xref: /freebsd/sys/dev/iwi/if_iwi.c (revision f5fd950e35c962bad0aa31fdc4b4052e13207893)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 
88 #define IWI_DEBUG
89 #ifdef IWI_DEBUG
90 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
91 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
92 int iwi_debug = 0;
93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
94 
95 static const char *iwi_fw_states[] = {
96 	"IDLE", 		/* IWI_FW_IDLE */
97 	"LOADING",		/* IWI_FW_LOADING */
98 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
99 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
100 	"SCANNING",		/* IWI_FW_SCANNING */
101 };
102 #else
103 #define DPRINTF(x)
104 #define DPRINTFN(n, x)
105 #endif
106 
107 MODULE_DEPEND(iwi, pci,  1, 1, 1);
108 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
109 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
110 
111 enum {
112 	IWI_LED_TX,
113 	IWI_LED_RX,
114 	IWI_LED_POLL,
115 };
116 
117 struct iwi_ident {
118 	uint16_t	vendor;
119 	uint16_t	device;
120 	const char	*name;
121 };
122 
123 static const struct iwi_ident iwi_ident_table[] = {
124 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
125 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
126 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
127 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
128 
129 	{ 0, 0, NULL }
130 };
131 
132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
133 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
134 		    const uint8_t [IEEE80211_ADDR_LEN],
135 		    const uint8_t [IEEE80211_ADDR_LEN]);
136 static void	iwi_vap_delete(struct ieee80211vap *);
137 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
138 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
139 		    int);
140 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
143 		    int, bus_addr_t, bus_addr_t);
144 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
147 		    int);
148 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwi_node_free(struct ieee80211_node *);
153 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
154 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
155 static void	iwi_wme_init(struct iwi_softc *);
156 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
157 static void	iwi_update_wme(void *, int);
158 static int	iwi_wme_update(struct ieee80211com *);
159 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
160 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
161 		    struct iwi_frame *);
162 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
163 static void	iwi_rx_intr(struct iwi_softc *);
164 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
165 static void	iwi_intr(void *);
166 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
167 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
168 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
169 		    struct ieee80211_node *, int);
170 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
171 		    const struct ieee80211_bpf_params *);
172 static void	iwi_start_locked(struct ifnet *);
173 static void	iwi_start(struct ifnet *);
174 static void	iwi_watchdog(void *);
175 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
176 static void	iwi_stop_master(struct iwi_softc *);
177 static int	iwi_reset(struct iwi_softc *);
178 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
179 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
180 static void	iwi_release_fw_dma(struct iwi_softc *sc);
181 static int	iwi_config(struct iwi_softc *);
182 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
183 static void	iwi_put_firmware(struct iwi_softc *);
184 static void	iwi_monitor_scan(void *, int);
185 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
186 static void	iwi_scan_start(struct ieee80211com *);
187 static void	iwi_scan_end(struct ieee80211com *);
188 static void	iwi_set_channel(struct ieee80211com *);
189 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
190 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
191 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
192 static void	iwi_disassoc(void *, int);
193 static int	iwi_disassociate(struct iwi_softc *, int quiet);
194 static void	iwi_init_locked(struct iwi_softc *);
195 static void	iwi_init(void *);
196 static int	iwi_init_fw_dma(struct iwi_softc *, int);
197 static void	iwi_stop_locked(void *);
198 static void	iwi_stop(struct iwi_softc *);
199 static void	iwi_restart(void *, int);
200 static int	iwi_getrfkill(struct iwi_softc *);
201 static void	iwi_radio_on(void *, int);
202 static void	iwi_radio_off(void *, int);
203 static void	iwi_sysctlattach(struct iwi_softc *);
204 static void	iwi_led_event(struct iwi_softc *, int);
205 static void	iwi_ledattach(struct iwi_softc *);
206 
207 static int iwi_probe(device_t);
208 static int iwi_attach(device_t);
209 static int iwi_detach(device_t);
210 static int iwi_shutdown(device_t);
211 static int iwi_suspend(device_t);
212 static int iwi_resume(device_t);
213 
214 static device_method_t iwi_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		iwi_probe),
217 	DEVMETHOD(device_attach,	iwi_attach),
218 	DEVMETHOD(device_detach,	iwi_detach),
219 	DEVMETHOD(device_shutdown,	iwi_shutdown),
220 	DEVMETHOD(device_suspend,	iwi_suspend),
221 	DEVMETHOD(device_resume,	iwi_resume),
222 
223 	DEVMETHOD_END
224 };
225 
226 static driver_t iwi_driver = {
227 	"iwi",
228 	iwi_methods,
229 	sizeof (struct iwi_softc)
230 };
231 
232 static devclass_t iwi_devclass;
233 
234 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
235 
236 MODULE_VERSION(iwi, 1);
237 
238 static __inline uint8_t
239 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
240 {
241 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
242 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
243 }
244 
245 static __inline uint32_t
246 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
247 {
248 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
249 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
250 }
251 
252 static int
253 iwi_probe(device_t dev)
254 {
255 	const struct iwi_ident *ident;
256 
257 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
258 		if (pci_get_vendor(dev) == ident->vendor &&
259 		    pci_get_device(dev) == ident->device) {
260 			device_set_desc(dev, ident->name);
261 			return (BUS_PROBE_DEFAULT);
262 		}
263 	}
264 	return ENXIO;
265 }
266 
267 static int
268 iwi_attach(device_t dev)
269 {
270 	struct iwi_softc *sc = device_get_softc(dev);
271 	struct ifnet *ifp;
272 	struct ieee80211com *ic;
273 	uint16_t val;
274 	int i, error;
275 	uint8_t bands;
276 	uint8_t macaddr[IEEE80211_ADDR_LEN];
277 
278 	sc->sc_dev = dev;
279 
280 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
281 	if (ifp == NULL) {
282 		device_printf(dev, "can not if_alloc()\n");
283 		return ENXIO;
284 	}
285 	ic = ifp->if_l2com;
286 
287 	IWI_LOCK_INIT(sc);
288 
289 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
290 
291 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
292 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
293 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
294 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
295 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc);
296 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
297 
298 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
299 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
300 
301 	pci_write_config(dev, 0x41, 0, 1);
302 
303 	/* enable bus-mastering */
304 	pci_enable_busmaster(dev);
305 
306 	i = PCIR_BAR(0);
307 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
308 	if (sc->mem == NULL) {
309 		device_printf(dev, "could not allocate memory resource\n");
310 		goto fail;
311 	}
312 
313 	sc->sc_st = rman_get_bustag(sc->mem);
314 	sc->sc_sh = rman_get_bushandle(sc->mem);
315 
316 	i = 0;
317 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
318 	    RF_ACTIVE | RF_SHAREABLE);
319 	if (sc->irq == NULL) {
320 		device_printf(dev, "could not allocate interrupt resource\n");
321 		goto fail;
322 	}
323 
324 	if (iwi_reset(sc) != 0) {
325 		device_printf(dev, "could not reset adapter\n");
326 		goto fail;
327 	}
328 
329 	/*
330 	 * Allocate rings.
331 	 */
332 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
333 		device_printf(dev, "could not allocate Cmd ring\n");
334 		goto fail;
335 	}
336 
337 	for (i = 0; i < 4; i++) {
338 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
339 		    IWI_CSR_TX1_RIDX + i * 4,
340 		    IWI_CSR_TX1_WIDX + i * 4);
341 		if (error != 0) {
342 			device_printf(dev, "could not allocate Tx ring %d\n",
343 				i+i);
344 			goto fail;
345 		}
346 	}
347 
348 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
349 		device_printf(dev, "could not allocate Rx ring\n");
350 		goto fail;
351 	}
352 
353 	iwi_wme_init(sc);
354 
355 	ifp->if_softc = sc;
356 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
357 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
358 	ifp->if_init = iwi_init;
359 	ifp->if_ioctl = iwi_ioctl;
360 	ifp->if_start = iwi_start;
361 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
362 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
363 	IFQ_SET_READY(&ifp->if_snd);
364 
365 	ic->ic_ifp = ifp;
366 	ic->ic_opmode = IEEE80211_M_STA;
367 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
368 
369 	/* set device capabilities */
370 	ic->ic_caps =
371 	      IEEE80211_C_STA		/* station mode supported */
372 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
373 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
374 	    | IEEE80211_C_PMGT		/* power save supported */
375 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
376 	    | IEEE80211_C_WPA		/* 802.11i */
377 	    | IEEE80211_C_WME		/* 802.11e */
378 #if 0
379 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
380 #endif
381 	    ;
382 
383 	/* read MAC address from EEPROM */
384 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
385 	macaddr[0] = val & 0xff;
386 	macaddr[1] = val >> 8;
387 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
388 	macaddr[2] = val & 0xff;
389 	macaddr[3] = val >> 8;
390 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
391 	macaddr[4] = val & 0xff;
392 	macaddr[5] = val >> 8;
393 
394 	bands = 0;
395 	setbit(&bands, IEEE80211_MODE_11B);
396 	setbit(&bands, IEEE80211_MODE_11G);
397 	if (pci_get_device(dev) >= 0x4223)
398 		setbit(&bands, IEEE80211_MODE_11A);
399 	ieee80211_init_channels(ic, NULL, &bands);
400 
401 	ieee80211_ifattach(ic, macaddr);
402 	/* override default methods */
403 	ic->ic_node_alloc = iwi_node_alloc;
404 	sc->sc_node_free = ic->ic_node_free;
405 	ic->ic_node_free = iwi_node_free;
406 	ic->ic_raw_xmit = iwi_raw_xmit;
407 	ic->ic_scan_start = iwi_scan_start;
408 	ic->ic_scan_end = iwi_scan_end;
409 	ic->ic_set_channel = iwi_set_channel;
410 	ic->ic_scan_curchan = iwi_scan_curchan;
411 	ic->ic_scan_mindwell = iwi_scan_mindwell;
412 	ic->ic_wme.wme_update = iwi_wme_update;
413 
414 	ic->ic_vap_create = iwi_vap_create;
415 	ic->ic_vap_delete = iwi_vap_delete;
416 
417 	ieee80211_radiotap_attach(ic,
418 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
419 		IWI_TX_RADIOTAP_PRESENT,
420 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
421 		IWI_RX_RADIOTAP_PRESENT);
422 
423 	iwi_sysctlattach(sc);
424 	iwi_ledattach(sc);
425 
426 	/*
427 	 * Hook our interrupt after all initialization is complete.
428 	 */
429 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
430 	    NULL, iwi_intr, sc, &sc->sc_ih);
431 	if (error != 0) {
432 		device_printf(dev, "could not set up interrupt\n");
433 		goto fail;
434 	}
435 
436 	if (bootverbose)
437 		ieee80211_announce(ic);
438 
439 	return 0;
440 fail:
441 	/* XXX fix */
442 	iwi_detach(dev);
443 	return ENXIO;
444 }
445 
446 static int
447 iwi_detach(device_t dev)
448 {
449 	struct iwi_softc *sc = device_get_softc(dev);
450 	struct ifnet *ifp = sc->sc_ifp;
451 	struct ieee80211com *ic = ifp->if_l2com;
452 
453 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
454 
455 	/* NB: do early to drain any pending tasks */
456 	ieee80211_draintask(ic, &sc->sc_radiontask);
457 	ieee80211_draintask(ic, &sc->sc_radiofftask);
458 	ieee80211_draintask(ic, &sc->sc_restarttask);
459 	ieee80211_draintask(ic, &sc->sc_disassoctask);
460 	ieee80211_draintask(ic, &sc->sc_monitortask);
461 
462 	iwi_stop(sc);
463 
464 	ieee80211_ifdetach(ic);
465 
466 	iwi_put_firmware(sc);
467 	iwi_release_fw_dma(sc);
468 
469 	iwi_free_cmd_ring(sc, &sc->cmdq);
470 	iwi_free_tx_ring(sc, &sc->txq[0]);
471 	iwi_free_tx_ring(sc, &sc->txq[1]);
472 	iwi_free_tx_ring(sc, &sc->txq[2]);
473 	iwi_free_tx_ring(sc, &sc->txq[3]);
474 	iwi_free_rx_ring(sc, &sc->rxq);
475 
476 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
477 
478 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
479 	    sc->mem);
480 
481 	delete_unrhdr(sc->sc_unr);
482 
483 	IWI_LOCK_DESTROY(sc);
484 
485 	if_free(ifp);
486 
487 	return 0;
488 }
489 
490 static struct ieee80211vap *
491 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
492     enum ieee80211_opmode opmode, int flags,
493     const uint8_t bssid[IEEE80211_ADDR_LEN],
494     const uint8_t mac[IEEE80211_ADDR_LEN])
495 {
496 	struct ifnet *ifp = ic->ic_ifp;
497 	struct iwi_softc *sc = ifp->if_softc;
498 	struct iwi_vap *ivp;
499 	struct ieee80211vap *vap;
500 	int i;
501 
502 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
503 		return NULL;
504 	/*
505 	 * Get firmware image (and possibly dma memory) on mode change.
506 	 */
507 	if (iwi_get_firmware(sc, opmode))
508 		return NULL;
509 	/* allocate DMA memory for mapping firmware image */
510 	i = sc->fw_fw.size;
511 	if (sc->fw_boot.size > i)
512 		i = sc->fw_boot.size;
513 	/* XXX do we dma the ucode as well ? */
514 	if (sc->fw_uc.size > i)
515 		i = sc->fw_uc.size;
516 	if (iwi_init_fw_dma(sc, i))
517 		return NULL;
518 
519 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
520 	    M_80211_VAP, M_NOWAIT | M_ZERO);
521 	if (ivp == NULL)
522 		return NULL;
523 	vap = &ivp->iwi_vap;
524 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
525 	/* override the default, the setting comes from the linux driver */
526 	vap->iv_bmissthreshold = 24;
527 	/* override with driver methods */
528 	ivp->iwi_newstate = vap->iv_newstate;
529 	vap->iv_newstate = iwi_newstate;
530 
531 	/* complete setup */
532 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
533 	ic->ic_opmode = opmode;
534 	return vap;
535 }
536 
537 static void
538 iwi_vap_delete(struct ieee80211vap *vap)
539 {
540 	struct iwi_vap *ivp = IWI_VAP(vap);
541 
542 	ieee80211_vap_detach(vap);
543 	free(ivp, M_80211_VAP);
544 }
545 
546 static void
547 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
548 {
549 	if (error != 0)
550 		return;
551 
552 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
553 
554 	*(bus_addr_t *)arg = segs[0].ds_addr;
555 }
556 
557 static int
558 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
559 {
560 	int error;
561 
562 	ring->count = count;
563 	ring->queued = 0;
564 	ring->cur = ring->next = 0;
565 
566 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
567 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
568 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
569 	    NULL, NULL, &ring->desc_dmat);
570 	if (error != 0) {
571 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
572 		goto fail;
573 	}
574 
575 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
576 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
577 	if (error != 0) {
578 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
579 		goto fail;
580 	}
581 
582 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
583 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
584 	if (error != 0) {
585 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
586 		goto fail;
587 	}
588 
589 	return 0;
590 
591 fail:	iwi_free_cmd_ring(sc, ring);
592 	return error;
593 }
594 
595 static void
596 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
597 {
598 	ring->queued = 0;
599 	ring->cur = ring->next = 0;
600 }
601 
602 static void
603 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
604 {
605 	if (ring->desc != NULL) {
606 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
607 		    BUS_DMASYNC_POSTWRITE);
608 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
609 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
610 	}
611 
612 	if (ring->desc_dmat != NULL)
613 		bus_dma_tag_destroy(ring->desc_dmat);
614 }
615 
616 static int
617 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
618     bus_addr_t csr_ridx, bus_addr_t csr_widx)
619 {
620 	int i, error;
621 
622 	ring->count = count;
623 	ring->queued = 0;
624 	ring->cur = ring->next = 0;
625 	ring->csr_ridx = csr_ridx;
626 	ring->csr_widx = csr_widx;
627 
628 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
629 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
630 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
631 	    NULL, &ring->desc_dmat);
632 	if (error != 0) {
633 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
634 		goto fail;
635 	}
636 
637 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
638 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
639 	if (error != 0) {
640 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
641 		goto fail;
642 	}
643 
644 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
645 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
646 	if (error != 0) {
647 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
648 		goto fail;
649 	}
650 
651 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
652 	    M_NOWAIT | M_ZERO);
653 	if (ring->data == NULL) {
654 		device_printf(sc->sc_dev, "could not allocate soft data\n");
655 		error = ENOMEM;
656 		goto fail;
657 	}
658 
659 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
660 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
661 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
662 	if (error != 0) {
663 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
664 		goto fail;
665 	}
666 
667 	for (i = 0; i < count; i++) {
668 		error = bus_dmamap_create(ring->data_dmat, 0,
669 		    &ring->data[i].map);
670 		if (error != 0) {
671 			device_printf(sc->sc_dev, "could not create DMA map\n");
672 			goto fail;
673 		}
674 	}
675 
676 	return 0;
677 
678 fail:	iwi_free_tx_ring(sc, ring);
679 	return error;
680 }
681 
682 static void
683 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
684 {
685 	struct iwi_tx_data *data;
686 	int i;
687 
688 	for (i = 0; i < ring->count; i++) {
689 		data = &ring->data[i];
690 
691 		if (data->m != NULL) {
692 			bus_dmamap_sync(ring->data_dmat, data->map,
693 			    BUS_DMASYNC_POSTWRITE);
694 			bus_dmamap_unload(ring->data_dmat, data->map);
695 			m_freem(data->m);
696 			data->m = NULL;
697 		}
698 
699 		if (data->ni != NULL) {
700 			ieee80211_free_node(data->ni);
701 			data->ni = NULL;
702 		}
703 	}
704 
705 	ring->queued = 0;
706 	ring->cur = ring->next = 0;
707 }
708 
709 static void
710 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
711 {
712 	struct iwi_tx_data *data;
713 	int i;
714 
715 	if (ring->desc != NULL) {
716 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
717 		    BUS_DMASYNC_POSTWRITE);
718 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
719 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
720 	}
721 
722 	if (ring->desc_dmat != NULL)
723 		bus_dma_tag_destroy(ring->desc_dmat);
724 
725 	if (ring->data != NULL) {
726 		for (i = 0; i < ring->count; i++) {
727 			data = &ring->data[i];
728 
729 			if (data->m != NULL) {
730 				bus_dmamap_sync(ring->data_dmat, data->map,
731 				    BUS_DMASYNC_POSTWRITE);
732 				bus_dmamap_unload(ring->data_dmat, data->map);
733 				m_freem(data->m);
734 			}
735 
736 			if (data->ni != NULL)
737 				ieee80211_free_node(data->ni);
738 
739 			if (data->map != NULL)
740 				bus_dmamap_destroy(ring->data_dmat, data->map);
741 		}
742 
743 		free(ring->data, M_DEVBUF);
744 	}
745 
746 	if (ring->data_dmat != NULL)
747 		bus_dma_tag_destroy(ring->data_dmat);
748 }
749 
750 static int
751 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
752 {
753 	struct iwi_rx_data *data;
754 	int i, error;
755 
756 	ring->count = count;
757 	ring->cur = 0;
758 
759 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
760 	    M_NOWAIT | M_ZERO);
761 	if (ring->data == NULL) {
762 		device_printf(sc->sc_dev, "could not allocate soft data\n");
763 		error = ENOMEM;
764 		goto fail;
765 	}
766 
767 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
768 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
769 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
770 	if (error != 0) {
771 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
772 		goto fail;
773 	}
774 
775 	for (i = 0; i < count; i++) {
776 		data = &ring->data[i];
777 
778 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
779 		if (error != 0) {
780 			device_printf(sc->sc_dev, "could not create DMA map\n");
781 			goto fail;
782 		}
783 
784 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
785 		if (data->m == NULL) {
786 			device_printf(sc->sc_dev,
787 			    "could not allocate rx mbuf\n");
788 			error = ENOMEM;
789 			goto fail;
790 		}
791 
792 		error = bus_dmamap_load(ring->data_dmat, data->map,
793 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
794 		    &data->physaddr, 0);
795 		if (error != 0) {
796 			device_printf(sc->sc_dev,
797 			    "could not load rx buf DMA map");
798 			goto fail;
799 		}
800 
801 		data->reg = IWI_CSR_RX_BASE + i * 4;
802 	}
803 
804 	return 0;
805 
806 fail:	iwi_free_rx_ring(sc, ring);
807 	return error;
808 }
809 
810 static void
811 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
812 {
813 	ring->cur = 0;
814 }
815 
816 static void
817 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
818 {
819 	struct iwi_rx_data *data;
820 	int i;
821 
822 	if (ring->data != NULL) {
823 		for (i = 0; i < ring->count; i++) {
824 			data = &ring->data[i];
825 
826 			if (data->m != NULL) {
827 				bus_dmamap_sync(ring->data_dmat, data->map,
828 				    BUS_DMASYNC_POSTREAD);
829 				bus_dmamap_unload(ring->data_dmat, data->map);
830 				m_freem(data->m);
831 			}
832 
833 			if (data->map != NULL)
834 				bus_dmamap_destroy(ring->data_dmat, data->map);
835 		}
836 
837 		free(ring->data, M_DEVBUF);
838 	}
839 
840 	if (ring->data_dmat != NULL)
841 		bus_dma_tag_destroy(ring->data_dmat);
842 }
843 
844 static int
845 iwi_shutdown(device_t dev)
846 {
847 	struct iwi_softc *sc = device_get_softc(dev);
848 
849 	iwi_stop(sc);
850 	iwi_put_firmware(sc);		/* ??? XXX */
851 
852 	return 0;
853 }
854 
855 static int
856 iwi_suspend(device_t dev)
857 {
858 	struct iwi_softc *sc = device_get_softc(dev);
859 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
860 
861 	ieee80211_suspend_all(ic);
862 	return 0;
863 }
864 
865 static int
866 iwi_resume(device_t dev)
867 {
868 	struct iwi_softc *sc = device_get_softc(dev);
869 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
870 
871 	pci_write_config(dev, 0x41, 0, 1);
872 
873 	ieee80211_resume_all(ic);
874 	return 0;
875 }
876 
877 static struct ieee80211_node *
878 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
879 {
880 	struct iwi_node *in;
881 
882 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
883 	if (in == NULL)
884 		return NULL;
885 	/* XXX assign sta table entry for adhoc */
886 	in->in_station = -1;
887 
888 	return &in->in_node;
889 }
890 
891 static void
892 iwi_node_free(struct ieee80211_node *ni)
893 {
894 	struct ieee80211com *ic = ni->ni_ic;
895 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
896 	struct iwi_node *in = (struct iwi_node *)ni;
897 
898 	if (in->in_station != -1) {
899 		DPRINTF(("%s mac %6D station %u\n", __func__,
900 		    ni->ni_macaddr, ":", in->in_station));
901 		free_unr(sc->sc_unr, in->in_station);
902 	}
903 
904 	sc->sc_node_free(ni);
905 }
906 
907 /*
908  * Convert h/w rate code to IEEE rate code.
909  */
910 static int
911 iwi_cvtrate(int iwirate)
912 {
913 	switch (iwirate) {
914 	case IWI_RATE_DS1:	return 2;
915 	case IWI_RATE_DS2:	return 4;
916 	case IWI_RATE_DS5:	return 11;
917 	case IWI_RATE_DS11:	return 22;
918 	case IWI_RATE_OFDM6:	return 12;
919 	case IWI_RATE_OFDM9:	return 18;
920 	case IWI_RATE_OFDM12:	return 24;
921 	case IWI_RATE_OFDM18:	return 36;
922 	case IWI_RATE_OFDM24:	return 48;
923 	case IWI_RATE_OFDM36:	return 72;
924 	case IWI_RATE_OFDM48:	return 96;
925 	case IWI_RATE_OFDM54:	return 108;
926 	}
927 	return 0;
928 }
929 
930 /*
931  * The firmware automatically adapts the transmit speed.  We report its current
932  * value here.
933  */
934 static void
935 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
936 {
937 	struct ieee80211vap *vap = ifp->if_softc;
938 	struct ieee80211com *ic = vap->iv_ic;
939 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
940 	struct ieee80211_node *ni;
941 
942 	/* read current transmission rate from adapter */
943 	ni = ieee80211_ref_node(vap->iv_bss);
944 	ni->ni_txrate =
945 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
946 	ieee80211_free_node(ni);
947 	ieee80211_media_status(ifp, imr);
948 }
949 
950 static int
951 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
952 {
953 	struct iwi_vap *ivp = IWI_VAP(vap);
954 	struct ieee80211com *ic = vap->iv_ic;
955 	struct ifnet *ifp = ic->ic_ifp;
956 	struct iwi_softc *sc = ifp->if_softc;
957 	IWI_LOCK_DECL;
958 
959 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
960 		ieee80211_state_name[vap->iv_state],
961 		ieee80211_state_name[nstate], sc->flags));
962 
963 	IEEE80211_UNLOCK(ic);
964 	IWI_LOCK(sc);
965 	switch (nstate) {
966 	case IEEE80211_S_INIT:
967 		/*
968 		 * NB: don't try to do this if iwi_stop_master has
969 		 *     shutdown the firmware and disabled interrupts.
970 		 */
971 		if (vap->iv_state == IEEE80211_S_RUN &&
972 		    (sc->flags & IWI_FLAG_FW_INITED))
973 			iwi_disassociate(sc, 0);
974 		break;
975 	case IEEE80211_S_AUTH:
976 		iwi_auth_and_assoc(sc, vap);
977 		break;
978 	case IEEE80211_S_RUN:
979 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
980 		    vap->iv_state == IEEE80211_S_SCAN) {
981 			/*
982 			 * XXX when joining an ibss network we are called
983 			 * with a SCAN -> RUN transition on scan complete.
984 			 * Use that to call iwi_auth_and_assoc.  On completing
985 			 * the join we are then called again with an
986 			 * AUTH -> RUN transition and we want to do nothing.
987 			 * This is all totally bogus and needs to be redone.
988 			 */
989 			iwi_auth_and_assoc(sc, vap);
990 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
991 			ieee80211_runtask(ic, &sc->sc_monitortask);
992 		break;
993 	case IEEE80211_S_ASSOC:
994 		/*
995 		 * If we are transitioning from AUTH then just wait
996 		 * for the ASSOC status to come back from the firmware.
997 		 * Otherwise we need to issue the association request.
998 		 */
999 		if (vap->iv_state == IEEE80211_S_AUTH)
1000 			break;
1001 		iwi_auth_and_assoc(sc, vap);
1002 		break;
1003 	default:
1004 		break;
1005 	}
1006 	IWI_UNLOCK(sc);
1007 	IEEE80211_LOCK(ic);
1008 	return ivp->iwi_newstate(vap, nstate, arg);
1009 }
1010 
1011 /*
1012  * WME parameters coming from IEEE 802.11e specification.  These values are
1013  * already declared in ieee80211_proto.c, but they are static so they can't
1014  * be reused here.
1015  */
1016 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1017 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1018 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1019 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1020 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1021 };
1022 
1023 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1024 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1025 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1026 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1027 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1028 };
1029 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1030 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1031 
1032 static void
1033 iwi_wme_init(struct iwi_softc *sc)
1034 {
1035 	const struct wmeParams *wmep;
1036 	int ac;
1037 
1038 	memset(sc->wme, 0, sizeof sc->wme);
1039 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1040 		/* set WME values for CCK modulation */
1041 		wmep = &iwi_wme_cck_params[ac];
1042 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1043 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1044 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1045 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1046 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1047 
1048 		/* set WME values for OFDM modulation */
1049 		wmep = &iwi_wme_ofdm_params[ac];
1050 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1051 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1052 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1053 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1054 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1055 	}
1056 }
1057 
1058 static int
1059 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1060 {
1061 	const struct wmeParams *wmep;
1062 	int ac;
1063 
1064 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1065 		/* set WME values for current operating mode */
1066 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1067 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1068 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1069 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1070 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1071 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1072 	}
1073 
1074 	DPRINTF(("Setting WME parameters\n"));
1075 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1076 }
1077 #undef IWI_USEC
1078 #undef IWI_EXP2
1079 
1080 static void
1081 iwi_update_wme(void *arg, int npending)
1082 {
1083 	struct ieee80211com *ic = arg;
1084 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1085 	IWI_LOCK_DECL;
1086 
1087 	IWI_LOCK(sc);
1088 	(void) iwi_wme_setparams(sc, ic);
1089 	IWI_UNLOCK(sc);
1090 }
1091 
1092 static int
1093 iwi_wme_update(struct ieee80211com *ic)
1094 {
1095 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1096 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1097 
1098 	/*
1099 	 * We may be called to update the WME parameters in
1100 	 * the adapter at various places.  If we're already
1101 	 * associated then initiate the request immediately;
1102 	 * otherwise we assume the params will get sent down
1103 	 * to the adapter as part of the work iwi_auth_and_assoc
1104 	 * does.
1105 	 */
1106 	if (vap->iv_state == IEEE80211_S_RUN)
1107 		ieee80211_runtask(ic, &sc->sc_wmetask);
1108 	return (0);
1109 }
1110 
1111 static int
1112 iwi_wme_setie(struct iwi_softc *sc)
1113 {
1114 	struct ieee80211_wme_info wme;
1115 
1116 	memset(&wme, 0, sizeof wme);
1117 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1118 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1119 	wme.wme_oui[0] = 0x00;
1120 	wme.wme_oui[1] = 0x50;
1121 	wme.wme_oui[2] = 0xf2;
1122 	wme.wme_type = WME_OUI_TYPE;
1123 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1124 	wme.wme_version = WME_VERSION;
1125 	wme.wme_info = 0;
1126 
1127 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1128 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1129 }
1130 
1131 /*
1132  * Read 16 bits at address 'addr' from the serial EEPROM.
1133  */
1134 static uint16_t
1135 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1136 {
1137 	uint32_t tmp;
1138 	uint16_t val;
1139 	int n;
1140 
1141 	/* clock C once before the first command */
1142 	IWI_EEPROM_CTL(sc, 0);
1143 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1144 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1145 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1146 
1147 	/* write start bit (1) */
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1150 
1151 	/* write READ opcode (10) */
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1155 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1156 
1157 	/* write address A7-A0 */
1158 	for (n = 7; n >= 0; n--) {
1159 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1160 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1161 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1162 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1163 	}
1164 
1165 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1166 
1167 	/* read data Q15-Q0 */
1168 	val = 0;
1169 	for (n = 15; n >= 0; n--) {
1170 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1171 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1172 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1173 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1174 	}
1175 
1176 	IWI_EEPROM_CTL(sc, 0);
1177 
1178 	/* clear Chip Select and clock C */
1179 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1180 	IWI_EEPROM_CTL(sc, 0);
1181 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1182 
1183 	return val;
1184 }
1185 
1186 static void
1187 iwi_setcurchan(struct iwi_softc *sc, int chan)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	sc->curchan = chan;
1193 	ieee80211_radiotap_chan_change(ic);
1194 }
1195 
1196 static void
1197 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1198     struct iwi_frame *frame)
1199 {
1200 	struct ifnet *ifp = sc->sc_ifp;
1201 	struct ieee80211com *ic = ifp->if_l2com;
1202 	struct mbuf *mnew, *m;
1203 	struct ieee80211_node *ni;
1204 	int type, error, framelen;
1205 	int8_t rssi, nf;
1206 	IWI_LOCK_DECL;
1207 
1208 	framelen = le16toh(frame->len);
1209 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1210 		/*
1211 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1212 		 *     out of bounds; need to figure out how to limit
1213 		 *     frame size in the firmware
1214 		 */
1215 		/* XXX stat */
1216 		DPRINTFN(1,
1217 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1218 		    le16toh(frame->len), frame->chan, frame->rssi,
1219 		    frame->rssi_dbm));
1220 		return;
1221 	}
1222 
1223 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1224 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1225 
1226 	if (frame->chan != sc->curchan)
1227 		iwi_setcurchan(sc, frame->chan);
1228 
1229 	/*
1230 	 * Try to allocate a new mbuf for this ring element and load it before
1231 	 * processing the current mbuf. If the ring element cannot be loaded,
1232 	 * drop the received packet and reuse the old mbuf. In the unlikely
1233 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1234 	 */
1235 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1236 	if (mnew == NULL) {
1237 		ifp->if_ierrors++;
1238 		return;
1239 	}
1240 
1241 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1242 
1243 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1244 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1245 	    0);
1246 	if (error != 0) {
1247 		m_freem(mnew);
1248 
1249 		/* try to reload the old mbuf */
1250 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1251 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1252 		    &data->physaddr, 0);
1253 		if (error != 0) {
1254 			/* very unlikely that it will fail... */
1255 			panic("%s: could not load old rx mbuf",
1256 			    device_get_name(sc->sc_dev));
1257 		}
1258 		ifp->if_ierrors++;
1259 		return;
1260 	}
1261 
1262 	/*
1263 	 * New mbuf successfully loaded, update Rx ring and continue
1264 	 * processing.
1265 	 */
1266 	m = data->m;
1267 	data->m = mnew;
1268 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1269 
1270 	/* finalize mbuf */
1271 	m->m_pkthdr.rcvif = ifp;
1272 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1273 	    sizeof (struct iwi_frame) + framelen;
1274 
1275 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1276 
1277 	rssi = frame->rssi_dbm;
1278 	nf = -95;
1279 	if (ieee80211_radiotap_active(ic)) {
1280 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1281 
1282 		tap->wr_flags = 0;
1283 		tap->wr_antsignal = rssi;
1284 		tap->wr_antnoise = nf;
1285 		tap->wr_rate = iwi_cvtrate(frame->rate);
1286 		tap->wr_antenna = frame->antenna;
1287 	}
1288 	IWI_UNLOCK(sc);
1289 
1290 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1291 	if (ni != NULL) {
1292 		type = ieee80211_input(ni, m, rssi, nf);
1293 		ieee80211_free_node(ni);
1294 	} else
1295 		type = ieee80211_input_all(ic, m, rssi, nf);
1296 
1297 	IWI_LOCK(sc);
1298 	if (sc->sc_softled) {
1299 		/*
1300 		 * Blink for any data frame.  Otherwise do a
1301 		 * heartbeat-style blink when idle.  The latter
1302 		 * is mainly for station mode where we depend on
1303 		 * periodic beacon frames to trigger the poll event.
1304 		 */
1305 		if (type == IEEE80211_FC0_TYPE_DATA) {
1306 			sc->sc_rxrate = frame->rate;
1307 			iwi_led_event(sc, IWI_LED_RX);
1308 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1309 			iwi_led_event(sc, IWI_LED_POLL);
1310 	}
1311 }
1312 
1313 /*
1314  * Check for an association response frame to see if QoS
1315  * has been negotiated.  We parse just enough to figure
1316  * out if we're supposed to use QoS.  The proper solution
1317  * is to pass the frame up so ieee80211_input can do the
1318  * work but that's made hard by how things currently are
1319  * done in the driver.
1320  */
1321 static void
1322 iwi_checkforqos(struct ieee80211vap *vap,
1323 	const struct ieee80211_frame *wh, int len)
1324 {
1325 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1326 	const uint8_t *frm, *efrm, *wme;
1327 	struct ieee80211_node *ni;
1328 	uint16_t capinfo, status, associd;
1329 
1330 	/* NB: +8 for capinfo, status, associd, and first ie */
1331 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1332 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1333 		return;
1334 	/*
1335 	 * asresp frame format
1336 	 *	[2] capability information
1337 	 *	[2] status
1338 	 *	[2] association ID
1339 	 *	[tlv] supported rates
1340 	 *	[tlv] extended supported rates
1341 	 *	[tlv] WME
1342 	 */
1343 	frm = (const uint8_t *)&wh[1];
1344 	efrm = ((const uint8_t *) wh) + len;
1345 
1346 	capinfo = le16toh(*(const uint16_t *)frm);
1347 	frm += 2;
1348 	status = le16toh(*(const uint16_t *)frm);
1349 	frm += 2;
1350 	associd = le16toh(*(const uint16_t *)frm);
1351 	frm += 2;
1352 
1353 	wme = NULL;
1354 	while (efrm - frm > 1) {
1355 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1356 		switch (*frm) {
1357 		case IEEE80211_ELEMID_VENDOR:
1358 			if (iswmeoui(frm))
1359 				wme = frm;
1360 			break;
1361 		}
1362 		frm += frm[1] + 2;
1363 	}
1364 
1365 	ni = ieee80211_ref_node(vap->iv_bss);
1366 	ni->ni_capinfo = capinfo;
1367 	ni->ni_associd = associd & 0x3fff;
1368 	if (wme != NULL)
1369 		ni->ni_flags |= IEEE80211_NODE_QOS;
1370 	else
1371 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1372 	ieee80211_free_node(ni);
1373 #undef SUBTYPE
1374 }
1375 
1376 /*
1377  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1378  */
1379 
1380 static void
1381 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1382 {
1383 	struct ifnet *ifp = sc->sc_ifp;
1384 	struct ieee80211com *ic = ifp->if_l2com;
1385 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1386 	struct iwi_notif_scan_channel *chan;
1387 	struct iwi_notif_scan_complete *scan;
1388 	struct iwi_notif_authentication *auth;
1389 	struct iwi_notif_association *assoc;
1390 	struct iwi_notif_beacon_state *beacon;
1391 
1392 	switch (notif->type) {
1393 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1394 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1395 
1396 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1397 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1398 
1399 		/* Reset the timer, the scan is still going */
1400 		sc->sc_state_timer = 3;
1401 		break;
1402 
1403 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1404 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1405 
1406 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1407 		    scan->status));
1408 
1409 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1410 
1411 		/*
1412 		 * Monitor mode works by doing a passive scan to set
1413 		 * the channel and enable rx.  Because we don't want
1414 		 * to abort a scan lest the firmware crash we scan
1415 		 * for a short period of time and automatically restart
1416 		 * the scan when notified the sweep has completed.
1417 		 */
1418 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1419 			ieee80211_runtask(ic, &sc->sc_monitortask);
1420 			break;
1421 		}
1422 
1423 		if (scan->status == IWI_SCAN_COMPLETED) {
1424 			/* NB: don't need to defer, net80211 does it for us */
1425 			ieee80211_scan_next(vap);
1426 		}
1427 		break;
1428 
1429 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1430 		auth = (struct iwi_notif_authentication *)(notif + 1);
1431 		switch (auth->state) {
1432 		case IWI_AUTH_SUCCESS:
1433 			DPRINTFN(2, ("Authentication succeeeded\n"));
1434 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1435 			break;
1436 		case IWI_AUTH_FAIL:
1437 			/*
1438 			 * These are delivered as an unsolicited deauth
1439 			 * (e.g. due to inactivity) or in response to an
1440 			 * associate request.
1441 			 */
1442 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1443 			if (vap->iv_state != IEEE80211_S_RUN) {
1444 				DPRINTFN(2, ("Authentication failed\n"));
1445 				vap->iv_stats.is_rx_auth_fail++;
1446 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1447 			} else {
1448 				DPRINTFN(2, ("Deauthenticated\n"));
1449 				vap->iv_stats.is_rx_deauth++;
1450 			}
1451 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1452 			break;
1453 		case IWI_AUTH_SENT_1:
1454 		case IWI_AUTH_RECV_2:
1455 		case IWI_AUTH_SEQ1_PASS:
1456 			break;
1457 		case IWI_AUTH_SEQ1_FAIL:
1458 			DPRINTFN(2, ("Initial authentication handshake failed; "
1459 				"you probably need shared key\n"));
1460 			vap->iv_stats.is_rx_auth_fail++;
1461 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1462 			/* XXX retry shared key when in auto */
1463 			break;
1464 		default:
1465 			device_printf(sc->sc_dev,
1466 			    "unknown authentication state %u\n", auth->state);
1467 			break;
1468 		}
1469 		break;
1470 
1471 	case IWI_NOTIF_TYPE_ASSOCIATION:
1472 		assoc = (struct iwi_notif_association *)(notif + 1);
1473 		switch (assoc->state) {
1474 		case IWI_AUTH_SUCCESS:
1475 			/* re-association, do nothing */
1476 			break;
1477 		case IWI_ASSOC_SUCCESS:
1478 			DPRINTFN(2, ("Association succeeded\n"));
1479 			sc->flags |= IWI_FLAG_ASSOCIATED;
1480 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1481 			iwi_checkforqos(vap,
1482 			    (const struct ieee80211_frame *)(assoc+1),
1483 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1484 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1485 			break;
1486 		case IWI_ASSOC_INIT:
1487 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1488 			switch (sc->fw_state) {
1489 			case IWI_FW_ASSOCIATING:
1490 				DPRINTFN(2, ("Association failed\n"));
1491 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1492 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1493 				break;
1494 
1495 			case IWI_FW_DISASSOCIATING:
1496 				DPRINTFN(2, ("Dissassociated\n"));
1497 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1498 				vap->iv_stats.is_rx_disassoc++;
1499 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1500 				break;
1501 			}
1502 			break;
1503 		default:
1504 			device_printf(sc->sc_dev,
1505 			    "unknown association state %u\n", assoc->state);
1506 			break;
1507 		}
1508 		break;
1509 
1510 	case IWI_NOTIF_TYPE_BEACON:
1511 		/* XXX check struct length */
1512 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1513 
1514 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1515 		    beacon->state, le32toh(beacon->number)));
1516 
1517 		if (beacon->state == IWI_BEACON_MISS) {
1518 			/*
1519 			 * The firmware notifies us of every beacon miss
1520 			 * so we need to track the count against the
1521 			 * configured threshold before notifying the
1522 			 * 802.11 layer.
1523 			 * XXX try to roam, drop assoc only on much higher count
1524 			 */
1525 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1526 				DPRINTF(("Beacon miss: %u >= %u\n",
1527 				    le32toh(beacon->number),
1528 				    vap->iv_bmissthreshold));
1529 				vap->iv_stats.is_beacon_miss++;
1530 				/*
1531 				 * It's pointless to notify the 802.11 layer
1532 				 * as it'll try to send a probe request (which
1533 				 * we'll discard) and then timeout and drop us
1534 				 * into scan state.  Instead tell the firmware
1535 				 * to disassociate and then on completion we'll
1536 				 * kick the state machine to scan.
1537 				 */
1538 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1539 			}
1540 		}
1541 		break;
1542 
1543 	case IWI_NOTIF_TYPE_CALIBRATION:
1544 	case IWI_NOTIF_TYPE_NOISE:
1545 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1546 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1547 		break;
1548 
1549 	default:
1550 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1551 		    notif->type, notif->flags, le16toh(notif->len)));
1552 		break;
1553 	}
1554 }
1555 
1556 static void
1557 iwi_rx_intr(struct iwi_softc *sc)
1558 {
1559 	struct iwi_rx_data *data;
1560 	struct iwi_hdr *hdr;
1561 	uint32_t hw;
1562 
1563 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1564 
1565 	for (; sc->rxq.cur != hw;) {
1566 		data = &sc->rxq.data[sc->rxq.cur];
1567 
1568 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1569 		    BUS_DMASYNC_POSTREAD);
1570 
1571 		hdr = mtod(data->m, struct iwi_hdr *);
1572 
1573 		switch (hdr->type) {
1574 		case IWI_HDR_TYPE_FRAME:
1575 			iwi_frame_intr(sc, data, sc->rxq.cur,
1576 			    (struct iwi_frame *)(hdr + 1));
1577 			break;
1578 
1579 		case IWI_HDR_TYPE_NOTIF:
1580 			iwi_notification_intr(sc,
1581 			    (struct iwi_notif *)(hdr + 1));
1582 			break;
1583 
1584 		default:
1585 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1586 			    hdr->type);
1587 		}
1588 
1589 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1590 
1591 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1592 	}
1593 
1594 	/* tell the firmware what we have processed */
1595 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1596 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1597 }
1598 
1599 static void
1600 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1601 {
1602 	struct ifnet *ifp = sc->sc_ifp;
1603 	struct iwi_tx_data *data;
1604 	uint32_t hw;
1605 
1606 	hw = CSR_READ_4(sc, txq->csr_ridx);
1607 
1608 	for (; txq->next != hw;) {
1609 		data = &txq->data[txq->next];
1610 
1611 		bus_dmamap_sync(txq->data_dmat, data->map,
1612 		    BUS_DMASYNC_POSTWRITE);
1613 		bus_dmamap_unload(txq->data_dmat, data->map);
1614 		if (data->m->m_flags & M_TXCB)
1615 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1616 		m_freem(data->m);
1617 		data->m = NULL;
1618 		ieee80211_free_node(data->ni);
1619 		data->ni = NULL;
1620 
1621 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1622 
1623 		ifp->if_opackets++;
1624 
1625 		txq->queued--;
1626 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1627 	}
1628 
1629 	sc->sc_tx_timer = 0;
1630 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1631 
1632 	if (sc->sc_softled)
1633 		iwi_led_event(sc, IWI_LED_TX);
1634 
1635 	iwi_start_locked(ifp);
1636 }
1637 
1638 static void
1639 iwi_fatal_error_intr(struct iwi_softc *sc)
1640 {
1641 	struct ifnet *ifp = sc->sc_ifp;
1642 	struct ieee80211com *ic = ifp->if_l2com;
1643 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1644 
1645 	device_printf(sc->sc_dev, "firmware error\n");
1646 	if (vap != NULL)
1647 		ieee80211_cancel_scan(vap);
1648 	ieee80211_runtask(ic, &sc->sc_restarttask);
1649 
1650 	sc->flags &= ~IWI_FLAG_BUSY;
1651 	sc->sc_busy_timer = 0;
1652 	wakeup(sc);
1653 }
1654 
1655 static void
1656 iwi_radio_off_intr(struct iwi_softc *sc)
1657 {
1658 	struct ifnet *ifp = sc->sc_ifp;
1659 	struct ieee80211com *ic = ifp->if_l2com;
1660 
1661 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1662 }
1663 
1664 static void
1665 iwi_intr(void *arg)
1666 {
1667 	struct iwi_softc *sc = arg;
1668 	uint32_t r;
1669 	IWI_LOCK_DECL;
1670 
1671 	IWI_LOCK(sc);
1672 
1673 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1674 		IWI_UNLOCK(sc);
1675 		return;
1676 	}
1677 
1678 	/* acknowledge interrupts */
1679 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1680 
1681 	if (r & IWI_INTR_FATAL_ERROR) {
1682 		iwi_fatal_error_intr(sc);
1683 		goto done;
1684 	}
1685 
1686 	if (r & IWI_INTR_FW_INITED) {
1687 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1688 			wakeup(sc);
1689 	}
1690 
1691 	if (r & IWI_INTR_RADIO_OFF)
1692 		iwi_radio_off_intr(sc);
1693 
1694 	if (r & IWI_INTR_CMD_DONE) {
1695 		sc->flags &= ~IWI_FLAG_BUSY;
1696 		sc->sc_busy_timer = 0;
1697 		wakeup(sc);
1698 	}
1699 
1700 	if (r & IWI_INTR_TX1_DONE)
1701 		iwi_tx_intr(sc, &sc->txq[0]);
1702 
1703 	if (r & IWI_INTR_TX2_DONE)
1704 		iwi_tx_intr(sc, &sc->txq[1]);
1705 
1706 	if (r & IWI_INTR_TX3_DONE)
1707 		iwi_tx_intr(sc, &sc->txq[2]);
1708 
1709 	if (r & IWI_INTR_TX4_DONE)
1710 		iwi_tx_intr(sc, &sc->txq[3]);
1711 
1712 	if (r & IWI_INTR_RX_DONE)
1713 		iwi_rx_intr(sc);
1714 
1715 	if (r & IWI_INTR_PARITY_ERROR) {
1716 		/* XXX rate-limit */
1717 		device_printf(sc->sc_dev, "parity error\n");
1718 	}
1719 done:
1720 	IWI_UNLOCK(sc);
1721 }
1722 
1723 static int
1724 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1725 {
1726 	struct iwi_cmd_desc *desc;
1727 
1728 	IWI_LOCK_ASSERT(sc);
1729 
1730 	if (sc->flags & IWI_FLAG_BUSY) {
1731 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1732 			__func__, type);
1733 		return EAGAIN;
1734 	}
1735 	sc->flags |= IWI_FLAG_BUSY;
1736 	sc->sc_busy_timer = 2;
1737 
1738 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1739 
1740 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1741 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1742 	desc->type = type;
1743 	desc->len = len;
1744 	memcpy(desc->data, data, len);
1745 
1746 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1747 	    BUS_DMASYNC_PREWRITE);
1748 
1749 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1750 	    type, len));
1751 
1752 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1753 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1754 
1755 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1756 }
1757 
1758 static void
1759 iwi_write_ibssnode(struct iwi_softc *sc,
1760 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1761 {
1762 	struct iwi_ibssnode node;
1763 
1764 	/* write node information into NIC memory */
1765 	memset(&node, 0, sizeof node);
1766 	IEEE80211_ADDR_COPY(node.bssid, addr);
1767 
1768 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1769 
1770 	CSR_WRITE_REGION_1(sc,
1771 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1772 	    (uint8_t *)&node, sizeof node);
1773 }
1774 
1775 static int
1776 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1777     int ac)
1778 {
1779 	struct iwi_softc *sc = ifp->if_softc;
1780 	struct ieee80211vap *vap = ni->ni_vap;
1781 	struct ieee80211com *ic = ni->ni_ic;
1782 	struct iwi_node *in = (struct iwi_node *)ni;
1783 	const struct ieee80211_frame *wh;
1784 	struct ieee80211_key *k;
1785 	const struct chanAccParams *cap;
1786 	struct iwi_tx_ring *txq = &sc->txq[ac];
1787 	struct iwi_tx_data *data;
1788 	struct iwi_tx_desc *desc;
1789 	struct mbuf *mnew;
1790 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1791 	int error, nsegs, hdrlen, i;
1792 	int ismcast, flags, xflags, staid;
1793 
1794 	IWI_LOCK_ASSERT(sc);
1795 	wh = mtod(m0, const struct ieee80211_frame *);
1796 	/* NB: only data frames use this path */
1797 	hdrlen = ieee80211_hdrsize(wh);
1798 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1799 	flags = xflags = 0;
1800 
1801 	if (!ismcast)
1802 		flags |= IWI_DATA_FLAG_NEED_ACK;
1803 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1804 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1805 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1806 		xflags |= IWI_DATA_XFLAG_QOS;
1807 		cap = &ic->ic_wme.wme_chanParams;
1808 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1809 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1810 	}
1811 
1812 	/*
1813 	 * This is only used in IBSS mode where the firmware expect an index
1814 	 * in a h/w table instead of a destination address.
1815 	 */
1816 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1817 		if (!ismcast) {
1818 			if (in->in_station == -1) {
1819 				in->in_station = alloc_unr(sc->sc_unr);
1820 				if (in->in_station == -1) {
1821 					/* h/w table is full */
1822 					m_freem(m0);
1823 					ieee80211_free_node(ni);
1824 					ifp->if_oerrors++;
1825 					return 0;
1826 				}
1827 				iwi_write_ibssnode(sc,
1828 					ni->ni_macaddr, in->in_station);
1829 			}
1830 			staid = in->in_station;
1831 		} else {
1832 			/*
1833 			 * Multicast addresses have no associated node
1834 			 * so there will be no station entry.  We reserve
1835 			 * entry 0 for one mcast address and use that.
1836 			 * If there are many being used this will be
1837 			 * expensive and we'll need to do a better job
1838 			 * but for now this handles the broadcast case.
1839 			 */
1840 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1841 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1842 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1843 			}
1844 			staid = 0;
1845 		}
1846 	} else
1847 		staid = 0;
1848 
1849 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1850 		k = ieee80211_crypto_encap(ni, m0);
1851 		if (k == NULL) {
1852 			m_freem(m0);
1853 			return ENOBUFS;
1854 		}
1855 
1856 		/* packet header may have moved, reset our local pointer */
1857 		wh = mtod(m0, struct ieee80211_frame *);
1858 	}
1859 
1860 	if (ieee80211_radiotap_active_vap(vap)) {
1861 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1862 
1863 		tap->wt_flags = 0;
1864 
1865 		ieee80211_radiotap_tx(vap, m0);
1866 	}
1867 
1868 	data = &txq->data[txq->cur];
1869 	desc = &txq->desc[txq->cur];
1870 
1871 	/* save and trim IEEE802.11 header */
1872 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1873 	m_adj(m0, hdrlen);
1874 
1875 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1876 	    &nsegs, 0);
1877 	if (error != 0 && error != EFBIG) {
1878 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1879 		    error);
1880 		m_freem(m0);
1881 		return error;
1882 	}
1883 	if (error != 0) {
1884 		mnew = m_defrag(m0, M_NOWAIT);
1885 		if (mnew == NULL) {
1886 			device_printf(sc->sc_dev,
1887 			    "could not defragment mbuf\n");
1888 			m_freem(m0);
1889 			return ENOBUFS;
1890 		}
1891 		m0 = mnew;
1892 
1893 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1894 		    m0, segs, &nsegs, 0);
1895 		if (error != 0) {
1896 			device_printf(sc->sc_dev,
1897 			    "could not map mbuf (error %d)\n", error);
1898 			m_freem(m0);
1899 			return error;
1900 		}
1901 	}
1902 
1903 	data->m = m0;
1904 	data->ni = ni;
1905 
1906 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1907 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1908 	desc->station = staid;
1909 	desc->cmd = IWI_DATA_CMD_TX;
1910 	desc->len = htole16(m0->m_pkthdr.len);
1911 	desc->flags = flags;
1912 	desc->xflags = xflags;
1913 
1914 #if 0
1915 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1916 		desc->wep_txkey = vap->iv_def_txkey;
1917 	else
1918 #endif
1919 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1920 
1921 	desc->nseg = htole32(nsegs);
1922 	for (i = 0; i < nsegs; i++) {
1923 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1924 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1925 	}
1926 
1927 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1928 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1929 
1930 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1931 	    ac, txq->cur, le16toh(desc->len), nsegs));
1932 
1933 	txq->queued++;
1934 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1935 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1936 
1937 	return 0;
1938 }
1939 
1940 static int
1941 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1942 	const struct ieee80211_bpf_params *params)
1943 {
1944 	/* no support; just discard */
1945 	m_freem(m);
1946 	ieee80211_free_node(ni);
1947 	return 0;
1948 }
1949 
1950 static void
1951 iwi_start_locked(struct ifnet *ifp)
1952 {
1953 	struct iwi_softc *sc = ifp->if_softc;
1954 	struct mbuf *m;
1955 	struct ieee80211_node *ni;
1956 	int ac;
1957 
1958 	IWI_LOCK_ASSERT(sc);
1959 
1960 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1961 		return;
1962 
1963 	for (;;) {
1964 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1965 		if (m == NULL)
1966 			break;
1967 		ac = M_WME_GETAC(m);
1968 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1969 			/* there is no place left in this ring; tail drop */
1970 			/* XXX tail drop */
1971 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1972 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1973 			break;
1974 		}
1975 
1976 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1977 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1978 			ieee80211_free_node(ni);
1979 			ifp->if_oerrors++;
1980 			break;
1981 		}
1982 
1983 		sc->sc_tx_timer = 5;
1984 	}
1985 }
1986 
1987 static void
1988 iwi_start(struct ifnet *ifp)
1989 {
1990 	struct iwi_softc *sc = ifp->if_softc;
1991 	IWI_LOCK_DECL;
1992 
1993 	IWI_LOCK(sc);
1994 	iwi_start_locked(ifp);
1995 	IWI_UNLOCK(sc);
1996 }
1997 
1998 static void
1999 iwi_watchdog(void *arg)
2000 {
2001 	struct iwi_softc *sc = arg;
2002 	struct ifnet *ifp = sc->sc_ifp;
2003 	struct ieee80211com *ic = ifp->if_l2com;
2004 
2005 	IWI_LOCK_ASSERT(sc);
2006 
2007 	if (sc->sc_tx_timer > 0) {
2008 		if (--sc->sc_tx_timer == 0) {
2009 			if_printf(ifp, "device timeout\n");
2010 			ifp->if_oerrors++;
2011 			ieee80211_runtask(ic, &sc->sc_restarttask);
2012 		}
2013 	}
2014 	if (sc->sc_state_timer > 0) {
2015 		if (--sc->sc_state_timer == 0) {
2016 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2017 			    sc->fw_state);
2018 			if (sc->fw_state == IWI_FW_SCANNING) {
2019 				struct ieee80211com *ic = ifp->if_l2com;
2020 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2021 			}
2022 			ieee80211_runtask(ic, &sc->sc_restarttask);
2023 			sc->sc_state_timer = 3;
2024 		}
2025 	}
2026 	if (sc->sc_busy_timer > 0) {
2027 		if (--sc->sc_busy_timer == 0) {
2028 			if_printf(ifp, "firmware command timeout, resetting\n");
2029 			ieee80211_runtask(ic, &sc->sc_restarttask);
2030 		}
2031 	}
2032 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2033 }
2034 
2035 static int
2036 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2037 {
2038 	struct iwi_softc *sc = ifp->if_softc;
2039 	struct ieee80211com *ic = ifp->if_l2com;
2040 	struct ifreq *ifr = (struct ifreq *) data;
2041 	int error = 0, startall = 0;
2042 	IWI_LOCK_DECL;
2043 
2044 	switch (cmd) {
2045 	case SIOCSIFFLAGS:
2046 		IWI_LOCK(sc);
2047 		if (ifp->if_flags & IFF_UP) {
2048 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2049 				iwi_init_locked(sc);
2050 				startall = 1;
2051 			}
2052 		} else {
2053 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2054 				iwi_stop_locked(sc);
2055 		}
2056 		IWI_UNLOCK(sc);
2057 		if (startall)
2058 			ieee80211_start_all(ic);
2059 		break;
2060 	case SIOCGIFMEDIA:
2061 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2062 		break;
2063 	case SIOCGIFADDR:
2064 		error = ether_ioctl(ifp, cmd, data);
2065 		break;
2066 	default:
2067 		error = EINVAL;
2068 		break;
2069 	}
2070 	return error;
2071 }
2072 
2073 static void
2074 iwi_stop_master(struct iwi_softc *sc)
2075 {
2076 	uint32_t tmp;
2077 	int ntries;
2078 
2079 	/* disable interrupts */
2080 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2081 
2082 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2083 	for (ntries = 0; ntries < 5; ntries++) {
2084 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2085 			break;
2086 		DELAY(10);
2087 	}
2088 	if (ntries == 5)
2089 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2090 
2091 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2092 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2093 
2094 	sc->flags &= ~IWI_FLAG_FW_INITED;
2095 }
2096 
2097 static int
2098 iwi_reset(struct iwi_softc *sc)
2099 {
2100 	uint32_t tmp;
2101 	int i, ntries;
2102 
2103 	iwi_stop_master(sc);
2104 
2105 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2106 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2107 
2108 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2109 
2110 	/* wait for clock stabilization */
2111 	for (ntries = 0; ntries < 1000; ntries++) {
2112 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2113 			break;
2114 		DELAY(200);
2115 	}
2116 	if (ntries == 1000) {
2117 		device_printf(sc->sc_dev,
2118 		    "timeout waiting for clock stabilization\n");
2119 		return EIO;
2120 	}
2121 
2122 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2123 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2124 
2125 	DELAY(10);
2126 
2127 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2128 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2129 
2130 	/* clear NIC memory */
2131 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2132 	for (i = 0; i < 0xc000; i++)
2133 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2134 
2135 	return 0;
2136 }
2137 
2138 static const struct iwi_firmware_ohdr *
2139 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2140 {
2141 	const struct firmware *fp = fw->fp;
2142 	const struct iwi_firmware_ohdr *hdr;
2143 
2144 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2145 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2146 		return NULL;
2147 	}
2148 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2149 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2150 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2151 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2152 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2153 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2154 		    IWI_FW_REQ_MINOR);
2155 		return NULL;
2156 	}
2157 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2158 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2159 	fw->name = fp->name;
2160 	return hdr;
2161 }
2162 
2163 static const struct iwi_firmware_ohdr *
2164 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2165 {
2166 	const struct iwi_firmware_ohdr *hdr;
2167 
2168 	hdr = iwi_setup_ofw(sc, fw);
2169 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2170 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2171 		    fw->name);
2172 		hdr = NULL;
2173 	}
2174 	return hdr;
2175 }
2176 
2177 static void
2178 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2179 	  struct iwi_fw *uc, const char *ucname)
2180 {
2181 	if (fw->fp == NULL)
2182 		fw->fp = firmware_get(fwname);
2183 	/* NB: pre-3.0 ucode is packaged separately */
2184 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2185 		uc->fp = firmware_get(ucname);
2186 }
2187 
2188 /*
2189  * Get the required firmware images if not already loaded.
2190  * Note that we hold firmware images so long as the device
2191  * is marked up in case we need to reload them on device init.
2192  * This is necessary because we re-init the device sometimes
2193  * from a context where we cannot read from the filesystem
2194  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2195  * XXX return 0 on success, 1 on error.
2196  *
2197  * NB: the order of get'ing and put'ing images here is
2198  * intentional to support handling firmware images bundled
2199  * by operating mode and/or all together in one file with
2200  * the boot firmware as "master".
2201  */
2202 static int
2203 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2204 {
2205 	const struct iwi_firmware_hdr *hdr;
2206 	const struct firmware *fp;
2207 
2208 	/* invalidate cached firmware on mode change */
2209 	if (sc->fw_mode != opmode)
2210 		iwi_put_firmware(sc);
2211 
2212 	switch (opmode) {
2213 	case IEEE80211_M_STA:
2214 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2215 		break;
2216 	case IEEE80211_M_IBSS:
2217 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2218 		break;
2219 	case IEEE80211_M_MONITOR:
2220 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2221 			  &sc->fw_uc, "iwi_ucode_monitor");
2222 		break;
2223 	default:
2224 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2225 		return EINVAL;
2226 	}
2227 	fp = sc->fw_fw.fp;
2228 	if (fp == NULL) {
2229 		device_printf(sc->sc_dev, "could not load firmware\n");
2230 		goto bad;
2231 	}
2232 	if (fp->version < 300) {
2233 		/*
2234 		 * Firmware prior to 3.0 was packaged as separate
2235 		 * boot, firmware, and ucode images.  Verify the
2236 		 * ucode image was read in, retrieve the boot image
2237 		 * if needed, and check version stamps for consistency.
2238 		 * The version stamps in the data are also checked
2239 		 * above; this is a bit paranoid but is a cheap
2240 		 * safeguard against mis-packaging.
2241 		 */
2242 		if (sc->fw_uc.fp == NULL) {
2243 			device_printf(sc->sc_dev, "could not load ucode\n");
2244 			goto bad;
2245 		}
2246 		if (sc->fw_boot.fp == NULL) {
2247 			sc->fw_boot.fp = firmware_get("iwi_boot");
2248 			if (sc->fw_boot.fp == NULL) {
2249 				device_printf(sc->sc_dev,
2250 					"could not load boot firmware\n");
2251 				goto bad;
2252 			}
2253 		}
2254 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2255 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2256 			device_printf(sc->sc_dev,
2257 			    "firmware version mismatch: "
2258 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2259 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2260 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2261 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2262 			);
2263 			goto bad;
2264 		}
2265 		/*
2266 		 * Check and setup each image.
2267 		 */
2268 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2269 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2270 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2271 			goto bad;
2272 	} else {
2273 		/*
2274 		 * Check and setup combined image.
2275 		 */
2276 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2277 			device_printf(sc->sc_dev, "image '%s' too small\n",
2278 			    fp->name);
2279 			goto bad;
2280 		}
2281 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2282 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2283 				+ le32toh(hdr->fsize)) {
2284 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2285 			    fp->name);
2286 			goto bad;
2287 		}
2288 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2289 		sc->fw_boot.size = le32toh(hdr->bsize);
2290 		sc->fw_boot.name = fp->name;
2291 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2292 		sc->fw_uc.size = le32toh(hdr->usize);
2293 		sc->fw_uc.name = fp->name;
2294 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2295 		sc->fw_fw.size = le32toh(hdr->fsize);
2296 		sc->fw_fw.name = fp->name;
2297 	}
2298 #if 0
2299 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2300 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2301 #endif
2302 
2303 	sc->fw_mode = opmode;
2304 	return 0;
2305 bad:
2306 	iwi_put_firmware(sc);
2307 	return 1;
2308 }
2309 
2310 static void
2311 iwi_put_fw(struct iwi_fw *fw)
2312 {
2313 	if (fw->fp != NULL) {
2314 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2315 		fw->fp = NULL;
2316 	}
2317 	fw->data = NULL;
2318 	fw->size = 0;
2319 	fw->name = NULL;
2320 }
2321 
2322 /*
2323  * Release any cached firmware images.
2324  */
2325 static void
2326 iwi_put_firmware(struct iwi_softc *sc)
2327 {
2328 	iwi_put_fw(&sc->fw_uc);
2329 	iwi_put_fw(&sc->fw_fw);
2330 	iwi_put_fw(&sc->fw_boot);
2331 }
2332 
2333 static int
2334 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2335 {
2336 	uint32_t tmp;
2337 	const uint16_t *w;
2338 	const char *uc = fw->data;
2339 	size_t size = fw->size;
2340 	int i, ntries, error;
2341 
2342 	IWI_LOCK_ASSERT(sc);
2343 	error = 0;
2344 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2345 	    IWI_RST_STOP_MASTER);
2346 	for (ntries = 0; ntries < 5; ntries++) {
2347 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2348 			break;
2349 		DELAY(10);
2350 	}
2351 	if (ntries == 5) {
2352 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2353 		error = EIO;
2354 		goto fail;
2355 	}
2356 
2357 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2358 	DELAY(5000);
2359 
2360 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2361 	tmp &= ~IWI_RST_PRINCETON_RESET;
2362 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2363 
2364 	DELAY(5000);
2365 	MEM_WRITE_4(sc, 0x3000e0, 0);
2366 	DELAY(1000);
2367 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2368 	DELAY(1000);
2369 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2370 	DELAY(1000);
2371 	MEM_WRITE_1(sc, 0x200000, 0x00);
2372 	MEM_WRITE_1(sc, 0x200000, 0x40);
2373 	DELAY(1000);
2374 
2375 	/* write microcode into adapter memory */
2376 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2377 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2378 
2379 	MEM_WRITE_1(sc, 0x200000, 0x00);
2380 	MEM_WRITE_1(sc, 0x200000, 0x80);
2381 
2382 	/* wait until we get an answer */
2383 	for (ntries = 0; ntries < 100; ntries++) {
2384 		if (MEM_READ_1(sc, 0x200000) & 1)
2385 			break;
2386 		DELAY(100);
2387 	}
2388 	if (ntries == 100) {
2389 		device_printf(sc->sc_dev,
2390 		    "timeout waiting for ucode to initialize\n");
2391 		error = EIO;
2392 		goto fail;
2393 	}
2394 
2395 	/* read the answer or the firmware will not initialize properly */
2396 	for (i = 0; i < 7; i++)
2397 		MEM_READ_4(sc, 0x200004);
2398 
2399 	MEM_WRITE_1(sc, 0x200000, 0x00);
2400 
2401 fail:
2402 	return error;
2403 }
2404 
2405 /* macro to handle unaligned little endian data in firmware image */
2406 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2407 
2408 static int
2409 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2410 {
2411 	u_char *p, *end;
2412 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2413 	int ntries, error;
2414 
2415 	IWI_LOCK_ASSERT(sc);
2416 
2417 	/* copy firmware image to DMA memory */
2418 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2419 
2420 	/* make sure the adapter will get up-to-date values */
2421 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2422 
2423 	/* tell the adapter where the command blocks are stored */
2424 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2425 
2426 	/*
2427 	 * Store command blocks into adapter's internal memory using register
2428 	 * indirections. The adapter will read the firmware image through DMA
2429 	 * using information stored in command blocks.
2430 	 */
2431 	src = sc->fw_physaddr;
2432 	p = sc->fw_virtaddr;
2433 	end = p + fw->size;
2434 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2435 
2436 	while (p < end) {
2437 		dst = GETLE32(p); p += 4; src += 4;
2438 		len = GETLE32(p); p += 4; src += 4;
2439 		p += len;
2440 
2441 		while (len > 0) {
2442 			mlen = min(len, IWI_CB_MAXDATALEN);
2443 
2444 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2445 			sum = ctl ^ src ^ dst;
2446 
2447 			/* write a command block */
2448 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2449 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2450 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2451 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2452 
2453 			src += mlen;
2454 			dst += mlen;
2455 			len -= mlen;
2456 		}
2457 	}
2458 
2459 	/* write a fictive final command block (sentinel) */
2460 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2461 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2462 
2463 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2464 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2465 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2466 
2467 	/* tell the adapter to start processing command blocks */
2468 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2469 
2470 	/* wait until the adapter reaches the sentinel */
2471 	for (ntries = 0; ntries < 400; ntries++) {
2472 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2473 			break;
2474 		DELAY(100);
2475 	}
2476 	/* sync dma, just in case */
2477 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2478 	if (ntries == 400) {
2479 		device_printf(sc->sc_dev,
2480 		    "timeout processing command blocks for %s firmware\n",
2481 		    fw->name);
2482 		return EIO;
2483 	}
2484 
2485 	/* we're done with command blocks processing */
2486 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2487 
2488 	/* allow interrupts so we know when the firmware is ready */
2489 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2490 
2491 	/* tell the adapter to initialize the firmware */
2492 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2493 
2494 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2495 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2496 
2497 	/* wait at most one second for firmware initialization to complete */
2498 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2499 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2500 		    "initialization to complete\n", fw->name);
2501 	}
2502 
2503 	return error;
2504 }
2505 
2506 static int
2507 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2508 {
2509 	uint32_t data;
2510 
2511 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2512 		/* XXX set more fine-grained operation */
2513 		data = htole32(IWI_POWER_MODE_MAX);
2514 	} else
2515 		data = htole32(IWI_POWER_MODE_CAM);
2516 
2517 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2518 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2519 }
2520 
2521 static int
2522 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2523 {
2524 	struct iwi_wep_key wepkey;
2525 	struct ieee80211_key *wk;
2526 	int error, i;
2527 
2528 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2529 		wk = &vap->iv_nw_keys[i];
2530 
2531 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2532 		wepkey.idx = i;
2533 		wepkey.len = wk->wk_keylen;
2534 		memset(wepkey.key, 0, sizeof wepkey.key);
2535 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2536 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2537 		    wepkey.len));
2538 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2539 		    sizeof wepkey);
2540 		if (error != 0)
2541 			return error;
2542 	}
2543 	return 0;
2544 }
2545 
2546 static int
2547 iwi_config(struct iwi_softc *sc)
2548 {
2549 	struct ifnet *ifp = sc->sc_ifp;
2550 	struct ieee80211com *ic = ifp->if_l2com;
2551 	struct iwi_configuration config;
2552 	struct iwi_rateset rs;
2553 	struct iwi_txpower power;
2554 	uint32_t data;
2555 	int error, i;
2556 
2557 	IWI_LOCK_ASSERT(sc);
2558 
2559 	DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":"));
2560 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2561 	    IEEE80211_ADDR_LEN);
2562 	if (error != 0)
2563 		return error;
2564 
2565 	memset(&config, 0, sizeof config);
2566 	config.bluetooth_coexistence = sc->bluetooth;
2567 	config.silence_threshold = 0x1e;
2568 	config.antenna = sc->antenna;
2569 	config.multicast_enabled = 1;
2570 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2571 	config.disable_unicast_decryption = 1;
2572 	config.disable_multicast_decryption = 1;
2573 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2574 		config.allow_invalid_frames = 1;
2575 		config.allow_beacon_and_probe_resp = 1;
2576 		config.allow_mgt = 1;
2577 	}
2578 	DPRINTF(("Configuring adapter\n"));
2579 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2580 	if (error != 0)
2581 		return error;
2582 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2583 		power.mode = IWI_MODE_11B;
2584 		power.nchan = 11;
2585 		for (i = 0; i < 11; i++) {
2586 			power.chan[i].chan = i + 1;
2587 			power.chan[i].power = IWI_TXPOWER_MAX;
2588 		}
2589 		DPRINTF(("Setting .11b channels tx power\n"));
2590 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2591 		if (error != 0)
2592 			return error;
2593 
2594 		power.mode = IWI_MODE_11G;
2595 		DPRINTF(("Setting .11g channels tx power\n"));
2596 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2597 		if (error != 0)
2598 			return error;
2599 	}
2600 
2601 	memset(&rs, 0, sizeof rs);
2602 	rs.mode = IWI_MODE_11G;
2603 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2604 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2605 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2606 	    rs.nrates);
2607 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2608 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2609 	if (error != 0)
2610 		return error;
2611 
2612 	memset(&rs, 0, sizeof rs);
2613 	rs.mode = IWI_MODE_11A;
2614 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2615 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2616 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2617 	    rs.nrates);
2618 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2619 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2620 	if (error != 0)
2621 		return error;
2622 
2623 	data = htole32(arc4random());
2624 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2625 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2626 	if (error != 0)
2627 		return error;
2628 
2629 	/* enable adapter */
2630 	DPRINTF(("Enabling adapter\n"));
2631 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2632 }
2633 
2634 static __inline void
2635 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2636 {
2637 	uint8_t *st = &scan->scan_type[ix / 2];
2638 	if (ix % 2)
2639 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2640 	else
2641 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2642 }
2643 
2644 static int
2645 scan_type(const struct ieee80211_scan_state *ss,
2646 	const struct ieee80211_channel *chan)
2647 {
2648 	/* We can only set one essid for a directed scan */
2649 	if (ss->ss_nssid != 0)
2650 		return IWI_SCAN_TYPE_BDIRECTED;
2651 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2652 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2653 		return IWI_SCAN_TYPE_BROADCAST;
2654 	return IWI_SCAN_TYPE_PASSIVE;
2655 }
2656 
2657 static __inline int
2658 scan_band(const struct ieee80211_channel *c)
2659 {
2660 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2661 }
2662 
2663 static void
2664 iwi_monitor_scan(void *arg, int npending)
2665 {
2666 	struct iwi_softc *sc = arg;
2667 	IWI_LOCK_DECL;
2668 
2669 	IWI_LOCK(sc);
2670 	(void) iwi_scanchan(sc, 2000, 0);
2671 	IWI_UNLOCK(sc);
2672 }
2673 
2674 /*
2675  * Start a scan on the current channel or all channels.
2676  */
2677 static int
2678 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2679 {
2680 	struct ieee80211com *ic;
2681 	struct ieee80211_channel *chan;
2682 	struct ieee80211_scan_state *ss;
2683 	struct iwi_scan_ext scan;
2684 	int error = 0;
2685 
2686 	IWI_LOCK_ASSERT(sc);
2687 	if (sc->fw_state == IWI_FW_SCANNING) {
2688 		/*
2689 		 * This should not happen as we only trigger scan_next after
2690 		 * completion
2691 		 */
2692 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2693 		return (EBUSY);
2694 	}
2695 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2696 
2697 	ic = sc->sc_ifp->if_l2com;
2698 	ss = ic->ic_scan;
2699 
2700 	memset(&scan, 0, sizeof scan);
2701 	scan.full_scan_index = htole32(++sc->sc_scangen);
2702 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2703 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2704 		/*
2705 		 * Use very short dwell times for when we send probe request
2706 		 * frames.  Without this bg scans hang.  Ideally this should
2707 		 * be handled with early-termination as done by net80211 but
2708 		 * that's not feasible (aborting a scan is problematic).
2709 		 */
2710 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2711 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2712 	} else {
2713 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2714 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2715 	}
2716 
2717 	/* We can only set one essid for a directed scan */
2718 	if (ss->ss_nssid != 0) {
2719 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2720 		    ss->ss_ssid[0].len);
2721 		if (error)
2722 			return (error);
2723 	}
2724 
2725 	if (allchan) {
2726 		int i, next, band, b, bstart;
2727 		/*
2728 		 * Convert scan list to run-length encoded channel list
2729 		 * the firmware requires (preserving the order setup by
2730 		 * net80211).  The first entry in each run specifies the
2731 		 * band and the count of items in the run.
2732 		 */
2733 		next = 0;		/* next open slot */
2734 		bstart = 0;		/* NB: not needed, silence compiler */
2735 		band = -1;		/* NB: impossible value */
2736 		KASSERT(ss->ss_last > 0, ("no channels"));
2737 		for (i = 0; i < ss->ss_last; i++) {
2738 			chan = ss->ss_chans[i];
2739 			b = scan_band(chan);
2740 			if (b != band) {
2741 				if (band != -1)
2742 					scan.channels[bstart] =
2743 					    (next - bstart) | band;
2744 				/* NB: this allocates a slot for the run-len */
2745 				band = b, bstart = next++;
2746 			}
2747 			if (next >= IWI_SCAN_CHANNELS) {
2748 				DPRINTF(("truncating scan list\n"));
2749 				break;
2750 			}
2751 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2752 			set_scan_type(&scan, next, scan_type(ss, chan));
2753 			next++;
2754 		}
2755 		scan.channels[bstart] = (next - bstart) | band;
2756 	} else {
2757 		/* Scan the current channel only */
2758 		chan = ic->ic_curchan;
2759 		scan.channels[0] = 1 | scan_band(chan);
2760 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2761 		set_scan_type(&scan, 1, scan_type(ss, chan));
2762 	}
2763 #ifdef IWI_DEBUG
2764 	if (iwi_debug > 0) {
2765 		static const char *scantype[8] =
2766 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2767 		int i;
2768 		printf("Scan request: index %u dwell %d/%d/%d\n"
2769 		    , le32toh(scan.full_scan_index)
2770 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2771 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2772 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2773 		);
2774 		i = 0;
2775 		do {
2776 			int run = scan.channels[i];
2777 			if (run == 0)
2778 				break;
2779 			printf("Scan %d %s channels:", run & 0x3f,
2780 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2781 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2782 				uint8_t type = scan.scan_type[i/2];
2783 				printf(" %u/%s", scan.channels[i],
2784 				    scantype[(i & 1 ? type : type>>4) & 7]);
2785 			}
2786 			printf("\n");
2787 		} while (i < IWI_SCAN_CHANNELS);
2788 	}
2789 #endif
2790 
2791 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2792 }
2793 
2794 static int
2795 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2796 {
2797 	struct iwi_sensitivity sens;
2798 
2799 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2800 
2801 	memset(&sens, 0, sizeof sens);
2802 	sens.rssi = htole16(rssi_dbm);
2803 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2804 }
2805 
2806 static int
2807 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2808 {
2809 	struct ieee80211com *ic = vap->iv_ic;
2810 	struct ifnet *ifp = vap->iv_ifp;
2811 	struct ieee80211_node *ni;
2812 	struct iwi_configuration config;
2813 	struct iwi_associate *assoc = &sc->assoc;
2814 	struct iwi_rateset rs;
2815 	uint16_t capinfo;
2816 	uint32_t data;
2817 	int error, mode;
2818 
2819 	IWI_LOCK_ASSERT(sc);
2820 
2821 	ni = ieee80211_ref_node(vap->iv_bss);
2822 
2823 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2824 		DPRINTF(("Already associated\n"));
2825 		return (-1);
2826 	}
2827 
2828 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2829 	error = 0;
2830 	mode = 0;
2831 
2832 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2833 		mode = IWI_MODE_11A;
2834 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2835 		mode = IWI_MODE_11G;
2836 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2837 		mode = IWI_MODE_11B;
2838 
2839 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2840 		memset(&config, 0, sizeof config);
2841 		config.bluetooth_coexistence = sc->bluetooth;
2842 		config.antenna = sc->antenna;
2843 		config.multicast_enabled = 1;
2844 		if (mode == IWI_MODE_11G)
2845 			config.use_protection = 1;
2846 		config.answer_pbreq =
2847 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2848 		config.disable_unicast_decryption = 1;
2849 		config.disable_multicast_decryption = 1;
2850 		DPRINTF(("Configuring adapter\n"));
2851 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2852 		if (error != 0)
2853 			goto done;
2854 	}
2855 
2856 #ifdef IWI_DEBUG
2857 	if (iwi_debug > 0) {
2858 		printf("Setting ESSID to ");
2859 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2860 		printf("\n");
2861 	}
2862 #endif
2863 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2864 	if (error != 0)
2865 		goto done;
2866 
2867 	error = iwi_setpowermode(sc, vap);
2868 	if (error != 0)
2869 		goto done;
2870 
2871 	data = htole32(vap->iv_rtsthreshold);
2872 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2873 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2874 	if (error != 0)
2875 		goto done;
2876 
2877 	data = htole32(vap->iv_fragthreshold);
2878 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2879 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2880 	if (error != 0)
2881 		goto done;
2882 
2883 	/* the rate set has already been "negotiated" */
2884 	memset(&rs, 0, sizeof rs);
2885 	rs.mode = mode;
2886 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2887 	rs.nrates = ni->ni_rates.rs_nrates;
2888 	if (rs.nrates > IWI_RATESET_SIZE) {
2889 		DPRINTF(("Truncating negotiated rate set from %u\n",
2890 		    rs.nrates));
2891 		rs.nrates = IWI_RATESET_SIZE;
2892 	}
2893 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2894 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2895 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2896 	if (error != 0)
2897 		goto done;
2898 
2899 	memset(assoc, 0, sizeof *assoc);
2900 
2901 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2902 		/* NB: don't treat WME setup as failure */
2903 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2904 			assoc->policy |= htole16(IWI_POLICY_WME);
2905 		/* XXX complain on failure? */
2906 	}
2907 
2908 	if (vap->iv_appie_wpa != NULL) {
2909 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2910 
2911 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2912 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2913 		if (error != 0)
2914 			goto done;
2915 	}
2916 
2917 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2918 	if (error != 0)
2919 		goto done;
2920 
2921 	assoc->mode = mode;
2922 	assoc->chan = ic->ic_curchan->ic_ieee;
2923 	/*
2924 	 * NB: do not arrange for shared key auth w/o privacy
2925 	 *     (i.e. a wep key); it causes a firmware error.
2926 	 */
2927 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2928 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2929 		assoc->auth = IWI_AUTH_SHARED;
2930 		/*
2931 		 * It's possible to have privacy marked but no default
2932 		 * key setup.  This typically is due to a user app bug
2933 		 * but if we blindly grab the key the firmware will
2934 		 * barf so avoid it for now.
2935 		 */
2936 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2937 			assoc->auth |= vap->iv_def_txkey << 4;
2938 
2939 		error = iwi_setwepkeys(sc, vap);
2940 		if (error != 0)
2941 			goto done;
2942 	}
2943 	if (vap->iv_flags & IEEE80211_F_WPA)
2944 		assoc->policy |= htole16(IWI_POLICY_WPA);
2945 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2946 		assoc->type = IWI_HC_IBSS_START;
2947 	else
2948 		assoc->type = IWI_HC_ASSOC;
2949 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2950 
2951 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2952 		capinfo = IEEE80211_CAPINFO_IBSS;
2953 	else
2954 		capinfo = IEEE80211_CAPINFO_ESS;
2955 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2956 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2957 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2958 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2959 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2960 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2961 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2962 	assoc->capinfo = htole16(capinfo);
2963 
2964 	assoc->lintval = htole16(ic->ic_lintval);
2965 	assoc->intval = htole16(ni->ni_intval);
2966 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2967 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2968 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2969 	else
2970 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2971 
2972 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2973 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2974 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2975 	    assoc->bssid, ":", assoc->dst, ":",
2976 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2977 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2978 	    le16toh(assoc->intval)));
2979 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2980 done:
2981 	ieee80211_free_node(ni);
2982 	if (error)
2983 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2984 
2985 	return (error);
2986 }
2987 
2988 static void
2989 iwi_disassoc(void *arg, int pending)
2990 {
2991 	struct iwi_softc *sc = arg;
2992 	IWI_LOCK_DECL;
2993 
2994 	IWI_LOCK(sc);
2995 	iwi_disassociate(sc, 0);
2996 	IWI_UNLOCK(sc);
2997 }
2998 
2999 static int
3000 iwi_disassociate(struct iwi_softc *sc, int quiet)
3001 {
3002 	struct iwi_associate *assoc = &sc->assoc;
3003 
3004 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3005 		DPRINTF(("Not associated\n"));
3006 		return (-1);
3007 	}
3008 
3009 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3010 
3011 	if (quiet)
3012 		assoc->type = IWI_HC_DISASSOC_QUIET;
3013 	else
3014 		assoc->type = IWI_HC_DISASSOC;
3015 
3016 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3017 	    assoc->bssid, ":", assoc->chan));
3018 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3019 }
3020 
3021 /*
3022  * release dma resources for the firmware
3023  */
3024 static void
3025 iwi_release_fw_dma(struct iwi_softc *sc)
3026 {
3027 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3028 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3029 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3030 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3031 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3032 		bus_dma_tag_destroy(sc->fw_dmat);
3033 
3034 	sc->fw_flags = 0;
3035 	sc->fw_dma_size = 0;
3036 	sc->fw_dmat = NULL;
3037 	sc->fw_map = NULL;
3038 	sc->fw_physaddr = 0;
3039 	sc->fw_virtaddr = NULL;
3040 }
3041 
3042 /*
3043  * allocate the dma descriptor for the firmware.
3044  * Return 0 on success, 1 on error.
3045  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3046  */
3047 static int
3048 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3049 {
3050 	if (sc->fw_dma_size >= size)
3051 		return 0;
3052 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3053 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3054 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3055 		device_printf(sc->sc_dev,
3056 		    "could not create firmware DMA tag\n");
3057 		goto error;
3058 	}
3059 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3060 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3061 	    &sc->fw_map) != 0) {
3062 		device_printf(sc->sc_dev,
3063 		    "could not allocate firmware DMA memory\n");
3064 		goto error;
3065 	}
3066 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3067 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3068 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3069 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3070 		goto error;
3071 	}
3072 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3073 	sc->fw_dma_size = size;
3074 	return 0;
3075 
3076 error:
3077 	iwi_release_fw_dma(sc);
3078 	return 1;
3079 }
3080 
3081 static void
3082 iwi_init_locked(struct iwi_softc *sc)
3083 {
3084 	struct ifnet *ifp = sc->sc_ifp;
3085 	struct iwi_rx_data *data;
3086 	int i;
3087 
3088 	IWI_LOCK_ASSERT(sc);
3089 
3090 	if (sc->fw_state == IWI_FW_LOADING) {
3091 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3092 		return;		/* XXX: condvar? */
3093 	}
3094 
3095 	iwi_stop_locked(sc);
3096 
3097 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3098 
3099 	if (iwi_reset(sc) != 0) {
3100 		device_printf(sc->sc_dev, "could not reset adapter\n");
3101 		goto fail;
3102 	}
3103 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3104 		device_printf(sc->sc_dev,
3105 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3106 		goto fail;
3107 	}
3108 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not load microcode %s\n", sc->fw_uc.name);
3111 		goto fail;
3112 	}
3113 
3114 	iwi_stop_master(sc);
3115 
3116 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3117 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3119 
3120 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3121 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3135 
3136 	for (i = 0; i < sc->rxq.count; i++) {
3137 		data = &sc->rxq.data[i];
3138 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3139 	}
3140 
3141 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3142 
3143 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3144 		device_printf(sc->sc_dev,
3145 		    "could not load main firmware %s\n", sc->fw_fw.name);
3146 		goto fail;
3147 	}
3148 	sc->flags |= IWI_FLAG_FW_INITED;
3149 
3150 	IWI_STATE_END(sc, IWI_FW_LOADING);
3151 
3152 	if (iwi_config(sc) != 0) {
3153 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3154 		goto fail2;
3155 	}
3156 
3157 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160 	return;
3161 fail:
3162 	IWI_STATE_END(sc, IWI_FW_LOADING);
3163 fail2:
3164 	iwi_stop_locked(sc);
3165 }
3166 
3167 static void
3168 iwi_init(void *priv)
3169 {
3170 	struct iwi_softc *sc = priv;
3171 	struct ifnet *ifp = sc->sc_ifp;
3172 	struct ieee80211com *ic = ifp->if_l2com;
3173 	IWI_LOCK_DECL;
3174 
3175 	IWI_LOCK(sc);
3176 	iwi_init_locked(sc);
3177 	IWI_UNLOCK(sc);
3178 
3179 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3180 		ieee80211_start_all(ic);
3181 }
3182 
3183 static void
3184 iwi_stop_locked(void *priv)
3185 {
3186 	struct iwi_softc *sc = priv;
3187 	struct ifnet *ifp = sc->sc_ifp;
3188 
3189 	IWI_LOCK_ASSERT(sc);
3190 
3191 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3192 
3193 	if (sc->sc_softled) {
3194 		callout_stop(&sc->sc_ledtimer);
3195 		sc->sc_blinking = 0;
3196 	}
3197 	callout_stop(&sc->sc_wdtimer);
3198 	callout_stop(&sc->sc_rftimer);
3199 
3200 	iwi_stop_master(sc);
3201 
3202 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3203 
3204 	/* reset rings */
3205 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3206 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3207 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3210 	iwi_reset_rx_ring(sc, &sc->rxq);
3211 
3212 	sc->sc_tx_timer = 0;
3213 	sc->sc_state_timer = 0;
3214 	sc->sc_busy_timer = 0;
3215 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3216 	sc->fw_state = IWI_FW_IDLE;
3217 	wakeup(sc);
3218 }
3219 
3220 static void
3221 iwi_stop(struct iwi_softc *sc)
3222 {
3223 	IWI_LOCK_DECL;
3224 
3225 	IWI_LOCK(sc);
3226 	iwi_stop_locked(sc);
3227 	IWI_UNLOCK(sc);
3228 }
3229 
3230 static void
3231 iwi_restart(void *arg, int npending)
3232 {
3233 	struct iwi_softc *sc = arg;
3234 
3235 	iwi_init(sc);
3236 }
3237 
3238 /*
3239  * Return whether or not the radio is enabled in hardware
3240  * (i.e. the rfkill switch is "off").
3241  */
3242 static int
3243 iwi_getrfkill(struct iwi_softc *sc)
3244 {
3245 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3246 }
3247 
3248 static void
3249 iwi_radio_on(void *arg, int pending)
3250 {
3251 	struct iwi_softc *sc = arg;
3252 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3253 
3254 	device_printf(sc->sc_dev, "radio turned on\n");
3255 
3256 	iwi_init(sc);
3257 	ieee80211_notify_radio(ic, 1);
3258 }
3259 
3260 static void
3261 iwi_rfkill_poll(void *arg)
3262 {
3263 	struct iwi_softc *sc = arg;
3264 
3265 	IWI_LOCK_ASSERT(sc);
3266 
3267 	/*
3268 	 * Check for a change in rfkill state.  We get an
3269 	 * interrupt when a radio is disabled but not when
3270 	 * it is enabled so we must poll for the latter.
3271 	 */
3272 	if (!iwi_getrfkill(sc)) {
3273 		struct ifnet *ifp = sc->sc_ifp;
3274 		struct ieee80211com *ic = ifp->if_l2com;
3275 
3276 		ieee80211_runtask(ic, &sc->sc_radiontask);
3277 		return;
3278 	}
3279 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3280 }
3281 
3282 static void
3283 iwi_radio_off(void *arg, int pending)
3284 {
3285 	struct iwi_softc *sc = arg;
3286 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3287 	IWI_LOCK_DECL;
3288 
3289 	device_printf(sc->sc_dev, "radio turned off\n");
3290 
3291 	ieee80211_notify_radio(ic, 0);
3292 
3293 	IWI_LOCK(sc);
3294 	iwi_stop_locked(sc);
3295 	iwi_rfkill_poll(sc);
3296 	IWI_UNLOCK(sc);
3297 }
3298 
3299 static int
3300 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3301 {
3302 	struct iwi_softc *sc = arg1;
3303 	uint32_t size, buf[128];
3304 
3305 	memset(buf, 0, sizeof buf);
3306 
3307 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3308 		return SYSCTL_OUT(req, buf, sizeof buf);
3309 
3310 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3311 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3312 
3313 	return SYSCTL_OUT(req, buf, size);
3314 }
3315 
3316 static int
3317 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3318 {
3319 	struct iwi_softc *sc = arg1;
3320 	int val = !iwi_getrfkill(sc);
3321 
3322 	return SYSCTL_OUT(req, &val, sizeof val);
3323 }
3324 
3325 /*
3326  * Add sysctl knobs.
3327  */
3328 static void
3329 iwi_sysctlattach(struct iwi_softc *sc)
3330 {
3331 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3332 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3333 
3334 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3335 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3336 	    "radio transmitter switch state (0=off, 1=on)");
3337 
3338 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3339 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3340 	    "statistics");
3341 
3342 	sc->bluetooth = 0;
3343 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3344 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3345 
3346 	sc->antenna = IWI_ANTENNA_AUTO;
3347 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3348 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3349 }
3350 
3351 /*
3352  * LED support.
3353  *
3354  * Different cards have different capabilities.  Some have three
3355  * led's while others have only one.  The linux ipw driver defines
3356  * led's for link state (associated or not), band (11a, 11g, 11b),
3357  * and for link activity.  We use one led and vary the blink rate
3358  * according to the tx/rx traffic a la the ath driver.
3359  */
3360 
3361 static __inline uint32_t
3362 iwi_toggle_event(uint32_t r)
3363 {
3364 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3365 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3366 }
3367 
3368 static uint32_t
3369 iwi_read_event(struct iwi_softc *sc)
3370 {
3371 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3372 }
3373 
3374 static void
3375 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3376 {
3377 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3378 }
3379 
3380 static void
3381 iwi_led_done(void *arg)
3382 {
3383 	struct iwi_softc *sc = arg;
3384 
3385 	sc->sc_blinking = 0;
3386 }
3387 
3388 /*
3389  * Turn the activity LED off: flip the pin and then set a timer so no
3390  * update will happen for the specified duration.
3391  */
3392 static void
3393 iwi_led_off(void *arg)
3394 {
3395 	struct iwi_softc *sc = arg;
3396 	uint32_t v;
3397 
3398 	v = iwi_read_event(sc);
3399 	v &= ~sc->sc_ledpin;
3400 	iwi_write_event(sc, iwi_toggle_event(v));
3401 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3402 }
3403 
3404 /*
3405  * Blink the LED according to the specified on/off times.
3406  */
3407 static void
3408 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3409 {
3410 	uint32_t v;
3411 
3412 	v = iwi_read_event(sc);
3413 	v |= sc->sc_ledpin;
3414 	iwi_write_event(sc, iwi_toggle_event(v));
3415 	sc->sc_blinking = 1;
3416 	sc->sc_ledoff = off;
3417 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3418 }
3419 
3420 static void
3421 iwi_led_event(struct iwi_softc *sc, int event)
3422 {
3423 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3424 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3425 	static const struct {
3426 		u_int		rate;		/* tx/rx iwi rate */
3427 		u_int16_t	timeOn;		/* LED on time (ms) */
3428 		u_int16_t	timeOff;	/* LED off time (ms) */
3429 	} blinkrates[] = {
3430 		{ IWI_RATE_OFDM54, 40,  10 },
3431 		{ IWI_RATE_OFDM48, 44,  11 },
3432 		{ IWI_RATE_OFDM36, 50,  13 },
3433 		{ IWI_RATE_OFDM24, 57,  14 },
3434 		{ IWI_RATE_OFDM18, 67,  16 },
3435 		{ IWI_RATE_OFDM12, 80,  20 },
3436 		{ IWI_RATE_DS11,  100,  25 },
3437 		{ IWI_RATE_OFDM9, 133,  34 },
3438 		{ IWI_RATE_OFDM6, 160,  40 },
3439 		{ IWI_RATE_DS5,   200,  50 },
3440 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3441 		{ IWI_RATE_DS2,   267,  66 },
3442 		{ IWI_RATE_DS1,   400, 100 },
3443 		{            0,   500, 130 },	/* unknown rate/polling */
3444 	};
3445 	uint32_t txrate;
3446 	int j = 0;			/* XXX silence compiler */
3447 
3448 	sc->sc_ledevent = ticks;	/* time of last event */
3449 	if (sc->sc_blinking)		/* don't interrupt active blink */
3450 		return;
3451 	switch (event) {
3452 	case IWI_LED_POLL:
3453 		j = N(blinkrates)-1;
3454 		break;
3455 	case IWI_LED_TX:
3456 		/* read current transmission rate from adapter */
3457 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3458 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3459 			for (j = 0; j < N(blinkrates)-1; j++)
3460 				if (blinkrates[j].rate == txrate)
3461 					break;
3462 			sc->sc_txrix = j;
3463 		} else
3464 			j = sc->sc_txrix;
3465 		break;
3466 	case IWI_LED_RX:
3467 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3468 			for (j = 0; j < N(blinkrates)-1; j++)
3469 				if (blinkrates[j].rate == sc->sc_rxrate)
3470 					break;
3471 			sc->sc_rxrix = j;
3472 		} else
3473 			j = sc->sc_rxrix;
3474 		break;
3475 	}
3476 	/* XXX beware of overflow */
3477 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3478 		(blinkrates[j].timeOff * hz) / 1000);
3479 #undef N
3480 }
3481 
3482 static int
3483 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3484 {
3485 	struct iwi_softc *sc = arg1;
3486 	int softled = sc->sc_softled;
3487 	int error;
3488 
3489 	error = sysctl_handle_int(oidp, &softled, 0, req);
3490 	if (error || !req->newptr)
3491 		return error;
3492 	softled = (softled != 0);
3493 	if (softled != sc->sc_softled) {
3494 		if (softled) {
3495 			uint32_t v = iwi_read_event(sc);
3496 			v &= ~sc->sc_ledpin;
3497 			iwi_write_event(sc, iwi_toggle_event(v));
3498 		}
3499 		sc->sc_softled = softled;
3500 	}
3501 	return 0;
3502 }
3503 
3504 static void
3505 iwi_ledattach(struct iwi_softc *sc)
3506 {
3507 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3508 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3509 
3510 	sc->sc_blinking = 0;
3511 	sc->sc_ledstate = 1;
3512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3513 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3514 
3515 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3516 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3517 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3518 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3519 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3520 		"pin setting to turn activity LED on");
3521 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3522 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3523 		"idle time for inactivity LED (ticks)");
3524 	/* XXX for debugging */
3525 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3526 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3527 		"NIC type from EEPROM");
3528 
3529 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3530 	sc->sc_softled = 1;
3531 
3532 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3533 	if (sc->sc_nictype == 1) {
3534 		/*
3535 		 * NB: led's are reversed.
3536 		 */
3537 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3538 	}
3539 }
3540 
3541 static void
3542 iwi_scan_start(struct ieee80211com *ic)
3543 {
3544 	/* ignore */
3545 }
3546 
3547 static void
3548 iwi_set_channel(struct ieee80211com *ic)
3549 {
3550 	struct ifnet *ifp = ic->ic_ifp;
3551 	struct iwi_softc *sc = ifp->if_softc;
3552 	if (sc->fw_state == IWI_FW_IDLE)
3553 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3554 }
3555 
3556 static void
3557 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3558 {
3559 	struct ieee80211vap *vap = ss->ss_vap;
3560 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3561 	struct iwi_softc *sc = ifp->if_softc;
3562 	IWI_LOCK_DECL;
3563 
3564 	IWI_LOCK(sc);
3565 	if (iwi_scanchan(sc, maxdwell, 0))
3566 		ieee80211_cancel_scan(vap);
3567 	IWI_UNLOCK(sc);
3568 }
3569 
3570 static void
3571 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3572 {
3573 	/* NB: don't try to abort scan; wait for firmware to finish */
3574 }
3575 
3576 static void
3577 iwi_scan_end(struct ieee80211com *ic)
3578 {
3579 	struct ifnet *ifp = ic->ic_ifp;
3580 	struct iwi_softc *sc = ifp->if_softc;
3581 	IWI_LOCK_DECL;
3582 
3583 	IWI_LOCK(sc);
3584 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3585 	/* NB: make sure we're still scanning */
3586 	if (sc->fw_state == IWI_FW_SCANNING)
3587 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3588 	IWI_UNLOCK(sc);
3589 }
3590