xref: /freebsd/sys/dev/iwm/if_iwm.c (revision 21a4258d89a4e27632cfd87e5ad6e8538a6e77a2)
1 /*	$OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89 
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107 
108 #include "opt_wlan.h"
109 
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126 
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130 
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133 
134 #include <net/bpf.h>
135 
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142 
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147 
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152 
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164 
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167 
168 const uint8_t iwm_nvm_channels[] = {
169 	/* 2.4 GHz */
170 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171 	/* 5 GHz */
172 	36, 40, 44, 48, 52, 56, 60, 64,
173 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174 	149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178 
179 const uint8_t iwm_nvm_channels_8000[] = {
180 	/* 2.4 GHz */
181 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182 	/* 5 GHz */
183 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185 	149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189 
190 #define IWM_NUM_2GHZ_CHANNELS	14
191 #define IWM_N_HW_ADDR_MASK	0xF
192 
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198 	uint8_t rate;
199 	uint8_t plcp;
200 } iwm_rates[] = {
201 	{   2,	IWM_RATE_1M_PLCP  },
202 	{   4,	IWM_RATE_2M_PLCP  },
203 	{  11,	IWM_RATE_5M_PLCP  },
204 	{  22,	IWM_RATE_11M_PLCP },
205 	{  12,	IWM_RATE_6M_PLCP  },
206 	{  18,	IWM_RATE_9M_PLCP  },
207 	{  24,	IWM_RATE_12M_PLCP },
208 	{  36,	IWM_RATE_18M_PLCP },
209 	{  48,	IWM_RATE_24M_PLCP },
210 	{  72,	IWM_RATE_36M_PLCP },
211 	{  96,	IWM_RATE_48M_PLCP },
212 	{ 108,	IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK	0
215 #define IWM_RIDX_OFDM	4
216 #define IWM_RIDX_MAX	(nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219 
220 struct iwm_nvm_section {
221 	uint16_t length;
222 	uint8_t *data;
223 };
224 
225 static int	iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int	iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int	iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void	iwm_fw_info_free(struct iwm_fw_info *);
231 static int	iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void	iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int	iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void	iwm_dma_contig_free(struct iwm_dma_info *);
236 static int	iwm_alloc_fwmem(struct iwm_softc *);
237 static int	iwm_alloc_sched(struct iwm_softc *);
238 static int	iwm_alloc_kw(struct iwm_softc *);
239 static int	iwm_alloc_ict(struct iwm_softc *);
240 static int	iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void	iwm_disable_rx_dma(struct iwm_softc *);
242 static void	iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void	iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int	iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void	iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void	iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void	iwm_enable_interrupts(struct iwm_softc *);
249 static void	iwm_restore_interrupts(struct iwm_softc *);
250 static void	iwm_disable_interrupts(struct iwm_softc *);
251 static void	iwm_ict_reset(struct iwm_softc *);
252 static int	iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void	iwm_stop_device(struct iwm_softc *);
254 static void	iwm_mvm_nic_config(struct iwm_softc *);
255 static int	iwm_nic_rx_init(struct iwm_softc *);
256 static int	iwm_nic_tx_init(struct iwm_softc *);
257 static int	iwm_nic_init(struct iwm_softc *);
258 static int	iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int	iwm_post_alive(struct iwm_softc *);
260 static int	iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int	iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263 				     uint16_t *, size_t);
264 static uint32_t	iwm_eeprom_channel_flags(uint16_t);
265 static void	iwm_add_channel_band(struct iwm_softc *,
266 		    struct ieee80211_channel[], int, int *, int, size_t,
267 		    const uint8_t[]);
268 static void	iwm_init_channel_map(struct ieee80211com *, int, int *,
269 		    struct ieee80211_channel[]);
270 static int	iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271 				   const uint16_t *, const uint16_t *,
272 				   const uint16_t *, const uint16_t *,
273 				   const uint16_t *);
274 static void	iwm_set_hw_address_8000(struct iwm_softc *,
275 					struct iwm_nvm_data *,
276 					const uint16_t *, const uint16_t *);
277 static int	iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278 			    const uint16_t *);
279 static int	iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int	iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281 				  const uint16_t *);
282 static int	iwm_get_n_hw_addrs(const struct iwm_softc *,
283 				   const uint16_t *);
284 static void	iwm_set_radio_cfg(const struct iwm_softc *,
285 				  struct iwm_nvm_data *, uint32_t);
286 static int	iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int	iwm_nvm_init(struct iwm_softc *);
289 static int	iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int	iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int	iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int	iwm_load_cpu_sections_8000(struct iwm_softc *,
295 					   struct iwm_fw_sects *, int , int *);
296 static int	iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int	iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int	iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int	iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int	iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int	iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int	iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int	iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int	iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int	iwm_mvm_get_signal_strength(struct iwm_softc *,
307 					    struct iwm_rx_phy_info *);
308 static void	iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int	iwm_get_noise(struct iwm_softc *sc,
312 		    const struct iwm_mvm_statistics_rx_non_phy *);
313 static void	iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int	iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317 				         struct iwm_node *);
318 static void	iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void	iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void	iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326 	iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327 			struct mbuf *, struct iwm_tx_cmd *);
328 static int	iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int	iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331 			     const struct ieee80211_bpf_params *);
332 static int	iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333 				      uint32_t tfd_msk, uint32_t flags);
334 static int	iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335 					        struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int	iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int	iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int	iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int	iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343 				           const uint8_t *, uint16_t, uint16_t);
344 static int	iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int	iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int	iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int	iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int	iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350 		iwm_node_alloc(struct ieee80211vap *,
351 		               const uint8_t[IEEE80211_ADDR_LEN]);
352 static void	iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int	iwm_media_change(struct ifnet *);
354 static int	iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void	iwm_endscan_cb(void *, int);
356 static void	iwm_mvm_fill_sf_command(struct iwm_softc *,
357 					struct iwm_sf_cfg_cmd *,
358 					struct ieee80211_node *);
359 static int	iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int	iwm_send_bt_init_conf(struct iwm_softc *);
361 static int	iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void	iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int	iwm_init_hw(struct iwm_softc *);
364 static void	iwm_init(struct iwm_softc *);
365 static void	iwm_start(struct iwm_softc *);
366 static void	iwm_stop(struct iwm_softc *);
367 static void	iwm_watchdog(void *);
368 static void	iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371 		iwm_desc_lookup(uint32_t);
372 static void	iwm_nic_error(struct iwm_softc *);
373 static void	iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void	iwm_notif_intr(struct iwm_softc *);
376 static void	iwm_intr(void *);
377 static int	iwm_attach(device_t);
378 static int	iwm_is_valid_ether_addr(uint8_t *);
379 static void	iwm_preinit(void *);
380 static int	iwm_detach_local(struct iwm_softc *sc, int);
381 static void	iwm_init_task(void *);
382 static void	iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384 		iwm_vap_create(struct ieee80211com *,
385 		               const char [IFNAMSIZ], int,
386 		               enum ieee80211_opmode, int,
387 		               const uint8_t [IEEE80211_ADDR_LEN],
388 		               const uint8_t [IEEE80211_ADDR_LEN]);
389 static void	iwm_vap_delete(struct ieee80211vap *);
390 static void	iwm_scan_start(struct ieee80211com *);
391 static void	iwm_scan_end(struct ieee80211com *);
392 static void	iwm_update_mcast(struct ieee80211com *);
393 static void	iwm_set_channel(struct ieee80211com *);
394 static void	iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void	iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int	iwm_detach(device_t);
397 
398 /*
399  * Firmware parser.
400  */
401 
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405 	const struct iwm_fw_cscheme_list *l = (const void *)data;
406 
407 	if (dlen < sizeof(*l) ||
408 	    dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409 		return EINVAL;
410 
411 	/* we don't actually store anything for now, always use s/w crypto */
412 
413 	return 0;
414 }
415 
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420 	struct iwm_fw_sects *fws;
421 	struct iwm_fw_onesect *fwone;
422 
423 	if (type >= IWM_UCODE_TYPE_MAX)
424 		return EINVAL;
425 	if (dlen < sizeof(uint32_t))
426 		return EINVAL;
427 
428 	fws = &sc->sc_fw.fw_sects[type];
429 	if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430 		return EINVAL;
431 
432 	fwone = &fws->fw_sect[fws->fw_count];
433 
434 	/* first 32bit are device load offset */
435 	memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436 
437 	/* rest is data */
438 	fwone->fws_data = data + sizeof(uint32_t);
439 	fwone->fws_len = dlen - sizeof(uint32_t);
440 
441 	fws->fw_count++;
442 
443 	return 0;
444 }
445 
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447 
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450 	uint32_t ucode_type;
451 	struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453 
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457 	const struct iwm_tlv_calib_data *def_calib = data;
458 	uint32_t ucode_type = le32toh(def_calib->ucode_type);
459 
460 	if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461 		device_printf(sc->sc_dev,
462 		    "Wrong ucode_type %u for default "
463 		    "calibration.\n", ucode_type);
464 		return EINVAL;
465 	}
466 
467 	sc->sc_default_calib[ucode_type].flow_trigger =
468 	    def_calib->calib.flow_trigger;
469 	sc->sc_default_calib[ucode_type].event_trigger =
470 	    def_calib->calib.event_trigger;
471 
472 	return 0;
473 }
474 
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478 	firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479 	fw->fw_fp = NULL;
480 	/* don't touch fw->fw_status */
481 	memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483 
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487 	struct iwm_fw_info *fw = &sc->sc_fw;
488 	const struct iwm_tlv_ucode_header *uhdr;
489 	struct iwm_ucode_tlv tlv;
490 	enum iwm_ucode_tlv_type tlv_type;
491 	const struct firmware *fwp;
492 	const uint8_t *data;
493 	int error = 0;
494 	size_t len;
495 
496 	if (fw->fw_status == IWM_FW_STATUS_DONE &&
497 	    ucode_type != IWM_UCODE_TYPE_INIT)
498 		return 0;
499 
500 	while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501 		msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502 	fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503 
504 	if (fw->fw_fp != NULL)
505 		iwm_fw_info_free(fw);
506 
507 	/*
508 	 * Load firmware into driver memory.
509 	 * fw_fp will be set.
510 	 */
511 	IWM_UNLOCK(sc);
512 	fwp = firmware_get(sc->sc_fwname);
513 	IWM_LOCK(sc);
514 	if (fwp == NULL) {
515 		device_printf(sc->sc_dev,
516 		    "could not read firmware %s (error %d)\n",
517 		    sc->sc_fwname, error);
518 		goto out;
519 	}
520 	fw->fw_fp = fwp;
521 
522 	/* (Re-)Initialize default values. */
523 	sc->sc_capaflags = 0;
524 	sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525 	memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526 	memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527 
528 	/*
529 	 * Parse firmware contents
530 	 */
531 
532 	uhdr = (const void *)fw->fw_fp->data;
533 	if (*(const uint32_t *)fw->fw_fp->data != 0
534 	    || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535 		device_printf(sc->sc_dev, "invalid firmware %s\n",
536 		    sc->sc_fwname);
537 		error = EINVAL;
538 		goto out;
539 	}
540 
541 	snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542 	    IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543 	    IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544 	    IWM_UCODE_API(le32toh(uhdr->ver)));
545 	data = uhdr->data;
546 	len = fw->fw_fp->datasize - sizeof(*uhdr);
547 
548 	while (len >= sizeof(tlv)) {
549 		size_t tlv_len;
550 		const void *tlv_data;
551 
552 		memcpy(&tlv, data, sizeof(tlv));
553 		tlv_len = le32toh(tlv.length);
554 		tlv_type = le32toh(tlv.type);
555 
556 		len -= sizeof(tlv);
557 		data += sizeof(tlv);
558 		tlv_data = data;
559 
560 		if (len < tlv_len) {
561 			device_printf(sc->sc_dev,
562 			    "firmware too short: %zu bytes\n",
563 			    len);
564 			error = EINVAL;
565 			goto parse_out;
566 		}
567 
568 		switch ((int)tlv_type) {
569 		case IWM_UCODE_TLV_PROBE_MAX_LEN:
570 			if (tlv_len < sizeof(uint32_t)) {
571 				device_printf(sc->sc_dev,
572 				    "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573 				    __func__,
574 				    (int) tlv_len);
575 				error = EINVAL;
576 				goto parse_out;
577 			}
578 			sc->sc_capa_max_probe_len
579 			    = le32toh(*(const uint32_t *)tlv_data);
580 			/* limit it to something sensible */
581 			if (sc->sc_capa_max_probe_len >
582 			    IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583 				IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584 				    "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585 				    "ridiculous\n", __func__);
586 				error = EINVAL;
587 				goto parse_out;
588 			}
589 			break;
590 		case IWM_UCODE_TLV_PAN:
591 			if (tlv_len) {
592 				device_printf(sc->sc_dev,
593 				    "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594 				    __func__,
595 				    (int) tlv_len);
596 				error = EINVAL;
597 				goto parse_out;
598 			}
599 			sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600 			break;
601 		case IWM_UCODE_TLV_FLAGS:
602 			if (tlv_len < sizeof(uint32_t)) {
603 				device_printf(sc->sc_dev,
604 				    "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605 				    __func__,
606 				    (int) tlv_len);
607 				error = EINVAL;
608 				goto parse_out;
609 			}
610 			/*
611 			 * Apparently there can be many flags, but Linux driver
612 			 * parses only the first one, and so do we.
613 			 *
614 			 * XXX: why does this override IWM_UCODE_TLV_PAN?
615 			 * Intentional or a bug?  Observations from
616 			 * current firmware file:
617 			 *  1) TLV_PAN is parsed first
618 			 *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619 			 * ==> this resets TLV_PAN to itself... hnnnk
620 			 */
621 			sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622 			break;
623 		case IWM_UCODE_TLV_CSCHEME:
624 			if ((error = iwm_store_cscheme(sc,
625 			    tlv_data, tlv_len)) != 0) {
626 				device_printf(sc->sc_dev,
627 				    "%s: iwm_store_cscheme(): returned %d\n",
628 				    __func__,
629 				    error);
630 				goto parse_out;
631 			}
632 			break;
633 		case IWM_UCODE_TLV_NUM_OF_CPU: {
634 			uint32_t num_cpu;
635 			if (tlv_len != sizeof(uint32_t)) {
636 				device_printf(sc->sc_dev,
637 				    "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638 				    __func__,
639 				    (int) tlv_len);
640 				error = EINVAL;
641 				goto parse_out;
642 			}
643 			num_cpu = le32toh(*(const uint32_t *)tlv_data);
644 			if (num_cpu < 1 || num_cpu > 2) {
645 				device_printf(sc->sc_dev,
646 				    "%s: Driver supports only 1 or 2 CPUs\n",
647 				    __func__);
648 				error = EINVAL;
649 				goto parse_out;
650 			}
651 			break;
652 		}
653 		case IWM_UCODE_TLV_SEC_RT:
654 			if ((error = iwm_firmware_store_section(sc,
655 			    IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656 				device_printf(sc->sc_dev,
657 				    "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658 				    __func__,
659 				    error);
660 				goto parse_out;
661 			}
662 			break;
663 		case IWM_UCODE_TLV_SEC_INIT:
664 			if ((error = iwm_firmware_store_section(sc,
665 			    IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666 				device_printf(sc->sc_dev,
667 				    "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668 				    __func__,
669 				    error);
670 				goto parse_out;
671 			}
672 			break;
673 		case IWM_UCODE_TLV_SEC_WOWLAN:
674 			if ((error = iwm_firmware_store_section(sc,
675 			    IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676 				device_printf(sc->sc_dev,
677 				    "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678 				    __func__,
679 				    error);
680 				goto parse_out;
681 			}
682 			break;
683 		case IWM_UCODE_TLV_DEF_CALIB:
684 			if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685 				device_printf(sc->sc_dev,
686 				    "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687 				    __func__,
688 				    (int) tlv_len,
689 				    (int) sizeof(struct iwm_tlv_calib_data));
690 				error = EINVAL;
691 				goto parse_out;
692 			}
693 			if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694 				device_printf(sc->sc_dev,
695 				    "%s: iwm_set_default_calib() failed: %d\n",
696 				    __func__,
697 				    error);
698 				goto parse_out;
699 			}
700 			break;
701 		case IWM_UCODE_TLV_PHY_SKU:
702 			if (tlv_len != sizeof(uint32_t)) {
703 				error = EINVAL;
704 				device_printf(sc->sc_dev,
705 				    "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706 				    __func__,
707 				    (int) tlv_len);
708 				goto parse_out;
709 			}
710 			sc->sc_fw_phy_config =
711 			    le32toh(*(const uint32_t *)tlv_data);
712 			break;
713 
714 		case IWM_UCODE_TLV_API_CHANGES_SET: {
715 			const struct iwm_ucode_api *api;
716 			if (tlv_len != sizeof(*api)) {
717 				error = EINVAL;
718 				goto parse_out;
719 			}
720 			api = (const struct iwm_ucode_api *)tlv_data;
721 			/* Flags may exceed 32 bits in future firmware. */
722 			if (le32toh(api->api_index) > 0) {
723 				device_printf(sc->sc_dev,
724 				    "unsupported API index %d\n",
725 				    le32toh(api->api_index));
726 				goto parse_out;
727 			}
728 			sc->sc_ucode_api = le32toh(api->api_flags);
729 			break;
730 		}
731 
732 		case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733 			const struct iwm_ucode_capa *capa;
734 			int idx, i;
735 			if (tlv_len != sizeof(*capa)) {
736 				error = EINVAL;
737 				goto parse_out;
738 			}
739 			capa = (const struct iwm_ucode_capa *)tlv_data;
740 			idx = le32toh(capa->api_index);
741 			if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742 				device_printf(sc->sc_dev,
743 				    "unsupported API index %d\n", idx);
744 				goto parse_out;
745 			}
746 			for (i = 0; i < 32; i++) {
747 				if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748 					continue;
749 				setbit(sc->sc_enabled_capa, i + (32 * idx));
750 			}
751 			break;
752 		}
753 
754 		case 48: /* undocumented TLV */
755 		case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756 		case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757 			/* ignore, not used by current driver */
758 			break;
759 
760 		case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761 			if ((error = iwm_firmware_store_section(sc,
762 			    IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763 			    tlv_len)) != 0)
764 				goto parse_out;
765 			break;
766 
767 		case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768 			if (tlv_len != sizeof(uint32_t)) {
769 				error = EINVAL;
770 				goto parse_out;
771 			}
772 			sc->sc_capa_n_scan_channels =
773 			  le32toh(*(const uint32_t *)tlv_data);
774 			break;
775 
776 		case IWM_UCODE_TLV_FW_VERSION:
777 			if (tlv_len != sizeof(uint32_t) * 3) {
778 				error = EINVAL;
779 				goto parse_out;
780 			}
781 			snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782 			    "%d.%d.%d",
783 			    le32toh(((const uint32_t *)tlv_data)[0]),
784 			    le32toh(((const uint32_t *)tlv_data)[1]),
785 			    le32toh(((const uint32_t *)tlv_data)[2]));
786 			break;
787 
788 		default:
789 			device_printf(sc->sc_dev,
790 			    "%s: unknown firmware section %d, abort\n",
791 			    __func__, tlv_type);
792 			error = EINVAL;
793 			goto parse_out;
794 		}
795 
796 		len -= roundup(tlv_len, 4);
797 		data += roundup(tlv_len, 4);
798 	}
799 
800 	KASSERT(error == 0, ("unhandled error"));
801 
802  parse_out:
803 	if (error) {
804 		device_printf(sc->sc_dev, "firmware parse error %d, "
805 		    "section type %d\n", error, tlv_type);
806 	}
807 
808 	if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809 		device_printf(sc->sc_dev,
810 		    "device uses unsupported power ops\n");
811 		error = ENOTSUP;
812 	}
813 
814  out:
815 	if (error) {
816 		fw->fw_status = IWM_FW_STATUS_NONE;
817 		if (fw->fw_fp != NULL)
818 			iwm_fw_info_free(fw);
819 	} else
820 		fw->fw_status = IWM_FW_STATUS_DONE;
821 	wakeup(&sc->sc_fw);
822 
823 	return error;
824 }
825 
826 /*
827  * DMA resource routines
828  */
829 
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843 	int error;
844 
845 	dma->tag = NULL;
846 	dma->map = NULL;
847 	dma->size = size;
848 	dma->vaddr = NULL;
849 
850 	error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855 
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860 
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865 		dma->vaddr = NULL;
866 		goto fail;
867 	}
868 
869 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870 
871 	return 0;
872 
873 fail:
874 	iwm_dma_contig_free(dma);
875 
876 	return error;
877 }
878 
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882 	if (dma->vaddr != NULL) {
883 		bus_dmamap_sync(dma->tag, dma->map,
884 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885 		bus_dmamap_unload(dma->tag, dma->map);
886 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887 		dma->vaddr = NULL;
888 	}
889 	if (dma->tag != NULL) {
890 		bus_dma_tag_destroy(dma->tag);
891 		dma->tag = NULL;
892 	}
893 }
894 
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899 	/* Must be aligned on a 16-byte boundary. */
900 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901 	    sc->sc_fwdmasegsz, 16);
902 }
903 
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908 	/* TX scheduler rings must be aligned on a 1KB boundary. */
909 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910 	    nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912 
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919 
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924 	return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925 	    IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927 
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931 	bus_size_t size;
932 	int i, error;
933 
934 	ring->cur = 0;
935 
936 	/* Allocate RX descriptors (256-byte aligned). */
937 	size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939 	if (error != 0) {
940 		device_printf(sc->sc_dev,
941 		    "could not allocate RX ring DMA memory\n");
942 		goto fail;
943 	}
944 	ring->desc = ring->desc_dma.vaddr;
945 
946 	/* Allocate RX status area (16-byte aligned). */
947 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948 	    sizeof(*ring->stat), 16);
949 	if (error != 0) {
950 		device_printf(sc->sc_dev,
951 		    "could not allocate RX status DMA memory\n");
952 		goto fail;
953 	}
954 	ring->stat = ring->stat_dma.vaddr;
955 
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966 
967 	/* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968 	error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not create RX buf DMA map, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 	/*
976 	 * Allocate and map RX buffers.
977 	 */
978 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979 		struct iwm_rx_data *data = &ring->data[i];
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: could not create RX buf DMA map, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		data->m = NULL;
988 
989 		if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990 			goto fail;
991 		}
992 	}
993 	return 0;
994 
995 fail:	iwm_free_rx_ring(sc, ring);
996 	return error;
997 }
998 
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002 	/* XXX conditional nic locks are stupid */
1003 	/* XXX print out if we can't lock the NIC? */
1004 	if (iwm_nic_lock(sc)) {
1005 		/* XXX handle if RX stop doesn't finish? */
1006 		(void) iwm_pcie_rx_stop(sc);
1007 		iwm_nic_unlock(sc);
1008 	}
1009 }
1010 
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014 	/* Reset the ring state */
1015 	ring->cur = 0;
1016 
1017 	/*
1018 	 * The hw rx ring index in shared memory must also be cleared,
1019 	 * otherwise the discrepancy can cause reprocessing chaos.
1020 	 */
1021 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023 
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027 	int i;
1028 
1029 	iwm_dma_contig_free(&ring->desc_dma);
1030 	iwm_dma_contig_free(&ring->stat_dma);
1031 
1032 	for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033 		struct iwm_rx_data *data = &ring->data[i];
1034 
1035 		if (data->m != NULL) {
1036 			bus_dmamap_sync(ring->data_dmat, data->map,
1037 			    BUS_DMASYNC_POSTREAD);
1038 			bus_dmamap_unload(ring->data_dmat, data->map);
1039 			m_freem(data->m);
1040 			data->m = NULL;
1041 		}
1042 		if (data->map != NULL) {
1043 			bus_dmamap_destroy(ring->data_dmat, data->map);
1044 			data->map = NULL;
1045 		}
1046 	}
1047 	if (ring->spare_map != NULL) {
1048 		bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049 		ring->spare_map = NULL;
1050 	}
1051 	if (ring->data_dmat != NULL) {
1052 		bus_dma_tag_destroy(ring->data_dmat);
1053 		ring->data_dmat = NULL;
1054 	}
1055 }
1056 
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060 	bus_addr_t paddr;
1061 	bus_size_t size;
1062 	size_t maxsize;
1063 	int nsegments;
1064 	int i, error;
1065 
1066 	ring->qid = qid;
1067 	ring->queued = 0;
1068 	ring->cur = 0;
1069 
1070 	/* Allocate TX descriptors (256-byte aligned). */
1071 	size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073 	if (error != 0) {
1074 		device_printf(sc->sc_dev,
1075 		    "could not allocate TX ring DMA memory\n");
1076 		goto fail;
1077 	}
1078 	ring->desc = ring->desc_dma.vaddr;
1079 
1080 	/*
1081 	 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082 	 * to allocate commands space for other rings.
1083 	 */
1084 	if (qid > IWM_MVM_CMD_QUEUE)
1085 		return 0;
1086 
1087 	size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088 	error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate TX cmd DMA memory\n");
1092 		goto fail;
1093 	}
1094 	ring->cmd = ring->cmd_dma.vaddr;
1095 
1096 	/* FW commands may require more mapped space than packets. */
1097 	if (qid == IWM_MVM_CMD_QUEUE) {
1098 		maxsize = IWM_RBUF_SIZE;
1099 		nsegments = 1;
1100 	} else {
1101 		maxsize = MCLBYTES;
1102 		nsegments = IWM_MAX_SCATTER - 2;
1103 	}
1104 
1105 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108 	if (error != 0) {
1109 		device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110 		goto fail;
1111 	}
1112 
1113 	paddr = ring->cmd_dma.paddr;
1114 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115 		struct iwm_tx_data *data = &ring->data[i];
1116 
1117 		data->cmd_paddr = paddr;
1118 		data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119 		    + offsetof(struct iwm_tx_cmd, scratch);
1120 		paddr += sizeof(struct iwm_device_cmd);
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create TX buf DMA map\n");
1126 			goto fail;
1127 		}
1128 	}
1129 	KASSERT(paddr == ring->cmd_dma.paddr + size,
1130 	    ("invalid physical address"));
1131 	return 0;
1132 
1133 fail:	iwm_free_tx_ring(sc, ring);
1134 	return error;
1135 }
1136 
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143 		struct iwm_tx_data *data = &ring->data[i];
1144 
1145 		if (data->m != NULL) {
1146 			bus_dmamap_sync(ring->data_dmat, data->map,
1147 			    BUS_DMASYNC_POSTWRITE);
1148 			bus_dmamap_unload(ring->data_dmat, data->map);
1149 			m_freem(data->m);
1150 			data->m = NULL;
1151 		}
1152 	}
1153 	/* Clear TX descriptors. */
1154 	memset(ring->desc, 0, ring->desc_dma.size);
1155 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156 	    BUS_DMASYNC_PREWRITE);
1157 	sc->qfullmsk &= ~(1 << ring->qid);
1158 	ring->queued = 0;
1159 	ring->cur = 0;
1160 }
1161 
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165 	int i;
1166 
1167 	iwm_dma_contig_free(&ring->desc_dma);
1168 	iwm_dma_contig_free(&ring->cmd_dma);
1169 
1170 	for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171 		struct iwm_tx_data *data = &ring->data[i];
1172 
1173 		if (data->m != NULL) {
1174 			bus_dmamap_sync(ring->data_dmat, data->map,
1175 			    BUS_DMASYNC_POSTWRITE);
1176 			bus_dmamap_unload(ring->data_dmat, data->map);
1177 			m_freem(data->m);
1178 			data->m = NULL;
1179 		}
1180 		if (data->map != NULL) {
1181 			bus_dmamap_destroy(ring->data_dmat, data->map);
1182 			data->map = NULL;
1183 		}
1184 	}
1185 	if (ring->data_dmat != NULL) {
1186 		bus_dma_tag_destroy(ring->data_dmat);
1187 		ring->data_dmat = NULL;
1188 	}
1189 }
1190 
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194 
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198 	sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201 
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205 	IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207 
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211 	/* disable interrupts */
1212 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213 
1214 	/* acknowledge all interrupts */
1215 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216 	IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218 
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222 	iwm_disable_interrupts(sc);
1223 
1224 	/* Reset ICT table. */
1225 	memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226 	sc->ict_cur = 0;
1227 
1228 	/* Set physical address of ICT table (4KB aligned). */
1229 	IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230 	    IWM_CSR_DRAM_INT_TBL_ENABLE
1231 	    | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232 	    | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233 	    | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234 
1235 	/* Switch to ICT interrupt mode in driver. */
1236 	sc->sc_flags |= IWM_FLAG_USE_ICT;
1237 
1238 	/* Re-enable interrupts. */
1239 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240 	iwm_enable_interrupts(sc);
1241 }
1242 
1243 /* iwlwifi pcie/trans.c */
1244 
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257 	int chnl, qid;
1258 	uint32_t mask = 0;
1259 
1260 	/* tell the device to stop sending interrupts */
1261 	iwm_disable_interrupts(sc);
1262 
1263 	/*
1264 	 * FreeBSD-local: mark the first vap as not-uploaded,
1265 	 * so the next transition through auth/assoc
1266 	 * will correctly populate the MAC context.
1267 	 */
1268 	if (vap) {
1269 		struct iwm_vap *iv = IWM_VAP(vap);
1270 		iv->is_uploaded = 0;
1271 	}
1272 
1273 	/* device going down, Stop using ICT table */
1274 	sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275 
1276 	/* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277 
1278 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279 
1280 	if (iwm_nic_lock(sc)) {
1281 		/* Stop each Tx DMA channel */
1282 		for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283 			IWM_WRITE(sc,
1284 			    IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285 			mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286 		}
1287 
1288 		/* Wait for DMA channels to be idle */
1289 		if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290 		    5000)) {
1291 			device_printf(sc->sc_dev,
1292 			    "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293 			    IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294 		}
1295 		iwm_nic_unlock(sc);
1296 	}
1297 	iwm_disable_rx_dma(sc);
1298 
1299 	/* Stop RX ring. */
1300 	iwm_reset_rx_ring(sc, &sc->rxq);
1301 
1302 	/* Reset all TX rings. */
1303 	for (qid = 0; qid < nitems(sc->txq); qid++)
1304 		iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305 
1306 	/*
1307 	 * Power-down device's busmaster DMA clocks
1308 	 */
1309 	iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310 	DELAY(5);
1311 
1312 	/* Make sure (redundant) we've released our request to stay awake */
1313 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315 
1316 	/* Stop the device, and put it in low power state */
1317 	iwm_apm_stop(sc);
1318 
1319 	/* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320 	 * Clean again the interrupt here
1321 	 */
1322 	iwm_disable_interrupts(sc);
1323 	/* stop and reset the on-board processor */
1324 	IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325 
1326 	/*
1327 	 * Even if we stop the HW, we still want the RF kill
1328 	 * interrupt
1329 	 */
1330 	iwm_enable_rfkill_int(sc);
1331 	iwm_check_rfkill(sc);
1332 }
1333 
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338 	uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339 	uint32_t reg_val = 0;
1340 
1341 	radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342 	    IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343 	radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344 	    IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345 	radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346 	    IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347 
1348 	/* SKU control */
1349 	reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351 	reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352 	    IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353 
1354 	/* radio configuration */
1355 	reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356 	reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357 	reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358 
1359 	IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360 
1361 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362 	    "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363 	    radio_cfg_step, radio_cfg_dash);
1364 
1365 	/*
1366 	 * W/A : NIC is stuck in a reset state after Early PCIe power off
1367 	 * (PCIe power is lost before PERST# is asserted), causing ME FW
1368 	 * to lose ownership and not being able to obtain it back.
1369 	 */
1370 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371 		iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372 		    IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373 		    ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374 	}
1375 }
1376 
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380 	if (!iwm_nic_lock(sc))
1381 		return EBUSY;
1382 
1383 	/*
1384 	 * Initialize RX ring.  This is from the iwn driver.
1385 	 */
1386 	memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387 
1388 	/* stop DMA */
1389 	iwm_disable_rx_dma(sc);
1390 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394 
1395 	/* Set physical address of RX ring (256-byte aligned). */
1396 	IWM_WRITE(sc,
1397 	    IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398 
1399 	/* Set physical address of RX status (16-byte aligned). */
1400 	IWM_WRITE(sc,
1401 	    IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402 
1403 	/* Enable RX. */
1404 	IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405 	    IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL		|
1406 	    IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY		|  /* HW bug */
1407 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL	|
1408 	    IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK	|
1409 	    (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410 	    IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K		|
1411 	    IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412 
1413 	IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414 
1415 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
1416 	if (sc->host_interrupt_operation_mode)
1417 		IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418 
1419 	/*
1420 	 * Thus sayeth el jefe (iwlwifi) via a comment:
1421 	 *
1422 	 * This value should initially be 0 (before preparing any
1423 	 * RBs), should be 8 after preparing the first 8 RBs (for example)
1424 	 */
1425 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426 
1427 	iwm_nic_unlock(sc);
1428 
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435 	int qid;
1436 
1437 	if (!iwm_nic_lock(sc))
1438 		return EBUSY;
1439 
1440 	/* Deactivate TX scheduler. */
1441 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442 
1443 	/* Set physical address of "keep warm" page (16-byte aligned). */
1444 	IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445 
1446 	/* Initialize TX rings. */
1447 	for (qid = 0; qid < nitems(sc->txq); qid++) {
1448 		struct iwm_tx_ring *txq = &sc->txq[qid];
1449 
1450 		/* Set physical address of TX ring (256-byte aligned). */
1451 		IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452 		    txq->desc_dma.paddr >> 8);
1453 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454 		    "%s: loading ring %d descriptors (%p) at %lx\n",
1455 		    __func__,
1456 		    qid, txq->desc,
1457 		    (unsigned long) (txq->desc_dma.paddr >> 8));
1458 	}
1459 
1460 	iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461 
1462 	iwm_nic_unlock(sc);
1463 
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470 	int error;
1471 
1472 	iwm_apm_init(sc);
1473 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474 		iwm_set_pwr(sc);
1475 
1476 	iwm_mvm_nic_config(sc);
1477 
1478 	if ((error = iwm_nic_rx_init(sc)) != 0)
1479 		return error;
1480 
1481 	/*
1482 	 * Ditto for TX, from iwn
1483 	 */
1484 	if ((error = iwm_nic_tx_init(sc)) != 0)
1485 		return error;
1486 
1487 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488 	    "%s: shadow registers enabled\n", __func__);
1489 	IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490 
1491 	return 0;
1492 }
1493 
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495 	IWM_MVM_TX_FIFO_VO,
1496 	IWM_MVM_TX_FIFO_VI,
1497 	IWM_MVM_TX_FIFO_BE,
1498 	IWM_MVM_TX_FIFO_BK,
1499 };
1500 
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504 	if (!iwm_nic_lock(sc)) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: cannot enable txq %d\n",
1507 		    __func__,
1508 		    qid);
1509 		return EBUSY;
1510 	}
1511 
1512 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513 
1514 	if (qid == IWM_MVM_CMD_QUEUE) {
1515 		/* unactivate before configuration */
1516 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517 		    (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518 		    | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519 
1520 		iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521 
1522 		iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523 
1524 		iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525 		/* Set scheduler window size and frame limit. */
1526 		iwm_write_mem32(sc,
1527 		    sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528 		    sizeof(uint32_t),
1529 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530 		    IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531 		    ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532 		    IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533 
1534 		iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536 		    (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537 		    (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538 		    IWM_SCD_QUEUE_STTS_REG_MSK);
1539 	} else {
1540 		struct iwm_scd_txq_cfg_cmd cmd;
1541 		int error;
1542 
1543 		iwm_nic_unlock(sc);
1544 
1545 		memset(&cmd, 0, sizeof(cmd));
1546 		cmd.scd_queue = qid;
1547 		cmd.enable = 1;
1548 		cmd.sta_id = sta_id;
1549 		cmd.tx_fifo = fifo;
1550 		cmd.aggregate = 0;
1551 		cmd.window = IWM_FRAME_LIMIT;
1552 
1553 		error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554 		    sizeof(cmd), &cmd);
1555 		if (error) {
1556 			device_printf(sc->sc_dev,
1557 			    "cannot enable txq %d\n", qid);
1558 			return error;
1559 		}
1560 
1561 		if (!iwm_nic_lock(sc))
1562 			return EBUSY;
1563 	}
1564 
1565 	iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566 	    iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567 
1568 	iwm_nic_unlock(sc);
1569 
1570 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571 	    __func__, qid, fifo);
1572 
1573 	return 0;
1574 }
1575 
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579 	int nwords;
1580 	int error, chnl;
1581 	uint32_t base;
1582 
1583 	if (!iwm_nic_lock(sc))
1584 		return EBUSY;
1585 
1586 	base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587 	if (sc->sched_base != base) {
1588 		device_printf(sc->sc_dev,
1589 		    "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590 		    __func__, sc->sched_base, base);
1591 	}
1592 
1593 	iwm_ict_reset(sc);
1594 
1595 	/* Clear TX scheduler state in SRAM. */
1596 	nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597 	    IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598 	    / sizeof(uint32_t);
1599 	error = iwm_write_mem(sc,
1600 	    sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601 	    NULL, nwords);
1602 	if (error)
1603 		goto out;
1604 
1605 	/* Set physical address of TX scheduler rings (1KB aligned). */
1606 	iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607 
1608 	iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609 
1610 	iwm_nic_unlock(sc);
1611 
1612 	/* enable command channel */
1613 	error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614 	if (error)
1615 		return error;
1616 
1617 	if (!iwm_nic_lock(sc))
1618 		return EBUSY;
1619 
1620 	iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621 
1622 	/* Enable DMA channels. */
1623 	for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624 		IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626 		    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627 	}
1628 
1629 	IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630 	    IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631 
1632 	/* Enable L1-Active */
1633 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634 		iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635 		    IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636 	}
1637 
1638  out:
1639 	iwm_nic_unlock(sc);
1640 	return error;
1641 }
1642 
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648 
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651 	IWM_NVM_SECTION_TYPE_HW,
1652 	IWM_NVM_SECTION_TYPE_SW,
1653 	IWM_NVM_SECTION_TYPE_REGULATORY,
1654 	IWM_NVM_SECTION_TYPE_CALIBRATION,
1655 	IWM_NVM_SECTION_TYPE_PRODUCTION,
1656 	IWM_NVM_SECTION_TYPE_HW_8000,
1657 	IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658 	IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660 
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE	(2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE	8192
1664 
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667 
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED		0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS	1
1671 
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674 	uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676 	offset = 0;
1677 	struct iwm_nvm_access_cmd nvm_access_cmd = {
1678 		.offset = htole16(offset),
1679 		.length = htole16(length),
1680 		.type = htole16(section),
1681 		.op_code = IWM_NVM_READ_OPCODE,
1682 	};
1683 	struct iwm_nvm_access_resp *nvm_resp;
1684 	struct iwm_rx_packet *pkt;
1685 	struct iwm_host_cmd cmd = {
1686 		.id = IWM_NVM_ACCESS_CMD,
1687 		.flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688 		    IWM_CMD_SEND_IN_RFKILL,
1689 		.data = { &nvm_access_cmd, },
1690 	};
1691 	int ret, offset_read;
1692 	size_t bytes_read;
1693 	uint8_t *resp_data;
1694 
1695 	cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696 
1697 	ret = iwm_send_cmd(sc, &cmd);
1698 	if (ret) {
1699 		device_printf(sc->sc_dev,
1700 		    "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	pkt = cmd.resp_pkt;
1705 	if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706 		device_printf(sc->sc_dev,
1707 		    "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708 		    pkt->hdr.flags);
1709 		ret = EIO;
1710 		goto exit;
1711 	}
1712 
1713 	/* Extract NVM response */
1714 	nvm_resp = (void *)pkt->data;
1715 
1716 	ret = le16toh(nvm_resp->status);
1717 	bytes_read = le16toh(nvm_resp->length);
1718 	offset_read = le16toh(nvm_resp->offset);
1719 	resp_data = nvm_resp->data;
1720 	if (ret) {
1721 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722 		    "NVM access command failed with status %d\n", ret);
1723 		ret = EINVAL;
1724 		goto exit;
1725 	}
1726 
1727 	if (offset_read != offset) {
1728 		device_printf(sc->sc_dev,
1729 		    "NVM ACCESS response with invalid offset %d\n",
1730 		    offset_read);
1731 		ret = EINVAL;
1732 		goto exit;
1733 	}
1734 
1735 	if (bytes_read > length) {
1736 		device_printf(sc->sc_dev,
1737 		    "NVM ACCESS response with too much data "
1738 		    "(%d bytes requested, %zd bytes received)\n",
1739 		    length, bytes_read);
1740 		ret = EINVAL;
1741 		goto exit;
1742 	}
1743 
1744 	memcpy(data + offset, resp_data, bytes_read);
1745 	*len = bytes_read;
1746 
1747  exit:
1748 	iwm_free_resp(sc, &cmd);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764 	uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766 	uint16_t chunklen, seglen;
1767 	int error = 0;
1768 
1769 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770 	    "reading NVM section %d\n", section);
1771 
1772 	chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773 	*len = 0;
1774 
1775 	/* Read NVM chunks until exhausted (reading less than requested) */
1776 	while (seglen == chunklen && *len < max_len) {
1777 		error = iwm_nvm_read_chunk(sc,
1778 		    section, *len, chunklen, data, &seglen);
1779 		if (error) {
1780 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781 			    "Cannot read from NVM section "
1782 			    "%d at offset %d\n", section, *len);
1783 			return error;
1784 		}
1785 		*len += seglen;
1786 	}
1787 
1788 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789 	    "NVM section %d read completed (%d bytes, error=%d)\n",
1790 	    section, *len, error);
1791 	return error;
1792 }
1793 
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797 
1798 /* iwlwifi/iwl-nvm-parse.c */
1799 
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802 	/* NVM HW-Section offset (in words) definitions */
1803 	IWM_HW_ADDR = 0x15,
1804 
1805 /* NVM SW-Section offset (in words) definitions */
1806 	IWM_NVM_SW_SECTION = 0x1C0,
1807 	IWM_NVM_VERSION = 0,
1808 	IWM_RADIO_CFG = 1,
1809 	IWM_SKU = 2,
1810 	IWM_N_HW_ADDRS = 3,
1811 	IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812 
1813 /* NVM calibration section offset (in words) definitions */
1814 	IWM_NVM_CALIB_SECTION = 0x2B8,
1815 	IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817 
1818 enum iwm_8000_nvm_offsets {
1819 	/* NVM HW-Section offset (in words) definitions */
1820 	IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821 	IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822 	IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823 	IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824 	IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825 
1826 	/* NVM SW-Section offset (in words) definitions */
1827 	IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828 	IWM_NVM_VERSION_8000 = 0,
1829 	IWM_RADIO_CFG_8000 = 0,
1830 	IWM_SKU_8000 = 2,
1831 	IWM_N_HW_ADDRS_8000 = 3,
1832 
1833 	/* NVM REGULATORY -Section offset (in words) definitions */
1834 	IWM_NVM_CHANNELS_8000 = 0,
1835 	IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836 	IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837 	IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838 
1839 	/* NVM calibration section offset (in words) definitions */
1840 	IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841 	IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843 
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846 	IWM_NVM_SKU_CAP_BAND_24GHZ	= (1 << 0),
1847 	IWM_NVM_SKU_CAP_BAND_52GHZ	= (1 << 1),
1848 	IWM_NVM_SKU_CAP_11N_ENABLE	= (1 << 2),
1849 	IWM_NVM_SKU_CAP_11AC_ENABLE	= (1 << 3),
1850 };
1851 
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859 
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)	(x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)		((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)		((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)		((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)	((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)	((x >> 28) & 0xF)
1866 
1867 #define DEFAULT_MAX_TX_POWER 16
1868 
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883 	IWM_NVM_CHANNEL_VALID = (1 << 0),
1884 	IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885 	IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886 	IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887 	IWM_NVM_CHANNEL_DFS = (1 << 7),
1888 	IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889 	IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890 	IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891 	IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893 
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900 	uint32_t nflags;
1901 
1902 	nflags = 0;
1903 	if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904 		nflags |= IEEE80211_CHAN_PASSIVE;
1905 	if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906 		nflags |= IEEE80211_CHAN_NOADHOC;
1907 	if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908 		nflags |= IEEE80211_CHAN_DFS;
1909 		/* Just in case. */
1910 		nflags |= IEEE80211_CHAN_NOADHOC;
1911 	}
1912 
1913 	return (nflags);
1914 }
1915 
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921 	const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922 	uint32_t nflags;
1923 	uint16_t ch_flags;
1924 	uint8_t ieee;
1925 	int error;
1926 
1927 	for (; ch_idx < ch_num; ch_idx++) {
1928 		ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930 			ieee = iwm_nvm_channels[ch_idx];
1931 		else
1932 			ieee = iwm_nvm_channels_8000[ch_idx];
1933 
1934 		if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935 			IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936 			    "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937 			    ieee, ch_flags,
1938 			    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939 			    "5.2" : "2.4");
1940 			continue;
1941 		}
1942 
1943 		nflags = iwm_eeprom_channel_flags(ch_flags);
1944 		error = ieee80211_add_channel(chans, maxchans, nchans,
1945 		    ieee, 0, 0, nflags, bands);
1946 		if (error != 0)
1947 			break;
1948 
1949 		IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950 		    "Ch. %d Flags %x [%sGHz] - Added\n",
1951 		    ieee, ch_flags,
1952 		    (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953 		    "5.2" : "2.4");
1954 	}
1955 }
1956 
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961 	struct iwm_softc *sc = ic->ic_softc;
1962 	struct iwm_nvm_data *data = &sc->sc_nvm;
1963 	uint8_t bands[IEEE80211_MODE_BYTES];
1964 	size_t ch_num;
1965 
1966 	memset(bands, 0, sizeof(bands));
1967 	/* 1-13: 11b/g channels. */
1968 	setbit(bands, IEEE80211_MODE_11B);
1969 	setbit(bands, IEEE80211_MODE_11G);
1970 	iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971 	    IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972 
1973 	/* 14: 11b channel only. */
1974 	clrbit(bands, IEEE80211_MODE_11G);
1975 	iwm_add_channel_band(sc, chans, maxchans, nchans,
1976 	    IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977 
1978 	if (data->sku_cap_band_52GHz_enable) {
1979 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980 			ch_num = nitems(iwm_nvm_channels);
1981 		else
1982 			ch_num = nitems(iwm_nvm_channels_8000);
1983 		memset(bands, 0, sizeof(bands));
1984 		setbit(bands, IEEE80211_MODE_11A);
1985 		iwm_add_channel_band(sc, chans, maxchans, nchans,
1986 		    IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987 	}
1988 }
1989 
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992 	const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994 	const uint8_t *hw_addr;
1995 
1996 	if (mac_override) {
1997 		static const uint8_t reserved_mac[] = {
1998 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999 		};
2000 
2001 		hw_addr = (const uint8_t *)(mac_override +
2002 				 IWM_MAC_ADDRESS_OVERRIDE_8000);
2003 
2004 		/*
2005 		 * Store the MAC address from MAO section.
2006 		 * No byte swapping is required in MAO section
2007 		 */
2008 		IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009 
2010 		/*
2011 		 * Force the use of the OTP MAC address in case of reserved MAC
2012 		 * address in the NVM, or if address is given but invalid.
2013 		 */
2014 		if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015 		    !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016 		    iwm_is_valid_ether_addr(data->hw_addr) &&
2017 		    !IEEE80211_IS_MULTICAST(data->hw_addr))
2018 			return;
2019 
2020 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021 		    "%s: mac address from nvm override section invalid\n",
2022 		    __func__);
2023 	}
2024 
2025 	if (nvm_hw) {
2026 		/* read the mac address from WFMP registers */
2027 		uint32_t mac_addr0 =
2028 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029 		uint32_t mac_addr1 =
2030 		    htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031 
2032 		hw_addr = (const uint8_t *)&mac_addr0;
2033 		data->hw_addr[0] = hw_addr[3];
2034 		data->hw_addr[1] = hw_addr[2];
2035 		data->hw_addr[2] = hw_addr[1];
2036 		data->hw_addr[3] = hw_addr[0];
2037 
2038 		hw_addr = (const uint8_t *)&mac_addr1;
2039 		data->hw_addr[4] = hw_addr[1];
2040 		data->hw_addr[5] = hw_addr[0];
2041 
2042 		return;
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046 	memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048 
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051 	    const uint16_t *phy_sku)
2052 {
2053 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054 		return le16_to_cpup(nvm_sw + IWM_SKU);
2055 
2056 	return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058 
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063 		return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064 	else
2065 		return le32_to_cpup((const uint32_t *)(nvm_sw +
2066 						IWM_NVM_VERSION_8000));
2067 }
2068 
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071 		  const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075 
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078 
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082 	int n_hw_addr;
2083 
2084 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085 		return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086 
2087 	n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088 
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091 
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094 		  uint32_t radio_cfg)
2095 {
2096 	if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097 		data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098 		data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099 		data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100 		data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101 		return;
2102 	}
2103 
2104 	/* set the radio configuration for family 8000 */
2105 	data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106 	data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107 	data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108 	data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109 	data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110 	data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112 
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115 		   const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116 		   const uint16_t *nvm_calib, const uint16_t *mac_override,
2117 		   const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119 	struct iwm_nvm_data *data = &sc->sc_nvm;
2120 	uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121 	uint32_t sku, radio_cfg;
2122 
2123 	data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124 
2125 	radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126 	iwm_set_radio_cfg(sc, data, radio_cfg);
2127 
2128 	sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129 	data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130 	data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131 	data->sku_cap_11n_enable = 0;
2132 
2133 	data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134 
2135 	/* The byte order is little endian 16 bit, meaning 214365 */
2136 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137 		IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138 		data->hw_addr[0] = hw_addr[1];
2139 		data->hw_addr[1] = hw_addr[0];
2140 		data->hw_addr[2] = hw_addr[3];
2141 		data->hw_addr[3] = hw_addr[2];
2142 		data->hw_addr[4] = hw_addr[5];
2143 		data->hw_addr[5] = hw_addr[4];
2144 	} else {
2145 		iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146 	}
2147 
2148 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149 		memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150 		    IWM_NUM_CHANNELS * sizeof(uint16_t));
2151 	} else {
2152 		memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153 		    IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 /*
2160  * END NVM PARSE
2161  */
2162 
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166 	const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167 
2168 	/* Checking for required sections */
2169 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171 		    !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172 			device_printf(sc->sc_dev,
2173 			    "Can't parse empty OTP/NVM sections\n");
2174 			return ENOENT;
2175 		}
2176 
2177 		hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178 	} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179 		/* SW and REGULATORY sections are mandatory */
2180 		if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181 		    !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182 			device_printf(sc->sc_dev,
2183 			    "Can't parse empty OTP/NVM sections\n");
2184 			return ENOENT;
2185 		}
2186 		/* MAC_OVERRIDE or at least HW section must exist */
2187 		if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188 		    !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189 			device_printf(sc->sc_dev,
2190 			    "Can't parse mac_address, empty sections\n");
2191 			return ENOENT;
2192 		}
2193 
2194 		/* PHY_SKU section is mandatory in B0 */
2195 		if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196 			device_printf(sc->sc_dev,
2197 			    "Can't parse phy_sku in B0, empty sections\n");
2198 			return ENOENT;
2199 		}
2200 
2201 		hw = (const uint16_t *)
2202 		    sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203 	} else {
2204 		panic("unknown device family %d\n", sc->sc_device_family);
2205 	}
2206 
2207 	sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208 	calib = (const uint16_t *)
2209 	    sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210 	regulatory = (const uint16_t *)
2211 	    sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212 	mac_override = (const uint16_t *)
2213 	    sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214 	phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215 
2216 	return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217 	    phy_sku, regulatory);
2218 }
2219 
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223 	struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224 	int i, section, error;
2225 	uint16_t len;
2226 	uint8_t *buf;
2227 	const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228 
2229 	memset(nvm_sections, 0 , sizeof(nvm_sections));
2230 
2231 	buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232 	if (buf == NULL)
2233 		return ENOMEM;
2234 
2235 	for (i = 0; i < nitems(nvm_to_read); i++) {
2236 		section = nvm_to_read[i];
2237 		KASSERT(section <= nitems(nvm_sections),
2238 		    ("too many sections"));
2239 
2240 		error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241 		if (error) {
2242 			error = 0;
2243 			continue;
2244 		}
2245 		nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246 		if (nvm_sections[section].data == NULL) {
2247 			error = ENOMEM;
2248 			break;
2249 		}
2250 		memcpy(nvm_sections[section].data, buf, len);
2251 		nvm_sections[section].length = len;
2252 	}
2253 	free(buf, M_DEVBUF);
2254 	if (error == 0)
2255 		error = iwm_parse_nvm_sections(sc, nvm_sections);
2256 
2257 	for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258 		if (nvm_sections[i].data != NULL)
2259 			free(nvm_sections[i].data, M_DEVBUF);
2260 	}
2261 
2262 	return error;
2263 }
2264 
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269 
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272 	const uint8_t *section, uint32_t byte_cnt)
2273 {
2274 	int error = EINVAL;
2275 	uint32_t chunk_sz, offset;
2276 
2277 	chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278 
2279 	for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280 		uint32_t addr, len;
2281 		const uint8_t *data;
2282 
2283 		addr = dst_addr + offset;
2284 		len = MIN(chunk_sz, byte_cnt - offset);
2285 		data = section + offset;
2286 
2287 		error = iwm_firmware_load_chunk(sc, addr, data, len);
2288 		if (error)
2289 			break;
2290 	}
2291 
2292 	return error;
2293 }
2294 
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297 	const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299 	struct iwm_dma_info *dma = &sc->fw_dma;
2300 	int error;
2301 
2302 	/* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303 	memcpy(dma->vaddr, chunk, byte_cnt);
2304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305 
2306 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307 	    dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308 		iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310 	}
2311 
2312 	sc->sc_fw_chunk_done = 0;
2313 
2314 	if (!iwm_nic_lock(sc))
2315 		return EBUSY;
2316 
2317 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319 	IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320 	    dst_addr);
2321 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322 	    dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323 	IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324 	    (iwm_get_dma_hi_addr(dma->paddr)
2325 	      << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328 	    1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329 	    IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330 	IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333 	    IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334 
2335 	iwm_nic_unlock(sc);
2336 
2337 	/* wait 1s for this segment to load */
2338 	while (!sc->sc_fw_chunk_done)
2339 		if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340 			break;
2341 
2342 	if (!sc->sc_fw_chunk_done) {
2343 		device_printf(sc->sc_dev,
2344 		    "fw chunk addr 0x%x len %d failed to load\n",
2345 		    dst_addr, byte_cnt);
2346 	}
2347 
2348 	if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349 	    dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350 		iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351 		    IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352 		iwm_nic_unlock(sc);
2353 	}
2354 
2355 	return error;
2356 }
2357 
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362 	int shift_param;
2363 	int i, error = 0, sec_num = 0x1;
2364 	uint32_t val, last_read_idx = 0;
2365 	const void *data;
2366 	uint32_t dlen;
2367 	uint32_t offset;
2368 
2369 	if (cpu == 1) {
2370 		shift_param = 0;
2371 		*first_ucode_section = 0;
2372 	} else {
2373 		shift_param = 16;
2374 		(*first_ucode_section)++;
2375 	}
2376 
2377 	for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378 		last_read_idx = i;
2379 		data = fws->fw_sect[i].fws_data;
2380 		dlen = fws->fw_sect[i].fws_len;
2381 		offset = fws->fw_sect[i].fws_devoff;
2382 
2383 		/*
2384 		 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385 		 * CPU1 to CPU2.
2386 		 * PAGING_SEPARATOR_SECTION delimiter - separate between
2387 		 * CPU2 non paged to CPU2 paging sec.
2388 		 */
2389 		if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390 		    offset == IWM_PAGING_SEPARATOR_SECTION)
2391 			break;
2392 
2393 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394 		    "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395 		    i, offset, dlen, cpu);
2396 
2397 		if (dlen > sc->sc_fwdmasegsz) {
2398 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399 			    "chunk %d too large (%d bytes)\n", i, dlen);
2400 			error = EFBIG;
2401 		} else {
2402 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403 		}
2404 		if (error) {
2405 			device_printf(sc->sc_dev,
2406 			    "could not load firmware chunk %d (error %d)\n",
2407 			    i, error);
2408 			return error;
2409 		}
2410 
2411 		/* Notify the ucode of the loaded section number and status */
2412 		if (iwm_nic_lock(sc)) {
2413 			val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414 			val = val | (sec_num << shift_param);
2415 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416 			sec_num = (sec_num << 1) | 0x1;
2417 			iwm_nic_unlock(sc);
2418 
2419 			/*
2420 			 * The firmware won't load correctly without this delay.
2421 			 */
2422 			DELAY(8000);
2423 		}
2424 	}
2425 
2426 	*first_ucode_section = last_read_idx;
2427 
2428 	if (iwm_nic_lock(sc)) {
2429 		if (cpu == 1)
2430 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431 		else
2432 			IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433 		iwm_nic_unlock(sc);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442 	struct iwm_fw_sects *fws;
2443 	int error = 0;
2444 	int first_ucode_section;
2445 
2446 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447 	    ucode_type);
2448 
2449 	fws = &sc->sc_fw.fw_sects[ucode_type];
2450 
2451 	/* configure the ucode to be ready to get the secured image */
2452 	/* release CPU reset */
2453 	iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454 
2455 	/* load to FW the binary Secured sections of CPU1 */
2456 	error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457 	if (error)
2458 		return error;
2459 
2460 	/* load to FW the binary sections of CPU2 */
2461 	return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463 
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467 	struct iwm_fw_sects *fws;
2468 	int error, i;
2469 	const void *data;
2470 	uint32_t dlen;
2471 	uint32_t offset;
2472 
2473 	sc->sc_uc.uc_intr = 0;
2474 
2475 	fws = &sc->sc_fw.fw_sects[ucode_type];
2476 	for (i = 0; i < fws->fw_count; i++) {
2477 		data = fws->fw_sect[i].fws_data;
2478 		dlen = fws->fw_sect[i].fws_len;
2479 		offset = fws->fw_sect[i].fws_devoff;
2480 		IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481 		    "LOAD FIRMWARE type %d offset %u len %d\n",
2482 		    ucode_type, offset, dlen);
2483 		if (dlen > sc->sc_fwdmasegsz) {
2484 			IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485 			    "chunk %d too large (%d bytes)\n", i, dlen);
2486 			error = EFBIG;
2487 		} else {
2488 			error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489 		}
2490 		if (error) {
2491 			device_printf(sc->sc_dev,
2492 			    "could not load firmware chunk %u of %u "
2493 			    "(error=%d)\n", i, fws->fw_count, error);
2494 			return error;
2495 		}
2496 	}
2497 
2498 	IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499 
2500 	return 0;
2501 }
2502 
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506 	int error, w;
2507 
2508 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509 		error = iwm_load_firmware_8000(sc, ucode_type);
2510 	else
2511 		error = iwm_load_firmware_7000(sc, ucode_type);
2512 	if (error)
2513 		return error;
2514 
2515 	/* wait for the firmware to load */
2516 	for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517 		error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518 	}
2519 	if (error || !sc->sc_uc.uc_ok) {
2520 		device_printf(sc->sc_dev, "could not load firmware\n");
2521 		if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522 			device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523 			    iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524 			device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525 			    iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * Give the firmware some time to initialize.
2531 	 * Accessing it too early causes errors.
2532 	 */
2533 	msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534 
2535 	return error;
2536 }
2537 
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542 	int error;
2543 
2544 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545 
2546 	if ((error = iwm_nic_init(sc)) != 0) {
2547 		device_printf(sc->sc_dev, "unable to init nic\n");
2548 		return error;
2549 	}
2550 
2551 	/* make sure rfkill handshake bits are cleared */
2552 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554 	    IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555 
2556 	/* clear (again), then enable host interrupts */
2557 	IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558 	iwm_enable_interrupts(sc);
2559 
2560 	/* really make sure rfkill handshake bits are cleared */
2561 	/* maybe we should write a few times more?  just to make sure */
2562 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563 	IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564 
2565 	/* Load the given image to the HW */
2566 	return iwm_load_firmware(sc, ucode_type);
2567 }
2568 
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572 	struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573 		.valid = htole32(valid_tx_ant),
2574 	};
2575 
2576 	return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577 	    IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579 
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584 	struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585 	enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586 
2587 	/* Set parameters */
2588 	phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589 	phy_cfg_cmd.calib_control.event_trigger =
2590 	    sc->sc_default_calib[ucode_type].event_trigger;
2591 	phy_cfg_cmd.calib_control.flow_trigger =
2592 	    sc->sc_default_calib[ucode_type].flow_trigger;
2593 
2594 	IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595 	    "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596 	return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597 	    sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599 
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602 	enum iwm_ucode_type ucode_type)
2603 {
2604 	enum iwm_ucode_type old_type = sc->sc_uc_current;
2605 	int error;
2606 
2607 	if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608 		device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609 			error);
2610 		return error;
2611 	}
2612 
2613 	sc->sc_uc_current = ucode_type;
2614 	error = iwm_start_fw(sc, ucode_type);
2615 	if (error) {
2616 		device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617 		sc->sc_uc_current = old_type;
2618 		return error;
2619 	}
2620 
2621 	error = iwm_post_alive(sc);
2622 	if (error) {
2623 		device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624 	}
2625 	return error;
2626 }
2627 
2628 /*
2629  * mvm misc bits
2630  */
2631 
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638 	int error;
2639 
2640 	/* do not operate with rfkill switch turned on */
2641 	if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642 		device_printf(sc->sc_dev,
2643 		    "radio is disabled by hardware switch\n");
2644 		return EPERM;
2645 	}
2646 
2647 	sc->sc_init_complete = 0;
2648 	if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649 	    IWM_UCODE_TYPE_INIT)) != 0) {
2650 		device_printf(sc->sc_dev, "failed to load init firmware\n");
2651 		return error;
2652 	}
2653 
2654 	if (justnvm) {
2655 		if ((error = iwm_nvm_init(sc)) != 0) {
2656 			device_printf(sc->sc_dev, "failed to read nvm\n");
2657 			return error;
2658 		}
2659 		IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660 
2661 		return 0;
2662 	}
2663 
2664 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665 		device_printf(sc->sc_dev,
2666 		    "failed to send bt coex configuration: %d\n", error);
2667 		return error;
2668 	}
2669 
2670 	/* Init Smart FIFO. */
2671 	error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2676 	    "%s: phy_txant=0x%08x, nvm_valid_tx_ant=0x%02x, valid=0x%02x\n",
2677 	    __func__,
2678 	    ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
2679 	      >> IWM_FW_PHY_CFG_TX_CHAIN_POS),
2680 	    sc->sc_nvm.valid_tx_ant,
2681 	    iwm_fw_valid_tx_ant(sc));
2682 
2683 
2684 	/* Send TX valid antennas before triggering calibrations */
2685 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2686 		device_printf(sc->sc_dev,
2687 		    "failed to send antennas before calibration: %d\n", error);
2688 		return error;
2689 	}
2690 
2691 	/*
2692 	 * Send phy configurations command to init uCode
2693 	 * to start the 16.0 uCode init image internal calibrations.
2694 	 */
2695 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2696 		device_printf(sc->sc_dev,
2697 		    "%s: failed to run internal calibration: %d\n",
2698 		    __func__, error);
2699 		return error;
2700 	}
2701 
2702 	/*
2703 	 * Nothing to do but wait for the init complete notification
2704 	 * from the firmware
2705 	 */
2706 	while (!sc->sc_init_complete) {
2707 		error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2708 				 0, "iwminit", 2*hz);
2709 		if (error) {
2710 			device_printf(sc->sc_dev, "init complete failed: %d\n",
2711 				sc->sc_init_complete);
2712 			break;
2713 		}
2714 	}
2715 
2716 	IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2717 	    sc->sc_init_complete ? "" : "not ");
2718 
2719 	return error;
2720 }
2721 
2722 /*
2723  * receive side
2724  */
2725 
2726 /* (re)stock rx ring, called at init-time and at runtime */
2727 static int
2728 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2729 {
2730 	struct iwm_rx_ring *ring = &sc->rxq;
2731 	struct iwm_rx_data *data = &ring->data[idx];
2732 	struct mbuf *m;
2733 	bus_dmamap_t dmamap = NULL;
2734 	bus_dma_segment_t seg;
2735 	int nsegs, error;
2736 
2737 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2738 	if (m == NULL)
2739 		return ENOBUFS;
2740 
2741 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2742 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2743 	    &seg, &nsegs, BUS_DMA_NOWAIT);
2744 	if (error != 0) {
2745 		device_printf(sc->sc_dev,
2746 		    "%s: can't map mbuf, error %d\n", __func__, error);
2747 		goto fail;
2748 	}
2749 
2750 	if (data->m != NULL)
2751 		bus_dmamap_unload(ring->data_dmat, data->map);
2752 
2753 	/* Swap ring->spare_map with data->map */
2754 	dmamap = data->map;
2755 	data->map = ring->spare_map;
2756 	ring->spare_map = dmamap;
2757 
2758 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2759 	data->m = m;
2760 
2761 	/* Update RX descriptor. */
2762 	KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2763 	ring->desc[idx] = htole32(seg.ds_addr >> 8);
2764 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 	    BUS_DMASYNC_PREWRITE);
2766 
2767 	return 0;
2768 fail:
2769 	m_freem(m);
2770 	return error;
2771 }
2772 
2773 /* iwlwifi: mvm/rx.c */
2774 #define IWM_RSSI_OFFSET 50
2775 static int
2776 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2777 {
2778 	int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2779 	uint32_t agc_a, agc_b;
2780 	uint32_t val;
2781 
2782 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2783 	agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2784 	agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2785 
2786 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2787 	rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2788 	rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2789 
2790 	/*
2791 	 * dBm = rssi dB - agc dB - constant.
2792 	 * Higher AGC (higher radio gain) means lower signal.
2793 	 */
2794 	rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2795 	rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2796 	max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2797 
2798 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2799 	    "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2800 	    rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2801 
2802 	return max_rssi_dbm;
2803 }
2804 
2805 /* iwlwifi: mvm/rx.c */
2806 /*
2807  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2808  * values are reported by the fw as positive values - need to negate
2809  * to obtain their dBM.  Account for missing antennas by replacing 0
2810  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2811  */
2812 static int
2813 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2814 {
2815 	int energy_a, energy_b, energy_c, max_energy;
2816 	uint32_t val;
2817 
2818 	val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2819 	energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2820 	    IWM_RX_INFO_ENERGY_ANT_A_POS;
2821 	energy_a = energy_a ? -energy_a : -256;
2822 	energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2823 	    IWM_RX_INFO_ENERGY_ANT_B_POS;
2824 	energy_b = energy_b ? -energy_b : -256;
2825 	energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2826 	    IWM_RX_INFO_ENERGY_ANT_C_POS;
2827 	energy_c = energy_c ? -energy_c : -256;
2828 	max_energy = MAX(energy_a, energy_b);
2829 	max_energy = MAX(max_energy, energy_c);
2830 
2831 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2832 	    "energy In A %d B %d C %d , and max %d\n",
2833 	    energy_a, energy_b, energy_c, max_energy);
2834 
2835 	return max_energy;
2836 }
2837 
2838 static void
2839 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2840 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2841 {
2842 	struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2843 
2844 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2845 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2846 
2847 	memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2848 }
2849 
2850 /*
2851  * Retrieve the average noise (in dBm) among receivers.
2852  */
2853 static int
2854 iwm_get_noise(struct iwm_softc *sc,
2855     const struct iwm_mvm_statistics_rx_non_phy *stats)
2856 {
2857 	int i, total, nbant, noise;
2858 
2859 	total = nbant = noise = 0;
2860 	for (i = 0; i < 3; i++) {
2861 		noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2862 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2863 		    __func__,
2864 		    i,
2865 		    noise);
2866 
2867 		if (noise) {
2868 			total += noise;
2869 			nbant++;
2870 		}
2871 	}
2872 
2873 	IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2874 	    __func__, nbant, total);
2875 #if 0
2876 	/* There should be at least one antenna but check anyway. */
2877 	return (nbant == 0) ? -127 : (total / nbant) - 107;
2878 #else
2879 	/* For now, just hard-code it to -96 to be safe */
2880 	return (-96);
2881 #endif
2882 }
2883 
2884 /*
2885  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2886  *
2887  * Handles the actual data of the Rx packet from the fw
2888  */
2889 static void
2890 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2891 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2892 {
2893 	struct ieee80211com *ic = &sc->sc_ic;
2894 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2895 	struct ieee80211_frame *wh;
2896 	struct ieee80211_node *ni;
2897 	struct ieee80211_rx_stats rxs;
2898 	struct mbuf *m;
2899 	struct iwm_rx_phy_info *phy_info;
2900 	struct iwm_rx_mpdu_res_start *rx_res;
2901 	uint32_t len;
2902 	uint32_t rx_pkt_status;
2903 	int rssi;
2904 
2905 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2906 
2907 	phy_info = &sc->sc_last_phy_info;
2908 	rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2909 	wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2910 	len = le16toh(rx_res->byte_count);
2911 	rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2912 
2913 	m = data->m;
2914 	m->m_data = pkt->data + sizeof(*rx_res);
2915 	m->m_pkthdr.len = m->m_len = len;
2916 
2917 	if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2918 		device_printf(sc->sc_dev,
2919 		    "dsp size out of range [0,20]: %d\n",
2920 		    phy_info->cfg_phy_cnt);
2921 		goto fail;
2922 	}
2923 
2924 	if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2925 	    !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2926 		IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2927 		    "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2928 		goto fail;
2929 	}
2930 
2931 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2932 		rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2933 	} else {
2934 		rssi = iwm_mvm_calc_rssi(sc, phy_info);
2935 	}
2936 
2937 	/* Note: RSSI is absolute (ie a -ve value) */
2938 	if (rssi < IWM_MIN_DBM)
2939 		rssi = IWM_MIN_DBM;
2940 	else if (rssi > IWM_MAX_DBM)
2941 		rssi = IWM_MAX_DBM;
2942 
2943 	/* Map it to relative value */
2944 	rssi = rssi - sc->sc_noise;
2945 
2946 	/* replenish ring for the buffer we're going to feed to the sharks */
2947 	if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2948 		device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2949 		    __func__);
2950 		goto fail;
2951 	}
2952 
2953 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2954 	    "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2955 
2956 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2957 
2958 	IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2959 	    "%s: phy_info: channel=%d, flags=0x%08x\n",
2960 	    __func__,
2961 	    le16toh(phy_info->channel),
2962 	    le16toh(phy_info->phy_flags));
2963 
2964 	/*
2965 	 * Populate an RX state struct with the provided information.
2966 	 */
2967 	bzero(&rxs, sizeof(rxs));
2968 	rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2969 	rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2970 	rxs.c_ieee = le16toh(phy_info->channel);
2971 	if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2972 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2973 	} else {
2974 		rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2975 	}
2976 
2977 	/* rssi is in 1/2db units */
2978 	rxs.c_rssi = rssi * 2;
2979 	rxs.c_nf = sc->sc_noise;
2980 
2981 	if (ieee80211_radiotap_active_vap(vap)) {
2982 		struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2983 
2984 		tap->wr_flags = 0;
2985 		if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2986 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2987 		tap->wr_chan_freq = htole16(rxs.c_freq);
2988 		/* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2989 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2990 		tap->wr_dbm_antsignal = (int8_t)rssi;
2991 		tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2992 		tap->wr_tsft = phy_info->system_timestamp;
2993 		switch (phy_info->rate) {
2994 		/* CCK rates. */
2995 		case  10: tap->wr_rate =   2; break;
2996 		case  20: tap->wr_rate =   4; break;
2997 		case  55: tap->wr_rate =  11; break;
2998 		case 110: tap->wr_rate =  22; break;
2999 		/* OFDM rates. */
3000 		case 0xd: tap->wr_rate =  12; break;
3001 		case 0xf: tap->wr_rate =  18; break;
3002 		case 0x5: tap->wr_rate =  24; break;
3003 		case 0x7: tap->wr_rate =  36; break;
3004 		case 0x9: tap->wr_rate =  48; break;
3005 		case 0xb: tap->wr_rate =  72; break;
3006 		case 0x1: tap->wr_rate =  96; break;
3007 		case 0x3: tap->wr_rate = 108; break;
3008 		/* Unknown rate: should not happen. */
3009 		default:  tap->wr_rate =   0;
3010 		}
3011 	}
3012 
3013 	IWM_UNLOCK(sc);
3014 	if (ni != NULL) {
3015 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3016 		ieee80211_input_mimo(ni, m, &rxs);
3017 		ieee80211_free_node(ni);
3018 	} else {
3019 		IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3020 		ieee80211_input_mimo_all(ic, m, &rxs);
3021 	}
3022 	IWM_LOCK(sc);
3023 
3024 	return;
3025 
3026 fail:	counter_u64_add(ic->ic_ierrors, 1);
3027 }
3028 
3029 static int
3030 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3031 	struct iwm_node *in)
3032 {
3033 	struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3034 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3035 	struct ieee80211_node *ni = &in->in_ni;
3036 	int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3037 
3038 	KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3039 
3040 	/* Update rate control statistics. */
3041 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3042 	    __func__,
3043 	    (int) le16toh(tx_resp->status.status),
3044 	    (int) le16toh(tx_resp->status.sequence),
3045 	    tx_resp->frame_count,
3046 	    tx_resp->bt_kill_count,
3047 	    tx_resp->failure_rts,
3048 	    tx_resp->failure_frame,
3049 	    le32toh(tx_resp->initial_rate),
3050 	    (int) le16toh(tx_resp->wireless_media_time));
3051 
3052 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3053 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3054 	txs->short_retries = tx_resp->failure_rts;
3055 	txs->long_retries = tx_resp->failure_frame;
3056 	if (status != IWM_TX_STATUS_SUCCESS &&
3057 	    status != IWM_TX_STATUS_DIRECT_DONE) {
3058 		switch (status) {
3059 		case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3060 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3061 			break;
3062 		case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3063 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3064 			break;
3065 		case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3066 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3067 			break;
3068 		default:
3069 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3070 			break;
3071 		}
3072 	} else {
3073 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3074 	}
3075 	ieee80211_ratectl_tx_complete(ni, txs);
3076 
3077 	return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3078 }
3079 
3080 static void
3081 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3082 	struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3083 {
3084 	struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3085 	int idx = cmd_hdr->idx;
3086 	int qid = cmd_hdr->qid;
3087 	struct iwm_tx_ring *ring = &sc->txq[qid];
3088 	struct iwm_tx_data *txd = &ring->data[idx];
3089 	struct iwm_node *in = txd->in;
3090 	struct mbuf *m = txd->m;
3091 	int status;
3092 
3093 	KASSERT(txd->done == 0, ("txd not done"));
3094 	KASSERT(txd->in != NULL, ("txd without node"));
3095 	KASSERT(txd->m != NULL, ("txd without mbuf"));
3096 
3097 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3098 
3099 	sc->sc_tx_timer = 0;
3100 
3101 	status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3102 
3103 	/* Unmap and free mbuf. */
3104 	bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3105 	bus_dmamap_unload(ring->data_dmat, txd->map);
3106 
3107 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3108 	    "free txd %p, in %p\n", txd, txd->in);
3109 	txd->done = 1;
3110 	txd->m = NULL;
3111 	txd->in = NULL;
3112 
3113 	ieee80211_tx_complete(&in->in_ni, m, status);
3114 
3115 	if (--ring->queued < IWM_TX_RING_LOMARK) {
3116 		sc->qfullmsk &= ~(1 << ring->qid);
3117 		if (sc->qfullmsk == 0) {
3118 			/*
3119 			 * Well, we're in interrupt context, but then again
3120 			 * I guess net80211 does all sorts of stunts in
3121 			 * interrupt context, so maybe this is no biggie.
3122 			 */
3123 			iwm_start(sc);
3124 		}
3125 	}
3126 }
3127 
3128 /*
3129  * transmit side
3130  */
3131 
3132 /*
3133  * Process a "command done" firmware notification.  This is where we wakeup
3134  * processes waiting for a synchronous command completion.
3135  * from if_iwn
3136  */
3137 static void
3138 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3139 {
3140 	struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3141 	struct iwm_tx_data *data;
3142 
3143 	if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3144 		return;	/* Not a command ack. */
3145 	}
3146 
3147 	/* XXX wide commands? */
3148 	IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3149 	    "cmd notification type 0x%x qid %d idx %d\n",
3150 	    pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3151 
3152 	data = &ring->data[pkt->hdr.idx];
3153 
3154 	/* If the command was mapped in an mbuf, free it. */
3155 	if (data->m != NULL) {
3156 		bus_dmamap_sync(ring->data_dmat, data->map,
3157 		    BUS_DMASYNC_POSTWRITE);
3158 		bus_dmamap_unload(ring->data_dmat, data->map);
3159 		m_freem(data->m);
3160 		data->m = NULL;
3161 	}
3162 	wakeup(&ring->desc[pkt->hdr.idx]);
3163 }
3164 
3165 #if 0
3166 /*
3167  * necessary only for block ack mode
3168  */
3169 void
3170 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3171 	uint16_t len)
3172 {
3173 	struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3174 	uint16_t w_val;
3175 
3176 	scd_bc_tbl = sc->sched_dma.vaddr;
3177 
3178 	len += 8; /* magic numbers came naturally from paris */
3179 	if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3180 		len = roundup(len, 4) / 4;
3181 
3182 	w_val = htole16(sta_id << 12 | len);
3183 
3184 	/* Update TX scheduler. */
3185 	scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3186 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3187 	    BUS_DMASYNC_PREWRITE);
3188 
3189 	/* I really wonder what this is ?!? */
3190 	if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3191 		scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3192 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3193 		    BUS_DMASYNC_PREWRITE);
3194 	}
3195 }
3196 #endif
3197 
3198 /*
3199  * Take an 802.11 (non-n) rate, find the relevant rate
3200  * table entry.  return the index into in_ridx[].
3201  *
3202  * The caller then uses that index back into in_ridx
3203  * to figure out the rate index programmed /into/
3204  * the firmware for this given node.
3205  */
3206 static int
3207 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3208     uint8_t rate)
3209 {
3210 	int i;
3211 	uint8_t r;
3212 
3213 	for (i = 0; i < nitems(in->in_ridx); i++) {
3214 		r = iwm_rates[in->in_ridx[i]].rate;
3215 		if (rate == r)
3216 			return (i);
3217 	}
3218 
3219 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3220 	    "%s: couldn't find an entry for rate=%d\n",
3221 	    __func__,
3222 	    rate);
3223 
3224 	/* XXX Return the first */
3225 	/* XXX TODO: have it return the /lowest/ */
3226 	return (0);
3227 }
3228 
3229 static int
3230 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3231 {
3232 	int i;
3233 
3234 	for (i = 0; i < nitems(iwm_rates); i++) {
3235 		if (iwm_rates[i].rate == rate)
3236 			return (i);
3237 	}
3238 	/* XXX error? */
3239 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3240 	    "%s: couldn't find an entry for rate=%d\n",
3241 	    __func__,
3242 	    rate);
3243 	return (0);
3244 }
3245 
3246 /*
3247  * Fill in the rate related information for a transmit command.
3248  */
3249 static const struct iwm_rate *
3250 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3251 	struct mbuf *m, struct iwm_tx_cmd *tx)
3252 {
3253 	struct ieee80211_node *ni = &in->in_ni;
3254 	struct ieee80211_frame *wh;
3255 	const struct ieee80211_txparam *tp = ni->ni_txparms;
3256 	const struct iwm_rate *rinfo;
3257 	int type;
3258 	int ridx, rate_flags;
3259 
3260 	wh = mtod(m, struct ieee80211_frame *);
3261 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3262 
3263 	tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3264 	tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3265 
3266 	if (type == IEEE80211_FC0_TYPE_MGT) {
3267 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3268 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3269 		    "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3270 	} else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3271 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3272 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3273 		    "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3274 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3275 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3276 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3277 		    "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3278 	} else if (m->m_flags & M_EAPOL) {
3279 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3280 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3281 		    "%s: EAPOL\n", __func__);
3282 	} else if (type == IEEE80211_FC0_TYPE_DATA) {
3283 		int i;
3284 
3285 		/* for data frames, use RS table */
3286 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3287 		/* XXX pass pktlen */
3288 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3289 		i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3290 		ridx = in->in_ridx[i];
3291 
3292 		/* This is the index into the programmed table */
3293 		tx->initial_rate_index = i;
3294 		tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3295 
3296 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3297 		    "%s: start with i=%d, txrate %d\n",
3298 		    __func__, i, iwm_rates[ridx].rate);
3299 	} else {
3300 		ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3301 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3302 		    __func__, tp->mgmtrate);
3303 	}
3304 
3305 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3306 	    "%s: frame type=%d txrate %d\n",
3307 	        __func__, type, iwm_rates[ridx].rate);
3308 
3309 	rinfo = &iwm_rates[ridx];
3310 
3311 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3312 	    __func__, ridx,
3313 	    rinfo->rate,
3314 	    !! (IWM_RIDX_IS_CCK(ridx))
3315 	    );
3316 
3317 	/* XXX TODO: hard-coded TX antenna? */
3318 	rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3319 	if (IWM_RIDX_IS_CCK(ridx))
3320 		rate_flags |= IWM_RATE_MCS_CCK_MSK;
3321 	tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3322 
3323 	return rinfo;
3324 }
3325 
3326 #define TB0_SIZE 16
3327 static int
3328 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3329 {
3330 	struct ieee80211com *ic = &sc->sc_ic;
3331 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3332 	struct iwm_node *in = IWM_NODE(ni);
3333 	struct iwm_tx_ring *ring;
3334 	struct iwm_tx_data *data;
3335 	struct iwm_tfd *desc;
3336 	struct iwm_device_cmd *cmd;
3337 	struct iwm_tx_cmd *tx;
3338 	struct ieee80211_frame *wh;
3339 	struct ieee80211_key *k = NULL;
3340 	struct mbuf *m1;
3341 	const struct iwm_rate *rinfo;
3342 	uint32_t flags;
3343 	u_int hdrlen;
3344 	bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3345 	int nsegs;
3346 	uint8_t tid, type;
3347 	int i, totlen, error, pad;
3348 
3349 	wh = mtod(m, struct ieee80211_frame *);
3350 	hdrlen = ieee80211_anyhdrsize(wh);
3351 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3352 	tid = 0;
3353 	ring = &sc->txq[ac];
3354 	desc = &ring->desc[ring->cur];
3355 	memset(desc, 0, sizeof(*desc));
3356 	data = &ring->data[ring->cur];
3357 
3358 	/* Fill out iwm_tx_cmd to send to the firmware */
3359 	cmd = &ring->cmd[ring->cur];
3360 	cmd->hdr.code = IWM_TX_CMD;
3361 	cmd->hdr.flags = 0;
3362 	cmd->hdr.qid = ring->qid;
3363 	cmd->hdr.idx = ring->cur;
3364 
3365 	tx = (void *)cmd->data;
3366 	memset(tx, 0, sizeof(*tx));
3367 
3368 	rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3369 
3370 	/* Encrypt the frame if need be. */
3371 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3372 		/* Retrieve key for TX && do software encryption. */
3373 		k = ieee80211_crypto_encap(ni, m);
3374 		if (k == NULL) {
3375 			m_freem(m);
3376 			return (ENOBUFS);
3377 		}
3378 		/* 802.11 header may have moved. */
3379 		wh = mtod(m, struct ieee80211_frame *);
3380 	}
3381 
3382 	if (ieee80211_radiotap_active_vap(vap)) {
3383 		struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3384 
3385 		tap->wt_flags = 0;
3386 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3387 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3388 		tap->wt_rate = rinfo->rate;
3389 		if (k != NULL)
3390 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3391 		ieee80211_radiotap_tx(vap, m);
3392 	}
3393 
3394 
3395 	totlen = m->m_pkthdr.len;
3396 
3397 	flags = 0;
3398 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3399 		flags |= IWM_TX_CMD_FLG_ACK;
3400 	}
3401 
3402 	if (type == IEEE80211_FC0_TYPE_DATA
3403 	    && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3404 	    && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3405 		flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3406 	}
3407 
3408 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3409 	    type != IEEE80211_FC0_TYPE_DATA)
3410 		tx->sta_id = sc->sc_aux_sta.sta_id;
3411 	else
3412 		tx->sta_id = IWM_STATION_ID;
3413 
3414 	if (type == IEEE80211_FC0_TYPE_MGT) {
3415 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3416 
3417 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3418 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3419 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3420 		} else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3421 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3422 		} else {
3423 			tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3424 		}
3425 	} else {
3426 		tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3427 	}
3428 
3429 	if (hdrlen & 3) {
3430 		/* First segment length must be a multiple of 4. */
3431 		flags |= IWM_TX_CMD_FLG_MH_PAD;
3432 		pad = 4 - (hdrlen & 3);
3433 	} else
3434 		pad = 0;
3435 
3436 	tx->driver_txop = 0;
3437 	tx->next_frame_len = 0;
3438 
3439 	tx->len = htole16(totlen);
3440 	tx->tid_tspec = tid;
3441 	tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3442 
3443 	/* Set physical address of "scratch area". */
3444 	tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3445 	tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3446 
3447 	/* Copy 802.11 header in TX command. */
3448 	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3449 
3450 	flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3451 
3452 	tx->sec_ctl = 0;
3453 	tx->tx_flags |= htole32(flags);
3454 
3455 	/* Trim 802.11 header. */
3456 	m_adj(m, hdrlen);
3457 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3458 	    segs, &nsegs, BUS_DMA_NOWAIT);
3459 	if (error != 0) {
3460 		if (error != EFBIG) {
3461 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3462 			    error);
3463 			m_freem(m);
3464 			return error;
3465 		}
3466 		/* Too many DMA segments, linearize mbuf. */
3467 		m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3468 		if (m1 == NULL) {
3469 			device_printf(sc->sc_dev,
3470 			    "%s: could not defrag mbuf\n", __func__);
3471 			m_freem(m);
3472 			return (ENOBUFS);
3473 		}
3474 		m = m1;
3475 
3476 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3477 		    segs, &nsegs, BUS_DMA_NOWAIT);
3478 		if (error != 0) {
3479 			device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3480 			    error);
3481 			m_freem(m);
3482 			return error;
3483 		}
3484 	}
3485 	data->m = m;
3486 	data->in = in;
3487 	data->done = 0;
3488 
3489 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3490 	    "sending txd %p, in %p\n", data, data->in);
3491 	KASSERT(data->in != NULL, ("node is NULL"));
3492 
3493 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3494 	    "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3495 	    ring->qid, ring->cur, totlen, nsegs,
3496 	    le32toh(tx->tx_flags),
3497 	    le32toh(tx->rate_n_flags),
3498 	    tx->initial_rate_index
3499 	    );
3500 
3501 	/* Fill TX descriptor. */
3502 	desc->num_tbs = 2 + nsegs;
3503 
3504 	desc->tbs[0].lo = htole32(data->cmd_paddr);
3505 	desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3506 	    (TB0_SIZE << 4);
3507 	desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3508 	desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3509 	    ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3510 	      + hdrlen + pad - TB0_SIZE) << 4);
3511 
3512 	/* Other DMA segments are for data payload. */
3513 	for (i = 0; i < nsegs; i++) {
3514 		seg = &segs[i];
3515 		desc->tbs[i+2].lo = htole32(seg->ds_addr);
3516 		desc->tbs[i+2].hi_n_len = \
3517 		    htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3518 		    | ((seg->ds_len) << 4);
3519 	}
3520 
3521 	bus_dmamap_sync(ring->data_dmat, data->map,
3522 	    BUS_DMASYNC_PREWRITE);
3523 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3524 	    BUS_DMASYNC_PREWRITE);
3525 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3526 	    BUS_DMASYNC_PREWRITE);
3527 
3528 #if 0
3529 	iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3530 #endif
3531 
3532 	/* Kick TX ring. */
3533 	ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3534 	IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3535 
3536 	/* Mark TX ring as full if we reach a certain threshold. */
3537 	if (++ring->queued > IWM_TX_RING_HIMARK) {
3538 		sc->qfullmsk |= 1 << ring->qid;
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 static int
3545 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3546     const struct ieee80211_bpf_params *params)
3547 {
3548 	struct ieee80211com *ic = ni->ni_ic;
3549 	struct iwm_softc *sc = ic->ic_softc;
3550 	int error = 0;
3551 
3552 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3553 	    "->%s begin\n", __func__);
3554 
3555 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3556 		m_freem(m);
3557 		IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3558 		    "<-%s not RUNNING\n", __func__);
3559 		return (ENETDOWN);
3560         }
3561 
3562 	IWM_LOCK(sc);
3563 	/* XXX fix this */
3564         if (params == NULL) {
3565 		error = iwm_tx(sc, m, ni, 0);
3566 	} else {
3567 		error = iwm_tx(sc, m, ni, 0);
3568 	}
3569 	sc->sc_tx_timer = 5;
3570 	IWM_UNLOCK(sc);
3571 
3572         return (error);
3573 }
3574 
3575 /*
3576  * mvm/tx.c
3577  */
3578 
3579 /*
3580  * Note that there are transports that buffer frames before they reach
3581  * the firmware. This means that after flush_tx_path is called, the
3582  * queue might not be empty. The race-free way to handle this is to:
3583  * 1) set the station as draining
3584  * 2) flush the Tx path
3585  * 3) wait for the transport queues to be empty
3586  */
3587 int
3588 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3589 {
3590 	int ret;
3591 	struct iwm_tx_path_flush_cmd flush_cmd = {
3592 		.queues_ctl = htole32(tfd_msk),
3593 		.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3594 	};
3595 
3596 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3597 	    sizeof(flush_cmd), &flush_cmd);
3598 	if (ret)
3599                 device_printf(sc->sc_dev,
3600 		    "Flushing tx queue failed: %d\n", ret);
3601 	return ret;
3602 }
3603 
3604 /*
3605  * BEGIN mvm/sta.c
3606  */
3607 
3608 static int
3609 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3610 	struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3611 {
3612 	return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3613 	    cmd, status);
3614 }
3615 
3616 /* send station add/update command to firmware */
3617 static int
3618 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3619 {
3620 	struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3621 	int ret;
3622 	uint32_t status;
3623 
3624 	memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3625 
3626 	add_sta_cmd.sta_id = IWM_STATION_ID;
3627 	add_sta_cmd.mac_id_n_color
3628 	    = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3629 	        IWM_DEFAULT_COLOR));
3630 	if (!update) {
3631 		int ac;
3632 		for (ac = 0; ac < WME_NUM_AC; ac++) {
3633 			add_sta_cmd.tfd_queue_msk |=
3634 			    htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3635 		}
3636 		IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3637 	}
3638 	add_sta_cmd.add_modify = update ? 1 : 0;
3639 	add_sta_cmd.station_flags_msk
3640 	    |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3641 	add_sta_cmd.tid_disable_tx = htole16(0xffff);
3642 	if (update)
3643 		add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3644 
3645 	status = IWM_ADD_STA_SUCCESS;
3646 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3647 	if (ret)
3648 		return ret;
3649 
3650 	switch (status) {
3651 	case IWM_ADD_STA_SUCCESS:
3652 		break;
3653 	default:
3654 		ret = EIO;
3655 		device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3656 		break;
3657 	}
3658 
3659 	return ret;
3660 }
3661 
3662 static int
3663 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3664 {
3665 	return iwm_mvm_sta_send_to_fw(sc, in, 0);
3666 }
3667 
3668 static int
3669 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3670 {
3671 	return iwm_mvm_sta_send_to_fw(sc, in, 1);
3672 }
3673 
3674 static int
3675 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3676 	const uint8_t *addr, uint16_t mac_id, uint16_t color)
3677 {
3678 	struct iwm_mvm_add_sta_cmd_v7 cmd;
3679 	int ret;
3680 	uint32_t status;
3681 
3682 	memset(&cmd, 0, sizeof(cmd));
3683 	cmd.sta_id = sta->sta_id;
3684 	cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3685 
3686 	cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3687 	cmd.tid_disable_tx = htole16(0xffff);
3688 
3689 	if (addr)
3690 		IEEE80211_ADDR_COPY(cmd.addr, addr);
3691 
3692 	ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3693 	if (ret)
3694 		return ret;
3695 
3696 	switch (status) {
3697 	case IWM_ADD_STA_SUCCESS:
3698 		IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3699 		    "%s: Internal station added.\n", __func__);
3700 		return 0;
3701 	default:
3702 		device_printf(sc->sc_dev,
3703 		    "%s: Add internal station failed, status=0x%x\n",
3704 		    __func__, status);
3705 		ret = EIO;
3706 		break;
3707 	}
3708 	return ret;
3709 }
3710 
3711 static int
3712 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3713 {
3714 	int ret;
3715 
3716 	sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3717 	sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3718 
3719 	ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3720 	if (ret)
3721 		return ret;
3722 
3723 	ret = iwm_mvm_add_int_sta_common(sc,
3724 	    &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3725 
3726 	if (ret)
3727 		memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3728 	return ret;
3729 }
3730 
3731 /*
3732  * END mvm/sta.c
3733  */
3734 
3735 /*
3736  * BEGIN mvm/quota.c
3737  */
3738 
3739 static int
3740 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3741 {
3742 	struct iwm_time_quota_cmd cmd;
3743 	int i, idx, ret, num_active_macs, quota, quota_rem;
3744 	int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3745 	int n_ifs[IWM_MAX_BINDINGS] = {0, };
3746 	uint16_t id;
3747 
3748 	memset(&cmd, 0, sizeof(cmd));
3749 
3750 	/* currently, PHY ID == binding ID */
3751 	if (in) {
3752 		id = in->in_phyctxt->id;
3753 		KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3754 		colors[id] = in->in_phyctxt->color;
3755 
3756 		if (1)
3757 			n_ifs[id] = 1;
3758 	}
3759 
3760 	/*
3761 	 * The FW's scheduling session consists of
3762 	 * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3763 	 * equally between all the bindings that require quota
3764 	 */
3765 	num_active_macs = 0;
3766 	for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3767 		cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3768 		num_active_macs += n_ifs[i];
3769 	}
3770 
3771 	quota = 0;
3772 	quota_rem = 0;
3773 	if (num_active_macs) {
3774 		quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3775 		quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3776 	}
3777 
3778 	for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3779 		if (colors[i] < 0)
3780 			continue;
3781 
3782 		cmd.quotas[idx].id_and_color =
3783 			htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3784 
3785 		if (n_ifs[i] <= 0) {
3786 			cmd.quotas[idx].quota = htole32(0);
3787 			cmd.quotas[idx].max_duration = htole32(0);
3788 		} else {
3789 			cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3790 			cmd.quotas[idx].max_duration = htole32(0);
3791 		}
3792 		idx++;
3793 	}
3794 
3795 	/* Give the remainder of the session to the first binding */
3796 	cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3797 
3798 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3799 	    sizeof(cmd), &cmd);
3800 	if (ret)
3801 		device_printf(sc->sc_dev,
3802 		    "%s: Failed to send quota: %d\n", __func__, ret);
3803 	return ret;
3804 }
3805 
3806 /*
3807  * END mvm/quota.c
3808  */
3809 
3810 /*
3811  * ieee80211 routines
3812  */
3813 
3814 /*
3815  * Change to AUTH state in 80211 state machine.  Roughly matches what
3816  * Linux does in bss_info_changed().
3817  */
3818 static int
3819 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3820 {
3821 	struct ieee80211_node *ni;
3822 	struct iwm_node *in;
3823 	struct iwm_vap *iv = IWM_VAP(vap);
3824 	uint32_t duration;
3825 	int error;
3826 
3827 	/*
3828 	 * XXX i have a feeling that the vap node is being
3829 	 * freed from underneath us. Grr.
3830 	 */
3831 	ni = ieee80211_ref_node(vap->iv_bss);
3832 	in = IWM_NODE(ni);
3833 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3834 	    "%s: called; vap=%p, bss ni=%p\n",
3835 	    __func__,
3836 	    vap,
3837 	    ni);
3838 
3839 	in->in_assoc = 0;
3840 
3841 	error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3842 	if (error != 0)
3843 		return error;
3844 
3845 	error = iwm_allow_mcast(vap, sc);
3846 	if (error) {
3847 		device_printf(sc->sc_dev,
3848 		    "%s: failed to set multicast\n", __func__);
3849 		goto out;
3850 	}
3851 
3852 	/*
3853 	 * This is where it deviates from what Linux does.
3854 	 *
3855 	 * Linux iwlwifi doesn't reset the nic each time, nor does it
3856 	 * call ctxt_add() here.  Instead, it adds it during vap creation,
3857 	 * and always does a mac_ctx_changed().
3858 	 *
3859 	 * The openbsd port doesn't attempt to do that - it reset things
3860 	 * at odd states and does the add here.
3861 	 *
3862 	 * So, until the state handling is fixed (ie, we never reset
3863 	 * the NIC except for a firmware failure, which should drag
3864 	 * the NIC back to IDLE, re-setup and re-add all the mac/phy
3865 	 * contexts that are required), let's do a dirty hack here.
3866 	 */
3867 	if (iv->is_uploaded) {
3868 		if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3869 			device_printf(sc->sc_dev,
3870 			    "%s: failed to update MAC\n", __func__);
3871 			goto out;
3872 		}
3873 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3874 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3875 			device_printf(sc->sc_dev,
3876 			    "%s: failed update phy ctxt\n", __func__);
3877 			goto out;
3878 		}
3879 		in->in_phyctxt = &sc->sc_phyctxt[0];
3880 
3881 		if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3882 			device_printf(sc->sc_dev,
3883 			    "%s: binding update cmd\n", __func__);
3884 			goto out;
3885 		}
3886 		if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3887 			device_printf(sc->sc_dev,
3888 			    "%s: failed to update sta\n", __func__);
3889 			goto out;
3890 		}
3891 	} else {
3892 		if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3893 			device_printf(sc->sc_dev,
3894 			    "%s: failed to add MAC\n", __func__);
3895 			goto out;
3896 		}
3897 		if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3898 		    in->in_ni.ni_chan, 1, 1)) != 0) {
3899 			device_printf(sc->sc_dev,
3900 			    "%s: failed add phy ctxt!\n", __func__);
3901 			error = ETIMEDOUT;
3902 			goto out;
3903 		}
3904 		in->in_phyctxt = &sc->sc_phyctxt[0];
3905 
3906 		if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3907 			device_printf(sc->sc_dev,
3908 			    "%s: binding add cmd\n", __func__);
3909 			goto out;
3910 		}
3911 		if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3912 			device_printf(sc->sc_dev,
3913 			    "%s: failed to add sta\n", __func__);
3914 			goto out;
3915 		}
3916 	}
3917 
3918 	/*
3919 	 * Prevent the FW from wandering off channel during association
3920 	 * by "protecting" the session with a time event.
3921 	 */
3922 	/* XXX duration is in units of TU, not MS */
3923 	duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3924 	iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3925 	DELAY(100);
3926 
3927 	error = 0;
3928 out:
3929 	ieee80211_free_node(ni);
3930 	return (error);
3931 }
3932 
3933 static int
3934 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3935 {
3936 	struct iwm_node *in = IWM_NODE(vap->iv_bss);
3937 	int error;
3938 
3939 	if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3940 		device_printf(sc->sc_dev,
3941 		    "%s: failed to update STA\n", __func__);
3942 		return error;
3943 	}
3944 
3945 	in->in_assoc = 1;
3946 	if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3947 		device_printf(sc->sc_dev,
3948 		    "%s: failed to update MAC\n", __func__);
3949 		return error;
3950 	}
3951 
3952 	return 0;
3953 }
3954 
3955 static int
3956 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3957 {
3958 	uint32_t tfd_msk;
3959 
3960 	/*
3961 	 * Ok, so *technically* the proper set of calls for going
3962 	 * from RUN back to SCAN is:
3963 	 *
3964 	 * iwm_mvm_power_mac_disable(sc, in);
3965 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3966 	 * iwm_mvm_rm_sta(sc, in);
3967 	 * iwm_mvm_update_quotas(sc, NULL);
3968 	 * iwm_mvm_mac_ctxt_changed(sc, in);
3969 	 * iwm_mvm_binding_remove_vif(sc, in);
3970 	 * iwm_mvm_mac_ctxt_remove(sc, in);
3971 	 *
3972 	 * However, that freezes the device not matter which permutations
3973 	 * and modifications are attempted.  Obviously, this driver is missing
3974 	 * something since it works in the Linux driver, but figuring out what
3975 	 * is missing is a little more complicated.  Now, since we're going
3976 	 * back to nothing anyway, we'll just do a complete device reset.
3977 	 * Up your's, device!
3978 	 */
3979 	/*
3980 	 * Just using 0xf for the queues mask is fine as long as we only
3981 	 * get here from RUN state.
3982 	 */
3983 	tfd_msk = 0xf;
3984 	mbufq_drain(&sc->sc_snd);
3985 	iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3986 	/*
3987 	 * We seem to get away with just synchronously sending the
3988 	 * IWM_TXPATH_FLUSH command.
3989 	 */
3990 //	iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3991 	iwm_stop_device(sc);
3992 	iwm_init_hw(sc);
3993 	if (in)
3994 		in->in_assoc = 0;
3995 	return 0;
3996 
3997 #if 0
3998 	int error;
3999 
4000 	iwm_mvm_power_mac_disable(sc, in);
4001 
4002 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4003 		device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4004 		return error;
4005 	}
4006 
4007 	if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4008 		device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4009 		return error;
4010 	}
4011 	error = iwm_mvm_rm_sta(sc, in);
4012 	in->in_assoc = 0;
4013 	iwm_mvm_update_quotas(sc, NULL);
4014 	if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4015 		device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4016 		return error;
4017 	}
4018 	iwm_mvm_binding_remove_vif(sc, in);
4019 
4020 	iwm_mvm_mac_ctxt_remove(sc, in);
4021 
4022 	return error;
4023 #endif
4024 }
4025 
4026 static struct ieee80211_node *
4027 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4028 {
4029 	return malloc(sizeof (struct iwm_node), M_80211_NODE,
4030 	    M_NOWAIT | M_ZERO);
4031 }
4032 
4033 static void
4034 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4035 {
4036 	struct ieee80211_node *ni = &in->in_ni;
4037 	struct iwm_lq_cmd *lq = &in->in_lq;
4038 	int nrates = ni->ni_rates.rs_nrates;
4039 	int i, ridx, tab = 0;
4040 //	int txant = 0;
4041 
4042 	if (nrates > nitems(lq->rs_table)) {
4043 		device_printf(sc->sc_dev,
4044 		    "%s: node supports %d rates, driver handles "
4045 		    "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4046 		return;
4047 	}
4048 	if (nrates == 0) {
4049 		device_printf(sc->sc_dev,
4050 		    "%s: node supports 0 rates, odd!\n", __func__);
4051 		return;
4052 	}
4053 
4054 	/*
4055 	 * XXX .. and most of iwm_node is not initialised explicitly;
4056 	 * it's all just 0x0 passed to the firmware.
4057 	 */
4058 
4059 	/* first figure out which rates we should support */
4060 	/* XXX TODO: this isn't 11n aware /at all/ */
4061 	memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4062 	IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4063 	    "%s: nrates=%d\n", __func__, nrates);
4064 
4065 	/*
4066 	 * Loop over nrates and populate in_ridx from the highest
4067 	 * rate to the lowest rate.  Remember, in_ridx[] has
4068 	 * IEEE80211_RATE_MAXSIZE entries!
4069 	 */
4070 	for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4071 		int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4072 
4073 		/* Map 802.11 rate to HW rate index. */
4074 		for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4075 			if (iwm_rates[ridx].rate == rate)
4076 				break;
4077 		if (ridx > IWM_RIDX_MAX) {
4078 			device_printf(sc->sc_dev,
4079 			    "%s: WARNING: device rate for %d not found!\n",
4080 			    __func__, rate);
4081 		} else {
4082 			IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4083 			    "%s: rate: i: %d, rate=%d, ridx=%d\n",
4084 			    __func__,
4085 			    i,
4086 			    rate,
4087 			    ridx);
4088 			in->in_ridx[i] = ridx;
4089 		}
4090 	}
4091 
4092 	/* then construct a lq_cmd based on those */
4093 	memset(lq, 0, sizeof(*lq));
4094 	lq->sta_id = IWM_STATION_ID;
4095 
4096 	/* For HT, always enable RTS/CTS to avoid excessive retries. */
4097 	if (ni->ni_flags & IEEE80211_NODE_HT)
4098 		lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4099 
4100 	/*
4101 	 * are these used? (we don't do SISO or MIMO)
4102 	 * need to set them to non-zero, though, or we get an error.
4103 	 */
4104 	lq->single_stream_ant_msk = 1;
4105 	lq->dual_stream_ant_msk = 1;
4106 
4107 	/*
4108 	 * Build the actual rate selection table.
4109 	 * The lowest bits are the rates.  Additionally,
4110 	 * CCK needs bit 9 to be set.  The rest of the bits
4111 	 * we add to the table select the tx antenna
4112 	 * Note that we add the rates in the highest rate first
4113 	 * (opposite of ni_rates).
4114 	 */
4115 	/*
4116 	 * XXX TODO: this should be looping over the min of nrates
4117 	 * and LQ_MAX_RETRY_NUM.  Sigh.
4118 	 */
4119 	for (i = 0; i < nrates; i++) {
4120 		int nextant;
4121 
4122 #if 0
4123 		if (txant == 0)
4124 			txant = iwm_fw_valid_tx_ant(sc);
4125 		nextant = 1<<(ffs(txant)-1);
4126 		txant &= ~nextant;
4127 #else
4128 		nextant = iwm_fw_valid_tx_ant(sc);
4129 #endif
4130 		/*
4131 		 * Map the rate id into a rate index into
4132 		 * our hardware table containing the
4133 		 * configuration to use for this rate.
4134 		 */
4135 		ridx = in->in_ridx[i];
4136 		tab = iwm_rates[ridx].plcp;
4137 		tab |= nextant << IWM_RATE_MCS_ANT_POS;
4138 		if (IWM_RIDX_IS_CCK(ridx))
4139 			tab |= IWM_RATE_MCS_CCK_MSK;
4140 		IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4141 		    "station rate i=%d, rate=%d, hw=%x\n",
4142 		    i, iwm_rates[ridx].rate, tab);
4143 		lq->rs_table[i] = htole32(tab);
4144 	}
4145 	/* then fill the rest with the lowest possible rate */
4146 	for (i = nrates; i < nitems(lq->rs_table); i++) {
4147 		KASSERT(tab != 0, ("invalid tab"));
4148 		lq->rs_table[i] = htole32(tab);
4149 	}
4150 }
4151 
4152 static int
4153 iwm_media_change(struct ifnet *ifp)
4154 {
4155 	struct ieee80211vap *vap = ifp->if_softc;
4156 	struct ieee80211com *ic = vap->iv_ic;
4157 	struct iwm_softc *sc = ic->ic_softc;
4158 	int error;
4159 
4160 	error = ieee80211_media_change(ifp);
4161 	if (error != ENETRESET)
4162 		return error;
4163 
4164 	IWM_LOCK(sc);
4165 	if (ic->ic_nrunning > 0) {
4166 		iwm_stop(sc);
4167 		iwm_init(sc);
4168 	}
4169 	IWM_UNLOCK(sc);
4170 	return error;
4171 }
4172 
4173 
4174 static int
4175 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4176 {
4177 	struct iwm_vap *ivp = IWM_VAP(vap);
4178 	struct ieee80211com *ic = vap->iv_ic;
4179 	struct iwm_softc *sc = ic->ic_softc;
4180 	struct iwm_node *in;
4181 	int error;
4182 
4183 	IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4184 	    "switching state %s -> %s\n",
4185 	    ieee80211_state_name[vap->iv_state],
4186 	    ieee80211_state_name[nstate]);
4187 	IEEE80211_UNLOCK(ic);
4188 	IWM_LOCK(sc);
4189 
4190 	if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4191 		iwm_led_blink_stop(sc);
4192 
4193 	/* disable beacon filtering if we're hopping out of RUN */
4194 	if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4195 		iwm_mvm_disable_beacon_filter(sc);
4196 
4197 		if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4198 			in->in_assoc = 0;
4199 
4200 		if (nstate == IEEE80211_S_INIT) {
4201 			IWM_UNLOCK(sc);
4202 			IEEE80211_LOCK(ic);
4203 			error = ivp->iv_newstate(vap, nstate, arg);
4204 			IEEE80211_UNLOCK(ic);
4205 			IWM_LOCK(sc);
4206 			iwm_release(sc, NULL);
4207 			IWM_UNLOCK(sc);
4208 			IEEE80211_LOCK(ic);
4209 			return error;
4210 		}
4211 
4212 		/*
4213 		 * It's impossible to directly go RUN->SCAN. If we iwm_release()
4214 		 * above then the card will be completely reinitialized,
4215 		 * so the driver must do everything necessary to bring the card
4216 		 * from INIT to SCAN.
4217 		 *
4218 		 * Additionally, upon receiving deauth frame from AP,
4219 		 * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4220 		 * state. This will also fail with this driver, so bring the FSM
4221 		 * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4222 		 *
4223 		 * XXX TODO: fix this for FreeBSD!
4224 		 */
4225 		if (nstate == IEEE80211_S_SCAN ||
4226 		    nstate == IEEE80211_S_AUTH ||
4227 		    nstate == IEEE80211_S_ASSOC) {
4228 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4229 			    "Force transition to INIT; MGT=%d\n", arg);
4230 			IWM_UNLOCK(sc);
4231 			IEEE80211_LOCK(ic);
4232 			/* Always pass arg as -1 since we can't Tx right now. */
4233 			/*
4234 			 * XXX arg is just ignored anyway when transitioning
4235 			 *     to IEEE80211_S_INIT.
4236 			 */
4237 			vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4238 			IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4239 			    "Going INIT->SCAN\n");
4240 			nstate = IEEE80211_S_SCAN;
4241 			IEEE80211_UNLOCK(ic);
4242 			IWM_LOCK(sc);
4243 		}
4244 	}
4245 
4246 	switch (nstate) {
4247 	case IEEE80211_S_INIT:
4248 		break;
4249 
4250 	case IEEE80211_S_AUTH:
4251 		if ((error = iwm_auth(vap, sc)) != 0) {
4252 			device_printf(sc->sc_dev,
4253 			    "%s: could not move to auth state: %d\n",
4254 			    __func__, error);
4255 			break;
4256 		}
4257 		break;
4258 
4259 	case IEEE80211_S_ASSOC:
4260 		if ((error = iwm_assoc(vap, sc)) != 0) {
4261 			device_printf(sc->sc_dev,
4262 			    "%s: failed to associate: %d\n", __func__,
4263 			    error);
4264 			break;
4265 		}
4266 		break;
4267 
4268 	case IEEE80211_S_RUN:
4269 	{
4270 		struct iwm_host_cmd cmd = {
4271 			.id = IWM_LQ_CMD,
4272 			.len = { sizeof(in->in_lq), },
4273 			.flags = IWM_CMD_SYNC,
4274 		};
4275 
4276 		/* Update the association state, now we have it all */
4277 		/* (eg associd comes in at this point */
4278 		error = iwm_assoc(vap, sc);
4279 		if (error != 0) {
4280 			device_printf(sc->sc_dev,
4281 			    "%s: failed to update association state: %d\n",
4282 			    __func__,
4283 			    error);
4284 			break;
4285 		}
4286 
4287 		in = IWM_NODE(vap->iv_bss);
4288 		iwm_mvm_power_mac_update_mode(sc, in);
4289 		iwm_mvm_enable_beacon_filter(sc, in);
4290 		iwm_mvm_update_quotas(sc, in);
4291 		iwm_setrates(sc, in);
4292 
4293 		cmd.data[0] = &in->in_lq;
4294 		if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4295 			device_printf(sc->sc_dev,
4296 			    "%s: IWM_LQ_CMD failed\n", __func__);
4297 		}
4298 
4299 		iwm_mvm_led_enable(sc);
4300 		break;
4301 	}
4302 
4303 	default:
4304 		break;
4305 	}
4306 	IWM_UNLOCK(sc);
4307 	IEEE80211_LOCK(ic);
4308 
4309 	return (ivp->iv_newstate(vap, nstate, arg));
4310 }
4311 
4312 void
4313 iwm_endscan_cb(void *arg, int pending)
4314 {
4315 	struct iwm_softc *sc = arg;
4316 	struct ieee80211com *ic = &sc->sc_ic;
4317 
4318 	IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4319 	    "%s: scan ended\n",
4320 	    __func__);
4321 
4322 	ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4323 }
4324 
4325 /*
4326  * Aging and idle timeouts for the different possible scenarios
4327  * in default configuration
4328  */
4329 static const uint32_t
4330 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4331 	{
4332 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4333 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4334 	},
4335 	{
4336 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4337 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4338 	},
4339 	{
4340 		htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4341 		htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4342 	},
4343 	{
4344 		htole32(IWM_SF_BA_AGING_TIMER_DEF),
4345 		htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4346 	},
4347 	{
4348 		htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4349 		htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4350 	},
4351 };
4352 
4353 /*
4354  * Aging and idle timeouts for the different possible scenarios
4355  * in single BSS MAC configuration.
4356  */
4357 static const uint32_t
4358 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4359 	{
4360 		htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4361 		htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4362 	},
4363 	{
4364 		htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4365 		htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4366 	},
4367 	{
4368 		htole32(IWM_SF_MCAST_AGING_TIMER),
4369 		htole32(IWM_SF_MCAST_IDLE_TIMER)
4370 	},
4371 	{
4372 		htole32(IWM_SF_BA_AGING_TIMER),
4373 		htole32(IWM_SF_BA_IDLE_TIMER)
4374 	},
4375 	{
4376 		htole32(IWM_SF_TX_RE_AGING_TIMER),
4377 		htole32(IWM_SF_TX_RE_IDLE_TIMER)
4378 	},
4379 };
4380 
4381 static void
4382 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4383     struct ieee80211_node *ni)
4384 {
4385 	int i, j, watermark;
4386 
4387 	sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4388 
4389 	/*
4390 	 * If we are in association flow - check antenna configuration
4391 	 * capabilities of the AP station, and choose the watermark accordingly.
4392 	 */
4393 	if (ni) {
4394 		if (ni->ni_flags & IEEE80211_NODE_HT) {
4395 #ifdef notyet
4396 			if (ni->ni_rxmcs[2] != 0)
4397 				watermark = IWM_SF_W_MARK_MIMO3;
4398 			else if (ni->ni_rxmcs[1] != 0)
4399 				watermark = IWM_SF_W_MARK_MIMO2;
4400 			else
4401 #endif
4402 				watermark = IWM_SF_W_MARK_SISO;
4403 		} else {
4404 			watermark = IWM_SF_W_MARK_LEGACY;
4405 		}
4406 	/* default watermark value for unassociated mode. */
4407 	} else {
4408 		watermark = IWM_SF_W_MARK_MIMO2;
4409 	}
4410 	sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4411 
4412 	for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4413 		for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4414 			sf_cmd->long_delay_timeouts[i][j] =
4415 					htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4416 		}
4417 	}
4418 
4419 	if (ni) {
4420 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4421 		       sizeof(iwm_sf_full_timeout));
4422 	} else {
4423 		memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4424 		       sizeof(iwm_sf_full_timeout_def));
4425 	}
4426 }
4427 
4428 static int
4429 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4430 {
4431 	struct ieee80211com *ic = &sc->sc_ic;
4432 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4433 	struct iwm_sf_cfg_cmd sf_cmd = {
4434 		.state = htole32(IWM_SF_FULL_ON),
4435 	};
4436 	int ret = 0;
4437 
4438 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4439 		sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4440 
4441 	switch (new_state) {
4442 	case IWM_SF_UNINIT:
4443 	case IWM_SF_INIT_OFF:
4444 		iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4445 		break;
4446 	case IWM_SF_FULL_ON:
4447 		iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4448 		break;
4449 	default:
4450 		IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4451 		    "Invalid state: %d. not sending Smart Fifo cmd\n",
4452 			  new_state);
4453 		return EINVAL;
4454 	}
4455 
4456 	ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4457 				   sizeof(sf_cmd), &sf_cmd);
4458 	return ret;
4459 }
4460 
4461 static int
4462 iwm_send_bt_init_conf(struct iwm_softc *sc)
4463 {
4464 	struct iwm_bt_coex_cmd bt_cmd;
4465 
4466 	bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4467 	bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4468 
4469 	return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4470 	    &bt_cmd);
4471 }
4472 
4473 static int
4474 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4475 {
4476 	struct iwm_mcc_update_cmd mcc_cmd;
4477 	struct iwm_host_cmd hcmd = {
4478 		.id = IWM_MCC_UPDATE_CMD,
4479 		.flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4480 		.data = { &mcc_cmd },
4481 	};
4482 	int ret;
4483 #ifdef IWM_DEBUG
4484 	struct iwm_rx_packet *pkt;
4485 	struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4486 	struct iwm_mcc_update_resp *mcc_resp;
4487 	int n_channels;
4488 	uint16_t mcc;
4489 #endif
4490 	int resp_v2 = isset(sc->sc_enabled_capa,
4491 	    IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4492 
4493 	memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4494 	mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4495 	if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4496 	    isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4497 		mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4498 	else
4499 		mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4500 
4501 	if (resp_v2)
4502 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4503 	else
4504 		hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4505 
4506 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4507 	    "send MCC update to FW with '%c%c' src = %d\n",
4508 	    alpha2[0], alpha2[1], mcc_cmd.source_id);
4509 
4510 	ret = iwm_send_cmd(sc, &hcmd);
4511 	if (ret)
4512 		return ret;
4513 
4514 #ifdef IWM_DEBUG
4515 	pkt = hcmd.resp_pkt;
4516 
4517 	/* Extract MCC response */
4518 	if (resp_v2) {
4519 		mcc_resp = (void *)pkt->data;
4520 		mcc = mcc_resp->mcc;
4521 		n_channels =  le32toh(mcc_resp->n_channels);
4522 	} else {
4523 		mcc_resp_v1 = (void *)pkt->data;
4524 		mcc = mcc_resp_v1->mcc;
4525 		n_channels =  le32toh(mcc_resp_v1->n_channels);
4526 	}
4527 
4528 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4529 	if (mcc == 0)
4530 		mcc = 0x3030;  /* "00" - world */
4531 
4532 	IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4533 	    "regulatory domain '%c%c' (%d channels available)\n",
4534 	    mcc >> 8, mcc & 0xff, n_channels);
4535 #endif
4536 	iwm_free_resp(sc, &hcmd);
4537 
4538 	return 0;
4539 }
4540 
4541 static void
4542 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4543 {
4544 	struct iwm_host_cmd cmd = {
4545 		.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4546 		.len = { sizeof(uint32_t), },
4547 		.data = { &backoff, },
4548 	};
4549 
4550 	if (iwm_send_cmd(sc, &cmd) != 0) {
4551 		device_printf(sc->sc_dev,
4552 		    "failed to change thermal tx backoff\n");
4553 	}
4554 }
4555 
4556 static int
4557 iwm_init_hw(struct iwm_softc *sc)
4558 {
4559 	struct ieee80211com *ic = &sc->sc_ic;
4560 	int error, i, ac;
4561 
4562 	if ((error = iwm_start_hw(sc)) != 0) {
4563 		printf("iwm_start_hw: failed %d\n", error);
4564 		return error;
4565 	}
4566 
4567 	if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4568 		printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4569 		return error;
4570 	}
4571 
4572 	/*
4573 	 * should stop and start HW since that INIT
4574 	 * image just loaded
4575 	 */
4576 	iwm_stop_device(sc);
4577 	if ((error = iwm_start_hw(sc)) != 0) {
4578 		device_printf(sc->sc_dev, "could not initialize hardware\n");
4579 		return error;
4580 	}
4581 
4582 	/* omstart, this time with the regular firmware */
4583 	error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4584 	if (error) {
4585 		device_printf(sc->sc_dev, "could not load firmware\n");
4586 		goto error;
4587 	}
4588 
4589 	if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4590 		device_printf(sc->sc_dev, "bt init conf failed\n");
4591 		goto error;
4592 	}
4593 
4594 	if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4595 		device_printf(sc->sc_dev, "antenna config failed\n");
4596 		goto error;
4597 	}
4598 
4599 	/* Send phy db control command and then phy db calibration*/
4600 	if ((error = iwm_send_phy_db_data(sc)) != 0) {
4601 		device_printf(sc->sc_dev, "phy_db_data failed\n");
4602 		goto error;
4603 	}
4604 
4605 	if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4606 		device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4607 		goto error;
4608 	}
4609 
4610 	/* Add auxiliary station for scanning */
4611 	if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4612 		device_printf(sc->sc_dev, "add_aux_sta failed\n");
4613 		goto error;
4614 	}
4615 
4616 	for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4617 		/*
4618 		 * The channel used here isn't relevant as it's
4619 		 * going to be overwritten in the other flows.
4620 		 * For now use the first channel we have.
4621 		 */
4622 		if ((error = iwm_mvm_phy_ctxt_add(sc,
4623 		    &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4624 			goto error;
4625 	}
4626 
4627 	/* Initialize tx backoffs to the minimum. */
4628 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4629 		iwm_mvm_tt_tx_backoff(sc, 0);
4630 
4631 	error = iwm_mvm_power_update_device(sc);
4632 	if (error)
4633 		goto error;
4634 
4635 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4636 		if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4637 			goto error;
4638 	}
4639 
4640 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4641 		if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4642 			goto error;
4643 	}
4644 
4645 	/* Enable Tx queues. */
4646 	for (ac = 0; ac < WME_NUM_AC; ac++) {
4647 		error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4648 		    iwm_mvm_ac_to_tx_fifo[ac]);
4649 		if (error)
4650 			goto error;
4651 	}
4652 
4653 	if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4654 		device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4655 		goto error;
4656 	}
4657 
4658 	return 0;
4659 
4660  error:
4661 	iwm_stop_device(sc);
4662 	return error;
4663 }
4664 
4665 /* Allow multicast from our BSSID. */
4666 static int
4667 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4668 {
4669 	struct ieee80211_node *ni = vap->iv_bss;
4670 	struct iwm_mcast_filter_cmd *cmd;
4671 	size_t size;
4672 	int error;
4673 
4674 	size = roundup(sizeof(*cmd), 4);
4675 	cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4676 	if (cmd == NULL)
4677 		return ENOMEM;
4678 	cmd->filter_own = 1;
4679 	cmd->port_id = 0;
4680 	cmd->count = 0;
4681 	cmd->pass_all = 1;
4682 	IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4683 
4684 	error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4685 	    IWM_CMD_SYNC, size, cmd);
4686 	free(cmd, M_DEVBUF);
4687 
4688 	return (error);
4689 }
4690 
4691 /*
4692  * ifnet interfaces
4693  */
4694 
4695 static void
4696 iwm_init(struct iwm_softc *sc)
4697 {
4698 	int error;
4699 
4700 	if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4701 		return;
4702 	}
4703 	sc->sc_generation++;
4704 	sc->sc_flags &= ~IWM_FLAG_STOPPED;
4705 
4706 	if ((error = iwm_init_hw(sc)) != 0) {
4707 		printf("iwm_init_hw failed %d\n", error);
4708 		iwm_stop(sc);
4709 		return;
4710 	}
4711 
4712 	/*
4713 	 * Ok, firmware loaded and we are jogging
4714 	 */
4715 	sc->sc_flags |= IWM_FLAG_HW_INITED;
4716 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4717 }
4718 
4719 static int
4720 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4721 {
4722 	struct iwm_softc *sc;
4723 	int error;
4724 
4725 	sc = ic->ic_softc;
4726 
4727 	IWM_LOCK(sc);
4728 	if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4729 		IWM_UNLOCK(sc);
4730 		return (ENXIO);
4731 	}
4732 	error = mbufq_enqueue(&sc->sc_snd, m);
4733 	if (error) {
4734 		IWM_UNLOCK(sc);
4735 		return (error);
4736 	}
4737 	iwm_start(sc);
4738 	IWM_UNLOCK(sc);
4739 	return (0);
4740 }
4741 
4742 /*
4743  * Dequeue packets from sendq and call send.
4744  */
4745 static void
4746 iwm_start(struct iwm_softc *sc)
4747 {
4748 	struct ieee80211_node *ni;
4749 	struct mbuf *m;
4750 	int ac = 0;
4751 
4752 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4753 	while (sc->qfullmsk == 0 &&
4754 		(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4755 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4756 		if (iwm_tx(sc, m, ni, ac) != 0) {
4757 			if_inc_counter(ni->ni_vap->iv_ifp,
4758 			    IFCOUNTER_OERRORS, 1);
4759 			ieee80211_free_node(ni);
4760 			continue;
4761 		}
4762 		sc->sc_tx_timer = 15;
4763 	}
4764 	IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4765 }
4766 
4767 static void
4768 iwm_stop(struct iwm_softc *sc)
4769 {
4770 
4771 	sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4772 	sc->sc_flags |= IWM_FLAG_STOPPED;
4773 	sc->sc_generation++;
4774 	iwm_led_blink_stop(sc);
4775 	sc->sc_tx_timer = 0;
4776 	iwm_stop_device(sc);
4777 }
4778 
4779 static void
4780 iwm_watchdog(void *arg)
4781 {
4782 	struct iwm_softc *sc = arg;
4783 	struct ieee80211com *ic = &sc->sc_ic;
4784 
4785 	if (sc->sc_tx_timer > 0) {
4786 		if (--sc->sc_tx_timer == 0) {
4787 			device_printf(sc->sc_dev, "device timeout\n");
4788 #ifdef IWM_DEBUG
4789 			iwm_nic_error(sc);
4790 #endif
4791 			ieee80211_restart_all(ic);
4792 			counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4793 			return;
4794 		}
4795 	}
4796 	callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4797 }
4798 
4799 static void
4800 iwm_parent(struct ieee80211com *ic)
4801 {
4802 	struct iwm_softc *sc = ic->ic_softc;
4803 	int startall = 0;
4804 
4805 	IWM_LOCK(sc);
4806 	if (ic->ic_nrunning > 0) {
4807 		if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4808 			iwm_init(sc);
4809 			startall = 1;
4810 		}
4811 	} else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4812 		iwm_stop(sc);
4813 	IWM_UNLOCK(sc);
4814 	if (startall)
4815 		ieee80211_start_all(ic);
4816 }
4817 
4818 /*
4819  * The interrupt side of things
4820  */
4821 
4822 /*
4823  * error dumping routines are from iwlwifi/mvm/utils.c
4824  */
4825 
4826 /*
4827  * Note: This structure is read from the device with IO accesses,
4828  * and the reading already does the endian conversion. As it is
4829  * read with uint32_t-sized accesses, any members with a different size
4830  * need to be ordered correctly though!
4831  */
4832 struct iwm_error_event_table {
4833 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4834 	uint32_t error_id;		/* type of error */
4835 	uint32_t trm_hw_status0;	/* TRM HW status */
4836 	uint32_t trm_hw_status1;	/* TRM HW status */
4837 	uint32_t blink2;		/* branch link */
4838 	uint32_t ilink1;		/* interrupt link */
4839 	uint32_t ilink2;		/* interrupt link */
4840 	uint32_t data1;		/* error-specific data */
4841 	uint32_t data2;		/* error-specific data */
4842 	uint32_t data3;		/* error-specific data */
4843 	uint32_t bcon_time;		/* beacon timer */
4844 	uint32_t tsf_low;		/* network timestamp function timer */
4845 	uint32_t tsf_hi;		/* network timestamp function timer */
4846 	uint32_t gp1;		/* GP1 timer register */
4847 	uint32_t gp2;		/* GP2 timer register */
4848 	uint32_t fw_rev_type;	/* firmware revision type */
4849 	uint32_t major;		/* uCode version major */
4850 	uint32_t minor;		/* uCode version minor */
4851 	uint32_t hw_ver;		/* HW Silicon version */
4852 	uint32_t brd_ver;		/* HW board version */
4853 	uint32_t log_pc;		/* log program counter */
4854 	uint32_t frame_ptr;		/* frame pointer */
4855 	uint32_t stack_ptr;		/* stack pointer */
4856 	uint32_t hcmd;		/* last host command header */
4857 	uint32_t isr0;		/* isr status register LMPM_NIC_ISR0:
4858 				 * rxtx_flag */
4859 	uint32_t isr1;		/* isr status register LMPM_NIC_ISR1:
4860 				 * host_flag */
4861 	uint32_t isr2;		/* isr status register LMPM_NIC_ISR2:
4862 				 * enc_flag */
4863 	uint32_t isr3;		/* isr status register LMPM_NIC_ISR3:
4864 				 * time_flag */
4865 	uint32_t isr4;		/* isr status register LMPM_NIC_ISR4:
4866 				 * wico interrupt */
4867 	uint32_t last_cmd_id;	/* last HCMD id handled by the firmware */
4868 	uint32_t wait_event;		/* wait event() caller address */
4869 	uint32_t l2p_control;	/* L2pControlField */
4870 	uint32_t l2p_duration;	/* L2pDurationField */
4871 	uint32_t l2p_mhvalid;	/* L2pMhValidBits */
4872 	uint32_t l2p_addr_match;	/* L2pAddrMatchStat */
4873 	uint32_t lmpm_pmg_sel;	/* indicate which clocks are turned on
4874 				 * (LMPM_PMG_SEL) */
4875 	uint32_t u_timestamp;	/* indicate when the date and time of the
4876 				 * compilation */
4877 	uint32_t flow_handler;	/* FH read/write pointers, RX credit */
4878 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4879 
4880 /*
4881  * UMAC error struct - relevant starting from family 8000 chip.
4882  * Note: This structure is read from the device with IO accesses,
4883  * and the reading already does the endian conversion. As it is
4884  * read with u32-sized accesses, any members with a different size
4885  * need to be ordered correctly though!
4886  */
4887 struct iwm_umac_error_event_table {
4888 	uint32_t valid;		/* (nonzero) valid, (0) log is empty */
4889 	uint32_t error_id;	/* type of error */
4890 	uint32_t blink1;	/* branch link */
4891 	uint32_t blink2;	/* branch link */
4892 	uint32_t ilink1;	/* interrupt link */
4893 	uint32_t ilink2;	/* interrupt link */
4894 	uint32_t data1;		/* error-specific data */
4895 	uint32_t data2;		/* error-specific data */
4896 	uint32_t data3;		/* error-specific data */
4897 	uint32_t umac_major;
4898 	uint32_t umac_minor;
4899 	uint32_t frame_pointer;	/* core register 27*/
4900 	uint32_t stack_pointer;	/* core register 28 */
4901 	uint32_t cmd_header;	/* latest host cmd sent to UMAC */
4902 	uint32_t nic_isr_pref;	/* ISR status register */
4903 } __packed;
4904 
4905 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4906 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4907 
4908 #ifdef IWM_DEBUG
4909 struct {
4910 	const char *name;
4911 	uint8_t num;
4912 } advanced_lookup[] = {
4913 	{ "NMI_INTERRUPT_WDG", 0x34 },
4914 	{ "SYSASSERT", 0x35 },
4915 	{ "UCODE_VERSION_MISMATCH", 0x37 },
4916 	{ "BAD_COMMAND", 0x38 },
4917 	{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4918 	{ "FATAL_ERROR", 0x3D },
4919 	{ "NMI_TRM_HW_ERR", 0x46 },
4920 	{ "NMI_INTERRUPT_TRM", 0x4C },
4921 	{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4922 	{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4923 	{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4924 	{ "NMI_INTERRUPT_HOST", 0x66 },
4925 	{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
4926 	{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
4927 	{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4928 	{ "ADVANCED_SYSASSERT", 0 },
4929 };
4930 
4931 static const char *
4932 iwm_desc_lookup(uint32_t num)
4933 {
4934 	int i;
4935 
4936 	for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4937 		if (advanced_lookup[i].num == num)
4938 			return advanced_lookup[i].name;
4939 
4940 	/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4941 	return advanced_lookup[i].name;
4942 }
4943 
4944 static void
4945 iwm_nic_umac_error(struct iwm_softc *sc)
4946 {
4947 	struct iwm_umac_error_event_table table;
4948 	uint32_t base;
4949 
4950 	base = sc->sc_uc.uc_umac_error_event_table;
4951 
4952 	if (base < 0x800000) {
4953 		device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4954 		    base);
4955 		return;
4956 	}
4957 
4958 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4959 		device_printf(sc->sc_dev, "reading errlog failed\n");
4960 		return;
4961 	}
4962 
4963 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4964 		device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4965 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4966 		    sc->sc_flags, table.valid);
4967 	}
4968 
4969 	device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4970 		iwm_desc_lookup(table.error_id));
4971 	device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4972 	device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4973 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4974 	    table.ilink1);
4975 	device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4976 	    table.ilink2);
4977 	device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4978 	device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4979 	device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4980 	device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4981 	device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4982 	device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4983 	    table.frame_pointer);
4984 	device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4985 	    table.stack_pointer);
4986 	device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4987 	device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4988 	    table.nic_isr_pref);
4989 }
4990 
4991 /*
4992  * Support for dumping the error log seemed like a good idea ...
4993  * but it's mostly hex junk and the only sensible thing is the
4994  * hw/ucode revision (which we know anyway).  Since it's here,
4995  * I'll just leave it in, just in case e.g. the Intel guys want to
4996  * help us decipher some "ADVANCED_SYSASSERT" later.
4997  */
4998 static void
4999 iwm_nic_error(struct iwm_softc *sc)
5000 {
5001 	struct iwm_error_event_table table;
5002 	uint32_t base;
5003 
5004 	device_printf(sc->sc_dev, "dumping device error log\n");
5005 	base = sc->sc_uc.uc_error_event_table;
5006 	if (base < 0x800000) {
5007 		device_printf(sc->sc_dev,
5008 		    "Invalid error log pointer 0x%08x\n", base);
5009 		return;
5010 	}
5011 
5012 	if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5013 		device_printf(sc->sc_dev, "reading errlog failed\n");
5014 		return;
5015 	}
5016 
5017 	if (!table.valid) {
5018 		device_printf(sc->sc_dev, "errlog not found, skipping\n");
5019 		return;
5020 	}
5021 
5022 	if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5023 		device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5024 		device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5025 		    sc->sc_flags, table.valid);
5026 	}
5027 
5028 	device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5029 	    iwm_desc_lookup(table.error_id));
5030 	device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5031 	    table.trm_hw_status0);
5032 	device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5033 	    table.trm_hw_status1);
5034 	device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5035 	device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5036 	device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5037 	device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5038 	device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5039 	device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5040 	device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5041 	device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5042 	device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5043 	device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5044 	device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5045 	device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5046 	    table.fw_rev_type);
5047 	device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5048 	device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5049 	device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5050 	device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5051 	device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5052 	device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5053 	device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5054 	device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5055 	device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5056 	device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5057 	device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5058 	device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5059 	device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5060 	device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5061 	device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5062 	device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5063 	device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5064 	device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5065 	device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5066 
5067 	if (sc->sc_uc.uc_umac_error_event_table)
5068 		iwm_nic_umac_error(sc);
5069 }
5070 #endif
5071 
5072 #define SYNC_RESP_STRUCT(_var_, _pkt_)					\
5073 do {									\
5074 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5075 	_var_ = (void *)((_pkt_)+1);					\
5076 } while (/*CONSTCOND*/0)
5077 
5078 #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)				\
5079 do {									\
5080 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);\
5081 	_ptr_ = (void *)((_pkt_)+1);					\
5082 } while (/*CONSTCOND*/0)
5083 
5084 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5085 
5086 /*
5087  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5088  * Basic structure from if_iwn
5089  */
5090 static void
5091 iwm_notif_intr(struct iwm_softc *sc)
5092 {
5093 	struct ieee80211com *ic = &sc->sc_ic;
5094 	uint16_t hw;
5095 
5096 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5097 	    BUS_DMASYNC_POSTREAD);
5098 
5099 	hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5100 
5101 	/*
5102 	 * Process responses
5103 	 */
5104 	while (sc->rxq.cur != hw) {
5105 		struct iwm_rx_ring *ring = &sc->rxq;
5106 		struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
5107 		struct iwm_rx_packet *pkt;
5108 		struct iwm_cmd_response *cresp;
5109 		int qid, idx, code;
5110 
5111 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5112 		    BUS_DMASYNC_POSTREAD);
5113 		pkt = mtod(data->m, struct iwm_rx_packet *);
5114 
5115 		qid = pkt->hdr.qid & ~0x80;
5116 		idx = pkt->hdr.idx;
5117 
5118 		code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5119 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5120 		    "rx packet qid=%d idx=%d type=%x %d %d\n",
5121 		    pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, sc->rxq.cur, hw);
5122 
5123 		/*
5124 		 * randomly get these from the firmware, no idea why.
5125 		 * they at least seem harmless, so just ignore them for now
5126 		 */
5127 		if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5128 		    || pkt->len_n_flags == htole32(0x55550000))) {
5129 			ADVANCE_RXQ(sc);
5130 			continue;
5131 		}
5132 
5133 		switch (code) {
5134 		case IWM_REPLY_RX_PHY_CMD:
5135 			iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5136 			break;
5137 
5138 		case IWM_REPLY_RX_MPDU_CMD:
5139 			iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5140 			break;
5141 
5142 		case IWM_TX_CMD:
5143 			iwm_mvm_rx_tx_cmd(sc, pkt, data);
5144 			break;
5145 
5146 		case IWM_MISSED_BEACONS_NOTIFICATION: {
5147 			struct iwm_missed_beacons_notif *resp;
5148 			int missed;
5149 
5150 			/* XXX look at mac_id to determine interface ID */
5151 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5152 
5153 			SYNC_RESP_STRUCT(resp, pkt);
5154 			missed = le32toh(resp->consec_missed_beacons);
5155 
5156 			IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5157 			    "%s: MISSED_BEACON: mac_id=%d, "
5158 			    "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5159 			    "num_rx=%d\n",
5160 			    __func__,
5161 			    le32toh(resp->mac_id),
5162 			    le32toh(resp->consec_missed_beacons_since_last_rx),
5163 			    le32toh(resp->consec_missed_beacons),
5164 			    le32toh(resp->num_expected_beacons),
5165 			    le32toh(resp->num_recvd_beacons));
5166 
5167 			/* Be paranoid */
5168 			if (vap == NULL)
5169 				break;
5170 
5171 			/* XXX no net80211 locking? */
5172 			if (vap->iv_state == IEEE80211_S_RUN &&
5173 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5174 				if (missed > vap->iv_bmissthreshold) {
5175 					/* XXX bad locking; turn into task */
5176 					IWM_UNLOCK(sc);
5177 					ieee80211_beacon_miss(ic);
5178 					IWM_LOCK(sc);
5179 				}
5180 			}
5181 
5182 			break; }
5183 
5184 		case IWM_MFUART_LOAD_NOTIFICATION:
5185 			break;
5186 
5187 		case IWM_MVM_ALIVE: {
5188 			struct iwm_mvm_alive_resp_v1 *resp1;
5189 			struct iwm_mvm_alive_resp_v2 *resp2;
5190 			struct iwm_mvm_alive_resp_v3 *resp3;
5191 
5192 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5193 				SYNC_RESP_STRUCT(resp1, pkt);
5194 				sc->sc_uc.uc_error_event_table
5195 				    = le32toh(resp1->error_event_table_ptr);
5196 				sc->sc_uc.uc_log_event_table
5197 				    = le32toh(resp1->log_event_table_ptr);
5198 				sc->sched_base = le32toh(resp1->scd_base_ptr);
5199 				if (resp1->status == IWM_ALIVE_STATUS_OK)
5200 					sc->sc_uc.uc_ok = 1;
5201 				else
5202 					sc->sc_uc.uc_ok = 0;
5203 			}
5204 
5205 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5206 				SYNC_RESP_STRUCT(resp2, pkt);
5207 				sc->sc_uc.uc_error_event_table
5208 				    = le32toh(resp2->error_event_table_ptr);
5209 				sc->sc_uc.uc_log_event_table
5210 				    = le32toh(resp2->log_event_table_ptr);
5211 				sc->sched_base = le32toh(resp2->scd_base_ptr);
5212 				sc->sc_uc.uc_umac_error_event_table
5213 				    = le32toh(resp2->error_info_addr);
5214 				if (resp2->status == IWM_ALIVE_STATUS_OK)
5215 					sc->sc_uc.uc_ok = 1;
5216 				else
5217 					sc->sc_uc.uc_ok = 0;
5218 			}
5219 
5220 			if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5221 				SYNC_RESP_STRUCT(resp3, pkt);
5222 				sc->sc_uc.uc_error_event_table
5223 				    = le32toh(resp3->error_event_table_ptr);
5224 				sc->sc_uc.uc_log_event_table
5225 				    = le32toh(resp3->log_event_table_ptr);
5226 				sc->sched_base = le32toh(resp3->scd_base_ptr);
5227 				sc->sc_uc.uc_umac_error_event_table
5228 				    = le32toh(resp3->error_info_addr);
5229 				if (resp3->status == IWM_ALIVE_STATUS_OK)
5230 					sc->sc_uc.uc_ok = 1;
5231 				else
5232 					sc->sc_uc.uc_ok = 0;
5233 			}
5234 
5235 			sc->sc_uc.uc_intr = 1;
5236 			wakeup(&sc->sc_uc);
5237 			break; }
5238 
5239 		case IWM_CALIB_RES_NOTIF_PHY_DB: {
5240 			struct iwm_calib_res_notif_phy_db *phy_db_notif;
5241 			SYNC_RESP_STRUCT(phy_db_notif, pkt);
5242 
5243 			iwm_phy_db_set_section(sc, phy_db_notif);
5244 
5245 			break; }
5246 
5247 		case IWM_STATISTICS_NOTIFICATION: {
5248 			struct iwm_notif_statistics *stats;
5249 			SYNC_RESP_STRUCT(stats, pkt);
5250 			memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5251 			sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5252 			break; }
5253 
5254 		case IWM_NVM_ACCESS_CMD:
5255 		case IWM_MCC_UPDATE_CMD:
5256 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5257 				bus_dmamap_sync(sc->rxq.data_dmat, data->map,
5258 				    BUS_DMASYNC_POSTREAD);
5259 				memcpy(sc->sc_cmd_resp,
5260 				    pkt, sizeof(sc->sc_cmd_resp));
5261 			}
5262 			break;
5263 
5264 		case IWM_MCC_CHUB_UPDATE_CMD: {
5265 			struct iwm_mcc_chub_notif *notif;
5266 			SYNC_RESP_STRUCT(notif, pkt);
5267 
5268 			sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5269 			sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5270 			sc->sc_fw_mcc[2] = '\0';
5271 			IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5272 			    "fw source %d sent CC '%s'\n",
5273 			    notif->source_id, sc->sc_fw_mcc);
5274 			break; }
5275 
5276 		case IWM_DTS_MEASUREMENT_NOTIFICATION:
5277 			break;
5278 
5279 		case IWM_PHY_CONFIGURATION_CMD:
5280 		case IWM_TX_ANT_CONFIGURATION_CMD:
5281 		case IWM_ADD_STA:
5282 		case IWM_MAC_CONTEXT_CMD:
5283 		case IWM_REPLY_SF_CFG_CMD:
5284 		case IWM_POWER_TABLE_CMD:
5285 		case IWM_PHY_CONTEXT_CMD:
5286 		case IWM_BINDING_CONTEXT_CMD:
5287 		case IWM_TIME_EVENT_CMD:
5288 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5289 		case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5290 		case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5291 		case IWM_REPLY_BEACON_FILTERING_CMD:
5292 		case IWM_MAC_PM_POWER_TABLE:
5293 		case IWM_TIME_QUOTA_CMD:
5294 		case IWM_REMOVE_STA:
5295 		case IWM_TXPATH_FLUSH:
5296 		case IWM_LQ_CMD:
5297 		case IWM_BT_CONFIG:
5298 		case IWM_REPLY_THERMAL_MNG_BACKOFF:
5299 			SYNC_RESP_STRUCT(cresp, pkt);
5300 			if (sc->sc_wantresp == ((qid << 16) | idx)) {
5301 				memcpy(sc->sc_cmd_resp,
5302 				    pkt, sizeof(*pkt)+sizeof(*cresp));
5303 			}
5304 			break;
5305 
5306 		/* ignore */
5307 		case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5308 			break;
5309 
5310 		case IWM_INIT_COMPLETE_NOTIF:
5311 			sc->sc_init_complete = 1;
5312 			wakeup(&sc->sc_init_complete);
5313 			break;
5314 
5315 		case IWM_SCAN_OFFLOAD_COMPLETE: {
5316 			struct iwm_periodic_scan_complete *notif;
5317 			SYNC_RESP_STRUCT(notif, pkt);
5318 			break;
5319 		}
5320 
5321 		case IWM_SCAN_ITERATION_COMPLETE: {
5322 			struct iwm_lmac_scan_complete_notif *notif;
5323  			SYNC_RESP_STRUCT(notif, pkt);
5324 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5325  			break;
5326 		}
5327 
5328 		case IWM_SCAN_COMPLETE_UMAC: {
5329 			struct iwm_umac_scan_complete *notif;
5330 			SYNC_RESP_STRUCT(notif, pkt);
5331 
5332 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5333 			    "UMAC scan complete, status=0x%x\n",
5334 			    notif->status);
5335 #if 0	/* XXX This would be a duplicate scan end call */
5336 			taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5337 #endif
5338 			break;
5339 		}
5340 
5341 		case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5342 			struct iwm_umac_scan_iter_complete_notif *notif;
5343 			SYNC_RESP_STRUCT(notif, pkt);
5344 
5345 			IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5346 			    "complete, status=0x%x, %d channels scanned\n",
5347 			    notif->status, notif->scanned_channels);
5348 			ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5349 			break;
5350 		}
5351 
5352 		case IWM_REPLY_ERROR: {
5353 			struct iwm_error_resp *resp;
5354 			SYNC_RESP_STRUCT(resp, pkt);
5355 
5356 			device_printf(sc->sc_dev,
5357 			    "firmware error 0x%x, cmd 0x%x\n",
5358 			    le32toh(resp->error_type),
5359 			    resp->cmd_id);
5360 			break;
5361 		}
5362 
5363 		case IWM_TIME_EVENT_NOTIFICATION: {
5364 			struct iwm_time_event_notif *notif;
5365 			SYNC_RESP_STRUCT(notif, pkt);
5366 
5367 			IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5368 			    "TE notif status = 0x%x action = 0x%x\n",
5369 			    notif->status, notif->action);
5370 			break;
5371 		}
5372 
5373 		case IWM_MCAST_FILTER_CMD:
5374 			break;
5375 
5376 		case IWM_SCD_QUEUE_CFG: {
5377 			struct iwm_scd_txq_cfg_rsp *rsp;
5378 			SYNC_RESP_STRUCT(rsp, pkt);
5379 
5380 			IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5381 			    "queue cfg token=0x%x sta_id=%d "
5382 			    "tid=%d scd_queue=%d\n",
5383 			    rsp->token, rsp->sta_id, rsp->tid,
5384 			    rsp->scd_queue);
5385 			break;
5386 		}
5387 
5388 		default:
5389 			device_printf(sc->sc_dev,
5390 			    "frame %d/%d %x UNHANDLED (this should "
5391 			    "not happen)\n", qid, idx,
5392 			    pkt->len_n_flags);
5393 			break;
5394 		}
5395 
5396 		/*
5397 		 * Why test bit 0x80?  The Linux driver:
5398 		 *
5399 		 * There is one exception:  uCode sets bit 15 when it
5400 		 * originates the response/notification, i.e. when the
5401 		 * response/notification is not a direct response to a
5402 		 * command sent by the driver.  For example, uCode issues
5403 		 * IWM_REPLY_RX when it sends a received frame to the driver;
5404 		 * it is not a direct response to any driver command.
5405 		 *
5406 		 * Ok, so since when is 7 == 15?  Well, the Linux driver
5407 		 * uses a slightly different format for pkt->hdr, and "qid"
5408 		 * is actually the upper byte of a two-byte field.
5409 		 */
5410 		if (!(pkt->hdr.qid & (1 << 7))) {
5411 			iwm_cmd_done(sc, pkt);
5412 		}
5413 
5414 		ADVANCE_RXQ(sc);
5415 	}
5416 
5417 	IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5418 	    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5419 
5420 	/*
5421 	 * Tell the firmware what we have processed.
5422 	 * Seems like the hardware gets upset unless we align
5423 	 * the write by 8??
5424 	 */
5425 	hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5426 	IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5427 }
5428 
5429 static void
5430 iwm_intr(void *arg)
5431 {
5432 	struct iwm_softc *sc = arg;
5433 	int handled = 0;
5434 	int r1, r2, rv = 0;
5435 	int isperiodic = 0;
5436 
5437 	IWM_LOCK(sc);
5438 	IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5439 
5440 	if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5441 		uint32_t *ict = sc->ict_dma.vaddr;
5442 		int tmp;
5443 
5444 		tmp = htole32(ict[sc->ict_cur]);
5445 		if (!tmp)
5446 			goto out_ena;
5447 
5448 		/*
5449 		 * ok, there was something.  keep plowing until we have all.
5450 		 */
5451 		r1 = r2 = 0;
5452 		while (tmp) {
5453 			r1 |= tmp;
5454 			ict[sc->ict_cur] = 0;
5455 			sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5456 			tmp = htole32(ict[sc->ict_cur]);
5457 		}
5458 
5459 		/* this is where the fun begins.  don't ask */
5460 		if (r1 == 0xffffffff)
5461 			r1 = 0;
5462 
5463 		/* i am not expected to understand this */
5464 		if (r1 & 0xc0000)
5465 			r1 |= 0x8000;
5466 		r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5467 	} else {
5468 		r1 = IWM_READ(sc, IWM_CSR_INT);
5469 		/* "hardware gone" (where, fishing?) */
5470 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5471 			goto out;
5472 		r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5473 	}
5474 	if (r1 == 0 && r2 == 0) {
5475 		goto out_ena;
5476 	}
5477 
5478 	IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5479 
5480 	/* ignored */
5481 	handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5482 
5483 	if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5484 		int i;
5485 		struct ieee80211com *ic = &sc->sc_ic;
5486 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5487 
5488 #ifdef IWM_DEBUG
5489 		iwm_nic_error(sc);
5490 #endif
5491 		/* Dump driver status (TX and RX rings) while we're here. */
5492 		device_printf(sc->sc_dev, "driver status:\n");
5493 		for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5494 			struct iwm_tx_ring *ring = &sc->txq[i];
5495 			device_printf(sc->sc_dev,
5496 			    "  tx ring %2d: qid=%-2d cur=%-3d "
5497 			    "queued=%-3d\n",
5498 			    i, ring->qid, ring->cur, ring->queued);
5499 		}
5500 		device_printf(sc->sc_dev,
5501 		    "  rx ring: cur=%d\n", sc->rxq.cur);
5502 		device_printf(sc->sc_dev,
5503 		    "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5504 
5505 		/* Don't stop the device; just do a VAP restart */
5506 		IWM_UNLOCK(sc);
5507 
5508 		if (vap == NULL) {
5509 			printf("%s: null vap\n", __func__);
5510 			return;
5511 		}
5512 
5513 		device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5514 		    "restarting\n", __func__, vap->iv_state);
5515 
5516 		/* XXX TODO: turn this into a callout/taskqueue */
5517 		ieee80211_restart_all(ic);
5518 		return;
5519 	}
5520 
5521 	if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5522 		handled |= IWM_CSR_INT_BIT_HW_ERR;
5523 		device_printf(sc->sc_dev, "hardware error, stopping device\n");
5524 		iwm_stop(sc);
5525 		rv = 1;
5526 		goto out;
5527 	}
5528 
5529 	/* firmware chunk loaded */
5530 	if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5531 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5532 		handled |= IWM_CSR_INT_BIT_FH_TX;
5533 		sc->sc_fw_chunk_done = 1;
5534 		wakeup(&sc->sc_fw);
5535 	}
5536 
5537 	if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5538 		handled |= IWM_CSR_INT_BIT_RF_KILL;
5539 		if (iwm_check_rfkill(sc)) {
5540 			device_printf(sc->sc_dev,
5541 			    "%s: rfkill switch, disabling interface\n",
5542 			    __func__);
5543 			iwm_stop(sc);
5544 		}
5545 	}
5546 
5547 	/*
5548 	 * The Linux driver uses periodic interrupts to avoid races.
5549 	 * We cargo-cult like it's going out of fashion.
5550 	 */
5551 	if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5552 		handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5553 		IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5554 		if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5555 			IWM_WRITE_1(sc,
5556 			    IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5557 		isperiodic = 1;
5558 	}
5559 
5560 	if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5561 		handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5562 		IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5563 
5564 		iwm_notif_intr(sc);
5565 
5566 		/* enable periodic interrupt, see above */
5567 		if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5568 			IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5569 			    IWM_CSR_INT_PERIODIC_ENA);
5570 	}
5571 
5572 	if (__predict_false(r1 & ~handled))
5573 		IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5574 		    "%s: unhandled interrupts: %x\n", __func__, r1);
5575 	rv = 1;
5576 
5577  out_ena:
5578 	iwm_restore_interrupts(sc);
5579  out:
5580 	IWM_UNLOCK(sc);
5581 	return;
5582 }
5583 
5584 /*
5585  * Autoconf glue-sniffing
5586  */
5587 #define	PCI_VENDOR_INTEL		0x8086
5588 #define	PCI_PRODUCT_INTEL_WL_3160_1	0x08b3
5589 #define	PCI_PRODUCT_INTEL_WL_3160_2	0x08b4
5590 #define	PCI_PRODUCT_INTEL_WL_3165_1	0x3165
5591 #define	PCI_PRODUCT_INTEL_WL_3165_2	0x3166
5592 #define	PCI_PRODUCT_INTEL_WL_7260_1	0x08b1
5593 #define	PCI_PRODUCT_INTEL_WL_7260_2	0x08b2
5594 #define	PCI_PRODUCT_INTEL_WL_7265_1	0x095a
5595 #define	PCI_PRODUCT_INTEL_WL_7265_2	0x095b
5596 #define	PCI_PRODUCT_INTEL_WL_8260_1	0x24f3
5597 #define	PCI_PRODUCT_INTEL_WL_8260_2	0x24f4
5598 
5599 static const struct iwm_devices {
5600 	uint16_t	device;
5601 	const char	*name;
5602 } iwm_devices[] = {
5603 	{ PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5604 	{ PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5605 	{ PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5606 	{ PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5607 	{ PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5608 	{ PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5609 	{ PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5610 	{ PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5611 	{ PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5612 	{ PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5613 };
5614 
5615 static int
5616 iwm_probe(device_t dev)
5617 {
5618 	int i;
5619 
5620 	for (i = 0; i < nitems(iwm_devices); i++) {
5621 		if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5622 		    pci_get_device(dev) == iwm_devices[i].device) {
5623 			device_set_desc(dev, iwm_devices[i].name);
5624 			return (BUS_PROBE_DEFAULT);
5625 		}
5626 	}
5627 
5628 	return (ENXIO);
5629 }
5630 
5631 static int
5632 iwm_dev_check(device_t dev)
5633 {
5634 	struct iwm_softc *sc;
5635 
5636 	sc = device_get_softc(dev);
5637 
5638 	sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5639 	switch (pci_get_device(dev)) {
5640 	case PCI_PRODUCT_INTEL_WL_3160_1:
5641 	case PCI_PRODUCT_INTEL_WL_3160_2:
5642 		sc->sc_fwname = "iwm3160fw";
5643 		sc->host_interrupt_operation_mode = 1;
5644 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5645 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5646 		return (0);
5647 	case PCI_PRODUCT_INTEL_WL_3165_1:
5648 	case PCI_PRODUCT_INTEL_WL_3165_2:
5649 		sc->sc_fwname = "iwm7265fw";
5650 		sc->host_interrupt_operation_mode = 0;
5651 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5652 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5653 		return (0);
5654 	case PCI_PRODUCT_INTEL_WL_7260_1:
5655 	case PCI_PRODUCT_INTEL_WL_7260_2:
5656 		sc->sc_fwname = "iwm7260fw";
5657 		sc->host_interrupt_operation_mode = 1;
5658 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5659 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5660 		return (0);
5661 	case PCI_PRODUCT_INTEL_WL_7265_1:
5662 	case PCI_PRODUCT_INTEL_WL_7265_2:
5663 		sc->sc_fwname = "iwm7265fw";
5664 		sc->host_interrupt_operation_mode = 0;
5665 		sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5666 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5667 		return (0);
5668 	case PCI_PRODUCT_INTEL_WL_8260_1:
5669 	case PCI_PRODUCT_INTEL_WL_8260_2:
5670 		sc->sc_fwname = "iwm8000Cfw";
5671 		sc->host_interrupt_operation_mode = 0;
5672 		sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5673 		sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5674 		return (0);
5675 	default:
5676 		device_printf(dev, "unknown adapter type\n");
5677 		return ENXIO;
5678 	}
5679 }
5680 
5681 static int
5682 iwm_pci_attach(device_t dev)
5683 {
5684 	struct iwm_softc *sc;
5685 	int count, error, rid;
5686 	uint16_t reg;
5687 
5688 	sc = device_get_softc(dev);
5689 
5690 	/* Clear device-specific "PCI retry timeout" register (41h). */
5691 	reg = pci_read_config(dev, 0x40, sizeof(reg));
5692 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5693 
5694 	/* Enable bus-mastering and hardware bug workaround. */
5695 	pci_enable_busmaster(dev);
5696 	reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5697 	/* if !MSI */
5698 	if (reg & PCIM_STATUS_INTxSTATE) {
5699 		reg &= ~PCIM_STATUS_INTxSTATE;
5700 	}
5701 	pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5702 
5703 	rid = PCIR_BAR(0);
5704 	sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5705 	    RF_ACTIVE);
5706 	if (sc->sc_mem == NULL) {
5707 		device_printf(sc->sc_dev, "can't map mem space\n");
5708 		return (ENXIO);
5709 	}
5710 	sc->sc_st = rman_get_bustag(sc->sc_mem);
5711 	sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5712 
5713 	/* Install interrupt handler. */
5714 	count = 1;
5715 	rid = 0;
5716 	if (pci_alloc_msi(dev, &count) == 0)
5717 		rid = 1;
5718 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5719 	    (rid != 0 ? 0 : RF_SHAREABLE));
5720 	if (sc->sc_irq == NULL) {
5721 		device_printf(dev, "can't map interrupt\n");
5722 			return (ENXIO);
5723 	}
5724 	error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5725 	    NULL, iwm_intr, sc, &sc->sc_ih);
5726 	if (sc->sc_ih == NULL) {
5727 		device_printf(dev, "can't establish interrupt");
5728 			return (ENXIO);
5729 	}
5730 	sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5731 
5732 	return (0);
5733 }
5734 
5735 static void
5736 iwm_pci_detach(device_t dev)
5737 {
5738 	struct iwm_softc *sc = device_get_softc(dev);
5739 
5740 	if (sc->sc_irq != NULL) {
5741 		bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5742 		bus_release_resource(dev, SYS_RES_IRQ,
5743 		    rman_get_rid(sc->sc_irq), sc->sc_irq);
5744 		pci_release_msi(dev);
5745         }
5746 	if (sc->sc_mem != NULL)
5747 		bus_release_resource(dev, SYS_RES_MEMORY,
5748 		    rman_get_rid(sc->sc_mem), sc->sc_mem);
5749 }
5750 
5751 
5752 
5753 static int
5754 iwm_attach(device_t dev)
5755 {
5756 	struct iwm_softc *sc = device_get_softc(dev);
5757 	struct ieee80211com *ic = &sc->sc_ic;
5758 	int error;
5759 	int txq_i, i;
5760 
5761 	sc->sc_dev = dev;
5762 	IWM_LOCK_INIT(sc);
5763 	mbufq_init(&sc->sc_snd, ifqmaxlen);
5764 	callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5765 	callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5766 	TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5767 
5768 	/* PCI attach */
5769 	error = iwm_pci_attach(dev);
5770 	if (error != 0)
5771 		goto fail;
5772 
5773 	sc->sc_wantresp = -1;
5774 
5775 	/* Check device type */
5776 	error = iwm_dev_check(dev);
5777 	if (error != 0)
5778 		goto fail;
5779 
5780 	/*
5781 	 * We now start fiddling with the hardware
5782 	 */
5783 	/*
5784 	 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5785 	 * changed, and now the revision step also includes bit 0-1 (no more
5786 	 * "dash" value). To keep hw_rev backwards compatible - we'll store it
5787 	 * in the old format.
5788 	 */
5789 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5790 		sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5791 				(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5792 
5793 	if (iwm_prepare_card_hw(sc) != 0) {
5794 		device_printf(dev, "could not initialize hardware\n");
5795 		goto fail;
5796 	}
5797 
5798 	if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5799 		int ret;
5800 		uint32_t hw_step;
5801 
5802 		/*
5803 		 * In order to recognize C step the driver should read the
5804 		 * chip version id located at the AUX bus MISC address.
5805 		 */
5806 		IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5807 			    IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5808 		DELAY(2);
5809 
5810 		ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5811 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5812 				   IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5813 				   25000);
5814 		if (!ret) {
5815 			device_printf(sc->sc_dev,
5816 			    "Failed to wake up the nic\n");
5817 			goto fail;
5818 		}
5819 
5820 		if (iwm_nic_lock(sc)) {
5821 			hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5822 			hw_step |= IWM_ENABLE_WFPM;
5823 			iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5824 			hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5825 			hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5826 			if (hw_step == 0x3)
5827 				sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5828 						(IWM_SILICON_C_STEP << 2);
5829 			iwm_nic_unlock(sc);
5830 		} else {
5831 			device_printf(sc->sc_dev, "Failed to lock the nic\n");
5832 			goto fail;
5833 		}
5834 	}
5835 
5836 	/* Allocate DMA memory for firmware transfers. */
5837 	if ((error = iwm_alloc_fwmem(sc)) != 0) {
5838 		device_printf(dev, "could not allocate memory for firmware\n");
5839 		goto fail;
5840 	}
5841 
5842 	/* Allocate "Keep Warm" page. */
5843 	if ((error = iwm_alloc_kw(sc)) != 0) {
5844 		device_printf(dev, "could not allocate keep warm page\n");
5845 		goto fail;
5846 	}
5847 
5848 	/* We use ICT interrupts */
5849 	if ((error = iwm_alloc_ict(sc)) != 0) {
5850 		device_printf(dev, "could not allocate ICT table\n");
5851 		goto fail;
5852 	}
5853 
5854 	/* Allocate TX scheduler "rings". */
5855 	if ((error = iwm_alloc_sched(sc)) != 0) {
5856 		device_printf(dev, "could not allocate TX scheduler rings\n");
5857 		goto fail;
5858 	}
5859 
5860 	/* Allocate TX rings */
5861 	for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5862 		if ((error = iwm_alloc_tx_ring(sc,
5863 		    &sc->txq[txq_i], txq_i)) != 0) {
5864 			device_printf(dev,
5865 			    "could not allocate TX ring %d\n",
5866 			    txq_i);
5867 			goto fail;
5868 		}
5869 	}
5870 
5871 	/* Allocate RX ring. */
5872 	if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5873 		device_printf(dev, "could not allocate RX ring\n");
5874 		goto fail;
5875 	}
5876 
5877 	/* Clear pending interrupts. */
5878 	IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5879 
5880 	ic->ic_softc = sc;
5881 	ic->ic_name = device_get_nameunit(sc->sc_dev);
5882 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
5883 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
5884 
5885 	/* Set device capabilities. */
5886 	ic->ic_caps =
5887 	    IEEE80211_C_STA |
5888 	    IEEE80211_C_WPA |		/* WPA/RSN */
5889 	    IEEE80211_C_WME |
5890 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
5891 	    IEEE80211_C_SHPREAMBLE	/* short preamble supported */
5892 //	    IEEE80211_C_BGSCAN		/* capable of bg scanning */
5893 	    ;
5894 	for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5895 		sc->sc_phyctxt[i].id = i;
5896 		sc->sc_phyctxt[i].color = 0;
5897 		sc->sc_phyctxt[i].ref = 0;
5898 		sc->sc_phyctxt[i].channel = NULL;
5899 	}
5900 
5901 	/* Default noise floor */
5902 	sc->sc_noise = -96;
5903 
5904 	/* Max RSSI */
5905 	sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5906 
5907 	sc->sc_preinit_hook.ich_func = iwm_preinit;
5908 	sc->sc_preinit_hook.ich_arg = sc;
5909 	if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5910 		device_printf(dev, "config_intrhook_establish failed\n");
5911 		goto fail;
5912 	}
5913 
5914 #ifdef IWM_DEBUG
5915 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5916 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5917 	    CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5918 #endif
5919 
5920 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5921 	    "<-%s\n", __func__);
5922 
5923 	return 0;
5924 
5925 	/* Free allocated memory if something failed during attachment. */
5926 fail:
5927 	iwm_detach_local(sc, 0);
5928 
5929 	return ENXIO;
5930 }
5931 
5932 static int
5933 iwm_is_valid_ether_addr(uint8_t *addr)
5934 {
5935 	char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5936 
5937 	if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5938 		return (FALSE);
5939 
5940 	return (TRUE);
5941 }
5942 
5943 static int
5944 iwm_update_edca(struct ieee80211com *ic)
5945 {
5946 	struct iwm_softc *sc = ic->ic_softc;
5947 
5948 	device_printf(sc->sc_dev, "%s: called\n", __func__);
5949 	return (0);
5950 }
5951 
5952 static void
5953 iwm_preinit(void *arg)
5954 {
5955 	struct iwm_softc *sc = arg;
5956 	device_t dev = sc->sc_dev;
5957 	struct ieee80211com *ic = &sc->sc_ic;
5958 	int error;
5959 
5960 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5961 	    "->%s\n", __func__);
5962 
5963 	IWM_LOCK(sc);
5964 	if ((error = iwm_start_hw(sc)) != 0) {
5965 		device_printf(dev, "could not initialize hardware\n");
5966 		IWM_UNLOCK(sc);
5967 		goto fail;
5968 	}
5969 
5970 	error = iwm_run_init_mvm_ucode(sc, 1);
5971 	iwm_stop_device(sc);
5972 	if (error) {
5973 		IWM_UNLOCK(sc);
5974 		goto fail;
5975 	}
5976 	device_printf(dev,
5977 	    "hw rev 0x%x, fw ver %s, address %s\n",
5978 	    sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5979 	    sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5980 
5981 	/* not all hardware can do 5GHz band */
5982 	if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5983 		memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5984 		    sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5985 	IWM_UNLOCK(sc);
5986 
5987 	iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5988 	    ic->ic_channels);
5989 
5990 	/*
5991 	 * At this point we've committed - if we fail to do setup,
5992 	 * we now also have to tear down the net80211 state.
5993 	 */
5994 	ieee80211_ifattach(ic);
5995 	ic->ic_vap_create = iwm_vap_create;
5996 	ic->ic_vap_delete = iwm_vap_delete;
5997 	ic->ic_raw_xmit = iwm_raw_xmit;
5998 	ic->ic_node_alloc = iwm_node_alloc;
5999 	ic->ic_scan_start = iwm_scan_start;
6000 	ic->ic_scan_end = iwm_scan_end;
6001 	ic->ic_update_mcast = iwm_update_mcast;
6002 	ic->ic_getradiocaps = iwm_init_channel_map;
6003 	ic->ic_set_channel = iwm_set_channel;
6004 	ic->ic_scan_curchan = iwm_scan_curchan;
6005 	ic->ic_scan_mindwell = iwm_scan_mindwell;
6006 	ic->ic_wme.wme_update = iwm_update_edca;
6007 	ic->ic_parent = iwm_parent;
6008 	ic->ic_transmit = iwm_transmit;
6009 	iwm_radiotap_attach(sc);
6010 	if (bootverbose)
6011 		ieee80211_announce(ic);
6012 
6013 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6014 	    "<-%s\n", __func__);
6015 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6016 
6017 	return;
6018 fail:
6019 	config_intrhook_disestablish(&sc->sc_preinit_hook);
6020 	iwm_detach_local(sc, 0);
6021 }
6022 
6023 /*
6024  * Attach the interface to 802.11 radiotap.
6025  */
6026 static void
6027 iwm_radiotap_attach(struct iwm_softc *sc)
6028 {
6029         struct ieee80211com *ic = &sc->sc_ic;
6030 
6031 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6032 	    "->%s begin\n", __func__);
6033         ieee80211_radiotap_attach(ic,
6034             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6035                 IWM_TX_RADIOTAP_PRESENT,
6036             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6037                 IWM_RX_RADIOTAP_PRESENT);
6038 	IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6039 	    "->%s end\n", __func__);
6040 }
6041 
6042 static struct ieee80211vap *
6043 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6044     enum ieee80211_opmode opmode, int flags,
6045     const uint8_t bssid[IEEE80211_ADDR_LEN],
6046     const uint8_t mac[IEEE80211_ADDR_LEN])
6047 {
6048 	struct iwm_vap *ivp;
6049 	struct ieee80211vap *vap;
6050 
6051 	if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6052 		return NULL;
6053 	ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6054 	vap = &ivp->iv_vap;
6055 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6056 	vap->iv_bmissthreshold = 10;            /* override default */
6057 	/* Override with driver methods. */
6058 	ivp->iv_newstate = vap->iv_newstate;
6059 	vap->iv_newstate = iwm_newstate;
6060 
6061 	ieee80211_ratectl_init(vap);
6062 	/* Complete setup. */
6063 	ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6064 	    mac);
6065 	ic->ic_opmode = opmode;
6066 
6067 	return vap;
6068 }
6069 
6070 static void
6071 iwm_vap_delete(struct ieee80211vap *vap)
6072 {
6073 	struct iwm_vap *ivp = IWM_VAP(vap);
6074 
6075 	ieee80211_ratectl_deinit(vap);
6076 	ieee80211_vap_detach(vap);
6077 	free(ivp, M_80211_VAP);
6078 }
6079 
6080 static void
6081 iwm_scan_start(struct ieee80211com *ic)
6082 {
6083 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6084 	struct iwm_softc *sc = ic->ic_softc;
6085 	int error;
6086 
6087 	IWM_LOCK(sc);
6088 	if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6089 		error = iwm_mvm_umac_scan(sc);
6090 	else
6091 		error = iwm_mvm_lmac_scan(sc);
6092 	if (error != 0) {
6093 		device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6094 		IWM_UNLOCK(sc);
6095 		ieee80211_cancel_scan(vap);
6096 	} else {
6097 		iwm_led_blink_start(sc);
6098 		IWM_UNLOCK(sc);
6099 	}
6100 }
6101 
6102 static void
6103 iwm_scan_end(struct ieee80211com *ic)
6104 {
6105 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6106 	struct iwm_softc *sc = ic->ic_softc;
6107 
6108 	IWM_LOCK(sc);
6109 	iwm_led_blink_stop(sc);
6110 	if (vap->iv_state == IEEE80211_S_RUN)
6111 		iwm_mvm_led_enable(sc);
6112 	IWM_UNLOCK(sc);
6113 }
6114 
6115 static void
6116 iwm_update_mcast(struct ieee80211com *ic)
6117 {
6118 }
6119 
6120 static void
6121 iwm_set_channel(struct ieee80211com *ic)
6122 {
6123 }
6124 
6125 static void
6126 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6127 {
6128 }
6129 
6130 static void
6131 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6132 {
6133 	return;
6134 }
6135 
6136 void
6137 iwm_init_task(void *arg1)
6138 {
6139 	struct iwm_softc *sc = arg1;
6140 
6141 	IWM_LOCK(sc);
6142 	while (sc->sc_flags & IWM_FLAG_BUSY)
6143 		msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6144 	sc->sc_flags |= IWM_FLAG_BUSY;
6145 	iwm_stop(sc);
6146 	if (sc->sc_ic.ic_nrunning > 0)
6147 		iwm_init(sc);
6148 	sc->sc_flags &= ~IWM_FLAG_BUSY;
6149 	wakeup(&sc->sc_flags);
6150 	IWM_UNLOCK(sc);
6151 }
6152 
6153 static int
6154 iwm_resume(device_t dev)
6155 {
6156 	struct iwm_softc *sc = device_get_softc(dev);
6157 	int do_reinit = 0;
6158 	uint16_t reg;
6159 
6160 	/* Clear device-specific "PCI retry timeout" register (41h). */
6161 	reg = pci_read_config(dev, 0x40, sizeof(reg));
6162 	pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6163 	iwm_init_task(device_get_softc(dev));
6164 
6165 	IWM_LOCK(sc);
6166 	if (sc->sc_flags & IWM_FLAG_SCANNING) {
6167 		sc->sc_flags &= ~IWM_FLAG_SCANNING;
6168 		do_reinit = 1;
6169 	}
6170 	IWM_UNLOCK(sc);
6171 
6172 	if (do_reinit)
6173 		ieee80211_resume_all(&sc->sc_ic);
6174 
6175 	return 0;
6176 }
6177 
6178 static int
6179 iwm_suspend(device_t dev)
6180 {
6181 	int do_stop = 0;
6182 	struct iwm_softc *sc = device_get_softc(dev);
6183 
6184 	do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6185 
6186 	ieee80211_suspend_all(&sc->sc_ic);
6187 
6188 	if (do_stop) {
6189 		IWM_LOCK(sc);
6190 		iwm_stop(sc);
6191 		sc->sc_flags |= IWM_FLAG_SCANNING;
6192 		IWM_UNLOCK(sc);
6193 	}
6194 
6195 	return (0);
6196 }
6197 
6198 static int
6199 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6200 {
6201 	struct iwm_fw_info *fw = &sc->sc_fw;
6202 	device_t dev = sc->sc_dev;
6203 	int i;
6204 
6205 	ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6206 
6207 	callout_drain(&sc->sc_led_blink_to);
6208 	callout_drain(&sc->sc_watchdog_to);
6209 	iwm_stop_device(sc);
6210 	if (do_net80211) {
6211 		ieee80211_ifdetach(&sc->sc_ic);
6212 	}
6213 
6214 	iwm_phy_db_free(sc);
6215 
6216 	/* Free descriptor rings */
6217 	iwm_free_rx_ring(sc, &sc->rxq);
6218 	for (i = 0; i < nitems(sc->txq); i++)
6219 		iwm_free_tx_ring(sc, &sc->txq[i]);
6220 
6221 	/* Free firmware */
6222 	if (fw->fw_fp != NULL)
6223 		iwm_fw_info_free(fw);
6224 
6225 	/* Free scheduler */
6226 	iwm_dma_contig_free(&sc->sched_dma);
6227 	iwm_dma_contig_free(&sc->ict_dma);
6228 	iwm_dma_contig_free(&sc->kw_dma);
6229 	iwm_dma_contig_free(&sc->fw_dma);
6230 
6231 	/* Finished with the hardware - detach things */
6232 	iwm_pci_detach(dev);
6233 
6234 	mbufq_drain(&sc->sc_snd);
6235 	IWM_LOCK_DESTROY(sc);
6236 
6237 	return (0);
6238 }
6239 
6240 static int
6241 iwm_detach(device_t dev)
6242 {
6243 	struct iwm_softc *sc = device_get_softc(dev);
6244 
6245 	return (iwm_detach_local(sc, 1));
6246 }
6247 
6248 static device_method_t iwm_pci_methods[] = {
6249         /* Device interface */
6250         DEVMETHOD(device_probe,         iwm_probe),
6251         DEVMETHOD(device_attach,        iwm_attach),
6252         DEVMETHOD(device_detach,        iwm_detach),
6253         DEVMETHOD(device_suspend,       iwm_suspend),
6254         DEVMETHOD(device_resume,        iwm_resume),
6255 
6256         DEVMETHOD_END
6257 };
6258 
6259 static driver_t iwm_pci_driver = {
6260         "iwm",
6261         iwm_pci_methods,
6262         sizeof (struct iwm_softc)
6263 };
6264 
6265 static devclass_t iwm_devclass;
6266 
6267 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6268 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6269 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6270 MODULE_DEPEND(iwm, wlan, 1, 1, 1);
6271