1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice unmodified, this list of conditions, and the following 11 * disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /*- 33 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 34 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 35 */ 36 37 #include <sys/param.h> 38 #include <sys/sysctl.h> 39 #include <sys/sockio.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/bus.h> 47 #include <sys/endian.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/namei.h> 51 #include <sys/linker.h> 52 #include <sys/firmware.h> 53 #include <sys/kthread.h> 54 #include <sys/taskqueue.h> 55 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 #include <sys/rman.h> 59 60 #include <dev/pci/pcireg.h> 61 #include <dev/pci/pcivar.h> 62 63 #include <net/bpf.h> 64 #include <net/if.h> 65 #include <net/if_arp.h> 66 #include <net/ethernet.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_types.h> 70 71 #include <net80211/ieee80211_var.h> 72 #include <net80211/ieee80211_radiotap.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/if_ether.h> 79 80 #include <dev/iwi/if_iwireg.h> 81 #include <dev/iwi/if_iwivar.h> 82 83 #define IWI_DEBUG 84 #ifdef IWI_DEBUG 85 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 86 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 87 int iwi_debug = 0; 88 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 89 #else 90 #define DPRINTF(x) 91 #define DPRINTFN(n, x) 92 #endif 93 94 MODULE_DEPEND(iwi, pci, 1, 1, 1); 95 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 96 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 97 98 enum { 99 IWI_LED_TX, 100 IWI_LED_RX, 101 IWI_LED_POLL, 102 }; 103 104 struct iwi_ident { 105 uint16_t vendor; 106 uint16_t device; 107 const char *name; 108 }; 109 110 static const struct iwi_ident iwi_ident_table[] = { 111 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 112 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 113 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 114 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 115 116 { 0, 0, NULL } 117 }; 118 119 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 120 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 121 int); 122 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 123 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 124 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 125 int, bus_addr_t, bus_addr_t); 126 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 127 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 128 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 129 int); 130 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 131 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 132 static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *); 133 static void iwi_node_free(struct ieee80211_node *); 134 static int iwi_media_change(struct ifnet *); 135 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 136 static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); 137 static void iwi_wme_init(struct iwi_softc *); 138 static void iwi_wme_setparams(void *, int); 139 static int iwi_wme_update(struct ieee80211com *); 140 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 141 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 142 struct iwi_frame *); 143 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 144 static void iwi_rx_intr(struct iwi_softc *); 145 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 146 static void iwi_intr(void *); 147 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 148 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 149 static int iwi_tx_start(struct ifnet *, struct mbuf *, 150 struct ieee80211_node *, int); 151 static void iwi_start(struct ifnet *); 152 static void iwi_watchdog(struct ifnet *); 153 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 154 static void iwi_stop_master(struct iwi_softc *); 155 static int iwi_reset(struct iwi_softc *); 156 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 157 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 158 static int iwi_config(struct iwi_softc *); 159 static int iwi_get_firmware(struct iwi_softc *); 160 static void iwi_put_firmware(struct iwi_softc *); 161 static void iwi_scanabort(void *, int); 162 static void iwi_scandone(void *, int); 163 static void iwi_scanstart(void *, int); 164 static void iwi_scanchan(void *, int); 165 static int iwi_auth_and_assoc(struct iwi_softc *); 166 static int iwi_disassociate(struct iwi_softc *, int quiet); 167 static void iwi_down(void *, int); 168 static void iwi_init(void *); 169 static void iwi_init_locked(void *, int); 170 static void iwi_stop(void *); 171 static void iwi_restart(void *, int); 172 static int iwi_getrfkill(struct iwi_softc *); 173 static void iwi_radio_on(void *, int); 174 static void iwi_radio_off(void *, int); 175 static void iwi_sysctlattach(struct iwi_softc *); 176 static void iwi_led_event(struct iwi_softc *, int); 177 static void iwi_ledattach(struct iwi_softc *); 178 179 static int iwi_probe(device_t); 180 static int iwi_attach(device_t); 181 static int iwi_detach(device_t); 182 static int iwi_shutdown(device_t); 183 static int iwi_suspend(device_t); 184 static int iwi_resume(device_t); 185 186 static device_method_t iwi_methods[] = { 187 /* Device interface */ 188 DEVMETHOD(device_probe, iwi_probe), 189 DEVMETHOD(device_attach, iwi_attach), 190 DEVMETHOD(device_detach, iwi_detach), 191 DEVMETHOD(device_shutdown, iwi_shutdown), 192 DEVMETHOD(device_suspend, iwi_suspend), 193 DEVMETHOD(device_resume, iwi_resume), 194 195 { 0, 0 } 196 }; 197 198 static driver_t iwi_driver = { 199 "iwi", 200 iwi_methods, 201 sizeof (struct iwi_softc) 202 }; 203 204 static devclass_t iwi_devclass; 205 206 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 207 208 /* 209 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 210 */ 211 static const struct ieee80211_rateset iwi_rateset_11a = 212 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 213 214 static const struct ieee80211_rateset iwi_rateset_11b = 215 { 4, { 2, 4, 11, 22 } }; 216 217 static const struct ieee80211_rateset iwi_rateset_11g = 218 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 219 220 static __inline uint8_t 221 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 222 { 223 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 224 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 225 } 226 227 static __inline uint32_t 228 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 229 { 230 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 231 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 232 } 233 234 static int 235 iwi_probe(device_t dev) 236 { 237 const struct iwi_ident *ident; 238 239 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 240 if (pci_get_vendor(dev) == ident->vendor && 241 pci_get_device(dev) == ident->device) { 242 device_set_desc(dev, ident->name); 243 return 0; 244 } 245 } 246 return ENXIO; 247 } 248 249 /* Base Address Register */ 250 #define IWI_PCI_BAR0 0x10 251 252 static int 253 iwi_attach(device_t dev) 254 { 255 struct iwi_softc *sc = device_get_softc(dev); 256 struct ifnet *ifp; 257 struct ieee80211com *ic = &sc->sc_ic; 258 uint16_t val; 259 int error, i; 260 261 sc->sc_dev = dev; 262 263 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 264 MTX_DEF); 265 266 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 267 268 #if __FreeBSD_version >= 700000 269 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT, 270 taskqueue_thread_enqueue, &sc->sc_tq); 271 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 272 device_get_nameunit(dev)); 273 #else 274 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT, 275 taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc); 276 kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc, 277 0, 0, "%s taskq", device_get_nameunit(dev)); 278 #endif 279 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 280 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 281 TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc); 282 TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); 283 TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc); 284 TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc); 285 TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc); 286 TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc); 287 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 288 289 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 290 device_printf(dev, "chip is in D%d power mode " 291 "-- setting to D0\n", pci_get_powerstate(dev)); 292 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 293 } 294 295 pci_write_config(dev, 0x41, 0, 1); 296 297 /* enable bus-mastering */ 298 pci_enable_busmaster(dev); 299 300 sc->mem_rid = IWI_PCI_BAR0; 301 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 302 RF_ACTIVE); 303 if (sc->mem == NULL) { 304 device_printf(dev, "could not allocate memory resource\n"); 305 goto fail; 306 } 307 308 sc->sc_st = rman_get_bustag(sc->mem); 309 sc->sc_sh = rman_get_bushandle(sc->mem); 310 311 sc->irq_rid = 0; 312 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 313 RF_ACTIVE | RF_SHAREABLE); 314 if (sc->irq == NULL) { 315 device_printf(dev, "could not allocate interrupt resource\n"); 316 goto fail; 317 } 318 319 if (iwi_reset(sc) != 0) { 320 device_printf(dev, "could not reset adapter\n"); 321 goto fail; 322 } 323 324 /* 325 * Allocate rings. 326 */ 327 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 328 device_printf(dev, "could not allocate Cmd ring\n"); 329 goto fail; 330 } 331 332 error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT, 333 IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX); 334 if (error != 0) { 335 device_printf(dev, "could not allocate Tx ring 1\n"); 336 goto fail; 337 } 338 339 error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT, 340 IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX); 341 if (error != 0) { 342 device_printf(dev, "could not allocate Tx ring 2\n"); 343 goto fail; 344 } 345 346 error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT, 347 IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX); 348 if (error != 0) { 349 device_printf(dev, "could not allocate Tx ring 3\n"); 350 goto fail; 351 } 352 353 error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT, 354 IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX); 355 if (error != 0) { 356 device_printf(dev, "could not allocate Tx ring 4\n"); 357 goto fail; 358 } 359 360 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 361 device_printf(dev, "could not allocate Rx ring\n"); 362 goto fail; 363 } 364 365 iwi_wme_init(sc); 366 367 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 368 if (ifp == NULL) { 369 device_printf(dev, "can not if_alloc()\n"); 370 goto fail; 371 } 372 ifp->if_softc = sc; 373 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 374 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 375 ifp->if_init = iwi_init; 376 ifp->if_ioctl = iwi_ioctl; 377 ifp->if_start = iwi_start; 378 ifp->if_watchdog = iwi_watchdog; 379 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 380 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 381 IFQ_SET_READY(&ifp->if_snd); 382 383 ic->ic_ifp = ifp; 384 ic->ic_wme.wme_update = iwi_wme_update; 385 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 386 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 387 ic->ic_state = IEEE80211_S_INIT; 388 389 /* set device capabilities */ 390 ic->ic_caps = 391 IEEE80211_C_IBSS | /* IBSS mode supported */ 392 IEEE80211_C_MONITOR | /* monitor mode supported */ 393 IEEE80211_C_PMGT | /* power save supported */ 394 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 395 IEEE80211_C_WPA | /* 802.11i */ 396 IEEE80211_C_WME; /* 802.11e */ 397 398 /* read MAC address from EEPROM */ 399 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 400 ic->ic_myaddr[0] = val & 0xff; 401 ic->ic_myaddr[1] = val >> 8; 402 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 403 ic->ic_myaddr[2] = val & 0xff; 404 ic->ic_myaddr[3] = val >> 8; 405 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 406 ic->ic_myaddr[4] = val & 0xff; 407 ic->ic_myaddr[5] = val >> 8; 408 409 if (pci_get_device(dev) >= 0x4223) { 410 /* set supported .11a rates (2915ABG only) */ 411 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; 412 413 /* set supported .11a channels */ 414 for (i = 36; i <= 64; i += 4) { 415 ic->ic_channels[i].ic_freq = 416 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 417 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 418 } 419 for (i = 149; i <= 165; i += 4) { 420 ic->ic_channels[i].ic_freq = 421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 422 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 423 } 424 } 425 426 /* set supported .11b and .11g rates */ 427 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; 428 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; 429 430 /* set supported .11b and .11g channels (1 through 14) */ 431 for (i = 1; i <= 14; i++) { 432 ic->ic_channels[i].ic_freq = 433 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 434 ic->ic_channels[i].ic_flags = 435 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 436 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 437 } 438 439 ieee80211_ifattach(ic); 440 /* override default methods */ 441 ic->ic_node_alloc = iwi_node_alloc; 442 sc->sc_node_free = ic->ic_node_free; 443 ic->ic_node_free = iwi_node_free; 444 /* override state transition machine */ 445 sc->sc_newstate = ic->ic_newstate; 446 ic->ic_newstate = iwi_newstate; 447 ieee80211_media_init(ic, iwi_media_change, iwi_media_status); 448 449 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 450 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), 451 &sc->sc_drvbpf); 452 453 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 454 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 455 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); 456 457 sc->sc_txtap_len = sizeof sc->sc_txtap; 458 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 459 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); 460 461 iwi_sysctlattach(sc); 462 iwi_ledattach(sc); 463 464 /* 465 * Hook our interrupt after all initialization is complete. 466 */ 467 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 468 iwi_intr, sc, &sc->sc_ih); 469 if (error != 0) { 470 device_printf(dev, "could not set up interrupt\n"); 471 goto fail; 472 } 473 474 if (bootverbose) 475 ieee80211_announce(ic); 476 477 return 0; 478 479 fail: iwi_detach(dev); 480 return ENXIO; 481 } 482 483 static int 484 iwi_detach(device_t dev) 485 { 486 struct iwi_softc *sc = device_get_softc(dev); 487 struct ieee80211com *ic = &sc->sc_ic; 488 struct ifnet *ifp = ic->ic_ifp; 489 490 iwi_stop(sc); 491 iwi_put_firmware(sc); 492 493 if (ifp != NULL) { 494 bpfdetach(ifp); 495 ieee80211_ifdetach(ic); 496 } 497 498 iwi_free_cmd_ring(sc, &sc->cmdq); 499 iwi_free_tx_ring(sc, &sc->txq[0]); 500 iwi_free_tx_ring(sc, &sc->txq[1]); 501 iwi_free_tx_ring(sc, &sc->txq[2]); 502 iwi_free_tx_ring(sc, &sc->txq[3]); 503 iwi_free_rx_ring(sc, &sc->rxq); 504 505 if (sc->irq != NULL) { 506 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 507 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 508 } 509 510 if (sc->mem != NULL) 511 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 512 513 if (ifp != NULL) 514 if_free(ifp); 515 516 taskqueue_free(sc->sc_tq); 517 518 if (sc->sc_unr != NULL) 519 delete_unrhdr(sc->sc_unr); 520 521 mtx_destroy(&sc->sc_mtx); 522 523 return 0; 524 } 525 526 static void 527 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 528 { 529 if (error != 0) 530 return; 531 532 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 533 534 *(bus_addr_t *)arg = segs[0].ds_addr; 535 } 536 537 static int 538 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 539 { 540 int error; 541 542 ring->count = count; 543 ring->queued = 0; 544 ring->cur = ring->next = 0; 545 546 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 547 BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1, 548 count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 549 if (error != 0) { 550 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 551 goto fail; 552 } 553 554 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 555 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 556 if (error != 0) { 557 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 558 goto fail; 559 } 560 561 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 562 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 563 if (error != 0) { 564 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 565 goto fail; 566 } 567 568 return 0; 569 570 fail: iwi_free_cmd_ring(sc, ring); 571 return error; 572 } 573 574 static void 575 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 576 { 577 ring->queued = 0; 578 ring->cur = ring->next = 0; 579 } 580 581 static void 582 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 583 { 584 if (ring->desc != NULL) { 585 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 586 BUS_DMASYNC_POSTWRITE); 587 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 588 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 589 } 590 591 if (ring->desc_dmat != NULL) 592 bus_dma_tag_destroy(ring->desc_dmat); 593 } 594 595 static int 596 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 597 bus_addr_t csr_ridx, bus_addr_t csr_widx) 598 { 599 int i, error; 600 601 ring->count = count; 602 ring->queued = 0; 603 ring->cur = ring->next = 0; 604 ring->csr_ridx = csr_ridx; 605 ring->csr_widx = csr_widx; 606 607 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 608 BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, 609 count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 610 if (error != 0) { 611 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 612 goto fail; 613 } 614 615 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 616 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 617 if (error != 0) { 618 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 619 goto fail; 620 } 621 622 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 623 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 624 if (error != 0) { 625 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 626 goto fail; 627 } 628 629 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 630 M_NOWAIT | M_ZERO); 631 if (ring->data == NULL) { 632 device_printf(sc->sc_dev, "could not allocate soft data\n"); 633 error = ENOMEM; 634 goto fail; 635 } 636 637 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 638 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, 639 MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 640 if (error != 0) { 641 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 642 goto fail; 643 } 644 645 for (i = 0; i < count; i++) { 646 error = bus_dmamap_create(ring->data_dmat, 0, 647 &ring->data[i].map); 648 if (error != 0) { 649 device_printf(sc->sc_dev, "could not create DMA map\n"); 650 goto fail; 651 } 652 } 653 654 return 0; 655 656 fail: iwi_free_tx_ring(sc, ring); 657 return error; 658 } 659 660 static void 661 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 662 { 663 struct iwi_tx_data *data; 664 int i; 665 666 for (i = 0; i < ring->count; i++) { 667 data = &ring->data[i]; 668 669 if (data->m != NULL) { 670 bus_dmamap_sync(ring->data_dmat, data->map, 671 BUS_DMASYNC_POSTWRITE); 672 bus_dmamap_unload(ring->data_dmat, data->map); 673 m_freem(data->m); 674 data->m = NULL; 675 } 676 677 if (data->ni != NULL) { 678 ieee80211_free_node(data->ni); 679 data->ni = NULL; 680 } 681 } 682 683 ring->queued = 0; 684 ring->cur = ring->next = 0; 685 } 686 687 static void 688 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 689 { 690 struct iwi_tx_data *data; 691 int i; 692 693 if (ring->desc != NULL) { 694 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 695 BUS_DMASYNC_POSTWRITE); 696 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 697 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 698 } 699 700 if (ring->desc_dmat != NULL) 701 bus_dma_tag_destroy(ring->desc_dmat); 702 703 if (ring->data != NULL) { 704 for (i = 0; i < ring->count; i++) { 705 data = &ring->data[i]; 706 707 if (data->m != NULL) { 708 bus_dmamap_sync(ring->data_dmat, data->map, 709 BUS_DMASYNC_POSTWRITE); 710 bus_dmamap_unload(ring->data_dmat, data->map); 711 m_freem(data->m); 712 } 713 714 if (data->ni != NULL) 715 ieee80211_free_node(data->ni); 716 717 if (data->map != NULL) 718 bus_dmamap_destroy(ring->data_dmat, data->map); 719 } 720 721 free(ring->data, M_DEVBUF); 722 } 723 724 if (ring->data_dmat != NULL) 725 bus_dma_tag_destroy(ring->data_dmat); 726 } 727 728 static int 729 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 730 { 731 struct iwi_rx_data *data; 732 int i, error; 733 734 ring->count = count; 735 ring->cur = 0; 736 737 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 738 M_NOWAIT | M_ZERO); 739 if (ring->data == NULL) { 740 device_printf(sc->sc_dev, "could not allocate soft data\n"); 741 error = ENOMEM; 742 goto fail; 743 } 744 745 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 746 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 747 NULL, &ring->data_dmat); 748 if (error != 0) { 749 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 750 goto fail; 751 } 752 753 for (i = 0; i < count; i++) { 754 data = &ring->data[i]; 755 756 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 757 if (error != 0) { 758 device_printf(sc->sc_dev, "could not create DMA map\n"); 759 goto fail; 760 } 761 762 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 763 if (data->m == NULL) { 764 device_printf(sc->sc_dev, 765 "could not allocate rx mbuf\n"); 766 error = ENOMEM; 767 goto fail; 768 } 769 770 error = bus_dmamap_load(ring->data_dmat, data->map, 771 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 772 &data->physaddr, 0); 773 if (error != 0) { 774 device_printf(sc->sc_dev, 775 "could not load rx buf DMA map"); 776 goto fail; 777 } 778 779 data->reg = IWI_CSR_RX_BASE + i * 4; 780 } 781 782 return 0; 783 784 fail: iwi_free_rx_ring(sc, ring); 785 return error; 786 } 787 788 static void 789 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 790 { 791 ring->cur = 0; 792 } 793 794 static void 795 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 796 { 797 struct iwi_rx_data *data; 798 int i; 799 800 if (ring->data != NULL) { 801 for (i = 0; i < ring->count; i++) { 802 data = &ring->data[i]; 803 804 if (data->m != NULL) { 805 bus_dmamap_sync(ring->data_dmat, data->map, 806 BUS_DMASYNC_POSTREAD); 807 bus_dmamap_unload(ring->data_dmat, data->map); 808 m_freem(data->m); 809 } 810 811 if (data->map != NULL) 812 bus_dmamap_destroy(ring->data_dmat, data->map); 813 } 814 815 free(ring->data, M_DEVBUF); 816 } 817 818 if (ring->data_dmat != NULL) 819 bus_dma_tag_destroy(ring->data_dmat); 820 } 821 822 static int 823 iwi_shutdown(device_t dev) 824 { 825 struct iwi_softc *sc = device_get_softc(dev); 826 827 iwi_stop(sc); 828 iwi_put_firmware(sc); /* ??? XXX */ 829 830 return 0; 831 } 832 833 static int 834 iwi_suspend(device_t dev) 835 { 836 struct iwi_softc *sc = device_get_softc(dev); 837 838 iwi_stop(sc); 839 840 return 0; 841 } 842 843 static int 844 iwi_resume(device_t dev) 845 { 846 struct iwi_softc *sc = device_get_softc(dev); 847 struct ifnet *ifp = sc->sc_ic.ic_ifp; 848 IWI_LOCK_DECL; 849 850 IWI_LOCK(sc); 851 852 pci_write_config(dev, 0x41, 0, 1); 853 854 if (ifp->if_flags & IFF_UP) { 855 ifp->if_init(ifp->if_softc); 856 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 857 ifp->if_start(ifp); 858 } 859 860 IWI_UNLOCK(sc); 861 862 return 0; 863 } 864 865 static struct ieee80211_node * 866 iwi_node_alloc(struct ieee80211_node_table *nt) 867 { 868 struct iwi_node *in; 869 870 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 871 if (in == NULL) 872 return NULL; 873 874 in->in_station = -1; 875 876 return &in->in_node; 877 } 878 879 static void 880 iwi_node_free(struct ieee80211_node *ni) 881 { 882 struct ieee80211com *ic = ni->ni_ic; 883 struct iwi_softc *sc = ic->ic_ifp->if_softc; 884 struct iwi_node *in = (struct iwi_node *)ni; 885 886 if (in->in_station != -1) { 887 DPRINTF(("%s mac %6D station %u\n", __func__, 888 ni->ni_macaddr, ":", in->in_station)); 889 free_unr(sc->sc_unr, in->in_station); 890 } 891 892 sc->sc_node_free(ni); 893 } 894 895 static int 896 iwi_media_change(struct ifnet *ifp) 897 { 898 struct iwi_softc *sc = ifp->if_softc; 899 int error; 900 IWI_LOCK_DECL; 901 902 IWI_LOCK(sc); 903 904 error = ieee80211_media_change(ifp); 905 if (error == ENETRESET && 906 (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 907 iwi_init_locked(sc, 0); 908 909 IWI_UNLOCK(sc); 910 911 return error; 912 } 913 914 /* 915 * Convert h/w rate code to IEEE rate code. 916 */ 917 static int 918 iwi_cvtrate(int iwirate) 919 { 920 switch (iwirate) { 921 case IWI_RATE_DS1: return 2; 922 case IWI_RATE_DS2: return 4; 923 case IWI_RATE_DS5: return 11; 924 case IWI_RATE_DS11: return 22; 925 case IWI_RATE_OFDM6: return 12; 926 case IWI_RATE_OFDM9: return 18; 927 case IWI_RATE_OFDM12: return 24; 928 case IWI_RATE_OFDM18: return 36; 929 case IWI_RATE_OFDM24: return 48; 930 case IWI_RATE_OFDM36: return 72; 931 case IWI_RATE_OFDM48: return 96; 932 case IWI_RATE_OFDM54: return 108; 933 } 934 return 0; 935 } 936 937 /* 938 * The firmware automatically adapts the transmit speed. We report its current 939 * value here. 940 */ 941 static void 942 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 943 { 944 struct iwi_softc *sc = ifp->if_softc; 945 struct ieee80211com *ic = &sc->sc_ic; 946 int rate; 947 948 imr->ifm_status = IFM_AVALID; 949 imr->ifm_active = IFM_IEEE80211; 950 if (ic->ic_state == IEEE80211_S_RUN) 951 imr->ifm_status |= IFM_ACTIVE; 952 953 /* read current transmission rate from adapter */ 954 rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 955 imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); 956 957 if (ic->ic_opmode == IEEE80211_M_IBSS) 958 imr->ifm_active |= IFM_IEEE80211_ADHOC; 959 else if (ic->ic_opmode == IEEE80211_M_MONITOR) 960 imr->ifm_active |= IFM_IEEE80211_MONITOR; 961 } 962 963 static int 964 iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 965 { 966 struct ifnet *ifp = ic->ic_ifp; 967 struct iwi_softc *sc = ifp->if_softc; 968 969 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 970 ieee80211_state_name[ic->ic_state], 971 ieee80211_state_name[nstate], sc->flags)); 972 973 /* XXX state change race with taskqueue */ 974 switch (nstate) { 975 case IEEE80211_S_SCAN: 976 if (ic->ic_state == IEEE80211_S_RUN) { 977 /* 978 * Beacon miss, send disassoc and wait for a reply 979 * from the card; we'll start a scan then. Note 980 * this only happens with auto roaming; otherwise 981 * just notify users and wait to be directed. 982 */ 983 /* notify directly as we bypass net80211 */ 984 ieee80211_sta_leave(ic, ic->ic_bss); 985 if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) 986 taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask); 987 break; 988 } 989 if ((sc->flags & IWI_FLAG_SCANNING) == 0) { 990 sc->flags |= IWI_FLAG_SCANNING; 991 taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask); 992 } 993 break; 994 995 case IEEE80211_S_AUTH: 996 iwi_auth_and_assoc(sc); 997 break; 998 999 case IEEE80211_S_RUN: 1000 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1001 /* 1002 * XXX when joining an ibss network we are called 1003 * with a SCAN -> RUN transition on scan complete. 1004 * Use that to call iwi_auth_and_assoc. On completing 1005 * the join we are then called again with an 1006 * AUTH -> RUN transition and we want to do nothing. 1007 * This is all totally bogus and needs to be redone. 1008 */ 1009 if (ic->ic_state == IEEE80211_S_SCAN) 1010 iwi_auth_and_assoc(sc); 1011 } else if (ic->ic_opmode == IEEE80211_M_MONITOR) 1012 taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask); 1013 1014 /* XXX way wrong */ 1015 return sc->sc_newstate(ic, nstate, 1016 IEEE80211_FC0_SUBTYPE_ASSOC_RESP); 1017 1018 case IEEE80211_S_ASSOC: 1019 break; 1020 1021 case IEEE80211_S_INIT: 1022 /* 1023 * NB: don't try to do this if iwi_stop_master has 1024 * shutdown the firmware and disabled interrupts. 1025 */ 1026 if (ic->ic_state == IEEE80211_S_RUN && 1027 (sc->flags & IWI_FLAG_FW_INITED)) 1028 taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask); 1029 break; 1030 } 1031 1032 ic->ic_state = nstate; 1033 return 0; 1034 } 1035 1036 /* 1037 * WME parameters coming from IEEE 802.11e specification. These values are 1038 * already declared in ieee80211_proto.c, but they are static so they can't 1039 * be reused here. 1040 */ 1041 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1042 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1043 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1044 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1045 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1046 }; 1047 1048 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1049 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1050 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1051 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1052 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1053 }; 1054 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1055 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1056 1057 static void 1058 iwi_wme_init(struct iwi_softc *sc) 1059 { 1060 const struct wmeParams *wmep; 1061 int ac; 1062 1063 memset(sc->wme, 0, sizeof sc->wme); 1064 for (ac = 0; ac < WME_NUM_AC; ac++) { 1065 /* set WME values for CCK modulation */ 1066 wmep = &iwi_wme_cck_params[ac]; 1067 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1068 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1069 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1070 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1071 sc->wme[1].acm[ac] = wmep->wmep_acm; 1072 1073 /* set WME values for OFDM modulation */ 1074 wmep = &iwi_wme_ofdm_params[ac]; 1075 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1076 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1077 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1078 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1079 sc->wme[2].acm[ac] = wmep->wmep_acm; 1080 } 1081 } 1082 1083 static int 1084 iwi_wme_setparams_locked(struct iwi_softc *sc) 1085 { 1086 struct ieee80211com *ic = &sc->sc_ic; 1087 const struct wmeParams *wmep; 1088 int ac; 1089 1090 for (ac = 0; ac < WME_NUM_AC; ac++) { 1091 /* set WME values for current operating mode */ 1092 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1093 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1094 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1095 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1096 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1097 sc->wme[0].acm[ac] = wmep->wmep_acm; 1098 } 1099 1100 DPRINTF(("Setting WME parameters\n")); 1101 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1102 } 1103 1104 static void 1105 iwi_wme_setparams(void *arg, int npending) 1106 { 1107 struct iwi_softc *sc = arg; 1108 IWI_LOCK_DECL; 1109 1110 IWI_LOCK(sc); 1111 (void) iwi_wme_setparams_locked(sc); 1112 IWI_UNLOCK(sc); 1113 } 1114 #undef IWI_USEC 1115 #undef IWI_EXP2 1116 1117 static int 1118 iwi_wme_update(struct ieee80211com *ic) 1119 { 1120 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1121 1122 /* 1123 * We may be called to update the WME parameters in 1124 * the adapter at various places. If we're already 1125 * associated then initiate the request immediately 1126 * (via the taskqueue); otherwise we assume the params 1127 * will get sent down to the adapter as part of the 1128 * work iwi_auth_and_assoc does. 1129 */ 1130 if (ic->ic_state == IEEE80211_S_RUN) 1131 taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask); 1132 return 0; 1133 } 1134 1135 static int 1136 iwi_wme_setie(struct iwi_softc *sc) 1137 { 1138 struct ieee80211_wme_info wme; 1139 1140 memset(&wme, 0, sizeof wme); 1141 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1142 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1143 wme.wme_oui[0] = 0x00; 1144 wme.wme_oui[1] = 0x50; 1145 wme.wme_oui[2] = 0xf2; 1146 wme.wme_type = WME_OUI_TYPE; 1147 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1148 wme.wme_version = WME_VERSION; 1149 wme.wme_info = 0; 1150 1151 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1152 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1153 } 1154 1155 /* 1156 * Read 16 bits at address 'addr' from the serial EEPROM. 1157 */ 1158 static uint16_t 1159 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1160 { 1161 uint32_t tmp; 1162 uint16_t val; 1163 int n; 1164 1165 /* clock C once before the first command */ 1166 IWI_EEPROM_CTL(sc, 0); 1167 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1168 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1169 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1170 1171 /* write start bit (1) */ 1172 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1173 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1174 1175 /* write READ opcode (10) */ 1176 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1177 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1178 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1179 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1180 1181 /* write address A7-A0 */ 1182 for (n = 7; n >= 0; n--) { 1183 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1184 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1185 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1186 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1187 } 1188 1189 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1190 1191 /* read data Q15-Q0 */ 1192 val = 0; 1193 for (n = 15; n >= 0; n--) { 1194 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1195 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1196 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1197 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1198 } 1199 1200 IWI_EEPROM_CTL(sc, 0); 1201 1202 /* clear Chip Select and clock C */ 1203 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1204 IWI_EEPROM_CTL(sc, 0); 1205 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1206 1207 return val; 1208 } 1209 1210 static void 1211 iwi_setcurchan(struct iwi_softc *sc, int chan) 1212 { 1213 struct ieee80211com *ic = &sc->sc_ic; 1214 1215 ic->ic_curchan = &ic->ic_channels[chan]; 1216 sc->curchan = chan; 1217 1218 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 1219 htole16(ic->ic_curchan->ic_freq); 1220 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 1221 htole16(ic->ic_curchan->ic_flags); 1222 } 1223 1224 static void 1225 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1226 struct iwi_frame *frame) 1227 { 1228 struct ieee80211com *ic = &sc->sc_ic; 1229 struct ifnet *ifp = ic->ic_ifp; 1230 struct mbuf *mnew, *m; 1231 struct ieee80211_node *ni; 1232 int type, error, framelen; 1233 1234 framelen = le16toh(frame->len); 1235 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1236 /* 1237 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1238 * out of bounds; need to figure out how to limit 1239 * frame size in the firmware 1240 */ 1241 /* XXX stat */ 1242 DPRINTFN(1, 1243 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1244 le16toh(frame->len), frame->chan, frame->rssi, 1245 frame->rssi_dbm)); 1246 return; 1247 } 1248 1249 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1250 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1251 1252 if (frame->chan != sc->curchan) 1253 iwi_setcurchan(sc, frame->chan); 1254 1255 /* 1256 * Try to allocate a new mbuf for this ring element and load it before 1257 * processing the current mbuf. If the ring element cannot be loaded, 1258 * drop the received packet and reuse the old mbuf. In the unlikely 1259 * case that the old mbuf can't be reloaded either, explicitly panic. 1260 */ 1261 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1262 if (mnew == NULL) { 1263 ifp->if_ierrors++; 1264 return; 1265 } 1266 1267 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1268 1269 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1270 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1271 0); 1272 if (error != 0) { 1273 m_freem(mnew); 1274 1275 /* try to reload the old mbuf */ 1276 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1277 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1278 &data->physaddr, 0); 1279 if (error != 0) { 1280 /* very unlikely that it will fail... */ 1281 panic("%s: could not load old rx mbuf", 1282 device_get_name(sc->sc_dev)); 1283 } 1284 ifp->if_ierrors++; 1285 return; 1286 } 1287 1288 /* 1289 * New mbuf successfully loaded, update Rx ring and continue 1290 * processing. 1291 */ 1292 m = data->m; 1293 data->m = mnew; 1294 CSR_WRITE_4(sc, data->reg, data->physaddr); 1295 1296 /* finalize mbuf */ 1297 m->m_pkthdr.rcvif = ifp; 1298 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1299 sizeof (struct iwi_frame) + framelen; 1300 1301 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1302 1303 if (bpf_peers_present(sc->sc_drvbpf)) { 1304 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1305 1306 tap->wr_flags = 0; 1307 tap->wr_rate = iwi_cvtrate(frame->rate); 1308 tap->wr_antsignal = frame->signal; 1309 tap->wr_antenna = frame->antenna; 1310 1311 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1312 } 1313 1314 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1315 1316 /* send the frame to the 802.11 layer */ 1317 type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0); 1318 1319 /* node is no longer needed */ 1320 ieee80211_free_node(ni); 1321 1322 if (sc->sc_softled) { 1323 /* 1324 * Blink for any data frame. Otherwise do a 1325 * heartbeat-style blink when idle. The latter 1326 * is mainly for station mode where we depend on 1327 * periodic beacon frames to trigger the poll event. 1328 */ 1329 if (type == IEEE80211_FC0_TYPE_DATA) { 1330 sc->sc_rxrate = frame->rate; 1331 iwi_led_event(sc, IWI_LED_RX); 1332 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1333 iwi_led_event(sc, IWI_LED_POLL); 1334 } 1335 } 1336 1337 /* unaligned little endian access */ 1338 #define LE_READ_2(p) \ 1339 ((u_int16_t) \ 1340 ((((const u_int8_t *)(p))[0] ) | \ 1341 (((const u_int8_t *)(p))[1] << 8))) 1342 #define LE_READ_4(p) \ 1343 ((u_int32_t) \ 1344 ((((const u_int8_t *)(p))[0] ) | \ 1345 (((const u_int8_t *)(p))[1] << 8) | \ 1346 (((const u_int8_t *)(p))[2] << 16) | \ 1347 (((const u_int8_t *)(p))[3] << 24))) 1348 1349 #define IEEE80211_VERIFY_LENGTH(_len, _minlen) do { \ 1350 if ((_len) < (_minlen)) { \ 1351 return; \ 1352 } \ 1353 } while (0) 1354 1355 static int __inline 1356 iswmeoui(const u_int8_t *frm) 1357 { 1358 return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI); 1359 } 1360 1361 /* 1362 * Check for an association response frame to see if QoS 1363 * has been negotiated. We parse just enough to figure 1364 * out if we're supposed to use QoS. The proper solution 1365 * is to pass the frame up so ieee80211_input can do the 1366 * work but that's made hard by how things currently are 1367 * done in the driver. 1368 */ 1369 static void 1370 iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len) 1371 { 1372 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1373 const uint8_t *frm, *efrm, *wme; 1374 struct ieee80211_node *ni; 1375 1376 /* NB: +8 for capinfo, status, associd, and first ie */ 1377 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1378 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1379 return; 1380 /* 1381 * asresp frame format 1382 * [2] capability information 1383 * [2] status 1384 * [2] association ID 1385 * [tlv] supported rates 1386 * [tlv] extended supported rates 1387 * [tlv] WME 1388 */ 1389 frm = (const uint8_t *)&wh[1]; 1390 efrm = ((const uint8_t *) wh) + len; 1391 frm += 6; 1392 1393 wme = NULL; 1394 while (frm < efrm) { 1395 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]); 1396 switch (*frm) { 1397 case IEEE80211_ELEMID_VENDOR: 1398 if (iswmeoui(frm)) 1399 wme = frm; 1400 break; 1401 } 1402 frm += frm[1] + 2; 1403 } 1404 1405 ni = sc->sc_ic.ic_bss; 1406 if (wme != NULL) 1407 ni->ni_flags |= IEEE80211_NODE_QOS; 1408 else 1409 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1410 #undef SUBTYPE 1411 } 1412 1413 static void 1414 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1415 { 1416 struct ieee80211com *ic = &sc->sc_ic; 1417 struct iwi_notif_scan_channel *chan; 1418 struct iwi_notif_scan_complete *scan; 1419 struct iwi_notif_authentication *auth; 1420 struct iwi_notif_association *assoc; 1421 struct iwi_notif_beacon_state *beacon; 1422 1423 switch (notif->type) { 1424 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1425 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1426 1427 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1428 ic->ic_channels[chan->nchan].ic_freq, chan->nchan)); 1429 break; 1430 1431 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1432 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1433 1434 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1435 scan->status)); 1436 1437 sc->sc_scan_timer = 0; 1438 1439 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1440 /* 1441 * Monitor mode works by doing a passive scan to set 1442 * the channel and enable rx. Because we don't want 1443 * to abort a scan lest the firmware crash we scan 1444 * for a short period of time and automatically restart 1445 * the scan when notified the sweep has completed. 1446 */ 1447 taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask); 1448 } else { 1449 sc->flags &= ~IWI_FLAG_SCANNING; 1450 taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask); 1451 } 1452 break; 1453 1454 case IWI_NOTIF_TYPE_AUTHENTICATION: 1455 auth = (struct iwi_notif_authentication *)(notif + 1); 1456 1457 switch (auth->state) { 1458 case IWI_AUTH_SUCCESS: 1459 DPRINTFN(2, ("Authentication succeeeded\n")); 1460 ieee80211_node_authorize(ic->ic_bss); 1461 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 1462 break; 1463 1464 case IWI_AUTH_FAIL: 1465 DPRINTFN(2, ("Authentication failed\n")); 1466 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1467 /* XXX */ 1468 break; 1469 1470 case IWI_AUTH_SENT_1: 1471 case IWI_AUTH_RECV_2: 1472 case IWI_AUTH_SEQ1_PASS: 1473 break; 1474 1475 case IWI_AUTH_SEQ1_FAIL: 1476 DPRINTFN(2, ("Initial authentication handshake failed; " 1477 "you probably need shared key\n")); 1478 /* XXX retry shared key when in auto */ 1479 break; 1480 1481 default: 1482 device_printf(sc->sc_dev, 1483 "unknown authentication state %u\n", auth->state); 1484 } 1485 break; 1486 1487 case IWI_NOTIF_TYPE_ASSOCIATION: 1488 assoc = (struct iwi_notif_association *)(notif + 1); 1489 1490 switch (assoc->state) { 1491 case IWI_AUTH_SUCCESS: 1492 /* re-association, do nothing */ 1493 break; 1494 1495 case IWI_ASSOC_SUCCESS: 1496 DPRINTFN(2, ("Association succeeded\n")); 1497 sc->flags |= IWI_FLAG_ASSOCIATED; 1498 iwi_checkforqos(sc, 1499 (const struct ieee80211_frame *)(assoc+1), 1500 le16toh(notif->len) - sizeof(*assoc)); 1501 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1502 break; 1503 1504 case IWI_ASSOC_FAIL: 1505 DPRINTFN(2, ("Association failed\n")); 1506 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1507 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1508 break; 1509 1510 default: 1511 device_printf(sc->sc_dev, 1512 "unknown association state %u\n", assoc->state); 1513 } 1514 break; 1515 1516 case IWI_NOTIF_TYPE_BEACON: 1517 /* XXX check struct length */ 1518 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1519 1520 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1521 beacon->state, le32toh(beacon->number))); 1522 1523 if (beacon->state == IWI_BEACON_MISS) { 1524 #if 0 1525 if (sc->flags & IWI_FLAG_SCANNING) { 1526 /* XXX terminate scan, linux driver 1527 says fw can get stuck */ 1528 /* XXX should be handled in iwi_newstate */ 1529 taskqueue_enqueue(sc->sc_tq, 1530 &sc->sc_scanaborttask); 1531 } 1532 #endif 1533 /* 1534 * The firmware notifies us of every beacon miss 1535 * so we need to track the count against the 1536 * configured threshold before notifying the 1537 * 802.11 layer. 1538 * XXX try to roam, drop assoc only on much higher count 1539 */ 1540 if (le32toh(beacon->number) >= ic->ic_bmissthreshold) { 1541 DPRINTF(("Beacon miss: %u >= %u\n", 1542 le32toh(beacon->number), 1543 ic->ic_bmissthreshold)); 1544 ieee80211_beacon_miss(ic); 1545 } 1546 } 1547 break; 1548 1549 case IWI_NOTIF_TYPE_CALIBRATION: 1550 case IWI_NOTIF_TYPE_NOISE: 1551 case IWI_NOTIF_TYPE_LINK_QUALITY: 1552 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1553 break; 1554 1555 default: 1556 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1557 notif->type, notif->flags, le16toh(notif->len))); 1558 } 1559 } 1560 1561 static void 1562 iwi_rx_intr(struct iwi_softc *sc) 1563 { 1564 struct iwi_rx_data *data; 1565 struct iwi_hdr *hdr; 1566 uint32_t hw; 1567 1568 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1569 1570 for (; sc->rxq.cur != hw;) { 1571 data = &sc->rxq.data[sc->rxq.cur]; 1572 1573 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1574 BUS_DMASYNC_POSTREAD); 1575 1576 hdr = mtod(data->m, struct iwi_hdr *); 1577 1578 switch (hdr->type) { 1579 case IWI_HDR_TYPE_FRAME: 1580 iwi_frame_intr(sc, data, sc->rxq.cur, 1581 (struct iwi_frame *)(hdr + 1)); 1582 break; 1583 1584 case IWI_HDR_TYPE_NOTIF: 1585 iwi_notification_intr(sc, 1586 (struct iwi_notif *)(hdr + 1)); 1587 break; 1588 1589 default: 1590 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1591 hdr->type); 1592 } 1593 1594 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1595 1596 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1597 } 1598 1599 /* tell the firmware what we have processed */ 1600 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1601 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1602 } 1603 1604 static void 1605 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1606 { 1607 struct ieee80211com *ic = &sc->sc_ic; 1608 struct ifnet *ifp = ic->ic_ifp; 1609 struct iwi_tx_data *data; 1610 uint32_t hw; 1611 1612 hw = CSR_READ_4(sc, txq->csr_ridx); 1613 1614 for (; txq->next != hw;) { 1615 data = &txq->data[txq->next]; 1616 1617 bus_dmamap_sync(txq->data_dmat, data->map, 1618 BUS_DMASYNC_POSTWRITE); 1619 bus_dmamap_unload(txq->data_dmat, data->map); 1620 m_freem(data->m); 1621 data->m = NULL; 1622 ieee80211_free_node(data->ni); 1623 data->ni = NULL; 1624 1625 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1626 1627 ifp->if_opackets++; 1628 1629 txq->queued--; 1630 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1631 } 1632 1633 sc->sc_tx_timer = 0; 1634 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1635 1636 if (sc->sc_softled) 1637 iwi_led_event(sc, IWI_LED_TX); 1638 1639 iwi_start(ifp); 1640 } 1641 1642 static void 1643 iwi_intr(void *arg) 1644 { 1645 struct iwi_softc *sc = arg; 1646 uint32_t r; 1647 IWI_LOCK_DECL; 1648 1649 IWI_LOCK(sc); 1650 1651 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1652 IWI_UNLOCK(sc); 1653 return; 1654 } 1655 1656 /* acknowledge interrupts */ 1657 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1658 1659 if (r & IWI_INTR_FATAL_ERROR) { 1660 device_printf(sc->sc_dev, "firmware error\n"); 1661 taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); 1662 } 1663 1664 if (r & IWI_INTR_FW_INITED) { 1665 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1666 wakeup(sc); 1667 } 1668 1669 if (r & IWI_INTR_RADIO_OFF) 1670 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); 1671 1672 if (r & IWI_INTR_CMD_DONE) { 1673 sc->flags &= ~IWI_FLAG_BUSY; 1674 wakeup(sc); 1675 } 1676 1677 if (r & IWI_INTR_TX1_DONE) 1678 iwi_tx_intr(sc, &sc->txq[0]); 1679 1680 if (r & IWI_INTR_TX2_DONE) 1681 iwi_tx_intr(sc, &sc->txq[1]); 1682 1683 if (r & IWI_INTR_TX3_DONE) 1684 iwi_tx_intr(sc, &sc->txq[2]); 1685 1686 if (r & IWI_INTR_TX4_DONE) 1687 iwi_tx_intr(sc, &sc->txq[3]); 1688 1689 if (r & IWI_INTR_RX_DONE) 1690 iwi_rx_intr(sc); 1691 1692 if (r & IWI_INTR_PARITY_ERROR) { 1693 /* XXX rate-limit */ 1694 device_printf(sc->sc_dev, "parity error\n"); 1695 } 1696 1697 IWI_UNLOCK(sc); 1698 } 1699 1700 static int 1701 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1702 { 1703 struct iwi_cmd_desc *desc; 1704 1705 if (sc->flags & IWI_FLAG_BUSY) { 1706 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1707 __func__, type); 1708 return EAGAIN; 1709 } 1710 sc->flags |= IWI_FLAG_BUSY; 1711 1712 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1713 1714 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1715 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1716 desc->type = type; 1717 desc->len = len; 1718 memcpy(desc->data, data, len); 1719 1720 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1721 BUS_DMASYNC_PREWRITE); 1722 1723 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1724 type, len)); 1725 1726 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1727 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1728 1729 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1730 } 1731 1732 static void 1733 iwi_write_ibssnode(struct iwi_softc *sc, 1734 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1735 { 1736 struct iwi_ibssnode node; 1737 1738 /* write node information into NIC memory */ 1739 memset(&node, 0, sizeof node); 1740 IEEE80211_ADDR_COPY(node.bssid, addr); 1741 1742 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1743 1744 CSR_WRITE_REGION_1(sc, 1745 IWI_CSR_NODE_BASE + entry * sizeof node, 1746 (uint8_t *)&node, sizeof node); 1747 } 1748 1749 static int 1750 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1751 int ac) 1752 { 1753 struct iwi_softc *sc = ifp->if_softc; 1754 struct ieee80211com *ic = &sc->sc_ic; 1755 struct iwi_node *in = (struct iwi_node *)ni; 1756 const struct ieee80211_frame *wh; 1757 struct ieee80211_key *k; 1758 const struct chanAccParams *cap; 1759 struct iwi_tx_ring *txq = &sc->txq[ac]; 1760 struct iwi_tx_data *data; 1761 struct iwi_tx_desc *desc; 1762 struct mbuf *mnew; 1763 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1764 int error, nsegs, hdrlen, i; 1765 int ismcast, flags, xflags, staid; 1766 1767 wh = mtod(m0, const struct ieee80211_frame *); 1768 /* NB: only data frames use this path */ 1769 hdrlen = ieee80211_hdrsize(wh); 1770 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1771 flags = xflags = 0; 1772 1773 if (!ismcast) 1774 flags |= IWI_DATA_FLAG_NEED_ACK; 1775 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1776 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1777 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1778 xflags |= IWI_DATA_XFLAG_QOS; 1779 cap = &ic->ic_wme.wme_chanParams; 1780 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1781 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1782 } 1783 1784 /* 1785 * This is only used in IBSS mode where the firmware expect an index 1786 * in a h/w table instead of a destination address. 1787 */ 1788 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1789 if (!ismcast) { 1790 if (in->in_station == -1) { 1791 in->in_station = alloc_unr(sc->sc_unr); 1792 if (in->in_station == -1) { 1793 /* h/w table is full */ 1794 m_freem(m0); 1795 ieee80211_free_node(ni); 1796 ifp->if_oerrors++; 1797 return 0; 1798 } 1799 iwi_write_ibssnode(sc, 1800 ni->ni_macaddr, in->in_station); 1801 } 1802 staid = in->in_station; 1803 } else { 1804 /* 1805 * Multicast addresses have no associated node 1806 * so there will be no station entry. We reserve 1807 * entry 0 for one mcast address and use that. 1808 * If there are many being used this will be 1809 * expensive and we'll need to do a better job 1810 * but for now this handles the broadcast case. 1811 */ 1812 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1813 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1814 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1815 } 1816 staid = 0; 1817 } 1818 } else 1819 staid = 0; 1820 1821 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1822 k = ieee80211_crypto_encap(ic, ni, m0); 1823 if (k == NULL) { 1824 m_freem(m0); 1825 return ENOBUFS; 1826 } 1827 1828 /* packet header may have moved, reset our local pointer */ 1829 wh = mtod(m0, struct ieee80211_frame *); 1830 } 1831 1832 if (bpf_peers_present(sc->sc_drvbpf)) { 1833 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1834 1835 tap->wt_flags = 0; 1836 1837 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1838 } 1839 1840 data = &txq->data[txq->cur]; 1841 desc = &txq->desc[txq->cur]; 1842 1843 /* save and trim IEEE802.11 header */ 1844 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1845 m_adj(m0, hdrlen); 1846 1847 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1848 &nsegs, 0); 1849 if (error != 0 && error != EFBIG) { 1850 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1851 error); 1852 m_freem(m0); 1853 return error; 1854 } 1855 if (error != 0) { 1856 mnew = m_defrag(m0, M_DONTWAIT); 1857 if (mnew == NULL) { 1858 device_printf(sc->sc_dev, 1859 "could not defragment mbuf\n"); 1860 m_freem(m0); 1861 return ENOBUFS; 1862 } 1863 m0 = mnew; 1864 1865 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1866 m0, segs, &nsegs, 0); 1867 if (error != 0) { 1868 device_printf(sc->sc_dev, 1869 "could not map mbuf (error %d)\n", error); 1870 m_freem(m0); 1871 return error; 1872 } 1873 } 1874 1875 data->m = m0; 1876 data->ni = ni; 1877 1878 desc->hdr.type = IWI_HDR_TYPE_DATA; 1879 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1880 desc->station = staid; 1881 desc->cmd = IWI_DATA_CMD_TX; 1882 desc->len = htole16(m0->m_pkthdr.len); 1883 desc->flags = flags; 1884 desc->xflags = xflags; 1885 1886 #if 0 1887 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1888 desc->wep_txkey = ic->ic_crypto.cs_def_txkey; 1889 else 1890 #endif 1891 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1892 1893 desc->nseg = htole32(nsegs); 1894 for (i = 0; i < nsegs; i++) { 1895 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1896 desc->seg_len[i] = htole16(segs[i].ds_len); 1897 } 1898 1899 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1900 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1901 1902 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1903 ac, txq->cur, le16toh(desc->len), nsegs)); 1904 1905 txq->queued++; 1906 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1907 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1908 1909 return 0; 1910 } 1911 1912 static void 1913 iwi_start(struct ifnet *ifp) 1914 { 1915 struct iwi_softc *sc = ifp->if_softc; 1916 struct ieee80211com *ic = &sc->sc_ic; 1917 struct mbuf *m0; 1918 struct ether_header *eh; 1919 struct ieee80211_node *ni; 1920 int ac; 1921 IWI_LOCK_DECL; 1922 1923 IWI_LOCK(sc); 1924 1925 if (ic->ic_state != IEEE80211_S_RUN) { 1926 IWI_UNLOCK(sc); 1927 return; 1928 } 1929 1930 for (;;) { 1931 IF_DEQUEUE(&ic->ic_mgtq, m0); 1932 if (m0 == NULL) { 1933 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1934 if (m0 == NULL) 1935 break; 1936 1937 if (m0->m_len < sizeof (struct ether_header) && 1938 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) { 1939 ifp->if_oerrors++; 1940 continue; 1941 } 1942 eh = mtod(m0, struct ether_header *); 1943 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1944 if (ni == NULL) { 1945 m_freem(m0); 1946 ifp->if_oerrors++; 1947 continue; 1948 } 1949 1950 /* classify mbuf so we can find which tx ring to use */ 1951 if (ieee80211_classify(ic, m0, ni) != 0) { 1952 m_freem(m0); 1953 ieee80211_free_node(ni); 1954 ifp->if_oerrors++; 1955 continue; 1956 } 1957 1958 /* XXX does not belong here */ 1959 /* no QoS encapsulation for EAPOL frames */ 1960 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 1961 M_WME_GETAC(m0) : WME_AC_BE; 1962 1963 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1964 /* there is no place left in this ring */ 1965 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1966 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1967 break; 1968 } 1969 1970 BPF_MTAP(ifp, m0); 1971 1972 m0 = ieee80211_encap(ic, m0, ni); 1973 if (m0 == NULL) { 1974 ieee80211_free_node(ni); 1975 ifp->if_oerrors++; 1976 continue; 1977 } 1978 } else { 1979 ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif; 1980 m0->m_pkthdr.rcvif = NULL; 1981 /* XXX no way to send mgt frames (yet), discard */ 1982 m_freem(m0); 1983 ieee80211_free_node(ni); 1984 continue; 1985 } 1986 1987 if (bpf_peers_present(ic->ic_rawbpf)) 1988 bpf_mtap(ic->ic_rawbpf, m0); 1989 1990 if (iwi_tx_start(ifp, m0, ni, ac) != 0) { 1991 ieee80211_free_node(ni); 1992 ifp->if_oerrors++; 1993 break; 1994 } 1995 1996 sc->sc_tx_timer = 5; 1997 ifp->if_timer = 1; 1998 } 1999 2000 IWI_UNLOCK(sc); 2001 } 2002 2003 static void 2004 iwi_watchdog(struct ifnet *ifp) 2005 { 2006 struct iwi_softc *sc = ifp->if_softc; 2007 struct ieee80211com *ic = &sc->sc_ic; 2008 IWI_LOCK_DECL; 2009 2010 IWI_LOCK(sc); 2011 2012 if (sc->sc_tx_timer > 0) { 2013 if (--sc->sc_tx_timer == 0) { 2014 if_printf(ifp, "device timeout\n"); 2015 ifp->if_oerrors++; 2016 taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); 2017 } 2018 } 2019 if (sc->sc_rfkill_timer > 0) { 2020 if (--sc->sc_rfkill_timer == 0) { 2021 /* 2022 * Check for a change in rfkill state. We get an 2023 * interrupt when a radio is disabled but not when 2024 * it is enabled so we must poll for the latter. 2025 */ 2026 if (!iwi_getrfkill(sc)) 2027 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); 2028 else 2029 sc->sc_rfkill_timer = 2; 2030 } 2031 } 2032 if (sc->sc_scan_timer > 0) { 2033 if (--sc->sc_scan_timer == 0) { 2034 if (sc->flags & IWI_FLAG_SCANNING) { 2035 if_printf(ifp, "scan stuck\n"); 2036 taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask); 2037 } 2038 } 2039 } 2040 if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer) 2041 ifp->if_timer = 1; 2042 else 2043 ifp->if_timer = 0; 2044 2045 ieee80211_watchdog(ic); 2046 2047 IWI_UNLOCK(sc); 2048 } 2049 2050 static int 2051 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2052 { 2053 struct iwi_softc *sc = ifp->if_softc; 2054 struct ieee80211com *ic = &sc->sc_ic; 2055 int error = 0; 2056 IWI_LOCK_DECL; 2057 2058 IWI_LOCK(sc); 2059 2060 switch (cmd) { 2061 case SIOCSIFFLAGS: 2062 if (ifp->if_flags & IFF_UP) { 2063 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2064 iwi_init_locked(sc, 0); 2065 } else { 2066 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2067 iwi_stop(sc); 2068 else { 2069 /* 2070 * If device was stopped due to rfkill then 2071 * marked down we'll have the polling thread 2072 * running; stop it explicitly. 2073 */ 2074 sc->sc_rfkill_timer = 0; 2075 } 2076 iwi_put_firmware(sc); 2077 } 2078 break; 2079 2080 default: 2081 error = ieee80211_ioctl(ic, cmd, data); 2082 } 2083 2084 if (error == ENETRESET) { 2085 if ((ifp->if_flags & IFF_UP) && 2086 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2087 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2088 iwi_init_locked(sc, 0); 2089 error = 0; 2090 } 2091 2092 IWI_UNLOCK(sc); 2093 2094 return error; 2095 } 2096 2097 static void 2098 iwi_stop_master(struct iwi_softc *sc) 2099 { 2100 uint32_t tmp; 2101 int ntries; 2102 2103 /* disable interrupts */ 2104 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2105 2106 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2107 for (ntries = 0; ntries < 5; ntries++) { 2108 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2109 break; 2110 DELAY(10); 2111 } 2112 if (ntries == 5) 2113 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2114 2115 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2116 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2117 2118 sc->flags &= ~IWI_FLAG_FW_INITED; 2119 } 2120 2121 static int 2122 iwi_reset(struct iwi_softc *sc) 2123 { 2124 uint32_t tmp; 2125 int i, ntries; 2126 2127 iwi_stop_master(sc); 2128 2129 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2130 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2131 2132 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2133 2134 /* wait for clock stabilization */ 2135 for (ntries = 0; ntries < 1000; ntries++) { 2136 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2137 break; 2138 DELAY(200); 2139 } 2140 if (ntries == 1000) { 2141 device_printf(sc->sc_dev, 2142 "timeout waiting for clock stabilization\n"); 2143 return EIO; 2144 } 2145 2146 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2147 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2148 2149 DELAY(10); 2150 2151 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2152 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2153 2154 /* clear NIC memory */ 2155 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2156 for (i = 0; i < 0xc000; i++) 2157 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2158 2159 return 0; 2160 } 2161 2162 static const struct iwi_firmware_ohdr * 2163 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2164 { 2165 struct firmware *fp = fw->fp; 2166 const struct iwi_firmware_ohdr *hdr; 2167 2168 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2169 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2170 return NULL; 2171 } 2172 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2173 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2174 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2175 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2176 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2177 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2178 IWI_FW_REQ_MINOR); 2179 return NULL; 2180 } 2181 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2182 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2183 fw->name = fp->name; 2184 return hdr; 2185 } 2186 2187 static const struct iwi_firmware_ohdr * 2188 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2189 { 2190 const struct iwi_firmware_ohdr *hdr; 2191 2192 hdr = iwi_setup_ofw(sc, fw); 2193 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2194 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2195 fw->name); 2196 hdr = NULL; 2197 } 2198 return hdr; 2199 } 2200 2201 static void 2202 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2203 struct iwi_fw *uc, const char *ucname) 2204 { 2205 if (fw->fp == NULL) 2206 fw->fp = firmware_get(fwname); 2207 /* NB: pre-3.0 ucode is packaged separately */ 2208 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2209 uc->fp = firmware_get(ucname); 2210 } 2211 2212 /* 2213 * Get the required firmware images if not already loaded. 2214 * Note that we hold firmware images so long as the device 2215 * is marked up in case we need to reload them on device init. 2216 * This is necessary because we re-init the device sometimes 2217 * from a context where we cannot read from the filesystem 2218 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2219 * 2220 * NB: the order of get'ing and put'ing images here is 2221 * intentional to support handling firmware images bundled 2222 * by operating mode and/or all together in one file with 2223 * the boot firmware as "master". 2224 */ 2225 static int 2226 iwi_get_firmware(struct iwi_softc *sc) 2227 { 2228 struct ieee80211com *ic = &sc->sc_ic; 2229 const struct iwi_firmware_hdr *hdr; 2230 struct firmware *fp; 2231 2232 /* invalidate cached firmware on mode change */ 2233 if (sc->fw_mode != ic->ic_opmode) 2234 iwi_put_firmware(sc); 2235 2236 switch (ic->ic_opmode) { 2237 case IEEE80211_M_STA: 2238 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2239 break; 2240 2241 case IEEE80211_M_IBSS: 2242 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2243 break; 2244 2245 case IEEE80211_M_MONITOR: 2246 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2247 &sc->fw_uc, "iwi_ucode_monitor"); 2248 break; 2249 2250 default: 2251 break; 2252 } 2253 fp = sc->fw_fw.fp; 2254 if (fp == NULL) { 2255 device_printf(sc->sc_dev, "could not load firmware\n"); 2256 goto bad; 2257 } 2258 if (fp->version < 300) { 2259 /* 2260 * Firmware prior to 3.0 was packaged as separate 2261 * boot, firmware, and ucode images. Verify the 2262 * ucode image was read in, retrieve the boot image 2263 * if needed, and check version stamps for consistency. 2264 * The version stamps in the data are also checked 2265 * above; this is a bit paranoid but is a cheap 2266 * safeguard against mis-packaging. 2267 */ 2268 if (sc->fw_uc.fp == NULL) { 2269 device_printf(sc->sc_dev, "could not load ucode\n"); 2270 goto bad; 2271 } 2272 if (sc->fw_boot.fp == NULL) { 2273 sc->fw_boot.fp = firmware_get("iwi_boot"); 2274 if (sc->fw_boot.fp == NULL) { 2275 device_printf(sc->sc_dev, 2276 "could not load boot firmware\n"); 2277 goto bad; 2278 } 2279 } 2280 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2281 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2282 device_printf(sc->sc_dev, 2283 "firmware version mismatch: " 2284 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2285 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2286 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2287 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2288 ); 2289 goto bad; 2290 } 2291 /* 2292 * Check and setup each image. 2293 */ 2294 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2295 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2296 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2297 goto bad; 2298 } else { 2299 /* 2300 * Check and setup combined image. 2301 */ 2302 if (fp->datasize < sizeof(hdr)) { 2303 device_printf(sc->sc_dev, "image '%s' too small\n", 2304 fp->name); 2305 goto bad; 2306 } 2307 hdr = (const struct iwi_firmware_hdr *)fp->data; 2308 if (fp->datasize < sizeof(*hdr) + hdr->bsize + hdr->usize + hdr->fsize) { 2309 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2310 fp->name); 2311 goto bad; 2312 } 2313 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2314 sc->fw_boot.size = hdr->bsize; 2315 sc->fw_boot.name = fp->name; 2316 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2317 sc->fw_uc.size = hdr->usize; 2318 sc->fw_uc.name = fp->name; 2319 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2320 sc->fw_fw.size = hdr->fsize; 2321 sc->fw_fw.name = fp->name; 2322 } 2323 2324 sc->fw_mode = ic->ic_opmode; 2325 return 1; 2326 bad: 2327 iwi_put_firmware(sc); 2328 return 0; 2329 } 2330 2331 static void 2332 iwi_put_fw(struct iwi_fw *fw) 2333 { 2334 if (fw->fp != NULL) { 2335 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2336 fw->fp = NULL; 2337 } 2338 fw->data = NULL; 2339 fw->size = 0; 2340 fw->name = NULL; 2341 } 2342 2343 /* 2344 * Release any cached firmware images. 2345 */ 2346 static void 2347 iwi_put_firmware(struct iwi_softc *sc) 2348 { 2349 iwi_put_fw(&sc->fw_uc); 2350 iwi_put_fw(&sc->fw_fw); 2351 iwi_put_fw(&sc->fw_boot); 2352 } 2353 2354 static int 2355 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2356 { 2357 uint32_t tmp; 2358 const uint16_t *w; 2359 const char *uc = fw->data; 2360 size_t size = fw->size; 2361 int i, ntries, error; 2362 2363 error = 0; 2364 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2365 IWI_RST_STOP_MASTER); 2366 for (ntries = 0; ntries < 5; ntries++) { 2367 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2368 break; 2369 DELAY(10); 2370 } 2371 if (ntries == 5) { 2372 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2373 error = EIO; 2374 goto fail; 2375 } 2376 2377 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2378 DELAY(5000); 2379 2380 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2381 tmp &= ~IWI_RST_PRINCETON_RESET; 2382 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2383 2384 DELAY(5000); 2385 MEM_WRITE_4(sc, 0x3000e0, 0); 2386 DELAY(1000); 2387 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2388 DELAY(1000); 2389 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2390 DELAY(1000); 2391 MEM_WRITE_1(sc, 0x200000, 0x00); 2392 MEM_WRITE_1(sc, 0x200000, 0x40); 2393 DELAY(1000); 2394 2395 /* write microcode into adapter memory */ 2396 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2397 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2398 2399 MEM_WRITE_1(sc, 0x200000, 0x00); 2400 MEM_WRITE_1(sc, 0x200000, 0x80); 2401 2402 /* wait until we get an answer */ 2403 for (ntries = 0; ntries < 100; ntries++) { 2404 if (MEM_READ_1(sc, 0x200000) & 1) 2405 break; 2406 DELAY(100); 2407 } 2408 if (ntries == 100) { 2409 device_printf(sc->sc_dev, 2410 "timeout waiting for ucode to initialize\n"); 2411 error = EIO; 2412 goto fail; 2413 } 2414 2415 /* read the answer or the firmware will not initialize properly */ 2416 for (i = 0; i < 7; i++) 2417 MEM_READ_4(sc, 0x200004); 2418 2419 MEM_WRITE_1(sc, 0x200000, 0x00); 2420 2421 fail: 2422 return error; 2423 } 2424 2425 /* macro to handle unaligned little endian data in firmware image */ 2426 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2427 2428 static int 2429 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2430 { 2431 u_char *p, *end; 2432 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2433 int ntries, error; 2434 2435 /* copy firmware image to DMA memory */ 2436 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2437 2438 /* make sure the adapter will get up-to-date values */ 2439 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2440 2441 /* tell the adapter where the command blocks are stored */ 2442 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2443 2444 /* 2445 * Store command blocks into adapter's internal memory using register 2446 * indirections. The adapter will read the firmware image through DMA 2447 * using information stored in command blocks. 2448 */ 2449 src = sc->fw_physaddr; 2450 p = sc->fw_virtaddr; 2451 end = p + fw->size; 2452 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2453 2454 while (p < end) { 2455 dst = GETLE32(p); p += 4; src += 4; 2456 len = GETLE32(p); p += 4; src += 4; 2457 p += len; 2458 2459 while (len > 0) { 2460 mlen = min(len, IWI_CB_MAXDATALEN); 2461 2462 ctl = IWI_CB_DEFAULT_CTL | mlen; 2463 sum = ctl ^ src ^ dst; 2464 2465 /* write a command block */ 2466 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2467 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2468 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2469 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2470 2471 src += mlen; 2472 dst += mlen; 2473 len -= mlen; 2474 } 2475 } 2476 2477 /* write a fictive final command block (sentinel) */ 2478 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2479 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2480 2481 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2482 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2483 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2484 2485 /* tell the adapter to start processing command blocks */ 2486 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2487 2488 /* wait until the adapter reaches the sentinel */ 2489 for (ntries = 0; ntries < 400; ntries++) { 2490 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2491 break; 2492 DELAY(100); 2493 } 2494 if (ntries == 400) { 2495 device_printf(sc->sc_dev, 2496 "timeout processing command blocks for %s firmware\n", 2497 fw->name); 2498 error = EIO; 2499 goto fail5; 2500 } 2501 2502 /* we're done with command blocks processing */ 2503 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2504 2505 /* allow interrupts so we know when the firmware is ready */ 2506 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2507 2508 /* tell the adapter to initialize the firmware */ 2509 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2510 2511 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2512 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2513 2514 /* wait at most one second for firmware initialization to complete */ 2515 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2516 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2517 "initialization to complete\n", fw->name); 2518 } 2519 2520 fail5: 2521 return error; 2522 } 2523 2524 static int 2525 iwi_setpowermode(struct iwi_softc *sc) 2526 { 2527 struct ieee80211com *ic = &sc->sc_ic; 2528 uint32_t data; 2529 2530 if (ic->ic_flags & IEEE80211_F_PMGTON) { 2531 /* XXX set more fine-grained operation */ 2532 data = htole32(IWI_POWER_MODE_MAX); 2533 } else 2534 data = htole32(IWI_POWER_MODE_CAM); 2535 2536 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2537 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2538 } 2539 2540 static int 2541 iwi_setwepkeys(struct iwi_softc *sc) 2542 { 2543 struct ieee80211com *ic = &sc->sc_ic; 2544 struct iwi_wep_key wepkey; 2545 struct ieee80211_key *wk; 2546 int error, i; 2547 2548 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2549 wk = &ic->ic_crypto.cs_nw_keys[i]; 2550 2551 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2552 wepkey.idx = i; 2553 wepkey.len = wk->wk_keylen; 2554 memset(wepkey.key, 0, sizeof wepkey.key); 2555 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2556 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2557 wepkey.len)); 2558 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2559 sizeof wepkey); 2560 if (error != 0) 2561 return error; 2562 } 2563 return 0; 2564 } 2565 2566 static int 2567 iwi_config(struct iwi_softc *sc) 2568 { 2569 struct ieee80211com *ic = &sc->sc_ic; 2570 struct ifnet *ifp = ic->ic_ifp; 2571 struct iwi_configuration config; 2572 struct iwi_rateset rs; 2573 struct iwi_txpower power; 2574 uint32_t data; 2575 int error, i; 2576 2577 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2578 DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); 2579 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, 2580 IEEE80211_ADDR_LEN); 2581 if (error != 0) 2582 return error; 2583 2584 memset(&config, 0, sizeof config); 2585 config.bluetooth_coexistence = sc->bluetooth; 2586 config.silence_threshold = 0x1e; 2587 config.antenna = sc->antenna; 2588 config.multicast_enabled = 1; 2589 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2590 config.disable_unicast_decryption = 1; 2591 config.disable_multicast_decryption = 1; 2592 DPRINTF(("Configuring adapter\n")); 2593 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2594 if (error != 0) 2595 return error; 2596 2597 error = iwi_setpowermode(sc); 2598 if (error != 0) 2599 return error; 2600 2601 data = htole32(ic->ic_rtsthreshold); 2602 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2603 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2604 if (error != 0) 2605 return error; 2606 2607 data = htole32(ic->ic_fragthreshold); 2608 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2609 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2610 if (error != 0) 2611 return error; 2612 2613 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2614 power.mode = IWI_MODE_11B; 2615 power.nchan = 11; 2616 for (i = 0; i < 11; i++) { 2617 power.chan[i].chan = i + 1; 2618 power.chan[i].power = IWI_TXPOWER_MAX; 2619 } 2620 DPRINTF(("Setting .11b channels tx power\n")); 2621 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2622 if (error != 0) 2623 return error; 2624 2625 power.mode = IWI_MODE_11G; 2626 DPRINTF(("Setting .11g channels tx power\n")); 2627 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2628 if (error != 0) 2629 return error; 2630 } 2631 2632 rs.mode = IWI_MODE_11G; 2633 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2634 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2635 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2636 rs.nrates); 2637 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2638 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2639 if (error != 0) 2640 return error; 2641 2642 rs.mode = IWI_MODE_11A; 2643 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2644 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2645 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2646 rs.nrates); 2647 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2648 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2649 if (error != 0) 2650 return error; 2651 2652 /* if we have a desired ESSID, set it now */ 2653 if (ic->ic_des_esslen != 0) { 2654 #ifdef IWI_DEBUG 2655 if (iwi_debug > 0) { 2656 printf("Setting desired ESSID to "); 2657 ieee80211_print_essid(ic->ic_des_essid, 2658 ic->ic_des_esslen); 2659 printf("\n"); 2660 } 2661 #endif 2662 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid, 2663 ic->ic_des_esslen); 2664 if (error != 0) 2665 return error; 2666 } 2667 2668 data = htole32(arc4random()); 2669 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2670 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2671 if (error != 0) 2672 return error; 2673 2674 error = iwi_setwepkeys(sc); 2675 if (error != 0) 2676 return error; 2677 2678 /* enable adapter */ 2679 DPRINTF(("Enabling adapter\n")); 2680 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2681 } 2682 2683 static __inline void 2684 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2685 { 2686 uint8_t *st = &scan->scan_type[ix / 2]; 2687 if (ix % 2) 2688 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2689 else 2690 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2691 } 2692 2693 static int 2694 iwi_scan(struct iwi_softc *sc) 2695 { 2696 #define IEEE80211_MODE_5GHZ (1<<IEEE80211_MODE_11A) 2697 #define IEEE80211_MODE_2GHZ ((1<<IEEE80211_MODE_11B)|1<<IEEE80211_MODE_11G) 2698 struct ieee80211com *ic = &sc->sc_ic; 2699 const struct ieee80211_channel *c; 2700 struct iwi_scan_ext scan; 2701 int i, ix, start, scan_type; 2702 2703 memset(&scan, 0, sizeof scan); 2704 2705 /* XXX different dwell times for different scan types */ 2706 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime); 2707 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime); 2708 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime); 2709 2710 scan.full_scan_index = htole32(ic->ic_scan.nt_scangen); 2711 2712 scan_type = (ic->ic_des_esslen != 0) ? IWI_SCAN_TYPE_BDIRECTED : 2713 IWI_SCAN_TYPE_BROADCAST; 2714 2715 ix = 0; 2716 if (ic->ic_modecaps & IEEE80211_MODE_5GHZ) { 2717 start = ix; 2718 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 2719 c = &ic->ic_channels[i]; 2720 /* 2721 * NB: ieee80211_next_scan clears curchan from the 2722 * channel list so we must explicitly check; this 2723 * will be fixed when the new scanning support arrives. 2724 */ 2725 if (!IEEE80211_IS_CHAN_5GHZ(c) || 2726 !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan)) 2727 continue; 2728 ix++; 2729 scan.channels[ix] = i; 2730 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 2731 set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE); 2732 else 2733 set_scan_type(&scan, ix, scan_type); 2734 } 2735 if (start != ix) { 2736 scan.channels[start] = IWI_CHAN_5GHZ | (ix - start); 2737 ix++; 2738 } 2739 } 2740 if (ic->ic_modecaps & IEEE80211_MODE_2GHZ) { 2741 start = ix; 2742 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 2743 c = &ic->ic_channels[i]; 2744 /* NB: see above */ 2745 if (!IEEE80211_IS_CHAN_2GHZ(c) || 2746 !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan)) 2747 continue; 2748 ix++; 2749 scan.channels[ix] = i; 2750 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 2751 set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE); 2752 else 2753 set_scan_type(&scan, ix, scan_type); 2754 } 2755 if (start != ix) 2756 scan.channels[start] = IWI_CHAN_2GHZ | (ix - start); 2757 } 2758 2759 DPRINTF(("Start scanning\n")); 2760 /* 2761 * With 100ms/channel dwell time and a max of ~20 channels 2762 * 5 seconds may be too tight; leave a bit more slack. 2763 */ 2764 sc->sc_scan_timer = 7; /* seconds to complete */ 2765 sc->sc_ifp->if_timer = 1; 2766 sc->flags |= IWI_FLAG_SCANNING; 2767 return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan); 2768 #undef IEEE80211_MODE_5GHZ 2769 #undef IEEE80211_MODE_2GHZ 2770 } 2771 2772 static void 2773 iwi_scanabort(void *arg, int npending) 2774 { 2775 struct iwi_softc *sc = arg; 2776 IWI_LOCK_DECL; 2777 2778 IWI_LOCK(sc); 2779 /* NB: make sure we're still scanning */ 2780 if (sc->flags & IWI_FLAG_SCANNING) 2781 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 2782 IWI_UNLOCK(sc); 2783 } 2784 2785 static void 2786 iwi_scanstart(void *arg, int npending) 2787 { 2788 struct iwi_softc *sc = arg; 2789 struct ieee80211com *ic = &sc->sc_ic; 2790 IWI_LOCK_DECL; 2791 2792 IWI_LOCK(sc); 2793 /* 2794 * Tell the card to kick off a scan. We guard this 2795 * by checking IWI_FLAG_SCANNING as otherwise we'll 2796 * do this twice because ieee80211_begin_scan will 2797 * immediately call us back to scan the first channel 2798 * in the list. 2799 */ 2800 if (sc->flags & IWI_FLAG_SCANNING) { 2801 ieee80211_begin_scan(ic, 1); 2802 if (iwi_scan(sc) != 0) { 2803 /* XXX should not happen */ 2804 sc->flags &= ~IWI_FLAG_SCANNING; 2805 ieee80211_new_state(ic, IEEE80211_S_INIT, 0); 2806 } 2807 } 2808 IWI_UNLOCK(sc); 2809 } 2810 2811 static void 2812 iwi_scandone(void *arg, int npending) 2813 { 2814 struct iwi_softc *sc = arg; 2815 struct ieee80211com *ic = &sc->sc_ic; 2816 IWI_LOCK_DECL; 2817 2818 IWI_LOCK(sc); 2819 if (sc->flags & IWI_FLAG_ASSOCIATED) 2820 iwi_disassociate(sc, 0); 2821 ieee80211_end_scan(ic); 2822 IWI_UNLOCK(sc); 2823 } 2824 2825 /* 2826 * Set the current channel by doing a passive scan. Note this 2827 * is explicitly for monitor mode operation; do not use it for 2828 * anything else (sigh). 2829 */ 2830 static void 2831 iwi_scanchan(void *arg, int npending) 2832 { 2833 struct iwi_softc *sc = arg; 2834 struct ieee80211com *ic; 2835 struct ieee80211_channel *chan; 2836 struct iwi_scan_ext scan; 2837 IWI_LOCK_DECL; 2838 2839 IWI_LOCK(sc); 2840 ic = &sc->sc_ic; 2841 KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR, 2842 ("opmode %u", ic->ic_opmode)); 2843 chan = ic->ic_ibss_chan; 2844 2845 memset(&scan, 0, sizeof scan); 2846 /* 2847 * Set the dwell time to a fairly small value. The firmware 2848 * is prone to crash when aborting a scan so it's better to 2849 * let a scan complete before changing channels--such as when 2850 * channel hopping in monitor mode. 2851 */ 2852 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000); 2853 scan.full_scan_index = htole32(ic->ic_scan.nt_scangen); 2854 if (IEEE80211_IS_CHAN_5GHZ(chan)) 2855 scan.channels[0] = 1 | IWI_CHAN_5GHZ; 2856 else 2857 scan.channels[0] = 1 | IWI_CHAN_2GHZ; 2858 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2859 set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE); 2860 2861 DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan))); 2862 sc->flags |= IWI_FLAG_SCANNING; 2863 (void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan); 2864 IWI_UNLOCK(sc); 2865 } 2866 2867 static int 2868 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2869 { 2870 struct iwi_sensitivity sens; 2871 2872 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2873 2874 memset(&sens, 0, sizeof sens); 2875 sens.rssi = htole16(rssi_dbm); 2876 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2877 } 2878 2879 static int 2880 iwi_auth_and_assoc(struct iwi_softc *sc) 2881 { 2882 struct ieee80211com *ic = &sc->sc_ic; 2883 struct ifnet *ifp = ic->ic_ifp; 2884 struct ieee80211_node *ni = ic->ic_bss; 2885 struct iwi_configuration config; 2886 struct iwi_associate *assoc = &sc->assoc; 2887 struct iwi_rateset rs; 2888 uint16_t capinfo; 2889 int error; 2890 2891 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2892 memset(&config, 0, sizeof config); 2893 config.bluetooth_coexistence = sc->bluetooth; 2894 config.antenna = sc->antenna; 2895 config.multicast_enabled = 1; 2896 config.use_protection = 1; 2897 config.answer_pbreq = 2898 (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2899 config.disable_unicast_decryption = 1; 2900 config.disable_multicast_decryption = 1; 2901 DPRINTF(("Configuring adapter\n")); 2902 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2903 if (error != 0) 2904 return error; 2905 } 2906 2907 #ifdef IWI_DEBUG 2908 if (iwi_debug > 0) { 2909 printf("Setting ESSID to "); 2910 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2911 printf("\n"); 2912 } 2913 #endif 2914 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2915 if (error != 0) 2916 return error; 2917 2918 /* the rate set has already been "negotiated" */ 2919 rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : 2920 IWI_MODE_11G; 2921 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2922 rs.nrates = ni->ni_rates.rs_nrates; 2923 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2924 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2925 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2926 if (error != 0) 2927 return error; 2928 2929 memset(assoc, 0, sizeof *assoc); 2930 2931 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) { 2932 /* NB: don't treat WME setup as failure */ 2933 if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0) 2934 assoc->policy |= htole16(IWI_POLICY_WME); 2935 /* XXX complain on failure? */ 2936 } 2937 2938 if (ic->ic_opt_ie != NULL) { 2939 DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len)); 2940 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie, 2941 ic->ic_opt_ie_len); 2942 if (error != 0) 2943 return error; 2944 } 2945 2946 error = iwi_set_sensitivity(sc, ni->ni_rssi); 2947 if (error != 0) 2948 return error; 2949 2950 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) 2951 assoc->mode = IWI_MODE_11A; 2952 else if (IEEE80211_IS_CHAN_G(ni->ni_chan)) 2953 assoc->mode = IWI_MODE_11G; 2954 else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) 2955 assoc->mode = IWI_MODE_11B; 2956 /* XXX else error */ 2957 assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2958 /* 2959 * NB: do not arrange for shared key auth w/o privacy 2960 * (i.e. a wep key); it causes a firmware error. 2961 */ 2962 if ((ic->ic_flags & IEEE80211_F_PRIVACY) && 2963 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2964 assoc->auth = IWI_AUTH_SHARED; 2965 /* 2966 * It's possible to have privacy marked but no default 2967 * key setup. This typically is due to a user app bug 2968 * but if we blindly grab the key the firmware will 2969 * barf so avoid it for now. 2970 */ 2971 if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE) 2972 assoc->auth |= ic->ic_crypto.cs_def_txkey << 4; 2973 2974 error = iwi_setwepkeys(sc); 2975 if (error != 0) 2976 return error; 2977 } 2978 if (ic->ic_flags & IEEE80211_F_WPA) 2979 assoc->policy |= htole16(IWI_POLICY_WPA); 2980 if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2981 assoc->type = IWI_HC_IBSS_START; 2982 else 2983 assoc->type = IWI_HC_ASSOC; 2984 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2985 2986 if (ic->ic_opmode == IEEE80211_M_IBSS) 2987 capinfo = IEEE80211_CAPINFO_IBSS; 2988 else 2989 capinfo = IEEE80211_CAPINFO_ESS; 2990 if (ic->ic_flags & IEEE80211_F_PRIVACY) 2991 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2992 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2993 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2994 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2995 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2996 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2997 assoc->capinfo = htole16(capinfo); 2998 2999 assoc->lintval = htole16(ic->ic_lintval); 3000 assoc->intval = htole16(ni->ni_intval); 3001 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 3002 if (ic->ic_opmode == IEEE80211_M_IBSS) 3003 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 3004 else 3005 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 3006 3007 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 3008 "auth %u capinfo 0x%x lintval %u bintval %u\n", 3009 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 3010 assoc->bssid, ":", assoc->dst, ":", 3011 assoc->chan, le16toh(assoc->policy), assoc->auth, 3012 le16toh(assoc->capinfo), le16toh(assoc->lintval), 3013 le16toh(assoc->intval))); 3014 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3015 } 3016 3017 static int 3018 iwi_disassociate(struct iwi_softc *sc, int quiet) 3019 { 3020 struct iwi_associate *assoc = &sc->assoc; 3021 3022 if (quiet) 3023 assoc->type = IWI_HC_DISASSOC_QUIET; 3024 else 3025 assoc->type = IWI_HC_DISASSOC; 3026 3027 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3028 assoc->bssid, ":", assoc->chan)); 3029 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3030 } 3031 3032 static void 3033 iwi_down(void *arg, int npending) 3034 { 3035 struct iwi_softc *sc = arg; 3036 IWI_LOCK_DECL; 3037 3038 IWI_LOCK(sc); 3039 iwi_disassociate(sc, 0); 3040 IWI_UNLOCK(sc); 3041 } 3042 3043 static void 3044 iwi_init(void *priv) 3045 { 3046 struct iwi_softc *sc = priv; 3047 IWI_LOCK_DECL; 3048 3049 IWI_LOCK(sc); 3050 iwi_init_locked(sc, 0); 3051 IWI_UNLOCK(sc); 3052 } 3053 3054 static void 3055 iwi_init_locked(void *priv, int force) 3056 { 3057 struct iwi_softc *sc = priv; 3058 struct ieee80211com *ic = &sc->sc_ic; 3059 struct ifnet *ifp = ic->ic_ifp; 3060 struct iwi_rx_data *data; 3061 int i; 3062 IWI_LOCK_DECL; 3063 3064 if (sc->flags & IWI_FLAG_FW_LOADING) 3065 return; /* XXX: condvar? */ 3066 3067 iwi_stop(sc); 3068 3069 if (iwi_reset(sc) != 0) { 3070 device_printf(sc->sc_dev, "could not reset adapter\n"); 3071 goto fail; 3072 } 3073 3074 sc->flags |= IWI_FLAG_FW_LOADING; 3075 3076 IWI_UNLOCK(sc); 3077 if (!iwi_get_firmware(sc)) { 3078 IWI_LOCK(sc); 3079 goto fail; 3080 } 3081 3082 /* allocate DMA memory for mapping firmware image */ 3083 if (sc->fw_boot.size > sc->fw_dma_size) 3084 sc->fw_dma_size = sc->fw_boot.size; 3085 if (sc->fw_fw.size > sc->fw_dma_size) 3086 sc->fw_dma_size = sc->fw_fw.size; 3087 if (sc->fw_uc.size > sc->fw_dma_size) 3088 sc->fw_dma_size = sc->fw_uc.size; 3089 3090 if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 3091 BUS_SPACE_MAXADDR, NULL, NULL, sc->fw_dma_size, 1, sc->fw_dma_size, 3092 0, NULL, NULL, &sc->fw_dmat) != 0) { 3093 device_printf(sc->sc_dev, 3094 "could not create firmware DMA tag\n"); 3095 IWI_LOCK(sc); 3096 goto fail; 3097 } 3098 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3099 &sc->fw_map) != 0) { 3100 device_printf(sc->sc_dev, 3101 "could not allocate firmware DMA memory\n"); 3102 IWI_LOCK(sc); 3103 goto fail2; 3104 } 3105 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3106 sc->fw_dma_size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3107 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3108 IWI_LOCK(sc); 3109 goto fail3; 3110 } 3111 IWI_LOCK(sc); 3112 3113 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3114 device_printf(sc->sc_dev, 3115 "could not load boot firmware %s\n", sc->fw_boot.name); 3116 goto fail4; 3117 } 3118 3119 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3120 device_printf(sc->sc_dev, 3121 "could not load microcode %s\n", sc->fw_uc.name); 3122 goto fail4; 3123 } 3124 3125 iwi_stop_master(sc); 3126 3127 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3128 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3129 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3130 3131 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3132 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3133 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3134 3135 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3136 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3137 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3138 3139 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3140 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3141 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3142 3143 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3144 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3145 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3146 3147 for (i = 0; i < sc->rxq.count; i++) { 3148 data = &sc->rxq.data[i]; 3149 CSR_WRITE_4(sc, data->reg, data->physaddr); 3150 } 3151 3152 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3153 3154 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3155 device_printf(sc->sc_dev, 3156 "could not load main firmware %s\n", sc->fw_fw.name); 3157 goto fail4; 3158 } 3159 sc->flags |= IWI_FLAG_FW_INITED; 3160 3161 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 3162 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3163 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3164 bus_dma_tag_destroy(sc->fw_dmat); 3165 3166 if (iwi_config(sc) != 0) { 3167 device_printf(sc->sc_dev, "device configuration failed\n"); 3168 goto fail; 3169 } 3170 3171 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3172 /* 3173 * NB: When restarting the adapter clock the state 3174 * machine regardless of the roaming mode; otherwise 3175 * we need to notify user apps so they can manually 3176 * get us going again. 3177 */ 3178 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force) 3179 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3180 } else 3181 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3182 3183 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3184 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3185 3186 sc->flags &= ~IWI_FLAG_FW_LOADING; 3187 return; 3188 3189 fail4: bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 3190 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3191 fail3: bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3192 fail2: bus_dma_tag_destroy(sc->fw_dmat); 3193 fail: ifp->if_flags &= ~IFF_UP; 3194 sc->flags &= ~IWI_FLAG_FW_LOADING; 3195 iwi_stop(sc); 3196 iwi_put_firmware(sc); 3197 } 3198 3199 static void 3200 iwi_stop(void *priv) 3201 { 3202 struct iwi_softc *sc = priv; 3203 struct ieee80211com *ic = &sc->sc_ic; 3204 struct ifnet *ifp = ic->ic_ifp; 3205 3206 if (sc->sc_softled) { 3207 callout_stop(&sc->sc_ledtimer); 3208 sc->sc_blinking = 0; 3209 } 3210 3211 iwi_stop_master(sc); 3212 3213 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3214 3215 /* reset rings */ 3216 iwi_reset_cmd_ring(sc, &sc->cmdq); 3217 iwi_reset_tx_ring(sc, &sc->txq[0]); 3218 iwi_reset_tx_ring(sc, &sc->txq[1]); 3219 iwi_reset_tx_ring(sc, &sc->txq[2]); 3220 iwi_reset_tx_ring(sc, &sc->txq[3]); 3221 iwi_reset_rx_ring(sc, &sc->rxq); 3222 3223 ifp->if_timer = 0; 3224 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3225 3226 sc->sc_tx_timer = 0; 3227 sc->sc_rfkill_timer = 0; 3228 sc->sc_scan_timer = 0; 3229 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED); 3230 3231 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3232 } 3233 3234 static void 3235 iwi_restart(void *arg, int npending) 3236 { 3237 struct iwi_softc *sc = arg; 3238 IWI_LOCK_DECL; 3239 3240 IWI_LOCK(sc); 3241 iwi_init_locked(sc, 1); /* NB: force state machine */ 3242 IWI_UNLOCK(sc); 3243 } 3244 3245 /* 3246 * Return whether or not the radio is enabled in hardware 3247 * (i.e. the rfkill switch is "off"). 3248 */ 3249 static int 3250 iwi_getrfkill(struct iwi_softc *sc) 3251 { 3252 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3253 } 3254 3255 static void 3256 iwi_radio_on(void *arg, int pending) 3257 { 3258 struct iwi_softc *sc = arg; 3259 3260 device_printf(sc->sc_dev, "radio turned on\n"); 3261 iwi_init(sc); 3262 } 3263 3264 static void 3265 iwi_radio_off(void *arg, int pending) 3266 { 3267 struct iwi_softc *sc = arg; 3268 3269 device_printf(sc->sc_dev, "radio turned off\n"); 3270 iwi_stop(sc); 3271 sc->sc_rfkill_timer = 2; 3272 sc->sc_ifp->if_timer = 1; 3273 } 3274 3275 static int 3276 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3277 { 3278 struct iwi_softc *sc = arg1; 3279 uint32_t size, buf[128]; 3280 3281 if (!(sc->flags & IWI_FLAG_FW_INITED)) { 3282 memset(buf, 0, sizeof buf); 3283 return SYSCTL_OUT(req, buf, sizeof buf); 3284 } 3285 3286 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3287 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3288 3289 return SYSCTL_OUT(req, buf, sizeof buf); 3290 } 3291 3292 static int 3293 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3294 { 3295 struct iwi_softc *sc = arg1; 3296 int val = !iwi_getrfkill(sc); 3297 3298 return SYSCTL_OUT(req, &val, sizeof val); 3299 } 3300 3301 /* 3302 * Add sysctl knobs. 3303 */ 3304 static void 3305 iwi_sysctlattach(struct iwi_softc *sc) 3306 { 3307 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3308 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3309 3310 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3311 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3312 "radio transmitter switch state (0=off, 1=on)"); 3313 3314 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3315 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3316 "statistics"); 3317 3318 sc->dwelltime = 100; 3319 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell", 3320 CTLFLAG_RW, &sc->dwelltime, 0, 3321 "channel dwell time (ms) for AP/station scanning"); 3322 3323 sc->bluetooth = 0; 3324 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3325 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3326 3327 sc->antenna = IWI_ANTENNA_AUTO; 3328 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3329 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3330 } 3331 3332 /* 3333 * LED support. 3334 * 3335 * Different cards have different capabilities. Some have three 3336 * led's while others have only one. The linux ipw driver defines 3337 * led's for link state (associated or not), band (11a, 11g, 11b), 3338 * and for link activity. We use one led and vary the blink rate 3339 * according to the tx/rx traffic a la the ath driver. 3340 */ 3341 3342 static __inline uint32_t 3343 iwi_toggle_event(uint32_t r) 3344 { 3345 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3346 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3347 } 3348 3349 static uint32_t 3350 iwi_read_event(struct iwi_softc *sc) 3351 { 3352 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3353 } 3354 3355 static void 3356 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3357 { 3358 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3359 } 3360 3361 static void 3362 iwi_led_done(void *arg) 3363 { 3364 struct iwi_softc *sc = arg; 3365 3366 sc->sc_blinking = 0; 3367 } 3368 3369 /* 3370 * Turn the activity LED off: flip the pin and then set a timer so no 3371 * update will happen for the specified duration. 3372 */ 3373 static void 3374 iwi_led_off(void *arg) 3375 { 3376 struct iwi_softc *sc = arg; 3377 uint32_t v; 3378 3379 v = iwi_read_event(sc); 3380 v &= ~sc->sc_ledpin; 3381 iwi_write_event(sc, iwi_toggle_event(v)); 3382 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3383 } 3384 3385 /* 3386 * Blink the LED according to the specified on/off times. 3387 */ 3388 static void 3389 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3390 { 3391 uint32_t v; 3392 3393 v = iwi_read_event(sc); 3394 v |= sc->sc_ledpin; 3395 iwi_write_event(sc, iwi_toggle_event(v)); 3396 sc->sc_blinking = 1; 3397 sc->sc_ledoff = off; 3398 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3399 } 3400 3401 static void 3402 iwi_led_event(struct iwi_softc *sc, int event) 3403 { 3404 #define N(a) (sizeof(a)/sizeof(a[0])) 3405 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3406 static const struct { 3407 u_int rate; /* tx/rx iwi rate */ 3408 u_int16_t timeOn; /* LED on time (ms) */ 3409 u_int16_t timeOff; /* LED off time (ms) */ 3410 } blinkrates[] = { 3411 { IWI_RATE_OFDM54, 40, 10 }, 3412 { IWI_RATE_OFDM48, 44, 11 }, 3413 { IWI_RATE_OFDM36, 50, 13 }, 3414 { IWI_RATE_OFDM24, 57, 14 }, 3415 { IWI_RATE_OFDM18, 67, 16 }, 3416 { IWI_RATE_OFDM12, 80, 20 }, 3417 { IWI_RATE_DS11, 100, 25 }, 3418 { IWI_RATE_OFDM9, 133, 34 }, 3419 { IWI_RATE_OFDM6, 160, 40 }, 3420 { IWI_RATE_DS5, 200, 50 }, 3421 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3422 { IWI_RATE_DS2, 267, 66 }, 3423 { IWI_RATE_DS1, 400, 100 }, 3424 { 0, 500, 130 }, /* unknown rate/polling */ 3425 }; 3426 uint32_t txrate; 3427 int j = 0; /* XXX silence compiler */ 3428 3429 sc->sc_ledevent = ticks; /* time of last event */ 3430 if (sc->sc_blinking) /* don't interrupt active blink */ 3431 return; 3432 switch (event) { 3433 case IWI_LED_POLL: 3434 j = N(blinkrates)-1; 3435 break; 3436 case IWI_LED_TX: 3437 /* read current transmission rate from adapter */ 3438 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3439 if (blinkrates[sc->sc_txrix].rate != txrate) { 3440 for (j = 0; j < N(blinkrates)-1; j++) 3441 if (blinkrates[j].rate == txrate) 3442 break; 3443 sc->sc_txrix = j; 3444 } else 3445 j = sc->sc_txrix; 3446 break; 3447 case IWI_LED_RX: 3448 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3449 for (j = 0; j < N(blinkrates)-1; j++) 3450 if (blinkrates[j].rate == sc->sc_rxrate) 3451 break; 3452 sc->sc_rxrix = j; 3453 } else 3454 j = sc->sc_rxrix; 3455 break; 3456 } 3457 /* XXX beware of overflow */ 3458 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3459 (blinkrates[j].timeOff * hz) / 1000); 3460 #undef N 3461 } 3462 3463 static int 3464 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3465 { 3466 struct iwi_softc *sc = arg1; 3467 int softled = sc->sc_softled; 3468 int error; 3469 3470 error = sysctl_handle_int(oidp, &softled, 0, req); 3471 if (error || !req->newptr) 3472 return error; 3473 softled = (softled != 0); 3474 if (softled != sc->sc_softled) { 3475 if (softled) { 3476 uint32_t v = iwi_read_event(sc); 3477 v &= ~sc->sc_ledpin; 3478 iwi_write_event(sc, iwi_toggle_event(v)); 3479 } 3480 sc->sc_softled = softled; 3481 } 3482 return 0; 3483 } 3484 3485 static void 3486 iwi_ledattach(struct iwi_softc *sc) 3487 { 3488 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3489 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3490 3491 sc->sc_blinking = 0; 3492 sc->sc_ledstate = 1; 3493 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3494 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3495 3496 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3497 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3498 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3499 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3500 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3501 "pin setting to turn activity LED on"); 3502 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3503 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3504 "idle time for inactivity LED (ticks)"); 3505 /* XXX for debugging */ 3506 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3507 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3508 "NIC type from EEPROM"); 3509 3510 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3511 sc->sc_softled = 1; 3512 3513 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3514 if (sc->sc_nictype == 1) { 3515 /* 3516 * NB: led's are reversed. 3517 */ 3518 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3519 } 3520 } 3521