1 /* $OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $ */ 2 3 /* 4 * Copyright (c) 2014 genua mbh <info@genua.de> 5 * Copyright (c) 2014 Fixup Software Ltd. 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /*- 21 * Based on BSD-licensed source modules in the Linux iwlwifi driver, 22 * which were used as the reference documentation for this implementation. 23 * 24 * Driver version we are currently based off of is 25 * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) 26 * 27 *********************************************************************** 28 * 29 * This file is provided under a dual BSD/GPLv2 license. When using or 30 * redistributing this file, you may do so under either license. 31 * 32 * GPL LICENSE SUMMARY 33 * 34 * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. 35 * 36 * This program is free software; you can redistribute it and/or modify 37 * it under the terms of version 2 of the GNU General Public License as 38 * published by the Free Software Foundation. 39 * 40 * This program is distributed in the hope that it will be useful, but 41 * WITHOUT ANY WARRANTY; without even the implied warranty of 42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 43 * General Public License for more details. 44 * 45 * You should have received a copy of the GNU General Public License 46 * along with this program; if not, write to the Free Software 47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, 48 * USA 49 * 50 * The full GNU General Public License is included in this distribution 51 * in the file called COPYING. 52 * 53 * Contact Information: 54 * Intel Linux Wireless <ilw@linux.intel.com> 55 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 56 * 57 * 58 * BSD LICENSE 59 * 60 * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. 61 * All rights reserved. 62 * 63 * Redistribution and use in source and binary forms, with or without 64 * modification, are permitted provided that the following conditions 65 * are met: 66 * 67 * * Redistributions of source code must retain the above copyright 68 * notice, this list of conditions and the following disclaimer. 69 * * Redistributions in binary form must reproduce the above copyright 70 * notice, this list of conditions and the following disclaimer in 71 * the documentation and/or other materials provided with the 72 * distribution. 73 * * Neither the name Intel Corporation nor the names of its 74 * contributors may be used to endorse or promote products derived 75 * from this software without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 78 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 79 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 80 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 81 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 82 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 83 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 84 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 85 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 86 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 87 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 88 */ 89 90 /*- 91 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> 92 * 93 * Permission to use, copy, modify, and distribute this software for any 94 * purpose with or without fee is hereby granted, provided that the above 95 * copyright notice and this permission notice appear in all copies. 96 * 97 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 98 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 99 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 100 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 101 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 102 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 103 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 104 */ 105 #include <sys/cdefs.h> 106 __FBSDID("$FreeBSD$"); 107 108 #include "opt_wlan.h" 109 #include "opt_iwm.h" 110 111 #include <sys/param.h> 112 #include <sys/bus.h> 113 #include <sys/conf.h> 114 #include <sys/endian.h> 115 #include <sys/firmware.h> 116 #include <sys/kernel.h> 117 #include <sys/malloc.h> 118 #include <sys/mbuf.h> 119 #include <sys/mutex.h> 120 #include <sys/module.h> 121 #include <sys/proc.h> 122 #include <sys/rman.h> 123 #include <sys/socket.h> 124 #include <sys/sockio.h> 125 #include <sys/sysctl.h> 126 #include <sys/linker.h> 127 128 #include <machine/bus.h> 129 #include <machine/endian.h> 130 #include <machine/resource.h> 131 132 #include <dev/pci/pcivar.h> 133 #include <dev/pci/pcireg.h> 134 135 #include <net/bpf.h> 136 137 #include <net/if.h> 138 #include <net/if_var.h> 139 #include <net/if_arp.h> 140 #include <net/if_dl.h> 141 #include <net/if_media.h> 142 #include <net/if_types.h> 143 144 #include <netinet/in.h> 145 #include <netinet/in_systm.h> 146 #include <netinet/if_ether.h> 147 #include <netinet/ip.h> 148 149 #include <net80211/ieee80211_var.h> 150 #include <net80211/ieee80211_regdomain.h> 151 #include <net80211/ieee80211_ratectl.h> 152 #include <net80211/ieee80211_radiotap.h> 153 154 #include <dev/iwm/if_iwmreg.h> 155 #include <dev/iwm/if_iwmvar.h> 156 #include <dev/iwm/if_iwm_config.h> 157 #include <dev/iwm/if_iwm_debug.h> 158 #include <dev/iwm/if_iwm_notif_wait.h> 159 #include <dev/iwm/if_iwm_util.h> 160 #include <dev/iwm/if_iwm_binding.h> 161 #include <dev/iwm/if_iwm_phy_db.h> 162 #include <dev/iwm/if_iwm_mac_ctxt.h> 163 #include <dev/iwm/if_iwm_phy_ctxt.h> 164 #include <dev/iwm/if_iwm_time_event.h> 165 #include <dev/iwm/if_iwm_power.h> 166 #include <dev/iwm/if_iwm_scan.h> 167 #include <dev/iwm/if_iwm_sf.h> 168 #include <dev/iwm/if_iwm_sta.h> 169 170 #include <dev/iwm/if_iwm_pcie_trans.h> 171 #include <dev/iwm/if_iwm_led.h> 172 #include <dev/iwm/if_iwm_fw.h> 173 174 /* From DragonflyBSD */ 175 #define mtodoff(m, t, off) ((t)((m)->m_data + (off))) 176 177 const uint8_t iwm_nvm_channels[] = { 178 /* 2.4 GHz */ 179 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 180 /* 5 GHz */ 181 36, 40, 44, 48, 52, 56, 60, 64, 182 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 183 149, 153, 157, 161, 165 184 }; 185 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS, 186 "IWM_NUM_CHANNELS is too small"); 187 188 const uint8_t iwm_nvm_channels_8000[] = { 189 /* 2.4 GHz */ 190 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 191 /* 5 GHz */ 192 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 193 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 194 149, 153, 157, 161, 165, 169, 173, 177, 181 195 }; 196 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000, 197 "IWM_NUM_CHANNELS_8000 is too small"); 198 199 #define IWM_NUM_2GHZ_CHANNELS 14 200 #define IWM_N_HW_ADDR_MASK 0xF 201 202 /* 203 * XXX For now, there's simply a fixed set of rate table entries 204 * that are populated. 205 */ 206 const struct iwm_rate { 207 uint8_t rate; 208 uint8_t plcp; 209 } iwm_rates[] = { 210 { 2, IWM_RATE_1M_PLCP }, 211 { 4, IWM_RATE_2M_PLCP }, 212 { 11, IWM_RATE_5M_PLCP }, 213 { 22, IWM_RATE_11M_PLCP }, 214 { 12, IWM_RATE_6M_PLCP }, 215 { 18, IWM_RATE_9M_PLCP }, 216 { 24, IWM_RATE_12M_PLCP }, 217 { 36, IWM_RATE_18M_PLCP }, 218 { 48, IWM_RATE_24M_PLCP }, 219 { 72, IWM_RATE_36M_PLCP }, 220 { 96, IWM_RATE_48M_PLCP }, 221 { 108, IWM_RATE_54M_PLCP }, 222 }; 223 #define IWM_RIDX_CCK 0 224 #define IWM_RIDX_OFDM 4 225 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) 226 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) 227 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) 228 229 struct iwm_nvm_section { 230 uint16_t length; 231 uint8_t *data; 232 }; 233 234 #define IWM_UCODE_ALIVE_TIMEOUT hz 235 #define IWM_UCODE_CALIB_TIMEOUT (2*hz) 236 237 struct iwm_alive_data { 238 int valid; 239 uint32_t scd_base_addr; 240 }; 241 242 static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); 243 static int iwm_firmware_store_section(struct iwm_softc *, 244 enum iwm_ucode_type, 245 const uint8_t *, size_t); 246 static int iwm_set_default_calib(struct iwm_softc *, const void *); 247 static void iwm_fw_info_free(struct iwm_fw_info *); 248 static int iwm_read_firmware(struct iwm_softc *); 249 static int iwm_alloc_fwmem(struct iwm_softc *); 250 static int iwm_alloc_sched(struct iwm_softc *); 251 static int iwm_alloc_kw(struct iwm_softc *); 252 static int iwm_alloc_ict(struct iwm_softc *); 253 static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 254 static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 255 static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); 256 static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, 257 int); 258 static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 259 static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); 260 static void iwm_enable_interrupts(struct iwm_softc *); 261 static void iwm_restore_interrupts(struct iwm_softc *); 262 static void iwm_disable_interrupts(struct iwm_softc *); 263 static void iwm_ict_reset(struct iwm_softc *); 264 static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); 265 static void iwm_stop_device(struct iwm_softc *); 266 static void iwm_nic_config(struct iwm_softc *); 267 static int iwm_nic_rx_init(struct iwm_softc *); 268 static int iwm_nic_tx_init(struct iwm_softc *); 269 static int iwm_nic_init(struct iwm_softc *); 270 static int iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t); 271 static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, 272 uint16_t, uint8_t *, uint16_t *); 273 static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, 274 uint16_t *, uint32_t); 275 static uint32_t iwm_eeprom_channel_flags(uint16_t); 276 static void iwm_add_channel_band(struct iwm_softc *, 277 struct ieee80211_channel[], int, int *, int, size_t, 278 const uint8_t[]); 279 static void iwm_init_channel_map(struct ieee80211com *, int, int *, 280 struct ieee80211_channel[]); 281 static struct iwm_nvm_data * 282 iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, 283 const uint16_t *, const uint16_t *, 284 const uint16_t *, const uint16_t *, 285 const uint16_t *); 286 static void iwm_free_nvm_data(struct iwm_nvm_data *); 287 static void iwm_set_hw_address_family_8000(struct iwm_softc *, 288 struct iwm_nvm_data *, 289 const uint16_t *, 290 const uint16_t *); 291 static int iwm_get_sku(const struct iwm_softc *, const uint16_t *, 292 const uint16_t *); 293 static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *); 294 static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *, 295 const uint16_t *); 296 static int iwm_get_n_hw_addrs(const struct iwm_softc *, 297 const uint16_t *); 298 static void iwm_set_radio_cfg(const struct iwm_softc *, 299 struct iwm_nvm_data *, uint32_t); 300 static struct iwm_nvm_data * 301 iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); 302 static int iwm_nvm_init(struct iwm_softc *); 303 static int iwm_pcie_load_section(struct iwm_softc *, uint8_t, 304 const struct iwm_fw_desc *); 305 static int iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t, 306 bus_addr_t, uint32_t); 307 static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, 308 const struct iwm_fw_img *, 309 int, int *); 310 static int iwm_pcie_load_cpu_sections(struct iwm_softc *, 311 const struct iwm_fw_img *, 312 int, int *); 313 static int iwm_pcie_load_given_ucode_8000(struct iwm_softc *, 314 const struct iwm_fw_img *); 315 static int iwm_pcie_load_given_ucode(struct iwm_softc *, 316 const struct iwm_fw_img *); 317 static int iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *); 318 static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); 319 static int iwm_send_phy_cfg_cmd(struct iwm_softc *); 320 static int iwm_load_ucode_wait_alive(struct iwm_softc *, 321 enum iwm_ucode_type); 322 static int iwm_run_init_ucode(struct iwm_softc *, int); 323 static int iwm_config_ltr(struct iwm_softc *sc); 324 static int iwm_rx_addbuf(struct iwm_softc *, int, int); 325 static void iwm_rx_rx_phy_cmd(struct iwm_softc *, 326 struct iwm_rx_packet *); 327 static int iwm_get_noise(struct iwm_softc *, 328 const struct iwm_statistics_rx_non_phy *); 329 static void iwm_handle_rx_statistics(struct iwm_softc *, 330 struct iwm_rx_packet *); 331 static bool iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, 332 uint32_t, bool); 333 static int iwm_rx_tx_cmd_single(struct iwm_softc *, 334 struct iwm_rx_packet *, 335 struct iwm_node *); 336 static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *); 337 static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); 338 #if 0 339 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, 340 uint16_t); 341 #endif 342 static const struct iwm_rate * 343 iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, 344 struct mbuf *, struct iwm_tx_cmd *); 345 static int iwm_tx(struct iwm_softc *, struct mbuf *, 346 struct ieee80211_node *, int); 347 static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, 348 const struct ieee80211_bpf_params *); 349 static int iwm_update_quotas(struct iwm_softc *, struct iwm_vap *); 350 static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); 351 static struct ieee80211_node * 352 iwm_node_alloc(struct ieee80211vap *, 353 const uint8_t[IEEE80211_ADDR_LEN]); 354 static uint8_t iwm_rate_from_ucode_rate(uint32_t); 355 static int iwm_rate2ridx(struct iwm_softc *, uint8_t); 356 static void iwm_setrates(struct iwm_softc *, struct iwm_node *, int); 357 static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); 358 static void iwm_endscan_cb(void *, int); 359 static int iwm_send_bt_init_conf(struct iwm_softc *); 360 static boolean_t iwm_is_lar_supported(struct iwm_softc *); 361 static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *); 362 static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); 363 static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); 364 static int iwm_init_hw(struct iwm_softc *); 365 static void iwm_init(struct iwm_softc *); 366 static void iwm_start(struct iwm_softc *); 367 static void iwm_stop(struct iwm_softc *); 368 static void iwm_watchdog(void *); 369 static void iwm_parent(struct ieee80211com *); 370 #ifdef IWM_DEBUG 371 static const char * 372 iwm_desc_lookup(uint32_t); 373 static void iwm_nic_error(struct iwm_softc *); 374 static void iwm_nic_umac_error(struct iwm_softc *); 375 #endif 376 static void iwm_handle_rxb(struct iwm_softc *, struct mbuf *); 377 static void iwm_notif_intr(struct iwm_softc *); 378 static void iwm_intr(void *); 379 static int iwm_attach(device_t); 380 static int iwm_is_valid_ether_addr(uint8_t *); 381 static void iwm_preinit(void *); 382 static int iwm_detach_local(struct iwm_softc *sc, int); 383 static void iwm_init_task(void *); 384 static void iwm_radiotap_attach(struct iwm_softc *); 385 static struct ieee80211vap * 386 iwm_vap_create(struct ieee80211com *, 387 const char [IFNAMSIZ], int, 388 enum ieee80211_opmode, int, 389 const uint8_t [IEEE80211_ADDR_LEN], 390 const uint8_t [IEEE80211_ADDR_LEN]); 391 static void iwm_vap_delete(struct ieee80211vap *); 392 static void iwm_xmit_queue_drain(struct iwm_softc *); 393 static void iwm_scan_start(struct ieee80211com *); 394 static void iwm_scan_end(struct ieee80211com *); 395 static void iwm_update_mcast(struct ieee80211com *); 396 static void iwm_set_channel(struct ieee80211com *); 397 static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); 398 static void iwm_scan_mindwell(struct ieee80211_scan_state *); 399 static int iwm_detach(device_t); 400 401 static int iwm_lar_disable = 0; 402 TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable); 403 404 /* 405 * Firmware parser. 406 */ 407 408 static int 409 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) 410 { 411 const struct iwm_fw_cscheme_list *l = (const void *)data; 412 413 if (dlen < sizeof(*l) || 414 dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) 415 return EINVAL; 416 417 /* we don't actually store anything for now, always use s/w crypto */ 418 419 return 0; 420 } 421 422 static int 423 iwm_firmware_store_section(struct iwm_softc *sc, 424 enum iwm_ucode_type type, const uint8_t *data, size_t dlen) 425 { 426 struct iwm_fw_img *fws; 427 struct iwm_fw_desc *fwone; 428 429 if (type >= IWM_UCODE_TYPE_MAX) 430 return EINVAL; 431 if (dlen < sizeof(uint32_t)) 432 return EINVAL; 433 434 fws = &sc->sc_fw.img[type]; 435 if (fws->fw_count >= IWM_UCODE_SECTION_MAX) 436 return EINVAL; 437 438 fwone = &fws->sec[fws->fw_count]; 439 440 /* first 32bit are device load offset */ 441 memcpy(&fwone->offset, data, sizeof(uint32_t)); 442 443 /* rest is data */ 444 fwone->data = data + sizeof(uint32_t); 445 fwone->len = dlen - sizeof(uint32_t); 446 447 fws->fw_count++; 448 449 return 0; 450 } 451 452 #define IWM_DEFAULT_SCAN_CHANNELS 40 453 454 /* iwlwifi: iwl-drv.c */ 455 struct iwm_tlv_calib_data { 456 uint32_t ucode_type; 457 struct iwm_tlv_calib_ctrl calib; 458 } __packed; 459 460 static int 461 iwm_set_default_calib(struct iwm_softc *sc, const void *data) 462 { 463 const struct iwm_tlv_calib_data *def_calib = data; 464 uint32_t ucode_type = le32toh(def_calib->ucode_type); 465 466 if (ucode_type >= IWM_UCODE_TYPE_MAX) { 467 device_printf(sc->sc_dev, 468 "Wrong ucode_type %u for default " 469 "calibration.\n", ucode_type); 470 return EINVAL; 471 } 472 473 sc->sc_default_calib[ucode_type].flow_trigger = 474 def_calib->calib.flow_trigger; 475 sc->sc_default_calib[ucode_type].event_trigger = 476 def_calib->calib.event_trigger; 477 478 return 0; 479 } 480 481 static int 482 iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data, 483 struct iwm_ucode_capabilities *capa) 484 { 485 const struct iwm_ucode_api *ucode_api = (const void *)data; 486 uint32_t api_index = le32toh(ucode_api->api_index); 487 uint32_t api_flags = le32toh(ucode_api->api_flags); 488 int i; 489 490 if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) { 491 device_printf(sc->sc_dev, 492 "api flags index %d larger than supported by driver\n", 493 api_index); 494 /* don't return an error so we can load FW that has more bits */ 495 return 0; 496 } 497 498 for (i = 0; i < 32; i++) { 499 if (api_flags & (1U << i)) 500 setbit(capa->enabled_api, i + 32 * api_index); 501 } 502 503 return 0; 504 } 505 506 static int 507 iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data, 508 struct iwm_ucode_capabilities *capa) 509 { 510 const struct iwm_ucode_capa *ucode_capa = (const void *)data; 511 uint32_t api_index = le32toh(ucode_capa->api_index); 512 uint32_t api_flags = le32toh(ucode_capa->api_capa); 513 int i; 514 515 if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { 516 device_printf(sc->sc_dev, 517 "capa flags index %d larger than supported by driver\n", 518 api_index); 519 /* don't return an error so we can load FW that has more bits */ 520 return 0; 521 } 522 523 for (i = 0; i < 32; i++) { 524 if (api_flags & (1U << i)) 525 setbit(capa->enabled_capa, i + 32 * api_index); 526 } 527 528 return 0; 529 } 530 531 static void 532 iwm_fw_info_free(struct iwm_fw_info *fw) 533 { 534 firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); 535 fw->fw_fp = NULL; 536 memset(fw->img, 0, sizeof(fw->img)); 537 } 538 539 static int 540 iwm_read_firmware(struct iwm_softc *sc) 541 { 542 struct iwm_fw_info *fw = &sc->sc_fw; 543 const struct iwm_tlv_ucode_header *uhdr; 544 const struct iwm_ucode_tlv *tlv; 545 struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa; 546 enum iwm_ucode_tlv_type tlv_type; 547 const struct firmware *fwp; 548 const uint8_t *data; 549 uint32_t tlv_len; 550 uint32_t usniffer_img; 551 const uint8_t *tlv_data; 552 uint32_t paging_mem_size; 553 int num_of_cpus; 554 int error = 0; 555 size_t len; 556 557 /* 558 * Load firmware into driver memory. 559 * fw_fp will be set. 560 */ 561 fwp = firmware_get(sc->cfg->fw_name); 562 if (fwp == NULL) { 563 device_printf(sc->sc_dev, 564 "could not read firmware %s (error %d)\n", 565 sc->cfg->fw_name, error); 566 goto out; 567 } 568 fw->fw_fp = fwp; 569 570 /* (Re-)Initialize default values. */ 571 capa->flags = 0; 572 capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH; 573 capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS; 574 memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa)); 575 memset(capa->enabled_api, 0, sizeof(capa->enabled_api)); 576 memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); 577 578 /* 579 * Parse firmware contents 580 */ 581 582 uhdr = (const void *)fw->fw_fp->data; 583 if (*(const uint32_t *)fw->fw_fp->data != 0 584 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { 585 device_printf(sc->sc_dev, "invalid firmware %s\n", 586 sc->cfg->fw_name); 587 error = EINVAL; 588 goto out; 589 } 590 591 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)", 592 IWM_UCODE_MAJOR(le32toh(uhdr->ver)), 593 IWM_UCODE_MINOR(le32toh(uhdr->ver)), 594 IWM_UCODE_API(le32toh(uhdr->ver))); 595 data = uhdr->data; 596 len = fw->fw_fp->datasize - sizeof(*uhdr); 597 598 while (len >= sizeof(*tlv)) { 599 len -= sizeof(*tlv); 600 tlv = (const void *)data; 601 602 tlv_len = le32toh(tlv->length); 603 tlv_type = le32toh(tlv->type); 604 tlv_data = tlv->data; 605 606 if (len < tlv_len) { 607 device_printf(sc->sc_dev, 608 "firmware too short: %zu bytes\n", 609 len); 610 error = EINVAL; 611 goto parse_out; 612 } 613 len -= roundup2(tlv_len, 4); 614 data += sizeof(*tlv) + roundup2(tlv_len, 4); 615 616 switch ((int)tlv_type) { 617 case IWM_UCODE_TLV_PROBE_MAX_LEN: 618 if (tlv_len != sizeof(uint32_t)) { 619 device_printf(sc->sc_dev, 620 "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n", 621 __func__, tlv_len); 622 error = EINVAL; 623 goto parse_out; 624 } 625 capa->max_probe_length = 626 le32_to_cpup((const uint32_t *)tlv_data); 627 /* limit it to something sensible */ 628 if (capa->max_probe_length > 629 IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { 630 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 631 "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " 632 "ridiculous\n", __func__); 633 error = EINVAL; 634 goto parse_out; 635 } 636 break; 637 case IWM_UCODE_TLV_PAN: 638 if (tlv_len) { 639 device_printf(sc->sc_dev, 640 "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n", 641 __func__, tlv_len); 642 error = EINVAL; 643 goto parse_out; 644 } 645 capa->flags |= IWM_UCODE_TLV_FLAGS_PAN; 646 break; 647 case IWM_UCODE_TLV_FLAGS: 648 if (tlv_len < sizeof(uint32_t)) { 649 device_printf(sc->sc_dev, 650 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n", 651 __func__, tlv_len); 652 error = EINVAL; 653 goto parse_out; 654 } 655 if (tlv_len % sizeof(uint32_t)) { 656 device_printf(sc->sc_dev, 657 "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n", 658 __func__, tlv_len); 659 error = EINVAL; 660 goto parse_out; 661 } 662 /* 663 * Apparently there can be many flags, but Linux driver 664 * parses only the first one, and so do we. 665 * 666 * XXX: why does this override IWM_UCODE_TLV_PAN? 667 * Intentional or a bug? Observations from 668 * current firmware file: 669 * 1) TLV_PAN is parsed first 670 * 2) TLV_FLAGS contains TLV_FLAGS_PAN 671 * ==> this resets TLV_PAN to itself... hnnnk 672 */ 673 capa->flags = le32_to_cpup((const uint32_t *)tlv_data); 674 break; 675 case IWM_UCODE_TLV_CSCHEME: 676 if ((error = iwm_store_cscheme(sc, 677 tlv_data, tlv_len)) != 0) { 678 device_printf(sc->sc_dev, 679 "%s: iwm_store_cscheme(): returned %d\n", 680 __func__, error); 681 goto parse_out; 682 } 683 break; 684 case IWM_UCODE_TLV_NUM_OF_CPU: 685 if (tlv_len != sizeof(uint32_t)) { 686 device_printf(sc->sc_dev, 687 "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n", 688 __func__, tlv_len); 689 error = EINVAL; 690 goto parse_out; 691 } 692 num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data); 693 if (num_of_cpus == 2) { 694 fw->img[IWM_UCODE_REGULAR].is_dual_cpus = 695 TRUE; 696 fw->img[IWM_UCODE_INIT].is_dual_cpus = 697 TRUE; 698 fw->img[IWM_UCODE_WOWLAN].is_dual_cpus = 699 TRUE; 700 } else if ((num_of_cpus > 2) || (num_of_cpus < 1)) { 701 device_printf(sc->sc_dev, 702 "%s: Driver supports only 1 or 2 CPUs\n", 703 __func__); 704 error = EINVAL; 705 goto parse_out; 706 } 707 break; 708 case IWM_UCODE_TLV_SEC_RT: 709 if ((error = iwm_firmware_store_section(sc, 710 IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) { 711 device_printf(sc->sc_dev, 712 "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n", 713 __func__, error); 714 goto parse_out; 715 } 716 break; 717 case IWM_UCODE_TLV_SEC_INIT: 718 if ((error = iwm_firmware_store_section(sc, 719 IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) { 720 device_printf(sc->sc_dev, 721 "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n", 722 __func__, error); 723 goto parse_out; 724 } 725 break; 726 case IWM_UCODE_TLV_SEC_WOWLAN: 727 if ((error = iwm_firmware_store_section(sc, 728 IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) { 729 device_printf(sc->sc_dev, 730 "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n", 731 __func__, error); 732 goto parse_out; 733 } 734 break; 735 case IWM_UCODE_TLV_DEF_CALIB: 736 if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { 737 device_printf(sc->sc_dev, 738 "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n", 739 __func__, tlv_len, 740 sizeof(struct iwm_tlv_calib_data)); 741 error = EINVAL; 742 goto parse_out; 743 } 744 if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { 745 device_printf(sc->sc_dev, 746 "%s: iwm_set_default_calib() failed: %d\n", 747 __func__, error); 748 goto parse_out; 749 } 750 break; 751 case IWM_UCODE_TLV_PHY_SKU: 752 if (tlv_len != sizeof(uint32_t)) { 753 error = EINVAL; 754 device_printf(sc->sc_dev, 755 "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n", 756 __func__, tlv_len); 757 goto parse_out; 758 } 759 sc->sc_fw.phy_config = 760 le32_to_cpup((const uint32_t *)tlv_data); 761 sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config & 762 IWM_FW_PHY_CFG_TX_CHAIN) >> 763 IWM_FW_PHY_CFG_TX_CHAIN_POS; 764 sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config & 765 IWM_FW_PHY_CFG_RX_CHAIN) >> 766 IWM_FW_PHY_CFG_RX_CHAIN_POS; 767 break; 768 769 case IWM_UCODE_TLV_API_CHANGES_SET: { 770 if (tlv_len != sizeof(struct iwm_ucode_api)) { 771 error = EINVAL; 772 goto parse_out; 773 } 774 if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) { 775 error = EINVAL; 776 goto parse_out; 777 } 778 break; 779 } 780 781 case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { 782 if (tlv_len != sizeof(struct iwm_ucode_capa)) { 783 error = EINVAL; 784 goto parse_out; 785 } 786 if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) { 787 error = EINVAL; 788 goto parse_out; 789 } 790 break; 791 } 792 793 case IWM_UCODE_TLV_CMD_VERSIONS: 794 case IWM_UCODE_TLV_SDIO_ADMA_ADDR: 795 case IWM_UCODE_TLV_FW_GSCAN_CAPA: 796 /* ignore, not used by current driver */ 797 break; 798 799 case IWM_UCODE_TLV_SEC_RT_USNIFFER: 800 if ((error = iwm_firmware_store_section(sc, 801 IWM_UCODE_REGULAR_USNIFFER, tlv_data, 802 tlv_len)) != 0) 803 goto parse_out; 804 break; 805 806 case IWM_UCODE_TLV_PAGING: 807 if (tlv_len != sizeof(uint32_t)) { 808 error = EINVAL; 809 goto parse_out; 810 } 811 paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data); 812 813 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, 814 "%s: Paging: paging enabled (size = %u bytes)\n", 815 __func__, paging_mem_size); 816 if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) { 817 device_printf(sc->sc_dev, 818 "%s: Paging: driver supports up to %u bytes for paging image\n", 819 __func__, IWM_MAX_PAGING_IMAGE_SIZE); 820 error = EINVAL; 821 goto out; 822 } 823 if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) { 824 device_printf(sc->sc_dev, 825 "%s: Paging: image isn't multiple %u\n", 826 __func__, IWM_FW_PAGING_SIZE); 827 error = EINVAL; 828 goto out; 829 } 830 831 sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size = 832 paging_mem_size; 833 usniffer_img = IWM_UCODE_REGULAR_USNIFFER; 834 sc->sc_fw.img[usniffer_img].paging_mem_size = 835 paging_mem_size; 836 break; 837 838 case IWM_UCODE_TLV_N_SCAN_CHANNELS: 839 if (tlv_len != sizeof(uint32_t)) { 840 error = EINVAL; 841 goto parse_out; 842 } 843 capa->n_scan_channels = 844 le32_to_cpup((const uint32_t *)tlv_data); 845 break; 846 847 case IWM_UCODE_TLV_FW_VERSION: 848 if (tlv_len != sizeof(uint32_t) * 3) { 849 error = EINVAL; 850 goto parse_out; 851 } 852 snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), 853 "%u.%u.%u", 854 le32toh(((const uint32_t *)tlv_data)[0]), 855 le32toh(((const uint32_t *)tlv_data)[1]), 856 le32toh(((const uint32_t *)tlv_data)[2])); 857 break; 858 859 case IWM_UCODE_TLV_FW_MEM_SEG: 860 break; 861 862 default: 863 device_printf(sc->sc_dev, 864 "%s: unknown firmware section %d, abort\n", 865 __func__, tlv_type); 866 error = EINVAL; 867 goto parse_out; 868 } 869 } 870 871 KASSERT(error == 0, ("unhandled error")); 872 873 parse_out: 874 if (error) { 875 device_printf(sc->sc_dev, "firmware parse error %d, " 876 "section type %d\n", error, tlv_type); 877 } 878 879 out: 880 if (error) { 881 if (fw->fw_fp != NULL) 882 iwm_fw_info_free(fw); 883 } 884 885 return error; 886 } 887 888 /* 889 * DMA resource routines 890 */ 891 892 /* fwmem is used to load firmware onto the card */ 893 static int 894 iwm_alloc_fwmem(struct iwm_softc *sc) 895 { 896 /* Must be aligned on a 16-byte boundary. */ 897 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, 898 IWM_FH_MEM_TB_MAX_LENGTH, 16); 899 } 900 901 /* tx scheduler rings. not used? */ 902 static int 903 iwm_alloc_sched(struct iwm_softc *sc) 904 { 905 /* TX scheduler rings must be aligned on a 1KB boundary. */ 906 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, 907 nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); 908 } 909 910 /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ 911 static int 912 iwm_alloc_kw(struct iwm_softc *sc) 913 { 914 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); 915 } 916 917 /* interrupt cause table */ 918 static int 919 iwm_alloc_ict(struct iwm_softc *sc) 920 { 921 return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, 922 IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT); 923 } 924 925 static int 926 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 927 { 928 bus_size_t size; 929 size_t descsz; 930 int count, i, error; 931 932 ring->cur = 0; 933 if (sc->cfg->mqrx_supported) { 934 count = IWM_RX_MQ_RING_COUNT; 935 descsz = sizeof(uint64_t); 936 } else { 937 count = IWM_RX_LEGACY_RING_COUNT; 938 descsz = sizeof(uint32_t); 939 } 940 941 /* Allocate RX descriptors (256-byte aligned). */ 942 size = count * descsz; 943 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 944 256); 945 if (error != 0) { 946 device_printf(sc->sc_dev, 947 "could not allocate RX ring DMA memory\n"); 948 goto fail; 949 } 950 ring->desc = ring->free_desc_dma.vaddr; 951 952 /* Allocate RX status area (16-byte aligned). */ 953 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, 954 sizeof(*ring->stat), 16); 955 if (error != 0) { 956 device_printf(sc->sc_dev, 957 "could not allocate RX status DMA memory\n"); 958 goto fail; 959 } 960 ring->stat = ring->stat_dma.vaddr; 961 962 if (sc->cfg->mqrx_supported) { 963 size = count * sizeof(uint32_t); 964 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, 965 size, 256); 966 if (error != 0) { 967 device_printf(sc->sc_dev, 968 "could not allocate RX ring DMA memory\n"); 969 goto fail; 970 } 971 } 972 973 /* Create RX buffer DMA tag. */ 974 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 975 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 976 IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 977 if (error != 0) { 978 device_printf(sc->sc_dev, 979 "%s: could not create RX buf DMA tag, error %d\n", 980 __func__, error); 981 goto fail; 982 } 983 984 /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */ 985 error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map); 986 if (error != 0) { 987 device_printf(sc->sc_dev, 988 "%s: could not create RX buf DMA map, error %d\n", 989 __func__, error); 990 goto fail; 991 } 992 993 /* 994 * Allocate and map RX buffers. 995 */ 996 for (i = 0; i < count; i++) { 997 struct iwm_rx_data *data = &ring->data[i]; 998 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 999 if (error != 0) { 1000 device_printf(sc->sc_dev, 1001 "%s: could not create RX buf DMA map, error %d\n", 1002 __func__, error); 1003 goto fail; 1004 } 1005 data->m = NULL; 1006 1007 if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { 1008 goto fail; 1009 } 1010 } 1011 return 0; 1012 1013 fail: iwm_free_rx_ring(sc, ring); 1014 return error; 1015 } 1016 1017 static void 1018 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1019 { 1020 /* Reset the ring state */ 1021 ring->cur = 0; 1022 1023 /* 1024 * The hw rx ring index in shared memory must also be cleared, 1025 * otherwise the discrepancy can cause reprocessing chaos. 1026 */ 1027 if (sc->rxq.stat) 1028 memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); 1029 } 1030 1031 static void 1032 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) 1033 { 1034 int count, i; 1035 1036 iwm_dma_contig_free(&ring->free_desc_dma); 1037 iwm_dma_contig_free(&ring->stat_dma); 1038 iwm_dma_contig_free(&ring->used_desc_dma); 1039 1040 count = sc->cfg->mqrx_supported ? IWM_RX_MQ_RING_COUNT : 1041 IWM_RX_LEGACY_RING_COUNT; 1042 1043 for (i = 0; i < count; i++) { 1044 struct iwm_rx_data *data = &ring->data[i]; 1045 1046 if (data->m != NULL) { 1047 bus_dmamap_sync(ring->data_dmat, data->map, 1048 BUS_DMASYNC_POSTREAD); 1049 bus_dmamap_unload(ring->data_dmat, data->map); 1050 m_freem(data->m); 1051 data->m = NULL; 1052 } 1053 if (data->map != NULL) { 1054 bus_dmamap_destroy(ring->data_dmat, data->map); 1055 data->map = NULL; 1056 } 1057 } 1058 if (ring->spare_map != NULL) { 1059 bus_dmamap_destroy(ring->data_dmat, ring->spare_map); 1060 ring->spare_map = NULL; 1061 } 1062 if (ring->data_dmat != NULL) { 1063 bus_dma_tag_destroy(ring->data_dmat); 1064 ring->data_dmat = NULL; 1065 } 1066 } 1067 1068 static int 1069 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) 1070 { 1071 bus_addr_t paddr; 1072 bus_size_t size; 1073 size_t maxsize; 1074 int nsegments; 1075 int i, error; 1076 1077 ring->qid = qid; 1078 ring->queued = 0; 1079 ring->cur = 0; 1080 1081 /* Allocate TX descriptors (256-byte aligned). */ 1082 size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); 1083 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); 1084 if (error != 0) { 1085 device_printf(sc->sc_dev, 1086 "could not allocate TX ring DMA memory\n"); 1087 goto fail; 1088 } 1089 ring->desc = ring->desc_dma.vaddr; 1090 1091 /* 1092 * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need 1093 * to allocate commands space for other rings. 1094 */ 1095 if (qid > IWM_CMD_QUEUE) 1096 return 0; 1097 1098 size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); 1099 error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); 1100 if (error != 0) { 1101 device_printf(sc->sc_dev, 1102 "could not allocate TX cmd DMA memory\n"); 1103 goto fail; 1104 } 1105 ring->cmd = ring->cmd_dma.vaddr; 1106 1107 /* FW commands may require more mapped space than packets. */ 1108 if (qid == IWM_CMD_QUEUE) { 1109 maxsize = IWM_RBUF_SIZE; 1110 nsegments = 1; 1111 } else { 1112 maxsize = MCLBYTES; 1113 nsegments = IWM_MAX_SCATTER - 2; 1114 } 1115 1116 error = bus_dma_tag_create(sc->sc_dmat, 1, 0, 1117 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1118 nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat); 1119 if (error != 0) { 1120 device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); 1121 goto fail; 1122 } 1123 1124 paddr = ring->cmd_dma.paddr; 1125 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1126 struct iwm_tx_data *data = &ring->data[i]; 1127 1128 data->cmd_paddr = paddr; 1129 data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) 1130 + offsetof(struct iwm_tx_cmd, scratch); 1131 paddr += sizeof(struct iwm_device_cmd); 1132 1133 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1134 if (error != 0) { 1135 device_printf(sc->sc_dev, 1136 "could not create TX buf DMA map\n"); 1137 goto fail; 1138 } 1139 } 1140 KASSERT(paddr == ring->cmd_dma.paddr + size, 1141 ("invalid physical address")); 1142 return 0; 1143 1144 fail: iwm_free_tx_ring(sc, ring); 1145 return error; 1146 } 1147 1148 static void 1149 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1150 { 1151 int i; 1152 1153 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1154 struct iwm_tx_data *data = &ring->data[i]; 1155 1156 if (data->m != NULL) { 1157 bus_dmamap_sync(ring->data_dmat, data->map, 1158 BUS_DMASYNC_POSTWRITE); 1159 bus_dmamap_unload(ring->data_dmat, data->map); 1160 m_freem(data->m); 1161 data->m = NULL; 1162 } 1163 } 1164 /* Clear TX descriptors. */ 1165 memset(ring->desc, 0, ring->desc_dma.size); 1166 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1167 BUS_DMASYNC_PREWRITE); 1168 sc->qfullmsk &= ~(1 << ring->qid); 1169 ring->queued = 0; 1170 ring->cur = 0; 1171 1172 if (ring->qid == IWM_CMD_QUEUE && sc->cmd_hold_nic_awake) 1173 iwm_pcie_clear_cmd_in_flight(sc); 1174 } 1175 1176 static void 1177 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) 1178 { 1179 int i; 1180 1181 iwm_dma_contig_free(&ring->desc_dma); 1182 iwm_dma_contig_free(&ring->cmd_dma); 1183 1184 for (i = 0; i < IWM_TX_RING_COUNT; i++) { 1185 struct iwm_tx_data *data = &ring->data[i]; 1186 1187 if (data->m != NULL) { 1188 bus_dmamap_sync(ring->data_dmat, data->map, 1189 BUS_DMASYNC_POSTWRITE); 1190 bus_dmamap_unload(ring->data_dmat, data->map); 1191 m_freem(data->m); 1192 data->m = NULL; 1193 } 1194 if (data->map != NULL) { 1195 bus_dmamap_destroy(ring->data_dmat, data->map); 1196 data->map = NULL; 1197 } 1198 } 1199 if (ring->data_dmat != NULL) { 1200 bus_dma_tag_destroy(ring->data_dmat); 1201 ring->data_dmat = NULL; 1202 } 1203 } 1204 1205 /* 1206 * High-level hardware frobbing routines 1207 */ 1208 1209 static void 1210 iwm_enable_interrupts(struct iwm_softc *sc) 1211 { 1212 sc->sc_intmask = IWM_CSR_INI_SET_MASK; 1213 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1214 } 1215 1216 static void 1217 iwm_restore_interrupts(struct iwm_softc *sc) 1218 { 1219 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 1220 } 1221 1222 static void 1223 iwm_disable_interrupts(struct iwm_softc *sc) 1224 { 1225 /* disable interrupts */ 1226 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 1227 1228 /* acknowledge all interrupts */ 1229 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1230 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); 1231 } 1232 1233 static void 1234 iwm_ict_reset(struct iwm_softc *sc) 1235 { 1236 iwm_disable_interrupts(sc); 1237 1238 /* Reset ICT table. */ 1239 memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); 1240 sc->ict_cur = 0; 1241 1242 /* Set physical address of ICT table (4KB aligned). */ 1243 IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, 1244 IWM_CSR_DRAM_INT_TBL_ENABLE 1245 | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER 1246 | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK 1247 | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); 1248 1249 /* Switch to ICT interrupt mode in driver. */ 1250 sc->sc_flags |= IWM_FLAG_USE_ICT; 1251 1252 /* Re-enable interrupts. */ 1253 IWM_WRITE(sc, IWM_CSR_INT, ~0); 1254 iwm_enable_interrupts(sc); 1255 } 1256 1257 /* iwlwifi pcie/trans.c */ 1258 1259 /* 1260 * Since this .. hard-resets things, it's time to actually 1261 * mark the first vap (if any) as having no mac context. 1262 * It's annoying, but since the driver is potentially being 1263 * stop/start'ed whilst active (thanks openbsd port!) we 1264 * have to correctly track this. 1265 */ 1266 static void 1267 iwm_stop_device(struct iwm_softc *sc) 1268 { 1269 struct ieee80211com *ic = &sc->sc_ic; 1270 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1271 int chnl, qid; 1272 uint32_t mask = 0; 1273 1274 /* tell the device to stop sending interrupts */ 1275 iwm_disable_interrupts(sc); 1276 1277 /* 1278 * FreeBSD-local: mark the first vap as not-uploaded, 1279 * so the next transition through auth/assoc 1280 * will correctly populate the MAC context. 1281 */ 1282 if (vap) { 1283 struct iwm_vap *iv = IWM_VAP(vap); 1284 iv->phy_ctxt = NULL; 1285 iv->is_uploaded = 0; 1286 } 1287 sc->sc_firmware_state = 0; 1288 sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE; 1289 1290 /* device going down, Stop using ICT table */ 1291 sc->sc_flags &= ~IWM_FLAG_USE_ICT; 1292 1293 /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ 1294 1295 if (iwm_nic_lock(sc)) { 1296 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1297 1298 /* Stop each Tx DMA channel */ 1299 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1300 IWM_WRITE(sc, 1301 IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); 1302 mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl); 1303 } 1304 1305 /* Wait for DMA channels to be idle */ 1306 if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask, 1307 5000)) { 1308 device_printf(sc->sc_dev, 1309 "Failing on timeout while stopping DMA channel: [0x%08x]\n", 1310 IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)); 1311 } 1312 iwm_nic_unlock(sc); 1313 } 1314 iwm_pcie_rx_stop(sc); 1315 1316 /* Stop RX ring. */ 1317 iwm_reset_rx_ring(sc, &sc->rxq); 1318 1319 /* Reset all TX rings. */ 1320 for (qid = 0; qid < nitems(sc->txq); qid++) 1321 iwm_reset_tx_ring(sc, &sc->txq[qid]); 1322 1323 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 1324 /* Power-down device's busmaster DMA clocks */ 1325 if (iwm_nic_lock(sc)) { 1326 iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, 1327 IWM_APMG_CLK_VAL_DMA_CLK_RQT); 1328 iwm_nic_unlock(sc); 1329 } 1330 DELAY(5); 1331 } 1332 1333 /* Make sure (redundant) we've released our request to stay awake */ 1334 IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, 1335 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 1336 1337 /* Stop the device, and put it in low power state */ 1338 iwm_apm_stop(sc); 1339 1340 /* stop and reset the on-board processor */ 1341 IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); 1342 DELAY(5000); 1343 1344 /* 1345 * Upon stop, the APM issues an interrupt if HW RF kill is set. 1346 */ 1347 iwm_disable_interrupts(sc); 1348 1349 /* 1350 * Even if we stop the HW, we still want the RF kill 1351 * interrupt 1352 */ 1353 iwm_enable_rfkill_int(sc); 1354 iwm_check_rfkill(sc); 1355 1356 iwm_prepare_card_hw(sc); 1357 } 1358 1359 /* iwlwifi: mvm/ops.c */ 1360 static void 1361 iwm_nic_config(struct iwm_softc *sc) 1362 { 1363 uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; 1364 uint32_t reg_val = 0; 1365 uint32_t phy_config = iwm_get_phy_config(sc); 1366 1367 radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> 1368 IWM_FW_PHY_CFG_RADIO_TYPE_POS; 1369 radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> 1370 IWM_FW_PHY_CFG_RADIO_STEP_POS; 1371 radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> 1372 IWM_FW_PHY_CFG_RADIO_DASH_POS; 1373 1374 /* SKU control */ 1375 reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << 1376 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; 1377 reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << 1378 IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; 1379 1380 /* radio configuration */ 1381 reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; 1382 reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; 1383 reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; 1384 1385 IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, 1386 IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH | 1387 IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP | 1388 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | 1389 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH | 1390 IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | 1391 IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | 1392 IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI | 1393 reg_val); 1394 1395 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1396 "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, 1397 radio_cfg_step, radio_cfg_dash); 1398 1399 /* 1400 * W/A : NIC is stuck in a reset state after Early PCIe power off 1401 * (PCIe power is lost before PERST# is asserted), causing ME FW 1402 * to lose ownership and not being able to obtain it back. 1403 */ 1404 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 1405 iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, 1406 IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, 1407 ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); 1408 } 1409 } 1410 1411 static int 1412 iwm_nic_rx_mq_init(struct iwm_softc *sc) 1413 { 1414 int enabled; 1415 1416 if (!iwm_nic_lock(sc)) 1417 return EBUSY; 1418 1419 /* Stop RX DMA. */ 1420 iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0); 1421 /* Disable RX used and free queue operation. */ 1422 iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0); 1423 1424 iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB, 1425 sc->rxq.free_desc_dma.paddr); 1426 iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB, 1427 sc->rxq.used_desc_dma.paddr); 1428 iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB, 1429 sc->rxq.stat_dma.paddr); 1430 iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0); 1431 iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0); 1432 iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0); 1433 1434 /* We configure only queue 0 for now. */ 1435 enabled = ((1 << 0) << 16) | (1 << 0); 1436 1437 /* Enable RX DMA, 4KB buffer size. */ 1438 iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 1439 IWM_RFH_DMA_EN_ENABLE_VAL | 1440 IWM_RFH_RXF_DMA_RB_SIZE_4K | 1441 IWM_RFH_RXF_DMA_MIN_RB_4_8 | 1442 IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 1443 IWM_RFH_RXF_DMA_RBDCB_SIZE_512); 1444 1445 /* Enable RX DMA snooping. */ 1446 iwm_write_prph(sc, IWM_RFH_GEN_CFG, 1447 IWM_RFH_GEN_CFG_RFH_DMA_SNOOP | 1448 IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP | 1449 (sc->cfg->integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 1450 IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 1451 1452 /* Enable the configured queue(s). */ 1453 iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled); 1454 1455 iwm_nic_unlock(sc); 1456 1457 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1458 1459 IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8); 1460 1461 return (0); 1462 } 1463 1464 static int 1465 iwm_nic_rx_legacy_init(struct iwm_softc *sc) 1466 { 1467 1468 /* Stop Rx DMA */ 1469 iwm_pcie_rx_stop(sc); 1470 1471 if (!iwm_nic_lock(sc)) 1472 return EBUSY; 1473 1474 /* reset and flush pointers */ 1475 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 1476 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 1477 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); 1478 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 1479 1480 /* Set physical address of RX ring (256-byte aligned). */ 1481 IWM_WRITE(sc, 1482 IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, 1483 sc->rxq.free_desc_dma.paddr >> 8); 1484 1485 /* Set physical address of RX status (16-byte aligned). */ 1486 IWM_WRITE(sc, 1487 IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); 1488 1489 /* Enable Rx DMA 1490 * XXX 5000 HW isn't supported by the iwm(4) driver. 1491 * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 1492 * the credit mechanism in 5000 HW RX FIFO 1493 * Direct rx interrupts to hosts 1494 * Rx buffer size 4 or 8k or 12k 1495 * RB timeout 0x10 1496 * 256 RBDs 1497 */ 1498 IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 1499 IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 1500 IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ 1501 IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 1502 IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | 1503 (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 1504 IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); 1505 1506 IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); 1507 1508 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 1509 if (sc->cfg->host_interrupt_operation_mode) 1510 IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); 1511 1512 iwm_nic_unlock(sc); 1513 1514 IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); 1515 1516 return 0; 1517 } 1518 1519 static int 1520 iwm_nic_rx_init(struct iwm_softc *sc) 1521 { 1522 if (sc->cfg->mqrx_supported) 1523 return iwm_nic_rx_mq_init(sc); 1524 else 1525 return iwm_nic_rx_legacy_init(sc); 1526 } 1527 1528 static int 1529 iwm_nic_tx_init(struct iwm_softc *sc) 1530 { 1531 int qid; 1532 1533 if (!iwm_nic_lock(sc)) 1534 return EBUSY; 1535 1536 /* Deactivate TX scheduler. */ 1537 iwm_write_prph(sc, IWM_SCD_TXFACT, 0); 1538 1539 /* Set physical address of "keep warm" page (16-byte aligned). */ 1540 IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); 1541 1542 /* Initialize TX rings. */ 1543 for (qid = 0; qid < nitems(sc->txq); qid++) { 1544 struct iwm_tx_ring *txq = &sc->txq[qid]; 1545 1546 /* Set physical address of TX ring (256-byte aligned). */ 1547 IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), 1548 txq->desc_dma.paddr >> 8); 1549 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 1550 "%s: loading ring %d descriptors (%p) at %lx\n", 1551 __func__, 1552 qid, txq->desc, 1553 (unsigned long) (txq->desc_dma.paddr >> 8)); 1554 } 1555 1556 iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL, 1557 IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE | 1558 IWM_SCD_GP_CTRL_ENABLE_31_QUEUES); 1559 1560 iwm_nic_unlock(sc); 1561 1562 return 0; 1563 } 1564 1565 static int 1566 iwm_nic_init(struct iwm_softc *sc) 1567 { 1568 int error; 1569 1570 iwm_apm_init(sc); 1571 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 1572 iwm_set_pwr(sc); 1573 1574 iwm_nic_config(sc); 1575 1576 if ((error = iwm_nic_rx_init(sc)) != 0) 1577 return error; 1578 1579 /* 1580 * Ditto for TX, from iwn 1581 */ 1582 if ((error = iwm_nic_tx_init(sc)) != 0) 1583 return error; 1584 1585 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 1586 "%s: shadow registers enabled\n", __func__); 1587 IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); 1588 1589 return 0; 1590 } 1591 1592 int 1593 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) 1594 { 1595 int qmsk; 1596 1597 qmsk = 1 << qid; 1598 1599 if (!iwm_nic_lock(sc)) { 1600 device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", 1601 __func__, qid); 1602 return EBUSY; 1603 } 1604 1605 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); 1606 1607 if (qid == IWM_CMD_QUEUE) { 1608 /* Disable the scheduler. */ 1609 iwm_write_prph(sc, IWM_SCD_EN_CTRL, 0); 1610 1611 /* Stop the TX queue prior to configuration. */ 1612 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1613 (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1614 (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); 1615 1616 iwm_nic_unlock(sc); 1617 1618 /* Disable aggregations for this queue. */ 1619 iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, qmsk); 1620 1621 if (!iwm_nic_lock(sc)) { 1622 device_printf(sc->sc_dev, 1623 "%s: cannot enable txq %d\n", __func__, qid); 1624 return EBUSY; 1625 } 1626 iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); 1627 iwm_nic_unlock(sc); 1628 1629 iwm_write_mem32(sc, 1630 sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); 1631 /* Set scheduler window size and frame limit. */ 1632 iwm_write_mem32(sc, 1633 sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + 1634 sizeof(uint32_t), 1635 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & 1636 IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | 1637 ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & 1638 IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); 1639 1640 if (!iwm_nic_lock(sc)) { 1641 device_printf(sc->sc_dev, 1642 "%s: cannot enable txq %d\n", __func__, qid); 1643 return EBUSY; 1644 } 1645 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), 1646 (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | 1647 (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | 1648 (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | 1649 IWM_SCD_QUEUE_STTS_REG_MSK); 1650 1651 /* Enable the scheduler for this queue. */ 1652 iwm_write_prph(sc, IWM_SCD_EN_CTRL, qmsk); 1653 } else { 1654 struct iwm_scd_txq_cfg_cmd cmd; 1655 int error; 1656 1657 iwm_nic_unlock(sc); 1658 1659 memset(&cmd, 0, sizeof(cmd)); 1660 cmd.scd_queue = qid; 1661 cmd.enable = 1; 1662 cmd.sta_id = sta_id; 1663 cmd.tx_fifo = fifo; 1664 cmd.aggregate = 0; 1665 cmd.window = IWM_FRAME_LIMIT; 1666 1667 error = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC, 1668 sizeof(cmd), &cmd); 1669 if (error) { 1670 device_printf(sc->sc_dev, 1671 "cannot enable txq %d\n", qid); 1672 return error; 1673 } 1674 1675 if (!iwm_nic_lock(sc)) 1676 return EBUSY; 1677 } 1678 1679 iwm_nic_unlock(sc); 1680 1681 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n", 1682 __func__, qid, fifo); 1683 1684 return 0; 1685 } 1686 1687 static int 1688 iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr) 1689 { 1690 int error, chnl; 1691 1692 int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - 1693 IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); 1694 1695 if (!iwm_nic_lock(sc)) 1696 return EBUSY; 1697 1698 iwm_ict_reset(sc); 1699 1700 sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); 1701 if (scd_base_addr != 0 && 1702 scd_base_addr != sc->scd_base_addr) { 1703 device_printf(sc->sc_dev, 1704 "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n", 1705 __func__, sc->scd_base_addr, scd_base_addr); 1706 } 1707 1708 iwm_nic_unlock(sc); 1709 1710 /* reset context data, TX status and translation data */ 1711 error = iwm_write_mem(sc, 1712 sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, 1713 NULL, clear_dwords); 1714 if (error) 1715 return EBUSY; 1716 1717 if (!iwm_nic_lock(sc)) 1718 return EBUSY; 1719 1720 /* Set physical address of TX scheduler rings (1KB aligned). */ 1721 iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); 1722 1723 iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); 1724 1725 iwm_nic_unlock(sc); 1726 1727 /* enable command channel */ 1728 error = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7); 1729 if (error) 1730 return error; 1731 1732 if (!iwm_nic_lock(sc)) 1733 return EBUSY; 1734 1735 iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); 1736 1737 /* Enable DMA channels. */ 1738 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { 1739 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 1740 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 1741 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); 1742 } 1743 1744 IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, 1745 IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); 1746 1747 iwm_nic_unlock(sc); 1748 1749 /* Enable L1-Active */ 1750 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 1751 iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, 1752 IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); 1753 } 1754 1755 return error; 1756 } 1757 1758 /* 1759 * NVM read access and content parsing. We do not support 1760 * external NVM or writing NVM. 1761 * iwlwifi/mvm/nvm.c 1762 */ 1763 1764 /* Default NVM size to read */ 1765 #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) 1766 1767 #define IWM_NVM_WRITE_OPCODE 1 1768 #define IWM_NVM_READ_OPCODE 0 1769 1770 /* load nvm chunk response */ 1771 enum { 1772 IWM_READ_NVM_CHUNK_SUCCEED = 0, 1773 IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 1774 }; 1775 1776 static int 1777 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, 1778 uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) 1779 { 1780 struct iwm_nvm_access_cmd nvm_access_cmd = { 1781 .offset = htole16(offset), 1782 .length = htole16(length), 1783 .type = htole16(section), 1784 .op_code = IWM_NVM_READ_OPCODE, 1785 }; 1786 struct iwm_nvm_access_resp *nvm_resp; 1787 struct iwm_rx_packet *pkt; 1788 struct iwm_host_cmd cmd = { 1789 .id = IWM_NVM_ACCESS_CMD, 1790 .flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL, 1791 .data = { &nvm_access_cmd, }, 1792 }; 1793 int ret, bytes_read, offset_read; 1794 uint8_t *resp_data; 1795 1796 cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); 1797 1798 ret = iwm_send_cmd(sc, &cmd); 1799 if (ret) { 1800 device_printf(sc->sc_dev, 1801 "Could not send NVM_ACCESS command (error=%d)\n", ret); 1802 return ret; 1803 } 1804 1805 pkt = cmd.resp_pkt; 1806 1807 /* Extract NVM response */ 1808 nvm_resp = (void *)pkt->data; 1809 ret = le16toh(nvm_resp->status); 1810 bytes_read = le16toh(nvm_resp->length); 1811 offset_read = le16toh(nvm_resp->offset); 1812 resp_data = nvm_resp->data; 1813 if (ret) { 1814 if ((offset != 0) && 1815 (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { 1816 /* 1817 * meaning of NOT_VALID_ADDRESS: 1818 * driver try to read chunk from address that is 1819 * multiple of 2K and got an error since addr is empty. 1820 * meaning of (offset != 0): driver already 1821 * read valid data from another chunk so this case 1822 * is not an error. 1823 */ 1824 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1825 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", 1826 offset); 1827 *len = 0; 1828 ret = 0; 1829 } else { 1830 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1831 "NVM access command failed with status %d\n", ret); 1832 ret = EIO; 1833 } 1834 goto exit; 1835 } 1836 1837 if (offset_read != offset) { 1838 device_printf(sc->sc_dev, 1839 "NVM ACCESS response with invalid offset %d\n", 1840 offset_read); 1841 ret = EINVAL; 1842 goto exit; 1843 } 1844 1845 if (bytes_read > length) { 1846 device_printf(sc->sc_dev, 1847 "NVM ACCESS response with too much data " 1848 "(%d bytes requested, %d bytes received)\n", 1849 length, bytes_read); 1850 ret = EINVAL; 1851 goto exit; 1852 } 1853 1854 /* Write data to NVM */ 1855 memcpy(data + offset, resp_data, bytes_read); 1856 *len = bytes_read; 1857 1858 exit: 1859 iwm_free_resp(sc, &cmd); 1860 return ret; 1861 } 1862 1863 /* 1864 * Reads an NVM section completely. 1865 * NICs prior to 7000 family don't have a real NVM, but just read 1866 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited 1867 * by uCode, we need to manually check in this case that we don't 1868 * overflow and try to read more than the EEPROM size. 1869 * For 7000 family NICs, we supply the maximal size we can read, and 1870 * the uCode fills the response with as much data as we can, 1871 * without overflowing, so no check is needed. 1872 */ 1873 static int 1874 iwm_nvm_read_section(struct iwm_softc *sc, 1875 uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read) 1876 { 1877 uint16_t seglen, length, offset = 0; 1878 int ret; 1879 1880 /* Set nvm section read length */ 1881 length = IWM_NVM_DEFAULT_CHUNK_SIZE; 1882 1883 seglen = length; 1884 1885 /* Read the NVM until exhausted (reading less than requested) */ 1886 while (seglen == length) { 1887 /* Check no memory assumptions fail and cause an overflow */ 1888 if ((size_read + offset + length) > 1889 sc->cfg->eeprom_size) { 1890 device_printf(sc->sc_dev, 1891 "EEPROM size is too small for NVM\n"); 1892 return ENOBUFS; 1893 } 1894 1895 ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen); 1896 if (ret) { 1897 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1898 "Cannot read NVM from section %d offset %d, length %d\n", 1899 section, offset, length); 1900 return ret; 1901 } 1902 offset += seglen; 1903 } 1904 1905 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 1906 "NVM section %d read completed\n", section); 1907 *len = offset; 1908 return 0; 1909 } 1910 1911 /* 1912 * BEGIN IWM_NVM_PARSE 1913 */ 1914 1915 /* iwlwifi/iwl-nvm-parse.c */ 1916 1917 /* 1918 * Translate EEPROM flags to net80211. 1919 */ 1920 static uint32_t 1921 iwm_eeprom_channel_flags(uint16_t ch_flags) 1922 { 1923 uint32_t nflags; 1924 1925 nflags = 0; 1926 if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0) 1927 nflags |= IEEE80211_CHAN_PASSIVE; 1928 if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0) 1929 nflags |= IEEE80211_CHAN_NOADHOC; 1930 if (ch_flags & IWM_NVM_CHANNEL_RADAR) { 1931 nflags |= IEEE80211_CHAN_DFS; 1932 /* Just in case. */ 1933 nflags |= IEEE80211_CHAN_NOADHOC; 1934 } 1935 1936 return (nflags); 1937 } 1938 1939 static void 1940 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[], 1941 int maxchans, int *nchans, int ch_idx, size_t ch_num, 1942 const uint8_t bands[]) 1943 { 1944 const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags; 1945 uint32_t nflags; 1946 uint16_t ch_flags; 1947 uint8_t ieee; 1948 int error; 1949 1950 for (; ch_idx < ch_num; ch_idx++) { 1951 ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); 1952 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 1953 ieee = iwm_nvm_channels[ch_idx]; 1954 else 1955 ieee = iwm_nvm_channels_8000[ch_idx]; 1956 1957 if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { 1958 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1959 "Ch. %d Flags %x [%sGHz] - No traffic\n", 1960 ieee, ch_flags, 1961 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1962 "5.2" : "2.4"); 1963 continue; 1964 } 1965 1966 nflags = iwm_eeprom_channel_flags(ch_flags); 1967 error = ieee80211_add_channel(chans, maxchans, nchans, 1968 ieee, 0, 0, nflags, bands); 1969 if (error != 0) 1970 break; 1971 1972 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, 1973 "Ch. %d Flags %x [%sGHz] - Added\n", 1974 ieee, ch_flags, 1975 (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? 1976 "5.2" : "2.4"); 1977 } 1978 } 1979 1980 static void 1981 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans, 1982 struct ieee80211_channel chans[]) 1983 { 1984 struct iwm_softc *sc = ic->ic_softc; 1985 struct iwm_nvm_data *data = sc->nvm_data; 1986 uint8_t bands[IEEE80211_MODE_BYTES]; 1987 size_t ch_num; 1988 1989 memset(bands, 0, sizeof(bands)); 1990 /* 1-13: 11b/g channels. */ 1991 setbit(bands, IEEE80211_MODE_11B); 1992 setbit(bands, IEEE80211_MODE_11G); 1993 iwm_add_channel_band(sc, chans, maxchans, nchans, 0, 1994 IWM_NUM_2GHZ_CHANNELS - 1, bands); 1995 1996 /* 14: 11b channel only. */ 1997 clrbit(bands, IEEE80211_MODE_11G); 1998 iwm_add_channel_band(sc, chans, maxchans, nchans, 1999 IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands); 2000 2001 if (data->sku_cap_band_52GHz_enable) { 2002 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 2003 ch_num = nitems(iwm_nvm_channels); 2004 else 2005 ch_num = nitems(iwm_nvm_channels_8000); 2006 memset(bands, 0, sizeof(bands)); 2007 setbit(bands, IEEE80211_MODE_11A); 2008 iwm_add_channel_band(sc, chans, maxchans, nchans, 2009 IWM_NUM_2GHZ_CHANNELS, ch_num, bands); 2010 } 2011 } 2012 2013 static void 2014 iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, 2015 const uint16_t *mac_override, const uint16_t *nvm_hw) 2016 { 2017 const uint8_t *hw_addr; 2018 2019 if (mac_override) { 2020 static const uint8_t reserved_mac[] = { 2021 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 2022 }; 2023 2024 hw_addr = (const uint8_t *)(mac_override + 2025 IWM_MAC_ADDRESS_OVERRIDE_8000); 2026 2027 /* 2028 * Store the MAC address from MAO section. 2029 * No byte swapping is required in MAO section 2030 */ 2031 IEEE80211_ADDR_COPY(data->hw_addr, hw_addr); 2032 2033 /* 2034 * Force the use of the OTP MAC address in case of reserved MAC 2035 * address in the NVM, or if address is given but invalid. 2036 */ 2037 if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) && 2038 !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) && 2039 iwm_is_valid_ether_addr(data->hw_addr) && 2040 !IEEE80211_IS_MULTICAST(data->hw_addr)) 2041 return; 2042 2043 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2044 "%s: mac address from nvm override section invalid\n", 2045 __func__); 2046 } 2047 2048 if (nvm_hw) { 2049 /* read the mac address from WFMP registers */ 2050 uint32_t mac_addr0 = 2051 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); 2052 uint32_t mac_addr1 = 2053 htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); 2054 2055 hw_addr = (const uint8_t *)&mac_addr0; 2056 data->hw_addr[0] = hw_addr[3]; 2057 data->hw_addr[1] = hw_addr[2]; 2058 data->hw_addr[2] = hw_addr[1]; 2059 data->hw_addr[3] = hw_addr[0]; 2060 2061 hw_addr = (const uint8_t *)&mac_addr1; 2062 data->hw_addr[4] = hw_addr[1]; 2063 data->hw_addr[5] = hw_addr[0]; 2064 2065 return; 2066 } 2067 2068 device_printf(sc->sc_dev, "%s: mac address not found\n", __func__); 2069 memset(data->hw_addr, 0, sizeof(data->hw_addr)); 2070 } 2071 2072 static int 2073 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2074 const uint16_t *phy_sku) 2075 { 2076 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2077 return le16_to_cpup(nvm_sw + IWM_SKU); 2078 2079 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000)); 2080 } 2081 2082 static int 2083 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2084 { 2085 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2086 return le16_to_cpup(nvm_sw + IWM_NVM_VERSION); 2087 else 2088 return le32_to_cpup((const uint32_t *)(nvm_sw + 2089 IWM_NVM_VERSION_8000)); 2090 } 2091 2092 static int 2093 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw, 2094 const uint16_t *phy_sku) 2095 { 2096 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2097 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG); 2098 2099 return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000)); 2100 } 2101 2102 static int 2103 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw) 2104 { 2105 int n_hw_addr; 2106 2107 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) 2108 return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); 2109 2110 n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000)); 2111 2112 return n_hw_addr & IWM_N_HW_ADDR_MASK; 2113 } 2114 2115 static void 2116 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data, 2117 uint32_t radio_cfg) 2118 { 2119 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2120 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); 2121 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); 2122 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); 2123 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); 2124 return; 2125 } 2126 2127 /* set the radio configuration for family 8000 */ 2128 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); 2129 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); 2130 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); 2131 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg); 2132 data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); 2133 data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); 2134 } 2135 2136 static int 2137 iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data, 2138 const uint16_t *nvm_hw, const uint16_t *mac_override) 2139 { 2140 #ifdef notyet /* for FAMILY 9000 */ 2141 if (cfg->mac_addr_from_csr) { 2142 iwm_set_hw_address_from_csr(sc, data); 2143 } else 2144 #endif 2145 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2146 const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR); 2147 2148 /* The byte order is little endian 16 bit, meaning 214365 */ 2149 data->hw_addr[0] = hw_addr[1]; 2150 data->hw_addr[1] = hw_addr[0]; 2151 data->hw_addr[2] = hw_addr[3]; 2152 data->hw_addr[3] = hw_addr[2]; 2153 data->hw_addr[4] = hw_addr[5]; 2154 data->hw_addr[5] = hw_addr[4]; 2155 } else { 2156 iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw); 2157 } 2158 2159 if (!iwm_is_valid_ether_addr(data->hw_addr)) { 2160 device_printf(sc->sc_dev, "no valid mac address was found\n"); 2161 return EINVAL; 2162 } 2163 2164 return 0; 2165 } 2166 2167 static struct iwm_nvm_data * 2168 iwm_parse_nvm_data(struct iwm_softc *sc, 2169 const uint16_t *nvm_hw, const uint16_t *nvm_sw, 2170 const uint16_t *nvm_calib, const uint16_t *mac_override, 2171 const uint16_t *phy_sku, const uint16_t *regulatory) 2172 { 2173 struct iwm_nvm_data *data; 2174 uint32_t sku, radio_cfg; 2175 uint16_t lar_config; 2176 2177 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2178 data = malloc(sizeof(*data) + 2179 IWM_NUM_CHANNELS * sizeof(uint16_t), 2180 M_DEVBUF, M_NOWAIT | M_ZERO); 2181 } else { 2182 data = malloc(sizeof(*data) + 2183 IWM_NUM_CHANNELS_8000 * sizeof(uint16_t), 2184 M_DEVBUF, M_NOWAIT | M_ZERO); 2185 } 2186 if (!data) 2187 return NULL; 2188 2189 data->nvm_version = iwm_get_nvm_version(sc, nvm_sw); 2190 2191 radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku); 2192 iwm_set_radio_cfg(sc, data, radio_cfg); 2193 2194 sku = iwm_get_sku(sc, nvm_sw, phy_sku); 2195 data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; 2196 data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; 2197 data->sku_cap_11n_enable = 0; 2198 2199 data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw); 2200 2201 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2202 /* TODO: use IWL_NVM_EXT */ 2203 uint16_t lar_offset = data->nvm_version < 0xE39 ? 2204 IWM_NVM_LAR_OFFSET_8000_OLD : 2205 IWM_NVM_LAR_OFFSET_8000; 2206 2207 lar_config = le16_to_cpup(regulatory + lar_offset); 2208 data->lar_enabled = !!(lar_config & 2209 IWM_NVM_LAR_ENABLED_8000); 2210 } 2211 2212 /* If no valid mac address was found - bail out */ 2213 if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) { 2214 free(data, M_DEVBUF); 2215 return NULL; 2216 } 2217 2218 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 2219 memcpy(data->nvm_ch_flags, sc->cfg->nvm_type == IWM_NVM_SDP ? 2220 ®ulatory[0] : &nvm_sw[IWM_NVM_CHANNELS], 2221 IWM_NUM_CHANNELS * sizeof(uint16_t)); 2222 } else { 2223 memcpy(data->nvm_ch_flags, ®ulatory[IWM_NVM_CHANNELS_8000], 2224 IWM_NUM_CHANNELS_8000 * sizeof(uint16_t)); 2225 } 2226 2227 return data; 2228 } 2229 2230 static void 2231 iwm_free_nvm_data(struct iwm_nvm_data *data) 2232 { 2233 if (data != NULL) 2234 free(data, M_DEVBUF); 2235 } 2236 2237 static struct iwm_nvm_data * 2238 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) 2239 { 2240 const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku; 2241 2242 /* Checking for required sections */ 2243 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { 2244 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2245 !sections[sc->cfg->nvm_hw_section_num].data) { 2246 device_printf(sc->sc_dev, 2247 "Can't parse empty OTP/NVM sections\n"); 2248 return NULL; 2249 } 2250 } else if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2251 /* SW and REGULATORY sections are mandatory */ 2252 if (!sections[IWM_NVM_SECTION_TYPE_SW].data || 2253 !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { 2254 device_printf(sc->sc_dev, 2255 "Can't parse empty OTP/NVM sections\n"); 2256 return NULL; 2257 } 2258 /* MAC_OVERRIDE or at least HW section must exist */ 2259 if (!sections[sc->cfg->nvm_hw_section_num].data && 2260 !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { 2261 device_printf(sc->sc_dev, 2262 "Can't parse mac_address, empty sections\n"); 2263 return NULL; 2264 } 2265 2266 /* PHY_SKU section is mandatory in B0 */ 2267 if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { 2268 device_printf(sc->sc_dev, 2269 "Can't parse phy_sku in B0, empty sections\n"); 2270 return NULL; 2271 } 2272 } else { 2273 panic("unknown device family %d\n", sc->cfg->device_family); 2274 } 2275 2276 hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data; 2277 sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; 2278 calib = (const uint16_t *) 2279 sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; 2280 regulatory = sc->cfg->nvm_type == IWM_NVM_SDP ? 2281 (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data : 2282 (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; 2283 mac_override = (const uint16_t *) 2284 sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; 2285 phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; 2286 2287 return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, 2288 phy_sku, regulatory); 2289 } 2290 2291 static int 2292 iwm_nvm_init(struct iwm_softc *sc) 2293 { 2294 struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; 2295 int i, ret, section; 2296 uint32_t size_read = 0; 2297 uint8_t *nvm_buffer, *temp; 2298 uint16_t len; 2299 2300 memset(nvm_sections, 0, sizeof(nvm_sections)); 2301 2302 if (sc->cfg->nvm_hw_section_num >= IWM_NVM_NUM_OF_SECTIONS) 2303 return EINVAL; 2304 2305 /* load NVM values from nic */ 2306 /* Read From FW NVM */ 2307 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n"); 2308 2309 nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO); 2310 if (!nvm_buffer) 2311 return ENOMEM; 2312 for (section = 0; section < IWM_NVM_NUM_OF_SECTIONS; section++) { 2313 /* we override the constness for initial read */ 2314 ret = iwm_nvm_read_section(sc, section, nvm_buffer, 2315 &len, size_read); 2316 if (ret) 2317 continue; 2318 size_read += len; 2319 temp = malloc(len, M_DEVBUF, M_NOWAIT); 2320 if (!temp) { 2321 ret = ENOMEM; 2322 break; 2323 } 2324 memcpy(temp, nvm_buffer, len); 2325 2326 nvm_sections[section].data = temp; 2327 nvm_sections[section].length = len; 2328 } 2329 if (!size_read) 2330 device_printf(sc->sc_dev, "OTP is blank\n"); 2331 free(nvm_buffer, M_DEVBUF); 2332 2333 sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections); 2334 if (!sc->nvm_data) 2335 return EINVAL; 2336 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, 2337 "nvm version = %x\n", sc->nvm_data->nvm_version); 2338 2339 for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) { 2340 if (nvm_sections[i].data != NULL) 2341 free(nvm_sections[i].data, M_DEVBUF); 2342 } 2343 2344 return 0; 2345 } 2346 2347 static int 2348 iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num, 2349 const struct iwm_fw_desc *section) 2350 { 2351 struct iwm_dma_info *dma = &sc->fw_dma; 2352 uint8_t *v_addr; 2353 bus_addr_t p_addr; 2354 uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len); 2355 int ret = 0; 2356 2357 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2358 "%s: [%d] uCode section being loaded...\n", 2359 __func__, section_num); 2360 2361 v_addr = dma->vaddr; 2362 p_addr = dma->paddr; 2363 2364 for (offset = 0; offset < section->len; offset += chunk_sz) { 2365 uint32_t copy_size, dst_addr; 2366 int extended_addr = FALSE; 2367 2368 copy_size = MIN(chunk_sz, section->len - offset); 2369 dst_addr = section->offset + offset; 2370 2371 if (dst_addr >= IWM_FW_MEM_EXTENDED_START && 2372 dst_addr <= IWM_FW_MEM_EXTENDED_END) 2373 extended_addr = TRUE; 2374 2375 if (extended_addr) 2376 iwm_set_bits_prph(sc, IWM_LMPM_CHICK, 2377 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2378 2379 memcpy(v_addr, (const uint8_t *)section->data + offset, 2380 copy_size); 2381 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 2382 ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr, 2383 copy_size); 2384 2385 if (extended_addr) 2386 iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, 2387 IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); 2388 2389 if (ret) { 2390 device_printf(sc->sc_dev, 2391 "%s: Could not load the [%d] uCode section\n", 2392 __func__, section_num); 2393 break; 2394 } 2395 } 2396 2397 return ret; 2398 } 2399 2400 /* 2401 * ucode 2402 */ 2403 static int 2404 iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr, 2405 bus_addr_t phy_addr, uint32_t byte_cnt) 2406 { 2407 sc->sc_fw_chunk_done = 0; 2408 2409 if (!iwm_nic_lock(sc)) 2410 return EBUSY; 2411 2412 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2413 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); 2414 2415 IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), 2416 dst_addr); 2417 2418 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), 2419 phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); 2420 2421 IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), 2422 (iwm_get_dma_hi_addr(phy_addr) 2423 << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); 2424 2425 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 2426 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 2427 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | 2428 IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); 2429 2430 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), 2431 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | 2432 IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | 2433 IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); 2434 2435 iwm_nic_unlock(sc); 2436 2437 /* wait up to 5s for this segment to load */ 2438 msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz * 5); 2439 2440 if (!sc->sc_fw_chunk_done) { 2441 device_printf(sc->sc_dev, 2442 "fw chunk addr 0x%x len %d failed to load\n", 2443 dst_addr, byte_cnt); 2444 return ETIMEDOUT; 2445 } 2446 2447 return 0; 2448 } 2449 2450 static int 2451 iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, 2452 const struct iwm_fw_img *image, int cpu, int *first_ucode_section) 2453 { 2454 int shift_param; 2455 int i, ret = 0, sec_num = 0x1; 2456 uint32_t val, last_read_idx = 0; 2457 2458 if (cpu == 1) { 2459 shift_param = 0; 2460 *first_ucode_section = 0; 2461 } else { 2462 shift_param = 16; 2463 (*first_ucode_section)++; 2464 } 2465 2466 for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { 2467 last_read_idx = i; 2468 2469 /* 2470 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between 2471 * CPU1 to CPU2. 2472 * PAGING_SEPARATOR_SECTION delimiter - separate between 2473 * CPU2 non paged to CPU2 paging sec. 2474 */ 2475 if (!image->sec[i].data || 2476 image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || 2477 image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { 2478 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2479 "Break since Data not valid or Empty section, sec = %d\n", 2480 i); 2481 break; 2482 } 2483 ret = iwm_pcie_load_section(sc, i, &image->sec[i]); 2484 if (ret) 2485 return ret; 2486 2487 /* Notify the ucode of the loaded section number and status */ 2488 if (iwm_nic_lock(sc)) { 2489 val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); 2490 val = val | (sec_num << shift_param); 2491 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); 2492 sec_num = (sec_num << 1) | 0x1; 2493 iwm_nic_unlock(sc); 2494 } 2495 } 2496 2497 *first_ucode_section = last_read_idx; 2498 2499 iwm_enable_interrupts(sc); 2500 2501 if (iwm_nic_lock(sc)) { 2502 if (cpu == 1) 2503 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); 2504 else 2505 IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); 2506 iwm_nic_unlock(sc); 2507 } 2508 2509 return 0; 2510 } 2511 2512 static int 2513 iwm_pcie_load_cpu_sections(struct iwm_softc *sc, 2514 const struct iwm_fw_img *image, int cpu, int *first_ucode_section) 2515 { 2516 int i, ret = 0; 2517 uint32_t last_read_idx = 0; 2518 2519 if (cpu == 1) { 2520 *first_ucode_section = 0; 2521 } else { 2522 (*first_ucode_section)++; 2523 } 2524 2525 for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { 2526 last_read_idx = i; 2527 2528 /* 2529 * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between 2530 * CPU1 to CPU2. 2531 * PAGING_SEPARATOR_SECTION delimiter - separate between 2532 * CPU2 non paged to CPU2 paging sec. 2533 */ 2534 if (!image->sec[i].data || 2535 image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || 2536 image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { 2537 IWM_DPRINTF(sc, IWM_DEBUG_RESET, 2538 "Break since Data not valid or Empty section, sec = %d\n", 2539 i); 2540 break; 2541 } 2542 2543 ret = iwm_pcie_load_section(sc, i, &image->sec[i]); 2544 if (ret) 2545 return ret; 2546 } 2547 2548 *first_ucode_section = last_read_idx; 2549 2550 return 0; 2551 2552 } 2553 2554 static int 2555 iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image) 2556 { 2557 int ret = 0; 2558 int first_ucode_section; 2559 2560 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", 2561 image->is_dual_cpus ? "Dual" : "Single"); 2562 2563 /* load to FW the binary non secured sections of CPU1 */ 2564 ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section); 2565 if (ret) 2566 return ret; 2567 2568 if (image->is_dual_cpus) { 2569 /* set CPU2 header address */ 2570 if (iwm_nic_lock(sc)) { 2571 iwm_write_prph(sc, 2572 IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, 2573 IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE); 2574 iwm_nic_unlock(sc); 2575 } 2576 2577 /* load to FW the binary sections of CPU2 */ 2578 ret = iwm_pcie_load_cpu_sections(sc, image, 2, 2579 &first_ucode_section); 2580 if (ret) 2581 return ret; 2582 } 2583 2584 iwm_enable_interrupts(sc); 2585 2586 /* release CPU reset */ 2587 IWM_WRITE(sc, IWM_CSR_RESET, 0); 2588 2589 return 0; 2590 } 2591 2592 int 2593 iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc, 2594 const struct iwm_fw_img *image) 2595 { 2596 int ret = 0; 2597 int first_ucode_section; 2598 2599 IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", 2600 image->is_dual_cpus ? "Dual" : "Single"); 2601 2602 /* configure the ucode to be ready to get the secured image */ 2603 /* release CPU reset */ 2604 if (iwm_nic_lock(sc)) { 2605 iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, 2606 IWM_RELEASE_CPU_RESET_BIT); 2607 iwm_nic_unlock(sc); 2608 } 2609 2610 /* load to FW the binary Secured sections of CPU1 */ 2611 ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1, 2612 &first_ucode_section); 2613 if (ret) 2614 return ret; 2615 2616 /* load to FW the binary sections of CPU2 */ 2617 return iwm_pcie_load_cpu_sections_8000(sc, image, 2, 2618 &first_ucode_section); 2619 } 2620 2621 /* XXX Get rid of this definition */ 2622 static inline void 2623 iwm_enable_fw_load_int(struct iwm_softc *sc) 2624 { 2625 IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n"); 2626 sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX; 2627 IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); 2628 } 2629 2630 /* XXX Add proper rfkill support code */ 2631 static int 2632 iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw) 2633 { 2634 int ret; 2635 2636 /* This may fail if AMT took ownership of the device */ 2637 if (iwm_prepare_card_hw(sc)) { 2638 device_printf(sc->sc_dev, 2639 "%s: Exit HW not ready\n", __func__); 2640 ret = EIO; 2641 goto out; 2642 } 2643 2644 IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); 2645 2646 iwm_disable_interrupts(sc); 2647 2648 /* make sure rfkill handshake bits are cleared */ 2649 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2650 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, 2651 IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); 2652 2653 /* clear (again), then enable host interrupts */ 2654 IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); 2655 2656 ret = iwm_nic_init(sc); 2657 if (ret) { 2658 device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__); 2659 goto out; 2660 } 2661 2662 /* 2663 * Now, we load the firmware and don't want to be interrupted, even 2664 * by the RF-Kill interrupt (hence mask all the interrupt besides the 2665 * FH_TX interrupt which is needed to load the firmware). If the 2666 * RF-Kill switch is toggled, we will find out after having loaded 2667 * the firmware and return the proper value to the caller. 2668 */ 2669 iwm_enable_fw_load_int(sc); 2670 2671 /* really make sure rfkill handshake bits are cleared */ 2672 /* maybe we should write a few times more? just to make sure */ 2673 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2674 IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); 2675 2676 /* Load the given image to the HW */ 2677 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) 2678 ret = iwm_pcie_load_given_ucode_8000(sc, fw); 2679 else 2680 ret = iwm_pcie_load_given_ucode(sc, fw); 2681 2682 /* XXX re-check RF-Kill state */ 2683 2684 out: 2685 return ret; 2686 } 2687 2688 static int 2689 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) 2690 { 2691 struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { 2692 .valid = htole32(valid_tx_ant), 2693 }; 2694 2695 return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 2696 IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); 2697 } 2698 2699 /* iwlwifi: mvm/fw.c */ 2700 static int 2701 iwm_send_phy_cfg_cmd(struct iwm_softc *sc) 2702 { 2703 struct iwm_phy_cfg_cmd phy_cfg_cmd; 2704 enum iwm_ucode_type ucode_type = sc->cur_ucode; 2705 2706 /* Set parameters */ 2707 phy_cfg_cmd.phy_cfg = htole32(iwm_get_phy_config(sc)); 2708 phy_cfg_cmd.calib_control.event_trigger = 2709 sc->sc_default_calib[ucode_type].event_trigger; 2710 phy_cfg_cmd.calib_control.flow_trigger = 2711 sc->sc_default_calib[ucode_type].flow_trigger; 2712 2713 IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, 2714 "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); 2715 return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, 2716 sizeof(phy_cfg_cmd), &phy_cfg_cmd); 2717 } 2718 2719 static int 2720 iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) 2721 { 2722 struct iwm_alive_data *alive_data = data; 2723 struct iwm_alive_resp_v3 *palive3; 2724 struct iwm_alive_resp *palive; 2725 struct iwm_umac_alive *umac; 2726 struct iwm_lmac_alive *lmac1; 2727 struct iwm_lmac_alive *lmac2 = NULL; 2728 uint16_t status; 2729 2730 if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) { 2731 palive = (void *)pkt->data; 2732 umac = &palive->umac_data; 2733 lmac1 = &palive->lmac_data[0]; 2734 lmac2 = &palive->lmac_data[1]; 2735 status = le16toh(palive->status); 2736 } else { 2737 palive3 = (void *)pkt->data; 2738 umac = &palive3->umac_data; 2739 lmac1 = &palive3->lmac_data; 2740 status = le16toh(palive3->status); 2741 } 2742 2743 sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr); 2744 if (lmac2) 2745 sc->error_event_table[1] = 2746 le32toh(lmac2->error_event_table_ptr); 2747 sc->log_event_table = le32toh(lmac1->log_event_table_ptr); 2748 sc->umac_error_event_table = le32toh(umac->error_info_addr); 2749 alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr); 2750 alive_data->valid = status == IWM_ALIVE_STATUS_OK; 2751 if (sc->umac_error_event_table) 2752 sc->support_umac_log = TRUE; 2753 2754 IWM_DPRINTF(sc, IWM_DEBUG_FW, 2755 "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n", 2756 status, lmac1->ver_type, lmac1->ver_subtype); 2757 2758 if (lmac2) 2759 IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n"); 2760 2761 IWM_DPRINTF(sc, IWM_DEBUG_FW, 2762 "UMAC version: Major - 0x%x, Minor - 0x%x\n", 2763 le32toh(umac->umac_major), 2764 le32toh(umac->umac_minor)); 2765 2766 return TRUE; 2767 } 2768 2769 static int 2770 iwm_wait_phy_db_entry(struct iwm_softc *sc, 2771 struct iwm_rx_packet *pkt, void *data) 2772 { 2773 struct iwm_phy_db *phy_db = data; 2774 2775 if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) { 2776 if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) { 2777 device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n", 2778 __func__, pkt->hdr.code); 2779 } 2780 return TRUE; 2781 } 2782 2783 if (iwm_phy_db_set_section(phy_db, pkt)) { 2784 device_printf(sc->sc_dev, 2785 "%s: iwm_phy_db_set_section failed\n", __func__); 2786 } 2787 2788 return FALSE; 2789 } 2790 2791 static int 2792 iwm_load_ucode_wait_alive(struct iwm_softc *sc, 2793 enum iwm_ucode_type ucode_type) 2794 { 2795 struct iwm_notification_wait alive_wait; 2796 struct iwm_alive_data alive_data; 2797 const struct iwm_fw_img *fw; 2798 enum iwm_ucode_type old_type = sc->cur_ucode; 2799 int error; 2800 static const uint16_t alive_cmd[] = { IWM_ALIVE }; 2801 2802 fw = &sc->sc_fw.img[ucode_type]; 2803 sc->cur_ucode = ucode_type; 2804 sc->ucode_loaded = FALSE; 2805 2806 memset(&alive_data, 0, sizeof(alive_data)); 2807 iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait, 2808 alive_cmd, nitems(alive_cmd), 2809 iwm_alive_fn, &alive_data); 2810 2811 error = iwm_start_fw(sc, fw); 2812 if (error) { 2813 device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error); 2814 sc->cur_ucode = old_type; 2815 iwm_remove_notification(sc->sc_notif_wait, &alive_wait); 2816 return error; 2817 } 2818 2819 /* 2820 * Some things may run in the background now, but we 2821 * just wait for the ALIVE notification here. 2822 */ 2823 IWM_UNLOCK(sc); 2824 error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait, 2825 IWM_UCODE_ALIVE_TIMEOUT); 2826 IWM_LOCK(sc); 2827 if (error) { 2828 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 2829 uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a; 2830 if (iwm_nic_lock(sc)) { 2831 a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS); 2832 b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS); 2833 iwm_nic_unlock(sc); 2834 } 2835 device_printf(sc->sc_dev, 2836 "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n", 2837 a, b); 2838 } 2839 sc->cur_ucode = old_type; 2840 return error; 2841 } 2842 2843 if (!alive_data.valid) { 2844 device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n", 2845 __func__); 2846 sc->cur_ucode = old_type; 2847 return EIO; 2848 } 2849 2850 iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr); 2851 2852 /* 2853 * configure and operate fw paging mechanism. 2854 * driver configures the paging flow only once, CPU2 paging image 2855 * included in the IWM_UCODE_INIT image. 2856 */ 2857 if (fw->paging_mem_size) { 2858 error = iwm_save_fw_paging(sc, fw); 2859 if (error) { 2860 device_printf(sc->sc_dev, 2861 "%s: failed to save the FW paging image\n", 2862 __func__); 2863 return error; 2864 } 2865 2866 error = iwm_send_paging_cmd(sc, fw); 2867 if (error) { 2868 device_printf(sc->sc_dev, 2869 "%s: failed to send the paging cmd\n", __func__); 2870 iwm_free_fw_paging(sc); 2871 return error; 2872 } 2873 } 2874 2875 if (!error) 2876 sc->ucode_loaded = TRUE; 2877 return error; 2878 } 2879 2880 /* 2881 * mvm misc bits 2882 */ 2883 2884 /* 2885 * follows iwlwifi/fw.c 2886 */ 2887 static int 2888 iwm_run_init_ucode(struct iwm_softc *sc, int justnvm) 2889 { 2890 struct iwm_notification_wait calib_wait; 2891 static const uint16_t init_complete[] = { 2892 IWM_INIT_COMPLETE_NOTIF, 2893 IWM_CALIB_RES_NOTIF_PHY_DB 2894 }; 2895 int ret; 2896 2897 /* do not operate with rfkill switch turned on */ 2898 if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { 2899 device_printf(sc->sc_dev, 2900 "radio is disabled by hardware switch\n"); 2901 return EPERM; 2902 } 2903 2904 iwm_init_notification_wait(sc->sc_notif_wait, 2905 &calib_wait, 2906 init_complete, 2907 nitems(init_complete), 2908 iwm_wait_phy_db_entry, 2909 sc->sc_phy_db); 2910 2911 /* Will also start the device */ 2912 ret = iwm_load_ucode_wait_alive(sc, IWM_UCODE_INIT); 2913 if (ret) { 2914 device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n", 2915 ret); 2916 goto error; 2917 } 2918 2919 if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { 2920 ret = iwm_send_bt_init_conf(sc); 2921 if (ret) { 2922 device_printf(sc->sc_dev, 2923 "failed to send bt coex configuration: %d\n", ret); 2924 goto error; 2925 } 2926 } 2927 2928 if (justnvm) { 2929 /* Read nvm */ 2930 ret = iwm_nvm_init(sc); 2931 if (ret) { 2932 device_printf(sc->sc_dev, "failed to read nvm\n"); 2933 goto error; 2934 } 2935 IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr); 2936 goto error; 2937 } 2938 2939 /* Send TX valid antennas before triggering calibrations */ 2940 ret = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); 2941 if (ret) { 2942 device_printf(sc->sc_dev, 2943 "failed to send antennas before calibration: %d\n", ret); 2944 goto error; 2945 } 2946 2947 /* 2948 * Send phy configurations command to init uCode 2949 * to start the 16.0 uCode init image internal calibrations. 2950 */ 2951 ret = iwm_send_phy_cfg_cmd(sc); 2952 if (ret) { 2953 device_printf(sc->sc_dev, 2954 "%s: Failed to run INIT calibrations: %d\n", 2955 __func__, ret); 2956 goto error; 2957 } 2958 2959 /* 2960 * Nothing to do but wait for the init complete notification 2961 * from the firmware. 2962 */ 2963 IWM_UNLOCK(sc); 2964 ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait, 2965 IWM_UCODE_CALIB_TIMEOUT); 2966 IWM_LOCK(sc); 2967 2968 2969 goto out; 2970 2971 error: 2972 iwm_remove_notification(sc->sc_notif_wait, &calib_wait); 2973 out: 2974 return ret; 2975 } 2976 2977 static int 2978 iwm_config_ltr(struct iwm_softc *sc) 2979 { 2980 struct iwm_ltr_config_cmd cmd = { 2981 .flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE), 2982 }; 2983 2984 if (!sc->sc_ltr_enabled) 2985 return 0; 2986 2987 return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd); 2988 } 2989 2990 /* 2991 * receive side 2992 */ 2993 2994 /* (re)stock rx ring, called at init-time and at runtime */ 2995 static int 2996 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) 2997 { 2998 struct iwm_rx_ring *ring = &sc->rxq; 2999 struct iwm_rx_data *data = &ring->data[idx]; 3000 struct mbuf *m; 3001 bus_dmamap_t dmamap; 3002 bus_dma_segment_t seg; 3003 int nsegs, error; 3004 3005 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); 3006 if (m == NULL) 3007 return ENOBUFS; 3008 3009 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3010 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m, 3011 &seg, &nsegs, BUS_DMA_NOWAIT); 3012 if (error != 0) { 3013 device_printf(sc->sc_dev, 3014 "%s: can't map mbuf, error %d\n", __func__, error); 3015 m_freem(m); 3016 return error; 3017 } 3018 3019 if (data->m != NULL) 3020 bus_dmamap_unload(ring->data_dmat, data->map); 3021 3022 /* Swap ring->spare_map with data->map */ 3023 dmamap = data->map; 3024 data->map = ring->spare_map; 3025 ring->spare_map = dmamap; 3026 3027 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); 3028 data->m = m; 3029 3030 /* Update RX descriptor. */ 3031 KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned")); 3032 if (sc->cfg->mqrx_supported) 3033 ((uint64_t *)ring->desc)[idx] = htole64(seg.ds_addr); 3034 else 3035 ((uint32_t *)ring->desc)[idx] = htole32(seg.ds_addr >> 8); 3036 bus_dmamap_sync(ring->free_desc_dma.tag, ring->free_desc_dma.map, 3037 BUS_DMASYNC_PREWRITE); 3038 3039 return 0; 3040 } 3041 3042 static void 3043 iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3044 { 3045 struct iwm_rx_phy_info *phy_info = (void *)pkt->data; 3046 3047 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); 3048 3049 memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); 3050 } 3051 3052 /* 3053 * Retrieve the average noise (in dBm) among receivers. 3054 */ 3055 static int 3056 iwm_get_noise(struct iwm_softc *sc, 3057 const struct iwm_statistics_rx_non_phy *stats) 3058 { 3059 int i, total, nbant, noise; 3060 3061 total = nbant = noise = 0; 3062 for (i = 0; i < 3; i++) { 3063 noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; 3064 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n", 3065 __func__, 3066 i, 3067 noise); 3068 3069 if (noise) { 3070 total += noise; 3071 nbant++; 3072 } 3073 } 3074 3075 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n", 3076 __func__, nbant, total); 3077 #if 0 3078 /* There should be at least one antenna but check anyway. */ 3079 return (nbant == 0) ? -127 : (total / nbant) - 107; 3080 #else 3081 /* For now, just hard-code it to -96 to be safe */ 3082 return (-96); 3083 #endif 3084 } 3085 3086 static void 3087 iwm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3088 { 3089 struct iwm_notif_statistics *stats = (void *)&pkt->data; 3090 3091 memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); 3092 sc->sc_noise = iwm_get_noise(sc, &stats->rx.general); 3093 } 3094 3095 /* iwlwifi: mvm/rx.c */ 3096 /* 3097 * iwm_get_signal_strength - use new rx PHY INFO API 3098 * values are reported by the fw as positive values - need to negate 3099 * to obtain their dBM. Account for missing antennas by replacing 0 3100 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. 3101 */ 3102 static int 3103 iwm_rx_get_signal_strength(struct iwm_softc *sc, 3104 struct iwm_rx_phy_info *phy_info) 3105 { 3106 int energy_a, energy_b, energy_c, max_energy; 3107 uint32_t val; 3108 3109 val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); 3110 energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> 3111 IWM_RX_INFO_ENERGY_ANT_A_POS; 3112 energy_a = energy_a ? -energy_a : -256; 3113 energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> 3114 IWM_RX_INFO_ENERGY_ANT_B_POS; 3115 energy_b = energy_b ? -energy_b : -256; 3116 energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> 3117 IWM_RX_INFO_ENERGY_ANT_C_POS; 3118 energy_c = energy_c ? -energy_c : -256; 3119 max_energy = MAX(energy_a, energy_b); 3120 max_energy = MAX(max_energy, energy_c); 3121 3122 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3123 "energy In A %d B %d C %d , and max %d\n", 3124 energy_a, energy_b, energy_c, max_energy); 3125 3126 return max_energy; 3127 } 3128 3129 static int 3130 iwm_rxmq_get_signal_strength(struct iwm_softc *sc, 3131 struct iwm_rx_mpdu_desc *desc) 3132 { 3133 int energy_a, energy_b; 3134 3135 energy_a = desc->v1.energy_a; 3136 energy_b = desc->v1.energy_b; 3137 energy_a = energy_a ? -energy_a : -256; 3138 energy_b = energy_b ? -energy_b : -256; 3139 return MAX(energy_a, energy_b); 3140 } 3141 3142 /* 3143 * iwm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler 3144 * 3145 * Handles the actual data of the Rx packet from the fw 3146 */ 3147 static bool 3148 iwm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3149 bool stolen) 3150 { 3151 struct ieee80211com *ic = &sc->sc_ic; 3152 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3153 struct ieee80211_rx_stats rxs; 3154 struct iwm_rx_phy_info *phy_info; 3155 struct iwm_rx_mpdu_res_start *rx_res; 3156 struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); 3157 uint32_t len; 3158 uint32_t rx_pkt_status; 3159 int rssi; 3160 3161 phy_info = &sc->sc_last_phy_info; 3162 rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; 3163 len = le16toh(rx_res->byte_count); 3164 rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); 3165 3166 if (__predict_false(phy_info->cfg_phy_cnt > 20)) { 3167 device_printf(sc->sc_dev, 3168 "dsp size out of range [0,20]: %d\n", 3169 phy_info->cfg_phy_cnt); 3170 return false; 3171 } 3172 3173 if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || 3174 !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { 3175 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3176 "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); 3177 return false; 3178 } 3179 3180 rssi = iwm_rx_get_signal_strength(sc, phy_info); 3181 3182 /* Map it to relative value */ 3183 rssi = rssi - sc->sc_noise; 3184 3185 /* replenish ring for the buffer we're going to feed to the sharks */ 3186 if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 3187 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 3188 __func__); 3189 return false; 3190 } 3191 3192 m->m_data = pkt->data + sizeof(*rx_res); 3193 m->m_pkthdr.len = m->m_len = len; 3194 3195 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3196 "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); 3197 3198 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3199 "%s: phy_info: channel=%d, flags=0x%08x\n", 3200 __func__, 3201 le16toh(phy_info->channel), 3202 le16toh(phy_info->phy_flags)); 3203 3204 /* 3205 * Populate an RX state struct with the provided information. 3206 */ 3207 bzero(&rxs, sizeof(rxs)); 3208 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 3209 rxs.r_flags |= IEEE80211_R_BAND; 3210 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 3211 rxs.c_ieee = le16toh(phy_info->channel); 3212 if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { 3213 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); 3214 rxs.c_band = IEEE80211_CHAN_2GHZ; 3215 } else { 3216 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); 3217 rxs.c_band = IEEE80211_CHAN_5GHZ; 3218 } 3219 3220 /* rssi is in 1/2db units */ 3221 rxs.c_rssi = rssi * 2; 3222 rxs.c_nf = sc->sc_noise; 3223 if (ieee80211_add_rx_params(m, &rxs) == 0) 3224 return false; 3225 3226 if (ieee80211_radiotap_active_vap(vap)) { 3227 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 3228 3229 tap->wr_flags = 0; 3230 if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) 3231 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3232 tap->wr_chan_freq = htole16(rxs.c_freq); 3233 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 3234 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 3235 tap->wr_dbm_antsignal = (int8_t)rssi; 3236 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 3237 tap->wr_tsft = phy_info->system_timestamp; 3238 switch (phy_info->rate) { 3239 /* CCK rates. */ 3240 case 10: tap->wr_rate = 2; break; 3241 case 20: tap->wr_rate = 4; break; 3242 case 55: tap->wr_rate = 11; break; 3243 case 110: tap->wr_rate = 22; break; 3244 /* OFDM rates. */ 3245 case 0xd: tap->wr_rate = 12; break; 3246 case 0xf: tap->wr_rate = 18; break; 3247 case 0x5: tap->wr_rate = 24; break; 3248 case 0x7: tap->wr_rate = 36; break; 3249 case 0x9: tap->wr_rate = 48; break; 3250 case 0xb: tap->wr_rate = 72; break; 3251 case 0x1: tap->wr_rate = 96; break; 3252 case 0x3: tap->wr_rate = 108; break; 3253 /* Unknown rate: should not happen. */ 3254 default: tap->wr_rate = 0; 3255 } 3256 } 3257 3258 return true; 3259 } 3260 3261 static bool 3262 iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3263 bool stolen) 3264 { 3265 struct ieee80211com *ic = &sc->sc_ic; 3266 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3267 struct ieee80211_frame *wh; 3268 struct ieee80211_rx_stats rxs; 3269 struct iwm_rx_mpdu_desc *desc; 3270 struct iwm_rx_packet *pkt; 3271 int rssi; 3272 uint32_t hdrlen, len, rate_n_flags; 3273 uint16_t phy_info; 3274 uint8_t channel; 3275 3276 pkt = mtodo(m, offset); 3277 desc = (void *)pkt->data; 3278 3279 if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) || 3280 !(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) { 3281 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3282 "Bad CRC or FIFO: 0x%08X.\n", desc->status); 3283 return false; 3284 } 3285 3286 channel = desc->v1.channel; 3287 len = le16toh(desc->mpdu_len); 3288 phy_info = le16toh(desc->phy_info); 3289 rate_n_flags = desc->v1.rate_n_flags; 3290 3291 wh = mtodo(m, sizeof(*desc)); 3292 m->m_data = pkt->data + sizeof(*desc); 3293 m->m_pkthdr.len = m->m_len = len; 3294 m->m_len = len; 3295 3296 /* Account for padding following the frame header. */ 3297 if ((desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD)) { 3298 hdrlen = ieee80211_anyhdrsize(wh); 3299 memmove(mtodo(m, 2), mtodo(m, 0), hdrlen); 3300 m->m_data = mtodo(m, 2); 3301 wh = mtod(m, struct ieee80211_frame *); 3302 } 3303 3304 /* Map it to relative value */ 3305 rssi = iwm_rxmq_get_signal_strength(sc, desc); 3306 rssi = rssi - sc->sc_noise; 3307 3308 /* replenish ring for the buffer we're going to feed to the sharks */ 3309 if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { 3310 device_printf(sc->sc_dev, "%s: unable to add more buffers\n", 3311 __func__); 3312 return false; 3313 } 3314 3315 IWM_DPRINTF(sc, IWM_DEBUG_RECV, 3316 "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); 3317 3318 /* 3319 * Populate an RX state struct with the provided information. 3320 */ 3321 bzero(&rxs, sizeof(rxs)); 3322 rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; 3323 rxs.r_flags |= IEEE80211_R_BAND; 3324 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; 3325 rxs.c_ieee = channel; 3326 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, 3327 channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ); 3328 rxs.c_band = channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ; 3329 3330 /* rssi is in 1/2db units */ 3331 rxs.c_rssi = rssi * 2; 3332 rxs.c_nf = sc->sc_noise; 3333 if (ieee80211_add_rx_params(m, &rxs) == 0) 3334 return false; 3335 3336 if (ieee80211_radiotap_active_vap(vap)) { 3337 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; 3338 3339 tap->wr_flags = 0; 3340 if ((phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE) != 0) 3341 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3342 tap->wr_chan_freq = htole16(rxs.c_freq); 3343 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ 3344 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 3345 tap->wr_dbm_antsignal = (int8_t)rssi; 3346 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; 3347 tap->wr_tsft = desc->v1.gp2_on_air_rise; 3348 switch ((rate_n_flags & 0xff)) { 3349 /* CCK rates. */ 3350 case 10: tap->wr_rate = 2; break; 3351 case 20: tap->wr_rate = 4; break; 3352 case 55: tap->wr_rate = 11; break; 3353 case 110: tap->wr_rate = 22; break; 3354 /* OFDM rates. */ 3355 case 0xd: tap->wr_rate = 12; break; 3356 case 0xf: tap->wr_rate = 18; break; 3357 case 0x5: tap->wr_rate = 24; break; 3358 case 0x7: tap->wr_rate = 36; break; 3359 case 0x9: tap->wr_rate = 48; break; 3360 case 0xb: tap->wr_rate = 72; break; 3361 case 0x1: tap->wr_rate = 96; break; 3362 case 0x3: tap->wr_rate = 108; break; 3363 /* Unknown rate: should not happen. */ 3364 default: tap->wr_rate = 0; 3365 } 3366 } 3367 3368 return true; 3369 } 3370 3371 static bool 3372 iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, 3373 bool stolen) 3374 { 3375 struct epoch_tracker et; 3376 struct ieee80211com *ic; 3377 struct ieee80211_frame *wh; 3378 struct ieee80211_node *ni; 3379 bool ret; 3380 3381 ic = &sc->sc_ic; 3382 3383 ret = sc->cfg->mqrx_supported ? 3384 iwm_rx_mpdu_mq(sc, m, offset, stolen) : 3385 iwm_rx_rx_mpdu(sc, m, offset, stolen); 3386 if (!ret) { 3387 counter_u64_add(ic->ic_ierrors, 1); 3388 return (ret); 3389 } 3390 3391 wh = mtod(m, struct ieee80211_frame *); 3392 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3393 3394 IWM_UNLOCK(sc); 3395 3396 NET_EPOCH_ENTER(et); 3397 if (ni != NULL) { 3398 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); 3399 ieee80211_input_mimo(ni, m); 3400 ieee80211_free_node(ni); 3401 } else { 3402 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); 3403 ieee80211_input_mimo_all(ic, m); 3404 } 3405 NET_EPOCH_EXIT(et); 3406 3407 IWM_LOCK(sc); 3408 3409 return true; 3410 } 3411 3412 static int 3413 iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, 3414 struct iwm_node *in) 3415 { 3416 struct iwm_tx_resp *tx_resp = (void *)pkt->data; 3417 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3418 struct ieee80211_node *ni = &in->in_ni; 3419 struct ieee80211vap *vap = ni->ni_vap; 3420 int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; 3421 int new_rate, cur_rate = vap->iv_bss->ni_txrate; 3422 boolean_t rate_matched; 3423 uint8_t tx_resp_rate; 3424 3425 KASSERT(tx_resp->frame_count == 1, ("too many frames")); 3426 3427 /* Update rate control statistics. */ 3428 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", 3429 __func__, 3430 (int) le16toh(tx_resp->status.status), 3431 (int) le16toh(tx_resp->status.sequence), 3432 tx_resp->frame_count, 3433 tx_resp->bt_kill_count, 3434 tx_resp->failure_rts, 3435 tx_resp->failure_frame, 3436 le32toh(tx_resp->initial_rate), 3437 (int) le16toh(tx_resp->wireless_media_time)); 3438 3439 tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate)); 3440 3441 /* For rate control, ignore frames sent at different initial rate */ 3442 rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate); 3443 3444 if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) { 3445 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3446 "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u " 3447 "ni_txrate=%d)\n", tx_resp_rate, cur_rate); 3448 } 3449 3450 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3451 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3452 txs->short_retries = tx_resp->failure_rts; 3453 txs->long_retries = tx_resp->failure_frame; 3454 if (status != IWM_TX_STATUS_SUCCESS && 3455 status != IWM_TX_STATUS_DIRECT_DONE) { 3456 switch (status) { 3457 case IWM_TX_STATUS_FAIL_SHORT_LIMIT: 3458 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 3459 break; 3460 case IWM_TX_STATUS_FAIL_LONG_LIMIT: 3461 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 3462 break; 3463 case IWM_TX_STATUS_FAIL_LIFE_EXPIRE: 3464 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 3465 break; 3466 default: 3467 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3468 break; 3469 } 3470 } else { 3471 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3472 } 3473 3474 if (rate_matched) { 3475 ieee80211_ratectl_tx_complete(ni, txs); 3476 3477 int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0); 3478 new_rate = vap->iv_bss->ni_txrate; 3479 if (new_rate != 0 && new_rate != cur_rate) { 3480 struct iwm_node *in = IWM_NODE(vap->iv_bss); 3481 iwm_setrates(sc, in, rix); 3482 iwm_send_lq_cmd(sc, &in->in_lq, FALSE); 3483 } 3484 } 3485 3486 return (txs->status != IEEE80211_RATECTL_TX_SUCCESS); 3487 } 3488 3489 static void 3490 iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3491 { 3492 struct iwm_cmd_header *cmd_hdr; 3493 struct iwm_tx_ring *ring; 3494 struct iwm_tx_data *txd; 3495 struct iwm_node *in; 3496 struct mbuf *m; 3497 int idx, qid, qmsk, status; 3498 3499 cmd_hdr = &pkt->hdr; 3500 idx = cmd_hdr->idx; 3501 qid = cmd_hdr->qid; 3502 3503 ring = &sc->txq[qid]; 3504 txd = &ring->data[idx]; 3505 in = txd->in; 3506 m = txd->m; 3507 3508 KASSERT(txd->done == 0, ("txd not done")); 3509 KASSERT(txd->in != NULL, ("txd without node")); 3510 KASSERT(txd->m != NULL, ("txd without mbuf")); 3511 3512 sc->sc_tx_timer = 0; 3513 3514 status = iwm_rx_tx_cmd_single(sc, pkt, in); 3515 3516 /* Unmap and free mbuf. */ 3517 bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); 3518 bus_dmamap_unload(ring->data_dmat, txd->map); 3519 3520 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3521 "free txd %p, in %p\n", txd, txd->in); 3522 txd->done = 1; 3523 txd->m = NULL; 3524 txd->in = NULL; 3525 3526 ieee80211_tx_complete(&in->in_ni, m, status); 3527 3528 qmsk = 1 << qid; 3529 if (--ring->queued < IWM_TX_RING_LOMARK && (sc->qfullmsk & qmsk) != 0) { 3530 sc->qfullmsk &= ~qmsk; 3531 if (sc->qfullmsk == 0) 3532 iwm_start(sc); 3533 } 3534 } 3535 3536 /* 3537 * transmit side 3538 */ 3539 3540 /* 3541 * Process a "command done" firmware notification. This is where we wakeup 3542 * processes waiting for a synchronous command completion. 3543 * from if_iwn 3544 */ 3545 static void 3546 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) 3547 { 3548 struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; 3549 struct iwm_tx_data *data; 3550 3551 if (pkt->hdr.qid != IWM_CMD_QUEUE) { 3552 return; /* Not a command ack. */ 3553 } 3554 3555 /* XXX wide commands? */ 3556 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 3557 "cmd notification type 0x%x qid %d idx %d\n", 3558 pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx); 3559 3560 data = &ring->data[pkt->hdr.idx]; 3561 3562 /* If the command was mapped in an mbuf, free it. */ 3563 if (data->m != NULL) { 3564 bus_dmamap_sync(ring->data_dmat, data->map, 3565 BUS_DMASYNC_POSTWRITE); 3566 bus_dmamap_unload(ring->data_dmat, data->map); 3567 m_freem(data->m); 3568 data->m = NULL; 3569 } 3570 wakeup(&ring->desc[pkt->hdr.idx]); 3571 3572 if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) { 3573 device_printf(sc->sc_dev, 3574 "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n", 3575 __func__, pkt->hdr.idx, ring->queued, ring->cur); 3576 /* XXX call iwm_force_nmi() */ 3577 } 3578 3579 KASSERT(ring->queued > 0, ("ring->queued is empty?")); 3580 ring->queued--; 3581 if (ring->queued == 0) 3582 iwm_pcie_clear_cmd_in_flight(sc); 3583 } 3584 3585 #if 0 3586 /* 3587 * necessary only for block ack mode 3588 */ 3589 void 3590 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, 3591 uint16_t len) 3592 { 3593 struct iwm_agn_scd_bc_tbl *scd_bc_tbl; 3594 uint16_t w_val; 3595 3596 scd_bc_tbl = sc->sched_dma.vaddr; 3597 3598 len += 8; /* magic numbers came naturally from paris */ 3599 len = roundup(len, 4) / 4; 3600 3601 w_val = htole16(sta_id << 12 | len); 3602 3603 /* Update TX scheduler. */ 3604 scd_bc_tbl[qid].tfd_offset[idx] = w_val; 3605 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3606 BUS_DMASYNC_PREWRITE); 3607 3608 /* I really wonder what this is ?!? */ 3609 if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { 3610 scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; 3611 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3612 BUS_DMASYNC_PREWRITE); 3613 } 3614 } 3615 #endif 3616 3617 static int 3618 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate) 3619 { 3620 int i; 3621 3622 for (i = 0; i < nitems(iwm_rates); i++) { 3623 if (iwm_rates[i].rate == rate) 3624 return (i); 3625 } 3626 /* XXX error? */ 3627 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 3628 "%s: couldn't find an entry for rate=%d\n", 3629 __func__, 3630 rate); 3631 return (0); 3632 } 3633 3634 /* 3635 * Fill in the rate related information for a transmit command. 3636 */ 3637 static const struct iwm_rate * 3638 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, 3639 struct mbuf *m, struct iwm_tx_cmd *tx) 3640 { 3641 struct ieee80211_node *ni = &in->in_ni; 3642 struct ieee80211_frame *wh; 3643 const struct ieee80211_txparam *tp = ni->ni_txparms; 3644 const struct iwm_rate *rinfo; 3645 int type; 3646 int ridx, rate_flags; 3647 3648 wh = mtod(m, struct ieee80211_frame *); 3649 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3650 3651 tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; 3652 tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; 3653 3654 if (type == IEEE80211_FC0_TYPE_MGT || 3655 type == IEEE80211_FC0_TYPE_CTL || 3656 (m->m_flags & M_EAPOL) != 0) { 3657 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate); 3658 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3659 "%s: MGT (%d)\n", __func__, tp->mgmtrate); 3660 } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3661 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate); 3662 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3663 "%s: MCAST (%d)\n", __func__, tp->mcastrate); 3664 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 3665 ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate); 3666 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 3667 "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate); 3668 } else { 3669 /* for data frames, use RS table */ 3670 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__); 3671 ridx = iwm_rate2ridx(sc, ni->ni_txrate); 3672 if (ridx == -1) 3673 ridx = 0; 3674 3675 /* This is the index into the programmed table */ 3676 tx->initial_rate_index = 0; 3677 tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); 3678 } 3679 3680 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, 3681 "%s: frame type=%d txrate %d\n", 3682 __func__, type, iwm_rates[ridx].rate); 3683 3684 rinfo = &iwm_rates[ridx]; 3685 3686 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", 3687 __func__, ridx, 3688 rinfo->rate, 3689 !! (IWM_RIDX_IS_CCK(ridx)) 3690 ); 3691 3692 /* XXX TODO: hard-coded TX antenna? */ 3693 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_9000) 3694 rate_flags = IWM_RATE_MCS_ANT_B_MSK; 3695 else 3696 rate_flags = IWM_RATE_MCS_ANT_A_MSK; 3697 if (IWM_RIDX_IS_CCK(ridx)) 3698 rate_flags |= IWM_RATE_MCS_CCK_MSK; 3699 tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); 3700 3701 return rinfo; 3702 } 3703 3704 #define TB0_SIZE 16 3705 static int 3706 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) 3707 { 3708 struct ieee80211com *ic = &sc->sc_ic; 3709 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3710 struct iwm_node *in = IWM_NODE(ni); 3711 struct iwm_tx_ring *ring; 3712 struct iwm_tx_data *data; 3713 struct iwm_tfd *desc; 3714 struct iwm_device_cmd *cmd; 3715 struct iwm_tx_cmd *tx; 3716 struct ieee80211_frame *wh; 3717 struct ieee80211_key *k = NULL; 3718 struct mbuf *m1; 3719 const struct iwm_rate *rinfo; 3720 uint32_t flags; 3721 u_int hdrlen; 3722 bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; 3723 int nsegs; 3724 uint8_t tid, type; 3725 int i, totlen, error, pad; 3726 3727 wh = mtod(m, struct ieee80211_frame *); 3728 hdrlen = ieee80211_anyhdrsize(wh); 3729 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3730 tid = 0; 3731 ring = &sc->txq[ac]; 3732 desc = &ring->desc[ring->cur]; 3733 data = &ring->data[ring->cur]; 3734 3735 /* Fill out iwm_tx_cmd to send to the firmware */ 3736 cmd = &ring->cmd[ring->cur]; 3737 cmd->hdr.code = IWM_TX_CMD; 3738 cmd->hdr.flags = 0; 3739 cmd->hdr.qid = ring->qid; 3740 cmd->hdr.idx = ring->cur; 3741 3742 tx = (void *)cmd->data; 3743 memset(tx, 0, sizeof(*tx)); 3744 3745 rinfo = iwm_tx_fill_cmd(sc, in, m, tx); 3746 3747 /* Encrypt the frame if need be. */ 3748 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 3749 /* Retrieve key for TX && do software encryption. */ 3750 k = ieee80211_crypto_encap(ni, m); 3751 if (k == NULL) { 3752 m_freem(m); 3753 return (ENOBUFS); 3754 } 3755 /* 802.11 header may have moved. */ 3756 wh = mtod(m, struct ieee80211_frame *); 3757 } 3758 3759 if (ieee80211_radiotap_active_vap(vap)) { 3760 struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; 3761 3762 tap->wt_flags = 0; 3763 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 3764 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 3765 tap->wt_rate = rinfo->rate; 3766 if (k != NULL) 3767 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3768 ieee80211_radiotap_tx(vap, m); 3769 } 3770 3771 flags = 0; 3772 totlen = m->m_pkthdr.len; 3773 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3774 flags |= IWM_TX_CMD_FLG_ACK; 3775 } 3776 3777 if (type == IEEE80211_FC0_TYPE_DATA && 3778 totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold && 3779 !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3780 flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; 3781 } 3782 3783 tx->sta_id = IWM_STATION_ID; 3784 3785 if (type == IEEE80211_FC0_TYPE_MGT) { 3786 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3787 3788 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3789 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 3790 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); 3791 } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) { 3792 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3793 } else { 3794 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); 3795 } 3796 } else { 3797 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); 3798 } 3799 3800 if (hdrlen & 3) { 3801 /* First segment length must be a multiple of 4. */ 3802 flags |= IWM_TX_CMD_FLG_MH_PAD; 3803 tx->offload_assist |= htole16(IWM_TX_CMD_OFFLD_PAD); 3804 pad = 4 - (hdrlen & 3); 3805 } else { 3806 tx->offload_assist = 0; 3807 pad = 0; 3808 } 3809 3810 tx->len = htole16(totlen); 3811 tx->tid_tspec = tid; 3812 tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); 3813 3814 /* Set physical address of "scratch area". */ 3815 tx->dram_lsb_ptr = htole32(data->scratch_paddr); 3816 tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); 3817 3818 /* Copy 802.11 header in TX command. */ 3819 memcpy((uint8_t *)tx + sizeof(*tx), wh, hdrlen); 3820 3821 flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; 3822 3823 tx->sec_ctl = 0; 3824 tx->tx_flags |= htole32(flags); 3825 3826 /* Trim 802.11 header. */ 3827 m_adj(m, hdrlen); 3828 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3829 segs, &nsegs, BUS_DMA_NOWAIT); 3830 if (error != 0) { 3831 if (error != EFBIG) { 3832 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3833 error); 3834 m_freem(m); 3835 return error; 3836 } 3837 /* Too many DMA segments, linearize mbuf. */ 3838 m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); 3839 if (m1 == NULL) { 3840 device_printf(sc->sc_dev, 3841 "%s: could not defrag mbuf\n", __func__); 3842 m_freem(m); 3843 return (ENOBUFS); 3844 } 3845 m = m1; 3846 3847 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3848 segs, &nsegs, BUS_DMA_NOWAIT); 3849 if (error != 0) { 3850 device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", 3851 error); 3852 m_freem(m); 3853 return error; 3854 } 3855 } 3856 data->m = m; 3857 data->in = in; 3858 data->done = 0; 3859 3860 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3861 "sending txd %p, in %p\n", data, data->in); 3862 KASSERT(data->in != NULL, ("node is NULL")); 3863 3864 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3865 "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n", 3866 ring->qid, ring->cur, totlen, nsegs, 3867 le32toh(tx->tx_flags), 3868 le32toh(tx->rate_n_flags), 3869 tx->initial_rate_index 3870 ); 3871 3872 /* Fill TX descriptor. */ 3873 memset(desc, 0, sizeof(*desc)); 3874 desc->num_tbs = 2 + nsegs; 3875 3876 desc->tbs[0].lo = htole32(data->cmd_paddr); 3877 desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | 3878 (TB0_SIZE << 4)); 3879 desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); 3880 desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | 3881 ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + 3882 hdrlen + pad - TB0_SIZE) << 4)); 3883 3884 /* Other DMA segments are for data payload. */ 3885 for (i = 0; i < nsegs; i++) { 3886 seg = &segs[i]; 3887 desc->tbs[i + 2].lo = htole32(seg->ds_addr); 3888 desc->tbs[i + 2].hi_n_len = 3889 htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | 3890 (seg->ds_len << 4); 3891 } 3892 3893 bus_dmamap_sync(ring->data_dmat, data->map, 3894 BUS_DMASYNC_PREWRITE); 3895 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 3896 BUS_DMASYNC_PREWRITE); 3897 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3898 BUS_DMASYNC_PREWRITE); 3899 3900 #if 0 3901 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); 3902 #endif 3903 3904 /* Kick TX ring. */ 3905 ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; 3906 IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3907 3908 /* Mark TX ring as full if we reach a certain threshold. */ 3909 if (++ring->queued > IWM_TX_RING_HIMARK) { 3910 sc->qfullmsk |= 1 << ring->qid; 3911 } 3912 3913 return 0; 3914 } 3915 3916 static int 3917 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3918 const struct ieee80211_bpf_params *params) 3919 { 3920 struct ieee80211com *ic = ni->ni_ic; 3921 struct iwm_softc *sc = ic->ic_softc; 3922 int error = 0; 3923 3924 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3925 "->%s begin\n", __func__); 3926 3927 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 3928 m_freem(m); 3929 IWM_DPRINTF(sc, IWM_DEBUG_XMIT, 3930 "<-%s not RUNNING\n", __func__); 3931 return (ENETDOWN); 3932 } 3933 3934 IWM_LOCK(sc); 3935 /* XXX fix this */ 3936 if (params == NULL) { 3937 error = iwm_tx(sc, m, ni, 0); 3938 } else { 3939 error = iwm_tx(sc, m, ni, 0); 3940 } 3941 if (sc->sc_tx_timer == 0) 3942 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 3943 sc->sc_tx_timer = 5; 3944 IWM_UNLOCK(sc); 3945 3946 return (error); 3947 } 3948 3949 /* 3950 * mvm/tx.c 3951 */ 3952 3953 /* 3954 * Note that there are transports that buffer frames before they reach 3955 * the firmware. This means that after flush_tx_path is called, the 3956 * queue might not be empty. The race-free way to handle this is to: 3957 * 1) set the station as draining 3958 * 2) flush the Tx path 3959 * 3) wait for the transport queues to be empty 3960 */ 3961 int 3962 iwm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags) 3963 { 3964 int ret; 3965 struct iwm_tx_path_flush_cmd_v1 flush_cmd = { 3966 .queues_ctl = htole32(tfd_msk), 3967 .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), 3968 }; 3969 3970 ret = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags, 3971 sizeof(flush_cmd), &flush_cmd); 3972 if (ret) 3973 device_printf(sc->sc_dev, 3974 "Flushing tx queue failed: %d\n", ret); 3975 return ret; 3976 } 3977 3978 /* 3979 * BEGIN mvm/quota.c 3980 */ 3981 3982 static int 3983 iwm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp) 3984 { 3985 struct iwm_time_quota_cmd_v1 cmd; 3986 int i, idx, ret, num_active_macs, quota, quota_rem; 3987 int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; 3988 int n_ifs[IWM_MAX_BINDINGS] = {0, }; 3989 uint16_t id; 3990 3991 memset(&cmd, 0, sizeof(cmd)); 3992 3993 /* currently, PHY ID == binding ID */ 3994 if (ivp) { 3995 id = ivp->phy_ctxt->id; 3996 KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); 3997 colors[id] = ivp->phy_ctxt->color; 3998 3999 if (1) 4000 n_ifs[id] = 1; 4001 } 4002 4003 /* 4004 * The FW's scheduling session consists of 4005 * IWM_MAX_QUOTA fragments. Divide these fragments 4006 * equally between all the bindings that require quota 4007 */ 4008 num_active_macs = 0; 4009 for (i = 0; i < IWM_MAX_BINDINGS; i++) { 4010 cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); 4011 num_active_macs += n_ifs[i]; 4012 } 4013 4014 quota = 0; 4015 quota_rem = 0; 4016 if (num_active_macs) { 4017 quota = IWM_MAX_QUOTA / num_active_macs; 4018 quota_rem = IWM_MAX_QUOTA % num_active_macs; 4019 } 4020 4021 for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { 4022 if (colors[i] < 0) 4023 continue; 4024 4025 cmd.quotas[idx].id_and_color = 4026 htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); 4027 4028 if (n_ifs[i] <= 0) { 4029 cmd.quotas[idx].quota = htole32(0); 4030 cmd.quotas[idx].max_duration = htole32(0); 4031 } else { 4032 cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); 4033 cmd.quotas[idx].max_duration = htole32(0); 4034 } 4035 idx++; 4036 } 4037 4038 /* Give the remainder of the session to the first binding */ 4039 cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); 4040 4041 ret = iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, 4042 sizeof(cmd), &cmd); 4043 if (ret) 4044 device_printf(sc->sc_dev, 4045 "%s: Failed to send quota: %d\n", __func__, ret); 4046 return ret; 4047 } 4048 4049 /* 4050 * END mvm/quota.c 4051 */ 4052 4053 /* 4054 * ieee80211 routines 4055 */ 4056 4057 /* 4058 * Change to AUTH state in 80211 state machine. Roughly matches what 4059 * Linux does in bss_info_changed(). 4060 */ 4061 static int 4062 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) 4063 { 4064 struct ieee80211_node *ni; 4065 struct iwm_node *in; 4066 struct iwm_vap *iv = IWM_VAP(vap); 4067 uint32_t duration; 4068 int error; 4069 4070 /* 4071 * XXX i have a feeling that the vap node is being 4072 * freed from underneath us. Grr. 4073 */ 4074 ni = ieee80211_ref_node(vap->iv_bss); 4075 in = IWM_NODE(ni); 4076 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, 4077 "%s: called; vap=%p, bss ni=%p\n", 4078 __func__, 4079 vap, 4080 ni); 4081 IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n", 4082 __func__, ether_sprintf(ni->ni_bssid)); 4083 4084 in->in_assoc = 0; 4085 iv->iv_auth = 1; 4086 4087 /* 4088 * Firmware bug - it'll crash if the beacon interval is less 4089 * than 16. We can't avoid connecting at all, so refuse the 4090 * station state change, this will cause net80211 to abandon 4091 * attempts to connect to this AP, and eventually wpa_s will 4092 * blacklist the AP... 4093 */ 4094 if (ni->ni_intval < 16) { 4095 device_printf(sc->sc_dev, 4096 "AP %s beacon interval is %d, refusing due to firmware bug!\n", 4097 ether_sprintf(ni->ni_bssid), ni->ni_intval); 4098 error = EINVAL; 4099 goto out; 4100 } 4101 4102 error = iwm_allow_mcast(vap, sc); 4103 if (error) { 4104 device_printf(sc->sc_dev, 4105 "%s: failed to set multicast\n", __func__); 4106 goto out; 4107 } 4108 4109 /* 4110 * This is where it deviates from what Linux does. 4111 * 4112 * Linux iwlwifi doesn't reset the nic each time, nor does it 4113 * call ctxt_add() here. Instead, it adds it during vap creation, 4114 * and always does a mac_ctx_changed(). 4115 * 4116 * The openbsd port doesn't attempt to do that - it reset things 4117 * at odd states and does the add here. 4118 * 4119 * So, until the state handling is fixed (ie, we never reset 4120 * the NIC except for a firmware failure, which should drag 4121 * the NIC back to IDLE, re-setup and re-add all the mac/phy 4122 * contexts that are required), let's do a dirty hack here. 4123 */ 4124 if (iv->is_uploaded) { 4125 if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { 4126 device_printf(sc->sc_dev, 4127 "%s: failed to update MAC\n", __func__); 4128 goto out; 4129 } 4130 } else { 4131 if ((error = iwm_mac_ctxt_add(sc, vap)) != 0) { 4132 device_printf(sc->sc_dev, 4133 "%s: failed to add MAC\n", __func__); 4134 goto out; 4135 } 4136 } 4137 sc->sc_firmware_state = 1; 4138 4139 if ((error = iwm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], 4140 in->in_ni.ni_chan, 1, 1)) != 0) { 4141 device_printf(sc->sc_dev, 4142 "%s: failed update phy ctxt\n", __func__); 4143 goto out; 4144 } 4145 iv->phy_ctxt = &sc->sc_phyctxt[0]; 4146 4147 if ((error = iwm_binding_add_vif(sc, iv)) != 0) { 4148 device_printf(sc->sc_dev, 4149 "%s: binding update cmd\n", __func__); 4150 goto out; 4151 } 4152 sc->sc_firmware_state = 2; 4153 /* 4154 * Authentication becomes unreliable when powersaving is left enabled 4155 * here. Powersaving will be activated again when association has 4156 * finished or is aborted. 4157 */ 4158 iv->ps_disabled = TRUE; 4159 error = iwm_power_update_mac(sc); 4160 iv->ps_disabled = FALSE; 4161 if (error != 0) { 4162 device_printf(sc->sc_dev, 4163 "%s: failed to update power management\n", 4164 __func__); 4165 goto out; 4166 } 4167 if ((error = iwm_add_sta(sc, in)) != 0) { 4168 device_printf(sc->sc_dev, 4169 "%s: failed to add sta\n", __func__); 4170 goto out; 4171 } 4172 sc->sc_firmware_state = 3; 4173 4174 /* 4175 * Prevent the FW from wandering off channel during association 4176 * by "protecting" the session with a time event. 4177 */ 4178 /* XXX duration is in units of TU, not MS */ 4179 duration = IWM_TE_SESSION_PROTECTION_MAX_TIME_MS; 4180 iwm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE); 4181 4182 error = 0; 4183 out: 4184 if (error != 0) 4185 iv->iv_auth = 0; 4186 ieee80211_free_node(ni); 4187 return (error); 4188 } 4189 4190 static struct ieee80211_node * 4191 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4192 { 4193 return malloc(sizeof (struct iwm_node), M_80211_NODE, 4194 M_NOWAIT | M_ZERO); 4195 } 4196 4197 static uint8_t 4198 iwm_rate_from_ucode_rate(uint32_t rate_n_flags) 4199 { 4200 uint8_t plcp = rate_n_flags & 0xff; 4201 int i; 4202 4203 for (i = 0; i <= IWM_RIDX_MAX; i++) { 4204 if (iwm_rates[i].plcp == plcp) 4205 return iwm_rates[i].rate; 4206 } 4207 return 0; 4208 } 4209 4210 uint8_t 4211 iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) 4212 { 4213 int i; 4214 uint8_t rval; 4215 4216 for (i = 0; i < rs->rs_nrates; i++) { 4217 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 4218 if (rval == iwm_rates[ridx].rate) 4219 return rs->rs_rates[i]; 4220 } 4221 4222 return 0; 4223 } 4224 4225 static int 4226 iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate) 4227 { 4228 int i; 4229 4230 for (i = 0; i <= IWM_RIDX_MAX; i++) { 4231 if (iwm_rates[i].rate == rate) 4232 return i; 4233 } 4234 4235 device_printf(sc->sc_dev, 4236 "%s: WARNING: device rate for %u not found!\n", 4237 __func__, rate); 4238 4239 return -1; 4240 } 4241 4242 4243 static void 4244 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix) 4245 { 4246 struct ieee80211_node *ni = &in->in_ni; 4247 struct iwm_lq_cmd *lq = &in->in_lq; 4248 struct ieee80211_rateset *rs = &ni->ni_rates; 4249 int nrates = rs->rs_nrates; 4250 int i, ridx, tab = 0; 4251 // int txant = 0; 4252 4253 KASSERT(rix >= 0 && rix < nrates, ("invalid rix")); 4254 4255 if (nrates > nitems(lq->rs_table)) { 4256 device_printf(sc->sc_dev, 4257 "%s: node supports %d rates, driver handles " 4258 "only %zu\n", __func__, nrates, nitems(lq->rs_table)); 4259 return; 4260 } 4261 if (nrates == 0) { 4262 device_printf(sc->sc_dev, 4263 "%s: node supports 0 rates, odd!\n", __func__); 4264 return; 4265 } 4266 nrates = imin(rix + 1, nrates); 4267 4268 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4269 "%s: nrates=%d\n", __func__, nrates); 4270 4271 /* then construct a lq_cmd based on those */ 4272 memset(lq, 0, sizeof(*lq)); 4273 lq->sta_id = IWM_STATION_ID; 4274 4275 /* For HT, always enable RTS/CTS to avoid excessive retries. */ 4276 if (ni->ni_flags & IEEE80211_NODE_HT) 4277 lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; 4278 4279 /* 4280 * are these used? (we don't do SISO or MIMO) 4281 * need to set them to non-zero, though, or we get an error. 4282 */ 4283 lq->single_stream_ant_msk = 1; 4284 lq->dual_stream_ant_msk = 1; 4285 4286 /* 4287 * Build the actual rate selection table. 4288 * The lowest bits are the rates. Additionally, 4289 * CCK needs bit 9 to be set. The rest of the bits 4290 * we add to the table select the tx antenna 4291 * Note that we add the rates in the highest rate first 4292 * (opposite of ni_rates). 4293 */ 4294 for (i = 0; i < nrates; i++) { 4295 int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL; 4296 int nextant; 4297 4298 /* Map 802.11 rate to HW rate index. */ 4299 ridx = iwm_rate2ridx(sc, rate); 4300 if (ridx == -1) 4301 continue; 4302 4303 #if 0 4304 if (txant == 0) 4305 txant = iwm_get_valid_tx_ant(sc); 4306 nextant = 1<<(ffs(txant)-1); 4307 txant &= ~nextant; 4308 #else 4309 nextant = iwm_get_valid_tx_ant(sc); 4310 #endif 4311 tab = iwm_rates[ridx].plcp; 4312 tab |= nextant << IWM_RATE_MCS_ANT_POS; 4313 if (IWM_RIDX_IS_CCK(ridx)) 4314 tab |= IWM_RATE_MCS_CCK_MSK; 4315 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, 4316 "station rate i=%d, rate=%d, hw=%x\n", 4317 i, iwm_rates[ridx].rate, tab); 4318 lq->rs_table[i] = htole32(tab); 4319 } 4320 /* then fill the rest with the lowest possible rate */ 4321 for (i = nrates; i < nitems(lq->rs_table); i++) { 4322 KASSERT(tab != 0, ("invalid tab")); 4323 lq->rs_table[i] = htole32(tab); 4324 } 4325 } 4326 4327 static void 4328 iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap) 4329 { 4330 struct iwm_vap *ivp = IWM_VAP(vap); 4331 int error; 4332 4333 /* Avoid Tx watchdog triggering, when transfers get dropped here. */ 4334 sc->sc_tx_timer = 0; 4335 4336 ivp->iv_auth = 0; 4337 if (sc->sc_firmware_state == 3) { 4338 iwm_xmit_queue_drain(sc); 4339 // iwm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC); 4340 error = iwm_rm_sta(sc, vap, TRUE); 4341 if (error) { 4342 device_printf(sc->sc_dev, 4343 "%s: Failed to remove station: %d\n", 4344 __func__, error); 4345 } 4346 } 4347 if (sc->sc_firmware_state == 3) { 4348 error = iwm_mac_ctxt_changed(sc, vap); 4349 if (error) { 4350 device_printf(sc->sc_dev, 4351 "%s: Failed to change mac context: %d\n", 4352 __func__, error); 4353 } 4354 } 4355 if (sc->sc_firmware_state == 3) { 4356 error = iwm_sf_update(sc, vap, FALSE); 4357 if (error) { 4358 device_printf(sc->sc_dev, 4359 "%s: Failed to update smart FIFO: %d\n", 4360 __func__, error); 4361 } 4362 } 4363 if (sc->sc_firmware_state == 3) { 4364 error = iwm_rm_sta_id(sc, vap); 4365 if (error) { 4366 device_printf(sc->sc_dev, 4367 "%s: Failed to remove station id: %d\n", 4368 __func__, error); 4369 } 4370 } 4371 if (sc->sc_firmware_state == 3) { 4372 error = iwm_update_quotas(sc, NULL); 4373 if (error) { 4374 device_printf(sc->sc_dev, 4375 "%s: Failed to update PHY quota: %d\n", 4376 __func__, error); 4377 } 4378 } 4379 if (sc->sc_firmware_state == 3) { 4380 /* XXX Might need to specify bssid correctly. */ 4381 error = iwm_mac_ctxt_changed(sc, vap); 4382 if (error) { 4383 device_printf(sc->sc_dev, 4384 "%s: Failed to change mac context: %d\n", 4385 __func__, error); 4386 } 4387 } 4388 if (sc->sc_firmware_state == 3) { 4389 sc->sc_firmware_state = 2; 4390 } 4391 if (sc->sc_firmware_state > 1) { 4392 error = iwm_binding_remove_vif(sc, ivp); 4393 if (error) { 4394 device_printf(sc->sc_dev, 4395 "%s: Failed to remove channel ctx: %d\n", 4396 __func__, error); 4397 } 4398 } 4399 if (sc->sc_firmware_state > 1) { 4400 sc->sc_firmware_state = 1; 4401 } 4402 ivp->phy_ctxt = NULL; 4403 if (sc->sc_firmware_state > 0) { 4404 error = iwm_mac_ctxt_changed(sc, vap); 4405 if (error) { 4406 device_printf(sc->sc_dev, 4407 "%s: Failed to change mac context: %d\n", 4408 __func__, error); 4409 } 4410 } 4411 if (sc->sc_firmware_state > 0) { 4412 error = iwm_power_update_mac(sc); 4413 if (error != 0) { 4414 device_printf(sc->sc_dev, 4415 "%s: failed to update power management\n", 4416 __func__); 4417 } 4418 } 4419 sc->sc_firmware_state = 0; 4420 } 4421 4422 static int 4423 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4424 { 4425 struct iwm_vap *ivp = IWM_VAP(vap); 4426 struct ieee80211com *ic = vap->iv_ic; 4427 struct iwm_softc *sc = ic->ic_softc; 4428 struct iwm_node *in; 4429 int error; 4430 4431 IWM_DPRINTF(sc, IWM_DEBUG_STATE, 4432 "switching state %s -> %s arg=0x%x\n", 4433 ieee80211_state_name[vap->iv_state], 4434 ieee80211_state_name[nstate], 4435 arg); 4436 4437 IEEE80211_UNLOCK(ic); 4438 IWM_LOCK(sc); 4439 4440 if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) && 4441 (nstate == IEEE80211_S_AUTH || 4442 nstate == IEEE80211_S_ASSOC || 4443 nstate == IEEE80211_S_RUN)) { 4444 /* Stop blinking for a scan, when authenticating. */ 4445 iwm_led_blink_stop(sc); 4446 } 4447 4448 if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { 4449 iwm_led_disable(sc); 4450 /* disable beacon filtering if we're hopping out of RUN */ 4451 iwm_disable_beacon_filter(sc); 4452 if (((in = IWM_NODE(vap->iv_bss)) != NULL)) 4453 in->in_assoc = 0; 4454 } 4455 4456 if ((vap->iv_state == IEEE80211_S_AUTH || 4457 vap->iv_state == IEEE80211_S_ASSOC || 4458 vap->iv_state == IEEE80211_S_RUN) && 4459 (nstate == IEEE80211_S_INIT || 4460 nstate == IEEE80211_S_SCAN || 4461 nstate == IEEE80211_S_AUTH)) { 4462 iwm_stop_session_protection(sc, ivp); 4463 } 4464 4465 if ((vap->iv_state == IEEE80211_S_RUN || 4466 vap->iv_state == IEEE80211_S_ASSOC) && 4467 nstate == IEEE80211_S_INIT) { 4468 /* 4469 * In this case, iv_newstate() wants to send an 80211 frame on 4470 * the network that we are leaving. So we need to call it, 4471 * before tearing down all the firmware state. 4472 */ 4473 IWM_UNLOCK(sc); 4474 IEEE80211_LOCK(ic); 4475 ivp->iv_newstate(vap, nstate, arg); 4476 IEEE80211_UNLOCK(ic); 4477 IWM_LOCK(sc); 4478 iwm_bring_down_firmware(sc, vap); 4479 IWM_UNLOCK(sc); 4480 IEEE80211_LOCK(ic); 4481 return 0; 4482 } 4483 4484 switch (nstate) { 4485 case IEEE80211_S_INIT: 4486 case IEEE80211_S_SCAN: 4487 break; 4488 4489 case IEEE80211_S_AUTH: 4490 iwm_bring_down_firmware(sc, vap); 4491 if ((error = iwm_auth(vap, sc)) != 0) { 4492 device_printf(sc->sc_dev, 4493 "%s: could not move to auth state: %d\n", 4494 __func__, error); 4495 iwm_bring_down_firmware(sc, vap); 4496 IWM_UNLOCK(sc); 4497 IEEE80211_LOCK(ic); 4498 return 1; 4499 } 4500 break; 4501 4502 case IEEE80211_S_ASSOC: 4503 /* 4504 * EBS may be disabled due to previous failures reported by FW. 4505 * Reset EBS status here assuming environment has been changed. 4506 */ 4507 sc->last_ebs_successful = TRUE; 4508 break; 4509 4510 case IEEE80211_S_RUN: 4511 in = IWM_NODE(vap->iv_bss); 4512 /* Update the association state, now we have it all */ 4513 /* (eg associd comes in at this point */ 4514 error = iwm_update_sta(sc, in); 4515 if (error != 0) { 4516 device_printf(sc->sc_dev, 4517 "%s: failed to update STA\n", __func__); 4518 IWM_UNLOCK(sc); 4519 IEEE80211_LOCK(ic); 4520 return error; 4521 } 4522 in->in_assoc = 1; 4523 error = iwm_mac_ctxt_changed(sc, vap); 4524 if (error != 0) { 4525 device_printf(sc->sc_dev, 4526 "%s: failed to update MAC: %d\n", __func__, error); 4527 } 4528 4529 iwm_sf_update(sc, vap, FALSE); 4530 iwm_enable_beacon_filter(sc, ivp); 4531 iwm_power_update_mac(sc); 4532 iwm_update_quotas(sc, ivp); 4533 int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0); 4534 iwm_setrates(sc, in, rix); 4535 4536 if ((error = iwm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) { 4537 device_printf(sc->sc_dev, 4538 "%s: IWM_LQ_CMD failed: %d\n", __func__, error); 4539 } 4540 4541 iwm_led_enable(sc); 4542 break; 4543 4544 default: 4545 break; 4546 } 4547 IWM_UNLOCK(sc); 4548 IEEE80211_LOCK(ic); 4549 4550 return (ivp->iv_newstate(vap, nstate, arg)); 4551 } 4552 4553 void 4554 iwm_endscan_cb(void *arg, int pending) 4555 { 4556 struct iwm_softc *sc = arg; 4557 struct ieee80211com *ic = &sc->sc_ic; 4558 4559 IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, 4560 "%s: scan ended\n", 4561 __func__); 4562 4563 ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); 4564 } 4565 4566 static int 4567 iwm_send_bt_init_conf(struct iwm_softc *sc) 4568 { 4569 struct iwm_bt_coex_cmd bt_cmd; 4570 4571 bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); 4572 bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); 4573 4574 return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), 4575 &bt_cmd); 4576 } 4577 4578 static boolean_t 4579 iwm_is_lar_supported(struct iwm_softc *sc) 4580 { 4581 boolean_t nvm_lar = sc->nvm_data->lar_enabled; 4582 boolean_t tlv_lar = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT); 4583 4584 if (iwm_lar_disable) 4585 return FALSE; 4586 4587 /* 4588 * Enable LAR only if it is supported by the FW (TLV) && 4589 * enabled in the NVM 4590 */ 4591 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) 4592 return nvm_lar && tlv_lar; 4593 else 4594 return tlv_lar; 4595 } 4596 4597 static boolean_t 4598 iwm_is_wifi_mcc_supported(struct iwm_softc *sc) 4599 { 4600 return iwm_fw_has_api(sc, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || 4601 iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC); 4602 } 4603 4604 static int 4605 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) 4606 { 4607 struct iwm_mcc_update_cmd mcc_cmd; 4608 struct iwm_host_cmd hcmd = { 4609 .id = IWM_MCC_UPDATE_CMD, 4610 .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB), 4611 .data = { &mcc_cmd }, 4612 }; 4613 int ret; 4614 #ifdef IWM_DEBUG 4615 struct iwm_rx_packet *pkt; 4616 struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL; 4617 struct iwm_mcc_update_resp_v2 *mcc_resp; 4618 int n_channels; 4619 uint16_t mcc; 4620 #endif 4621 int resp_v2 = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); 4622 4623 if (!iwm_is_lar_supported(sc)) { 4624 IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n", 4625 __func__); 4626 return 0; 4627 } 4628 4629 memset(&mcc_cmd, 0, sizeof(mcc_cmd)); 4630 mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); 4631 if (iwm_is_wifi_mcc_supported(sc)) 4632 mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; 4633 else 4634 mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; 4635 4636 if (resp_v2) 4637 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); 4638 else 4639 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); 4640 4641 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 4642 "send MCC update to FW with '%c%c' src = %d\n", 4643 alpha2[0], alpha2[1], mcc_cmd.source_id); 4644 4645 ret = iwm_send_cmd(sc, &hcmd); 4646 if (ret) 4647 return ret; 4648 4649 #ifdef IWM_DEBUG 4650 pkt = hcmd.resp_pkt; 4651 4652 /* Extract MCC response */ 4653 if (resp_v2) { 4654 mcc_resp = (void *)pkt->data; 4655 mcc = mcc_resp->mcc; 4656 n_channels = le32toh(mcc_resp->n_channels); 4657 } else { 4658 mcc_resp_v1 = (void *)pkt->data; 4659 mcc = mcc_resp_v1->mcc; 4660 n_channels = le32toh(mcc_resp_v1->n_channels); 4661 } 4662 4663 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ 4664 if (mcc == 0) 4665 mcc = 0x3030; /* "00" - world */ 4666 4667 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 4668 "regulatory domain '%c%c' (%d channels available)\n", 4669 mcc >> 8, mcc & 0xff, n_channels); 4670 #endif 4671 iwm_free_resp(sc, &hcmd); 4672 4673 return 0; 4674 } 4675 4676 static void 4677 iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) 4678 { 4679 struct iwm_host_cmd cmd = { 4680 .id = IWM_REPLY_THERMAL_MNG_BACKOFF, 4681 .len = { sizeof(uint32_t), }, 4682 .data = { &backoff, }, 4683 }; 4684 4685 if (iwm_send_cmd(sc, &cmd) != 0) { 4686 device_printf(sc->sc_dev, 4687 "failed to change thermal tx backoff\n"); 4688 } 4689 } 4690 4691 static int 4692 iwm_init_hw(struct iwm_softc *sc) 4693 { 4694 struct ieee80211com *ic = &sc->sc_ic; 4695 int error, i, ac; 4696 4697 sc->sf_state = IWM_SF_UNINIT; 4698 4699 if ((error = iwm_start_hw(sc)) != 0) { 4700 printf("iwm_start_hw: failed %d\n", error); 4701 return error; 4702 } 4703 4704 if ((error = iwm_run_init_ucode(sc, 0)) != 0) { 4705 printf("iwm_run_init_ucode: failed %d\n", error); 4706 return error; 4707 } 4708 4709 /* 4710 * should stop and start HW since that INIT 4711 * image just loaded 4712 */ 4713 iwm_stop_device(sc); 4714 sc->sc_ps_disabled = FALSE; 4715 if ((error = iwm_start_hw(sc)) != 0) { 4716 device_printf(sc->sc_dev, "could not initialize hardware\n"); 4717 return error; 4718 } 4719 4720 /* omstart, this time with the regular firmware */ 4721 error = iwm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR); 4722 if (error) { 4723 device_printf(sc->sc_dev, "could not load firmware\n"); 4724 goto error; 4725 } 4726 4727 error = iwm_sf_update(sc, NULL, FALSE); 4728 if (error) 4729 device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n"); 4730 4731 if ((error = iwm_send_bt_init_conf(sc)) != 0) { 4732 device_printf(sc->sc_dev, "bt init conf failed\n"); 4733 goto error; 4734 } 4735 4736 error = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); 4737 if (error != 0) { 4738 device_printf(sc->sc_dev, "antenna config failed\n"); 4739 goto error; 4740 } 4741 4742 /* Send phy db control command and then phy db calibration */ 4743 if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0) 4744 goto error; 4745 4746 if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) { 4747 device_printf(sc->sc_dev, "phy_cfg_cmd failed\n"); 4748 goto error; 4749 } 4750 4751 /* Add auxiliary station for scanning */ 4752 if ((error = iwm_add_aux_sta(sc)) != 0) { 4753 device_printf(sc->sc_dev, "add_aux_sta failed\n"); 4754 goto error; 4755 } 4756 4757 for (i = 0; i < IWM_NUM_PHY_CTX; i++) { 4758 /* 4759 * The channel used here isn't relevant as it's 4760 * going to be overwritten in the other flows. 4761 * For now use the first channel we have. 4762 */ 4763 if ((error = iwm_phy_ctxt_add(sc, 4764 &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) 4765 goto error; 4766 } 4767 4768 /* Initialize tx backoffs to the minimum. */ 4769 if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) 4770 iwm_tt_tx_backoff(sc, 0); 4771 4772 if (iwm_config_ltr(sc) != 0) 4773 device_printf(sc->sc_dev, "PCIe LTR configuration failed\n"); 4774 4775 error = iwm_power_update_device(sc); 4776 if (error) 4777 goto error; 4778 4779 if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0) 4780 goto error; 4781 4782 if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { 4783 if ((error = iwm_config_umac_scan(sc)) != 0) 4784 goto error; 4785 } 4786 4787 /* Enable Tx queues. */ 4788 for (ac = 0; ac < WME_NUM_AC; ac++) { 4789 error = iwm_enable_txq(sc, IWM_STATION_ID, ac, 4790 iwm_ac_to_tx_fifo[ac]); 4791 if (error) 4792 goto error; 4793 } 4794 4795 if ((error = iwm_disable_beacon_filter(sc)) != 0) { 4796 device_printf(sc->sc_dev, "failed to disable beacon filter\n"); 4797 goto error; 4798 } 4799 4800 return 0; 4801 4802 error: 4803 iwm_stop_device(sc); 4804 return error; 4805 } 4806 4807 /* Allow multicast from our BSSID. */ 4808 static int 4809 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) 4810 { 4811 struct ieee80211_node *ni = vap->iv_bss; 4812 struct iwm_mcast_filter_cmd *cmd; 4813 size_t size; 4814 int error; 4815 4816 size = roundup(sizeof(*cmd), 4); 4817 cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 4818 if (cmd == NULL) 4819 return ENOMEM; 4820 cmd->filter_own = 1; 4821 cmd->port_id = 0; 4822 cmd->count = 0; 4823 cmd->pass_all = 1; 4824 IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); 4825 4826 error = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 4827 IWM_CMD_SYNC, size, cmd); 4828 free(cmd, M_DEVBUF); 4829 4830 return (error); 4831 } 4832 4833 /* 4834 * ifnet interfaces 4835 */ 4836 4837 static void 4838 iwm_init(struct iwm_softc *sc) 4839 { 4840 int error; 4841 4842 if (sc->sc_flags & IWM_FLAG_HW_INITED) { 4843 return; 4844 } 4845 sc->sc_generation++; 4846 sc->sc_flags &= ~IWM_FLAG_STOPPED; 4847 4848 if ((error = iwm_init_hw(sc)) != 0) { 4849 printf("iwm_init_hw failed %d\n", error); 4850 iwm_stop(sc); 4851 return; 4852 } 4853 4854 /* 4855 * Ok, firmware loaded and we are jogging 4856 */ 4857 sc->sc_flags |= IWM_FLAG_HW_INITED; 4858 } 4859 4860 static int 4861 iwm_transmit(struct ieee80211com *ic, struct mbuf *m) 4862 { 4863 struct iwm_softc *sc; 4864 int error; 4865 4866 sc = ic->ic_softc; 4867 4868 IWM_LOCK(sc); 4869 if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { 4870 IWM_UNLOCK(sc); 4871 return (ENXIO); 4872 } 4873 error = mbufq_enqueue(&sc->sc_snd, m); 4874 if (error) { 4875 IWM_UNLOCK(sc); 4876 return (error); 4877 } 4878 iwm_start(sc); 4879 IWM_UNLOCK(sc); 4880 return (0); 4881 } 4882 4883 /* 4884 * Dequeue packets from sendq and call send. 4885 */ 4886 static void 4887 iwm_start(struct iwm_softc *sc) 4888 { 4889 struct ieee80211_node *ni; 4890 struct mbuf *m; 4891 int ac = 0; 4892 4893 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); 4894 while (sc->qfullmsk == 0 && 4895 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 4896 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4897 if (iwm_tx(sc, m, ni, ac) != 0) { 4898 if_inc_counter(ni->ni_vap->iv_ifp, 4899 IFCOUNTER_OERRORS, 1); 4900 ieee80211_free_node(ni); 4901 continue; 4902 } 4903 if (sc->sc_tx_timer == 0) { 4904 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, 4905 sc); 4906 } 4907 sc->sc_tx_timer = 15; 4908 } 4909 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); 4910 } 4911 4912 static void 4913 iwm_stop(struct iwm_softc *sc) 4914 { 4915 4916 sc->sc_flags &= ~IWM_FLAG_HW_INITED; 4917 sc->sc_flags |= IWM_FLAG_STOPPED; 4918 sc->sc_generation++; 4919 iwm_led_blink_stop(sc); 4920 sc->sc_tx_timer = 0; 4921 iwm_stop_device(sc); 4922 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 4923 } 4924 4925 static void 4926 iwm_watchdog(void *arg) 4927 { 4928 struct iwm_softc *sc = arg; 4929 struct ieee80211com *ic = &sc->sc_ic; 4930 4931 if (sc->sc_attached == 0) 4932 return; 4933 4934 if (sc->sc_tx_timer > 0) { 4935 if (--sc->sc_tx_timer == 0) { 4936 device_printf(sc->sc_dev, "device timeout\n"); 4937 #ifdef IWM_DEBUG 4938 iwm_nic_error(sc); 4939 #endif 4940 ieee80211_restart_all(ic); 4941 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 4942 return; 4943 } 4944 callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); 4945 } 4946 } 4947 4948 static void 4949 iwm_parent(struct ieee80211com *ic) 4950 { 4951 struct iwm_softc *sc = ic->ic_softc; 4952 int startall = 0; 4953 int rfkill = 0; 4954 4955 IWM_LOCK(sc); 4956 if (ic->ic_nrunning > 0) { 4957 if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { 4958 iwm_init(sc); 4959 rfkill = iwm_check_rfkill(sc); 4960 if (!rfkill) 4961 startall = 1; 4962 } 4963 } else if (sc->sc_flags & IWM_FLAG_HW_INITED) 4964 iwm_stop(sc); 4965 IWM_UNLOCK(sc); 4966 if (startall) 4967 ieee80211_start_all(ic); 4968 else if (rfkill) 4969 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 4970 } 4971 4972 static void 4973 iwm_rftoggle_task(void *arg, int npending __unused) 4974 { 4975 struct iwm_softc *sc = arg; 4976 struct ieee80211com *ic = &sc->sc_ic; 4977 int rfkill; 4978 4979 IWM_LOCK(sc); 4980 rfkill = iwm_check_rfkill(sc); 4981 IWM_UNLOCK(sc); 4982 if (rfkill) { 4983 device_printf(sc->sc_dev, 4984 "%s: rfkill switch, disabling interface\n", __func__); 4985 ieee80211_suspend_all(ic); 4986 ieee80211_notify_radio(ic, 0); 4987 } else { 4988 device_printf(sc->sc_dev, 4989 "%s: rfkill cleared, re-enabling interface\n", __func__); 4990 ieee80211_resume_all(ic); 4991 ieee80211_notify_radio(ic, 1); 4992 } 4993 } 4994 4995 /* 4996 * The interrupt side of things 4997 */ 4998 4999 /* 5000 * error dumping routines are from iwlwifi/mvm/utils.c 5001 */ 5002 5003 /* 5004 * Note: This structure is read from the device with IO accesses, 5005 * and the reading already does the endian conversion. As it is 5006 * read with uint32_t-sized accesses, any members with a different size 5007 * need to be ordered correctly though! 5008 */ 5009 struct iwm_error_event_table { 5010 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 5011 uint32_t error_id; /* type of error */ 5012 uint32_t trm_hw_status0; /* TRM HW status */ 5013 uint32_t trm_hw_status1; /* TRM HW status */ 5014 uint32_t blink2; /* branch link */ 5015 uint32_t ilink1; /* interrupt link */ 5016 uint32_t ilink2; /* interrupt link */ 5017 uint32_t data1; /* error-specific data */ 5018 uint32_t data2; /* error-specific data */ 5019 uint32_t data3; /* error-specific data */ 5020 uint32_t bcon_time; /* beacon timer */ 5021 uint32_t tsf_low; /* network timestamp function timer */ 5022 uint32_t tsf_hi; /* network timestamp function timer */ 5023 uint32_t gp1; /* GP1 timer register */ 5024 uint32_t gp2; /* GP2 timer register */ 5025 uint32_t fw_rev_type; /* firmware revision type */ 5026 uint32_t major; /* uCode version major */ 5027 uint32_t minor; /* uCode version minor */ 5028 uint32_t hw_ver; /* HW Silicon version */ 5029 uint32_t brd_ver; /* HW board version */ 5030 uint32_t log_pc; /* log program counter */ 5031 uint32_t frame_ptr; /* frame pointer */ 5032 uint32_t stack_ptr; /* stack pointer */ 5033 uint32_t hcmd; /* last host command header */ 5034 uint32_t isr0; /* isr status register LMPM_NIC_ISR0: 5035 * rxtx_flag */ 5036 uint32_t isr1; /* isr status register LMPM_NIC_ISR1: 5037 * host_flag */ 5038 uint32_t isr2; /* isr status register LMPM_NIC_ISR2: 5039 * enc_flag */ 5040 uint32_t isr3; /* isr status register LMPM_NIC_ISR3: 5041 * time_flag */ 5042 uint32_t isr4; /* isr status register LMPM_NIC_ISR4: 5043 * wico interrupt */ 5044 uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ 5045 uint32_t wait_event; /* wait event() caller address */ 5046 uint32_t l2p_control; /* L2pControlField */ 5047 uint32_t l2p_duration; /* L2pDurationField */ 5048 uint32_t l2p_mhvalid; /* L2pMhValidBits */ 5049 uint32_t l2p_addr_match; /* L2pAddrMatchStat */ 5050 uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on 5051 * (LMPM_PMG_SEL) */ 5052 uint32_t u_timestamp; /* indicate when the date and time of the 5053 * compilation */ 5054 uint32_t flow_handler; /* FH read/write pointers, RX credit */ 5055 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; 5056 5057 /* 5058 * UMAC error struct - relevant starting from family 8000 chip. 5059 * Note: This structure is read from the device with IO accesses, 5060 * and the reading already does the endian conversion. As it is 5061 * read with u32-sized accesses, any members with a different size 5062 * need to be ordered correctly though! 5063 */ 5064 struct iwm_umac_error_event_table { 5065 uint32_t valid; /* (nonzero) valid, (0) log is empty */ 5066 uint32_t error_id; /* type of error */ 5067 uint32_t blink1; /* branch link */ 5068 uint32_t blink2; /* branch link */ 5069 uint32_t ilink1; /* interrupt link */ 5070 uint32_t ilink2; /* interrupt link */ 5071 uint32_t data1; /* error-specific data */ 5072 uint32_t data2; /* error-specific data */ 5073 uint32_t data3; /* error-specific data */ 5074 uint32_t umac_major; 5075 uint32_t umac_minor; 5076 uint32_t frame_pointer; /* core register 27*/ 5077 uint32_t stack_pointer; /* core register 28 */ 5078 uint32_t cmd_header; /* latest host cmd sent to UMAC */ 5079 uint32_t nic_isr_pref; /* ISR status register */ 5080 } __packed; 5081 5082 #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) 5083 #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) 5084 5085 #ifdef IWM_DEBUG 5086 struct { 5087 const char *name; 5088 uint8_t num; 5089 } advanced_lookup[] = { 5090 { "NMI_INTERRUPT_WDG", 0x34 }, 5091 { "SYSASSERT", 0x35 }, 5092 { "UCODE_VERSION_MISMATCH", 0x37 }, 5093 { "BAD_COMMAND", 0x38 }, 5094 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, 5095 { "FATAL_ERROR", 0x3D }, 5096 { "NMI_TRM_HW_ERR", 0x46 }, 5097 { "NMI_INTERRUPT_TRM", 0x4C }, 5098 { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, 5099 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, 5100 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, 5101 { "NMI_INTERRUPT_HOST", 0x66 }, 5102 { "NMI_INTERRUPT_ACTION_PT", 0x7C }, 5103 { "NMI_INTERRUPT_UNKNOWN", 0x84 }, 5104 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, 5105 { "ADVANCED_SYSASSERT", 0 }, 5106 }; 5107 5108 static const char * 5109 iwm_desc_lookup(uint32_t num) 5110 { 5111 int i; 5112 5113 for (i = 0; i < nitems(advanced_lookup) - 1; i++) 5114 if (advanced_lookup[i].num == num) 5115 return advanced_lookup[i].name; 5116 5117 /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ 5118 return advanced_lookup[i].name; 5119 } 5120 5121 static void 5122 iwm_nic_umac_error(struct iwm_softc *sc) 5123 { 5124 struct iwm_umac_error_event_table table; 5125 uint32_t base; 5126 5127 base = sc->umac_error_event_table; 5128 5129 if (base < 0x800000) { 5130 device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", 5131 base); 5132 return; 5133 } 5134 5135 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 5136 device_printf(sc->sc_dev, "reading errlog failed\n"); 5137 return; 5138 } 5139 5140 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 5141 device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n"); 5142 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 5143 sc->sc_flags, table.valid); 5144 } 5145 5146 device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id, 5147 iwm_desc_lookup(table.error_id)); 5148 device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1); 5149 device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2); 5150 device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n", 5151 table.ilink1); 5152 device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n", 5153 table.ilink2); 5154 device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1); 5155 device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2); 5156 device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3); 5157 device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major); 5158 device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor); 5159 device_printf(sc->sc_dev, "0x%08X | frame pointer\n", 5160 table.frame_pointer); 5161 device_printf(sc->sc_dev, "0x%08X | stack pointer\n", 5162 table.stack_pointer); 5163 device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header); 5164 device_printf(sc->sc_dev, "0x%08X | isr status reg\n", 5165 table.nic_isr_pref); 5166 } 5167 5168 /* 5169 * Support for dumping the error log seemed like a good idea ... 5170 * but it's mostly hex junk and the only sensible thing is the 5171 * hw/ucode revision (which we know anyway). Since it's here, 5172 * I'll just leave it in, just in case e.g. the Intel guys want to 5173 * help us decipher some "ADVANCED_SYSASSERT" later. 5174 */ 5175 static void 5176 iwm_nic_error(struct iwm_softc *sc) 5177 { 5178 struct iwm_error_event_table table; 5179 uint32_t base; 5180 5181 device_printf(sc->sc_dev, "dumping device error log\n"); 5182 base = sc->error_event_table[0]; 5183 if (base < 0x800000) { 5184 device_printf(sc->sc_dev, 5185 "Invalid error log pointer 0x%08x\n", base); 5186 return; 5187 } 5188 5189 if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { 5190 device_printf(sc->sc_dev, "reading errlog failed\n"); 5191 return; 5192 } 5193 5194 if (!table.valid) { 5195 device_printf(sc->sc_dev, "errlog not found, skipping\n"); 5196 return; 5197 } 5198 5199 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 5200 device_printf(sc->sc_dev, "Start Error Log Dump:\n"); 5201 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", 5202 sc->sc_flags, table.valid); 5203 } 5204 5205 device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, 5206 iwm_desc_lookup(table.error_id)); 5207 device_printf(sc->sc_dev, "%08X | trm_hw_status0\n", 5208 table.trm_hw_status0); 5209 device_printf(sc->sc_dev, "%08X | trm_hw_status1\n", 5210 table.trm_hw_status1); 5211 device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); 5212 device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); 5213 device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); 5214 device_printf(sc->sc_dev, "%08X | data1\n", table.data1); 5215 device_printf(sc->sc_dev, "%08X | data2\n", table.data2); 5216 device_printf(sc->sc_dev, "%08X | data3\n", table.data3); 5217 device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); 5218 device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); 5219 device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); 5220 device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); 5221 device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); 5222 device_printf(sc->sc_dev, "%08X | uCode revision type\n", 5223 table.fw_rev_type); 5224 device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major); 5225 device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor); 5226 device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); 5227 device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); 5228 device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); 5229 device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); 5230 device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); 5231 device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); 5232 device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); 5233 device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); 5234 device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id); 5235 device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); 5236 device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); 5237 device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); 5238 device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); 5239 device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); 5240 device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 5241 device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); 5242 device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); 5243 5244 if (sc->umac_error_event_table) 5245 iwm_nic_umac_error(sc); 5246 } 5247 #endif 5248 5249 static void 5250 iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m) 5251 { 5252 struct ieee80211com *ic = &sc->sc_ic; 5253 struct iwm_cmd_response *cresp; 5254 struct mbuf *m1; 5255 uint32_t offset = 0; 5256 uint32_t maxoff = IWM_RBUF_SIZE; 5257 uint32_t nextoff; 5258 boolean_t stolen = FALSE; 5259 5260 #define HAVEROOM(a) \ 5261 ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff) 5262 5263 while (HAVEROOM(offset)) { 5264 struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, 5265 offset); 5266 int qid, idx, code, len; 5267 5268 qid = pkt->hdr.qid; 5269 idx = pkt->hdr.idx; 5270 5271 code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); 5272 5273 /* 5274 * randomly get these from the firmware, no idea why. 5275 * they at least seem harmless, so just ignore them for now 5276 */ 5277 if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) || 5278 pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) { 5279 break; 5280 } 5281 5282 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5283 "rx packet qid=%d idx=%d type=%x\n", 5284 qid & ~0x80, pkt->hdr.idx, code); 5285 5286 len = iwm_rx_packet_len(pkt); 5287 len += sizeof(uint32_t); /* account for status word */ 5288 nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN); 5289 5290 iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt); 5291 5292 switch (code) { 5293 case IWM_REPLY_RX_PHY_CMD: 5294 iwm_rx_rx_phy_cmd(sc, pkt); 5295 break; 5296 5297 case IWM_REPLY_RX_MPDU_CMD: { 5298 /* 5299 * If this is the last frame in the RX buffer, we 5300 * can directly feed the mbuf to the sharks here. 5301 */ 5302 struct iwm_rx_packet *nextpkt = mtodoff(m, 5303 struct iwm_rx_packet *, nextoff); 5304 if (!HAVEROOM(nextoff) || 5305 (nextpkt->hdr.code == 0 && 5306 (nextpkt->hdr.qid & ~0x80) == 0 && 5307 nextpkt->hdr.idx == 0) || 5308 (nextpkt->len_n_flags == 5309 htole32(IWM_FH_RSCSR_FRAME_INVALID))) { 5310 if (iwm_rx_mpdu(sc, m, offset, stolen)) { 5311 stolen = FALSE; 5312 /* Make sure we abort the loop */ 5313 nextoff = maxoff; 5314 } 5315 break; 5316 } 5317 5318 /* 5319 * Use m_copym instead of m_split, because that 5320 * makes it easier to keep a valid rx buffer in 5321 * the ring, when iwm_rx_mpdu() fails. 5322 * 5323 * We need to start m_copym() at offset 0, to get the 5324 * M_PKTHDR flag preserved. 5325 */ 5326 m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT); 5327 if (m1) { 5328 if (iwm_rx_mpdu(sc, m1, offset, stolen)) 5329 stolen = TRUE; 5330 else 5331 m_freem(m1); 5332 } 5333 break; 5334 } 5335 5336 case IWM_TX_CMD: 5337 iwm_rx_tx_cmd(sc, pkt); 5338 break; 5339 5340 case IWM_MISSED_BEACONS_NOTIFICATION: { 5341 struct iwm_missed_beacons_notif *resp; 5342 int missed; 5343 5344 /* XXX look at mac_id to determine interface ID */ 5345 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5346 5347 resp = (void *)pkt->data; 5348 missed = le32toh(resp->consec_missed_beacons); 5349 5350 IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, 5351 "%s: MISSED_BEACON: mac_id=%d, " 5352 "consec_since_last_rx=%d, consec=%d, num_expect=%d " 5353 "num_rx=%d\n", 5354 __func__, 5355 le32toh(resp->mac_id), 5356 le32toh(resp->consec_missed_beacons_since_last_rx), 5357 le32toh(resp->consec_missed_beacons), 5358 le32toh(resp->num_expected_beacons), 5359 le32toh(resp->num_recvd_beacons)); 5360 5361 /* Be paranoid */ 5362 if (vap == NULL) 5363 break; 5364 5365 /* XXX no net80211 locking? */ 5366 if (vap->iv_state == IEEE80211_S_RUN && 5367 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 5368 if (missed > vap->iv_bmissthreshold) { 5369 /* XXX bad locking; turn into task */ 5370 IWM_UNLOCK(sc); 5371 ieee80211_beacon_miss(ic); 5372 IWM_LOCK(sc); 5373 } 5374 } 5375 5376 break; 5377 } 5378 5379 case IWM_MFUART_LOAD_NOTIFICATION: 5380 break; 5381 5382 case IWM_ALIVE: 5383 break; 5384 5385 case IWM_CALIB_RES_NOTIF_PHY_DB: 5386 break; 5387 5388 case IWM_STATISTICS_NOTIFICATION: 5389 iwm_handle_rx_statistics(sc, pkt); 5390 break; 5391 5392 case IWM_NVM_ACCESS_CMD: 5393 case IWM_MCC_UPDATE_CMD: 5394 if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { 5395 memcpy(sc->sc_cmd_resp, 5396 pkt, sizeof(sc->sc_cmd_resp)); 5397 } 5398 break; 5399 5400 case IWM_MCC_CHUB_UPDATE_CMD: { 5401 struct iwm_mcc_chub_notif *notif; 5402 notif = (void *)pkt->data; 5403 5404 sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; 5405 sc->sc_fw_mcc[1] = notif->mcc & 0xff; 5406 sc->sc_fw_mcc[2] = '\0'; 5407 IWM_DPRINTF(sc, IWM_DEBUG_LAR, 5408 "fw source %d sent CC '%s'\n", 5409 notif->source_id, sc->sc_fw_mcc); 5410 break; 5411 } 5412 5413 case IWM_DTS_MEASUREMENT_NOTIFICATION: 5414 case IWM_WIDE_ID(IWM_PHY_OPS_GROUP, 5415 IWM_DTS_MEASUREMENT_NOTIF_WIDE): { 5416 struct iwm_dts_measurement_notif_v1 *notif; 5417 5418 if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) { 5419 device_printf(sc->sc_dev, 5420 "Invalid DTS_MEASUREMENT_NOTIFICATION\n"); 5421 break; 5422 } 5423 notif = (void *)pkt->data; 5424 IWM_DPRINTF(sc, IWM_DEBUG_TEMP, 5425 "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n", 5426 notif->temp); 5427 break; 5428 } 5429 5430 case IWM_PHY_CONFIGURATION_CMD: 5431 case IWM_TX_ANT_CONFIGURATION_CMD: 5432 case IWM_ADD_STA: 5433 case IWM_MAC_CONTEXT_CMD: 5434 case IWM_REPLY_SF_CFG_CMD: 5435 case IWM_POWER_TABLE_CMD: 5436 case IWM_LTR_CONFIG: 5437 case IWM_PHY_CONTEXT_CMD: 5438 case IWM_BINDING_CONTEXT_CMD: 5439 case IWM_TIME_EVENT_CMD: 5440 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): 5441 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): 5442 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC): 5443 case IWM_SCAN_OFFLOAD_REQUEST_CMD: 5444 case IWM_SCAN_OFFLOAD_ABORT_CMD: 5445 case IWM_REPLY_BEACON_FILTERING_CMD: 5446 case IWM_MAC_PM_POWER_TABLE: 5447 case IWM_TIME_QUOTA_CMD: 5448 case IWM_REMOVE_STA: 5449 case IWM_TXPATH_FLUSH: 5450 case IWM_LQ_CMD: 5451 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, 5452 IWM_FW_PAGING_BLOCK_CMD): 5453 case IWM_BT_CONFIG: 5454 case IWM_REPLY_THERMAL_MNG_BACKOFF: 5455 cresp = (void *)pkt->data; 5456 if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { 5457 memcpy(sc->sc_cmd_resp, 5458 pkt, sizeof(*pkt)+sizeof(*cresp)); 5459 } 5460 break; 5461 5462 /* ignore */ 5463 case IWM_PHY_DB_CMD: 5464 break; 5465 5466 case IWM_INIT_COMPLETE_NOTIF: 5467 break; 5468 5469 case IWM_SCAN_OFFLOAD_COMPLETE: 5470 iwm_rx_lmac_scan_complete_notif(sc, pkt); 5471 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 5472 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 5473 ieee80211_runtask(ic, &sc->sc_es_task); 5474 } 5475 break; 5476 5477 case IWM_SCAN_ITERATION_COMPLETE: { 5478 break; 5479 } 5480 5481 case IWM_SCAN_COMPLETE_UMAC: 5482 iwm_rx_umac_scan_complete_notif(sc, pkt); 5483 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 5484 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 5485 ieee80211_runtask(ic, &sc->sc_es_task); 5486 } 5487 break; 5488 5489 case IWM_SCAN_ITERATION_COMPLETE_UMAC: { 5490 struct iwm_umac_scan_iter_complete_notif *notif; 5491 notif = (void *)pkt->data; 5492 5493 IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration " 5494 "complete, status=0x%x, %d channels scanned\n", 5495 notif->status, notif->scanned_channels); 5496 break; 5497 } 5498 5499 case IWM_REPLY_ERROR: { 5500 struct iwm_error_resp *resp; 5501 resp = (void *)pkt->data; 5502 5503 device_printf(sc->sc_dev, 5504 "firmware error 0x%x, cmd 0x%x\n", 5505 le32toh(resp->error_type), 5506 resp->cmd_id); 5507 break; 5508 } 5509 5510 case IWM_TIME_EVENT_NOTIFICATION: 5511 iwm_rx_time_event_notif(sc, pkt); 5512 break; 5513 5514 /* 5515 * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG 5516 * messages. Just ignore them for now. 5517 */ 5518 case IWM_DEBUG_LOG_MSG: 5519 break; 5520 5521 case IWM_MCAST_FILTER_CMD: 5522 break; 5523 5524 case IWM_SCD_QUEUE_CFG: { 5525 struct iwm_scd_txq_cfg_rsp *rsp; 5526 rsp = (void *)pkt->data; 5527 5528 IWM_DPRINTF(sc, IWM_DEBUG_CMD, 5529 "queue cfg token=0x%x sta_id=%d " 5530 "tid=%d scd_queue=%d\n", 5531 rsp->token, rsp->sta_id, rsp->tid, 5532 rsp->scd_queue); 5533 break; 5534 } 5535 5536 default: 5537 device_printf(sc->sc_dev, 5538 "code %x, frame %d/%d %x unhandled\n", 5539 code, qid & ~0x80, idx, pkt->len_n_flags); 5540 break; 5541 } 5542 5543 /* 5544 * Why test bit 0x80? The Linux driver: 5545 * 5546 * There is one exception: uCode sets bit 15 when it 5547 * originates the response/notification, i.e. when the 5548 * response/notification is not a direct response to a 5549 * command sent by the driver. For example, uCode issues 5550 * IWM_REPLY_RX when it sends a received frame to the driver; 5551 * it is not a direct response to any driver command. 5552 * 5553 * Ok, so since when is 7 == 15? Well, the Linux driver 5554 * uses a slightly different format for pkt->hdr, and "qid" 5555 * is actually the upper byte of a two-byte field. 5556 */ 5557 if (!(qid & (1 << 7))) 5558 iwm_cmd_done(sc, pkt); 5559 5560 offset = nextoff; 5561 } 5562 if (stolen) 5563 m_freem(m); 5564 #undef HAVEROOM 5565 } 5566 5567 /* 5568 * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. 5569 * Basic structure from if_iwn 5570 */ 5571 static void 5572 iwm_notif_intr(struct iwm_softc *sc) 5573 { 5574 int count; 5575 uint32_t wreg; 5576 uint16_t hw; 5577 5578 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 5579 BUS_DMASYNC_POSTREAD); 5580 5581 if (sc->cfg->mqrx_supported) { 5582 count = IWM_RX_MQ_RING_COUNT; 5583 wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG; 5584 } else { 5585 count = IWM_RX_LEGACY_RING_COUNT; 5586 wreg = IWM_FH_RSCSR_CHNL0_WPTR; 5587 } 5588 5589 hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; 5590 5591 /* 5592 * Process responses 5593 */ 5594 while (sc->rxq.cur != hw) { 5595 struct iwm_rx_ring *ring = &sc->rxq; 5596 struct iwm_rx_data *data = &ring->data[ring->cur]; 5597 5598 bus_dmamap_sync(ring->data_dmat, data->map, 5599 BUS_DMASYNC_POSTREAD); 5600 5601 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5602 "%s: hw = %d cur = %d\n", __func__, hw, ring->cur); 5603 iwm_handle_rxb(sc, data->m); 5604 5605 ring->cur = (ring->cur + 1) % count; 5606 } 5607 5608 /* 5609 * Tell the firmware that it can reuse the ring entries that 5610 * we have just processed. 5611 * Seems like the hardware gets upset unless we align 5612 * the write by 8?? 5613 */ 5614 hw = (hw == 0) ? count - 1 : hw - 1; 5615 IWM_WRITE(sc, wreg, rounddown2(hw, 8)); 5616 } 5617 5618 static void 5619 iwm_intr(void *arg) 5620 { 5621 struct iwm_softc *sc = arg; 5622 int handled = 0; 5623 int r1, r2; 5624 int isperiodic = 0; 5625 5626 IWM_LOCK(sc); 5627 IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); 5628 5629 if (sc->sc_flags & IWM_FLAG_USE_ICT) { 5630 uint32_t *ict = sc->ict_dma.vaddr; 5631 int tmp; 5632 5633 tmp = htole32(ict[sc->ict_cur]); 5634 if (!tmp) 5635 goto out_ena; 5636 5637 /* 5638 * ok, there was something. keep plowing until we have all. 5639 */ 5640 r1 = r2 = 0; 5641 while (tmp) { 5642 r1 |= tmp; 5643 ict[sc->ict_cur] = 0; 5644 sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; 5645 tmp = htole32(ict[sc->ict_cur]); 5646 } 5647 5648 /* this is where the fun begins. don't ask */ 5649 if (r1 == 0xffffffff) 5650 r1 = 0; 5651 5652 /* i am not expected to understand this */ 5653 if (r1 & 0xc0000) 5654 r1 |= 0x8000; 5655 r1 = (0xff & r1) | ((0xff00 & r1) << 16); 5656 } else { 5657 r1 = IWM_READ(sc, IWM_CSR_INT); 5658 /* "hardware gone" (where, fishing?) */ 5659 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 5660 goto out; 5661 r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); 5662 } 5663 if (r1 == 0 && r2 == 0) { 5664 goto out_ena; 5665 } 5666 5667 IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); 5668 5669 /* Safely ignore these bits for debug checks below */ 5670 r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD); 5671 5672 if (r1 & IWM_CSR_INT_BIT_SW_ERR) { 5673 int i; 5674 struct ieee80211com *ic = &sc->sc_ic; 5675 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5676 5677 #ifdef IWM_DEBUG 5678 iwm_nic_error(sc); 5679 #endif 5680 /* Dump driver status (TX and RX rings) while we're here. */ 5681 device_printf(sc->sc_dev, "driver status:\n"); 5682 for (i = 0; i < IWM_MAX_QUEUES; i++) { 5683 struct iwm_tx_ring *ring = &sc->txq[i]; 5684 device_printf(sc->sc_dev, 5685 " tx ring %2d: qid=%-2d cur=%-3d " 5686 "queued=%-3d\n", 5687 i, ring->qid, ring->cur, ring->queued); 5688 } 5689 device_printf(sc->sc_dev, 5690 " rx ring: cur=%d\n", sc->rxq.cur); 5691 device_printf(sc->sc_dev, 5692 " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); 5693 5694 /* Reset our firmware state tracking. */ 5695 sc->sc_firmware_state = 0; 5696 /* Don't stop the device; just do a VAP restart */ 5697 IWM_UNLOCK(sc); 5698 5699 if (vap == NULL) { 5700 printf("%s: null vap\n", __func__); 5701 return; 5702 } 5703 5704 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 5705 "restarting\n", __func__, vap->iv_state); 5706 5707 ieee80211_restart_all(ic); 5708 return; 5709 } 5710 5711 if (r1 & IWM_CSR_INT_BIT_HW_ERR) { 5712 handled |= IWM_CSR_INT_BIT_HW_ERR; 5713 device_printf(sc->sc_dev, "hardware error, stopping device\n"); 5714 iwm_stop(sc); 5715 goto out; 5716 } 5717 5718 /* firmware chunk loaded */ 5719 if (r1 & IWM_CSR_INT_BIT_FH_TX) { 5720 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); 5721 handled |= IWM_CSR_INT_BIT_FH_TX; 5722 sc->sc_fw_chunk_done = 1; 5723 wakeup(&sc->sc_fw); 5724 } 5725 5726 if (r1 & IWM_CSR_INT_BIT_RF_KILL) { 5727 handled |= IWM_CSR_INT_BIT_RF_KILL; 5728 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5729 } 5730 5731 /* 5732 * The Linux driver uses periodic interrupts to avoid races. 5733 * We cargo-cult like it's going out of fashion. 5734 */ 5735 if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { 5736 handled |= IWM_CSR_INT_BIT_RX_PERIODIC; 5737 IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); 5738 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) 5739 IWM_WRITE_1(sc, 5740 IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); 5741 isperiodic = 1; 5742 } 5743 5744 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { 5745 handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); 5746 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); 5747 5748 iwm_notif_intr(sc); 5749 5750 /* enable periodic interrupt, see above */ 5751 if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) 5752 IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, 5753 IWM_CSR_INT_PERIODIC_ENA); 5754 } 5755 5756 if (__predict_false(r1 & ~handled)) 5757 IWM_DPRINTF(sc, IWM_DEBUG_INTR, 5758 "%s: unhandled interrupts: %x\n", __func__, r1); 5759 out_ena: 5760 iwm_restore_interrupts(sc); 5761 out: 5762 IWM_UNLOCK(sc); 5763 return; 5764 } 5765 5766 /* 5767 * Autoconf glue-sniffing 5768 */ 5769 #define PCI_VENDOR_INTEL 0x8086 5770 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 5771 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 5772 #define PCI_PRODUCT_INTEL_WL_3165_1 0x3165 5773 #define PCI_PRODUCT_INTEL_WL_3165_2 0x3166 5774 #define PCI_PRODUCT_INTEL_WL_3168_1 0x24fb 5775 #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 5776 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 5777 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a 5778 #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b 5779 #define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3 5780 #define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4 5781 #define PCI_PRODUCT_INTEL_WL_8265_1 0x24fd 5782 #define PCI_PRODUCT_INTEL_WL_9560_1 0x9df0 5783 #define PCI_PRODUCT_INTEL_WL_9560_2 0xa370 5784 #define PCI_PRODUCT_INTEL_WL_9560_3 0x31dc 5785 #define PCI_PRODUCT_INTEL_WL_9260_1 0x2526 5786 5787 static const struct iwm_devices { 5788 uint16_t device; 5789 const struct iwm_cfg *cfg; 5790 } iwm_devices[] = { 5791 { PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg }, 5792 { PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg }, 5793 { PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg }, 5794 { PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg }, 5795 { PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg }, 5796 { PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg }, 5797 { PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg }, 5798 { PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg }, 5799 { PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg }, 5800 { PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg }, 5801 { PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg }, 5802 { PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg }, 5803 { PCI_PRODUCT_INTEL_WL_9560_1, &iwm9560_cfg }, 5804 { PCI_PRODUCT_INTEL_WL_9560_2, &iwm9560_cfg }, 5805 { PCI_PRODUCT_INTEL_WL_9560_3, &iwm9560_cfg }, 5806 { PCI_PRODUCT_INTEL_WL_9260_1, &iwm9260_cfg }, 5807 }; 5808 5809 static int 5810 iwm_probe(device_t dev) 5811 { 5812 int i; 5813 5814 for (i = 0; i < nitems(iwm_devices); i++) { 5815 if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && 5816 pci_get_device(dev) == iwm_devices[i].device) { 5817 device_set_desc(dev, iwm_devices[i].cfg->name); 5818 return (BUS_PROBE_DEFAULT); 5819 } 5820 } 5821 5822 return (ENXIO); 5823 } 5824 5825 static int 5826 iwm_dev_check(device_t dev) 5827 { 5828 struct iwm_softc *sc; 5829 uint16_t devid; 5830 int i; 5831 5832 sc = device_get_softc(dev); 5833 5834 devid = pci_get_device(dev); 5835 for (i = 0; i < nitems(iwm_devices); i++) { 5836 if (iwm_devices[i].device == devid) { 5837 sc->cfg = iwm_devices[i].cfg; 5838 return (0); 5839 } 5840 } 5841 device_printf(dev, "unknown adapter type\n"); 5842 return ENXIO; 5843 } 5844 5845 /* PCI registers */ 5846 #define PCI_CFG_RETRY_TIMEOUT 0x041 5847 5848 static int 5849 iwm_pci_attach(device_t dev) 5850 { 5851 struct iwm_softc *sc; 5852 int count, error, rid; 5853 uint16_t reg; 5854 5855 sc = device_get_softc(dev); 5856 5857 /* We disable the RETRY_TIMEOUT register (0x41) to keep 5858 * PCI Tx retries from interfering with C3 CPU state */ 5859 pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); 5860 5861 /* Enable bus-mastering and hardware bug workaround. */ 5862 pci_enable_busmaster(dev); 5863 reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); 5864 /* if !MSI */ 5865 if (reg & PCIM_STATUS_INTxSTATE) { 5866 reg &= ~PCIM_STATUS_INTxSTATE; 5867 } 5868 pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); 5869 5870 rid = PCIR_BAR(0); 5871 sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 5872 RF_ACTIVE); 5873 if (sc->sc_mem == NULL) { 5874 device_printf(sc->sc_dev, "can't map mem space\n"); 5875 return (ENXIO); 5876 } 5877 sc->sc_st = rman_get_bustag(sc->sc_mem); 5878 sc->sc_sh = rman_get_bushandle(sc->sc_mem); 5879 5880 /* Install interrupt handler. */ 5881 count = 1; 5882 rid = 0; 5883 if (pci_alloc_msi(dev, &count) == 0) 5884 rid = 1; 5885 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 5886 (rid != 0 ? 0 : RF_SHAREABLE)); 5887 if (sc->sc_irq == NULL) { 5888 device_printf(dev, "can't map interrupt\n"); 5889 return (ENXIO); 5890 } 5891 error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, 5892 NULL, iwm_intr, sc, &sc->sc_ih); 5893 if (error != 0) { 5894 device_printf(dev, "can't establish interrupt"); 5895 return (error); 5896 } 5897 sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); 5898 5899 return (0); 5900 } 5901 5902 static void 5903 iwm_pci_detach(device_t dev) 5904 { 5905 struct iwm_softc *sc = device_get_softc(dev); 5906 5907 if (sc->sc_irq != NULL) { 5908 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); 5909 bus_release_resource(dev, SYS_RES_IRQ, 5910 rman_get_rid(sc->sc_irq), sc->sc_irq); 5911 pci_release_msi(dev); 5912 } 5913 if (sc->sc_mem != NULL) 5914 bus_release_resource(dev, SYS_RES_MEMORY, 5915 rman_get_rid(sc->sc_mem), sc->sc_mem); 5916 } 5917 5918 static int 5919 iwm_attach(device_t dev) 5920 { 5921 struct iwm_softc *sc = device_get_softc(dev); 5922 struct ieee80211com *ic = &sc->sc_ic; 5923 int error; 5924 int txq_i, i; 5925 5926 sc->sc_dev = dev; 5927 sc->sc_attached = 1; 5928 IWM_LOCK_INIT(sc); 5929 mbufq_init(&sc->sc_snd, ifqmaxlen); 5930 callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); 5931 callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0); 5932 TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); 5933 TASK_INIT(&sc->sc_rftoggle_task, 0, iwm_rftoggle_task, sc); 5934 5935 sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK, 5936 taskqueue_thread_enqueue, &sc->sc_tq); 5937 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq"); 5938 if (error != 0) { 5939 device_printf(dev, "can't start taskq thread, error %d\n", 5940 error); 5941 goto fail; 5942 } 5943 5944 error = iwm_dev_check(dev); 5945 if (error != 0) 5946 goto fail; 5947 5948 sc->sc_notif_wait = iwm_notification_wait_init(sc); 5949 if (sc->sc_notif_wait == NULL) { 5950 device_printf(dev, "failed to init notification wait struct\n"); 5951 goto fail; 5952 } 5953 5954 sc->sf_state = IWM_SF_UNINIT; 5955 5956 /* Init phy db */ 5957 sc->sc_phy_db = iwm_phy_db_init(sc); 5958 if (!sc->sc_phy_db) { 5959 device_printf(dev, "Cannot init phy_db\n"); 5960 goto fail; 5961 } 5962 5963 /* Set EBS as successful as long as not stated otherwise by the FW. */ 5964 sc->last_ebs_successful = TRUE; 5965 5966 /* PCI attach */ 5967 error = iwm_pci_attach(dev); 5968 if (error != 0) 5969 goto fail; 5970 5971 sc->sc_wantresp = -1; 5972 5973 sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); 5974 /* 5975 * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have 5976 * changed, and now the revision step also includes bit 0-1 (no more 5977 * "dash" value). To keep hw_rev backwards compatible - we'll store it 5978 * in the old format. 5979 */ 5980 if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { 5981 int ret; 5982 uint32_t hw_step; 5983 5984 sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | 5985 (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); 5986 5987 if (iwm_prepare_card_hw(sc) != 0) { 5988 device_printf(dev, "could not initialize hardware\n"); 5989 goto fail; 5990 } 5991 5992 /* 5993 * In order to recognize C step the driver should read the 5994 * chip version id located at the AUX bus MISC address. 5995 */ 5996 IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, 5997 IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); 5998 DELAY(2); 5999 6000 ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, 6001 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 6002 IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 6003 25000); 6004 if (!ret) { 6005 device_printf(sc->sc_dev, 6006 "Failed to wake up the nic\n"); 6007 goto fail; 6008 } 6009 6010 if (iwm_nic_lock(sc)) { 6011 hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); 6012 hw_step |= IWM_ENABLE_WFPM; 6013 iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); 6014 hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); 6015 hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; 6016 if (hw_step == 0x3) 6017 sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | 6018 (IWM_SILICON_C_STEP << 2); 6019 iwm_nic_unlock(sc); 6020 } else { 6021 device_printf(sc->sc_dev, "Failed to lock the nic\n"); 6022 goto fail; 6023 } 6024 } 6025 6026 /* special-case 7265D, it has the same PCI IDs. */ 6027 if (sc->cfg == &iwm7265_cfg && 6028 (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) { 6029 sc->cfg = &iwm7265d_cfg; 6030 } 6031 6032 /* Allocate DMA memory for firmware transfers. */ 6033 if ((error = iwm_alloc_fwmem(sc)) != 0) { 6034 device_printf(dev, "could not allocate memory for firmware\n"); 6035 goto fail; 6036 } 6037 6038 /* Allocate "Keep Warm" page. */ 6039 if ((error = iwm_alloc_kw(sc)) != 0) { 6040 device_printf(dev, "could not allocate keep warm page\n"); 6041 goto fail; 6042 } 6043 6044 /* We use ICT interrupts */ 6045 if ((error = iwm_alloc_ict(sc)) != 0) { 6046 device_printf(dev, "could not allocate ICT table\n"); 6047 goto fail; 6048 } 6049 6050 /* Allocate TX scheduler "rings". */ 6051 if ((error = iwm_alloc_sched(sc)) != 0) { 6052 device_printf(dev, "could not allocate TX scheduler rings\n"); 6053 goto fail; 6054 } 6055 6056 /* Allocate TX rings */ 6057 for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { 6058 if ((error = iwm_alloc_tx_ring(sc, 6059 &sc->txq[txq_i], txq_i)) != 0) { 6060 device_printf(dev, 6061 "could not allocate TX ring %d\n", 6062 txq_i); 6063 goto fail; 6064 } 6065 } 6066 6067 /* Allocate RX ring. */ 6068 if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { 6069 device_printf(dev, "could not allocate RX ring\n"); 6070 goto fail; 6071 } 6072 6073 /* Clear pending interrupts. */ 6074 IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); 6075 6076 ic->ic_softc = sc; 6077 ic->ic_name = device_get_nameunit(sc->sc_dev); 6078 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 6079 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 6080 6081 /* Set device capabilities. */ 6082 ic->ic_caps = 6083 IEEE80211_C_STA | 6084 IEEE80211_C_WPA | /* WPA/RSN */ 6085 IEEE80211_C_WME | 6086 IEEE80211_C_PMGT | 6087 IEEE80211_C_SHSLOT | /* short slot time supported */ 6088 IEEE80211_C_SHPREAMBLE /* short preamble supported */ 6089 // IEEE80211_C_BGSCAN /* capable of bg scanning */ 6090 ; 6091 /* Advertise full-offload scanning */ 6092 ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD; 6093 for (i = 0; i < nitems(sc->sc_phyctxt); i++) { 6094 sc->sc_phyctxt[i].id = i; 6095 sc->sc_phyctxt[i].color = 0; 6096 sc->sc_phyctxt[i].ref = 0; 6097 sc->sc_phyctxt[i].channel = NULL; 6098 } 6099 6100 /* Default noise floor */ 6101 sc->sc_noise = -96; 6102 6103 /* Max RSSI */ 6104 sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; 6105 6106 #ifdef IWM_DEBUG 6107 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 6108 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", 6109 CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); 6110 #endif 6111 6112 error = iwm_read_firmware(sc); 6113 if (error) { 6114 goto fail; 6115 } else if (sc->sc_fw.fw_fp == NULL) { 6116 /* 6117 * XXX Add a solution for properly deferring firmware load 6118 * during bootup. 6119 */ 6120 goto fail; 6121 } else { 6122 sc->sc_preinit_hook.ich_func = iwm_preinit; 6123 sc->sc_preinit_hook.ich_arg = sc; 6124 if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { 6125 device_printf(dev, 6126 "config_intrhook_establish failed\n"); 6127 goto fail; 6128 } 6129 } 6130 6131 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6132 "<-%s\n", __func__); 6133 6134 return 0; 6135 6136 /* Free allocated memory if something failed during attachment. */ 6137 fail: 6138 iwm_detach_local(sc, 0); 6139 6140 return ENXIO; 6141 } 6142 6143 static int 6144 iwm_is_valid_ether_addr(uint8_t *addr) 6145 { 6146 char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 }; 6147 6148 if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr)) 6149 return (FALSE); 6150 6151 return (TRUE); 6152 } 6153 6154 static int 6155 iwm_wme_update(struct ieee80211com *ic) 6156 { 6157 #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 6158 struct iwm_softc *sc = ic->ic_softc; 6159 struct chanAccParams chp; 6160 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6161 struct iwm_vap *ivp = IWM_VAP(vap); 6162 struct iwm_node *in; 6163 struct wmeParams tmp[WME_NUM_AC]; 6164 int aci, error; 6165 6166 if (vap == NULL) 6167 return (0); 6168 6169 ieee80211_wme_ic_getparams(ic, &chp); 6170 6171 IEEE80211_LOCK(ic); 6172 for (aci = 0; aci < WME_NUM_AC; aci++) 6173 tmp[aci] = chp.cap_wmeParams[aci]; 6174 IEEE80211_UNLOCK(ic); 6175 6176 IWM_LOCK(sc); 6177 for (aci = 0; aci < WME_NUM_AC; aci++) { 6178 const struct wmeParams *ac = &tmp[aci]; 6179 ivp->queue_params[aci].aifsn = ac->wmep_aifsn; 6180 ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin); 6181 ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax); 6182 ivp->queue_params[aci].edca_txop = 6183 IEEE80211_TXOP_TO_US(ac->wmep_txopLimit); 6184 } 6185 ivp->have_wme = TRUE; 6186 if (ivp->is_uploaded && vap->iv_bss != NULL) { 6187 in = IWM_NODE(vap->iv_bss); 6188 if (in->in_assoc) { 6189 if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { 6190 device_printf(sc->sc_dev, 6191 "%s: failed to update MAC\n", __func__); 6192 } 6193 } 6194 } 6195 IWM_UNLOCK(sc); 6196 6197 return (0); 6198 #undef IWM_EXP2 6199 } 6200 6201 static void 6202 iwm_preinit(void *arg) 6203 { 6204 struct iwm_softc *sc = arg; 6205 device_t dev = sc->sc_dev; 6206 struct ieee80211com *ic = &sc->sc_ic; 6207 int error; 6208 6209 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6210 "->%s\n", __func__); 6211 6212 IWM_LOCK(sc); 6213 if ((error = iwm_start_hw(sc)) != 0) { 6214 device_printf(dev, "could not initialize hardware\n"); 6215 IWM_UNLOCK(sc); 6216 goto fail; 6217 } 6218 6219 error = iwm_run_init_ucode(sc, 1); 6220 iwm_stop_device(sc); 6221 if (error) { 6222 IWM_UNLOCK(sc); 6223 goto fail; 6224 } 6225 device_printf(dev, 6226 "hw rev 0x%x, fw ver %s, address %s\n", 6227 sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, 6228 sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr)); 6229 6230 /* not all hardware can do 5GHz band */ 6231 if (!sc->nvm_data->sku_cap_band_52GHz_enable) 6232 memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, 6233 sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); 6234 IWM_UNLOCK(sc); 6235 6236 iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 6237 ic->ic_channels); 6238 6239 /* 6240 * At this point we've committed - if we fail to do setup, 6241 * we now also have to tear down the net80211 state. 6242 */ 6243 ieee80211_ifattach(ic); 6244 ic->ic_vap_create = iwm_vap_create; 6245 ic->ic_vap_delete = iwm_vap_delete; 6246 ic->ic_raw_xmit = iwm_raw_xmit; 6247 ic->ic_node_alloc = iwm_node_alloc; 6248 ic->ic_scan_start = iwm_scan_start; 6249 ic->ic_scan_end = iwm_scan_end; 6250 ic->ic_update_mcast = iwm_update_mcast; 6251 ic->ic_getradiocaps = iwm_init_channel_map; 6252 ic->ic_set_channel = iwm_set_channel; 6253 ic->ic_scan_curchan = iwm_scan_curchan; 6254 ic->ic_scan_mindwell = iwm_scan_mindwell; 6255 ic->ic_wme.wme_update = iwm_wme_update; 6256 ic->ic_parent = iwm_parent; 6257 ic->ic_transmit = iwm_transmit; 6258 iwm_radiotap_attach(sc); 6259 if (bootverbose) 6260 ieee80211_announce(ic); 6261 6262 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6263 "<-%s\n", __func__); 6264 config_intrhook_disestablish(&sc->sc_preinit_hook); 6265 6266 return; 6267 fail: 6268 config_intrhook_disestablish(&sc->sc_preinit_hook); 6269 iwm_detach_local(sc, 0); 6270 } 6271 6272 /* 6273 * Attach the interface to 802.11 radiotap. 6274 */ 6275 static void 6276 iwm_radiotap_attach(struct iwm_softc *sc) 6277 { 6278 struct ieee80211com *ic = &sc->sc_ic; 6279 6280 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6281 "->%s begin\n", __func__); 6282 ieee80211_radiotap_attach(ic, 6283 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 6284 IWM_TX_RADIOTAP_PRESENT, 6285 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 6286 IWM_RX_RADIOTAP_PRESENT); 6287 IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, 6288 "->%s end\n", __func__); 6289 } 6290 6291 static struct ieee80211vap * 6292 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 6293 enum ieee80211_opmode opmode, int flags, 6294 const uint8_t bssid[IEEE80211_ADDR_LEN], 6295 const uint8_t mac[IEEE80211_ADDR_LEN]) 6296 { 6297 struct iwm_vap *ivp; 6298 struct ieee80211vap *vap; 6299 6300 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 6301 return NULL; 6302 ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); 6303 vap = &ivp->iv_vap; 6304 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 6305 vap->iv_bmissthreshold = 10; /* override default */ 6306 /* Override with driver methods. */ 6307 ivp->iv_newstate = vap->iv_newstate; 6308 vap->iv_newstate = iwm_newstate; 6309 6310 ivp->id = IWM_DEFAULT_MACID; 6311 ivp->color = IWM_DEFAULT_COLOR; 6312 6313 ivp->have_wme = FALSE; 6314 ivp->ps_disabled = FALSE; 6315 6316 ieee80211_ratectl_init(vap); 6317 /* Complete setup. */ 6318 ieee80211_vap_attach(vap, ieee80211_media_change, 6319 ieee80211_media_status, mac); 6320 ic->ic_opmode = opmode; 6321 6322 return vap; 6323 } 6324 6325 static void 6326 iwm_vap_delete(struct ieee80211vap *vap) 6327 { 6328 struct iwm_vap *ivp = IWM_VAP(vap); 6329 6330 ieee80211_ratectl_deinit(vap); 6331 ieee80211_vap_detach(vap); 6332 free(ivp, M_80211_VAP); 6333 } 6334 6335 static void 6336 iwm_xmit_queue_drain(struct iwm_softc *sc) 6337 { 6338 struct mbuf *m; 6339 struct ieee80211_node *ni; 6340 6341 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 6342 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 6343 ieee80211_free_node(ni); 6344 m_freem(m); 6345 } 6346 } 6347 6348 static void 6349 iwm_scan_start(struct ieee80211com *ic) 6350 { 6351 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6352 struct iwm_softc *sc = ic->ic_softc; 6353 int error; 6354 6355 IWM_LOCK(sc); 6356 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 6357 /* This should not be possible */ 6358 device_printf(sc->sc_dev, 6359 "%s: Previous scan not completed yet\n", __func__); 6360 } 6361 if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) 6362 error = iwm_umac_scan(sc); 6363 else 6364 error = iwm_lmac_scan(sc); 6365 if (error != 0) { 6366 device_printf(sc->sc_dev, "could not initiate scan\n"); 6367 IWM_UNLOCK(sc); 6368 ieee80211_cancel_scan(vap); 6369 } else { 6370 sc->sc_flags |= IWM_FLAG_SCAN_RUNNING; 6371 iwm_led_blink_start(sc); 6372 IWM_UNLOCK(sc); 6373 } 6374 } 6375 6376 static void 6377 iwm_scan_end(struct ieee80211com *ic) 6378 { 6379 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6380 struct iwm_softc *sc = ic->ic_softc; 6381 6382 IWM_LOCK(sc); 6383 iwm_led_blink_stop(sc); 6384 if (vap->iv_state == IEEE80211_S_RUN) 6385 iwm_led_enable(sc); 6386 if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { 6387 /* 6388 * Removing IWM_FLAG_SCAN_RUNNING now, is fine because 6389 * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq 6390 * taskqueue. 6391 */ 6392 sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; 6393 iwm_scan_stop_wait(sc); 6394 } 6395 IWM_UNLOCK(sc); 6396 6397 /* 6398 * Make sure we don't race, if sc_es_task is still enqueued here. 6399 * This is to make sure that it won't call ieee80211_scan_done 6400 * when we have already started the next scan. 6401 */ 6402 taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL); 6403 } 6404 6405 static void 6406 iwm_update_mcast(struct ieee80211com *ic) 6407 { 6408 } 6409 6410 static void 6411 iwm_set_channel(struct ieee80211com *ic) 6412 { 6413 } 6414 6415 static void 6416 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 6417 { 6418 } 6419 6420 static void 6421 iwm_scan_mindwell(struct ieee80211_scan_state *ss) 6422 { 6423 } 6424 6425 void 6426 iwm_init_task(void *arg1) 6427 { 6428 struct iwm_softc *sc = arg1; 6429 6430 IWM_LOCK(sc); 6431 while (sc->sc_flags & IWM_FLAG_BUSY) 6432 msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); 6433 sc->sc_flags |= IWM_FLAG_BUSY; 6434 iwm_stop(sc); 6435 if (sc->sc_ic.ic_nrunning > 0) 6436 iwm_init(sc); 6437 sc->sc_flags &= ~IWM_FLAG_BUSY; 6438 wakeup(&sc->sc_flags); 6439 IWM_UNLOCK(sc); 6440 } 6441 6442 static int 6443 iwm_resume(device_t dev) 6444 { 6445 struct iwm_softc *sc = device_get_softc(dev); 6446 int do_reinit = 0; 6447 6448 /* 6449 * We disable the RETRY_TIMEOUT register (0x41) to keep 6450 * PCI Tx retries from interfering with C3 CPU state. 6451 */ 6452 pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); 6453 6454 if (!sc->sc_attached) 6455 return 0; 6456 6457 iwm_init_task(device_get_softc(dev)); 6458 6459 IWM_LOCK(sc); 6460 if (sc->sc_flags & IWM_FLAG_SCANNING) { 6461 sc->sc_flags &= ~IWM_FLAG_SCANNING; 6462 do_reinit = 1; 6463 } 6464 IWM_UNLOCK(sc); 6465 6466 if (do_reinit) 6467 ieee80211_resume_all(&sc->sc_ic); 6468 6469 return 0; 6470 } 6471 6472 static int 6473 iwm_suspend(device_t dev) 6474 { 6475 int do_stop = 0; 6476 struct iwm_softc *sc = device_get_softc(dev); 6477 6478 do_stop = !! (sc->sc_ic.ic_nrunning > 0); 6479 6480 if (!sc->sc_attached) 6481 return (0); 6482 6483 ieee80211_suspend_all(&sc->sc_ic); 6484 6485 if (do_stop) { 6486 IWM_LOCK(sc); 6487 iwm_stop(sc); 6488 sc->sc_flags |= IWM_FLAG_SCANNING; 6489 IWM_UNLOCK(sc); 6490 } 6491 6492 return (0); 6493 } 6494 6495 static int 6496 iwm_detach_local(struct iwm_softc *sc, int do_net80211) 6497 { 6498 struct iwm_fw_info *fw = &sc->sc_fw; 6499 device_t dev = sc->sc_dev; 6500 int i; 6501 6502 if (!sc->sc_attached) 6503 return 0; 6504 sc->sc_attached = 0; 6505 if (do_net80211) { 6506 ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task); 6507 } 6508 iwm_stop_device(sc); 6509 taskqueue_drain_all(sc->sc_tq); 6510 taskqueue_free(sc->sc_tq); 6511 if (do_net80211) { 6512 IWM_LOCK(sc); 6513 iwm_xmit_queue_drain(sc); 6514 IWM_UNLOCK(sc); 6515 ieee80211_ifdetach(&sc->sc_ic); 6516 } 6517 callout_drain(&sc->sc_led_blink_to); 6518 callout_drain(&sc->sc_watchdog_to); 6519 6520 iwm_phy_db_free(sc->sc_phy_db); 6521 sc->sc_phy_db = NULL; 6522 6523 iwm_free_nvm_data(sc->nvm_data); 6524 6525 /* Free descriptor rings */ 6526 iwm_free_rx_ring(sc, &sc->rxq); 6527 for (i = 0; i < nitems(sc->txq); i++) 6528 iwm_free_tx_ring(sc, &sc->txq[i]); 6529 6530 /* Free firmware */ 6531 if (fw->fw_fp != NULL) 6532 iwm_fw_info_free(fw); 6533 6534 /* Free scheduler */ 6535 iwm_dma_contig_free(&sc->sched_dma); 6536 iwm_dma_contig_free(&sc->ict_dma); 6537 iwm_dma_contig_free(&sc->kw_dma); 6538 iwm_dma_contig_free(&sc->fw_dma); 6539 6540 iwm_free_fw_paging(sc); 6541 6542 /* Finished with the hardware - detach things */ 6543 iwm_pci_detach(dev); 6544 6545 if (sc->sc_notif_wait != NULL) { 6546 iwm_notification_wait_free(sc->sc_notif_wait); 6547 sc->sc_notif_wait = NULL; 6548 } 6549 6550 IWM_LOCK_DESTROY(sc); 6551 6552 return (0); 6553 } 6554 6555 static int 6556 iwm_detach(device_t dev) 6557 { 6558 struct iwm_softc *sc = device_get_softc(dev); 6559 6560 return (iwm_detach_local(sc, 1)); 6561 } 6562 6563 static device_method_t iwm_pci_methods[] = { 6564 /* Device interface */ 6565 DEVMETHOD(device_probe, iwm_probe), 6566 DEVMETHOD(device_attach, iwm_attach), 6567 DEVMETHOD(device_detach, iwm_detach), 6568 DEVMETHOD(device_suspend, iwm_suspend), 6569 DEVMETHOD(device_resume, iwm_resume), 6570 6571 DEVMETHOD_END 6572 }; 6573 6574 static driver_t iwm_pci_driver = { 6575 "iwm", 6576 iwm_pci_methods, 6577 sizeof (struct iwm_softc) 6578 }; 6579 6580 static devclass_t iwm_devclass; 6581 6582 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); 6583 MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver, 6584 iwm_devices, nitems(iwm_devices)); 6585 MODULE_DEPEND(iwm, firmware, 1, 1, 1); 6586 MODULE_DEPEND(iwm, pci, 1, 1, 1); 6587 MODULE_DEPEND(iwm, wlan, 1, 1, 1); 6588