xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*	$OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 #include "opt_iwm.h"
110 
111 #include <sys/param.h>
112 #include <sys/bus.h>
113 #include <sys/conf.h>
114 #include <sys/endian.h>
115 #include <sys/firmware.h>
116 #include <sys/kernel.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/module.h>
121 #include <sys/proc.h>
122 #include <sys/rman.h>
123 #include <sys/socket.h>
124 #include <sys/sockio.h>
125 #include <sys/sysctl.h>
126 #include <sys/linker.h>
127 
128 #include <machine/bus.h>
129 #include <machine/endian.h>
130 #include <machine/resource.h>
131 
132 #include <dev/pci/pcivar.h>
133 #include <dev/pci/pcireg.h>
134 
135 #include <net/bpf.h>
136 
137 #include <net/if.h>
138 #include <net/if_var.h>
139 #include <net/if_arp.h>
140 #include <net/if_dl.h>
141 #include <net/if_media.h>
142 #include <net/if_types.h>
143 
144 #include <netinet/in.h>
145 #include <netinet/in_systm.h>
146 #include <netinet/if_ether.h>
147 #include <netinet/ip.h>
148 
149 #include <net80211/ieee80211_var.h>
150 #include <net80211/ieee80211_regdomain.h>
151 #include <net80211/ieee80211_ratectl.h>
152 #include <net80211/ieee80211_radiotap.h>
153 
154 #include <dev/iwm/if_iwmreg.h>
155 #include <dev/iwm/if_iwmvar.h>
156 #include <dev/iwm/if_iwm_config.h>
157 #include <dev/iwm/if_iwm_debug.h>
158 #include <dev/iwm/if_iwm_notif_wait.h>
159 #include <dev/iwm/if_iwm_util.h>
160 #include <dev/iwm/if_iwm_binding.h>
161 #include <dev/iwm/if_iwm_phy_db.h>
162 #include <dev/iwm/if_iwm_mac_ctxt.h>
163 #include <dev/iwm/if_iwm_phy_ctxt.h>
164 #include <dev/iwm/if_iwm_time_event.h>
165 #include <dev/iwm/if_iwm_power.h>
166 #include <dev/iwm/if_iwm_scan.h>
167 #include <dev/iwm/if_iwm_sf.h>
168 #include <dev/iwm/if_iwm_sta.h>
169 
170 #include <dev/iwm/if_iwm_pcie_trans.h>
171 #include <dev/iwm/if_iwm_led.h>
172 #include <dev/iwm/if_iwm_fw.h>
173 
174 /* From DragonflyBSD */
175 #define mtodoff(m, t, off)      ((t)((m)->m_data + (off)))
176 
177 const uint8_t iwm_nvm_channels[] = {
178 	/* 2.4 GHz */
179 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
180 	/* 5 GHz */
181 	36, 40, 44, 48, 52, 56, 60, 64,
182 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
183 	149, 153, 157, 161, 165
184 };
185 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
186     "IWM_NUM_CHANNELS is too small");
187 
188 const uint8_t iwm_nvm_channels_8000[] = {
189 	/* 2.4 GHz */
190 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
191 	/* 5 GHz */
192 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
193 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
194 	149, 153, 157, 161, 165, 169, 173, 177, 181
195 };
196 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
197     "IWM_NUM_CHANNELS_8000 is too small");
198 
199 #define IWM_NUM_2GHZ_CHANNELS	14
200 #define IWM_N_HW_ADDR_MASK	0xF
201 
202 /*
203  * XXX For now, there's simply a fixed set of rate table entries
204  * that are populated.
205  */
206 const struct iwm_rate {
207 	uint8_t rate;
208 	uint8_t plcp;
209 } iwm_rates[] = {
210 	{   2,	IWM_RATE_1M_PLCP  },
211 	{   4,	IWM_RATE_2M_PLCP  },
212 	{  11,	IWM_RATE_5M_PLCP  },
213 	{  22,	IWM_RATE_11M_PLCP },
214 	{  12,	IWM_RATE_6M_PLCP  },
215 	{  18,	IWM_RATE_9M_PLCP  },
216 	{  24,	IWM_RATE_12M_PLCP },
217 	{  36,	IWM_RATE_18M_PLCP },
218 	{  48,	IWM_RATE_24M_PLCP },
219 	{  72,	IWM_RATE_36M_PLCP },
220 	{  96,	IWM_RATE_48M_PLCP },
221 	{ 108,	IWM_RATE_54M_PLCP },
222 };
223 #define IWM_RIDX_CCK	0
224 #define IWM_RIDX_OFDM	4
225 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
226 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
227 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
228 
229 struct iwm_nvm_section {
230 	uint16_t length;
231 	uint8_t *data;
232 };
233 
234 #define IWM_MVM_UCODE_ALIVE_TIMEOUT	hz
235 #define IWM_MVM_UCODE_CALIB_TIMEOUT	(2*hz)
236 
237 struct iwm_mvm_alive_data {
238 	int valid;
239 	uint32_t scd_base_addr;
240 };
241 
242 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
243 static int	iwm_firmware_store_section(struct iwm_softc *,
244                                            enum iwm_ucode_type,
245                                            const uint8_t *, size_t);
246 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
247 static void	iwm_fw_info_free(struct iwm_fw_info *);
248 static int	iwm_read_firmware(struct iwm_softc *);
249 static int	iwm_alloc_fwmem(struct iwm_softc *);
250 static int	iwm_alloc_sched(struct iwm_softc *);
251 static int	iwm_alloc_kw(struct iwm_softc *);
252 static int	iwm_alloc_ict(struct iwm_softc *);
253 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
254 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
255 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
256 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
257                                   int);
258 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
259 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
260 static void	iwm_enable_interrupts(struct iwm_softc *);
261 static void	iwm_restore_interrupts(struct iwm_softc *);
262 static void	iwm_disable_interrupts(struct iwm_softc *);
263 static void	iwm_ict_reset(struct iwm_softc *);
264 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
265 static void	iwm_stop_device(struct iwm_softc *);
266 static void	iwm_mvm_nic_config(struct iwm_softc *);
267 static int	iwm_nic_rx_init(struct iwm_softc *);
268 static int	iwm_nic_tx_init(struct iwm_softc *);
269 static int	iwm_nic_init(struct iwm_softc *);
270 static int	iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t);
271 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
272                                    uint16_t, uint8_t *, uint16_t *);
273 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
274 				     uint16_t *, uint32_t);
275 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
276 static void	iwm_add_channel_band(struct iwm_softc *,
277 		    struct ieee80211_channel[], int, int *, int, size_t,
278 		    const uint8_t[]);
279 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
280 		    struct ieee80211_channel[]);
281 static struct iwm_nvm_data *
282 	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
283 			   const uint16_t *, const uint16_t *,
284 			   const uint16_t *, const uint16_t *,
285 			   const uint16_t *);
286 static void	iwm_free_nvm_data(struct iwm_nvm_data *);
287 static void	iwm_set_hw_address_family_8000(struct iwm_softc *,
288 					       struct iwm_nvm_data *,
289 					       const uint16_t *,
290 					       const uint16_t *);
291 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
292 			    const uint16_t *);
293 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
294 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
295 				  const uint16_t *);
296 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
297 				   const uint16_t *);
298 static void	iwm_set_radio_cfg(const struct iwm_softc *,
299 				  struct iwm_nvm_data *, uint32_t);
300 static struct iwm_nvm_data *
301 	iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *);
302 static int	iwm_nvm_init(struct iwm_softc *);
303 static int	iwm_pcie_load_section(struct iwm_softc *, uint8_t,
304 				      const struct iwm_fw_desc *);
305 static int	iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t,
306 					     bus_addr_t, uint32_t);
307 static int	iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
308 						const struct iwm_fw_img *,
309 						int, int *);
310 static int	iwm_pcie_load_cpu_sections(struct iwm_softc *,
311 					   const struct iwm_fw_img *,
312 					   int, int *);
313 static int	iwm_pcie_load_given_ucode_8000(struct iwm_softc *,
314 					       const struct iwm_fw_img *);
315 static int	iwm_pcie_load_given_ucode(struct iwm_softc *,
316 					  const struct iwm_fw_img *);
317 static int	iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *);
318 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
319 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
320 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
321                                               enum iwm_ucode_type);
322 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
323 static int	iwm_mvm_config_ltr(struct iwm_softc *sc);
324 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
325 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
326 					    struct iwm_rx_phy_info *);
327 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
328                                       struct iwm_rx_packet *);
329 static int	iwm_get_noise(struct iwm_softc *,
330 		    const struct iwm_mvm_statistics_rx_non_phy *);
331 static void	iwm_mvm_handle_rx_statistics(struct iwm_softc *,
332 		    struct iwm_rx_packet *);
333 static boolean_t iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct mbuf *,
334 				    uint32_t, boolean_t);
335 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
336                                          struct iwm_rx_packet *,
337 				         struct iwm_node *);
338 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *);
339 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
340 #if 0
341 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
342                                  uint16_t);
343 #endif
344 static const struct iwm_rate *
345 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
346 			struct mbuf *, struct iwm_tx_cmd *);
347 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
348                        struct ieee80211_node *, int);
349 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
350 			     const struct ieee80211_bpf_params *);
351 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_vap *);
352 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
353 static struct ieee80211_node *
354 		iwm_node_alloc(struct ieee80211vap *,
355 		               const uint8_t[IEEE80211_ADDR_LEN]);
356 static uint8_t	iwm_rate_from_ucode_rate(uint32_t);
357 static int	iwm_rate2ridx(struct iwm_softc *, uint8_t);
358 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *, int);
359 static int	iwm_media_change(struct ifnet *);
360 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
361 static void	iwm_endscan_cb(void *, int);
362 static int	iwm_send_bt_init_conf(struct iwm_softc *);
363 static boolean_t iwm_mvm_is_lar_supported(struct iwm_softc *);
364 static boolean_t iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *);
365 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
366 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
367 static int	iwm_init_hw(struct iwm_softc *);
368 static void	iwm_init(struct iwm_softc *);
369 static void	iwm_start(struct iwm_softc *);
370 static void	iwm_stop(struct iwm_softc *);
371 static void	iwm_watchdog(void *);
372 static void	iwm_parent(struct ieee80211com *);
373 #ifdef IWM_DEBUG
374 static const char *
375 		iwm_desc_lookup(uint32_t);
376 static void	iwm_nic_error(struct iwm_softc *);
377 static void	iwm_nic_umac_error(struct iwm_softc *);
378 #endif
379 static void	iwm_handle_rxb(struct iwm_softc *, struct mbuf *);
380 static void	iwm_notif_intr(struct iwm_softc *);
381 static void	iwm_intr(void *);
382 static int	iwm_attach(device_t);
383 static int	iwm_is_valid_ether_addr(uint8_t *);
384 static void	iwm_preinit(void *);
385 static int	iwm_detach_local(struct iwm_softc *sc, int);
386 static void	iwm_init_task(void *);
387 static void	iwm_radiotap_attach(struct iwm_softc *);
388 static struct ieee80211vap *
389 		iwm_vap_create(struct ieee80211com *,
390 		               const char [IFNAMSIZ], int,
391 		               enum ieee80211_opmode, int,
392 		               const uint8_t [IEEE80211_ADDR_LEN],
393 		               const uint8_t [IEEE80211_ADDR_LEN]);
394 static void	iwm_vap_delete(struct ieee80211vap *);
395 static void	iwm_xmit_queue_drain(struct iwm_softc *);
396 static void	iwm_scan_start(struct ieee80211com *);
397 static void	iwm_scan_end(struct ieee80211com *);
398 static void	iwm_update_mcast(struct ieee80211com *);
399 static void	iwm_set_channel(struct ieee80211com *);
400 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
401 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
402 static int	iwm_detach(device_t);
403 
404 static int	iwm_lar_disable = 0;
405 TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable);
406 
407 /*
408  * Firmware parser.
409  */
410 
411 static int
412 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
413 {
414 	const struct iwm_fw_cscheme_list *l = (const void *)data;
415 
416 	if (dlen < sizeof(*l) ||
417 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
418 		return EINVAL;
419 
420 	/* we don't actually store anything for now, always use s/w crypto */
421 
422 	return 0;
423 }
424 
425 static int
426 iwm_firmware_store_section(struct iwm_softc *sc,
427     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
428 {
429 	struct iwm_fw_img *fws;
430 	struct iwm_fw_desc *fwone;
431 
432 	if (type >= IWM_UCODE_TYPE_MAX)
433 		return EINVAL;
434 	if (dlen < sizeof(uint32_t))
435 		return EINVAL;
436 
437 	fws = &sc->sc_fw.img[type];
438 	if (fws->fw_count >= IWM_UCODE_SECTION_MAX)
439 		return EINVAL;
440 
441 	fwone = &fws->sec[fws->fw_count];
442 
443 	/* first 32bit are device load offset */
444 	memcpy(&fwone->offset, data, sizeof(uint32_t));
445 
446 	/* rest is data */
447 	fwone->data = data + sizeof(uint32_t);
448 	fwone->len = dlen - sizeof(uint32_t);
449 
450 	fws->fw_count++;
451 
452 	return 0;
453 }
454 
455 #define IWM_DEFAULT_SCAN_CHANNELS 40
456 
457 /* iwlwifi: iwl-drv.c */
458 struct iwm_tlv_calib_data {
459 	uint32_t ucode_type;
460 	struct iwm_tlv_calib_ctrl calib;
461 } __packed;
462 
463 static int
464 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
465 {
466 	const struct iwm_tlv_calib_data *def_calib = data;
467 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
468 
469 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
470 		device_printf(sc->sc_dev,
471 		    "Wrong ucode_type %u for default "
472 		    "calibration.\n", ucode_type);
473 		return EINVAL;
474 	}
475 
476 	sc->sc_default_calib[ucode_type].flow_trigger =
477 	    def_calib->calib.flow_trigger;
478 	sc->sc_default_calib[ucode_type].event_trigger =
479 	    def_calib->calib.event_trigger;
480 
481 	return 0;
482 }
483 
484 static int
485 iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data,
486 			struct iwm_ucode_capabilities *capa)
487 {
488 	const struct iwm_ucode_api *ucode_api = (const void *)data;
489 	uint32_t api_index = le32toh(ucode_api->api_index);
490 	uint32_t api_flags = le32toh(ucode_api->api_flags);
491 	int i;
492 
493 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
494 		device_printf(sc->sc_dev,
495 		    "api flags index %d larger than supported by driver\n",
496 		    api_index);
497 		/* don't return an error so we can load FW that has more bits */
498 		return 0;
499 	}
500 
501 	for (i = 0; i < 32; i++) {
502 		if (api_flags & (1U << i))
503 			setbit(capa->enabled_api, i + 32 * api_index);
504 	}
505 
506 	return 0;
507 }
508 
509 static int
510 iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data,
511 			   struct iwm_ucode_capabilities *capa)
512 {
513 	const struct iwm_ucode_capa *ucode_capa = (const void *)data;
514 	uint32_t api_index = le32toh(ucode_capa->api_index);
515 	uint32_t api_flags = le32toh(ucode_capa->api_capa);
516 	int i;
517 
518 	if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
519 		device_printf(sc->sc_dev,
520 		    "capa flags index %d larger than supported by driver\n",
521 		    api_index);
522 		/* don't return an error so we can load FW that has more bits */
523 		return 0;
524 	}
525 
526 	for (i = 0; i < 32; i++) {
527 		if (api_flags & (1U << i))
528 			setbit(capa->enabled_capa, i + 32 * api_index);
529 	}
530 
531 	return 0;
532 }
533 
534 static void
535 iwm_fw_info_free(struct iwm_fw_info *fw)
536 {
537 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
538 	fw->fw_fp = NULL;
539 	memset(fw->img, 0, sizeof(fw->img));
540 }
541 
542 static int
543 iwm_read_firmware(struct iwm_softc *sc)
544 {
545 	struct iwm_fw_info *fw = &sc->sc_fw;
546 	const struct iwm_tlv_ucode_header *uhdr;
547 	const struct iwm_ucode_tlv *tlv;
548 	struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa;
549 	enum iwm_ucode_tlv_type tlv_type;
550 	const struct firmware *fwp;
551 	const uint8_t *data;
552 	uint32_t tlv_len;
553 	uint32_t usniffer_img;
554 	const uint8_t *tlv_data;
555 	uint32_t paging_mem_size;
556 	int num_of_cpus;
557 	int error = 0;
558 	size_t len;
559 
560 	/*
561 	 * Load firmware into driver memory.
562 	 * fw_fp will be set.
563 	 */
564 	fwp = firmware_get(sc->cfg->fw_name);
565 	if (fwp == NULL) {
566 		device_printf(sc->sc_dev,
567 		    "could not read firmware %s (error %d)\n",
568 		    sc->cfg->fw_name, error);
569 		goto out;
570 	}
571 	fw->fw_fp = fwp;
572 
573 	/* (Re-)Initialize default values. */
574 	capa->flags = 0;
575 	capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH;
576 	capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
577 	memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa));
578 	memset(capa->enabled_api, 0, sizeof(capa->enabled_api));
579 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
580 
581 	/*
582 	 * Parse firmware contents
583 	 */
584 
585 	uhdr = (const void *)fw->fw_fp->data;
586 	if (*(const uint32_t *)fw->fw_fp->data != 0
587 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
588 		device_printf(sc->sc_dev, "invalid firmware %s\n",
589 		    sc->cfg->fw_name);
590 		error = EINVAL;
591 		goto out;
592 	}
593 
594 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)",
595 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
596 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
597 	    IWM_UCODE_API(le32toh(uhdr->ver)));
598 	data = uhdr->data;
599 	len = fw->fw_fp->datasize - sizeof(*uhdr);
600 
601 	while (len >= sizeof(*tlv)) {
602 		len -= sizeof(*tlv);
603 		tlv = (const void *)data;
604 
605 		tlv_len = le32toh(tlv->length);
606 		tlv_type = le32toh(tlv->type);
607 		tlv_data = tlv->data;
608 
609 		if (len < tlv_len) {
610 			device_printf(sc->sc_dev,
611 			    "firmware too short: %zu bytes\n",
612 			    len);
613 			error = EINVAL;
614 			goto parse_out;
615 		}
616 		len -= roundup2(tlv_len, 4);
617 		data += sizeof(*tlv) + roundup2(tlv_len, 4);
618 
619 		switch ((int)tlv_type) {
620 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
621 			if (tlv_len != sizeof(uint32_t)) {
622 				device_printf(sc->sc_dev,
623 				    "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n",
624 				    __func__, tlv_len);
625 				error = EINVAL;
626 				goto parse_out;
627 			}
628 			capa->max_probe_length =
629 			    le32_to_cpup((const uint32_t *)tlv_data);
630 			/* limit it to something sensible */
631 			if (capa->max_probe_length >
632 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
633 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
634 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
635 				    "ridiculous\n", __func__);
636 				error = EINVAL;
637 				goto parse_out;
638 			}
639 			break;
640 		case IWM_UCODE_TLV_PAN:
641 			if (tlv_len) {
642 				device_printf(sc->sc_dev,
643 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n",
644 				    __func__, tlv_len);
645 				error = EINVAL;
646 				goto parse_out;
647 			}
648 			capa->flags |= IWM_UCODE_TLV_FLAGS_PAN;
649 			break;
650 		case IWM_UCODE_TLV_FLAGS:
651 			if (tlv_len < sizeof(uint32_t)) {
652 				device_printf(sc->sc_dev,
653 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n",
654 				    __func__, tlv_len);
655 				error = EINVAL;
656 				goto parse_out;
657 			}
658 			if (tlv_len % sizeof(uint32_t)) {
659 				device_printf(sc->sc_dev,
660 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n",
661 				    __func__, tlv_len);
662 				error = EINVAL;
663 				goto parse_out;
664 			}
665 			/*
666 			 * Apparently there can be many flags, but Linux driver
667 			 * parses only the first one, and so do we.
668 			 *
669 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
670 			 * Intentional or a bug?  Observations from
671 			 * current firmware file:
672 			 *  1) TLV_PAN is parsed first
673 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
674 			 * ==> this resets TLV_PAN to itself... hnnnk
675 			 */
676 			capa->flags = le32_to_cpup((const uint32_t *)tlv_data);
677 			break;
678 		case IWM_UCODE_TLV_CSCHEME:
679 			if ((error = iwm_store_cscheme(sc,
680 			    tlv_data, tlv_len)) != 0) {
681 				device_printf(sc->sc_dev,
682 				    "%s: iwm_store_cscheme(): returned %d\n",
683 				    __func__, error);
684 				goto parse_out;
685 			}
686 			break;
687 		case IWM_UCODE_TLV_NUM_OF_CPU:
688 			if (tlv_len != sizeof(uint32_t)) {
689 				device_printf(sc->sc_dev,
690 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n",
691 				    __func__, tlv_len);
692 				error = EINVAL;
693 				goto parse_out;
694 			}
695 			num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data);
696 			if (num_of_cpus == 2) {
697 				fw->img[IWM_UCODE_REGULAR].is_dual_cpus =
698 					TRUE;
699 				fw->img[IWM_UCODE_INIT].is_dual_cpus =
700 					TRUE;
701 				fw->img[IWM_UCODE_WOWLAN].is_dual_cpus =
702 					TRUE;
703 			} else if ((num_of_cpus > 2) || (num_of_cpus < 1)) {
704 				device_printf(sc->sc_dev,
705 				    "%s: Driver supports only 1 or 2 CPUs\n",
706 				    __func__);
707 				error = EINVAL;
708 				goto parse_out;
709 			}
710 			break;
711 		case IWM_UCODE_TLV_SEC_RT:
712 			if ((error = iwm_firmware_store_section(sc,
713 			    IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) {
714 				device_printf(sc->sc_dev,
715 				    "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n",
716 				    __func__, error);
717 				goto parse_out;
718 			}
719 			break;
720 		case IWM_UCODE_TLV_SEC_INIT:
721 			if ((error = iwm_firmware_store_section(sc,
722 			    IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) {
723 				device_printf(sc->sc_dev,
724 				    "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n",
725 				    __func__, error);
726 				goto parse_out;
727 			}
728 			break;
729 		case IWM_UCODE_TLV_SEC_WOWLAN:
730 			if ((error = iwm_firmware_store_section(sc,
731 			    IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) {
732 				device_printf(sc->sc_dev,
733 				    "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n",
734 				    __func__, error);
735 				goto parse_out;
736 			}
737 			break;
738 		case IWM_UCODE_TLV_DEF_CALIB:
739 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
740 				device_printf(sc->sc_dev,
741 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n",
742 				    __func__, tlv_len,
743 				    sizeof(struct iwm_tlv_calib_data));
744 				error = EINVAL;
745 				goto parse_out;
746 			}
747 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
748 				device_printf(sc->sc_dev,
749 				    "%s: iwm_set_default_calib() failed: %d\n",
750 				    __func__, error);
751 				goto parse_out;
752 			}
753 			break;
754 		case IWM_UCODE_TLV_PHY_SKU:
755 			if (tlv_len != sizeof(uint32_t)) {
756 				error = EINVAL;
757 				device_printf(sc->sc_dev,
758 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n",
759 				    __func__, tlv_len);
760 				goto parse_out;
761 			}
762 			sc->sc_fw.phy_config =
763 			    le32_to_cpup((const uint32_t *)tlv_data);
764 			sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config &
765 						  IWM_FW_PHY_CFG_TX_CHAIN) >>
766 						  IWM_FW_PHY_CFG_TX_CHAIN_POS;
767 			sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config &
768 						  IWM_FW_PHY_CFG_RX_CHAIN) >>
769 						  IWM_FW_PHY_CFG_RX_CHAIN_POS;
770 			break;
771 
772 		case IWM_UCODE_TLV_API_CHANGES_SET: {
773 			if (tlv_len != sizeof(struct iwm_ucode_api)) {
774 				error = EINVAL;
775 				goto parse_out;
776 			}
777 			if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			break;
782 		}
783 
784 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
785 			if (tlv_len != sizeof(struct iwm_ucode_capa)) {
786 				error = EINVAL;
787 				goto parse_out;
788 			}
789 			if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) {
790 				error = EINVAL;
791 				goto parse_out;
792 			}
793 			break;
794 		}
795 
796 		case 48: /* undocumented TLV */
797 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
798 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
799 			/* ignore, not used by current driver */
800 			break;
801 
802 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
803 			if ((error = iwm_firmware_store_section(sc,
804 			    IWM_UCODE_REGULAR_USNIFFER, tlv_data,
805 			    tlv_len)) != 0)
806 				goto parse_out;
807 			break;
808 
809 		case IWM_UCODE_TLV_PAGING:
810 			if (tlv_len != sizeof(uint32_t)) {
811 				error = EINVAL;
812 				goto parse_out;
813 			}
814 			paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data);
815 
816 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
817 			    "%s: Paging: paging enabled (size = %u bytes)\n",
818 			    __func__, paging_mem_size);
819 			if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
820 				device_printf(sc->sc_dev,
821 					"%s: Paging: driver supports up to %u bytes for paging image\n",
822 					__func__, IWM_MAX_PAGING_IMAGE_SIZE);
823 				error = EINVAL;
824 				goto out;
825 			}
826 			if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
827 				device_printf(sc->sc_dev,
828 				    "%s: Paging: image isn't multiple %u\n",
829 				    __func__, IWM_FW_PAGING_SIZE);
830 				error = EINVAL;
831 				goto out;
832 			}
833 
834 			sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size =
835 			    paging_mem_size;
836 			usniffer_img = IWM_UCODE_REGULAR_USNIFFER;
837 			sc->sc_fw.img[usniffer_img].paging_mem_size =
838 			    paging_mem_size;
839 			break;
840 
841 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
842 			if (tlv_len != sizeof(uint32_t)) {
843 				error = EINVAL;
844 				goto parse_out;
845 			}
846 			capa->n_scan_channels =
847 			    le32_to_cpup((const uint32_t *)tlv_data);
848 			break;
849 
850 		case IWM_UCODE_TLV_FW_VERSION:
851 			if (tlv_len != sizeof(uint32_t) * 3) {
852 				error = EINVAL;
853 				goto parse_out;
854 			}
855 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
856 			    "%d.%d.%d",
857 			    le32toh(((const uint32_t *)tlv_data)[0]),
858 			    le32toh(((const uint32_t *)tlv_data)[1]),
859 			    le32toh(((const uint32_t *)tlv_data)[2]));
860 			break;
861 
862 		case IWM_UCODE_TLV_FW_MEM_SEG:
863 			break;
864 
865 		default:
866 			device_printf(sc->sc_dev,
867 			    "%s: unknown firmware section %d, abort\n",
868 			    __func__, tlv_type);
869 			error = EINVAL;
870 			goto parse_out;
871 		}
872 	}
873 
874 	KASSERT(error == 0, ("unhandled error"));
875 
876  parse_out:
877 	if (error) {
878 		device_printf(sc->sc_dev, "firmware parse error %d, "
879 		    "section type %d\n", error, tlv_type);
880 	}
881 
882  out:
883 	if (error) {
884 		if (fw->fw_fp != NULL)
885 			iwm_fw_info_free(fw);
886 	}
887 
888 	return error;
889 }
890 
891 /*
892  * DMA resource routines
893  */
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    IWM_FH_MEM_TB_MAX_LENGTH, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1001 {
1002 	/* Reset the ring state */
1003 	ring->cur = 0;
1004 
1005 	/*
1006 	 * The hw rx ring index in shared memory must also be cleared,
1007 	 * otherwise the discrepancy can cause reprocessing chaos.
1008 	 */
1009 	if (sc->rxq.stat)
1010 		memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1011 }
1012 
1013 static void
1014 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1015 {
1016 	int i;
1017 
1018 	iwm_dma_contig_free(&ring->desc_dma);
1019 	iwm_dma_contig_free(&ring->stat_dma);
1020 
1021 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1022 		struct iwm_rx_data *data = &ring->data[i];
1023 
1024 		if (data->m != NULL) {
1025 			bus_dmamap_sync(ring->data_dmat, data->map,
1026 			    BUS_DMASYNC_POSTREAD);
1027 			bus_dmamap_unload(ring->data_dmat, data->map);
1028 			m_freem(data->m);
1029 			data->m = NULL;
1030 		}
1031 		if (data->map != NULL) {
1032 			bus_dmamap_destroy(ring->data_dmat, data->map);
1033 			data->map = NULL;
1034 		}
1035 	}
1036 	if (ring->spare_map != NULL) {
1037 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1038 		ring->spare_map = NULL;
1039 	}
1040 	if (ring->data_dmat != NULL) {
1041 		bus_dma_tag_destroy(ring->data_dmat);
1042 		ring->data_dmat = NULL;
1043 	}
1044 }
1045 
1046 static int
1047 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1048 {
1049 	bus_addr_t paddr;
1050 	bus_size_t size;
1051 	size_t maxsize;
1052 	int nsegments;
1053 	int i, error;
1054 
1055 	ring->qid = qid;
1056 	ring->queued = 0;
1057 	ring->cur = 0;
1058 
1059 	/* Allocate TX descriptors (256-byte aligned). */
1060 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1061 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1062 	if (error != 0) {
1063 		device_printf(sc->sc_dev,
1064 		    "could not allocate TX ring DMA memory\n");
1065 		goto fail;
1066 	}
1067 	ring->desc = ring->desc_dma.vaddr;
1068 
1069 	/*
1070 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1071 	 * to allocate commands space for other rings.
1072 	 */
1073 	if (qid > IWM_MVM_CMD_QUEUE)
1074 		return 0;
1075 
1076 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1077 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1078 	if (error != 0) {
1079 		device_printf(sc->sc_dev,
1080 		    "could not allocate TX cmd DMA memory\n");
1081 		goto fail;
1082 	}
1083 	ring->cmd = ring->cmd_dma.vaddr;
1084 
1085 	/* FW commands may require more mapped space than packets. */
1086 	if (qid == IWM_MVM_CMD_QUEUE) {
1087 		maxsize = IWM_RBUF_SIZE;
1088 		nsegments = 1;
1089 	} else {
1090 		maxsize = MCLBYTES;
1091 		nsegments = IWM_MAX_SCATTER - 2;
1092 	}
1093 
1094 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1095 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1096             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1097 	if (error != 0) {
1098 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1099 		goto fail;
1100 	}
1101 
1102 	paddr = ring->cmd_dma.paddr;
1103 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1104 		struct iwm_tx_data *data = &ring->data[i];
1105 
1106 		data->cmd_paddr = paddr;
1107 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1108 		    + offsetof(struct iwm_tx_cmd, scratch);
1109 		paddr += sizeof(struct iwm_device_cmd);
1110 
1111 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1112 		if (error != 0) {
1113 			device_printf(sc->sc_dev,
1114 			    "could not create TX buf DMA map\n");
1115 			goto fail;
1116 		}
1117 	}
1118 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1119 	    ("invalid physical address"));
1120 	return 0;
1121 
1122 fail:	iwm_free_tx_ring(sc, ring);
1123 	return error;
1124 }
1125 
1126 static void
1127 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1128 {
1129 	int i;
1130 
1131 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1132 		struct iwm_tx_data *data = &ring->data[i];
1133 
1134 		if (data->m != NULL) {
1135 			bus_dmamap_sync(ring->data_dmat, data->map,
1136 			    BUS_DMASYNC_POSTWRITE);
1137 			bus_dmamap_unload(ring->data_dmat, data->map);
1138 			m_freem(data->m);
1139 			data->m = NULL;
1140 		}
1141 	}
1142 	/* Clear TX descriptors. */
1143 	memset(ring->desc, 0, ring->desc_dma.size);
1144 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1145 	    BUS_DMASYNC_PREWRITE);
1146 	sc->qfullmsk &= ~(1 << ring->qid);
1147 	ring->queued = 0;
1148 	ring->cur = 0;
1149 
1150 	if (ring->qid == IWM_MVM_CMD_QUEUE && sc->cmd_hold_nic_awake)
1151 		iwm_pcie_clear_cmd_in_flight(sc);
1152 }
1153 
1154 static void
1155 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1156 {
1157 	int i;
1158 
1159 	iwm_dma_contig_free(&ring->desc_dma);
1160 	iwm_dma_contig_free(&ring->cmd_dma);
1161 
1162 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1163 		struct iwm_tx_data *data = &ring->data[i];
1164 
1165 		if (data->m != NULL) {
1166 			bus_dmamap_sync(ring->data_dmat, data->map,
1167 			    BUS_DMASYNC_POSTWRITE);
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 		if (data->map != NULL) {
1173 			bus_dmamap_destroy(ring->data_dmat, data->map);
1174 			data->map = NULL;
1175 		}
1176 	}
1177 	if (ring->data_dmat != NULL) {
1178 		bus_dma_tag_destroy(ring->data_dmat);
1179 		ring->data_dmat = NULL;
1180 	}
1181 }
1182 
1183 /*
1184  * High-level hardware frobbing routines
1185  */
1186 
1187 static void
1188 iwm_enable_interrupts(struct iwm_softc *sc)
1189 {
1190 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1191 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1192 }
1193 
1194 static void
1195 iwm_restore_interrupts(struct iwm_softc *sc)
1196 {
1197 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1198 }
1199 
1200 static void
1201 iwm_disable_interrupts(struct iwm_softc *sc)
1202 {
1203 	/* disable interrupts */
1204 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1205 
1206 	/* acknowledge all interrupts */
1207 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1208 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1209 }
1210 
1211 static void
1212 iwm_ict_reset(struct iwm_softc *sc)
1213 {
1214 	iwm_disable_interrupts(sc);
1215 
1216 	/* Reset ICT table. */
1217 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1218 	sc->ict_cur = 0;
1219 
1220 	/* Set physical address of ICT table (4KB aligned). */
1221 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1222 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1223 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1224 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1225 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1226 
1227 	/* Switch to ICT interrupt mode in driver. */
1228 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1229 
1230 	/* Re-enable interrupts. */
1231 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1232 	iwm_enable_interrupts(sc);
1233 }
1234 
1235 /* iwlwifi pcie/trans.c */
1236 
1237 /*
1238  * Since this .. hard-resets things, it's time to actually
1239  * mark the first vap (if any) as having no mac context.
1240  * It's annoying, but since the driver is potentially being
1241  * stop/start'ed whilst active (thanks openbsd port!) we
1242  * have to correctly track this.
1243  */
1244 static void
1245 iwm_stop_device(struct iwm_softc *sc)
1246 {
1247 	struct ieee80211com *ic = &sc->sc_ic;
1248 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1249 	int chnl, qid;
1250 	uint32_t mask = 0;
1251 
1252 	/* tell the device to stop sending interrupts */
1253 	iwm_disable_interrupts(sc);
1254 
1255 	/*
1256 	 * FreeBSD-local: mark the first vap as not-uploaded,
1257 	 * so the next transition through auth/assoc
1258 	 * will correctly populate the MAC context.
1259 	 */
1260 	if (vap) {
1261 		struct iwm_vap *iv = IWM_VAP(vap);
1262 		iv->phy_ctxt = NULL;
1263 		iv->is_uploaded = 0;
1264 	}
1265 	sc->sc_firmware_state = 0;
1266 	sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE;
1267 
1268 	/* device going down, Stop using ICT table */
1269 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1270 
1271 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1272 
1273 	if (iwm_nic_lock(sc)) {
1274 		iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1275 
1276 		/* Stop each Tx DMA channel */
1277 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1278 			IWM_WRITE(sc,
1279 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1280 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1281 		}
1282 
1283 		/* Wait for DMA channels to be idle */
1284 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1285 		    5000)) {
1286 			device_printf(sc->sc_dev,
1287 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1288 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1289 		}
1290 		iwm_nic_unlock(sc);
1291 	}
1292 	iwm_pcie_rx_stop(sc);
1293 
1294 	/* Stop RX ring. */
1295 	iwm_reset_rx_ring(sc, &sc->rxq);
1296 
1297 	/* Reset all TX rings. */
1298 	for (qid = 0; qid < nitems(sc->txq); qid++)
1299 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1300 
1301 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1302 		/* Power-down device's busmaster DMA clocks */
1303 		if (iwm_nic_lock(sc)) {
1304 			iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
1305 			    IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1306 			iwm_nic_unlock(sc);
1307 		}
1308 		DELAY(5);
1309 	}
1310 
1311 	/* Make sure (redundant) we've released our request to stay awake */
1312 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1313 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1314 
1315 	/* Stop the device, and put it in low power state */
1316 	iwm_apm_stop(sc);
1317 
1318 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1319 	 * Clean again the interrupt here
1320 	 */
1321 	iwm_disable_interrupts(sc);
1322 	/* stop and reset the on-board processor */
1323 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1324 
1325 	/*
1326 	 * Even if we stop the HW, we still want the RF kill
1327 	 * interrupt
1328 	 */
1329 	iwm_enable_rfkill_int(sc);
1330 	iwm_check_rfkill(sc);
1331 }
1332 
1333 /* iwlwifi: mvm/ops.c */
1334 static void
1335 iwm_mvm_nic_config(struct iwm_softc *sc)
1336 {
1337 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1338 	uint32_t reg_val = 0;
1339 	uint32_t phy_config = iwm_mvm_get_phy_config(sc);
1340 
1341 	radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	/*
1381 	 * Initialize RX ring.  This is from the iwn driver.
1382 	 */
1383 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1384 
1385 	/* Stop Rx DMA */
1386 	iwm_pcie_rx_stop(sc);
1387 
1388 	if (!iwm_nic_lock(sc))
1389 		return EBUSY;
1390 
1391 	/* reset and flush pointers */
1392 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1394 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1395 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1396 
1397 	/* Set physical address of RX ring (256-byte aligned). */
1398 	IWM_WRITE(sc,
1399 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1400 
1401 	/* Set physical address of RX status (16-byte aligned). */
1402 	IWM_WRITE(sc,
1403 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1404 
1405 	/* Enable Rx DMA
1406 	 * XXX 5000 HW isn't supported by the iwm(4) driver.
1407 	 * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
1408 	 *      the credit mechanism in 5000 HW RX FIFO
1409 	 * Direct rx interrupts to hosts
1410 	 * Rx buffer size 4 or 8k or 12k
1411 	 * RB timeout 0x10
1412 	 * 256 RBDs
1413 	 */
1414 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1415 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1416 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1417 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1418 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1419 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1420 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1421 
1422 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1423 
1424 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1425 	if (sc->cfg->host_interrupt_operation_mode)
1426 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1427 
1428 	/*
1429 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1430 	 *
1431 	 * This value should initially be 0 (before preparing any
1432 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1433 	 */
1434 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1435 
1436 	iwm_nic_unlock(sc);
1437 
1438 	return 0;
1439 }
1440 
1441 static int
1442 iwm_nic_tx_init(struct iwm_softc *sc)
1443 {
1444 	int qid;
1445 
1446 	if (!iwm_nic_lock(sc))
1447 		return EBUSY;
1448 
1449 	/* Deactivate TX scheduler. */
1450 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1451 
1452 	/* Set physical address of "keep warm" page (16-byte aligned). */
1453 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1454 
1455 	/* Initialize TX rings. */
1456 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1457 		struct iwm_tx_ring *txq = &sc->txq[qid];
1458 
1459 		/* Set physical address of TX ring (256-byte aligned). */
1460 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1461 		    txq->desc_dma.paddr >> 8);
1462 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1463 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1464 		    __func__,
1465 		    qid, txq->desc,
1466 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1467 	}
1468 
1469 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1470 
1471 	iwm_nic_unlock(sc);
1472 
1473 	return 0;
1474 }
1475 
1476 static int
1477 iwm_nic_init(struct iwm_softc *sc)
1478 {
1479 	int error;
1480 
1481 	iwm_apm_init(sc);
1482 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1483 		iwm_set_pwr(sc);
1484 
1485 	iwm_mvm_nic_config(sc);
1486 
1487 	if ((error = iwm_nic_rx_init(sc)) != 0)
1488 		return error;
1489 
1490 	/*
1491 	 * Ditto for TX, from iwn
1492 	 */
1493 	if ((error = iwm_nic_tx_init(sc)) != 0)
1494 		return error;
1495 
1496 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1497 	    "%s: shadow registers enabled\n", __func__);
1498 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1499 
1500 	return 0;
1501 }
1502 
1503 int
1504 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1505 {
1506 	if (!iwm_nic_lock(sc)) {
1507 		device_printf(sc->sc_dev,
1508 		    "%s: cannot enable txq %d\n",
1509 		    __func__,
1510 		    qid);
1511 		return EBUSY;
1512 	}
1513 
1514 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1515 
1516 	if (qid == IWM_MVM_CMD_QUEUE) {
1517 		/* unactivate before configuration */
1518 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1519 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1520 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1521 
1522 		iwm_nic_unlock(sc);
1523 
1524 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1525 
1526 		if (!iwm_nic_lock(sc)) {
1527 			device_printf(sc->sc_dev,
1528 			    "%s: cannot enable txq %d\n", __func__, qid);
1529 			return EBUSY;
1530 		}
1531 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1532 		iwm_nic_unlock(sc);
1533 
1534 		iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1535 		/* Set scheduler window size and frame limit. */
1536 		iwm_write_mem32(sc,
1537 		    sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1538 		    sizeof(uint32_t),
1539 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1540 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1541 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1542 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1543 
1544 		if (!iwm_nic_lock(sc)) {
1545 			device_printf(sc->sc_dev,
1546 			    "%s: cannot enable txq %d\n", __func__, qid);
1547 			return EBUSY;
1548 		}
1549 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1550 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1551 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1552 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1553 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1554 	} else {
1555 		struct iwm_scd_txq_cfg_cmd cmd;
1556 		int error;
1557 
1558 		iwm_nic_unlock(sc);
1559 
1560 		memset(&cmd, 0, sizeof(cmd));
1561 		cmd.scd_queue = qid;
1562 		cmd.enable = 1;
1563 		cmd.sta_id = sta_id;
1564 		cmd.tx_fifo = fifo;
1565 		cmd.aggregate = 0;
1566 		cmd.window = IWM_FRAME_LIMIT;
1567 
1568 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1569 		    sizeof(cmd), &cmd);
1570 		if (error) {
1571 			device_printf(sc->sc_dev,
1572 			    "cannot enable txq %d\n", qid);
1573 			return error;
1574 		}
1575 
1576 		if (!iwm_nic_lock(sc))
1577 			return EBUSY;
1578 	}
1579 
1580 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1581 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1582 
1583 	iwm_nic_unlock(sc);
1584 
1585 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1586 	    __func__, qid, fifo);
1587 
1588 	return 0;
1589 }
1590 
1591 static int
1592 iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr)
1593 {
1594 	int error, chnl;
1595 
1596 	int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
1598 
1599 	if (!iwm_nic_lock(sc))
1600 		return EBUSY;
1601 
1602 	iwm_ict_reset(sc);
1603 
1604 	sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1605 	if (scd_base_addr != 0 &&
1606 	    scd_base_addr != sc->scd_base_addr) {
1607 		device_printf(sc->sc_dev,
1608 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1609 		    __func__, sc->scd_base_addr, scd_base_addr);
1610 	}
1611 
1612 	iwm_nic_unlock(sc);
1613 
1614 	/* reset context data, TX status and translation data */
1615 	error = iwm_write_mem(sc,
1616 	    sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1617 	    NULL, clear_dwords);
1618 	if (error)
1619 		return EBUSY;
1620 
1621 	if (!iwm_nic_lock(sc))
1622 		return EBUSY;
1623 
1624 	/* Set physical address of TX scheduler rings (1KB aligned). */
1625 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1626 
1627 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1628 
1629 	iwm_nic_unlock(sc);
1630 
1631 	/* enable command channel */
1632 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1633 	if (error)
1634 		return error;
1635 
1636 	if (!iwm_nic_lock(sc))
1637 		return EBUSY;
1638 
1639 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1640 
1641 	/* Enable DMA channels. */
1642 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1643 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1644 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1645 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1646 	}
1647 
1648 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1649 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1650 
1651 	iwm_nic_unlock(sc);
1652 
1653 	/* Enable L1-Active */
1654 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
1655 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1656 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1657 	}
1658 
1659 	return error;
1660 }
1661 
1662 /*
1663  * NVM read access and content parsing.  We do not support
1664  * external NVM or writing NVM.
1665  * iwlwifi/mvm/nvm.c
1666  */
1667 
1668 /* Default NVM size to read */
1669 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1670 
1671 #define IWM_NVM_WRITE_OPCODE 1
1672 #define IWM_NVM_READ_OPCODE 0
1673 
1674 /* load nvm chunk response */
1675 enum {
1676 	IWM_READ_NVM_CHUNK_SUCCEED = 0,
1677 	IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
1678 };
1679 
1680 static int
1681 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1682 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1683 {
1684 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1685 		.offset = htole16(offset),
1686 		.length = htole16(length),
1687 		.type = htole16(section),
1688 		.op_code = IWM_NVM_READ_OPCODE,
1689 	};
1690 	struct iwm_nvm_access_resp *nvm_resp;
1691 	struct iwm_rx_packet *pkt;
1692 	struct iwm_host_cmd cmd = {
1693 		.id = IWM_NVM_ACCESS_CMD,
1694 		.flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL,
1695 		.data = { &nvm_access_cmd, },
1696 	};
1697 	int ret, bytes_read, offset_read;
1698 	uint8_t *resp_data;
1699 
1700 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1701 
1702 	ret = iwm_send_cmd(sc, &cmd);
1703 	if (ret) {
1704 		device_printf(sc->sc_dev,
1705 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1706 		return ret;
1707 	}
1708 
1709 	pkt = cmd.resp_pkt;
1710 
1711 	/* Extract NVM response */
1712 	nvm_resp = (void *)pkt->data;
1713 	ret = le16toh(nvm_resp->status);
1714 	bytes_read = le16toh(nvm_resp->length);
1715 	offset_read = le16toh(nvm_resp->offset);
1716 	resp_data = nvm_resp->data;
1717 	if (ret) {
1718 		if ((offset != 0) &&
1719 		    (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
1720 			/*
1721 			 * meaning of NOT_VALID_ADDRESS:
1722 			 * driver try to read chunk from address that is
1723 			 * multiple of 2K and got an error since addr is empty.
1724 			 * meaning of (offset != 0): driver already
1725 			 * read valid data from another chunk so this case
1726 			 * is not an error.
1727 			 */
1728 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1729 				    "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
1730 				    offset);
1731 			*len = 0;
1732 			ret = 0;
1733 		} else {
1734 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1735 				    "NVM access command failed with status %d\n", ret);
1736 			ret = EIO;
1737 		}
1738 		goto exit;
1739 	}
1740 
1741 	if (offset_read != offset) {
1742 		device_printf(sc->sc_dev,
1743 		    "NVM ACCESS response with invalid offset %d\n",
1744 		    offset_read);
1745 		ret = EINVAL;
1746 		goto exit;
1747 	}
1748 
1749 	if (bytes_read > length) {
1750 		device_printf(sc->sc_dev,
1751 		    "NVM ACCESS response with too much data "
1752 		    "(%d bytes requested, %d bytes received)\n",
1753 		    length, bytes_read);
1754 		ret = EINVAL;
1755 		goto exit;
1756 	}
1757 
1758 	/* Write data to NVM */
1759 	memcpy(data + offset, resp_data, bytes_read);
1760 	*len = bytes_read;
1761 
1762  exit:
1763 	iwm_free_resp(sc, &cmd);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Reads an NVM section completely.
1769  * NICs prior to 7000 family don't have a real NVM, but just read
1770  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1771  * by uCode, we need to manually check in this case that we don't
1772  * overflow and try to read more than the EEPROM size.
1773  * For 7000 family NICs, we supply the maximal size we can read, and
1774  * the uCode fills the response with as much data as we can,
1775  * without overflowing, so no check is needed.
1776  */
1777 static int
1778 iwm_nvm_read_section(struct iwm_softc *sc,
1779 	uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read)
1780 {
1781 	uint16_t seglen, length, offset = 0;
1782 	int ret;
1783 
1784 	/* Set nvm section read length */
1785 	length = IWM_NVM_DEFAULT_CHUNK_SIZE;
1786 
1787 	seglen = length;
1788 
1789 	/* Read the NVM until exhausted (reading less than requested) */
1790 	while (seglen == length) {
1791 		/* Check no memory assumptions fail and cause an overflow */
1792 		if ((size_read + offset + length) >
1793 		    sc->cfg->eeprom_size) {
1794 			device_printf(sc->sc_dev,
1795 			    "EEPROM size is too small for NVM\n");
1796 			return ENOBUFS;
1797 		}
1798 
1799 		ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen);
1800 		if (ret) {
1801 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1802 				    "Cannot read NVM from section %d offset %d, length %d\n",
1803 				    section, offset, length);
1804 			return ret;
1805 		}
1806 		offset += seglen;
1807 	}
1808 
1809 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
1810 		    "NVM section %d read completed\n", section);
1811 	*len = offset;
1812 	return 0;
1813 }
1814 
1815 /*
1816  * BEGIN IWM_NVM_PARSE
1817  */
1818 
1819 /* iwlwifi/iwl-nvm-parse.c */
1820 
1821 /* NVM offsets (in words) definitions */
1822 enum iwm_nvm_offsets {
1823 	/* NVM HW-Section offset (in words) definitions */
1824 	IWM_HW_ADDR = 0x15,
1825 
1826 /* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION = 0x1C0,
1828 	IWM_NVM_VERSION = 0,
1829 	IWM_RADIO_CFG = 1,
1830 	IWM_SKU = 2,
1831 	IWM_N_HW_ADDRS = 3,
1832 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1833 
1834 /* NVM calibration section offset (in words) definitions */
1835 	IWM_NVM_CALIB_SECTION = 0x2B8,
1836 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1837 };
1838 
1839 enum iwm_8000_nvm_offsets {
1840 	/* NVM HW-Section offset (in words) definitions */
1841 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1842 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1843 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1844 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1845 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1846 
1847 	/* NVM SW-Section offset (in words) definitions */
1848 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1849 	IWM_NVM_VERSION_8000 = 0,
1850 	IWM_RADIO_CFG_8000 = 0,
1851 	IWM_SKU_8000 = 2,
1852 	IWM_N_HW_ADDRS_8000 = 3,
1853 
1854 	/* NVM REGULATORY -Section offset (in words) definitions */
1855 	IWM_NVM_CHANNELS_8000 = 0,
1856 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1857 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1858 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1859 
1860 	/* NVM calibration section offset (in words) definitions */
1861 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1862 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1863 };
1864 
1865 /* SKU Capabilities (actual values from NVM definition) */
1866 enum nvm_sku_bits {
1867 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1868 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1869 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1870 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1871 };
1872 
1873 /* radio config bits (actual values from NVM definition) */
1874 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1875 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1876 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1877 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1878 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1879 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1880 
1881 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1882 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1883 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1884 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1885 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1886 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1887 
1888 /**
1889  * enum iwm_nvm_channel_flags - channel flags in NVM
1890  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1891  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1892  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1893  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1894  * XXX cannot find this (DFS) flag in iwm-nvm-parse.c
1895  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1896  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1897  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1898  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1899  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1900  */
1901 enum iwm_nvm_channel_flags {
1902 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1903 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1904 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1905 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1906 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1907 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1908 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1909 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1910 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1911 };
1912 
1913 /*
1914  * Translate EEPROM flags to net80211.
1915  */
1916 static uint32_t
1917 iwm_eeprom_channel_flags(uint16_t ch_flags)
1918 {
1919 	uint32_t nflags;
1920 
1921 	nflags = 0;
1922 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1923 		nflags |= IEEE80211_CHAN_PASSIVE;
1924 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1925 		nflags |= IEEE80211_CHAN_NOADHOC;
1926 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1927 		nflags |= IEEE80211_CHAN_DFS;
1928 		/* Just in case. */
1929 		nflags |= IEEE80211_CHAN_NOADHOC;
1930 	}
1931 
1932 	return (nflags);
1933 }
1934 
1935 static void
1936 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1937     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1938     const uint8_t bands[])
1939 {
1940 	const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags;
1941 	uint32_t nflags;
1942 	uint16_t ch_flags;
1943 	uint8_t ieee;
1944 	int error;
1945 
1946 	for (; ch_idx < ch_num; ch_idx++) {
1947 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1948 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1949 			ieee = iwm_nvm_channels[ch_idx];
1950 		else
1951 			ieee = iwm_nvm_channels_8000[ch_idx];
1952 
1953 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1954 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1955 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1956 			    ieee, ch_flags,
1957 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1958 			    "5.2" : "2.4");
1959 			continue;
1960 		}
1961 
1962 		nflags = iwm_eeprom_channel_flags(ch_flags);
1963 		error = ieee80211_add_channel(chans, maxchans, nchans,
1964 		    ieee, 0, 0, nflags, bands);
1965 		if (error != 0)
1966 			break;
1967 
1968 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1969 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1970 		    ieee, ch_flags,
1971 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1972 		    "5.2" : "2.4");
1973 	}
1974 }
1975 
1976 static void
1977 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1978     struct ieee80211_channel chans[])
1979 {
1980 	struct iwm_softc *sc = ic->ic_softc;
1981 	struct iwm_nvm_data *data = sc->nvm_data;
1982 	uint8_t bands[IEEE80211_MODE_BYTES];
1983 	size_t ch_num;
1984 
1985 	memset(bands, 0, sizeof(bands));
1986 	/* 1-13: 11b/g channels. */
1987 	setbit(bands, IEEE80211_MODE_11B);
1988 	setbit(bands, IEEE80211_MODE_11G);
1989 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1990 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1991 
1992 	/* 14: 11b channel only. */
1993 	clrbit(bands, IEEE80211_MODE_11G);
1994 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1995 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1996 
1997 	if (data->sku_cap_band_52GHz_enable) {
1998 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
1999 			ch_num = nitems(iwm_nvm_channels);
2000 		else
2001 			ch_num = nitems(iwm_nvm_channels_8000);
2002 		memset(bands, 0, sizeof(bands));
2003 		setbit(bands, IEEE80211_MODE_11A);
2004 		iwm_add_channel_band(sc, chans, maxchans, nchans,
2005 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
2006 	}
2007 }
2008 
2009 static void
2010 iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
2011 	const uint16_t *mac_override, const uint16_t *nvm_hw)
2012 {
2013 	const uint8_t *hw_addr;
2014 
2015 	if (mac_override) {
2016 		static const uint8_t reserved_mac[] = {
2017 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
2018 		};
2019 
2020 		hw_addr = (const uint8_t *)(mac_override +
2021 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2022 
2023 		/*
2024 		 * Store the MAC address from MAO section.
2025 		 * No byte swapping is required in MAO section
2026 		 */
2027 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2028 
2029 		/*
2030 		 * Force the use of the OTP MAC address in case of reserved MAC
2031 		 * address in the NVM, or if address is given but invalid.
2032 		 */
2033 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2034 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2035 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2036 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2037 			return;
2038 
2039 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2040 		    "%s: mac address from nvm override section invalid\n",
2041 		    __func__);
2042 	}
2043 
2044 	if (nvm_hw) {
2045 		/* read the mac address from WFMP registers */
2046 		uint32_t mac_addr0 =
2047 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2048 		uint32_t mac_addr1 =
2049 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2050 
2051 		hw_addr = (const uint8_t *)&mac_addr0;
2052 		data->hw_addr[0] = hw_addr[3];
2053 		data->hw_addr[1] = hw_addr[2];
2054 		data->hw_addr[2] = hw_addr[1];
2055 		data->hw_addr[3] = hw_addr[0];
2056 
2057 		hw_addr = (const uint8_t *)&mac_addr1;
2058 		data->hw_addr[4] = hw_addr[1];
2059 		data->hw_addr[5] = hw_addr[0];
2060 
2061 		return;
2062 	}
2063 
2064 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2065 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2066 }
2067 
2068 static int
2069 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2070 	    const uint16_t *phy_sku)
2071 {
2072 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2073 		return le16_to_cpup(nvm_sw + IWM_SKU);
2074 
2075 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2076 }
2077 
2078 static int
2079 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2080 {
2081 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2082 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2083 	else
2084 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2085 						IWM_NVM_VERSION_8000));
2086 }
2087 
2088 static int
2089 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2090 		  const uint16_t *phy_sku)
2091 {
2092         if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2093                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2094 
2095         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2096 }
2097 
2098 static int
2099 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2100 {
2101 	int n_hw_addr;
2102 
2103 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000)
2104 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2105 
2106 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2107 
2108         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2109 }
2110 
2111 static void
2112 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2113 		  uint32_t radio_cfg)
2114 {
2115 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2116 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2117 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2118 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2119 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2120 		return;
2121 	}
2122 
2123 	/* set the radio configuration for family 8000 */
2124 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2125 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2126 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2127 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2128 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2129 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2130 }
2131 
2132 static int
2133 iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data,
2134 		   const uint16_t *nvm_hw, const uint16_t *mac_override)
2135 {
2136 #ifdef notyet /* for FAMILY 9000 */
2137 	if (cfg->mac_addr_from_csr) {
2138 		iwm_set_hw_address_from_csr(sc, data);
2139         } else
2140 #endif
2141 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2142 		const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR);
2143 
2144 		/* The byte order is little endian 16 bit, meaning 214365 */
2145 		data->hw_addr[0] = hw_addr[1];
2146 		data->hw_addr[1] = hw_addr[0];
2147 		data->hw_addr[2] = hw_addr[3];
2148 		data->hw_addr[3] = hw_addr[2];
2149 		data->hw_addr[4] = hw_addr[5];
2150 		data->hw_addr[5] = hw_addr[4];
2151 	} else {
2152 		iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw);
2153 	}
2154 
2155 	if (!iwm_is_valid_ether_addr(data->hw_addr)) {
2156 		device_printf(sc->sc_dev, "no valid mac address was found\n");
2157 		return EINVAL;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static struct iwm_nvm_data *
2164 iwm_parse_nvm_data(struct iwm_softc *sc,
2165 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2166 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2167 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2168 {
2169 	struct iwm_nvm_data *data;
2170 	uint32_t sku, radio_cfg;
2171 	uint16_t lar_config;
2172 
2173 	if (sc->cfg->device_family != IWM_DEVICE_FAMILY_8000) {
2174 		data = malloc(sizeof(*data) +
2175 		    IWM_NUM_CHANNELS * sizeof(uint16_t),
2176 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2177 	} else {
2178 		data = malloc(sizeof(*data) +
2179 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t),
2180 		    M_DEVBUF, M_NOWAIT | M_ZERO);
2181 	}
2182 	if (!data)
2183 		return NULL;
2184 
2185 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2186 
2187 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2188 	iwm_set_radio_cfg(sc, data, radio_cfg);
2189 
2190 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2191 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2192 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2193 	data->sku_cap_11n_enable = 0;
2194 
2195 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2196 
2197 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2198 		uint16_t lar_offset = data->nvm_version < 0xE39 ?
2199 				       IWM_NVM_LAR_OFFSET_8000_OLD :
2200 				       IWM_NVM_LAR_OFFSET_8000;
2201 
2202 		lar_config = le16_to_cpup(regulatory + lar_offset);
2203 		data->lar_enabled = !!(lar_config &
2204 				       IWM_NVM_LAR_ENABLED_8000);
2205 	}
2206 
2207 	/* If no valid mac address was found - bail out */
2208 	if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) {
2209 		free(data, M_DEVBUF);
2210 		return NULL;
2211 	}
2212 
2213 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2214 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2215 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2216 	} else {
2217 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2218 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2219 	}
2220 
2221 	return data;
2222 }
2223 
2224 static void
2225 iwm_free_nvm_data(struct iwm_nvm_data *data)
2226 {
2227 	if (data != NULL)
2228 		free(data, M_DEVBUF);
2229 }
2230 
2231 static struct iwm_nvm_data *
2232 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2233 {
2234 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2235 
2236 	/* Checking for required sections */
2237 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) {
2238 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2239 		    !sections[sc->cfg->nvm_hw_section_num].data) {
2240 			device_printf(sc->sc_dev,
2241 			    "Can't parse empty OTP/NVM sections\n");
2242 			return NULL;
2243 		}
2244 	} else if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2245 		/* SW and REGULATORY sections are mandatory */
2246 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2247 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2248 			device_printf(sc->sc_dev,
2249 			    "Can't parse empty OTP/NVM sections\n");
2250 			return NULL;
2251 		}
2252 		/* MAC_OVERRIDE or at least HW section must exist */
2253 		if (!sections[sc->cfg->nvm_hw_section_num].data &&
2254 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2255 			device_printf(sc->sc_dev,
2256 			    "Can't parse mac_address, empty sections\n");
2257 			return NULL;
2258 		}
2259 
2260 		/* PHY_SKU section is mandatory in B0 */
2261 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2262 			device_printf(sc->sc_dev,
2263 			    "Can't parse phy_sku in B0, empty sections\n");
2264 			return NULL;
2265 		}
2266 	} else {
2267 		panic("unknown device family %d\n", sc->cfg->device_family);
2268 	}
2269 
2270 	hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data;
2271 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2272 	calib = (const uint16_t *)
2273 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2274 	regulatory = (const uint16_t *)
2275 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2276 	mac_override = (const uint16_t *)
2277 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2278 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2279 
2280 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2281 	    phy_sku, regulatory);
2282 }
2283 
2284 static int
2285 iwm_nvm_init(struct iwm_softc *sc)
2286 {
2287 	struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS];
2288 	int i, ret, section;
2289 	uint32_t size_read = 0;
2290 	uint8_t *nvm_buffer, *temp;
2291 	uint16_t len;
2292 
2293 	memset(nvm_sections, 0, sizeof(nvm_sections));
2294 
2295 	if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS)
2296 		return EINVAL;
2297 
2298 	/* load NVM values from nic */
2299 	/* Read From FW NVM */
2300 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n");
2301 
2302 	nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO);
2303 	if (!nvm_buffer)
2304 		return ENOMEM;
2305 	for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) {
2306 		/* we override the constness for initial read */
2307 		ret = iwm_nvm_read_section(sc, section, nvm_buffer,
2308 					   &len, size_read);
2309 		if (ret)
2310 			continue;
2311 		size_read += len;
2312 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
2313 		if (!temp) {
2314 			ret = ENOMEM;
2315 			break;
2316 		}
2317 		memcpy(temp, nvm_buffer, len);
2318 
2319 		nvm_sections[section].data = temp;
2320 		nvm_sections[section].length = len;
2321 	}
2322 	if (!size_read)
2323 		device_printf(sc->sc_dev, "OTP is blank\n");
2324 	free(nvm_buffer, M_DEVBUF);
2325 
2326 	sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections);
2327 	if (!sc->nvm_data)
2328 		return EINVAL;
2329 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET,
2330 		    "nvm version = %x\n", sc->nvm_data->nvm_version);
2331 
2332 	for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) {
2333 		if (nvm_sections[i].data != NULL)
2334 			free(nvm_sections[i].data, M_DEVBUF);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static int
2341 iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num,
2342 	const struct iwm_fw_desc *section)
2343 {
2344 	struct iwm_dma_info *dma = &sc->fw_dma;
2345 	uint8_t *v_addr;
2346 	bus_addr_t p_addr;
2347 	uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len);
2348 	int ret = 0;
2349 
2350 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2351 		    "%s: [%d] uCode section being loaded...\n",
2352 		    __func__, section_num);
2353 
2354 	v_addr = dma->vaddr;
2355 	p_addr = dma->paddr;
2356 
2357 	for (offset = 0; offset < section->len; offset += chunk_sz) {
2358 		uint32_t copy_size, dst_addr;
2359 		int extended_addr = FALSE;
2360 
2361 		copy_size = MIN(chunk_sz, section->len - offset);
2362 		dst_addr = section->offset + offset;
2363 
2364 		if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2365 		    dst_addr <= IWM_FW_MEM_EXTENDED_END)
2366 			extended_addr = TRUE;
2367 
2368 		if (extended_addr)
2369 			iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2370 					  IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2371 
2372 		memcpy(v_addr, (const uint8_t *)section->data + offset,
2373 		    copy_size);
2374 		bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2375 		ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr,
2376 						   copy_size);
2377 
2378 		if (extended_addr)
2379 			iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2380 					    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2381 
2382 		if (ret) {
2383 			device_printf(sc->sc_dev,
2384 			    "%s: Could not load the [%d] uCode section\n",
2385 			    __func__, section_num);
2386 			break;
2387 		}
2388 	}
2389 
2390 	return ret;
2391 }
2392 
2393 /*
2394  * ucode
2395  */
2396 static int
2397 iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2398 			     bus_addr_t phy_addr, uint32_t byte_cnt)
2399 {
2400 	int ret;
2401 
2402 	sc->sc_fw_chunk_done = 0;
2403 
2404 	if (!iwm_nic_lock(sc))
2405 		return EBUSY;
2406 
2407 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2408 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2409 
2410 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2411 	    dst_addr);
2412 
2413 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2414 	    phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2415 
2416 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2417 	    (iwm_get_dma_hi_addr(phy_addr)
2418 	     << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2419 
2420 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2421 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2422 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2423 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2424 
2425 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2426 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2427 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2428 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2429 
2430 	iwm_nic_unlock(sc);
2431 
2432 	/* wait up to 5s for this segment to load */
2433 	ret = 0;
2434 	while (!sc->sc_fw_chunk_done) {
2435 		ret = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz);
2436 		if (ret)
2437 			break;
2438 	}
2439 
2440 	if (ret != 0) {
2441 		device_printf(sc->sc_dev,
2442 		    "fw chunk addr 0x%x len %d failed to load\n",
2443 		    dst_addr, byte_cnt);
2444 		return ETIMEDOUT;
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 static int
2451 iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc,
2452 	const struct iwm_fw_img *image, int cpu, int *first_ucode_section)
2453 {
2454 	int shift_param;
2455 	int i, ret = 0, sec_num = 0x1;
2456 	uint32_t val, last_read_idx = 0;
2457 
2458 	if (cpu == 1) {
2459 		shift_param = 0;
2460 		*first_ucode_section = 0;
2461 	} else {
2462 		shift_param = 16;
2463 		(*first_ucode_section)++;
2464 	}
2465 
2466 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2467 		last_read_idx = i;
2468 
2469 		/*
2470 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2471 		 * CPU1 to CPU2.
2472 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2473 		 * CPU2 non paged to CPU2 paging sec.
2474 		 */
2475 		if (!image->sec[i].data ||
2476 		    image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2477 		    image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2478 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2479 				    "Break since Data not valid or Empty section, sec = %d\n",
2480 				    i);
2481 			break;
2482 		}
2483 		ret = iwm_pcie_load_section(sc, i, &image->sec[i]);
2484 		if (ret)
2485 			return ret;
2486 
2487 		/* Notify the ucode of the loaded section number and status */
2488 		if (iwm_nic_lock(sc)) {
2489 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2490 			val = val | (sec_num << shift_param);
2491 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2492 			sec_num = (sec_num << 1) | 0x1;
2493 			iwm_nic_unlock(sc);
2494 		}
2495 	}
2496 
2497 	*first_ucode_section = last_read_idx;
2498 
2499 	iwm_enable_interrupts(sc);
2500 
2501 	if (iwm_nic_lock(sc)) {
2502 		if (cpu == 1)
2503 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2504 		else
2505 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2506 		iwm_nic_unlock(sc);
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static int
2513 iwm_pcie_load_cpu_sections(struct iwm_softc *sc,
2514 	const struct iwm_fw_img *image, int cpu, int *first_ucode_section)
2515 {
2516 	int shift_param;
2517 	int i, ret = 0;
2518 	uint32_t last_read_idx = 0;
2519 
2520 	if (cpu == 1) {
2521 		shift_param = 0;
2522 		*first_ucode_section = 0;
2523 	} else {
2524 		shift_param = 16;
2525 		(*first_ucode_section)++;
2526 	}
2527 
2528 	for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) {
2529 		last_read_idx = i;
2530 
2531 		/*
2532 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2533 		 * CPU1 to CPU2.
2534 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2535 		 * CPU2 non paged to CPU2 paging sec.
2536 		 */
2537 		if (!image->sec[i].data ||
2538 		    image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2539 		    image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) {
2540 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2541 				    "Break since Data not valid or Empty section, sec = %d\n",
2542 				     i);
2543 			break;
2544 		}
2545 
2546 		ret = iwm_pcie_load_section(sc, i, &image->sec[i]);
2547 		if (ret)
2548 			return ret;
2549 	}
2550 
2551 	*first_ucode_section = last_read_idx;
2552 
2553 	return 0;
2554 
2555 }
2556 
2557 static int
2558 iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image)
2559 {
2560 	int ret = 0;
2561 	int first_ucode_section;
2562 
2563 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2564 		     image->is_dual_cpus ? "Dual" : "Single");
2565 
2566 	/* load to FW the binary non secured sections of CPU1 */
2567 	ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section);
2568 	if (ret)
2569 		return ret;
2570 
2571 	if (image->is_dual_cpus) {
2572 		/* set CPU2 header address */
2573 		if (iwm_nic_lock(sc)) {
2574 			iwm_write_prph(sc,
2575 				       IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
2576 				       IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
2577 			iwm_nic_unlock(sc);
2578 		}
2579 
2580 		/* load to FW the binary sections of CPU2 */
2581 		ret = iwm_pcie_load_cpu_sections(sc, image, 2,
2582 						 &first_ucode_section);
2583 		if (ret)
2584 			return ret;
2585 	}
2586 
2587 	iwm_enable_interrupts(sc);
2588 
2589 	/* release CPU reset */
2590 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2591 
2592 	return 0;
2593 }
2594 
2595 int
2596 iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc,
2597 	const struct iwm_fw_img *image)
2598 {
2599 	int ret = 0;
2600 	int first_ucode_section;
2601 
2602 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n",
2603 		    image->is_dual_cpus ? "Dual" : "Single");
2604 
2605 	/* configure the ucode to be ready to get the secured image */
2606 	/* release CPU reset */
2607 	if (iwm_nic_lock(sc)) {
2608 		iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
2609 		    IWM_RELEASE_CPU_RESET_BIT);
2610 		iwm_nic_unlock(sc);
2611 	}
2612 
2613 	/* load to FW the binary Secured sections of CPU1 */
2614 	ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1,
2615 	    &first_ucode_section);
2616 	if (ret)
2617 		return ret;
2618 
2619 	/* load to FW the binary sections of CPU2 */
2620 	return iwm_pcie_load_cpu_sections_8000(sc, image, 2,
2621 	    &first_ucode_section);
2622 }
2623 
2624 /* XXX Get rid of this definition */
2625 static inline void
2626 iwm_enable_fw_load_int(struct iwm_softc *sc)
2627 {
2628 	IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n");
2629 	sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX;
2630 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
2631 }
2632 
2633 /* XXX Add proper rfkill support code */
2634 static int
2635 iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw)
2636 {
2637 	int ret;
2638 
2639 	/* This may fail if AMT took ownership of the device */
2640 	if (iwm_prepare_card_hw(sc)) {
2641 		device_printf(sc->sc_dev,
2642 		    "%s: Exit HW not ready\n", __func__);
2643 		ret = EIO;
2644 		goto out;
2645 	}
2646 
2647 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2648 
2649 	iwm_disable_interrupts(sc);
2650 
2651 	/* make sure rfkill handshake bits are cleared */
2652 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2653 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2654 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2655 
2656 	/* clear (again), then enable host interrupts */
2657 	IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF);
2658 
2659 	ret = iwm_nic_init(sc);
2660 	if (ret) {
2661 		device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__);
2662 		goto out;
2663 	}
2664 
2665 	/*
2666 	 * Now, we load the firmware and don't want to be interrupted, even
2667 	 * by the RF-Kill interrupt (hence mask all the interrupt besides the
2668 	 * FH_TX interrupt which is needed to load the firmware). If the
2669 	 * RF-Kill switch is toggled, we will find out after having loaded
2670 	 * the firmware and return the proper value to the caller.
2671 	 */
2672 	iwm_enable_fw_load_int(sc);
2673 
2674 	/* really make sure rfkill handshake bits are cleared */
2675 	/* maybe we should write a few times more?  just to make sure */
2676 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2677 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2678 
2679 	/* Load the given image to the HW */
2680 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
2681 		ret = iwm_pcie_load_given_ucode_8000(sc, fw);
2682 	else
2683 		ret = iwm_pcie_load_given_ucode(sc, fw);
2684 
2685 	/* XXX re-check RF-Kill state */
2686 
2687 out:
2688 	return ret;
2689 }
2690 
2691 static int
2692 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2693 {
2694 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2695 		.valid = htole32(valid_tx_ant),
2696 	};
2697 
2698 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2699 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2700 }
2701 
2702 /* iwlwifi: mvm/fw.c */
2703 static int
2704 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2705 {
2706 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2707 	enum iwm_ucode_type ucode_type = sc->cur_ucode;
2708 
2709 	/* Set parameters */
2710 	phy_cfg_cmd.phy_cfg = htole32(iwm_mvm_get_phy_config(sc));
2711 	phy_cfg_cmd.calib_control.event_trigger =
2712 	    sc->sc_default_calib[ucode_type].event_trigger;
2713 	phy_cfg_cmd.calib_control.flow_trigger =
2714 	    sc->sc_default_calib[ucode_type].flow_trigger;
2715 
2716 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2717 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2718 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2719 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2720 }
2721 
2722 static int
2723 iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data)
2724 {
2725 	struct iwm_mvm_alive_data *alive_data = data;
2726 	struct iwm_mvm_alive_resp_v3 *palive3;
2727 	struct iwm_mvm_alive_resp *palive;
2728 	struct iwm_umac_alive *umac;
2729 	struct iwm_lmac_alive *lmac1;
2730 	struct iwm_lmac_alive *lmac2 = NULL;
2731 	uint16_t status;
2732 
2733 	if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) {
2734 		palive = (void *)pkt->data;
2735 		umac = &palive->umac_data;
2736 		lmac1 = &palive->lmac_data[0];
2737 		lmac2 = &palive->lmac_data[1];
2738 		status = le16toh(palive->status);
2739 	} else {
2740 		palive3 = (void *)pkt->data;
2741 		umac = &palive3->umac_data;
2742 		lmac1 = &palive3->lmac_data;
2743 		status = le16toh(palive3->status);
2744 	}
2745 
2746 	sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr);
2747 	if (lmac2)
2748 		sc->error_event_table[1] =
2749 			le32toh(lmac2->error_event_table_ptr);
2750 	sc->log_event_table = le32toh(lmac1->log_event_table_ptr);
2751 	sc->umac_error_event_table = le32toh(umac->error_info_addr);
2752 	alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr);
2753 	alive_data->valid = status == IWM_ALIVE_STATUS_OK;
2754 	if (sc->umac_error_event_table)
2755 		sc->support_umac_log = TRUE;
2756 
2757 	IWM_DPRINTF(sc, IWM_DEBUG_FW,
2758 		    "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n",
2759 		    status, lmac1->ver_type, lmac1->ver_subtype);
2760 
2761 	if (lmac2)
2762 		IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n");
2763 
2764 	IWM_DPRINTF(sc, IWM_DEBUG_FW,
2765 		    "UMAC version: Major - 0x%x, Minor - 0x%x\n",
2766 		    le32toh(umac->umac_major),
2767 		    le32toh(umac->umac_minor));
2768 
2769 	return TRUE;
2770 }
2771 
2772 static int
2773 iwm_wait_phy_db_entry(struct iwm_softc *sc,
2774 	struct iwm_rx_packet *pkt, void *data)
2775 {
2776 	struct iwm_phy_db *phy_db = data;
2777 
2778 	if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) {
2779 		if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) {
2780 			device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n",
2781 			    __func__, pkt->hdr.code);
2782 		}
2783 		return TRUE;
2784 	}
2785 
2786 	if (iwm_phy_db_set_section(phy_db, pkt)) {
2787 		device_printf(sc->sc_dev,
2788 		    "%s: iwm_phy_db_set_section failed\n", __func__);
2789 	}
2790 
2791 	return FALSE;
2792 }
2793 
2794 static int
2795 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2796 	enum iwm_ucode_type ucode_type)
2797 {
2798 	struct iwm_notification_wait alive_wait;
2799 	struct iwm_mvm_alive_data alive_data;
2800 	const struct iwm_fw_img *fw;
2801 	enum iwm_ucode_type old_type = sc->cur_ucode;
2802 	int error;
2803 	static const uint16_t alive_cmd[] = { IWM_MVM_ALIVE };
2804 
2805 	fw = &sc->sc_fw.img[ucode_type];
2806 	sc->cur_ucode = ucode_type;
2807 	sc->ucode_loaded = FALSE;
2808 
2809 	memset(&alive_data, 0, sizeof(alive_data));
2810 	iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait,
2811 				   alive_cmd, nitems(alive_cmd),
2812 				   iwm_alive_fn, &alive_data);
2813 
2814 	error = iwm_start_fw(sc, fw);
2815 	if (error) {
2816 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2817 		sc->cur_ucode = old_type;
2818 		iwm_remove_notification(sc->sc_notif_wait, &alive_wait);
2819 		return error;
2820 	}
2821 
2822 	/*
2823 	 * Some things may run in the background now, but we
2824 	 * just wait for the ALIVE notification here.
2825 	 */
2826 	IWM_UNLOCK(sc);
2827 	error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait,
2828 				      IWM_MVM_UCODE_ALIVE_TIMEOUT);
2829 	IWM_LOCK(sc);
2830 	if (error) {
2831 		if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
2832 			uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a;
2833 			if (iwm_nic_lock(sc)) {
2834 				a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS);
2835 				b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS);
2836 				iwm_nic_unlock(sc);
2837 			}
2838 			device_printf(sc->sc_dev,
2839 			    "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n",
2840 			    a, b);
2841 		}
2842 		sc->cur_ucode = old_type;
2843 		return error;
2844 	}
2845 
2846 	if (!alive_data.valid) {
2847 		device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n",
2848 		    __func__);
2849 		sc->cur_ucode = old_type;
2850 		return EIO;
2851 	}
2852 
2853 	iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr);
2854 
2855 	/*
2856 	 * configure and operate fw paging mechanism.
2857 	 * driver configures the paging flow only once, CPU2 paging image
2858 	 * included in the IWM_UCODE_INIT image.
2859 	 */
2860 	if (fw->paging_mem_size) {
2861 		error = iwm_save_fw_paging(sc, fw);
2862 		if (error) {
2863 			device_printf(sc->sc_dev,
2864 			    "%s: failed to save the FW paging image\n",
2865 			    __func__);
2866 			return error;
2867 		}
2868 
2869 		error = iwm_send_paging_cmd(sc, fw);
2870 		if (error) {
2871 			device_printf(sc->sc_dev,
2872 			    "%s: failed to send the paging cmd\n", __func__);
2873 			iwm_free_fw_paging(sc);
2874 			return error;
2875 		}
2876 	}
2877 
2878 	if (!error)
2879 		sc->ucode_loaded = TRUE;
2880 	return error;
2881 }
2882 
2883 /*
2884  * mvm misc bits
2885  */
2886 
2887 /*
2888  * follows iwlwifi/fw.c
2889  */
2890 static int
2891 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2892 {
2893 	struct iwm_notification_wait calib_wait;
2894 	static const uint16_t init_complete[] = {
2895 		IWM_INIT_COMPLETE_NOTIF,
2896 		IWM_CALIB_RES_NOTIF_PHY_DB
2897 	};
2898 	int ret;
2899 
2900 	/* do not operate with rfkill switch turned on */
2901 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2902 		device_printf(sc->sc_dev,
2903 		    "radio is disabled by hardware switch\n");
2904 		return EPERM;
2905 	}
2906 
2907 	iwm_init_notification_wait(sc->sc_notif_wait,
2908 				   &calib_wait,
2909 				   init_complete,
2910 				   nitems(init_complete),
2911 				   iwm_wait_phy_db_entry,
2912 				   sc->sc_phy_db);
2913 
2914 	/* Will also start the device */
2915 	ret = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_INIT);
2916 	if (ret) {
2917 		device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n",
2918 		    ret);
2919 		goto error;
2920 	}
2921 
2922 	if (justnvm) {
2923 		/* Read nvm */
2924 		ret = iwm_nvm_init(sc);
2925 		if (ret) {
2926 			device_printf(sc->sc_dev, "failed to read nvm\n");
2927 			goto error;
2928 		}
2929 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr);
2930 		goto error;
2931 	}
2932 
2933 	ret = iwm_send_bt_init_conf(sc);
2934 	if (ret) {
2935 		device_printf(sc->sc_dev,
2936 		    "failed to send bt coex configuration: %d\n", ret);
2937 		goto error;
2938 	}
2939 
2940 	/* Send TX valid antennas before triggering calibrations */
2941 	ret = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
2942 	if (ret) {
2943 		device_printf(sc->sc_dev,
2944 		    "failed to send antennas before calibration: %d\n", ret);
2945 		goto error;
2946 	}
2947 
2948 	/*
2949 	 * Send phy configurations command to init uCode
2950 	 * to start the 16.0 uCode init image internal calibrations.
2951 	 */
2952 	ret = iwm_send_phy_cfg_cmd(sc);
2953 	if (ret) {
2954 		device_printf(sc->sc_dev,
2955 		    "%s: Failed to run INIT calibrations: %d\n",
2956 		    __func__, ret);
2957 		goto error;
2958 	}
2959 
2960 	/*
2961 	 * Nothing to do but wait for the init complete notification
2962 	 * from the firmware.
2963 	 */
2964 	IWM_UNLOCK(sc);
2965 	ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait,
2966 	    IWM_MVM_UCODE_CALIB_TIMEOUT);
2967 	IWM_LOCK(sc);
2968 
2969 
2970 	goto out;
2971 
2972 error:
2973 	iwm_remove_notification(sc->sc_notif_wait, &calib_wait);
2974 out:
2975 	return ret;
2976 }
2977 
2978 static int
2979 iwm_mvm_config_ltr(struct iwm_softc *sc)
2980 {
2981 	struct iwm_ltr_config_cmd cmd = {
2982 		.flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE),
2983 	};
2984 
2985 	if (!sc->sc_ltr_enabled)
2986 		return 0;
2987 
2988 	return iwm_mvm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd);
2989 }
2990 
2991 /*
2992  * receive side
2993  */
2994 
2995 /* (re)stock rx ring, called at init-time and at runtime */
2996 static int
2997 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2998 {
2999 	struct iwm_rx_ring *ring = &sc->rxq;
3000 	struct iwm_rx_data *data = &ring->data[idx];
3001 	struct mbuf *m;
3002 	bus_dmamap_t dmamap;
3003 	bus_dma_segment_t seg;
3004 	int nsegs, error;
3005 
3006 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
3007 	if (m == NULL)
3008 		return ENOBUFS;
3009 
3010 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3011 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
3012 	    &seg, &nsegs, BUS_DMA_NOWAIT);
3013 	if (error != 0) {
3014 		device_printf(sc->sc_dev,
3015 		    "%s: can't map mbuf, error %d\n", __func__, error);
3016 		m_freem(m);
3017 		return error;
3018 	}
3019 
3020 	if (data->m != NULL)
3021 		bus_dmamap_unload(ring->data_dmat, data->map);
3022 
3023 	/* Swap ring->spare_map with data->map */
3024 	dmamap = data->map;
3025 	data->map = ring->spare_map;
3026 	ring->spare_map = dmamap;
3027 
3028 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
3029 	data->m = m;
3030 
3031 	/* Update RX descriptor. */
3032 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
3033 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
3034 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3035 	    BUS_DMASYNC_PREWRITE);
3036 
3037 	return 0;
3038 }
3039 
3040 /* iwlwifi: mvm/rx.c */
3041 /*
3042  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
3043  * values are reported by the fw as positive values - need to negate
3044  * to obtain their dBM.  Account for missing antennas by replacing 0
3045  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
3046  */
3047 static int
3048 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
3049 {
3050 	int energy_a, energy_b, energy_c, max_energy;
3051 	uint32_t val;
3052 
3053 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
3054 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
3055 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
3056 	energy_a = energy_a ? -energy_a : -256;
3057 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
3058 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
3059 	energy_b = energy_b ? -energy_b : -256;
3060 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
3061 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
3062 	energy_c = energy_c ? -energy_c : -256;
3063 	max_energy = MAX(energy_a, energy_b);
3064 	max_energy = MAX(max_energy, energy_c);
3065 
3066 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3067 	    "energy In A %d B %d C %d , and max %d\n",
3068 	    energy_a, energy_b, energy_c, max_energy);
3069 
3070 	return max_energy;
3071 }
3072 
3073 static void
3074 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3075 {
3076 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
3077 
3078 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
3079 
3080 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
3081 }
3082 
3083 /*
3084  * Retrieve the average noise (in dBm) among receivers.
3085  */
3086 static int
3087 iwm_get_noise(struct iwm_softc *sc,
3088     const struct iwm_mvm_statistics_rx_non_phy *stats)
3089 {
3090 	int i, total, nbant, noise;
3091 
3092 	total = nbant = noise = 0;
3093 	for (i = 0; i < 3; i++) {
3094 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
3095 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
3096 		    __func__,
3097 		    i,
3098 		    noise);
3099 
3100 		if (noise) {
3101 			total += noise;
3102 			nbant++;
3103 		}
3104 	}
3105 
3106 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
3107 	    __func__, nbant, total);
3108 #if 0
3109 	/* There should be at least one antenna but check anyway. */
3110 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3111 #else
3112 	/* For now, just hard-code it to -96 to be safe */
3113 	return (-96);
3114 #endif
3115 }
3116 
3117 static void
3118 iwm_mvm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3119 {
3120 	struct iwm_notif_statistics_v10 *stats = (void *)&pkt->data;
3121 
3122 	memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
3123 	sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
3124 }
3125 
3126 /*
3127  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
3128  *
3129  * Handles the actual data of the Rx packet from the fw
3130  */
3131 static boolean_t
3132 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset,
3133 	boolean_t stolen)
3134 {
3135 	struct ieee80211com *ic = &sc->sc_ic;
3136 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3137 	struct ieee80211_frame *wh;
3138 	struct ieee80211_node *ni;
3139 	struct ieee80211_rx_stats rxs;
3140 	struct iwm_rx_phy_info *phy_info;
3141 	struct iwm_rx_mpdu_res_start *rx_res;
3142 	struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset);
3143 	uint32_t len;
3144 	uint32_t rx_pkt_status;
3145 	int rssi;
3146 
3147 	phy_info = &sc->sc_last_phy_info;
3148 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
3149 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
3150 	len = le16toh(rx_res->byte_count);
3151 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
3152 
3153 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
3154 		device_printf(sc->sc_dev,
3155 		    "dsp size out of range [0,20]: %d\n",
3156 		    phy_info->cfg_phy_cnt);
3157 		goto fail;
3158 	}
3159 
3160 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
3161 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
3162 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3163 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
3164 		goto fail;
3165 	}
3166 
3167 	rssi = iwm_mvm_get_signal_strength(sc, phy_info);
3168 
3169 	/* Map it to relative value */
3170 	rssi = rssi - sc->sc_noise;
3171 
3172 	/* replenish ring for the buffer we're going to feed to the sharks */
3173 	if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
3174 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
3175 		    __func__);
3176 		goto fail;
3177 	}
3178 
3179 	m->m_data = pkt->data + sizeof(*rx_res);
3180 	m->m_pkthdr.len = m->m_len = len;
3181 
3182 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3183 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
3184 
3185 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3186 
3187 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
3188 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
3189 	    __func__,
3190 	    le16toh(phy_info->channel),
3191 	    le16toh(phy_info->phy_flags));
3192 
3193 	/*
3194 	 * Populate an RX state struct with the provided information.
3195 	 */
3196 	bzero(&rxs, sizeof(rxs));
3197 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
3198 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
3199 	rxs.c_ieee = le16toh(phy_info->channel);
3200 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
3201 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
3202 	} else {
3203 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
3204 	}
3205 
3206 	/* rssi is in 1/2db units */
3207 	rxs.c_rssi = rssi * 2;
3208 	rxs.c_nf = sc->sc_noise;
3209 	if (ieee80211_add_rx_params(m, &rxs) == 0) {
3210 		if (ni)
3211 			ieee80211_free_node(ni);
3212 		goto fail;
3213 	}
3214 
3215 	if (ieee80211_radiotap_active_vap(vap)) {
3216 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
3217 
3218 		tap->wr_flags = 0;
3219 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
3220 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3221 		tap->wr_chan_freq = htole16(rxs.c_freq);
3222 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
3223 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
3224 		tap->wr_dbm_antsignal = (int8_t)rssi;
3225 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
3226 		tap->wr_tsft = phy_info->system_timestamp;
3227 		switch (phy_info->rate) {
3228 		/* CCK rates. */
3229 		case  10: tap->wr_rate =   2; break;
3230 		case  20: tap->wr_rate =   4; break;
3231 		case  55: tap->wr_rate =  11; break;
3232 		case 110: tap->wr_rate =  22; break;
3233 		/* OFDM rates. */
3234 		case 0xd: tap->wr_rate =  12; break;
3235 		case 0xf: tap->wr_rate =  18; break;
3236 		case 0x5: tap->wr_rate =  24; break;
3237 		case 0x7: tap->wr_rate =  36; break;
3238 		case 0x9: tap->wr_rate =  48; break;
3239 		case 0xb: tap->wr_rate =  72; break;
3240 		case 0x1: tap->wr_rate =  96; break;
3241 		case 0x3: tap->wr_rate = 108; break;
3242 		/* Unknown rate: should not happen. */
3243 		default:  tap->wr_rate =   0;
3244 		}
3245 	}
3246 
3247 	IWM_UNLOCK(sc);
3248 	if (ni != NULL) {
3249 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3250 		ieee80211_input_mimo(ni, m);
3251 		ieee80211_free_node(ni);
3252 	} else {
3253 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3254 		ieee80211_input_mimo_all(ic, m);
3255 	}
3256 	IWM_LOCK(sc);
3257 
3258 	return TRUE;
3259 
3260 fail:
3261 	counter_u64_add(ic->ic_ierrors, 1);
3262 	return FALSE;
3263 }
3264 
3265 static int
3266 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3267 	struct iwm_node *in)
3268 {
3269 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3270 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3271 	struct ieee80211_node *ni = &in->in_ni;
3272 	struct ieee80211vap *vap = ni->ni_vap;
3273 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3274 	int new_rate, cur_rate = vap->iv_bss->ni_txrate;
3275 	boolean_t rate_matched;
3276 	uint8_t tx_resp_rate;
3277 
3278 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3279 
3280 	/* Update rate control statistics. */
3281 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3282 	    __func__,
3283 	    (int) le16toh(tx_resp->status.status),
3284 	    (int) le16toh(tx_resp->status.sequence),
3285 	    tx_resp->frame_count,
3286 	    tx_resp->bt_kill_count,
3287 	    tx_resp->failure_rts,
3288 	    tx_resp->failure_frame,
3289 	    le32toh(tx_resp->initial_rate),
3290 	    (int) le16toh(tx_resp->wireless_media_time));
3291 
3292 	tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate));
3293 
3294 	/* For rate control, ignore frames sent at different initial rate */
3295 	rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate);
3296 
3297 	if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) {
3298 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3299 		    "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u "
3300 		    "ni_txrate=%d)\n", tx_resp_rate, cur_rate);
3301 	}
3302 
3303 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3304 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3305 	txs->short_retries = tx_resp->failure_rts;
3306 	txs->long_retries = tx_resp->failure_frame;
3307 	if (status != IWM_TX_STATUS_SUCCESS &&
3308 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3309 		switch (status) {
3310 		case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3311 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3312 			break;
3313 		case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3314 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3315 			break;
3316 		case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3317 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3318 			break;
3319 		default:
3320 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3321 			break;
3322 		}
3323 	} else {
3324 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3325 	}
3326 
3327 	if (rate_matched) {
3328 		ieee80211_ratectl_tx_complete(ni, txs);
3329 
3330 		int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0);
3331 		new_rate = vap->iv_bss->ni_txrate;
3332 		if (new_rate != 0 && new_rate != cur_rate) {
3333 			struct iwm_node *in = IWM_NODE(vap->iv_bss);
3334 			iwm_setrates(sc, in, rix);
3335 			iwm_mvm_send_lq_cmd(sc, &in->in_lq, FALSE);
3336 		}
3337  	}
3338 
3339 	return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3340 }
3341 
3342 static void
3343 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3344 {
3345 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3346 	int idx = cmd_hdr->idx;
3347 	int qid = cmd_hdr->qid;
3348 	struct iwm_tx_ring *ring = &sc->txq[qid];
3349 	struct iwm_tx_data *txd = &ring->data[idx];
3350 	struct iwm_node *in = txd->in;
3351 	struct mbuf *m = txd->m;
3352 	int status;
3353 
3354 	KASSERT(txd->done == 0, ("txd not done"));
3355 	KASSERT(txd->in != NULL, ("txd without node"));
3356 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3357 
3358 	sc->sc_tx_timer = 0;
3359 
3360 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3361 
3362 	/* Unmap and free mbuf. */
3363 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3364 	bus_dmamap_unload(ring->data_dmat, txd->map);
3365 
3366 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3367 	    "free txd %p, in %p\n", txd, txd->in);
3368 	txd->done = 1;
3369 	txd->m = NULL;
3370 	txd->in = NULL;
3371 
3372 	ieee80211_tx_complete(&in->in_ni, m, status);
3373 
3374 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3375 		sc->qfullmsk &= ~(1 << ring->qid);
3376 		if (sc->qfullmsk == 0) {
3377 			iwm_start(sc);
3378 		}
3379 	}
3380 }
3381 
3382 /*
3383  * transmit side
3384  */
3385 
3386 /*
3387  * Process a "command done" firmware notification.  This is where we wakeup
3388  * processes waiting for a synchronous command completion.
3389  * from if_iwn
3390  */
3391 static void
3392 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3393 {
3394 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3395 	struct iwm_tx_data *data;
3396 
3397 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3398 		return;	/* Not a command ack. */
3399 	}
3400 
3401 	/* XXX wide commands? */
3402 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3403 	    "cmd notification type 0x%x qid %d idx %d\n",
3404 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3405 
3406 	data = &ring->data[pkt->hdr.idx];
3407 
3408 	/* If the command was mapped in an mbuf, free it. */
3409 	if (data->m != NULL) {
3410 		bus_dmamap_sync(ring->data_dmat, data->map,
3411 		    BUS_DMASYNC_POSTWRITE);
3412 		bus_dmamap_unload(ring->data_dmat, data->map);
3413 		m_freem(data->m);
3414 		data->m = NULL;
3415 	}
3416 	wakeup(&ring->desc[pkt->hdr.idx]);
3417 
3418 	if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
3419 		device_printf(sc->sc_dev,
3420 		    "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
3421 		    __func__, pkt->hdr.idx, ring->queued, ring->cur);
3422 		/* XXX call iwm_force_nmi() */
3423 	}
3424 
3425 	KASSERT(ring->queued > 0, ("ring->queued is empty?"));
3426 	ring->queued--;
3427 	if (ring->queued == 0)
3428 		iwm_pcie_clear_cmd_in_flight(sc);
3429 }
3430 
3431 #if 0
3432 /*
3433  * necessary only for block ack mode
3434  */
3435 void
3436 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3437 	uint16_t len)
3438 {
3439 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3440 	uint16_t w_val;
3441 
3442 	scd_bc_tbl = sc->sched_dma.vaddr;
3443 
3444 	len += 8; /* magic numbers came naturally from paris */
3445 	len = roundup(len, 4) / 4;
3446 
3447 	w_val = htole16(sta_id << 12 | len);
3448 
3449 	/* Update TX scheduler. */
3450 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3451 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3452 	    BUS_DMASYNC_PREWRITE);
3453 
3454 	/* I really wonder what this is ?!? */
3455 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3456 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3457 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3458 		    BUS_DMASYNC_PREWRITE);
3459 	}
3460 }
3461 #endif
3462 
3463 static int
3464 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3465 {
3466 	int i;
3467 
3468 	for (i = 0; i < nitems(iwm_rates); i++) {
3469 		if (iwm_rates[i].rate == rate)
3470 			return (i);
3471 	}
3472 	/* XXX error? */
3473 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3474 	    "%s: couldn't find an entry for rate=%d\n",
3475 	    __func__,
3476 	    rate);
3477 	return (0);
3478 }
3479 
3480 /*
3481  * Fill in the rate related information for a transmit command.
3482  */
3483 static const struct iwm_rate *
3484 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3485 	struct mbuf *m, struct iwm_tx_cmd *tx)
3486 {
3487 	struct ieee80211_node *ni = &in->in_ni;
3488 	struct ieee80211_frame *wh;
3489 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3490 	const struct iwm_rate *rinfo;
3491 	int type;
3492 	int ridx, rate_flags;
3493 
3494 	wh = mtod(m, struct ieee80211_frame *);
3495 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3496 
3497 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3498 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3499 
3500 	if (type == IEEE80211_FC0_TYPE_MGT ||
3501 	    type == IEEE80211_FC0_TYPE_CTL ||
3502 	    (m->m_flags & M_EAPOL) != 0) {
3503 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3504 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3505 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3506 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3507 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3508 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3509 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3510 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3511 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3512 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3513 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3514 	} else {
3515 		/* for data frames, use RS table */
3516 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3517 		ridx = iwm_rate2ridx(sc, ni->ni_txrate);
3518 		if (ridx == -1)
3519 			ridx = 0;
3520 
3521 		/* This is the index into the programmed table */
3522 		tx->initial_rate_index = 0;
3523 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3524 	}
3525 
3526 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3527 	    "%s: frame type=%d txrate %d\n",
3528 	        __func__, type, iwm_rates[ridx].rate);
3529 
3530 	rinfo = &iwm_rates[ridx];
3531 
3532 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3533 	    __func__, ridx,
3534 	    rinfo->rate,
3535 	    !! (IWM_RIDX_IS_CCK(ridx))
3536 	    );
3537 
3538 	/* XXX TODO: hard-coded TX antenna? */
3539 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3540 	if (IWM_RIDX_IS_CCK(ridx))
3541 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3542 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3543 
3544 	return rinfo;
3545 }
3546 
3547 #define TB0_SIZE 16
3548 static int
3549 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3550 {
3551 	struct ieee80211com *ic = &sc->sc_ic;
3552 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3553 	struct iwm_node *in = IWM_NODE(ni);
3554 	struct iwm_tx_ring *ring;
3555 	struct iwm_tx_data *data;
3556 	struct iwm_tfd *desc;
3557 	struct iwm_device_cmd *cmd;
3558 	struct iwm_tx_cmd *tx;
3559 	struct ieee80211_frame *wh;
3560 	struct ieee80211_key *k = NULL;
3561 	struct mbuf *m1;
3562 	const struct iwm_rate *rinfo;
3563 	uint32_t flags;
3564 	u_int hdrlen;
3565 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3566 	int nsegs;
3567 	uint8_t tid, type;
3568 	int i, totlen, error, pad;
3569 
3570 	wh = mtod(m, struct ieee80211_frame *);
3571 	hdrlen = ieee80211_anyhdrsize(wh);
3572 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3573 	tid = 0;
3574 	ring = &sc->txq[ac];
3575 	desc = &ring->desc[ring->cur];
3576 	memset(desc, 0, sizeof(*desc));
3577 	data = &ring->data[ring->cur];
3578 
3579 	/* Fill out iwm_tx_cmd to send to the firmware */
3580 	cmd = &ring->cmd[ring->cur];
3581 	cmd->hdr.code = IWM_TX_CMD;
3582 	cmd->hdr.flags = 0;
3583 	cmd->hdr.qid = ring->qid;
3584 	cmd->hdr.idx = ring->cur;
3585 
3586 	tx = (void *)cmd->data;
3587 	memset(tx, 0, sizeof(*tx));
3588 
3589 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3590 
3591 	/* Encrypt the frame if need be. */
3592 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3593 		/* Retrieve key for TX && do software encryption. */
3594 		k = ieee80211_crypto_encap(ni, m);
3595 		if (k == NULL) {
3596 			m_freem(m);
3597 			return (ENOBUFS);
3598 		}
3599 		/* 802.11 header may have moved. */
3600 		wh = mtod(m, struct ieee80211_frame *);
3601 	}
3602 
3603 	if (ieee80211_radiotap_active_vap(vap)) {
3604 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3605 
3606 		tap->wt_flags = 0;
3607 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3608 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3609 		tap->wt_rate = rinfo->rate;
3610 		if (k != NULL)
3611 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3612 		ieee80211_radiotap_tx(vap, m);
3613 	}
3614 
3615 
3616 	totlen = m->m_pkthdr.len;
3617 
3618 	flags = 0;
3619 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3620 		flags |= IWM_TX_CMD_FLG_ACK;
3621 	}
3622 
3623 	if (type == IEEE80211_FC0_TYPE_DATA
3624 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3625 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3626 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3627 	}
3628 
3629 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3630 	    type != IEEE80211_FC0_TYPE_DATA)
3631 		tx->sta_id = sc->sc_aux_sta.sta_id;
3632 	else
3633 		tx->sta_id = IWM_STATION_ID;
3634 
3635 	if (type == IEEE80211_FC0_TYPE_MGT) {
3636 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3637 
3638 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3639 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3640 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3641 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3642 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3643 		} else {
3644 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3645 		}
3646 	} else {
3647 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3648 	}
3649 
3650 	if (hdrlen & 3) {
3651 		/* First segment length must be a multiple of 4. */
3652 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3653 		pad = 4 - (hdrlen & 3);
3654 	} else
3655 		pad = 0;
3656 
3657 	tx->driver_txop = 0;
3658 	tx->next_frame_len = 0;
3659 
3660 	tx->len = htole16(totlen);
3661 	tx->tid_tspec = tid;
3662 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3663 
3664 	/* Set physical address of "scratch area". */
3665 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3666 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3667 
3668 	/* Copy 802.11 header in TX command. */
3669 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3670 
3671 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3672 
3673 	tx->sec_ctl = 0;
3674 	tx->tx_flags |= htole32(flags);
3675 
3676 	/* Trim 802.11 header. */
3677 	m_adj(m, hdrlen);
3678 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3679 	    segs, &nsegs, BUS_DMA_NOWAIT);
3680 	if (error != 0) {
3681 		if (error != EFBIG) {
3682 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3683 			    error);
3684 			m_freem(m);
3685 			return error;
3686 		}
3687 		/* Too many DMA segments, linearize mbuf. */
3688 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3689 		if (m1 == NULL) {
3690 			device_printf(sc->sc_dev,
3691 			    "%s: could not defrag mbuf\n", __func__);
3692 			m_freem(m);
3693 			return (ENOBUFS);
3694 		}
3695 		m = m1;
3696 
3697 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3698 		    segs, &nsegs, BUS_DMA_NOWAIT);
3699 		if (error != 0) {
3700 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3701 			    error);
3702 			m_freem(m);
3703 			return error;
3704 		}
3705 	}
3706 	data->m = m;
3707 	data->in = in;
3708 	data->done = 0;
3709 
3710 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3711 	    "sending txd %p, in %p\n", data, data->in);
3712 	KASSERT(data->in != NULL, ("node is NULL"));
3713 
3714 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3715 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3716 	    ring->qid, ring->cur, totlen, nsegs,
3717 	    le32toh(tx->tx_flags),
3718 	    le32toh(tx->rate_n_flags),
3719 	    tx->initial_rate_index
3720 	    );
3721 
3722 	/* Fill TX descriptor. */
3723 	desc->num_tbs = 2 + nsegs;
3724 
3725 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3726 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3727 	    (TB0_SIZE << 4);
3728 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3729 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3730 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3731 	      + hdrlen + pad - TB0_SIZE) << 4);
3732 
3733 	/* Other DMA segments are for data payload. */
3734 	for (i = 0; i < nsegs; i++) {
3735 		seg = &segs[i];
3736 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3737 		desc->tbs[i+2].hi_n_len = \
3738 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3739 		    | ((seg->ds_len) << 4);
3740 	}
3741 
3742 	bus_dmamap_sync(ring->data_dmat, data->map,
3743 	    BUS_DMASYNC_PREWRITE);
3744 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3745 	    BUS_DMASYNC_PREWRITE);
3746 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3747 	    BUS_DMASYNC_PREWRITE);
3748 
3749 #if 0
3750 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3751 #endif
3752 
3753 	/* Kick TX ring. */
3754 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3755 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3756 
3757 	/* Mark TX ring as full if we reach a certain threshold. */
3758 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3759 		sc->qfullmsk |= 1 << ring->qid;
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static int
3766 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3767     const struct ieee80211_bpf_params *params)
3768 {
3769 	struct ieee80211com *ic = ni->ni_ic;
3770 	struct iwm_softc *sc = ic->ic_softc;
3771 	int error = 0;
3772 
3773 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3774 	    "->%s begin\n", __func__);
3775 
3776 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3777 		m_freem(m);
3778 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3779 		    "<-%s not RUNNING\n", __func__);
3780 		return (ENETDOWN);
3781         }
3782 
3783 	IWM_LOCK(sc);
3784 	/* XXX fix this */
3785         if (params == NULL) {
3786 		error = iwm_tx(sc, m, ni, 0);
3787 	} else {
3788 		error = iwm_tx(sc, m, ni, 0);
3789 	}
3790 	if (sc->sc_tx_timer == 0)
3791 		callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3792 	sc->sc_tx_timer = 5;
3793 	IWM_UNLOCK(sc);
3794 
3795         return (error);
3796 }
3797 
3798 /*
3799  * mvm/tx.c
3800  */
3801 
3802 /*
3803  * Note that there are transports that buffer frames before they reach
3804  * the firmware. This means that after flush_tx_path is called, the
3805  * queue might not be empty. The race-free way to handle this is to:
3806  * 1) set the station as draining
3807  * 2) flush the Tx path
3808  * 3) wait for the transport queues to be empty
3809  */
3810 int
3811 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3812 {
3813 	int ret;
3814 	struct iwm_tx_path_flush_cmd flush_cmd = {
3815 		.queues_ctl = htole32(tfd_msk),
3816 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3817 	};
3818 
3819 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3820 	    sizeof(flush_cmd), &flush_cmd);
3821 	if (ret)
3822                 device_printf(sc->sc_dev,
3823 		    "Flushing tx queue failed: %d\n", ret);
3824 	return ret;
3825 }
3826 
3827 /*
3828  * BEGIN mvm/quota.c
3829  */
3830 
3831 static int
3832 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp)
3833 {
3834 	struct iwm_time_quota_cmd cmd;
3835 	int i, idx, ret, num_active_macs, quota, quota_rem;
3836 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3837 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3838 	uint16_t id;
3839 
3840 	memset(&cmd, 0, sizeof(cmd));
3841 
3842 	/* currently, PHY ID == binding ID */
3843 	if (ivp) {
3844 		id = ivp->phy_ctxt->id;
3845 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3846 		colors[id] = ivp->phy_ctxt->color;
3847 
3848 		if (1)
3849 			n_ifs[id] = 1;
3850 	}
3851 
3852 	/*
3853 	 * The FW's scheduling session consists of
3854 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3855 	 * equally between all the bindings that require quota
3856 	 */
3857 	num_active_macs = 0;
3858 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3859 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3860 		num_active_macs += n_ifs[i];
3861 	}
3862 
3863 	quota = 0;
3864 	quota_rem = 0;
3865 	if (num_active_macs) {
3866 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3867 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3868 	}
3869 
3870 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3871 		if (colors[i] < 0)
3872 			continue;
3873 
3874 		cmd.quotas[idx].id_and_color =
3875 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3876 
3877 		if (n_ifs[i] <= 0) {
3878 			cmd.quotas[idx].quota = htole32(0);
3879 			cmd.quotas[idx].max_duration = htole32(0);
3880 		} else {
3881 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3882 			cmd.quotas[idx].max_duration = htole32(0);
3883 		}
3884 		idx++;
3885 	}
3886 
3887 	/* Give the remainder of the session to the first binding */
3888 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3889 
3890 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3891 	    sizeof(cmd), &cmd);
3892 	if (ret)
3893 		device_printf(sc->sc_dev,
3894 		    "%s: Failed to send quota: %d\n", __func__, ret);
3895 	return ret;
3896 }
3897 
3898 /*
3899  * END mvm/quota.c
3900  */
3901 
3902 /*
3903  * ieee80211 routines
3904  */
3905 
3906 /*
3907  * Change to AUTH state in 80211 state machine.  Roughly matches what
3908  * Linux does in bss_info_changed().
3909  */
3910 static int
3911 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3912 {
3913 	struct ieee80211_node *ni;
3914 	struct iwm_node *in;
3915 	struct iwm_vap *iv = IWM_VAP(vap);
3916 	uint32_t duration;
3917 	int error;
3918 
3919 	/*
3920 	 * XXX i have a feeling that the vap node is being
3921 	 * freed from underneath us. Grr.
3922 	 */
3923 	ni = ieee80211_ref_node(vap->iv_bss);
3924 	in = IWM_NODE(ni);
3925 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3926 	    "%s: called; vap=%p, bss ni=%p\n",
3927 	    __func__,
3928 	    vap,
3929 	    ni);
3930 	IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n",
3931 	    __func__, ether_sprintf(ni->ni_bssid));
3932 
3933 	in->in_assoc = 0;
3934 	iv->iv_auth = 1;
3935 
3936 	/*
3937 	 * Firmware bug - it'll crash if the beacon interval is less
3938 	 * than 16. We can't avoid connecting at all, so refuse the
3939 	 * station state change, this will cause net80211 to abandon
3940 	 * attempts to connect to this AP, and eventually wpa_s will
3941 	 * blacklist the AP...
3942 	 */
3943 	if (ni->ni_intval < 16) {
3944 		device_printf(sc->sc_dev,
3945 		    "AP %s beacon interval is %d, refusing due to firmware bug!\n",
3946 		    ether_sprintf(ni->ni_bssid), ni->ni_intval);
3947 		error = EINVAL;
3948 		goto out;
3949 	}
3950 
3951 	error = iwm_allow_mcast(vap, sc);
3952 	if (error) {
3953 		device_printf(sc->sc_dev,
3954 		    "%s: failed to set multicast\n", __func__);
3955 		goto out;
3956 	}
3957 
3958 	/*
3959 	 * This is where it deviates from what Linux does.
3960 	 *
3961 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3962 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3963 	 * and always does a mac_ctx_changed().
3964 	 *
3965 	 * The openbsd port doesn't attempt to do that - it reset things
3966 	 * at odd states and does the add here.
3967 	 *
3968 	 * So, until the state handling is fixed (ie, we never reset
3969 	 * the NIC except for a firmware failure, which should drag
3970 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3971 	 * contexts that are required), let's do a dirty hack here.
3972 	 */
3973 	if (iv->is_uploaded) {
3974 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3975 			device_printf(sc->sc_dev,
3976 			    "%s: failed to update MAC\n", __func__);
3977 			goto out;
3978 		}
3979 	} else {
3980 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3981 			device_printf(sc->sc_dev,
3982 			    "%s: failed to add MAC\n", __func__);
3983 			goto out;
3984 		}
3985 	}
3986 	sc->sc_firmware_state = 1;
3987 
3988 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3989 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3990 		device_printf(sc->sc_dev,
3991 		    "%s: failed update phy ctxt\n", __func__);
3992 		goto out;
3993 	}
3994 	iv->phy_ctxt = &sc->sc_phyctxt[0];
3995 
3996 	if ((error = iwm_mvm_binding_add_vif(sc, iv)) != 0) {
3997 		device_printf(sc->sc_dev,
3998 		    "%s: binding update cmd\n", __func__);
3999 		goto out;
4000 	}
4001 	sc->sc_firmware_state = 2;
4002 	/*
4003 	 * Authentication becomes unreliable when powersaving is left enabled
4004 	 * here. Powersaving will be activated again when association has
4005 	 * finished or is aborted.
4006 	 */
4007 	iv->ps_disabled = TRUE;
4008 	error = iwm_mvm_power_update_mac(sc);
4009 	iv->ps_disabled = FALSE;
4010 	if (error != 0) {
4011 		device_printf(sc->sc_dev,
4012 		    "%s: failed to update power management\n",
4013 		    __func__);
4014 		goto out;
4015 	}
4016 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
4017 		device_printf(sc->sc_dev,
4018 		    "%s: failed to add sta\n", __func__);
4019 		goto out;
4020 	}
4021 	sc->sc_firmware_state = 3;
4022 
4023 	/*
4024 	 * Prevent the FW from wandering off channel during association
4025 	 * by "protecting" the session with a time event.
4026 	 */
4027 	/* XXX duration is in units of TU, not MS */
4028 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
4029 	iwm_mvm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE);
4030 
4031 	error = 0;
4032 out:
4033 	if (error != 0)
4034 		iv->iv_auth = 0;
4035 	ieee80211_free_node(ni);
4036 	return (error);
4037 }
4038 
4039 static struct ieee80211_node *
4040 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4041 {
4042 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4043 	    M_NOWAIT | M_ZERO);
4044 }
4045 
4046 static uint8_t
4047 iwm_rate_from_ucode_rate(uint32_t rate_n_flags)
4048 {
4049 	uint8_t plcp = rate_n_flags & 0xff;
4050 	int i;
4051 
4052 	for (i = 0; i <= IWM_RIDX_MAX; i++) {
4053 		if (iwm_rates[i].plcp == plcp)
4054 			return iwm_rates[i].rate;
4055 	}
4056 	return 0;
4057 }
4058 
4059 uint8_t
4060 iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
4061 {
4062 	int i;
4063 	uint8_t rval;
4064 
4065 	for (i = 0; i < rs->rs_nrates; i++) {
4066 		rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
4067 		if (rval == iwm_rates[ridx].rate)
4068 			return rs->rs_rates[i];
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 static int
4075 iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate)
4076 {
4077 	int i;
4078 
4079 	for (i = 0; i <= IWM_RIDX_MAX; i++) {
4080 		if (iwm_rates[i].rate == rate)
4081 			return i;
4082 	}
4083 
4084 	device_printf(sc->sc_dev,
4085 	    "%s: WARNING: device rate for %u not found!\n",
4086 	    __func__, rate);
4087 
4088 	return -1;
4089 }
4090 
4091 
4092 static void
4093 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix)
4094 {
4095 	struct ieee80211_node *ni = &in->in_ni;
4096 	struct iwm_lq_cmd *lq = &in->in_lq;
4097 	struct ieee80211_rateset *rs = &ni->ni_rates;
4098 	int nrates = rs->rs_nrates;
4099 	int i, ridx, tab = 0;
4100 //	int txant = 0;
4101 
4102 	KASSERT(rix >= 0 && rix < nrates, ("invalid rix"));
4103 
4104 	if (nrates > nitems(lq->rs_table)) {
4105 		device_printf(sc->sc_dev,
4106 		    "%s: node supports %d rates, driver handles "
4107 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4108 		return;
4109 	}
4110 	if (nrates == 0) {
4111 		device_printf(sc->sc_dev,
4112 		    "%s: node supports 0 rates, odd!\n", __func__);
4113 		return;
4114 	}
4115 	nrates = imin(rix + 1, nrates);
4116 
4117 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4118 	    "%s: nrates=%d\n", __func__, nrates);
4119 
4120 	/* then construct a lq_cmd based on those */
4121 	memset(lq, 0, sizeof(*lq));
4122 	lq->sta_id = IWM_STATION_ID;
4123 
4124 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4125 	if (ni->ni_flags & IEEE80211_NODE_HT)
4126 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4127 
4128 	/*
4129 	 * are these used? (we don't do SISO or MIMO)
4130 	 * need to set them to non-zero, though, or we get an error.
4131 	 */
4132 	lq->single_stream_ant_msk = 1;
4133 	lq->dual_stream_ant_msk = 1;
4134 
4135 	/*
4136 	 * Build the actual rate selection table.
4137 	 * The lowest bits are the rates.  Additionally,
4138 	 * CCK needs bit 9 to be set.  The rest of the bits
4139 	 * we add to the table select the tx antenna
4140 	 * Note that we add the rates in the highest rate first
4141 	 * (opposite of ni_rates).
4142 	 */
4143 	for (i = 0; i < nrates; i++) {
4144 		int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL;
4145 		int nextant;
4146 
4147 		/* Map 802.11 rate to HW rate index. */
4148 		ridx = iwm_rate2ridx(sc, rate);
4149 		if (ridx == -1)
4150 			continue;
4151 
4152 #if 0
4153 		if (txant == 0)
4154 			txant = iwm_mvm_get_valid_tx_ant(sc);
4155 		nextant = 1<<(ffs(txant)-1);
4156 		txant &= ~nextant;
4157 #else
4158 		nextant = iwm_mvm_get_valid_tx_ant(sc);
4159 #endif
4160 		tab = iwm_rates[ridx].plcp;
4161 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4162 		if (IWM_RIDX_IS_CCK(ridx))
4163 			tab |= IWM_RATE_MCS_CCK_MSK;
4164 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4165 		    "station rate i=%d, rate=%d, hw=%x\n",
4166 		    i, iwm_rates[ridx].rate, tab);
4167 		lq->rs_table[i] = htole32(tab);
4168 	}
4169 	/* then fill the rest with the lowest possible rate */
4170 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4171 		KASSERT(tab != 0, ("invalid tab"));
4172 		lq->rs_table[i] = htole32(tab);
4173 	}
4174 }
4175 
4176 static int
4177 iwm_media_change(struct ifnet *ifp)
4178 {
4179 	struct ieee80211vap *vap = ifp->if_softc;
4180 	struct ieee80211com *ic = vap->iv_ic;
4181 	struct iwm_softc *sc = ic->ic_softc;
4182 	int error;
4183 
4184 	error = ieee80211_media_change(ifp);
4185 	if (error != ENETRESET)
4186 		return error;
4187 
4188 	IWM_LOCK(sc);
4189 	if (ic->ic_nrunning > 0) {
4190 		iwm_stop(sc);
4191 		iwm_init(sc);
4192 	}
4193 	IWM_UNLOCK(sc);
4194 	return error;
4195 }
4196 
4197 static void
4198 iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap)
4199 {
4200 	struct iwm_vap *ivp = IWM_VAP(vap);
4201 	int error;
4202 
4203 	/* Avoid Tx watchdog triggering, when transfers get dropped here. */
4204 	sc->sc_tx_timer = 0;
4205 
4206 	ivp->iv_auth = 0;
4207 	if (sc->sc_firmware_state == 3) {
4208 		iwm_xmit_queue_drain(sc);
4209 //		iwm_mvm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC);
4210 		error = iwm_mvm_rm_sta(sc, vap, TRUE);
4211 		if (error) {
4212 			device_printf(sc->sc_dev,
4213 			    "%s: Failed to remove station: %d\n",
4214 			    __func__, error);
4215 		}
4216 	}
4217 	if (sc->sc_firmware_state == 3) {
4218 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4219 		if (error) {
4220 			device_printf(sc->sc_dev,
4221 			    "%s: Failed to change mac context: %d\n",
4222 			    __func__, error);
4223 		}
4224 	}
4225 	if (sc->sc_firmware_state == 3) {
4226 		error = iwm_mvm_sf_update(sc, vap, FALSE);
4227 		if (error) {
4228 			device_printf(sc->sc_dev,
4229 			    "%s: Failed to update smart FIFO: %d\n",
4230 			    __func__, error);
4231 		}
4232 	}
4233 	if (sc->sc_firmware_state == 3) {
4234 		error = iwm_mvm_rm_sta_id(sc, vap);
4235 		if (error) {
4236 			device_printf(sc->sc_dev,
4237 			    "%s: Failed to remove station id: %d\n",
4238 			    __func__, error);
4239 		}
4240 	}
4241 	if (sc->sc_firmware_state == 3) {
4242 		error = iwm_mvm_update_quotas(sc, NULL);
4243 		if (error) {
4244 			device_printf(sc->sc_dev,
4245 			    "%s: Failed to update PHY quota: %d\n",
4246 			    __func__, error);
4247 		}
4248 	}
4249 	if (sc->sc_firmware_state == 3) {
4250 		/* XXX Might need to specify bssid correctly. */
4251 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4252 		if (error) {
4253 			device_printf(sc->sc_dev,
4254 			    "%s: Failed to change mac context: %d\n",
4255 			    __func__, error);
4256 		}
4257 	}
4258 	if (sc->sc_firmware_state == 3) {
4259 		sc->sc_firmware_state = 2;
4260 	}
4261 	if (sc->sc_firmware_state > 1) {
4262 		error = iwm_mvm_binding_remove_vif(sc, ivp);
4263 		if (error) {
4264 			device_printf(sc->sc_dev,
4265 			    "%s: Failed to remove channel ctx: %d\n",
4266 			    __func__, error);
4267 		}
4268 	}
4269 	if (sc->sc_firmware_state > 1) {
4270 		sc->sc_firmware_state = 1;
4271 	}
4272 	ivp->phy_ctxt = NULL;
4273 	if (sc->sc_firmware_state > 0) {
4274 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4275 		if (error) {
4276 			device_printf(sc->sc_dev,
4277 			    "%s: Failed to change mac context: %d\n",
4278 			    __func__, error);
4279 		}
4280 	}
4281 	if (sc->sc_firmware_state > 0) {
4282 		error = iwm_mvm_power_update_mac(sc);
4283 		if (error != 0) {
4284 			device_printf(sc->sc_dev,
4285 			    "%s: failed to update power management\n",
4286 			    __func__);
4287 		}
4288 	}
4289 	sc->sc_firmware_state = 0;
4290 }
4291 
4292 static int
4293 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4294 {
4295 	struct iwm_vap *ivp = IWM_VAP(vap);
4296 	struct ieee80211com *ic = vap->iv_ic;
4297 	struct iwm_softc *sc = ic->ic_softc;
4298 	struct iwm_node *in;
4299 	int error;
4300 
4301 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4302 	    "switching state %s -> %s arg=0x%x\n",
4303 	    ieee80211_state_name[vap->iv_state],
4304 	    ieee80211_state_name[nstate],
4305 	    arg);
4306 
4307 	IEEE80211_UNLOCK(ic);
4308 	IWM_LOCK(sc);
4309 
4310 	if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) &&
4311 	    (nstate == IEEE80211_S_AUTH ||
4312 	     nstate == IEEE80211_S_ASSOC ||
4313 	     nstate == IEEE80211_S_RUN)) {
4314 		/* Stop blinking for a scan, when authenticating. */
4315 		iwm_led_blink_stop(sc);
4316 	}
4317 
4318 	if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
4319 		iwm_mvm_led_disable(sc);
4320 		/* disable beacon filtering if we're hopping out of RUN */
4321 		iwm_mvm_disable_beacon_filter(sc);
4322 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4323 			in->in_assoc = 0;
4324 	}
4325 
4326 	if ((vap->iv_state == IEEE80211_S_AUTH ||
4327 	     vap->iv_state == IEEE80211_S_ASSOC ||
4328 	     vap->iv_state == IEEE80211_S_RUN) &&
4329 	    (nstate == IEEE80211_S_INIT ||
4330 	     nstate == IEEE80211_S_SCAN ||
4331 	     nstate == IEEE80211_S_AUTH)) {
4332 		iwm_mvm_stop_session_protection(sc, ivp);
4333 	}
4334 
4335 	if ((vap->iv_state == IEEE80211_S_RUN ||
4336 	     vap->iv_state == IEEE80211_S_ASSOC) &&
4337 	    nstate == IEEE80211_S_INIT) {
4338 		/*
4339 		 * In this case, iv_newstate() wants to send an 80211 frame on
4340 		 * the network that we are leaving. So we need to call it,
4341 		 * before tearing down all the firmware state.
4342 		 */
4343 		IWM_UNLOCK(sc);
4344 		IEEE80211_LOCK(ic);
4345 		ivp->iv_newstate(vap, nstate, arg);
4346 		IEEE80211_UNLOCK(ic);
4347 		IWM_LOCK(sc);
4348 		iwm_bring_down_firmware(sc, vap);
4349 		IWM_UNLOCK(sc);
4350 		IEEE80211_LOCK(ic);
4351 		return 0;
4352 	}
4353 
4354 	switch (nstate) {
4355 	case IEEE80211_S_INIT:
4356 	case IEEE80211_S_SCAN:
4357 		break;
4358 
4359 	case IEEE80211_S_AUTH:
4360 		iwm_bring_down_firmware(sc, vap);
4361 		if ((error = iwm_auth(vap, sc)) != 0) {
4362 			device_printf(sc->sc_dev,
4363 			    "%s: could not move to auth state: %d\n",
4364 			    __func__, error);
4365 			iwm_bring_down_firmware(sc, vap);
4366 			IWM_UNLOCK(sc);
4367 			IEEE80211_LOCK(ic);
4368 			return 1;
4369 		}
4370 		break;
4371 
4372 	case IEEE80211_S_ASSOC:
4373 		/*
4374 		 * EBS may be disabled due to previous failures reported by FW.
4375 		 * Reset EBS status here assuming environment has been changed.
4376 		 */
4377 		sc->last_ebs_successful = TRUE;
4378 		break;
4379 
4380 	case IEEE80211_S_RUN:
4381 		in = IWM_NODE(vap->iv_bss);
4382 		/* Update the association state, now we have it all */
4383 		/* (eg associd comes in at this point */
4384 		error = iwm_mvm_update_sta(sc, in);
4385 		if (error != 0) {
4386 			device_printf(sc->sc_dev,
4387 			    "%s: failed to update STA\n", __func__);
4388 			IWM_UNLOCK(sc);
4389 			IEEE80211_LOCK(ic);
4390 			return error;
4391 		}
4392 		in->in_assoc = 1;
4393 		error = iwm_mvm_mac_ctxt_changed(sc, vap);
4394 		if (error != 0) {
4395 			device_printf(sc->sc_dev,
4396 			    "%s: failed to update MAC: %d\n", __func__, error);
4397 		}
4398 
4399 		iwm_mvm_sf_update(sc, vap, FALSE);
4400 		iwm_mvm_enable_beacon_filter(sc, ivp);
4401 		iwm_mvm_power_update_mac(sc);
4402 		iwm_mvm_update_quotas(sc, ivp);
4403 		int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0);
4404 		iwm_setrates(sc, in, rix);
4405 
4406 		if ((error = iwm_mvm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) {
4407 			device_printf(sc->sc_dev,
4408 			    "%s: IWM_LQ_CMD failed: %d\n", __func__, error);
4409 		}
4410 
4411 		iwm_mvm_led_enable(sc);
4412 		break;
4413 
4414 	default:
4415 		break;
4416 	}
4417 	IWM_UNLOCK(sc);
4418 	IEEE80211_LOCK(ic);
4419 
4420 	return (ivp->iv_newstate(vap, nstate, arg));
4421 }
4422 
4423 void
4424 iwm_endscan_cb(void *arg, int pending)
4425 {
4426 	struct iwm_softc *sc = arg;
4427 	struct ieee80211com *ic = &sc->sc_ic;
4428 
4429 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4430 	    "%s: scan ended\n",
4431 	    __func__);
4432 
4433 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4434 }
4435 
4436 static int
4437 iwm_send_bt_init_conf(struct iwm_softc *sc)
4438 {
4439 	struct iwm_bt_coex_cmd bt_cmd;
4440 
4441 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4442 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4443 
4444 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4445 	    &bt_cmd);
4446 }
4447 
4448 static boolean_t
4449 iwm_mvm_is_lar_supported(struct iwm_softc *sc)
4450 {
4451 	boolean_t nvm_lar = sc->nvm_data->lar_enabled;
4452 	boolean_t tlv_lar = fw_has_capa(&sc->sc_fw.ucode_capa,
4453 					IWM_UCODE_TLV_CAPA_LAR_SUPPORT);
4454 
4455 	if (iwm_lar_disable)
4456 		return FALSE;
4457 
4458 	/*
4459 	 * Enable LAR only if it is supported by the FW (TLV) &&
4460 	 * enabled in the NVM
4461 	 */
4462 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000)
4463 		return nvm_lar && tlv_lar;
4464 	else
4465 		return tlv_lar;
4466 }
4467 
4468 static boolean_t
4469 iwm_mvm_is_wifi_mcc_supported(struct iwm_softc *sc)
4470 {
4471 	return fw_has_api(&sc->sc_fw.ucode_capa,
4472 			  IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4473 	       fw_has_capa(&sc->sc_fw.ucode_capa,
4474 			   IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC);
4475 }
4476 
4477 static int
4478 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4479 {
4480 	struct iwm_mcc_update_cmd mcc_cmd;
4481 	struct iwm_host_cmd hcmd = {
4482 		.id = IWM_MCC_UPDATE_CMD,
4483 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4484 		.data = { &mcc_cmd },
4485 	};
4486 	int ret;
4487 #ifdef IWM_DEBUG
4488 	struct iwm_rx_packet *pkt;
4489 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4490 	struct iwm_mcc_update_resp *mcc_resp;
4491 	int n_channels;
4492 	uint16_t mcc;
4493 #endif
4494 	int resp_v2 = fw_has_capa(&sc->sc_fw.ucode_capa,
4495 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4496 
4497 	if (!iwm_mvm_is_lar_supported(sc)) {
4498 		IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n",
4499 		    __func__);
4500 		return 0;
4501 	}
4502 
4503 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4504 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4505 	if (iwm_mvm_is_wifi_mcc_supported(sc))
4506 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4507 	else
4508 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4509 
4510 	if (resp_v2)
4511 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4512 	else
4513 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4514 
4515 	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4516 	    "send MCC update to FW with '%c%c' src = %d\n",
4517 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4518 
4519 	ret = iwm_send_cmd(sc, &hcmd);
4520 	if (ret)
4521 		return ret;
4522 
4523 #ifdef IWM_DEBUG
4524 	pkt = hcmd.resp_pkt;
4525 
4526 	/* Extract MCC response */
4527 	if (resp_v2) {
4528 		mcc_resp = (void *)pkt->data;
4529 		mcc = mcc_resp->mcc;
4530 		n_channels =  le32toh(mcc_resp->n_channels);
4531 	} else {
4532 		mcc_resp_v1 = (void *)pkt->data;
4533 		mcc = mcc_resp_v1->mcc;
4534 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4535 	}
4536 
4537 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4538 	if (mcc == 0)
4539 		mcc = 0x3030;  /* "00" - world */
4540 
4541 	IWM_DPRINTF(sc, IWM_DEBUG_LAR,
4542 	    "regulatory domain '%c%c' (%d channels available)\n",
4543 	    mcc >> 8, mcc & 0xff, n_channels);
4544 #endif
4545 	iwm_free_resp(sc, &hcmd);
4546 
4547 	return 0;
4548 }
4549 
4550 static void
4551 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4552 {
4553 	struct iwm_host_cmd cmd = {
4554 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4555 		.len = { sizeof(uint32_t), },
4556 		.data = { &backoff, },
4557 	};
4558 
4559 	if (iwm_send_cmd(sc, &cmd) != 0) {
4560 		device_printf(sc->sc_dev,
4561 		    "failed to change thermal tx backoff\n");
4562 	}
4563 }
4564 
4565 static int
4566 iwm_init_hw(struct iwm_softc *sc)
4567 {
4568 	struct ieee80211com *ic = &sc->sc_ic;
4569 	int error, i, ac;
4570 
4571 	sc->sf_state = IWM_SF_UNINIT;
4572 
4573 	if ((error = iwm_start_hw(sc)) != 0) {
4574 		printf("iwm_start_hw: failed %d\n", error);
4575 		return error;
4576 	}
4577 
4578 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4579 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4580 		return error;
4581 	}
4582 
4583 	/*
4584 	 * should stop and start HW since that INIT
4585 	 * image just loaded
4586 	 */
4587 	iwm_stop_device(sc);
4588 	sc->sc_ps_disabled = FALSE;
4589 	if ((error = iwm_start_hw(sc)) != 0) {
4590 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4591 		return error;
4592 	}
4593 
4594 	/* omstart, this time with the regular firmware */
4595 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR);
4596 	if (error) {
4597 		device_printf(sc->sc_dev, "could not load firmware\n");
4598 		goto error;
4599 	}
4600 
4601 	error = iwm_mvm_sf_update(sc, NULL, FALSE);
4602 	if (error)
4603 		device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n");
4604 
4605 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4606 		device_printf(sc->sc_dev, "bt init conf failed\n");
4607 		goto error;
4608 	}
4609 
4610 	error = iwm_send_tx_ant_cfg(sc, iwm_mvm_get_valid_tx_ant(sc));
4611 	if (error != 0) {
4612 		device_printf(sc->sc_dev, "antenna config failed\n");
4613 		goto error;
4614 	}
4615 
4616 	/* Send phy db control command and then phy db calibration */
4617 	if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0)
4618 		goto error;
4619 
4620 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4621 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4622 		goto error;
4623 	}
4624 
4625 	/* Add auxiliary station for scanning */
4626 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4627 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4628 		goto error;
4629 	}
4630 
4631 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4632 		/*
4633 		 * The channel used here isn't relevant as it's
4634 		 * going to be overwritten in the other flows.
4635 		 * For now use the first channel we have.
4636 		 */
4637 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4638 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4639 			goto error;
4640 	}
4641 
4642 	/* Initialize tx backoffs to the minimum. */
4643 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000)
4644 		iwm_mvm_tt_tx_backoff(sc, 0);
4645 
4646 	if (iwm_mvm_config_ltr(sc) != 0)
4647 		device_printf(sc->sc_dev, "PCIe LTR configuration failed\n");
4648 
4649 	error = iwm_mvm_power_update_device(sc);
4650 	if (error)
4651 		goto error;
4652 
4653 	if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4654 		goto error;
4655 
4656 	if (fw_has_capa(&sc->sc_fw.ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4657 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4658 			goto error;
4659 	}
4660 
4661 	/* Enable Tx queues. */
4662 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4663 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4664 		    iwm_mvm_ac_to_tx_fifo[ac]);
4665 		if (error)
4666 			goto error;
4667 	}
4668 
4669 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4670 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4671 		goto error;
4672 	}
4673 
4674 	return 0;
4675 
4676  error:
4677 	iwm_stop_device(sc);
4678 	return error;
4679 }
4680 
4681 /* Allow multicast from our BSSID. */
4682 static int
4683 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4684 {
4685 	struct ieee80211_node *ni = vap->iv_bss;
4686 	struct iwm_mcast_filter_cmd *cmd;
4687 	size_t size;
4688 	int error;
4689 
4690 	size = roundup(sizeof(*cmd), 4);
4691 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4692 	if (cmd == NULL)
4693 		return ENOMEM;
4694 	cmd->filter_own = 1;
4695 	cmd->port_id = 0;
4696 	cmd->count = 0;
4697 	cmd->pass_all = 1;
4698 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4699 
4700 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4701 	    IWM_CMD_SYNC, size, cmd);
4702 	free(cmd, M_DEVBUF);
4703 
4704 	return (error);
4705 }
4706 
4707 /*
4708  * ifnet interfaces
4709  */
4710 
4711 static void
4712 iwm_init(struct iwm_softc *sc)
4713 {
4714 	int error;
4715 
4716 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4717 		return;
4718 	}
4719 	sc->sc_generation++;
4720 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4721 
4722 	if ((error = iwm_init_hw(sc)) != 0) {
4723 		printf("iwm_init_hw failed %d\n", error);
4724 		iwm_stop(sc);
4725 		return;
4726 	}
4727 
4728 	/*
4729 	 * Ok, firmware loaded and we are jogging
4730 	 */
4731 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4732 }
4733 
4734 static int
4735 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4736 {
4737 	struct iwm_softc *sc;
4738 	int error;
4739 
4740 	sc = ic->ic_softc;
4741 
4742 	IWM_LOCK(sc);
4743 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4744 		IWM_UNLOCK(sc);
4745 		return (ENXIO);
4746 	}
4747 	error = mbufq_enqueue(&sc->sc_snd, m);
4748 	if (error) {
4749 		IWM_UNLOCK(sc);
4750 		return (error);
4751 	}
4752 	iwm_start(sc);
4753 	IWM_UNLOCK(sc);
4754 	return (0);
4755 }
4756 
4757 /*
4758  * Dequeue packets from sendq and call send.
4759  */
4760 static void
4761 iwm_start(struct iwm_softc *sc)
4762 {
4763 	struct ieee80211_node *ni;
4764 	struct mbuf *m;
4765 	int ac = 0;
4766 
4767 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4768 	while (sc->qfullmsk == 0 &&
4769 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4770 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4771 		if (iwm_tx(sc, m, ni, ac) != 0) {
4772 			if_inc_counter(ni->ni_vap->iv_ifp,
4773 			    IFCOUNTER_OERRORS, 1);
4774 			ieee80211_free_node(ni);
4775 			continue;
4776 		}
4777 		if (sc->sc_tx_timer == 0) {
4778 			callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog,
4779 			    sc);
4780 		}
4781 		sc->sc_tx_timer = 15;
4782 	}
4783 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4784 }
4785 
4786 static void
4787 iwm_stop(struct iwm_softc *sc)
4788 {
4789 
4790 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4791 	sc->sc_flags |= IWM_FLAG_STOPPED;
4792 	sc->sc_generation++;
4793 	iwm_led_blink_stop(sc);
4794 	sc->sc_tx_timer = 0;
4795 	iwm_stop_device(sc);
4796 	sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
4797 }
4798 
4799 static void
4800 iwm_watchdog(void *arg)
4801 {
4802 	struct iwm_softc *sc = arg;
4803 	struct ieee80211com *ic = &sc->sc_ic;
4804 
4805 	if (sc->sc_attached == 0)
4806 		return;
4807 
4808 	if (sc->sc_tx_timer > 0) {
4809 		if (--sc->sc_tx_timer == 0) {
4810 			device_printf(sc->sc_dev, "device timeout\n");
4811 #ifdef IWM_DEBUG
4812 			iwm_nic_error(sc);
4813 #endif
4814 			ieee80211_restart_all(ic);
4815 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4816 			return;
4817 		}
4818 		callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4819 	}
4820 }
4821 
4822 static void
4823 iwm_parent(struct ieee80211com *ic)
4824 {
4825 	struct iwm_softc *sc = ic->ic_softc;
4826 	int startall = 0;
4827 
4828 	IWM_LOCK(sc);
4829 	if (ic->ic_nrunning > 0) {
4830 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4831 			iwm_init(sc);
4832 			startall = 1;
4833 		}
4834 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4835 		iwm_stop(sc);
4836 	IWM_UNLOCK(sc);
4837 	if (startall)
4838 		ieee80211_start_all(ic);
4839 }
4840 
4841 /*
4842  * The interrupt side of things
4843  */
4844 
4845 /*
4846  * error dumping routines are from iwlwifi/mvm/utils.c
4847  */
4848 
4849 /*
4850  * Note: This structure is read from the device with IO accesses,
4851  * and the reading already does the endian conversion. As it is
4852  * read with uint32_t-sized accesses, any members with a different size
4853  * need to be ordered correctly though!
4854  */
4855 struct iwm_error_event_table {
4856 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4857 	uint32_t error_id;		/* type of error */
4858 	uint32_t trm_hw_status0;	/* TRM HW status */
4859 	uint32_t trm_hw_status1;	/* TRM HW status */
4860 	uint32_t blink2;		/* branch link */
4861 	uint32_t ilink1;		/* interrupt link */
4862 	uint32_t ilink2;		/* interrupt link */
4863 	uint32_t data1;		/* error-specific data */
4864 	uint32_t data2;		/* error-specific data */
4865 	uint32_t data3;		/* error-specific data */
4866 	uint32_t bcon_time;		/* beacon timer */
4867 	uint32_t tsf_low;		/* network timestamp function timer */
4868 	uint32_t tsf_hi;		/* network timestamp function timer */
4869 	uint32_t gp1;		/* GP1 timer register */
4870 	uint32_t gp2;		/* GP2 timer register */
4871 	uint32_t fw_rev_type;	/* firmware revision type */
4872 	uint32_t major;		/* uCode version major */
4873 	uint32_t minor;		/* uCode version minor */
4874 	uint32_t hw_ver;		/* HW Silicon version */
4875 	uint32_t brd_ver;		/* HW board version */
4876 	uint32_t log_pc;		/* log program counter */
4877 	uint32_t frame_ptr;		/* frame pointer */
4878 	uint32_t stack_ptr;		/* stack pointer */
4879 	uint32_t hcmd;		/* last host command header */
4880 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4881 				 * rxtx_flag */
4882 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4883 				 * host_flag */
4884 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4885 				 * enc_flag */
4886 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4887 				 * time_flag */
4888 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4889 				 * wico interrupt */
4890 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4891 	uint32_t wait_event;		/* wait event() caller address */
4892 	uint32_t l2p_control;	/* L2pControlField */
4893 	uint32_t l2p_duration;	/* L2pDurationField */
4894 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4895 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4896 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4897 				 * (LMPM_PMG_SEL) */
4898 	uint32_t u_timestamp;	/* indicate when the date and time of the
4899 				 * compilation */
4900 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4901 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4902 
4903 /*
4904  * UMAC error struct - relevant starting from family 8000 chip.
4905  * Note: This structure is read from the device with IO accesses,
4906  * and the reading already does the endian conversion. As it is
4907  * read with u32-sized accesses, any members with a different size
4908  * need to be ordered correctly though!
4909  */
4910 struct iwm_umac_error_event_table {
4911 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4912 	uint32_t error_id;	/* type of error */
4913 	uint32_t blink1;	/* branch link */
4914 	uint32_t blink2;	/* branch link */
4915 	uint32_t ilink1;	/* interrupt link */
4916 	uint32_t ilink2;	/* interrupt link */
4917 	uint32_t data1;		/* error-specific data */
4918 	uint32_t data2;		/* error-specific data */
4919 	uint32_t data3;		/* error-specific data */
4920 	uint32_t umac_major;
4921 	uint32_t umac_minor;
4922 	uint32_t frame_pointer;	/* core register 27*/
4923 	uint32_t stack_pointer;	/* core register 28 */
4924 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4925 	uint32_t nic_isr_pref;	/* ISR status register */
4926 } __packed;
4927 
4928 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4929 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4930 
4931 #ifdef IWM_DEBUG
4932 struct {
4933 	const char *name;
4934 	uint8_t num;
4935 } advanced_lookup[] = {
4936 	{ "NMI_INTERRUPT_WDG", 0x34 },
4937 	{ "SYSASSERT", 0x35 },
4938 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4939 	{ "BAD_COMMAND", 0x38 },
4940 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4941 	{ "FATAL_ERROR", 0x3D },
4942 	{ "NMI_TRM_HW_ERR", 0x46 },
4943 	{ "NMI_INTERRUPT_TRM", 0x4C },
4944 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4945 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4946 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4947 	{ "NMI_INTERRUPT_HOST", 0x66 },
4948 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4949 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4950 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4951 	{ "ADVANCED_SYSASSERT", 0 },
4952 };
4953 
4954 static const char *
4955 iwm_desc_lookup(uint32_t num)
4956 {
4957 	int i;
4958 
4959 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4960 		if (advanced_lookup[i].num == num)
4961 			return advanced_lookup[i].name;
4962 
4963 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4964 	return advanced_lookup[i].name;
4965 }
4966 
4967 static void
4968 iwm_nic_umac_error(struct iwm_softc *sc)
4969 {
4970 	struct iwm_umac_error_event_table table;
4971 	uint32_t base;
4972 
4973 	base = sc->umac_error_event_table;
4974 
4975 	if (base < 0x800000) {
4976 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4977 		    base);
4978 		return;
4979 	}
4980 
4981 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4982 		device_printf(sc->sc_dev, "reading errlog failed\n");
4983 		return;
4984 	}
4985 
4986 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4987 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4988 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4989 		    sc->sc_flags, table.valid);
4990 	}
4991 
4992 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4993 		iwm_desc_lookup(table.error_id));
4994 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4995 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4996 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4997 	    table.ilink1);
4998 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4999 	    table.ilink2);
5000 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
5001 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
5002 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
5003 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
5004 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
5005 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
5006 	    table.frame_pointer);
5007 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
5008 	    table.stack_pointer);
5009 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
5010 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
5011 	    table.nic_isr_pref);
5012 }
5013 
5014 /*
5015  * Support for dumping the error log seemed like a good idea ...
5016  * but it's mostly hex junk and the only sensible thing is the
5017  * hw/ucode revision (which we know anyway).  Since it's here,
5018  * I'll just leave it in, just in case e.g. the Intel guys want to
5019  * help us decipher some "ADVANCED_SYSASSERT" later.
5020  */
5021 static void
5022 iwm_nic_error(struct iwm_softc *sc)
5023 {
5024 	struct iwm_error_event_table table;
5025 	uint32_t base;
5026 
5027 	device_printf(sc->sc_dev, "dumping device error log\n");
5028 	base = sc->error_event_table[0];
5029 	if (base < 0x800000) {
5030 		device_printf(sc->sc_dev,
5031 		    "Invalid error log pointer 0x%08x\n", base);
5032 		return;
5033 	}
5034 
5035 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5036 		device_printf(sc->sc_dev, "reading errlog failed\n");
5037 		return;
5038 	}
5039 
5040 	if (!table.valid) {
5041 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5042 		return;
5043 	}
5044 
5045 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5046 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5047 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5048 		    sc->sc_flags, table.valid);
5049 	}
5050 
5051 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5052 	    iwm_desc_lookup(table.error_id));
5053 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5054 	    table.trm_hw_status0);
5055 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5056 	    table.trm_hw_status1);
5057 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5058 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5059 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5060 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5061 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5062 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5063 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5064 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5065 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5066 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5067 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5068 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5069 	    table.fw_rev_type);
5070 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5071 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5072 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5073 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5074 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5075 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5076 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5077 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5078 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5079 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5080 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5081 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5082 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5083 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5084 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5085 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5086 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5087 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5088 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5089 
5090 	if (sc->umac_error_event_table)
5091 		iwm_nic_umac_error(sc);
5092 }
5093 #endif
5094 
5095 static void
5096 iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m)
5097 {
5098 	struct ieee80211com *ic = &sc->sc_ic;
5099 	struct iwm_cmd_response *cresp;
5100 	struct mbuf *m1;
5101 	uint32_t offset = 0;
5102 	uint32_t maxoff = IWM_RBUF_SIZE;
5103 	uint32_t nextoff;
5104 	boolean_t stolen = FALSE;
5105 
5106 #define HAVEROOM(a)	\
5107     ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff)
5108 
5109 	while (HAVEROOM(offset)) {
5110 		struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *,
5111 		    offset);
5112 		int qid, idx, code, len;
5113 
5114 		qid = pkt->hdr.qid;
5115 		idx = pkt->hdr.idx;
5116 
5117 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5118 
5119 		/*
5120 		 * randomly get these from the firmware, no idea why.
5121 		 * they at least seem harmless, so just ignore them for now
5122 		 */
5123 		if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) ||
5124 		    pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) {
5125 			break;
5126 		}
5127 
5128 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5129 		    "rx packet qid=%d idx=%d type=%x\n",
5130 		    qid & ~0x80, pkt->hdr.idx, code);
5131 
5132 		len = iwm_rx_packet_len(pkt);
5133 		len += sizeof(uint32_t); /* account for status word */
5134 		nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN);
5135 
5136 		iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt);
5137 
5138 		switch (code) {
5139 		case IWM_REPLY_RX_PHY_CMD:
5140 			iwm_mvm_rx_rx_phy_cmd(sc, pkt);
5141 			break;
5142 
5143 		case IWM_REPLY_RX_MPDU_CMD: {
5144 			/*
5145 			 * If this is the last frame in the RX buffer, we
5146 			 * can directly feed the mbuf to the sharks here.
5147 			 */
5148 			struct iwm_rx_packet *nextpkt = mtodoff(m,
5149 			    struct iwm_rx_packet *, nextoff);
5150 			if (!HAVEROOM(nextoff) ||
5151 			    (nextpkt->hdr.code == 0 &&
5152 			     (nextpkt->hdr.qid & ~0x80) == 0 &&
5153 			     nextpkt->hdr.idx == 0) ||
5154 			    (nextpkt->len_n_flags ==
5155 			     htole32(IWM_FH_RSCSR_FRAME_INVALID))) {
5156 				if (iwm_mvm_rx_rx_mpdu(sc, m, offset, stolen)) {
5157 					stolen = FALSE;
5158 					/* Make sure we abort the loop */
5159 					nextoff = maxoff;
5160 				}
5161 				break;
5162 			}
5163 
5164 			/*
5165 			 * Use m_copym instead of m_split, because that
5166 			 * makes it easier to keep a valid rx buffer in
5167 			 * the ring, when iwm_mvm_rx_rx_mpdu() fails.
5168 			 *
5169 			 * We need to start m_copym() at offset 0, to get the
5170 			 * M_PKTHDR flag preserved.
5171 			 */
5172 			m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT);
5173 			if (m1) {
5174 				if (iwm_mvm_rx_rx_mpdu(sc, m1, offset, stolen))
5175 					stolen = TRUE;
5176 				else
5177 					m_freem(m1);
5178 			}
5179 			break;
5180 		}
5181 
5182 		case IWM_TX_CMD:
5183 			iwm_mvm_rx_tx_cmd(sc, pkt);
5184 			break;
5185 
5186 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5187 			struct iwm_missed_beacons_notif *resp;
5188 			int missed;
5189 
5190 			/* XXX look at mac_id to determine interface ID */
5191 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5192 
5193 			resp = (void *)pkt->data;
5194 			missed = le32toh(resp->consec_missed_beacons);
5195 
5196 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5197 			    "%s: MISSED_BEACON: mac_id=%d, "
5198 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5199 			    "num_rx=%d\n",
5200 			    __func__,
5201 			    le32toh(resp->mac_id),
5202 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5203 			    le32toh(resp->consec_missed_beacons),
5204 			    le32toh(resp->num_expected_beacons),
5205 			    le32toh(resp->num_recvd_beacons));
5206 
5207 			/* Be paranoid */
5208 			if (vap == NULL)
5209 				break;
5210 
5211 			/* XXX no net80211 locking? */
5212 			if (vap->iv_state == IEEE80211_S_RUN &&
5213 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5214 				if (missed > vap->iv_bmissthreshold) {
5215 					/* XXX bad locking; turn into task */
5216 					IWM_UNLOCK(sc);
5217 					ieee80211_beacon_miss(ic);
5218 					IWM_LOCK(sc);
5219 				}
5220 			}
5221 
5222 			break;
5223 		}
5224 
5225 		case IWM_MFUART_LOAD_NOTIFICATION:
5226 			break;
5227 
5228 		case IWM_MVM_ALIVE:
5229 			break;
5230 
5231 		case IWM_CALIB_RES_NOTIF_PHY_DB:
5232 			break;
5233 
5234 		case IWM_STATISTICS_NOTIFICATION:
5235 			iwm_mvm_handle_rx_statistics(sc, pkt);
5236 			break;
5237 
5238 		case IWM_NVM_ACCESS_CMD:
5239 		case IWM_MCC_UPDATE_CMD:
5240 			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5241 				memcpy(sc->sc_cmd_resp,
5242 				    pkt, sizeof(sc->sc_cmd_resp));
5243 			}
5244 			break;
5245 
5246 		case IWM_MCC_CHUB_UPDATE_CMD: {
5247 			struct iwm_mcc_chub_notif *notif;
5248 			notif = (void *)pkt->data;
5249 
5250 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5251 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5252 			sc->sc_fw_mcc[2] = '\0';
5253 			IWM_DPRINTF(sc, IWM_DEBUG_LAR,
5254 			    "fw source %d sent CC '%s'\n",
5255 			    notif->source_id, sc->sc_fw_mcc);
5256 			break;
5257 		}
5258 
5259 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5260 		case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
5261 				 IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
5262 			struct iwm_dts_measurement_notif_v1 *notif;
5263 
5264 			if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) {
5265 				device_printf(sc->sc_dev,
5266 				    "Invalid DTS_MEASUREMENT_NOTIFICATION\n");
5267 				break;
5268 			}
5269 			notif = (void *)pkt->data;
5270 			IWM_DPRINTF(sc, IWM_DEBUG_TEMP,
5271 			    "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n",
5272 			    notif->temp);
5273 			break;
5274 		}
5275 
5276 		case IWM_PHY_CONFIGURATION_CMD:
5277 		case IWM_TX_ANT_CONFIGURATION_CMD:
5278 		case IWM_ADD_STA:
5279 		case IWM_MAC_CONTEXT_CMD:
5280 		case IWM_REPLY_SF_CFG_CMD:
5281 		case IWM_POWER_TABLE_CMD:
5282 		case IWM_LTR_CONFIG:
5283 		case IWM_PHY_CONTEXT_CMD:
5284 		case IWM_BINDING_CONTEXT_CMD:
5285 		case IWM_TIME_EVENT_CMD:
5286 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5287 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5288 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
5289 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5290 		case IWM_SCAN_OFFLOAD_ABORT_CMD:
5291 		case IWM_REPLY_BEACON_FILTERING_CMD:
5292 		case IWM_MAC_PM_POWER_TABLE:
5293 		case IWM_TIME_QUOTA_CMD:
5294 		case IWM_REMOVE_STA:
5295 		case IWM_TXPATH_FLUSH:
5296 		case IWM_LQ_CMD:
5297 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP,
5298 				 IWM_FW_PAGING_BLOCK_CMD):
5299 		case IWM_BT_CONFIG:
5300 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5301 			cresp = (void *)pkt->data;
5302 			if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) {
5303 				memcpy(sc->sc_cmd_resp,
5304 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5305 			}
5306 			break;
5307 
5308 		/* ignore */
5309 		case IWM_PHY_DB_CMD:
5310 			break;
5311 
5312 		case IWM_INIT_COMPLETE_NOTIF:
5313 			break;
5314 
5315 		case IWM_SCAN_OFFLOAD_COMPLETE:
5316 			iwm_mvm_rx_lmac_scan_complete_notif(sc, pkt);
5317 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5318 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5319 				ieee80211_runtask(ic, &sc->sc_es_task);
5320 			}
5321 			break;
5322 
5323 		case IWM_SCAN_ITERATION_COMPLETE: {
5324 			struct iwm_lmac_scan_complete_notif *notif;
5325 			notif = (void *)pkt->data;
5326 			break;
5327 		}
5328 
5329 		case IWM_SCAN_COMPLETE_UMAC:
5330 			iwm_mvm_rx_umac_scan_complete_notif(sc, pkt);
5331 			if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
5332 				sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
5333 				ieee80211_runtask(ic, &sc->sc_es_task);
5334 			}
5335 			break;
5336 
5337 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5338 			struct iwm_umac_scan_iter_complete_notif *notif;
5339 			notif = (void *)pkt->data;
5340 
5341 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5342 			    "complete, status=0x%x, %d channels scanned\n",
5343 			    notif->status, notif->scanned_channels);
5344 			break;
5345 		}
5346 
5347 		case IWM_REPLY_ERROR: {
5348 			struct iwm_error_resp *resp;
5349 			resp = (void *)pkt->data;
5350 
5351 			device_printf(sc->sc_dev,
5352 			    "firmware error 0x%x, cmd 0x%x\n",
5353 			    le32toh(resp->error_type),
5354 			    resp->cmd_id);
5355 			break;
5356 		}
5357 
5358 		case IWM_TIME_EVENT_NOTIFICATION:
5359 			iwm_mvm_rx_time_event_notif(sc, pkt);
5360 			break;
5361 
5362 		/*
5363 		 * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG
5364 		 * messages. Just ignore them for now.
5365 		 */
5366 		case IWM_DEBUG_LOG_MSG:
5367 			break;
5368 
5369 		case IWM_MCAST_FILTER_CMD:
5370 			break;
5371 
5372 		case IWM_SCD_QUEUE_CFG: {
5373 			struct iwm_scd_txq_cfg_rsp *rsp;
5374 			rsp = (void *)pkt->data;
5375 
5376 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5377 			    "queue cfg token=0x%x sta_id=%d "
5378 			    "tid=%d scd_queue=%d\n",
5379 			    rsp->token, rsp->sta_id, rsp->tid,
5380 			    rsp->scd_queue);
5381 			break;
5382 		}
5383 
5384 		default:
5385 			device_printf(sc->sc_dev,
5386 			    "frame %d/%d %x UNHANDLED (this should "
5387 			    "not happen)\n", qid & ~0x80, idx,
5388 			    pkt->len_n_flags);
5389 			break;
5390 		}
5391 
5392 		/*
5393 		 * Why test bit 0x80?  The Linux driver:
5394 		 *
5395 		 * There is one exception:  uCode sets bit 15 when it
5396 		 * originates the response/notification, i.e. when the
5397 		 * response/notification is not a direct response to a
5398 		 * command sent by the driver.  For example, uCode issues
5399 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5400 		 * it is not a direct response to any driver command.
5401 		 *
5402 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5403 		 * uses a slightly different format for pkt->hdr, and "qid"
5404 		 * is actually the upper byte of a two-byte field.
5405 		 */
5406 		if (!(qid & (1 << 7)))
5407 			iwm_cmd_done(sc, pkt);
5408 
5409 		offset = nextoff;
5410 	}
5411 	if (stolen)
5412 		m_freem(m);
5413 #undef HAVEROOM
5414 }
5415 
5416 /*
5417  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5418  * Basic structure from if_iwn
5419  */
5420 static void
5421 iwm_notif_intr(struct iwm_softc *sc)
5422 {
5423 	uint16_t hw;
5424 
5425 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5426 	    BUS_DMASYNC_POSTREAD);
5427 
5428 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5429 
5430 	/*
5431 	 * Process responses
5432 	 */
5433 	while (sc->rxq.cur != hw) {
5434 		struct iwm_rx_ring *ring = &sc->rxq;
5435 		struct iwm_rx_data *data = &ring->data[ring->cur];
5436 
5437 		bus_dmamap_sync(ring->data_dmat, data->map,
5438 		    BUS_DMASYNC_POSTREAD);
5439 
5440 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5441 		    "%s: hw = %d cur = %d\n", __func__, hw, ring->cur);
5442 		iwm_handle_rxb(sc, data->m);
5443 
5444 		ring->cur = (ring->cur + 1) % IWM_RX_RING_COUNT;
5445 	}
5446 
5447 	/*
5448 	 * Tell the firmware that it can reuse the ring entries that
5449 	 * we have just processed.
5450 	 * Seems like the hardware gets upset unless we align
5451 	 * the write by 8??
5452 	 */
5453 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5454 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, rounddown2(hw, 8));
5455 }
5456 
5457 static void
5458 iwm_intr(void *arg)
5459 {
5460 	struct iwm_softc *sc = arg;
5461 	int handled = 0;
5462 	int r1, r2, rv = 0;
5463 	int isperiodic = 0;
5464 
5465 	IWM_LOCK(sc);
5466 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5467 
5468 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5469 		uint32_t *ict = sc->ict_dma.vaddr;
5470 		int tmp;
5471 
5472 		tmp = htole32(ict[sc->ict_cur]);
5473 		if (!tmp)
5474 			goto out_ena;
5475 
5476 		/*
5477 		 * ok, there was something.  keep plowing until we have all.
5478 		 */
5479 		r1 = r2 = 0;
5480 		while (tmp) {
5481 			r1 |= tmp;
5482 			ict[sc->ict_cur] = 0;
5483 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5484 			tmp = htole32(ict[sc->ict_cur]);
5485 		}
5486 
5487 		/* this is where the fun begins.  don't ask */
5488 		if (r1 == 0xffffffff)
5489 			r1 = 0;
5490 
5491 		/* i am not expected to understand this */
5492 		if (r1 & 0xc0000)
5493 			r1 |= 0x8000;
5494 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5495 	} else {
5496 		r1 = IWM_READ(sc, IWM_CSR_INT);
5497 		/* "hardware gone" (where, fishing?) */
5498 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5499 			goto out;
5500 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5501 	}
5502 	if (r1 == 0 && r2 == 0) {
5503 		goto out_ena;
5504 	}
5505 
5506 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5507 
5508 	/* Safely ignore these bits for debug checks below */
5509 	r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD);
5510 
5511 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5512 		int i;
5513 		struct ieee80211com *ic = &sc->sc_ic;
5514 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5515 
5516 #ifdef IWM_DEBUG
5517 		iwm_nic_error(sc);
5518 #endif
5519 		/* Dump driver status (TX and RX rings) while we're here. */
5520 		device_printf(sc->sc_dev, "driver status:\n");
5521 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5522 			struct iwm_tx_ring *ring = &sc->txq[i];
5523 			device_printf(sc->sc_dev,
5524 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5525 			    "queued=%-3d\n",
5526 			    i, ring->qid, ring->cur, ring->queued);
5527 		}
5528 		device_printf(sc->sc_dev,
5529 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5530 		device_printf(sc->sc_dev,
5531 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5532 
5533 		/* Reset our firmware state tracking. */
5534 		sc->sc_firmware_state = 0;
5535 		/* Don't stop the device; just do a VAP restart */
5536 		IWM_UNLOCK(sc);
5537 
5538 		if (vap == NULL) {
5539 			printf("%s: null vap\n", __func__);
5540 			return;
5541 		}
5542 
5543 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5544 		    "restarting\n", __func__, vap->iv_state);
5545 
5546 		ieee80211_restart_all(ic);
5547 		return;
5548 	}
5549 
5550 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5551 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5552 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5553 		iwm_stop(sc);
5554 		rv = 1;
5555 		goto out;
5556 	}
5557 
5558 	/* firmware chunk loaded */
5559 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5560 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5561 		handled |= IWM_CSR_INT_BIT_FH_TX;
5562 		sc->sc_fw_chunk_done = 1;
5563 		wakeup(&sc->sc_fw);
5564 	}
5565 
5566 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5567 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5568 		if (iwm_check_rfkill(sc)) {
5569 			device_printf(sc->sc_dev,
5570 			    "%s: rfkill switch, disabling interface\n",
5571 			    __func__);
5572 			iwm_stop(sc);
5573 		}
5574 	}
5575 
5576 	/*
5577 	 * The Linux driver uses periodic interrupts to avoid races.
5578 	 * We cargo-cult like it's going out of fashion.
5579 	 */
5580 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5581 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5582 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5583 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5584 			IWM_WRITE_1(sc,
5585 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5586 		isperiodic = 1;
5587 	}
5588 
5589 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5590 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5591 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5592 
5593 		iwm_notif_intr(sc);
5594 
5595 		/* enable periodic interrupt, see above */
5596 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5597 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5598 			    IWM_CSR_INT_PERIODIC_ENA);
5599 	}
5600 
5601 	if (__predict_false(r1 & ~handled))
5602 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5603 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5604 	rv = 1;
5605 
5606  out_ena:
5607 	iwm_restore_interrupts(sc);
5608  out:
5609 	IWM_UNLOCK(sc);
5610 	return;
5611 }
5612 
5613 /*
5614  * Autoconf glue-sniffing
5615  */
5616 #define	PCI_VENDOR_INTEL		0x8086
5617 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5618 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5619 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5620 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5621 #define	PCI_PRODUCT_INTEL_WL_3168_1	0x24fb
5622 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5623 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5624 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5625 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5626 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5627 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5628 #define	PCI_PRODUCT_INTEL_WL_8265_1	0x24fd
5629 
5630 static const struct iwm_devices {
5631 	uint16_t		device;
5632 	const struct iwm_cfg	*cfg;
5633 } iwm_devices[] = {
5634 	{ PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg },
5635 	{ PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg },
5636 	{ PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg },
5637 	{ PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg },
5638 	{ PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg },
5639 	{ PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg },
5640 	{ PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg },
5641 	{ PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg },
5642 	{ PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg },
5643 	{ PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg },
5644 	{ PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg },
5645 	{ PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg },
5646 };
5647 
5648 static int
5649 iwm_probe(device_t dev)
5650 {
5651 	int i;
5652 
5653 	for (i = 0; i < nitems(iwm_devices); i++) {
5654 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5655 		    pci_get_device(dev) == iwm_devices[i].device) {
5656 			device_set_desc(dev, iwm_devices[i].cfg->name);
5657 			return (BUS_PROBE_DEFAULT);
5658 		}
5659 	}
5660 
5661 	return (ENXIO);
5662 }
5663 
5664 static int
5665 iwm_dev_check(device_t dev)
5666 {
5667 	struct iwm_softc *sc;
5668 	uint16_t devid;
5669 	int i;
5670 
5671 	sc = device_get_softc(dev);
5672 
5673 	devid = pci_get_device(dev);
5674 	for (i = 0; i < nitems(iwm_devices); i++) {
5675 		if (iwm_devices[i].device == devid) {
5676 			sc->cfg = iwm_devices[i].cfg;
5677 			return (0);
5678 		}
5679 	}
5680 	device_printf(dev, "unknown adapter type\n");
5681 	return ENXIO;
5682 }
5683 
5684 /* PCI registers */
5685 #define PCI_CFG_RETRY_TIMEOUT	0x041
5686 
5687 static int
5688 iwm_pci_attach(device_t dev)
5689 {
5690 	struct iwm_softc *sc;
5691 	int count, error, rid;
5692 	uint16_t reg;
5693 
5694 	sc = device_get_softc(dev);
5695 
5696 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
5697 	 * PCI Tx retries from interfering with C3 CPU state */
5698 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
5699 
5700 	/* Enable bus-mastering and hardware bug workaround. */
5701 	pci_enable_busmaster(dev);
5702 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5703 	/* if !MSI */
5704 	if (reg & PCIM_STATUS_INTxSTATE) {
5705 		reg &= ~PCIM_STATUS_INTxSTATE;
5706 	}
5707 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5708 
5709 	rid = PCIR_BAR(0);
5710 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5711 	    RF_ACTIVE);
5712 	if (sc->sc_mem == NULL) {
5713 		device_printf(sc->sc_dev, "can't map mem space\n");
5714 		return (ENXIO);
5715 	}
5716 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5717 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5718 
5719 	/* Install interrupt handler. */
5720 	count = 1;
5721 	rid = 0;
5722 	if (pci_alloc_msi(dev, &count) == 0)
5723 		rid = 1;
5724 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5725 	    (rid != 0 ? 0 : RF_SHAREABLE));
5726 	if (sc->sc_irq == NULL) {
5727 		device_printf(dev, "can't map interrupt\n");
5728 			return (ENXIO);
5729 	}
5730 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5731 	    NULL, iwm_intr, sc, &sc->sc_ih);
5732 	if (sc->sc_ih == NULL) {
5733 		device_printf(dev, "can't establish interrupt");
5734 			return (ENXIO);
5735 	}
5736 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5737 
5738 	return (0);
5739 }
5740 
5741 static void
5742 iwm_pci_detach(device_t dev)
5743 {
5744 	struct iwm_softc *sc = device_get_softc(dev);
5745 
5746 	if (sc->sc_irq != NULL) {
5747 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5748 		bus_release_resource(dev, SYS_RES_IRQ,
5749 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5750 		pci_release_msi(dev);
5751         }
5752 	if (sc->sc_mem != NULL)
5753 		bus_release_resource(dev, SYS_RES_MEMORY,
5754 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5755 }
5756 
5757 
5758 
5759 static int
5760 iwm_attach(device_t dev)
5761 {
5762 	struct iwm_softc *sc = device_get_softc(dev);
5763 	struct ieee80211com *ic = &sc->sc_ic;
5764 	int error;
5765 	int txq_i, i;
5766 
5767 	sc->sc_dev = dev;
5768 	sc->sc_attached = 1;
5769 	IWM_LOCK_INIT(sc);
5770 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5771 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5772 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5773 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5774 
5775 	sc->sc_notif_wait = iwm_notification_wait_init(sc);
5776 	if (sc->sc_notif_wait == NULL) {
5777 		device_printf(dev, "failed to init notification wait struct\n");
5778 		goto fail;
5779 	}
5780 
5781 	sc->sf_state = IWM_SF_UNINIT;
5782 
5783 	/* Init phy db */
5784 	sc->sc_phy_db = iwm_phy_db_init(sc);
5785 	if (!sc->sc_phy_db) {
5786 		device_printf(dev, "Cannot init phy_db\n");
5787 		goto fail;
5788 	}
5789 
5790 	/* Set EBS as successful as long as not stated otherwise by the FW. */
5791 	sc->last_ebs_successful = TRUE;
5792 
5793 	/* PCI attach */
5794 	error = iwm_pci_attach(dev);
5795 	if (error != 0)
5796 		goto fail;
5797 
5798 	sc->sc_wantresp = -1;
5799 
5800 	/* Match device id */
5801 	error = iwm_dev_check(dev);
5802 	if (error != 0)
5803 		goto fail;
5804 
5805 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5806 	/*
5807 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5808 	 * changed, and now the revision step also includes bit 0-1 (no more
5809 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5810 	 * in the old format.
5811 	 */
5812 	if (sc->cfg->device_family == IWM_DEVICE_FAMILY_8000) {
5813 		int ret;
5814 		uint32_t hw_step;
5815 
5816 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5817 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5818 
5819 		if (iwm_prepare_card_hw(sc) != 0) {
5820 			device_printf(dev, "could not initialize hardware\n");
5821 			goto fail;
5822 		}
5823 
5824 		/*
5825 		 * In order to recognize C step the driver should read the
5826 		 * chip version id located at the AUX bus MISC address.
5827 		 */
5828 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5829 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5830 		DELAY(2);
5831 
5832 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5833 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5834 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5835 				   25000);
5836 		if (!ret) {
5837 			device_printf(sc->sc_dev,
5838 			    "Failed to wake up the nic\n");
5839 			goto fail;
5840 		}
5841 
5842 		if (iwm_nic_lock(sc)) {
5843 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5844 			hw_step |= IWM_ENABLE_WFPM;
5845 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5846 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5847 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5848 			if (hw_step == 0x3)
5849 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5850 						(IWM_SILICON_C_STEP << 2);
5851 			iwm_nic_unlock(sc);
5852 		} else {
5853 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5854 			goto fail;
5855 		}
5856 	}
5857 
5858 	/* special-case 7265D, it has the same PCI IDs. */
5859 	if (sc->cfg == &iwm7265_cfg &&
5860 	    (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) {
5861 		sc->cfg = &iwm7265d_cfg;
5862 	}
5863 
5864 	/* Allocate DMA memory for firmware transfers. */
5865 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5866 		device_printf(dev, "could not allocate memory for firmware\n");
5867 		goto fail;
5868 	}
5869 
5870 	/* Allocate "Keep Warm" page. */
5871 	if ((error = iwm_alloc_kw(sc)) != 0) {
5872 		device_printf(dev, "could not allocate keep warm page\n");
5873 		goto fail;
5874 	}
5875 
5876 	/* We use ICT interrupts */
5877 	if ((error = iwm_alloc_ict(sc)) != 0) {
5878 		device_printf(dev, "could not allocate ICT table\n");
5879 		goto fail;
5880 	}
5881 
5882 	/* Allocate TX scheduler "rings". */
5883 	if ((error = iwm_alloc_sched(sc)) != 0) {
5884 		device_printf(dev, "could not allocate TX scheduler rings\n");
5885 		goto fail;
5886 	}
5887 
5888 	/* Allocate TX rings */
5889 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5890 		if ((error = iwm_alloc_tx_ring(sc,
5891 		    &sc->txq[txq_i], txq_i)) != 0) {
5892 			device_printf(dev,
5893 			    "could not allocate TX ring %d\n",
5894 			    txq_i);
5895 			goto fail;
5896 		}
5897 	}
5898 
5899 	/* Allocate RX ring. */
5900 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5901 		device_printf(dev, "could not allocate RX ring\n");
5902 		goto fail;
5903 	}
5904 
5905 	/* Clear pending interrupts. */
5906 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5907 
5908 	ic->ic_softc = sc;
5909 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5910 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5911 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5912 
5913 	/* Set device capabilities. */
5914 	ic->ic_caps =
5915 	    IEEE80211_C_STA |
5916 	    IEEE80211_C_WPA |		/* WPA/RSN */
5917 	    IEEE80211_C_WME |
5918 	    IEEE80211_C_PMGT |
5919 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5920 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5921 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5922 	    ;
5923 	/* Advertise full-offload scanning */
5924 	ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD;
5925 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5926 		sc->sc_phyctxt[i].id = i;
5927 		sc->sc_phyctxt[i].color = 0;
5928 		sc->sc_phyctxt[i].ref = 0;
5929 		sc->sc_phyctxt[i].channel = NULL;
5930 	}
5931 
5932 	/* Default noise floor */
5933 	sc->sc_noise = -96;
5934 
5935 	/* Max RSSI */
5936 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5937 
5938 #ifdef IWM_DEBUG
5939 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5940 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5941 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5942 #endif
5943 
5944 	error = iwm_read_firmware(sc);
5945 	if (error) {
5946 		goto fail;
5947 	} else if (sc->sc_fw.fw_fp == NULL) {
5948 		/*
5949 		 * XXX Add a solution for properly deferring firmware load
5950 		 *     during bootup.
5951 		 */
5952 		goto fail;
5953 	} else {
5954 		sc->sc_preinit_hook.ich_func = iwm_preinit;
5955 		sc->sc_preinit_hook.ich_arg = sc;
5956 		if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5957 			device_printf(dev,
5958 			    "config_intrhook_establish failed\n");
5959 			goto fail;
5960 		}
5961 	}
5962 
5963 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5964 	    "<-%s\n", __func__);
5965 
5966 	return 0;
5967 
5968 	/* Free allocated memory if something failed during attachment. */
5969 fail:
5970 	iwm_detach_local(sc, 0);
5971 
5972 	return ENXIO;
5973 }
5974 
5975 static int
5976 iwm_is_valid_ether_addr(uint8_t *addr)
5977 {
5978 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5979 
5980 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5981 		return (FALSE);
5982 
5983 	return (TRUE);
5984 }
5985 
5986 static int
5987 iwm_wme_update(struct ieee80211com *ic)
5988 {
5989 #define IWM_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5990 	struct iwm_softc *sc = ic->ic_softc;
5991 	struct chanAccParams chp;
5992 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5993 	struct iwm_vap *ivp = IWM_VAP(vap);
5994 	struct iwm_node *in;
5995 	struct wmeParams tmp[WME_NUM_AC];
5996 	int aci, error;
5997 
5998 	if (vap == NULL)
5999 		return (0);
6000 
6001 	ieee80211_wme_ic_getparams(ic, &chp);
6002 
6003 	IEEE80211_LOCK(ic);
6004 	for (aci = 0; aci < WME_NUM_AC; aci++)
6005 		tmp[aci] = chp.cap_wmeParams[aci];
6006 	IEEE80211_UNLOCK(ic);
6007 
6008 	IWM_LOCK(sc);
6009 	for (aci = 0; aci < WME_NUM_AC; aci++) {
6010 		const struct wmeParams *ac = &tmp[aci];
6011 		ivp->queue_params[aci].aifsn = ac->wmep_aifsn;
6012 		ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin);
6013 		ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax);
6014 		ivp->queue_params[aci].edca_txop =
6015 		    IEEE80211_TXOP_TO_US(ac->wmep_txopLimit);
6016 	}
6017 	ivp->have_wme = TRUE;
6018 	if (ivp->is_uploaded && vap->iv_bss != NULL) {
6019 		in = IWM_NODE(vap->iv_bss);
6020 		if (in->in_assoc) {
6021 			if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
6022 				device_printf(sc->sc_dev,
6023 				    "%s: failed to update MAC\n", __func__);
6024 			}
6025 		}
6026 	}
6027 	IWM_UNLOCK(sc);
6028 
6029 	return (0);
6030 #undef IWM_EXP2
6031 }
6032 
6033 static void
6034 iwm_preinit(void *arg)
6035 {
6036 	struct iwm_softc *sc = arg;
6037 	device_t dev = sc->sc_dev;
6038 	struct ieee80211com *ic = &sc->sc_ic;
6039 	int error;
6040 
6041 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6042 	    "->%s\n", __func__);
6043 
6044 	IWM_LOCK(sc);
6045 	if ((error = iwm_start_hw(sc)) != 0) {
6046 		device_printf(dev, "could not initialize hardware\n");
6047 		IWM_UNLOCK(sc);
6048 		goto fail;
6049 	}
6050 
6051 	error = iwm_run_init_mvm_ucode(sc, 1);
6052 	iwm_stop_device(sc);
6053 	if (error) {
6054 		IWM_UNLOCK(sc);
6055 		goto fail;
6056 	}
6057 	device_printf(dev,
6058 	    "hw rev 0x%x, fw ver %s, address %s\n",
6059 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
6060 	    sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr));
6061 
6062 	/* not all hardware can do 5GHz band */
6063 	if (!sc->nvm_data->sku_cap_band_52GHz_enable)
6064 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
6065 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
6066 	IWM_UNLOCK(sc);
6067 
6068 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
6069 	    ic->ic_channels);
6070 
6071 	/*
6072 	 * At this point we've committed - if we fail to do setup,
6073 	 * we now also have to tear down the net80211 state.
6074 	 */
6075 	ieee80211_ifattach(ic);
6076 	ic->ic_vap_create = iwm_vap_create;
6077 	ic->ic_vap_delete = iwm_vap_delete;
6078 	ic->ic_raw_xmit = iwm_raw_xmit;
6079 	ic->ic_node_alloc = iwm_node_alloc;
6080 	ic->ic_scan_start = iwm_scan_start;
6081 	ic->ic_scan_end = iwm_scan_end;
6082 	ic->ic_update_mcast = iwm_update_mcast;
6083 	ic->ic_getradiocaps = iwm_init_channel_map;
6084 	ic->ic_set_channel = iwm_set_channel;
6085 	ic->ic_scan_curchan = iwm_scan_curchan;
6086 	ic->ic_scan_mindwell = iwm_scan_mindwell;
6087 	ic->ic_wme.wme_update = iwm_wme_update;
6088 	ic->ic_parent = iwm_parent;
6089 	ic->ic_transmit = iwm_transmit;
6090 	iwm_radiotap_attach(sc);
6091 	if (bootverbose)
6092 		ieee80211_announce(ic);
6093 
6094 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6095 	    "<-%s\n", __func__);
6096 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6097 
6098 	return;
6099 fail:
6100 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6101 	iwm_detach_local(sc, 0);
6102 }
6103 
6104 /*
6105  * Attach the interface to 802.11 radiotap.
6106  */
6107 static void
6108 iwm_radiotap_attach(struct iwm_softc *sc)
6109 {
6110         struct ieee80211com *ic = &sc->sc_ic;
6111 
6112 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6113 	    "->%s begin\n", __func__);
6114         ieee80211_radiotap_attach(ic,
6115             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6116                 IWM_TX_RADIOTAP_PRESENT,
6117             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6118                 IWM_RX_RADIOTAP_PRESENT);
6119 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6120 	    "->%s end\n", __func__);
6121 }
6122 
6123 static struct ieee80211vap *
6124 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6125     enum ieee80211_opmode opmode, int flags,
6126     const uint8_t bssid[IEEE80211_ADDR_LEN],
6127     const uint8_t mac[IEEE80211_ADDR_LEN])
6128 {
6129 	struct iwm_vap *ivp;
6130 	struct ieee80211vap *vap;
6131 
6132 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6133 		return NULL;
6134 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6135 	vap = &ivp->iv_vap;
6136 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6137 	vap->iv_bmissthreshold = 10;            /* override default */
6138 	/* Override with driver methods. */
6139 	ivp->iv_newstate = vap->iv_newstate;
6140 	vap->iv_newstate = iwm_newstate;
6141 
6142 	ivp->id = IWM_DEFAULT_MACID;
6143 	ivp->color = IWM_DEFAULT_COLOR;
6144 
6145 	ivp->have_wme = FALSE;
6146 	ivp->ps_disabled = FALSE;
6147 
6148 	ieee80211_ratectl_init(vap);
6149 	/* Complete setup. */
6150 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6151 	    mac);
6152 	ic->ic_opmode = opmode;
6153 
6154 	return vap;
6155 }
6156 
6157 static void
6158 iwm_vap_delete(struct ieee80211vap *vap)
6159 {
6160 	struct iwm_vap *ivp = IWM_VAP(vap);
6161 
6162 	ieee80211_ratectl_deinit(vap);
6163 	ieee80211_vap_detach(vap);
6164 	free(ivp, M_80211_VAP);
6165 }
6166 
6167 static void
6168 iwm_xmit_queue_drain(struct iwm_softc *sc)
6169 {
6170 	struct mbuf *m;
6171 	struct ieee80211_node *ni;
6172 
6173 	while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
6174 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
6175 		ieee80211_free_node(ni);
6176 		m_freem(m);
6177 	}
6178 }
6179 
6180 static void
6181 iwm_scan_start(struct ieee80211com *ic)
6182 {
6183 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6184 	struct iwm_softc *sc = ic->ic_softc;
6185 	int error;
6186 
6187 	IWM_LOCK(sc);
6188 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6189 		/* This should not be possible */
6190 		device_printf(sc->sc_dev,
6191 		    "%s: Previous scan not completed yet\n", __func__);
6192 	}
6193 	if (fw_has_capa(&sc->sc_fw.ucode_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6194 		error = iwm_mvm_umac_scan(sc);
6195 	else
6196 		error = iwm_mvm_lmac_scan(sc);
6197 	if (error != 0) {
6198 		device_printf(sc->sc_dev, "could not initiate scan\n");
6199 		IWM_UNLOCK(sc);
6200 		ieee80211_cancel_scan(vap);
6201 	} else {
6202 		sc->sc_flags |= IWM_FLAG_SCAN_RUNNING;
6203 		iwm_led_blink_start(sc);
6204 		IWM_UNLOCK(sc);
6205 	}
6206 }
6207 
6208 static void
6209 iwm_scan_end(struct ieee80211com *ic)
6210 {
6211 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6212 	struct iwm_softc *sc = ic->ic_softc;
6213 
6214 	IWM_LOCK(sc);
6215 	iwm_led_blink_stop(sc);
6216 	if (vap->iv_state == IEEE80211_S_RUN)
6217 		iwm_mvm_led_enable(sc);
6218 	if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) {
6219 		/*
6220 		 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because
6221 		 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq
6222 		 * taskqueue.
6223 		 */
6224 		sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING;
6225 		iwm_mvm_scan_stop_wait(sc);
6226 	}
6227 	IWM_UNLOCK(sc);
6228 
6229 	/*
6230 	 * Make sure we don't race, if sc_es_task is still enqueued here.
6231 	 * This is to make sure that it won't call ieee80211_scan_done
6232 	 * when we have already started the next scan.
6233 	 */
6234 	taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL);
6235 }
6236 
6237 static void
6238 iwm_update_mcast(struct ieee80211com *ic)
6239 {
6240 }
6241 
6242 static void
6243 iwm_set_channel(struct ieee80211com *ic)
6244 {
6245 }
6246 
6247 static void
6248 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6249 {
6250 }
6251 
6252 static void
6253 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6254 {
6255 	return;
6256 }
6257 
6258 void
6259 iwm_init_task(void *arg1)
6260 {
6261 	struct iwm_softc *sc = arg1;
6262 
6263 	IWM_LOCK(sc);
6264 	while (sc->sc_flags & IWM_FLAG_BUSY)
6265 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6266 	sc->sc_flags |= IWM_FLAG_BUSY;
6267 	iwm_stop(sc);
6268 	if (sc->sc_ic.ic_nrunning > 0)
6269 		iwm_init(sc);
6270 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6271 	wakeup(&sc->sc_flags);
6272 	IWM_UNLOCK(sc);
6273 }
6274 
6275 static int
6276 iwm_resume(device_t dev)
6277 {
6278 	struct iwm_softc *sc = device_get_softc(dev);
6279 	int do_reinit = 0;
6280 
6281 	/*
6282 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
6283 	 * PCI Tx retries from interfering with C3 CPU state.
6284 	 */
6285 	pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1);
6286 
6287 	if (!sc->sc_attached)
6288 		return 0;
6289 
6290 	iwm_init_task(device_get_softc(dev));
6291 
6292 	IWM_LOCK(sc);
6293 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6294 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6295 		do_reinit = 1;
6296 	}
6297 	IWM_UNLOCK(sc);
6298 
6299 	if (do_reinit)
6300 		ieee80211_resume_all(&sc->sc_ic);
6301 
6302 	return 0;
6303 }
6304 
6305 static int
6306 iwm_suspend(device_t dev)
6307 {
6308 	int do_stop = 0;
6309 	struct iwm_softc *sc = device_get_softc(dev);
6310 
6311 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6312 
6313 	if (!sc->sc_attached)
6314 		return (0);
6315 
6316 	ieee80211_suspend_all(&sc->sc_ic);
6317 
6318 	if (do_stop) {
6319 		IWM_LOCK(sc);
6320 		iwm_stop(sc);
6321 		sc->sc_flags |= IWM_FLAG_SCANNING;
6322 		IWM_UNLOCK(sc);
6323 	}
6324 
6325 	return (0);
6326 }
6327 
6328 static int
6329 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6330 {
6331 	struct iwm_fw_info *fw = &sc->sc_fw;
6332 	device_t dev = sc->sc_dev;
6333 	int i;
6334 
6335 	if (!sc->sc_attached)
6336 		return 0;
6337 	sc->sc_attached = 0;
6338 
6339 	if (do_net80211)
6340 		ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6341 
6342 	callout_drain(&sc->sc_led_blink_to);
6343 	callout_drain(&sc->sc_watchdog_to);
6344 	iwm_stop_device(sc);
6345 	if (do_net80211) {
6346 		IWM_LOCK(sc);
6347 		iwm_xmit_queue_drain(sc);
6348 		IWM_UNLOCK(sc);
6349 		ieee80211_ifdetach(&sc->sc_ic);
6350 	}
6351 
6352 	iwm_phy_db_free(sc->sc_phy_db);
6353 	sc->sc_phy_db = NULL;
6354 
6355 	iwm_free_nvm_data(sc->nvm_data);
6356 
6357 	/* Free descriptor rings */
6358 	iwm_free_rx_ring(sc, &sc->rxq);
6359 	for (i = 0; i < nitems(sc->txq); i++)
6360 		iwm_free_tx_ring(sc, &sc->txq[i]);
6361 
6362 	/* Free firmware */
6363 	if (fw->fw_fp != NULL)
6364 		iwm_fw_info_free(fw);
6365 
6366 	/* Free scheduler */
6367 	iwm_dma_contig_free(&sc->sched_dma);
6368 	iwm_dma_contig_free(&sc->ict_dma);
6369 	iwm_dma_contig_free(&sc->kw_dma);
6370 	iwm_dma_contig_free(&sc->fw_dma);
6371 
6372 	iwm_free_fw_paging(sc);
6373 
6374 	/* Finished with the hardware - detach things */
6375 	iwm_pci_detach(dev);
6376 
6377 	if (sc->sc_notif_wait != NULL) {
6378 		iwm_notification_wait_free(sc->sc_notif_wait);
6379 		sc->sc_notif_wait = NULL;
6380 	}
6381 
6382 	IWM_LOCK_DESTROY(sc);
6383 
6384 	return (0);
6385 }
6386 
6387 static int
6388 iwm_detach(device_t dev)
6389 {
6390 	struct iwm_softc *sc = device_get_softc(dev);
6391 
6392 	return (iwm_detach_local(sc, 1));
6393 }
6394 
6395 static device_method_t iwm_pci_methods[] = {
6396         /* Device interface */
6397         DEVMETHOD(device_probe,         iwm_probe),
6398         DEVMETHOD(device_attach,        iwm_attach),
6399         DEVMETHOD(device_detach,        iwm_detach),
6400         DEVMETHOD(device_suspend,       iwm_suspend),
6401         DEVMETHOD(device_resume,        iwm_resume),
6402 
6403         DEVMETHOD_END
6404 };
6405 
6406 static driver_t iwm_pci_driver = {
6407         "iwm",
6408         iwm_pci_methods,
6409         sizeof (struct iwm_softc)
6410 };
6411 
6412 static devclass_t iwm_devclass;
6413 
6414 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6415 MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver,
6416     iwm_devices, nitems(iwm_devices));
6417 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6418 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6419 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6420