response/notification, i.e. when the
5331 		 * response/notification is not a direct response to a
5332 		 * command sent by the driver.  For example, uCode issues
5333 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5334 		 * it is not a direct response to any driver command.
5335 		 *
5336 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5337 		 * uses a slightly different format for pkt->hdr, and "qid"
5338 		 * is actually the upper byte of a two-byte field.
5339 		 */
5340 		if (!(pkt->hdr.qid & (1 << 7))) {
5341 			iwm_cmd_done(sc, pkt);
5342 		}
5343 
5344 		ADVANCE_RXQ(sc);
5345 	}
5346 
5347 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5348 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5349 
5350 	/*
5351 	 * Tell the firmware what we have processed.
5352 	 * Seems like the hardware gets upset unless we align
5353 	 * the write by 8??
5354 	 */
5355 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5356 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5357 }
5358 
5359 static void
5360 iwm_intr(void *arg)
5361 {
5362 	struct iwm_softc *sc = arg;
5363 	int handled = 0;
5364 	int r1, r2, rv = 0;
5365 	int isperiodic = 0;
5366 
5367 	IWM_LOCK(sc);
5368 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5369 
5370 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5371 		uint32_t *ict = sc->ict_dma.vaddr;
5372 		int tmp;
5373 
5374 		tmp = htole32(ict[sc->ict_cur]);
5375 		if (!tmp)
5376 			goto out_ena;
5377 
5378 		/*
5379 		 * ok, there was something.  keep plowing until we have all.
5380 		 */
5381 		r1 = r2 = 0;
5382 		while (tmp) {
5383 			r1 |= tmp;
5384 			ict[sc->ict_cur] = 0;
5385 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5386 			tmp = htole32(ict[sc->ict_cur]);
5387 		}
5388 
5389 		/* this is where the fun begins.  don't ask */
5390 		if (r1 == 0xffffffff)
5391 			r1 = 0;
5392 
5393 		/* i am not expected to understand this */
5394 		if (r1 & 0xc0000)
5395 			r1 |= 0x8000;
5396 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5397 	} else {
5398 		r1 = IWM_READ(sc, IWM_CSR_INT);
5399 		/* "hardware gone" (where, fishing?) */
5400 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5401 			goto out;
5402 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5403 	}
5404 	if (r1 == 0 && r2 == 0) {
5405 		goto out_ena;
5406 	}
5407 
5408 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5409 
5410 	/* ignored */
5411 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5412 
5413 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5414 		int i;
5415 		struct ieee80211com *ic = &sc->sc_ic;
5416 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5417 
5418 #ifdef IWM_DEBUG
5419 		iwm_nic_error(sc);
5420 #endif
5421 		/* Dump driver status (TX and RX rings) while we're here. */
5422 		device_printf(sc->sc_dev, "driver status:\n");
5423 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5424 			struct iwm_tx_ring *ring = &sc->txq[i];
5425 			device_printf(sc->sc_dev,
5426 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5427 			    "queued=%-3d\n",
5428 			    i, ring->qid, ring->cur, ring->queued);
5429 		}
5430 		device_printf(sc->sc_dev,
5431 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5432 		device_printf(sc->sc_dev,
5433 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5434 
5435 		/* Don't stop the device; just do a VAP restart */
5436 		IWM_UNLOCK(sc);
5437 
5438 		if (vap == NULL) {
5439 			printf("%s: null vap\n", __func__);
5440 			return;
5441 		}
5442 
5443 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5444 		    "restarting\n", __func__, vap->iv_state);
5445 
5446 		/* XXX TODO: turn this into a callout/taskqueue */
5447 		ieee80211_restart_all(ic);
5448 		return;
5449 	}
5450 
5451 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5452 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5453 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5454 		iwm_stop(sc);
5455 		rv = 1;
5456 		goto out;
5457 	}
5458 
5459 	/* firmware chunk loaded */
5460 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5461 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5462 		handled |= IWM_CSR_INT_BIT_FH_TX;
5463 		sc->sc_fw_chunk_done = 1;
5464 		wakeup(&sc->sc_fw);
5465 	}
5466 
5467 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5468 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5469 		if (iwm_check_rfkill(sc)) {
5470 			device_printf(sc->sc_dev,
5471 			    "%s: rfkill switch, disabling interface\n",
5472 			    __func__);
5473 			iwm_stop(sc);
5474 		}
5475 	}
5476 
5477 	/*
5478 	 * The Linux driver uses periodic interrupts to avoid races.
5479 	 * We cargo-cult like it's going out of fashion.
5480 	 */
5481 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5482 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5483 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5484 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5485 			IWM_WRITE_1(sc,
5486 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5487 		isperiodic = 1;
5488 	}
5489 
5490 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5491 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5492 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5493 
5494 		iwm_notif_intr(sc);
5495 
5496 		/* enable periodic interrupt, see above */
5497 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5498 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5499 			    IWM_CSR_INT_PERIODIC_ENA);
5500 	}
5501 
5502 	if (__predict_false(r1 & ~handled))
5503 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5504 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5505 	rv = 1;
5506 
5507  out_ena:
5508 	iwm_restore_interrupts(sc);
5509  out:
5510 	IWM_UNLOCK(sc);
5511 	return;
5512 }
5513 
5514 /*
5515  * Autoconf glue-sniffing
5516  */
5517 #define	PCI_VENDOR_INTEL		0x8086
5518 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5519 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5520 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5521 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5522 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5523 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5524 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5525 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5526 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5527 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5528 
5529 static const struct iwm_devices {
5530 	uint16_t	device;
5531 	const char	*name;
5532 } iwm_devices[] = {
5533 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5534 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5535 	{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5536 	{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5537 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5538 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5539 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5540 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5541 	{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5542 	{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5543 };
5544 
5545 static int
5546 iwm_probe(device_t dev)
5547 {
5548 	int i;
5549 
5550 	for (i = 0; i < nitems(iwm_devices); i++) {
5551 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5552 		    pci_get_device(dev) == iwm_devices[i].device) {
5553 			device_set_desc(dev, iwm_devices[i].name);
5554 			return (BUS_PROBE_DEFAULT);
5555 		}
5556 	}
5557 
5558 	return (ENXIO);
5559 }
5560 
5561 static int
5562 iwm_dev_check(device_t dev)
5563 {
5564 	struct iwm_softc *sc;
5565 
5566 	sc = device_get_softc(dev);
5567 
5568 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5569 	switch (pci_get_device(dev)) {
5570 	case PCI_PRODUCT_INTEL_WL_3160_1:
5571 	case PCI_PRODUCT_INTEL_WL_3160_2:
5572 		sc->sc_fwname = "iwm3160fw";
5573 		sc->host_interrupt_operation_mode = 1;
5574 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5575 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5576 		return (0);
5577 	case PCI_PRODUCT_INTEL_WL_3165_1:
5578 	case PCI_PRODUCT_INTEL_WL_3165_2:
5579 		sc->sc_fwname = "iwm7265fw";
5580 		sc->host_interrupt_operation_mode = 0;
5581 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5582 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5583 		return (0);
5584 	case PCI_PRODUCT_INTEL_WL_7260_1:
5585 	case PCI_PRODUCT_INTEL_WL_7260_2:
5586 		sc->sc_fwname = "iwm7260fw";
5587 		sc->host_interrupt_operation_mode = 1;
5588 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5589 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5590 		return (0);
5591 	case PCI_PRODUCT_INTEL_WL_7265_1:
5592 	case PCI_PRODUCT_INTEL_WL_7265_2:
5593 		sc->sc_fwname = "iwm7265fw";
5594 		sc->host_interrupt_operation_mode = 0;
5595 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5596 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5597 		return (0);
5598 	case PCI_PRODUCT_INTEL_WL_8260_1:
5599 	case PCI_PRODUCT_INTEL_WL_8260_2:
5600 		sc->sc_fwname = "iwm8000Cfw";
5601 		sc->host_interrupt_operation_mode = 0;
5602 		sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5603 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5604 		return (0);
5605 	default:
5606 		device_printf(dev, "unknown adapter type\n");
5607 		return ENXIO;
5608 	}
5609 }
5610 
5611 static int
5612 iwm_pci_attach(device_t dev)
5613 {
5614 	struct iwm_softc *sc;
5615 	int count, error, rid;
5616 	uint16_t reg;
5617 
5618 	sc = device_get_softc(dev);
5619 
5620 	/* Clear device-specific "PCI retry timeout" register (41h). */
5621 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5622 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5623 
5624 	/* Enable bus-mastering and hardware bug workaround. */
5625 	pci_enable_busmaster(dev);
5626 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5627 	/* if !MSI */
5628 	if (reg & PCIM_STATUS_INTxSTATE) {
5629 		reg &= ~PCIM_STATUS_INTxSTATE;
5630 	}
5631 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5632 
5633 	rid = PCIR_BAR(0);
5634 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5635 	    RF_ACTIVE);
5636 	if (sc->sc_mem == NULL) {
5637 		device_printf(sc->sc_dev, "can't map mem space\n");
5638 		return (ENXIO);
5639 	}
5640 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5641 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5642 
5643 	/* Install interrupt handler. */
5644 	count = 1;
5645 	rid = 0;
5646 	if (pci_alloc_msi(dev, &count) == 0)
5647 		rid = 1;
5648 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5649 	    (rid != 0 ? 0 : RF_SHAREABLE));
5650 	if (sc->sc_irq == NULL) {
5651 		device_printf(dev, "can't map interrupt\n");
5652 			return (ENXIO);
5653 	}
5654 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5655 	    NULL, iwm_intr, sc, &sc->sc_ih);
5656 	if (sc->sc_ih == NULL) {
5657 		device_printf(dev, "can't establish interrupt");
5658 			return (ENXIO);
5659 	}
5660 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5661 
5662 	return (0);
5663 }
5664 
5665 static void
5666 iwm_pci_detach(device_t dev)
5667 {
5668 	struct iwm_softc *sc = device_get_softc(dev);
5669 
5670 	if (sc->sc_irq != NULL) {
5671 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5672 		bus_release_resource(dev, SYS_RES_IRQ,
5673 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5674 		pci_release_msi(dev);
5675         }
5676 	if (sc->sc_mem != NULL)
5677 		bus_release_resource(dev, SYS_RES_MEMORY,
5678 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5679 }
5680 
5681 
5682 
5683 static int
5684 iwm_attach(device_t dev)
5685 {
5686 	struct iwm_softc *sc = device_get_softc(dev);
5687 	struct ieee80211com *ic = &sc->sc_ic;
5688 	int error;
5689 	int txq_i, i;
5690 
5691 	sc->sc_dev = dev;
5692 	IWM_LOCK_INIT(sc);
5693 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5694 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5695 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5696 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5697 
5698 	/* PCI attach */
5699 	error = iwm_pci_attach(dev);
5700 	if (error != 0)
5701 		goto fail;
5702 
5703 	sc->sc_wantresp = -1;
5704 
5705 	/* Check device type */
5706 	error = iwm_dev_check(dev);
5707 	if (error != 0)
5708 		goto fail;
5709 
5710 	/*
5711 	 * We now start fiddling with the hardware
5712 	 */
5713 	/*
5714 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5715 	 * changed, and now the revision step also includes bit 0-1 (no more
5716 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5717 	 * in the old format.
5718 	 */
5719 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5720 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5721 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5722 
5723 	if (iwm_prepare_card_hw(sc) != 0) {
5724 		device_printf(dev, "could not initialize hardware\n");
5725 		goto fail;
5726 	}
5727 
5728 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5729 		int ret;
5730 		uint32_t hw_step;
5731 
5732 		/*
5733 		 * In order to recognize C step the driver should read the
5734 		 * chip version id located at the AUX bus MISC address.
5735 		 */
5736 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5737 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5738 		DELAY(2);
5739 
5740 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5741 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5742 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5743 				   25000);
5744 		if (!ret) {
5745 			device_printf(sc->sc_dev,
5746 			    "Failed to wake up the nic\n");
5747 			goto fail;
5748 		}
5749 
5750 		if (iwm_nic_lock(sc)) {
5751 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5752 			hw_step |= IWM_ENABLE_WFPM;
5753 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5754 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5755 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5756 			if (hw_step == 0x3)
5757 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5758 						(IWM_SILICON_C_STEP << 2);
5759 			iwm_nic_unlock(sc);
5760 		} else {
5761 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5762 			goto fail;
5763 		}
5764 	}
5765 
5766 	/* Allocate DMA memory for firmware transfers. */
5767 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5768 		device_printf(dev, "could not allocate memory for firmware\n");
5769 		goto fail;
5770 	}
5771 
5772 	/* Allocate "Keep Warm" page. */
5773 	if ((error = iwm_alloc_kw(sc)) != 0) {
5774 		device_printf(dev, "could not allocate keep warm page\n");
5775 		goto fail;
5776 	}
5777 
5778 	/* We use ICT interrupts */
5779 	if ((error = iwm_alloc_ict(sc)) != 0) {
5780 		device_printf(dev, "could not allocate ICT table\n");
5781 		goto fail;
5782 	}
5783 
5784 	/* Allocate TX scheduler "rings". */
5785 	if ((error = iwm_alloc_sched(sc)) != 0) {
5786 		device_printf(dev, "could not allocate TX scheduler rings\n");
5787 		goto fail;
5788 	}
5789 
5790 	/* Allocate TX rings */
5791 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5792 		if ((error = iwm_alloc_tx_ring(sc,
5793 		    &sc->txq[txq_i], txq_i)) != 0) {
5794 			device_printf(dev,
5795 			    "could not allocate TX ring %d\n",
5796 			    txq_i);
5797 			goto fail;
5798 		}
5799 	}
5800 
5801 	/* Allocate RX ring. */
5802 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5803 		device_printf(dev, "could not allocate RX ring\n");
5804 		goto fail;
5805 	}
5806 
5807 	/* Clear pending interrupts. */
5808 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5809 
5810 	ic->ic_softc = sc;
5811 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5812 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5813 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5814 
5815 	/* Set device capabilities. */
5816 	ic->ic_caps =
5817 	    IEEE80211_C_STA |
5818 	    IEEE80211_C_WPA |		/* WPA/RSN */
5819 	    IEEE80211_C_WME |
5820 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5821 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5822 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5823 	    ;
5824 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5825 		sc->sc_phyctxt[i].id = i;
5826 		sc->sc_phyctxt[i].color = 0;
5827 		sc->sc_phyctxt[i].ref = 0;
5828 		sc->sc_phyctxt[i].channel = NULL;
5829 	}
5830 
5831 	/* Default noise floor */
5832 	sc->sc_noise = -96;
5833 
5834 	/* Max RSSI */
5835 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5836 
5837 	sc->sc_preinit_hook.ich_func = iwm_preinit;
5838 	sc->sc_preinit_hook.ich_arg = sc;
5839 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5840 		device_printf(dev, "config_intrhook_establish failed\n");
5841 		goto fail;
5842 	}
5843 
5844 #ifdef IWM_DEBUG
5845 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5846 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5847 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5848 #endif
5849 
5850 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5851 	    "<-%s\n", __func__);
5852 
5853 	return 0;
5854 
5855 	/* Free allocated memory if something failed during attachment. */
5856 fail:
5857 	iwm_detach_local(sc, 0);
5858 
5859 	return ENXIO;
5860 }
5861 
5862 static int
5863 iwm_is_valid_ether_addr(uint8_t *addr)
5864 {
5865 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5866 
5867 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5868 		return (FALSE);
5869 
5870 	return (TRUE);
5871 }
5872 
5873 static int
5874 iwm_update_edca(struct ieee80211com *ic)
5875 {
5876 	struct iwm_softc *sc = ic->ic_softc;
5877 
5878 	device_printf(sc->sc_dev, "%s: called\n", __func__);
5879 	return (0);
5880 }
5881 
5882 static void
5883 iwm_preinit(void *arg)
5884 {
5885 	struct iwm_softc *sc = arg;
5886 	device_t dev = sc->sc_dev;
5887 	struct ieee80211com *ic = &sc->sc_ic;
5888 	int error;
5889 
5890 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5891 	    "->%s\n", __func__);
5892 
5893 	IWM_LOCK(sc);
5894 	if ((error = iwm_start_hw(sc)) != 0) {
5895 		device_printf(dev, "could not initialize hardware\n");
5896 		IWM_UNLOCK(sc);
5897 		goto fail;
5898 	}
5899 
5900 	error = iwm_run_init_mvm_ucode(sc, 1);
5901 	iwm_stop_device(sc);
5902 	if (error) {
5903 		IWM_UNLOCK(sc);
5904 		goto fail;
5905 	}
5906 	device_printf(dev,
5907 	    "hw rev 0x%x, fw ver %s, address %s\n",
5908 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5909 	    sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5910 
5911 	/* not all hardware can do 5GHz band */
5912 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5913 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5914 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5915 	IWM_UNLOCK(sc);
5916 
5917 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5918 	    ic->ic_channels);
5919 
5920 	/*
5921 	 * At this point we've committed - if we fail to do setup,
5922 	 * we now also have to tear down the net80211 state.
5923 	 */
5924 	ieee80211_ifattach(ic);
5925 	ic->ic_vap_create = iwm_vap_create;
5926 	ic->ic_vap_delete = iwm_vap_delete;
5927 	ic->ic_raw_xmit = iwm_raw_xmit;
5928 	ic->ic_node_alloc = iwm_node_alloc;
5929 	ic->ic_scan_start = iwm_scan_start;
5930 	ic->ic_scan_end = iwm_scan_end;
5931 	ic->ic_update_mcast = iwm_update_mcast;
5932 	ic->ic_getradiocaps = iwm_init_channel_map;
5933 	ic->ic_set_channel = iwm_set_channel;
5934 	ic->ic_scan_curchan = iwm_scan_curchan;
5935 	ic->ic_scan_mindwell = iwm_scan_mindwell;
5936 	ic->ic_wme.wme_update = iwm_update_edca;
5937 	ic->ic_parent = iwm_parent;
5938 	ic->ic_transmit = iwm_transmit;
5939 	iwm_radiotap_attach(sc);
5940 	if (bootverbose)
5941 		ieee80211_announce(ic);
5942 
5943 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5944 	    "<-%s\n", __func__);
5945 	config_intrhook_disestablish(&sc->sc_preinit_hook);
5946 
5947 	return;
5948 fail:
5949 	config_intrhook_disestablish(&sc->sc_preinit_hook);
5950 	iwm_detach_local(sc, 0);
5951 }
5952 
5953 /*
5954  * Attach the interface to 802.11 radiotap.
5955  */
5956 static void
5957 iwm_radiotap_attach(struct iwm_softc *sc)
5958 {
5959         struct ieee80211com *ic = &sc->sc_ic;
5960 
5961 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5962 	    "->%s begin\n", __func__);
5963         ieee80211_radiotap_attach(ic,
5964             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
5965                 IWM_TX_RADIOTAP_PRESENT,
5966             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
5967                 IWM_RX_RADIOTAP_PRESENT);
5968 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5969 	    "->%s end\n", __func__);
5970 }
5971 
5972 static struct ieee80211vap *
5973 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
5974     enum ieee80211_opmode opmode, int flags,
5975     const uint8_t bssid[IEEE80211_ADDR_LEN],
5976     const uint8_t mac[IEEE80211_ADDR_LEN])
5977 {
5978 	struct iwm_vap *ivp;
5979 	struct ieee80211vap *vap;
5980 
5981 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
5982 		return NULL;
5983 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
5984 	vap = &ivp->iv_vap;
5985 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
5986 	vap->iv_bmissthreshold = 10;            /* override default */
5987 	/* Override with driver methods. */
5988 	ivp->iv_newstate = vap->iv_newstate;
5989 	vap->iv_newstate = iwm_newstate;
5990 
5991 	ieee80211_ratectl_init(vap);
5992 	/* Complete setup. */
5993 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
5994 	    mac);
5995 	ic->ic_opmode = opmode;
5996 
5997 	return vap;
5998 }
5999 
6000 static void
6001 iwm_vap_delete(struct ieee80211vap *vap)
6002 {
6003 	struct iwm_vap *ivp = IWM_VAP(vap);
6004 
6005 	ieee80211_ratectl_deinit(vap);
6006 	ieee80211_vap_detach(vap);
6007 	free(ivp, M_80211_VAP);
6008 }
6009 
6010 static void
6011 iwm_scan_start(struct ieee80211com *ic)
6012 {
6013 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6014 	struct iwm_softc *sc = ic->ic_softc;
6015 	int error;
6016 
6017 	IWM_LOCK(sc);
6018 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6019 		error = iwm_mvm_umac_scan(sc);
6020 	else
6021 		error = iwm_mvm_lmac_scan(sc);
6022 	if (error != 0) {
6023 		device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6024 		IWM_UNLOCK(sc);
6025 		ieee80211_cancel_scan(vap);
6026 	} else {
6027 		iwm_led_blink_start(sc);
6028 		IWM_UNLOCK(sc);
6029 	}
6030 }
6031 
6032 static void
6033 iwm_scan_end(struct ieee80211com *ic)
6034 {
6035 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6036 	struct iwm_softc *sc = ic->ic_softc;
6037 
6038 	IWM_LOCK(sc);
6039 	iwm_led_blink_stop(sc);
6040 	if (vap->iv_state == IEEE80211_S_RUN)
6041 		iwm_mvm_led_enable(sc);
6042 	IWM_UNLOCK(sc);
6043 }
6044 
6045 static void
6046 iwm_update_mcast(struct ieee80211com *ic)
6047 {
6048 }
6049 
6050 static void
6051 iwm_set_channel(struct ieee80211com *ic)
6052 {
6053 }
6054 
6055 static void
6056 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6057 {
6058 }
6059 
6060 static void
6061 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6062 {
6063 	return;
6064 }
6065 
6066 void
6067 iwm_init_task(void *arg1)
6068 {
6069 	struct iwm_softc *sc = arg1;
6070 
6071 	IWM_LOCK(sc);
6072 	while (sc->sc_flags & IWM_FLAG_BUSY)
6073 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6074 	sc->sc_flags |= IWM_FLAG_BUSY;
6075 	iwm_stop(sc);
6076 	if (sc->sc_ic.ic_nrunning > 0)
6077 		iwm_init(sc);
6078 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6079 	wakeup(&sc->sc_flags);
6080 	IWM_UNLOCK(sc);
6081 }
6082 
6083 static int
6084 iwm_resume(device_t dev)
6085 {
6086 	struct iwm_softc *sc = device_get_softc(dev);
6087 	int do_reinit = 0;
6088 	uint16_t reg;
6089 
6090 	/* Clear device-specific "PCI retry timeout" register (41h). */
6091 	reg = pci_read_config(dev, 0x40, sizeof(reg));
6092 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6093 	iwm_init_task(device_get_softc(dev));
6094 
6095 	IWM_LOCK(sc);
6096 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6097 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6098 		do_reinit = 1;
6099 	}
6100 	IWM_UNLOCK(sc);
6101 
6102 	if (do_reinit)
6103 		ieee80211_resume_all(&sc->sc_ic);
6104 
6105 	return 0;
6106 }
6107 
6108 static int
6109 iwm_suspend(device_t dev)
6110 {
6111 	int do_stop = 0;
6112 	struct iwm_softc *sc = device_get_softc(dev);
6113 
6114 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6115 
6116 	ieee80211_suspend_all(&sc->sc_ic);
6117 
6118 	if (do_stop) {
6119 		IWM_LOCK(sc);
6120 		iwm_stop(sc);
6121 		sc->sc_flags |= IWM_FLAG_SCANNING;
6122 		IWM_UNLOCK(sc);
6123 	}
6124 
6125 	return (0);
6126 }
6127 
6128 static int
6129 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6130 {
6131 	struct iwm_fw_info *fw = &sc->sc_fw;
6132 	device_t dev = sc->sc_dev;
6133 	int i;
6134 
6135 	ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6136 
6137 	callout_drain(&sc->sc_led_blink_to);
6138 	callout_drain(&sc->sc_watchdog_to);
6139 	iwm_stop_device(sc);
6140 	if (do_net80211) {
6141 		ieee80211_ifdetach(&sc->sc_ic);
6142 	}
6143 
6144 	iwm_phy_db_free(sc);
6145 
6146 	/* Free descriptor rings */
6147 	iwm_free_rx_ring(sc, &sc->rxq);
6148 	for (i = 0; i < nitems(sc->txq); i++)
6149 		iwm_free_tx_ring(sc, &sc->txq[i]);
6150 
6151 	/* Free firmware */
6152 	if (fw->fw_fp != NULL)
6153 		iwm_fw_info_free(fw);
6154 
6155 	/* Free scheduler */
6156 	iwm_dma_contig_free(&sc->sched_dma);
6157 	iwm_dma_contig_free(&sc->ict_dma);
6158 	iwm_dma_contig_free(&sc->kw_dma);
6159 	iwm_dma_contig_free(&sc->fw_dma);
6160 
6161 	/* Finished with the hardware - detach things */
6162 	iwm_pci_detach(dev);
6163 
6164 	mbufq_drain(&sc->sc_snd);
6165 	IWM_LOCK_DESTROY(sc);
6166 
6167 	return (0);
6168 }
6169 
6170 static int
6171 iwm_detach(device_t dev)
6172 {
6173 	struct iwm_softc *sc = device_get_softc(dev);
6174 
6175 	return (iwm_detach_local(sc, 1));
6176 }
6177 
6178 static device_method_t iwm_pci_methods[] = {
6179         /* Device interface */
6180         DEVMETHOD(device_probe,         iwm_probe),
6181         DEVMETHOD(device_attach,        iwm_attach),
6182         DEVMETHOD(device_detach,        iwm_detach),
6183         DEVMETHOD(device_suspend,       iwm_suspend),
6184         DEVMETHOD(device_resume,        iwm_resume),
6185 
6186         DEVMETHOD_END
6187 };
6188 
6189 static driver_t iwm_pci_driver = {
6190         "iwm",
6191         iwm_pci_methods,
6192         sizeof (struct iwm_softc)
6193 };
6194 
6195 static devclass_t iwm_devclass;
6196 
6197 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6198 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6199 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6200 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6201