xref: /freebsd/sys/dev/iwi/if_iwi.c (revision f6c0136c7fb87ab8277221a306291e386fe944fb)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/kthread.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_types.h>
72 
73 #include <net80211/ieee80211_var.h>
74 #include <net80211/ieee80211_radiotap.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #include <netinet/if_ether.h>
81 
82 #include <dev/iwi/if_iwireg.h>
83 #include <dev/iwi/if_iwivar.h>
84 
85 #define IWI_DEBUG
86 #ifdef IWI_DEBUG
87 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
88 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
89 int iwi_debug = 0;
90 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
91 #else
92 #define DPRINTF(x)
93 #define DPRINTFN(n, x)
94 #endif
95 
96 MODULE_DEPEND(iwi, pci,  1, 1, 1);
97 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
98 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
99 
100 enum {
101 	IWI_LED_TX,
102 	IWI_LED_RX,
103 	IWI_LED_POLL,
104 };
105 
106 struct iwi_ident {
107 	uint16_t	vendor;
108 	uint16_t	device;
109 	const char	*name;
110 };
111 
112 static const struct iwi_ident iwi_ident_table[] = {
113 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
114 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
115 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
116 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
117 
118 	{ 0, 0, NULL }
119 };
120 
121 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
122 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
123 		    int);
124 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
125 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
126 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
127 		    int, bus_addr_t, bus_addr_t);
128 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
129 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
130 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
131 		    int);
132 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
133 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
134 static struct	ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
135 static void	iwi_node_free(struct ieee80211_node *);
136 static int	iwi_media_change(struct ifnet *);
137 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
138 static int	iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
139 static void	iwi_wme_init(struct iwi_softc *);
140 static void	iwi_wme_setparams(void *, int);
141 static int	iwi_wme_update(struct ieee80211com *);
142 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
143 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
144 		    struct iwi_frame *);
145 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
146 static void	iwi_rx_intr(struct iwi_softc *);
147 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
148 static void	iwi_intr(void *);
149 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
150 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
151 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
152 		    struct ieee80211_node *, int);
153 static void	iwi_start(struct ifnet *);
154 static void	iwi_watchdog(struct ifnet *);
155 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
156 static void	iwi_stop_master(struct iwi_softc *);
157 static int	iwi_reset(struct iwi_softc *);
158 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
159 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
160 static void	iwi_release_fw_dma(struct iwi_softc *sc);
161 static int	iwi_config(struct iwi_softc *);
162 static int	iwi_get_firmware(struct iwi_softc *);
163 static void	iwi_put_firmware(struct iwi_softc *);
164 static void	iwi_scanabort(void *, int);
165 static void	iwi_scandone(void *, int);
166 static void	iwi_scanstart(void *, int);
167 static void	iwi_scanchan(void *, int);
168 static int	iwi_auth_and_assoc(struct iwi_softc *);
169 static int	iwi_disassociate(struct iwi_softc *, int quiet);
170 static void	iwi_down(void *, int);
171 static void	iwi_init(void *);
172 static void	iwi_init_locked(void *, int);
173 static void	iwi_stop(void *);
174 static void	iwi_restart(void *, int);
175 static int	iwi_getrfkill(struct iwi_softc *);
176 static void	iwi_radio_on(void *, int);
177 static void	iwi_radio_off(void *, int);
178 static void	iwi_sysctlattach(struct iwi_softc *);
179 static void	iwi_led_event(struct iwi_softc *, int);
180 static void	iwi_ledattach(struct iwi_softc *);
181 
182 static int iwi_probe(device_t);
183 static int iwi_attach(device_t);
184 static int iwi_detach(device_t);
185 static int iwi_shutdown(device_t);
186 static int iwi_suspend(device_t);
187 static int iwi_resume(device_t);
188 
189 static device_method_t iwi_methods[] = {
190 	/* Device interface */
191 	DEVMETHOD(device_probe,		iwi_probe),
192 	DEVMETHOD(device_attach,	iwi_attach),
193 	DEVMETHOD(device_detach,	iwi_detach),
194 	DEVMETHOD(device_shutdown,	iwi_shutdown),
195 	DEVMETHOD(device_suspend,	iwi_suspend),
196 	DEVMETHOD(device_resume,	iwi_resume),
197 
198 	{ 0, 0 }
199 };
200 
201 static driver_t iwi_driver = {
202 	"iwi",
203 	iwi_methods,
204 	sizeof (struct iwi_softc)
205 };
206 
207 static devclass_t iwi_devclass;
208 
209 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
210 
211 static __inline uint8_t
212 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
213 {
214 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
215 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
216 }
217 
218 static __inline uint32_t
219 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
220 {
221 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
222 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
223 }
224 
225 static int
226 iwi_probe(device_t dev)
227 {
228 	const struct iwi_ident *ident;
229 
230 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
231 		if (pci_get_vendor(dev) == ident->vendor &&
232 		    pci_get_device(dev) == ident->device) {
233 			device_set_desc(dev, ident->name);
234 			return 0;
235 		}
236 	}
237 	return ENXIO;
238 }
239 
240 /* Base Address Register */
241 #define IWI_PCI_BAR0	0x10
242 
243 static int
244 iwi_attach(device_t dev)
245 {
246 	struct iwi_softc *sc = device_get_softc(dev);
247 	struct ifnet *ifp;
248 	struct ieee80211com *ic = &sc->sc_ic;
249 	uint16_t val;
250 	int error, i;
251 
252 	sc->sc_dev = dev;
253 
254 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
255 	    MTX_DEF);
256 
257 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
258 
259 #if __FreeBSD_version >= 700000
260 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
261 		taskqueue_thread_enqueue, &sc->sc_tq);
262 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
263 		device_get_nameunit(dev));
264 #else
265 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
266 		taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc);
267 	kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc,
268 		0, 0, "%s taskq", device_get_nameunit(dev));
269 #endif
270 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
271 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
272 	TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc);
273 	TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc);
274 	TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc);
275 	TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc);
276 	TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc);
277 	TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc);
278 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
279 
280 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
281 		device_printf(dev, "chip is in D%d power mode "
282 		    "-- setting to D0\n", pci_get_powerstate(dev));
283 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
284 	}
285 
286 	pci_write_config(dev, 0x41, 0, 1);
287 
288 	/* enable bus-mastering */
289 	pci_enable_busmaster(dev);
290 
291 	sc->mem_rid = IWI_PCI_BAR0;
292 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
293 	    RF_ACTIVE);
294 	if (sc->mem == NULL) {
295 		device_printf(dev, "could not allocate memory resource\n");
296 		goto fail;
297 	}
298 
299 	sc->sc_st = rman_get_bustag(sc->mem);
300 	sc->sc_sh = rman_get_bushandle(sc->mem);
301 
302 	sc->irq_rid = 0;
303 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
304 	    RF_ACTIVE | RF_SHAREABLE);
305 	if (sc->irq == NULL) {
306 		device_printf(dev, "could not allocate interrupt resource\n");
307 		goto fail;
308 	}
309 
310 	if (iwi_reset(sc) != 0) {
311 		device_printf(dev, "could not reset adapter\n");
312 		goto fail;
313 	}
314 
315 	/*
316 	 * Allocate rings.
317 	 */
318 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
319 		device_printf(dev, "could not allocate Cmd ring\n");
320 		goto fail;
321 	}
322 
323 	for (i = 0; i < 4; i++) {
324 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
325 		    IWI_CSR_TX1_RIDX + i * 4,
326 		    IWI_CSR_TX1_WIDX + i * 4);
327 		if (error != 0) {
328 			device_printf(dev, "could not allocate Tx ring %d\n",
329 				i+i);
330 			goto fail;
331 		}
332 	}
333 
334 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
335 		device_printf(dev, "could not allocate Rx ring\n");
336 		goto fail;
337 	}
338 
339 	iwi_wme_init(sc);
340 
341 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
342 	if (ifp == NULL) {
343 		device_printf(dev, "can not if_alloc()\n");
344 		goto fail;
345 	}
346 	ifp->if_softc = sc;
347 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
348 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
349 	ifp->if_init = iwi_init;
350 	ifp->if_ioctl = iwi_ioctl;
351 	ifp->if_start = iwi_start;
352 	ifp->if_watchdog = iwi_watchdog;
353 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
354 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
355 	IFQ_SET_READY(&ifp->if_snd);
356 
357 	ic->ic_ifp = ifp;
358 	ic->ic_wme.wme_update = iwi_wme_update;
359 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
360 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
361 	ic->ic_state = IEEE80211_S_INIT;
362 
363 	/* set device capabilities */
364 	ic->ic_caps =
365 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
366 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
367 	    IEEE80211_C_PMGT |		/* power save supported */
368 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
369 	    IEEE80211_C_WPA |		/* 802.11i */
370 	    IEEE80211_C_WME;		/* 802.11e */
371 
372 	/* read MAC address from EEPROM */
373 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
374 	ic->ic_myaddr[0] = val & 0xff;
375 	ic->ic_myaddr[1] = val >> 8;
376 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
377 	ic->ic_myaddr[2] = val & 0xff;
378 	ic->ic_myaddr[3] = val >> 8;
379 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
380 	ic->ic_myaddr[4] = val & 0xff;
381 	ic->ic_myaddr[5] = val >> 8;
382 
383 	if (pci_get_device(dev) >= 0x4223) {
384 		/* set supported .11a channels */
385 		for (i = 36; i <= 64; i += 4) {
386 			ic->ic_channels[i].ic_freq =
387 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
388 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
389 		}
390 		for (i = 149; i <= 165; i += 4) {
391 			ic->ic_channels[i].ic_freq =
392 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
393 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
394 		}
395 	}
396 
397 	/* set supported .11b and .11g channels (1 through 14) */
398 	for (i = 1; i <= 14; i++) {
399 		ic->ic_channels[i].ic_freq =
400 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
401 		ic->ic_channels[i].ic_flags =
402 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
403 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
404 	}
405 
406 	ieee80211_ifattach(ic);
407 	ic->ic_bmissthreshold = 10;		/* override default */
408 	/* override default methods */
409 	ic->ic_node_alloc = iwi_node_alloc;
410 	sc->sc_node_free = ic->ic_node_free;
411 	ic->ic_node_free = iwi_node_free;
412 	/* override state transition machine */
413 	sc->sc_newstate = ic->ic_newstate;
414 	ic->ic_newstate = iwi_newstate;
415 	ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
416 
417 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
418 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
419 	    &sc->sc_drvbpf);
420 
421 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
422 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
423 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
424 
425 	sc->sc_txtap_len = sizeof sc->sc_txtap;
426 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
427 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
428 
429 	iwi_sysctlattach(sc);
430 	iwi_ledattach(sc);
431 
432 	/*
433 	 * Hook our interrupt after all initialization is complete.
434 	 */
435 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
436 	    NULL, iwi_intr, sc, &sc->sc_ih);
437 	if (error != 0) {
438 		device_printf(dev, "could not set up interrupt\n");
439 		goto fail;
440 	}
441 
442 	if (bootverbose)
443 		ieee80211_announce(ic);
444 
445 	return 0;
446 
447 fail:	iwi_detach(dev);
448 	return ENXIO;
449 }
450 
451 static int
452 iwi_detach(device_t dev)
453 {
454 	struct iwi_softc *sc = device_get_softc(dev);
455 	struct ieee80211com *ic = &sc->sc_ic;
456 	struct ifnet *ifp = ic->ic_ifp;
457 
458 	if (ifp != NULL) {
459 		iwi_stop(sc);
460 		bpfdetach(ifp);
461 		ieee80211_ifdetach(ic);
462 	}
463 	iwi_put_firmware(sc);
464 	iwi_release_fw_dma(sc);
465 
466 	iwi_free_cmd_ring(sc, &sc->cmdq);
467 	iwi_free_tx_ring(sc, &sc->txq[0]);
468 	iwi_free_tx_ring(sc, &sc->txq[1]);
469 	iwi_free_tx_ring(sc, &sc->txq[2]);
470 	iwi_free_tx_ring(sc, &sc->txq[3]);
471 	iwi_free_rx_ring(sc, &sc->rxq);
472 
473 	if (sc->irq != NULL) {
474 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
475 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
476 	}
477 
478 	if (sc->mem != NULL)
479 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
480 
481 	if (ifp != NULL)
482 		if_free(ifp);
483 
484 	taskqueue_free(sc->sc_tq);
485 
486 	if (sc->sc_unr != NULL)
487 		delete_unrhdr(sc->sc_unr);
488 
489 	mtx_destroy(&sc->sc_mtx);
490 
491 	return 0;
492 }
493 
494 static void
495 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
496 {
497 	if (error != 0)
498 		return;
499 
500 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
501 
502 	*(bus_addr_t *)arg = segs[0].ds_addr;
503 }
504 
505 static int
506 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
507 {
508 	int error;
509 
510 	ring->count = count;
511 	ring->queued = 0;
512 	ring->cur = ring->next = 0;
513 
514 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
515 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
516 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
517 	    NULL, NULL, &ring->desc_dmat);
518 	if (error != 0) {
519 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
520 		goto fail;
521 	}
522 
523 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
524 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
525 	if (error != 0) {
526 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
527 		goto fail;
528 	}
529 
530 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
531 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
532 	if (error != 0) {
533 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
534 		goto fail;
535 	}
536 
537 	return 0;
538 
539 fail:	iwi_free_cmd_ring(sc, ring);
540 	return error;
541 }
542 
543 static void
544 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
545 {
546 	ring->queued = 0;
547 	ring->cur = ring->next = 0;
548 }
549 
550 static void
551 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
552 {
553 	if (ring->desc != NULL) {
554 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
555 		    BUS_DMASYNC_POSTWRITE);
556 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
557 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
558 	}
559 
560 	if (ring->desc_dmat != NULL)
561 		bus_dma_tag_destroy(ring->desc_dmat);
562 }
563 
564 static int
565 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
566     bus_addr_t csr_ridx, bus_addr_t csr_widx)
567 {
568 	int i, error;
569 
570 	ring->count = count;
571 	ring->queued = 0;
572 	ring->cur = ring->next = 0;
573 	ring->csr_ridx = csr_ridx;
574 	ring->csr_widx = csr_widx;
575 
576 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
577 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
578 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
579 	    NULL, &ring->desc_dmat);
580 	if (error != 0) {
581 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
582 		goto fail;
583 	}
584 
585 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
586 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
587 	if (error != 0) {
588 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
589 		goto fail;
590 	}
591 
592 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
593 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
594 	if (error != 0) {
595 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
596 		goto fail;
597 	}
598 
599 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
600 	    M_NOWAIT | M_ZERO);
601 	if (ring->data == NULL) {
602 		device_printf(sc->sc_dev, "could not allocate soft data\n");
603 		error = ENOMEM;
604 		goto fail;
605 	}
606 
607 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
608 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
609 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
610 	if (error != 0) {
611 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
612 		goto fail;
613 	}
614 
615 	for (i = 0; i < count; i++) {
616 		error = bus_dmamap_create(ring->data_dmat, 0,
617 		    &ring->data[i].map);
618 		if (error != 0) {
619 			device_printf(sc->sc_dev, "could not create DMA map\n");
620 			goto fail;
621 		}
622 	}
623 
624 	return 0;
625 
626 fail:	iwi_free_tx_ring(sc, ring);
627 	return error;
628 }
629 
630 static void
631 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
632 {
633 	struct iwi_tx_data *data;
634 	int i;
635 
636 	for (i = 0; i < ring->count; i++) {
637 		data = &ring->data[i];
638 
639 		if (data->m != NULL) {
640 			bus_dmamap_sync(ring->data_dmat, data->map,
641 			    BUS_DMASYNC_POSTWRITE);
642 			bus_dmamap_unload(ring->data_dmat, data->map);
643 			m_freem(data->m);
644 			data->m = NULL;
645 		}
646 
647 		if (data->ni != NULL) {
648 			ieee80211_free_node(data->ni);
649 			data->ni = NULL;
650 		}
651 	}
652 
653 	ring->queued = 0;
654 	ring->cur = ring->next = 0;
655 }
656 
657 static void
658 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
659 {
660 	struct iwi_tx_data *data;
661 	int i;
662 
663 	if (ring->desc != NULL) {
664 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
665 		    BUS_DMASYNC_POSTWRITE);
666 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
667 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
668 	}
669 
670 	if (ring->desc_dmat != NULL)
671 		bus_dma_tag_destroy(ring->desc_dmat);
672 
673 	if (ring->data != NULL) {
674 		for (i = 0; i < ring->count; i++) {
675 			data = &ring->data[i];
676 
677 			if (data->m != NULL) {
678 				bus_dmamap_sync(ring->data_dmat, data->map,
679 				    BUS_DMASYNC_POSTWRITE);
680 				bus_dmamap_unload(ring->data_dmat, data->map);
681 				m_freem(data->m);
682 			}
683 
684 			if (data->ni != NULL)
685 				ieee80211_free_node(data->ni);
686 
687 			if (data->map != NULL)
688 				bus_dmamap_destroy(ring->data_dmat, data->map);
689 		}
690 
691 		free(ring->data, M_DEVBUF);
692 	}
693 
694 	if (ring->data_dmat != NULL)
695 		bus_dma_tag_destroy(ring->data_dmat);
696 }
697 
698 static int
699 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
700 {
701 	struct iwi_rx_data *data;
702 	int i, error;
703 
704 	ring->count = count;
705 	ring->cur = 0;
706 
707 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
708 	    M_NOWAIT | M_ZERO);
709 	if (ring->data == NULL) {
710 		device_printf(sc->sc_dev, "could not allocate soft data\n");
711 		error = ENOMEM;
712 		goto fail;
713 	}
714 
715 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
716 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
717 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
718 	if (error != 0) {
719 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
720 		goto fail;
721 	}
722 
723 	for (i = 0; i < count; i++) {
724 		data = &ring->data[i];
725 
726 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
727 		if (error != 0) {
728 			device_printf(sc->sc_dev, "could not create DMA map\n");
729 			goto fail;
730 		}
731 
732 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
733 		if (data->m == NULL) {
734 			device_printf(sc->sc_dev,
735 			    "could not allocate rx mbuf\n");
736 			error = ENOMEM;
737 			goto fail;
738 		}
739 
740 		error = bus_dmamap_load(ring->data_dmat, data->map,
741 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
742 		    &data->physaddr, 0);
743 		if (error != 0) {
744 			device_printf(sc->sc_dev,
745 			    "could not load rx buf DMA map");
746 			goto fail;
747 		}
748 
749 		data->reg = IWI_CSR_RX_BASE + i * 4;
750 	}
751 
752 	return 0;
753 
754 fail:	iwi_free_rx_ring(sc, ring);
755 	return error;
756 }
757 
758 static void
759 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
760 {
761 	ring->cur = 0;
762 }
763 
764 static void
765 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
766 {
767 	struct iwi_rx_data *data;
768 	int i;
769 
770 	if (ring->data != NULL) {
771 		for (i = 0; i < ring->count; i++) {
772 			data = &ring->data[i];
773 
774 			if (data->m != NULL) {
775 				bus_dmamap_sync(ring->data_dmat, data->map,
776 				    BUS_DMASYNC_POSTREAD);
777 				bus_dmamap_unload(ring->data_dmat, data->map);
778 				m_freem(data->m);
779 			}
780 
781 			if (data->map != NULL)
782 				bus_dmamap_destroy(ring->data_dmat, data->map);
783 		}
784 
785 		free(ring->data, M_DEVBUF);
786 	}
787 
788 	if (ring->data_dmat != NULL)
789 		bus_dma_tag_destroy(ring->data_dmat);
790 }
791 
792 static int
793 iwi_shutdown(device_t dev)
794 {
795 	struct iwi_softc *sc = device_get_softc(dev);
796 
797 	iwi_stop(sc);
798 	iwi_put_firmware(sc);		/* ??? XXX */
799 
800 	return 0;
801 }
802 
803 static int
804 iwi_suspend(device_t dev)
805 {
806 	struct iwi_softc *sc = device_get_softc(dev);
807 
808 	iwi_stop(sc);
809 
810 	return 0;
811 }
812 
813 static int
814 iwi_resume(device_t dev)
815 {
816 	struct iwi_softc *sc = device_get_softc(dev);
817 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
818 	IWI_LOCK_DECL;
819 
820 	IWI_LOCK(sc);
821 
822 	pci_write_config(dev, 0x41, 0, 1);
823 
824 	if (ifp->if_flags & IFF_UP) {
825 		ifp->if_init(ifp->if_softc);
826 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
827 			ifp->if_start(ifp);
828 	}
829 
830 	IWI_UNLOCK(sc);
831 
832 	return 0;
833 }
834 
835 static struct ieee80211_node *
836 iwi_node_alloc(struct ieee80211_node_table *nt)
837 {
838 	struct iwi_node *in;
839 
840 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
841 	if (in == NULL)
842 		return NULL;
843 
844 	in->in_station = -1;
845 
846 	return &in->in_node;
847 }
848 
849 static void
850 iwi_node_free(struct ieee80211_node *ni)
851 {
852 	struct ieee80211com *ic = ni->ni_ic;
853 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
854 	struct iwi_node *in = (struct iwi_node *)ni;
855 
856 	if (in->in_station != -1) {
857 		DPRINTF(("%s mac %6D station %u\n", __func__,
858 		    ni->ni_macaddr, ":", in->in_station));
859 		free_unr(sc->sc_unr, in->in_station);
860 	}
861 
862 	sc->sc_node_free(ni);
863 }
864 
865 static int
866 iwi_media_change(struct ifnet *ifp)
867 {
868 	struct iwi_softc *sc = ifp->if_softc;
869 	int error;
870 	IWI_LOCK_DECL;
871 
872 	IWI_LOCK(sc);
873 
874 	error = ieee80211_media_change(ifp);
875 	if (error == ENETRESET &&
876 	    (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
877 		iwi_init_locked(sc, 0);
878 
879 	IWI_UNLOCK(sc);
880 
881 	return error;
882 }
883 
884 /*
885  * Convert h/w rate code to IEEE rate code.
886  */
887 static int
888 iwi_cvtrate(int iwirate)
889 {
890 	switch (iwirate) {
891 	case IWI_RATE_DS1:	return 2;
892 	case IWI_RATE_DS2:	return 4;
893 	case IWI_RATE_DS5:	return 11;
894 	case IWI_RATE_DS11:	return 22;
895 	case IWI_RATE_OFDM6:	return 12;
896 	case IWI_RATE_OFDM9:	return 18;
897 	case IWI_RATE_OFDM12:	return 24;
898 	case IWI_RATE_OFDM18:	return 36;
899 	case IWI_RATE_OFDM24:	return 48;
900 	case IWI_RATE_OFDM36:	return 72;
901 	case IWI_RATE_OFDM48:	return 96;
902 	case IWI_RATE_OFDM54:	return 108;
903 	}
904 	return 0;
905 }
906 
907 /*
908  * The firmware automatically adapts the transmit speed.  We report its current
909  * value here.
910  */
911 static void
912 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
913 {
914 	struct iwi_softc *sc = ifp->if_softc;
915 	struct ieee80211com *ic = &sc->sc_ic;
916 	int rate;
917 
918 	imr->ifm_status = IFM_AVALID;
919 	imr->ifm_active = IFM_IEEE80211;
920 	if (ic->ic_state == IEEE80211_S_RUN)
921 		imr->ifm_status |= IFM_ACTIVE;
922 
923 	/* read current transmission rate from adapter */
924 	rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
925 	imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
926 
927 	if (ic->ic_opmode == IEEE80211_M_IBSS)
928 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
929 	else if (ic->ic_opmode == IEEE80211_M_MONITOR)
930 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
931 }
932 
933 static int
934 iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
935 {
936 	struct ifnet *ifp = ic->ic_ifp;
937 	struct iwi_softc *sc = ifp->if_softc;
938 
939 	IWI_LOCK_CHECK(sc);
940 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
941 		ieee80211_state_name[ic->ic_state],
942 		ieee80211_state_name[nstate], sc->flags));
943 
944 	/* XXX state change race with taskqueue */
945 	switch (nstate) {
946 	case IEEE80211_S_SCAN:
947 		if (ic->ic_state == IEEE80211_S_RUN) {
948 			/*
949 			 * Beacon miss, send disassoc and wait for a reply
950 			 * from the card; we'll start a scan then.  Note
951 			 * this only happens with auto roaming; otherwise
952 			 * just notify users and wait to be directed.
953 			 */
954 			/* notify directly as we bypass net80211 */
955 			ieee80211_sta_leave(ic, ic->ic_bss);
956 			if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
957 				taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
958 			break;
959 		}
960 		if ((sc->flags & IWI_FLAG_SCANNING) == 0) {
961 			sc->flags |= IWI_FLAG_SCANNING;
962 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask);
963 		}
964 		break;
965 
966 	case IEEE80211_S_AUTH:
967 		iwi_auth_and_assoc(sc);
968 		break;
969 
970 	case IEEE80211_S_RUN:
971 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
972 			/*
973 			 * XXX when joining an ibss network we are called
974 			 * with a SCAN -> RUN transition on scan complete.
975 			 * Use that to call iwi_auth_and_assoc.  On completing
976 			 * the join we are then called again with an
977 			 * AUTH -> RUN transition and we want to do nothing.
978 			 * This is all totally bogus and needs to be redone.
979 			 */
980 			if (ic->ic_state == IEEE80211_S_SCAN)
981 				iwi_auth_and_assoc(sc);
982 		} else if (ic->ic_opmode == IEEE80211_M_MONITOR)
983 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
984 
985 		/* XXX way wrong */
986 		return sc->sc_newstate(ic, nstate,
987 		    IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
988 
989 	case IEEE80211_S_ASSOC:
990 		break;
991 
992 	case IEEE80211_S_INIT:
993 		/*
994 		 * NB: don't try to do this if iwi_stop_master has
995 		 *     shutdown the firmware and disabled interrupts.
996 		 */
997 		if (ic->ic_state == IEEE80211_S_RUN &&
998 		    (sc->flags & IWI_FLAG_FW_INITED))
999 			taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
1000 		break;
1001 	}
1002 
1003 	ic->ic_state = nstate;
1004 	return 0;
1005 }
1006 
1007 /*
1008  * WME parameters coming from IEEE 802.11e specification.  These values are
1009  * already declared in ieee80211_proto.c, but they are static so they can't
1010  * be reused here.
1011  */
1012 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1013 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1014 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1015 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1016 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1017 };
1018 
1019 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1020 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1021 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1022 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1023 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1024 };
1025 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1026 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1027 
1028 static void
1029 iwi_wme_init(struct iwi_softc *sc)
1030 {
1031 	const struct wmeParams *wmep;
1032 	int ac;
1033 
1034 	memset(sc->wme, 0, sizeof sc->wme);
1035 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1036 		/* set WME values for CCK modulation */
1037 		wmep = &iwi_wme_cck_params[ac];
1038 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1039 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1040 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1041 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1042 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1043 
1044 		/* set WME values for OFDM modulation */
1045 		wmep = &iwi_wme_ofdm_params[ac];
1046 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1047 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1048 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1049 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1050 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1051 	}
1052 }
1053 
1054 static int
1055 iwi_wme_setparams_locked(struct iwi_softc *sc)
1056 {
1057 	struct ieee80211com *ic = &sc->sc_ic;
1058 	const struct wmeParams *wmep;
1059 	int ac;
1060 
1061 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1062 		/* set WME values for current operating mode */
1063 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1064 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1065 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1066 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1067 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1068 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1069 	}
1070 
1071 	DPRINTF(("Setting WME parameters\n"));
1072 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1073 }
1074 
1075 static void
1076 iwi_wme_setparams(void *arg, int npending)
1077 {
1078 	struct iwi_softc *sc = arg;
1079 	IWI_LOCK_DECL;
1080 
1081 	IWI_LOCK(sc);
1082 	(void) iwi_wme_setparams_locked(sc);
1083 	IWI_UNLOCK(sc);
1084 }
1085 #undef IWI_USEC
1086 #undef IWI_EXP2
1087 
1088 static int
1089 iwi_wme_update(struct ieee80211com *ic)
1090 {
1091 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1092 
1093 	/*
1094 	 * We may be called to update the WME parameters in
1095 	 * the adapter at various places.  If we're already
1096 	 * associated then initiate the request immediately
1097 	 * (via the taskqueue); otherwise we assume the params
1098 	 * will get sent down to the adapter as part of the
1099 	 * work iwi_auth_and_assoc does.
1100 	 */
1101 	if (ic->ic_state == IEEE80211_S_RUN)
1102 		taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask);
1103 	return 0;
1104 }
1105 
1106 static int
1107 iwi_wme_setie(struct iwi_softc *sc)
1108 {
1109 	struct ieee80211_wme_info wme;
1110 
1111 	memset(&wme, 0, sizeof wme);
1112 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1113 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1114 	wme.wme_oui[0] = 0x00;
1115 	wme.wme_oui[1] = 0x50;
1116 	wme.wme_oui[2] = 0xf2;
1117 	wme.wme_type = WME_OUI_TYPE;
1118 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1119 	wme.wme_version = WME_VERSION;
1120 	wme.wme_info = 0;
1121 
1122 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1123 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1124 }
1125 
1126 /*
1127  * Read 16 bits at address 'addr' from the serial EEPROM.
1128  */
1129 static uint16_t
1130 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1131 {
1132 	uint32_t tmp;
1133 	uint16_t val;
1134 	int n;
1135 
1136 	/* clock C once before the first command */
1137 	IWI_EEPROM_CTL(sc, 0);
1138 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1139 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1140 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1141 
1142 	/* write start bit (1) */
1143 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1144 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1145 
1146 	/* write READ opcode (10) */
1147 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1150 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1151 
1152 	/* write address A7-A0 */
1153 	for (n = 7; n >= 0; n--) {
1154 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1155 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1156 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1157 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1158 	}
1159 
1160 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1161 
1162 	/* read data Q15-Q0 */
1163 	val = 0;
1164 	for (n = 15; n >= 0; n--) {
1165 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1166 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1167 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1168 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1169 	}
1170 
1171 	IWI_EEPROM_CTL(sc, 0);
1172 
1173 	/* clear Chip Select and clock C */
1174 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1175 	IWI_EEPROM_CTL(sc, 0);
1176 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1177 
1178 	return val;
1179 }
1180 
1181 static void
1182 iwi_setcurchan(struct iwi_softc *sc, int chan)
1183 {
1184 	struct ieee80211com *ic = &sc->sc_ic;
1185 
1186 	IWI_LOCK_CHECK(sc);
1187 	ic->ic_curchan = &ic->ic_channels[chan];
1188 	sc->curchan = chan;
1189 
1190 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
1191 		htole16(ic->ic_curchan->ic_freq);
1192 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
1193 		htole16(ic->ic_curchan->ic_flags);
1194 }
1195 
1196 static void
1197 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1198     struct iwi_frame *frame)
1199 {
1200 	struct ieee80211com *ic = &sc->sc_ic;
1201 	struct ifnet *ifp = ic->ic_ifp;
1202 	struct mbuf *mnew, *m;
1203 	struct ieee80211_node *ni;
1204 	int type, error, framelen;
1205 	IWI_LOCK_DECL;
1206 
1207 	framelen = le16toh(frame->len);
1208 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1209 		/*
1210 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1211 		 *     out of bounds; need to figure out how to limit
1212 		 *     frame size in the firmware
1213 		 */
1214 		/* XXX stat */
1215 		DPRINTFN(1,
1216 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1217 		    le16toh(frame->len), frame->chan, frame->rssi,
1218 		    frame->rssi_dbm));
1219 		return;
1220 	}
1221 
1222 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1223 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1224 
1225 	if (frame->chan != sc->curchan)
1226 		iwi_setcurchan(sc, frame->chan);
1227 
1228 	/*
1229 	 * Try to allocate a new mbuf for this ring element and load it before
1230 	 * processing the current mbuf. If the ring element cannot be loaded,
1231 	 * drop the received packet and reuse the old mbuf. In the unlikely
1232 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1233 	 */
1234 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1235 	if (mnew == NULL) {
1236 		ifp->if_ierrors++;
1237 		return;
1238 	}
1239 
1240 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1241 
1242 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1243 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1244 	    0);
1245 	if (error != 0) {
1246 		m_freem(mnew);
1247 
1248 		/* try to reload the old mbuf */
1249 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1250 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1251 		    &data->physaddr, 0);
1252 		if (error != 0) {
1253 			/* very unlikely that it will fail... */
1254 			panic("%s: could not load old rx mbuf",
1255 			    device_get_name(sc->sc_dev));
1256 		}
1257 		ifp->if_ierrors++;
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * New mbuf successfully loaded, update Rx ring and continue
1263 	 * processing.
1264 	 */
1265 	m = data->m;
1266 	data->m = mnew;
1267 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1268 
1269 	/* finalize mbuf */
1270 	m->m_pkthdr.rcvif = ifp;
1271 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1272 	    sizeof (struct iwi_frame) + framelen;
1273 
1274 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1275 
1276 	if (bpf_peers_present(sc->sc_drvbpf)) {
1277 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1278 
1279 		tap->wr_flags = 0;
1280 		tap->wr_rate = iwi_cvtrate(frame->rate);
1281 		tap->wr_antsignal = frame->signal;
1282 		tap->wr_antenna = frame->antenna;
1283 
1284 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1285 	}
1286 	IWI_UNLOCK(sc);
1287 
1288 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1289 
1290 	/* send the frame to the 802.11 layer */
1291 	type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
1292 
1293 	/* node is no longer needed */
1294 	ieee80211_free_node(ni);
1295 
1296 	IWI_LOCK(sc);
1297 	if (sc->sc_softled) {
1298 		/*
1299 		 * Blink for any data frame.  Otherwise do a
1300 		 * heartbeat-style blink when idle.  The latter
1301 		 * is mainly for station mode where we depend on
1302 		 * periodic beacon frames to trigger the poll event.
1303 		 */
1304 		if (type == IEEE80211_FC0_TYPE_DATA) {
1305 			sc->sc_rxrate = frame->rate;
1306 			iwi_led_event(sc, IWI_LED_RX);
1307 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1308 			iwi_led_event(sc, IWI_LED_POLL);
1309 	}
1310 }
1311 
1312 /* unaligned little endian access */
1313 #define LE_READ_2(p)					\
1314 	((u_int16_t)					\
1315 	 ((((const u_int8_t *)(p))[0]      ) |		\
1316 	  (((const u_int8_t *)(p))[1] <<  8)))
1317 #define LE_READ_4(p)					\
1318 	((u_int32_t)					\
1319 	 ((((const u_int8_t *)(p))[0]      ) |		\
1320 	  (((const u_int8_t *)(p))[1] <<  8) |		\
1321 	  (((const u_int8_t *)(p))[2] << 16) |		\
1322 	  (((const u_int8_t *)(p))[3] << 24)))
1323 
1324 #define	IEEE80211_VERIFY_LENGTH(_len, _minlen) do {			\
1325 	if ((_len) < (_minlen)) {					\
1326 		return;							\
1327 	}								\
1328 } while (0)
1329 
1330 static int __inline
1331 iswmeoui(const u_int8_t *frm)
1332 {
1333 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI);
1334 }
1335 
1336 /*
1337  * Check for an association response frame to see if QoS
1338  * has been negotiated.  We parse just enough to figure
1339  * out if we're supposed to use QoS.  The proper solution
1340  * is to pass the frame up so ieee80211_input can do the
1341  * work but that's made hard by how things currently are
1342  * done in the driver.
1343  */
1344 static void
1345 iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len)
1346 {
1347 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1348 	const uint8_t *frm, *efrm, *wme;
1349 	struct ieee80211_node *ni;
1350 
1351 	/* NB: +8 for capinfo, status, associd, and first ie */
1352 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1353 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1354 		return;
1355 	/*
1356 	 * asresp frame format
1357 	 *	[2] capability information
1358 	 *	[2] status
1359 	 *	[2] association ID
1360 	 *	[tlv] supported rates
1361 	 *	[tlv] extended supported rates
1362 	 *	[tlv] WME
1363 	 */
1364 	frm = (const uint8_t *)&wh[1];
1365 	efrm = ((const uint8_t *) wh) + len;
1366 	frm += 6;
1367 
1368 	wme = NULL;
1369 	while (frm < efrm) {
1370 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
1371 		switch (*frm) {
1372 		case IEEE80211_ELEMID_VENDOR:
1373 			if (iswmeoui(frm))
1374 				wme = frm;
1375 			break;
1376 		}
1377 		frm += frm[1] + 2;
1378 	}
1379 
1380 	ni = sc->sc_ic.ic_bss;
1381 	if (wme != NULL)
1382 		ni->ni_flags |= IEEE80211_NODE_QOS;
1383 	else
1384 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1385 #undef SUBTYPE
1386 }
1387 
1388 static void
1389 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1390 {
1391 	struct ieee80211com *ic = &sc->sc_ic;
1392 	struct iwi_notif_scan_channel *chan;
1393 	struct iwi_notif_scan_complete *scan;
1394 	struct iwi_notif_authentication *auth;
1395 	struct iwi_notif_association *assoc;
1396 	struct iwi_notif_beacon_state *beacon;
1397 
1398 	switch (notif->type) {
1399 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1400 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1401 
1402 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1403 		    ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
1404 		break;
1405 
1406 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1407 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1408 
1409 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1410 		    scan->status));
1411 
1412 		sc->sc_scan_timer = 0;
1413 
1414 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1415 			/*
1416 			 * Monitor mode works by doing a passive scan to set
1417 			 * the channel and enable rx.  Because we don't want
1418 			 * to abort a scan lest the firmware crash we scan
1419 			 * for a short period of time and automatically restart
1420 			 * the scan when notified the sweep has completed.
1421 			 */
1422 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
1423 		} else {
1424 			sc->flags &= ~IWI_FLAG_SCANNING;
1425 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask);
1426 		}
1427 		break;
1428 
1429 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1430 		auth = (struct iwi_notif_authentication *)(notif + 1);
1431 
1432 		switch (auth->state) {
1433 		case IWI_AUTH_SUCCESS:
1434 			DPRINTFN(2, ("Authentication succeeeded\n"));
1435 			ieee80211_node_authorize(ic->ic_bss);
1436 			ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
1437 			break;
1438 
1439 		case IWI_AUTH_FAIL:
1440 			DPRINTFN(2, ("Authentication failed\n"));
1441 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1442 			/* XXX */
1443 			break;
1444 
1445 		case IWI_AUTH_SENT_1:
1446 		case IWI_AUTH_RECV_2:
1447 		case IWI_AUTH_SEQ1_PASS:
1448 			break;
1449 
1450 		case IWI_AUTH_SEQ1_FAIL:
1451 			DPRINTFN(2, ("Initial authentication handshake failed; "
1452 				"you probably need shared key\n"));
1453 			/* XXX retry shared key when in auto */
1454 			break;
1455 
1456 		default:
1457 			device_printf(sc->sc_dev,
1458 			    "unknown authentication state %u\n", auth->state);
1459 		}
1460 		break;
1461 
1462 	case IWI_NOTIF_TYPE_ASSOCIATION:
1463 		assoc = (struct iwi_notif_association *)(notif + 1);
1464 
1465 		switch (assoc->state) {
1466 		case IWI_AUTH_SUCCESS:
1467 			/* re-association, do nothing */
1468 			break;
1469 
1470 		case IWI_ASSOC_SUCCESS:
1471 			DPRINTFN(2, ("Association succeeded\n"));
1472 			sc->flags |= IWI_FLAG_ASSOCIATED;
1473 			iwi_checkforqos(sc,
1474 			    (const struct ieee80211_frame *)(assoc+1),
1475 			    le16toh(notif->len) - sizeof(*assoc));
1476 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1477 			break;
1478 
1479 		case IWI_ASSOC_FAIL:
1480 			DPRINTFN(2, ("Association failed\n"));
1481 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1482 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1483 			break;
1484 
1485 		default:
1486 			device_printf(sc->sc_dev,
1487 			    "unknown association state %u\n", assoc->state);
1488 		}
1489 		break;
1490 
1491 	case IWI_NOTIF_TYPE_BEACON:
1492 		/* XXX check struct length */
1493 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1494 
1495 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1496 		    beacon->state, le32toh(beacon->number)));
1497 
1498 		if (beacon->state == IWI_BEACON_MISS) {
1499 #if 0
1500 			if (sc->flags & IWI_FLAG_SCANNING) {
1501 				/* XXX terminate scan, linux driver
1502 				  says fw can get stuck */
1503 				/* XXX should be handled in iwi_newstate */
1504 				taskqueue_enqueue(sc->sc_tq,
1505 					&sc->sc_scanaborttask);
1506 			}
1507 #endif
1508 			/*
1509 			 * The firmware notifies us of every beacon miss
1510 			 * so we need to track the count against the
1511 			 * configured threshold before notifying the
1512 			 * 802.11 layer.
1513 			 * XXX try to roam, drop assoc only on much higher count
1514 			 */
1515 			if (le32toh(beacon->number) >= ic->ic_bmissthreshold) {
1516 				DPRINTF(("Beacon miss: %u >= %u\n",
1517 				    le32toh(beacon->number),
1518 				    ic->ic_bmissthreshold));
1519 				ieee80211_beacon_miss(ic);
1520 			}
1521 		}
1522 		break;
1523 
1524 	case IWI_NOTIF_TYPE_CALIBRATION:
1525 	case IWI_NOTIF_TYPE_NOISE:
1526 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1527 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1528 		break;
1529 
1530 	default:
1531 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1532 		    notif->type, notif->flags, le16toh(notif->len)));
1533 	}
1534 }
1535 
1536 static void
1537 iwi_rx_intr(struct iwi_softc *sc)
1538 {
1539 	struct iwi_rx_data *data;
1540 	struct iwi_hdr *hdr;
1541 	uint32_t hw;
1542 
1543 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1544 
1545 	for (; sc->rxq.cur != hw;) {
1546 		data = &sc->rxq.data[sc->rxq.cur];
1547 
1548 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1549 		    BUS_DMASYNC_POSTREAD);
1550 
1551 		hdr = mtod(data->m, struct iwi_hdr *);
1552 
1553 		switch (hdr->type) {
1554 		case IWI_HDR_TYPE_FRAME:
1555 			iwi_frame_intr(sc, data, sc->rxq.cur,
1556 			    (struct iwi_frame *)(hdr + 1));
1557 			break;
1558 
1559 		case IWI_HDR_TYPE_NOTIF:
1560 			iwi_notification_intr(sc,
1561 			    (struct iwi_notif *)(hdr + 1));
1562 			break;
1563 
1564 		default:
1565 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1566 			    hdr->type);
1567 		}
1568 
1569 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1570 
1571 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1572 	}
1573 
1574 	/* tell the firmware what we have processed */
1575 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1576 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1577 }
1578 
1579 static void
1580 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1581 {
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	struct ifnet *ifp = ic->ic_ifp;
1584 	struct iwi_tx_data *data;
1585 	uint32_t hw;
1586 
1587 	hw = CSR_READ_4(sc, txq->csr_ridx);
1588 
1589 	for (; txq->next != hw;) {
1590 		data = &txq->data[txq->next];
1591 
1592 		bus_dmamap_sync(txq->data_dmat, data->map,
1593 		    BUS_DMASYNC_POSTWRITE);
1594 		bus_dmamap_unload(txq->data_dmat, data->map);
1595 		m_freem(data->m);
1596 		data->m = NULL;
1597 		ieee80211_free_node(data->ni);
1598 		data->ni = NULL;
1599 
1600 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1601 
1602 		ifp->if_opackets++;
1603 
1604 		txq->queued--;
1605 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1606 	}
1607 
1608 	sc->sc_tx_timer = 0;
1609 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1610 
1611 	if (sc->sc_softled)
1612 		iwi_led_event(sc, IWI_LED_TX);
1613 
1614 	iwi_start(ifp);
1615 }
1616 
1617 static void
1618 iwi_intr(void *arg)
1619 {
1620 	struct iwi_softc *sc = arg;
1621 	uint32_t r;
1622 	IWI_LOCK_DECL;
1623 
1624 	IWI_LOCK(sc);
1625 
1626 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1627 		IWI_UNLOCK(sc);
1628 		return;
1629 	}
1630 
1631 	/* acknowledge interrupts */
1632 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1633 
1634 	if (r & IWI_INTR_FATAL_ERROR) {
1635 		device_printf(sc->sc_dev, "firmware error\n");
1636 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
1637 	}
1638 
1639 	if (r & IWI_INTR_FW_INITED) {
1640 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1641 			wakeup(sc);
1642 	}
1643 
1644 	if (r & IWI_INTR_RADIO_OFF)
1645 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask);
1646 
1647 	if (r & IWI_INTR_CMD_DONE) {
1648 		sc->flags &= ~IWI_FLAG_BUSY;
1649 		wakeup(sc);
1650 	}
1651 
1652 	if (r & IWI_INTR_TX1_DONE)
1653 		iwi_tx_intr(sc, &sc->txq[0]);
1654 
1655 	if (r & IWI_INTR_TX2_DONE)
1656 		iwi_tx_intr(sc, &sc->txq[1]);
1657 
1658 	if (r & IWI_INTR_TX3_DONE)
1659 		iwi_tx_intr(sc, &sc->txq[2]);
1660 
1661 	if (r & IWI_INTR_TX4_DONE)
1662 		iwi_tx_intr(sc, &sc->txq[3]);
1663 
1664 	if (r & IWI_INTR_RX_DONE)
1665 		iwi_rx_intr(sc);
1666 
1667 	if (r & IWI_INTR_PARITY_ERROR) {
1668 		/* XXX rate-limit */
1669 		device_printf(sc->sc_dev, "parity error\n");
1670 	}
1671 
1672 	IWI_UNLOCK(sc);
1673 }
1674 
1675 static int
1676 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1677 {
1678 	struct iwi_cmd_desc *desc;
1679 
1680 	IWI_LOCK_CHECK(sc);
1681 
1682 	if (sc->flags & IWI_FLAG_BUSY) {
1683 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1684 			__func__, type);
1685 		return EAGAIN;
1686 	}
1687 	sc->flags |= IWI_FLAG_BUSY;
1688 
1689 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1690 
1691 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1692 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1693 	desc->type = type;
1694 	desc->len = len;
1695 	memcpy(desc->data, data, len);
1696 
1697 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1698 	    BUS_DMASYNC_PREWRITE);
1699 
1700 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1701 	    type, len));
1702 
1703 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1704 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1705 
1706 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1707 }
1708 
1709 static void
1710 iwi_write_ibssnode(struct iwi_softc *sc,
1711 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1712 {
1713 	struct iwi_ibssnode node;
1714 
1715 	/* write node information into NIC memory */
1716 	memset(&node, 0, sizeof node);
1717 	IEEE80211_ADDR_COPY(node.bssid, addr);
1718 
1719 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1720 
1721 	CSR_WRITE_REGION_1(sc,
1722 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1723 	    (uint8_t *)&node, sizeof node);
1724 }
1725 
1726 static int
1727 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1728     int ac)
1729 {
1730 	struct iwi_softc *sc = ifp->if_softc;
1731 	struct ieee80211com *ic = &sc->sc_ic;
1732 	struct iwi_node *in = (struct iwi_node *)ni;
1733 	const struct ieee80211_frame *wh;
1734 	struct ieee80211_key *k;
1735 	const struct chanAccParams *cap;
1736 	struct iwi_tx_ring *txq = &sc->txq[ac];
1737 	struct iwi_tx_data *data;
1738 	struct iwi_tx_desc *desc;
1739 	struct mbuf *mnew;
1740 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1741 	int error, nsegs, hdrlen, i;
1742 	int ismcast, flags, xflags, staid;
1743 
1744 	IWI_LOCK_CHECK(sc);
1745 	wh = mtod(m0, const struct ieee80211_frame *);
1746 	/* NB: only data frames use this path */
1747 	hdrlen = ieee80211_hdrsize(wh);
1748 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1749 	flags = xflags = 0;
1750 
1751 	if (!ismcast)
1752 		flags |= IWI_DATA_FLAG_NEED_ACK;
1753 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1754 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1755 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1756 		xflags |= IWI_DATA_XFLAG_QOS;
1757 		cap = &ic->ic_wme.wme_chanParams;
1758 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1759 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1760 	}
1761 
1762 	/*
1763 	 * This is only used in IBSS mode where the firmware expect an index
1764 	 * in a h/w table instead of a destination address.
1765 	 */
1766 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1767 		if (!ismcast) {
1768 			if (in->in_station == -1) {
1769 				in->in_station = alloc_unr(sc->sc_unr);
1770 				if (in->in_station == -1) {
1771 					/* h/w table is full */
1772 					m_freem(m0);
1773 					ieee80211_free_node(ni);
1774 					ifp->if_oerrors++;
1775 					return 0;
1776 				}
1777 				iwi_write_ibssnode(sc,
1778 					ni->ni_macaddr, in->in_station);
1779 			}
1780 			staid = in->in_station;
1781 		} else {
1782 			/*
1783 			 * Multicast addresses have no associated node
1784 			 * so there will be no station entry.  We reserve
1785 			 * entry 0 for one mcast address and use that.
1786 			 * If there are many being used this will be
1787 			 * expensive and we'll need to do a better job
1788 			 * but for now this handles the broadcast case.
1789 			 */
1790 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1791 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1792 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1793 			}
1794 			staid = 0;
1795 		}
1796 	} else
1797 		staid = 0;
1798 
1799 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1800 		k = ieee80211_crypto_encap(ic, ni, m0);
1801 		if (k == NULL) {
1802 			m_freem(m0);
1803 			return ENOBUFS;
1804 		}
1805 
1806 		/* packet header may have moved, reset our local pointer */
1807 		wh = mtod(m0, struct ieee80211_frame *);
1808 	}
1809 
1810 	if (bpf_peers_present(sc->sc_drvbpf)) {
1811 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1812 
1813 		tap->wt_flags = 0;
1814 
1815 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1816 	}
1817 
1818 	data = &txq->data[txq->cur];
1819 	desc = &txq->desc[txq->cur];
1820 
1821 	/* save and trim IEEE802.11 header */
1822 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1823 	m_adj(m0, hdrlen);
1824 
1825 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1826 	    &nsegs, 0);
1827 	if (error != 0 && error != EFBIG) {
1828 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1829 		    error);
1830 		m_freem(m0);
1831 		return error;
1832 	}
1833 	if (error != 0) {
1834 		mnew = m_defrag(m0, M_DONTWAIT);
1835 		if (mnew == NULL) {
1836 			device_printf(sc->sc_dev,
1837 			    "could not defragment mbuf\n");
1838 			m_freem(m0);
1839 			return ENOBUFS;
1840 		}
1841 		m0 = mnew;
1842 
1843 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1844 		    m0, segs, &nsegs, 0);
1845 		if (error != 0) {
1846 			device_printf(sc->sc_dev,
1847 			    "could not map mbuf (error %d)\n", error);
1848 			m_freem(m0);
1849 			return error;
1850 		}
1851 	}
1852 
1853 	data->m = m0;
1854 	data->ni = ni;
1855 
1856 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1857 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1858 	desc->station = staid;
1859 	desc->cmd = IWI_DATA_CMD_TX;
1860 	desc->len = htole16(m0->m_pkthdr.len);
1861 	desc->flags = flags;
1862 	desc->xflags = xflags;
1863 
1864 #if 0
1865 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1866 		desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
1867 	else
1868 #endif
1869 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1870 
1871 	desc->nseg = htole32(nsegs);
1872 	for (i = 0; i < nsegs; i++) {
1873 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1874 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1875 	}
1876 
1877 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1878 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1879 
1880 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1881 	    ac, txq->cur, le16toh(desc->len), nsegs));
1882 
1883 	txq->queued++;
1884 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1885 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1886 
1887 	return 0;
1888 }
1889 
1890 static void
1891 iwi_start(struct ifnet *ifp)
1892 {
1893 	struct iwi_softc *sc = ifp->if_softc;
1894 	struct ieee80211com *ic = &sc->sc_ic;
1895 	struct mbuf *m0;
1896 	struct ether_header *eh;
1897 	struct ieee80211_node *ni;
1898 	int ac;
1899 	IWI_LOCK_DECL;
1900 
1901 	IWI_LOCK(sc);
1902 
1903 	if (ic->ic_state != IEEE80211_S_RUN) {
1904 		IWI_UNLOCK(sc);
1905 		return;
1906 	}
1907 
1908 	for (;;) {
1909 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1910 		if (m0 == NULL) {
1911 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1912 			if (m0 == NULL)
1913 				break;
1914 
1915 			if (m0->m_len < sizeof (struct ether_header) &&
1916 			    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
1917 				ifp->if_oerrors++;
1918 				continue;
1919 			}
1920 			eh = mtod(m0, struct ether_header *);
1921 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1922 			if (ni == NULL) {
1923 				m_freem(m0);
1924 				ifp->if_oerrors++;
1925 				continue;
1926 			}
1927 
1928 			/* classify mbuf so we can find which tx ring to use */
1929 			if (ieee80211_classify(ic, m0, ni) != 0) {
1930 				m_freem(m0);
1931 				ieee80211_free_node(ni);
1932 				ifp->if_oerrors++;
1933 				continue;
1934 			}
1935 
1936 			/* XXX does not belong here */
1937 			/* no QoS encapsulation for EAPOL frames */
1938 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1939 			    M_WME_GETAC(m0) : WME_AC_BE;
1940 
1941 			if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1942 				/* there is no place left in this ring */
1943 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1944 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1945 				break;
1946 			}
1947 
1948 			BPF_MTAP(ifp, m0);
1949 
1950 			m0 = ieee80211_encap(ic, m0, ni);
1951 			if (m0 == NULL) {
1952 				ieee80211_free_node(ni);
1953 				ifp->if_oerrors++;
1954 				continue;
1955 			}
1956 		} else {
1957 			ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
1958 			m0->m_pkthdr.rcvif = NULL;
1959 			/* XXX no way to send mgt frames (yet), discard */
1960 			m_freem(m0);
1961 			ieee80211_free_node(ni);
1962 			continue;
1963 		}
1964 
1965 		if (bpf_peers_present(ic->ic_rawbpf))
1966 			bpf_mtap(ic->ic_rawbpf, m0);
1967 
1968 		if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
1969 			ieee80211_free_node(ni);
1970 			ifp->if_oerrors++;
1971 			break;
1972 		}
1973 
1974 		sc->sc_tx_timer = 5;
1975 		ifp->if_timer = 1;
1976 	}
1977 
1978 	IWI_UNLOCK(sc);
1979 }
1980 
1981 static void
1982 iwi_watchdog(struct ifnet *ifp)
1983 {
1984 	struct iwi_softc *sc = ifp->if_softc;
1985 	struct ieee80211com *ic = &sc->sc_ic;
1986 	IWI_LOCK_DECL;
1987 
1988 	IWI_LOCK(sc);
1989 
1990 	if (sc->sc_tx_timer > 0) {
1991 		if (--sc->sc_tx_timer == 0) {
1992 			if_printf(ifp, "device timeout\n");
1993 			ifp->if_oerrors++;
1994 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
1995 		}
1996 	}
1997 	if (sc->sc_rfkill_timer > 0) {
1998 		if (--sc->sc_rfkill_timer == 0) {
1999 			/*
2000 			 * Check for a change in rfkill state.  We get an
2001 			 * interrupt when a radio is disabled but not when
2002 			 * it is enabled so we must poll for the latter.
2003 			 */
2004 			if (!iwi_getrfkill(sc))
2005 				taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask);
2006 			else
2007 				sc->sc_rfkill_timer = 2;
2008 		}
2009 	}
2010 	if (sc->sc_scan_timer > 0) {
2011 		if (--sc->sc_scan_timer == 0) {
2012 			if (sc->flags & IWI_FLAG_SCANNING) {
2013 				if_printf(ifp, "scan stuck\n");
2014 				taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
2015 			}
2016 		}
2017 	}
2018 	if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer)
2019 		ifp->if_timer = 1;
2020 	else
2021 		ifp->if_timer = 0;
2022 
2023 	ieee80211_watchdog(ic);
2024 
2025 	IWI_UNLOCK(sc);
2026 }
2027 
2028 static int
2029 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2030 {
2031 	struct iwi_softc *sc = ifp->if_softc;
2032 	struct ieee80211com *ic = &sc->sc_ic;
2033 	int error = 0;
2034 	IWI_LOCK_DECL;
2035 
2036 	IWI_LOCK(sc);
2037 
2038 	/*
2039 	 * wait until pending iwi_cmd() are completed, to avoid races
2040 	 * that could cause problems.
2041 	 */
2042 	while (sc->flags & IWI_FLAG_BUSY)
2043 		msleep(sc, &sc->sc_mtx, 0, "iwiioctl", hz);
2044 
2045 	switch (cmd) {
2046 	case SIOCSIFFLAGS:
2047 		if (ifp->if_flags & IFF_UP) {
2048 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2049 				iwi_init_locked(sc, 0);
2050 		} else {
2051 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2052 				iwi_stop(sc);
2053 			else {
2054 				/*
2055 				 * If device was stopped due to rfkill then
2056 				 * marked down we'll have the polling thread
2057 				 * running; stop it explicitly.
2058 				 */
2059 				sc->sc_rfkill_timer = 0;
2060 			}
2061 		}
2062 		break;
2063 
2064 	default:
2065 		error = ieee80211_ioctl(ic, cmd, data);
2066 	}
2067 
2068 	if (error == ENETRESET) {
2069 		if ((ifp->if_flags & IFF_UP) &&
2070 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2071 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2072 			iwi_init_locked(sc, 0);
2073 		error = 0;
2074 	}
2075 
2076 	IWI_UNLOCK(sc);
2077 
2078 	return error;
2079 }
2080 
2081 static void
2082 iwi_stop_master(struct iwi_softc *sc)
2083 {
2084 	uint32_t tmp;
2085 	int ntries;
2086 
2087 	IWI_LOCK_CHECK(sc);
2088 
2089 	/* disable interrupts */
2090 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2091 
2092 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2093 	for (ntries = 0; ntries < 5; ntries++) {
2094 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2095 			break;
2096 		DELAY(10);
2097 	}
2098 	if (ntries == 5)
2099 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2100 
2101 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2102 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2103 
2104 	sc->flags &= ~IWI_FLAG_FW_INITED;
2105 }
2106 
2107 static int
2108 iwi_reset(struct iwi_softc *sc)
2109 {
2110 	uint32_t tmp;
2111 	int i, ntries;
2112 
2113 	iwi_stop_master(sc);
2114 
2115 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2116 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2117 
2118 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2119 
2120 	/* wait for clock stabilization */
2121 	for (ntries = 0; ntries < 1000; ntries++) {
2122 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2123 			break;
2124 		DELAY(200);
2125 	}
2126 	if (ntries == 1000) {
2127 		device_printf(sc->sc_dev,
2128 		    "timeout waiting for clock stabilization\n");
2129 		return EIO;
2130 	}
2131 
2132 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2133 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2134 
2135 	DELAY(10);
2136 
2137 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2138 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2139 
2140 	/* clear NIC memory */
2141 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2142 	for (i = 0; i < 0xc000; i++)
2143 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2144 
2145 	return 0;
2146 }
2147 
2148 static const struct iwi_firmware_ohdr *
2149 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2150 {
2151 	const struct firmware *fp = fw->fp;
2152 	const struct iwi_firmware_ohdr *hdr;
2153 
2154 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2155 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2156 		return NULL;
2157 	}
2158 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2159 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2160 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2161 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2162 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2163 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2164 		    IWI_FW_REQ_MINOR);
2165 		return NULL;
2166 	}
2167 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2168 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2169 	fw->name = fp->name;
2170 	return hdr;
2171 }
2172 
2173 static const struct iwi_firmware_ohdr *
2174 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2175 {
2176 	const struct iwi_firmware_ohdr *hdr;
2177 
2178 	hdr = iwi_setup_ofw(sc, fw);
2179 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2180 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2181 		    fw->name);
2182 		hdr = NULL;
2183 	}
2184 	return hdr;
2185 }
2186 
2187 static void
2188 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2189 	  struct iwi_fw *uc, const char *ucname)
2190 {
2191 	if (fw->fp == NULL)
2192 		fw->fp = firmware_get(fwname);
2193 	/* NB: pre-3.0 ucode is packaged separately */
2194 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2195 		uc->fp = firmware_get(ucname);
2196 }
2197 
2198 /*
2199  * Get the required firmware images if not already loaded.
2200  * Note that we hold firmware images so long as the device
2201  * is marked up in case we need to reload them on device init.
2202  * This is necessary because we re-init the device sometimes
2203  * from a context where we cannot read from the filesystem
2204  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2205  * XXX return 0 on success, 1 on error.
2206  *
2207  * NB: the order of get'ing and put'ing images here is
2208  * intentional to support handling firmware images bundled
2209  * by operating mode and/or all together in one file with
2210  * the boot firmware as "master".
2211  */
2212 static int
2213 iwi_get_firmware(struct iwi_softc *sc)
2214 {
2215 	struct ieee80211com *ic = &sc->sc_ic;
2216 	const struct iwi_firmware_hdr *hdr;
2217 	const struct firmware *fp;
2218 
2219 	/* invalidate cached firmware on mode change */
2220 	if (sc->fw_mode != ic->ic_opmode)
2221 		iwi_put_firmware(sc);
2222 
2223 	switch (ic->ic_opmode) {
2224 	case IEEE80211_M_STA:
2225 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2226 		break;
2227 
2228 	case IEEE80211_M_IBSS:
2229 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2230 		break;
2231 
2232 	case IEEE80211_M_MONITOR:
2233 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2234 			  &sc->fw_uc, "iwi_ucode_monitor");
2235 		break;
2236 
2237 	default:
2238 		break;
2239 	}
2240 	fp = sc->fw_fw.fp;
2241 	if (fp == NULL) {
2242 		device_printf(sc->sc_dev, "could not load firmware\n");
2243 		goto bad;
2244 	}
2245 	if (fp->version < 300) {
2246 		/*
2247 		 * Firmware prior to 3.0 was packaged as separate
2248 		 * boot, firmware, and ucode images.  Verify the
2249 		 * ucode image was read in, retrieve the boot image
2250 		 * if needed, and check version stamps for consistency.
2251 		 * The version stamps in the data are also checked
2252 		 * above; this is a bit paranoid but is a cheap
2253 		 * safeguard against mis-packaging.
2254 		 */
2255 		if (sc->fw_uc.fp == NULL) {
2256 			device_printf(sc->sc_dev, "could not load ucode\n");
2257 			goto bad;
2258 		}
2259 		if (sc->fw_boot.fp == NULL) {
2260 			sc->fw_boot.fp = firmware_get("iwi_boot");
2261 			if (sc->fw_boot.fp == NULL) {
2262 				device_printf(sc->sc_dev,
2263 					"could not load boot firmware\n");
2264 				goto bad;
2265 			}
2266 		}
2267 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2268 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2269 			device_printf(sc->sc_dev,
2270 			    "firmware version mismatch: "
2271 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2272 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2273 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2274 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2275 			);
2276 			goto bad;
2277 		}
2278 		/*
2279 		 * Check and setup each image.
2280 		 */
2281 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2282 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2283 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2284 			goto bad;
2285 	} else {
2286 		/*
2287 		 * Check and setup combined image.
2288 		 */
2289 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2290 			device_printf(sc->sc_dev, "image '%s' too small\n",
2291 			    fp->name);
2292 			goto bad;
2293 		}
2294 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2295 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2296 				+ le32toh(hdr->fsize)) {
2297 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2298 			    fp->name);
2299 			goto bad;
2300 		}
2301 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2302 		sc->fw_boot.size = le32toh(hdr->bsize);
2303 		sc->fw_boot.name = fp->name;
2304 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2305 		sc->fw_uc.size = le32toh(hdr->usize);
2306 		sc->fw_uc.name = fp->name;
2307 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2308 		sc->fw_fw.size = le32toh(hdr->fsize);
2309 		sc->fw_fw.name = fp->name;
2310 	}
2311 #if 0
2312 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2313 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2314 #endif
2315 
2316 	sc->fw_mode = ic->ic_opmode;
2317 	return 0;
2318 bad:
2319 	iwi_put_firmware(sc);
2320 	return 1;
2321 }
2322 
2323 static void
2324 iwi_put_fw(struct iwi_fw *fw)
2325 {
2326 	if (fw->fp != NULL) {
2327 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2328 		fw->fp = NULL;
2329 	}
2330 	fw->data = NULL;
2331 	fw->size = 0;
2332 	fw->name = NULL;
2333 }
2334 
2335 /*
2336  * Release any cached firmware images.
2337  */
2338 static void
2339 iwi_put_firmware(struct iwi_softc *sc)
2340 {
2341 	iwi_put_fw(&sc->fw_uc);
2342 	iwi_put_fw(&sc->fw_fw);
2343 	iwi_put_fw(&sc->fw_boot);
2344 }
2345 
2346 static int
2347 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2348 {
2349 	uint32_t tmp;
2350 	const uint16_t *w;
2351 	const char *uc = fw->data;
2352 	size_t size = fw->size;
2353 	int i, ntries, error;
2354 
2355 	IWI_LOCK_CHECK(sc);
2356 	error = 0;
2357 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2358 	    IWI_RST_STOP_MASTER);
2359 	for (ntries = 0; ntries < 5; ntries++) {
2360 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2361 			break;
2362 		DELAY(10);
2363 	}
2364 	if (ntries == 5) {
2365 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2366 		error = EIO;
2367 		goto fail;
2368 	}
2369 
2370 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2371 	DELAY(5000);
2372 
2373 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2374 	tmp &= ~IWI_RST_PRINCETON_RESET;
2375 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2376 
2377 	DELAY(5000);
2378 	MEM_WRITE_4(sc, 0x3000e0, 0);
2379 	DELAY(1000);
2380 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2381 	DELAY(1000);
2382 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2383 	DELAY(1000);
2384 	MEM_WRITE_1(sc, 0x200000, 0x00);
2385 	MEM_WRITE_1(sc, 0x200000, 0x40);
2386 	DELAY(1000);
2387 
2388 	/* write microcode into adapter memory */
2389 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2390 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2391 
2392 	MEM_WRITE_1(sc, 0x200000, 0x00);
2393 	MEM_WRITE_1(sc, 0x200000, 0x80);
2394 
2395 	/* wait until we get an answer */
2396 	for (ntries = 0; ntries < 100; ntries++) {
2397 		if (MEM_READ_1(sc, 0x200000) & 1)
2398 			break;
2399 		DELAY(100);
2400 	}
2401 	if (ntries == 100) {
2402 		device_printf(sc->sc_dev,
2403 		    "timeout waiting for ucode to initialize\n");
2404 		error = EIO;
2405 		goto fail;
2406 	}
2407 
2408 	/* read the answer or the firmware will not initialize properly */
2409 	for (i = 0; i < 7; i++)
2410 		MEM_READ_4(sc, 0x200004);
2411 
2412 	MEM_WRITE_1(sc, 0x200000, 0x00);
2413 
2414 fail:
2415 	return error;
2416 }
2417 
2418 /* macro to handle unaligned little endian data in firmware image */
2419 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2420 
2421 static int
2422 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2423 {
2424 	u_char *p, *end;
2425 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2426 	int ntries, error;
2427 
2428 	IWI_LOCK_CHECK(sc);
2429 	/* copy firmware image to DMA memory */
2430 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2431 
2432 	/* make sure the adapter will get up-to-date values */
2433 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2434 
2435 	/* tell the adapter where the command blocks are stored */
2436 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2437 
2438 	/*
2439 	 * Store command blocks into adapter's internal memory using register
2440 	 * indirections. The adapter will read the firmware image through DMA
2441 	 * using information stored in command blocks.
2442 	 */
2443 	src = sc->fw_physaddr;
2444 	p = sc->fw_virtaddr;
2445 	end = p + fw->size;
2446 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2447 
2448 	while (p < end) {
2449 		dst = GETLE32(p); p += 4; src += 4;
2450 		len = GETLE32(p); p += 4; src += 4;
2451 		p += len;
2452 
2453 		while (len > 0) {
2454 			mlen = min(len, IWI_CB_MAXDATALEN);
2455 
2456 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2457 			sum = ctl ^ src ^ dst;
2458 
2459 			/* write a command block */
2460 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2461 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2462 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2463 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2464 
2465 			src += mlen;
2466 			dst += mlen;
2467 			len -= mlen;
2468 		}
2469 	}
2470 
2471 	/* write a fictive final command block (sentinel) */
2472 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2473 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2474 
2475 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2476 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2477 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2478 
2479 	/* tell the adapter to start processing command blocks */
2480 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2481 
2482 	/* wait until the adapter reaches the sentinel */
2483 	for (ntries = 0; ntries < 400; ntries++) {
2484 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2485 			break;
2486 		DELAY(100);
2487 	}
2488 	/* sync dma, just in case */
2489 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2490 	if (ntries == 400) {
2491 		device_printf(sc->sc_dev,
2492 		    "timeout processing command blocks for %s firmware\n",
2493 		    fw->name);
2494 		return EIO;
2495 	}
2496 
2497 	/* we're done with command blocks processing */
2498 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2499 
2500 	/* allow interrupts so we know when the firmware is ready */
2501 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2502 
2503 	/* tell the adapter to initialize the firmware */
2504 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2505 
2506 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2507 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2508 
2509 	/* wait at most one second for firmware initialization to complete */
2510 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2511 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2512 		    "initialization to complete\n", fw->name);
2513 	}
2514 
2515 	return error;
2516 }
2517 
2518 static int
2519 iwi_setpowermode(struct iwi_softc *sc)
2520 {
2521 	struct ieee80211com *ic = &sc->sc_ic;
2522 	uint32_t data;
2523 
2524 	if (ic->ic_flags & IEEE80211_F_PMGTON) {
2525 		/* XXX set more fine-grained operation */
2526 		data = htole32(IWI_POWER_MODE_MAX);
2527 	} else
2528 		data = htole32(IWI_POWER_MODE_CAM);
2529 
2530 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2531 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2532 }
2533 
2534 static int
2535 iwi_setwepkeys(struct iwi_softc *sc)
2536 {
2537 	struct ieee80211com *ic = &sc->sc_ic;
2538 	struct iwi_wep_key wepkey;
2539 	struct ieee80211_key *wk;
2540 	int error, i;
2541 
2542 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2543 		wk = &ic->ic_crypto.cs_nw_keys[i];
2544 
2545 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2546 		wepkey.idx = i;
2547 		wepkey.len = wk->wk_keylen;
2548 		memset(wepkey.key, 0, sizeof wepkey.key);
2549 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2550 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2551 		    wepkey.len));
2552 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2553 		    sizeof wepkey);
2554 		if (error != 0)
2555 			return error;
2556 	}
2557 	return 0;
2558 }
2559 
2560 static int
2561 iwi_config(struct iwi_softc *sc)
2562 {
2563 	struct ieee80211com *ic = &sc->sc_ic;
2564 	struct ifnet *ifp = ic->ic_ifp;
2565 	struct iwi_configuration config;
2566 	struct iwi_rateset rs;
2567 	struct iwi_txpower power;
2568 	uint32_t data;
2569 	int error, i;
2570 	IWI_LOCK_CHECK(sc);
2571 
2572 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2573 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
2574 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2575 	    IEEE80211_ADDR_LEN);
2576 	if (error != 0)
2577 		return error;
2578 
2579 	memset(&config, 0, sizeof config);
2580 	config.bluetooth_coexistence = sc->bluetooth;
2581 	config.silence_threshold = 0x1e;
2582 	config.antenna = sc->antenna;
2583 	config.multicast_enabled = 1;
2584 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2585 	config.disable_unicast_decryption = 1;
2586 	config.disable_multicast_decryption = 1;
2587 	DPRINTF(("Configuring adapter\n"));
2588 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2589 	if (error != 0)
2590 		return error;
2591 
2592 	error = iwi_setpowermode(sc);
2593 	if (error != 0)
2594 		return error;
2595 
2596 	data = htole32(ic->ic_rtsthreshold);
2597 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2598 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2599 	if (error != 0)
2600 		return error;
2601 
2602 	data = htole32(ic->ic_fragthreshold);
2603 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2604 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2605 	if (error != 0)
2606 		return error;
2607 
2608 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2609 		power.mode = IWI_MODE_11B;
2610 		power.nchan = 11;
2611 		for (i = 0; i < 11; i++) {
2612 			power.chan[i].chan = i + 1;
2613 			power.chan[i].power = IWI_TXPOWER_MAX;
2614 		}
2615 		DPRINTF(("Setting .11b channels tx power\n"));
2616 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2617 		if (error != 0)
2618 			return error;
2619 
2620 		power.mode = IWI_MODE_11G;
2621 		DPRINTF(("Setting .11g channels tx power\n"));
2622 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2623 		if (error != 0)
2624 			return error;
2625 	}
2626 
2627 	rs.mode = IWI_MODE_11G;
2628 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2629 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2630 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2631 	    rs.nrates);
2632 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2633 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2634 	if (error != 0)
2635 		return error;
2636 
2637 	rs.mode = IWI_MODE_11A;
2638 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2639 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2640 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2641 	    rs.nrates);
2642 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2643 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2644 	if (error != 0)
2645 		return error;
2646 
2647 	/* if we have a desired ESSID, set it now */
2648 	if (ic->ic_des_esslen != 0) {
2649 #ifdef IWI_DEBUG
2650 		if (iwi_debug > 0) {
2651 			printf("Setting desired ESSID to ");
2652 			ieee80211_print_essid(ic->ic_des_essid,
2653 			    ic->ic_des_esslen);
2654 			printf("\n");
2655 		}
2656 #endif
2657 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2658 		    ic->ic_des_esslen);
2659 		if (error != 0)
2660 			return error;
2661 	}
2662 
2663 	data = htole32(arc4random());
2664 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2665 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2666 	if (error != 0)
2667 		return error;
2668 
2669 	error = iwi_setwepkeys(sc);
2670 	if (error != 0)
2671 		return error;
2672 
2673 	/* enable adapter */
2674 	DPRINTF(("Enabling adapter\n"));
2675 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2676 }
2677 
2678 static __inline void
2679 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2680 {
2681 	uint8_t *st = &scan->scan_type[ix / 2];
2682 	if (ix % 2)
2683 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2684 	else
2685 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2686 }
2687 
2688 static int
2689 iwi_scan(struct iwi_softc *sc)
2690 {
2691 	struct ieee80211com *ic = &sc->sc_ic;
2692 	const struct ieee80211_channel *c;
2693 	struct iwi_scan_ext scan;
2694 	int i, ix, start, scan_type, error;
2695 
2696 	IWI_LOCK_CHECK(sc);
2697 
2698 	memset(&scan, 0, sizeof scan);
2699 
2700 	/* XXX different dwell times for different scan types */
2701 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime);
2702 	scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime);
2703 	scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime);
2704 
2705 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2706 
2707 	if (ic->ic_des_esslen != 0) {
2708 		scan_type = IWI_SCAN_TYPE_BDIRECTED;
2709 #ifdef IWI_DEBUG
2710 		if (iwi_debug > 0) {
2711 			printf("Setting desired ESSID to ");
2712 			ieee80211_print_essid(ic->ic_des_essid,
2713 			    ic->ic_des_esslen);
2714 			printf("\n");
2715 		}
2716 #endif
2717 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2718 		    ic->ic_des_esslen);
2719 		if (error != 0)
2720 			return error;
2721 	} else
2722 		scan_type = IWI_SCAN_TYPE_BROADCAST;
2723 
2724 	ix = 0;
2725 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11A)) {
2726 		start = ix;
2727 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2728 			c = &ic->ic_channels[i];
2729 			/*
2730 			 * NB: ieee80211_next_scan clears curchan from the
2731 			 * channel list so we must explicitly check; this
2732 			 * will be fixed when the new scanning support arrives.
2733 			 */
2734 			if (!IEEE80211_IS_CHAN_5GHZ(c) ||
2735 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2736 				continue;
2737 			ix++;
2738 			scan.channels[ix] = i;
2739 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2740 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2741 			else
2742 				set_scan_type(&scan, ix, scan_type);
2743 		}
2744 		if (start != ix) {
2745 			scan.channels[start] = IWI_CHAN_5GHZ | (ix - start);
2746 			ix++;
2747 		}
2748 	}
2749 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11B)) {
2750 		start = ix;
2751 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2752 			c = &ic->ic_channels[i];
2753 			/* NB: see above */
2754 			if (!IEEE80211_IS_CHAN_2GHZ(c) ||
2755 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2756 				continue;
2757 			ix++;
2758 			scan.channels[ix] = i;
2759 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2760 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2761 			else
2762 				set_scan_type(&scan, ix, scan_type);
2763 		}
2764 		if (start != ix)
2765 			scan.channels[start] = IWI_CHAN_2GHZ | (ix - start);
2766 	}
2767 
2768 	DPRINTF(("Start scanning\n"));
2769 	/*
2770 	 * With 100ms/channel dwell time and a max of ~20 channels
2771 	 * 5 seconds may be too tight; leave a bit more slack.
2772 	 */
2773 	sc->sc_scan_timer = 7;			/* seconds to complete */
2774 	sc->sc_ifp->if_timer = 1;
2775 	sc->flags |= IWI_FLAG_SCANNING;
2776 	return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2777 }
2778 
2779 static void
2780 iwi_scanabort(void *arg, int npending)
2781 {
2782 	struct iwi_softc *sc = arg;
2783 	IWI_LOCK_DECL;
2784 
2785 	IWI_LOCK(sc);
2786 	/* NB: make sure we're still scanning */
2787 	if (sc->flags & IWI_FLAG_SCANNING)
2788 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
2789 	IWI_UNLOCK(sc);
2790 }
2791 
2792 static void
2793 iwi_scanstart(void *arg, int npending)
2794 {
2795 	struct iwi_softc *sc = arg;
2796 	struct ieee80211com *ic = &sc->sc_ic;
2797 	IWI_LOCK_DECL;
2798 
2799 	IWI_LOCK(sc);
2800 	/*
2801 	 * Tell the card to kick off a scan.  We guard this
2802 	 * by checking IWI_FLAG_SCANNING as otherwise we'll
2803 	 * do this twice because ieee80211_begin_scan will
2804 	 * immediately call us back to scan the first channel
2805 	 * in the list.
2806 	 */
2807 	if (sc->flags & IWI_FLAG_SCANNING) {
2808 		ieee80211_begin_scan(ic, 1);
2809 		if (iwi_scan(sc) != 0) {
2810 			/* XXX should not happen */
2811 			sc->flags &= ~IWI_FLAG_SCANNING;
2812 			ieee80211_new_state(ic, IEEE80211_S_INIT, 0);
2813 		}
2814 	}
2815 	IWI_UNLOCK(sc);
2816 }
2817 
2818 static void
2819 iwi_scandone(void *arg, int npending)
2820 {
2821 	struct iwi_softc *sc = arg;
2822 	struct ieee80211com *ic = &sc->sc_ic;
2823 	IWI_LOCK_DECL;
2824 
2825 	IWI_LOCK(sc);
2826 	if (sc->flags & IWI_FLAG_ASSOCIATED)
2827 		iwi_disassociate(sc, 0);
2828 	ieee80211_end_scan(ic);
2829 	IWI_UNLOCK(sc);
2830 }
2831 
2832 /*
2833  * Set the current channel by doing a passive scan.  Note this
2834  * is explicitly for monitor mode operation; do not use it for
2835  * anything else (sigh).
2836  */
2837 static void
2838 iwi_scanchan(void *arg, int npending)
2839 {
2840 	struct iwi_softc *sc = arg;
2841 	struct ieee80211com *ic;
2842 	struct ieee80211_channel *chan;
2843 	struct iwi_scan_ext scan;
2844 	IWI_LOCK_DECL;
2845 
2846 	IWI_LOCK(sc);
2847 	ic = &sc->sc_ic;
2848 	KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR,
2849 		("opmode %u", ic->ic_opmode));
2850 	chan = ic->ic_ibss_chan;
2851 
2852 	memset(&scan, 0, sizeof scan);
2853 	/*
2854 	 * Set the dwell time to a fairly small value.  The firmware
2855 	 * is prone to crash when aborting a scan so it's better to
2856 	 * let a scan complete before changing channels--such as when
2857 	 * channel hopping in monitor mode.
2858 	 */
2859 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
2860 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2861 	if (IEEE80211_IS_CHAN_5GHZ(chan))
2862 		scan.channels[0] = 1 | IWI_CHAN_5GHZ;
2863 	else
2864 		scan.channels[0] = 1 | IWI_CHAN_2GHZ;
2865 	scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2866 	set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE);
2867 
2868 	DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
2869 	sc->flags |= IWI_FLAG_SCANNING;
2870 	(void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2871 	IWI_UNLOCK(sc);
2872 }
2873 
2874 static int
2875 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2876 {
2877 	struct iwi_sensitivity sens;
2878 
2879 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2880 
2881 	memset(&sens, 0, sizeof sens);
2882 	sens.rssi = htole16(rssi_dbm);
2883 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2884 }
2885 
2886 static int
2887 iwi_auth_and_assoc(struct iwi_softc *sc)
2888 {
2889 	struct ieee80211com *ic = &sc->sc_ic;
2890 	struct ifnet *ifp = ic->ic_ifp;
2891 	struct ieee80211_node *ni = ic->ic_bss;
2892 	struct iwi_configuration config;
2893 	struct iwi_associate *assoc = &sc->assoc;
2894 	struct iwi_rateset rs;
2895 	uint16_t capinfo;
2896 	int error;
2897 
2898 	IWI_LOCK_CHECK(sc);
2899 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2900 		memset(&config, 0, sizeof config);
2901 		config.bluetooth_coexistence = sc->bluetooth;
2902 		config.antenna = sc->antenna;
2903 		config.multicast_enabled = 1;
2904 		config.use_protection = 1;
2905 		config.answer_pbreq =
2906 		    (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2907 		config.disable_unicast_decryption = 1;
2908 		config.disable_multicast_decryption = 1;
2909 		DPRINTF(("Configuring adapter\n"));
2910 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2911 		if (error != 0)
2912 			return error;
2913 	}
2914 
2915 #ifdef IWI_DEBUG
2916 	if (iwi_debug > 0) {
2917 		printf("Setting ESSID to ");
2918 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2919 		printf("\n");
2920 	}
2921 #endif
2922 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2923 	if (error != 0)
2924 		return error;
2925 
2926 	/* the rate set has already been "negotiated" */
2927 	rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
2928 	    IWI_MODE_11G;
2929 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2930 	rs.nrates = ni->ni_rates.rs_nrates;
2931 	if (rs.nrates > IWI_RATESET_SIZE) {
2932 		DPRINTF(("Truncating negotiated rate set from %u\n",
2933 		    rs.nrates));
2934 		rs.nrates = IWI_RATESET_SIZE;
2935 	}
2936 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2937 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2938 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2939 	if (error != 0)
2940 		return error;
2941 
2942 	memset(assoc, 0, sizeof *assoc);
2943 
2944 	if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
2945 		/* NB: don't treat WME setup as failure */
2946 		if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0)
2947 			assoc->policy |= htole16(IWI_POLICY_WME);
2948 		/* XXX complain on failure? */
2949 	}
2950 
2951 	if (ic->ic_opt_ie != NULL) {
2952 		DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
2953 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
2954 		    ic->ic_opt_ie_len);
2955 		if (error != 0)
2956 			return error;
2957 	}
2958 
2959 	error = iwi_set_sensitivity(sc, ni->ni_rssi);
2960 	if (error != 0)
2961 		return error;
2962 
2963 	if (IEEE80211_IS_CHAN_A(ni->ni_chan))
2964 		assoc->mode = IWI_MODE_11A;
2965 	else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
2966 		assoc->mode = IWI_MODE_11G;
2967 	else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
2968 		assoc->mode = IWI_MODE_11B;
2969 	/* XXX else error */
2970 	assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2971 	/*
2972 	 * NB: do not arrange for shared key auth w/o privacy
2973 	 *     (i.e. a wep key); it causes a firmware error.
2974 	 */
2975 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) &&
2976 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2977 		assoc->auth = IWI_AUTH_SHARED;
2978 		/*
2979 		 * It's possible to have privacy marked but no default
2980 		 * key setup.  This typically is due to a user app bug
2981 		 * but if we blindly grab the key the firmware will
2982 		 * barf so avoid it for now.
2983 		 */
2984 		if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE)
2985 			assoc->auth |= ic->ic_crypto.cs_def_txkey << 4;
2986 
2987 		error = iwi_setwepkeys(sc);
2988 		if (error != 0)
2989 			return error;
2990 	}
2991 	if (ic->ic_flags & IEEE80211_F_WPA)
2992 		assoc->policy |= htole16(IWI_POLICY_WPA);
2993 	if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2994 		assoc->type = IWI_HC_IBSS_START;
2995 	else
2996 		assoc->type = IWI_HC_ASSOC;
2997 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2998 
2999 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3000 		capinfo = IEEE80211_CAPINFO_IBSS;
3001 	else
3002 		capinfo = IEEE80211_CAPINFO_ESS;
3003 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
3004 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
3005 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3006 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3007 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
3008 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
3009 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
3010 	assoc->capinfo = htole16(capinfo);
3011 
3012 	assoc->lintval = htole16(ic->ic_lintval);
3013 	assoc->intval = htole16(ni->ni_intval);
3014 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
3015 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3016 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
3017 	else
3018 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
3019 
3020 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
3021 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
3022 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
3023 	    assoc->bssid, ":", assoc->dst, ":",
3024 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
3025 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
3026 	    le16toh(assoc->intval)));
3027 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3028 }
3029 
3030 static int
3031 iwi_disassociate(struct iwi_softc *sc, int quiet)
3032 {
3033 	struct iwi_associate *assoc = &sc->assoc;
3034 
3035 	if (quiet)
3036 		assoc->type = IWI_HC_DISASSOC_QUIET;
3037 	else
3038 		assoc->type = IWI_HC_DISASSOC;
3039 
3040 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3041 	    assoc->bssid, ":", assoc->chan));
3042 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3043 }
3044 
3045 static void
3046 iwi_down(void *arg, int npending)
3047 {
3048 	struct iwi_softc *sc = arg;
3049 	IWI_LOCK_DECL;
3050 
3051 	IWI_LOCK(sc);
3052 	iwi_disassociate(sc, 0);
3053 	IWI_UNLOCK(sc);
3054 }
3055 
3056 static void
3057 iwi_init(void *priv)
3058 {
3059 	struct iwi_softc *sc = priv;
3060 	IWI_LOCK_DECL;
3061 
3062 	IWI_LOCK(sc);
3063 	iwi_init_locked(sc, 0);
3064 	IWI_UNLOCK(sc);
3065 }
3066 
3067 /*
3068  * release dma resources for the firmware
3069  */
3070 static void
3071 iwi_release_fw_dma(struct iwi_softc *sc)
3072 {
3073 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3074 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3075 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3076 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3077 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3078 		bus_dma_tag_destroy(sc->fw_dmat);
3079 
3080 	sc->fw_flags = 0;
3081 	sc->fw_dma_size = 0;
3082 	sc->fw_dmat = NULL;
3083 	sc->fw_map = NULL;
3084 	sc->fw_physaddr = 0;
3085 	sc->fw_virtaddr = NULL;
3086 }
3087 
3088 /*
3089  * allocate the dma descriptor for the firmware.
3090  * Return 0 on success, 1 on error.
3091  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3092  */
3093 static int
3094 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3095 {
3096 	if (sc->fw_dma_size > size)
3097 		return 0;
3098 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3099 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3100 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3101 		device_printf(sc->sc_dev,
3102 		    "could not create firmware DMA tag\n");
3103 		goto error;
3104 	}
3105 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3106 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3107 	    &sc->fw_map) != 0) {
3108 		device_printf(sc->sc_dev,
3109 		    "could not allocate firmware DMA memory\n");
3110 		goto error;
3111 	}
3112 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3113 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3114 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3115 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3116 		goto error;
3117 	}
3118 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3119 	sc->fw_dma_size = size;
3120 	return 0;
3121 
3122 error:
3123 	iwi_release_fw_dma(sc);
3124 	return 1;
3125 }
3126 
3127 static void
3128 iwi_init_locked(void *priv, int force)
3129 {
3130 	struct iwi_softc *sc = priv;
3131 	struct ieee80211com *ic = &sc->sc_ic;
3132 	struct ifnet *ifp = ic->ic_ifp;
3133 	struct iwi_rx_data *data;
3134 	int i;
3135 	IWI_LOCK_DECL;
3136 
3137 	IWI_LOCK_CHECK(sc);
3138 	if (sc->flags & IWI_FLAG_FW_LOADING) {
3139 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3140 		return;		/* XXX: condvar? */
3141 	}
3142 
3143 	iwi_stop(sc);
3144 
3145 	if (iwi_reset(sc) != 0) {
3146 		device_printf(sc->sc_dev, "could not reset adapter\n");
3147 		goto fail;
3148 	}
3149 
3150 	sc->flags |= IWI_FLAG_FW_LOADING;
3151 
3152 	IWI_UNLOCK(sc);
3153 	if (iwi_get_firmware(sc)) {
3154 		IWI_LOCK(sc);
3155 		goto fail;
3156 	}
3157 
3158 	/* allocate DMA memory for mapping firmware image */
3159 	i = sc->fw_fw.size;
3160 	if (sc->fw_boot.size > i)
3161 		i = sc->fw_boot.size;
3162 	/* XXX do we dma the ucode as well ? */
3163 	if (sc->fw_uc.size > i)
3164 		i = sc->fw_uc.size;
3165 	if (iwi_init_fw_dma(sc, i)) {
3166 		IWI_LOCK(sc);
3167 		goto fail;
3168 	}
3169 	IWI_LOCK(sc);
3170 
3171 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3172 		device_printf(sc->sc_dev,
3173 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3174 		goto fail;
3175 	}
3176 
3177 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3178 		device_printf(sc->sc_dev,
3179 		    "could not load microcode %s\n", sc->fw_uc.name);
3180 		goto fail;
3181 	}
3182 
3183 	iwi_stop_master(sc);
3184 
3185 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3186 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3187 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3188 
3189 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3190 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3191 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3192 
3193 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3194 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3195 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3196 
3197 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3198 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3199 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3200 
3201 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3202 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3203 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3204 
3205 	for (i = 0; i < sc->rxq.count; i++) {
3206 		data = &sc->rxq.data[i];
3207 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3208 	}
3209 
3210 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3211 
3212 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3213 		device_printf(sc->sc_dev,
3214 		    "could not load main firmware %s\n", sc->fw_fw.name);
3215 		goto fail;
3216 	}
3217 	sc->flags |= IWI_FLAG_FW_INITED;
3218 
3219 	if (iwi_config(sc) != 0) {
3220 		device_printf(sc->sc_dev, "device configuration failed\n");
3221 		goto fail;
3222 	}
3223 
3224 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3225 		/*
3226 		 * NB: When restarting the adapter clock the state
3227 		 * machine regardless of the roaming mode; otherwise
3228 		 * we need to notify user apps so they can manually
3229 		 * get us going again.
3230 		 */
3231 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force)
3232 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3233 	} else
3234 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3235 
3236 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3237 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3238 
3239 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3240 	return;
3241 
3242 fail:	ifp->if_flags &= ~IFF_UP;
3243 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3244 	iwi_stop(sc);
3245 	iwi_put_firmware(sc);
3246 }
3247 
3248 static void
3249 iwi_stop(void *priv)
3250 {
3251 	struct iwi_softc *sc = priv;
3252 	struct ieee80211com *ic = &sc->sc_ic;
3253 	struct ifnet *ifp = ic->ic_ifp;
3254 
3255 	IWI_LOCK_CHECK(sc);	/* XXX: pretty sure this triggers */
3256 	if (sc->sc_softled) {
3257 		callout_stop(&sc->sc_ledtimer);
3258 		sc->sc_blinking = 0;
3259 	}
3260 
3261 	iwi_stop_master(sc);
3262 
3263 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3264 
3265 	/* reset rings */
3266 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3267 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3268 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3269 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3270 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3271 	iwi_reset_rx_ring(sc, &sc->rxq);
3272 
3273 	ifp->if_timer = 0;
3274 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3275 
3276 	sc->sc_tx_timer = 0;
3277 	sc->sc_rfkill_timer = 0;
3278 	sc->sc_scan_timer = 0;
3279 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED);
3280 
3281 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3282 }
3283 
3284 static void
3285 iwi_restart(void *arg, int npending)
3286 {
3287 	struct iwi_softc *sc = arg;
3288 	IWI_LOCK_DECL;
3289 
3290 	IWI_LOCK(sc);
3291 	iwi_init_locked(sc, 1);		/* NB: force state machine */
3292 	IWI_UNLOCK(sc);
3293 }
3294 
3295 /*
3296  * Return whether or not the radio is enabled in hardware
3297  * (i.e. the rfkill switch is "off").
3298  */
3299 static int
3300 iwi_getrfkill(struct iwi_softc *sc)
3301 {
3302 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3303 }
3304 
3305 static void
3306 iwi_radio_on(void *arg, int pending)
3307 {
3308 	struct iwi_softc *sc = arg;
3309 
3310 	device_printf(sc->sc_dev, "radio turned on\n");
3311 	iwi_init(sc);
3312 }
3313 
3314 static void
3315 iwi_radio_off(void *arg, int pending)
3316 {
3317 	struct iwi_softc *sc = arg;
3318 
3319 	device_printf(sc->sc_dev, "radio turned off\n");
3320 	iwi_stop(sc);
3321 	sc->sc_rfkill_timer = 2;
3322 	sc->sc_ifp->if_timer = 1;
3323 }
3324 
3325 static int
3326 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3327 {
3328 	struct iwi_softc *sc = arg1;
3329 	uint32_t size, buf[128];
3330 
3331 	if (!(sc->flags & IWI_FLAG_FW_INITED)) {
3332 		memset(buf, 0, sizeof buf);
3333 		return SYSCTL_OUT(req, buf, sizeof buf);
3334 	}
3335 
3336 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3337 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3338 
3339 	return SYSCTL_OUT(req, buf, sizeof buf);
3340 }
3341 
3342 static int
3343 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3344 {
3345 	struct iwi_softc *sc = arg1;
3346 	int val = !iwi_getrfkill(sc);
3347 
3348 	return SYSCTL_OUT(req, &val, sizeof val);
3349 }
3350 
3351 /*
3352  * Add sysctl knobs.
3353  */
3354 static void
3355 iwi_sysctlattach(struct iwi_softc *sc)
3356 {
3357 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3358 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3359 
3360 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3361 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3362 	    "radio transmitter switch state (0=off, 1=on)");
3363 
3364 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3365 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3366 	    "statistics");
3367 
3368 	sc->dwelltime = 100;
3369 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell",
3370 	    CTLFLAG_RW, &sc->dwelltime, 0,
3371 	    "channel dwell time (ms) for AP/station scanning");
3372 
3373 	sc->bluetooth = 0;
3374 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3375 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3376 
3377 	sc->antenna = IWI_ANTENNA_AUTO;
3378 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3379 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3380 }
3381 
3382 /*
3383  * LED support.
3384  *
3385  * Different cards have different capabilities.  Some have three
3386  * led's while others have only one.  The linux ipw driver defines
3387  * led's for link state (associated or not), band (11a, 11g, 11b),
3388  * and for link activity.  We use one led and vary the blink rate
3389  * according to the tx/rx traffic a la the ath driver.
3390  */
3391 
3392 static __inline uint32_t
3393 iwi_toggle_event(uint32_t r)
3394 {
3395 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3396 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3397 }
3398 
3399 static uint32_t
3400 iwi_read_event(struct iwi_softc *sc)
3401 {
3402 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3403 }
3404 
3405 static void
3406 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3407 {
3408 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3409 }
3410 
3411 static void
3412 iwi_led_done(void *arg)
3413 {
3414 	struct iwi_softc *sc = arg;
3415 
3416 	sc->sc_blinking = 0;
3417 }
3418 
3419 /*
3420  * Turn the activity LED off: flip the pin and then set a timer so no
3421  * update will happen for the specified duration.
3422  */
3423 static void
3424 iwi_led_off(void *arg)
3425 {
3426 	struct iwi_softc *sc = arg;
3427 	uint32_t v;
3428 
3429 	v = iwi_read_event(sc);
3430 	v &= ~sc->sc_ledpin;
3431 	iwi_write_event(sc, iwi_toggle_event(v));
3432 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3433 }
3434 
3435 /*
3436  * Blink the LED according to the specified on/off times.
3437  */
3438 static void
3439 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3440 {
3441 	uint32_t v;
3442 
3443 	v = iwi_read_event(sc);
3444 	v |= sc->sc_ledpin;
3445 	iwi_write_event(sc, iwi_toggle_event(v));
3446 	sc->sc_blinking = 1;
3447 	sc->sc_ledoff = off;
3448 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3449 }
3450 
3451 static void
3452 iwi_led_event(struct iwi_softc *sc, int event)
3453 {
3454 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3455 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3456 	static const struct {
3457 		u_int		rate;		/* tx/rx iwi rate */
3458 		u_int16_t	timeOn;		/* LED on time (ms) */
3459 		u_int16_t	timeOff;	/* LED off time (ms) */
3460 	} blinkrates[] = {
3461 		{ IWI_RATE_OFDM54, 40,  10 },
3462 		{ IWI_RATE_OFDM48, 44,  11 },
3463 		{ IWI_RATE_OFDM36, 50,  13 },
3464 		{ IWI_RATE_OFDM24, 57,  14 },
3465 		{ IWI_RATE_OFDM18, 67,  16 },
3466 		{ IWI_RATE_OFDM12, 80,  20 },
3467 		{ IWI_RATE_DS11,  100,  25 },
3468 		{ IWI_RATE_OFDM9, 133,  34 },
3469 		{ IWI_RATE_OFDM6, 160,  40 },
3470 		{ IWI_RATE_DS5,   200,  50 },
3471 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3472 		{ IWI_RATE_DS2,   267,  66 },
3473 		{ IWI_RATE_DS1,   400, 100 },
3474 		{            0,   500, 130 },	/* unknown rate/polling */
3475 	};
3476 	uint32_t txrate;
3477 	int j = 0;			/* XXX silence compiler */
3478 
3479 	sc->sc_ledevent = ticks;	/* time of last event */
3480 	if (sc->sc_blinking)		/* don't interrupt active blink */
3481 		return;
3482 	switch (event) {
3483 	case IWI_LED_POLL:
3484 		j = N(blinkrates)-1;
3485 		break;
3486 	case IWI_LED_TX:
3487 		/* read current transmission rate from adapter */
3488 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3489 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3490 			for (j = 0; j < N(blinkrates)-1; j++)
3491 				if (blinkrates[j].rate == txrate)
3492 					break;
3493 			sc->sc_txrix = j;
3494 		} else
3495 			j = sc->sc_txrix;
3496 		break;
3497 	case IWI_LED_RX:
3498 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3499 			for (j = 0; j < N(blinkrates)-1; j++)
3500 				if (blinkrates[j].rate == sc->sc_rxrate)
3501 					break;
3502 			sc->sc_rxrix = j;
3503 		} else
3504 			j = sc->sc_rxrix;
3505 		break;
3506 	}
3507 	/* XXX beware of overflow */
3508 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3509 		(blinkrates[j].timeOff * hz) / 1000);
3510 #undef N
3511 }
3512 
3513 static int
3514 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3515 {
3516 	struct iwi_softc *sc = arg1;
3517 	int softled = sc->sc_softled;
3518 	int error;
3519 
3520 	error = sysctl_handle_int(oidp, &softled, 0, req);
3521 	if (error || !req->newptr)
3522 		return error;
3523 	softled = (softled != 0);
3524 	if (softled != sc->sc_softled) {
3525 		if (softled) {
3526 			uint32_t v = iwi_read_event(sc);
3527 			v &= ~sc->sc_ledpin;
3528 			iwi_write_event(sc, iwi_toggle_event(v));
3529 		}
3530 		sc->sc_softled = softled;
3531 	}
3532 	return 0;
3533 }
3534 
3535 static void
3536 iwi_ledattach(struct iwi_softc *sc)
3537 {
3538 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3539 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3540 
3541 	sc->sc_blinking = 0;
3542 	sc->sc_ledstate = 1;
3543 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3544 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3545 
3546 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3547 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3548 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3549 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3550 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3551 		"pin setting to turn activity LED on");
3552 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3553 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3554 		"idle time for inactivity LED (ticks)");
3555 	/* XXX for debugging */
3556 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3557 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3558 		"NIC type from EEPROM");
3559 
3560 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3561 	sc->sc_softled = 1;
3562 
3563 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3564 	if (sc->sc_nictype == 1) {
3565 		/*
3566 		 * NB: led's are reversed.
3567 		 */
3568 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3569 	}
3570 }
3571