xref: /freebsd/sys/dev/iwi/if_iwi.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 #include <dev/iwi/if_iwi_ioctl.h>
88 
89 #define IWI_DEBUG
90 #ifdef IWI_DEBUG
91 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
92 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
93 int iwi_debug = 0;
94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
95 
96 static const char *iwi_fw_states[] = {
97 	"IDLE", 		/* IWI_FW_IDLE */
98 	"LOADING",		/* IWI_FW_LOADING */
99 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
100 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
101 	"SCANNING",		/* IWI_FW_SCANNING */
102 };
103 #else
104 #define DPRINTF(x)
105 #define DPRINTFN(n, x)
106 #endif
107 
108 MODULE_DEPEND(iwi, pci,  1, 1, 1);
109 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
110 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
111 
112 enum {
113 	IWI_LED_TX,
114 	IWI_LED_RX,
115 	IWI_LED_POLL,
116 };
117 
118 struct iwi_ident {
119 	uint16_t	vendor;
120 	uint16_t	device;
121 	const char	*name;
122 };
123 
124 static const struct iwi_ident iwi_ident_table[] = {
125 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
126 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
127 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
128 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
129 
130 	{ 0, 0, NULL }
131 };
132 
133 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
134 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 		    const uint8_t [IEEE80211_ADDR_LEN],
136 		    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void	iwi_vap_delete(struct ieee80211vap *);
138 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
139 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
140 		    int);
141 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
143 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
144 		    int, bus_addr_t, bus_addr_t);
145 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
147 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
148 		    int);
149 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
151 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	iwi_node_free(struct ieee80211_node *);
154 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
155 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
156 static void	iwi_wme_init(struct iwi_softc *);
157 static int	iwi_wme_setparams(struct iwi_softc *);
158 static void	iwi_update_wme(void *, int);
159 static int	iwi_wme_update(struct ieee80211com *);
160 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
161 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
162 		    struct iwi_frame *);
163 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
164 static void	iwi_rx_intr(struct iwi_softc *);
165 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
166 static void	iwi_intr(void *);
167 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
168 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
169 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
170 		    struct ieee80211_node *, int);
171 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
172 		    const struct ieee80211_bpf_params *);
173 static void	iwi_start_locked(struct ifnet *);
174 static void	iwi_start(struct ifnet *);
175 static void	iwi_watchdog(void *);
176 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
177 static void	iwi_stop_master(struct iwi_softc *);
178 static int	iwi_reset(struct iwi_softc *);
179 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
180 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
181 static void	iwi_release_fw_dma(struct iwi_softc *sc);
182 static int	iwi_config(struct iwi_softc *);
183 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
184 static void	iwi_put_firmware(struct iwi_softc *);
185 static void	iwi_monitor_scan(void *, int);
186 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
187 static void	iwi_scan_start(struct ieee80211com *);
188 static void	iwi_scan_end(struct ieee80211com *);
189 static void	iwi_set_channel(struct ieee80211com *);
190 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
191 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
192 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
193 static void	iwi_disassoc(void *, int);
194 static int	iwi_disassociate(struct iwi_softc *, int quiet);
195 static void	iwi_init_locked(struct iwi_softc *);
196 static void	iwi_init(void *);
197 static int	iwi_init_fw_dma(struct iwi_softc *, int);
198 static void	iwi_stop_locked(void *);
199 static void	iwi_stop(struct iwi_softc *);
200 static void	iwi_restart(void *, int);
201 static int	iwi_getrfkill(struct iwi_softc *);
202 static void	iwi_radio_on(void *, int);
203 static void	iwi_radio_off(void *, int);
204 static void	iwi_sysctlattach(struct iwi_softc *);
205 static void	iwi_led_event(struct iwi_softc *, int);
206 static void	iwi_ledattach(struct iwi_softc *);
207 
208 static int iwi_probe(device_t);
209 static int iwi_attach(device_t);
210 static int iwi_detach(device_t);
211 static int iwi_shutdown(device_t);
212 static int iwi_suspend(device_t);
213 static int iwi_resume(device_t);
214 
215 static device_method_t iwi_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		iwi_probe),
218 	DEVMETHOD(device_attach,	iwi_attach),
219 	DEVMETHOD(device_detach,	iwi_detach),
220 	DEVMETHOD(device_shutdown,	iwi_shutdown),
221 	DEVMETHOD(device_suspend,	iwi_suspend),
222 	DEVMETHOD(device_resume,	iwi_resume),
223 
224 	DEVMETHOD_END
225 };
226 
227 static driver_t iwi_driver = {
228 	"iwi",
229 	iwi_methods,
230 	sizeof (struct iwi_softc)
231 };
232 
233 static devclass_t iwi_devclass;
234 
235 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
236 
237 MODULE_VERSION(iwi, 1);
238 
239 static __inline uint8_t
240 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
241 {
242 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
243 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
244 }
245 
246 static __inline uint32_t
247 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
248 {
249 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
250 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
251 }
252 
253 static int
254 iwi_probe(device_t dev)
255 {
256 	const struct iwi_ident *ident;
257 
258 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
259 		if (pci_get_vendor(dev) == ident->vendor &&
260 		    pci_get_device(dev) == ident->device) {
261 			device_set_desc(dev, ident->name);
262 			return (BUS_PROBE_DEFAULT);
263 		}
264 	}
265 	return ENXIO;
266 }
267 
268 static int
269 iwi_attach(device_t dev)
270 {
271 	struct iwi_softc *sc = device_get_softc(dev);
272 	struct ifnet *ifp;
273 	struct ieee80211com *ic;
274 	uint16_t val;
275 	int i, error;
276 	uint8_t bands;
277 	uint8_t macaddr[IEEE80211_ADDR_LEN];
278 
279 	sc->sc_dev = dev;
280 
281 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
282 	if (ifp == NULL) {
283 		device_printf(dev, "can not if_alloc()\n");
284 		return ENXIO;
285 	}
286 	ic = ifp->if_l2com;
287 
288 	IWI_LOCK_INIT(sc);
289 
290 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
291 
292 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
293 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
294 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
295 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
296 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc);
297 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
298 
299 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
300 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
301 
302 	pci_write_config(dev, 0x41, 0, 1);
303 
304 	/* enable bus-mastering */
305 	pci_enable_busmaster(dev);
306 
307 	i = PCIR_BAR(0);
308 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
309 	if (sc->mem == NULL) {
310 		device_printf(dev, "could not allocate memory resource\n");
311 		goto fail;
312 	}
313 
314 	sc->sc_st = rman_get_bustag(sc->mem);
315 	sc->sc_sh = rman_get_bushandle(sc->mem);
316 
317 	i = 0;
318 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
319 	    RF_ACTIVE | RF_SHAREABLE);
320 	if (sc->irq == NULL) {
321 		device_printf(dev, "could not allocate interrupt resource\n");
322 		goto fail;
323 	}
324 
325 	if (iwi_reset(sc) != 0) {
326 		device_printf(dev, "could not reset adapter\n");
327 		goto fail;
328 	}
329 
330 	/*
331 	 * Allocate rings.
332 	 */
333 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
334 		device_printf(dev, "could not allocate Cmd ring\n");
335 		goto fail;
336 	}
337 
338 	for (i = 0; i < 4; i++) {
339 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
340 		    IWI_CSR_TX1_RIDX + i * 4,
341 		    IWI_CSR_TX1_WIDX + i * 4);
342 		if (error != 0) {
343 			device_printf(dev, "could not allocate Tx ring %d\n",
344 				i+i);
345 			goto fail;
346 		}
347 	}
348 
349 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
350 		device_printf(dev, "could not allocate Rx ring\n");
351 		goto fail;
352 	}
353 
354 	iwi_wme_init(sc);
355 
356 	ifp->if_softc = sc;
357 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
358 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
359 	ifp->if_init = iwi_init;
360 	ifp->if_ioctl = iwi_ioctl;
361 	ifp->if_start = iwi_start;
362 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
363 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
364 	IFQ_SET_READY(&ifp->if_snd);
365 
366 	ic->ic_ifp = ifp;
367 	ic->ic_softc = sc;
368 	ic->ic_name = device_get_nameunit(dev);
369 	ic->ic_opmode = IEEE80211_M_STA;
370 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
371 
372 	/* set device capabilities */
373 	ic->ic_caps =
374 	      IEEE80211_C_STA		/* station mode supported */
375 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
376 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
377 	    | IEEE80211_C_PMGT		/* power save supported */
378 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
379 	    | IEEE80211_C_WPA		/* 802.11i */
380 	    | IEEE80211_C_WME		/* 802.11e */
381 #if 0
382 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
383 #endif
384 	    ;
385 
386 	/* read MAC address from EEPROM */
387 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
388 	macaddr[0] = val & 0xff;
389 	macaddr[1] = val >> 8;
390 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
391 	macaddr[2] = val & 0xff;
392 	macaddr[3] = val >> 8;
393 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
394 	macaddr[4] = val & 0xff;
395 	macaddr[5] = val >> 8;
396 
397 	bands = 0;
398 	setbit(&bands, IEEE80211_MODE_11B);
399 	setbit(&bands, IEEE80211_MODE_11G);
400 	if (pci_get_device(dev) >= 0x4223)
401 		setbit(&bands, IEEE80211_MODE_11A);
402 	ieee80211_init_channels(ic, NULL, &bands);
403 
404 	ieee80211_ifattach(ic, macaddr);
405 	/* override default methods */
406 	ic->ic_node_alloc = iwi_node_alloc;
407 	sc->sc_node_free = ic->ic_node_free;
408 	ic->ic_node_free = iwi_node_free;
409 	ic->ic_raw_xmit = iwi_raw_xmit;
410 	ic->ic_scan_start = iwi_scan_start;
411 	ic->ic_scan_end = iwi_scan_end;
412 	ic->ic_set_channel = iwi_set_channel;
413 	ic->ic_scan_curchan = iwi_scan_curchan;
414 	ic->ic_scan_mindwell = iwi_scan_mindwell;
415 	ic->ic_wme.wme_update = iwi_wme_update;
416 
417 	ic->ic_vap_create = iwi_vap_create;
418 	ic->ic_vap_delete = iwi_vap_delete;
419 
420 	ieee80211_radiotap_attach(ic,
421 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
422 		IWI_TX_RADIOTAP_PRESENT,
423 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
424 		IWI_RX_RADIOTAP_PRESENT);
425 
426 	iwi_sysctlattach(sc);
427 	iwi_ledattach(sc);
428 
429 	/*
430 	 * Hook our interrupt after all initialization is complete.
431 	 */
432 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
433 	    NULL, iwi_intr, sc, &sc->sc_ih);
434 	if (error != 0) {
435 		device_printf(dev, "could not set up interrupt\n");
436 		goto fail;
437 	}
438 
439 	if (bootverbose)
440 		ieee80211_announce(ic);
441 
442 	return 0;
443 fail:
444 	/* XXX fix */
445 	iwi_detach(dev);
446 	return ENXIO;
447 }
448 
449 static int
450 iwi_detach(device_t dev)
451 {
452 	struct iwi_softc *sc = device_get_softc(dev);
453 	struct ifnet *ifp = sc->sc_ifp;
454 	struct ieee80211com *ic = ifp->if_l2com;
455 
456 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
457 
458 	/* NB: do early to drain any pending tasks */
459 	ieee80211_draintask(ic, &sc->sc_radiontask);
460 	ieee80211_draintask(ic, &sc->sc_radiofftask);
461 	ieee80211_draintask(ic, &sc->sc_restarttask);
462 	ieee80211_draintask(ic, &sc->sc_disassoctask);
463 	ieee80211_draintask(ic, &sc->sc_monitortask);
464 
465 	iwi_stop(sc);
466 
467 	ieee80211_ifdetach(ic);
468 
469 	iwi_put_firmware(sc);
470 	iwi_release_fw_dma(sc);
471 
472 	iwi_free_cmd_ring(sc, &sc->cmdq);
473 	iwi_free_tx_ring(sc, &sc->txq[0]);
474 	iwi_free_tx_ring(sc, &sc->txq[1]);
475 	iwi_free_tx_ring(sc, &sc->txq[2]);
476 	iwi_free_tx_ring(sc, &sc->txq[3]);
477 	iwi_free_rx_ring(sc, &sc->rxq);
478 
479 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
480 
481 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
482 	    sc->mem);
483 
484 	delete_unrhdr(sc->sc_unr);
485 
486 	IWI_LOCK_DESTROY(sc);
487 
488 	if_free(ifp);
489 
490 	return 0;
491 }
492 
493 static struct ieee80211vap *
494 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
495     enum ieee80211_opmode opmode, int flags,
496     const uint8_t bssid[IEEE80211_ADDR_LEN],
497     const uint8_t mac[IEEE80211_ADDR_LEN])
498 {
499 	struct ifnet *ifp = ic->ic_ifp;
500 	struct iwi_softc *sc = ifp->if_softc;
501 	struct iwi_vap *ivp;
502 	struct ieee80211vap *vap;
503 	int i;
504 
505 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
506 		return NULL;
507 	/*
508 	 * Get firmware image (and possibly dma memory) on mode change.
509 	 */
510 	if (iwi_get_firmware(sc, opmode))
511 		return NULL;
512 	/* allocate DMA memory for mapping firmware image */
513 	i = sc->fw_fw.size;
514 	if (sc->fw_boot.size > i)
515 		i = sc->fw_boot.size;
516 	/* XXX do we dma the ucode as well ? */
517 	if (sc->fw_uc.size > i)
518 		i = sc->fw_uc.size;
519 	if (iwi_init_fw_dma(sc, i))
520 		return NULL;
521 
522 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
523 	    M_80211_VAP, M_NOWAIT | M_ZERO);
524 	if (ivp == NULL)
525 		return NULL;
526 	vap = &ivp->iwi_vap;
527 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
528 	/* override the default, the setting comes from the linux driver */
529 	vap->iv_bmissthreshold = 24;
530 	/* override with driver methods */
531 	ivp->iwi_newstate = vap->iv_newstate;
532 	vap->iv_newstate = iwi_newstate;
533 
534 	/* complete setup */
535 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
536 	ic->ic_opmode = opmode;
537 	return vap;
538 }
539 
540 static void
541 iwi_vap_delete(struct ieee80211vap *vap)
542 {
543 	struct iwi_vap *ivp = IWI_VAP(vap);
544 
545 	ieee80211_vap_detach(vap);
546 	free(ivp, M_80211_VAP);
547 }
548 
549 static void
550 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
551 {
552 	if (error != 0)
553 		return;
554 
555 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
556 
557 	*(bus_addr_t *)arg = segs[0].ds_addr;
558 }
559 
560 static int
561 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
562 {
563 	int error;
564 
565 	ring->count = count;
566 	ring->queued = 0;
567 	ring->cur = ring->next = 0;
568 
569 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
570 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
571 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
572 	    NULL, NULL, &ring->desc_dmat);
573 	if (error != 0) {
574 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
575 		goto fail;
576 	}
577 
578 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
579 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
580 	if (error != 0) {
581 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
582 		goto fail;
583 	}
584 
585 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
586 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
587 	if (error != 0) {
588 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
589 		goto fail;
590 	}
591 
592 	return 0;
593 
594 fail:	iwi_free_cmd_ring(sc, ring);
595 	return error;
596 }
597 
598 static void
599 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
600 {
601 	ring->queued = 0;
602 	ring->cur = ring->next = 0;
603 }
604 
605 static void
606 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
607 {
608 	if (ring->desc != NULL) {
609 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
610 		    BUS_DMASYNC_POSTWRITE);
611 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
612 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
613 	}
614 
615 	if (ring->desc_dmat != NULL)
616 		bus_dma_tag_destroy(ring->desc_dmat);
617 }
618 
619 static int
620 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
621     bus_addr_t csr_ridx, bus_addr_t csr_widx)
622 {
623 	int i, error;
624 
625 	ring->count = count;
626 	ring->queued = 0;
627 	ring->cur = ring->next = 0;
628 	ring->csr_ridx = csr_ridx;
629 	ring->csr_widx = csr_widx;
630 
631 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
632 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
633 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
634 	    NULL, &ring->desc_dmat);
635 	if (error != 0) {
636 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
637 		goto fail;
638 	}
639 
640 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
641 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
648 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
651 		goto fail;
652 	}
653 
654 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
655 	    M_NOWAIT | M_ZERO);
656 	if (ring->data == NULL) {
657 		device_printf(sc->sc_dev, "could not allocate soft data\n");
658 		error = ENOMEM;
659 		goto fail;
660 	}
661 
662 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
663 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
664 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
665 	if (error != 0) {
666 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
667 		goto fail;
668 	}
669 
670 	for (i = 0; i < count; i++) {
671 		error = bus_dmamap_create(ring->data_dmat, 0,
672 		    &ring->data[i].map);
673 		if (error != 0) {
674 			device_printf(sc->sc_dev, "could not create DMA map\n");
675 			goto fail;
676 		}
677 	}
678 
679 	return 0;
680 
681 fail:	iwi_free_tx_ring(sc, ring);
682 	return error;
683 }
684 
685 static void
686 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
687 {
688 	struct iwi_tx_data *data;
689 	int i;
690 
691 	for (i = 0; i < ring->count; i++) {
692 		data = &ring->data[i];
693 
694 		if (data->m != NULL) {
695 			bus_dmamap_sync(ring->data_dmat, data->map,
696 			    BUS_DMASYNC_POSTWRITE);
697 			bus_dmamap_unload(ring->data_dmat, data->map);
698 			m_freem(data->m);
699 			data->m = NULL;
700 		}
701 
702 		if (data->ni != NULL) {
703 			ieee80211_free_node(data->ni);
704 			data->ni = NULL;
705 		}
706 	}
707 
708 	ring->queued = 0;
709 	ring->cur = ring->next = 0;
710 }
711 
712 static void
713 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
714 {
715 	struct iwi_tx_data *data;
716 	int i;
717 
718 	if (ring->desc != NULL) {
719 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
720 		    BUS_DMASYNC_POSTWRITE);
721 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
722 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
723 	}
724 
725 	if (ring->desc_dmat != NULL)
726 		bus_dma_tag_destroy(ring->desc_dmat);
727 
728 	if (ring->data != NULL) {
729 		for (i = 0; i < ring->count; i++) {
730 			data = &ring->data[i];
731 
732 			if (data->m != NULL) {
733 				bus_dmamap_sync(ring->data_dmat, data->map,
734 				    BUS_DMASYNC_POSTWRITE);
735 				bus_dmamap_unload(ring->data_dmat, data->map);
736 				m_freem(data->m);
737 			}
738 
739 			if (data->ni != NULL)
740 				ieee80211_free_node(data->ni);
741 
742 			if (data->map != NULL)
743 				bus_dmamap_destroy(ring->data_dmat, data->map);
744 		}
745 
746 		free(ring->data, M_DEVBUF);
747 	}
748 
749 	if (ring->data_dmat != NULL)
750 		bus_dma_tag_destroy(ring->data_dmat);
751 }
752 
753 static int
754 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
755 {
756 	struct iwi_rx_data *data;
757 	int i, error;
758 
759 	ring->count = count;
760 	ring->cur = 0;
761 
762 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
763 	    M_NOWAIT | M_ZERO);
764 	if (ring->data == NULL) {
765 		device_printf(sc->sc_dev, "could not allocate soft data\n");
766 		error = ENOMEM;
767 		goto fail;
768 	}
769 
770 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
771 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
772 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
773 	if (error != 0) {
774 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
775 		goto fail;
776 	}
777 
778 	for (i = 0; i < count; i++) {
779 		data = &ring->data[i];
780 
781 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
782 		if (error != 0) {
783 			device_printf(sc->sc_dev, "could not create DMA map\n");
784 			goto fail;
785 		}
786 
787 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
788 		if (data->m == NULL) {
789 			device_printf(sc->sc_dev,
790 			    "could not allocate rx mbuf\n");
791 			error = ENOMEM;
792 			goto fail;
793 		}
794 
795 		error = bus_dmamap_load(ring->data_dmat, data->map,
796 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
797 		    &data->physaddr, 0);
798 		if (error != 0) {
799 			device_printf(sc->sc_dev,
800 			    "could not load rx buf DMA map");
801 			goto fail;
802 		}
803 
804 		data->reg = IWI_CSR_RX_BASE + i * 4;
805 	}
806 
807 	return 0;
808 
809 fail:	iwi_free_rx_ring(sc, ring);
810 	return error;
811 }
812 
813 static void
814 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
815 {
816 	ring->cur = 0;
817 }
818 
819 static void
820 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
821 {
822 	struct iwi_rx_data *data;
823 	int i;
824 
825 	if (ring->data != NULL) {
826 		for (i = 0; i < ring->count; i++) {
827 			data = &ring->data[i];
828 
829 			if (data->m != NULL) {
830 				bus_dmamap_sync(ring->data_dmat, data->map,
831 				    BUS_DMASYNC_POSTREAD);
832 				bus_dmamap_unload(ring->data_dmat, data->map);
833 				m_freem(data->m);
834 			}
835 
836 			if (data->map != NULL)
837 				bus_dmamap_destroy(ring->data_dmat, data->map);
838 		}
839 
840 		free(ring->data, M_DEVBUF);
841 	}
842 
843 	if (ring->data_dmat != NULL)
844 		bus_dma_tag_destroy(ring->data_dmat);
845 }
846 
847 static int
848 iwi_shutdown(device_t dev)
849 {
850 	struct iwi_softc *sc = device_get_softc(dev);
851 
852 	iwi_stop(sc);
853 	iwi_put_firmware(sc);		/* ??? XXX */
854 
855 	return 0;
856 }
857 
858 static int
859 iwi_suspend(device_t dev)
860 {
861 	struct iwi_softc *sc = device_get_softc(dev);
862 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
863 
864 	ieee80211_suspend_all(ic);
865 	return 0;
866 }
867 
868 static int
869 iwi_resume(device_t dev)
870 {
871 	struct iwi_softc *sc = device_get_softc(dev);
872 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
873 
874 	pci_write_config(dev, 0x41, 0, 1);
875 
876 	ieee80211_resume_all(ic);
877 	return 0;
878 }
879 
880 static struct ieee80211_node *
881 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
882 {
883 	struct iwi_node *in;
884 
885 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
886 	if (in == NULL)
887 		return NULL;
888 	/* XXX assign sta table entry for adhoc */
889 	in->in_station = -1;
890 
891 	return &in->in_node;
892 }
893 
894 static void
895 iwi_node_free(struct ieee80211_node *ni)
896 {
897 	struct ieee80211com *ic = ni->ni_ic;
898 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
899 	struct iwi_node *in = (struct iwi_node *)ni;
900 
901 	if (in->in_station != -1) {
902 		DPRINTF(("%s mac %6D station %u\n", __func__,
903 		    ni->ni_macaddr, ":", in->in_station));
904 		free_unr(sc->sc_unr, in->in_station);
905 	}
906 
907 	sc->sc_node_free(ni);
908 }
909 
910 /*
911  * Convert h/w rate code to IEEE rate code.
912  */
913 static int
914 iwi_cvtrate(int iwirate)
915 {
916 	switch (iwirate) {
917 	case IWI_RATE_DS1:	return 2;
918 	case IWI_RATE_DS2:	return 4;
919 	case IWI_RATE_DS5:	return 11;
920 	case IWI_RATE_DS11:	return 22;
921 	case IWI_RATE_OFDM6:	return 12;
922 	case IWI_RATE_OFDM9:	return 18;
923 	case IWI_RATE_OFDM12:	return 24;
924 	case IWI_RATE_OFDM18:	return 36;
925 	case IWI_RATE_OFDM24:	return 48;
926 	case IWI_RATE_OFDM36:	return 72;
927 	case IWI_RATE_OFDM48:	return 96;
928 	case IWI_RATE_OFDM54:	return 108;
929 	}
930 	return 0;
931 }
932 
933 /*
934  * The firmware automatically adapts the transmit speed.  We report its current
935  * value here.
936  */
937 static void
938 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
939 {
940 	struct ieee80211vap *vap = ifp->if_softc;
941 	struct ieee80211com *ic = vap->iv_ic;
942 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
943 	struct ieee80211_node *ni;
944 
945 	/* read current transmission rate from adapter */
946 	ni = ieee80211_ref_node(vap->iv_bss);
947 	ni->ni_txrate =
948 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
949 	ieee80211_free_node(ni);
950 	ieee80211_media_status(ifp, imr);
951 }
952 
953 static int
954 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
955 {
956 	struct iwi_vap *ivp = IWI_VAP(vap);
957 	struct ieee80211com *ic = vap->iv_ic;
958 	struct ifnet *ifp = ic->ic_ifp;
959 	struct iwi_softc *sc = ifp->if_softc;
960 	IWI_LOCK_DECL;
961 
962 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
963 		ieee80211_state_name[vap->iv_state],
964 		ieee80211_state_name[nstate], sc->flags));
965 
966 	IEEE80211_UNLOCK(ic);
967 	IWI_LOCK(sc);
968 	switch (nstate) {
969 	case IEEE80211_S_INIT:
970 		/*
971 		 * NB: don't try to do this if iwi_stop_master has
972 		 *     shutdown the firmware and disabled interrupts.
973 		 */
974 		if (vap->iv_state == IEEE80211_S_RUN &&
975 		    (sc->flags & IWI_FLAG_FW_INITED))
976 			iwi_disassociate(sc, 0);
977 		break;
978 	case IEEE80211_S_AUTH:
979 		iwi_auth_and_assoc(sc, vap);
980 		break;
981 	case IEEE80211_S_RUN:
982 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
983 		    vap->iv_state == IEEE80211_S_SCAN) {
984 			/*
985 			 * XXX when joining an ibss network we are called
986 			 * with a SCAN -> RUN transition on scan complete.
987 			 * Use that to call iwi_auth_and_assoc.  On completing
988 			 * the join we are then called again with an
989 			 * AUTH -> RUN transition and we want to do nothing.
990 			 * This is all totally bogus and needs to be redone.
991 			 */
992 			iwi_auth_and_assoc(sc, vap);
993 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
994 			ieee80211_runtask(ic, &sc->sc_monitortask);
995 		break;
996 	case IEEE80211_S_ASSOC:
997 		/*
998 		 * If we are transitioning from AUTH then just wait
999 		 * for the ASSOC status to come back from the firmware.
1000 		 * Otherwise we need to issue the association request.
1001 		 */
1002 		if (vap->iv_state == IEEE80211_S_AUTH)
1003 			break;
1004 		iwi_auth_and_assoc(sc, vap);
1005 		break;
1006 	default:
1007 		break;
1008 	}
1009 	IWI_UNLOCK(sc);
1010 	IEEE80211_LOCK(ic);
1011 	return ivp->iwi_newstate(vap, nstate, arg);
1012 }
1013 
1014 /*
1015  * WME parameters coming from IEEE 802.11e specification.  These values are
1016  * already declared in ieee80211_proto.c, but they are static so they can't
1017  * be reused here.
1018  */
1019 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1020 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1021 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1022 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1023 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1024 };
1025 
1026 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1027 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1028 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1029 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1030 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1031 };
1032 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1033 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1034 
1035 static void
1036 iwi_wme_init(struct iwi_softc *sc)
1037 {
1038 	const struct wmeParams *wmep;
1039 	int ac;
1040 
1041 	memset(sc->wme, 0, sizeof sc->wme);
1042 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1043 		/* set WME values for CCK modulation */
1044 		wmep = &iwi_wme_cck_params[ac];
1045 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1046 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1047 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1048 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1049 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1050 
1051 		/* set WME values for OFDM modulation */
1052 		wmep = &iwi_wme_ofdm_params[ac];
1053 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1054 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1055 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1056 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1057 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1058 	}
1059 }
1060 
1061 static int
1062 iwi_wme_setparams(struct iwi_softc *sc)
1063 {
1064 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1065 	const struct wmeParams *wmep;
1066 	int ac;
1067 
1068 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1069 		/* set WME values for current operating mode */
1070 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1071 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1072 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1073 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1074 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1075 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1076 	}
1077 
1078 	DPRINTF(("Setting WME parameters\n"));
1079 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1080 }
1081 #undef IWI_USEC
1082 #undef IWI_EXP2
1083 
1084 static void
1085 iwi_update_wme(void *arg, int npending)
1086 {
1087 	struct iwi_softc *sc = arg;
1088 	IWI_LOCK_DECL;
1089 
1090 	IWI_LOCK(sc);
1091 	(void) iwi_wme_setparams(sc);
1092 	IWI_UNLOCK(sc);
1093 }
1094 
1095 static int
1096 iwi_wme_update(struct ieee80211com *ic)
1097 {
1098 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1099 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1100 
1101 	/*
1102 	 * We may be called to update the WME parameters in
1103 	 * the adapter at various places.  If we're already
1104 	 * associated then initiate the request immediately;
1105 	 * otherwise we assume the params will get sent down
1106 	 * to the adapter as part of the work iwi_auth_and_assoc
1107 	 * does.
1108 	 */
1109 	if (vap->iv_state == IEEE80211_S_RUN)
1110 		ieee80211_runtask(ic, &sc->sc_wmetask);
1111 	return (0);
1112 }
1113 
1114 static int
1115 iwi_wme_setie(struct iwi_softc *sc)
1116 {
1117 	struct ieee80211_wme_info wme;
1118 
1119 	memset(&wme, 0, sizeof wme);
1120 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1121 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1122 	wme.wme_oui[0] = 0x00;
1123 	wme.wme_oui[1] = 0x50;
1124 	wme.wme_oui[2] = 0xf2;
1125 	wme.wme_type = WME_OUI_TYPE;
1126 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1127 	wme.wme_version = WME_VERSION;
1128 	wme.wme_info = 0;
1129 
1130 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1131 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1132 }
1133 
1134 /*
1135  * Read 16 bits at address 'addr' from the serial EEPROM.
1136  */
1137 static uint16_t
1138 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1139 {
1140 	uint32_t tmp;
1141 	uint16_t val;
1142 	int n;
1143 
1144 	/* clock C once before the first command */
1145 	IWI_EEPROM_CTL(sc, 0);
1146 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1147 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1149 
1150 	/* write start bit (1) */
1151 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1153 
1154 	/* write READ opcode (10) */
1155 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1156 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1159 
1160 	/* write address A7-A0 */
1161 	for (n = 7; n >= 0; n--) {
1162 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1163 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1164 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1165 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1166 	}
1167 
1168 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1169 
1170 	/* read data Q15-Q0 */
1171 	val = 0;
1172 	for (n = 15; n >= 0; n--) {
1173 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1174 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1175 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1176 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1177 	}
1178 
1179 	IWI_EEPROM_CTL(sc, 0);
1180 
1181 	/* clear Chip Select and clock C */
1182 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1183 	IWI_EEPROM_CTL(sc, 0);
1184 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1185 
1186 	return val;
1187 }
1188 
1189 static void
1190 iwi_setcurchan(struct iwi_softc *sc, int chan)
1191 {
1192 	struct ifnet *ifp = sc->sc_ifp;
1193 	struct ieee80211com *ic = ifp->if_l2com;
1194 
1195 	sc->curchan = chan;
1196 	ieee80211_radiotap_chan_change(ic);
1197 }
1198 
1199 static void
1200 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1201     struct iwi_frame *frame)
1202 {
1203 	struct ifnet *ifp = sc->sc_ifp;
1204 	struct ieee80211com *ic = ifp->if_l2com;
1205 	struct mbuf *mnew, *m;
1206 	struct ieee80211_node *ni;
1207 	int type, error, framelen;
1208 	int8_t rssi, nf;
1209 	IWI_LOCK_DECL;
1210 
1211 	framelen = le16toh(frame->len);
1212 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1213 		/*
1214 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1215 		 *     out of bounds; need to figure out how to limit
1216 		 *     frame size in the firmware
1217 		 */
1218 		/* XXX stat */
1219 		DPRINTFN(1,
1220 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1221 		    le16toh(frame->len), frame->chan, frame->rssi,
1222 		    frame->rssi_dbm));
1223 		return;
1224 	}
1225 
1226 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1227 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1228 
1229 	if (frame->chan != sc->curchan)
1230 		iwi_setcurchan(sc, frame->chan);
1231 
1232 	/*
1233 	 * Try to allocate a new mbuf for this ring element and load it before
1234 	 * processing the current mbuf. If the ring element cannot be loaded,
1235 	 * drop the received packet and reuse the old mbuf. In the unlikely
1236 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1237 	 */
1238 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1239 	if (mnew == NULL) {
1240 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1241 		return;
1242 	}
1243 
1244 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1245 
1246 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1247 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1248 	    0);
1249 	if (error != 0) {
1250 		m_freem(mnew);
1251 
1252 		/* try to reload the old mbuf */
1253 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1254 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1255 		    &data->physaddr, 0);
1256 		if (error != 0) {
1257 			/* very unlikely that it will fail... */
1258 			panic("%s: could not load old rx mbuf",
1259 			    device_get_name(sc->sc_dev));
1260 		}
1261 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1262 		return;
1263 	}
1264 
1265 	/*
1266 	 * New mbuf successfully loaded, update Rx ring and continue
1267 	 * processing.
1268 	 */
1269 	m = data->m;
1270 	data->m = mnew;
1271 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1272 
1273 	/* finalize mbuf */
1274 	m->m_pkthdr.rcvif = ifp;
1275 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1276 	    sizeof (struct iwi_frame) + framelen;
1277 
1278 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1279 
1280 	rssi = frame->rssi_dbm;
1281 	nf = -95;
1282 	if (ieee80211_radiotap_active(ic)) {
1283 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1284 
1285 		tap->wr_flags = 0;
1286 		tap->wr_antsignal = rssi;
1287 		tap->wr_antnoise = nf;
1288 		tap->wr_rate = iwi_cvtrate(frame->rate);
1289 		tap->wr_antenna = frame->antenna;
1290 	}
1291 	IWI_UNLOCK(sc);
1292 
1293 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1294 	if (ni != NULL) {
1295 		type = ieee80211_input(ni, m, rssi, nf);
1296 		ieee80211_free_node(ni);
1297 	} else
1298 		type = ieee80211_input_all(ic, m, rssi, nf);
1299 
1300 	IWI_LOCK(sc);
1301 	if (sc->sc_softled) {
1302 		/*
1303 		 * Blink for any data frame.  Otherwise do a
1304 		 * heartbeat-style blink when idle.  The latter
1305 		 * is mainly for station mode where we depend on
1306 		 * periodic beacon frames to trigger the poll event.
1307 		 */
1308 		if (type == IEEE80211_FC0_TYPE_DATA) {
1309 			sc->sc_rxrate = frame->rate;
1310 			iwi_led_event(sc, IWI_LED_RX);
1311 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1312 			iwi_led_event(sc, IWI_LED_POLL);
1313 	}
1314 }
1315 
1316 /*
1317  * Check for an association response frame to see if QoS
1318  * has been negotiated.  We parse just enough to figure
1319  * out if we're supposed to use QoS.  The proper solution
1320  * is to pass the frame up so ieee80211_input can do the
1321  * work but that's made hard by how things currently are
1322  * done in the driver.
1323  */
1324 static void
1325 iwi_checkforqos(struct ieee80211vap *vap,
1326 	const struct ieee80211_frame *wh, int len)
1327 {
1328 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1329 	const uint8_t *frm, *efrm, *wme;
1330 	struct ieee80211_node *ni;
1331 	uint16_t capinfo, status, associd;
1332 
1333 	/* NB: +8 for capinfo, status, associd, and first ie */
1334 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1335 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1336 		return;
1337 	/*
1338 	 * asresp frame format
1339 	 *	[2] capability information
1340 	 *	[2] status
1341 	 *	[2] association ID
1342 	 *	[tlv] supported rates
1343 	 *	[tlv] extended supported rates
1344 	 *	[tlv] WME
1345 	 */
1346 	frm = (const uint8_t *)&wh[1];
1347 	efrm = ((const uint8_t *) wh) + len;
1348 
1349 	capinfo = le16toh(*(const uint16_t *)frm);
1350 	frm += 2;
1351 	status = le16toh(*(const uint16_t *)frm);
1352 	frm += 2;
1353 	associd = le16toh(*(const uint16_t *)frm);
1354 	frm += 2;
1355 
1356 	wme = NULL;
1357 	while (efrm - frm > 1) {
1358 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1359 		switch (*frm) {
1360 		case IEEE80211_ELEMID_VENDOR:
1361 			if (iswmeoui(frm))
1362 				wme = frm;
1363 			break;
1364 		}
1365 		frm += frm[1] + 2;
1366 	}
1367 
1368 	ni = ieee80211_ref_node(vap->iv_bss);
1369 	ni->ni_capinfo = capinfo;
1370 	ni->ni_associd = associd & 0x3fff;
1371 	if (wme != NULL)
1372 		ni->ni_flags |= IEEE80211_NODE_QOS;
1373 	else
1374 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1375 	ieee80211_free_node(ni);
1376 #undef SUBTYPE
1377 }
1378 
1379 static void
1380 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1381 {
1382 	struct iwi_notif_link_quality *lq;
1383 	int len;
1384 
1385 	len = le16toh(notif->len);
1386 
1387 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1388 	    notif->type,
1389 	    len,
1390 	    sizeof(struct iwi_notif_link_quality)
1391 	    ));
1392 
1393 	/* enforce length */
1394 	if (len != sizeof(struct iwi_notif_link_quality)) {
1395 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1396 		    notif->type,
1397 		    len));
1398 		return;
1399 	}
1400 
1401 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1402 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1403 	sc->sc_linkqual_valid = 1;
1404 }
1405 
1406 /*
1407  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1408  */
1409 
1410 static void
1411 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1412 {
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	struct ieee80211com *ic = ifp->if_l2com;
1415 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1416 	struct iwi_notif_scan_channel *chan;
1417 	struct iwi_notif_scan_complete *scan;
1418 	struct iwi_notif_authentication *auth;
1419 	struct iwi_notif_association *assoc;
1420 	struct iwi_notif_beacon_state *beacon;
1421 
1422 	switch (notif->type) {
1423 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1424 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1425 
1426 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1427 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1428 
1429 		/* Reset the timer, the scan is still going */
1430 		sc->sc_state_timer = 3;
1431 		break;
1432 
1433 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1434 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1435 
1436 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1437 		    scan->status));
1438 
1439 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1440 
1441 		/*
1442 		 * Monitor mode works by doing a passive scan to set
1443 		 * the channel and enable rx.  Because we don't want
1444 		 * to abort a scan lest the firmware crash we scan
1445 		 * for a short period of time and automatically restart
1446 		 * the scan when notified the sweep has completed.
1447 		 */
1448 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1449 			ieee80211_runtask(ic, &sc->sc_monitortask);
1450 			break;
1451 		}
1452 
1453 		if (scan->status == IWI_SCAN_COMPLETED) {
1454 			/* NB: don't need to defer, net80211 does it for us */
1455 			ieee80211_scan_next(vap);
1456 		}
1457 		break;
1458 
1459 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1460 		auth = (struct iwi_notif_authentication *)(notif + 1);
1461 		switch (auth->state) {
1462 		case IWI_AUTH_SUCCESS:
1463 			DPRINTFN(2, ("Authentication succeeeded\n"));
1464 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1465 			break;
1466 		case IWI_AUTH_FAIL:
1467 			/*
1468 			 * These are delivered as an unsolicited deauth
1469 			 * (e.g. due to inactivity) or in response to an
1470 			 * associate request.
1471 			 */
1472 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1473 			if (vap->iv_state != IEEE80211_S_RUN) {
1474 				DPRINTFN(2, ("Authentication failed\n"));
1475 				vap->iv_stats.is_rx_auth_fail++;
1476 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1477 			} else {
1478 				DPRINTFN(2, ("Deauthenticated\n"));
1479 				vap->iv_stats.is_rx_deauth++;
1480 			}
1481 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1482 			break;
1483 		case IWI_AUTH_SENT_1:
1484 		case IWI_AUTH_RECV_2:
1485 		case IWI_AUTH_SEQ1_PASS:
1486 			break;
1487 		case IWI_AUTH_SEQ1_FAIL:
1488 			DPRINTFN(2, ("Initial authentication handshake failed; "
1489 				"you probably need shared key\n"));
1490 			vap->iv_stats.is_rx_auth_fail++;
1491 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1492 			/* XXX retry shared key when in auto */
1493 			break;
1494 		default:
1495 			device_printf(sc->sc_dev,
1496 			    "unknown authentication state %u\n", auth->state);
1497 			break;
1498 		}
1499 		break;
1500 
1501 	case IWI_NOTIF_TYPE_ASSOCIATION:
1502 		assoc = (struct iwi_notif_association *)(notif + 1);
1503 		switch (assoc->state) {
1504 		case IWI_AUTH_SUCCESS:
1505 			/* re-association, do nothing */
1506 			break;
1507 		case IWI_ASSOC_SUCCESS:
1508 			DPRINTFN(2, ("Association succeeded\n"));
1509 			sc->flags |= IWI_FLAG_ASSOCIATED;
1510 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1511 			iwi_checkforqos(vap,
1512 			    (const struct ieee80211_frame *)(assoc+1),
1513 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1514 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1515 			break;
1516 		case IWI_ASSOC_INIT:
1517 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1518 			switch (sc->fw_state) {
1519 			case IWI_FW_ASSOCIATING:
1520 				DPRINTFN(2, ("Association failed\n"));
1521 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1522 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1523 				break;
1524 
1525 			case IWI_FW_DISASSOCIATING:
1526 				DPRINTFN(2, ("Dissassociated\n"));
1527 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1528 				vap->iv_stats.is_rx_disassoc++;
1529 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1530 				break;
1531 			}
1532 			break;
1533 		default:
1534 			device_printf(sc->sc_dev,
1535 			    "unknown association state %u\n", assoc->state);
1536 			break;
1537 		}
1538 		break;
1539 
1540 	case IWI_NOTIF_TYPE_BEACON:
1541 		/* XXX check struct length */
1542 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1543 
1544 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1545 		    beacon->state, le32toh(beacon->number)));
1546 
1547 		if (beacon->state == IWI_BEACON_MISS) {
1548 			/*
1549 			 * The firmware notifies us of every beacon miss
1550 			 * so we need to track the count against the
1551 			 * configured threshold before notifying the
1552 			 * 802.11 layer.
1553 			 * XXX try to roam, drop assoc only on much higher count
1554 			 */
1555 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1556 				DPRINTF(("Beacon miss: %u >= %u\n",
1557 				    le32toh(beacon->number),
1558 				    vap->iv_bmissthreshold));
1559 				vap->iv_stats.is_beacon_miss++;
1560 				/*
1561 				 * It's pointless to notify the 802.11 layer
1562 				 * as it'll try to send a probe request (which
1563 				 * we'll discard) and then timeout and drop us
1564 				 * into scan state.  Instead tell the firmware
1565 				 * to disassociate and then on completion we'll
1566 				 * kick the state machine to scan.
1567 				 */
1568 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1569 			}
1570 		}
1571 		break;
1572 
1573 	case IWI_NOTIF_TYPE_CALIBRATION:
1574 	case IWI_NOTIF_TYPE_NOISE:
1575 		/* XXX handle? */
1576 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1577 		break;
1578 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1579 		iwi_notif_link_quality(sc, notif);
1580 		break;
1581 
1582 	default:
1583 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1584 		    notif->type, notif->flags, le16toh(notif->len)));
1585 		break;
1586 	}
1587 }
1588 
1589 static void
1590 iwi_rx_intr(struct iwi_softc *sc)
1591 {
1592 	struct iwi_rx_data *data;
1593 	struct iwi_hdr *hdr;
1594 	uint32_t hw;
1595 
1596 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1597 
1598 	for (; sc->rxq.cur != hw;) {
1599 		data = &sc->rxq.data[sc->rxq.cur];
1600 
1601 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1602 		    BUS_DMASYNC_POSTREAD);
1603 
1604 		hdr = mtod(data->m, struct iwi_hdr *);
1605 
1606 		switch (hdr->type) {
1607 		case IWI_HDR_TYPE_FRAME:
1608 			iwi_frame_intr(sc, data, sc->rxq.cur,
1609 			    (struct iwi_frame *)(hdr + 1));
1610 			break;
1611 
1612 		case IWI_HDR_TYPE_NOTIF:
1613 			iwi_notification_intr(sc,
1614 			    (struct iwi_notif *)(hdr + 1));
1615 			break;
1616 
1617 		default:
1618 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1619 			    hdr->type);
1620 		}
1621 
1622 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1623 
1624 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1625 	}
1626 
1627 	/* tell the firmware what we have processed */
1628 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1629 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1630 }
1631 
1632 static void
1633 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1634 {
1635 	struct ifnet *ifp = sc->sc_ifp;
1636 	struct iwi_tx_data *data;
1637 	uint32_t hw;
1638 
1639 	hw = CSR_READ_4(sc, txq->csr_ridx);
1640 
1641 	for (; txq->next != hw;) {
1642 		data = &txq->data[txq->next];
1643 
1644 		bus_dmamap_sync(txq->data_dmat, data->map,
1645 		    BUS_DMASYNC_POSTWRITE);
1646 		bus_dmamap_unload(txq->data_dmat, data->map);
1647 		if (data->m->m_flags & M_TXCB)
1648 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1649 		m_freem(data->m);
1650 		data->m = NULL;
1651 		ieee80211_free_node(data->ni);
1652 		data->ni = NULL;
1653 
1654 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1655 
1656 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1657 
1658 		txq->queued--;
1659 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1660 	}
1661 
1662 	sc->sc_tx_timer = 0;
1663 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1664 
1665 	if (sc->sc_softled)
1666 		iwi_led_event(sc, IWI_LED_TX);
1667 
1668 	iwi_start_locked(ifp);
1669 }
1670 
1671 static void
1672 iwi_fatal_error_intr(struct iwi_softc *sc)
1673 {
1674 	struct ifnet *ifp = sc->sc_ifp;
1675 	struct ieee80211com *ic = ifp->if_l2com;
1676 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1677 
1678 	device_printf(sc->sc_dev, "firmware error\n");
1679 	if (vap != NULL)
1680 		ieee80211_cancel_scan(vap);
1681 	ieee80211_runtask(ic, &sc->sc_restarttask);
1682 
1683 	sc->flags &= ~IWI_FLAG_BUSY;
1684 	sc->sc_busy_timer = 0;
1685 	wakeup(sc);
1686 }
1687 
1688 static void
1689 iwi_radio_off_intr(struct iwi_softc *sc)
1690 {
1691 	struct ifnet *ifp = sc->sc_ifp;
1692 	struct ieee80211com *ic = ifp->if_l2com;
1693 
1694 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1695 }
1696 
1697 static void
1698 iwi_intr(void *arg)
1699 {
1700 	struct iwi_softc *sc = arg;
1701 	uint32_t r;
1702 	IWI_LOCK_DECL;
1703 
1704 	IWI_LOCK(sc);
1705 
1706 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1707 		IWI_UNLOCK(sc);
1708 		return;
1709 	}
1710 
1711 	/* acknowledge interrupts */
1712 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1713 
1714 	if (r & IWI_INTR_FATAL_ERROR) {
1715 		iwi_fatal_error_intr(sc);
1716 		goto done;
1717 	}
1718 
1719 	if (r & IWI_INTR_FW_INITED) {
1720 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1721 			wakeup(sc);
1722 	}
1723 
1724 	if (r & IWI_INTR_RADIO_OFF)
1725 		iwi_radio_off_intr(sc);
1726 
1727 	if (r & IWI_INTR_CMD_DONE) {
1728 		sc->flags &= ~IWI_FLAG_BUSY;
1729 		sc->sc_busy_timer = 0;
1730 		wakeup(sc);
1731 	}
1732 
1733 	if (r & IWI_INTR_TX1_DONE)
1734 		iwi_tx_intr(sc, &sc->txq[0]);
1735 
1736 	if (r & IWI_INTR_TX2_DONE)
1737 		iwi_tx_intr(sc, &sc->txq[1]);
1738 
1739 	if (r & IWI_INTR_TX3_DONE)
1740 		iwi_tx_intr(sc, &sc->txq[2]);
1741 
1742 	if (r & IWI_INTR_TX4_DONE)
1743 		iwi_tx_intr(sc, &sc->txq[3]);
1744 
1745 	if (r & IWI_INTR_RX_DONE)
1746 		iwi_rx_intr(sc);
1747 
1748 	if (r & IWI_INTR_PARITY_ERROR) {
1749 		/* XXX rate-limit */
1750 		device_printf(sc->sc_dev, "parity error\n");
1751 	}
1752 done:
1753 	IWI_UNLOCK(sc);
1754 }
1755 
1756 static int
1757 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1758 {
1759 	struct iwi_cmd_desc *desc;
1760 
1761 	IWI_LOCK_ASSERT(sc);
1762 
1763 	if (sc->flags & IWI_FLAG_BUSY) {
1764 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1765 			__func__, type);
1766 		return EAGAIN;
1767 	}
1768 	sc->flags |= IWI_FLAG_BUSY;
1769 	sc->sc_busy_timer = 2;
1770 
1771 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1772 
1773 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1774 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1775 	desc->type = type;
1776 	desc->len = len;
1777 	memcpy(desc->data, data, len);
1778 
1779 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1780 	    BUS_DMASYNC_PREWRITE);
1781 
1782 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1783 	    type, len));
1784 
1785 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1786 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1787 
1788 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1789 }
1790 
1791 static void
1792 iwi_write_ibssnode(struct iwi_softc *sc,
1793 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1794 {
1795 	struct iwi_ibssnode node;
1796 
1797 	/* write node information into NIC memory */
1798 	memset(&node, 0, sizeof node);
1799 	IEEE80211_ADDR_COPY(node.bssid, addr);
1800 
1801 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1802 
1803 	CSR_WRITE_REGION_1(sc,
1804 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1805 	    (uint8_t *)&node, sizeof node);
1806 }
1807 
1808 static int
1809 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1810     int ac)
1811 {
1812 	struct iwi_softc *sc = ifp->if_softc;
1813 	struct ieee80211vap *vap = ni->ni_vap;
1814 	struct ieee80211com *ic = ni->ni_ic;
1815 	struct iwi_node *in = (struct iwi_node *)ni;
1816 	const struct ieee80211_frame *wh;
1817 	struct ieee80211_key *k;
1818 	const struct chanAccParams *cap;
1819 	struct iwi_tx_ring *txq = &sc->txq[ac];
1820 	struct iwi_tx_data *data;
1821 	struct iwi_tx_desc *desc;
1822 	struct mbuf *mnew;
1823 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1824 	int error, nsegs, hdrlen, i;
1825 	int ismcast, flags, xflags, staid;
1826 
1827 	IWI_LOCK_ASSERT(sc);
1828 	wh = mtod(m0, const struct ieee80211_frame *);
1829 	/* NB: only data frames use this path */
1830 	hdrlen = ieee80211_hdrsize(wh);
1831 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1832 	flags = xflags = 0;
1833 
1834 	if (!ismcast)
1835 		flags |= IWI_DATA_FLAG_NEED_ACK;
1836 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1837 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1838 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1839 		xflags |= IWI_DATA_XFLAG_QOS;
1840 		cap = &ic->ic_wme.wme_chanParams;
1841 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1842 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1843 	}
1844 
1845 	/*
1846 	 * This is only used in IBSS mode where the firmware expect an index
1847 	 * in a h/w table instead of a destination address.
1848 	 */
1849 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1850 		if (!ismcast) {
1851 			if (in->in_station == -1) {
1852 				in->in_station = alloc_unr(sc->sc_unr);
1853 				if (in->in_station == -1) {
1854 					/* h/w table is full */
1855 					m_freem(m0);
1856 					ieee80211_free_node(ni);
1857 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1858 					return 0;
1859 				}
1860 				iwi_write_ibssnode(sc,
1861 					ni->ni_macaddr, in->in_station);
1862 			}
1863 			staid = in->in_station;
1864 		} else {
1865 			/*
1866 			 * Multicast addresses have no associated node
1867 			 * so there will be no station entry.  We reserve
1868 			 * entry 0 for one mcast address and use that.
1869 			 * If there are many being used this will be
1870 			 * expensive and we'll need to do a better job
1871 			 * but for now this handles the broadcast case.
1872 			 */
1873 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1874 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1875 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1876 			}
1877 			staid = 0;
1878 		}
1879 	} else
1880 		staid = 0;
1881 
1882 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1883 		k = ieee80211_crypto_encap(ni, m0);
1884 		if (k == NULL) {
1885 			m_freem(m0);
1886 			return ENOBUFS;
1887 		}
1888 
1889 		/* packet header may have moved, reset our local pointer */
1890 		wh = mtod(m0, struct ieee80211_frame *);
1891 	}
1892 
1893 	if (ieee80211_radiotap_active_vap(vap)) {
1894 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1895 
1896 		tap->wt_flags = 0;
1897 
1898 		ieee80211_radiotap_tx(vap, m0);
1899 	}
1900 
1901 	data = &txq->data[txq->cur];
1902 	desc = &txq->desc[txq->cur];
1903 
1904 	/* save and trim IEEE802.11 header */
1905 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1906 	m_adj(m0, hdrlen);
1907 
1908 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1909 	    &nsegs, 0);
1910 	if (error != 0 && error != EFBIG) {
1911 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1912 		    error);
1913 		m_freem(m0);
1914 		return error;
1915 	}
1916 	if (error != 0) {
1917 		mnew = m_defrag(m0, M_NOWAIT);
1918 		if (mnew == NULL) {
1919 			device_printf(sc->sc_dev,
1920 			    "could not defragment mbuf\n");
1921 			m_freem(m0);
1922 			return ENOBUFS;
1923 		}
1924 		m0 = mnew;
1925 
1926 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1927 		    m0, segs, &nsegs, 0);
1928 		if (error != 0) {
1929 			device_printf(sc->sc_dev,
1930 			    "could not map mbuf (error %d)\n", error);
1931 			m_freem(m0);
1932 			return error;
1933 		}
1934 	}
1935 
1936 	data->m = m0;
1937 	data->ni = ni;
1938 
1939 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1940 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1941 	desc->station = staid;
1942 	desc->cmd = IWI_DATA_CMD_TX;
1943 	desc->len = htole16(m0->m_pkthdr.len);
1944 	desc->flags = flags;
1945 	desc->xflags = xflags;
1946 
1947 #if 0
1948 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1949 		desc->wep_txkey = vap->iv_def_txkey;
1950 	else
1951 #endif
1952 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1953 
1954 	desc->nseg = htole32(nsegs);
1955 	for (i = 0; i < nsegs; i++) {
1956 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1957 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1958 	}
1959 
1960 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1961 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1962 
1963 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1964 	    ac, txq->cur, le16toh(desc->len), nsegs));
1965 
1966 	txq->queued++;
1967 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1968 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1969 
1970 	return 0;
1971 }
1972 
1973 static int
1974 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1975 	const struct ieee80211_bpf_params *params)
1976 {
1977 	/* no support; just discard */
1978 	m_freem(m);
1979 	ieee80211_free_node(ni);
1980 	return 0;
1981 }
1982 
1983 static void
1984 iwi_start_locked(struct ifnet *ifp)
1985 {
1986 	struct iwi_softc *sc = ifp->if_softc;
1987 	struct mbuf *m;
1988 	struct ieee80211_node *ni;
1989 	int ac;
1990 
1991 	IWI_LOCK_ASSERT(sc);
1992 
1993 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1994 		return;
1995 
1996 	for (;;) {
1997 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1998 		if (m == NULL)
1999 			break;
2000 		ac = M_WME_GETAC(m);
2001 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
2002 			/* there is no place left in this ring; tail drop */
2003 			/* XXX tail drop */
2004 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2005 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2006 			break;
2007 		}
2008 
2009 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2010 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
2011 			ieee80211_free_node(ni);
2012 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2013 			break;
2014 		}
2015 
2016 		sc->sc_tx_timer = 5;
2017 	}
2018 }
2019 
2020 static void
2021 iwi_start(struct ifnet *ifp)
2022 {
2023 	struct iwi_softc *sc = ifp->if_softc;
2024 	IWI_LOCK_DECL;
2025 
2026 	IWI_LOCK(sc);
2027 	iwi_start_locked(ifp);
2028 	IWI_UNLOCK(sc);
2029 }
2030 
2031 static void
2032 iwi_watchdog(void *arg)
2033 {
2034 	struct iwi_softc *sc = arg;
2035 	struct ifnet *ifp = sc->sc_ifp;
2036 	struct ieee80211com *ic = ifp->if_l2com;
2037 
2038 	IWI_LOCK_ASSERT(sc);
2039 
2040 	if (sc->sc_tx_timer > 0) {
2041 		if (--sc->sc_tx_timer == 0) {
2042 			if_printf(ifp, "device timeout\n");
2043 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2044 			ieee80211_runtask(ic, &sc->sc_restarttask);
2045 		}
2046 	}
2047 	if (sc->sc_state_timer > 0) {
2048 		if (--sc->sc_state_timer == 0) {
2049 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2050 			    sc->fw_state);
2051 			if (sc->fw_state == IWI_FW_SCANNING) {
2052 				struct ieee80211com *ic = ifp->if_l2com;
2053 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2054 			}
2055 			ieee80211_runtask(ic, &sc->sc_restarttask);
2056 			sc->sc_state_timer = 3;
2057 		}
2058 	}
2059 	if (sc->sc_busy_timer > 0) {
2060 		if (--sc->sc_busy_timer == 0) {
2061 			if_printf(ifp, "firmware command timeout, resetting\n");
2062 			ieee80211_runtask(ic, &sc->sc_restarttask);
2063 		}
2064 	}
2065 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2066 }
2067 
2068 static int
2069 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2070 {
2071 	struct iwi_softc *sc = ifp->if_softc;
2072 	struct ieee80211com *ic = ifp->if_l2com;
2073 	struct ifreq *ifr = (struct ifreq *) data;
2074 	int error = 0, startall = 0;
2075 	IWI_LOCK_DECL;
2076 
2077 	switch (cmd) {
2078 	case SIOCSIFFLAGS:
2079 		IWI_LOCK(sc);
2080 		if (ifp->if_flags & IFF_UP) {
2081 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2082 				iwi_init_locked(sc);
2083 				startall = 1;
2084 			}
2085 		} else {
2086 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2087 				iwi_stop_locked(sc);
2088 		}
2089 		IWI_UNLOCK(sc);
2090 		if (startall)
2091 			ieee80211_start_all(ic);
2092 		break;
2093 	case SIOCGIFMEDIA:
2094 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2095 		break;
2096 	case SIOCGIFADDR:
2097 		error = ether_ioctl(ifp, cmd, data);
2098 		break;
2099 	case SIOCGIWISTATS:
2100 		IWI_LOCK(sc);
2101 		/* XXX validate permissions/memory/etc? */
2102 		error = copyout(&sc->sc_linkqual, ifr->ifr_data,
2103 		    sizeof(struct iwi_notif_link_quality));
2104 		IWI_UNLOCK(sc);
2105 		break;
2106 	case SIOCZIWISTATS:
2107 		IWI_LOCK(sc);
2108 		memset(&sc->sc_linkqual, 0,
2109 		    sizeof(struct iwi_notif_link_quality));
2110 		IWI_UNLOCK(sc);
2111 		error = 0;
2112 		break;
2113 	default:
2114 		error = EINVAL;
2115 		break;
2116 	}
2117 		return error;
2118 }
2119 
2120 static void
2121 iwi_stop_master(struct iwi_softc *sc)
2122 {
2123 	uint32_t tmp;
2124 	int ntries;
2125 
2126 	/* disable interrupts */
2127 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2128 
2129 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2130 	for (ntries = 0; ntries < 5; ntries++) {
2131 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2132 			break;
2133 		DELAY(10);
2134 	}
2135 	if (ntries == 5)
2136 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2137 
2138 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2139 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2140 
2141 	sc->flags &= ~IWI_FLAG_FW_INITED;
2142 }
2143 
2144 static int
2145 iwi_reset(struct iwi_softc *sc)
2146 {
2147 	uint32_t tmp;
2148 	int i, ntries;
2149 
2150 	iwi_stop_master(sc);
2151 
2152 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2153 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2154 
2155 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2156 
2157 	/* wait for clock stabilization */
2158 	for (ntries = 0; ntries < 1000; ntries++) {
2159 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2160 			break;
2161 		DELAY(200);
2162 	}
2163 	if (ntries == 1000) {
2164 		device_printf(sc->sc_dev,
2165 		    "timeout waiting for clock stabilization\n");
2166 		return EIO;
2167 	}
2168 
2169 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2170 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2171 
2172 	DELAY(10);
2173 
2174 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2175 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2176 
2177 	/* clear NIC memory */
2178 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2179 	for (i = 0; i < 0xc000; i++)
2180 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2181 
2182 	return 0;
2183 }
2184 
2185 static const struct iwi_firmware_ohdr *
2186 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2187 {
2188 	const struct firmware *fp = fw->fp;
2189 	const struct iwi_firmware_ohdr *hdr;
2190 
2191 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2192 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2193 		return NULL;
2194 	}
2195 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2196 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2197 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2198 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2199 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2200 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2201 		    IWI_FW_REQ_MINOR);
2202 		return NULL;
2203 	}
2204 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2205 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2206 	fw->name = fp->name;
2207 	return hdr;
2208 }
2209 
2210 static const struct iwi_firmware_ohdr *
2211 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2212 {
2213 	const struct iwi_firmware_ohdr *hdr;
2214 
2215 	hdr = iwi_setup_ofw(sc, fw);
2216 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2217 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2218 		    fw->name);
2219 		hdr = NULL;
2220 	}
2221 	return hdr;
2222 }
2223 
2224 static void
2225 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2226 	  struct iwi_fw *uc, const char *ucname)
2227 {
2228 	if (fw->fp == NULL)
2229 		fw->fp = firmware_get(fwname);
2230 	/* NB: pre-3.0 ucode is packaged separately */
2231 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2232 		uc->fp = firmware_get(ucname);
2233 }
2234 
2235 /*
2236  * Get the required firmware images if not already loaded.
2237  * Note that we hold firmware images so long as the device
2238  * is marked up in case we need to reload them on device init.
2239  * This is necessary because we re-init the device sometimes
2240  * from a context where we cannot read from the filesystem
2241  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2242  * XXX return 0 on success, 1 on error.
2243  *
2244  * NB: the order of get'ing and put'ing images here is
2245  * intentional to support handling firmware images bundled
2246  * by operating mode and/or all together in one file with
2247  * the boot firmware as "master".
2248  */
2249 static int
2250 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2251 {
2252 	const struct iwi_firmware_hdr *hdr;
2253 	const struct firmware *fp;
2254 
2255 	/* invalidate cached firmware on mode change */
2256 	if (sc->fw_mode != opmode)
2257 		iwi_put_firmware(sc);
2258 
2259 	switch (opmode) {
2260 	case IEEE80211_M_STA:
2261 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2262 		break;
2263 	case IEEE80211_M_IBSS:
2264 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2265 		break;
2266 	case IEEE80211_M_MONITOR:
2267 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2268 			  &sc->fw_uc, "iwi_ucode_monitor");
2269 		break;
2270 	default:
2271 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2272 		return EINVAL;
2273 	}
2274 	fp = sc->fw_fw.fp;
2275 	if (fp == NULL) {
2276 		device_printf(sc->sc_dev, "could not load firmware\n");
2277 		goto bad;
2278 	}
2279 	if (fp->version < 300) {
2280 		/*
2281 		 * Firmware prior to 3.0 was packaged as separate
2282 		 * boot, firmware, and ucode images.  Verify the
2283 		 * ucode image was read in, retrieve the boot image
2284 		 * if needed, and check version stamps for consistency.
2285 		 * The version stamps in the data are also checked
2286 		 * above; this is a bit paranoid but is a cheap
2287 		 * safeguard against mis-packaging.
2288 		 */
2289 		if (sc->fw_uc.fp == NULL) {
2290 			device_printf(sc->sc_dev, "could not load ucode\n");
2291 			goto bad;
2292 		}
2293 		if (sc->fw_boot.fp == NULL) {
2294 			sc->fw_boot.fp = firmware_get("iwi_boot");
2295 			if (sc->fw_boot.fp == NULL) {
2296 				device_printf(sc->sc_dev,
2297 					"could not load boot firmware\n");
2298 				goto bad;
2299 			}
2300 		}
2301 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2302 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2303 			device_printf(sc->sc_dev,
2304 			    "firmware version mismatch: "
2305 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2306 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2307 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2308 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2309 			);
2310 			goto bad;
2311 		}
2312 		/*
2313 		 * Check and setup each image.
2314 		 */
2315 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2316 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2317 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2318 			goto bad;
2319 	} else {
2320 		/*
2321 		 * Check and setup combined image.
2322 		 */
2323 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2324 			device_printf(sc->sc_dev, "image '%s' too small\n",
2325 			    fp->name);
2326 			goto bad;
2327 		}
2328 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2329 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2330 				+ le32toh(hdr->fsize)) {
2331 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2332 			    fp->name);
2333 			goto bad;
2334 		}
2335 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2336 		sc->fw_boot.size = le32toh(hdr->bsize);
2337 		sc->fw_boot.name = fp->name;
2338 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2339 		sc->fw_uc.size = le32toh(hdr->usize);
2340 		sc->fw_uc.name = fp->name;
2341 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2342 		sc->fw_fw.size = le32toh(hdr->fsize);
2343 		sc->fw_fw.name = fp->name;
2344 	}
2345 #if 0
2346 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2347 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2348 #endif
2349 
2350 	sc->fw_mode = opmode;
2351 	return 0;
2352 bad:
2353 	iwi_put_firmware(sc);
2354 	return 1;
2355 }
2356 
2357 static void
2358 iwi_put_fw(struct iwi_fw *fw)
2359 {
2360 	if (fw->fp != NULL) {
2361 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2362 		fw->fp = NULL;
2363 	}
2364 	fw->data = NULL;
2365 	fw->size = 0;
2366 	fw->name = NULL;
2367 }
2368 
2369 /*
2370  * Release any cached firmware images.
2371  */
2372 static void
2373 iwi_put_firmware(struct iwi_softc *sc)
2374 {
2375 	iwi_put_fw(&sc->fw_uc);
2376 	iwi_put_fw(&sc->fw_fw);
2377 	iwi_put_fw(&sc->fw_boot);
2378 }
2379 
2380 static int
2381 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2382 {
2383 	uint32_t tmp;
2384 	const uint16_t *w;
2385 	const char *uc = fw->data;
2386 	size_t size = fw->size;
2387 	int i, ntries, error;
2388 
2389 	IWI_LOCK_ASSERT(sc);
2390 	error = 0;
2391 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2392 	    IWI_RST_STOP_MASTER);
2393 	for (ntries = 0; ntries < 5; ntries++) {
2394 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2395 			break;
2396 		DELAY(10);
2397 	}
2398 	if (ntries == 5) {
2399 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2400 		error = EIO;
2401 		goto fail;
2402 	}
2403 
2404 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2405 	DELAY(5000);
2406 
2407 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2408 	tmp &= ~IWI_RST_PRINCETON_RESET;
2409 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2410 
2411 	DELAY(5000);
2412 	MEM_WRITE_4(sc, 0x3000e0, 0);
2413 	DELAY(1000);
2414 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2415 	DELAY(1000);
2416 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2417 	DELAY(1000);
2418 	MEM_WRITE_1(sc, 0x200000, 0x00);
2419 	MEM_WRITE_1(sc, 0x200000, 0x40);
2420 	DELAY(1000);
2421 
2422 	/* write microcode into adapter memory */
2423 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2424 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2425 
2426 	MEM_WRITE_1(sc, 0x200000, 0x00);
2427 	MEM_WRITE_1(sc, 0x200000, 0x80);
2428 
2429 	/* wait until we get an answer */
2430 	for (ntries = 0; ntries < 100; ntries++) {
2431 		if (MEM_READ_1(sc, 0x200000) & 1)
2432 			break;
2433 		DELAY(100);
2434 	}
2435 	if (ntries == 100) {
2436 		device_printf(sc->sc_dev,
2437 		    "timeout waiting for ucode to initialize\n");
2438 		error = EIO;
2439 		goto fail;
2440 	}
2441 
2442 	/* read the answer or the firmware will not initialize properly */
2443 	for (i = 0; i < 7; i++)
2444 		MEM_READ_4(sc, 0x200004);
2445 
2446 	MEM_WRITE_1(sc, 0x200000, 0x00);
2447 
2448 fail:
2449 	return error;
2450 }
2451 
2452 /* macro to handle unaligned little endian data in firmware image */
2453 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2454 
2455 static int
2456 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2457 {
2458 	u_char *p, *end;
2459 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2460 	int ntries, error;
2461 
2462 	IWI_LOCK_ASSERT(sc);
2463 
2464 	/* copy firmware image to DMA memory */
2465 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2466 
2467 	/* make sure the adapter will get up-to-date values */
2468 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2469 
2470 	/* tell the adapter where the command blocks are stored */
2471 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2472 
2473 	/*
2474 	 * Store command blocks into adapter's internal memory using register
2475 	 * indirections. The adapter will read the firmware image through DMA
2476 	 * using information stored in command blocks.
2477 	 */
2478 	src = sc->fw_physaddr;
2479 	p = sc->fw_virtaddr;
2480 	end = p + fw->size;
2481 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2482 
2483 	while (p < end) {
2484 		dst = GETLE32(p); p += 4; src += 4;
2485 		len = GETLE32(p); p += 4; src += 4;
2486 		p += len;
2487 
2488 		while (len > 0) {
2489 			mlen = min(len, IWI_CB_MAXDATALEN);
2490 
2491 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2492 			sum = ctl ^ src ^ dst;
2493 
2494 			/* write a command block */
2495 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2496 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2497 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2498 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2499 
2500 			src += mlen;
2501 			dst += mlen;
2502 			len -= mlen;
2503 		}
2504 	}
2505 
2506 	/* write a fictive final command block (sentinel) */
2507 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2508 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2509 
2510 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2511 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2512 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2513 
2514 	/* tell the adapter to start processing command blocks */
2515 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2516 
2517 	/* wait until the adapter reaches the sentinel */
2518 	for (ntries = 0; ntries < 400; ntries++) {
2519 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2520 			break;
2521 		DELAY(100);
2522 	}
2523 	/* sync dma, just in case */
2524 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2525 	if (ntries == 400) {
2526 		device_printf(sc->sc_dev,
2527 		    "timeout processing command blocks for %s firmware\n",
2528 		    fw->name);
2529 		return EIO;
2530 	}
2531 
2532 	/* we're done with command blocks processing */
2533 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2534 
2535 	/* allow interrupts so we know when the firmware is ready */
2536 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2537 
2538 	/* tell the adapter to initialize the firmware */
2539 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2540 
2541 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2542 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2543 
2544 	/* wait at most one second for firmware initialization to complete */
2545 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2546 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2547 		    "initialization to complete\n", fw->name);
2548 	}
2549 
2550 	return error;
2551 }
2552 
2553 static int
2554 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2555 {
2556 	uint32_t data;
2557 
2558 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2559 		/* XXX set more fine-grained operation */
2560 		data = htole32(IWI_POWER_MODE_MAX);
2561 	} else
2562 		data = htole32(IWI_POWER_MODE_CAM);
2563 
2564 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2565 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2566 }
2567 
2568 static int
2569 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2570 {
2571 	struct iwi_wep_key wepkey;
2572 	struct ieee80211_key *wk;
2573 	int error, i;
2574 
2575 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2576 		wk = &vap->iv_nw_keys[i];
2577 
2578 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2579 		wepkey.idx = i;
2580 		wepkey.len = wk->wk_keylen;
2581 		memset(wepkey.key, 0, sizeof wepkey.key);
2582 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2583 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2584 		    wepkey.len));
2585 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2586 		    sizeof wepkey);
2587 		if (error != 0)
2588 			return error;
2589 	}
2590 	return 0;
2591 }
2592 
2593 static int
2594 iwi_config(struct iwi_softc *sc)
2595 {
2596 	struct ifnet *ifp = sc->sc_ifp;
2597 	struct ieee80211com *ic = ifp->if_l2com;
2598 	struct iwi_configuration config;
2599 	struct iwi_rateset rs;
2600 	struct iwi_txpower power;
2601 	uint32_t data;
2602 	int error, i;
2603 
2604 	IWI_LOCK_ASSERT(sc);
2605 
2606 	DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":"));
2607 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2608 	    IEEE80211_ADDR_LEN);
2609 	if (error != 0)
2610 		return error;
2611 
2612 	memset(&config, 0, sizeof config);
2613 	config.bluetooth_coexistence = sc->bluetooth;
2614 	config.silence_threshold = 0x1e;
2615 	config.antenna = sc->antenna;
2616 	config.multicast_enabled = 1;
2617 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2618 	config.disable_unicast_decryption = 1;
2619 	config.disable_multicast_decryption = 1;
2620 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2621 		config.allow_invalid_frames = 1;
2622 		config.allow_beacon_and_probe_resp = 1;
2623 		config.allow_mgt = 1;
2624 	}
2625 	DPRINTF(("Configuring adapter\n"));
2626 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2627 	if (error != 0)
2628 		return error;
2629 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2630 		power.mode = IWI_MODE_11B;
2631 		power.nchan = 11;
2632 		for (i = 0; i < 11; i++) {
2633 			power.chan[i].chan = i + 1;
2634 			power.chan[i].power = IWI_TXPOWER_MAX;
2635 		}
2636 		DPRINTF(("Setting .11b channels tx power\n"));
2637 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2638 		if (error != 0)
2639 			return error;
2640 
2641 		power.mode = IWI_MODE_11G;
2642 		DPRINTF(("Setting .11g channels tx power\n"));
2643 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2644 		if (error != 0)
2645 			return error;
2646 	}
2647 
2648 	memset(&rs, 0, sizeof rs);
2649 	rs.mode = IWI_MODE_11G;
2650 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2651 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2652 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2653 	    rs.nrates);
2654 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2655 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2656 	if (error != 0)
2657 		return error;
2658 
2659 	memset(&rs, 0, sizeof rs);
2660 	rs.mode = IWI_MODE_11A;
2661 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2662 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2663 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2664 	    rs.nrates);
2665 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2666 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2667 	if (error != 0)
2668 		return error;
2669 
2670 	data = htole32(arc4random());
2671 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2672 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2673 	if (error != 0)
2674 		return error;
2675 
2676 	/* enable adapter */
2677 	DPRINTF(("Enabling adapter\n"));
2678 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2679 }
2680 
2681 static __inline void
2682 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2683 {
2684 	uint8_t *st = &scan->scan_type[ix / 2];
2685 	if (ix % 2)
2686 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2687 	else
2688 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2689 }
2690 
2691 static int
2692 scan_type(const struct ieee80211_scan_state *ss,
2693 	const struct ieee80211_channel *chan)
2694 {
2695 	/* We can only set one essid for a directed scan */
2696 	if (ss->ss_nssid != 0)
2697 		return IWI_SCAN_TYPE_BDIRECTED;
2698 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2699 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2700 		return IWI_SCAN_TYPE_BROADCAST;
2701 	return IWI_SCAN_TYPE_PASSIVE;
2702 }
2703 
2704 static __inline int
2705 scan_band(const struct ieee80211_channel *c)
2706 {
2707 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2708 }
2709 
2710 static void
2711 iwi_monitor_scan(void *arg, int npending)
2712 {
2713 	struct iwi_softc *sc = arg;
2714 	IWI_LOCK_DECL;
2715 
2716 	IWI_LOCK(sc);
2717 	(void) iwi_scanchan(sc, 2000, 0);
2718 	IWI_UNLOCK(sc);
2719 }
2720 
2721 /*
2722  * Start a scan on the current channel or all channels.
2723  */
2724 static int
2725 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2726 {
2727 	struct ieee80211com *ic;
2728 	struct ieee80211_channel *chan;
2729 	struct ieee80211_scan_state *ss;
2730 	struct iwi_scan_ext scan;
2731 	int error = 0;
2732 
2733 	IWI_LOCK_ASSERT(sc);
2734 	if (sc->fw_state == IWI_FW_SCANNING) {
2735 		/*
2736 		 * This should not happen as we only trigger scan_next after
2737 		 * completion
2738 		 */
2739 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2740 		return (EBUSY);
2741 	}
2742 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2743 
2744 	ic = sc->sc_ifp->if_l2com;
2745 	ss = ic->ic_scan;
2746 
2747 	memset(&scan, 0, sizeof scan);
2748 	scan.full_scan_index = htole32(++sc->sc_scangen);
2749 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2750 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2751 		/*
2752 		 * Use very short dwell times for when we send probe request
2753 		 * frames.  Without this bg scans hang.  Ideally this should
2754 		 * be handled with early-termination as done by net80211 but
2755 		 * that's not feasible (aborting a scan is problematic).
2756 		 */
2757 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2758 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2759 	} else {
2760 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2761 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2762 	}
2763 
2764 	/* We can only set one essid for a directed scan */
2765 	if (ss->ss_nssid != 0) {
2766 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2767 		    ss->ss_ssid[0].len);
2768 		if (error)
2769 			return (error);
2770 	}
2771 
2772 	if (allchan) {
2773 		int i, next, band, b, bstart;
2774 		/*
2775 		 * Convert scan list to run-length encoded channel list
2776 		 * the firmware requires (preserving the order setup by
2777 		 * net80211).  The first entry in each run specifies the
2778 		 * band and the count of items in the run.
2779 		 */
2780 		next = 0;		/* next open slot */
2781 		bstart = 0;		/* NB: not needed, silence compiler */
2782 		band = -1;		/* NB: impossible value */
2783 		KASSERT(ss->ss_last > 0, ("no channels"));
2784 		for (i = 0; i < ss->ss_last; i++) {
2785 			chan = ss->ss_chans[i];
2786 			b = scan_band(chan);
2787 			if (b != band) {
2788 				if (band != -1)
2789 					scan.channels[bstart] =
2790 					    (next - bstart) | band;
2791 				/* NB: this allocates a slot for the run-len */
2792 				band = b, bstart = next++;
2793 			}
2794 			if (next >= IWI_SCAN_CHANNELS) {
2795 				DPRINTF(("truncating scan list\n"));
2796 				break;
2797 			}
2798 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2799 			set_scan_type(&scan, next, scan_type(ss, chan));
2800 			next++;
2801 		}
2802 		scan.channels[bstart] = (next - bstart) | band;
2803 	} else {
2804 		/* Scan the current channel only */
2805 		chan = ic->ic_curchan;
2806 		scan.channels[0] = 1 | scan_band(chan);
2807 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2808 		set_scan_type(&scan, 1, scan_type(ss, chan));
2809 	}
2810 #ifdef IWI_DEBUG
2811 	if (iwi_debug > 0) {
2812 		static const char *scantype[8] =
2813 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2814 		int i;
2815 		printf("Scan request: index %u dwell %d/%d/%d\n"
2816 		    , le32toh(scan.full_scan_index)
2817 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2818 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2819 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2820 		);
2821 		i = 0;
2822 		do {
2823 			int run = scan.channels[i];
2824 			if (run == 0)
2825 				break;
2826 			printf("Scan %d %s channels:", run & 0x3f,
2827 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2828 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2829 				uint8_t type = scan.scan_type[i/2];
2830 				printf(" %u/%s", scan.channels[i],
2831 				    scantype[(i & 1 ? type : type>>4) & 7]);
2832 			}
2833 			printf("\n");
2834 		} while (i < IWI_SCAN_CHANNELS);
2835 	}
2836 #endif
2837 
2838 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2839 }
2840 
2841 static int
2842 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2843 {
2844 	struct iwi_sensitivity sens;
2845 
2846 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2847 
2848 	memset(&sens, 0, sizeof sens);
2849 	sens.rssi = htole16(rssi_dbm);
2850 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2851 }
2852 
2853 static int
2854 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2855 {
2856 	struct ieee80211com *ic = vap->iv_ic;
2857 	struct ifnet *ifp = vap->iv_ifp;
2858 	struct ieee80211_node *ni;
2859 	struct iwi_configuration config;
2860 	struct iwi_associate *assoc = &sc->assoc;
2861 	struct iwi_rateset rs;
2862 	uint16_t capinfo;
2863 	uint32_t data;
2864 	int error, mode;
2865 
2866 	IWI_LOCK_ASSERT(sc);
2867 
2868 	ni = ieee80211_ref_node(vap->iv_bss);
2869 
2870 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2871 		DPRINTF(("Already associated\n"));
2872 		return (-1);
2873 	}
2874 
2875 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2876 	error = 0;
2877 	mode = 0;
2878 
2879 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2880 		mode = IWI_MODE_11A;
2881 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2882 		mode = IWI_MODE_11G;
2883 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2884 		mode = IWI_MODE_11B;
2885 
2886 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2887 		memset(&config, 0, sizeof config);
2888 		config.bluetooth_coexistence = sc->bluetooth;
2889 		config.antenna = sc->antenna;
2890 		config.multicast_enabled = 1;
2891 		if (mode == IWI_MODE_11G)
2892 			config.use_protection = 1;
2893 		config.answer_pbreq =
2894 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2895 		config.disable_unicast_decryption = 1;
2896 		config.disable_multicast_decryption = 1;
2897 		DPRINTF(("Configuring adapter\n"));
2898 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2899 		if (error != 0)
2900 			goto done;
2901 	}
2902 
2903 #ifdef IWI_DEBUG
2904 	if (iwi_debug > 0) {
2905 		printf("Setting ESSID to ");
2906 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2907 		printf("\n");
2908 	}
2909 #endif
2910 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2911 	if (error != 0)
2912 		goto done;
2913 
2914 	error = iwi_setpowermode(sc, vap);
2915 	if (error != 0)
2916 		goto done;
2917 
2918 	data = htole32(vap->iv_rtsthreshold);
2919 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2920 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2921 	if (error != 0)
2922 		goto done;
2923 
2924 	data = htole32(vap->iv_fragthreshold);
2925 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2926 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2927 	if (error != 0)
2928 		goto done;
2929 
2930 	/* the rate set has already been "negotiated" */
2931 	memset(&rs, 0, sizeof rs);
2932 	rs.mode = mode;
2933 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2934 	rs.nrates = ni->ni_rates.rs_nrates;
2935 	if (rs.nrates > IWI_RATESET_SIZE) {
2936 		DPRINTF(("Truncating negotiated rate set from %u\n",
2937 		    rs.nrates));
2938 		rs.nrates = IWI_RATESET_SIZE;
2939 	}
2940 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2941 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2942 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2943 	if (error != 0)
2944 		goto done;
2945 
2946 	memset(assoc, 0, sizeof *assoc);
2947 
2948 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2949 		/* NB: don't treat WME setup as failure */
2950 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2951 			assoc->policy |= htole16(IWI_POLICY_WME);
2952 		/* XXX complain on failure? */
2953 	}
2954 
2955 	if (vap->iv_appie_wpa != NULL) {
2956 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2957 
2958 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2959 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2960 		if (error != 0)
2961 			goto done;
2962 	}
2963 
2964 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2965 	if (error != 0)
2966 		goto done;
2967 
2968 	assoc->mode = mode;
2969 	assoc->chan = ic->ic_curchan->ic_ieee;
2970 	/*
2971 	 * NB: do not arrange for shared key auth w/o privacy
2972 	 *     (i.e. a wep key); it causes a firmware error.
2973 	 */
2974 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2975 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2976 		assoc->auth = IWI_AUTH_SHARED;
2977 		/*
2978 		 * It's possible to have privacy marked but no default
2979 		 * key setup.  This typically is due to a user app bug
2980 		 * but if we blindly grab the key the firmware will
2981 		 * barf so avoid it for now.
2982 		 */
2983 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2984 			assoc->auth |= vap->iv_def_txkey << 4;
2985 
2986 		error = iwi_setwepkeys(sc, vap);
2987 		if (error != 0)
2988 			goto done;
2989 	}
2990 	if (vap->iv_flags & IEEE80211_F_WPA)
2991 		assoc->policy |= htole16(IWI_POLICY_WPA);
2992 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2993 		assoc->type = IWI_HC_IBSS_START;
2994 	else
2995 		assoc->type = IWI_HC_ASSOC;
2996 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2997 
2998 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2999 		capinfo = IEEE80211_CAPINFO_IBSS;
3000 	else
3001 		capinfo = IEEE80211_CAPINFO_ESS;
3002 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
3003 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
3004 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3005 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3006 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
3007 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
3008 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
3009 	assoc->capinfo = htole16(capinfo);
3010 
3011 	assoc->lintval = htole16(ic->ic_lintval);
3012 	assoc->intval = htole16(ni->ni_intval);
3013 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
3014 	if (vap->iv_opmode == IEEE80211_M_IBSS)
3015 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
3016 	else
3017 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
3018 
3019 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
3020 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
3021 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
3022 	    assoc->bssid, ":", assoc->dst, ":",
3023 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
3024 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
3025 	    le16toh(assoc->intval)));
3026 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3027 done:
3028 	ieee80211_free_node(ni);
3029 	if (error)
3030 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
3031 
3032 	return (error);
3033 }
3034 
3035 static void
3036 iwi_disassoc(void *arg, int pending)
3037 {
3038 	struct iwi_softc *sc = arg;
3039 	IWI_LOCK_DECL;
3040 
3041 	IWI_LOCK(sc);
3042 	iwi_disassociate(sc, 0);
3043 	IWI_UNLOCK(sc);
3044 }
3045 
3046 static int
3047 iwi_disassociate(struct iwi_softc *sc, int quiet)
3048 {
3049 	struct iwi_associate *assoc = &sc->assoc;
3050 
3051 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3052 		DPRINTF(("Not associated\n"));
3053 		return (-1);
3054 	}
3055 
3056 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3057 
3058 	if (quiet)
3059 		assoc->type = IWI_HC_DISASSOC_QUIET;
3060 	else
3061 		assoc->type = IWI_HC_DISASSOC;
3062 
3063 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3064 	    assoc->bssid, ":", assoc->chan));
3065 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3066 }
3067 
3068 /*
3069  * release dma resources for the firmware
3070  */
3071 static void
3072 iwi_release_fw_dma(struct iwi_softc *sc)
3073 {
3074 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3075 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3076 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3077 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3078 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3079 		bus_dma_tag_destroy(sc->fw_dmat);
3080 
3081 	sc->fw_flags = 0;
3082 	sc->fw_dma_size = 0;
3083 	sc->fw_dmat = NULL;
3084 	sc->fw_map = NULL;
3085 	sc->fw_physaddr = 0;
3086 	sc->fw_virtaddr = NULL;
3087 }
3088 
3089 /*
3090  * allocate the dma descriptor for the firmware.
3091  * Return 0 on success, 1 on error.
3092  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3093  */
3094 static int
3095 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3096 {
3097 	if (sc->fw_dma_size >= size)
3098 		return 0;
3099 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3100 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3101 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3102 		device_printf(sc->sc_dev,
3103 		    "could not create firmware DMA tag\n");
3104 		goto error;
3105 	}
3106 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3107 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3108 	    &sc->fw_map) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not allocate firmware DMA memory\n");
3111 		goto error;
3112 	}
3113 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3114 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3115 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3116 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3117 		goto error;
3118 	}
3119 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3120 	sc->fw_dma_size = size;
3121 	return 0;
3122 
3123 error:
3124 	iwi_release_fw_dma(sc);
3125 	return 1;
3126 }
3127 
3128 static void
3129 iwi_init_locked(struct iwi_softc *sc)
3130 {
3131 	struct ifnet *ifp = sc->sc_ifp;
3132 	struct iwi_rx_data *data;
3133 	int i;
3134 
3135 	IWI_LOCK_ASSERT(sc);
3136 
3137 	if (sc->fw_state == IWI_FW_LOADING) {
3138 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3139 		return;		/* XXX: condvar? */
3140 	}
3141 
3142 	iwi_stop_locked(sc);
3143 
3144 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3145 
3146 	if (iwi_reset(sc) != 0) {
3147 		device_printf(sc->sc_dev, "could not reset adapter\n");
3148 		goto fail;
3149 	}
3150 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3151 		device_printf(sc->sc_dev,
3152 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3153 		goto fail;
3154 	}
3155 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3156 		device_printf(sc->sc_dev,
3157 		    "could not load microcode %s\n", sc->fw_uc.name);
3158 		goto fail;
3159 	}
3160 
3161 	iwi_stop_master(sc);
3162 
3163 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3164 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3165 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3166 
3167 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3168 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3169 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3170 
3171 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3172 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3173 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3174 
3175 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3176 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3177 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3178 
3179 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3180 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3181 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3182 
3183 	for (i = 0; i < sc->rxq.count; i++) {
3184 		data = &sc->rxq.data[i];
3185 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3186 	}
3187 
3188 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3189 
3190 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3191 		device_printf(sc->sc_dev,
3192 		    "could not load main firmware %s\n", sc->fw_fw.name);
3193 		goto fail;
3194 	}
3195 	sc->flags |= IWI_FLAG_FW_INITED;
3196 
3197 	IWI_STATE_END(sc, IWI_FW_LOADING);
3198 
3199 	if (iwi_config(sc) != 0) {
3200 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3201 		goto fail2;
3202 	}
3203 
3204 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3205 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3206 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3207 	return;
3208 fail:
3209 	IWI_STATE_END(sc, IWI_FW_LOADING);
3210 fail2:
3211 	iwi_stop_locked(sc);
3212 }
3213 
3214 static void
3215 iwi_init(void *priv)
3216 {
3217 	struct iwi_softc *sc = priv;
3218 	struct ifnet *ifp = sc->sc_ifp;
3219 	struct ieee80211com *ic = ifp->if_l2com;
3220 	IWI_LOCK_DECL;
3221 
3222 	IWI_LOCK(sc);
3223 	iwi_init_locked(sc);
3224 	IWI_UNLOCK(sc);
3225 
3226 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3227 		ieee80211_start_all(ic);
3228 }
3229 
3230 static void
3231 iwi_stop_locked(void *priv)
3232 {
3233 	struct iwi_softc *sc = priv;
3234 	struct ifnet *ifp = sc->sc_ifp;
3235 
3236 	IWI_LOCK_ASSERT(sc);
3237 
3238 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3239 
3240 	if (sc->sc_softled) {
3241 		callout_stop(&sc->sc_ledtimer);
3242 		sc->sc_blinking = 0;
3243 	}
3244 	callout_stop(&sc->sc_wdtimer);
3245 	callout_stop(&sc->sc_rftimer);
3246 
3247 	iwi_stop_master(sc);
3248 
3249 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3250 
3251 	/* reset rings */
3252 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3253 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3254 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3255 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3256 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3257 	iwi_reset_rx_ring(sc, &sc->rxq);
3258 
3259 	sc->sc_tx_timer = 0;
3260 	sc->sc_state_timer = 0;
3261 	sc->sc_busy_timer = 0;
3262 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3263 	sc->fw_state = IWI_FW_IDLE;
3264 	wakeup(sc);
3265 }
3266 
3267 static void
3268 iwi_stop(struct iwi_softc *sc)
3269 {
3270 	IWI_LOCK_DECL;
3271 
3272 	IWI_LOCK(sc);
3273 	iwi_stop_locked(sc);
3274 	IWI_UNLOCK(sc);
3275 }
3276 
3277 static void
3278 iwi_restart(void *arg, int npending)
3279 {
3280 	struct iwi_softc *sc = arg;
3281 
3282 	iwi_init(sc);
3283 }
3284 
3285 /*
3286  * Return whether or not the radio is enabled in hardware
3287  * (i.e. the rfkill switch is "off").
3288  */
3289 static int
3290 iwi_getrfkill(struct iwi_softc *sc)
3291 {
3292 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3293 }
3294 
3295 static void
3296 iwi_radio_on(void *arg, int pending)
3297 {
3298 	struct iwi_softc *sc = arg;
3299 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3300 
3301 	device_printf(sc->sc_dev, "radio turned on\n");
3302 
3303 	iwi_init(sc);
3304 	ieee80211_notify_radio(ic, 1);
3305 }
3306 
3307 static void
3308 iwi_rfkill_poll(void *arg)
3309 {
3310 	struct iwi_softc *sc = arg;
3311 
3312 	IWI_LOCK_ASSERT(sc);
3313 
3314 	/*
3315 	 * Check for a change in rfkill state.  We get an
3316 	 * interrupt when a radio is disabled but not when
3317 	 * it is enabled so we must poll for the latter.
3318 	 */
3319 	if (!iwi_getrfkill(sc)) {
3320 		struct ifnet *ifp = sc->sc_ifp;
3321 		struct ieee80211com *ic = ifp->if_l2com;
3322 
3323 		ieee80211_runtask(ic, &sc->sc_radiontask);
3324 		return;
3325 	}
3326 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3327 }
3328 
3329 static void
3330 iwi_radio_off(void *arg, int pending)
3331 {
3332 	struct iwi_softc *sc = arg;
3333 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3334 	IWI_LOCK_DECL;
3335 
3336 	device_printf(sc->sc_dev, "radio turned off\n");
3337 
3338 	ieee80211_notify_radio(ic, 0);
3339 
3340 	IWI_LOCK(sc);
3341 	iwi_stop_locked(sc);
3342 	iwi_rfkill_poll(sc);
3343 	IWI_UNLOCK(sc);
3344 }
3345 
3346 static int
3347 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3348 {
3349 	struct iwi_softc *sc = arg1;
3350 	uint32_t size, buf[128];
3351 
3352 	memset(buf, 0, sizeof buf);
3353 
3354 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3355 		return SYSCTL_OUT(req, buf, sizeof buf);
3356 
3357 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3358 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3359 
3360 	return SYSCTL_OUT(req, buf, size);
3361 }
3362 
3363 static int
3364 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3365 {
3366 	struct iwi_softc *sc = arg1;
3367 	int val = !iwi_getrfkill(sc);
3368 
3369 	return SYSCTL_OUT(req, &val, sizeof val);
3370 }
3371 
3372 /*
3373  * Add sysctl knobs.
3374  */
3375 static void
3376 iwi_sysctlattach(struct iwi_softc *sc)
3377 {
3378 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3379 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3380 
3381 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3382 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3383 	    "radio transmitter switch state (0=off, 1=on)");
3384 
3385 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3386 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3387 	    "statistics");
3388 
3389 	sc->bluetooth = 0;
3390 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3391 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3392 
3393 	sc->antenna = IWI_ANTENNA_AUTO;
3394 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3395 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3396 }
3397 
3398 /*
3399  * LED support.
3400  *
3401  * Different cards have different capabilities.  Some have three
3402  * led's while others have only one.  The linux ipw driver defines
3403  * led's for link state (associated or not), band (11a, 11g, 11b),
3404  * and for link activity.  We use one led and vary the blink rate
3405  * according to the tx/rx traffic a la the ath driver.
3406  */
3407 
3408 static __inline uint32_t
3409 iwi_toggle_event(uint32_t r)
3410 {
3411 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3412 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3413 }
3414 
3415 static uint32_t
3416 iwi_read_event(struct iwi_softc *sc)
3417 {
3418 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3419 }
3420 
3421 static void
3422 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3423 {
3424 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3425 }
3426 
3427 static void
3428 iwi_led_done(void *arg)
3429 {
3430 	struct iwi_softc *sc = arg;
3431 
3432 	sc->sc_blinking = 0;
3433 }
3434 
3435 /*
3436  * Turn the activity LED off: flip the pin and then set a timer so no
3437  * update will happen for the specified duration.
3438  */
3439 static void
3440 iwi_led_off(void *arg)
3441 {
3442 	struct iwi_softc *sc = arg;
3443 	uint32_t v;
3444 
3445 	v = iwi_read_event(sc);
3446 	v &= ~sc->sc_ledpin;
3447 	iwi_write_event(sc, iwi_toggle_event(v));
3448 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3449 }
3450 
3451 /*
3452  * Blink the LED according to the specified on/off times.
3453  */
3454 static void
3455 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3456 {
3457 	uint32_t v;
3458 
3459 	v = iwi_read_event(sc);
3460 	v |= sc->sc_ledpin;
3461 	iwi_write_event(sc, iwi_toggle_event(v));
3462 	sc->sc_blinking = 1;
3463 	sc->sc_ledoff = off;
3464 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3465 }
3466 
3467 static void
3468 iwi_led_event(struct iwi_softc *sc, int event)
3469 {
3470 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3471 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3472 	static const struct {
3473 		u_int		rate;		/* tx/rx iwi rate */
3474 		u_int16_t	timeOn;		/* LED on time (ms) */
3475 		u_int16_t	timeOff;	/* LED off time (ms) */
3476 	} blinkrates[] = {
3477 		{ IWI_RATE_OFDM54, 40,  10 },
3478 		{ IWI_RATE_OFDM48, 44,  11 },
3479 		{ IWI_RATE_OFDM36, 50,  13 },
3480 		{ IWI_RATE_OFDM24, 57,  14 },
3481 		{ IWI_RATE_OFDM18, 67,  16 },
3482 		{ IWI_RATE_OFDM12, 80,  20 },
3483 		{ IWI_RATE_DS11,  100,  25 },
3484 		{ IWI_RATE_OFDM9, 133,  34 },
3485 		{ IWI_RATE_OFDM6, 160,  40 },
3486 		{ IWI_RATE_DS5,   200,  50 },
3487 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3488 		{ IWI_RATE_DS2,   267,  66 },
3489 		{ IWI_RATE_DS1,   400, 100 },
3490 		{            0,   500, 130 },	/* unknown rate/polling */
3491 	};
3492 	uint32_t txrate;
3493 	int j = 0;			/* XXX silence compiler */
3494 
3495 	sc->sc_ledevent = ticks;	/* time of last event */
3496 	if (sc->sc_blinking)		/* don't interrupt active blink */
3497 		return;
3498 	switch (event) {
3499 	case IWI_LED_POLL:
3500 		j = N(blinkrates)-1;
3501 		break;
3502 	case IWI_LED_TX:
3503 		/* read current transmission rate from adapter */
3504 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3505 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3506 			for (j = 0; j < N(blinkrates)-1; j++)
3507 				if (blinkrates[j].rate == txrate)
3508 					break;
3509 			sc->sc_txrix = j;
3510 		} else
3511 			j = sc->sc_txrix;
3512 		break;
3513 	case IWI_LED_RX:
3514 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3515 			for (j = 0; j < N(blinkrates)-1; j++)
3516 				if (blinkrates[j].rate == sc->sc_rxrate)
3517 					break;
3518 			sc->sc_rxrix = j;
3519 		} else
3520 			j = sc->sc_rxrix;
3521 		break;
3522 	}
3523 	/* XXX beware of overflow */
3524 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3525 		(blinkrates[j].timeOff * hz) / 1000);
3526 #undef N
3527 }
3528 
3529 static int
3530 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3531 {
3532 	struct iwi_softc *sc = arg1;
3533 	int softled = sc->sc_softled;
3534 	int error;
3535 
3536 	error = sysctl_handle_int(oidp, &softled, 0, req);
3537 	if (error || !req->newptr)
3538 		return error;
3539 	softled = (softled != 0);
3540 	if (softled != sc->sc_softled) {
3541 		if (softled) {
3542 			uint32_t v = iwi_read_event(sc);
3543 			v &= ~sc->sc_ledpin;
3544 			iwi_write_event(sc, iwi_toggle_event(v));
3545 		}
3546 		sc->sc_softled = softled;
3547 	}
3548 	return 0;
3549 }
3550 
3551 static void
3552 iwi_ledattach(struct iwi_softc *sc)
3553 {
3554 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3555 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3556 
3557 	sc->sc_blinking = 0;
3558 	sc->sc_ledstate = 1;
3559 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3560 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3561 
3562 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3563 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3564 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3565 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3566 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3567 		"pin setting to turn activity LED on");
3568 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3569 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3570 		"idle time for inactivity LED (ticks)");
3571 	/* XXX for debugging */
3572 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3573 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3574 		"NIC type from EEPROM");
3575 
3576 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3577 	sc->sc_softled = 1;
3578 
3579 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3580 	if (sc->sc_nictype == 1) {
3581 		/*
3582 		 * NB: led's are reversed.
3583 		 */
3584 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3585 	}
3586 }
3587 
3588 static void
3589 iwi_scan_start(struct ieee80211com *ic)
3590 {
3591 	/* ignore */
3592 }
3593 
3594 static void
3595 iwi_set_channel(struct ieee80211com *ic)
3596 {
3597 	struct ifnet *ifp = ic->ic_ifp;
3598 	struct iwi_softc *sc = ifp->if_softc;
3599 	if (sc->fw_state == IWI_FW_IDLE)
3600 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3601 }
3602 
3603 static void
3604 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3605 {
3606 	struct ieee80211vap *vap = ss->ss_vap;
3607 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3608 	struct iwi_softc *sc = ifp->if_softc;
3609 	IWI_LOCK_DECL;
3610 
3611 	IWI_LOCK(sc);
3612 	if (iwi_scanchan(sc, maxdwell, 0))
3613 		ieee80211_cancel_scan(vap);
3614 	IWI_UNLOCK(sc);
3615 }
3616 
3617 static void
3618 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3619 {
3620 	/* NB: don't try to abort scan; wait for firmware to finish */
3621 }
3622 
3623 static void
3624 iwi_scan_end(struct ieee80211com *ic)
3625 {
3626 	struct ifnet *ifp = ic->ic_ifp;
3627 	struct iwi_softc *sc = ifp->if_softc;
3628 	IWI_LOCK_DECL;
3629 
3630 	IWI_LOCK(sc);
3631 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3632 	/* NB: make sure we're still scanning */
3633 	if (sc->fw_state == IWI_FW_SCANNING)
3634 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3635 	IWI_UNLOCK(sc);
3636 }
3637