xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 2830819497fb2deae3dd71574592ace55f2fbdba)
1 /*	$OpenBSD: if_iwm.c,v 1.39 2015/03/23 00:35:19 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include <sys/param.h>
109 #include <sys/bus.h>
110 #include <sys/conf.h>
111 #include <sys/endian.h>
112 #include <sys/firmware.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/mbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/module.h>
118 #include <sys/proc.h>
119 #include <sys/rman.h>
120 #include <sys/socket.h>
121 #include <sys/sockio.h>
122 #include <sys/sysctl.h>
123 #include <sys/linker.h>
124 
125 #include <machine/bus.h>
126 #include <machine/endian.h>
127 #include <machine/resource.h>
128 
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcireg.h>
131 
132 #include <net/bpf.h>
133 
134 #include <net/if.h>
135 #include <net/if_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 
141 #include <netinet/in.h>
142 #include <netinet/in_systm.h>
143 #include <netinet/if_ether.h>
144 #include <netinet/ip.h>
145 
146 #include <net80211/ieee80211_var.h>
147 #include <net80211/ieee80211_regdomain.h>
148 #include <net80211/ieee80211_ratectl.h>
149 #include <net80211/ieee80211_radiotap.h>
150 
151 #include <dev/iwm/if_iwmreg.h>
152 #include <dev/iwm/if_iwmvar.h>
153 #include <dev/iwm/if_iwm_debug.h>
154 #include <dev/iwm/if_iwm_util.h>
155 #include <dev/iwm/if_iwm_binding.h>
156 #include <dev/iwm/if_iwm_phy_db.h>
157 #include <dev/iwm/if_iwm_mac_ctxt.h>
158 #include <dev/iwm/if_iwm_phy_ctxt.h>
159 #include <dev/iwm/if_iwm_time_event.h>
160 #include <dev/iwm/if_iwm_power.h>
161 #include <dev/iwm/if_iwm_scan.h>
162 
163 #include <dev/iwm/if_iwm_pcie_trans.h>
164 
165 const uint8_t iwm_nvm_channels[] = {
166 	/* 2.4 GHz */
167 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
168 	/* 5 GHz */
169 	36, 40, 44 , 48, 52, 56, 60, 64,
170 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
171 	149, 153, 157, 161, 165
172 };
173 #define IWM_NUM_2GHZ_CHANNELS	14
174 
175 /*
176  * XXX For now, there's simply a fixed set of rate table entries
177  * that are populated.
178  */
179 const struct iwm_rate {
180 	uint8_t rate;
181 	uint8_t plcp;
182 } iwm_rates[] = {
183 	{   2,	IWM_RATE_1M_PLCP  },
184 	{   4,	IWM_RATE_2M_PLCP  },
185 	{  11,	IWM_RATE_5M_PLCP  },
186 	{  22,	IWM_RATE_11M_PLCP },
187 	{  12,	IWM_RATE_6M_PLCP  },
188 	{  18,	IWM_RATE_9M_PLCP  },
189 	{  24,	IWM_RATE_12M_PLCP },
190 	{  36,	IWM_RATE_18M_PLCP },
191 	{  48,	IWM_RATE_24M_PLCP },
192 	{  72,	IWM_RATE_36M_PLCP },
193 	{  96,	IWM_RATE_48M_PLCP },
194 	{ 108,	IWM_RATE_54M_PLCP },
195 };
196 #define IWM_RIDX_CCK	0
197 #define IWM_RIDX_OFDM	4
198 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
199 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
200 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
201 
202 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
203 static int	iwm_firmware_store_section(struct iwm_softc *,
204                                            enum iwm_ucode_type,
205                                            const uint8_t *, size_t);
206 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
207 static void	iwm_fw_info_free(struct iwm_fw_info *);
208 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
209 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
210 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
211                                      bus_size_t, bus_size_t);
212 static void	iwm_dma_contig_free(struct iwm_dma_info *);
213 static int	iwm_alloc_fwmem(struct iwm_softc *);
214 static void	iwm_free_fwmem(struct iwm_softc *);
215 static int	iwm_alloc_sched(struct iwm_softc *);
216 static void	iwm_free_sched(struct iwm_softc *);
217 static int	iwm_alloc_kw(struct iwm_softc *);
218 static void	iwm_free_kw(struct iwm_softc *);
219 static int	iwm_alloc_ict(struct iwm_softc *);
220 static void	iwm_free_ict(struct iwm_softc *);
221 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
222 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
223 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
224 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
225                                   int);
226 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
227 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
228 static void	iwm_enable_interrupts(struct iwm_softc *);
229 static void	iwm_restore_interrupts(struct iwm_softc *);
230 static void	iwm_disable_interrupts(struct iwm_softc *);
231 static void	iwm_ict_reset(struct iwm_softc *);
232 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
233 static void	iwm_stop_device(struct iwm_softc *);
234 static void	iwm_mvm_nic_config(struct iwm_softc *);
235 static int	iwm_nic_rx_init(struct iwm_softc *);
236 static int	iwm_nic_tx_init(struct iwm_softc *);
237 static int	iwm_nic_init(struct iwm_softc *);
238 static void	iwm_enable_txq(struct iwm_softc *, int, int);
239 static int	iwm_post_alive(struct iwm_softc *);
240 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
241                                    uint16_t, uint8_t *, uint16_t *);
242 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
243 				     uint16_t *);
244 static void	iwm_init_channel_map(struct iwm_softc *,
245                                      const uint16_t * const);
246 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
247 			           const uint16_t *, const uint16_t *, uint8_t,
248 				   uint8_t);
249 struct iwm_nvm_section;
250 static int	iwm_parse_nvm_sections(struct iwm_softc *,
251                                        struct iwm_nvm_section *);
252 static int	iwm_nvm_init(struct iwm_softc *);
253 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
254                                         const uint8_t *, uint32_t);
255 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
256 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
257 static int	iwm_fw_alive(struct iwm_softc *, uint32_t);
258 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
259 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
260 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
261                                               enum iwm_ucode_type);
262 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
263 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
264 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
265 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
266 					    struct iwm_rx_phy_info *);
267 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
268                                       struct iwm_rx_packet *,
269                                       struct iwm_rx_data *);
270 static int	iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *);
271 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
272                                    struct iwm_rx_data *);
273 static void	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
274                                          struct iwm_rx_packet *,
275 				         struct iwm_node *);
276 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
277                                   struct iwm_rx_data *);
278 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
279 #if 0
280 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
281                                  uint16_t);
282 #endif
283 static const struct iwm_rate *
284 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
285 			struct ieee80211_frame *, struct iwm_tx_cmd *);
286 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
287                        struct ieee80211_node *, int);
288 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
289 			     const struct ieee80211_bpf_params *);
290 static void	iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *,
291 					     struct iwm_mvm_add_sta_cmd_v5 *);
292 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
293 					        struct iwm_mvm_add_sta_cmd_v6 *,
294                                                 int *);
295 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
296                                        int);
297 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
298 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
299 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
300                                            struct iwm_int_sta *,
301 				           const uint8_t *, uint16_t, uint16_t);
302 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
303 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
304 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
305 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
306 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
307 static struct ieee80211_node *
308 		iwm_node_alloc(struct ieee80211vap *,
309 		               const uint8_t[IEEE80211_ADDR_LEN]);
310 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
311 static int	iwm_media_change(struct ifnet *);
312 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
313 static void	iwm_endscan_cb(void *, int);
314 static int	iwm_init_hw(struct iwm_softc *);
315 static void	iwm_init(struct iwm_softc *);
316 static void	iwm_start(struct iwm_softc *);
317 static void	iwm_stop(struct iwm_softc *);
318 static void	iwm_watchdog(void *);
319 static void	iwm_parent(struct ieee80211com *);
320 #ifdef IWM_DEBUG
321 static const char *
322 		iwm_desc_lookup(uint32_t);
323 static void	iwm_nic_error(struct iwm_softc *);
324 #endif
325 static void	iwm_notif_intr(struct iwm_softc *);
326 static void	iwm_intr(void *);
327 static int	iwm_attach(device_t);
328 static void	iwm_preinit(void *);
329 static int	iwm_detach_local(struct iwm_softc *sc, int);
330 static void	iwm_init_task(void *);
331 static void	iwm_radiotap_attach(struct iwm_softc *);
332 static struct ieee80211vap *
333 		iwm_vap_create(struct ieee80211com *,
334 		               const char [IFNAMSIZ], int,
335 		               enum ieee80211_opmode, int,
336 		               const uint8_t [IEEE80211_ADDR_LEN],
337 		               const uint8_t [IEEE80211_ADDR_LEN]);
338 static void	iwm_vap_delete(struct ieee80211vap *);
339 static void	iwm_scan_start(struct ieee80211com *);
340 static void	iwm_scan_end(struct ieee80211com *);
341 static void	iwm_update_mcast(struct ieee80211com *);
342 static void	iwm_set_channel(struct ieee80211com *);
343 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
344 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
345 static int	iwm_detach(device_t);
346 
347 /*
348  * Firmware parser.
349  */
350 
351 static int
352 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
353 {
354 	const struct iwm_fw_cscheme_list *l = (const void *)data;
355 
356 	if (dlen < sizeof(*l) ||
357 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
358 		return EINVAL;
359 
360 	/* we don't actually store anything for now, always use s/w crypto */
361 
362 	return 0;
363 }
364 
365 static int
366 iwm_firmware_store_section(struct iwm_softc *sc,
367     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
368 {
369 	struct iwm_fw_sects *fws;
370 	struct iwm_fw_onesect *fwone;
371 
372 	if (type >= IWM_UCODE_TYPE_MAX)
373 		return EINVAL;
374 	if (dlen < sizeof(uint32_t))
375 		return EINVAL;
376 
377 	fws = &sc->sc_fw.fw_sects[type];
378 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
379 		return EINVAL;
380 
381 	fwone = &fws->fw_sect[fws->fw_count];
382 
383 	/* first 32bit are device load offset */
384 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
385 
386 	/* rest is data */
387 	fwone->fws_data = data + sizeof(uint32_t);
388 	fwone->fws_len = dlen - sizeof(uint32_t);
389 
390 	fws->fw_count++;
391 	fws->fw_totlen += fwone->fws_len;
392 
393 	return 0;
394 }
395 
396 /* iwlwifi: iwl-drv.c */
397 struct iwm_tlv_calib_data {
398 	uint32_t ucode_type;
399 	struct iwm_tlv_calib_ctrl calib;
400 } __packed;
401 
402 static int
403 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
404 {
405 	const struct iwm_tlv_calib_data *def_calib = data;
406 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
407 
408 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
409 		device_printf(sc->sc_dev,
410 		    "Wrong ucode_type %u for default "
411 		    "calibration.\n", ucode_type);
412 		return EINVAL;
413 	}
414 
415 	sc->sc_default_calib[ucode_type].flow_trigger =
416 	    def_calib->calib.flow_trigger;
417 	sc->sc_default_calib[ucode_type].event_trigger =
418 	    def_calib->calib.event_trigger;
419 
420 	return 0;
421 }
422 
423 static void
424 iwm_fw_info_free(struct iwm_fw_info *fw)
425 {
426 	firmware_put(fw->fw_rawdata, FIRMWARE_UNLOAD);
427 	fw->fw_rawdata = NULL;
428 	fw->fw_rawsize = 0;
429 	/* don't touch fw->fw_status */
430 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
431 }
432 
433 static int
434 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
435 {
436 	struct iwm_fw_info *fw = &sc->sc_fw;
437 	const struct iwm_tlv_ucode_header *uhdr;
438 	struct iwm_ucode_tlv tlv;
439 	enum iwm_ucode_tlv_type tlv_type;
440 	const struct firmware *fwp;
441 	const uint8_t *data;
442 	int error = 0;
443 	size_t len;
444 
445 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
446 	    ucode_type != IWM_UCODE_TYPE_INIT)
447 		return 0;
448 
449 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
450 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
451 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
452 
453 	if (fw->fw_rawdata != NULL)
454 		iwm_fw_info_free(fw);
455 
456 	/*
457 	 * Load firmware into driver memory.
458 	 * fw_rawdata and fw_rawsize will be set.
459 	 */
460 	IWM_UNLOCK(sc);
461 	fwp = firmware_get(sc->sc_fwname);
462 	if (fwp == NULL) {
463 		device_printf(sc->sc_dev,
464 		    "could not read firmware %s (error %d)\n",
465 		    sc->sc_fwname, error);
466 		IWM_LOCK(sc);
467 		goto out;
468 	}
469 	IWM_LOCK(sc);
470 	fw->fw_rawdata = fwp->data;
471 	fw->fw_rawsize = fwp->datasize;
472 
473 	/*
474 	 * Parse firmware contents
475 	 */
476 
477 	uhdr = (const void *)fw->fw_rawdata;
478 	if (*(const uint32_t *)fw->fw_rawdata != 0
479 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
480 		device_printf(sc->sc_dev, "invalid firmware %s\n",
481 		    sc->sc_fwname);
482 		error = EINVAL;
483 		goto out;
484 	}
485 
486 	sc->sc_fwver = le32toh(uhdr->ver);
487 	data = uhdr->data;
488 	len = fw->fw_rawsize - sizeof(*uhdr);
489 
490 	while (len >= sizeof(tlv)) {
491 		size_t tlv_len;
492 		const void *tlv_data;
493 
494 		memcpy(&tlv, data, sizeof(tlv));
495 		tlv_len = le32toh(tlv.length);
496 		tlv_type = le32toh(tlv.type);
497 
498 		len -= sizeof(tlv);
499 		data += sizeof(tlv);
500 		tlv_data = data;
501 
502 		if (len < tlv_len) {
503 			device_printf(sc->sc_dev,
504 			    "firmware too short: %zu bytes\n",
505 			    len);
506 			error = EINVAL;
507 			goto parse_out;
508 		}
509 
510 		switch ((int)tlv_type) {
511 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
512 			if (tlv_len < sizeof(uint32_t)) {
513 				device_printf(sc->sc_dev,
514 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
515 				    __func__,
516 				    (int) tlv_len);
517 				error = EINVAL;
518 				goto parse_out;
519 			}
520 			sc->sc_capa_max_probe_len
521 			    = le32toh(*(const uint32_t *)tlv_data);
522 			/* limit it to something sensible */
523 			if (sc->sc_capa_max_probe_len > (1<<16)) {
524 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
525 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
526 				    "ridiculous\n", __func__);
527 				error = EINVAL;
528 				goto parse_out;
529 			}
530 			break;
531 		case IWM_UCODE_TLV_PAN:
532 			if (tlv_len) {
533 				device_printf(sc->sc_dev,
534 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
535 				    __func__,
536 				    (int) tlv_len);
537 				error = EINVAL;
538 				goto parse_out;
539 			}
540 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
541 			break;
542 		case IWM_UCODE_TLV_FLAGS:
543 			if (tlv_len < sizeof(uint32_t)) {
544 				device_printf(sc->sc_dev,
545 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
546 				    __func__,
547 				    (int) tlv_len);
548 				error = EINVAL;
549 				goto parse_out;
550 			}
551 			/*
552 			 * Apparently there can be many flags, but Linux driver
553 			 * parses only the first one, and so do we.
554 			 *
555 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
556 			 * Intentional or a bug?  Observations from
557 			 * current firmware file:
558 			 *  1) TLV_PAN is parsed first
559 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
560 			 * ==> this resets TLV_PAN to itself... hnnnk
561 			 */
562 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
563 			break;
564 		case IWM_UCODE_TLV_CSCHEME:
565 			if ((error = iwm_store_cscheme(sc,
566 			    tlv_data, tlv_len)) != 0) {
567 				device_printf(sc->sc_dev,
568 				    "%s: iwm_store_cscheme(): returned %d\n",
569 				    __func__,
570 				    error);
571 				goto parse_out;
572 			}
573 			break;
574 		case IWM_UCODE_TLV_NUM_OF_CPU:
575 			if (tlv_len != sizeof(uint32_t)) {
576 				device_printf(sc->sc_dev,
577 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
578 				    __func__,
579 				    (int) tlv_len);
580 				error = EINVAL;
581 				goto parse_out;
582 			}
583 			if (le32toh(*(const uint32_t*)tlv_data) != 1) {
584 				device_printf(sc->sc_dev,
585 				    "%s: driver supports "
586 				    "only TLV_NUM_OF_CPU == 1",
587 				    __func__);
588 				error = EINVAL;
589 				goto parse_out;
590 			}
591 			break;
592 		case IWM_UCODE_TLV_SEC_RT:
593 			if ((error = iwm_firmware_store_section(sc,
594 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
595 				device_printf(sc->sc_dev,
596 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
597 				    __func__,
598 				    error);
599 				goto parse_out;
600 			}
601 			break;
602 		case IWM_UCODE_TLV_SEC_INIT:
603 			if ((error = iwm_firmware_store_section(sc,
604 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
605 				device_printf(sc->sc_dev,
606 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
607 				    __func__,
608 				    error);
609 				goto parse_out;
610 			}
611 			break;
612 		case IWM_UCODE_TLV_SEC_WOWLAN:
613 			if ((error = iwm_firmware_store_section(sc,
614 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
615 				device_printf(sc->sc_dev,
616 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
617 				    __func__,
618 				    error);
619 				goto parse_out;
620 			}
621 			break;
622 		case IWM_UCODE_TLV_DEF_CALIB:
623 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
624 				device_printf(sc->sc_dev,
625 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
626 				    __func__,
627 				    (int) tlv_len,
628 				    (int) sizeof(struct iwm_tlv_calib_data));
629 				error = EINVAL;
630 				goto parse_out;
631 			}
632 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
633 				device_printf(sc->sc_dev,
634 				    "%s: iwm_set_default_calib() failed: %d\n",
635 				    __func__,
636 				    error);
637 				goto parse_out;
638 			}
639 			break;
640 		case IWM_UCODE_TLV_PHY_SKU:
641 			if (tlv_len != sizeof(uint32_t)) {
642 				error = EINVAL;
643 				device_printf(sc->sc_dev,
644 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
645 				    __func__,
646 				    (int) tlv_len);
647 				goto parse_out;
648 			}
649 			sc->sc_fw_phy_config =
650 			    le32toh(*(const uint32_t *)tlv_data);
651 			break;
652 
653 		case IWM_UCODE_TLV_API_CHANGES_SET:
654 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES:
655 			/* ignore, not used by current driver */
656 			break;
657 
658 		default:
659 			device_printf(sc->sc_dev,
660 			    "%s: unknown firmware section %d, abort\n",
661 			    __func__, tlv_type);
662 			error = EINVAL;
663 			goto parse_out;
664 		}
665 
666 		len -= roundup(tlv_len, 4);
667 		data += roundup(tlv_len, 4);
668 	}
669 
670 	KASSERT(error == 0, ("unhandled error"));
671 
672  parse_out:
673 	if (error) {
674 		device_printf(sc->sc_dev, "firmware parse error %d, "
675 		    "section type %d\n", error, tlv_type);
676 	}
677 
678 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
679 		device_printf(sc->sc_dev,
680 		    "device uses unsupported power ops\n");
681 		error = ENOTSUP;
682 	}
683 
684  out:
685 	if (error) {
686 		fw->fw_status = IWM_FW_STATUS_NONE;
687 		if (fw->fw_rawdata != NULL)
688 			iwm_fw_info_free(fw);
689 	} else
690 		fw->fw_status = IWM_FW_STATUS_DONE;
691 	wakeup(&sc->sc_fw);
692 
693 	return error;
694 }
695 
696 /*
697  * DMA resource routines
698  */
699 
700 static void
701 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
702 {
703         if (error != 0)
704                 return;
705 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
706         *(bus_addr_t *)arg = segs[0].ds_addr;
707 }
708 
709 static int
710 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
711     bus_size_t size, bus_size_t alignment)
712 {
713 	int error;
714 
715 	dma->tag = NULL;
716 	dma->size = size;
717 
718 	error = bus_dma_tag_create(tag, alignment,
719             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
720             1, size, 0, NULL, NULL, &dma->tag);
721         if (error != 0)
722                 goto fail;
723 
724         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
725             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
726         if (error != 0)
727                 goto fail;
728 
729         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
730             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
731         if (error != 0)
732                 goto fail;
733 
734 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
735 
736 	return 0;
737 
738 fail:	iwm_dma_contig_free(dma);
739 	return error;
740 }
741 
742 static void
743 iwm_dma_contig_free(struct iwm_dma_info *dma)
744 {
745 	if (dma->map != NULL) {
746 		if (dma->vaddr != NULL) {
747 			bus_dmamap_sync(dma->tag, dma->map,
748 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
749 			bus_dmamap_unload(dma->tag, dma->map);
750 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
751 			dma->vaddr = NULL;
752 		}
753 		bus_dmamap_destroy(dma->tag, dma->map);
754 		dma->map = NULL;
755 	}
756 	if (dma->tag != NULL) {
757 		bus_dma_tag_destroy(dma->tag);
758 		dma->tag = NULL;
759 	}
760 
761 }
762 
763 /* fwmem is used to load firmware onto the card */
764 static int
765 iwm_alloc_fwmem(struct iwm_softc *sc)
766 {
767 	/* Must be aligned on a 16-byte boundary. */
768 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
769 	    sc->sc_fwdmasegsz, 16);
770 }
771 
772 static void
773 iwm_free_fwmem(struct iwm_softc *sc)
774 {
775 	iwm_dma_contig_free(&sc->fw_dma);
776 }
777 
778 /* tx scheduler rings.  not used? */
779 static int
780 iwm_alloc_sched(struct iwm_softc *sc)
781 {
782 	int rv;
783 
784 	/* TX scheduler rings must be aligned on a 1KB boundary. */
785 	rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
786 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
787 	return rv;
788 }
789 
790 static void
791 iwm_free_sched(struct iwm_softc *sc)
792 {
793 	iwm_dma_contig_free(&sc->sched_dma);
794 }
795 
796 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
797 static int
798 iwm_alloc_kw(struct iwm_softc *sc)
799 {
800 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
801 }
802 
803 static void
804 iwm_free_kw(struct iwm_softc *sc)
805 {
806 	iwm_dma_contig_free(&sc->kw_dma);
807 }
808 
809 /* interrupt cause table */
810 static int
811 iwm_alloc_ict(struct iwm_softc *sc)
812 {
813 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
814 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
815 }
816 
817 static void
818 iwm_free_ict(struct iwm_softc *sc)
819 {
820 	iwm_dma_contig_free(&sc->ict_dma);
821 }
822 
823 static int
824 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
825 {
826 	bus_size_t size;
827 	int i, error;
828 
829 	ring->cur = 0;
830 
831 	/* Allocate RX descriptors (256-byte aligned). */
832 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
833 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
834 	if (error != 0) {
835 		device_printf(sc->sc_dev,
836 		    "could not allocate RX ring DMA memory\n");
837 		goto fail;
838 	}
839 	ring->desc = ring->desc_dma.vaddr;
840 
841 	/* Allocate RX status area (16-byte aligned). */
842 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
843 	    sizeof(*ring->stat), 16);
844 	if (error != 0) {
845 		device_printf(sc->sc_dev,
846 		    "could not allocate RX status DMA memory\n");
847 		goto fail;
848 	}
849 	ring->stat = ring->stat_dma.vaddr;
850 
851         /* Create RX buffer DMA tag. */
852         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
853             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
854             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
855         if (error != 0) {
856                 device_printf(sc->sc_dev,
857                     "%s: could not create RX buf DMA tag, error %d\n",
858                     __func__, error);
859                 goto fail;
860         }
861 
862 	/*
863 	 * Allocate and map RX buffers.
864 	 */
865 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
866 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
867 			goto fail;
868 		}
869 	}
870 	return 0;
871 
872 fail:	iwm_free_rx_ring(sc, ring);
873 	return error;
874 }
875 
876 static void
877 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
878 {
879 
880 	/* XXX print out if we can't lock the NIC? */
881 	if (iwm_nic_lock(sc)) {
882 		/* XXX handle if RX stop doesn't finish? */
883 		(void) iwm_pcie_rx_stop(sc);
884 		iwm_nic_unlock(sc);
885 	}
886 	/* Reset the ring state */
887 	ring->cur = 0;
888 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
889 }
890 
891 static void
892 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
893 {
894 	int i;
895 
896 	iwm_dma_contig_free(&ring->desc_dma);
897 	iwm_dma_contig_free(&ring->stat_dma);
898 
899 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
900 		struct iwm_rx_data *data = &ring->data[i];
901 
902 		if (data->m != NULL) {
903 			bus_dmamap_sync(ring->data_dmat, data->map,
904 			    BUS_DMASYNC_POSTREAD);
905 			bus_dmamap_unload(ring->data_dmat, data->map);
906 			m_freem(data->m);
907 			data->m = NULL;
908 		}
909 		if (data->map != NULL) {
910 			bus_dmamap_destroy(ring->data_dmat, data->map);
911 			data->map = NULL;
912 		}
913 	}
914 	if (ring->data_dmat != NULL) {
915 		bus_dma_tag_destroy(ring->data_dmat);
916 		ring->data_dmat = NULL;
917 	}
918 }
919 
920 static int
921 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
922 {
923 	bus_addr_t paddr;
924 	bus_size_t size;
925 	int i, error;
926 
927 	ring->qid = qid;
928 	ring->queued = 0;
929 	ring->cur = 0;
930 
931 	/* Allocate TX descriptors (256-byte aligned). */
932 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
933 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
934 	if (error != 0) {
935 		device_printf(sc->sc_dev,
936 		    "could not allocate TX ring DMA memory\n");
937 		goto fail;
938 	}
939 	ring->desc = ring->desc_dma.vaddr;
940 
941 	/*
942 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
943 	 * to allocate commands space for other rings.
944 	 */
945 	if (qid > IWM_MVM_CMD_QUEUE)
946 		return 0;
947 
948 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
949 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
950 	if (error != 0) {
951 		device_printf(sc->sc_dev,
952 		    "could not allocate TX cmd DMA memory\n");
953 		goto fail;
954 	}
955 	ring->cmd = ring->cmd_dma.vaddr;
956 
957 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
959             IWM_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
960 	if (error != 0) {
961 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
962 		goto fail;
963 	}
964 
965 	paddr = ring->cmd_dma.paddr;
966 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
967 		struct iwm_tx_data *data = &ring->data[i];
968 
969 		data->cmd_paddr = paddr;
970 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
971 		    + offsetof(struct iwm_tx_cmd, scratch);
972 		paddr += sizeof(struct iwm_device_cmd);
973 
974 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
975 		if (error != 0) {
976 			device_printf(sc->sc_dev,
977 			    "could not create TX buf DMA map\n");
978 			goto fail;
979 		}
980 	}
981 	KASSERT(paddr == ring->cmd_dma.paddr + size,
982 	    ("invalid physical address"));
983 	return 0;
984 
985 fail:	iwm_free_tx_ring(sc, ring);
986 	return error;
987 }
988 
989 static void
990 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
991 {
992 	int i;
993 
994 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
995 		struct iwm_tx_data *data = &ring->data[i];
996 
997 		if (data->m != NULL) {
998 			bus_dmamap_sync(ring->data_dmat, data->map,
999 			    BUS_DMASYNC_POSTWRITE);
1000 			bus_dmamap_unload(ring->data_dmat, data->map);
1001 			m_freem(data->m);
1002 			data->m = NULL;
1003 		}
1004 	}
1005 	/* Clear TX descriptors. */
1006 	memset(ring->desc, 0, ring->desc_dma.size);
1007 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1008 	    BUS_DMASYNC_PREWRITE);
1009 	sc->qfullmsk &= ~(1 << ring->qid);
1010 	ring->queued = 0;
1011 	ring->cur = 0;
1012 }
1013 
1014 static void
1015 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1016 {
1017 	int i;
1018 
1019 	iwm_dma_contig_free(&ring->desc_dma);
1020 	iwm_dma_contig_free(&ring->cmd_dma);
1021 
1022 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1023 		struct iwm_tx_data *data = &ring->data[i];
1024 
1025 		if (data->m != NULL) {
1026 			bus_dmamap_sync(ring->data_dmat, data->map,
1027 			    BUS_DMASYNC_POSTWRITE);
1028 			bus_dmamap_unload(ring->data_dmat, data->map);
1029 			m_freem(data->m);
1030 			data->m = NULL;
1031 		}
1032 		if (data->map != NULL) {
1033 			bus_dmamap_destroy(ring->data_dmat, data->map);
1034 			data->map = NULL;
1035 		}
1036 	}
1037 	if (ring->data_dmat != NULL) {
1038 		bus_dma_tag_destroy(ring->data_dmat);
1039 		ring->data_dmat = NULL;
1040 	}
1041 }
1042 
1043 /*
1044  * High-level hardware frobbing routines
1045  */
1046 
1047 static void
1048 iwm_enable_interrupts(struct iwm_softc *sc)
1049 {
1050 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1051 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1052 }
1053 
1054 static void
1055 iwm_restore_interrupts(struct iwm_softc *sc)
1056 {
1057 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1058 }
1059 
1060 static void
1061 iwm_disable_interrupts(struct iwm_softc *sc)
1062 {
1063 	/* disable interrupts */
1064 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1065 
1066 	/* acknowledge all interrupts */
1067 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1068 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1069 }
1070 
1071 static void
1072 iwm_ict_reset(struct iwm_softc *sc)
1073 {
1074 	iwm_disable_interrupts(sc);
1075 
1076 	/* Reset ICT table. */
1077 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1078 	sc->ict_cur = 0;
1079 
1080 	/* Set physical address of ICT table (4KB aligned). */
1081 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1082 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1083 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1084 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1085 
1086 	/* Switch to ICT interrupt mode in driver. */
1087 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1088 
1089 	/* Re-enable interrupts. */
1090 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1091 	iwm_enable_interrupts(sc);
1092 }
1093 
1094 /* iwlwifi pcie/trans.c */
1095 
1096 /*
1097  * Since this .. hard-resets things, it's time to actually
1098  * mark the first vap (if any) as having no mac context.
1099  * It's annoying, but since the driver is potentially being
1100  * stop/start'ed whilst active (thanks openbsd port!) we
1101  * have to correctly track this.
1102  */
1103 static void
1104 iwm_stop_device(struct iwm_softc *sc)
1105 {
1106 	struct ieee80211com *ic = &sc->sc_ic;
1107 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1108 	int chnl, ntries;
1109 	int qid;
1110 
1111 	/* tell the device to stop sending interrupts */
1112 	iwm_disable_interrupts(sc);
1113 
1114 	/*
1115 	 * FreeBSD-local: mark the first vap as not-uploaded,
1116 	 * so the next transition through auth/assoc
1117 	 * will correctly populate the MAC context.
1118 	 */
1119 	if (vap) {
1120 		struct iwm_vap *iv = IWM_VAP(vap);
1121 		iv->is_uploaded = 0;
1122 	}
1123 
1124 	/* device going down, Stop using ICT table */
1125 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1126 
1127 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1128 
1129 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1130 
1131 	/* Stop all DMA channels. */
1132 	if (iwm_nic_lock(sc)) {
1133 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1134 			IWM_WRITE(sc,
1135 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1136 			for (ntries = 0; ntries < 200; ntries++) {
1137 				uint32_t r;
1138 
1139 				r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
1140 				if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
1141 				    chnl))
1142 					break;
1143 				DELAY(20);
1144 			}
1145 		}
1146 		iwm_nic_unlock(sc);
1147 	}
1148 
1149 	/* Stop RX ring. */
1150 	iwm_reset_rx_ring(sc, &sc->rxq);
1151 
1152 	/* Reset all TX rings. */
1153 	for (qid = 0; qid < nitems(sc->txq); qid++)
1154 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1155 
1156 	/*
1157 	 * Power-down device's busmaster DMA clocks
1158 	 */
1159 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1160 	DELAY(5);
1161 
1162 	/* Make sure (redundant) we've released our request to stay awake */
1163 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1164 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1165 
1166 	/* Stop the device, and put it in low power state */
1167 	iwm_apm_stop(sc);
1168 
1169 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1170 	 * Clean again the interrupt here
1171 	 */
1172 	iwm_disable_interrupts(sc);
1173 	/* stop and reset the on-board processor */
1174 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET);
1175 
1176 	/*
1177 	 * Even if we stop the HW, we still want the RF kill
1178 	 * interrupt
1179 	 */
1180 	iwm_enable_rfkill_int(sc);
1181 	iwm_check_rfkill(sc);
1182 }
1183 
1184 /* iwlwifi: mvm/ops.c */
1185 static void
1186 iwm_mvm_nic_config(struct iwm_softc *sc)
1187 {
1188 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1189 	uint32_t reg_val = 0;
1190 
1191 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1192 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1193 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1194 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1195 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1196 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1197 
1198 	/* SKU control */
1199 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1200 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1201 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1202 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1203 
1204 	/* radio configuration */
1205 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1206 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1207 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1208 
1209 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1210 
1211 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1212 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1213 	    radio_cfg_step, radio_cfg_dash);
1214 
1215 	/*
1216 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1217 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1218 	 * to lose ownership and not being able to obtain it back.
1219 	 */
1220 	iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1221 	    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1222 	    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1223 }
1224 
1225 static int
1226 iwm_nic_rx_init(struct iwm_softc *sc)
1227 {
1228 	if (!iwm_nic_lock(sc))
1229 		return EBUSY;
1230 
1231 	/*
1232 	 * Initialize RX ring.  This is from the iwn driver.
1233 	 */
1234 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1235 
1236 	/* stop DMA */
1237 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
1238 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1239 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1240 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1241 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1242 
1243 	/* Set physical address of RX ring (256-byte aligned). */
1244 	IWM_WRITE(sc,
1245 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1246 
1247 	/* Set physical address of RX status (16-byte aligned). */
1248 	IWM_WRITE(sc,
1249 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1250 
1251 	/* Enable RX. */
1252 	/*
1253 	 * Note: Linux driver also sets this:
1254 	 *  (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1255 	 *
1256 	 * It causes weird behavior.  YMMV.
1257 	 */
1258 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1259 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1260 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1261 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1262 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1263 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1264 
1265 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1266 
1267 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1268 	if (sc->host_interrupt_operation_mode)
1269 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1270 
1271 	/*
1272 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1273 	 *
1274 	 * This value should initially be 0 (before preparing any
1275  	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1276 	 */
1277 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1278 
1279 	iwm_nic_unlock(sc);
1280 
1281 	return 0;
1282 }
1283 
1284 static int
1285 iwm_nic_tx_init(struct iwm_softc *sc)
1286 {
1287 	int qid;
1288 
1289 	if (!iwm_nic_lock(sc))
1290 		return EBUSY;
1291 
1292 	/* Deactivate TX scheduler. */
1293 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1294 
1295 	/* Set physical address of "keep warm" page (16-byte aligned). */
1296 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1297 
1298 	/* Initialize TX rings. */
1299 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1300 		struct iwm_tx_ring *txq = &sc->txq[qid];
1301 
1302 		/* Set physical address of TX ring (256-byte aligned). */
1303 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1304 		    txq->desc_dma.paddr >> 8);
1305 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1306 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1307 		    __func__,
1308 		    qid, txq->desc,
1309 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1310 	}
1311 	iwm_nic_unlock(sc);
1312 
1313 	return 0;
1314 }
1315 
1316 static int
1317 iwm_nic_init(struct iwm_softc *sc)
1318 {
1319 	int error;
1320 
1321 	iwm_apm_init(sc);
1322 	iwm_set_pwr(sc);
1323 
1324 	iwm_mvm_nic_config(sc);
1325 
1326 	if ((error = iwm_nic_rx_init(sc)) != 0)
1327 		return error;
1328 
1329 	/*
1330 	 * Ditto for TX, from iwn
1331 	 */
1332 	if ((error = iwm_nic_tx_init(sc)) != 0)
1333 		return error;
1334 
1335 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1336 	    "%s: shadow registers enabled\n", __func__);
1337 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1338 
1339 	return 0;
1340 }
1341 
1342 enum iwm_mvm_tx_fifo {
1343 	IWM_MVM_TX_FIFO_BK = 0,
1344 	IWM_MVM_TX_FIFO_BE,
1345 	IWM_MVM_TX_FIFO_VI,
1346 	IWM_MVM_TX_FIFO_VO,
1347 	IWM_MVM_TX_FIFO_MCAST = 5,
1348 };
1349 
1350 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1351 	IWM_MVM_TX_FIFO_VO,
1352 	IWM_MVM_TX_FIFO_VI,
1353 	IWM_MVM_TX_FIFO_BE,
1354 	IWM_MVM_TX_FIFO_BK,
1355 };
1356 
1357 static void
1358 iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo)
1359 {
1360 	if (!iwm_nic_lock(sc)) {
1361 		device_printf(sc->sc_dev,
1362 		    "%s: cannot enable txq %d\n",
1363 		    __func__,
1364 		    qid);
1365 		return; /* XXX return EBUSY */
1366 	}
1367 
1368 	/* unactivate before configuration */
1369 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1370 	    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1371 	    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1372 
1373 	if (qid != IWM_MVM_CMD_QUEUE) {
1374 		iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid));
1375 	}
1376 
1377 	iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1378 
1379 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1380 	iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1381 
1382 	iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1383 	/* Set scheduler window size and frame limit. */
1384 	iwm_write_mem32(sc,
1385 	    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1386 	    sizeof(uint32_t),
1387 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1388 	    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1389 	    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1390 	    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1391 
1392 	iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1393 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1394 	    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1395 	    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1396 	    IWM_SCD_QUEUE_STTS_REG_MSK);
1397 
1398 	iwm_nic_unlock(sc);
1399 
1400 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1401 	    "%s: enabled txq %d FIFO %d\n",
1402 	    __func__, qid, fifo);
1403 }
1404 
1405 static int
1406 iwm_post_alive(struct iwm_softc *sc)
1407 {
1408 	int nwords;
1409 	int error, chnl;
1410 
1411 	if (!iwm_nic_lock(sc))
1412 		return EBUSY;
1413 
1414 	if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) {
1415 		device_printf(sc->sc_dev,
1416 		    "%s: sched addr mismatch",
1417 		    __func__);
1418 		error = EINVAL;
1419 		goto out;
1420 	}
1421 
1422 	iwm_ict_reset(sc);
1423 
1424 	/* Clear TX scheduler state in SRAM. */
1425 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1426 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1427 	    / sizeof(uint32_t);
1428 	error = iwm_write_mem(sc,
1429 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1430 	    NULL, nwords);
1431 	if (error)
1432 		goto out;
1433 
1434 	/* Set physical address of TX scheduler rings (1KB aligned). */
1435 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1436 
1437 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1438 
1439 	/* enable command channel */
1440 	iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7);
1441 
1442 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1443 
1444 	/* Enable DMA channels. */
1445 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1446 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1447 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1448 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1449 	}
1450 
1451 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1452 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1453 
1454 	/* Enable L1-Active */
1455 	iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1456 	    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1457 
1458  out:
1459  	iwm_nic_unlock(sc);
1460 	return error;
1461 }
1462 
1463 /*
1464  * NVM read access and content parsing.  We do not support
1465  * external NVM or writing NVM.
1466  * iwlwifi/mvm/nvm.c
1467  */
1468 
1469 /* list of NVM sections we are allowed/need to read */
1470 const int nvm_to_read[] = {
1471 	IWM_NVM_SECTION_TYPE_HW,
1472 	IWM_NVM_SECTION_TYPE_SW,
1473 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1474 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1475 };
1476 
1477 /* Default NVM size to read */
1478 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
1479 #define IWM_MAX_NVM_SECTION_SIZE 7000
1480 
1481 #define IWM_NVM_WRITE_OPCODE 1
1482 #define IWM_NVM_READ_OPCODE 0
1483 
1484 static int
1485 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1486 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1487 {
1488 	offset = 0;
1489 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1490 		.offset = htole16(offset),
1491 		.length = htole16(length),
1492 		.type = htole16(section),
1493 		.op_code = IWM_NVM_READ_OPCODE,
1494 	};
1495 	struct iwm_nvm_access_resp *nvm_resp;
1496 	struct iwm_rx_packet *pkt;
1497 	struct iwm_host_cmd cmd = {
1498 		.id = IWM_NVM_ACCESS_CMD,
1499 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1500 		    IWM_CMD_SEND_IN_RFKILL,
1501 		.data = { &nvm_access_cmd, },
1502 	};
1503 	int ret, bytes_read, offset_read;
1504 	uint8_t *resp_data;
1505 
1506 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1507 
1508 	ret = iwm_send_cmd(sc, &cmd);
1509 	if (ret)
1510 		return ret;
1511 
1512 	pkt = cmd.resp_pkt;
1513 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1514 		device_printf(sc->sc_dev,
1515 		    "%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1516 		    __func__, pkt->hdr.flags);
1517 		ret = EIO;
1518 		goto exit;
1519 	}
1520 
1521 	/* Extract NVM response */
1522 	nvm_resp = (void *)pkt->data;
1523 
1524 	ret = le16toh(nvm_resp->status);
1525 	bytes_read = le16toh(nvm_resp->length);
1526 	offset_read = le16toh(nvm_resp->offset);
1527 	resp_data = nvm_resp->data;
1528 	if (ret) {
1529 		device_printf(sc->sc_dev,
1530 		    "%s: NVM access command failed with status %d\n",
1531 		    __func__, ret);
1532 		ret = EINVAL;
1533 		goto exit;
1534 	}
1535 
1536 	if (offset_read != offset) {
1537 		device_printf(sc->sc_dev,
1538 		    "%s: NVM ACCESS response with invalid offset %d\n",
1539 		    __func__, offset_read);
1540 		ret = EINVAL;
1541 		goto exit;
1542 	}
1543 
1544 	memcpy(data + offset, resp_data, bytes_read);
1545 	*len = bytes_read;
1546 
1547  exit:
1548 	iwm_free_resp(sc, &cmd);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * Reads an NVM section completely.
1554  * NICs prior to 7000 family doesn't have a real NVM, but just read
1555  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1556  * by uCode, we need to manually check in this case that we don't
1557  * overflow and try to read more than the EEPROM size.
1558  * For 7000 family NICs, we supply the maximal size we can read, and
1559  * the uCode fills the response with as much data as we can,
1560  * without overflowing, so no check is needed.
1561  */
1562 static int
1563 iwm_nvm_read_section(struct iwm_softc *sc,
1564 	uint16_t section, uint8_t *data, uint16_t *len)
1565 {
1566 	uint16_t length, seglen;
1567 	int error;
1568 
1569 	/* Set nvm section read length */
1570 	length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1571 	*len = 0;
1572 
1573 	/* Read the NVM until exhausted (reading less than requested) */
1574 	while (seglen == length) {
1575 		error = iwm_nvm_read_chunk(sc,
1576 		    section, *len, length, data, &seglen);
1577 		if (error) {
1578 			device_printf(sc->sc_dev,
1579 			    "Cannot read NVM from section "
1580 			    "%d offset %d, length %d\n",
1581 			    section, *len, length);
1582 			return error;
1583 		}
1584 		*len += seglen;
1585 	}
1586 
1587 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1588 	    "NVM section %d read completed\n", section);
1589 	return 0;
1590 }
1591 
1592 /*
1593  * BEGIN IWM_NVM_PARSE
1594  */
1595 
1596 /* iwlwifi/iwl-nvm-parse.c */
1597 
1598 /* NVM offsets (in words) definitions */
1599 enum wkp_nvm_offsets {
1600 	/* NVM HW-Section offset (in words) definitions */
1601 	IWM_HW_ADDR = 0x15,
1602 
1603 /* NVM SW-Section offset (in words) definitions */
1604 	IWM_NVM_SW_SECTION = 0x1C0,
1605 	IWM_NVM_VERSION = 0,
1606 	IWM_RADIO_CFG = 1,
1607 	IWM_SKU = 2,
1608 	IWM_N_HW_ADDRS = 3,
1609 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1610 
1611 /* NVM calibration section offset (in words) definitions */
1612 	IWM_NVM_CALIB_SECTION = 0x2B8,
1613 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1614 };
1615 
1616 /* SKU Capabilities (actual values from NVM definition) */
1617 enum nvm_sku_bits {
1618 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1619 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1620 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1621 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1622 };
1623 
1624 /* radio config bits (actual values from NVM definition) */
1625 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1626 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1627 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1628 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1629 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1630 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1631 
1632 #define DEFAULT_MAX_TX_POWER 16
1633 
1634 /**
1635  * enum iwm_nvm_channel_flags - channel flags in NVM
1636  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1637  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1638  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1639  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1640  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1641  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1642  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1643  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1644  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1645  */
1646 enum iwm_nvm_channel_flags {
1647 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1648 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1649 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1650 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1651 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1652 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1653 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1654 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1655 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1656 };
1657 
1658 /*
1659  * Add a channel to the net80211 channel list.
1660  *
1661  * ieee is the ieee channel number
1662  * ch_idx is channel index.
1663  * mode is the channel mode - CHAN_A, CHAN_B, CHAN_G.
1664  * ch_flags is the iwm channel flags.
1665  *
1666  * Return 0 on OK, < 0 on error.
1667  */
1668 static int
1669 iwm_init_net80211_channel(struct iwm_softc *sc, int ieee, int ch_idx,
1670     int mode, uint16_t ch_flags)
1671 {
1672 	/* XXX for now, no overflow checking! */
1673 	struct ieee80211com *ic = &sc->sc_ic;
1674 	int is_5ghz, flags;
1675 	struct ieee80211_channel *channel;
1676 
1677 	channel = &ic->ic_channels[ic->ic_nchans++];
1678 	channel->ic_ieee = ieee;
1679 
1680 	is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
1681 	if (!is_5ghz) {
1682 		flags = IEEE80211_CHAN_2GHZ;
1683 		channel->ic_flags = mode;
1684 	} else {
1685 		flags = IEEE80211_CHAN_5GHZ;
1686 		channel->ic_flags = mode;
1687 	}
1688 	channel->ic_freq = ieee80211_ieee2mhz(ieee, flags);
1689 
1690 	if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
1691 		channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
1692 	return (0);
1693 }
1694 
1695 static void
1696 iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	struct iwm_nvm_data *data = &sc->sc_nvm;
1700 	int ch_idx;
1701 	uint16_t ch_flags;
1702 	int hw_value;
1703 
1704 	for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) {
1705 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1706 
1707 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
1708 		    !data->sku_cap_band_52GHz_enable)
1709 			ch_flags &= ~IWM_NVM_CHANNEL_VALID;
1710 
1711 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1712 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1713 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1714 			    iwm_nvm_channels[ch_idx],
1715 			    ch_flags,
1716 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1717 			    "5.2" : "2.4");
1718 			continue;
1719 		}
1720 
1721 		hw_value = iwm_nvm_channels[ch_idx];
1722 
1723 		/* 5GHz? */
1724 		if (ch_idx >= IWM_NUM_2GHZ_CHANNELS) {
1725 			(void) iwm_init_net80211_channel(sc, hw_value,
1726 			    ch_idx,
1727 			    IEEE80211_CHAN_A,
1728 			    ch_flags);
1729 		} else {
1730 			(void) iwm_init_net80211_channel(sc, hw_value,
1731 			    ch_idx,
1732 			    IEEE80211_CHAN_B,
1733 			    ch_flags);
1734 			/* If it's not channel 13, also add 11g */
1735 			if (hw_value != 13)
1736 				(void) iwm_init_net80211_channel(sc, hw_value,
1737 				    ch_idx,
1738 				    IEEE80211_CHAN_G,
1739 				    ch_flags);
1740 		}
1741 
1742 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1743 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1744 		    iwm_nvm_channels[ch_idx],
1745 		    ch_flags,
1746 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1747 		    "5.2" : "2.4");
1748 	}
1749 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1750 }
1751 
1752 static int
1753 iwm_parse_nvm_data(struct iwm_softc *sc,
1754 	const uint16_t *nvm_hw, const uint16_t *nvm_sw,
1755 	const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains)
1756 {
1757 	struct iwm_nvm_data *data = &sc->sc_nvm;
1758 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
1759 	uint16_t radio_cfg, sku;
1760 
1761 	data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
1762 
1763 	radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
1764 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1765 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
1766 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
1767 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
1768 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1769 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1770 
1771 	sku = le16_to_cpup(nvm_sw + IWM_SKU);
1772 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
1773 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
1774 	data->sku_cap_11n_enable = 0;
1775 
1776 	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1777 		device_printf(sc->sc_dev,
1778 		    "%s: invalid antennas (0x%x, 0x%x)\n",
1779 		    __func__, data->valid_tx_ant,
1780 		    data->valid_rx_ant);
1781 		return EINVAL;
1782 	}
1783 
1784 	data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
1785 
1786 	data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB);
1787 	data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1);
1788 
1789 	/* The byte order is little endian 16 bit, meaning 214365 */
1790 	IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
1791 	data->hw_addr[0] = hw_addr[1];
1792 	data->hw_addr[1] = hw_addr[0];
1793 	data->hw_addr[2] = hw_addr[3];
1794 	data->hw_addr[3] = hw_addr[2];
1795 	data->hw_addr[4] = hw_addr[5];
1796 	data->hw_addr[5] = hw_addr[4];
1797 
1798 	iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]);
1799 	data->calib_version = 255;   /* TODO:
1800 					this value will prevent some checks from
1801 					failing, we need to check if this
1802 					field is still needed, and if it does,
1803 					where is it in the NVM */
1804 
1805 	return 0;
1806 }
1807 
1808 /*
1809  * END NVM PARSE
1810  */
1811 
1812 struct iwm_nvm_section {
1813 	uint16_t length;
1814 	const uint8_t *data;
1815 };
1816 
1817 static int
1818 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
1819 {
1820 	const uint16_t *hw, *sw, *calib;
1821 
1822 	/* Checking for required sections */
1823 	if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
1824 	    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
1825 		device_printf(sc->sc_dev,
1826 		    "%s: Can't parse empty NVM sections\n",
1827 		    __func__);
1828 		return ENOENT;
1829 	}
1830 
1831 	hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data;
1832 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
1833 	calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
1834 	return iwm_parse_nvm_data(sc, hw, sw, calib,
1835 	    IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc));
1836 }
1837 
1838 static int
1839 iwm_nvm_init(struct iwm_softc *sc)
1840 {
1841 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
1842 	int i, section, error;
1843 	uint16_t len;
1844 	uint8_t *nvm_buffer, *temp;
1845 
1846 	/* Read From FW NVM */
1847 	IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1848 	    "%s: Read NVM\n",
1849 	    __func__);
1850 
1851 	/* TODO: find correct NVM max size for a section */
1852 	nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_NOWAIT);
1853 	if (nvm_buffer == NULL)
1854 		return (ENOMEM);
1855 	for (i = 0; i < nitems(nvm_to_read); i++) {
1856 		section = nvm_to_read[i];
1857 		KASSERT(section <= nitems(nvm_sections),
1858 		    ("too many sections"));
1859 
1860 		error = iwm_nvm_read_section(sc, section, nvm_buffer, &len);
1861 		if (error)
1862 			break;
1863 
1864 		temp = malloc(len, M_DEVBUF, M_NOWAIT);
1865 		if (temp == NULL) {
1866 			error = ENOMEM;
1867 			break;
1868 		}
1869 		memcpy(temp, nvm_buffer, len);
1870 		nvm_sections[section].data = temp;
1871 		nvm_sections[section].length = len;
1872 	}
1873 	free(nvm_buffer, M_DEVBUF);
1874 	if (error)
1875 		return error;
1876 
1877 	return iwm_parse_nvm_sections(sc, nvm_sections);
1878 }
1879 
1880 /*
1881  * Firmware loading gunk.  This is kind of a weird hybrid between the
1882  * iwn driver and the Linux iwlwifi driver.
1883  */
1884 
1885 static int
1886 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
1887 	const uint8_t *section, uint32_t byte_cnt)
1888 {
1889 	struct iwm_dma_info *dma = &sc->fw_dma;
1890 	int error;
1891 
1892 	/* Copy firmware section into pre-allocated DMA-safe memory. */
1893 	memcpy(dma->vaddr, section, byte_cnt);
1894 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1895 
1896 	if (!iwm_nic_lock(sc))
1897 		return EBUSY;
1898 
1899 	sc->sc_fw_chunk_done = 0;
1900 
1901 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1902 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
1903 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
1904 	    dst_addr);
1905 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
1906 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
1907 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
1908 	    (iwm_get_dma_hi_addr(dma->paddr)
1909 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
1910 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1911 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1912 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
1913 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
1914 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
1915 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
1916 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
1917 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
1918 
1919 	iwm_nic_unlock(sc);
1920 
1921 	/* wait 1s for this segment to load */
1922 	while (!sc->sc_fw_chunk_done)
1923 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
1924 			break;
1925 
1926 	return error;
1927 }
1928 
1929 static int
1930 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1931 {
1932 	struct iwm_fw_sects *fws;
1933 	int error, i, w;
1934 	const void *data;
1935 	uint32_t dlen;
1936 	uint32_t offset;
1937 
1938 	sc->sc_uc.uc_intr = 0;
1939 
1940 	fws = &sc->sc_fw.fw_sects[ucode_type];
1941 	for (i = 0; i < fws->fw_count; i++) {
1942 		data = fws->fw_sect[i].fws_data;
1943 		dlen = fws->fw_sect[i].fws_len;
1944 		offset = fws->fw_sect[i].fws_devoff;
1945 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
1946 		    "LOAD FIRMWARE type %d offset %u len %d\n",
1947 		    ucode_type, offset, dlen);
1948 		error = iwm_firmware_load_chunk(sc, offset, data, dlen);
1949 		if (error) {
1950 			device_printf(sc->sc_dev,
1951 			    "%s: chunk %u of %u returned error %02d\n",
1952 			    __func__, i, fws->fw_count, error);
1953 			return error;
1954 		}
1955 	}
1956 
1957 	/* wait for the firmware to load */
1958 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
1959 
1960 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
1961 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
1962 	}
1963 
1964 	return error;
1965 }
1966 
1967 /* iwlwifi: pcie/trans.c */
1968 static int
1969 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
1970 {
1971 	int error;
1972 
1973 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1974 
1975 	if ((error = iwm_nic_init(sc)) != 0) {
1976 		device_printf(sc->sc_dev, "unable to init nic\n");
1977 		return error;
1978 	}
1979 
1980 	/* make sure rfkill handshake bits are cleared */
1981 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1982 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
1983 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
1984 
1985 	/* clear (again), then enable host interrupts */
1986 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1987 	iwm_enable_interrupts(sc);
1988 
1989 	/* really make sure rfkill handshake bits are cleared */
1990 	/* maybe we should write a few times more?  just to make sure */
1991 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1992 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
1993 
1994 	/* Load the given image to the HW */
1995 	return iwm_load_firmware(sc, ucode_type);
1996 }
1997 
1998 static int
1999 iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base)
2000 {
2001 	return iwm_post_alive(sc);
2002 }
2003 
2004 static int
2005 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2006 {
2007 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2008 		.valid = htole32(valid_tx_ant),
2009 	};
2010 
2011 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2012 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2013 }
2014 
2015 /* iwlwifi: mvm/fw.c */
2016 static int
2017 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2018 {
2019 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2020 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2021 
2022 	/* Set parameters */
2023 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2024 	phy_cfg_cmd.calib_control.event_trigger =
2025 	    sc->sc_default_calib[ucode_type].event_trigger;
2026 	phy_cfg_cmd.calib_control.flow_trigger =
2027 	    sc->sc_default_calib[ucode_type].flow_trigger;
2028 
2029 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2030 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2031 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2032 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2033 }
2034 
2035 static int
2036 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2037 	enum iwm_ucode_type ucode_type)
2038 {
2039 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2040 	int error;
2041 
2042 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0)
2043 		return error;
2044 
2045 	sc->sc_uc_current = ucode_type;
2046 	error = iwm_start_fw(sc, ucode_type);
2047 	if (error) {
2048 		sc->sc_uc_current = old_type;
2049 		return error;
2050 	}
2051 
2052 	return iwm_fw_alive(sc, sc->sched_base);
2053 }
2054 
2055 /*
2056  * mvm misc bits
2057  */
2058 
2059 /*
2060  * follows iwlwifi/fw.c
2061  */
2062 static int
2063 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2064 {
2065 	int error;
2066 
2067 	/* do not operate with rfkill switch turned on */
2068 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2069 		device_printf(sc->sc_dev,
2070 		    "radio is disabled by hardware switch\n");
2071 		return EPERM;
2072 	}
2073 
2074 	sc->sc_init_complete = 0;
2075 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2076 	    IWM_UCODE_TYPE_INIT)) != 0)
2077 		return error;
2078 
2079 	if (justnvm) {
2080 		if ((error = iwm_nvm_init(sc)) != 0) {
2081 			device_printf(sc->sc_dev, "failed to read nvm\n");
2082 			return error;
2083 		}
2084 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2085 
2086 		sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd)
2087 		    + sc->sc_capa_max_probe_len
2088 		    + IWM_MAX_NUM_SCAN_CHANNELS
2089 		    * sizeof(struct iwm_scan_channel);
2090 		sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF,
2091 		    M_NOWAIT);
2092 		if (sc->sc_scan_cmd == NULL)
2093 			return (ENOMEM);
2094 
2095 		return 0;
2096 	}
2097 
2098 	/* Send TX valid antennas before triggering calibrations */
2099 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
2100 		return error;
2101 
2102 	/*
2103 	* Send phy configurations command to init uCode
2104 	* to start the 16.0 uCode init image internal calibrations.
2105 	*/
2106 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2107 		device_printf(sc->sc_dev,
2108 		    "%s: failed to run internal calibration: %d\n",
2109 		    __func__, error);
2110 		return error;
2111 	}
2112 
2113 	/*
2114 	 * Nothing to do but wait for the init complete notification
2115 	 * from the firmware
2116 	 */
2117 	while (!sc->sc_init_complete)
2118 		if ((error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2119 		    0, "iwminit", 2*hz)) != 0)
2120 			break;
2121 
2122 	return error;
2123 }
2124 
2125 /*
2126  * receive side
2127  */
2128 
2129 /* (re)stock rx ring, called at init-time and at runtime */
2130 static int
2131 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2132 {
2133 	struct iwm_rx_ring *ring = &sc->rxq;
2134 	struct iwm_rx_data *data = &ring->data[idx];
2135 	struct mbuf *m;
2136 	int error;
2137 	bus_addr_t paddr;
2138 
2139 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2140 	if (m == NULL)
2141 		return ENOBUFS;
2142 
2143 	if (data->m != NULL)
2144 		bus_dmamap_unload(ring->data_dmat, data->map);
2145 
2146 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2147 	error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2148 	if (error != 0) {
2149 		device_printf(sc->sc_dev,
2150 		    "%s: could not create RX buf DMA map, error %d\n",
2151 		    __func__, error);
2152 		goto fail;
2153 	}
2154 	data->m = m;
2155 	error = bus_dmamap_load(ring->data_dmat, data->map,
2156 	    mtod(data->m, void *), IWM_RBUF_SIZE, iwm_dma_map_addr,
2157 	    &paddr, BUS_DMA_NOWAIT);
2158 	if (error != 0 && error != EFBIG) {
2159 		device_printf(sc->sc_dev,
2160 		    "%s: can't not map mbuf, error %d\n", __func__,
2161 		    error);
2162 		goto fail;
2163 	}
2164 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2165 
2166 	/* Update RX descriptor. */
2167 	ring->desc[idx] = htole32(paddr >> 8);
2168 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2169 	    BUS_DMASYNC_PREWRITE);
2170 
2171 	return 0;
2172 fail:
2173 	return error;
2174 }
2175 
2176 /* iwlwifi: mvm/rx.c */
2177 #define IWM_RSSI_OFFSET 50
2178 static int
2179 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2180 {
2181 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2182 	uint32_t agc_a, agc_b;
2183 	uint32_t val;
2184 
2185 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2186 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2187 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2188 
2189 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2190 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2191 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2192 
2193 	/*
2194 	 * dBm = rssi dB - agc dB - constant.
2195 	 * Higher AGC (higher radio gain) means lower signal.
2196 	 */
2197 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2198 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2199 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2200 
2201 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2202 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2203 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2204 
2205 	return max_rssi_dbm;
2206 }
2207 
2208 /* iwlwifi: mvm/rx.c */
2209 /*
2210  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2211  * values are reported by the fw as positive values - need to negate
2212  * to obtain their dBM.  Account for missing antennas by replacing 0
2213  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2214  */
2215 static int
2216 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2217 {
2218 	int energy_a, energy_b, energy_c, max_energy;
2219 	uint32_t val;
2220 
2221 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2222 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2223 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2224 	energy_a = energy_a ? -energy_a : -256;
2225 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2226 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2227 	energy_b = energy_b ? -energy_b : -256;
2228 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2229 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2230 	energy_c = energy_c ? -energy_c : -256;
2231 	max_energy = MAX(energy_a, energy_b);
2232 	max_energy = MAX(max_energy, energy_c);
2233 
2234 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2235 	    "energy In A %d B %d C %d , and max %d\n",
2236 	    energy_a, energy_b, energy_c, max_energy);
2237 
2238 	return max_energy;
2239 }
2240 
2241 static void
2242 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2243 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2244 {
2245 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2246 
2247 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2248 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2249 
2250 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2251 }
2252 
2253 /*
2254  * Retrieve the average noise (in dBm) among receivers.
2255  */
2256 static int
2257 iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats)
2258 {
2259 	int i, total, nbant, noise;
2260 
2261 	total = nbant = noise = 0;
2262 	for (i = 0; i < 3; i++) {
2263 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2264 		if (noise) {
2265 			total += noise;
2266 			nbant++;
2267 		}
2268 	}
2269 
2270 	/* There should be at least one antenna but check anyway. */
2271 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2272 }
2273 
2274 /*
2275  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2276  *
2277  * Handles the actual data of the Rx packet from the fw
2278  */
2279 static void
2280 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2281 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2282 {
2283 	struct ieee80211com *ic = &sc->sc_ic;
2284 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2285 	struct ieee80211_frame *wh;
2286 	struct ieee80211_node *ni;
2287 	struct ieee80211_rx_stats rxs;
2288 	struct mbuf *m;
2289 	struct iwm_rx_phy_info *phy_info;
2290 	struct iwm_rx_mpdu_res_start *rx_res;
2291 	uint32_t len;
2292 	uint32_t rx_pkt_status;
2293 	int rssi;
2294 
2295 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2296 
2297 	phy_info = &sc->sc_last_phy_info;
2298 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2299 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2300 	len = le16toh(rx_res->byte_count);
2301 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2302 
2303 	m = data->m;
2304 	m->m_data = pkt->data + sizeof(*rx_res);
2305 	m->m_pkthdr.len = m->m_len = len;
2306 
2307 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2308 		device_printf(sc->sc_dev,
2309 		    "dsp size out of range [0,20]: %d\n",
2310 		    phy_info->cfg_phy_cnt);
2311 		return;
2312 	}
2313 
2314 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2315 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2316 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2317 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2318 		return; /* drop */
2319 	}
2320 
2321 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2322 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2323 	} else {
2324 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2325 	}
2326 	rssi = (0 - IWM_MIN_DBM) + rssi;	/* normalize */
2327 	rssi = MIN(rssi, sc->sc_max_rssi);	/* clip to max. 100% */
2328 
2329 	/* replenish ring for the buffer we're going to feed to the sharks */
2330 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2331 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2332 		    __func__);
2333 		return;
2334 	}
2335 
2336 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2337 
2338 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2339 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2340 	    __func__,
2341 	    le16toh(phy_info->channel),
2342 	    le16toh(phy_info->phy_flags));
2343 
2344 	/*
2345 	 * Populate an RX state struct with the provided information.
2346 	 */
2347 	bzero(&rxs, sizeof(rxs));
2348 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2349 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2350 	rxs.c_ieee = le16toh(phy_info->channel);
2351 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2352 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2353 	} else {
2354 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2355 	}
2356 	rxs.rssi = rssi - sc->sc_noise;
2357 	rxs.nf = sc->sc_noise;
2358 
2359 	if (ieee80211_radiotap_active_vap(vap)) {
2360 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2361 
2362 		tap->wr_flags = 0;
2363 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2364 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2365 		tap->wr_chan_freq = htole16(rxs.c_freq);
2366 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2367 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2368 		tap->wr_dbm_antsignal = (int8_t)rssi;
2369 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2370 		tap->wr_tsft = phy_info->system_timestamp;
2371 		switch (phy_info->rate) {
2372 		/* CCK rates. */
2373 		case  10: tap->wr_rate =   2; break;
2374 		case  20: tap->wr_rate =   4; break;
2375 		case  55: tap->wr_rate =  11; break;
2376 		case 110: tap->wr_rate =  22; break;
2377 		/* OFDM rates. */
2378 		case 0xd: tap->wr_rate =  12; break;
2379 		case 0xf: tap->wr_rate =  18; break;
2380 		case 0x5: tap->wr_rate =  24; break;
2381 		case 0x7: tap->wr_rate =  36; break;
2382 		case 0x9: tap->wr_rate =  48; break;
2383 		case 0xb: tap->wr_rate =  72; break;
2384 		case 0x1: tap->wr_rate =  96; break;
2385 		case 0x3: tap->wr_rate = 108; break;
2386 		/* Unknown rate: should not happen. */
2387 		default:  tap->wr_rate =   0;
2388 		}
2389 	}
2390 
2391 	IWM_UNLOCK(sc);
2392 	if (ni != NULL) {
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
2394 		ieee80211_input_mimo(ni, m, &rxs);
2395 		ieee80211_free_node(ni);
2396 	} else {
2397 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
2398 		ieee80211_input_mimo_all(ic, m, &rxs);
2399 	}
2400 	IWM_LOCK(sc);
2401 }
2402 
2403 static void
2404 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
2405 	struct iwm_node *in)
2406 {
2407 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
2408 	struct ieee80211vap *vap = in->in_ni.ni_vap;
2409 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
2410 	int failack = tx_resp->failure_frame;
2411 
2412 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
2413 
2414 	/* Update rate control statistics. */
2415 	if (status != IWM_TX_STATUS_SUCCESS &&
2416 	    status != IWM_TX_STATUS_DIRECT_DONE) {
2417 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
2418 		ieee80211_ratectl_tx_complete(vap, &in->in_ni,
2419 		    IEEE80211_RATECTL_TX_FAILURE, &failack, NULL);
2420 	} else {
2421 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OPACKETS, 1);
2422 		ieee80211_ratectl_tx_complete(vap, &in->in_ni,
2423 		    IEEE80211_RATECTL_TX_SUCCESS, &failack, NULL);
2424 
2425 	}
2426 }
2427 
2428 static void
2429 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
2430 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2431 {
2432 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
2433 	int idx = cmd_hdr->idx;
2434 	int qid = cmd_hdr->qid;
2435 	struct iwm_tx_ring *ring = &sc->txq[qid];
2436 	struct iwm_tx_data *txd = &ring->data[idx];
2437 	struct iwm_node *in = txd->in;
2438 
2439 	if (txd->done) {
2440 		device_printf(sc->sc_dev,
2441 		    "%s: got tx interrupt that's already been handled!\n",
2442 		    __func__);
2443 		return;
2444 	}
2445 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2446 
2447 	sc->sc_tx_timer = 0;
2448 
2449 	iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
2450 
2451 	/* Unmap and free mbuf. */
2452 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
2453 	bus_dmamap_unload(ring->data_dmat, txd->map);
2454 	m_freem(txd->m);
2455 
2456 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2457 	    "free txd %p, in %p\n", txd, txd->in);
2458 	KASSERT(txd->done == 0, ("txd not done"));
2459 	txd->done = 1;
2460 	KASSERT(txd->in, ("txd without node"));
2461 
2462 	txd->m = NULL;
2463 	txd->in = NULL;
2464 	ieee80211_free_node((struct ieee80211_node *)in);
2465 
2466 	if (--ring->queued < IWM_TX_RING_LOMARK) {
2467 		sc->qfullmsk &= ~(1 << ring->qid);
2468 		if (sc->qfullmsk == 0) {
2469 			/*
2470 			 * Well, we're in interrupt context, but then again
2471 			 * I guess net80211 does all sorts of stunts in
2472 			 * interrupt context, so maybe this is no biggie.
2473 			 */
2474 			iwm_start(sc);
2475 		}
2476 	}
2477 }
2478 
2479 /*
2480  * transmit side
2481  */
2482 
2483 /*
2484  * Process a "command done" firmware notification.  This is where we wakeup
2485  * processes waiting for a synchronous command completion.
2486  * from if_iwn
2487  */
2488 static void
2489 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
2490 {
2491 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
2492 	struct iwm_tx_data *data;
2493 
2494 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
2495 		return;	/* Not a command ack. */
2496 	}
2497 
2498 	data = &ring->data[pkt->hdr.idx];
2499 
2500 	/* If the command was mapped in an mbuf, free it. */
2501 	if (data->m != NULL) {
2502 		bus_dmamap_sync(ring->data_dmat, data->map,
2503 		    BUS_DMASYNC_POSTWRITE);
2504 		bus_dmamap_unload(ring->data_dmat, data->map);
2505 		m_freem(data->m);
2506 		data->m = NULL;
2507 	}
2508 	wakeup(&ring->desc[pkt->hdr.idx]);
2509 }
2510 
2511 #if 0
2512 /*
2513  * necessary only for block ack mode
2514  */
2515 void
2516 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
2517 	uint16_t len)
2518 {
2519 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
2520 	uint16_t w_val;
2521 
2522 	scd_bc_tbl = sc->sched_dma.vaddr;
2523 
2524 	len += 8; /* magic numbers came naturally from paris */
2525 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
2526 		len = roundup(len, 4) / 4;
2527 
2528 	w_val = htole16(sta_id << 12 | len);
2529 
2530 	/* Update TX scheduler. */
2531 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
2532 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2533 	    BUS_DMASYNC_PREWRITE);
2534 
2535 	/* I really wonder what this is ?!? */
2536 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
2537 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
2538 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2539 		    BUS_DMASYNC_PREWRITE);
2540 	}
2541 }
2542 #endif
2543 
2544 /*
2545  * Take an 802.11 (non-n) rate, find the relevant rate
2546  * table entry.  return the index into in_ridx[].
2547  *
2548  * The caller then uses that index back into in_ridx
2549  * to figure out the rate index programmed /into/
2550  * the firmware for this given node.
2551  */
2552 static int
2553 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
2554     uint8_t rate)
2555 {
2556 	int i;
2557 	uint8_t r;
2558 
2559 	for (i = 0; i < nitems(in->in_ridx); i++) {
2560 		r = iwm_rates[in->in_ridx[i]].rate;
2561 		if (rate == r)
2562 			return (i);
2563 	}
2564 	/* XXX Return the first */
2565 	/* XXX TODO: have it return the /lowest/ */
2566 	return (0);
2567 }
2568 
2569 /*
2570  * Fill in various bit for management frames, and leave them
2571  * unfilled for data frames (firmware takes care of that).
2572  * Return the selected TX rate.
2573  */
2574 static const struct iwm_rate *
2575 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
2576 	struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
2577 {
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 	struct ieee80211_node *ni = &in->in_ni;
2580 	const struct iwm_rate *rinfo;
2581 	int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2582 	int ridx, rate_flags;
2583 
2584 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
2585 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
2586 
2587 	/*
2588 	 * XXX TODO: everything about the rate selection here is terrible!
2589 	 */
2590 
2591 	if (type == IEEE80211_FC0_TYPE_DATA) {
2592 		int i;
2593 		/* for data frames, use RS table */
2594 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2595 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
2596 		ridx = in->in_ridx[i];
2597 
2598 		/* This is the index into the programmed table */
2599 		tx->initial_rate_index = i;
2600 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
2601 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
2602 		    "%s: start with i=%d, txrate %d\n",
2603 		    __func__, i, iwm_rates[ridx].rate);
2604 		/* XXX no rate_n_flags? */
2605 		return &iwm_rates[ridx];
2606 	}
2607 
2608 	/*
2609 	 * For non-data, use the lowest supported rate for the given
2610 	 * operational mode.
2611 	 *
2612 	 * Note: there may not be any rate control information available.
2613 	 * This driver currently assumes if we're transmitting data
2614 	 * frames, use the rate control table.  Grr.
2615 	 *
2616 	 * XXX TODO: use the configured rate for the traffic type!
2617 	 */
2618 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2619 		/*
2620 		 * XXX this assumes the mode is either 11a or not 11a;
2621 		 * definitely won't work for 11n.
2622 		 */
2623 		ridx = IWM_RIDX_OFDM;
2624 	} else {
2625 		ridx = IWM_RIDX_CCK;
2626 	}
2627 
2628 	rinfo = &iwm_rates[ridx];
2629 
2630 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
2631 	    __func__, ridx,
2632 	    rinfo->rate,
2633 	    !! (IWM_RIDX_IS_CCK(ridx))
2634 	    );
2635 
2636 	/* XXX TODO: hard-coded TX antenna? */
2637 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
2638 	if (IWM_RIDX_IS_CCK(ridx))
2639 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
2640 	/* XXX hard-coded tx rate */
2641 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
2642 
2643 	return rinfo;
2644 }
2645 
2646 #define TB0_SIZE 16
2647 static int
2648 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2649 {
2650 	struct ieee80211com *ic = &sc->sc_ic;
2651 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2652 	struct iwm_node *in = (struct iwm_node *)ni;
2653 	struct iwm_tx_ring *ring;
2654 	struct iwm_tx_data *data;
2655 	struct iwm_tfd *desc;
2656 	struct iwm_device_cmd *cmd;
2657 	struct iwm_tx_cmd *tx;
2658 	struct ieee80211_frame *wh;
2659 	struct ieee80211_key *k = NULL;
2660 	struct mbuf *m1;
2661 	const struct iwm_rate *rinfo;
2662 	uint32_t flags;
2663 	u_int hdrlen;
2664 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
2665 	int nsegs;
2666 	uint8_t tid, type;
2667 	int i, totlen, error, pad;
2668 
2669 	wh = mtod(m, struct ieee80211_frame *);
2670 	hdrlen = ieee80211_anyhdrsize(wh);
2671 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2672 	tid = 0;
2673 	ring = &sc->txq[ac];
2674 	desc = &ring->desc[ring->cur];
2675 	memset(desc, 0, sizeof(*desc));
2676 	data = &ring->data[ring->cur];
2677 
2678 	/* Fill out iwm_tx_cmd to send to the firmware */
2679 	cmd = &ring->cmd[ring->cur];
2680 	cmd->hdr.code = IWM_TX_CMD;
2681 	cmd->hdr.flags = 0;
2682 	cmd->hdr.qid = ring->qid;
2683 	cmd->hdr.idx = ring->cur;
2684 
2685 	tx = (void *)cmd->data;
2686 	memset(tx, 0, sizeof(*tx));
2687 
2688 	rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
2689 
2690 	/* Encrypt the frame if need be. */
2691 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2692 		/* Retrieve key for TX && do software encryption. */
2693 		k = ieee80211_crypto_encap(ni, m);
2694 		if (k == NULL) {
2695 			m_freem(m);
2696 			return (ENOBUFS);
2697 		}
2698 		/* 802.11 header may have moved. */
2699 		wh = mtod(m, struct ieee80211_frame *);
2700 	}
2701 
2702 	if (ieee80211_radiotap_active_vap(vap)) {
2703 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
2704 
2705 		tap->wt_flags = 0;
2706 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
2707 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
2708 		tap->wt_rate = rinfo->rate;
2709 		tap->wt_hwqueue = ac;
2710 		if (k != NULL)
2711 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2712 		ieee80211_radiotap_tx(vap, m);
2713 	}
2714 
2715 
2716 	totlen = m->m_pkthdr.len;
2717 
2718 	flags = 0;
2719 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2720 		flags |= IWM_TX_CMD_FLG_ACK;
2721 	}
2722 
2723 	if (type != IEEE80211_FC0_TYPE_DATA
2724 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
2725 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2726 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
2727 	}
2728 
2729 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2730 	    type != IEEE80211_FC0_TYPE_DATA)
2731 		tx->sta_id = sc->sc_aux_sta.sta_id;
2732 	else
2733 		tx->sta_id = IWM_STATION_ID;
2734 
2735 	if (type == IEEE80211_FC0_TYPE_MGT) {
2736 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2737 
2738 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2739 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2740 			tx->pm_frame_timeout = htole16(3);
2741 		else
2742 			tx->pm_frame_timeout = htole16(2);
2743 	} else {
2744 		tx->pm_frame_timeout = htole16(0);
2745 	}
2746 
2747 	if (hdrlen & 3) {
2748 		/* First segment length must be a multiple of 4. */
2749 		flags |= IWM_TX_CMD_FLG_MH_PAD;
2750 		pad = 4 - (hdrlen & 3);
2751 	} else
2752 		pad = 0;
2753 
2754 	tx->driver_txop = 0;
2755 	tx->next_frame_len = 0;
2756 
2757 	tx->len = htole16(totlen);
2758 	tx->tid_tspec = tid;
2759 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
2760 
2761 	/* Set physical address of "scratch area". */
2762 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
2763 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
2764 
2765 	/* Copy 802.11 header in TX command. */
2766 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
2767 
2768 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
2769 
2770 	tx->sec_ctl = 0;
2771 	tx->tx_flags |= htole32(flags);
2772 
2773 	/* Trim 802.11 header. */
2774 	m_adj(m, hdrlen);
2775 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2776 	    segs, &nsegs, BUS_DMA_NOWAIT);
2777 	if (error != 0) {
2778 		if (error != EFBIG) {
2779 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2780 			    error);
2781 			m_freem(m);
2782 			return error;
2783 		}
2784 		/* Too many DMA segments, linearize mbuf. */
2785 		MGETHDR(m1, M_NOWAIT, MT_DATA);
2786 		if (m1 == NULL) {
2787 			m_freem(m);
2788 			return ENOBUFS;
2789 		}
2790 		if (m->m_pkthdr.len > MHLEN) {
2791 			MCLGET(m1, M_NOWAIT);
2792 			if (!(m1->m_flags & M_EXT)) {
2793 				m_freem(m);
2794 				m_freem(m1);
2795 				return ENOBUFS;
2796 			}
2797 		}
2798 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
2799 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
2800 		m_freem(m);
2801 		m = m1;
2802 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
2803 		    segs, &nsegs, BUS_DMA_NOWAIT);
2804 		if (error != 0) {
2805 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
2806 			    error);
2807 			m_freem(m);
2808 			return error;
2809 		}
2810 	}
2811 	data->m = m;
2812 	data->in = in;
2813 	data->done = 0;
2814 
2815 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2816 	    "sending txd %p, in %p\n", data, data->in);
2817 	KASSERT(data->in != NULL, ("node is NULL"));
2818 
2819 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2820 	    "sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2821 	    ring->qid, ring->cur, totlen, nsegs);
2822 
2823 	/* Fill TX descriptor. */
2824 	desc->num_tbs = 2 + nsegs;
2825 
2826 	desc->tbs[0].lo = htole32(data->cmd_paddr);
2827 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2828 	    (TB0_SIZE << 4);
2829 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
2830 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
2831 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
2832 	      + hdrlen + pad - TB0_SIZE) << 4);
2833 
2834 	/* Other DMA segments are for data payload. */
2835 	for (i = 0; i < nsegs; i++) {
2836 		seg = &segs[i];
2837 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
2838 		desc->tbs[i+2].hi_n_len = \
2839 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
2840 		    | ((seg->ds_len) << 4);
2841 	}
2842 
2843 	bus_dmamap_sync(ring->data_dmat, data->map,
2844 	    BUS_DMASYNC_PREWRITE);
2845 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
2846 	    BUS_DMASYNC_PREWRITE);
2847 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2848 	    BUS_DMASYNC_PREWRITE);
2849 
2850 #if 0
2851 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
2852 #endif
2853 
2854 	/* Kick TX ring. */
2855 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
2856 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2857 
2858 	/* Mark TX ring as full if we reach a certain threshold. */
2859 	if (++ring->queued > IWM_TX_RING_HIMARK) {
2860 		sc->qfullmsk |= 1 << ring->qid;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static int
2867 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2868     const struct ieee80211_bpf_params *params)
2869 {
2870 	struct ieee80211com *ic = ni->ni_ic;
2871 	struct iwm_softc *sc = ic->ic_softc;
2872 	int error = 0;
2873 
2874 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2875 	    "->%s begin\n", __func__);
2876 
2877 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
2878 		m_freem(m);
2879 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
2880 		    "<-%s not RUNNING\n", __func__);
2881 		return (ENETDOWN);
2882         }
2883 
2884 	IWM_LOCK(sc);
2885 	/* XXX fix this */
2886         if (params == NULL) {
2887 		error = iwm_tx(sc, m, ni, 0);
2888 	} else {
2889 		error = iwm_tx(sc, m, ni, 0);
2890 	}
2891 	sc->sc_tx_timer = 5;
2892 	IWM_UNLOCK(sc);
2893 
2894         return (error);
2895 }
2896 
2897 /*
2898  * mvm/tx.c
2899  */
2900 
2901 #if 0
2902 /*
2903  * Note that there are transports that buffer frames before they reach
2904  * the firmware. This means that after flush_tx_path is called, the
2905  * queue might not be empty. The race-free way to handle this is to:
2906  * 1) set the station as draining
2907  * 2) flush the Tx path
2908  * 3) wait for the transport queues to be empty
2909  */
2910 int
2911 iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
2912 {
2913 	struct iwm_tx_path_flush_cmd flush_cmd = {
2914 		.queues_ctl = htole32(tfd_msk),
2915 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
2916 	};
2917 	int ret;
2918 
2919 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH,
2920 	    sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC,
2921 	    sizeof(flush_cmd), &flush_cmd);
2922 	if (ret)
2923                 device_printf(sc->sc_dev,
2924 		    "Flushing tx queue failed: %d\n", ret);
2925 	return ret;
2926 }
2927 #endif
2928 
2929 /*
2930  * BEGIN mvm/sta.c
2931  */
2932 
2933 static void
2934 iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6,
2935 	struct iwm_mvm_add_sta_cmd_v5 *cmd_v5)
2936 {
2937 	memset(cmd_v5, 0, sizeof(*cmd_v5));
2938 
2939 	cmd_v5->add_modify = cmd_v6->add_modify;
2940 	cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx;
2941 	cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color;
2942 	IEEE80211_ADDR_COPY(cmd_v5->addr, cmd_v6->addr);
2943 	cmd_v5->sta_id = cmd_v6->sta_id;
2944 	cmd_v5->modify_mask = cmd_v6->modify_mask;
2945 	cmd_v5->station_flags = cmd_v6->station_flags;
2946 	cmd_v5->station_flags_msk = cmd_v6->station_flags_msk;
2947 	cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid;
2948 	cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid;
2949 	cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn;
2950 	cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count;
2951 	cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags;
2952 	cmd_v5->assoc_id = cmd_v6->assoc_id;
2953 	cmd_v5->beamform_flags = cmd_v6->beamform_flags;
2954 	cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk;
2955 }
2956 
2957 static int
2958 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
2959 	struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status)
2960 {
2961 	struct iwm_mvm_add_sta_cmd_v5 cmd_v5;
2962 
2963 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) {
2964 		return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA,
2965 		    sizeof(*cmd), cmd, status);
2966 	}
2967 
2968 	iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5);
2969 
2970 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5),
2971 	    &cmd_v5, status);
2972 }
2973 
2974 /* send station add/update command to firmware */
2975 static int
2976 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
2977 {
2978 	struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd;
2979 	int ret;
2980 	uint32_t status;
2981 
2982 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
2983 
2984 	add_sta_cmd.sta_id = IWM_STATION_ID;
2985 	add_sta_cmd.mac_id_n_color
2986 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
2987 	        IWM_DEFAULT_COLOR));
2988 	if (!update) {
2989 		add_sta_cmd.tfd_queue_msk = htole32(0xf);
2990 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
2991 	}
2992 	add_sta_cmd.add_modify = update ? 1 : 0;
2993 	add_sta_cmd.station_flags_msk
2994 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
2995 
2996 	status = IWM_ADD_STA_SUCCESS;
2997 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
2998 	if (ret)
2999 		return ret;
3000 
3001 	switch (status) {
3002 	case IWM_ADD_STA_SUCCESS:
3003 		break;
3004 	default:
3005 		ret = EIO;
3006 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3007 		break;
3008 	}
3009 
3010 	return ret;
3011 }
3012 
3013 static int
3014 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3015 {
3016 	int ret;
3017 
3018 	ret = iwm_mvm_sta_send_to_fw(sc, in, 0);
3019 	if (ret)
3020 		return ret;
3021 
3022 	return 0;
3023 }
3024 
3025 static int
3026 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3027 {
3028 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3029 }
3030 
3031 static int
3032 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3033 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3034 {
3035 	struct iwm_mvm_add_sta_cmd_v6 cmd;
3036 	int ret;
3037 	uint32_t status;
3038 
3039 	memset(&cmd, 0, sizeof(cmd));
3040 	cmd.sta_id = sta->sta_id;
3041 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3042 
3043 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3044 
3045 	if (addr)
3046 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3047 
3048 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3049 	if (ret)
3050 		return ret;
3051 
3052 	switch (status) {
3053 	case IWM_ADD_STA_SUCCESS:
3054 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3055 		    "%s: Internal station added.\n", __func__);
3056 		return 0;
3057 	default:
3058 		device_printf(sc->sc_dev,
3059 		    "%s: Add internal station failed, status=0x%x\n",
3060 		    __func__, status);
3061 		ret = EIO;
3062 		break;
3063 	}
3064 	return ret;
3065 }
3066 
3067 static int
3068 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3069 {
3070 	int ret;
3071 
3072 	sc->sc_aux_sta.sta_id = 3;
3073 	sc->sc_aux_sta.tfd_queue_msk = 0;
3074 
3075 	ret = iwm_mvm_add_int_sta_common(sc,
3076 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3077 
3078 	if (ret)
3079 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3080 	return ret;
3081 }
3082 
3083 /*
3084  * END mvm/sta.c
3085  */
3086 
3087 /*
3088  * BEGIN mvm/quota.c
3089  */
3090 
3091 static int
3092 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3093 {
3094 	struct iwm_time_quota_cmd cmd;
3095 	int i, idx, ret, num_active_macs, quota, quota_rem;
3096 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3097 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3098 	uint16_t id;
3099 
3100 	memset(&cmd, 0, sizeof(cmd));
3101 
3102 	/* currently, PHY ID == binding ID */
3103 	if (in) {
3104 		id = in->in_phyctxt->id;
3105 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3106 		colors[id] = in->in_phyctxt->color;
3107 
3108 		if (1)
3109 			n_ifs[id] = 1;
3110 	}
3111 
3112 	/*
3113 	 * The FW's scheduling session consists of
3114 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3115 	 * equally between all the bindings that require quota
3116 	 */
3117 	num_active_macs = 0;
3118 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3119 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3120 		num_active_macs += n_ifs[i];
3121 	}
3122 
3123 	quota = 0;
3124 	quota_rem = 0;
3125 	if (num_active_macs) {
3126 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3127 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3128 	}
3129 
3130 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3131 		if (colors[i] < 0)
3132 			continue;
3133 
3134 		cmd.quotas[idx].id_and_color =
3135 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3136 
3137 		if (n_ifs[i] <= 0) {
3138 			cmd.quotas[idx].quota = htole32(0);
3139 			cmd.quotas[idx].max_duration = htole32(0);
3140 		} else {
3141 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3142 			cmd.quotas[idx].max_duration = htole32(0);
3143 		}
3144 		idx++;
3145 	}
3146 
3147 	/* Give the remainder of the session to the first binding */
3148 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3149 
3150 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3151 	    sizeof(cmd), &cmd);
3152 	if (ret)
3153 		device_printf(sc->sc_dev,
3154 		    "%s: Failed to send quota: %d\n", __func__, ret);
3155 	return ret;
3156 }
3157 
3158 /*
3159  * END mvm/quota.c
3160  */
3161 
3162 /*
3163  * ieee80211 routines
3164  */
3165 
3166 /*
3167  * Change to AUTH state in 80211 state machine.  Roughly matches what
3168  * Linux does in bss_info_changed().
3169  */
3170 static int
3171 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3172 {
3173 	struct ieee80211_node *ni;
3174 	struct iwm_node *in;
3175 	struct iwm_vap *iv = IWM_VAP(vap);
3176 	uint32_t duration;
3177 	uint32_t min_duration;
3178 	int error;
3179 
3180 	/*
3181 	 * XXX i have a feeling that the vap node is being
3182 	 * freed from underneath us. Grr.
3183 	 */
3184 	ni = ieee80211_ref_node(vap->iv_bss);
3185 	in = (struct iwm_node *) ni;
3186 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3187 	    "%s: called; vap=%p, bss ni=%p\n",
3188 	    __func__,
3189 	    vap,
3190 	    ni);
3191 
3192 	in->in_assoc = 0;
3193 
3194 	error = iwm_allow_mcast(vap, sc);
3195 	if (error) {
3196 		device_printf(sc->sc_dev,
3197 		    "%s: failed to set multicast\n", __func__);
3198 		goto out;
3199 	}
3200 
3201 	/*
3202 	 * This is where it deviates from what Linux does.
3203 	 *
3204 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3205 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3206 	 * and always does does a mac_ctx_changed().
3207 	 *
3208 	 * The openbsd port doesn't attempt to do that - it reset things
3209 	 * at odd states and does the add here.
3210 	 *
3211 	 * So, until the state handling is fixed (ie, we never reset
3212 	 * the NIC except for a firmware failure, which should drag
3213 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3214 	 * contexts that are required), let's do a dirty hack here.
3215 	 */
3216 	if (iv->is_uploaded) {
3217 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3218 			device_printf(sc->sc_dev,
3219 			    "%s: failed to add MAC\n", __func__);
3220 			goto out;
3221 		}
3222 	} else {
3223 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3224 			device_printf(sc->sc_dev,
3225 			    "%s: failed to add MAC\n", __func__);
3226 			goto out;
3227 		}
3228 	}
3229 
3230 	if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3231 	    in->in_ni.ni_chan, 1, 1)) != 0) {
3232 		device_printf(sc->sc_dev,
3233 		    "%s: failed add phy ctxt\n", __func__);
3234 		goto out;
3235 	}
3236 	in->in_phyctxt = &sc->sc_phyctxt[0];
3237 
3238 	if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3239 		device_printf(sc->sc_dev,
3240 		    "%s: binding cmd\n", __func__);
3241 		goto out;
3242 	}
3243 
3244 	if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3245 		device_printf(sc->sc_dev,
3246 		    "%s: failed to add MAC\n", __func__);
3247 		goto out;
3248 	}
3249 
3250 	/* a bit superfluous? */
3251 	while (sc->sc_auth_prot)
3252 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmauth", 0);
3253 	sc->sc_auth_prot = 1;
3254 
3255 	duration = min(IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS,
3256 	    200 + in->in_ni.ni_intval);
3257 	min_duration = min(IWM_MVM_TE_SESSION_PROTECTION_MIN_TIME_MS,
3258 	    100 + in->in_ni.ni_intval);
3259 	iwm_mvm_protect_session(sc, in, duration, min_duration, 500);
3260 
3261 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3262 	    "%s: waiting for auth_prot\n", __func__);
3263 	while (sc->sc_auth_prot != 2) {
3264 		/*
3265 		 * well, meh, but if the kernel is sleeping for half a
3266 		 * second, we have bigger problems
3267 		 */
3268 		if (sc->sc_auth_prot == 0) {
3269 			device_printf(sc->sc_dev,
3270 			    "%s: missed auth window!\n", __func__);
3271 			error = ETIMEDOUT;
3272 			goto out;
3273 		} else if (sc->sc_auth_prot == -1) {
3274 			device_printf(sc->sc_dev,
3275 			    "%s: no time event, denied!\n", __func__);
3276 			sc->sc_auth_prot = 0;
3277 			error = EAUTH;
3278 			goto out;
3279 		}
3280 		msleep(&sc->sc_auth_prot, &sc->sc_mtx, 0, "iwmau2", 0);
3281 	}
3282 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "<-%s\n", __func__);
3283 	error = 0;
3284 out:
3285 	ieee80211_free_node(ni);
3286 	return (error);
3287 }
3288 
3289 static int
3290 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3291 {
3292 	struct iwm_node *in = (struct iwm_node *)vap->iv_bss;
3293 	int error;
3294 
3295 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3296 		device_printf(sc->sc_dev,
3297 		    "%s: failed to update STA\n", __func__);
3298 		return error;
3299 	}
3300 
3301 	in->in_assoc = 1;
3302 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3303 		device_printf(sc->sc_dev,
3304 		    "%s: failed to update MAC\n", __func__);
3305 		return error;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 static int
3312 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3313 {
3314 	/*
3315 	 * Ok, so *technically* the proper set of calls for going
3316 	 * from RUN back to SCAN is:
3317 	 *
3318 	 * iwm_mvm_power_mac_disable(sc, in);
3319 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3320 	 * iwm_mvm_rm_sta(sc, in);
3321 	 * iwm_mvm_update_quotas(sc, NULL);
3322 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3323 	 * iwm_mvm_binding_remove_vif(sc, in);
3324 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3325 	 *
3326 	 * However, that freezes the device not matter which permutations
3327 	 * and modifications are attempted.  Obviously, this driver is missing
3328 	 * something since it works in the Linux driver, but figuring out what
3329 	 * is missing is a little more complicated.  Now, since we're going
3330 	 * back to nothing anyway, we'll just do a complete device reset.
3331 	 * Up your's, device!
3332 	 */
3333 	//iwm_mvm_flush_tx_path(sc, 0xf, 1);
3334 	iwm_stop_device(sc);
3335 	iwm_init_hw(sc);
3336 	if (in)
3337 		in->in_assoc = 0;
3338 	return 0;
3339 
3340 #if 0
3341 	int error;
3342 
3343 	iwm_mvm_power_mac_disable(sc, in);
3344 
3345 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3346 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
3347 		return error;
3348 	}
3349 
3350 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
3351 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
3352 		return error;
3353 	}
3354 	error = iwm_mvm_rm_sta(sc, in);
3355 	in->in_assoc = 0;
3356 	iwm_mvm_update_quotas(sc, NULL);
3357 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
3358 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
3359 		return error;
3360 	}
3361 	iwm_mvm_binding_remove_vif(sc, in);
3362 
3363 	iwm_mvm_mac_ctxt_remove(sc, in);
3364 
3365 	return error;
3366 #endif
3367 }
3368 
3369 static struct ieee80211_node *
3370 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3371 {
3372 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
3373 	    M_NOWAIT | M_ZERO);
3374 }
3375 
3376 static void
3377 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
3378 {
3379 	struct ieee80211_node *ni = &in->in_ni;
3380 	struct iwm_lq_cmd *lq = &in->in_lq;
3381 	int nrates = ni->ni_rates.rs_nrates;
3382 	int i, ridx, tab = 0;
3383 	int txant = 0;
3384 
3385 	if (nrates > nitems(lq->rs_table)) {
3386 		device_printf(sc->sc_dev,
3387 		    "%s: node supports %d rates, driver handles "
3388 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
3389 		return;
3390 	}
3391 
3392 	/*
3393 	 * XXX .. and most of iwm_node is not initialised explicitly;
3394 	 * it's all just 0x0 passed to the firmware.
3395 	 */
3396 
3397 	/* first figure out which rates we should support */
3398 	/* XXX TODO: this isn't 11n aware /at all/ */
3399 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
3400 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3401 	    "%s: nrates=%d\n", __func__, nrates);
3402 	for (i = 0; i < nrates; i++) {
3403 		int rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
3404 
3405 		/* Map 802.11 rate to HW rate index. */
3406 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
3407 			if (iwm_rates[ridx].rate == rate)
3408 				break;
3409 		if (ridx > IWM_RIDX_MAX) {
3410 			device_printf(sc->sc_dev,
3411 			    "%s: WARNING: device rate for %d not found!\n",
3412 			    __func__, rate);
3413 		} else {
3414 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3415 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
3416 			    __func__,
3417 			    i,
3418 			    rate,
3419 			    ridx);
3420 			in->in_ridx[i] = ridx;
3421 		}
3422 	}
3423 
3424 	/* then construct a lq_cmd based on those */
3425 	memset(lq, 0, sizeof(*lq));
3426 	lq->sta_id = IWM_STATION_ID;
3427 
3428 	/*
3429 	 * are these used? (we don't do SISO or MIMO)
3430 	 * need to set them to non-zero, though, or we get an error.
3431 	 */
3432 	lq->single_stream_ant_msk = 1;
3433 	lq->dual_stream_ant_msk = 1;
3434 
3435 	/*
3436 	 * Build the actual rate selection table.
3437 	 * The lowest bits are the rates.  Additionally,
3438 	 * CCK needs bit 9 to be set.  The rest of the bits
3439 	 * we add to the table select the tx antenna
3440 	 * Note that we add the rates in the highest rate first
3441 	 * (opposite of ni_rates).
3442 	 */
3443 	/*
3444 	 * XXX TODO: this should be looping over the min of nrates
3445 	 * and LQ_MAX_RETRY_NUM.  Sigh.
3446 	 */
3447 	for (i = 0; i < nrates; i++) {
3448 		int nextant;
3449 
3450 		if (txant == 0)
3451 			txant = IWM_FW_VALID_TX_ANT(sc);
3452 		nextant = 1<<(ffs(txant)-1);
3453 		txant &= ~nextant;
3454 
3455 		/*
3456 		 * Map the rate id into a rate index into
3457 		 * our hardware table containing the
3458 		 * configuration to use for this rate.
3459 		 */
3460 		ridx = in->in_ridx[(nrates-1)-i];
3461 		tab = iwm_rates[ridx].plcp;
3462 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
3463 		if (IWM_RIDX_IS_CCK(ridx))
3464 			tab |= IWM_RATE_MCS_CCK_MSK;
3465 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3466 		    "station rate i=%d, rate=%d, hw=%x\n",
3467 		    i, iwm_rates[ridx].rate, tab);
3468 		lq->rs_table[i] = htole32(tab);
3469 	}
3470 	/* then fill the rest with the lowest possible rate */
3471 	for (i = nrates; i < nitems(lq->rs_table); i++) {
3472 		KASSERT(tab != 0, ("invalid tab"));
3473 		lq->rs_table[i] = htole32(tab);
3474 	}
3475 }
3476 
3477 static int
3478 iwm_media_change(struct ifnet *ifp)
3479 {
3480 	struct ieee80211vap *vap = ifp->if_softc;
3481 	struct ieee80211com *ic = vap->iv_ic;
3482 	struct iwm_softc *sc = ic->ic_softc;
3483 	int error;
3484 
3485 	error = ieee80211_media_change(ifp);
3486 	if (error != ENETRESET)
3487 		return error;
3488 
3489 	IWM_LOCK(sc);
3490 	if (ic->ic_nrunning > 0) {
3491 		iwm_stop(sc);
3492 		iwm_init(sc);
3493 	}
3494 	IWM_UNLOCK(sc);
3495 	return error;
3496 }
3497 
3498 
3499 static int
3500 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
3501 {
3502 	struct iwm_vap *ivp = IWM_VAP(vap);
3503 	struct ieee80211com *ic = vap->iv_ic;
3504 	struct iwm_softc *sc = ic->ic_softc;
3505 	struct iwm_node *in;
3506 	int error;
3507 
3508 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3509 	    "switching state %s -> %s\n",
3510 	    ieee80211_state_name[vap->iv_state],
3511 	    ieee80211_state_name[nstate]);
3512 	IEEE80211_UNLOCK(ic);
3513 	IWM_LOCK(sc);
3514 	/* disable beacon filtering if we're hopping out of RUN */
3515 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
3516 		iwm_mvm_disable_beacon_filter(sc);
3517 
3518 		if (((in = (void *)vap->iv_bss) != NULL))
3519 			in->in_assoc = 0;
3520 
3521 		iwm_release(sc, NULL);
3522 
3523 		/*
3524 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
3525 		 * above then the card will be completely reinitialized,
3526 		 * so the driver must do everything necessary to bring the card
3527 		 * from INIT to SCAN.
3528 		 *
3529 		 * Additionally, upon receiving deauth frame from AP,
3530 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
3531 		 * state. This will also fail with this driver, so bring the FSM
3532 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
3533 		 *
3534 		 * XXX TODO: fix this for FreeBSD!
3535 		 */
3536 		if (nstate == IEEE80211_S_SCAN ||
3537 		    nstate == IEEE80211_S_AUTH ||
3538 		    nstate == IEEE80211_S_ASSOC) {
3539 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3540 			    "Force transition to INIT; MGT=%d\n", arg);
3541 			IWM_UNLOCK(sc);
3542 			IEEE80211_LOCK(ic);
3543 			vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
3544 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
3545 			    "Going INIT->SCAN\n");
3546 			nstate = IEEE80211_S_SCAN;
3547 			IEEE80211_UNLOCK(ic);
3548 			IWM_LOCK(sc);
3549 		}
3550 	}
3551 
3552 	switch (nstate) {
3553 	case IEEE80211_S_INIT:
3554 		sc->sc_scanband = 0;
3555 		break;
3556 
3557 	case IEEE80211_S_AUTH:
3558 		if ((error = iwm_auth(vap, sc)) != 0) {
3559 			device_printf(sc->sc_dev,
3560 			    "%s: could not move to auth state: %d\n",
3561 			    __func__, error);
3562 			break;
3563 		}
3564 		break;
3565 
3566 	case IEEE80211_S_ASSOC:
3567 		if ((error = iwm_assoc(vap, sc)) != 0) {
3568 			device_printf(sc->sc_dev,
3569 			    "%s: failed to associate: %d\n", __func__,
3570 			    error);
3571 			break;
3572 		}
3573 		break;
3574 
3575 	case IEEE80211_S_RUN:
3576 	{
3577 		struct iwm_host_cmd cmd = {
3578 			.id = IWM_LQ_CMD,
3579 			.len = { sizeof(in->in_lq), },
3580 			.flags = IWM_CMD_SYNC,
3581 		};
3582 
3583 		/* Update the association state, now we have it all */
3584 		/* (eg associd comes in at this point */
3585 		error = iwm_assoc(vap, sc);
3586 		if (error != 0) {
3587 			device_printf(sc->sc_dev,
3588 			    "%s: failed to update association state: %d\n",
3589 			    __func__,
3590 			    error);
3591 			break;
3592 		}
3593 
3594 		in = (struct iwm_node *)vap->iv_bss;
3595 		iwm_mvm_power_mac_update_mode(sc, in);
3596 		iwm_mvm_enable_beacon_filter(sc, in);
3597 		iwm_mvm_update_quotas(sc, in);
3598 		iwm_setrates(sc, in);
3599 
3600 		cmd.data[0] = &in->in_lq;
3601 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
3602 			device_printf(sc->sc_dev,
3603 			    "%s: IWM_LQ_CMD failed\n", __func__);
3604 		}
3605 
3606 		break;
3607 	}
3608 
3609 	default:
3610 		break;
3611 	}
3612 	IWM_UNLOCK(sc);
3613 	IEEE80211_LOCK(ic);
3614 
3615 	return (ivp->iv_newstate(vap, nstate, arg));
3616 }
3617 
3618 void
3619 iwm_endscan_cb(void *arg, int pending)
3620 {
3621 	struct iwm_softc *sc = arg;
3622 	struct ieee80211com *ic = &sc->sc_ic;
3623 	int done;
3624 	int error;
3625 
3626 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
3627 	    "%s: scan ended\n",
3628 	    __func__);
3629 
3630 	IWM_LOCK(sc);
3631 	if (sc->sc_scanband == IEEE80211_CHAN_2GHZ &&
3632 	    sc->sc_nvm.sku_cap_band_52GHz_enable) {
3633 		done = 0;
3634 		if ((error = iwm_mvm_scan_request(sc,
3635 		    IEEE80211_CHAN_5GHZ, 0, NULL, 0)) != 0) {
3636 			device_printf(sc->sc_dev, "could not initiate scan\n");
3637 			done = 1;
3638 		}
3639 	} else {
3640 		done = 1;
3641 	}
3642 
3643 	if (done) {
3644 		IWM_UNLOCK(sc);
3645 		ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
3646 		IWM_LOCK(sc);
3647 		sc->sc_scanband = 0;
3648 	}
3649 	IWM_UNLOCK(sc);
3650 }
3651 
3652 static int
3653 iwm_init_hw(struct iwm_softc *sc)
3654 {
3655 	struct ieee80211com *ic = &sc->sc_ic;
3656 	int error, i, qid;
3657 
3658 	if ((error = iwm_start_hw(sc)) != 0)
3659 		return error;
3660 
3661 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
3662 		return error;
3663 	}
3664 
3665 	/*
3666 	 * should stop and start HW since that INIT
3667 	 * image just loaded
3668 	 */
3669 	iwm_stop_device(sc);
3670 	if ((error = iwm_start_hw(sc)) != 0) {
3671 		device_printf(sc->sc_dev, "could not initialize hardware\n");
3672 		return error;
3673 	}
3674 
3675 	/* omstart, this time with the regular firmware */
3676 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
3677 	if (error) {
3678 		device_printf(sc->sc_dev, "could not load firmware\n");
3679 		goto error;
3680 	}
3681 
3682 	if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0)
3683 		goto error;
3684 
3685 	/* Send phy db control command and then phy db calibration*/
3686 	if ((error = iwm_send_phy_db_data(sc)) != 0)
3687 		goto error;
3688 
3689 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0)
3690 		goto error;
3691 
3692 	/* Add auxiliary station for scanning */
3693 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0)
3694 		goto error;
3695 
3696 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
3697 		/*
3698 		 * The channel used here isn't relevant as it's
3699 		 * going to be overwritten in the other flows.
3700 		 * For now use the first channel we have.
3701 		 */
3702 		if ((error = iwm_mvm_phy_ctxt_add(sc,
3703 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
3704 			goto error;
3705 	}
3706 
3707 	error = iwm_mvm_power_update_device(sc);
3708 	if (error)
3709 		goto error;
3710 
3711 	/* Mark TX rings as active. */
3712 	for (qid = 0; qid < 4; qid++) {
3713 		iwm_enable_txq(sc, qid, qid);
3714 	}
3715 
3716 	return 0;
3717 
3718  error:
3719 	iwm_stop_device(sc);
3720 	return error;
3721 }
3722 
3723 /* Allow multicast from our BSSID. */
3724 static int
3725 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
3726 {
3727 	struct ieee80211_node *ni = vap->iv_bss;
3728 	struct iwm_mcast_filter_cmd *cmd;
3729 	size_t size;
3730 	int error;
3731 
3732 	size = roundup(sizeof(*cmd), 4);
3733 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
3734 	if (cmd == NULL)
3735 		return ENOMEM;
3736 	cmd->filter_own = 1;
3737 	cmd->port_id = 0;
3738 	cmd->count = 0;
3739 	cmd->pass_all = 1;
3740 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
3741 
3742 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
3743 	    IWM_CMD_SYNC, size, cmd);
3744 	free(cmd, M_DEVBUF);
3745 
3746 	return (error);
3747 }
3748 
3749 static void
3750 iwm_init(struct iwm_softc *sc)
3751 {
3752 	int error;
3753 
3754 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
3755 		return;
3756 	}
3757 	sc->sc_generation++;
3758 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
3759 
3760 	if ((error = iwm_init_hw(sc)) != 0) {
3761 		iwm_stop(sc);
3762 		return;
3763 	}
3764 
3765 	/*
3766  	 * Ok, firmware loaded and we are jogging
3767 	 */
3768 	sc->sc_flags |= IWM_FLAG_HW_INITED;
3769 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3770 }
3771 
3772 static int
3773 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
3774 {
3775 	struct iwm_softc *sc;
3776 	int error;
3777 
3778 	sc = ic->ic_softc;
3779 
3780 	IWM_LOCK(sc);
3781 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3782 		IWM_UNLOCK(sc);
3783 		return (ENXIO);
3784 	}
3785 	error = mbufq_enqueue(&sc->sc_snd, m);
3786 	if (error) {
3787 		IWM_UNLOCK(sc);
3788 		return (error);
3789 	}
3790 	iwm_start(sc);
3791 	IWM_UNLOCK(sc);
3792 	return (0);
3793 }
3794 
3795 /*
3796  * Dequeue packets from sendq and call send.
3797  */
3798 static void
3799 iwm_start(struct iwm_softc *sc)
3800 {
3801 	struct ieee80211_node *ni;
3802 	struct mbuf *m;
3803 	int ac = 0;
3804 
3805 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
3806 	while (sc->qfullmsk == 0 &&
3807 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
3808 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3809 		if (iwm_tx(sc, m, ni, ac) != 0) {
3810 			if_inc_counter(ni->ni_vap->iv_ifp,
3811 			    IFCOUNTER_OERRORS, 1);
3812 			ieee80211_free_node(ni);
3813 			continue;
3814 		}
3815 		sc->sc_tx_timer = 15;
3816 	}
3817 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
3818 }
3819 
3820 static void
3821 iwm_stop(struct iwm_softc *sc)
3822 {
3823 
3824 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
3825 	sc->sc_flags |= IWM_FLAG_STOPPED;
3826 	sc->sc_generation++;
3827 	sc->sc_scanband = 0;
3828 	sc->sc_auth_prot = 0;
3829 	sc->sc_tx_timer = 0;
3830 	iwm_stop_device(sc);
3831 }
3832 
3833 static void
3834 iwm_watchdog(void *arg)
3835 {
3836 	struct iwm_softc *sc = arg;
3837 
3838 	if (sc->sc_tx_timer > 0) {
3839 		if (--sc->sc_tx_timer == 0) {
3840 			device_printf(sc->sc_dev, "device timeout\n");
3841 #ifdef IWM_DEBUG
3842 			iwm_nic_error(sc);
3843 #endif
3844 			iwm_stop(sc);
3845 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
3846 			return;
3847 		}
3848 	}
3849 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
3850 }
3851 
3852 static void
3853 iwm_parent(struct ieee80211com *ic)
3854 {
3855 	struct iwm_softc *sc = ic->ic_softc;
3856 	int startall = 0;
3857 
3858 	IWM_LOCK(sc);
3859 	if (ic->ic_nrunning > 0) {
3860 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
3861 			iwm_init(sc);
3862 			startall = 1;
3863 		}
3864 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
3865 		iwm_stop(sc);
3866 	IWM_UNLOCK(sc);
3867 	if (startall)
3868 		ieee80211_start_all(ic);
3869 }
3870 
3871 /*
3872  * The interrupt side of things
3873  */
3874 
3875 /*
3876  * error dumping routines are from iwlwifi/mvm/utils.c
3877  */
3878 
3879 /*
3880  * Note: This structure is read from the device with IO accesses,
3881  * and the reading already does the endian conversion. As it is
3882  * read with uint32_t-sized accesses, any members with a different size
3883  * need to be ordered correctly though!
3884  */
3885 struct iwm_error_event_table {
3886 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
3887 	uint32_t error_id;		/* type of error */
3888 	uint32_t pc;			/* program counter */
3889 	uint32_t blink1;		/* branch link */
3890 	uint32_t blink2;		/* branch link */
3891 	uint32_t ilink1;		/* interrupt link */
3892 	uint32_t ilink2;		/* interrupt link */
3893 	uint32_t data1;		/* error-specific data */
3894 	uint32_t data2;		/* error-specific data */
3895 	uint32_t data3;		/* error-specific data */
3896 	uint32_t bcon_time;		/* beacon timer */
3897 	uint32_t tsf_low;		/* network timestamp function timer */
3898 	uint32_t tsf_hi;		/* network timestamp function timer */
3899 	uint32_t gp1;		/* GP1 timer register */
3900 	uint32_t gp2;		/* GP2 timer register */
3901 	uint32_t gp3;		/* GP3 timer register */
3902 	uint32_t ucode_ver;		/* uCode version */
3903 	uint32_t hw_ver;		/* HW Silicon version */
3904 	uint32_t brd_ver;		/* HW board version */
3905 	uint32_t log_pc;		/* log program counter */
3906 	uint32_t frame_ptr;		/* frame pointer */
3907 	uint32_t stack_ptr;		/* stack pointer */
3908 	uint32_t hcmd;		/* last host command header */
3909 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
3910 				 * rxtx_flag */
3911 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
3912 				 * host_flag */
3913 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
3914 				 * enc_flag */
3915 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
3916 				 * time_flag */
3917 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
3918 				 * wico interrupt */
3919 	uint32_t isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
3920 	uint32_t wait_event;		/* wait event() caller address */
3921 	uint32_t l2p_control;	/* L2pControlField */
3922 	uint32_t l2p_duration;	/* L2pDurationField */
3923 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
3924 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
3925 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
3926 				 * (LMPM_PMG_SEL) */
3927 	uint32_t u_timestamp;	/* indicate when the date and time of the
3928 				 * compilation */
3929 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
3930 } __packed;
3931 
3932 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
3933 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
3934 
3935 #ifdef IWM_DEBUG
3936 struct {
3937 	const char *name;
3938 	uint8_t num;
3939 } advanced_lookup[] = {
3940 	{ "NMI_INTERRUPT_WDG", 0x34 },
3941 	{ "SYSASSERT", 0x35 },
3942 	{ "UCODE_VERSION_MISMATCH", 0x37 },
3943 	{ "BAD_COMMAND", 0x38 },
3944 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
3945 	{ "FATAL_ERROR", 0x3D },
3946 	{ "NMI_TRM_HW_ERR", 0x46 },
3947 	{ "NMI_INTERRUPT_TRM", 0x4C },
3948 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
3949 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
3950 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
3951 	{ "NMI_INTERRUPT_HOST", 0x66 },
3952 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
3953 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
3954 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
3955 	{ "ADVANCED_SYSASSERT", 0 },
3956 };
3957 
3958 static const char *
3959 iwm_desc_lookup(uint32_t num)
3960 {
3961 	int i;
3962 
3963 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
3964 		if (advanced_lookup[i].num == num)
3965 			return advanced_lookup[i].name;
3966 
3967 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
3968 	return advanced_lookup[i].name;
3969 }
3970 
3971 /*
3972  * Support for dumping the error log seemed like a good idea ...
3973  * but it's mostly hex junk and the only sensible thing is the
3974  * hw/ucode revision (which we know anyway).  Since it's here,
3975  * I'll just leave it in, just in case e.g. the Intel guys want to
3976  * help us decipher some "ADVANCED_SYSASSERT" later.
3977  */
3978 static void
3979 iwm_nic_error(struct iwm_softc *sc)
3980 {
3981 	struct iwm_error_event_table table;
3982 	uint32_t base;
3983 
3984 	device_printf(sc->sc_dev, "dumping device error log\n");
3985 	base = sc->sc_uc.uc_error_event_table;
3986 	if (base < 0x800000 || base >= 0x80C000) {
3987 		device_printf(sc->sc_dev,
3988 		    "Not valid error log pointer 0x%08x\n", base);
3989 		return;
3990 	}
3991 
3992 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) {
3993 		device_printf(sc->sc_dev, "reading errlog failed\n");
3994 		return;
3995 	}
3996 
3997 	if (!table.valid) {
3998 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
3999 		return;
4000 	}
4001 
4002 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4003 		device_printf(sc->sc_dev, "Start IWL Error Log Dump:\n");
4004 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4005 		    sc->sc_flags, table.valid);
4006 	}
4007 
4008 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
4009 		iwm_desc_lookup(table.error_id));
4010 	device_printf(sc->sc_dev, "%08X | uPc\n", table.pc);
4011 	device_printf(sc->sc_dev, "%08X | branchlink1\n", table.blink1);
4012 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
4013 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
4014 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
4015 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
4016 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
4017 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
4018 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
4019 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
4020 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
4021 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
4022 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
4023 	device_printf(sc->sc_dev, "%08X | time gp3\n", table.gp3);
4024 	device_printf(sc->sc_dev, "%08X | uCode version\n", table.ucode_ver);
4025 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
4026 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
4027 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
4028 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
4029 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
4030 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
4031 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
4032 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
4033 	device_printf(sc->sc_dev, "%08X | isr_pref\n", table.isr_pref);
4034 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
4035 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
4036 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
4037 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
4038 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
4039 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
4040 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
4041 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
4042 }
4043 #endif
4044 
4045 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
4046 do {									\
4047 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4048 	_var_ = (void *)((_pkt_)+1);					\
4049 } while (/*CONSTCOND*/0)
4050 
4051 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
4052 do {									\
4053 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
4054 	_ptr_ = (void *)((_pkt_)+1);					\
4055 } while (/*CONSTCOND*/0)
4056 
4057 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
4058 
4059 /*
4060  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
4061  * Basic structure from if_iwn
4062  */
4063 static void
4064 iwm_notif_intr(struct iwm_softc *sc)
4065 {
4066 	uint16_t hw;
4067 
4068 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4069 	    BUS_DMASYNC_POSTREAD);
4070 
4071 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
4072 	while (sc->rxq.cur != hw) {
4073 		struct iwm_rx_ring *ring = &sc->rxq;
4074 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4075 		struct iwm_rx_packet *pkt;
4076 		struct iwm_cmd_response *cresp;
4077 		int qid, idx;
4078 
4079 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4080 		    BUS_DMASYNC_POSTREAD);
4081 		pkt = mtod(data->m, struct iwm_rx_packet *);
4082 
4083 		qid = pkt->hdr.qid & ~0x80;
4084 		idx = pkt->hdr.idx;
4085 
4086 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4087 		    "rx packet qid=%d idx=%d flags=%x type=%x %d %d\n",
4088 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags,
4089 		    pkt->hdr.code, sc->rxq.cur, hw);
4090 
4091 		/*
4092 		 * randomly get these from the firmware, no idea why.
4093 		 * they at least seem harmless, so just ignore them for now
4094 		 */
4095 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
4096 		    || pkt->len_n_flags == htole32(0x55550000))) {
4097 			ADVANCE_RXQ(sc);
4098 			continue;
4099 		}
4100 
4101 		switch (pkt->hdr.code) {
4102 		case IWM_REPLY_RX_PHY_CMD:
4103 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
4104 			break;
4105 
4106 		case IWM_REPLY_RX_MPDU_CMD:
4107 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
4108 			break;
4109 
4110 		case IWM_TX_CMD:
4111 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
4112 			break;
4113 
4114 		case IWM_MISSED_BEACONS_NOTIFICATION: {
4115 			struct iwm_missed_beacons_notif *resp;
4116 			int missed;
4117 
4118 			/* XXX look at mac_id to determine interface ID */
4119 			struct ieee80211com *ic = &sc->sc_ic;
4120 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4121 
4122 			SYNC_RESP_STRUCT(resp, pkt);
4123 			missed = le32toh(resp->consec_missed_beacons);
4124 
4125 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
4126 			    "%s: MISSED_BEACON: mac_id=%d, "
4127 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
4128 			    "num_rx=%d\n",
4129 			    __func__,
4130 			    le32toh(resp->mac_id),
4131 			    le32toh(resp->consec_missed_beacons_since_last_rx),
4132 			    le32toh(resp->consec_missed_beacons),
4133 			    le32toh(resp->num_expected_beacons),
4134 			    le32toh(resp->num_recvd_beacons));
4135 
4136 			/* Be paranoid */
4137 			if (vap == NULL)
4138 				break;
4139 
4140 			/* XXX no net80211 locking? */
4141 			if (vap->iv_state == IEEE80211_S_RUN &&
4142 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4143 				if (missed > vap->iv_bmissthreshold) {
4144 					/* XXX bad locking; turn into task */
4145 					IWM_UNLOCK(sc);
4146 					ieee80211_beacon_miss(ic);
4147 					IWM_LOCK(sc);
4148 				}
4149 			}
4150 
4151 			break; }
4152 
4153 		case IWM_MVM_ALIVE: {
4154 			struct iwm_mvm_alive_resp *resp;
4155 			SYNC_RESP_STRUCT(resp, pkt);
4156 
4157 			sc->sc_uc.uc_error_event_table
4158 			    = le32toh(resp->error_event_table_ptr);
4159 			sc->sc_uc.uc_log_event_table
4160 			    = le32toh(resp->log_event_table_ptr);
4161 			sc->sched_base = le32toh(resp->scd_base_ptr);
4162 			sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK;
4163 
4164 			sc->sc_uc.uc_intr = 1;
4165 			wakeup(&sc->sc_uc);
4166 			break; }
4167 
4168 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
4169 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
4170 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
4171 
4172 			iwm_phy_db_set_section(sc, phy_db_notif);
4173 
4174 			break; }
4175 
4176 		case IWM_STATISTICS_NOTIFICATION: {
4177 			struct iwm_notif_statistics *stats;
4178 			SYNC_RESP_STRUCT(stats, pkt);
4179 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
4180 			sc->sc_noise = iwm_get_noise(&stats->rx.general);
4181 			break; }
4182 
4183 		case IWM_NVM_ACCESS_CMD:
4184 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4185 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4186 				    BUS_DMASYNC_POSTREAD);
4187 				memcpy(sc->sc_cmd_resp,
4188 				    pkt, sizeof(sc->sc_cmd_resp));
4189 			}
4190 			break;
4191 
4192 		case IWM_PHY_CONFIGURATION_CMD:
4193 		case IWM_TX_ANT_CONFIGURATION_CMD:
4194 		case IWM_ADD_STA:
4195 		case IWM_MAC_CONTEXT_CMD:
4196 		case IWM_REPLY_SF_CFG_CMD:
4197 		case IWM_POWER_TABLE_CMD:
4198 		case IWM_PHY_CONTEXT_CMD:
4199 		case IWM_BINDING_CONTEXT_CMD:
4200 		case IWM_TIME_EVENT_CMD:
4201 		case IWM_SCAN_REQUEST_CMD:
4202 		case IWM_REPLY_BEACON_FILTERING_CMD:
4203 		case IWM_MAC_PM_POWER_TABLE:
4204 		case IWM_TIME_QUOTA_CMD:
4205 		case IWM_REMOVE_STA:
4206 		case IWM_TXPATH_FLUSH:
4207 		case IWM_LQ_CMD:
4208 			SYNC_RESP_STRUCT(cresp, pkt);
4209 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
4210 				memcpy(sc->sc_cmd_resp,
4211 				    pkt, sizeof(*pkt)+sizeof(*cresp));
4212 			}
4213 			break;
4214 
4215 		/* ignore */
4216 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
4217 			break;
4218 
4219 		case IWM_INIT_COMPLETE_NOTIF:
4220 			sc->sc_init_complete = 1;
4221 			wakeup(&sc->sc_init_complete);
4222 			break;
4223 
4224 		case IWM_SCAN_COMPLETE_NOTIFICATION: {
4225 			struct iwm_scan_complete_notif *notif;
4226 			SYNC_RESP_STRUCT(notif, pkt);
4227 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
4228 			break; }
4229 
4230 		case IWM_REPLY_ERROR: {
4231 			struct iwm_error_resp *resp;
4232 			SYNC_RESP_STRUCT(resp, pkt);
4233 
4234 			device_printf(sc->sc_dev,
4235 			    "firmware error 0x%x, cmd 0x%x\n",
4236 			    le32toh(resp->error_type),
4237 			    resp->cmd_id);
4238 			break; }
4239 
4240 		case IWM_TIME_EVENT_NOTIFICATION: {
4241 			struct iwm_time_event_notif *notif;
4242 			SYNC_RESP_STRUCT(notif, pkt);
4243 
4244 			if (notif->status) {
4245 				if (le32toh(notif->action) &
4246 				    IWM_TE_V2_NOTIF_HOST_EVENT_START)
4247 					sc->sc_auth_prot = 2;
4248 				else
4249 					sc->sc_auth_prot = 0;
4250 			} else {
4251 				sc->sc_auth_prot = -1;
4252 			}
4253 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4254 			    "%s: time event notification auth_prot=%d\n",
4255 				__func__, sc->sc_auth_prot);
4256 
4257 			wakeup(&sc->sc_auth_prot);
4258 			break; }
4259 
4260 		case IWM_MCAST_FILTER_CMD:
4261 			break;
4262 
4263 		default:
4264 			device_printf(sc->sc_dev,
4265 			    "frame %d/%d %x UNHANDLED (this should "
4266 			    "not happen)\n", qid, idx,
4267 			    pkt->len_n_flags);
4268 			break;
4269 		}
4270 
4271 		/*
4272 		 * Why test bit 0x80?  The Linux driver:
4273 		 *
4274 		 * There is one exception:  uCode sets bit 15 when it
4275 		 * originates the response/notification, i.e. when the
4276 		 * response/notification is not a direct response to a
4277 		 * command sent by the driver.  For example, uCode issues
4278 		 * IWM_REPLY_RX when it sends a received frame to the driver;
4279 		 * it is not a direct response to any driver command.
4280 		 *
4281 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
4282 		 * uses a slightly different format for pkt->hdr, and "qid"
4283 		 * is actually the upper byte of a two-byte field.
4284 		 */
4285 		if (!(pkt->hdr.qid & (1 << 7))) {
4286 			iwm_cmd_done(sc, pkt);
4287 		}
4288 
4289 		ADVANCE_RXQ(sc);
4290 	}
4291 
4292 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
4293 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
4294 
4295 	/*
4296 	 * Tell the firmware what we have processed.
4297 	 * Seems like the hardware gets upset unless we align
4298 	 * the write by 8??
4299 	 */
4300 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
4301 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
4302 }
4303 
4304 static void
4305 iwm_intr(void *arg)
4306 {
4307 	struct iwm_softc *sc = arg;
4308 	int handled = 0;
4309 	int r1, r2, rv = 0;
4310 	int isperiodic = 0;
4311 
4312 	IWM_LOCK(sc);
4313 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
4314 
4315 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
4316 		uint32_t *ict = sc->ict_dma.vaddr;
4317 		int tmp;
4318 
4319 		tmp = htole32(ict[sc->ict_cur]);
4320 		if (!tmp)
4321 			goto out_ena;
4322 
4323 		/*
4324 		 * ok, there was something.  keep plowing until we have all.
4325 		 */
4326 		r1 = r2 = 0;
4327 		while (tmp) {
4328 			r1 |= tmp;
4329 			ict[sc->ict_cur] = 0;
4330 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
4331 			tmp = htole32(ict[sc->ict_cur]);
4332 		}
4333 
4334 		/* this is where the fun begins.  don't ask */
4335 		if (r1 == 0xffffffff)
4336 			r1 = 0;
4337 
4338 		/* i am not expected to understand this */
4339 		if (r1 & 0xc0000)
4340 			r1 |= 0x8000;
4341 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
4342 	} else {
4343 		r1 = IWM_READ(sc, IWM_CSR_INT);
4344 		/* "hardware gone" (where, fishing?) */
4345 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4346 			goto out;
4347 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
4348 	}
4349 	if (r1 == 0 && r2 == 0) {
4350 		goto out_ena;
4351 	}
4352 
4353 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
4354 
4355 	/* ignored */
4356 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
4357 
4358 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
4359 #ifdef IWM_DEBUG
4360 		int i;
4361 		struct ieee80211com *ic = &sc->sc_ic;
4362 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4363 
4364 		iwm_nic_error(sc);
4365 
4366 		/* Dump driver status (TX and RX rings) while we're here. */
4367 		device_printf(sc->sc_dev, "driver status:\n");
4368 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
4369 			struct iwm_tx_ring *ring = &sc->txq[i];
4370 			device_printf(sc->sc_dev,
4371 			    "  tx ring %2d: qid=%-2d cur=%-3d "
4372 			    "queued=%-3d\n",
4373 			    i, ring->qid, ring->cur, ring->queued);
4374 		}
4375 		device_printf(sc->sc_dev,
4376 		    "  rx ring: cur=%d\n", sc->rxq.cur);
4377 		device_printf(sc->sc_dev,
4378 		    "  802.11 state %d\n", vap->iv_state);
4379 #endif
4380 
4381 		device_printf(sc->sc_dev, "fatal firmware error\n");
4382 		iwm_stop(sc);
4383 		rv = 1;
4384 		goto out;
4385 
4386 	}
4387 
4388 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
4389 		handled |= IWM_CSR_INT_BIT_HW_ERR;
4390 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
4391 		iwm_stop(sc);
4392 		rv = 1;
4393 		goto out;
4394 	}
4395 
4396 	/* firmware chunk loaded */
4397 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
4398 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
4399 		handled |= IWM_CSR_INT_BIT_FH_TX;
4400 		sc->sc_fw_chunk_done = 1;
4401 		wakeup(&sc->sc_fw);
4402 	}
4403 
4404 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
4405 		handled |= IWM_CSR_INT_BIT_RF_KILL;
4406 		if (iwm_check_rfkill(sc)) {
4407 			device_printf(sc->sc_dev,
4408 			    "%s: rfkill switch, disabling interface\n",
4409 			    __func__);
4410 			iwm_stop(sc);
4411 		}
4412 	}
4413 
4414 	/*
4415 	 * The Linux driver uses periodic interrupts to avoid races.
4416 	 * We cargo-cult like it's going out of fashion.
4417 	 */
4418 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
4419 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
4420 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
4421 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
4422 			IWM_WRITE_1(sc,
4423 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
4424 		isperiodic = 1;
4425 	}
4426 
4427 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
4428 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
4429 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
4430 
4431 		iwm_notif_intr(sc);
4432 
4433 		/* enable periodic interrupt, see above */
4434 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
4435 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
4436 			    IWM_CSR_INT_PERIODIC_ENA);
4437 	}
4438 
4439 	if (__predict_false(r1 & ~handled))
4440 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
4441 		    "%s: unhandled interrupts: %x\n", __func__, r1);
4442 	rv = 1;
4443 
4444  out_ena:
4445 	iwm_restore_interrupts(sc);
4446  out:
4447 	IWM_UNLOCK(sc);
4448 	return;
4449 }
4450 
4451 /*
4452  * Autoconf glue-sniffing
4453  */
4454 #define	PCI_VENDOR_INTEL		0x8086
4455 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
4456 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
4457 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
4458 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
4459 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
4460 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
4461 
4462 static const struct iwm_devices {
4463 	uint16_t	device;
4464 	const char	*name;
4465 } iwm_devices[] = {
4466 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
4467 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
4468 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
4469 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
4470 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
4471 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
4472 };
4473 
4474 static int
4475 iwm_probe(device_t dev)
4476 {
4477 	int i;
4478 
4479 	for (i = 0; i < nitems(iwm_devices); i++)
4480 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
4481 		    pci_get_device(dev) == iwm_devices[i].device) {
4482 			device_set_desc(dev, iwm_devices[i].name);
4483 			return (BUS_PROBE_DEFAULT);
4484 		}
4485 
4486 	return (ENXIO);
4487 }
4488 
4489 static int
4490 iwm_dev_check(device_t dev)
4491 {
4492 	struct iwm_softc *sc;
4493 
4494 	sc = device_get_softc(dev);
4495 
4496 	switch (pci_get_device(dev)) {
4497 	case PCI_PRODUCT_INTEL_WL_3160_1:
4498 	case PCI_PRODUCT_INTEL_WL_3160_2:
4499 		sc->sc_fwname = "iwm3160fw";
4500 		sc->host_interrupt_operation_mode = 1;
4501 		return (0);
4502 	case PCI_PRODUCT_INTEL_WL_7260_1:
4503 	case PCI_PRODUCT_INTEL_WL_7260_2:
4504 		sc->sc_fwname = "iwm7260fw";
4505 		sc->host_interrupt_operation_mode = 1;
4506 		return (0);
4507 	case PCI_PRODUCT_INTEL_WL_7265_1:
4508 	case PCI_PRODUCT_INTEL_WL_7265_2:
4509 		sc->sc_fwname = "iwm7265fw";
4510 		sc->host_interrupt_operation_mode = 0;
4511 		return (0);
4512 	default:
4513 		device_printf(dev, "unknown adapter type\n");
4514 		return ENXIO;
4515 	}
4516 }
4517 
4518 static int
4519 iwm_pci_attach(device_t dev)
4520 {
4521 	struct iwm_softc *sc;
4522 	int count, error, rid;
4523 	uint16_t reg;
4524 
4525 	sc = device_get_softc(dev);
4526 
4527 	/* Clear device-specific "PCI retry timeout" register (41h). */
4528 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4529 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4530 
4531 	/* Enable bus-mastering and hardware bug workaround. */
4532 	pci_enable_busmaster(dev);
4533 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
4534 	/* if !MSI */
4535 	if (reg & PCIM_STATUS_INTxSTATE) {
4536 		reg &= ~PCIM_STATUS_INTxSTATE;
4537 	}
4538 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
4539 
4540 	rid = PCIR_BAR(0);
4541 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
4542 	    RF_ACTIVE);
4543 	if (sc->sc_mem == NULL) {
4544 		device_printf(sc->sc_dev, "can't map mem space\n");
4545 		return (ENXIO);
4546 	}
4547 	sc->sc_st = rman_get_bustag(sc->sc_mem);
4548 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
4549 
4550 	/* Install interrupt handler. */
4551 	count = 1;
4552 	rid = 0;
4553 	if (pci_alloc_msi(dev, &count) == 0)
4554 		rid = 1;
4555 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
4556 	    (rid != 0 ? 0 : RF_SHAREABLE));
4557 	if (sc->sc_irq == NULL) {
4558 		device_printf(dev, "can't map interrupt\n");
4559 			return (ENXIO);
4560 	}
4561 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
4562 	    NULL, iwm_intr, sc, &sc->sc_ih);
4563 	if (sc->sc_ih == NULL) {
4564 		device_printf(dev, "can't establish interrupt");
4565 			return (ENXIO);
4566 	}
4567 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
4568 
4569 	return (0);
4570 }
4571 
4572 static void
4573 iwm_pci_detach(device_t dev)
4574 {
4575 	struct iwm_softc *sc = device_get_softc(dev);
4576 
4577 	if (sc->sc_irq != NULL) {
4578 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
4579 		bus_release_resource(dev, SYS_RES_IRQ,
4580 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
4581 		pci_release_msi(dev);
4582         }
4583 	if (sc->sc_mem != NULL)
4584 		bus_release_resource(dev, SYS_RES_MEMORY,
4585 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
4586 }
4587 
4588 
4589 
4590 static int
4591 iwm_attach(device_t dev)
4592 {
4593 	struct iwm_softc *sc = device_get_softc(dev);
4594 	struct ieee80211com *ic = &sc->sc_ic;
4595 	int error;
4596 	int txq_i, i;
4597 
4598 	sc->sc_dev = dev;
4599 	mtx_init(&sc->sc_mtx, "iwm_mtx", MTX_DEF, 0);
4600 	mbufq_init(&sc->sc_snd, ifqmaxlen);
4601 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
4602 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
4603 	sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK,
4604             taskqueue_thread_enqueue, &sc->sc_tq);
4605         error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq");
4606         if (error != 0) {
4607                 device_printf(dev, "can't start threads, error %d\n",
4608 		    error);
4609 		goto fail;
4610         }
4611 
4612 	/* PCI attach */
4613 	error = iwm_pci_attach(dev);
4614 	if (error != 0)
4615 		goto fail;
4616 
4617 	sc->sc_wantresp = -1;
4618 
4619 	/* Check device type */
4620 	error = iwm_dev_check(dev);
4621 	if (error != 0)
4622 		goto fail;
4623 
4624 	sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
4625 
4626 	/*
4627 	 * We now start fiddling with the hardware
4628 	 */
4629 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
4630 	if (iwm_prepare_card_hw(sc) != 0) {
4631 		device_printf(dev, "could not initialize hardware\n");
4632 		goto fail;
4633 	}
4634 
4635 	/* Allocate DMA memory for firmware transfers. */
4636 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
4637 		device_printf(dev, "could not allocate memory for firmware\n");
4638 		goto fail;
4639 	}
4640 
4641 	/* Allocate "Keep Warm" page. */
4642 	if ((error = iwm_alloc_kw(sc)) != 0) {
4643 		device_printf(dev, "could not allocate keep warm page\n");
4644 		goto fail;
4645 	}
4646 
4647 	/* We use ICT interrupts */
4648 	if ((error = iwm_alloc_ict(sc)) != 0) {
4649 		device_printf(dev, "could not allocate ICT table\n");
4650 		goto fail;
4651 	}
4652 
4653 	/* Allocate TX scheduler "rings". */
4654 	if ((error = iwm_alloc_sched(sc)) != 0) {
4655 		device_printf(dev, "could not allocate TX scheduler rings\n");
4656 		goto fail;
4657 	}
4658 
4659 	/* Allocate TX rings */
4660 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
4661 		if ((error = iwm_alloc_tx_ring(sc,
4662 		    &sc->txq[txq_i], txq_i)) != 0) {
4663 			device_printf(dev,
4664 			    "could not allocate TX ring %d\n",
4665 			    txq_i);
4666 			goto fail;
4667 		}
4668 	}
4669 
4670 	/* Allocate RX ring. */
4671 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
4672 		device_printf(dev, "could not allocate RX ring\n");
4673 		goto fail;
4674 	}
4675 
4676 	/* Clear pending interrupts. */
4677 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
4678 
4679 	ic->ic_softc = sc;
4680 	ic->ic_name = device_get_nameunit(sc->sc_dev);
4681 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
4682 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
4683 
4684 	/* Set device capabilities. */
4685 	ic->ic_caps =
4686 	    IEEE80211_C_STA |
4687 	    IEEE80211_C_WPA |		/* WPA/RSN */
4688 	    IEEE80211_C_WME |
4689 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
4690 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
4691 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
4692 	    ;
4693 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
4694 		sc->sc_phyctxt[i].id = i;
4695 		sc->sc_phyctxt[i].color = 0;
4696 		sc->sc_phyctxt[i].ref = 0;
4697 		sc->sc_phyctxt[i].channel = NULL;
4698 	}
4699 
4700 	/* Max RSSI */
4701 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
4702 	sc->sc_preinit_hook.ich_func = iwm_preinit;
4703 	sc->sc_preinit_hook.ich_arg = sc;
4704 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
4705 		device_printf(dev, "config_intrhook_establish failed\n");
4706 		goto fail;
4707 	}
4708 
4709 #ifdef IWM_DEBUG
4710 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
4711 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
4712 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
4713 #endif
4714 
4715 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4716 	    "<-%s\n", __func__);
4717 
4718 	return 0;
4719 
4720 	/* Free allocated memory if something failed during attachment. */
4721 fail:
4722 	iwm_detach_local(sc, 0);
4723 
4724 	return ENXIO;
4725 }
4726 
4727 static int
4728 iwm_update_edca(struct ieee80211com *ic)
4729 {
4730 	struct iwm_softc *sc = ic->ic_softc;
4731 
4732 	device_printf(sc->sc_dev, "%s: called\n", __func__);
4733 	return (0);
4734 }
4735 
4736 static void
4737 iwm_preinit(void *arg)
4738 {
4739 	struct iwm_softc *sc = arg;
4740 	device_t dev = sc->sc_dev;
4741 	struct ieee80211com *ic = &sc->sc_ic;
4742 	int error;
4743 
4744 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4745 	    "->%s\n", __func__);
4746 
4747 	IWM_LOCK(sc);
4748 	if ((error = iwm_start_hw(sc)) != 0) {
4749 		device_printf(dev, "could not initialize hardware\n");
4750 		IWM_UNLOCK(sc);
4751 		goto fail;
4752 	}
4753 
4754 	error = iwm_run_init_mvm_ucode(sc, 1);
4755 	iwm_stop_device(sc);
4756 	if (error) {
4757 		IWM_UNLOCK(sc);
4758 		goto fail;
4759 	}
4760 	device_printf(dev,
4761 	    "revision: 0x%x, firmware %d.%d (API ver. %d)\n",
4762 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
4763 	    IWM_UCODE_MAJOR(sc->sc_fwver),
4764 	    IWM_UCODE_MINOR(sc->sc_fwver),
4765 	    IWM_UCODE_API(sc->sc_fwver));
4766 
4767 	/* not all hardware can do 5GHz band */
4768 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
4769 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
4770 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
4771 	IWM_UNLOCK(sc);
4772 
4773 	/*
4774 	 * At this point we've committed - if we fail to do setup,
4775 	 * we now also have to tear down the net80211 state.
4776 	 */
4777 	ieee80211_ifattach(ic);
4778 	ic->ic_vap_create = iwm_vap_create;
4779 	ic->ic_vap_delete = iwm_vap_delete;
4780 	ic->ic_raw_xmit = iwm_raw_xmit;
4781 	ic->ic_node_alloc = iwm_node_alloc;
4782 	ic->ic_scan_start = iwm_scan_start;
4783 	ic->ic_scan_end = iwm_scan_end;
4784 	ic->ic_update_mcast = iwm_update_mcast;
4785 	ic->ic_set_channel = iwm_set_channel;
4786 	ic->ic_scan_curchan = iwm_scan_curchan;
4787 	ic->ic_scan_mindwell = iwm_scan_mindwell;
4788 	ic->ic_wme.wme_update = iwm_update_edca;
4789 	ic->ic_parent = iwm_parent;
4790 	ic->ic_transmit = iwm_transmit;
4791 	iwm_radiotap_attach(sc);
4792 	if (bootverbose)
4793 		ieee80211_announce(ic);
4794 
4795 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4796 	    "<-%s\n", __func__);
4797 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4798 
4799 	return;
4800 fail:
4801 	config_intrhook_disestablish(&sc->sc_preinit_hook);
4802 	iwm_detach_local(sc, 0);
4803 }
4804 
4805 /*
4806  * Attach the interface to 802.11 radiotap.
4807  */
4808 static void
4809 iwm_radiotap_attach(struct iwm_softc *sc)
4810 {
4811         struct ieee80211com *ic = &sc->sc_ic;
4812 
4813 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4814 	    "->%s begin\n", __func__);
4815         ieee80211_radiotap_attach(ic,
4816             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
4817                 IWM_TX_RADIOTAP_PRESENT,
4818             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
4819                 IWM_RX_RADIOTAP_PRESENT);
4820 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
4821 	    "->%s end\n", __func__);
4822 }
4823 
4824 static struct ieee80211vap *
4825 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
4826     enum ieee80211_opmode opmode, int flags,
4827     const uint8_t bssid[IEEE80211_ADDR_LEN],
4828     const uint8_t mac[IEEE80211_ADDR_LEN])
4829 {
4830 	struct iwm_vap *ivp;
4831 	struct ieee80211vap *vap;
4832 
4833 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
4834 		return NULL;
4835 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
4836 	vap = &ivp->iv_vap;
4837 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
4838 	vap->iv_bmissthreshold = 10;            /* override default */
4839 	/* Override with driver methods. */
4840 	ivp->iv_newstate = vap->iv_newstate;
4841 	vap->iv_newstate = iwm_newstate;
4842 
4843 	ieee80211_ratectl_init(vap);
4844 	/* Complete setup. */
4845 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
4846 	    mac);
4847 	ic->ic_opmode = opmode;
4848 
4849 	return vap;
4850 }
4851 
4852 static void
4853 iwm_vap_delete(struct ieee80211vap *vap)
4854 {
4855 	struct iwm_vap *ivp = IWM_VAP(vap);
4856 
4857 	ieee80211_ratectl_deinit(vap);
4858 	ieee80211_vap_detach(vap);
4859 	free(ivp, M_80211_VAP);
4860 }
4861 
4862 static void
4863 iwm_scan_start(struct ieee80211com *ic)
4864 {
4865 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4866         struct iwm_softc *sc = ic->ic_softc;
4867 	int error;
4868 
4869 	if (sc->sc_scanband)
4870 		return;
4871 	IWM_LOCK(sc);
4872 	error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, 0, NULL, 0);
4873 	if (error) {
4874 		device_printf(sc->sc_dev, "could not initiate scan\n");
4875 		IWM_UNLOCK(sc);
4876 		ieee80211_cancel_scan(vap);
4877 	} else
4878 		IWM_UNLOCK(sc);
4879 }
4880 
4881 static void
4882 iwm_scan_end(struct ieee80211com *ic)
4883 {
4884 }
4885 
4886 static void
4887 iwm_update_mcast(struct ieee80211com *ic)
4888 {
4889 }
4890 
4891 static void
4892 iwm_set_channel(struct ieee80211com *ic)
4893 {
4894 }
4895 
4896 static void
4897 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4898 {
4899 }
4900 
4901 static void
4902 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
4903 {
4904 	return;
4905 }
4906 
4907 void
4908 iwm_init_task(void *arg1)
4909 {
4910 	struct iwm_softc *sc = arg1;
4911 
4912 	IWM_LOCK(sc);
4913 	while (sc->sc_flags & IWM_FLAG_BUSY)
4914 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
4915 	sc->sc_flags |= IWM_FLAG_BUSY;
4916 	iwm_stop(sc);
4917 	if (sc->sc_ic.ic_nrunning > 0)
4918 		iwm_init(sc);
4919 	sc->sc_flags &= ~IWM_FLAG_BUSY;
4920 	wakeup(&sc->sc_flags);
4921 	IWM_UNLOCK(sc);
4922 }
4923 
4924 static int
4925 iwm_resume(device_t dev)
4926 {
4927 	uint16_t reg;
4928 
4929 	/* Clear device-specific "PCI retry timeout" register (41h). */
4930 	reg = pci_read_config(dev, 0x40, sizeof(reg));
4931 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
4932 	iwm_init_task(device_get_softc(dev));
4933 
4934 	return 0;
4935 }
4936 
4937 static int
4938 iwm_suspend(device_t dev)
4939 {
4940 	struct iwm_softc *sc = device_get_softc(dev);
4941 
4942 	if (sc->sc_ic.ic_nrunning > 0) {
4943 		IWM_LOCK(sc);
4944 		iwm_stop(sc);
4945 		IWM_UNLOCK(sc);
4946 	}
4947 
4948 	return (0);
4949 }
4950 
4951 static int
4952 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
4953 {
4954 	struct iwm_fw_info *fw = &sc->sc_fw;
4955 	device_t dev = sc->sc_dev;
4956 	int i;
4957 
4958 	if (sc->sc_tq) {
4959 		taskqueue_drain_all(sc->sc_tq);
4960 		taskqueue_free(sc->sc_tq);
4961 	}
4962 	callout_drain(&sc->sc_watchdog_to);
4963 	iwm_stop_device(sc);
4964 	if (do_net80211)
4965 		ieee80211_ifdetach(&sc->sc_ic);
4966 
4967 	/* Free descriptor rings */
4968 	for (i = 0; i < nitems(sc->txq); i++)
4969 		iwm_free_tx_ring(sc, &sc->txq[i]);
4970 
4971 	/* Free firmware */
4972 	if (fw->fw_rawdata != NULL)
4973 		iwm_fw_info_free(fw);
4974 
4975 	/* free scheduler */
4976 	iwm_free_sched(sc);
4977 	if (sc->ict_dma.vaddr != NULL)
4978 		iwm_free_ict(sc);
4979 	if (sc->kw_dma.vaddr != NULL)
4980 		iwm_free_kw(sc);
4981 	if (sc->fw_dma.vaddr != NULL)
4982 		iwm_free_fwmem(sc);
4983 
4984 	/* Finished with the hardware - detach things */
4985 	iwm_pci_detach(dev);
4986 
4987 	mbufq_drain(&sc->sc_snd);
4988 	mtx_destroy(&sc->sc_mtx);
4989 
4990 	return (0);
4991 }
4992 
4993 static int
4994 iwm_detach(device_t dev)
4995 {
4996 	struct iwm_softc *sc = device_get_softc(dev);
4997 
4998 	return (iwm_detach_local(sc, 1));
4999 }
5000 
5001 static device_method_t iwm_pci_methods[] = {
5002         /* Device interface */
5003         DEVMETHOD(device_probe,         iwm_probe),
5004         DEVMETHOD(device_attach,        iwm_attach),
5005         DEVMETHOD(device_detach,        iwm_detach),
5006         DEVMETHOD(device_suspend,       iwm_suspend),
5007         DEVMETHOD(device_resume,        iwm_resume),
5008 
5009         DEVMETHOD_END
5010 };
5011 
5012 static driver_t iwm_pci_driver = {
5013         "iwm",
5014         iwm_pci_methods,
5015         sizeof (struct iwm_softc)
5016 };
5017 
5018 static devclass_t iwm_devclass;
5019 
5020 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
5021 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
5022 MODULE_DEPEND(iwm, pci, 1, 1, 1);
5023 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
5024