xref: /freebsd/sys/dev/iwi/if_iwi.c (revision f37852c17391fdf0e8309bcf684384dd0d854e43)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 #include <dev/iwi/if_iwi_ioctl.h>
88 
89 #define IWI_DEBUG
90 #ifdef IWI_DEBUG
91 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
92 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
93 int iwi_debug = 0;
94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
95 
96 static const char *iwi_fw_states[] = {
97 	"IDLE", 		/* IWI_FW_IDLE */
98 	"LOADING",		/* IWI_FW_LOADING */
99 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
100 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
101 	"SCANNING",		/* IWI_FW_SCANNING */
102 };
103 #else
104 #define DPRINTF(x)
105 #define DPRINTFN(n, x)
106 #endif
107 
108 MODULE_DEPEND(iwi, pci,  1, 1, 1);
109 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
110 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
111 
112 enum {
113 	IWI_LED_TX,
114 	IWI_LED_RX,
115 	IWI_LED_POLL,
116 };
117 
118 struct iwi_ident {
119 	uint16_t	vendor;
120 	uint16_t	device;
121 	const char	*name;
122 };
123 
124 static const struct iwi_ident iwi_ident_table[] = {
125 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
126 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
127 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
128 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
129 
130 	{ 0, 0, NULL }
131 };
132 
133 static const uint8_t def_chan_2ghz[] =
134 	{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
135 static const uint8_t def_chan_5ghz_band1[] =
136 	{ 36, 40, 44, 48, 52, 56, 60, 64 };
137 static const uint8_t def_chan_5ghz_band2[] =
138 	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
139 static const uint8_t def_chan_5ghz_band3[] =
140 	{ 149, 153, 157, 161, 165 };
141 
142 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
143 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
144 		    const uint8_t [IEEE80211_ADDR_LEN],
145 		    const uint8_t [IEEE80211_ADDR_LEN]);
146 static void	iwi_vap_delete(struct ieee80211vap *);
147 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
148 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
149 		    int);
150 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
151 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
152 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
153 		    int, bus_addr_t, bus_addr_t);
154 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
155 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
156 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
157 		    int);
158 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
159 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
160 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
161 		    const uint8_t [IEEE80211_ADDR_LEN]);
162 static void	iwi_node_free(struct ieee80211_node *);
163 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
164 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
165 static void	iwi_wme_init(struct iwi_softc *);
166 static int	iwi_wme_setparams(struct iwi_softc *);
167 static int	iwi_wme_update(struct ieee80211com *);
168 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
169 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
170 		    struct iwi_frame *);
171 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
172 static void	iwi_rx_intr(struct iwi_softc *);
173 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
174 static void	iwi_intr(void *);
175 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
176 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
177 static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
178 		    struct ieee80211_node *, int);
179 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
180 		    const struct ieee80211_bpf_params *);
181 static void	iwi_start(struct iwi_softc *);
182 static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
183 static void	iwi_watchdog(void *);
184 static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
185 static void	iwi_parent(struct ieee80211com *);
186 static void	iwi_stop_master(struct iwi_softc *);
187 static int	iwi_reset(struct iwi_softc *);
188 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
189 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
190 static void	iwi_release_fw_dma(struct iwi_softc *sc);
191 static int	iwi_config(struct iwi_softc *);
192 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
193 static void	iwi_put_firmware(struct iwi_softc *);
194 static void	iwi_monitor_scan(void *, int);
195 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
196 static void	iwi_scan_start(struct ieee80211com *);
197 static void	iwi_scan_end(struct ieee80211com *);
198 static void	iwi_set_channel(struct ieee80211com *);
199 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
200 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
201 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
202 static void	iwi_disassoc(void *, int);
203 static int	iwi_disassociate(struct iwi_softc *, int quiet);
204 static void	iwi_init_locked(struct iwi_softc *);
205 static void	iwi_init(void *);
206 static int	iwi_init_fw_dma(struct iwi_softc *, int);
207 static void	iwi_stop_locked(void *);
208 static void	iwi_stop(struct iwi_softc *);
209 static void	iwi_restart(void *, int);
210 static int	iwi_getrfkill(struct iwi_softc *);
211 static void	iwi_radio_on(void *, int);
212 static void	iwi_radio_off(void *, int);
213 static void	iwi_sysctlattach(struct iwi_softc *);
214 static void	iwi_led_event(struct iwi_softc *, int);
215 static void	iwi_ledattach(struct iwi_softc *);
216 static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
217 static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
218 		    struct ieee80211_channel []);
219 
220 static int iwi_probe(device_t);
221 static int iwi_attach(device_t);
222 static int iwi_detach(device_t);
223 static int iwi_shutdown(device_t);
224 static int iwi_suspend(device_t);
225 static int iwi_resume(device_t);
226 
227 static device_method_t iwi_methods[] = {
228 	/* Device interface */
229 	DEVMETHOD(device_probe,		iwi_probe),
230 	DEVMETHOD(device_attach,	iwi_attach),
231 	DEVMETHOD(device_detach,	iwi_detach),
232 	DEVMETHOD(device_shutdown,	iwi_shutdown),
233 	DEVMETHOD(device_suspend,	iwi_suspend),
234 	DEVMETHOD(device_resume,	iwi_resume),
235 
236 	DEVMETHOD_END
237 };
238 
239 static driver_t iwi_driver = {
240 	"iwi",
241 	iwi_methods,
242 	sizeof (struct iwi_softc)
243 };
244 
245 static devclass_t iwi_devclass;
246 
247 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
248 
249 MODULE_VERSION(iwi, 1);
250 
251 static __inline uint8_t
252 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
253 {
254 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
255 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
256 }
257 
258 static __inline uint32_t
259 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
260 {
261 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
262 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
263 }
264 
265 static int
266 iwi_probe(device_t dev)
267 {
268 	const struct iwi_ident *ident;
269 
270 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
271 		if (pci_get_vendor(dev) == ident->vendor &&
272 		    pci_get_device(dev) == ident->device) {
273 			device_set_desc(dev, ident->name);
274 			return (BUS_PROBE_DEFAULT);
275 		}
276 	}
277 	return ENXIO;
278 }
279 
280 static int
281 iwi_attach(device_t dev)
282 {
283 	struct iwi_softc *sc = device_get_softc(dev);
284 	struct ieee80211com *ic = &sc->sc_ic;
285 	uint16_t val;
286 	int i, error;
287 
288 	sc->sc_dev = dev;
289 
290 	IWI_LOCK_INIT(sc);
291 	mbufq_init(&sc->sc_snd, ifqmaxlen);
292 
293 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
294 
295 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
296 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
297 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
298 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
299 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
300 
301 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
302 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
303 
304 	pci_write_config(dev, 0x41, 0, 1);
305 
306 	/* enable bus-mastering */
307 	pci_enable_busmaster(dev);
308 
309 	i = PCIR_BAR(0);
310 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
311 	if (sc->mem == NULL) {
312 		device_printf(dev, "could not allocate memory resource\n");
313 		goto fail;
314 	}
315 
316 	sc->sc_st = rman_get_bustag(sc->mem);
317 	sc->sc_sh = rman_get_bushandle(sc->mem);
318 
319 	i = 0;
320 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
321 	    RF_ACTIVE | RF_SHAREABLE);
322 	if (sc->irq == NULL) {
323 		device_printf(dev, "could not allocate interrupt resource\n");
324 		goto fail;
325 	}
326 
327 	if (iwi_reset(sc) != 0) {
328 		device_printf(dev, "could not reset adapter\n");
329 		goto fail;
330 	}
331 
332 	/*
333 	 * Allocate rings.
334 	 */
335 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
336 		device_printf(dev, "could not allocate Cmd ring\n");
337 		goto fail;
338 	}
339 
340 	for (i = 0; i < 4; i++) {
341 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
342 		    IWI_CSR_TX1_RIDX + i * 4,
343 		    IWI_CSR_TX1_WIDX + i * 4);
344 		if (error != 0) {
345 			device_printf(dev, "could not allocate Tx ring %d\n",
346 				i+i);
347 			goto fail;
348 		}
349 	}
350 
351 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
352 		device_printf(dev, "could not allocate Rx ring\n");
353 		goto fail;
354 	}
355 
356 	iwi_wme_init(sc);
357 
358 	ic->ic_softc = sc;
359 	ic->ic_name = device_get_nameunit(dev);
360 	ic->ic_opmode = IEEE80211_M_STA;
361 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
362 
363 	/* set device capabilities */
364 	ic->ic_caps =
365 	      IEEE80211_C_STA		/* station mode supported */
366 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
367 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
368 	    | IEEE80211_C_PMGT		/* power save supported */
369 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
370 	    | IEEE80211_C_WPA		/* 802.11i */
371 	    | IEEE80211_C_WME		/* 802.11e */
372 #if 0
373 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
374 #endif
375 	    ;
376 
377 	/* read MAC address from EEPROM */
378 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
379 	ic->ic_macaddr[0] = val & 0xff;
380 	ic->ic_macaddr[1] = val >> 8;
381 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
382 	ic->ic_macaddr[2] = val & 0xff;
383 	ic->ic_macaddr[3] = val >> 8;
384 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
385 	ic->ic_macaddr[4] = val & 0xff;
386 	ic->ic_macaddr[5] = val >> 8;
387 
388 	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
389 	    ic->ic_channels);
390 
391 	ieee80211_ifattach(ic);
392 	/* override default methods */
393 	ic->ic_node_alloc = iwi_node_alloc;
394 	sc->sc_node_free = ic->ic_node_free;
395 	ic->ic_node_free = iwi_node_free;
396 	ic->ic_raw_xmit = iwi_raw_xmit;
397 	ic->ic_scan_start = iwi_scan_start;
398 	ic->ic_scan_end = iwi_scan_end;
399 	ic->ic_set_channel = iwi_set_channel;
400 	ic->ic_scan_curchan = iwi_scan_curchan;
401 	ic->ic_scan_mindwell = iwi_scan_mindwell;
402 	ic->ic_wme.wme_update = iwi_wme_update;
403 
404 	ic->ic_vap_create = iwi_vap_create;
405 	ic->ic_vap_delete = iwi_vap_delete;
406 	ic->ic_ioctl = iwi_ioctl;
407 	ic->ic_transmit = iwi_transmit;
408 	ic->ic_parent = iwi_parent;
409 	ic->ic_getradiocaps = iwi_getradiocaps;
410 
411 	ieee80211_radiotap_attach(ic,
412 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
413 		IWI_TX_RADIOTAP_PRESENT,
414 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
415 		IWI_RX_RADIOTAP_PRESENT);
416 
417 	iwi_sysctlattach(sc);
418 	iwi_ledattach(sc);
419 
420 	/*
421 	 * Hook our interrupt after all initialization is complete.
422 	 */
423 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
424 	    NULL, iwi_intr, sc, &sc->sc_ih);
425 	if (error != 0) {
426 		device_printf(dev, "could not set up interrupt\n");
427 		goto fail;
428 	}
429 
430 	if (bootverbose)
431 		ieee80211_announce(ic);
432 
433 	return 0;
434 fail:
435 	/* XXX fix */
436 	iwi_detach(dev);
437 	return ENXIO;
438 }
439 
440 static int
441 iwi_detach(device_t dev)
442 {
443 	struct iwi_softc *sc = device_get_softc(dev);
444 	struct ieee80211com *ic = &sc->sc_ic;
445 
446 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
447 
448 	/* NB: do early to drain any pending tasks */
449 	ieee80211_draintask(ic, &sc->sc_radiontask);
450 	ieee80211_draintask(ic, &sc->sc_radiofftask);
451 	ieee80211_draintask(ic, &sc->sc_restarttask);
452 	ieee80211_draintask(ic, &sc->sc_disassoctask);
453 	ieee80211_draintask(ic, &sc->sc_monitortask);
454 
455 	iwi_stop(sc);
456 
457 	ieee80211_ifdetach(ic);
458 
459 	iwi_put_firmware(sc);
460 	iwi_release_fw_dma(sc);
461 
462 	iwi_free_cmd_ring(sc, &sc->cmdq);
463 	iwi_free_tx_ring(sc, &sc->txq[0]);
464 	iwi_free_tx_ring(sc, &sc->txq[1]);
465 	iwi_free_tx_ring(sc, &sc->txq[2]);
466 	iwi_free_tx_ring(sc, &sc->txq[3]);
467 	iwi_free_rx_ring(sc, &sc->rxq);
468 
469 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
470 
471 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
472 	    sc->mem);
473 
474 	delete_unrhdr(sc->sc_unr);
475 	mbufq_drain(&sc->sc_snd);
476 
477 	IWI_LOCK_DESTROY(sc);
478 
479 	return 0;
480 }
481 
482 static struct ieee80211vap *
483 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
484     enum ieee80211_opmode opmode, int flags,
485     const uint8_t bssid[IEEE80211_ADDR_LEN],
486     const uint8_t mac[IEEE80211_ADDR_LEN])
487 {
488 	struct iwi_softc *sc = ic->ic_softc;
489 	struct iwi_vap *ivp;
490 	struct ieee80211vap *vap;
491 	int i;
492 
493 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
494 		return NULL;
495 	/*
496 	 * Get firmware image (and possibly dma memory) on mode change.
497 	 */
498 	if (iwi_get_firmware(sc, opmode))
499 		return NULL;
500 	/* allocate DMA memory for mapping firmware image */
501 	i = sc->fw_fw.size;
502 	if (sc->fw_boot.size > i)
503 		i = sc->fw_boot.size;
504 	/* XXX do we dma the ucode as well ? */
505 	if (sc->fw_uc.size > i)
506 		i = sc->fw_uc.size;
507 	if (iwi_init_fw_dma(sc, i))
508 		return NULL;
509 
510 	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
511 	vap = &ivp->iwi_vap;
512 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
513 	/* override the default, the setting comes from the linux driver */
514 	vap->iv_bmissthreshold = 24;
515 	/* override with driver methods */
516 	ivp->iwi_newstate = vap->iv_newstate;
517 	vap->iv_newstate = iwi_newstate;
518 
519 	/* complete setup */
520 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
521 	    mac);
522 	ic->ic_opmode = opmode;
523 	return vap;
524 }
525 
526 static void
527 iwi_vap_delete(struct ieee80211vap *vap)
528 {
529 	struct iwi_vap *ivp = IWI_VAP(vap);
530 
531 	ieee80211_vap_detach(vap);
532 	free(ivp, M_80211_VAP);
533 }
534 
535 static void
536 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
537 {
538 	if (error != 0)
539 		return;
540 
541 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
542 
543 	*(bus_addr_t *)arg = segs[0].ds_addr;
544 }
545 
546 static int
547 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
548 {
549 	int error;
550 
551 	ring->count = count;
552 	ring->queued = 0;
553 	ring->cur = ring->next = 0;
554 
555 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
556 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
557 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
558 	    NULL, NULL, &ring->desc_dmat);
559 	if (error != 0) {
560 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
561 		goto fail;
562 	}
563 
564 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
565 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
566 	if (error != 0) {
567 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
568 		goto fail;
569 	}
570 
571 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
572 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
573 	if (error != 0) {
574 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
575 		goto fail;
576 	}
577 
578 	return 0;
579 
580 fail:	iwi_free_cmd_ring(sc, ring);
581 	return error;
582 }
583 
584 static void
585 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
586 {
587 	ring->queued = 0;
588 	ring->cur = ring->next = 0;
589 }
590 
591 static void
592 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
593 {
594 	if (ring->desc != NULL) {
595 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
596 		    BUS_DMASYNC_POSTWRITE);
597 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
598 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
599 	}
600 
601 	if (ring->desc_dmat != NULL)
602 		bus_dma_tag_destroy(ring->desc_dmat);
603 }
604 
605 static int
606 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
607     bus_addr_t csr_ridx, bus_addr_t csr_widx)
608 {
609 	int i, error;
610 
611 	ring->count = count;
612 	ring->queued = 0;
613 	ring->cur = ring->next = 0;
614 	ring->csr_ridx = csr_ridx;
615 	ring->csr_widx = csr_widx;
616 
617 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
618 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
619 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
620 	    NULL, &ring->desc_dmat);
621 	if (error != 0) {
622 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
623 		goto fail;
624 	}
625 
626 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
627 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
628 	if (error != 0) {
629 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
630 		goto fail;
631 	}
632 
633 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
634 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
635 	if (error != 0) {
636 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
637 		goto fail;
638 	}
639 
640 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
641 	    M_NOWAIT | M_ZERO);
642 	if (ring->data == NULL) {
643 		device_printf(sc->sc_dev, "could not allocate soft data\n");
644 		error = ENOMEM;
645 		goto fail;
646 	}
647 
648 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
649 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
650 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
651 	if (error != 0) {
652 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
653 		goto fail;
654 	}
655 
656 	for (i = 0; i < count; i++) {
657 		error = bus_dmamap_create(ring->data_dmat, 0,
658 		    &ring->data[i].map);
659 		if (error != 0) {
660 			device_printf(sc->sc_dev, "could not create DMA map\n");
661 			goto fail;
662 		}
663 	}
664 
665 	return 0;
666 
667 fail:	iwi_free_tx_ring(sc, ring);
668 	return error;
669 }
670 
671 static void
672 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
673 {
674 	struct iwi_tx_data *data;
675 	int i;
676 
677 	for (i = 0; i < ring->count; i++) {
678 		data = &ring->data[i];
679 
680 		if (data->m != NULL) {
681 			bus_dmamap_sync(ring->data_dmat, data->map,
682 			    BUS_DMASYNC_POSTWRITE);
683 			bus_dmamap_unload(ring->data_dmat, data->map);
684 			m_freem(data->m);
685 			data->m = NULL;
686 		}
687 
688 		if (data->ni != NULL) {
689 			ieee80211_free_node(data->ni);
690 			data->ni = NULL;
691 		}
692 	}
693 
694 	ring->queued = 0;
695 	ring->cur = ring->next = 0;
696 }
697 
698 static void
699 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
700 {
701 	struct iwi_tx_data *data;
702 	int i;
703 
704 	if (ring->desc != NULL) {
705 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
706 		    BUS_DMASYNC_POSTWRITE);
707 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
708 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
709 	}
710 
711 	if (ring->desc_dmat != NULL)
712 		bus_dma_tag_destroy(ring->desc_dmat);
713 
714 	if (ring->data != NULL) {
715 		for (i = 0; i < ring->count; i++) {
716 			data = &ring->data[i];
717 
718 			if (data->m != NULL) {
719 				bus_dmamap_sync(ring->data_dmat, data->map,
720 				    BUS_DMASYNC_POSTWRITE);
721 				bus_dmamap_unload(ring->data_dmat, data->map);
722 				m_freem(data->m);
723 			}
724 
725 			if (data->ni != NULL)
726 				ieee80211_free_node(data->ni);
727 
728 			if (data->map != NULL)
729 				bus_dmamap_destroy(ring->data_dmat, data->map);
730 		}
731 
732 		free(ring->data, M_DEVBUF);
733 	}
734 
735 	if (ring->data_dmat != NULL)
736 		bus_dma_tag_destroy(ring->data_dmat);
737 }
738 
739 static int
740 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
741 {
742 	struct iwi_rx_data *data;
743 	int i, error;
744 
745 	ring->count = count;
746 	ring->cur = 0;
747 
748 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
749 	    M_NOWAIT | M_ZERO);
750 	if (ring->data == NULL) {
751 		device_printf(sc->sc_dev, "could not allocate soft data\n");
752 		error = ENOMEM;
753 		goto fail;
754 	}
755 
756 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
757 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
758 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
759 	if (error != 0) {
760 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
761 		goto fail;
762 	}
763 
764 	for (i = 0; i < count; i++) {
765 		data = &ring->data[i];
766 
767 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
768 		if (error != 0) {
769 			device_printf(sc->sc_dev, "could not create DMA map\n");
770 			goto fail;
771 		}
772 
773 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
774 		if (data->m == NULL) {
775 			device_printf(sc->sc_dev,
776 			    "could not allocate rx mbuf\n");
777 			error = ENOMEM;
778 			goto fail;
779 		}
780 
781 		error = bus_dmamap_load(ring->data_dmat, data->map,
782 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
783 		    &data->physaddr, 0);
784 		if (error != 0) {
785 			device_printf(sc->sc_dev,
786 			    "could not load rx buf DMA map");
787 			goto fail;
788 		}
789 
790 		data->reg = IWI_CSR_RX_BASE + i * 4;
791 	}
792 
793 	return 0;
794 
795 fail:	iwi_free_rx_ring(sc, ring);
796 	return error;
797 }
798 
799 static void
800 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
801 {
802 	ring->cur = 0;
803 }
804 
805 static void
806 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
807 {
808 	struct iwi_rx_data *data;
809 	int i;
810 
811 	if (ring->data != NULL) {
812 		for (i = 0; i < ring->count; i++) {
813 			data = &ring->data[i];
814 
815 			if (data->m != NULL) {
816 				bus_dmamap_sync(ring->data_dmat, data->map,
817 				    BUS_DMASYNC_POSTREAD);
818 				bus_dmamap_unload(ring->data_dmat, data->map);
819 				m_freem(data->m);
820 			}
821 
822 			if (data->map != NULL)
823 				bus_dmamap_destroy(ring->data_dmat, data->map);
824 		}
825 
826 		free(ring->data, M_DEVBUF);
827 	}
828 
829 	if (ring->data_dmat != NULL)
830 		bus_dma_tag_destroy(ring->data_dmat);
831 }
832 
833 static int
834 iwi_shutdown(device_t dev)
835 {
836 	struct iwi_softc *sc = device_get_softc(dev);
837 
838 	iwi_stop(sc);
839 	iwi_put_firmware(sc);		/* ??? XXX */
840 
841 	return 0;
842 }
843 
844 static int
845 iwi_suspend(device_t dev)
846 {
847 	struct iwi_softc *sc = device_get_softc(dev);
848 	struct ieee80211com *ic = &sc->sc_ic;
849 
850 	ieee80211_suspend_all(ic);
851 	return 0;
852 }
853 
854 static int
855 iwi_resume(device_t dev)
856 {
857 	struct iwi_softc *sc = device_get_softc(dev);
858 	struct ieee80211com *ic = &sc->sc_ic;
859 
860 	pci_write_config(dev, 0x41, 0, 1);
861 
862 	ieee80211_resume_all(ic);
863 	return 0;
864 }
865 
866 static struct ieee80211_node *
867 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
868 {
869 	struct iwi_node *in;
870 
871 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
872 	if (in == NULL)
873 		return NULL;
874 	/* XXX assign sta table entry for adhoc */
875 	in->in_station = -1;
876 
877 	return &in->in_node;
878 }
879 
880 static void
881 iwi_node_free(struct ieee80211_node *ni)
882 {
883 	struct ieee80211com *ic = ni->ni_ic;
884 	struct iwi_softc *sc = ic->ic_softc;
885 	struct iwi_node *in = (struct iwi_node *)ni;
886 
887 	if (in->in_station != -1) {
888 		DPRINTF(("%s mac %6D station %u\n", __func__,
889 		    ni->ni_macaddr, ":", in->in_station));
890 		free_unr(sc->sc_unr, in->in_station);
891 	}
892 
893 	sc->sc_node_free(ni);
894 }
895 
896 /*
897  * Convert h/w rate code to IEEE rate code.
898  */
899 static int
900 iwi_cvtrate(int iwirate)
901 {
902 	switch (iwirate) {
903 	case IWI_RATE_DS1:	return 2;
904 	case IWI_RATE_DS2:	return 4;
905 	case IWI_RATE_DS5:	return 11;
906 	case IWI_RATE_DS11:	return 22;
907 	case IWI_RATE_OFDM6:	return 12;
908 	case IWI_RATE_OFDM9:	return 18;
909 	case IWI_RATE_OFDM12:	return 24;
910 	case IWI_RATE_OFDM18:	return 36;
911 	case IWI_RATE_OFDM24:	return 48;
912 	case IWI_RATE_OFDM36:	return 72;
913 	case IWI_RATE_OFDM48:	return 96;
914 	case IWI_RATE_OFDM54:	return 108;
915 	}
916 	return 0;
917 }
918 
919 /*
920  * The firmware automatically adapts the transmit speed.  We report its current
921  * value here.
922  */
923 static void
924 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
925 {
926 	struct ieee80211vap *vap = ifp->if_softc;
927 	struct ieee80211com *ic = vap->iv_ic;
928 	struct iwi_softc *sc = ic->ic_softc;
929 	struct ieee80211_node *ni;
930 
931 	/* read current transmission rate from adapter */
932 	ni = ieee80211_ref_node(vap->iv_bss);
933 	ni->ni_txrate =
934 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
935 	ieee80211_free_node(ni);
936 	ieee80211_media_status(ifp, imr);
937 }
938 
939 static int
940 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
941 {
942 	struct iwi_vap *ivp = IWI_VAP(vap);
943 	struct ieee80211com *ic = vap->iv_ic;
944 	struct iwi_softc *sc = ic->ic_softc;
945 	IWI_LOCK_DECL;
946 
947 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
948 		ieee80211_state_name[vap->iv_state],
949 		ieee80211_state_name[nstate], sc->flags));
950 
951 	IEEE80211_UNLOCK(ic);
952 	IWI_LOCK(sc);
953 	switch (nstate) {
954 	case IEEE80211_S_INIT:
955 		/*
956 		 * NB: don't try to do this if iwi_stop_master has
957 		 *     shutdown the firmware and disabled interrupts.
958 		 */
959 		if (vap->iv_state == IEEE80211_S_RUN &&
960 		    (sc->flags & IWI_FLAG_FW_INITED))
961 			iwi_disassociate(sc, 0);
962 		break;
963 	case IEEE80211_S_AUTH:
964 		iwi_auth_and_assoc(sc, vap);
965 		break;
966 	case IEEE80211_S_RUN:
967 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
968 		    vap->iv_state == IEEE80211_S_SCAN) {
969 			/*
970 			 * XXX when joining an ibss network we are called
971 			 * with a SCAN -> RUN transition on scan complete.
972 			 * Use that to call iwi_auth_and_assoc.  On completing
973 			 * the join we are then called again with an
974 			 * AUTH -> RUN transition and we want to do nothing.
975 			 * This is all totally bogus and needs to be redone.
976 			 */
977 			iwi_auth_and_assoc(sc, vap);
978 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
979 			ieee80211_runtask(ic, &sc->sc_monitortask);
980 		break;
981 	case IEEE80211_S_ASSOC:
982 		/*
983 		 * If we are transitioning from AUTH then just wait
984 		 * for the ASSOC status to come back from the firmware.
985 		 * Otherwise we need to issue the association request.
986 		 */
987 		if (vap->iv_state == IEEE80211_S_AUTH)
988 			break;
989 		iwi_auth_and_assoc(sc, vap);
990 		break;
991 	default:
992 		break;
993 	}
994 	IWI_UNLOCK(sc);
995 	IEEE80211_LOCK(ic);
996 	return ivp->iwi_newstate(vap, nstate, arg);
997 }
998 
999 /*
1000  * WME parameters coming from IEEE 802.11e specification.  These values are
1001  * already declared in ieee80211_proto.c, but they are static so they can't
1002  * be reused here.
1003  */
1004 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1005 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1006 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1007 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1008 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1009 };
1010 
1011 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1012 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1013 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1014 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1015 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1016 };
1017 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1018 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1019 
1020 static void
1021 iwi_wme_init(struct iwi_softc *sc)
1022 {
1023 	const struct wmeParams *wmep;
1024 	int ac;
1025 
1026 	memset(sc->wme, 0, sizeof sc->wme);
1027 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1028 		/* set WME values for CCK modulation */
1029 		wmep = &iwi_wme_cck_params[ac];
1030 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1031 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1032 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1033 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1034 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1035 
1036 		/* set WME values for OFDM modulation */
1037 		wmep = &iwi_wme_ofdm_params[ac];
1038 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1039 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1040 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1041 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1042 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1043 	}
1044 }
1045 
1046 static int
1047 iwi_wme_setparams(struct iwi_softc *sc)
1048 {
1049 	struct ieee80211com *ic = &sc->sc_ic;
1050 	const struct wmeParams *wmep;
1051 	int ac;
1052 
1053 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1054 		/* set WME values for current operating mode */
1055 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1056 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1057 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1058 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1059 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1060 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1061 	}
1062 
1063 	DPRINTF(("Setting WME parameters\n"));
1064 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1065 }
1066 #undef IWI_USEC
1067 #undef IWI_EXP2
1068 
1069 static int
1070 iwi_wme_update(struct ieee80211com *ic)
1071 {
1072 	struct iwi_softc *sc = ic->ic_softc;
1073 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1074 	IWI_LOCK_DECL;
1075 
1076 	/*
1077 	 * We may be called to update the WME parameters in
1078 	 * the adapter at various places.  If we're already
1079 	 * associated then initiate the request immediately;
1080 	 * otherwise we assume the params will get sent down
1081 	 * to the adapter as part of the work iwi_auth_and_assoc
1082 	 * does.
1083 	 */
1084 	if (vap->iv_state == IEEE80211_S_RUN) {
1085 		IWI_LOCK(sc);
1086 		iwi_wme_setparams(sc);
1087 		IWI_UNLOCK(sc);
1088 	}
1089 	return (0);
1090 }
1091 
1092 static int
1093 iwi_wme_setie(struct iwi_softc *sc)
1094 {
1095 	struct ieee80211_wme_info wme;
1096 
1097 	memset(&wme, 0, sizeof wme);
1098 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1099 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1100 	wme.wme_oui[0] = 0x00;
1101 	wme.wme_oui[1] = 0x50;
1102 	wme.wme_oui[2] = 0xf2;
1103 	wme.wme_type = WME_OUI_TYPE;
1104 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1105 	wme.wme_version = WME_VERSION;
1106 	wme.wme_info = 0;
1107 
1108 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1109 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1110 }
1111 
1112 /*
1113  * Read 16 bits at address 'addr' from the serial EEPROM.
1114  */
1115 static uint16_t
1116 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1117 {
1118 	uint32_t tmp;
1119 	uint16_t val;
1120 	int n;
1121 
1122 	/* clock C once before the first command */
1123 	IWI_EEPROM_CTL(sc, 0);
1124 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1125 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1126 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1127 
1128 	/* write start bit (1) */
1129 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1130 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1131 
1132 	/* write READ opcode (10) */
1133 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1136 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1137 
1138 	/* write address A7-A0 */
1139 	for (n = 7; n >= 0; n--) {
1140 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1141 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1142 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1143 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1144 	}
1145 
1146 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1147 
1148 	/* read data Q15-Q0 */
1149 	val = 0;
1150 	for (n = 15; n >= 0; n--) {
1151 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1152 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1154 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1155 	}
1156 
1157 	IWI_EEPROM_CTL(sc, 0);
1158 
1159 	/* clear Chip Select and clock C */
1160 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1161 	IWI_EEPROM_CTL(sc, 0);
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1163 
1164 	return val;
1165 }
1166 
1167 static void
1168 iwi_setcurchan(struct iwi_softc *sc, int chan)
1169 {
1170 	struct ieee80211com *ic = &sc->sc_ic;
1171 
1172 	sc->curchan = chan;
1173 	ieee80211_radiotap_chan_change(ic);
1174 }
1175 
1176 static void
1177 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1178     struct iwi_frame *frame)
1179 {
1180 	struct ieee80211com *ic = &sc->sc_ic;
1181 	struct mbuf *mnew, *m;
1182 	struct ieee80211_node *ni;
1183 	int type, error, framelen;
1184 	int8_t rssi, nf;
1185 	IWI_LOCK_DECL;
1186 
1187 	framelen = le16toh(frame->len);
1188 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1189 		/*
1190 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1191 		 *     out of bounds; need to figure out how to limit
1192 		 *     frame size in the firmware
1193 		 */
1194 		/* XXX stat */
1195 		DPRINTFN(1,
1196 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1197 		    le16toh(frame->len), frame->chan, frame->rssi,
1198 		    frame->rssi_dbm));
1199 		return;
1200 	}
1201 
1202 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1203 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1204 
1205 	if (frame->chan != sc->curchan)
1206 		iwi_setcurchan(sc, frame->chan);
1207 
1208 	/*
1209 	 * Try to allocate a new mbuf for this ring element and load it before
1210 	 * processing the current mbuf. If the ring element cannot be loaded,
1211 	 * drop the received packet and reuse the old mbuf. In the unlikely
1212 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1213 	 */
1214 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1215 	if (mnew == NULL) {
1216 		counter_u64_add(ic->ic_ierrors, 1);
1217 		return;
1218 	}
1219 
1220 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1221 
1222 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1223 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1224 	    0);
1225 	if (error != 0) {
1226 		m_freem(mnew);
1227 
1228 		/* try to reload the old mbuf */
1229 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1230 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1231 		    &data->physaddr, 0);
1232 		if (error != 0) {
1233 			/* very unlikely that it will fail... */
1234 			panic("%s: could not load old rx mbuf",
1235 			    device_get_name(sc->sc_dev));
1236 		}
1237 		counter_u64_add(ic->ic_ierrors, 1);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * New mbuf successfully loaded, update Rx ring and continue
1243 	 * processing.
1244 	 */
1245 	m = data->m;
1246 	data->m = mnew;
1247 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1248 
1249 	/* finalize mbuf */
1250 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1251 	    sizeof (struct iwi_frame) + framelen;
1252 
1253 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1254 
1255 	rssi = frame->rssi_dbm;
1256 	nf = -95;
1257 	if (ieee80211_radiotap_active(ic)) {
1258 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1259 
1260 		tap->wr_flags = 0;
1261 		tap->wr_antsignal = rssi;
1262 		tap->wr_antnoise = nf;
1263 		tap->wr_rate = iwi_cvtrate(frame->rate);
1264 		tap->wr_antenna = frame->antenna;
1265 	}
1266 	IWI_UNLOCK(sc);
1267 
1268 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1269 	if (ni != NULL) {
1270 		type = ieee80211_input(ni, m, rssi, nf);
1271 		ieee80211_free_node(ni);
1272 	} else
1273 		type = ieee80211_input_all(ic, m, rssi, nf);
1274 
1275 	IWI_LOCK(sc);
1276 	if (sc->sc_softled) {
1277 		/*
1278 		 * Blink for any data frame.  Otherwise do a
1279 		 * heartbeat-style blink when idle.  The latter
1280 		 * is mainly for station mode where we depend on
1281 		 * periodic beacon frames to trigger the poll event.
1282 		 */
1283 		if (type == IEEE80211_FC0_TYPE_DATA) {
1284 			sc->sc_rxrate = frame->rate;
1285 			iwi_led_event(sc, IWI_LED_RX);
1286 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1287 			iwi_led_event(sc, IWI_LED_POLL);
1288 	}
1289 }
1290 
1291 /*
1292  * Check for an association response frame to see if QoS
1293  * has been negotiated.  We parse just enough to figure
1294  * out if we're supposed to use QoS.  The proper solution
1295  * is to pass the frame up so ieee80211_input can do the
1296  * work but that's made hard by how things currently are
1297  * done in the driver.
1298  */
1299 static void
1300 iwi_checkforqos(struct ieee80211vap *vap,
1301 	const struct ieee80211_frame *wh, int len)
1302 {
1303 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1304 	const uint8_t *frm, *efrm, *wme;
1305 	struct ieee80211_node *ni;
1306 	uint16_t capinfo, status, associd;
1307 
1308 	/* NB: +8 for capinfo, status, associd, and first ie */
1309 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1310 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1311 		return;
1312 	/*
1313 	 * asresp frame format
1314 	 *	[2] capability information
1315 	 *	[2] status
1316 	 *	[2] association ID
1317 	 *	[tlv] supported rates
1318 	 *	[tlv] extended supported rates
1319 	 *	[tlv] WME
1320 	 */
1321 	frm = (const uint8_t *)&wh[1];
1322 	efrm = ((const uint8_t *) wh) + len;
1323 
1324 	capinfo = le16toh(*(const uint16_t *)frm);
1325 	frm += 2;
1326 	status = le16toh(*(const uint16_t *)frm);
1327 	frm += 2;
1328 	associd = le16toh(*(const uint16_t *)frm);
1329 	frm += 2;
1330 
1331 	wme = NULL;
1332 	while (efrm - frm > 1) {
1333 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1334 		switch (*frm) {
1335 		case IEEE80211_ELEMID_VENDOR:
1336 			if (iswmeoui(frm))
1337 				wme = frm;
1338 			break;
1339 		}
1340 		frm += frm[1] + 2;
1341 	}
1342 
1343 	ni = ieee80211_ref_node(vap->iv_bss);
1344 	ni->ni_capinfo = capinfo;
1345 	ni->ni_associd = associd & 0x3fff;
1346 	if (wme != NULL)
1347 		ni->ni_flags |= IEEE80211_NODE_QOS;
1348 	else
1349 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1350 	ieee80211_free_node(ni);
1351 #undef SUBTYPE
1352 }
1353 
1354 static void
1355 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1356 {
1357 	struct iwi_notif_link_quality *lq;
1358 	int len;
1359 
1360 	len = le16toh(notif->len);
1361 
1362 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1363 	    notif->type,
1364 	    len,
1365 	    sizeof(struct iwi_notif_link_quality)
1366 	    ));
1367 
1368 	/* enforce length */
1369 	if (len != sizeof(struct iwi_notif_link_quality)) {
1370 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1371 		    notif->type,
1372 		    len));
1373 		return;
1374 	}
1375 
1376 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1377 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1378 	sc->sc_linkqual_valid = 1;
1379 }
1380 
1381 /*
1382  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1383  */
1384 
1385 static void
1386 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1387 {
1388 	struct ieee80211com *ic = &sc->sc_ic;
1389 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1390 	struct iwi_notif_scan_channel *chan;
1391 	struct iwi_notif_scan_complete *scan;
1392 	struct iwi_notif_authentication *auth;
1393 	struct iwi_notif_association *assoc;
1394 	struct iwi_notif_beacon_state *beacon;
1395 
1396 	switch (notif->type) {
1397 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1398 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1399 
1400 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1401 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1402 
1403 		/* Reset the timer, the scan is still going */
1404 		sc->sc_state_timer = 3;
1405 		break;
1406 
1407 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1408 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1409 
1410 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1411 		    scan->status));
1412 
1413 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1414 
1415 		/*
1416 		 * Monitor mode works by doing a passive scan to set
1417 		 * the channel and enable rx.  Because we don't want
1418 		 * to abort a scan lest the firmware crash we scan
1419 		 * for a short period of time and automatically restart
1420 		 * the scan when notified the sweep has completed.
1421 		 */
1422 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1423 			ieee80211_runtask(ic, &sc->sc_monitortask);
1424 			break;
1425 		}
1426 
1427 		if (scan->status == IWI_SCAN_COMPLETED) {
1428 			/* NB: don't need to defer, net80211 does it for us */
1429 			ieee80211_scan_next(vap);
1430 		}
1431 		break;
1432 
1433 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1434 		auth = (struct iwi_notif_authentication *)(notif + 1);
1435 		switch (auth->state) {
1436 		case IWI_AUTH_SUCCESS:
1437 			DPRINTFN(2, ("Authentication succeeeded\n"));
1438 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1439 			break;
1440 		case IWI_AUTH_FAIL:
1441 			/*
1442 			 * These are delivered as an unsolicited deauth
1443 			 * (e.g. due to inactivity) or in response to an
1444 			 * associate request.
1445 			 */
1446 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1447 			if (vap->iv_state != IEEE80211_S_RUN) {
1448 				DPRINTFN(2, ("Authentication failed\n"));
1449 				vap->iv_stats.is_rx_auth_fail++;
1450 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1451 			} else {
1452 				DPRINTFN(2, ("Deauthenticated\n"));
1453 				vap->iv_stats.is_rx_deauth++;
1454 			}
1455 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1456 			break;
1457 		case IWI_AUTH_SENT_1:
1458 		case IWI_AUTH_RECV_2:
1459 		case IWI_AUTH_SEQ1_PASS:
1460 			break;
1461 		case IWI_AUTH_SEQ1_FAIL:
1462 			DPRINTFN(2, ("Initial authentication handshake failed; "
1463 				"you probably need shared key\n"));
1464 			vap->iv_stats.is_rx_auth_fail++;
1465 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1466 			/* XXX retry shared key when in auto */
1467 			break;
1468 		default:
1469 			device_printf(sc->sc_dev,
1470 			    "unknown authentication state %u\n", auth->state);
1471 			break;
1472 		}
1473 		break;
1474 
1475 	case IWI_NOTIF_TYPE_ASSOCIATION:
1476 		assoc = (struct iwi_notif_association *)(notif + 1);
1477 		switch (assoc->state) {
1478 		case IWI_AUTH_SUCCESS:
1479 			/* re-association, do nothing */
1480 			break;
1481 		case IWI_ASSOC_SUCCESS:
1482 			DPRINTFN(2, ("Association succeeded\n"));
1483 			sc->flags |= IWI_FLAG_ASSOCIATED;
1484 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1485 			iwi_checkforqos(vap,
1486 			    (const struct ieee80211_frame *)(assoc+1),
1487 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1488 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1489 			break;
1490 		case IWI_ASSOC_INIT:
1491 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1492 			switch (sc->fw_state) {
1493 			case IWI_FW_ASSOCIATING:
1494 				DPRINTFN(2, ("Association failed\n"));
1495 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1496 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1497 				break;
1498 
1499 			case IWI_FW_DISASSOCIATING:
1500 				DPRINTFN(2, ("Dissassociated\n"));
1501 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1502 				vap->iv_stats.is_rx_disassoc++;
1503 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1504 				break;
1505 			}
1506 			break;
1507 		default:
1508 			device_printf(sc->sc_dev,
1509 			    "unknown association state %u\n", assoc->state);
1510 			break;
1511 		}
1512 		break;
1513 
1514 	case IWI_NOTIF_TYPE_BEACON:
1515 		/* XXX check struct length */
1516 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1517 
1518 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1519 		    beacon->state, le32toh(beacon->number)));
1520 
1521 		if (beacon->state == IWI_BEACON_MISS) {
1522 			/*
1523 			 * The firmware notifies us of every beacon miss
1524 			 * so we need to track the count against the
1525 			 * configured threshold before notifying the
1526 			 * 802.11 layer.
1527 			 * XXX try to roam, drop assoc only on much higher count
1528 			 */
1529 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1530 				DPRINTF(("Beacon miss: %u >= %u\n",
1531 				    le32toh(beacon->number),
1532 				    vap->iv_bmissthreshold));
1533 				vap->iv_stats.is_beacon_miss++;
1534 				/*
1535 				 * It's pointless to notify the 802.11 layer
1536 				 * as it'll try to send a probe request (which
1537 				 * we'll discard) and then timeout and drop us
1538 				 * into scan state.  Instead tell the firmware
1539 				 * to disassociate and then on completion we'll
1540 				 * kick the state machine to scan.
1541 				 */
1542 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1543 			}
1544 		}
1545 		break;
1546 
1547 	case IWI_NOTIF_TYPE_CALIBRATION:
1548 	case IWI_NOTIF_TYPE_NOISE:
1549 		/* XXX handle? */
1550 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1551 		break;
1552 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1553 		iwi_notif_link_quality(sc, notif);
1554 		break;
1555 
1556 	default:
1557 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1558 		    notif->type, notif->flags, le16toh(notif->len)));
1559 		break;
1560 	}
1561 }
1562 
1563 static void
1564 iwi_rx_intr(struct iwi_softc *sc)
1565 {
1566 	struct iwi_rx_data *data;
1567 	struct iwi_hdr *hdr;
1568 	uint32_t hw;
1569 
1570 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1571 
1572 	for (; sc->rxq.cur != hw;) {
1573 		data = &sc->rxq.data[sc->rxq.cur];
1574 
1575 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1576 		    BUS_DMASYNC_POSTREAD);
1577 
1578 		hdr = mtod(data->m, struct iwi_hdr *);
1579 
1580 		switch (hdr->type) {
1581 		case IWI_HDR_TYPE_FRAME:
1582 			iwi_frame_intr(sc, data, sc->rxq.cur,
1583 			    (struct iwi_frame *)(hdr + 1));
1584 			break;
1585 
1586 		case IWI_HDR_TYPE_NOTIF:
1587 			iwi_notification_intr(sc,
1588 			    (struct iwi_notif *)(hdr + 1));
1589 			break;
1590 
1591 		default:
1592 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1593 			    hdr->type);
1594 		}
1595 
1596 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1597 
1598 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1599 	}
1600 
1601 	/* tell the firmware what we have processed */
1602 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1603 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1604 }
1605 
1606 static void
1607 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1608 {
1609 	struct iwi_tx_data *data;
1610 	uint32_t hw;
1611 
1612 	hw = CSR_READ_4(sc, txq->csr_ridx);
1613 
1614 	while (txq->next != hw) {
1615 		data = &txq->data[txq->next];
1616 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1617 		bus_dmamap_sync(txq->data_dmat, data->map,
1618 		    BUS_DMASYNC_POSTWRITE);
1619 		bus_dmamap_unload(txq->data_dmat, data->map);
1620 		ieee80211_tx_complete(data->ni, data->m, 0);
1621 		data->ni = NULL;
1622 		data->m = NULL;
1623 		txq->queued--;
1624 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1625 	}
1626 	sc->sc_tx_timer = 0;
1627 	if (sc->sc_softled)
1628 		iwi_led_event(sc, IWI_LED_TX);
1629 	iwi_start(sc);
1630 }
1631 
1632 static void
1633 iwi_fatal_error_intr(struct iwi_softc *sc)
1634 {
1635 	struct ieee80211com *ic = &sc->sc_ic;
1636 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1637 
1638 	device_printf(sc->sc_dev, "firmware error\n");
1639 	if (vap != NULL)
1640 		ieee80211_cancel_scan(vap);
1641 	ieee80211_runtask(ic, &sc->sc_restarttask);
1642 
1643 	sc->flags &= ~IWI_FLAG_BUSY;
1644 	sc->sc_busy_timer = 0;
1645 	wakeup(sc);
1646 }
1647 
1648 static void
1649 iwi_radio_off_intr(struct iwi_softc *sc)
1650 {
1651 
1652 	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1653 }
1654 
1655 static void
1656 iwi_intr(void *arg)
1657 {
1658 	struct iwi_softc *sc = arg;
1659 	uint32_t r;
1660 	IWI_LOCK_DECL;
1661 
1662 	IWI_LOCK(sc);
1663 
1664 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1665 		IWI_UNLOCK(sc);
1666 		return;
1667 	}
1668 
1669 	/* acknowledge interrupts */
1670 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1671 
1672 	if (r & IWI_INTR_FATAL_ERROR) {
1673 		iwi_fatal_error_intr(sc);
1674 		goto done;
1675 	}
1676 
1677 	if (r & IWI_INTR_FW_INITED) {
1678 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1679 			wakeup(sc);
1680 	}
1681 
1682 	if (r & IWI_INTR_RADIO_OFF)
1683 		iwi_radio_off_intr(sc);
1684 
1685 	if (r & IWI_INTR_CMD_DONE) {
1686 		sc->flags &= ~IWI_FLAG_BUSY;
1687 		sc->sc_busy_timer = 0;
1688 		wakeup(sc);
1689 	}
1690 
1691 	if (r & IWI_INTR_TX1_DONE)
1692 		iwi_tx_intr(sc, &sc->txq[0]);
1693 
1694 	if (r & IWI_INTR_TX2_DONE)
1695 		iwi_tx_intr(sc, &sc->txq[1]);
1696 
1697 	if (r & IWI_INTR_TX3_DONE)
1698 		iwi_tx_intr(sc, &sc->txq[2]);
1699 
1700 	if (r & IWI_INTR_TX4_DONE)
1701 		iwi_tx_intr(sc, &sc->txq[3]);
1702 
1703 	if (r & IWI_INTR_RX_DONE)
1704 		iwi_rx_intr(sc);
1705 
1706 	if (r & IWI_INTR_PARITY_ERROR) {
1707 		/* XXX rate-limit */
1708 		device_printf(sc->sc_dev, "parity error\n");
1709 	}
1710 done:
1711 	IWI_UNLOCK(sc);
1712 }
1713 
1714 static int
1715 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1716 {
1717 	struct iwi_cmd_desc *desc;
1718 
1719 	IWI_LOCK_ASSERT(sc);
1720 
1721 	if (sc->flags & IWI_FLAG_BUSY) {
1722 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1723 			__func__, type);
1724 		return EAGAIN;
1725 	}
1726 	sc->flags |= IWI_FLAG_BUSY;
1727 	sc->sc_busy_timer = 2;
1728 
1729 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1730 
1731 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1732 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1733 	desc->type = type;
1734 	desc->len = len;
1735 	memcpy(desc->data, data, len);
1736 
1737 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1738 	    BUS_DMASYNC_PREWRITE);
1739 
1740 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1741 	    type, len));
1742 
1743 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1744 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1745 
1746 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1747 }
1748 
1749 static void
1750 iwi_write_ibssnode(struct iwi_softc *sc,
1751 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1752 {
1753 	struct iwi_ibssnode node;
1754 
1755 	/* write node information into NIC memory */
1756 	memset(&node, 0, sizeof node);
1757 	IEEE80211_ADDR_COPY(node.bssid, addr);
1758 
1759 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1760 
1761 	CSR_WRITE_REGION_1(sc,
1762 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1763 	    (uint8_t *)&node, sizeof node);
1764 }
1765 
1766 static int
1767 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1768     int ac)
1769 {
1770 	struct ieee80211vap *vap = ni->ni_vap;
1771 	struct ieee80211com *ic = ni->ni_ic;
1772 	struct iwi_node *in = (struct iwi_node *)ni;
1773 	const struct ieee80211_frame *wh;
1774 	struct ieee80211_key *k;
1775 	const struct chanAccParams *cap;
1776 	struct iwi_tx_ring *txq = &sc->txq[ac];
1777 	struct iwi_tx_data *data;
1778 	struct iwi_tx_desc *desc;
1779 	struct mbuf *mnew;
1780 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1781 	int error, nsegs, hdrlen, i;
1782 	int ismcast, flags, xflags, staid;
1783 
1784 	IWI_LOCK_ASSERT(sc);
1785 	wh = mtod(m0, const struct ieee80211_frame *);
1786 	/* NB: only data frames use this path */
1787 	hdrlen = ieee80211_hdrsize(wh);
1788 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1789 	flags = xflags = 0;
1790 
1791 	if (!ismcast)
1792 		flags |= IWI_DATA_FLAG_NEED_ACK;
1793 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1794 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1795 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1796 		xflags |= IWI_DATA_XFLAG_QOS;
1797 		cap = &ic->ic_wme.wme_chanParams;
1798 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1799 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1800 	}
1801 
1802 	/*
1803 	 * This is only used in IBSS mode where the firmware expect an index
1804 	 * in a h/w table instead of a destination address.
1805 	 */
1806 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1807 		if (!ismcast) {
1808 			if (in->in_station == -1) {
1809 				in->in_station = alloc_unr(sc->sc_unr);
1810 				if (in->in_station == -1) {
1811 					/* h/w table is full */
1812 					if_inc_counter(ni->ni_vap->iv_ifp,
1813 					    IFCOUNTER_OERRORS, 1);
1814 					m_freem(m0);
1815 					ieee80211_free_node(ni);
1816 					return 0;
1817 				}
1818 				iwi_write_ibssnode(sc,
1819 					ni->ni_macaddr, in->in_station);
1820 			}
1821 			staid = in->in_station;
1822 		} else {
1823 			/*
1824 			 * Multicast addresses have no associated node
1825 			 * so there will be no station entry.  We reserve
1826 			 * entry 0 for one mcast address and use that.
1827 			 * If there are many being used this will be
1828 			 * expensive and we'll need to do a better job
1829 			 * but for now this handles the broadcast case.
1830 			 */
1831 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1832 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1833 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1834 			}
1835 			staid = 0;
1836 		}
1837 	} else
1838 		staid = 0;
1839 
1840 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1841 		k = ieee80211_crypto_encap(ni, m0);
1842 		if (k == NULL) {
1843 			m_freem(m0);
1844 			return ENOBUFS;
1845 		}
1846 
1847 		/* packet header may have moved, reset our local pointer */
1848 		wh = mtod(m0, struct ieee80211_frame *);
1849 	}
1850 
1851 	if (ieee80211_radiotap_active_vap(vap)) {
1852 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1853 
1854 		tap->wt_flags = 0;
1855 
1856 		ieee80211_radiotap_tx(vap, m0);
1857 	}
1858 
1859 	data = &txq->data[txq->cur];
1860 	desc = &txq->desc[txq->cur];
1861 
1862 	/* save and trim IEEE802.11 header */
1863 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1864 	m_adj(m0, hdrlen);
1865 
1866 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1867 	    &nsegs, 0);
1868 	if (error != 0 && error != EFBIG) {
1869 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1870 		    error);
1871 		m_freem(m0);
1872 		return error;
1873 	}
1874 	if (error != 0) {
1875 		mnew = m_defrag(m0, M_NOWAIT);
1876 		if (mnew == NULL) {
1877 			device_printf(sc->sc_dev,
1878 			    "could not defragment mbuf\n");
1879 			m_freem(m0);
1880 			return ENOBUFS;
1881 		}
1882 		m0 = mnew;
1883 
1884 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1885 		    m0, segs, &nsegs, 0);
1886 		if (error != 0) {
1887 			device_printf(sc->sc_dev,
1888 			    "could not map mbuf (error %d)\n", error);
1889 			m_freem(m0);
1890 			return error;
1891 		}
1892 	}
1893 
1894 	data->m = m0;
1895 	data->ni = ni;
1896 
1897 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1898 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1899 	desc->station = staid;
1900 	desc->cmd = IWI_DATA_CMD_TX;
1901 	desc->len = htole16(m0->m_pkthdr.len);
1902 	desc->flags = flags;
1903 	desc->xflags = xflags;
1904 
1905 #if 0
1906 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1907 		desc->wep_txkey = vap->iv_def_txkey;
1908 	else
1909 #endif
1910 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1911 
1912 	desc->nseg = htole32(nsegs);
1913 	for (i = 0; i < nsegs; i++) {
1914 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1915 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1916 	}
1917 
1918 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1919 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1920 
1921 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1922 	    ac, txq->cur, le16toh(desc->len), nsegs));
1923 
1924 	txq->queued++;
1925 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1926 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1927 
1928 	return 0;
1929 }
1930 
1931 static int
1932 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1933 	const struct ieee80211_bpf_params *params)
1934 {
1935 	/* no support; just discard */
1936 	m_freem(m);
1937 	ieee80211_free_node(ni);
1938 	return 0;
1939 }
1940 
1941 static int
1942 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1943 {
1944 	struct iwi_softc *sc = ic->ic_softc;
1945 	int error;
1946 	IWI_LOCK_DECL;
1947 
1948 	IWI_LOCK(sc);
1949 	if (!sc->sc_running) {
1950 		IWI_UNLOCK(sc);
1951 		return (ENXIO);
1952 	}
1953 	error = mbufq_enqueue(&sc->sc_snd, m);
1954 	if (error) {
1955 		IWI_UNLOCK(sc);
1956 		return (error);
1957 	}
1958 	iwi_start(sc);
1959 	IWI_UNLOCK(sc);
1960 	return (0);
1961 }
1962 
1963 static void
1964 iwi_start(struct iwi_softc *sc)
1965 {
1966 	struct mbuf *m;
1967 	struct ieee80211_node *ni;
1968 	int ac;
1969 
1970 	IWI_LOCK_ASSERT(sc);
1971 
1972 	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1973 		ac = M_WME_GETAC(m);
1974 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1975 			/* there is no place left in this ring; tail drop */
1976 			/* XXX tail drop */
1977 			mbufq_prepend(&sc->sc_snd, m);
1978 			break;
1979 		}
1980 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1981 		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1982 			if_inc_counter(ni->ni_vap->iv_ifp,
1983 			    IFCOUNTER_OERRORS, 1);
1984 			ieee80211_free_node(ni);
1985 			break;
1986 		}
1987 		sc->sc_tx_timer = 5;
1988 	}
1989 }
1990 
1991 static void
1992 iwi_watchdog(void *arg)
1993 {
1994 	struct iwi_softc *sc = arg;
1995 	struct ieee80211com *ic = &sc->sc_ic;
1996 
1997 	IWI_LOCK_ASSERT(sc);
1998 
1999 	if (sc->sc_tx_timer > 0) {
2000 		if (--sc->sc_tx_timer == 0) {
2001 			device_printf(sc->sc_dev, "device timeout\n");
2002 			counter_u64_add(ic->ic_oerrors, 1);
2003 			ieee80211_runtask(ic, &sc->sc_restarttask);
2004 		}
2005 	}
2006 	if (sc->sc_state_timer > 0) {
2007 		if (--sc->sc_state_timer == 0) {
2008 			device_printf(sc->sc_dev,
2009 			    "firmware stuck in state %d, resetting\n",
2010 			    sc->fw_state);
2011 			if (sc->fw_state == IWI_FW_SCANNING)
2012 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2013 			ieee80211_runtask(ic, &sc->sc_restarttask);
2014 			sc->sc_state_timer = 3;
2015 		}
2016 	}
2017 	if (sc->sc_busy_timer > 0) {
2018 		if (--sc->sc_busy_timer == 0) {
2019 			device_printf(sc->sc_dev,
2020 			    "firmware command timeout, resetting\n");
2021 			ieee80211_runtask(ic, &sc->sc_restarttask);
2022 		}
2023 	}
2024 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2025 }
2026 
2027 static void
2028 iwi_parent(struct ieee80211com *ic)
2029 {
2030 	struct iwi_softc *sc = ic->ic_softc;
2031 	int startall = 0;
2032 	IWI_LOCK_DECL;
2033 
2034 	IWI_LOCK(sc);
2035 	if (ic->ic_nrunning > 0) {
2036 		if (!sc->sc_running) {
2037 			iwi_init_locked(sc);
2038 			startall = 1;
2039 		}
2040 	} else if (sc->sc_running)
2041 		iwi_stop_locked(sc);
2042 	IWI_UNLOCK(sc);
2043 	if (startall)
2044 		ieee80211_start_all(ic);
2045 }
2046 
2047 static int
2048 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2049 {
2050 	struct ifreq *ifr = data;
2051 	struct iwi_softc *sc = ic->ic_softc;
2052 	int error;
2053 	IWI_LOCK_DECL;
2054 
2055 	IWI_LOCK(sc);
2056 	switch (cmd) {
2057 	case SIOCGIWISTATS:
2058 		/* XXX validate permissions/memory/etc? */
2059 		error = copyout(&sc->sc_linkqual, ifr->ifr_data,
2060 		    sizeof(struct iwi_notif_link_quality));
2061 		break;
2062 	case SIOCZIWISTATS:
2063 		memset(&sc->sc_linkqual, 0,
2064 		    sizeof(struct iwi_notif_link_quality));
2065 		error = 0;
2066 		break;
2067 	default:
2068 		error = ENOTTY;
2069 		break;
2070 	}
2071 	IWI_UNLOCK(sc);
2072 
2073 	return (error);
2074 }
2075 
2076 static void
2077 iwi_stop_master(struct iwi_softc *sc)
2078 {
2079 	uint32_t tmp;
2080 	int ntries;
2081 
2082 	/* disable interrupts */
2083 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2084 
2085 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2086 	for (ntries = 0; ntries < 5; ntries++) {
2087 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2088 			break;
2089 		DELAY(10);
2090 	}
2091 	if (ntries == 5)
2092 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2093 
2094 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2095 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2096 
2097 	sc->flags &= ~IWI_FLAG_FW_INITED;
2098 }
2099 
2100 static int
2101 iwi_reset(struct iwi_softc *sc)
2102 {
2103 	uint32_t tmp;
2104 	int i, ntries;
2105 
2106 	iwi_stop_master(sc);
2107 
2108 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2109 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2110 
2111 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2112 
2113 	/* wait for clock stabilization */
2114 	for (ntries = 0; ntries < 1000; ntries++) {
2115 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2116 			break;
2117 		DELAY(200);
2118 	}
2119 	if (ntries == 1000) {
2120 		device_printf(sc->sc_dev,
2121 		    "timeout waiting for clock stabilization\n");
2122 		return EIO;
2123 	}
2124 
2125 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2126 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2127 
2128 	DELAY(10);
2129 
2130 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2131 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2132 
2133 	/* clear NIC memory */
2134 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2135 	for (i = 0; i < 0xc000; i++)
2136 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2137 
2138 	return 0;
2139 }
2140 
2141 static const struct iwi_firmware_ohdr *
2142 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2143 {
2144 	const struct firmware *fp = fw->fp;
2145 	const struct iwi_firmware_ohdr *hdr;
2146 
2147 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2148 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2149 		return NULL;
2150 	}
2151 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2152 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2153 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2154 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2155 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2156 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2157 		    IWI_FW_REQ_MINOR);
2158 		return NULL;
2159 	}
2160 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2161 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2162 	fw->name = fp->name;
2163 	return hdr;
2164 }
2165 
2166 static const struct iwi_firmware_ohdr *
2167 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2168 {
2169 	const struct iwi_firmware_ohdr *hdr;
2170 
2171 	hdr = iwi_setup_ofw(sc, fw);
2172 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2173 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2174 		    fw->name);
2175 		hdr = NULL;
2176 	}
2177 	return hdr;
2178 }
2179 
2180 static void
2181 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2182 	  struct iwi_fw *uc, const char *ucname)
2183 {
2184 	if (fw->fp == NULL)
2185 		fw->fp = firmware_get(fwname);
2186 	/* NB: pre-3.0 ucode is packaged separately */
2187 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2188 		uc->fp = firmware_get(ucname);
2189 }
2190 
2191 /*
2192  * Get the required firmware images if not already loaded.
2193  * Note that we hold firmware images so long as the device
2194  * is marked up in case we need to reload them on device init.
2195  * This is necessary because we re-init the device sometimes
2196  * from a context where we cannot read from the filesystem
2197  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2198  * XXX return 0 on success, 1 on error.
2199  *
2200  * NB: the order of get'ing and put'ing images here is
2201  * intentional to support handling firmware images bundled
2202  * by operating mode and/or all together in one file with
2203  * the boot firmware as "master".
2204  */
2205 static int
2206 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2207 {
2208 	const struct iwi_firmware_hdr *hdr;
2209 	const struct firmware *fp;
2210 
2211 	/* invalidate cached firmware on mode change */
2212 	if (sc->fw_mode != opmode)
2213 		iwi_put_firmware(sc);
2214 
2215 	switch (opmode) {
2216 	case IEEE80211_M_STA:
2217 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2218 		break;
2219 	case IEEE80211_M_IBSS:
2220 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2221 		break;
2222 	case IEEE80211_M_MONITOR:
2223 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2224 			  &sc->fw_uc, "iwi_ucode_monitor");
2225 		break;
2226 	default:
2227 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2228 		return EINVAL;
2229 	}
2230 	fp = sc->fw_fw.fp;
2231 	if (fp == NULL) {
2232 		device_printf(sc->sc_dev, "could not load firmware\n");
2233 		goto bad;
2234 	}
2235 	if (fp->version < 300) {
2236 		/*
2237 		 * Firmware prior to 3.0 was packaged as separate
2238 		 * boot, firmware, and ucode images.  Verify the
2239 		 * ucode image was read in, retrieve the boot image
2240 		 * if needed, and check version stamps for consistency.
2241 		 * The version stamps in the data are also checked
2242 		 * above; this is a bit paranoid but is a cheap
2243 		 * safeguard against mis-packaging.
2244 		 */
2245 		if (sc->fw_uc.fp == NULL) {
2246 			device_printf(sc->sc_dev, "could not load ucode\n");
2247 			goto bad;
2248 		}
2249 		if (sc->fw_boot.fp == NULL) {
2250 			sc->fw_boot.fp = firmware_get("iwi_boot");
2251 			if (sc->fw_boot.fp == NULL) {
2252 				device_printf(sc->sc_dev,
2253 					"could not load boot firmware\n");
2254 				goto bad;
2255 			}
2256 		}
2257 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2258 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2259 			device_printf(sc->sc_dev,
2260 			    "firmware version mismatch: "
2261 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2262 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2263 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2264 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2265 			);
2266 			goto bad;
2267 		}
2268 		/*
2269 		 * Check and setup each image.
2270 		 */
2271 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2272 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2273 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2274 			goto bad;
2275 	} else {
2276 		/*
2277 		 * Check and setup combined image.
2278 		 */
2279 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2280 			device_printf(sc->sc_dev, "image '%s' too small\n",
2281 			    fp->name);
2282 			goto bad;
2283 		}
2284 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2285 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2286 				+ le32toh(hdr->fsize)) {
2287 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2288 			    fp->name);
2289 			goto bad;
2290 		}
2291 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2292 		sc->fw_boot.size = le32toh(hdr->bsize);
2293 		sc->fw_boot.name = fp->name;
2294 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2295 		sc->fw_uc.size = le32toh(hdr->usize);
2296 		sc->fw_uc.name = fp->name;
2297 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2298 		sc->fw_fw.size = le32toh(hdr->fsize);
2299 		sc->fw_fw.name = fp->name;
2300 	}
2301 #if 0
2302 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2303 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2304 #endif
2305 
2306 	sc->fw_mode = opmode;
2307 	return 0;
2308 bad:
2309 	iwi_put_firmware(sc);
2310 	return 1;
2311 }
2312 
2313 static void
2314 iwi_put_fw(struct iwi_fw *fw)
2315 {
2316 	if (fw->fp != NULL) {
2317 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2318 		fw->fp = NULL;
2319 	}
2320 	fw->data = NULL;
2321 	fw->size = 0;
2322 	fw->name = NULL;
2323 }
2324 
2325 /*
2326  * Release any cached firmware images.
2327  */
2328 static void
2329 iwi_put_firmware(struct iwi_softc *sc)
2330 {
2331 	iwi_put_fw(&sc->fw_uc);
2332 	iwi_put_fw(&sc->fw_fw);
2333 	iwi_put_fw(&sc->fw_boot);
2334 }
2335 
2336 static int
2337 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2338 {
2339 	uint32_t tmp;
2340 	const uint16_t *w;
2341 	const char *uc = fw->data;
2342 	size_t size = fw->size;
2343 	int i, ntries, error;
2344 
2345 	IWI_LOCK_ASSERT(sc);
2346 	error = 0;
2347 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2348 	    IWI_RST_STOP_MASTER);
2349 	for (ntries = 0; ntries < 5; ntries++) {
2350 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2351 			break;
2352 		DELAY(10);
2353 	}
2354 	if (ntries == 5) {
2355 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2356 		error = EIO;
2357 		goto fail;
2358 	}
2359 
2360 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2361 	DELAY(5000);
2362 
2363 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2364 	tmp &= ~IWI_RST_PRINCETON_RESET;
2365 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2366 
2367 	DELAY(5000);
2368 	MEM_WRITE_4(sc, 0x3000e0, 0);
2369 	DELAY(1000);
2370 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2371 	DELAY(1000);
2372 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2373 	DELAY(1000);
2374 	MEM_WRITE_1(sc, 0x200000, 0x00);
2375 	MEM_WRITE_1(sc, 0x200000, 0x40);
2376 	DELAY(1000);
2377 
2378 	/* write microcode into adapter memory */
2379 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2380 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2381 
2382 	MEM_WRITE_1(sc, 0x200000, 0x00);
2383 	MEM_WRITE_1(sc, 0x200000, 0x80);
2384 
2385 	/* wait until we get an answer */
2386 	for (ntries = 0; ntries < 100; ntries++) {
2387 		if (MEM_READ_1(sc, 0x200000) & 1)
2388 			break;
2389 		DELAY(100);
2390 	}
2391 	if (ntries == 100) {
2392 		device_printf(sc->sc_dev,
2393 		    "timeout waiting for ucode to initialize\n");
2394 		error = EIO;
2395 		goto fail;
2396 	}
2397 
2398 	/* read the answer or the firmware will not initialize properly */
2399 	for (i = 0; i < 7; i++)
2400 		MEM_READ_4(sc, 0x200004);
2401 
2402 	MEM_WRITE_1(sc, 0x200000, 0x00);
2403 
2404 fail:
2405 	return error;
2406 }
2407 
2408 /* macro to handle unaligned little endian data in firmware image */
2409 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2410 
2411 static int
2412 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2413 {
2414 	u_char *p, *end;
2415 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2416 	int ntries, error;
2417 
2418 	IWI_LOCK_ASSERT(sc);
2419 
2420 	/* copy firmware image to DMA memory */
2421 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2422 
2423 	/* make sure the adapter will get up-to-date values */
2424 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2425 
2426 	/* tell the adapter where the command blocks are stored */
2427 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2428 
2429 	/*
2430 	 * Store command blocks into adapter's internal memory using register
2431 	 * indirections. The adapter will read the firmware image through DMA
2432 	 * using information stored in command blocks.
2433 	 */
2434 	src = sc->fw_physaddr;
2435 	p = sc->fw_virtaddr;
2436 	end = p + fw->size;
2437 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2438 
2439 	while (p < end) {
2440 		dst = GETLE32(p); p += 4; src += 4;
2441 		len = GETLE32(p); p += 4; src += 4;
2442 		p += len;
2443 
2444 		while (len > 0) {
2445 			mlen = min(len, IWI_CB_MAXDATALEN);
2446 
2447 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2448 			sum = ctl ^ src ^ dst;
2449 
2450 			/* write a command block */
2451 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2452 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2453 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2455 
2456 			src += mlen;
2457 			dst += mlen;
2458 			len -= mlen;
2459 		}
2460 	}
2461 
2462 	/* write a fictive final command block (sentinel) */
2463 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2464 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2465 
2466 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2467 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2468 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2469 
2470 	/* tell the adapter to start processing command blocks */
2471 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2472 
2473 	/* wait until the adapter reaches the sentinel */
2474 	for (ntries = 0; ntries < 400; ntries++) {
2475 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2476 			break;
2477 		DELAY(100);
2478 	}
2479 	/* sync dma, just in case */
2480 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2481 	if (ntries == 400) {
2482 		device_printf(sc->sc_dev,
2483 		    "timeout processing command blocks for %s firmware\n",
2484 		    fw->name);
2485 		return EIO;
2486 	}
2487 
2488 	/* we're done with command blocks processing */
2489 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2490 
2491 	/* allow interrupts so we know when the firmware is ready */
2492 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2493 
2494 	/* tell the adapter to initialize the firmware */
2495 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2496 
2497 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2498 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2499 
2500 	/* wait at most one second for firmware initialization to complete */
2501 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2502 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2503 		    "initialization to complete\n", fw->name);
2504 	}
2505 
2506 	return error;
2507 }
2508 
2509 static int
2510 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2511 {
2512 	uint32_t data;
2513 
2514 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2515 		/* XXX set more fine-grained operation */
2516 		data = htole32(IWI_POWER_MODE_MAX);
2517 	} else
2518 		data = htole32(IWI_POWER_MODE_CAM);
2519 
2520 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2521 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2522 }
2523 
2524 static int
2525 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2526 {
2527 	struct iwi_wep_key wepkey;
2528 	struct ieee80211_key *wk;
2529 	int error, i;
2530 
2531 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2532 		wk = &vap->iv_nw_keys[i];
2533 
2534 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2535 		wepkey.idx = i;
2536 		wepkey.len = wk->wk_keylen;
2537 		memset(wepkey.key, 0, sizeof wepkey.key);
2538 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2539 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2540 		    wepkey.len));
2541 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2542 		    sizeof wepkey);
2543 		if (error != 0)
2544 			return error;
2545 	}
2546 	return 0;
2547 }
2548 
2549 static int
2550 iwi_config(struct iwi_softc *sc)
2551 {
2552 	struct ieee80211com *ic = &sc->sc_ic;
2553 	struct iwi_configuration config;
2554 	struct iwi_rateset rs;
2555 	struct iwi_txpower power;
2556 	uint32_t data;
2557 	int error, i;
2558 
2559 	IWI_LOCK_ASSERT(sc);
2560 
2561 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":"));
2562 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr,
2563 	    IEEE80211_ADDR_LEN);
2564 	if (error != 0)
2565 		return error;
2566 
2567 	memset(&config, 0, sizeof config);
2568 	config.bluetooth_coexistence = sc->bluetooth;
2569 	config.silence_threshold = 0x1e;
2570 	config.antenna = sc->antenna;
2571 	config.multicast_enabled = 1;
2572 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2573 	config.disable_unicast_decryption = 1;
2574 	config.disable_multicast_decryption = 1;
2575 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2576 		config.allow_invalid_frames = 1;
2577 		config.allow_beacon_and_probe_resp = 1;
2578 		config.allow_mgt = 1;
2579 	}
2580 	DPRINTF(("Configuring adapter\n"));
2581 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2582 	if (error != 0)
2583 		return error;
2584 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2585 		power.mode = IWI_MODE_11B;
2586 		power.nchan = 11;
2587 		for (i = 0; i < 11; i++) {
2588 			power.chan[i].chan = i + 1;
2589 			power.chan[i].power = IWI_TXPOWER_MAX;
2590 		}
2591 		DPRINTF(("Setting .11b channels tx power\n"));
2592 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2593 		if (error != 0)
2594 			return error;
2595 
2596 		power.mode = IWI_MODE_11G;
2597 		DPRINTF(("Setting .11g channels tx power\n"));
2598 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2599 		if (error != 0)
2600 			return error;
2601 	}
2602 
2603 	memset(&rs, 0, sizeof rs);
2604 	rs.mode = IWI_MODE_11G;
2605 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2606 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2607 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2608 	    rs.nrates);
2609 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2610 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2611 	if (error != 0)
2612 		return error;
2613 
2614 	memset(&rs, 0, sizeof rs);
2615 	rs.mode = IWI_MODE_11A;
2616 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2617 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2618 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2619 	    rs.nrates);
2620 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2621 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2622 	if (error != 0)
2623 		return error;
2624 
2625 	data = htole32(arc4random());
2626 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2627 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2628 	if (error != 0)
2629 		return error;
2630 
2631 	/* enable adapter */
2632 	DPRINTF(("Enabling adapter\n"));
2633 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2634 }
2635 
2636 static __inline void
2637 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2638 {
2639 	uint8_t *st = &scan->scan_type[ix / 2];
2640 	if (ix % 2)
2641 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2642 	else
2643 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2644 }
2645 
2646 static int
2647 scan_type(const struct ieee80211_scan_state *ss,
2648 	const struct ieee80211_channel *chan)
2649 {
2650 	/* We can only set one essid for a directed scan */
2651 	if (ss->ss_nssid != 0)
2652 		return IWI_SCAN_TYPE_BDIRECTED;
2653 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2654 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2655 		return IWI_SCAN_TYPE_BROADCAST;
2656 	return IWI_SCAN_TYPE_PASSIVE;
2657 }
2658 
2659 static __inline int
2660 scan_band(const struct ieee80211_channel *c)
2661 {
2662 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2663 }
2664 
2665 static void
2666 iwi_monitor_scan(void *arg, int npending)
2667 {
2668 	struct iwi_softc *sc = arg;
2669 	IWI_LOCK_DECL;
2670 
2671 	IWI_LOCK(sc);
2672 	(void) iwi_scanchan(sc, 2000, 0);
2673 	IWI_UNLOCK(sc);
2674 }
2675 
2676 /*
2677  * Start a scan on the current channel or all channels.
2678  */
2679 static int
2680 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2681 {
2682 	struct ieee80211com *ic = &sc->sc_ic;
2683 	struct ieee80211_channel *chan;
2684 	struct ieee80211_scan_state *ss;
2685 	struct iwi_scan_ext scan;
2686 	int error = 0;
2687 
2688 	IWI_LOCK_ASSERT(sc);
2689 	if (sc->fw_state == IWI_FW_SCANNING) {
2690 		/*
2691 		 * This should not happen as we only trigger scan_next after
2692 		 * completion
2693 		 */
2694 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2695 		return (EBUSY);
2696 	}
2697 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2698 
2699 	ss = ic->ic_scan;
2700 
2701 	memset(&scan, 0, sizeof scan);
2702 	scan.full_scan_index = htole32(++sc->sc_scangen);
2703 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2704 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2705 		/*
2706 		 * Use very short dwell times for when we send probe request
2707 		 * frames.  Without this bg scans hang.  Ideally this should
2708 		 * be handled with early-termination as done by net80211 but
2709 		 * that's not feasible (aborting a scan is problematic).
2710 		 */
2711 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2712 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2713 	} else {
2714 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2715 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2716 	}
2717 
2718 	/* We can only set one essid for a directed scan */
2719 	if (ss->ss_nssid != 0) {
2720 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2721 		    ss->ss_ssid[0].len);
2722 		if (error)
2723 			return (error);
2724 	}
2725 
2726 	if (allchan) {
2727 		int i, next, band, b, bstart;
2728 		/*
2729 		 * Convert scan list to run-length encoded channel list
2730 		 * the firmware requires (preserving the order setup by
2731 		 * net80211).  The first entry in each run specifies the
2732 		 * band and the count of items in the run.
2733 		 */
2734 		next = 0;		/* next open slot */
2735 		bstart = 0;		/* NB: not needed, silence compiler */
2736 		band = -1;		/* NB: impossible value */
2737 		KASSERT(ss->ss_last > 0, ("no channels"));
2738 		for (i = 0; i < ss->ss_last; i++) {
2739 			chan = ss->ss_chans[i];
2740 			b = scan_band(chan);
2741 			if (b != band) {
2742 				if (band != -1)
2743 					scan.channels[bstart] =
2744 					    (next - bstart) | band;
2745 				/* NB: this allocates a slot for the run-len */
2746 				band = b, bstart = next++;
2747 			}
2748 			if (next >= IWI_SCAN_CHANNELS) {
2749 				DPRINTF(("truncating scan list\n"));
2750 				break;
2751 			}
2752 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2753 			set_scan_type(&scan, next, scan_type(ss, chan));
2754 			next++;
2755 		}
2756 		scan.channels[bstart] = (next - bstart) | band;
2757 	} else {
2758 		/* Scan the current channel only */
2759 		chan = ic->ic_curchan;
2760 		scan.channels[0] = 1 | scan_band(chan);
2761 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2762 		set_scan_type(&scan, 1, scan_type(ss, chan));
2763 	}
2764 #ifdef IWI_DEBUG
2765 	if (iwi_debug > 0) {
2766 		static const char *scantype[8] =
2767 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2768 		int i;
2769 		printf("Scan request: index %u dwell %d/%d/%d\n"
2770 		    , le32toh(scan.full_scan_index)
2771 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2772 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2773 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2774 		);
2775 		i = 0;
2776 		do {
2777 			int run = scan.channels[i];
2778 			if (run == 0)
2779 				break;
2780 			printf("Scan %d %s channels:", run & 0x3f,
2781 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2782 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2783 				uint8_t type = scan.scan_type[i/2];
2784 				printf(" %u/%s", scan.channels[i],
2785 				    scantype[(i & 1 ? type : type>>4) & 7]);
2786 			}
2787 			printf("\n");
2788 		} while (i < IWI_SCAN_CHANNELS);
2789 	}
2790 #endif
2791 
2792 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2793 }
2794 
2795 static int
2796 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2797 {
2798 	struct iwi_sensitivity sens;
2799 
2800 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2801 
2802 	memset(&sens, 0, sizeof sens);
2803 	sens.rssi = htole16(rssi_dbm);
2804 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2805 }
2806 
2807 static int
2808 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2809 {
2810 	struct ieee80211com *ic = vap->iv_ic;
2811 	struct ifnet *ifp = vap->iv_ifp;
2812 	struct ieee80211_node *ni;
2813 	struct iwi_configuration config;
2814 	struct iwi_associate *assoc = &sc->assoc;
2815 	struct iwi_rateset rs;
2816 	uint16_t capinfo;
2817 	uint32_t data;
2818 	int error, mode;
2819 
2820 	IWI_LOCK_ASSERT(sc);
2821 
2822 	ni = ieee80211_ref_node(vap->iv_bss);
2823 
2824 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2825 		DPRINTF(("Already associated\n"));
2826 		return (-1);
2827 	}
2828 
2829 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2830 	error = 0;
2831 	mode = 0;
2832 
2833 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2834 		mode = IWI_MODE_11A;
2835 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2836 		mode = IWI_MODE_11G;
2837 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2838 		mode = IWI_MODE_11B;
2839 
2840 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2841 		memset(&config, 0, sizeof config);
2842 		config.bluetooth_coexistence = sc->bluetooth;
2843 		config.antenna = sc->antenna;
2844 		config.multicast_enabled = 1;
2845 		if (mode == IWI_MODE_11G)
2846 			config.use_protection = 1;
2847 		config.answer_pbreq =
2848 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2849 		config.disable_unicast_decryption = 1;
2850 		config.disable_multicast_decryption = 1;
2851 		DPRINTF(("Configuring adapter\n"));
2852 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2853 		if (error != 0)
2854 			goto done;
2855 	}
2856 
2857 #ifdef IWI_DEBUG
2858 	if (iwi_debug > 0) {
2859 		printf("Setting ESSID to ");
2860 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2861 		printf("\n");
2862 	}
2863 #endif
2864 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2865 	if (error != 0)
2866 		goto done;
2867 
2868 	error = iwi_setpowermode(sc, vap);
2869 	if (error != 0)
2870 		goto done;
2871 
2872 	data = htole32(vap->iv_rtsthreshold);
2873 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2874 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2875 	if (error != 0)
2876 		goto done;
2877 
2878 	data = htole32(vap->iv_fragthreshold);
2879 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2880 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2881 	if (error != 0)
2882 		goto done;
2883 
2884 	/* the rate set has already been "negotiated" */
2885 	memset(&rs, 0, sizeof rs);
2886 	rs.mode = mode;
2887 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2888 	rs.nrates = ni->ni_rates.rs_nrates;
2889 	if (rs.nrates > IWI_RATESET_SIZE) {
2890 		DPRINTF(("Truncating negotiated rate set from %u\n",
2891 		    rs.nrates));
2892 		rs.nrates = IWI_RATESET_SIZE;
2893 	}
2894 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2895 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2896 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2897 	if (error != 0)
2898 		goto done;
2899 
2900 	memset(assoc, 0, sizeof *assoc);
2901 
2902 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2903 		/* NB: don't treat WME setup as failure */
2904 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2905 			assoc->policy |= htole16(IWI_POLICY_WME);
2906 		/* XXX complain on failure? */
2907 	}
2908 
2909 	if (vap->iv_appie_wpa != NULL) {
2910 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2911 
2912 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2913 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2914 		if (error != 0)
2915 			goto done;
2916 	}
2917 
2918 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2919 	if (error != 0)
2920 		goto done;
2921 
2922 	assoc->mode = mode;
2923 	assoc->chan = ic->ic_curchan->ic_ieee;
2924 	/*
2925 	 * NB: do not arrange for shared key auth w/o privacy
2926 	 *     (i.e. a wep key); it causes a firmware error.
2927 	 */
2928 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2929 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2930 		assoc->auth = IWI_AUTH_SHARED;
2931 		/*
2932 		 * It's possible to have privacy marked but no default
2933 		 * key setup.  This typically is due to a user app bug
2934 		 * but if we blindly grab the key the firmware will
2935 		 * barf so avoid it for now.
2936 		 */
2937 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2938 			assoc->auth |= vap->iv_def_txkey << 4;
2939 
2940 		error = iwi_setwepkeys(sc, vap);
2941 		if (error != 0)
2942 			goto done;
2943 	}
2944 	if (vap->iv_flags & IEEE80211_F_WPA)
2945 		assoc->policy |= htole16(IWI_POLICY_WPA);
2946 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2947 		assoc->type = IWI_HC_IBSS_START;
2948 	else
2949 		assoc->type = IWI_HC_ASSOC;
2950 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2951 
2952 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2953 		capinfo = IEEE80211_CAPINFO_IBSS;
2954 	else
2955 		capinfo = IEEE80211_CAPINFO_ESS;
2956 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2957 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2958 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2959 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2960 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2961 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2962 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2963 	assoc->capinfo = htole16(capinfo);
2964 
2965 	assoc->lintval = htole16(ic->ic_lintval);
2966 	assoc->intval = htole16(ni->ni_intval);
2967 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2968 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2969 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2970 	else
2971 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2972 
2973 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2974 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2975 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2976 	    assoc->bssid, ":", assoc->dst, ":",
2977 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2978 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2979 	    le16toh(assoc->intval)));
2980 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2981 done:
2982 	ieee80211_free_node(ni);
2983 	if (error)
2984 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2985 
2986 	return (error);
2987 }
2988 
2989 static void
2990 iwi_disassoc(void *arg, int pending)
2991 {
2992 	struct iwi_softc *sc = arg;
2993 	IWI_LOCK_DECL;
2994 
2995 	IWI_LOCK(sc);
2996 	iwi_disassociate(sc, 0);
2997 	IWI_UNLOCK(sc);
2998 }
2999 
3000 static int
3001 iwi_disassociate(struct iwi_softc *sc, int quiet)
3002 {
3003 	struct iwi_associate *assoc = &sc->assoc;
3004 
3005 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3006 		DPRINTF(("Not associated\n"));
3007 		return (-1);
3008 	}
3009 
3010 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3011 
3012 	if (quiet)
3013 		assoc->type = IWI_HC_DISASSOC_QUIET;
3014 	else
3015 		assoc->type = IWI_HC_DISASSOC;
3016 
3017 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3018 	    assoc->bssid, ":", assoc->chan));
3019 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3020 }
3021 
3022 /*
3023  * release dma resources for the firmware
3024  */
3025 static void
3026 iwi_release_fw_dma(struct iwi_softc *sc)
3027 {
3028 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3029 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3030 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3031 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3032 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3033 		bus_dma_tag_destroy(sc->fw_dmat);
3034 
3035 	sc->fw_flags = 0;
3036 	sc->fw_dma_size = 0;
3037 	sc->fw_dmat = NULL;
3038 	sc->fw_map = NULL;
3039 	sc->fw_physaddr = 0;
3040 	sc->fw_virtaddr = NULL;
3041 }
3042 
3043 /*
3044  * allocate the dma descriptor for the firmware.
3045  * Return 0 on success, 1 on error.
3046  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3047  */
3048 static int
3049 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3050 {
3051 	if (sc->fw_dma_size >= size)
3052 		return 0;
3053 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3054 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3055 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3056 		device_printf(sc->sc_dev,
3057 		    "could not create firmware DMA tag\n");
3058 		goto error;
3059 	}
3060 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3061 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3062 	    &sc->fw_map) != 0) {
3063 		device_printf(sc->sc_dev,
3064 		    "could not allocate firmware DMA memory\n");
3065 		goto error;
3066 	}
3067 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3068 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3069 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3070 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3071 		goto error;
3072 	}
3073 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3074 	sc->fw_dma_size = size;
3075 	return 0;
3076 
3077 error:
3078 	iwi_release_fw_dma(sc);
3079 	return 1;
3080 }
3081 
3082 static void
3083 iwi_init_locked(struct iwi_softc *sc)
3084 {
3085 	struct iwi_rx_data *data;
3086 	int i;
3087 
3088 	IWI_LOCK_ASSERT(sc);
3089 
3090 	if (sc->fw_state == IWI_FW_LOADING) {
3091 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3092 		return;		/* XXX: condvar? */
3093 	}
3094 
3095 	iwi_stop_locked(sc);
3096 
3097 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3098 
3099 	if (iwi_reset(sc) != 0) {
3100 		device_printf(sc->sc_dev, "could not reset adapter\n");
3101 		goto fail;
3102 	}
3103 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3104 		device_printf(sc->sc_dev,
3105 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3106 		goto fail;
3107 	}
3108 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not load microcode %s\n", sc->fw_uc.name);
3111 		goto fail;
3112 	}
3113 
3114 	iwi_stop_master(sc);
3115 
3116 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3117 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3119 
3120 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3121 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3135 
3136 	for (i = 0; i < sc->rxq.count; i++) {
3137 		data = &sc->rxq.data[i];
3138 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3139 	}
3140 
3141 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3142 
3143 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3144 		device_printf(sc->sc_dev,
3145 		    "could not load main firmware %s\n", sc->fw_fw.name);
3146 		goto fail;
3147 	}
3148 	sc->flags |= IWI_FLAG_FW_INITED;
3149 
3150 	IWI_STATE_END(sc, IWI_FW_LOADING);
3151 
3152 	if (iwi_config(sc) != 0) {
3153 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3154 		goto fail2;
3155 	}
3156 
3157 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3158 	sc->sc_running = 1;
3159 	return;
3160 fail:
3161 	IWI_STATE_END(sc, IWI_FW_LOADING);
3162 fail2:
3163 	iwi_stop_locked(sc);
3164 }
3165 
3166 static void
3167 iwi_init(void *priv)
3168 {
3169 	struct iwi_softc *sc = priv;
3170 	struct ieee80211com *ic = &sc->sc_ic;
3171 	IWI_LOCK_DECL;
3172 
3173 	IWI_LOCK(sc);
3174 	iwi_init_locked(sc);
3175 	IWI_UNLOCK(sc);
3176 
3177 	if (sc->sc_running)
3178 		ieee80211_start_all(ic);
3179 }
3180 
3181 static void
3182 iwi_stop_locked(void *priv)
3183 {
3184 	struct iwi_softc *sc = priv;
3185 
3186 	IWI_LOCK_ASSERT(sc);
3187 
3188 	sc->sc_running = 0;
3189 
3190 	if (sc->sc_softled) {
3191 		callout_stop(&sc->sc_ledtimer);
3192 		sc->sc_blinking = 0;
3193 	}
3194 	callout_stop(&sc->sc_wdtimer);
3195 	callout_stop(&sc->sc_rftimer);
3196 
3197 	iwi_stop_master(sc);
3198 
3199 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3200 
3201 	/* reset rings */
3202 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3203 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3204 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3205 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3206 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3207 	iwi_reset_rx_ring(sc, &sc->rxq);
3208 
3209 	sc->sc_tx_timer = 0;
3210 	sc->sc_state_timer = 0;
3211 	sc->sc_busy_timer = 0;
3212 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3213 	sc->fw_state = IWI_FW_IDLE;
3214 	wakeup(sc);
3215 }
3216 
3217 static void
3218 iwi_stop(struct iwi_softc *sc)
3219 {
3220 	IWI_LOCK_DECL;
3221 
3222 	IWI_LOCK(sc);
3223 	iwi_stop_locked(sc);
3224 	IWI_UNLOCK(sc);
3225 }
3226 
3227 static void
3228 iwi_restart(void *arg, int npending)
3229 {
3230 	struct iwi_softc *sc = arg;
3231 
3232 	iwi_init(sc);
3233 }
3234 
3235 /*
3236  * Return whether or not the radio is enabled in hardware
3237  * (i.e. the rfkill switch is "off").
3238  */
3239 static int
3240 iwi_getrfkill(struct iwi_softc *sc)
3241 {
3242 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3243 }
3244 
3245 static void
3246 iwi_radio_on(void *arg, int pending)
3247 {
3248 	struct iwi_softc *sc = arg;
3249 	struct ieee80211com *ic = &sc->sc_ic;
3250 
3251 	device_printf(sc->sc_dev, "radio turned on\n");
3252 
3253 	iwi_init(sc);
3254 	ieee80211_notify_radio(ic, 1);
3255 }
3256 
3257 static void
3258 iwi_rfkill_poll(void *arg)
3259 {
3260 	struct iwi_softc *sc = arg;
3261 
3262 	IWI_LOCK_ASSERT(sc);
3263 
3264 	/*
3265 	 * Check for a change in rfkill state.  We get an
3266 	 * interrupt when a radio is disabled but not when
3267 	 * it is enabled so we must poll for the latter.
3268 	 */
3269 	if (!iwi_getrfkill(sc)) {
3270 		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3271 		return;
3272 	}
3273 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3274 }
3275 
3276 static void
3277 iwi_radio_off(void *arg, int pending)
3278 {
3279 	struct iwi_softc *sc = arg;
3280 	struct ieee80211com *ic = &sc->sc_ic;
3281 	IWI_LOCK_DECL;
3282 
3283 	device_printf(sc->sc_dev, "radio turned off\n");
3284 
3285 	ieee80211_notify_radio(ic, 0);
3286 
3287 	IWI_LOCK(sc);
3288 	iwi_stop_locked(sc);
3289 	iwi_rfkill_poll(sc);
3290 	IWI_UNLOCK(sc);
3291 }
3292 
3293 static int
3294 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3295 {
3296 	struct iwi_softc *sc = arg1;
3297 	uint32_t size, buf[128];
3298 
3299 	memset(buf, 0, sizeof buf);
3300 
3301 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3302 		return SYSCTL_OUT(req, buf, sizeof buf);
3303 
3304 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3305 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3306 
3307 	return SYSCTL_OUT(req, buf, size);
3308 }
3309 
3310 static int
3311 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3312 {
3313 	struct iwi_softc *sc = arg1;
3314 	int val = !iwi_getrfkill(sc);
3315 
3316 	return SYSCTL_OUT(req, &val, sizeof val);
3317 }
3318 
3319 /*
3320  * Add sysctl knobs.
3321  */
3322 static void
3323 iwi_sysctlattach(struct iwi_softc *sc)
3324 {
3325 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3326 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3327 
3328 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3329 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3330 	    "radio transmitter switch state (0=off, 1=on)");
3331 
3332 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3333 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3334 	    "statistics");
3335 
3336 	sc->bluetooth = 0;
3337 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3338 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3339 
3340 	sc->antenna = IWI_ANTENNA_AUTO;
3341 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3342 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3343 }
3344 
3345 /*
3346  * LED support.
3347  *
3348  * Different cards have different capabilities.  Some have three
3349  * led's while others have only one.  The linux ipw driver defines
3350  * led's for link state (associated or not), band (11a, 11g, 11b),
3351  * and for link activity.  We use one led and vary the blink rate
3352  * according to the tx/rx traffic a la the ath driver.
3353  */
3354 
3355 static __inline uint32_t
3356 iwi_toggle_event(uint32_t r)
3357 {
3358 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3359 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3360 }
3361 
3362 static uint32_t
3363 iwi_read_event(struct iwi_softc *sc)
3364 {
3365 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3366 }
3367 
3368 static void
3369 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3370 {
3371 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3372 }
3373 
3374 static void
3375 iwi_led_done(void *arg)
3376 {
3377 	struct iwi_softc *sc = arg;
3378 
3379 	sc->sc_blinking = 0;
3380 }
3381 
3382 /*
3383  * Turn the activity LED off: flip the pin and then set a timer so no
3384  * update will happen for the specified duration.
3385  */
3386 static void
3387 iwi_led_off(void *arg)
3388 {
3389 	struct iwi_softc *sc = arg;
3390 	uint32_t v;
3391 
3392 	v = iwi_read_event(sc);
3393 	v &= ~sc->sc_ledpin;
3394 	iwi_write_event(sc, iwi_toggle_event(v));
3395 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3396 }
3397 
3398 /*
3399  * Blink the LED according to the specified on/off times.
3400  */
3401 static void
3402 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3403 {
3404 	uint32_t v;
3405 
3406 	v = iwi_read_event(sc);
3407 	v |= sc->sc_ledpin;
3408 	iwi_write_event(sc, iwi_toggle_event(v));
3409 	sc->sc_blinking = 1;
3410 	sc->sc_ledoff = off;
3411 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3412 }
3413 
3414 static void
3415 iwi_led_event(struct iwi_softc *sc, int event)
3416 {
3417 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3418 	static const struct {
3419 		u_int		rate;		/* tx/rx iwi rate */
3420 		u_int16_t	timeOn;		/* LED on time (ms) */
3421 		u_int16_t	timeOff;	/* LED off time (ms) */
3422 	} blinkrates[] = {
3423 		{ IWI_RATE_OFDM54, 40,  10 },
3424 		{ IWI_RATE_OFDM48, 44,  11 },
3425 		{ IWI_RATE_OFDM36, 50,  13 },
3426 		{ IWI_RATE_OFDM24, 57,  14 },
3427 		{ IWI_RATE_OFDM18, 67,  16 },
3428 		{ IWI_RATE_OFDM12, 80,  20 },
3429 		{ IWI_RATE_DS11,  100,  25 },
3430 		{ IWI_RATE_OFDM9, 133,  34 },
3431 		{ IWI_RATE_OFDM6, 160,  40 },
3432 		{ IWI_RATE_DS5,   200,  50 },
3433 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3434 		{ IWI_RATE_DS2,   267,  66 },
3435 		{ IWI_RATE_DS1,   400, 100 },
3436 		{            0,   500, 130 },	/* unknown rate/polling */
3437 	};
3438 	uint32_t txrate;
3439 	int j = 0;			/* XXX silence compiler */
3440 
3441 	sc->sc_ledevent = ticks;	/* time of last event */
3442 	if (sc->sc_blinking)		/* don't interrupt active blink */
3443 		return;
3444 	switch (event) {
3445 	case IWI_LED_POLL:
3446 		j = nitems(blinkrates)-1;
3447 		break;
3448 	case IWI_LED_TX:
3449 		/* read current transmission rate from adapter */
3450 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3451 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3452 			for (j = 0; j < nitems(blinkrates)-1; j++)
3453 				if (blinkrates[j].rate == txrate)
3454 					break;
3455 			sc->sc_txrix = j;
3456 		} else
3457 			j = sc->sc_txrix;
3458 		break;
3459 	case IWI_LED_RX:
3460 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3461 			for (j = 0; j < nitems(blinkrates)-1; j++)
3462 				if (blinkrates[j].rate == sc->sc_rxrate)
3463 					break;
3464 			sc->sc_rxrix = j;
3465 		} else
3466 			j = sc->sc_rxrix;
3467 		break;
3468 	}
3469 	/* XXX beware of overflow */
3470 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3471 		(blinkrates[j].timeOff * hz) / 1000);
3472 }
3473 
3474 static int
3475 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3476 {
3477 	struct iwi_softc *sc = arg1;
3478 	int softled = sc->sc_softled;
3479 	int error;
3480 
3481 	error = sysctl_handle_int(oidp, &softled, 0, req);
3482 	if (error || !req->newptr)
3483 		return error;
3484 	softled = (softled != 0);
3485 	if (softled != sc->sc_softled) {
3486 		if (softled) {
3487 			uint32_t v = iwi_read_event(sc);
3488 			v &= ~sc->sc_ledpin;
3489 			iwi_write_event(sc, iwi_toggle_event(v));
3490 		}
3491 		sc->sc_softled = softled;
3492 	}
3493 	return 0;
3494 }
3495 
3496 static void
3497 iwi_ledattach(struct iwi_softc *sc)
3498 {
3499 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3500 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3501 
3502 	sc->sc_blinking = 0;
3503 	sc->sc_ledstate = 1;
3504 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3505 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3506 
3507 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3508 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3509 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3510 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3511 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3512 		"pin setting to turn activity LED on");
3513 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3514 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3515 		"idle time for inactivity LED (ticks)");
3516 	/* XXX for debugging */
3517 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3518 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3519 		"NIC type from EEPROM");
3520 
3521 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3522 	sc->sc_softled = 1;
3523 
3524 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3525 	if (sc->sc_nictype == 1) {
3526 		/*
3527 		 * NB: led's are reversed.
3528 		 */
3529 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3530 	}
3531 }
3532 
3533 static void
3534 iwi_scan_start(struct ieee80211com *ic)
3535 {
3536 	/* ignore */
3537 }
3538 
3539 static void
3540 iwi_set_channel(struct ieee80211com *ic)
3541 {
3542 	struct iwi_softc *sc = ic->ic_softc;
3543 
3544 	if (sc->fw_state == IWI_FW_IDLE)
3545 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3546 }
3547 
3548 static void
3549 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3550 {
3551 	struct ieee80211vap *vap = ss->ss_vap;
3552 	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3553 	IWI_LOCK_DECL;
3554 
3555 	IWI_LOCK(sc);
3556 	if (iwi_scanchan(sc, maxdwell, 0))
3557 		ieee80211_cancel_scan(vap);
3558 	IWI_UNLOCK(sc);
3559 }
3560 
3561 static void
3562 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3563 {
3564 	/* NB: don't try to abort scan; wait for firmware to finish */
3565 }
3566 
3567 static void
3568 iwi_scan_end(struct ieee80211com *ic)
3569 {
3570 	struct iwi_softc *sc = ic->ic_softc;
3571 	IWI_LOCK_DECL;
3572 
3573 	IWI_LOCK(sc);
3574 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3575 	/* NB: make sure we're still scanning */
3576 	if (sc->fw_state == IWI_FW_SCANNING)
3577 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3578 	IWI_UNLOCK(sc);
3579 }
3580 
3581 static void
3582 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3583 {
3584 	struct iwi_softc *sc = ic->ic_softc;
3585 	device_t dev = sc->sc_dev;
3586 
3587 	memset(bands, 0, bands_sz);
3588 	setbit(bands, IEEE80211_MODE_11B);
3589 	setbit(bands, IEEE80211_MODE_11G);
3590 	if (pci_get_device(dev) >= 0x4223)
3591 		setbit(bands, IEEE80211_MODE_11A);
3592 }
3593 
3594 static void
3595 iwi_getradiocaps(struct ieee80211com *ic,
3596     int maxchans, int *nchans, struct ieee80211_channel chans[])
3597 {
3598 	uint8_t bands[IEEE80211_MODE_BYTES];
3599 
3600 	iwi_collect_bands(ic, bands, sizeof(bands));
3601 	*nchans = 0;
3602 	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3603 		ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3604 		    def_chan_2ghz, nitems(def_chan_2ghz), bands, 0);
3605 	if (isset(bands, IEEE80211_MODE_11A)) {
3606 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3607 		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3608 		    bands, 0);
3609 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3610 		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3611 		    bands, 0);
3612 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3613 		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3614 		    bands, 0);
3615 	}
3616 }
3617