1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004, 2005 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static const uint8_t def_chan_5ghz_band1[] = 134 { 36, 40, 44, 48, 52, 56, 60, 64 }; 135 static const uint8_t def_chan_5ghz_band2[] = 136 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; 137 static const uint8_t def_chan_5ghz_band3[] = 138 { 149, 153, 157, 161, 165 }; 139 140 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void iwi_vap_delete(struct ieee80211vap *); 145 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 146 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 147 int); 148 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 149 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 150 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 151 int, bus_addr_t, bus_addr_t); 152 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 153 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 154 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 155 int); 156 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 157 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 158 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void iwi_node_free(struct ieee80211_node *); 161 static void iwi_media_status(if_t, struct ifmediareq *); 162 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 163 static void iwi_wme_init(struct iwi_softc *); 164 static int iwi_wme_setparams(struct iwi_softc *); 165 static int iwi_wme_update(struct ieee80211com *); 166 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 167 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 168 struct iwi_frame *); 169 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 170 static void iwi_rx_intr(struct iwi_softc *); 171 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 172 static void iwi_intr(void *); 173 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 174 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int); 175 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 176 struct ieee80211_node *, int); 177 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 178 const struct ieee80211_bpf_params *); 179 static void iwi_start(struct iwi_softc *); 180 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 181 static void iwi_watchdog(void *); 182 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 183 static void iwi_parent(struct ieee80211com *); 184 static void iwi_stop_master(struct iwi_softc *); 185 static int iwi_reset(struct iwi_softc *); 186 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 187 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 188 static void iwi_release_fw_dma(struct iwi_softc *sc); 189 static int iwi_config(struct iwi_softc *); 190 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 191 static void iwi_put_firmware(struct iwi_softc *); 192 static void iwi_monitor_scan(void *, int); 193 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 194 static void iwi_scan_start(struct ieee80211com *); 195 static void iwi_scan_end(struct ieee80211com *); 196 static void iwi_set_channel(struct ieee80211com *); 197 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 198 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 199 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 200 static void iwi_disassoc(void *, int); 201 static int iwi_disassociate(struct iwi_softc *, int quiet); 202 static void iwi_init_locked(struct iwi_softc *); 203 static void iwi_init(void *); 204 static int iwi_init_fw_dma(struct iwi_softc *, int); 205 static void iwi_stop_locked(void *); 206 static void iwi_stop(struct iwi_softc *); 207 static void iwi_restart(void *, int); 208 static int iwi_getrfkill(struct iwi_softc *); 209 static void iwi_radio_on(void *, int); 210 static void iwi_radio_off(void *, int); 211 static void iwi_sysctlattach(struct iwi_softc *); 212 static void iwi_led_event(struct iwi_softc *, int); 213 static void iwi_ledattach(struct iwi_softc *); 214 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); 215 static void iwi_getradiocaps(struct ieee80211com *, int, int *, 216 struct ieee80211_channel []); 217 218 static int iwi_probe(device_t); 219 static int iwi_attach(device_t); 220 static int iwi_detach(device_t); 221 static int iwi_shutdown(device_t); 222 static int iwi_suspend(device_t); 223 static int iwi_resume(device_t); 224 225 static device_method_t iwi_methods[] = { 226 /* Device interface */ 227 DEVMETHOD(device_probe, iwi_probe), 228 DEVMETHOD(device_attach, iwi_attach), 229 DEVMETHOD(device_detach, iwi_detach), 230 DEVMETHOD(device_shutdown, iwi_shutdown), 231 DEVMETHOD(device_suspend, iwi_suspend), 232 DEVMETHOD(device_resume, iwi_resume), 233 234 DEVMETHOD_END 235 }; 236 237 static driver_t iwi_driver = { 238 "iwi", 239 iwi_methods, 240 sizeof (struct iwi_softc) 241 }; 242 243 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL); 244 245 MODULE_VERSION(iwi, 1); 246 247 static __inline uint8_t 248 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 249 { 250 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 251 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 252 } 253 254 static __inline uint32_t 255 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 256 { 257 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 258 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 259 } 260 261 static int 262 iwi_probe(device_t dev) 263 { 264 const struct iwi_ident *ident; 265 266 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 267 if (pci_get_vendor(dev) == ident->vendor && 268 pci_get_device(dev) == ident->device) { 269 device_set_desc(dev, ident->name); 270 return (BUS_PROBE_DEFAULT); 271 } 272 } 273 return ENXIO; 274 } 275 276 static int 277 iwi_attach(device_t dev) 278 { 279 struct iwi_softc *sc = device_get_softc(dev); 280 struct ieee80211com *ic = &sc->sc_ic; 281 uint16_t val; 282 int i, error; 283 284 sc->sc_dev = dev; 285 sc->sc_ledevent = ticks; 286 287 IWI_LOCK_INIT(sc); 288 mbufq_init(&sc->sc_snd, ifqmaxlen); 289 290 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 291 292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 296 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 297 298 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 299 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 300 301 pci_write_config(dev, 0x41, 0, 1); 302 303 /* enable bus-mastering */ 304 pci_enable_busmaster(dev); 305 306 i = PCIR_BAR(0); 307 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 308 if (sc->mem == NULL) { 309 device_printf(dev, "could not allocate memory resource\n"); 310 goto fail; 311 } 312 313 sc->sc_st = rman_get_bustag(sc->mem); 314 sc->sc_sh = rman_get_bushandle(sc->mem); 315 316 i = 0; 317 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 318 RF_ACTIVE | RF_SHAREABLE); 319 if (sc->irq == NULL) { 320 device_printf(dev, "could not allocate interrupt resource\n"); 321 goto fail; 322 } 323 324 if (iwi_reset(sc) != 0) { 325 device_printf(dev, "could not reset adapter\n"); 326 goto fail; 327 } 328 329 /* 330 * Allocate rings. 331 */ 332 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 333 device_printf(dev, "could not allocate Cmd ring\n"); 334 goto fail; 335 } 336 337 for (i = 0; i < 4; i++) { 338 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 339 IWI_CSR_TX1_RIDX + i * 4, 340 IWI_CSR_TX1_WIDX + i * 4); 341 if (error != 0) { 342 device_printf(dev, "could not allocate Tx ring %d\n", 343 i+i); 344 goto fail; 345 } 346 } 347 348 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 349 device_printf(dev, "could not allocate Rx ring\n"); 350 goto fail; 351 } 352 353 iwi_wme_init(sc); 354 355 ic->ic_softc = sc; 356 ic->ic_name = device_get_nameunit(dev); 357 ic->ic_opmode = IEEE80211_M_STA; 358 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 359 360 /* set device capabilities */ 361 ic->ic_caps = 362 IEEE80211_C_STA /* station mode supported */ 363 | IEEE80211_C_IBSS /* IBSS mode supported */ 364 | IEEE80211_C_MONITOR /* monitor mode supported */ 365 | IEEE80211_C_PMGT /* power save supported */ 366 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 367 | IEEE80211_C_WPA /* 802.11i */ 368 | IEEE80211_C_WME /* 802.11e */ 369 #if 0 370 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 371 #endif 372 ; 373 374 /* read MAC address from EEPROM */ 375 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 376 ic->ic_macaddr[0] = val & 0xff; 377 ic->ic_macaddr[1] = val >> 8; 378 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 379 ic->ic_macaddr[2] = val & 0xff; 380 ic->ic_macaddr[3] = val >> 8; 381 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 382 ic->ic_macaddr[4] = val & 0xff; 383 ic->ic_macaddr[5] = val >> 8; 384 385 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 386 ic->ic_channels); 387 388 ieee80211_ifattach(ic); 389 /* override default methods */ 390 ic->ic_node_alloc = iwi_node_alloc; 391 sc->sc_node_free = ic->ic_node_free; 392 ic->ic_node_free = iwi_node_free; 393 ic->ic_raw_xmit = iwi_raw_xmit; 394 ic->ic_scan_start = iwi_scan_start; 395 ic->ic_scan_end = iwi_scan_end; 396 ic->ic_set_channel = iwi_set_channel; 397 ic->ic_scan_curchan = iwi_scan_curchan; 398 ic->ic_scan_mindwell = iwi_scan_mindwell; 399 ic->ic_wme.wme_update = iwi_wme_update; 400 401 ic->ic_vap_create = iwi_vap_create; 402 ic->ic_vap_delete = iwi_vap_delete; 403 ic->ic_ioctl = iwi_ioctl; 404 ic->ic_transmit = iwi_transmit; 405 ic->ic_parent = iwi_parent; 406 ic->ic_getradiocaps = iwi_getradiocaps; 407 408 ieee80211_radiotap_attach(ic, 409 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 410 IWI_TX_RADIOTAP_PRESENT, 411 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 412 IWI_RX_RADIOTAP_PRESENT); 413 414 iwi_sysctlattach(sc); 415 iwi_ledattach(sc); 416 417 /* 418 * Hook our interrupt after all initialization is complete. 419 */ 420 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 421 NULL, iwi_intr, sc, &sc->sc_ih); 422 if (error != 0) { 423 device_printf(dev, "could not set up interrupt\n"); 424 goto fail; 425 } 426 427 if (bootverbose) 428 ieee80211_announce(ic); 429 430 return 0; 431 fail: 432 /* XXX fix */ 433 iwi_detach(dev); 434 return ENXIO; 435 } 436 437 static int 438 iwi_detach(device_t dev) 439 { 440 struct iwi_softc *sc = device_get_softc(dev); 441 struct ieee80211com *ic = &sc->sc_ic; 442 443 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 444 445 /* NB: do early to drain any pending tasks */ 446 ieee80211_draintask(ic, &sc->sc_radiontask); 447 ieee80211_draintask(ic, &sc->sc_radiofftask); 448 ieee80211_draintask(ic, &sc->sc_restarttask); 449 ieee80211_draintask(ic, &sc->sc_disassoctask); 450 ieee80211_draintask(ic, &sc->sc_monitortask); 451 452 iwi_stop(sc); 453 454 ieee80211_ifdetach(ic); 455 456 iwi_put_firmware(sc); 457 iwi_release_fw_dma(sc); 458 459 iwi_free_cmd_ring(sc, &sc->cmdq); 460 iwi_free_tx_ring(sc, &sc->txq[0]); 461 iwi_free_tx_ring(sc, &sc->txq[1]); 462 iwi_free_tx_ring(sc, &sc->txq[2]); 463 iwi_free_tx_ring(sc, &sc->txq[3]); 464 iwi_free_rx_ring(sc, &sc->rxq); 465 466 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 467 468 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 469 sc->mem); 470 471 delete_unrhdr(sc->sc_unr); 472 mbufq_drain(&sc->sc_snd); 473 474 IWI_LOCK_DESTROY(sc); 475 476 return 0; 477 } 478 479 static struct ieee80211vap * 480 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 481 enum ieee80211_opmode opmode, int flags, 482 const uint8_t bssid[IEEE80211_ADDR_LEN], 483 const uint8_t mac[IEEE80211_ADDR_LEN]) 484 { 485 struct iwi_softc *sc = ic->ic_softc; 486 struct iwi_vap *ivp; 487 struct ieee80211vap *vap; 488 int i; 489 490 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 491 return NULL; 492 /* 493 * Get firmware image (and possibly dma memory) on mode change. 494 */ 495 if (iwi_get_firmware(sc, opmode)) 496 return NULL; 497 /* allocate DMA memory for mapping firmware image */ 498 i = sc->fw_fw.size; 499 if (sc->fw_boot.size > i) 500 i = sc->fw_boot.size; 501 /* XXX do we dma the ucode as well ? */ 502 if (sc->fw_uc.size > i) 503 i = sc->fw_uc.size; 504 if (iwi_init_fw_dma(sc, i)) 505 return NULL; 506 507 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 508 vap = &ivp->iwi_vap; 509 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 510 /* override the default, the setting comes from the linux driver */ 511 vap->iv_bmissthreshold = 24; 512 /* override with driver methods */ 513 ivp->iwi_newstate = vap->iv_newstate; 514 vap->iv_newstate = iwi_newstate; 515 516 /* complete setup */ 517 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 518 mac); 519 ic->ic_opmode = opmode; 520 return vap; 521 } 522 523 static void 524 iwi_vap_delete(struct ieee80211vap *vap) 525 { 526 struct iwi_vap *ivp = IWI_VAP(vap); 527 528 ieee80211_vap_detach(vap); 529 free(ivp, M_80211_VAP); 530 } 531 532 static void 533 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 534 { 535 if (error != 0) 536 return; 537 538 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 539 540 *(bus_addr_t *)arg = segs[0].ds_addr; 541 } 542 543 static int 544 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 545 { 546 int error; 547 548 ring->count = count; 549 ring->queued = 0; 550 ring->cur = ring->next = 0; 551 552 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 553 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 554 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 555 NULL, NULL, &ring->desc_dmat); 556 if (error != 0) { 557 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 558 goto fail; 559 } 560 561 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 562 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 563 if (error != 0) { 564 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 565 goto fail; 566 } 567 568 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 569 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 570 if (error != 0) { 571 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 572 goto fail; 573 } 574 575 return 0; 576 577 fail: iwi_free_cmd_ring(sc, ring); 578 return error; 579 } 580 581 static void 582 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 583 { 584 ring->queued = 0; 585 ring->cur = ring->next = 0; 586 } 587 588 static void 589 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 590 { 591 if (ring->desc != NULL) { 592 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 593 BUS_DMASYNC_POSTWRITE); 594 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 595 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 596 } 597 598 if (ring->desc_dmat != NULL) 599 bus_dma_tag_destroy(ring->desc_dmat); 600 } 601 602 static int 603 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 604 bus_addr_t csr_ridx, bus_addr_t csr_widx) 605 { 606 int i, error; 607 608 ring->count = count; 609 ring->queued = 0; 610 ring->cur = ring->next = 0; 611 ring->csr_ridx = csr_ridx; 612 ring->csr_widx = csr_widx; 613 614 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 615 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 616 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 617 NULL, &ring->desc_dmat); 618 if (error != 0) { 619 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 620 goto fail; 621 } 622 623 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 624 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 625 if (error != 0) { 626 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 627 goto fail; 628 } 629 630 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 631 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 632 if (error != 0) { 633 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 634 goto fail; 635 } 636 637 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 638 M_NOWAIT | M_ZERO); 639 if (ring->data == NULL) { 640 device_printf(sc->sc_dev, "could not allocate soft data\n"); 641 error = ENOMEM; 642 goto fail; 643 } 644 645 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 646 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 647 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 648 if (error != 0) { 649 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 650 goto fail; 651 } 652 653 for (i = 0; i < count; i++) { 654 error = bus_dmamap_create(ring->data_dmat, 0, 655 &ring->data[i].map); 656 if (error != 0) { 657 device_printf(sc->sc_dev, "could not create DMA map\n"); 658 goto fail; 659 } 660 } 661 662 return 0; 663 664 fail: iwi_free_tx_ring(sc, ring); 665 return error; 666 } 667 668 static void 669 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 670 { 671 struct iwi_tx_data *data; 672 int i; 673 674 for (i = 0; i < ring->count; i++) { 675 data = &ring->data[i]; 676 677 if (data->m != NULL) { 678 bus_dmamap_sync(ring->data_dmat, data->map, 679 BUS_DMASYNC_POSTWRITE); 680 bus_dmamap_unload(ring->data_dmat, data->map); 681 m_freem(data->m); 682 data->m = NULL; 683 } 684 685 if (data->ni != NULL) { 686 ieee80211_free_node(data->ni); 687 data->ni = NULL; 688 } 689 } 690 691 ring->queued = 0; 692 ring->cur = ring->next = 0; 693 } 694 695 static void 696 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 697 { 698 struct iwi_tx_data *data; 699 int i; 700 701 if (ring->desc != NULL) { 702 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 703 BUS_DMASYNC_POSTWRITE); 704 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 705 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 706 } 707 708 if (ring->desc_dmat != NULL) 709 bus_dma_tag_destroy(ring->desc_dmat); 710 711 if (ring->data != NULL) { 712 for (i = 0; i < ring->count; i++) { 713 data = &ring->data[i]; 714 715 if (data->m != NULL) { 716 bus_dmamap_sync(ring->data_dmat, data->map, 717 BUS_DMASYNC_POSTWRITE); 718 bus_dmamap_unload(ring->data_dmat, data->map); 719 m_freem(data->m); 720 } 721 722 if (data->ni != NULL) 723 ieee80211_free_node(data->ni); 724 725 if (data->map != NULL) 726 bus_dmamap_destroy(ring->data_dmat, data->map); 727 } 728 729 free(ring->data, M_DEVBUF); 730 } 731 732 if (ring->data_dmat != NULL) 733 bus_dma_tag_destroy(ring->data_dmat); 734 } 735 736 static int 737 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 738 { 739 struct iwi_rx_data *data; 740 int i, error; 741 742 ring->count = count; 743 ring->cur = 0; 744 745 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 746 M_NOWAIT | M_ZERO); 747 if (ring->data == NULL) { 748 device_printf(sc->sc_dev, "could not allocate soft data\n"); 749 error = ENOMEM; 750 goto fail; 751 } 752 753 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 754 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 755 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 756 if (error != 0) { 757 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 758 goto fail; 759 } 760 761 for (i = 0; i < count; i++) { 762 data = &ring->data[i]; 763 764 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 765 if (error != 0) { 766 device_printf(sc->sc_dev, "could not create DMA map\n"); 767 goto fail; 768 } 769 770 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 771 if (data->m == NULL) { 772 device_printf(sc->sc_dev, 773 "could not allocate rx mbuf\n"); 774 error = ENOMEM; 775 goto fail; 776 } 777 778 error = bus_dmamap_load(ring->data_dmat, data->map, 779 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 780 &data->physaddr, 0); 781 if (error != 0) { 782 device_printf(sc->sc_dev, 783 "could not load rx buf DMA map"); 784 goto fail; 785 } 786 787 data->reg = IWI_CSR_RX_BASE + i * 4; 788 } 789 790 return 0; 791 792 fail: iwi_free_rx_ring(sc, ring); 793 return error; 794 } 795 796 static void 797 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 798 { 799 ring->cur = 0; 800 } 801 802 static void 803 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 804 { 805 struct iwi_rx_data *data; 806 int i; 807 808 if (ring->data != NULL) { 809 for (i = 0; i < ring->count; i++) { 810 data = &ring->data[i]; 811 812 if (data->m != NULL) { 813 bus_dmamap_sync(ring->data_dmat, data->map, 814 BUS_DMASYNC_POSTREAD); 815 bus_dmamap_unload(ring->data_dmat, data->map); 816 m_freem(data->m); 817 } 818 819 if (data->map != NULL) 820 bus_dmamap_destroy(ring->data_dmat, data->map); 821 } 822 823 free(ring->data, M_DEVBUF); 824 } 825 826 if (ring->data_dmat != NULL) 827 bus_dma_tag_destroy(ring->data_dmat); 828 } 829 830 static int 831 iwi_shutdown(device_t dev) 832 { 833 struct iwi_softc *sc = device_get_softc(dev); 834 835 iwi_stop(sc); 836 iwi_put_firmware(sc); /* ??? XXX */ 837 838 return 0; 839 } 840 841 static int 842 iwi_suspend(device_t dev) 843 { 844 struct iwi_softc *sc = device_get_softc(dev); 845 struct ieee80211com *ic = &sc->sc_ic; 846 847 ieee80211_suspend_all(ic); 848 return 0; 849 } 850 851 static int 852 iwi_resume(device_t dev) 853 { 854 struct iwi_softc *sc = device_get_softc(dev); 855 struct ieee80211com *ic = &sc->sc_ic; 856 857 pci_write_config(dev, 0x41, 0, 1); 858 859 ieee80211_resume_all(ic); 860 return 0; 861 } 862 863 static struct ieee80211_node * 864 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 865 { 866 struct iwi_node *in; 867 868 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 869 if (in == NULL) 870 return NULL; 871 /* XXX assign sta table entry for adhoc */ 872 in->in_station = -1; 873 874 return &in->in_node; 875 } 876 877 static void 878 iwi_node_free(struct ieee80211_node *ni) 879 { 880 struct ieee80211com *ic = ni->ni_ic; 881 struct iwi_softc *sc = ic->ic_softc; 882 struct iwi_node *in = (struct iwi_node *)ni; 883 884 if (in->in_station != -1) { 885 DPRINTF(("%s mac %6D station %u\n", __func__, 886 ni->ni_macaddr, ":", in->in_station)); 887 free_unr(sc->sc_unr, in->in_station); 888 } 889 890 sc->sc_node_free(ni); 891 } 892 893 /* 894 * Convert h/w rate code to IEEE rate code. 895 */ 896 static int 897 iwi_cvtrate(int iwirate) 898 { 899 switch (iwirate) { 900 case IWI_RATE_DS1: return 2; 901 case IWI_RATE_DS2: return 4; 902 case IWI_RATE_DS5: return 11; 903 case IWI_RATE_DS11: return 22; 904 case IWI_RATE_OFDM6: return 12; 905 case IWI_RATE_OFDM9: return 18; 906 case IWI_RATE_OFDM12: return 24; 907 case IWI_RATE_OFDM18: return 36; 908 case IWI_RATE_OFDM24: return 48; 909 case IWI_RATE_OFDM36: return 72; 910 case IWI_RATE_OFDM48: return 96; 911 case IWI_RATE_OFDM54: return 108; 912 } 913 return 0; 914 } 915 916 /* 917 * The firmware automatically adapts the transmit speed. We report its current 918 * value here. 919 */ 920 static void 921 iwi_media_status(if_t ifp, struct ifmediareq *imr) 922 { 923 struct ieee80211vap *vap = if_getsoftc(ifp); 924 struct ieee80211com *ic = vap->iv_ic; 925 struct iwi_softc *sc = ic->ic_softc; 926 struct ieee80211_node *ni; 927 928 /* read current transmission rate from adapter */ 929 ni = ieee80211_ref_node(vap->iv_bss); 930 ni->ni_txrate = 931 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 932 ieee80211_free_node(ni); 933 ieee80211_media_status(ifp, imr); 934 } 935 936 static int 937 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 938 { 939 struct iwi_vap *ivp = IWI_VAP(vap); 940 struct ieee80211com *ic = vap->iv_ic; 941 struct iwi_softc *sc = ic->ic_softc; 942 IWI_LOCK_DECL; 943 944 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 945 ieee80211_state_name[vap->iv_state], 946 ieee80211_state_name[nstate], sc->flags)); 947 948 IEEE80211_UNLOCK(ic); 949 IWI_LOCK(sc); 950 switch (nstate) { 951 case IEEE80211_S_INIT: 952 /* 953 * NB: don't try to do this if iwi_stop_master has 954 * shutdown the firmware and disabled interrupts. 955 */ 956 if (vap->iv_state == IEEE80211_S_RUN && 957 (sc->flags & IWI_FLAG_FW_INITED)) 958 iwi_disassociate(sc, 0); 959 break; 960 case IEEE80211_S_AUTH: 961 iwi_auth_and_assoc(sc, vap); 962 break; 963 case IEEE80211_S_RUN: 964 if (vap->iv_opmode == IEEE80211_M_IBSS && 965 vap->iv_state == IEEE80211_S_SCAN) { 966 /* 967 * XXX when joining an ibss network we are called 968 * with a SCAN -> RUN transition on scan complete. 969 * Use that to call iwi_auth_and_assoc. On completing 970 * the join we are then called again with an 971 * AUTH -> RUN transition and we want to do nothing. 972 * This is all totally bogus and needs to be redone. 973 */ 974 iwi_auth_and_assoc(sc, vap); 975 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 976 ieee80211_runtask(ic, &sc->sc_monitortask); 977 break; 978 case IEEE80211_S_ASSOC: 979 /* 980 * If we are transitioning from AUTH then just wait 981 * for the ASSOC status to come back from the firmware. 982 * Otherwise we need to issue the association request. 983 */ 984 if (vap->iv_state == IEEE80211_S_AUTH) 985 break; 986 iwi_auth_and_assoc(sc, vap); 987 break; 988 default: 989 break; 990 } 991 IWI_UNLOCK(sc); 992 IEEE80211_LOCK(ic); 993 return ivp->iwi_newstate(vap, nstate, arg); 994 } 995 996 /* 997 * WME parameters coming from IEEE 802.11e specification. These values are 998 * already declared in ieee80211_proto.c, but they are static so they can't 999 * be reused here. 1000 */ 1001 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1002 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1003 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1004 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1005 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1006 }; 1007 1008 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1009 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1010 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1011 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1012 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1013 }; 1014 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1015 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1016 1017 static void 1018 iwi_wme_init(struct iwi_softc *sc) 1019 { 1020 const struct wmeParams *wmep; 1021 int ac; 1022 1023 memset(sc->wme, 0, sizeof sc->wme); 1024 for (ac = 0; ac < WME_NUM_AC; ac++) { 1025 /* set WME values for CCK modulation */ 1026 wmep = &iwi_wme_cck_params[ac]; 1027 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1028 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1029 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1030 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1031 sc->wme[1].acm[ac] = wmep->wmep_acm; 1032 1033 /* set WME values for OFDM modulation */ 1034 wmep = &iwi_wme_ofdm_params[ac]; 1035 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1036 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1037 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1038 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1039 sc->wme[2].acm[ac] = wmep->wmep_acm; 1040 } 1041 } 1042 1043 static int 1044 iwi_wme_setparams(struct iwi_softc *sc) 1045 { 1046 struct ieee80211com *ic = &sc->sc_ic; 1047 struct chanAccParams chp; 1048 const struct wmeParams *wmep; 1049 int ac; 1050 1051 ieee80211_wme_ic_getparams(ic, &chp); 1052 1053 for (ac = 0; ac < WME_NUM_AC; ac++) { 1054 /* set WME values for current operating mode */ 1055 wmep = &chp.cap_wmeParams[ac]; 1056 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1057 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1058 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1059 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1060 sc->wme[0].acm[ac] = wmep->wmep_acm; 1061 } 1062 1063 DPRINTF(("Setting WME parameters\n")); 1064 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1065 } 1066 #undef IWI_USEC 1067 #undef IWI_EXP2 1068 1069 static int 1070 iwi_wme_update(struct ieee80211com *ic) 1071 { 1072 struct iwi_softc *sc = ic->ic_softc; 1073 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1074 IWI_LOCK_DECL; 1075 1076 /* 1077 * We may be called to update the WME parameters in 1078 * the adapter at various places. If we're already 1079 * associated then initiate the request immediately; 1080 * otherwise we assume the params will get sent down 1081 * to the adapter as part of the work iwi_auth_and_assoc 1082 * does. 1083 */ 1084 if (vap->iv_state == IEEE80211_S_RUN) { 1085 IWI_LOCK(sc); 1086 iwi_wme_setparams(sc); 1087 IWI_UNLOCK(sc); 1088 } 1089 return (0); 1090 } 1091 1092 static int 1093 iwi_wme_setie(struct iwi_softc *sc) 1094 { 1095 struct ieee80211_wme_info wme; 1096 1097 memset(&wme, 0, sizeof wme); 1098 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1099 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1100 wme.wme_oui[0] = 0x00; 1101 wme.wme_oui[1] = 0x50; 1102 wme.wme_oui[2] = 0xf2; 1103 wme.wme_type = WME_OUI_TYPE; 1104 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1105 wme.wme_version = WME_VERSION; 1106 wme.wme_info = 0; 1107 1108 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1109 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1110 } 1111 1112 /* 1113 * Read 16 bits at address 'addr' from the serial EEPROM. 1114 */ 1115 static uint16_t 1116 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1117 { 1118 uint32_t tmp; 1119 uint16_t val; 1120 int n; 1121 1122 /* clock C once before the first command */ 1123 IWI_EEPROM_CTL(sc, 0); 1124 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1125 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1127 1128 /* write start bit (1) */ 1129 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1130 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1131 1132 /* write READ opcode (10) */ 1133 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1134 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1137 1138 /* write address A7-A0 */ 1139 for (n = 7; n >= 0; n--) { 1140 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1141 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1143 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1144 } 1145 1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1147 1148 /* read data Q15-Q0 */ 1149 val = 0; 1150 for (n = 15; n >= 0; n--) { 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1154 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1155 } 1156 1157 IWI_EEPROM_CTL(sc, 0); 1158 1159 /* clear Chip Select and clock C */ 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1161 IWI_EEPROM_CTL(sc, 0); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1163 1164 return val; 1165 } 1166 1167 static void 1168 iwi_setcurchan(struct iwi_softc *sc, int chan) 1169 { 1170 struct ieee80211com *ic = &sc->sc_ic; 1171 1172 sc->curchan = chan; 1173 ieee80211_radiotap_chan_change(ic); 1174 } 1175 1176 static void 1177 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1178 struct iwi_frame *frame) 1179 { 1180 struct epoch_tracker et; 1181 struct ieee80211com *ic = &sc->sc_ic; 1182 struct mbuf *mnew, *m; 1183 struct ieee80211_node *ni; 1184 int type, error, framelen; 1185 int8_t rssi, nf; 1186 IWI_LOCK_DECL; 1187 1188 framelen = le16toh(frame->len); 1189 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1190 /* 1191 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1192 * out of bounds; need to figure out how to limit 1193 * frame size in the firmware 1194 */ 1195 /* XXX stat */ 1196 DPRINTFN(1, 1197 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1198 le16toh(frame->len), frame->chan, frame->rssi, 1199 frame->rssi_dbm)); 1200 return; 1201 } 1202 1203 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1204 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1205 1206 if (frame->chan != sc->curchan) 1207 iwi_setcurchan(sc, frame->chan); 1208 1209 /* 1210 * Try to allocate a new mbuf for this ring element and load it before 1211 * processing the current mbuf. If the ring element cannot be loaded, 1212 * drop the received packet and reuse the old mbuf. In the unlikely 1213 * case that the old mbuf can't be reloaded either, explicitly panic. 1214 */ 1215 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1216 if (mnew == NULL) { 1217 counter_u64_add(ic->ic_ierrors, 1); 1218 return; 1219 } 1220 1221 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1222 1223 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1224 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1225 0); 1226 if (error != 0) { 1227 m_freem(mnew); 1228 1229 /* try to reload the old mbuf */ 1230 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1231 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1232 &data->physaddr, 0); 1233 if (error != 0) { 1234 /* very unlikely that it will fail... */ 1235 panic("%s: could not load old rx mbuf", 1236 device_get_name(sc->sc_dev)); 1237 } 1238 counter_u64_add(ic->ic_ierrors, 1); 1239 return; 1240 } 1241 1242 /* 1243 * New mbuf successfully loaded, update Rx ring and continue 1244 * processing. 1245 */ 1246 m = data->m; 1247 data->m = mnew; 1248 CSR_WRITE_4(sc, data->reg, data->physaddr); 1249 1250 /* finalize mbuf */ 1251 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1252 sizeof (struct iwi_frame) + framelen; 1253 1254 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1255 1256 rssi = frame->rssi_dbm; 1257 nf = -95; 1258 if (ieee80211_radiotap_active(ic)) { 1259 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1260 1261 tap->wr_flags = 0; 1262 tap->wr_antsignal = rssi; 1263 tap->wr_antnoise = nf; 1264 tap->wr_rate = iwi_cvtrate(frame->rate); 1265 tap->wr_antenna = frame->antenna; 1266 } 1267 IWI_UNLOCK(sc); 1268 1269 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1270 NET_EPOCH_ENTER(et); 1271 if (ni != NULL) { 1272 type = ieee80211_input(ni, m, rssi, nf); 1273 ieee80211_free_node(ni); 1274 } else 1275 type = ieee80211_input_all(ic, m, rssi, nf); 1276 NET_EPOCH_EXIT(et); 1277 1278 IWI_LOCK(sc); 1279 if (sc->sc_softled) { 1280 /* 1281 * Blink for any data frame. Otherwise do a 1282 * heartbeat-style blink when idle. The latter 1283 * is mainly for station mode where we depend on 1284 * periodic beacon frames to trigger the poll event. 1285 */ 1286 if (type == IEEE80211_FC0_TYPE_DATA) { 1287 sc->sc_rxrate = frame->rate; 1288 iwi_led_event(sc, IWI_LED_RX); 1289 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1290 iwi_led_event(sc, IWI_LED_POLL); 1291 } 1292 } 1293 1294 /* 1295 * Check for an association response frame to see if QoS 1296 * has been negotiated. We parse just enough to figure 1297 * out if we're supposed to use QoS. The proper solution 1298 * is to pass the frame up so ieee80211_input can do the 1299 * work but that's made hard by how things currently are 1300 * done in the driver. 1301 */ 1302 static void 1303 iwi_checkforqos(struct ieee80211vap *vap, 1304 const struct ieee80211_frame *wh, int len) 1305 { 1306 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1307 const uint8_t *frm, *efrm, *wme; 1308 struct ieee80211_node *ni; 1309 uint16_t capinfo, associd; 1310 1311 /* NB: +8 for capinfo, status, associd, and first ie */ 1312 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1313 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1314 return; 1315 /* 1316 * asresp frame format 1317 * [2] capability information 1318 * [2] status 1319 * [2] association ID 1320 * [tlv] supported rates 1321 * [tlv] extended supported rates 1322 * [tlv] WME 1323 */ 1324 frm = (const uint8_t *)&wh[1]; 1325 efrm = ((const uint8_t *) wh) + len; 1326 1327 capinfo = le16toh(*(const uint16_t *)frm); 1328 frm += 2; 1329 /* status */ 1330 frm += 2; 1331 associd = le16toh(*(const uint16_t *)frm); 1332 frm += 2; 1333 1334 wme = NULL; 1335 while (efrm - frm > 1) { 1336 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1337 switch (*frm) { 1338 case IEEE80211_ELEMID_VENDOR: 1339 if (iswmeoui(frm)) 1340 wme = frm; 1341 break; 1342 } 1343 frm += frm[1] + 2; 1344 } 1345 1346 ni = ieee80211_ref_node(vap->iv_bss); 1347 ni->ni_capinfo = capinfo; 1348 ni->ni_associd = associd & 0x3fff; 1349 if (wme != NULL) 1350 ni->ni_flags |= IEEE80211_NODE_QOS; 1351 else 1352 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1353 ieee80211_free_node(ni); 1354 #undef SUBTYPE 1355 } 1356 1357 static void 1358 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1359 { 1360 struct iwi_notif_link_quality *lq; 1361 int len; 1362 1363 len = le16toh(notif->len); 1364 1365 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1366 notif->type, 1367 len, 1368 sizeof(struct iwi_notif_link_quality) 1369 )); 1370 1371 /* enforce length */ 1372 if (len != sizeof(struct iwi_notif_link_quality)) { 1373 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1374 notif->type, 1375 len)); 1376 return; 1377 } 1378 1379 lq = (struct iwi_notif_link_quality *)(notif + 1); 1380 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1381 sc->sc_linkqual_valid = 1; 1382 } 1383 1384 /* 1385 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1386 */ 1387 1388 static void 1389 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1390 { 1391 struct ieee80211com *ic = &sc->sc_ic; 1392 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1393 struct iwi_notif_scan_channel *chan; 1394 struct iwi_notif_scan_complete *scan; 1395 struct iwi_notif_authentication *auth; 1396 struct iwi_notif_association *assoc; 1397 struct iwi_notif_beacon_state *beacon; 1398 1399 switch (notif->type) { 1400 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1401 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1402 1403 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1404 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1405 1406 /* Reset the timer, the scan is still going */ 1407 sc->sc_state_timer = 3; 1408 break; 1409 1410 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1411 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1412 1413 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1414 scan->status)); 1415 1416 IWI_STATE_END(sc, IWI_FW_SCANNING); 1417 1418 /* 1419 * Monitor mode works by doing a passive scan to set 1420 * the channel and enable rx. Because we don't want 1421 * to abort a scan lest the firmware crash we scan 1422 * for a short period of time and automatically restart 1423 * the scan when notified the sweep has completed. 1424 */ 1425 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1426 ieee80211_runtask(ic, &sc->sc_monitortask); 1427 break; 1428 } 1429 1430 if (scan->status == IWI_SCAN_COMPLETED) { 1431 /* NB: don't need to defer, net80211 does it for us */ 1432 ieee80211_scan_next(vap); 1433 } 1434 break; 1435 1436 case IWI_NOTIF_TYPE_AUTHENTICATION: 1437 auth = (struct iwi_notif_authentication *)(notif + 1); 1438 switch (auth->state) { 1439 case IWI_AUTH_SUCCESS: 1440 DPRINTFN(2, ("Authentication succeeeded\n")); 1441 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1442 break; 1443 case IWI_AUTH_FAIL: 1444 /* 1445 * These are delivered as an unsolicited deauth 1446 * (e.g. due to inactivity) or in response to an 1447 * associate request. 1448 */ 1449 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1450 if (vap->iv_state != IEEE80211_S_RUN) { 1451 DPRINTFN(2, ("Authentication failed\n")); 1452 vap->iv_stats.is_rx_auth_fail++; 1453 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1454 } else { 1455 DPRINTFN(2, ("Deauthenticated\n")); 1456 vap->iv_stats.is_rx_deauth++; 1457 } 1458 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1459 break; 1460 case IWI_AUTH_SENT_1: 1461 case IWI_AUTH_RECV_2: 1462 case IWI_AUTH_SEQ1_PASS: 1463 break; 1464 case IWI_AUTH_SEQ1_FAIL: 1465 DPRINTFN(2, ("Initial authentication handshake failed; " 1466 "you probably need shared key\n")); 1467 vap->iv_stats.is_rx_auth_fail++; 1468 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1469 /* XXX retry shared key when in auto */ 1470 break; 1471 default: 1472 device_printf(sc->sc_dev, 1473 "unknown authentication state %u\n", auth->state); 1474 break; 1475 } 1476 break; 1477 1478 case IWI_NOTIF_TYPE_ASSOCIATION: 1479 assoc = (struct iwi_notif_association *)(notif + 1); 1480 switch (assoc->state) { 1481 case IWI_AUTH_SUCCESS: 1482 /* re-association, do nothing */ 1483 break; 1484 case IWI_ASSOC_SUCCESS: 1485 DPRINTFN(2, ("Association succeeded\n")); 1486 sc->flags |= IWI_FLAG_ASSOCIATED; 1487 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1488 iwi_checkforqos(vap, 1489 (const struct ieee80211_frame *)(assoc+1), 1490 le16toh(notif->len) - sizeof(*assoc) - 1); 1491 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1492 break; 1493 case IWI_ASSOC_INIT: 1494 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1495 switch (sc->fw_state) { 1496 case IWI_FW_ASSOCIATING: 1497 DPRINTFN(2, ("Association failed\n")); 1498 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1499 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1500 break; 1501 1502 case IWI_FW_DISASSOCIATING: 1503 DPRINTFN(2, ("Dissassociated\n")); 1504 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1505 vap->iv_stats.is_rx_disassoc++; 1506 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1507 break; 1508 } 1509 break; 1510 default: 1511 device_printf(sc->sc_dev, 1512 "unknown association state %u\n", assoc->state); 1513 break; 1514 } 1515 break; 1516 1517 case IWI_NOTIF_TYPE_BEACON: 1518 /* XXX check struct length */ 1519 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1520 1521 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1522 beacon->state, le32toh(beacon->number))); 1523 1524 if (beacon->state == IWI_BEACON_MISS) { 1525 /* 1526 * The firmware notifies us of every beacon miss 1527 * so we need to track the count against the 1528 * configured threshold before notifying the 1529 * 802.11 layer. 1530 * XXX try to roam, drop assoc only on much higher count 1531 */ 1532 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1533 DPRINTF(("Beacon miss: %u >= %u\n", 1534 le32toh(beacon->number), 1535 vap->iv_bmissthreshold)); 1536 vap->iv_stats.is_beacon_miss++; 1537 /* 1538 * It's pointless to notify the 802.11 layer 1539 * as it'll try to send a probe request (which 1540 * we'll discard) and then timeout and drop us 1541 * into scan state. Instead tell the firmware 1542 * to disassociate and then on completion we'll 1543 * kick the state machine to scan. 1544 */ 1545 ieee80211_runtask(ic, &sc->sc_disassoctask); 1546 } 1547 } 1548 break; 1549 1550 case IWI_NOTIF_TYPE_CALIBRATION: 1551 case IWI_NOTIF_TYPE_NOISE: 1552 /* XXX handle? */ 1553 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1554 break; 1555 case IWI_NOTIF_TYPE_LINK_QUALITY: 1556 iwi_notif_link_quality(sc, notif); 1557 break; 1558 1559 default: 1560 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1561 notif->type, notif->flags, le16toh(notif->len))); 1562 break; 1563 } 1564 } 1565 1566 static void 1567 iwi_rx_intr(struct iwi_softc *sc) 1568 { 1569 struct iwi_rx_data *data; 1570 struct iwi_hdr *hdr; 1571 uint32_t hw; 1572 1573 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1574 1575 for (; sc->rxq.cur != hw;) { 1576 data = &sc->rxq.data[sc->rxq.cur]; 1577 1578 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1579 BUS_DMASYNC_POSTREAD); 1580 1581 hdr = mtod(data->m, struct iwi_hdr *); 1582 1583 switch (hdr->type) { 1584 case IWI_HDR_TYPE_FRAME: 1585 iwi_frame_intr(sc, data, sc->rxq.cur, 1586 (struct iwi_frame *)(hdr + 1)); 1587 break; 1588 1589 case IWI_HDR_TYPE_NOTIF: 1590 iwi_notification_intr(sc, 1591 (struct iwi_notif *)(hdr + 1)); 1592 break; 1593 1594 default: 1595 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1596 hdr->type); 1597 } 1598 1599 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1600 1601 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1602 } 1603 1604 /* tell the firmware what we have processed */ 1605 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1606 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1607 } 1608 1609 static void 1610 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1611 { 1612 struct iwi_tx_data *data; 1613 uint32_t hw; 1614 1615 hw = CSR_READ_4(sc, txq->csr_ridx); 1616 1617 while (txq->next != hw) { 1618 data = &txq->data[txq->next]; 1619 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1620 bus_dmamap_sync(txq->data_dmat, data->map, 1621 BUS_DMASYNC_POSTWRITE); 1622 bus_dmamap_unload(txq->data_dmat, data->map); 1623 ieee80211_tx_complete(data->ni, data->m, 0); 1624 data->ni = NULL; 1625 data->m = NULL; 1626 txq->queued--; 1627 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1628 } 1629 sc->sc_tx_timer = 0; 1630 if (sc->sc_softled) 1631 iwi_led_event(sc, IWI_LED_TX); 1632 iwi_start(sc); 1633 } 1634 1635 static void 1636 iwi_fatal_error_intr(struct iwi_softc *sc) 1637 { 1638 struct ieee80211com *ic = &sc->sc_ic; 1639 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1640 1641 device_printf(sc->sc_dev, "firmware error\n"); 1642 if (vap != NULL) 1643 ieee80211_cancel_scan(vap); 1644 ieee80211_runtask(ic, &sc->sc_restarttask); 1645 1646 sc->flags &= ~IWI_FLAG_BUSY; 1647 sc->sc_busy_timer = 0; 1648 wakeup(sc); 1649 } 1650 1651 static void 1652 iwi_radio_off_intr(struct iwi_softc *sc) 1653 { 1654 1655 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1656 } 1657 1658 static void 1659 iwi_intr(void *arg) 1660 { 1661 struct iwi_softc *sc = arg; 1662 uint32_t r; 1663 IWI_LOCK_DECL; 1664 1665 IWI_LOCK(sc); 1666 1667 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1668 IWI_UNLOCK(sc); 1669 return; 1670 } 1671 1672 /* acknowledge interrupts */ 1673 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1674 1675 if (r & IWI_INTR_FATAL_ERROR) { 1676 iwi_fatal_error_intr(sc); 1677 goto done; 1678 } 1679 1680 if (r & IWI_INTR_FW_INITED) { 1681 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1682 wakeup(sc); 1683 } 1684 1685 if (r & IWI_INTR_RADIO_OFF) 1686 iwi_radio_off_intr(sc); 1687 1688 if (r & IWI_INTR_CMD_DONE) { 1689 sc->flags &= ~IWI_FLAG_BUSY; 1690 sc->sc_busy_timer = 0; 1691 wakeup(sc); 1692 } 1693 1694 if (r & IWI_INTR_TX1_DONE) 1695 iwi_tx_intr(sc, &sc->txq[0]); 1696 1697 if (r & IWI_INTR_TX2_DONE) 1698 iwi_tx_intr(sc, &sc->txq[1]); 1699 1700 if (r & IWI_INTR_TX3_DONE) 1701 iwi_tx_intr(sc, &sc->txq[2]); 1702 1703 if (r & IWI_INTR_TX4_DONE) 1704 iwi_tx_intr(sc, &sc->txq[3]); 1705 1706 if (r & IWI_INTR_RX_DONE) 1707 iwi_rx_intr(sc); 1708 1709 if (r & IWI_INTR_PARITY_ERROR) { 1710 /* XXX rate-limit */ 1711 device_printf(sc->sc_dev, "parity error\n"); 1712 } 1713 done: 1714 IWI_UNLOCK(sc); 1715 } 1716 1717 static int 1718 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1719 { 1720 struct iwi_cmd_desc *desc; 1721 1722 IWI_LOCK_ASSERT(sc); 1723 1724 if (sc->flags & IWI_FLAG_BUSY) { 1725 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1726 __func__, type); 1727 return EAGAIN; 1728 } 1729 sc->flags |= IWI_FLAG_BUSY; 1730 sc->sc_busy_timer = 2; 1731 1732 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1733 1734 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1735 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1736 desc->type = type; 1737 desc->len = len; 1738 memcpy(desc->data, data, len); 1739 1740 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1741 BUS_DMASYNC_PREWRITE); 1742 1743 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1744 type, len)); 1745 1746 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1747 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1748 1749 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1750 } 1751 1752 static void 1753 iwi_write_ibssnode(struct iwi_softc *sc, 1754 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1755 { 1756 struct iwi_ibssnode node; 1757 1758 /* write node information into NIC memory */ 1759 memset(&node, 0, sizeof node); 1760 IEEE80211_ADDR_COPY(node.bssid, addr); 1761 1762 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1763 1764 CSR_WRITE_REGION_1(sc, 1765 IWI_CSR_NODE_BASE + entry * sizeof node, 1766 (uint8_t *)&node, sizeof node); 1767 } 1768 1769 static int 1770 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1771 int ac) 1772 { 1773 struct ieee80211vap *vap = ni->ni_vap; 1774 struct iwi_node *in = (struct iwi_node *)ni; 1775 const struct ieee80211_frame *wh; 1776 struct ieee80211_key *k; 1777 struct iwi_tx_ring *txq = &sc->txq[ac]; 1778 struct iwi_tx_data *data; 1779 struct iwi_tx_desc *desc; 1780 struct mbuf *mnew; 1781 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1782 int error, nsegs, hdrlen, i; 1783 int ismcast, flags, xflags, staid; 1784 1785 IWI_LOCK_ASSERT(sc); 1786 wh = mtod(m0, const struct ieee80211_frame *); 1787 /* NB: only data frames use this path */ 1788 hdrlen = ieee80211_hdrsize(wh); 1789 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1790 flags = xflags = 0; 1791 1792 if (!ismcast) 1793 flags |= IWI_DATA_FLAG_NEED_ACK; 1794 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1795 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1796 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1797 xflags |= IWI_DATA_XFLAG_QOS; 1798 if (ieee80211_wme_vap_ac_is_noack(vap, ac)) 1799 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1800 } 1801 1802 /* 1803 * This is only used in IBSS mode where the firmware expect an index 1804 * in a h/w table instead of a destination address. 1805 */ 1806 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1807 if (!ismcast) { 1808 if (in->in_station == -1) { 1809 in->in_station = alloc_unr(sc->sc_unr); 1810 if (in->in_station == -1) { 1811 /* h/w table is full */ 1812 if_inc_counter(ni->ni_vap->iv_ifp, 1813 IFCOUNTER_OERRORS, 1); 1814 m_freem(m0); 1815 ieee80211_free_node(ni); 1816 return 0; 1817 } 1818 iwi_write_ibssnode(sc, 1819 ni->ni_macaddr, in->in_station); 1820 } 1821 staid = in->in_station; 1822 } else { 1823 /* 1824 * Multicast addresses have no associated node 1825 * so there will be no station entry. We reserve 1826 * entry 0 for one mcast address and use that. 1827 * If there are many being used this will be 1828 * expensive and we'll need to do a better job 1829 * but for now this handles the broadcast case. 1830 */ 1831 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1832 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1833 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1834 } 1835 staid = 0; 1836 } 1837 } else 1838 staid = 0; 1839 1840 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1841 k = ieee80211_crypto_encap(ni, m0); 1842 if (k == NULL) { 1843 m_freem(m0); 1844 return ENOBUFS; 1845 } 1846 1847 /* packet header may have moved, reset our local pointer */ 1848 wh = mtod(m0, struct ieee80211_frame *); 1849 } 1850 1851 if (ieee80211_radiotap_active_vap(vap)) { 1852 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1853 1854 tap->wt_flags = 0; 1855 1856 ieee80211_radiotap_tx(vap, m0); 1857 } 1858 1859 data = &txq->data[txq->cur]; 1860 desc = &txq->desc[txq->cur]; 1861 1862 /* save and trim IEEE802.11 header */ 1863 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1864 m_adj(m0, hdrlen); 1865 1866 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1867 &nsegs, 0); 1868 if (error != 0 && error != EFBIG) { 1869 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1870 error); 1871 m_freem(m0); 1872 return error; 1873 } 1874 if (error != 0) { 1875 mnew = m_defrag(m0, M_NOWAIT); 1876 if (mnew == NULL) { 1877 device_printf(sc->sc_dev, 1878 "could not defragment mbuf\n"); 1879 m_freem(m0); 1880 return ENOBUFS; 1881 } 1882 m0 = mnew; 1883 1884 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1885 m0, segs, &nsegs, 0); 1886 if (error != 0) { 1887 device_printf(sc->sc_dev, 1888 "could not map mbuf (error %d)\n", error); 1889 m_freem(m0); 1890 return error; 1891 } 1892 } 1893 1894 data->m = m0; 1895 data->ni = ni; 1896 1897 desc->hdr.type = IWI_HDR_TYPE_DATA; 1898 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1899 desc->station = staid; 1900 desc->cmd = IWI_DATA_CMD_TX; 1901 desc->len = htole16(m0->m_pkthdr.len); 1902 desc->flags = flags; 1903 desc->xflags = xflags; 1904 1905 #if 0 1906 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1907 desc->wep_txkey = vap->iv_def_txkey; 1908 else 1909 #endif 1910 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1911 1912 desc->nseg = htole32(nsegs); 1913 for (i = 0; i < nsegs; i++) { 1914 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1915 desc->seg_len[i] = htole16(segs[i].ds_len); 1916 } 1917 1918 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1919 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1920 1921 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1922 ac, txq->cur, le16toh(desc->len), nsegs)); 1923 1924 txq->queued++; 1925 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1926 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1927 1928 return 0; 1929 } 1930 1931 static int 1932 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1933 const struct ieee80211_bpf_params *params) 1934 { 1935 /* no support; just discard */ 1936 m_freem(m); 1937 ieee80211_free_node(ni); 1938 return 0; 1939 } 1940 1941 static int 1942 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1943 { 1944 struct iwi_softc *sc = ic->ic_softc; 1945 int error; 1946 IWI_LOCK_DECL; 1947 1948 IWI_LOCK(sc); 1949 if (!sc->sc_running) { 1950 IWI_UNLOCK(sc); 1951 return (ENXIO); 1952 } 1953 error = mbufq_enqueue(&sc->sc_snd, m); 1954 if (error) { 1955 IWI_UNLOCK(sc); 1956 return (error); 1957 } 1958 iwi_start(sc); 1959 IWI_UNLOCK(sc); 1960 return (0); 1961 } 1962 1963 static void 1964 iwi_start(struct iwi_softc *sc) 1965 { 1966 struct mbuf *m; 1967 struct ieee80211_node *ni; 1968 int ac; 1969 1970 IWI_LOCK_ASSERT(sc); 1971 1972 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1973 ac = M_WME_GETAC(m); 1974 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1975 /* there is no place left in this ring; tail drop */ 1976 /* XXX tail drop */ 1977 mbufq_prepend(&sc->sc_snd, m); 1978 break; 1979 } 1980 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1981 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1982 if_inc_counter(ni->ni_vap->iv_ifp, 1983 IFCOUNTER_OERRORS, 1); 1984 ieee80211_free_node(ni); 1985 break; 1986 } 1987 sc->sc_tx_timer = 5; 1988 } 1989 } 1990 1991 static void 1992 iwi_watchdog(void *arg) 1993 { 1994 struct iwi_softc *sc = arg; 1995 struct ieee80211com *ic = &sc->sc_ic; 1996 1997 IWI_LOCK_ASSERT(sc); 1998 1999 if (sc->sc_tx_timer > 0) { 2000 if (--sc->sc_tx_timer == 0) { 2001 device_printf(sc->sc_dev, "device timeout\n"); 2002 counter_u64_add(ic->ic_oerrors, 1); 2003 ieee80211_runtask(ic, &sc->sc_restarttask); 2004 } 2005 } 2006 if (sc->sc_state_timer > 0) { 2007 if (--sc->sc_state_timer == 0) { 2008 device_printf(sc->sc_dev, 2009 "firmware stuck in state %d, resetting\n", 2010 sc->fw_state); 2011 if (sc->fw_state == IWI_FW_SCANNING) 2012 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2013 ieee80211_runtask(ic, &sc->sc_restarttask); 2014 sc->sc_state_timer = 3; 2015 } 2016 } 2017 if (sc->sc_busy_timer > 0) { 2018 if (--sc->sc_busy_timer == 0) { 2019 device_printf(sc->sc_dev, 2020 "firmware command timeout, resetting\n"); 2021 ieee80211_runtask(ic, &sc->sc_restarttask); 2022 } 2023 } 2024 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2025 } 2026 2027 static void 2028 iwi_parent(struct ieee80211com *ic) 2029 { 2030 struct iwi_softc *sc = ic->ic_softc; 2031 int startall = 0; 2032 IWI_LOCK_DECL; 2033 2034 IWI_LOCK(sc); 2035 if (ic->ic_nrunning > 0) { 2036 if (!sc->sc_running) { 2037 iwi_init_locked(sc); 2038 startall = 1; 2039 } 2040 } else if (sc->sc_running) 2041 iwi_stop_locked(sc); 2042 IWI_UNLOCK(sc); 2043 if (startall) 2044 ieee80211_start_all(ic); 2045 } 2046 2047 static int 2048 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2049 { 2050 struct ifreq *ifr = data; 2051 struct iwi_softc *sc = ic->ic_softc; 2052 int error; 2053 IWI_LOCK_DECL; 2054 2055 IWI_LOCK(sc); 2056 switch (cmd) { 2057 case SIOCGIWISTATS: 2058 /* XXX validate permissions/memory/etc? */ 2059 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), 2060 sizeof(struct iwi_notif_link_quality)); 2061 break; 2062 case SIOCZIWISTATS: 2063 memset(&sc->sc_linkqual, 0, 2064 sizeof(struct iwi_notif_link_quality)); 2065 error = 0; 2066 break; 2067 default: 2068 error = ENOTTY; 2069 break; 2070 } 2071 IWI_UNLOCK(sc); 2072 2073 return (error); 2074 } 2075 2076 static void 2077 iwi_stop_master(struct iwi_softc *sc) 2078 { 2079 uint32_t tmp; 2080 int ntries; 2081 2082 /* disable interrupts */ 2083 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2084 2085 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2086 for (ntries = 0; ntries < 5; ntries++) { 2087 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2088 break; 2089 DELAY(10); 2090 } 2091 if (ntries == 5) 2092 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2093 2094 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2095 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2096 2097 sc->flags &= ~IWI_FLAG_FW_INITED; 2098 } 2099 2100 static int 2101 iwi_reset(struct iwi_softc *sc) 2102 { 2103 uint32_t tmp; 2104 int i, ntries; 2105 2106 iwi_stop_master(sc); 2107 2108 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2109 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2110 2111 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2112 2113 /* wait for clock stabilization */ 2114 for (ntries = 0; ntries < 1000; ntries++) { 2115 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2116 break; 2117 DELAY(200); 2118 } 2119 if (ntries == 1000) { 2120 device_printf(sc->sc_dev, 2121 "timeout waiting for clock stabilization\n"); 2122 return EIO; 2123 } 2124 2125 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2126 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2127 2128 DELAY(10); 2129 2130 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2131 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2132 2133 /* clear NIC memory */ 2134 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2135 for (i = 0; i < 0xc000; i++) 2136 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2137 2138 return 0; 2139 } 2140 2141 static const struct iwi_firmware_ohdr * 2142 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2143 { 2144 const struct firmware *fp = fw->fp; 2145 const struct iwi_firmware_ohdr *hdr; 2146 2147 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2148 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2149 return NULL; 2150 } 2151 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2152 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2153 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2154 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2155 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2156 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2157 IWI_FW_REQ_MINOR); 2158 return NULL; 2159 } 2160 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2161 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2162 fw->name = fp->name; 2163 return hdr; 2164 } 2165 2166 static const struct iwi_firmware_ohdr * 2167 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2168 { 2169 const struct iwi_firmware_ohdr *hdr; 2170 2171 hdr = iwi_setup_ofw(sc, fw); 2172 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2173 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2174 fw->name); 2175 hdr = NULL; 2176 } 2177 return hdr; 2178 } 2179 2180 static void 2181 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2182 struct iwi_fw *uc, const char *ucname) 2183 { 2184 if (fw->fp == NULL) 2185 fw->fp = firmware_get(fwname); 2186 /* NB: pre-3.0 ucode is packaged separately */ 2187 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2188 uc->fp = firmware_get(ucname); 2189 } 2190 2191 /* 2192 * Get the required firmware images if not already loaded. 2193 * Note that we hold firmware images so long as the device 2194 * is marked up in case we need to reload them on device init. 2195 * This is necessary because we re-init the device sometimes 2196 * from a context where we cannot read from the filesystem 2197 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2198 * XXX return 0 on success, 1 on error. 2199 * 2200 * NB: the order of get'ing and put'ing images here is 2201 * intentional to support handling firmware images bundled 2202 * by operating mode and/or all together in one file with 2203 * the boot firmware as "master". 2204 */ 2205 static int 2206 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2207 { 2208 const struct iwi_firmware_hdr *hdr; 2209 const struct firmware *fp; 2210 2211 /* invalidate cached firmware on mode change */ 2212 if (sc->fw_mode != opmode) 2213 iwi_put_firmware(sc); 2214 2215 switch (opmode) { 2216 case IEEE80211_M_STA: 2217 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2218 break; 2219 case IEEE80211_M_IBSS: 2220 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2221 break; 2222 case IEEE80211_M_MONITOR: 2223 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2224 &sc->fw_uc, "iwi_ucode_monitor"); 2225 break; 2226 default: 2227 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2228 return EINVAL; 2229 } 2230 fp = sc->fw_fw.fp; 2231 if (fp == NULL) { 2232 device_printf(sc->sc_dev, "could not load firmware\n"); 2233 goto bad; 2234 } 2235 if (fp->version < 300) { 2236 /* 2237 * Firmware prior to 3.0 was packaged as separate 2238 * boot, firmware, and ucode images. Verify the 2239 * ucode image was read in, retrieve the boot image 2240 * if needed, and check version stamps for consistency. 2241 * The version stamps in the data are also checked 2242 * above; this is a bit paranoid but is a cheap 2243 * safeguard against mis-packaging. 2244 */ 2245 if (sc->fw_uc.fp == NULL) { 2246 device_printf(sc->sc_dev, "could not load ucode\n"); 2247 goto bad; 2248 } 2249 if (sc->fw_boot.fp == NULL) { 2250 sc->fw_boot.fp = firmware_get("iwi_boot"); 2251 if (sc->fw_boot.fp == NULL) { 2252 device_printf(sc->sc_dev, 2253 "could not load boot firmware\n"); 2254 goto bad; 2255 } 2256 } 2257 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2258 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2259 device_printf(sc->sc_dev, 2260 "firmware version mismatch: " 2261 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2262 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2263 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2264 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2265 ); 2266 goto bad; 2267 } 2268 /* 2269 * Check and setup each image. 2270 */ 2271 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2272 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2273 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2274 goto bad; 2275 } else { 2276 /* 2277 * Check and setup combined image. 2278 */ 2279 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2280 device_printf(sc->sc_dev, "image '%s' too small\n", 2281 fp->name); 2282 goto bad; 2283 } 2284 hdr = (const struct iwi_firmware_hdr *)fp->data; 2285 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2286 + le32toh(hdr->fsize)) { 2287 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2288 fp->name); 2289 goto bad; 2290 } 2291 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2292 sc->fw_boot.size = le32toh(hdr->bsize); 2293 sc->fw_boot.name = fp->name; 2294 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2295 sc->fw_uc.size = le32toh(hdr->usize); 2296 sc->fw_uc.name = fp->name; 2297 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2298 sc->fw_fw.size = le32toh(hdr->fsize); 2299 sc->fw_fw.name = fp->name; 2300 } 2301 #if 0 2302 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2303 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2304 #endif 2305 2306 sc->fw_mode = opmode; 2307 return 0; 2308 bad: 2309 iwi_put_firmware(sc); 2310 return 1; 2311 } 2312 2313 static void 2314 iwi_put_fw(struct iwi_fw *fw) 2315 { 2316 if (fw->fp != NULL) { 2317 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2318 fw->fp = NULL; 2319 } 2320 fw->data = NULL; 2321 fw->size = 0; 2322 fw->name = NULL; 2323 } 2324 2325 /* 2326 * Release any cached firmware images. 2327 */ 2328 static void 2329 iwi_put_firmware(struct iwi_softc *sc) 2330 { 2331 iwi_put_fw(&sc->fw_uc); 2332 iwi_put_fw(&sc->fw_fw); 2333 iwi_put_fw(&sc->fw_boot); 2334 } 2335 2336 static int 2337 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2338 { 2339 uint32_t tmp; 2340 const uint16_t *w; 2341 const char *uc = fw->data; 2342 size_t size = fw->size; 2343 int i, ntries, error; 2344 2345 IWI_LOCK_ASSERT(sc); 2346 error = 0; 2347 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2348 IWI_RST_STOP_MASTER); 2349 for (ntries = 0; ntries < 5; ntries++) { 2350 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2351 break; 2352 DELAY(10); 2353 } 2354 if (ntries == 5) { 2355 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2356 error = EIO; 2357 goto fail; 2358 } 2359 2360 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2361 DELAY(5000); 2362 2363 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2364 tmp &= ~IWI_RST_PRINCETON_RESET; 2365 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2366 2367 DELAY(5000); 2368 MEM_WRITE_4(sc, 0x3000e0, 0); 2369 DELAY(1000); 2370 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2371 DELAY(1000); 2372 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2373 DELAY(1000); 2374 MEM_WRITE_1(sc, 0x200000, 0x00); 2375 MEM_WRITE_1(sc, 0x200000, 0x40); 2376 DELAY(1000); 2377 2378 /* write microcode into adapter memory */ 2379 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2380 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2381 2382 MEM_WRITE_1(sc, 0x200000, 0x00); 2383 MEM_WRITE_1(sc, 0x200000, 0x80); 2384 2385 /* wait until we get an answer */ 2386 for (ntries = 0; ntries < 100; ntries++) { 2387 if (MEM_READ_1(sc, 0x200000) & 1) 2388 break; 2389 DELAY(100); 2390 } 2391 if (ntries == 100) { 2392 device_printf(sc->sc_dev, 2393 "timeout waiting for ucode to initialize\n"); 2394 error = EIO; 2395 goto fail; 2396 } 2397 2398 /* read the answer or the firmware will not initialize properly */ 2399 for (i = 0; i < 7; i++) 2400 MEM_READ_4(sc, 0x200004); 2401 2402 MEM_WRITE_1(sc, 0x200000, 0x00); 2403 2404 fail: 2405 return error; 2406 } 2407 2408 /* macro to handle unaligned little endian data in firmware image */ 2409 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2410 2411 static int 2412 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2413 { 2414 u_char *p, *end; 2415 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2416 int ntries, error; 2417 2418 IWI_LOCK_ASSERT(sc); 2419 2420 /* copy firmware image to DMA memory */ 2421 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2422 2423 /* make sure the adapter will get up-to-date values */ 2424 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2425 2426 /* tell the adapter where the command blocks are stored */ 2427 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2428 2429 /* 2430 * Store command blocks into adapter's internal memory using register 2431 * indirections. The adapter will read the firmware image through DMA 2432 * using information stored in command blocks. 2433 */ 2434 src = sc->fw_physaddr; 2435 p = sc->fw_virtaddr; 2436 end = p + fw->size; 2437 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2438 2439 while (p < end) { 2440 dst = GETLE32(p); p += 4; src += 4; 2441 len = GETLE32(p); p += 4; src += 4; 2442 p += len; 2443 2444 while (len > 0) { 2445 mlen = min(len, IWI_CB_MAXDATALEN); 2446 2447 ctl = IWI_CB_DEFAULT_CTL | mlen; 2448 sum = ctl ^ src ^ dst; 2449 2450 /* write a command block */ 2451 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2452 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2455 2456 src += mlen; 2457 dst += mlen; 2458 len -= mlen; 2459 } 2460 } 2461 2462 /* write a fictive final command block (sentinel) */ 2463 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2464 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2465 2466 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2467 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2468 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2469 2470 /* tell the adapter to start processing command blocks */ 2471 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2472 2473 /* wait until the adapter reaches the sentinel */ 2474 for (ntries = 0; ntries < 400; ntries++) { 2475 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2476 break; 2477 DELAY(100); 2478 } 2479 /* sync dma, just in case */ 2480 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2481 if (ntries == 400) { 2482 device_printf(sc->sc_dev, 2483 "timeout processing command blocks for %s firmware\n", 2484 fw->name); 2485 return EIO; 2486 } 2487 2488 /* we're done with command blocks processing */ 2489 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2490 2491 /* allow interrupts so we know when the firmware is ready */ 2492 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2493 2494 /* tell the adapter to initialize the firmware */ 2495 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2496 2497 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2498 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2499 2500 /* wait at most one second for firmware initialization to complete */ 2501 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2502 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2503 "initialization to complete\n", fw->name); 2504 } 2505 2506 return error; 2507 } 2508 2509 static int 2510 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2511 { 2512 uint32_t data; 2513 2514 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2515 /* XXX set more fine-grained operation */ 2516 data = htole32(IWI_POWER_MODE_MAX); 2517 } else 2518 data = htole32(IWI_POWER_MODE_CAM); 2519 2520 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2521 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2522 } 2523 2524 static int 2525 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2526 { 2527 struct iwi_wep_key wepkey; 2528 struct ieee80211_key *wk; 2529 int error, i; 2530 2531 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2532 wk = &vap->iv_nw_keys[i]; 2533 2534 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2535 wepkey.idx = i; 2536 wepkey.len = wk->wk_keylen; 2537 memset(wepkey.key, 0, sizeof wepkey.key); 2538 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2539 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2540 wepkey.len)); 2541 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2542 sizeof wepkey); 2543 if (error != 0) 2544 return error; 2545 } 2546 return 0; 2547 } 2548 2549 static int 2550 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, 2551 int mode, int type) 2552 { 2553 struct iwi_rateset rs; 2554 2555 memset(&rs, 0, sizeof(rs)); 2556 rs.mode = mode; 2557 rs.type = type; 2558 rs.nrates = net_rs->rs_nrates; 2559 if (rs.nrates > nitems(rs.rates)) { 2560 DPRINTF(("Truncating negotiated rate set from %u\n", 2561 rs.nrates)); 2562 rs.nrates = nitems(rs.rates); 2563 } 2564 memcpy(rs.rates, net_rs->rs_rates, rs.nrates); 2565 DPRINTF(("Setting .11%c%s %s rates (%u)\n", 2566 mode == IWI_MODE_11A ? 'a' : 'b', 2567 mode == IWI_MODE_11G ? "g" : "", 2568 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", 2569 rs.nrates)); 2570 2571 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); 2572 } 2573 2574 static int 2575 iwi_config(struct iwi_softc *sc) 2576 { 2577 struct ieee80211com *ic = &sc->sc_ic; 2578 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2579 struct iwi_configuration config; 2580 struct iwi_txpower power; 2581 uint8_t *macaddr; 2582 uint32_t data; 2583 int error, i; 2584 2585 IWI_LOCK_ASSERT(sc); 2586 2587 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 2588 DPRINTF(("Setting MAC address to %6D\n", macaddr, ":")); 2589 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr, 2590 IEEE80211_ADDR_LEN); 2591 if (error != 0) 2592 return error; 2593 2594 memset(&config, 0, sizeof config); 2595 config.bluetooth_coexistence = sc->bluetooth; 2596 config.silence_threshold = 0x1e; 2597 config.antenna = sc->antenna; 2598 config.multicast_enabled = 1; 2599 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2600 config.disable_unicast_decryption = 1; 2601 config.disable_multicast_decryption = 1; 2602 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2603 config.allow_invalid_frames = 1; 2604 config.allow_beacon_and_probe_resp = 1; 2605 config.allow_mgt = 1; 2606 } 2607 DPRINTF(("Configuring adapter\n")); 2608 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2609 if (error != 0) 2610 return error; 2611 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2612 power.mode = IWI_MODE_11B; 2613 power.nchan = 11; 2614 for (i = 0; i < 11; i++) { 2615 power.chan[i].chan = i + 1; 2616 power.chan[i].power = IWI_TXPOWER_MAX; 2617 } 2618 DPRINTF(("Setting .11b channels tx power\n")); 2619 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2620 if (error != 0) 2621 return error; 2622 2623 power.mode = IWI_MODE_11G; 2624 DPRINTF(("Setting .11g channels tx power\n")); 2625 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2626 if (error != 0) 2627 return error; 2628 } 2629 2630 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], 2631 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); 2632 if (error != 0) 2633 return error; 2634 2635 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], 2636 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); 2637 if (error != 0) 2638 return error; 2639 2640 data = htole32(arc4random()); 2641 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2642 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2643 if (error != 0) 2644 return error; 2645 2646 /* enable adapter */ 2647 DPRINTF(("Enabling adapter\n")); 2648 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2649 } 2650 2651 static __inline void 2652 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2653 { 2654 uint8_t *st = &scan->scan_type[ix / 2]; 2655 if (ix % 2) 2656 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2657 else 2658 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2659 } 2660 2661 static int 2662 scan_type(const struct ieee80211_scan_state *ss, 2663 const struct ieee80211_channel *chan) 2664 { 2665 /* We can only set one essid for a directed scan */ 2666 if (ss->ss_nssid != 0) 2667 return IWI_SCAN_TYPE_BDIRECTED; 2668 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2669 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2670 return IWI_SCAN_TYPE_BROADCAST; 2671 return IWI_SCAN_TYPE_PASSIVE; 2672 } 2673 2674 static __inline int 2675 scan_band(const struct ieee80211_channel *c) 2676 { 2677 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2678 } 2679 2680 static void 2681 iwi_monitor_scan(void *arg, int npending) 2682 { 2683 struct iwi_softc *sc = arg; 2684 IWI_LOCK_DECL; 2685 2686 IWI_LOCK(sc); 2687 (void) iwi_scanchan(sc, 2000, 0); 2688 IWI_UNLOCK(sc); 2689 } 2690 2691 /* 2692 * Start a scan on the current channel or all channels. 2693 */ 2694 static int 2695 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2696 { 2697 struct ieee80211com *ic = &sc->sc_ic; 2698 struct ieee80211_channel *chan; 2699 struct ieee80211_scan_state *ss; 2700 struct iwi_scan_ext scan; 2701 int error = 0; 2702 2703 IWI_LOCK_ASSERT(sc); 2704 if (sc->fw_state == IWI_FW_SCANNING) { 2705 /* 2706 * This should not happen as we only trigger scan_next after 2707 * completion 2708 */ 2709 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2710 return (EBUSY); 2711 } 2712 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2713 2714 ss = ic->ic_scan; 2715 2716 memset(&scan, 0, sizeof scan); 2717 scan.full_scan_index = htole32(++sc->sc_scangen); 2718 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2719 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2720 /* 2721 * Use very short dwell times for when we send probe request 2722 * frames. Without this bg scans hang. Ideally this should 2723 * be handled with early-termination as done by net80211 but 2724 * that's not feasible (aborting a scan is problematic). 2725 */ 2726 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2727 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2728 } else { 2729 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2730 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2731 } 2732 2733 /* We can only set one essid for a directed scan */ 2734 if (ss->ss_nssid != 0) { 2735 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2736 ss->ss_ssid[0].len); 2737 if (error) 2738 return (error); 2739 } 2740 2741 if (allchan) { 2742 int i, next, band, b, bstart; 2743 /* 2744 * Convert scan list to run-length encoded channel list 2745 * the firmware requires (preserving the order setup by 2746 * net80211). The first entry in each run specifies the 2747 * band and the count of items in the run. 2748 */ 2749 next = 0; /* next open slot */ 2750 bstart = 0; /* NB: not needed, silence compiler */ 2751 band = -1; /* NB: impossible value */ 2752 KASSERT(ss->ss_last > 0, ("no channels")); 2753 for (i = 0; i < ss->ss_last; i++) { 2754 chan = ss->ss_chans[i]; 2755 b = scan_band(chan); 2756 if (b != band) { 2757 if (band != -1) 2758 scan.channels[bstart] = 2759 (next - bstart) | band; 2760 /* NB: this allocates a slot for the run-len */ 2761 band = b, bstart = next++; 2762 } 2763 if (next >= IWI_SCAN_CHANNELS) { 2764 DPRINTF(("truncating scan list\n")); 2765 break; 2766 } 2767 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2768 set_scan_type(&scan, next, scan_type(ss, chan)); 2769 next++; 2770 } 2771 scan.channels[bstart] = (next - bstart) | band; 2772 } else { 2773 /* Scan the current channel only */ 2774 chan = ic->ic_curchan; 2775 scan.channels[0] = 1 | scan_band(chan); 2776 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2777 set_scan_type(&scan, 1, scan_type(ss, chan)); 2778 } 2779 #ifdef IWI_DEBUG 2780 if (iwi_debug > 0) { 2781 static const char *scantype[8] = 2782 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2783 int i; 2784 printf("Scan request: index %u dwell %d/%d/%d\n" 2785 , le32toh(scan.full_scan_index) 2786 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2787 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2788 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2789 ); 2790 i = 0; 2791 do { 2792 int run = scan.channels[i]; 2793 if (run == 0) 2794 break; 2795 printf("Scan %d %s channels:", run & 0x3f, 2796 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2797 for (run &= 0x3f, i++; run > 0; run--, i++) { 2798 uint8_t type = scan.scan_type[i/2]; 2799 printf(" %u/%s", scan.channels[i], 2800 scantype[(i & 1 ? type : type>>4) & 7]); 2801 } 2802 printf("\n"); 2803 } while (i < IWI_SCAN_CHANNELS); 2804 } 2805 #endif 2806 2807 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2808 } 2809 2810 static int 2811 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2812 { 2813 struct iwi_sensitivity sens; 2814 2815 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2816 2817 memset(&sens, 0, sizeof sens); 2818 sens.rssi = htole16(rssi_dbm); 2819 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2820 } 2821 2822 static int 2823 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2824 { 2825 struct ieee80211com *ic = vap->iv_ic; 2826 if_t ifp = vap->iv_ifp; 2827 struct ieee80211_node *ni; 2828 struct iwi_configuration config; 2829 struct iwi_associate *assoc = &sc->assoc; 2830 uint16_t capinfo; 2831 uint32_t data; 2832 int error, mode; 2833 2834 IWI_LOCK_ASSERT(sc); 2835 2836 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2837 DPRINTF(("Already associated\n")); 2838 return (-1); 2839 } 2840 2841 ni = ieee80211_ref_node(vap->iv_bss); 2842 2843 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2844 error = 0; 2845 mode = 0; 2846 2847 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2848 mode = IWI_MODE_11A; 2849 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2850 mode = IWI_MODE_11G; 2851 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2852 mode = IWI_MODE_11B; 2853 2854 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2855 memset(&config, 0, sizeof config); 2856 config.bluetooth_coexistence = sc->bluetooth; 2857 config.antenna = sc->antenna; 2858 config.multicast_enabled = 1; 2859 if (mode == IWI_MODE_11G) 2860 config.use_protection = 1; 2861 config.answer_pbreq = 2862 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2863 config.disable_unicast_decryption = 1; 2864 config.disable_multicast_decryption = 1; 2865 DPRINTF(("Configuring adapter\n")); 2866 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2867 if (error != 0) 2868 goto done; 2869 } 2870 2871 #ifdef IWI_DEBUG 2872 if (iwi_debug > 0) { 2873 printf("Setting ESSID to "); 2874 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2875 printf("\n"); 2876 } 2877 #endif 2878 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2879 if (error != 0) 2880 goto done; 2881 2882 error = iwi_setpowermode(sc, vap); 2883 if (error != 0) 2884 goto done; 2885 2886 data = htole32(vap->iv_rtsthreshold); 2887 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2888 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2889 if (error != 0) 2890 goto done; 2891 2892 data = htole32(vap->iv_fragthreshold); 2893 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2894 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2895 if (error != 0) 2896 goto done; 2897 2898 /* the rate set has already been "negotiated" */ 2899 error = iwi_set_rateset(sc, &ni->ni_rates, mode, 2900 IWI_RATESET_TYPE_NEGOTIATED); 2901 if (error != 0) 2902 goto done; 2903 2904 memset(assoc, 0, sizeof *assoc); 2905 2906 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2907 /* NB: don't treat WME setup as failure */ 2908 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2909 assoc->policy |= htole16(IWI_POLICY_WME); 2910 /* XXX complain on failure? */ 2911 } 2912 2913 if (vap->iv_appie_wpa != NULL) { 2914 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2915 2916 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2917 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2918 if (error != 0) 2919 goto done; 2920 } 2921 2922 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2923 if (error != 0) 2924 goto done; 2925 2926 assoc->mode = mode; 2927 assoc->chan = ic->ic_curchan->ic_ieee; 2928 /* 2929 * NB: do not arrange for shared key auth w/o privacy 2930 * (i.e. a wep key); it causes a firmware error. 2931 */ 2932 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2933 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2934 assoc->auth = IWI_AUTH_SHARED; 2935 /* 2936 * It's possible to have privacy marked but no default 2937 * key setup. This typically is due to a user app bug 2938 * but if we blindly grab the key the firmware will 2939 * barf so avoid it for now. 2940 */ 2941 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2942 assoc->auth |= vap->iv_def_txkey << 4; 2943 2944 error = iwi_setwepkeys(sc, vap); 2945 if (error != 0) 2946 goto done; 2947 } 2948 if (vap->iv_flags & IEEE80211_F_WPA) 2949 assoc->policy |= htole16(IWI_POLICY_WPA); 2950 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2951 assoc->type = IWI_HC_IBSS_START; 2952 else 2953 assoc->type = IWI_HC_ASSOC; 2954 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2955 2956 if (vap->iv_opmode == IEEE80211_M_IBSS) 2957 capinfo = IEEE80211_CAPINFO_IBSS; 2958 else 2959 capinfo = IEEE80211_CAPINFO_ESS; 2960 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2961 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2962 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2963 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2964 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2965 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2966 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2967 assoc->capinfo = htole16(capinfo); 2968 2969 assoc->lintval = htole16(ic->ic_lintval); 2970 assoc->intval = htole16(ni->ni_intval); 2971 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2972 if (vap->iv_opmode == IEEE80211_M_IBSS) 2973 IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp)); 2974 else 2975 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2976 2977 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2978 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2979 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2980 assoc->bssid, ":", assoc->dst, ":", 2981 assoc->chan, le16toh(assoc->policy), assoc->auth, 2982 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2983 le16toh(assoc->intval))); 2984 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2985 done: 2986 ieee80211_free_node(ni); 2987 if (error) 2988 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2989 2990 return (error); 2991 } 2992 2993 static void 2994 iwi_disassoc(void *arg, int pending) 2995 { 2996 struct iwi_softc *sc = arg; 2997 IWI_LOCK_DECL; 2998 2999 IWI_LOCK(sc); 3000 iwi_disassociate(sc, 0); 3001 IWI_UNLOCK(sc); 3002 } 3003 3004 static int 3005 iwi_disassociate(struct iwi_softc *sc, int quiet) 3006 { 3007 struct iwi_associate *assoc = &sc->assoc; 3008 3009 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3010 DPRINTF(("Not associated\n")); 3011 return (-1); 3012 } 3013 3014 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3015 3016 if (quiet) 3017 assoc->type = IWI_HC_DISASSOC_QUIET; 3018 else 3019 assoc->type = IWI_HC_DISASSOC; 3020 3021 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3022 assoc->bssid, ":", assoc->chan)); 3023 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3024 } 3025 3026 /* 3027 * release dma resources for the firmware 3028 */ 3029 static void 3030 iwi_release_fw_dma(struct iwi_softc *sc) 3031 { 3032 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3033 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3034 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3035 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3036 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3037 bus_dma_tag_destroy(sc->fw_dmat); 3038 3039 sc->fw_flags = 0; 3040 sc->fw_dma_size = 0; 3041 sc->fw_dmat = NULL; 3042 sc->fw_map = NULL; 3043 sc->fw_physaddr = 0; 3044 sc->fw_virtaddr = NULL; 3045 } 3046 3047 /* 3048 * allocate the dma descriptor for the firmware. 3049 * Return 0 on success, 1 on error. 3050 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3051 */ 3052 static int 3053 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3054 { 3055 if (sc->fw_dma_size >= size) 3056 return 0; 3057 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3058 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3059 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3060 device_printf(sc->sc_dev, 3061 "could not create firmware DMA tag\n"); 3062 goto error; 3063 } 3064 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3065 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3066 &sc->fw_map) != 0) { 3067 device_printf(sc->sc_dev, 3068 "could not allocate firmware DMA memory\n"); 3069 goto error; 3070 } 3071 sc->fw_flags |= IWI_FW_HAVE_MAP; 3072 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3073 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3074 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3075 goto error; 3076 } 3077 sc->fw_flags |= IWI_FW_HAVE_PHY; 3078 sc->fw_dma_size = size; 3079 return 0; 3080 3081 error: 3082 iwi_release_fw_dma(sc); 3083 return 1; 3084 } 3085 3086 static void 3087 iwi_init_locked(struct iwi_softc *sc) 3088 { 3089 struct iwi_rx_data *data; 3090 int i; 3091 3092 IWI_LOCK_ASSERT(sc); 3093 3094 if (sc->fw_state == IWI_FW_LOADING) { 3095 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3096 return; /* XXX: condvar? */ 3097 } 3098 3099 iwi_stop_locked(sc); 3100 3101 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3102 3103 if (iwi_reset(sc) != 0) { 3104 device_printf(sc->sc_dev, "could not reset adapter\n"); 3105 goto fail; 3106 } 3107 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3108 device_printf(sc->sc_dev, 3109 "could not load boot firmware %s\n", sc->fw_boot.name); 3110 goto fail; 3111 } 3112 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3113 device_printf(sc->sc_dev, 3114 "could not load microcode %s\n", sc->fw_uc.name); 3115 goto fail; 3116 } 3117 3118 iwi_stop_master(sc); 3119 3120 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3121 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3122 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3123 3124 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3125 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3126 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3127 3128 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3129 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3130 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3131 3132 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3133 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3134 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3135 3136 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3137 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3138 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3139 3140 for (i = 0; i < sc->rxq.count; i++) { 3141 data = &sc->rxq.data[i]; 3142 CSR_WRITE_4(sc, data->reg, data->physaddr); 3143 } 3144 3145 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3146 3147 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3148 device_printf(sc->sc_dev, 3149 "could not load main firmware %s\n", sc->fw_fw.name); 3150 goto fail; 3151 } 3152 sc->flags |= IWI_FLAG_FW_INITED; 3153 3154 IWI_STATE_END(sc, IWI_FW_LOADING); 3155 3156 if (iwi_config(sc) != 0) { 3157 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3158 goto fail2; 3159 } 3160 3161 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3162 sc->sc_running = 1; 3163 return; 3164 fail: 3165 IWI_STATE_END(sc, IWI_FW_LOADING); 3166 fail2: 3167 iwi_stop_locked(sc); 3168 } 3169 3170 static void 3171 iwi_init(void *priv) 3172 { 3173 struct iwi_softc *sc = priv; 3174 struct ieee80211com *ic = &sc->sc_ic; 3175 IWI_LOCK_DECL; 3176 3177 IWI_LOCK(sc); 3178 iwi_init_locked(sc); 3179 IWI_UNLOCK(sc); 3180 3181 if (sc->sc_running) 3182 ieee80211_start_all(ic); 3183 } 3184 3185 static void 3186 iwi_stop_locked(void *priv) 3187 { 3188 struct iwi_softc *sc = priv; 3189 3190 IWI_LOCK_ASSERT(sc); 3191 3192 sc->sc_running = 0; 3193 3194 if (sc->sc_softled) { 3195 callout_stop(&sc->sc_ledtimer); 3196 sc->sc_blinking = 0; 3197 } 3198 callout_stop(&sc->sc_wdtimer); 3199 callout_stop(&sc->sc_rftimer); 3200 3201 iwi_stop_master(sc); 3202 3203 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3204 3205 /* reset rings */ 3206 iwi_reset_cmd_ring(sc, &sc->cmdq); 3207 iwi_reset_tx_ring(sc, &sc->txq[0]); 3208 iwi_reset_tx_ring(sc, &sc->txq[1]); 3209 iwi_reset_tx_ring(sc, &sc->txq[2]); 3210 iwi_reset_tx_ring(sc, &sc->txq[3]); 3211 iwi_reset_rx_ring(sc, &sc->rxq); 3212 3213 sc->sc_tx_timer = 0; 3214 sc->sc_state_timer = 0; 3215 sc->sc_busy_timer = 0; 3216 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3217 sc->fw_state = IWI_FW_IDLE; 3218 wakeup(sc); 3219 } 3220 3221 static void 3222 iwi_stop(struct iwi_softc *sc) 3223 { 3224 IWI_LOCK_DECL; 3225 3226 IWI_LOCK(sc); 3227 iwi_stop_locked(sc); 3228 IWI_UNLOCK(sc); 3229 } 3230 3231 static void 3232 iwi_restart(void *arg, int npending) 3233 { 3234 struct iwi_softc *sc = arg; 3235 3236 iwi_init(sc); 3237 } 3238 3239 /* 3240 * Return whether or not the radio is enabled in hardware 3241 * (i.e. the rfkill switch is "off"). 3242 */ 3243 static int 3244 iwi_getrfkill(struct iwi_softc *sc) 3245 { 3246 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3247 } 3248 3249 static void 3250 iwi_radio_on(void *arg, int pending) 3251 { 3252 struct iwi_softc *sc = arg; 3253 struct ieee80211com *ic = &sc->sc_ic; 3254 3255 device_printf(sc->sc_dev, "radio turned on\n"); 3256 3257 iwi_init(sc); 3258 ieee80211_notify_radio(ic, 1); 3259 } 3260 3261 static void 3262 iwi_rfkill_poll(void *arg) 3263 { 3264 struct iwi_softc *sc = arg; 3265 3266 IWI_LOCK_ASSERT(sc); 3267 3268 /* 3269 * Check for a change in rfkill state. We get an 3270 * interrupt when a radio is disabled but not when 3271 * it is enabled so we must poll for the latter. 3272 */ 3273 if (!iwi_getrfkill(sc)) { 3274 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3275 return; 3276 } 3277 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3278 } 3279 3280 static void 3281 iwi_radio_off(void *arg, int pending) 3282 { 3283 struct iwi_softc *sc = arg; 3284 struct ieee80211com *ic = &sc->sc_ic; 3285 IWI_LOCK_DECL; 3286 3287 device_printf(sc->sc_dev, "radio turned off\n"); 3288 3289 ieee80211_notify_radio(ic, 0); 3290 3291 IWI_LOCK(sc); 3292 iwi_stop_locked(sc); 3293 iwi_rfkill_poll(sc); 3294 IWI_UNLOCK(sc); 3295 } 3296 3297 static int 3298 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3299 { 3300 struct iwi_softc *sc = arg1; 3301 uint32_t size, buf[128]; 3302 3303 memset(buf, 0, sizeof buf); 3304 3305 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3306 return SYSCTL_OUT(req, buf, sizeof buf); 3307 3308 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3309 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3310 3311 return SYSCTL_OUT(req, buf, size); 3312 } 3313 3314 static int 3315 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3316 { 3317 struct iwi_softc *sc = arg1; 3318 int val = !iwi_getrfkill(sc); 3319 3320 return SYSCTL_OUT(req, &val, sizeof val); 3321 } 3322 3323 /* 3324 * Add sysctl knobs. 3325 */ 3326 static void 3327 iwi_sysctlattach(struct iwi_softc *sc) 3328 { 3329 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3330 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3331 3332 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3333 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3334 iwi_sysctl_radio, "I", 3335 "radio transmitter switch state (0=off, 1=on)"); 3336 3337 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3338 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3339 iwi_sysctl_stats, "S", "statistics"); 3340 3341 sc->bluetooth = 0; 3342 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3343 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3344 3345 sc->antenna = IWI_ANTENNA_AUTO; 3346 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3347 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3348 } 3349 3350 /* 3351 * LED support. 3352 * 3353 * Different cards have different capabilities. Some have three 3354 * led's while others have only one. The linux ipw driver defines 3355 * led's for link state (associated or not), band (11a, 11g, 11b), 3356 * and for link activity. We use one led and vary the blink rate 3357 * according to the tx/rx traffic a la the ath driver. 3358 */ 3359 3360 static __inline uint32_t 3361 iwi_toggle_event(uint32_t r) 3362 { 3363 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3364 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3365 } 3366 3367 static uint32_t 3368 iwi_read_event(struct iwi_softc *sc) 3369 { 3370 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3371 } 3372 3373 static void 3374 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3375 { 3376 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3377 } 3378 3379 static void 3380 iwi_led_done(void *arg) 3381 { 3382 struct iwi_softc *sc = arg; 3383 3384 sc->sc_blinking = 0; 3385 } 3386 3387 /* 3388 * Turn the activity LED off: flip the pin and then set a timer so no 3389 * update will happen for the specified duration. 3390 */ 3391 static void 3392 iwi_led_off(void *arg) 3393 { 3394 struct iwi_softc *sc = arg; 3395 uint32_t v; 3396 3397 v = iwi_read_event(sc); 3398 v &= ~sc->sc_ledpin; 3399 iwi_write_event(sc, iwi_toggle_event(v)); 3400 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3401 } 3402 3403 /* 3404 * Blink the LED according to the specified on/off times. 3405 */ 3406 static void 3407 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3408 { 3409 uint32_t v; 3410 3411 v = iwi_read_event(sc); 3412 v |= sc->sc_ledpin; 3413 iwi_write_event(sc, iwi_toggle_event(v)); 3414 sc->sc_blinking = 1; 3415 sc->sc_ledoff = off; 3416 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3417 } 3418 3419 static void 3420 iwi_led_event(struct iwi_softc *sc, int event) 3421 { 3422 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3423 static const struct { 3424 u_int rate; /* tx/rx iwi rate */ 3425 u_int16_t timeOn; /* LED on time (ms) */ 3426 u_int16_t timeOff; /* LED off time (ms) */ 3427 } blinkrates[] = { 3428 { IWI_RATE_OFDM54, 40, 10 }, 3429 { IWI_RATE_OFDM48, 44, 11 }, 3430 { IWI_RATE_OFDM36, 50, 13 }, 3431 { IWI_RATE_OFDM24, 57, 14 }, 3432 { IWI_RATE_OFDM18, 67, 16 }, 3433 { IWI_RATE_OFDM12, 80, 20 }, 3434 { IWI_RATE_DS11, 100, 25 }, 3435 { IWI_RATE_OFDM9, 133, 34 }, 3436 { IWI_RATE_OFDM6, 160, 40 }, 3437 { IWI_RATE_DS5, 200, 50 }, 3438 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3439 { IWI_RATE_DS2, 267, 66 }, 3440 { IWI_RATE_DS1, 400, 100 }, 3441 { 0, 500, 130 }, /* unknown rate/polling */ 3442 }; 3443 uint32_t txrate; 3444 int j = 0; /* XXX silence compiler */ 3445 3446 sc->sc_ledevent = ticks; /* time of last event */ 3447 if (sc->sc_blinking) /* don't interrupt active blink */ 3448 return; 3449 switch (event) { 3450 case IWI_LED_POLL: 3451 j = nitems(blinkrates)-1; 3452 break; 3453 case IWI_LED_TX: 3454 /* read current transmission rate from adapter */ 3455 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3456 if (blinkrates[sc->sc_txrix].rate != txrate) { 3457 for (j = 0; j < nitems(blinkrates)-1; j++) 3458 if (blinkrates[j].rate == txrate) 3459 break; 3460 sc->sc_txrix = j; 3461 } else 3462 j = sc->sc_txrix; 3463 break; 3464 case IWI_LED_RX: 3465 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3466 for (j = 0; j < nitems(blinkrates)-1; j++) 3467 if (blinkrates[j].rate == sc->sc_rxrate) 3468 break; 3469 sc->sc_rxrix = j; 3470 } else 3471 j = sc->sc_rxrix; 3472 break; 3473 } 3474 /* XXX beware of overflow */ 3475 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3476 (blinkrates[j].timeOff * hz) / 1000); 3477 } 3478 3479 static int 3480 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3481 { 3482 struct iwi_softc *sc = arg1; 3483 int softled = sc->sc_softled; 3484 int error; 3485 3486 error = sysctl_handle_int(oidp, &softled, 0, req); 3487 if (error || !req->newptr) 3488 return error; 3489 softled = (softled != 0); 3490 if (softled != sc->sc_softled) { 3491 if (softled) { 3492 uint32_t v = iwi_read_event(sc); 3493 v &= ~sc->sc_ledpin; 3494 iwi_write_event(sc, iwi_toggle_event(v)); 3495 } 3496 sc->sc_softled = softled; 3497 } 3498 return 0; 3499 } 3500 3501 static void 3502 iwi_ledattach(struct iwi_softc *sc) 3503 { 3504 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3505 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3506 3507 sc->sc_blinking = 0; 3508 sc->sc_ledstate = 1; 3509 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3510 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3511 3512 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3513 "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3514 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3515 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3516 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3517 "pin setting to turn activity LED on"); 3518 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3519 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3520 "idle time for inactivity LED (ticks)"); 3521 /* XXX for debugging */ 3522 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3523 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3524 "NIC type from EEPROM"); 3525 3526 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3527 sc->sc_softled = 1; 3528 3529 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3530 if (sc->sc_nictype == 1) { 3531 /* 3532 * NB: led's are reversed. 3533 */ 3534 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3535 } 3536 } 3537 3538 static void 3539 iwi_scan_start(struct ieee80211com *ic) 3540 { 3541 /* ignore */ 3542 } 3543 3544 static void 3545 iwi_set_channel(struct ieee80211com *ic) 3546 { 3547 struct iwi_softc *sc = ic->ic_softc; 3548 3549 if (sc->fw_state == IWI_FW_IDLE) 3550 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3551 } 3552 3553 static void 3554 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3555 { 3556 struct ieee80211vap *vap = ss->ss_vap; 3557 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3558 IWI_LOCK_DECL; 3559 3560 IWI_LOCK(sc); 3561 if (iwi_scanchan(sc, maxdwell, 0)) 3562 ieee80211_cancel_scan(vap); 3563 IWI_UNLOCK(sc); 3564 } 3565 3566 static void 3567 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3568 { 3569 /* NB: don't try to abort scan; wait for firmware to finish */ 3570 } 3571 3572 static void 3573 iwi_scan_end(struct ieee80211com *ic) 3574 { 3575 struct iwi_softc *sc = ic->ic_softc; 3576 IWI_LOCK_DECL; 3577 3578 IWI_LOCK(sc); 3579 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3580 /* NB: make sure we're still scanning */ 3581 if (sc->fw_state == IWI_FW_SCANNING) 3582 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3583 IWI_UNLOCK(sc); 3584 } 3585 3586 static void 3587 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) 3588 { 3589 struct iwi_softc *sc = ic->ic_softc; 3590 device_t dev = sc->sc_dev; 3591 3592 memset(bands, 0, bands_sz); 3593 setbit(bands, IEEE80211_MODE_11B); 3594 setbit(bands, IEEE80211_MODE_11G); 3595 if (pci_get_device(dev) >= 0x4223) 3596 setbit(bands, IEEE80211_MODE_11A); 3597 } 3598 3599 static void 3600 iwi_getradiocaps(struct ieee80211com *ic, 3601 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3602 { 3603 uint8_t bands[IEEE80211_MODE_BYTES]; 3604 3605 iwi_collect_bands(ic, bands, sizeof(bands)); 3606 *nchans = 0; 3607 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) 3608 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, 3609 bands, 0); 3610 if (isset(bands, IEEE80211_MODE_11A)) { 3611 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3612 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), 3613 bands, 0); 3614 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3615 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), 3616 bands, 0); 3617 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3618 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), 3619 bands, 0); 3620 } 3621 } 3622