1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_arp.h> 68 #include <net/ethernet.h> 69 #include <net/if_dl.h> 70 #include <net/if_media.h> 71 #include <net/if_types.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_radiotap.h> 75 #include <net80211/ieee80211_input.h> 76 #include <net80211/ieee80211_regdomain.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip.h> 82 #include <netinet/if_ether.h> 83 84 #include <dev/iwi/if_iwireg.h> 85 #include <dev/iwi/if_iwivar.h> 86 87 #define IWI_DEBUG 88 #ifdef IWI_DEBUG 89 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 90 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 91 int iwi_debug = 0; 92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 93 94 static const char *iwi_fw_states[] = { 95 "IDLE", /* IWI_FW_IDLE */ 96 "LOADING", /* IWI_FW_LOADING */ 97 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 98 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 99 "SCANNING", /* IWI_FW_SCANNING */ 100 }; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n, x) 104 #endif 105 106 MODULE_DEPEND(iwi, pci, 1, 1, 1); 107 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 108 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 109 110 enum { 111 IWI_LED_TX, 112 IWI_LED_RX, 113 IWI_LED_POLL, 114 }; 115 116 struct iwi_ident { 117 uint16_t vendor; 118 uint16_t device; 119 const char *name; 120 }; 121 122 static const struct iwi_ident iwi_ident_table[] = { 123 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 124 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 125 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 126 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 127 128 { 0, 0, NULL } 129 }; 130 131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void iwi_vap_delete(struct ieee80211vap *); 136 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 137 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 138 int); 139 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 140 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 142 int, bus_addr_t, bus_addr_t); 143 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 144 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 146 int); 147 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 148 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 150 const uint8_t [IEEE80211_ADDR_LEN]); 151 static void iwi_node_free(struct ieee80211_node *); 152 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 153 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 154 static void iwi_wme_init(struct iwi_softc *); 155 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 156 static void iwi_update_wme(void *, int); 157 static int iwi_wme_update(struct ieee80211com *); 158 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 159 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 160 struct iwi_frame *); 161 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 162 static void iwi_rx_intr(struct iwi_softc *); 163 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 164 static void iwi_intr(void *); 165 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 166 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 167 static int iwi_tx_start(struct ifnet *, struct mbuf *, 168 struct ieee80211_node *, int); 169 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 170 const struct ieee80211_bpf_params *); 171 static void iwi_start_locked(struct ifnet *); 172 static void iwi_start(struct ifnet *); 173 static void iwi_watchdog(void *); 174 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 175 static void iwi_stop_master(struct iwi_softc *); 176 static int iwi_reset(struct iwi_softc *); 177 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 178 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 179 static void iwi_release_fw_dma(struct iwi_softc *sc); 180 static int iwi_config(struct iwi_softc *); 181 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 182 static void iwi_put_firmware(struct iwi_softc *); 183 static void iwi_monitor_scan(void *, int); 184 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 185 static void iwi_scan_start(struct ieee80211com *); 186 static void iwi_scan_end(struct ieee80211com *); 187 static void iwi_set_channel(struct ieee80211com *); 188 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 189 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 190 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 191 static void iwi_disassoc(void *, int); 192 static int iwi_disassociate(struct iwi_softc *, int quiet); 193 static void iwi_init_locked(struct iwi_softc *); 194 static void iwi_init(void *); 195 static int iwi_init_fw_dma(struct iwi_softc *, int); 196 static void iwi_stop_locked(void *); 197 static void iwi_stop(struct iwi_softc *); 198 static void iwi_restart(void *, int); 199 static int iwi_getrfkill(struct iwi_softc *); 200 static void iwi_radio_on(void *, int); 201 static void iwi_radio_off(void *, int); 202 static void iwi_sysctlattach(struct iwi_softc *); 203 static void iwi_led_event(struct iwi_softc *, int); 204 static void iwi_ledattach(struct iwi_softc *); 205 206 static int iwi_probe(device_t); 207 static int iwi_attach(device_t); 208 static int iwi_detach(device_t); 209 static int iwi_shutdown(device_t); 210 static int iwi_suspend(device_t); 211 static int iwi_resume(device_t); 212 213 static device_method_t iwi_methods[] = { 214 /* Device interface */ 215 DEVMETHOD(device_probe, iwi_probe), 216 DEVMETHOD(device_attach, iwi_attach), 217 DEVMETHOD(device_detach, iwi_detach), 218 DEVMETHOD(device_shutdown, iwi_shutdown), 219 DEVMETHOD(device_suspend, iwi_suspend), 220 DEVMETHOD(device_resume, iwi_resume), 221 222 { 0, 0 } 223 }; 224 225 static driver_t iwi_driver = { 226 "iwi", 227 iwi_methods, 228 sizeof (struct iwi_softc) 229 }; 230 231 static devclass_t iwi_devclass; 232 233 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 234 235 MODULE_VERSION(iwi, 1); 236 237 static __inline uint8_t 238 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 239 { 240 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 241 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 242 } 243 244 static __inline uint32_t 245 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 246 { 247 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 248 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 249 } 250 251 static int 252 iwi_probe(device_t dev) 253 { 254 const struct iwi_ident *ident; 255 256 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 257 if (pci_get_vendor(dev) == ident->vendor && 258 pci_get_device(dev) == ident->device) { 259 device_set_desc(dev, ident->name); 260 return 0; 261 } 262 } 263 return ENXIO; 264 } 265 266 /* Base Address Register */ 267 #define IWI_PCI_BAR0 0x10 268 269 static int 270 iwi_attach(device_t dev) 271 { 272 struct iwi_softc *sc = device_get_softc(dev); 273 struct ifnet *ifp; 274 struct ieee80211com *ic; 275 uint16_t val; 276 int i, error; 277 uint8_t bands; 278 uint8_t macaddr[IEEE80211_ADDR_LEN]; 279 280 sc->sc_dev = dev; 281 282 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 283 if (ifp == NULL) { 284 device_printf(dev, "can not if_alloc()\n"); 285 return ENXIO; 286 } 287 ic = ifp->if_l2com; 288 289 IWI_LOCK_INIT(sc); 290 291 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 292 293 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 294 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 295 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 296 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 297 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 298 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 299 300 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 301 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 302 303 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 304 device_printf(dev, "chip is in D%d power mode " 305 "-- setting to D0\n", pci_get_powerstate(dev)); 306 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 307 } 308 309 pci_write_config(dev, 0x41, 0, 1); 310 311 /* enable bus-mastering */ 312 pci_enable_busmaster(dev); 313 314 sc->mem_rid = IWI_PCI_BAR0; 315 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 316 RF_ACTIVE); 317 if (sc->mem == NULL) { 318 device_printf(dev, "could not allocate memory resource\n"); 319 goto fail; 320 } 321 322 sc->sc_st = rman_get_bustag(sc->mem); 323 sc->sc_sh = rman_get_bushandle(sc->mem); 324 325 sc->irq_rid = 0; 326 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 327 RF_ACTIVE | RF_SHAREABLE); 328 if (sc->irq == NULL) { 329 device_printf(dev, "could not allocate interrupt resource\n"); 330 goto fail; 331 } 332 333 if (iwi_reset(sc) != 0) { 334 device_printf(dev, "could not reset adapter\n"); 335 goto fail; 336 } 337 338 /* 339 * Allocate rings. 340 */ 341 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 342 device_printf(dev, "could not allocate Cmd ring\n"); 343 goto fail; 344 } 345 346 for (i = 0; i < 4; i++) { 347 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 348 IWI_CSR_TX1_RIDX + i * 4, 349 IWI_CSR_TX1_WIDX + i * 4); 350 if (error != 0) { 351 device_printf(dev, "could not allocate Tx ring %d\n", 352 i+i); 353 goto fail; 354 } 355 } 356 357 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 358 device_printf(dev, "could not allocate Rx ring\n"); 359 goto fail; 360 } 361 362 iwi_wme_init(sc); 363 364 ifp->if_softc = sc; 365 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 367 ifp->if_init = iwi_init; 368 ifp->if_ioctl = iwi_ioctl; 369 ifp->if_start = iwi_start; 370 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 371 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 372 IFQ_SET_READY(&ifp->if_snd); 373 374 ic->ic_ifp = ifp; 375 ic->ic_opmode = IEEE80211_M_STA; 376 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 377 378 /* set device capabilities */ 379 ic->ic_caps = 380 IEEE80211_C_STA /* station mode supported */ 381 | IEEE80211_C_IBSS /* IBSS mode supported */ 382 | IEEE80211_C_MONITOR /* monitor mode supported */ 383 | IEEE80211_C_PMGT /* power save supported */ 384 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 385 | IEEE80211_C_WPA /* 802.11i */ 386 | IEEE80211_C_WME /* 802.11e */ 387 #if 0 388 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 389 #endif 390 ; 391 392 /* read MAC address from EEPROM */ 393 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 394 macaddr[0] = val & 0xff; 395 macaddr[1] = val >> 8; 396 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 397 macaddr[2] = val & 0xff; 398 macaddr[3] = val >> 8; 399 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 400 macaddr[4] = val & 0xff; 401 macaddr[5] = val >> 8; 402 403 bands = 0; 404 setbit(&bands, IEEE80211_MODE_11B); 405 setbit(&bands, IEEE80211_MODE_11G); 406 if (pci_get_device(dev) >= 0x4223) 407 setbit(&bands, IEEE80211_MODE_11A); 408 ieee80211_init_channels(ic, NULL, &bands); 409 410 ieee80211_ifattach(ic, macaddr); 411 /* override default methods */ 412 ic->ic_node_alloc = iwi_node_alloc; 413 sc->sc_node_free = ic->ic_node_free; 414 ic->ic_node_free = iwi_node_free; 415 ic->ic_raw_xmit = iwi_raw_xmit; 416 ic->ic_scan_start = iwi_scan_start; 417 ic->ic_scan_end = iwi_scan_end; 418 ic->ic_set_channel = iwi_set_channel; 419 ic->ic_scan_curchan = iwi_scan_curchan; 420 ic->ic_scan_mindwell = iwi_scan_mindwell; 421 ic->ic_wme.wme_update = iwi_wme_update; 422 423 ic->ic_vap_create = iwi_vap_create; 424 ic->ic_vap_delete = iwi_vap_delete; 425 426 ieee80211_radiotap_attach(ic, 427 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 428 IWI_TX_RADIOTAP_PRESENT, 429 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 430 IWI_RX_RADIOTAP_PRESENT); 431 432 iwi_sysctlattach(sc); 433 iwi_ledattach(sc); 434 435 /* 436 * Hook our interrupt after all initialization is complete. 437 */ 438 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 439 NULL, iwi_intr, sc, &sc->sc_ih); 440 if (error != 0) { 441 device_printf(dev, "could not set up interrupt\n"); 442 goto fail; 443 } 444 445 if (bootverbose) 446 ieee80211_announce(ic); 447 448 return 0; 449 fail: 450 /* XXX fix */ 451 iwi_detach(dev); 452 return ENXIO; 453 } 454 455 static int 456 iwi_detach(device_t dev) 457 { 458 struct iwi_softc *sc = device_get_softc(dev); 459 struct ifnet *ifp = sc->sc_ifp; 460 struct ieee80211com *ic = ifp->if_l2com; 461 462 /* NB: do early to drain any pending tasks */ 463 ieee80211_draintask(ic, &sc->sc_radiontask); 464 ieee80211_draintask(ic, &sc->sc_radiofftask); 465 ieee80211_draintask(ic, &sc->sc_restarttask); 466 ieee80211_draintask(ic, &sc->sc_disassoctask); 467 ieee80211_draintask(ic, &sc->sc_monitortask); 468 469 iwi_stop(sc); 470 471 ieee80211_ifdetach(ic); 472 473 iwi_put_firmware(sc); 474 iwi_release_fw_dma(sc); 475 476 iwi_free_cmd_ring(sc, &sc->cmdq); 477 iwi_free_tx_ring(sc, &sc->txq[0]); 478 iwi_free_tx_ring(sc, &sc->txq[1]); 479 iwi_free_tx_ring(sc, &sc->txq[2]); 480 iwi_free_tx_ring(sc, &sc->txq[3]); 481 iwi_free_rx_ring(sc, &sc->rxq); 482 483 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 484 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 485 486 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 487 488 delete_unrhdr(sc->sc_unr); 489 490 IWI_LOCK_DESTROY(sc); 491 492 if_free(ifp); 493 494 return 0; 495 } 496 497 static struct ieee80211vap * 498 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 499 enum ieee80211_opmode opmode, int flags, 500 const uint8_t bssid[IEEE80211_ADDR_LEN], 501 const uint8_t mac[IEEE80211_ADDR_LEN]) 502 { 503 struct ifnet *ifp = ic->ic_ifp; 504 struct iwi_softc *sc = ifp->if_softc; 505 struct iwi_vap *ivp; 506 struct ieee80211vap *vap; 507 int i; 508 509 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 510 return NULL; 511 /* 512 * Get firmware image (and possibly dma memory) on mode change. 513 */ 514 if (iwi_get_firmware(sc, opmode)) 515 return NULL; 516 /* allocate DMA memory for mapping firmware image */ 517 i = sc->fw_fw.size; 518 if (sc->fw_boot.size > i) 519 i = sc->fw_boot.size; 520 /* XXX do we dma the ucode as well ? */ 521 if (sc->fw_uc.size > i) 522 i = sc->fw_uc.size; 523 if (iwi_init_fw_dma(sc, i)) 524 return NULL; 525 526 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 527 M_80211_VAP, M_NOWAIT | M_ZERO); 528 if (ivp == NULL) 529 return NULL; 530 vap = &ivp->iwi_vap; 531 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 532 /* override the default, the setting comes from the linux driver */ 533 vap->iv_bmissthreshold = 24; 534 /* override with driver methods */ 535 ivp->iwi_newstate = vap->iv_newstate; 536 vap->iv_newstate = iwi_newstate; 537 538 /* complete setup */ 539 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 540 ic->ic_opmode = opmode; 541 return vap; 542 } 543 544 static void 545 iwi_vap_delete(struct ieee80211vap *vap) 546 { 547 struct iwi_vap *ivp = IWI_VAP(vap); 548 549 ieee80211_vap_detach(vap); 550 free(ivp, M_80211_VAP); 551 } 552 553 static void 554 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 555 { 556 if (error != 0) 557 return; 558 559 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 560 561 *(bus_addr_t *)arg = segs[0].ds_addr; 562 } 563 564 static int 565 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 566 { 567 int error; 568 569 ring->count = count; 570 ring->queued = 0; 571 ring->cur = ring->next = 0; 572 573 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 574 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 575 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 576 NULL, NULL, &ring->desc_dmat); 577 if (error != 0) { 578 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 579 goto fail; 580 } 581 582 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 583 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 584 if (error != 0) { 585 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 586 goto fail; 587 } 588 589 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 590 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 591 if (error != 0) { 592 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 593 goto fail; 594 } 595 596 return 0; 597 598 fail: iwi_free_cmd_ring(sc, ring); 599 return error; 600 } 601 602 static void 603 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 604 { 605 ring->queued = 0; 606 ring->cur = ring->next = 0; 607 } 608 609 static void 610 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 611 { 612 if (ring->desc != NULL) { 613 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 614 BUS_DMASYNC_POSTWRITE); 615 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 616 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 617 } 618 619 if (ring->desc_dmat != NULL) 620 bus_dma_tag_destroy(ring->desc_dmat); 621 } 622 623 static int 624 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 625 bus_addr_t csr_ridx, bus_addr_t csr_widx) 626 { 627 int i, error; 628 629 ring->count = count; 630 ring->queued = 0; 631 ring->cur = ring->next = 0; 632 ring->csr_ridx = csr_ridx; 633 ring->csr_widx = csr_widx; 634 635 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 636 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 637 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 638 NULL, &ring->desc_dmat); 639 if (error != 0) { 640 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 641 goto fail; 642 } 643 644 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 645 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 646 if (error != 0) { 647 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 648 goto fail; 649 } 650 651 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 652 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 653 if (error != 0) { 654 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 655 goto fail; 656 } 657 658 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 659 M_NOWAIT | M_ZERO); 660 if (ring->data == NULL) { 661 device_printf(sc->sc_dev, "could not allocate soft data\n"); 662 error = ENOMEM; 663 goto fail; 664 } 665 666 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 667 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 668 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 669 if (error != 0) { 670 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 671 goto fail; 672 } 673 674 for (i = 0; i < count; i++) { 675 error = bus_dmamap_create(ring->data_dmat, 0, 676 &ring->data[i].map); 677 if (error != 0) { 678 device_printf(sc->sc_dev, "could not create DMA map\n"); 679 goto fail; 680 } 681 } 682 683 return 0; 684 685 fail: iwi_free_tx_ring(sc, ring); 686 return error; 687 } 688 689 static void 690 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 691 { 692 struct iwi_tx_data *data; 693 int i; 694 695 for (i = 0; i < ring->count; i++) { 696 data = &ring->data[i]; 697 698 if (data->m != NULL) { 699 bus_dmamap_sync(ring->data_dmat, data->map, 700 BUS_DMASYNC_POSTWRITE); 701 bus_dmamap_unload(ring->data_dmat, data->map); 702 m_freem(data->m); 703 data->m = NULL; 704 } 705 706 if (data->ni != NULL) { 707 ieee80211_free_node(data->ni); 708 data->ni = NULL; 709 } 710 } 711 712 ring->queued = 0; 713 ring->cur = ring->next = 0; 714 } 715 716 static void 717 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 718 { 719 struct iwi_tx_data *data; 720 int i; 721 722 if (ring->desc != NULL) { 723 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 724 BUS_DMASYNC_POSTWRITE); 725 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 726 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 727 } 728 729 if (ring->desc_dmat != NULL) 730 bus_dma_tag_destroy(ring->desc_dmat); 731 732 if (ring->data != NULL) { 733 for (i = 0; i < ring->count; i++) { 734 data = &ring->data[i]; 735 736 if (data->m != NULL) { 737 bus_dmamap_sync(ring->data_dmat, data->map, 738 BUS_DMASYNC_POSTWRITE); 739 bus_dmamap_unload(ring->data_dmat, data->map); 740 m_freem(data->m); 741 } 742 743 if (data->ni != NULL) 744 ieee80211_free_node(data->ni); 745 746 if (data->map != NULL) 747 bus_dmamap_destroy(ring->data_dmat, data->map); 748 } 749 750 free(ring->data, M_DEVBUF); 751 } 752 753 if (ring->data_dmat != NULL) 754 bus_dma_tag_destroy(ring->data_dmat); 755 } 756 757 static int 758 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 759 { 760 struct iwi_rx_data *data; 761 int i, error; 762 763 ring->count = count; 764 ring->cur = 0; 765 766 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 767 M_NOWAIT | M_ZERO); 768 if (ring->data == NULL) { 769 device_printf(sc->sc_dev, "could not allocate soft data\n"); 770 error = ENOMEM; 771 goto fail; 772 } 773 774 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 775 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 776 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 777 if (error != 0) { 778 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 779 goto fail; 780 } 781 782 for (i = 0; i < count; i++) { 783 data = &ring->data[i]; 784 785 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 786 if (error != 0) { 787 device_printf(sc->sc_dev, "could not create DMA map\n"); 788 goto fail; 789 } 790 791 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 792 if (data->m == NULL) { 793 device_printf(sc->sc_dev, 794 "could not allocate rx mbuf\n"); 795 error = ENOMEM; 796 goto fail; 797 } 798 799 error = bus_dmamap_load(ring->data_dmat, data->map, 800 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 801 &data->physaddr, 0); 802 if (error != 0) { 803 device_printf(sc->sc_dev, 804 "could not load rx buf DMA map"); 805 goto fail; 806 } 807 808 data->reg = IWI_CSR_RX_BASE + i * 4; 809 } 810 811 return 0; 812 813 fail: iwi_free_rx_ring(sc, ring); 814 return error; 815 } 816 817 static void 818 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 819 { 820 ring->cur = 0; 821 } 822 823 static void 824 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 825 { 826 struct iwi_rx_data *data; 827 int i; 828 829 if (ring->data != NULL) { 830 for (i = 0; i < ring->count; i++) { 831 data = &ring->data[i]; 832 833 if (data->m != NULL) { 834 bus_dmamap_sync(ring->data_dmat, data->map, 835 BUS_DMASYNC_POSTREAD); 836 bus_dmamap_unload(ring->data_dmat, data->map); 837 m_freem(data->m); 838 } 839 840 if (data->map != NULL) 841 bus_dmamap_destroy(ring->data_dmat, data->map); 842 } 843 844 free(ring->data, M_DEVBUF); 845 } 846 847 if (ring->data_dmat != NULL) 848 bus_dma_tag_destroy(ring->data_dmat); 849 } 850 851 static int 852 iwi_shutdown(device_t dev) 853 { 854 struct iwi_softc *sc = device_get_softc(dev); 855 856 iwi_stop(sc); 857 iwi_put_firmware(sc); /* ??? XXX */ 858 859 return 0; 860 } 861 862 static int 863 iwi_suspend(device_t dev) 864 { 865 struct iwi_softc *sc = device_get_softc(dev); 866 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 867 868 ieee80211_suspend_all(ic); 869 return 0; 870 } 871 872 static int 873 iwi_resume(device_t dev) 874 { 875 struct iwi_softc *sc = device_get_softc(dev); 876 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 877 878 pci_write_config(dev, 0x41, 0, 1); 879 880 ieee80211_resume_all(ic); 881 return 0; 882 } 883 884 static struct ieee80211_node * 885 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 886 { 887 struct iwi_node *in; 888 889 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 890 if (in == NULL) 891 return NULL; 892 /* XXX assign sta table entry for adhoc */ 893 in->in_station = -1; 894 895 return &in->in_node; 896 } 897 898 static void 899 iwi_node_free(struct ieee80211_node *ni) 900 { 901 struct ieee80211com *ic = ni->ni_ic; 902 struct iwi_softc *sc = ic->ic_ifp->if_softc; 903 struct iwi_node *in = (struct iwi_node *)ni; 904 905 if (in->in_station != -1) { 906 DPRINTF(("%s mac %6D station %u\n", __func__, 907 ni->ni_macaddr, ":", in->in_station)); 908 free_unr(sc->sc_unr, in->in_station); 909 } 910 911 sc->sc_node_free(ni); 912 } 913 914 /* 915 * Convert h/w rate code to IEEE rate code. 916 */ 917 static int 918 iwi_cvtrate(int iwirate) 919 { 920 switch (iwirate) { 921 case IWI_RATE_DS1: return 2; 922 case IWI_RATE_DS2: return 4; 923 case IWI_RATE_DS5: return 11; 924 case IWI_RATE_DS11: return 22; 925 case IWI_RATE_OFDM6: return 12; 926 case IWI_RATE_OFDM9: return 18; 927 case IWI_RATE_OFDM12: return 24; 928 case IWI_RATE_OFDM18: return 36; 929 case IWI_RATE_OFDM24: return 48; 930 case IWI_RATE_OFDM36: return 72; 931 case IWI_RATE_OFDM48: return 96; 932 case IWI_RATE_OFDM54: return 108; 933 } 934 return 0; 935 } 936 937 /* 938 * The firmware automatically adapts the transmit speed. We report its current 939 * value here. 940 */ 941 static void 942 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 943 { 944 struct ieee80211vap *vap = ifp->if_softc; 945 struct ieee80211com *ic = vap->iv_ic; 946 struct iwi_softc *sc = ic->ic_ifp->if_softc; 947 948 /* read current transmission rate from adapter */ 949 vap->iv_bss->ni_txrate = 950 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 951 ieee80211_media_status(ifp, imr); 952 } 953 954 static int 955 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 956 { 957 struct iwi_vap *ivp = IWI_VAP(vap); 958 struct ieee80211com *ic = vap->iv_ic; 959 struct ifnet *ifp = ic->ic_ifp; 960 struct iwi_softc *sc = ifp->if_softc; 961 IWI_LOCK_DECL; 962 963 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 964 ieee80211_state_name[vap->iv_state], 965 ieee80211_state_name[nstate], sc->flags)); 966 967 IEEE80211_UNLOCK(ic); 968 IWI_LOCK(sc); 969 switch (nstate) { 970 case IEEE80211_S_INIT: 971 /* 972 * NB: don't try to do this if iwi_stop_master has 973 * shutdown the firmware and disabled interrupts. 974 */ 975 if (vap->iv_state == IEEE80211_S_RUN && 976 (sc->flags & IWI_FLAG_FW_INITED)) 977 iwi_disassociate(sc, 0); 978 break; 979 case IEEE80211_S_AUTH: 980 iwi_auth_and_assoc(sc, vap); 981 break; 982 case IEEE80211_S_RUN: 983 if (vap->iv_opmode == IEEE80211_M_IBSS && 984 vap->iv_state == IEEE80211_S_SCAN) { 985 /* 986 * XXX when joining an ibss network we are called 987 * with a SCAN -> RUN transition on scan complete. 988 * Use that to call iwi_auth_and_assoc. On completing 989 * the join we are then called again with an 990 * AUTH -> RUN transition and we want to do nothing. 991 * This is all totally bogus and needs to be redone. 992 */ 993 iwi_auth_and_assoc(sc, vap); 994 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 995 ieee80211_runtask(ic, &sc->sc_monitortask); 996 break; 997 case IEEE80211_S_ASSOC: 998 /* 999 * If we are transitioning from AUTH then just wait 1000 * for the ASSOC status to come back from the firmware. 1001 * Otherwise we need to issue the association request. 1002 */ 1003 if (vap->iv_state == IEEE80211_S_AUTH) 1004 break; 1005 iwi_auth_and_assoc(sc, vap); 1006 break; 1007 default: 1008 break; 1009 } 1010 IWI_UNLOCK(sc); 1011 IEEE80211_LOCK(ic); 1012 return ivp->iwi_newstate(vap, nstate, arg); 1013 } 1014 1015 /* 1016 * WME parameters coming from IEEE 802.11e specification. These values are 1017 * already declared in ieee80211_proto.c, but they are static so they can't 1018 * be reused here. 1019 */ 1020 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1021 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1022 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1023 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1024 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1025 }; 1026 1027 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1028 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1029 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1030 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1031 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1032 }; 1033 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1034 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1035 1036 static void 1037 iwi_wme_init(struct iwi_softc *sc) 1038 { 1039 const struct wmeParams *wmep; 1040 int ac; 1041 1042 memset(sc->wme, 0, sizeof sc->wme); 1043 for (ac = 0; ac < WME_NUM_AC; ac++) { 1044 /* set WME values for CCK modulation */ 1045 wmep = &iwi_wme_cck_params[ac]; 1046 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1047 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1048 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1049 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1050 sc->wme[1].acm[ac] = wmep->wmep_acm; 1051 1052 /* set WME values for OFDM modulation */ 1053 wmep = &iwi_wme_ofdm_params[ac]; 1054 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1055 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1056 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1057 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1058 sc->wme[2].acm[ac] = wmep->wmep_acm; 1059 } 1060 } 1061 1062 static int 1063 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1064 { 1065 const struct wmeParams *wmep; 1066 int ac; 1067 1068 for (ac = 0; ac < WME_NUM_AC; ac++) { 1069 /* set WME values for current operating mode */ 1070 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1071 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1072 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1073 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1074 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1075 sc->wme[0].acm[ac] = wmep->wmep_acm; 1076 } 1077 1078 DPRINTF(("Setting WME parameters\n")); 1079 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1080 } 1081 #undef IWI_USEC 1082 #undef IWI_EXP2 1083 1084 static void 1085 iwi_update_wme(void *arg, int npending) 1086 { 1087 struct ieee80211com *ic = arg; 1088 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1089 IWI_LOCK_DECL; 1090 1091 IWI_LOCK(sc); 1092 (void) iwi_wme_setparams(sc, ic); 1093 IWI_UNLOCK(sc); 1094 } 1095 1096 static int 1097 iwi_wme_update(struct ieee80211com *ic) 1098 { 1099 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1100 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1101 1102 /* 1103 * We may be called to update the WME parameters in 1104 * the adapter at various places. If we're already 1105 * associated then initiate the request immediately; 1106 * otherwise we assume the params will get sent down 1107 * to the adapter as part of the work iwi_auth_and_assoc 1108 * does. 1109 */ 1110 if (vap->iv_state == IEEE80211_S_RUN) 1111 ieee80211_runtask(ic, &sc->sc_wmetask); 1112 return (0); 1113 } 1114 1115 static int 1116 iwi_wme_setie(struct iwi_softc *sc) 1117 { 1118 struct ieee80211_wme_info wme; 1119 1120 memset(&wme, 0, sizeof wme); 1121 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1122 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1123 wme.wme_oui[0] = 0x00; 1124 wme.wme_oui[1] = 0x50; 1125 wme.wme_oui[2] = 0xf2; 1126 wme.wme_type = WME_OUI_TYPE; 1127 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1128 wme.wme_version = WME_VERSION; 1129 wme.wme_info = 0; 1130 1131 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1132 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1133 } 1134 1135 /* 1136 * Read 16 bits at address 'addr' from the serial EEPROM. 1137 */ 1138 static uint16_t 1139 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1140 { 1141 uint32_t tmp; 1142 uint16_t val; 1143 int n; 1144 1145 /* clock C once before the first command */ 1146 IWI_EEPROM_CTL(sc, 0); 1147 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1149 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1150 1151 /* write start bit (1) */ 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1154 1155 /* write READ opcode (10) */ 1156 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1157 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1159 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1160 1161 /* write address A7-A0 */ 1162 for (n = 7; n >= 0; n--) { 1163 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1164 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1165 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1166 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1167 } 1168 1169 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1170 1171 /* read data Q15-Q0 */ 1172 val = 0; 1173 for (n = 15; n >= 0; n--) { 1174 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1175 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1176 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1177 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1178 } 1179 1180 IWI_EEPROM_CTL(sc, 0); 1181 1182 /* clear Chip Select and clock C */ 1183 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1184 IWI_EEPROM_CTL(sc, 0); 1185 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1186 1187 return val; 1188 } 1189 1190 static void 1191 iwi_setcurchan(struct iwi_softc *sc, int chan) 1192 { 1193 struct ifnet *ifp = sc->sc_ifp; 1194 struct ieee80211com *ic = ifp->if_l2com; 1195 1196 sc->curchan = chan; 1197 ieee80211_radiotap_chan_change(ic); 1198 } 1199 1200 static void 1201 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1202 struct iwi_frame *frame) 1203 { 1204 struct ifnet *ifp = sc->sc_ifp; 1205 struct ieee80211com *ic = ifp->if_l2com; 1206 struct mbuf *mnew, *m; 1207 struct ieee80211_node *ni; 1208 int type, error, framelen; 1209 int8_t rssi, nf; 1210 IWI_LOCK_DECL; 1211 1212 framelen = le16toh(frame->len); 1213 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1214 /* 1215 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1216 * out of bounds; need to figure out how to limit 1217 * frame size in the firmware 1218 */ 1219 /* XXX stat */ 1220 DPRINTFN(1, 1221 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1222 le16toh(frame->len), frame->chan, frame->rssi, 1223 frame->rssi_dbm)); 1224 return; 1225 } 1226 1227 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1228 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1229 1230 if (frame->chan != sc->curchan) 1231 iwi_setcurchan(sc, frame->chan); 1232 1233 /* 1234 * Try to allocate a new mbuf for this ring element and load it before 1235 * processing the current mbuf. If the ring element cannot be loaded, 1236 * drop the received packet and reuse the old mbuf. In the unlikely 1237 * case that the old mbuf can't be reloaded either, explicitly panic. 1238 */ 1239 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1240 if (mnew == NULL) { 1241 ifp->if_ierrors++; 1242 return; 1243 } 1244 1245 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1246 1247 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1248 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1249 0); 1250 if (error != 0) { 1251 m_freem(mnew); 1252 1253 /* try to reload the old mbuf */ 1254 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1255 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1256 &data->physaddr, 0); 1257 if (error != 0) { 1258 /* very unlikely that it will fail... */ 1259 panic("%s: could not load old rx mbuf", 1260 device_get_name(sc->sc_dev)); 1261 } 1262 ifp->if_ierrors++; 1263 return; 1264 } 1265 1266 /* 1267 * New mbuf successfully loaded, update Rx ring and continue 1268 * processing. 1269 */ 1270 m = data->m; 1271 data->m = mnew; 1272 CSR_WRITE_4(sc, data->reg, data->physaddr); 1273 1274 /* finalize mbuf */ 1275 m->m_pkthdr.rcvif = ifp; 1276 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1277 sizeof (struct iwi_frame) + framelen; 1278 1279 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1280 1281 rssi = frame->rssi_dbm; 1282 nf = -95; 1283 if (ieee80211_radiotap_active(ic)) { 1284 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1285 1286 tap->wr_flags = 0; 1287 tap->wr_antsignal = rssi; 1288 tap->wr_antnoise = nf; 1289 tap->wr_rate = iwi_cvtrate(frame->rate); 1290 tap->wr_antenna = frame->antenna; 1291 } 1292 IWI_UNLOCK(sc); 1293 1294 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1295 if (ni != NULL) { 1296 type = ieee80211_input(ni, m, rssi, nf); 1297 ieee80211_free_node(ni); 1298 } else 1299 type = ieee80211_input_all(ic, m, rssi, nf); 1300 1301 IWI_LOCK(sc); 1302 if (sc->sc_softled) { 1303 /* 1304 * Blink for any data frame. Otherwise do a 1305 * heartbeat-style blink when idle. The latter 1306 * is mainly for station mode where we depend on 1307 * periodic beacon frames to trigger the poll event. 1308 */ 1309 if (type == IEEE80211_FC0_TYPE_DATA) { 1310 sc->sc_rxrate = frame->rate; 1311 iwi_led_event(sc, IWI_LED_RX); 1312 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1313 iwi_led_event(sc, IWI_LED_POLL); 1314 } 1315 } 1316 1317 /* 1318 * Check for an association response frame to see if QoS 1319 * has been negotiated. We parse just enough to figure 1320 * out if we're supposed to use QoS. The proper solution 1321 * is to pass the frame up so ieee80211_input can do the 1322 * work but that's made hard by how things currently are 1323 * done in the driver. 1324 */ 1325 static void 1326 iwi_checkforqos(struct ieee80211vap *vap, 1327 const struct ieee80211_frame *wh, int len) 1328 { 1329 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1330 const uint8_t *frm, *efrm, *wme; 1331 struct ieee80211_node *ni; 1332 uint16_t capinfo, status, associd; 1333 1334 /* NB: +8 for capinfo, status, associd, and first ie */ 1335 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1336 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1337 return; 1338 /* 1339 * asresp frame format 1340 * [2] capability information 1341 * [2] status 1342 * [2] association ID 1343 * [tlv] supported rates 1344 * [tlv] extended supported rates 1345 * [tlv] WME 1346 */ 1347 frm = (const uint8_t *)&wh[1]; 1348 efrm = ((const uint8_t *) wh) + len; 1349 1350 capinfo = le16toh(*(const uint16_t *)frm); 1351 frm += 2; 1352 status = le16toh(*(const uint16_t *)frm); 1353 frm += 2; 1354 associd = le16toh(*(const uint16_t *)frm); 1355 frm += 2; 1356 1357 wme = NULL; 1358 while (efrm - frm > 1) { 1359 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1360 switch (*frm) { 1361 case IEEE80211_ELEMID_VENDOR: 1362 if (iswmeoui(frm)) 1363 wme = frm; 1364 break; 1365 } 1366 frm += frm[1] + 2; 1367 } 1368 1369 ni = vap->iv_bss; 1370 ni->ni_capinfo = capinfo; 1371 ni->ni_associd = associd & 0x3fff; 1372 if (wme != NULL) 1373 ni->ni_flags |= IEEE80211_NODE_QOS; 1374 else 1375 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1376 #undef SUBTYPE 1377 } 1378 1379 /* 1380 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1381 */ 1382 1383 static void 1384 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1385 { 1386 struct ifnet *ifp = sc->sc_ifp; 1387 struct ieee80211com *ic = ifp->if_l2com; 1388 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1389 struct iwi_notif_scan_channel *chan; 1390 struct iwi_notif_scan_complete *scan; 1391 struct iwi_notif_authentication *auth; 1392 struct iwi_notif_association *assoc; 1393 struct iwi_notif_beacon_state *beacon; 1394 1395 switch (notif->type) { 1396 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1397 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1398 1399 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1400 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1401 1402 /* Reset the timer, the scan is still going */ 1403 sc->sc_state_timer = 3; 1404 break; 1405 1406 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1407 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1408 1409 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1410 scan->status)); 1411 1412 IWI_STATE_END(sc, IWI_FW_SCANNING); 1413 1414 /* 1415 * Monitor mode works by doing a passive scan to set 1416 * the channel and enable rx. Because we don't want 1417 * to abort a scan lest the firmware crash we scan 1418 * for a short period of time and automatically restart 1419 * the scan when notified the sweep has completed. 1420 */ 1421 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1422 ieee80211_runtask(ic, &sc->sc_monitortask); 1423 break; 1424 } 1425 1426 if (scan->status == IWI_SCAN_COMPLETED) { 1427 /* NB: don't need to defer, net80211 does it for us */ 1428 ieee80211_scan_next(vap); 1429 } 1430 break; 1431 1432 case IWI_NOTIF_TYPE_AUTHENTICATION: 1433 auth = (struct iwi_notif_authentication *)(notif + 1); 1434 switch (auth->state) { 1435 case IWI_AUTH_SUCCESS: 1436 DPRINTFN(2, ("Authentication succeeeded\n")); 1437 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1438 break; 1439 case IWI_AUTH_FAIL: 1440 /* 1441 * These are delivered as an unsolicited deauth 1442 * (e.g. due to inactivity) or in response to an 1443 * associate request. 1444 */ 1445 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1446 if (vap->iv_state != IEEE80211_S_RUN) { 1447 DPRINTFN(2, ("Authentication failed\n")); 1448 vap->iv_stats.is_rx_auth_fail++; 1449 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1450 } else { 1451 DPRINTFN(2, ("Deauthenticated\n")); 1452 vap->iv_stats.is_rx_deauth++; 1453 } 1454 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1455 break; 1456 case IWI_AUTH_SENT_1: 1457 case IWI_AUTH_RECV_2: 1458 case IWI_AUTH_SEQ1_PASS: 1459 break; 1460 case IWI_AUTH_SEQ1_FAIL: 1461 DPRINTFN(2, ("Initial authentication handshake failed; " 1462 "you probably need shared key\n")); 1463 vap->iv_stats.is_rx_auth_fail++; 1464 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1465 /* XXX retry shared key when in auto */ 1466 break; 1467 default: 1468 device_printf(sc->sc_dev, 1469 "unknown authentication state %u\n", auth->state); 1470 break; 1471 } 1472 break; 1473 1474 case IWI_NOTIF_TYPE_ASSOCIATION: 1475 assoc = (struct iwi_notif_association *)(notif + 1); 1476 switch (assoc->state) { 1477 case IWI_AUTH_SUCCESS: 1478 /* re-association, do nothing */ 1479 break; 1480 case IWI_ASSOC_SUCCESS: 1481 DPRINTFN(2, ("Association succeeded\n")); 1482 sc->flags |= IWI_FLAG_ASSOCIATED; 1483 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1484 iwi_checkforqos(vap, 1485 (const struct ieee80211_frame *)(assoc+1), 1486 le16toh(notif->len) - sizeof(*assoc) - 1); 1487 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1488 break; 1489 case IWI_ASSOC_INIT: 1490 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1491 switch (sc->fw_state) { 1492 case IWI_FW_ASSOCIATING: 1493 DPRINTFN(2, ("Association failed\n")); 1494 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1495 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1496 break; 1497 1498 case IWI_FW_DISASSOCIATING: 1499 DPRINTFN(2, ("Dissassociated\n")); 1500 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1501 vap->iv_stats.is_rx_disassoc++; 1502 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1503 break; 1504 } 1505 break; 1506 default: 1507 device_printf(sc->sc_dev, 1508 "unknown association state %u\n", assoc->state); 1509 break; 1510 } 1511 break; 1512 1513 case IWI_NOTIF_TYPE_BEACON: 1514 /* XXX check struct length */ 1515 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1516 1517 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1518 beacon->state, le32toh(beacon->number))); 1519 1520 if (beacon->state == IWI_BEACON_MISS) { 1521 /* 1522 * The firmware notifies us of every beacon miss 1523 * so we need to track the count against the 1524 * configured threshold before notifying the 1525 * 802.11 layer. 1526 * XXX try to roam, drop assoc only on much higher count 1527 */ 1528 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1529 DPRINTF(("Beacon miss: %u >= %u\n", 1530 le32toh(beacon->number), 1531 vap->iv_bmissthreshold)); 1532 vap->iv_stats.is_beacon_miss++; 1533 /* 1534 * It's pointless to notify the 802.11 layer 1535 * as it'll try to send a probe request (which 1536 * we'll discard) and then timeout and drop us 1537 * into scan state. Instead tell the firmware 1538 * to disassociate and then on completion we'll 1539 * kick the state machine to scan. 1540 */ 1541 ieee80211_runtask(ic, &sc->sc_disassoctask); 1542 } 1543 } 1544 break; 1545 1546 case IWI_NOTIF_TYPE_CALIBRATION: 1547 case IWI_NOTIF_TYPE_NOISE: 1548 case IWI_NOTIF_TYPE_LINK_QUALITY: 1549 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1550 break; 1551 1552 default: 1553 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1554 notif->type, notif->flags, le16toh(notif->len))); 1555 break; 1556 } 1557 } 1558 1559 static void 1560 iwi_rx_intr(struct iwi_softc *sc) 1561 { 1562 struct iwi_rx_data *data; 1563 struct iwi_hdr *hdr; 1564 uint32_t hw; 1565 1566 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1567 1568 for (; sc->rxq.cur != hw;) { 1569 data = &sc->rxq.data[sc->rxq.cur]; 1570 1571 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1572 BUS_DMASYNC_POSTREAD); 1573 1574 hdr = mtod(data->m, struct iwi_hdr *); 1575 1576 switch (hdr->type) { 1577 case IWI_HDR_TYPE_FRAME: 1578 iwi_frame_intr(sc, data, sc->rxq.cur, 1579 (struct iwi_frame *)(hdr + 1)); 1580 break; 1581 1582 case IWI_HDR_TYPE_NOTIF: 1583 iwi_notification_intr(sc, 1584 (struct iwi_notif *)(hdr + 1)); 1585 break; 1586 1587 default: 1588 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1589 hdr->type); 1590 } 1591 1592 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1593 1594 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1595 } 1596 1597 /* tell the firmware what we have processed */ 1598 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1599 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1600 } 1601 1602 static void 1603 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1604 { 1605 struct ifnet *ifp = sc->sc_ifp; 1606 struct iwi_tx_data *data; 1607 uint32_t hw; 1608 1609 hw = CSR_READ_4(sc, txq->csr_ridx); 1610 1611 for (; txq->next != hw;) { 1612 data = &txq->data[txq->next]; 1613 1614 bus_dmamap_sync(txq->data_dmat, data->map, 1615 BUS_DMASYNC_POSTWRITE); 1616 bus_dmamap_unload(txq->data_dmat, data->map); 1617 if (data->m->m_flags & M_TXCB) 1618 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1619 m_freem(data->m); 1620 data->m = NULL; 1621 ieee80211_free_node(data->ni); 1622 data->ni = NULL; 1623 1624 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1625 1626 ifp->if_opackets++; 1627 1628 txq->queued--; 1629 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1630 } 1631 1632 sc->sc_tx_timer = 0; 1633 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1634 1635 if (sc->sc_softled) 1636 iwi_led_event(sc, IWI_LED_TX); 1637 1638 iwi_start_locked(ifp); 1639 } 1640 1641 static void 1642 iwi_fatal_error_intr(struct iwi_softc *sc) 1643 { 1644 struct ifnet *ifp = sc->sc_ifp; 1645 struct ieee80211com *ic = ifp->if_l2com; 1646 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1647 1648 device_printf(sc->sc_dev, "firmware error\n"); 1649 if (vap != NULL) 1650 ieee80211_cancel_scan(vap); 1651 ieee80211_runtask(ic, &sc->sc_restarttask); 1652 1653 sc->flags &= ~IWI_FLAG_BUSY; 1654 sc->sc_busy_timer = 0; 1655 wakeup(sc); 1656 } 1657 1658 static void 1659 iwi_radio_off_intr(struct iwi_softc *sc) 1660 { 1661 struct ifnet *ifp = sc->sc_ifp; 1662 struct ieee80211com *ic = ifp->if_l2com; 1663 1664 ieee80211_runtask(ic, &sc->sc_radiofftask); 1665 } 1666 1667 static void 1668 iwi_intr(void *arg) 1669 { 1670 struct iwi_softc *sc = arg; 1671 uint32_t r; 1672 IWI_LOCK_DECL; 1673 1674 IWI_LOCK(sc); 1675 1676 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1677 IWI_UNLOCK(sc); 1678 return; 1679 } 1680 1681 /* acknowledge interrupts */ 1682 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1683 1684 if (r & IWI_INTR_FATAL_ERROR) { 1685 iwi_fatal_error_intr(sc); 1686 goto done; 1687 } 1688 1689 if (r & IWI_INTR_FW_INITED) { 1690 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1691 wakeup(sc); 1692 } 1693 1694 if (r & IWI_INTR_RADIO_OFF) 1695 iwi_radio_off_intr(sc); 1696 1697 if (r & IWI_INTR_CMD_DONE) { 1698 sc->flags &= ~IWI_FLAG_BUSY; 1699 sc->sc_busy_timer = 0; 1700 wakeup(sc); 1701 } 1702 1703 if (r & IWI_INTR_TX1_DONE) 1704 iwi_tx_intr(sc, &sc->txq[0]); 1705 1706 if (r & IWI_INTR_TX2_DONE) 1707 iwi_tx_intr(sc, &sc->txq[1]); 1708 1709 if (r & IWI_INTR_TX3_DONE) 1710 iwi_tx_intr(sc, &sc->txq[2]); 1711 1712 if (r & IWI_INTR_TX4_DONE) 1713 iwi_tx_intr(sc, &sc->txq[3]); 1714 1715 if (r & IWI_INTR_RX_DONE) 1716 iwi_rx_intr(sc); 1717 1718 if (r & IWI_INTR_PARITY_ERROR) { 1719 /* XXX rate-limit */ 1720 device_printf(sc->sc_dev, "parity error\n"); 1721 } 1722 done: 1723 IWI_UNLOCK(sc); 1724 } 1725 1726 static int 1727 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1728 { 1729 struct iwi_cmd_desc *desc; 1730 1731 IWI_LOCK_ASSERT(sc); 1732 1733 if (sc->flags & IWI_FLAG_BUSY) { 1734 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1735 __func__, type); 1736 return EAGAIN; 1737 } 1738 sc->flags |= IWI_FLAG_BUSY; 1739 sc->sc_busy_timer = 2; 1740 1741 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1742 1743 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1744 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1745 desc->type = type; 1746 desc->len = len; 1747 memcpy(desc->data, data, len); 1748 1749 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1750 BUS_DMASYNC_PREWRITE); 1751 1752 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1753 type, len)); 1754 1755 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1756 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1757 1758 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1759 } 1760 1761 static void 1762 iwi_write_ibssnode(struct iwi_softc *sc, 1763 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1764 { 1765 struct iwi_ibssnode node; 1766 1767 /* write node information into NIC memory */ 1768 memset(&node, 0, sizeof node); 1769 IEEE80211_ADDR_COPY(node.bssid, addr); 1770 1771 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1772 1773 CSR_WRITE_REGION_1(sc, 1774 IWI_CSR_NODE_BASE + entry * sizeof node, 1775 (uint8_t *)&node, sizeof node); 1776 } 1777 1778 static int 1779 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1780 int ac) 1781 { 1782 struct iwi_softc *sc = ifp->if_softc; 1783 struct ieee80211vap *vap = ni->ni_vap; 1784 struct ieee80211com *ic = ni->ni_ic; 1785 struct iwi_node *in = (struct iwi_node *)ni; 1786 const struct ieee80211_frame *wh; 1787 struct ieee80211_key *k; 1788 const struct chanAccParams *cap; 1789 struct iwi_tx_ring *txq = &sc->txq[ac]; 1790 struct iwi_tx_data *data; 1791 struct iwi_tx_desc *desc; 1792 struct mbuf *mnew; 1793 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1794 int error, nsegs, hdrlen, i; 1795 int ismcast, flags, xflags, staid; 1796 1797 IWI_LOCK_ASSERT(sc); 1798 wh = mtod(m0, const struct ieee80211_frame *); 1799 /* NB: only data frames use this path */ 1800 hdrlen = ieee80211_hdrsize(wh); 1801 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1802 flags = xflags = 0; 1803 1804 if (!ismcast) 1805 flags |= IWI_DATA_FLAG_NEED_ACK; 1806 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1807 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1808 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1809 xflags |= IWI_DATA_XFLAG_QOS; 1810 cap = &ic->ic_wme.wme_chanParams; 1811 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1812 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1813 } 1814 1815 /* 1816 * This is only used in IBSS mode where the firmware expect an index 1817 * in a h/w table instead of a destination address. 1818 */ 1819 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1820 if (!ismcast) { 1821 if (in->in_station == -1) { 1822 in->in_station = alloc_unr(sc->sc_unr); 1823 if (in->in_station == -1) { 1824 /* h/w table is full */ 1825 m_freem(m0); 1826 ieee80211_free_node(ni); 1827 ifp->if_oerrors++; 1828 return 0; 1829 } 1830 iwi_write_ibssnode(sc, 1831 ni->ni_macaddr, in->in_station); 1832 } 1833 staid = in->in_station; 1834 } else { 1835 /* 1836 * Multicast addresses have no associated node 1837 * so there will be no station entry. We reserve 1838 * entry 0 for one mcast address and use that. 1839 * If there are many being used this will be 1840 * expensive and we'll need to do a better job 1841 * but for now this handles the broadcast case. 1842 */ 1843 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1844 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1845 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1846 } 1847 staid = 0; 1848 } 1849 } else 1850 staid = 0; 1851 1852 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1853 k = ieee80211_crypto_encap(ni, m0); 1854 if (k == NULL) { 1855 m_freem(m0); 1856 return ENOBUFS; 1857 } 1858 1859 /* packet header may have moved, reset our local pointer */ 1860 wh = mtod(m0, struct ieee80211_frame *); 1861 } 1862 1863 if (ieee80211_radiotap_active_vap(vap)) { 1864 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1865 1866 tap->wt_flags = 0; 1867 1868 ieee80211_radiotap_tx(vap, m0); 1869 } 1870 1871 data = &txq->data[txq->cur]; 1872 desc = &txq->desc[txq->cur]; 1873 1874 /* save and trim IEEE802.11 header */ 1875 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1876 m_adj(m0, hdrlen); 1877 1878 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1879 &nsegs, 0); 1880 if (error != 0 && error != EFBIG) { 1881 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1882 error); 1883 m_freem(m0); 1884 return error; 1885 } 1886 if (error != 0) { 1887 mnew = m_defrag(m0, M_DONTWAIT); 1888 if (mnew == NULL) { 1889 device_printf(sc->sc_dev, 1890 "could not defragment mbuf\n"); 1891 m_freem(m0); 1892 return ENOBUFS; 1893 } 1894 m0 = mnew; 1895 1896 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1897 m0, segs, &nsegs, 0); 1898 if (error != 0) { 1899 device_printf(sc->sc_dev, 1900 "could not map mbuf (error %d)\n", error); 1901 m_freem(m0); 1902 return error; 1903 } 1904 } 1905 1906 data->m = m0; 1907 data->ni = ni; 1908 1909 desc->hdr.type = IWI_HDR_TYPE_DATA; 1910 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1911 desc->station = staid; 1912 desc->cmd = IWI_DATA_CMD_TX; 1913 desc->len = htole16(m0->m_pkthdr.len); 1914 desc->flags = flags; 1915 desc->xflags = xflags; 1916 1917 #if 0 1918 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1919 desc->wep_txkey = vap->iv_def_txkey; 1920 else 1921 #endif 1922 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1923 1924 desc->nseg = htole32(nsegs); 1925 for (i = 0; i < nsegs; i++) { 1926 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1927 desc->seg_len[i] = htole16(segs[i].ds_len); 1928 } 1929 1930 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1931 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1932 1933 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1934 ac, txq->cur, le16toh(desc->len), nsegs)); 1935 1936 txq->queued++; 1937 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1938 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1939 1940 return 0; 1941 } 1942 1943 static int 1944 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1945 const struct ieee80211_bpf_params *params) 1946 { 1947 /* no support; just discard */ 1948 m_freem(m); 1949 ieee80211_free_node(ni); 1950 return 0; 1951 } 1952 1953 static void 1954 iwi_start_locked(struct ifnet *ifp) 1955 { 1956 struct iwi_softc *sc = ifp->if_softc; 1957 struct mbuf *m; 1958 struct ieee80211_node *ni; 1959 int ac; 1960 1961 IWI_LOCK_ASSERT(sc); 1962 1963 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1964 return; 1965 1966 for (;;) { 1967 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1968 if (m == NULL) 1969 break; 1970 ac = M_WME_GETAC(m); 1971 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1972 /* there is no place left in this ring; tail drop */ 1973 /* XXX tail drop */ 1974 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1975 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1976 break; 1977 } 1978 1979 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1980 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1981 ieee80211_free_node(ni); 1982 ifp->if_oerrors++; 1983 break; 1984 } 1985 1986 sc->sc_tx_timer = 5; 1987 } 1988 } 1989 1990 static void 1991 iwi_start(struct ifnet *ifp) 1992 { 1993 struct iwi_softc *sc = ifp->if_softc; 1994 IWI_LOCK_DECL; 1995 1996 IWI_LOCK(sc); 1997 iwi_start_locked(ifp); 1998 IWI_UNLOCK(sc); 1999 } 2000 2001 static void 2002 iwi_watchdog(void *arg) 2003 { 2004 struct iwi_softc *sc = arg; 2005 struct ifnet *ifp = sc->sc_ifp; 2006 struct ieee80211com *ic = ifp->if_l2com; 2007 2008 IWI_LOCK_ASSERT(sc); 2009 2010 if (sc->sc_tx_timer > 0) { 2011 if (--sc->sc_tx_timer == 0) { 2012 if_printf(ifp, "device timeout\n"); 2013 ifp->if_oerrors++; 2014 ieee80211_runtask(ic, &sc->sc_restarttask); 2015 } 2016 } 2017 if (sc->sc_state_timer > 0) { 2018 if (--sc->sc_state_timer == 0) { 2019 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2020 sc->fw_state); 2021 if (sc->fw_state == IWI_FW_SCANNING) { 2022 struct ieee80211com *ic = ifp->if_l2com; 2023 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2024 } 2025 ieee80211_runtask(ic, &sc->sc_restarttask); 2026 sc->sc_state_timer = 3; 2027 } 2028 } 2029 if (sc->sc_busy_timer > 0) { 2030 if (--sc->sc_busy_timer == 0) { 2031 if_printf(ifp, "firmware command timeout, resetting\n"); 2032 ieee80211_runtask(ic, &sc->sc_restarttask); 2033 } 2034 } 2035 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2036 } 2037 2038 static int 2039 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2040 { 2041 struct iwi_softc *sc = ifp->if_softc; 2042 struct ieee80211com *ic = ifp->if_l2com; 2043 struct ifreq *ifr = (struct ifreq *) data; 2044 int error = 0, startall = 0; 2045 IWI_LOCK_DECL; 2046 2047 switch (cmd) { 2048 case SIOCSIFFLAGS: 2049 IWI_LOCK(sc); 2050 if (ifp->if_flags & IFF_UP) { 2051 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2052 iwi_init_locked(sc); 2053 startall = 1; 2054 } 2055 } else { 2056 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2057 iwi_stop_locked(sc); 2058 } 2059 IWI_UNLOCK(sc); 2060 if (startall) 2061 ieee80211_start_all(ic); 2062 break; 2063 case SIOCGIFMEDIA: 2064 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2065 break; 2066 case SIOCGIFADDR: 2067 error = ether_ioctl(ifp, cmd, data); 2068 break; 2069 default: 2070 error = EINVAL; 2071 break; 2072 } 2073 return error; 2074 } 2075 2076 static void 2077 iwi_stop_master(struct iwi_softc *sc) 2078 { 2079 uint32_t tmp; 2080 int ntries; 2081 2082 /* disable interrupts */ 2083 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2084 2085 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2086 for (ntries = 0; ntries < 5; ntries++) { 2087 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2088 break; 2089 DELAY(10); 2090 } 2091 if (ntries == 5) 2092 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2093 2094 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2095 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2096 2097 sc->flags &= ~IWI_FLAG_FW_INITED; 2098 } 2099 2100 static int 2101 iwi_reset(struct iwi_softc *sc) 2102 { 2103 uint32_t tmp; 2104 int i, ntries; 2105 2106 iwi_stop_master(sc); 2107 2108 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2109 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2110 2111 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2112 2113 /* wait for clock stabilization */ 2114 for (ntries = 0; ntries < 1000; ntries++) { 2115 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2116 break; 2117 DELAY(200); 2118 } 2119 if (ntries == 1000) { 2120 device_printf(sc->sc_dev, 2121 "timeout waiting for clock stabilization\n"); 2122 return EIO; 2123 } 2124 2125 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2126 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2127 2128 DELAY(10); 2129 2130 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2131 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2132 2133 /* clear NIC memory */ 2134 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2135 for (i = 0; i < 0xc000; i++) 2136 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2137 2138 return 0; 2139 } 2140 2141 static const struct iwi_firmware_ohdr * 2142 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2143 { 2144 const struct firmware *fp = fw->fp; 2145 const struct iwi_firmware_ohdr *hdr; 2146 2147 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2148 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2149 return NULL; 2150 } 2151 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2152 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2153 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2154 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2155 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2156 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2157 IWI_FW_REQ_MINOR); 2158 return NULL; 2159 } 2160 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2161 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2162 fw->name = fp->name; 2163 return hdr; 2164 } 2165 2166 static const struct iwi_firmware_ohdr * 2167 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2168 { 2169 const struct iwi_firmware_ohdr *hdr; 2170 2171 hdr = iwi_setup_ofw(sc, fw); 2172 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2173 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2174 fw->name); 2175 hdr = NULL; 2176 } 2177 return hdr; 2178 } 2179 2180 static void 2181 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2182 struct iwi_fw *uc, const char *ucname) 2183 { 2184 if (fw->fp == NULL) 2185 fw->fp = firmware_get(fwname); 2186 /* NB: pre-3.0 ucode is packaged separately */ 2187 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2188 uc->fp = firmware_get(ucname); 2189 } 2190 2191 /* 2192 * Get the required firmware images if not already loaded. 2193 * Note that we hold firmware images so long as the device 2194 * is marked up in case we need to reload them on device init. 2195 * This is necessary because we re-init the device sometimes 2196 * from a context where we cannot read from the filesystem 2197 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2198 * XXX return 0 on success, 1 on error. 2199 * 2200 * NB: the order of get'ing and put'ing images here is 2201 * intentional to support handling firmware images bundled 2202 * by operating mode and/or all together in one file with 2203 * the boot firmware as "master". 2204 */ 2205 static int 2206 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2207 { 2208 const struct iwi_firmware_hdr *hdr; 2209 const struct firmware *fp; 2210 2211 /* invalidate cached firmware on mode change */ 2212 if (sc->fw_mode != opmode) 2213 iwi_put_firmware(sc); 2214 2215 switch (opmode) { 2216 case IEEE80211_M_STA: 2217 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2218 break; 2219 case IEEE80211_M_IBSS: 2220 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2221 break; 2222 case IEEE80211_M_MONITOR: 2223 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2224 &sc->fw_uc, "iwi_ucode_monitor"); 2225 break; 2226 default: 2227 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2228 return EINVAL; 2229 } 2230 fp = sc->fw_fw.fp; 2231 if (fp == NULL) { 2232 device_printf(sc->sc_dev, "could not load firmware\n"); 2233 goto bad; 2234 } 2235 if (fp->version < 300) { 2236 /* 2237 * Firmware prior to 3.0 was packaged as separate 2238 * boot, firmware, and ucode images. Verify the 2239 * ucode image was read in, retrieve the boot image 2240 * if needed, and check version stamps for consistency. 2241 * The version stamps in the data are also checked 2242 * above; this is a bit paranoid but is a cheap 2243 * safeguard against mis-packaging. 2244 */ 2245 if (sc->fw_uc.fp == NULL) { 2246 device_printf(sc->sc_dev, "could not load ucode\n"); 2247 goto bad; 2248 } 2249 if (sc->fw_boot.fp == NULL) { 2250 sc->fw_boot.fp = firmware_get("iwi_boot"); 2251 if (sc->fw_boot.fp == NULL) { 2252 device_printf(sc->sc_dev, 2253 "could not load boot firmware\n"); 2254 goto bad; 2255 } 2256 } 2257 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2258 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2259 device_printf(sc->sc_dev, 2260 "firmware version mismatch: " 2261 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2262 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2263 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2264 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2265 ); 2266 goto bad; 2267 } 2268 /* 2269 * Check and setup each image. 2270 */ 2271 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2272 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2273 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2274 goto bad; 2275 } else { 2276 /* 2277 * Check and setup combined image. 2278 */ 2279 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2280 device_printf(sc->sc_dev, "image '%s' too small\n", 2281 fp->name); 2282 goto bad; 2283 } 2284 hdr = (const struct iwi_firmware_hdr *)fp->data; 2285 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2286 + le32toh(hdr->fsize)) { 2287 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2288 fp->name); 2289 goto bad; 2290 } 2291 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2292 sc->fw_boot.size = le32toh(hdr->bsize); 2293 sc->fw_boot.name = fp->name; 2294 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2295 sc->fw_uc.size = le32toh(hdr->usize); 2296 sc->fw_uc.name = fp->name; 2297 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2298 sc->fw_fw.size = le32toh(hdr->fsize); 2299 sc->fw_fw.name = fp->name; 2300 } 2301 #if 0 2302 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2303 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2304 #endif 2305 2306 sc->fw_mode = opmode; 2307 return 0; 2308 bad: 2309 iwi_put_firmware(sc); 2310 return 1; 2311 } 2312 2313 static void 2314 iwi_put_fw(struct iwi_fw *fw) 2315 { 2316 if (fw->fp != NULL) { 2317 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2318 fw->fp = NULL; 2319 } 2320 fw->data = NULL; 2321 fw->size = 0; 2322 fw->name = NULL; 2323 } 2324 2325 /* 2326 * Release any cached firmware images. 2327 */ 2328 static void 2329 iwi_put_firmware(struct iwi_softc *sc) 2330 { 2331 iwi_put_fw(&sc->fw_uc); 2332 iwi_put_fw(&sc->fw_fw); 2333 iwi_put_fw(&sc->fw_boot); 2334 } 2335 2336 static int 2337 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2338 { 2339 uint32_t tmp; 2340 const uint16_t *w; 2341 const char *uc = fw->data; 2342 size_t size = fw->size; 2343 int i, ntries, error; 2344 2345 IWI_LOCK_ASSERT(sc); 2346 error = 0; 2347 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2348 IWI_RST_STOP_MASTER); 2349 for (ntries = 0; ntries < 5; ntries++) { 2350 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2351 break; 2352 DELAY(10); 2353 } 2354 if (ntries == 5) { 2355 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2356 error = EIO; 2357 goto fail; 2358 } 2359 2360 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2361 DELAY(5000); 2362 2363 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2364 tmp &= ~IWI_RST_PRINCETON_RESET; 2365 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2366 2367 DELAY(5000); 2368 MEM_WRITE_4(sc, 0x3000e0, 0); 2369 DELAY(1000); 2370 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2371 DELAY(1000); 2372 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2373 DELAY(1000); 2374 MEM_WRITE_1(sc, 0x200000, 0x00); 2375 MEM_WRITE_1(sc, 0x200000, 0x40); 2376 DELAY(1000); 2377 2378 /* write microcode into adapter memory */ 2379 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2380 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2381 2382 MEM_WRITE_1(sc, 0x200000, 0x00); 2383 MEM_WRITE_1(sc, 0x200000, 0x80); 2384 2385 /* wait until we get an answer */ 2386 for (ntries = 0; ntries < 100; ntries++) { 2387 if (MEM_READ_1(sc, 0x200000) & 1) 2388 break; 2389 DELAY(100); 2390 } 2391 if (ntries == 100) { 2392 device_printf(sc->sc_dev, 2393 "timeout waiting for ucode to initialize\n"); 2394 error = EIO; 2395 goto fail; 2396 } 2397 2398 /* read the answer or the firmware will not initialize properly */ 2399 for (i = 0; i < 7; i++) 2400 MEM_READ_4(sc, 0x200004); 2401 2402 MEM_WRITE_1(sc, 0x200000, 0x00); 2403 2404 fail: 2405 return error; 2406 } 2407 2408 /* macro to handle unaligned little endian data in firmware image */ 2409 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2410 2411 static int 2412 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2413 { 2414 u_char *p, *end; 2415 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2416 int ntries, error; 2417 2418 IWI_LOCK_ASSERT(sc); 2419 2420 /* copy firmware image to DMA memory */ 2421 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2422 2423 /* make sure the adapter will get up-to-date values */ 2424 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2425 2426 /* tell the adapter where the command blocks are stored */ 2427 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2428 2429 /* 2430 * Store command blocks into adapter's internal memory using register 2431 * indirections. The adapter will read the firmware image through DMA 2432 * using information stored in command blocks. 2433 */ 2434 src = sc->fw_physaddr; 2435 p = sc->fw_virtaddr; 2436 end = p + fw->size; 2437 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2438 2439 while (p < end) { 2440 dst = GETLE32(p); p += 4; src += 4; 2441 len = GETLE32(p); p += 4; src += 4; 2442 p += len; 2443 2444 while (len > 0) { 2445 mlen = min(len, IWI_CB_MAXDATALEN); 2446 2447 ctl = IWI_CB_DEFAULT_CTL | mlen; 2448 sum = ctl ^ src ^ dst; 2449 2450 /* write a command block */ 2451 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2452 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2455 2456 src += mlen; 2457 dst += mlen; 2458 len -= mlen; 2459 } 2460 } 2461 2462 /* write a fictive final command block (sentinel) */ 2463 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2464 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2465 2466 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2467 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2468 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2469 2470 /* tell the adapter to start processing command blocks */ 2471 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2472 2473 /* wait until the adapter reaches the sentinel */ 2474 for (ntries = 0; ntries < 400; ntries++) { 2475 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2476 break; 2477 DELAY(100); 2478 } 2479 /* sync dma, just in case */ 2480 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2481 if (ntries == 400) { 2482 device_printf(sc->sc_dev, 2483 "timeout processing command blocks for %s firmware\n", 2484 fw->name); 2485 return EIO; 2486 } 2487 2488 /* we're done with command blocks processing */ 2489 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2490 2491 /* allow interrupts so we know when the firmware is ready */ 2492 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2493 2494 /* tell the adapter to initialize the firmware */ 2495 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2496 2497 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2498 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2499 2500 /* wait at most one second for firmware initialization to complete */ 2501 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2502 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2503 "initialization to complete\n", fw->name); 2504 } 2505 2506 return error; 2507 } 2508 2509 static int 2510 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2511 { 2512 uint32_t data; 2513 2514 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2515 /* XXX set more fine-grained operation */ 2516 data = htole32(IWI_POWER_MODE_MAX); 2517 } else 2518 data = htole32(IWI_POWER_MODE_CAM); 2519 2520 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2521 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2522 } 2523 2524 static int 2525 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2526 { 2527 struct iwi_wep_key wepkey; 2528 struct ieee80211_key *wk; 2529 int error, i; 2530 2531 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2532 wk = &vap->iv_nw_keys[i]; 2533 2534 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2535 wepkey.idx = i; 2536 wepkey.len = wk->wk_keylen; 2537 memset(wepkey.key, 0, sizeof wepkey.key); 2538 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2539 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2540 wepkey.len)); 2541 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2542 sizeof wepkey); 2543 if (error != 0) 2544 return error; 2545 } 2546 return 0; 2547 } 2548 2549 static int 2550 iwi_config(struct iwi_softc *sc) 2551 { 2552 struct ifnet *ifp = sc->sc_ifp; 2553 struct ieee80211com *ic = ifp->if_l2com; 2554 struct iwi_configuration config; 2555 struct iwi_rateset rs; 2556 struct iwi_txpower power; 2557 uint32_t data; 2558 int error, i; 2559 2560 IWI_LOCK_ASSERT(sc); 2561 2562 DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":")); 2563 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2564 IEEE80211_ADDR_LEN); 2565 if (error != 0) 2566 return error; 2567 2568 memset(&config, 0, sizeof config); 2569 config.bluetooth_coexistence = sc->bluetooth; 2570 config.silence_threshold = 0x1e; 2571 config.antenna = sc->antenna; 2572 config.multicast_enabled = 1; 2573 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2574 config.disable_unicast_decryption = 1; 2575 config.disable_multicast_decryption = 1; 2576 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2577 config.allow_invalid_frames = 1; 2578 config.allow_beacon_and_probe_resp = 1; 2579 config.allow_mgt = 1; 2580 } 2581 DPRINTF(("Configuring adapter\n")); 2582 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2583 if (error != 0) 2584 return error; 2585 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2586 power.mode = IWI_MODE_11B; 2587 power.nchan = 11; 2588 for (i = 0; i < 11; i++) { 2589 power.chan[i].chan = i + 1; 2590 power.chan[i].power = IWI_TXPOWER_MAX; 2591 } 2592 DPRINTF(("Setting .11b channels tx power\n")); 2593 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2594 if (error != 0) 2595 return error; 2596 2597 power.mode = IWI_MODE_11G; 2598 DPRINTF(("Setting .11g channels tx power\n")); 2599 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2600 if (error != 0) 2601 return error; 2602 } 2603 2604 memset(&rs, 0, sizeof rs); 2605 rs.mode = IWI_MODE_11G; 2606 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2607 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2608 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2609 rs.nrates); 2610 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2611 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2612 if (error != 0) 2613 return error; 2614 2615 memset(&rs, 0, sizeof rs); 2616 rs.mode = IWI_MODE_11A; 2617 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2618 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2619 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2620 rs.nrates); 2621 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2622 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2623 if (error != 0) 2624 return error; 2625 2626 data = htole32(arc4random()); 2627 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2628 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2629 if (error != 0) 2630 return error; 2631 2632 /* enable adapter */ 2633 DPRINTF(("Enabling adapter\n")); 2634 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2635 } 2636 2637 static __inline void 2638 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2639 { 2640 uint8_t *st = &scan->scan_type[ix / 2]; 2641 if (ix % 2) 2642 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2643 else 2644 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2645 } 2646 2647 static int 2648 scan_type(const struct ieee80211_scan_state *ss, 2649 const struct ieee80211_channel *chan) 2650 { 2651 /* We can only set one essid for a directed scan */ 2652 if (ss->ss_nssid != 0) 2653 return IWI_SCAN_TYPE_BDIRECTED; 2654 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2655 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2656 return IWI_SCAN_TYPE_BROADCAST; 2657 return IWI_SCAN_TYPE_PASSIVE; 2658 } 2659 2660 static __inline int 2661 scan_band(const struct ieee80211_channel *c) 2662 { 2663 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2664 } 2665 2666 static void 2667 iwi_monitor_scan(void *arg, int npending) 2668 { 2669 struct iwi_softc *sc = arg; 2670 IWI_LOCK_DECL; 2671 2672 IWI_LOCK(sc); 2673 (void) iwi_scanchan(sc, 2000, 0); 2674 IWI_UNLOCK(sc); 2675 } 2676 2677 /* 2678 * Start a scan on the current channel or all channels. 2679 */ 2680 static int 2681 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2682 { 2683 struct ieee80211com *ic; 2684 struct ieee80211_channel *chan; 2685 struct ieee80211_scan_state *ss; 2686 struct iwi_scan_ext scan; 2687 int error = 0; 2688 2689 IWI_LOCK_ASSERT(sc); 2690 if (sc->fw_state == IWI_FW_SCANNING) { 2691 /* 2692 * This should not happen as we only trigger scan_next after 2693 * completion 2694 */ 2695 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2696 return (EBUSY); 2697 } 2698 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2699 2700 ic = sc->sc_ifp->if_l2com; 2701 ss = ic->ic_scan; 2702 2703 memset(&scan, 0, sizeof scan); 2704 scan.full_scan_index = htole32(++sc->sc_scangen); 2705 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2706 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2707 /* 2708 * Use very short dwell times for when we send probe request 2709 * frames. Without this bg scans hang. Ideally this should 2710 * be handled with early-termination as done by net80211 but 2711 * that's not feasible (aborting a scan is problematic). 2712 */ 2713 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2714 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2715 } else { 2716 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2717 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2718 } 2719 2720 /* We can only set one essid for a directed scan */ 2721 if (ss->ss_nssid != 0) { 2722 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2723 ss->ss_ssid[0].len); 2724 if (error) 2725 return (error); 2726 } 2727 2728 if (allchan) { 2729 int i, next, band, b, bstart; 2730 /* 2731 * Convert scan list to run-length encoded channel list 2732 * the firmware requires (preserving the order setup by 2733 * net80211). The first entry in each run specifies the 2734 * band and the count of items in the run. 2735 */ 2736 next = 0; /* next open slot */ 2737 bstart = 0; /* NB: not needed, silence compiler */ 2738 band = -1; /* NB: impossible value */ 2739 KASSERT(ss->ss_last > 0, ("no channels")); 2740 for (i = 0; i < ss->ss_last; i++) { 2741 chan = ss->ss_chans[i]; 2742 b = scan_band(chan); 2743 if (b != band) { 2744 if (band != -1) 2745 scan.channels[bstart] = 2746 (next - bstart) | band; 2747 /* NB: this allocates a slot for the run-len */ 2748 band = b, bstart = next++; 2749 } 2750 if (next >= IWI_SCAN_CHANNELS) { 2751 DPRINTF(("truncating scan list\n")); 2752 break; 2753 } 2754 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2755 set_scan_type(&scan, next, scan_type(ss, chan)); 2756 next++; 2757 } 2758 scan.channels[bstart] = (next - bstart) | band; 2759 } else { 2760 /* Scan the current channel only */ 2761 chan = ic->ic_curchan; 2762 scan.channels[0] = 1 | scan_band(chan); 2763 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2764 set_scan_type(&scan, 1, scan_type(ss, chan)); 2765 } 2766 #ifdef IWI_DEBUG 2767 if (iwi_debug > 0) { 2768 static const char *scantype[8] = 2769 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2770 int i; 2771 printf("Scan request: index %u dwell %d/%d/%d\n" 2772 , le32toh(scan.full_scan_index) 2773 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2774 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2775 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2776 ); 2777 i = 0; 2778 do { 2779 int run = scan.channels[i]; 2780 if (run == 0) 2781 break; 2782 printf("Scan %d %s channels:", run & 0x3f, 2783 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2784 for (run &= 0x3f, i++; run > 0; run--, i++) { 2785 uint8_t type = scan.scan_type[i/2]; 2786 printf(" %u/%s", scan.channels[i], 2787 scantype[(i & 1 ? type : type>>4) & 7]); 2788 } 2789 printf("\n"); 2790 } while (i < IWI_SCAN_CHANNELS); 2791 } 2792 #endif 2793 2794 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2795 } 2796 2797 static int 2798 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2799 { 2800 struct iwi_sensitivity sens; 2801 2802 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2803 2804 memset(&sens, 0, sizeof sens); 2805 sens.rssi = htole16(rssi_dbm); 2806 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2807 } 2808 2809 static int 2810 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2811 { 2812 struct ieee80211com *ic = vap->iv_ic; 2813 struct ifnet *ifp = vap->iv_ifp; 2814 struct ieee80211_node *ni = vap->iv_bss; 2815 struct iwi_configuration config; 2816 struct iwi_associate *assoc = &sc->assoc; 2817 struct iwi_rateset rs; 2818 uint16_t capinfo; 2819 uint32_t data; 2820 int error, mode; 2821 2822 IWI_LOCK_ASSERT(sc); 2823 2824 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2825 DPRINTF(("Already associated\n")); 2826 return (-1); 2827 } 2828 2829 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2830 error = 0; 2831 mode = 0; 2832 2833 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2834 mode = IWI_MODE_11A; 2835 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2836 mode = IWI_MODE_11G; 2837 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2838 mode = IWI_MODE_11B; 2839 2840 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2841 memset(&config, 0, sizeof config); 2842 config.bluetooth_coexistence = sc->bluetooth; 2843 config.antenna = sc->antenna; 2844 config.multicast_enabled = 1; 2845 if (mode == IWI_MODE_11G) 2846 config.use_protection = 1; 2847 config.answer_pbreq = 2848 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2849 config.disable_unicast_decryption = 1; 2850 config.disable_multicast_decryption = 1; 2851 DPRINTF(("Configuring adapter\n")); 2852 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2853 if (error != 0) 2854 goto done; 2855 } 2856 2857 #ifdef IWI_DEBUG 2858 if (iwi_debug > 0) { 2859 printf("Setting ESSID to "); 2860 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2861 printf("\n"); 2862 } 2863 #endif 2864 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2865 if (error != 0) 2866 goto done; 2867 2868 error = iwi_setpowermode(sc, vap); 2869 if (error != 0) 2870 goto done; 2871 2872 data = htole32(vap->iv_rtsthreshold); 2873 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2874 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2875 if (error != 0) 2876 goto done; 2877 2878 data = htole32(vap->iv_fragthreshold); 2879 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2880 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2881 if (error != 0) 2882 goto done; 2883 2884 /* the rate set has already been "negotiated" */ 2885 memset(&rs, 0, sizeof rs); 2886 rs.mode = mode; 2887 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2888 rs.nrates = ni->ni_rates.rs_nrates; 2889 if (rs.nrates > IWI_RATESET_SIZE) { 2890 DPRINTF(("Truncating negotiated rate set from %u\n", 2891 rs.nrates)); 2892 rs.nrates = IWI_RATESET_SIZE; 2893 } 2894 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2895 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2896 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2897 if (error != 0) 2898 goto done; 2899 2900 memset(assoc, 0, sizeof *assoc); 2901 2902 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2903 /* NB: don't treat WME setup as failure */ 2904 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2905 assoc->policy |= htole16(IWI_POLICY_WME); 2906 /* XXX complain on failure? */ 2907 } 2908 2909 if (vap->iv_appie_wpa != NULL) { 2910 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2911 2912 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2913 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2914 if (error != 0) 2915 goto done; 2916 } 2917 2918 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2919 if (error != 0) 2920 goto done; 2921 2922 assoc->mode = mode; 2923 assoc->chan = ic->ic_curchan->ic_ieee; 2924 /* 2925 * NB: do not arrange for shared key auth w/o privacy 2926 * (i.e. a wep key); it causes a firmware error. 2927 */ 2928 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2929 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2930 assoc->auth = IWI_AUTH_SHARED; 2931 /* 2932 * It's possible to have privacy marked but no default 2933 * key setup. This typically is due to a user app bug 2934 * but if we blindly grab the key the firmware will 2935 * barf so avoid it for now. 2936 */ 2937 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2938 assoc->auth |= vap->iv_def_txkey << 4; 2939 2940 error = iwi_setwepkeys(sc, vap); 2941 if (error != 0) 2942 goto done; 2943 } 2944 if (vap->iv_flags & IEEE80211_F_WPA) 2945 assoc->policy |= htole16(IWI_POLICY_WPA); 2946 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2947 assoc->type = IWI_HC_IBSS_START; 2948 else 2949 assoc->type = IWI_HC_ASSOC; 2950 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2951 2952 if (vap->iv_opmode == IEEE80211_M_IBSS) 2953 capinfo = IEEE80211_CAPINFO_IBSS; 2954 else 2955 capinfo = IEEE80211_CAPINFO_ESS; 2956 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2957 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2958 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2959 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2960 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2961 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2962 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2963 assoc->capinfo = htole16(capinfo); 2964 2965 assoc->lintval = htole16(ic->ic_lintval); 2966 assoc->intval = htole16(ni->ni_intval); 2967 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2968 if (vap->iv_opmode == IEEE80211_M_IBSS) 2969 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2970 else 2971 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2972 2973 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2974 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2975 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2976 assoc->bssid, ":", assoc->dst, ":", 2977 assoc->chan, le16toh(assoc->policy), assoc->auth, 2978 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2979 le16toh(assoc->intval))); 2980 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2981 done: 2982 if (error) 2983 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2984 2985 return (error); 2986 } 2987 2988 static void 2989 iwi_disassoc(void *arg, int pending) 2990 { 2991 struct iwi_softc *sc = arg; 2992 IWI_LOCK_DECL; 2993 2994 IWI_LOCK(sc); 2995 iwi_disassociate(sc, 0); 2996 IWI_UNLOCK(sc); 2997 } 2998 2999 static int 3000 iwi_disassociate(struct iwi_softc *sc, int quiet) 3001 { 3002 struct iwi_associate *assoc = &sc->assoc; 3003 3004 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3005 DPRINTF(("Not associated\n")); 3006 return (-1); 3007 } 3008 3009 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3010 3011 if (quiet) 3012 assoc->type = IWI_HC_DISASSOC_QUIET; 3013 else 3014 assoc->type = IWI_HC_DISASSOC; 3015 3016 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3017 assoc->bssid, ":", assoc->chan)); 3018 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3019 } 3020 3021 /* 3022 * release dma resources for the firmware 3023 */ 3024 static void 3025 iwi_release_fw_dma(struct iwi_softc *sc) 3026 { 3027 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3028 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3029 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3030 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3031 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3032 bus_dma_tag_destroy(sc->fw_dmat); 3033 3034 sc->fw_flags = 0; 3035 sc->fw_dma_size = 0; 3036 sc->fw_dmat = NULL; 3037 sc->fw_map = NULL; 3038 sc->fw_physaddr = 0; 3039 sc->fw_virtaddr = NULL; 3040 } 3041 3042 /* 3043 * allocate the dma descriptor for the firmware. 3044 * Return 0 on success, 1 on error. 3045 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3046 */ 3047 static int 3048 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3049 { 3050 if (sc->fw_dma_size >= size) 3051 return 0; 3052 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3053 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3054 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3055 device_printf(sc->sc_dev, 3056 "could not create firmware DMA tag\n"); 3057 goto error; 3058 } 3059 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3060 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3061 &sc->fw_map) != 0) { 3062 device_printf(sc->sc_dev, 3063 "could not allocate firmware DMA memory\n"); 3064 goto error; 3065 } 3066 sc->fw_flags |= IWI_FW_HAVE_MAP; 3067 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3068 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3069 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3070 goto error; 3071 } 3072 sc->fw_flags |= IWI_FW_HAVE_PHY; 3073 sc->fw_dma_size = size; 3074 return 0; 3075 3076 error: 3077 iwi_release_fw_dma(sc); 3078 return 1; 3079 } 3080 3081 static void 3082 iwi_init_locked(struct iwi_softc *sc) 3083 { 3084 struct ifnet *ifp = sc->sc_ifp; 3085 struct iwi_rx_data *data; 3086 int i; 3087 3088 IWI_LOCK_ASSERT(sc); 3089 3090 if (sc->fw_state == IWI_FW_LOADING) { 3091 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3092 return; /* XXX: condvar? */ 3093 } 3094 3095 iwi_stop_locked(sc); 3096 3097 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3098 3099 if (iwi_reset(sc) != 0) { 3100 device_printf(sc->sc_dev, "could not reset adapter\n"); 3101 goto fail; 3102 } 3103 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3104 device_printf(sc->sc_dev, 3105 "could not load boot firmware %s\n", sc->fw_boot.name); 3106 goto fail; 3107 } 3108 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3109 device_printf(sc->sc_dev, 3110 "could not load microcode %s\n", sc->fw_uc.name); 3111 goto fail; 3112 } 3113 3114 iwi_stop_master(sc); 3115 3116 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3117 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3118 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3119 3120 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3121 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3122 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3123 3124 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3125 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3126 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3127 3128 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3129 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3130 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3131 3132 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3133 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3134 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3135 3136 for (i = 0; i < sc->rxq.count; i++) { 3137 data = &sc->rxq.data[i]; 3138 CSR_WRITE_4(sc, data->reg, data->physaddr); 3139 } 3140 3141 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3142 3143 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3144 device_printf(sc->sc_dev, 3145 "could not load main firmware %s\n", sc->fw_fw.name); 3146 goto fail; 3147 } 3148 sc->flags |= IWI_FLAG_FW_INITED; 3149 3150 IWI_STATE_END(sc, IWI_FW_LOADING); 3151 3152 if (iwi_config(sc) != 0) { 3153 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3154 goto fail2; 3155 } 3156 3157 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3158 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3159 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3160 return; 3161 fail: 3162 IWI_STATE_END(sc, IWI_FW_LOADING); 3163 fail2: 3164 iwi_stop_locked(sc); 3165 } 3166 3167 static void 3168 iwi_init(void *priv) 3169 { 3170 struct iwi_softc *sc = priv; 3171 struct ifnet *ifp = sc->sc_ifp; 3172 struct ieee80211com *ic = ifp->if_l2com; 3173 IWI_LOCK_DECL; 3174 3175 IWI_LOCK(sc); 3176 iwi_init_locked(sc); 3177 IWI_UNLOCK(sc); 3178 3179 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3180 ieee80211_start_all(ic); 3181 } 3182 3183 static void 3184 iwi_stop_locked(void *priv) 3185 { 3186 struct iwi_softc *sc = priv; 3187 struct ifnet *ifp = sc->sc_ifp; 3188 3189 IWI_LOCK_ASSERT(sc); 3190 3191 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3192 3193 if (sc->sc_softled) { 3194 callout_stop(&sc->sc_ledtimer); 3195 sc->sc_blinking = 0; 3196 } 3197 callout_stop(&sc->sc_wdtimer); 3198 callout_stop(&sc->sc_rftimer); 3199 3200 iwi_stop_master(sc); 3201 3202 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3203 3204 /* reset rings */ 3205 iwi_reset_cmd_ring(sc, &sc->cmdq); 3206 iwi_reset_tx_ring(sc, &sc->txq[0]); 3207 iwi_reset_tx_ring(sc, &sc->txq[1]); 3208 iwi_reset_tx_ring(sc, &sc->txq[2]); 3209 iwi_reset_tx_ring(sc, &sc->txq[3]); 3210 iwi_reset_rx_ring(sc, &sc->rxq); 3211 3212 sc->sc_tx_timer = 0; 3213 sc->sc_state_timer = 0; 3214 sc->sc_busy_timer = 0; 3215 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3216 sc->fw_state = IWI_FW_IDLE; 3217 wakeup(sc); 3218 } 3219 3220 static void 3221 iwi_stop(struct iwi_softc *sc) 3222 { 3223 IWI_LOCK_DECL; 3224 3225 IWI_LOCK(sc); 3226 iwi_stop_locked(sc); 3227 IWI_UNLOCK(sc); 3228 } 3229 3230 static void 3231 iwi_restart(void *arg, int npending) 3232 { 3233 struct iwi_softc *sc = arg; 3234 3235 iwi_init(sc); 3236 } 3237 3238 /* 3239 * Return whether or not the radio is enabled in hardware 3240 * (i.e. the rfkill switch is "off"). 3241 */ 3242 static int 3243 iwi_getrfkill(struct iwi_softc *sc) 3244 { 3245 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3246 } 3247 3248 static void 3249 iwi_radio_on(void *arg, int pending) 3250 { 3251 struct iwi_softc *sc = arg; 3252 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3253 3254 device_printf(sc->sc_dev, "radio turned on\n"); 3255 3256 iwi_init(sc); 3257 ieee80211_notify_radio(ic, 1); 3258 } 3259 3260 static void 3261 iwi_rfkill_poll(void *arg) 3262 { 3263 struct iwi_softc *sc = arg; 3264 3265 IWI_LOCK_ASSERT(sc); 3266 3267 /* 3268 * Check for a change in rfkill state. We get an 3269 * interrupt when a radio is disabled but not when 3270 * it is enabled so we must poll for the latter. 3271 */ 3272 if (!iwi_getrfkill(sc)) { 3273 struct ifnet *ifp = sc->sc_ifp; 3274 struct ieee80211com *ic = ifp->if_l2com; 3275 3276 ieee80211_runtask(ic, &sc->sc_radiontask); 3277 return; 3278 } 3279 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3280 } 3281 3282 static void 3283 iwi_radio_off(void *arg, int pending) 3284 { 3285 struct iwi_softc *sc = arg; 3286 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3287 IWI_LOCK_DECL; 3288 3289 device_printf(sc->sc_dev, "radio turned off\n"); 3290 3291 ieee80211_notify_radio(ic, 0); 3292 3293 IWI_LOCK(sc); 3294 iwi_stop_locked(sc); 3295 iwi_rfkill_poll(sc); 3296 IWI_UNLOCK(sc); 3297 } 3298 3299 static int 3300 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3301 { 3302 struct iwi_softc *sc = arg1; 3303 uint32_t size, buf[128]; 3304 3305 memset(buf, 0, sizeof buf); 3306 3307 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3308 return SYSCTL_OUT(req, buf, sizeof buf); 3309 3310 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3311 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3312 3313 return SYSCTL_OUT(req, buf, size); 3314 } 3315 3316 static int 3317 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3318 { 3319 struct iwi_softc *sc = arg1; 3320 int val = !iwi_getrfkill(sc); 3321 3322 return SYSCTL_OUT(req, &val, sizeof val); 3323 } 3324 3325 /* 3326 * Add sysctl knobs. 3327 */ 3328 static void 3329 iwi_sysctlattach(struct iwi_softc *sc) 3330 { 3331 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3332 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3333 3334 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3335 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3336 "radio transmitter switch state (0=off, 1=on)"); 3337 3338 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3339 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3340 "statistics"); 3341 3342 sc->bluetooth = 0; 3343 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3344 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3345 3346 sc->antenna = IWI_ANTENNA_AUTO; 3347 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3348 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3349 } 3350 3351 /* 3352 * LED support. 3353 * 3354 * Different cards have different capabilities. Some have three 3355 * led's while others have only one. The linux ipw driver defines 3356 * led's for link state (associated or not), band (11a, 11g, 11b), 3357 * and for link activity. We use one led and vary the blink rate 3358 * according to the tx/rx traffic a la the ath driver. 3359 */ 3360 3361 static __inline uint32_t 3362 iwi_toggle_event(uint32_t r) 3363 { 3364 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3365 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3366 } 3367 3368 static uint32_t 3369 iwi_read_event(struct iwi_softc *sc) 3370 { 3371 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3372 } 3373 3374 static void 3375 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3376 { 3377 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3378 } 3379 3380 static void 3381 iwi_led_done(void *arg) 3382 { 3383 struct iwi_softc *sc = arg; 3384 3385 sc->sc_blinking = 0; 3386 } 3387 3388 /* 3389 * Turn the activity LED off: flip the pin and then set a timer so no 3390 * update will happen for the specified duration. 3391 */ 3392 static void 3393 iwi_led_off(void *arg) 3394 { 3395 struct iwi_softc *sc = arg; 3396 uint32_t v; 3397 3398 v = iwi_read_event(sc); 3399 v &= ~sc->sc_ledpin; 3400 iwi_write_event(sc, iwi_toggle_event(v)); 3401 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3402 } 3403 3404 /* 3405 * Blink the LED according to the specified on/off times. 3406 */ 3407 static void 3408 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3409 { 3410 uint32_t v; 3411 3412 v = iwi_read_event(sc); 3413 v |= sc->sc_ledpin; 3414 iwi_write_event(sc, iwi_toggle_event(v)); 3415 sc->sc_blinking = 1; 3416 sc->sc_ledoff = off; 3417 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3418 } 3419 3420 static void 3421 iwi_led_event(struct iwi_softc *sc, int event) 3422 { 3423 #define N(a) (sizeof(a)/sizeof(a[0])) 3424 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3425 static const struct { 3426 u_int rate; /* tx/rx iwi rate */ 3427 u_int16_t timeOn; /* LED on time (ms) */ 3428 u_int16_t timeOff; /* LED off time (ms) */ 3429 } blinkrates[] = { 3430 { IWI_RATE_OFDM54, 40, 10 }, 3431 { IWI_RATE_OFDM48, 44, 11 }, 3432 { IWI_RATE_OFDM36, 50, 13 }, 3433 { IWI_RATE_OFDM24, 57, 14 }, 3434 { IWI_RATE_OFDM18, 67, 16 }, 3435 { IWI_RATE_OFDM12, 80, 20 }, 3436 { IWI_RATE_DS11, 100, 25 }, 3437 { IWI_RATE_OFDM9, 133, 34 }, 3438 { IWI_RATE_OFDM6, 160, 40 }, 3439 { IWI_RATE_DS5, 200, 50 }, 3440 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3441 { IWI_RATE_DS2, 267, 66 }, 3442 { IWI_RATE_DS1, 400, 100 }, 3443 { 0, 500, 130 }, /* unknown rate/polling */ 3444 }; 3445 uint32_t txrate; 3446 int j = 0; /* XXX silence compiler */ 3447 3448 sc->sc_ledevent = ticks; /* time of last event */ 3449 if (sc->sc_blinking) /* don't interrupt active blink */ 3450 return; 3451 switch (event) { 3452 case IWI_LED_POLL: 3453 j = N(blinkrates)-1; 3454 break; 3455 case IWI_LED_TX: 3456 /* read current transmission rate from adapter */ 3457 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3458 if (blinkrates[sc->sc_txrix].rate != txrate) { 3459 for (j = 0; j < N(blinkrates)-1; j++) 3460 if (blinkrates[j].rate == txrate) 3461 break; 3462 sc->sc_txrix = j; 3463 } else 3464 j = sc->sc_txrix; 3465 break; 3466 case IWI_LED_RX: 3467 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3468 for (j = 0; j < N(blinkrates)-1; j++) 3469 if (blinkrates[j].rate == sc->sc_rxrate) 3470 break; 3471 sc->sc_rxrix = j; 3472 } else 3473 j = sc->sc_rxrix; 3474 break; 3475 } 3476 /* XXX beware of overflow */ 3477 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3478 (blinkrates[j].timeOff * hz) / 1000); 3479 #undef N 3480 } 3481 3482 static int 3483 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3484 { 3485 struct iwi_softc *sc = arg1; 3486 int softled = sc->sc_softled; 3487 int error; 3488 3489 error = sysctl_handle_int(oidp, &softled, 0, req); 3490 if (error || !req->newptr) 3491 return error; 3492 softled = (softled != 0); 3493 if (softled != sc->sc_softled) { 3494 if (softled) { 3495 uint32_t v = iwi_read_event(sc); 3496 v &= ~sc->sc_ledpin; 3497 iwi_write_event(sc, iwi_toggle_event(v)); 3498 } 3499 sc->sc_softled = softled; 3500 } 3501 return 0; 3502 } 3503 3504 static void 3505 iwi_ledattach(struct iwi_softc *sc) 3506 { 3507 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3508 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3509 3510 sc->sc_blinking = 0; 3511 sc->sc_ledstate = 1; 3512 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3513 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3514 3515 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3516 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3517 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3518 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3519 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3520 "pin setting to turn activity LED on"); 3521 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3522 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3523 "idle time for inactivity LED (ticks)"); 3524 /* XXX for debugging */ 3525 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3526 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3527 "NIC type from EEPROM"); 3528 3529 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3530 sc->sc_softled = 1; 3531 3532 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3533 if (sc->sc_nictype == 1) { 3534 /* 3535 * NB: led's are reversed. 3536 */ 3537 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3538 } 3539 } 3540 3541 static void 3542 iwi_scan_start(struct ieee80211com *ic) 3543 { 3544 /* ignore */ 3545 } 3546 3547 static void 3548 iwi_set_channel(struct ieee80211com *ic) 3549 { 3550 struct ifnet *ifp = ic->ic_ifp; 3551 struct iwi_softc *sc = ifp->if_softc; 3552 if (sc->fw_state == IWI_FW_IDLE) 3553 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3554 } 3555 3556 static void 3557 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3558 { 3559 struct ieee80211vap *vap = ss->ss_vap; 3560 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3561 struct iwi_softc *sc = ifp->if_softc; 3562 IWI_LOCK_DECL; 3563 3564 IWI_LOCK(sc); 3565 if (iwi_scanchan(sc, maxdwell, 0)) 3566 ieee80211_cancel_scan(vap); 3567 IWI_UNLOCK(sc); 3568 } 3569 3570 static void 3571 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3572 { 3573 /* NB: don't try to abort scan; wait for firmware to finish */ 3574 } 3575 3576 static void 3577 iwi_scan_end(struct ieee80211com *ic) 3578 { 3579 struct ifnet *ifp = ic->ic_ifp; 3580 struct iwi_softc *sc = ifp->if_softc; 3581 IWI_LOCK_DECL; 3582 3583 IWI_LOCK(sc); 3584 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3585 /* NB: make sure we're still scanning */ 3586 if (sc->fw_state == IWI_FW_SCANNING) 3587 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3588 IWI_UNLOCK(sc); 3589 } 3590