1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/kthread.h> 57 #include <sys/taskqueue.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 #include <dev/pci/pcireg.h> 64 #include <dev/pci/pcivar.h> 65 66 #include <net/bpf.h> 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 88 #define IWI_DEBUG 89 #ifdef IWI_DEBUG 90 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 91 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 92 int iwi_debug = 0; 93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 94 95 static const char *iwi_fw_states[] = { 96 "IDLE", /* IWI_FW_IDLE */ 97 "LOADING", /* IWI_FW_LOADING */ 98 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 99 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 100 "SCANNING", /* IWI_FW_SCANNING */ 101 }; 102 #else 103 #define DPRINTF(x) 104 #define DPRINTFN(n, x) 105 #endif 106 107 MODULE_DEPEND(iwi, pci, 1, 1, 1); 108 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 109 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 110 111 enum { 112 IWI_LED_TX, 113 IWI_LED_RX, 114 IWI_LED_POLL, 115 }; 116 117 struct iwi_ident { 118 uint16_t vendor; 119 uint16_t device; 120 const char *name; 121 }; 122 123 static const struct iwi_ident iwi_ident_table[] = { 124 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 125 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 126 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 127 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 128 129 { 0, 0, NULL } 130 }; 131 132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 133 const char name[IFNAMSIZ], int unit, int opmode, int flags, 134 const uint8_t bssid[IEEE80211_ADDR_LEN], 135 const uint8_t mac[IEEE80211_ADDR_LEN]); 136 static void iwi_vap_delete(struct ieee80211vap *); 137 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 138 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 139 int); 140 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 143 int, bus_addr_t, bus_addr_t); 144 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 147 int); 148 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 151 const uint8_t [IEEE80211_ADDR_LEN]); 152 static void iwi_node_free(struct ieee80211_node *); 153 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 154 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 155 static void iwi_wme_init(struct iwi_softc *); 156 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 157 static int iwi_wme_update(struct ieee80211com *); 158 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 159 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 160 struct iwi_frame *); 161 static void iwi_authsuccess(void *, int); 162 static void iwi_assocsuccess(void *, int); 163 static void iwi_assocfailed(void *, int); 164 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 165 static void iwi_rx_intr(struct iwi_softc *); 166 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 167 static void iwi_intr(void *); 168 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 169 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 170 static int iwi_tx_start(struct ifnet *, struct mbuf *, 171 struct ieee80211_node *, int); 172 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 173 const struct ieee80211_bpf_params *); 174 static void iwi_start_locked(struct ifnet *); 175 static void iwi_start(struct ifnet *); 176 static void iwi_watchdog(void *); 177 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 178 static void iwi_stop_master(struct iwi_softc *); 179 static int iwi_reset(struct iwi_softc *); 180 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 181 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 182 static void iwi_release_fw_dma(struct iwi_softc *sc); 183 static int iwi_config(struct iwi_softc *); 184 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 185 static void iwi_put_firmware(struct iwi_softc *); 186 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 187 static void iwi_scan_start(struct ieee80211com *); 188 static void iwi_scan_end(struct ieee80211com *); 189 static void iwi_scanabort(void *, int); 190 static void iwi_set_channel(struct ieee80211com *); 191 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 192 #if 0 193 static void iwi_scan_allchan(struct ieee80211com *, unsigned long maxdwell); 194 #endif 195 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 196 static void iwi_ops(void *, int); 197 static int iwi_queue_cmd(struct iwi_softc *, int, unsigned long); 198 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 199 static int iwi_disassociate(struct iwi_softc *, int quiet); 200 static void iwi_init_locked(struct iwi_softc *); 201 static void iwi_init(void *); 202 static int iwi_init_fw_dma(struct iwi_softc *, int); 203 static void iwi_stop_locked(void *); 204 static void iwi_stop(struct iwi_softc *); 205 static void iwi_restart(void *, int); 206 static int iwi_getrfkill(struct iwi_softc *); 207 static void iwi_radio_on(void *, int); 208 static void iwi_radio_off(void *, int); 209 static void iwi_sysctlattach(struct iwi_softc *); 210 static void iwi_led_event(struct iwi_softc *, int); 211 static void iwi_ledattach(struct iwi_softc *); 212 213 static int iwi_probe(device_t); 214 static int iwi_attach(device_t); 215 static int iwi_detach(device_t); 216 static int iwi_shutdown(device_t); 217 static int iwi_suspend(device_t); 218 static int iwi_resume(device_t); 219 220 static device_method_t iwi_methods[] = { 221 /* Device interface */ 222 DEVMETHOD(device_probe, iwi_probe), 223 DEVMETHOD(device_attach, iwi_attach), 224 DEVMETHOD(device_detach, iwi_detach), 225 DEVMETHOD(device_shutdown, iwi_shutdown), 226 DEVMETHOD(device_suspend, iwi_suspend), 227 DEVMETHOD(device_resume, iwi_resume), 228 229 { 0, 0 } 230 }; 231 232 static driver_t iwi_driver = { 233 "iwi", 234 iwi_methods, 235 sizeof (struct iwi_softc) 236 }; 237 238 static devclass_t iwi_devclass; 239 240 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 241 242 static __inline uint8_t 243 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 244 { 245 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 246 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 247 } 248 249 static __inline uint32_t 250 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 251 { 252 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 253 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 254 } 255 256 static int 257 iwi_probe(device_t dev) 258 { 259 const struct iwi_ident *ident; 260 261 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 262 if (pci_get_vendor(dev) == ident->vendor && 263 pci_get_device(dev) == ident->device) { 264 device_set_desc(dev, ident->name); 265 return 0; 266 } 267 } 268 return ENXIO; 269 } 270 271 /* Base Address Register */ 272 #define IWI_PCI_BAR0 0x10 273 274 static int 275 iwi_attach(device_t dev) 276 { 277 struct iwi_softc *sc = device_get_softc(dev); 278 struct ifnet *ifp; 279 struct ieee80211com *ic; 280 uint16_t val; 281 int i, error; 282 uint8_t bands; 283 uint8_t macaddr[IEEE80211_ADDR_LEN]; 284 285 sc->sc_dev = dev; 286 287 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 288 if (ifp == NULL) { 289 device_printf(dev, "can not if_alloc()\n"); 290 return ENXIO; 291 } 292 ic = ifp->if_l2com; 293 294 IWI_LOCK_INIT(sc); 295 IWI_CMD_LOCK_INIT(sc); 296 297 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 298 299 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT | M_ZERO, 300 taskqueue_thread_enqueue, &sc->sc_tq); 301 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 302 device_get_nameunit(dev)); 303 sc->sc_tq2 = taskqueue_create("iwi_taskq2", M_NOWAIT | M_ZERO, 304 taskqueue_thread_enqueue, &sc->sc_tq2); 305 taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2", 306 device_get_nameunit(dev)); 307 308 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 309 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 310 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 311 TASK_INIT(&sc->sc_opstask, 0, iwi_ops, sc); 312 TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); 313 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 314 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 315 316 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 317 device_printf(dev, "chip is in D%d power mode " 318 "-- setting to D0\n", pci_get_powerstate(dev)); 319 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 320 } 321 322 pci_write_config(dev, 0x41, 0, 1); 323 324 /* enable bus-mastering */ 325 pci_enable_busmaster(dev); 326 327 sc->mem_rid = IWI_PCI_BAR0; 328 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 329 RF_ACTIVE); 330 if (sc->mem == NULL) { 331 device_printf(dev, "could not allocate memory resource\n"); 332 goto fail; 333 } 334 335 sc->sc_st = rman_get_bustag(sc->mem); 336 sc->sc_sh = rman_get_bushandle(sc->mem); 337 338 sc->irq_rid = 0; 339 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 340 RF_ACTIVE | RF_SHAREABLE); 341 if (sc->irq == NULL) { 342 device_printf(dev, "could not allocate interrupt resource\n"); 343 goto fail; 344 } 345 346 if (iwi_reset(sc) != 0) { 347 device_printf(dev, "could not reset adapter\n"); 348 goto fail; 349 } 350 351 /* 352 * Allocate rings. 353 */ 354 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 355 device_printf(dev, "could not allocate Cmd ring\n"); 356 goto fail; 357 } 358 359 for (i = 0; i < 4; i++) { 360 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 361 IWI_CSR_TX1_RIDX + i * 4, 362 IWI_CSR_TX1_WIDX + i * 4); 363 if (error != 0) { 364 device_printf(dev, "could not allocate Tx ring %d\n", 365 i+i); 366 goto fail; 367 } 368 } 369 370 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 371 device_printf(dev, "could not allocate Rx ring\n"); 372 goto fail; 373 } 374 375 iwi_wme_init(sc); 376 377 ifp->if_softc = sc; 378 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 379 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 380 ifp->if_init = iwi_init; 381 ifp->if_ioctl = iwi_ioctl; 382 ifp->if_start = iwi_start; 383 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 384 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 385 IFQ_SET_READY(&ifp->if_snd); 386 387 ic->ic_ifp = ifp; 388 ic->ic_opmode = IEEE80211_M_STA; 389 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 390 391 /* set device capabilities */ 392 ic->ic_caps = 393 IEEE80211_C_STA /* station mode supported */ 394 | IEEE80211_C_IBSS /* IBSS mode supported */ 395 | IEEE80211_C_MONITOR /* monitor mode supported */ 396 | IEEE80211_C_PMGT /* power save supported */ 397 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 398 | IEEE80211_C_WPA /* 802.11i */ 399 | IEEE80211_C_WME /* 802.11e */ 400 #if 0 401 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 402 #endif 403 ; 404 405 /* read MAC address from EEPROM */ 406 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 407 macaddr[0] = val & 0xff; 408 macaddr[1] = val >> 8; 409 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 410 macaddr[2] = val & 0xff; 411 macaddr[3] = val >> 8; 412 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 413 macaddr[4] = val & 0xff; 414 macaddr[5] = val >> 8; 415 416 bands = 0; 417 setbit(&bands, IEEE80211_MODE_11B); 418 setbit(&bands, IEEE80211_MODE_11G); 419 if (pci_get_device(dev) >= 0x4223) 420 setbit(&bands, IEEE80211_MODE_11A); 421 ieee80211_init_channels(ic, NULL, &bands); 422 423 ieee80211_ifattach(ic, macaddr); 424 /* override default methods */ 425 ic->ic_node_alloc = iwi_node_alloc; 426 sc->sc_node_free = ic->ic_node_free; 427 ic->ic_node_free = iwi_node_free; 428 ic->ic_raw_xmit = iwi_raw_xmit; 429 ic->ic_scan_start = iwi_scan_start; 430 ic->ic_scan_end = iwi_scan_end; 431 ic->ic_set_channel = iwi_set_channel; 432 ic->ic_scan_curchan = iwi_scan_curchan; 433 ic->ic_scan_mindwell = iwi_scan_mindwell; 434 ic->ic_wme.wme_update = iwi_wme_update; 435 436 ic->ic_vap_create = iwi_vap_create; 437 ic->ic_vap_delete = iwi_vap_delete; 438 439 bpfattach(ifp, DLT_IEEE802_11_RADIO, 440 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 441 442 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 443 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 444 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); 445 446 sc->sc_txtap_len = sizeof sc->sc_txtap; 447 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 448 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); 449 450 iwi_sysctlattach(sc); 451 iwi_ledattach(sc); 452 453 /* 454 * Hook our interrupt after all initialization is complete. 455 */ 456 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 457 NULL, iwi_intr, sc, &sc->sc_ih); 458 if (error != 0) { 459 device_printf(dev, "could not set up interrupt\n"); 460 goto fail; 461 } 462 463 if (bootverbose) 464 ieee80211_announce(ic); 465 466 return 0; 467 fail: 468 /* XXX fix */ 469 iwi_detach(dev); 470 return ENXIO; 471 } 472 473 static int 474 iwi_detach(device_t dev) 475 { 476 struct iwi_softc *sc = device_get_softc(dev); 477 struct ifnet *ifp = sc->sc_ifp; 478 struct ieee80211com *ic = ifp->if_l2com; 479 480 iwi_stop(sc); 481 482 bpfdetach(ifp); 483 ieee80211_ifdetach(ic); 484 485 /* NB: do early to drain any pending tasks */ 486 taskqueue_free(sc->sc_tq); 487 taskqueue_free(sc->sc_tq2); 488 489 iwi_put_firmware(sc); 490 iwi_release_fw_dma(sc); 491 492 iwi_free_cmd_ring(sc, &sc->cmdq); 493 iwi_free_tx_ring(sc, &sc->txq[0]); 494 iwi_free_tx_ring(sc, &sc->txq[1]); 495 iwi_free_tx_ring(sc, &sc->txq[2]); 496 iwi_free_tx_ring(sc, &sc->txq[3]); 497 iwi_free_rx_ring(sc, &sc->rxq); 498 499 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 500 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 501 502 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 503 504 delete_unrhdr(sc->sc_unr); 505 506 IWI_LOCK_DESTROY(sc); 507 IWI_CMD_LOCK_DESTROY(sc); 508 509 if_free(ifp); 510 511 return 0; 512 } 513 514 static struct ieee80211vap * 515 iwi_vap_create(struct ieee80211com *ic, 516 const char name[IFNAMSIZ], int unit, int opmode, int flags, 517 const uint8_t bssid[IEEE80211_ADDR_LEN], 518 const uint8_t mac[IEEE80211_ADDR_LEN]) 519 { 520 struct ifnet *ifp = ic->ic_ifp; 521 struct iwi_softc *sc = ifp->if_softc; 522 struct iwi_vap *ivp; 523 struct ieee80211vap *vap; 524 int i; 525 526 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 527 return NULL; 528 /* 529 * Get firmware image (and possibly dma memory) on mode change. 530 */ 531 if (iwi_get_firmware(sc, opmode)) 532 return NULL; 533 /* allocate DMA memory for mapping firmware image */ 534 i = sc->fw_fw.size; 535 if (sc->fw_boot.size > i) 536 i = sc->fw_boot.size; 537 /* XXX do we dma the ucode as well ? */ 538 if (sc->fw_uc.size > i) 539 i = sc->fw_uc.size; 540 if (iwi_init_fw_dma(sc, i)) 541 return NULL; 542 543 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 544 M_80211_VAP, M_NOWAIT | M_ZERO); 545 if (ivp == NULL) 546 return NULL; 547 vap = &ivp->iwi_vap; 548 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 549 /* override the default, the setting comes from the linux driver */ 550 vap->iv_bmissthreshold = 24; 551 /* override with driver methods */ 552 ivp->iwi_newstate = vap->iv_newstate; 553 vap->iv_newstate = iwi_newstate; 554 555 TASK_INIT(&ivp->iwi_authsuccess_task, 0, iwi_authsuccess, vap); 556 TASK_INIT(&ivp->iwi_assocsuccess_task, 0, iwi_assocsuccess, vap); 557 TASK_INIT(&ivp->iwi_assocfailed_task, 0, iwi_assocfailed, vap); 558 559 /* complete setup */ 560 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 561 ic->ic_opmode = opmode; 562 return vap; 563 } 564 565 static void 566 iwi_vap_delete(struct ieee80211vap *vap) 567 { 568 struct iwi_vap *ivp = IWI_VAP(vap); 569 570 ieee80211_vap_detach(vap); 571 free(ivp, M_80211_VAP); 572 } 573 574 static void 575 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 576 { 577 if (error != 0) 578 return; 579 580 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 581 582 *(bus_addr_t *)arg = segs[0].ds_addr; 583 } 584 585 static int 586 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 587 { 588 int error; 589 590 ring->count = count; 591 ring->queued = 0; 592 ring->cur = ring->next = 0; 593 594 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 595 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 596 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 597 NULL, NULL, &ring->desc_dmat); 598 if (error != 0) { 599 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 600 goto fail; 601 } 602 603 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 604 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 605 if (error != 0) { 606 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 607 goto fail; 608 } 609 610 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 611 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 612 if (error != 0) { 613 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 614 goto fail; 615 } 616 617 return 0; 618 619 fail: iwi_free_cmd_ring(sc, ring); 620 return error; 621 } 622 623 static void 624 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 625 { 626 ring->queued = 0; 627 ring->cur = ring->next = 0; 628 } 629 630 static void 631 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 632 { 633 if (ring->desc != NULL) { 634 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 635 BUS_DMASYNC_POSTWRITE); 636 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 637 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 638 } 639 640 if (ring->desc_dmat != NULL) 641 bus_dma_tag_destroy(ring->desc_dmat); 642 } 643 644 static int 645 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 646 bus_addr_t csr_ridx, bus_addr_t csr_widx) 647 { 648 int i, error; 649 650 ring->count = count; 651 ring->queued = 0; 652 ring->cur = ring->next = 0; 653 ring->csr_ridx = csr_ridx; 654 ring->csr_widx = csr_widx; 655 656 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 657 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 658 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 659 NULL, &ring->desc_dmat); 660 if (error != 0) { 661 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 662 goto fail; 663 } 664 665 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 666 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 667 if (error != 0) { 668 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 669 goto fail; 670 } 671 672 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 673 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 674 if (error != 0) { 675 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 676 goto fail; 677 } 678 679 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 680 M_NOWAIT | M_ZERO); 681 if (ring->data == NULL) { 682 device_printf(sc->sc_dev, "could not allocate soft data\n"); 683 error = ENOMEM; 684 goto fail; 685 } 686 687 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 688 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 689 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 690 if (error != 0) { 691 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 692 goto fail; 693 } 694 695 for (i = 0; i < count; i++) { 696 error = bus_dmamap_create(ring->data_dmat, 0, 697 &ring->data[i].map); 698 if (error != 0) { 699 device_printf(sc->sc_dev, "could not create DMA map\n"); 700 goto fail; 701 } 702 } 703 704 return 0; 705 706 fail: iwi_free_tx_ring(sc, ring); 707 return error; 708 } 709 710 static void 711 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 712 { 713 struct iwi_tx_data *data; 714 int i; 715 716 for (i = 0; i < ring->count; i++) { 717 data = &ring->data[i]; 718 719 if (data->m != NULL) { 720 bus_dmamap_sync(ring->data_dmat, data->map, 721 BUS_DMASYNC_POSTWRITE); 722 bus_dmamap_unload(ring->data_dmat, data->map); 723 m_freem(data->m); 724 data->m = NULL; 725 } 726 727 if (data->ni != NULL) { 728 ieee80211_free_node(data->ni); 729 data->ni = NULL; 730 } 731 } 732 733 ring->queued = 0; 734 ring->cur = ring->next = 0; 735 } 736 737 static void 738 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 739 { 740 struct iwi_tx_data *data; 741 int i; 742 743 if (ring->desc != NULL) { 744 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 745 BUS_DMASYNC_POSTWRITE); 746 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 747 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 748 } 749 750 if (ring->desc_dmat != NULL) 751 bus_dma_tag_destroy(ring->desc_dmat); 752 753 if (ring->data != NULL) { 754 for (i = 0; i < ring->count; i++) { 755 data = &ring->data[i]; 756 757 if (data->m != NULL) { 758 bus_dmamap_sync(ring->data_dmat, data->map, 759 BUS_DMASYNC_POSTWRITE); 760 bus_dmamap_unload(ring->data_dmat, data->map); 761 m_freem(data->m); 762 } 763 764 if (data->ni != NULL) 765 ieee80211_free_node(data->ni); 766 767 if (data->map != NULL) 768 bus_dmamap_destroy(ring->data_dmat, data->map); 769 } 770 771 free(ring->data, M_DEVBUF); 772 } 773 774 if (ring->data_dmat != NULL) 775 bus_dma_tag_destroy(ring->data_dmat); 776 } 777 778 static int 779 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 780 { 781 struct iwi_rx_data *data; 782 int i, error; 783 784 ring->count = count; 785 ring->cur = 0; 786 787 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 788 M_NOWAIT | M_ZERO); 789 if (ring->data == NULL) { 790 device_printf(sc->sc_dev, "could not allocate soft data\n"); 791 error = ENOMEM; 792 goto fail; 793 } 794 795 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 796 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 797 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 798 if (error != 0) { 799 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 800 goto fail; 801 } 802 803 for (i = 0; i < count; i++) { 804 data = &ring->data[i]; 805 806 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 807 if (error != 0) { 808 device_printf(sc->sc_dev, "could not create DMA map\n"); 809 goto fail; 810 } 811 812 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 813 if (data->m == NULL) { 814 device_printf(sc->sc_dev, 815 "could not allocate rx mbuf\n"); 816 error = ENOMEM; 817 goto fail; 818 } 819 820 error = bus_dmamap_load(ring->data_dmat, data->map, 821 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 822 &data->physaddr, 0); 823 if (error != 0) { 824 device_printf(sc->sc_dev, 825 "could not load rx buf DMA map"); 826 goto fail; 827 } 828 829 data->reg = IWI_CSR_RX_BASE + i * 4; 830 } 831 832 return 0; 833 834 fail: iwi_free_rx_ring(sc, ring); 835 return error; 836 } 837 838 static void 839 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 840 { 841 ring->cur = 0; 842 } 843 844 static void 845 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 846 { 847 struct iwi_rx_data *data; 848 int i; 849 850 if (ring->data != NULL) { 851 for (i = 0; i < ring->count; i++) { 852 data = &ring->data[i]; 853 854 if (data->m != NULL) { 855 bus_dmamap_sync(ring->data_dmat, data->map, 856 BUS_DMASYNC_POSTREAD); 857 bus_dmamap_unload(ring->data_dmat, data->map); 858 m_freem(data->m); 859 } 860 861 if (data->map != NULL) 862 bus_dmamap_destroy(ring->data_dmat, data->map); 863 } 864 865 free(ring->data, M_DEVBUF); 866 } 867 868 if (ring->data_dmat != NULL) 869 bus_dma_tag_destroy(ring->data_dmat); 870 } 871 872 static int 873 iwi_shutdown(device_t dev) 874 { 875 struct iwi_softc *sc = device_get_softc(dev); 876 877 iwi_stop(sc); 878 iwi_put_firmware(sc); /* ??? XXX */ 879 880 return 0; 881 } 882 883 static int 884 iwi_suspend(device_t dev) 885 { 886 struct iwi_softc *sc = device_get_softc(dev); 887 888 iwi_stop(sc); 889 890 return 0; 891 } 892 893 static int 894 iwi_resume(device_t dev) 895 { 896 struct iwi_softc *sc = device_get_softc(dev); 897 struct ifnet *ifp = sc->sc_ifp; 898 899 pci_write_config(dev, 0x41, 0, 1); 900 901 if (ifp->if_flags & IFF_UP) 902 iwi_init(sc); 903 904 return 0; 905 } 906 907 static struct ieee80211_node * 908 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 909 { 910 struct iwi_node *in; 911 912 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 913 if (in == NULL) 914 return NULL; 915 /* XXX assign sta table entry for adhoc */ 916 in->in_station = -1; 917 918 return &in->in_node; 919 } 920 921 static void 922 iwi_node_free(struct ieee80211_node *ni) 923 { 924 struct ieee80211com *ic = ni->ni_ic; 925 struct iwi_softc *sc = ic->ic_ifp->if_softc; 926 struct iwi_node *in = (struct iwi_node *)ni; 927 928 if (in->in_station != -1) { 929 DPRINTF(("%s mac %6D station %u\n", __func__, 930 ni->ni_macaddr, ":", in->in_station)); 931 free_unr(sc->sc_unr, in->in_station); 932 } 933 934 sc->sc_node_free(ni); 935 } 936 937 /* 938 * Convert h/w rate code to IEEE rate code. 939 */ 940 static int 941 iwi_cvtrate(int iwirate) 942 { 943 switch (iwirate) { 944 case IWI_RATE_DS1: return 2; 945 case IWI_RATE_DS2: return 4; 946 case IWI_RATE_DS5: return 11; 947 case IWI_RATE_DS11: return 22; 948 case IWI_RATE_OFDM6: return 12; 949 case IWI_RATE_OFDM9: return 18; 950 case IWI_RATE_OFDM12: return 24; 951 case IWI_RATE_OFDM18: return 36; 952 case IWI_RATE_OFDM24: return 48; 953 case IWI_RATE_OFDM36: return 72; 954 case IWI_RATE_OFDM48: return 96; 955 case IWI_RATE_OFDM54: return 108; 956 } 957 return 0; 958 } 959 960 /* 961 * The firmware automatically adapts the transmit speed. We report its current 962 * value here. 963 */ 964 static void 965 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 966 { 967 struct ieee80211vap *vap = ifp->if_softc; 968 struct ieee80211com *ic = vap->iv_ic; 969 struct iwi_softc *sc = ic->ic_ifp->if_softc; 970 971 /* read current transmission rate from adapter */ 972 vap->iv_bss->ni_txrate = 973 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 974 ieee80211_media_status(ifp, imr); 975 } 976 977 static int 978 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 979 { 980 struct iwi_vap *ivp = IWI_VAP(vap); 981 struct ieee80211com *ic = vap->iv_ic; 982 struct ifnet *ifp = ic->ic_ifp; 983 struct iwi_softc *sc = ifp->if_softc; 984 IWI_LOCK_DECL; 985 986 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 987 ieee80211_state_name[vap->iv_state], 988 ieee80211_state_name[nstate], sc->flags)); 989 990 switch (nstate) { 991 case IEEE80211_S_INIT: 992 IWI_LOCK(sc); 993 /* 994 * NB: don't try to do this if iwi_stop_master has 995 * shutdown the firmware and disabled interrupts. 996 */ 997 if (vap->iv_state == IEEE80211_S_RUN && 998 (sc->flags & IWI_FLAG_FW_INITED)) 999 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 1000 IWI_UNLOCK(sc); 1001 break; 1002 case IEEE80211_S_AUTH: 1003 iwi_queue_cmd(sc, IWI_AUTH, arg); 1004 return EINPROGRESS; 1005 case IEEE80211_S_RUN: 1006 if (vap->iv_opmode == IEEE80211_M_IBSS && 1007 vap->iv_state == IEEE80211_S_SCAN) { 1008 /* 1009 * XXX when joining an ibss network we are called 1010 * with a SCAN -> RUN transition on scan complete. 1011 * Use that to call iwi_auth_and_assoc. On completing 1012 * the join we are then called again with an 1013 * AUTH -> RUN transition and we want to do nothing. 1014 * This is all totally bogus and needs to be redone. 1015 */ 1016 iwi_queue_cmd(sc, IWI_ASSOC, 0); 1017 return EINPROGRESS; 1018 } 1019 break; 1020 case IEEE80211_S_ASSOC: 1021 /* 1022 * If we are transitioning from AUTH then just wait 1023 * for the ASSOC status to come back from the firmware. 1024 * Otherwise we need to issue the association request. 1025 */ 1026 if (vap->iv_state == IEEE80211_S_AUTH) 1027 break; 1028 iwi_queue_cmd(sc, IWI_ASSOC, arg); 1029 return EINPROGRESS; 1030 default: 1031 break; 1032 } 1033 return ivp->iwi_newstate(vap, nstate, arg); 1034 } 1035 1036 /* 1037 * WME parameters coming from IEEE 802.11e specification. These values are 1038 * already declared in ieee80211_proto.c, but they are static so they can't 1039 * be reused here. 1040 */ 1041 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1042 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1043 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1044 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1045 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1046 }; 1047 1048 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1049 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1050 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1051 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1052 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1053 }; 1054 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1055 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1056 1057 static void 1058 iwi_wme_init(struct iwi_softc *sc) 1059 { 1060 const struct wmeParams *wmep; 1061 int ac; 1062 1063 memset(sc->wme, 0, sizeof sc->wme); 1064 for (ac = 0; ac < WME_NUM_AC; ac++) { 1065 /* set WME values for CCK modulation */ 1066 wmep = &iwi_wme_cck_params[ac]; 1067 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1068 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1069 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1070 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1071 sc->wme[1].acm[ac] = wmep->wmep_acm; 1072 1073 /* set WME values for OFDM modulation */ 1074 wmep = &iwi_wme_ofdm_params[ac]; 1075 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1076 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1077 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1078 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1079 sc->wme[2].acm[ac] = wmep->wmep_acm; 1080 } 1081 } 1082 1083 static int 1084 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1085 { 1086 const struct wmeParams *wmep; 1087 int ac; 1088 1089 for (ac = 0; ac < WME_NUM_AC; ac++) { 1090 /* set WME values for current operating mode */ 1091 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1092 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1093 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1094 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1095 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1096 sc->wme[0].acm[ac] = wmep->wmep_acm; 1097 } 1098 1099 DPRINTF(("Setting WME parameters\n")); 1100 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1101 } 1102 #undef IWI_USEC 1103 #undef IWI_EXP2 1104 1105 static int 1106 iwi_wme_update(struct ieee80211com *ic) 1107 { 1108 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1109 1110 /* 1111 * We may be called to update the WME parameters in 1112 * the adapter at various places. If we're already 1113 * associated then initiate the request immediately 1114 * (via the taskqueue); otherwise we assume the params 1115 * will get sent down to the adapter as part of the 1116 * work iwi_auth_and_assoc does. 1117 */ 1118 return iwi_queue_cmd(sc, IWI_SET_WME, 0); 1119 } 1120 1121 static int 1122 iwi_wme_setie(struct iwi_softc *sc) 1123 { 1124 struct ieee80211_wme_info wme; 1125 1126 memset(&wme, 0, sizeof wme); 1127 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1128 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1129 wme.wme_oui[0] = 0x00; 1130 wme.wme_oui[1] = 0x50; 1131 wme.wme_oui[2] = 0xf2; 1132 wme.wme_type = WME_OUI_TYPE; 1133 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1134 wme.wme_version = WME_VERSION; 1135 wme.wme_info = 0; 1136 1137 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1138 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1139 } 1140 1141 /* 1142 * Read 16 bits at address 'addr' from the serial EEPROM. 1143 */ 1144 static uint16_t 1145 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1146 { 1147 uint32_t tmp; 1148 uint16_t val; 1149 int n; 1150 1151 /* clock C once before the first command */ 1152 IWI_EEPROM_CTL(sc, 0); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1156 1157 /* write start bit (1) */ 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1159 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1160 1161 /* write READ opcode (10) */ 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1163 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1164 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1165 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1166 1167 /* write address A7-A0 */ 1168 for (n = 7; n >= 0; n--) { 1169 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1170 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1171 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1172 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1173 } 1174 1175 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1176 1177 /* read data Q15-Q0 */ 1178 val = 0; 1179 for (n = 15; n >= 0; n--) { 1180 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1181 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1182 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1183 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1184 } 1185 1186 IWI_EEPROM_CTL(sc, 0); 1187 1188 /* clear Chip Select and clock C */ 1189 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1190 IWI_EEPROM_CTL(sc, 0); 1191 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1192 1193 return val; 1194 } 1195 1196 static void 1197 iwi_setcurchan(struct iwi_softc *sc, int chan) 1198 { 1199 struct ifnet *ifp = sc->sc_ifp; 1200 struct ieee80211com *ic = ifp->if_l2com; 1201 1202 sc->curchan = chan; 1203 1204 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 1205 htole16(ic->ic_curchan->ic_freq); 1206 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 1207 htole16(ic->ic_curchan->ic_flags); 1208 } 1209 1210 static void 1211 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1212 struct iwi_frame *frame) 1213 { 1214 struct ifnet *ifp = sc->sc_ifp; 1215 struct ieee80211com *ic = ifp->if_l2com; 1216 struct mbuf *mnew, *m; 1217 struct ieee80211_node *ni; 1218 int type, error, framelen; 1219 IWI_LOCK_DECL; 1220 1221 framelen = le16toh(frame->len); 1222 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1223 /* 1224 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1225 * out of bounds; need to figure out how to limit 1226 * frame size in the firmware 1227 */ 1228 /* XXX stat */ 1229 DPRINTFN(1, 1230 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1231 le16toh(frame->len), frame->chan, frame->rssi, 1232 frame->rssi_dbm)); 1233 return; 1234 } 1235 1236 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1237 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1238 1239 if (frame->chan != sc->curchan) 1240 iwi_setcurchan(sc, frame->chan); 1241 1242 /* 1243 * Try to allocate a new mbuf for this ring element and load it before 1244 * processing the current mbuf. If the ring element cannot be loaded, 1245 * drop the received packet and reuse the old mbuf. In the unlikely 1246 * case that the old mbuf can't be reloaded either, explicitly panic. 1247 */ 1248 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1249 if (mnew == NULL) { 1250 ifp->if_ierrors++; 1251 return; 1252 } 1253 1254 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1255 1256 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1257 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1258 0); 1259 if (error != 0) { 1260 m_freem(mnew); 1261 1262 /* try to reload the old mbuf */ 1263 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1264 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1265 &data->physaddr, 0); 1266 if (error != 0) { 1267 /* very unlikely that it will fail... */ 1268 panic("%s: could not load old rx mbuf", 1269 device_get_name(sc->sc_dev)); 1270 } 1271 ifp->if_ierrors++; 1272 return; 1273 } 1274 1275 /* 1276 * New mbuf successfully loaded, update Rx ring and continue 1277 * processing. 1278 */ 1279 m = data->m; 1280 data->m = mnew; 1281 CSR_WRITE_4(sc, data->reg, data->physaddr); 1282 1283 /* finalize mbuf */ 1284 m->m_pkthdr.rcvif = ifp; 1285 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1286 sizeof (struct iwi_frame) + framelen; 1287 1288 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1289 1290 if (bpf_peers_present(ifp->if_bpf)) { 1291 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1292 1293 tap->wr_flags = 0; 1294 tap->wr_rate = iwi_cvtrate(frame->rate); 1295 tap->wr_antsignal = frame->signal; 1296 tap->wr_antenna = frame->antenna; 1297 1298 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1299 } 1300 IWI_UNLOCK(sc); 1301 1302 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1303 if (ni != NULL) { 1304 type = ieee80211_input(ni, m, frame->rssi_dbm, 0, 0); 1305 ieee80211_free_node(ni); 1306 } else 1307 type = ieee80211_input_all(ic, m, frame->rssi_dbm, 0, 0); 1308 1309 IWI_LOCK(sc); 1310 if (sc->sc_softled) { 1311 /* 1312 * Blink for any data frame. Otherwise do a 1313 * heartbeat-style blink when idle. The latter 1314 * is mainly for station mode where we depend on 1315 * periodic beacon frames to trigger the poll event. 1316 */ 1317 if (type == IEEE80211_FC0_TYPE_DATA) { 1318 sc->sc_rxrate = frame->rate; 1319 iwi_led_event(sc, IWI_LED_RX); 1320 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1321 iwi_led_event(sc, IWI_LED_POLL); 1322 } 1323 } 1324 1325 /* 1326 * Check for an association response frame to see if QoS 1327 * has been negotiated. We parse just enough to figure 1328 * out if we're supposed to use QoS. The proper solution 1329 * is to pass the frame up so ieee80211_input can do the 1330 * work but that's made hard by how things currently are 1331 * done in the driver. 1332 */ 1333 static void 1334 iwi_checkforqos(struct ieee80211vap *vap, 1335 const struct ieee80211_frame *wh, int len) 1336 { 1337 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1338 const uint8_t *frm, *efrm, *wme; 1339 struct ieee80211_node *ni; 1340 uint16_t capinfo, status, associd; 1341 1342 /* NB: +8 for capinfo, status, associd, and first ie */ 1343 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1344 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1345 return; 1346 /* 1347 * asresp frame format 1348 * [2] capability information 1349 * [2] status 1350 * [2] association ID 1351 * [tlv] supported rates 1352 * [tlv] extended supported rates 1353 * [tlv] WME 1354 */ 1355 frm = (const uint8_t *)&wh[1]; 1356 efrm = ((const uint8_t *) wh) + len; 1357 1358 capinfo = le16toh(*(const uint16_t *)frm); 1359 frm += 2; 1360 status = le16toh(*(const uint16_t *)frm); 1361 frm += 2; 1362 associd = le16toh(*(const uint16_t *)frm); 1363 frm += 2; 1364 1365 wme = NULL; 1366 while (frm < efrm) { 1367 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1368 switch (*frm) { 1369 case IEEE80211_ELEMID_VENDOR: 1370 if (iswmeoui(frm)) 1371 wme = frm; 1372 break; 1373 } 1374 frm += frm[1] + 2; 1375 } 1376 1377 ni = vap->iv_bss; 1378 ni->ni_capinfo = capinfo; 1379 ni->ni_associd = associd; 1380 if (wme != NULL) 1381 ni->ni_flags |= IEEE80211_NODE_QOS; 1382 else 1383 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1384 #undef SUBTYPE 1385 } 1386 1387 /* 1388 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1389 */ 1390 1391 static void 1392 iwi_authsuccess(void *arg, int npending) 1393 { 1394 struct ieee80211vap *vap = arg; 1395 1396 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1397 } 1398 1399 static void 1400 iwi_assocsuccess(void *arg, int npending) 1401 { 1402 struct ieee80211vap *vap = arg; 1403 1404 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1405 } 1406 1407 static void 1408 iwi_assocfailed(void *arg, int npending) 1409 { 1410 struct ieee80211vap *vap = arg; 1411 1412 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1413 } 1414 1415 static void 1416 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1417 { 1418 struct ifnet *ifp = sc->sc_ifp; 1419 struct ieee80211com *ic = ifp->if_l2com; 1420 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1421 struct iwi_notif_scan_channel *chan; 1422 struct iwi_notif_scan_complete *scan; 1423 struct iwi_notif_authentication *auth; 1424 struct iwi_notif_association *assoc; 1425 struct iwi_notif_beacon_state *beacon; 1426 1427 switch (notif->type) { 1428 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1429 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1430 1431 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1432 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1433 1434 /* Reset the timer, the scan is still going */ 1435 sc->sc_state_timer = 3; 1436 break; 1437 1438 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1439 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1440 1441 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1442 scan->status)); 1443 1444 IWI_STATE_END(sc, IWI_FW_SCANNING); 1445 1446 if (scan->status == IWI_SCAN_COMPLETED) { 1447 /* NB: don't need to defer, net80211 does it for us */ 1448 ieee80211_scan_next(vap); 1449 } 1450 break; 1451 1452 case IWI_NOTIF_TYPE_AUTHENTICATION: 1453 auth = (struct iwi_notif_authentication *)(notif + 1); 1454 switch (auth->state) { 1455 case IWI_AUTH_SUCCESS: 1456 DPRINTFN(2, ("Authentication succeeeded\n")); 1457 taskqueue_enqueue(taskqueue_swi, 1458 &IWI_VAP(vap)->iwi_authsuccess_task); 1459 break; 1460 case IWI_AUTH_FAIL: 1461 /* 1462 * These are delivered as an unsolicited deauth 1463 * (e.g. due to inactivity) or in response to an 1464 * associate request. 1465 */ 1466 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1467 if (vap->iv_state != IEEE80211_S_RUN) { 1468 DPRINTFN(2, ("Authentication failed\n")); 1469 vap->iv_stats.is_rx_auth_fail++; 1470 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1471 } else { 1472 DPRINTFN(2, ("Deauthenticated\n")); 1473 vap->iv_stats.is_rx_deauth++; 1474 } 1475 taskqueue_enqueue(taskqueue_swi, 1476 &IWI_VAP(vap)->iwi_assocfailed_task); 1477 break; 1478 case IWI_AUTH_SENT_1: 1479 case IWI_AUTH_RECV_2: 1480 case IWI_AUTH_SEQ1_PASS: 1481 break; 1482 case IWI_AUTH_SEQ1_FAIL: 1483 DPRINTFN(2, ("Initial authentication handshake failed; " 1484 "you probably need shared key\n")); 1485 vap->iv_stats.is_rx_auth_fail++; 1486 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1487 /* XXX retry shared key when in auto */ 1488 break; 1489 default: 1490 device_printf(sc->sc_dev, 1491 "unknown authentication state %u\n", auth->state); 1492 break; 1493 } 1494 break; 1495 1496 case IWI_NOTIF_TYPE_ASSOCIATION: 1497 assoc = (struct iwi_notif_association *)(notif + 1); 1498 switch (assoc->state) { 1499 case IWI_AUTH_SUCCESS: 1500 /* re-association, do nothing */ 1501 break; 1502 case IWI_ASSOC_SUCCESS: 1503 DPRINTFN(2, ("Association succeeded\n")); 1504 sc->flags |= IWI_FLAG_ASSOCIATED; 1505 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1506 iwi_checkforqos(vap, 1507 (const struct ieee80211_frame *)(assoc+1), 1508 le16toh(notif->len) - sizeof(*assoc)); 1509 taskqueue_enqueue(taskqueue_swi, 1510 &IWI_VAP(vap)->iwi_assocsuccess_task); 1511 break; 1512 case IWI_ASSOC_INIT: 1513 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1514 switch (sc->fw_state) { 1515 case IWI_FW_ASSOCIATING: 1516 DPRINTFN(2, ("Association failed\n")); 1517 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1518 taskqueue_enqueue(taskqueue_swi, 1519 &IWI_VAP(vap)->iwi_assocfailed_task); 1520 break; 1521 1522 case IWI_FW_DISASSOCIATING: 1523 DPRINTFN(2, ("Dissassociated\n")); 1524 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1525 vap->iv_stats.is_rx_disassoc++; 1526 taskqueue_enqueue(taskqueue_swi, 1527 &IWI_VAP(vap)->iwi_assocfailed_task); 1528 break; 1529 } 1530 break; 1531 default: 1532 device_printf(sc->sc_dev, 1533 "unknown association state %u\n", assoc->state); 1534 break; 1535 } 1536 break; 1537 1538 case IWI_NOTIF_TYPE_BEACON: 1539 /* XXX check struct length */ 1540 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1541 1542 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1543 beacon->state, le32toh(beacon->number))); 1544 1545 if (beacon->state == IWI_BEACON_MISS) { 1546 /* 1547 * The firmware notifies us of every beacon miss 1548 * so we need to track the count against the 1549 * configured threshold before notifying the 1550 * 802.11 layer. 1551 * XXX try to roam, drop assoc only on much higher count 1552 */ 1553 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1554 DPRINTF(("Beacon miss: %u >= %u\n", 1555 le32toh(beacon->number), 1556 vap->iv_bmissthreshold)); 1557 vap->iv_stats.is_beacon_miss++; 1558 /* 1559 * It's pointless to notify the 802.11 layer 1560 * as it'll try to send a probe request (which 1561 * we'll discard) and then timeout and drop us 1562 * into scan state. Instead tell the firmware 1563 * to disassociate and then on completion we'll 1564 * kick the state machine to scan. 1565 */ 1566 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 1567 } 1568 } 1569 break; 1570 1571 case IWI_NOTIF_TYPE_CALIBRATION: 1572 case IWI_NOTIF_TYPE_NOISE: 1573 case IWI_NOTIF_TYPE_LINK_QUALITY: 1574 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1575 break; 1576 1577 default: 1578 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1579 notif->type, notif->flags, le16toh(notif->len))); 1580 break; 1581 } 1582 } 1583 1584 static void 1585 iwi_rx_intr(struct iwi_softc *sc) 1586 { 1587 struct iwi_rx_data *data; 1588 struct iwi_hdr *hdr; 1589 uint32_t hw; 1590 1591 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1592 1593 for (; sc->rxq.cur != hw;) { 1594 data = &sc->rxq.data[sc->rxq.cur]; 1595 1596 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1597 BUS_DMASYNC_POSTREAD); 1598 1599 hdr = mtod(data->m, struct iwi_hdr *); 1600 1601 switch (hdr->type) { 1602 case IWI_HDR_TYPE_FRAME: 1603 iwi_frame_intr(sc, data, sc->rxq.cur, 1604 (struct iwi_frame *)(hdr + 1)); 1605 break; 1606 1607 case IWI_HDR_TYPE_NOTIF: 1608 iwi_notification_intr(sc, 1609 (struct iwi_notif *)(hdr + 1)); 1610 break; 1611 1612 default: 1613 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1614 hdr->type); 1615 } 1616 1617 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1618 1619 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1620 } 1621 1622 /* tell the firmware what we have processed */ 1623 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1624 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1625 } 1626 1627 static void 1628 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1629 { 1630 struct ifnet *ifp = sc->sc_ifp; 1631 struct iwi_tx_data *data; 1632 uint32_t hw; 1633 1634 hw = CSR_READ_4(sc, txq->csr_ridx); 1635 1636 for (; txq->next != hw;) { 1637 data = &txq->data[txq->next]; 1638 1639 bus_dmamap_sync(txq->data_dmat, data->map, 1640 BUS_DMASYNC_POSTWRITE); 1641 bus_dmamap_unload(txq->data_dmat, data->map); 1642 if (data->m->m_flags & M_TXCB) 1643 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1644 m_freem(data->m); 1645 data->m = NULL; 1646 ieee80211_free_node(data->ni); 1647 data->ni = NULL; 1648 1649 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1650 1651 ifp->if_opackets++; 1652 1653 txq->queued--; 1654 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1655 } 1656 1657 sc->sc_tx_timer = 0; 1658 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1659 1660 if (sc->sc_softled) 1661 iwi_led_event(sc, IWI_LED_TX); 1662 1663 iwi_start_locked(ifp); 1664 } 1665 1666 static void 1667 iwi_intr(void *arg) 1668 { 1669 struct iwi_softc *sc = arg; 1670 uint32_t r; 1671 IWI_LOCK_DECL; 1672 1673 IWI_LOCK(sc); 1674 1675 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1676 IWI_UNLOCK(sc); 1677 return; 1678 } 1679 1680 /* acknowledge interrupts */ 1681 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1682 1683 if (r & IWI_INTR_FATAL_ERROR) { 1684 device_printf(sc->sc_dev, "firmware error\n"); 1685 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 1686 1687 sc->flags &= ~IWI_FLAG_BUSY; 1688 sc->sc_busy_timer = 0; 1689 wakeup(sc); 1690 } 1691 1692 if (r & IWI_INTR_FW_INITED) { 1693 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1694 wakeup(sc); 1695 } 1696 1697 if (r & IWI_INTR_RADIO_OFF) 1698 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); 1699 1700 if (r & IWI_INTR_CMD_DONE) { 1701 sc->flags &= ~IWI_FLAG_BUSY; 1702 sc->sc_busy_timer = 0; 1703 wakeup(sc); 1704 } 1705 1706 if (r & IWI_INTR_TX1_DONE) 1707 iwi_tx_intr(sc, &sc->txq[0]); 1708 1709 if (r & IWI_INTR_TX2_DONE) 1710 iwi_tx_intr(sc, &sc->txq[1]); 1711 1712 if (r & IWI_INTR_TX3_DONE) 1713 iwi_tx_intr(sc, &sc->txq[2]); 1714 1715 if (r & IWI_INTR_TX4_DONE) 1716 iwi_tx_intr(sc, &sc->txq[3]); 1717 1718 if (r & IWI_INTR_RX_DONE) 1719 iwi_rx_intr(sc); 1720 1721 if (r & IWI_INTR_PARITY_ERROR) { 1722 /* XXX rate-limit */ 1723 device_printf(sc->sc_dev, "parity error\n"); 1724 } 1725 1726 IWI_UNLOCK(sc); 1727 } 1728 1729 static int 1730 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1731 { 1732 struct iwi_cmd_desc *desc; 1733 1734 IWI_LOCK_ASSERT(sc); 1735 1736 if (sc->flags & IWI_FLAG_BUSY) { 1737 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1738 __func__, type); 1739 return EAGAIN; 1740 } 1741 sc->flags |= IWI_FLAG_BUSY; 1742 sc->sc_busy_timer = 2; 1743 1744 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1745 1746 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1747 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1748 desc->type = type; 1749 desc->len = len; 1750 memcpy(desc->data, data, len); 1751 1752 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1753 BUS_DMASYNC_PREWRITE); 1754 1755 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1756 type, len)); 1757 1758 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1759 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1760 1761 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1762 } 1763 1764 static void 1765 iwi_write_ibssnode(struct iwi_softc *sc, 1766 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1767 { 1768 struct iwi_ibssnode node; 1769 1770 /* write node information into NIC memory */ 1771 memset(&node, 0, sizeof node); 1772 IEEE80211_ADDR_COPY(node.bssid, addr); 1773 1774 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1775 1776 CSR_WRITE_REGION_1(sc, 1777 IWI_CSR_NODE_BASE + entry * sizeof node, 1778 (uint8_t *)&node, sizeof node); 1779 } 1780 1781 static int 1782 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1783 int ac) 1784 { 1785 struct iwi_softc *sc = ifp->if_softc; 1786 struct ieee80211vap *vap = ni->ni_vap; 1787 struct ieee80211com *ic = ni->ni_ic; 1788 struct iwi_node *in = (struct iwi_node *)ni; 1789 const struct ieee80211_frame *wh; 1790 struct ieee80211_key *k; 1791 const struct chanAccParams *cap; 1792 struct iwi_tx_ring *txq = &sc->txq[ac]; 1793 struct iwi_tx_data *data; 1794 struct iwi_tx_desc *desc; 1795 struct mbuf *mnew; 1796 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1797 int error, nsegs, hdrlen, i; 1798 int ismcast, flags, xflags, staid; 1799 1800 IWI_LOCK_ASSERT(sc); 1801 wh = mtod(m0, const struct ieee80211_frame *); 1802 /* NB: only data frames use this path */ 1803 hdrlen = ieee80211_hdrsize(wh); 1804 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1805 flags = xflags = 0; 1806 1807 if (!ismcast) 1808 flags |= IWI_DATA_FLAG_NEED_ACK; 1809 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1810 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1811 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1812 xflags |= IWI_DATA_XFLAG_QOS; 1813 cap = &ic->ic_wme.wme_chanParams; 1814 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1815 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1816 } 1817 1818 /* 1819 * This is only used in IBSS mode where the firmware expect an index 1820 * in a h/w table instead of a destination address. 1821 */ 1822 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1823 if (!ismcast) { 1824 if (in->in_station == -1) { 1825 in->in_station = alloc_unr(sc->sc_unr); 1826 if (in->in_station == -1) { 1827 /* h/w table is full */ 1828 m_freem(m0); 1829 ieee80211_free_node(ni); 1830 ifp->if_oerrors++; 1831 return 0; 1832 } 1833 iwi_write_ibssnode(sc, 1834 ni->ni_macaddr, in->in_station); 1835 } 1836 staid = in->in_station; 1837 } else { 1838 /* 1839 * Multicast addresses have no associated node 1840 * so there will be no station entry. We reserve 1841 * entry 0 for one mcast address and use that. 1842 * If there are many being used this will be 1843 * expensive and we'll need to do a better job 1844 * but for now this handles the broadcast case. 1845 */ 1846 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1847 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1848 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1849 } 1850 staid = 0; 1851 } 1852 } else 1853 staid = 0; 1854 1855 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1856 k = ieee80211_crypto_encap(ni, m0); 1857 if (k == NULL) { 1858 m_freem(m0); 1859 return ENOBUFS; 1860 } 1861 1862 /* packet header may have moved, reset our local pointer */ 1863 wh = mtod(m0, struct ieee80211_frame *); 1864 } 1865 1866 if (bpf_peers_present(ifp->if_bpf)) { 1867 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1868 1869 tap->wt_flags = 0; 1870 1871 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1872 } 1873 1874 data = &txq->data[txq->cur]; 1875 desc = &txq->desc[txq->cur]; 1876 1877 /* save and trim IEEE802.11 header */ 1878 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1879 m_adj(m0, hdrlen); 1880 1881 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1882 &nsegs, 0); 1883 if (error != 0 && error != EFBIG) { 1884 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1885 error); 1886 m_freem(m0); 1887 return error; 1888 } 1889 if (error != 0) { 1890 mnew = m_defrag(m0, M_DONTWAIT); 1891 if (mnew == NULL) { 1892 device_printf(sc->sc_dev, 1893 "could not defragment mbuf\n"); 1894 m_freem(m0); 1895 return ENOBUFS; 1896 } 1897 m0 = mnew; 1898 1899 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1900 m0, segs, &nsegs, 0); 1901 if (error != 0) { 1902 device_printf(sc->sc_dev, 1903 "could not map mbuf (error %d)\n", error); 1904 m_freem(m0); 1905 return error; 1906 } 1907 } 1908 1909 data->m = m0; 1910 data->ni = ni; 1911 1912 desc->hdr.type = IWI_HDR_TYPE_DATA; 1913 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1914 desc->station = staid; 1915 desc->cmd = IWI_DATA_CMD_TX; 1916 desc->len = htole16(m0->m_pkthdr.len); 1917 desc->flags = flags; 1918 desc->xflags = xflags; 1919 1920 #if 0 1921 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1922 desc->wep_txkey = vap->iv_def_txkey; 1923 else 1924 #endif 1925 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1926 1927 desc->nseg = htole32(nsegs); 1928 for (i = 0; i < nsegs; i++) { 1929 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1930 desc->seg_len[i] = htole16(segs[i].ds_len); 1931 } 1932 1933 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1934 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1935 1936 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1937 ac, txq->cur, le16toh(desc->len), nsegs)); 1938 1939 txq->queued++; 1940 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1941 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1942 1943 return 0; 1944 } 1945 1946 static int 1947 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1948 const struct ieee80211_bpf_params *params) 1949 { 1950 /* no support; just discard */ 1951 m_freem(m); 1952 ieee80211_free_node(ni); 1953 return 0; 1954 } 1955 1956 static void 1957 iwi_start_locked(struct ifnet *ifp) 1958 { 1959 struct iwi_softc *sc = ifp->if_softc; 1960 struct mbuf *m; 1961 struct ieee80211_node *ni; 1962 int ac; 1963 1964 IWI_LOCK_ASSERT(sc); 1965 1966 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1967 return; 1968 1969 for (;;) { 1970 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1971 if (m == NULL) 1972 break; 1973 ac = M_WME_GETAC(m); 1974 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1975 /* there is no place left in this ring; tail drop */ 1976 /* XXX tail drop */ 1977 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1978 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1979 break; 1980 } 1981 1982 BPF_MTAP(ifp, m); 1983 1984 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1985 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1986 ieee80211_free_node(ni); 1987 ifp->if_oerrors++; 1988 break; 1989 } 1990 1991 sc->sc_tx_timer = 5; 1992 } 1993 } 1994 1995 static void 1996 iwi_start(struct ifnet *ifp) 1997 { 1998 struct iwi_softc *sc = ifp->if_softc; 1999 IWI_LOCK_DECL; 2000 2001 IWI_LOCK(sc); 2002 iwi_start_locked(ifp); 2003 IWI_UNLOCK(sc); 2004 } 2005 2006 static void 2007 iwi_watchdog(void *arg) 2008 { 2009 struct iwi_softc *sc = arg; 2010 struct ifnet *ifp = sc->sc_ifp; 2011 2012 IWI_LOCK_ASSERT(sc); 2013 2014 if (sc->sc_tx_timer > 0) { 2015 if (--sc->sc_tx_timer == 0) { 2016 if_printf(ifp, "device timeout\n"); 2017 ifp->if_oerrors++; 2018 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2019 } 2020 } 2021 if (sc->sc_state_timer > 0) { 2022 if (--sc->sc_state_timer == 0) { 2023 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2024 sc->fw_state); 2025 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2026 if (sc->fw_state == IWI_FW_SCANNING) { 2027 struct ieee80211com *ic = ifp->if_l2com; 2028 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2029 } 2030 sc->sc_state_timer = 3; 2031 } 2032 } 2033 if (sc->sc_busy_timer > 0) { 2034 if (--sc->sc_busy_timer == 0) { 2035 if_printf(ifp, "firmware command timeout, resetting\n"); 2036 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2037 } 2038 } 2039 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2040 } 2041 2042 static int 2043 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2044 { 2045 struct iwi_softc *sc = ifp->if_softc; 2046 struct ieee80211com *ic = ifp->if_l2com; 2047 struct ifreq *ifr = (struct ifreq *) data; 2048 int error = 0, startall = 0; 2049 IWI_LOCK_DECL; 2050 2051 switch (cmd) { 2052 case SIOCSIFFLAGS: 2053 IWI_LOCK(sc); 2054 if (ifp->if_flags & IFF_UP) { 2055 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2056 iwi_init_locked(sc); 2057 startall = 1; 2058 } 2059 } else { 2060 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2061 iwi_stop_locked(sc); 2062 } 2063 IWI_UNLOCK(sc); 2064 if (startall) 2065 ieee80211_start_all(ic); 2066 break; 2067 case SIOCGIFMEDIA: 2068 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2069 break; 2070 case SIOCGIFADDR: 2071 error = ether_ioctl(ifp, cmd, data); 2072 break; 2073 default: 2074 error = EINVAL; 2075 break; 2076 } 2077 return error; 2078 } 2079 2080 static void 2081 iwi_stop_master(struct iwi_softc *sc) 2082 { 2083 uint32_t tmp; 2084 int ntries; 2085 2086 /* disable interrupts */ 2087 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2088 2089 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2090 for (ntries = 0; ntries < 5; ntries++) { 2091 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2092 break; 2093 DELAY(10); 2094 } 2095 if (ntries == 5) 2096 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2097 2098 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2099 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2100 2101 sc->flags &= ~IWI_FLAG_FW_INITED; 2102 } 2103 2104 static int 2105 iwi_reset(struct iwi_softc *sc) 2106 { 2107 uint32_t tmp; 2108 int i, ntries; 2109 2110 iwi_stop_master(sc); 2111 2112 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2113 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2114 2115 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2116 2117 /* wait for clock stabilization */ 2118 for (ntries = 0; ntries < 1000; ntries++) { 2119 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2120 break; 2121 DELAY(200); 2122 } 2123 if (ntries == 1000) { 2124 device_printf(sc->sc_dev, 2125 "timeout waiting for clock stabilization\n"); 2126 return EIO; 2127 } 2128 2129 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2130 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2131 2132 DELAY(10); 2133 2134 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2135 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2136 2137 /* clear NIC memory */ 2138 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2139 for (i = 0; i < 0xc000; i++) 2140 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2141 2142 return 0; 2143 } 2144 2145 static const struct iwi_firmware_ohdr * 2146 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2147 { 2148 const struct firmware *fp = fw->fp; 2149 const struct iwi_firmware_ohdr *hdr; 2150 2151 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2152 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2153 return NULL; 2154 } 2155 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2156 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2157 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2158 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2159 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2160 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2161 IWI_FW_REQ_MINOR); 2162 return NULL; 2163 } 2164 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2165 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2166 fw->name = fp->name; 2167 return hdr; 2168 } 2169 2170 static const struct iwi_firmware_ohdr * 2171 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2172 { 2173 const struct iwi_firmware_ohdr *hdr; 2174 2175 hdr = iwi_setup_ofw(sc, fw); 2176 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2177 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2178 fw->name); 2179 hdr = NULL; 2180 } 2181 return hdr; 2182 } 2183 2184 static void 2185 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2186 struct iwi_fw *uc, const char *ucname) 2187 { 2188 if (fw->fp == NULL) 2189 fw->fp = firmware_get(fwname); 2190 /* NB: pre-3.0 ucode is packaged separately */ 2191 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2192 uc->fp = firmware_get(ucname); 2193 } 2194 2195 /* 2196 * Get the required firmware images if not already loaded. 2197 * Note that we hold firmware images so long as the device 2198 * is marked up in case we need to reload them on device init. 2199 * This is necessary because we re-init the device sometimes 2200 * from a context where we cannot read from the filesystem 2201 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2202 * XXX return 0 on success, 1 on error. 2203 * 2204 * NB: the order of get'ing and put'ing images here is 2205 * intentional to support handling firmware images bundled 2206 * by operating mode and/or all together in one file with 2207 * the boot firmware as "master". 2208 */ 2209 static int 2210 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2211 { 2212 const struct iwi_firmware_hdr *hdr; 2213 const struct firmware *fp; 2214 2215 /* invalidate cached firmware on mode change */ 2216 if (sc->fw_mode != opmode) 2217 iwi_put_firmware(sc); 2218 2219 switch (opmode) { 2220 case IEEE80211_M_STA: 2221 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2222 break; 2223 case IEEE80211_M_IBSS: 2224 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2225 break; 2226 case IEEE80211_M_MONITOR: 2227 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2228 &sc->fw_uc, "iwi_ucode_monitor"); 2229 break; 2230 default: 2231 break; 2232 } 2233 fp = sc->fw_fw.fp; 2234 if (fp == NULL) { 2235 device_printf(sc->sc_dev, "could not load firmware\n"); 2236 goto bad; 2237 } 2238 if (fp->version < 300) { 2239 /* 2240 * Firmware prior to 3.0 was packaged as separate 2241 * boot, firmware, and ucode images. Verify the 2242 * ucode image was read in, retrieve the boot image 2243 * if needed, and check version stamps for consistency. 2244 * The version stamps in the data are also checked 2245 * above; this is a bit paranoid but is a cheap 2246 * safeguard against mis-packaging. 2247 */ 2248 if (sc->fw_uc.fp == NULL) { 2249 device_printf(sc->sc_dev, "could not load ucode\n"); 2250 goto bad; 2251 } 2252 if (sc->fw_boot.fp == NULL) { 2253 sc->fw_boot.fp = firmware_get("iwi_boot"); 2254 if (sc->fw_boot.fp == NULL) { 2255 device_printf(sc->sc_dev, 2256 "could not load boot firmware\n"); 2257 goto bad; 2258 } 2259 } 2260 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2261 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2262 device_printf(sc->sc_dev, 2263 "firmware version mismatch: " 2264 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2265 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2266 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2267 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2268 ); 2269 goto bad; 2270 } 2271 /* 2272 * Check and setup each image. 2273 */ 2274 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2275 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2276 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2277 goto bad; 2278 } else { 2279 /* 2280 * Check and setup combined image. 2281 */ 2282 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2283 device_printf(sc->sc_dev, "image '%s' too small\n", 2284 fp->name); 2285 goto bad; 2286 } 2287 hdr = (const struct iwi_firmware_hdr *)fp->data; 2288 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2289 + le32toh(hdr->fsize)) { 2290 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2291 fp->name); 2292 goto bad; 2293 } 2294 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2295 sc->fw_boot.size = le32toh(hdr->bsize); 2296 sc->fw_boot.name = fp->name; 2297 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2298 sc->fw_uc.size = le32toh(hdr->usize); 2299 sc->fw_uc.name = fp->name; 2300 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2301 sc->fw_fw.size = le32toh(hdr->fsize); 2302 sc->fw_fw.name = fp->name; 2303 } 2304 #if 0 2305 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2306 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2307 #endif 2308 2309 sc->fw_mode = opmode; 2310 return 0; 2311 bad: 2312 iwi_put_firmware(sc); 2313 return 1; 2314 } 2315 2316 static void 2317 iwi_put_fw(struct iwi_fw *fw) 2318 { 2319 if (fw->fp != NULL) { 2320 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2321 fw->fp = NULL; 2322 } 2323 fw->data = NULL; 2324 fw->size = 0; 2325 fw->name = NULL; 2326 } 2327 2328 /* 2329 * Release any cached firmware images. 2330 */ 2331 static void 2332 iwi_put_firmware(struct iwi_softc *sc) 2333 { 2334 iwi_put_fw(&sc->fw_uc); 2335 iwi_put_fw(&sc->fw_fw); 2336 iwi_put_fw(&sc->fw_boot); 2337 } 2338 2339 static int 2340 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2341 { 2342 uint32_t tmp; 2343 const uint16_t *w; 2344 const char *uc = fw->data; 2345 size_t size = fw->size; 2346 int i, ntries, error; 2347 2348 IWI_LOCK_ASSERT(sc); 2349 error = 0; 2350 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2351 IWI_RST_STOP_MASTER); 2352 for (ntries = 0; ntries < 5; ntries++) { 2353 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2354 break; 2355 DELAY(10); 2356 } 2357 if (ntries == 5) { 2358 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2359 error = EIO; 2360 goto fail; 2361 } 2362 2363 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2364 DELAY(5000); 2365 2366 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2367 tmp &= ~IWI_RST_PRINCETON_RESET; 2368 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2369 2370 DELAY(5000); 2371 MEM_WRITE_4(sc, 0x3000e0, 0); 2372 DELAY(1000); 2373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2374 DELAY(1000); 2375 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2376 DELAY(1000); 2377 MEM_WRITE_1(sc, 0x200000, 0x00); 2378 MEM_WRITE_1(sc, 0x200000, 0x40); 2379 DELAY(1000); 2380 2381 /* write microcode into adapter memory */ 2382 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2383 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2384 2385 MEM_WRITE_1(sc, 0x200000, 0x00); 2386 MEM_WRITE_1(sc, 0x200000, 0x80); 2387 2388 /* wait until we get an answer */ 2389 for (ntries = 0; ntries < 100; ntries++) { 2390 if (MEM_READ_1(sc, 0x200000) & 1) 2391 break; 2392 DELAY(100); 2393 } 2394 if (ntries == 100) { 2395 device_printf(sc->sc_dev, 2396 "timeout waiting for ucode to initialize\n"); 2397 error = EIO; 2398 goto fail; 2399 } 2400 2401 /* read the answer or the firmware will not initialize properly */ 2402 for (i = 0; i < 7; i++) 2403 MEM_READ_4(sc, 0x200004); 2404 2405 MEM_WRITE_1(sc, 0x200000, 0x00); 2406 2407 fail: 2408 return error; 2409 } 2410 2411 /* macro to handle unaligned little endian data in firmware image */ 2412 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2413 2414 static int 2415 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2416 { 2417 u_char *p, *end; 2418 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2419 int ntries, error; 2420 2421 IWI_LOCK_ASSERT(sc); 2422 2423 /* copy firmware image to DMA memory */ 2424 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2425 2426 /* make sure the adapter will get up-to-date values */ 2427 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2428 2429 /* tell the adapter where the command blocks are stored */ 2430 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2431 2432 /* 2433 * Store command blocks into adapter's internal memory using register 2434 * indirections. The adapter will read the firmware image through DMA 2435 * using information stored in command blocks. 2436 */ 2437 src = sc->fw_physaddr; 2438 p = sc->fw_virtaddr; 2439 end = p + fw->size; 2440 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2441 2442 while (p < end) { 2443 dst = GETLE32(p); p += 4; src += 4; 2444 len = GETLE32(p); p += 4; src += 4; 2445 p += len; 2446 2447 while (len > 0) { 2448 mlen = min(len, IWI_CB_MAXDATALEN); 2449 2450 ctl = IWI_CB_DEFAULT_CTL | mlen; 2451 sum = ctl ^ src ^ dst; 2452 2453 /* write a command block */ 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2457 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2458 2459 src += mlen; 2460 dst += mlen; 2461 len -= mlen; 2462 } 2463 } 2464 2465 /* write a fictive final command block (sentinel) */ 2466 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2467 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2468 2469 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2470 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2471 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2472 2473 /* tell the adapter to start processing command blocks */ 2474 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2475 2476 /* wait until the adapter reaches the sentinel */ 2477 for (ntries = 0; ntries < 400; ntries++) { 2478 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2479 break; 2480 DELAY(100); 2481 } 2482 /* sync dma, just in case */ 2483 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2484 if (ntries == 400) { 2485 device_printf(sc->sc_dev, 2486 "timeout processing command blocks for %s firmware\n", 2487 fw->name); 2488 return EIO; 2489 } 2490 2491 /* we're done with command blocks processing */ 2492 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2493 2494 /* allow interrupts so we know when the firmware is ready */ 2495 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2496 2497 /* tell the adapter to initialize the firmware */ 2498 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2499 2500 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2501 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2502 2503 /* wait at most one second for firmware initialization to complete */ 2504 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2505 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2506 "initialization to complete\n", fw->name); 2507 } 2508 2509 return error; 2510 } 2511 2512 static int 2513 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2514 { 2515 uint32_t data; 2516 2517 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2518 /* XXX set more fine-grained operation */ 2519 data = htole32(IWI_POWER_MODE_MAX); 2520 } else 2521 data = htole32(IWI_POWER_MODE_CAM); 2522 2523 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2524 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2525 } 2526 2527 static int 2528 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2529 { 2530 struct iwi_wep_key wepkey; 2531 struct ieee80211_key *wk; 2532 int error, i; 2533 2534 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2535 wk = &vap->iv_nw_keys[i]; 2536 2537 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2538 wepkey.idx = i; 2539 wepkey.len = wk->wk_keylen; 2540 memset(wepkey.key, 0, sizeof wepkey.key); 2541 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2542 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2543 wepkey.len)); 2544 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2545 sizeof wepkey); 2546 if (error != 0) 2547 return error; 2548 } 2549 return 0; 2550 } 2551 2552 static int 2553 iwi_config(struct iwi_softc *sc) 2554 { 2555 struct ifnet *ifp = sc->sc_ifp; 2556 struct ieee80211com *ic = ifp->if_l2com; 2557 struct iwi_configuration config; 2558 struct iwi_rateset rs; 2559 struct iwi_txpower power; 2560 uint32_t data; 2561 int error, i; 2562 2563 IWI_LOCK_ASSERT(sc); 2564 2565 DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":")); 2566 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2567 IEEE80211_ADDR_LEN); 2568 if (error != 0) 2569 return error; 2570 2571 memset(&config, 0, sizeof config); 2572 config.bluetooth_coexistence = sc->bluetooth; 2573 config.silence_threshold = 0x1e; 2574 config.antenna = sc->antenna; 2575 config.multicast_enabled = 1; 2576 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2577 config.disable_unicast_decryption = 1; 2578 config.disable_multicast_decryption = 1; 2579 DPRINTF(("Configuring adapter\n")); 2580 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2581 if (error != 0) 2582 return error; 2583 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2584 power.mode = IWI_MODE_11B; 2585 power.nchan = 11; 2586 for (i = 0; i < 11; i++) { 2587 power.chan[i].chan = i + 1; 2588 power.chan[i].power = IWI_TXPOWER_MAX; 2589 } 2590 DPRINTF(("Setting .11b channels tx power\n")); 2591 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2592 if (error != 0) 2593 return error; 2594 2595 power.mode = IWI_MODE_11G; 2596 DPRINTF(("Setting .11g channels tx power\n")); 2597 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2598 if (error != 0) 2599 return error; 2600 } 2601 2602 memset(&rs, 0, sizeof rs); 2603 rs.mode = IWI_MODE_11G; 2604 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2605 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2606 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2607 rs.nrates); 2608 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2609 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2610 if (error != 0) 2611 return error; 2612 2613 memset(&rs, 0, sizeof rs); 2614 rs.mode = IWI_MODE_11A; 2615 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2616 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2617 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2618 rs.nrates); 2619 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2620 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2621 if (error != 0) 2622 return error; 2623 2624 data = htole32(arc4random()); 2625 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2626 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2627 if (error != 0) 2628 return error; 2629 2630 /* enable adapter */ 2631 DPRINTF(("Enabling adapter\n")); 2632 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2633 } 2634 2635 static __inline void 2636 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2637 { 2638 uint8_t *st = &scan->scan_type[ix / 2]; 2639 if (ix % 2) 2640 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2641 else 2642 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2643 } 2644 2645 static int 2646 scan_type(const struct ieee80211_scan_state *ss, 2647 const struct ieee80211_channel *chan) 2648 { 2649 /* We can only set one essid for a directed scan */ 2650 if (ss->ss_nssid != 0) 2651 return IWI_SCAN_TYPE_BDIRECTED; 2652 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2653 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2654 return IWI_SCAN_TYPE_BROADCAST; 2655 return IWI_SCAN_TYPE_PASSIVE; 2656 } 2657 2658 static __inline int 2659 scan_band(const struct ieee80211_channel *c) 2660 { 2661 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2662 } 2663 2664 /* 2665 * Start a scan on the current channel or all channels. 2666 */ 2667 static int 2668 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int mode) 2669 { 2670 struct ieee80211com *ic; 2671 struct ieee80211_channel *chan; 2672 struct ieee80211_scan_state *ss; 2673 struct iwi_scan_ext scan; 2674 int error = 0; 2675 2676 IWI_LOCK_ASSERT(sc); 2677 if (sc->fw_state == IWI_FW_SCANNING) { 2678 /* 2679 * This should not happen as we only trigger scan_next after 2680 * completion 2681 */ 2682 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2683 return (EBUSY); 2684 } 2685 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2686 2687 ic = sc->sc_ifp->if_l2com; 2688 ss = ic->ic_scan; 2689 2690 memset(&scan, 0, sizeof scan); 2691 scan.full_scan_index = htole32(++sc->sc_scangen); 2692 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2693 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2694 /* 2695 * Use very short dwell times for when we send probe request 2696 * frames. Without this bg scans hang. Ideally this should 2697 * be handled with early-termination as done by net80211 but 2698 * that's not feasible (aborting a scan is problematic). 2699 */ 2700 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2701 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2702 } else { 2703 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2704 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2705 } 2706 2707 /* We can only set one essid for a directed scan */ 2708 if (ss->ss_nssid != 0) { 2709 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2710 ss->ss_ssid[0].len); 2711 if (error) 2712 return (error); 2713 } 2714 2715 if (mode == IWI_SCAN_ALLCHAN) { 2716 int i, next, band, b, bstart; 2717 /* 2718 * Convert scan list to run-length encoded channel list 2719 * the firmware requires (preserving the order setup by 2720 * net80211). The first entry in each run specifies the 2721 * band and the count of items in the run. 2722 */ 2723 next = 0; /* next open slot */ 2724 bstart = 0; /* NB: not needed, silence compiler */ 2725 band = -1; /* NB: impossible value */ 2726 KASSERT(ss->ss_last > 0, ("no channels")); 2727 for (i = 0; i < ss->ss_last; i++) { 2728 chan = ss->ss_chans[i]; 2729 b = scan_band(chan); 2730 if (b != band) { 2731 if (band != -1) 2732 scan.channels[bstart] = 2733 (next - bstart) | band; 2734 /* NB: this allocates a slot for the run-len */ 2735 band = b, bstart = next++; 2736 } 2737 if (next >= IWI_SCAN_CHANNELS) { 2738 DPRINTF(("truncating scan list\n")); 2739 break; 2740 } 2741 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2742 set_scan_type(&scan, next, scan_type(ss, chan)); 2743 next++; 2744 } 2745 scan.channels[bstart] = (next - bstart) | band; 2746 } else { 2747 /* Scan the current channel only */ 2748 chan = ic->ic_curchan; 2749 scan.channels[0] = 1 | scan_band(chan); 2750 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2751 set_scan_type(&scan, 1, scan_type(ss, chan)); 2752 } 2753 #ifdef IWI_DEBUG 2754 if (iwi_debug > 0) { 2755 static const char *scantype[8] = 2756 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2757 int i; 2758 printf("Scan request: index %u dwell %d/%d/%d\n" 2759 , le32toh(scan.full_scan_index) 2760 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2761 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2762 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2763 ); 2764 i = 0; 2765 do { 2766 int run = scan.channels[i]; 2767 if (run == 0) 2768 break; 2769 printf("Scan %d %s channels:", run & 0x3f, 2770 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2771 for (run &= 0x3f, i++; run > 0; run--, i++) { 2772 uint8_t type = scan.scan_type[i/2]; 2773 printf(" %u/%s", scan.channels[i], 2774 scantype[(i & 1 ? type : type>>4) & 7]); 2775 } 2776 printf("\n"); 2777 } while (i < IWI_SCAN_CHANNELS); 2778 } 2779 #endif 2780 2781 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2782 } 2783 2784 static void 2785 iwi_scanabort(void *arg, int npending) 2786 { 2787 struct iwi_softc *sc = arg; 2788 IWI_LOCK_DECL; 2789 2790 IWI_LOCK(sc); 2791 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 2792 /* NB: make sure we're still scanning */ 2793 if (sc->fw_state == IWI_FW_SCANNING) 2794 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 2795 IWI_UNLOCK(sc); 2796 } 2797 2798 static int 2799 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2800 { 2801 struct iwi_sensitivity sens; 2802 2803 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2804 2805 memset(&sens, 0, sizeof sens); 2806 sens.rssi = htole16(rssi_dbm); 2807 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2808 } 2809 2810 static int 2811 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2812 { 2813 struct ieee80211com *ic = vap->iv_ic; 2814 struct ifnet *ifp = vap->iv_ifp; 2815 struct ieee80211_node *ni = vap->iv_bss; 2816 struct iwi_configuration config; 2817 struct iwi_associate *assoc = &sc->assoc; 2818 struct iwi_rateset rs; 2819 uint16_t capinfo; 2820 uint32_t data; 2821 int error, mode; 2822 2823 IWI_LOCK_ASSERT(sc); 2824 2825 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2826 DPRINTF(("Already associated\n")); 2827 return (-1); 2828 } 2829 2830 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2831 error = 0; 2832 mode = 0; 2833 2834 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2835 mode = IWI_MODE_11A; 2836 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2837 mode = IWI_MODE_11G; 2838 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2839 mode = IWI_MODE_11B; 2840 2841 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2842 memset(&config, 0, sizeof config); 2843 config.bluetooth_coexistence = sc->bluetooth; 2844 config.antenna = sc->antenna; 2845 config.multicast_enabled = 1; 2846 if (mode == IWI_MODE_11G) 2847 config.use_protection = 1; 2848 config.answer_pbreq = 2849 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2850 config.disable_unicast_decryption = 1; 2851 config.disable_multicast_decryption = 1; 2852 DPRINTF(("Configuring adapter\n")); 2853 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2854 if (error != 0) 2855 goto done; 2856 } 2857 2858 #ifdef IWI_DEBUG 2859 if (iwi_debug > 0) { 2860 printf("Setting ESSID to "); 2861 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2862 printf("\n"); 2863 } 2864 #endif 2865 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2866 if (error != 0) 2867 goto done; 2868 2869 error = iwi_setpowermode(sc, vap); 2870 if (error != 0) 2871 goto done; 2872 2873 data = htole32(vap->iv_rtsthreshold); 2874 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2875 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2876 if (error != 0) 2877 goto done; 2878 2879 data = htole32(vap->iv_fragthreshold); 2880 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2881 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2882 if (error != 0) 2883 goto done; 2884 2885 /* the rate set has already been "negotiated" */ 2886 memset(&rs, 0, sizeof rs); 2887 rs.mode = mode; 2888 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2889 rs.nrates = ni->ni_rates.rs_nrates; 2890 if (rs.nrates > IWI_RATESET_SIZE) { 2891 DPRINTF(("Truncating negotiated rate set from %u\n", 2892 rs.nrates)); 2893 rs.nrates = IWI_RATESET_SIZE; 2894 } 2895 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2896 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2897 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2898 if (error != 0) 2899 goto done; 2900 2901 memset(assoc, 0, sizeof *assoc); 2902 2903 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2904 /* NB: don't treat WME setup as failure */ 2905 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2906 assoc->policy |= htole16(IWI_POLICY_WME); 2907 /* XXX complain on failure? */ 2908 } 2909 2910 if (vap->iv_appie_wpa != NULL) { 2911 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2912 2913 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2914 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2915 if (error != 0) 2916 goto done; 2917 } 2918 2919 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2920 if (error != 0) 2921 goto done; 2922 2923 assoc->mode = mode; 2924 assoc->chan = ic->ic_curchan->ic_ieee; 2925 /* 2926 * NB: do not arrange for shared key auth w/o privacy 2927 * (i.e. a wep key); it causes a firmware error. 2928 */ 2929 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2930 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2931 assoc->auth = IWI_AUTH_SHARED; 2932 /* 2933 * It's possible to have privacy marked but no default 2934 * key setup. This typically is due to a user app bug 2935 * but if we blindly grab the key the firmware will 2936 * barf so avoid it for now. 2937 */ 2938 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2939 assoc->auth |= vap->iv_def_txkey << 4; 2940 2941 error = iwi_setwepkeys(sc, vap); 2942 if (error != 0) 2943 goto done; 2944 } 2945 if (vap->iv_flags & IEEE80211_F_WPA) 2946 assoc->policy |= htole16(IWI_POLICY_WPA); 2947 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2948 assoc->type = IWI_HC_IBSS_START; 2949 else 2950 assoc->type = IWI_HC_ASSOC; 2951 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2952 2953 if (vap->iv_opmode == IEEE80211_M_IBSS) 2954 capinfo = IEEE80211_CAPINFO_IBSS; 2955 else 2956 capinfo = IEEE80211_CAPINFO_ESS; 2957 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2958 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2959 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2960 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2961 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2962 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2963 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2964 assoc->capinfo = htole16(capinfo); 2965 2966 assoc->lintval = htole16(ic->ic_lintval); 2967 assoc->intval = htole16(ni->ni_intval); 2968 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2969 if (vap->iv_opmode == IEEE80211_M_IBSS) 2970 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2971 else 2972 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2973 2974 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2975 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2976 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2977 assoc->bssid, ":", assoc->dst, ":", 2978 assoc->chan, le16toh(assoc->policy), assoc->auth, 2979 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2980 le16toh(assoc->intval))); 2981 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2982 done: 2983 if (error) 2984 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2985 2986 return (error); 2987 } 2988 2989 static int 2990 iwi_disassociate(struct iwi_softc *sc, int quiet) 2991 { 2992 struct iwi_associate *assoc = &sc->assoc; 2993 2994 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 2995 DPRINTF(("Not associated\n")); 2996 return (-1); 2997 } 2998 2999 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3000 3001 if (quiet) 3002 assoc->type = IWI_HC_DISASSOC_QUIET; 3003 else 3004 assoc->type = IWI_HC_DISASSOC; 3005 3006 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3007 assoc->bssid, ":", assoc->chan)); 3008 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3009 } 3010 3011 /* 3012 * release dma resources for the firmware 3013 */ 3014 static void 3015 iwi_release_fw_dma(struct iwi_softc *sc) 3016 { 3017 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3018 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3019 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3020 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3021 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3022 bus_dma_tag_destroy(sc->fw_dmat); 3023 3024 sc->fw_flags = 0; 3025 sc->fw_dma_size = 0; 3026 sc->fw_dmat = NULL; 3027 sc->fw_map = NULL; 3028 sc->fw_physaddr = 0; 3029 sc->fw_virtaddr = NULL; 3030 } 3031 3032 /* 3033 * allocate the dma descriptor for the firmware. 3034 * Return 0 on success, 1 on error. 3035 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3036 */ 3037 static int 3038 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3039 { 3040 if (sc->fw_dma_size >= size) 3041 return 0; 3042 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3043 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3044 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3045 device_printf(sc->sc_dev, 3046 "could not create firmware DMA tag\n"); 3047 goto error; 3048 } 3049 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3050 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3051 &sc->fw_map) != 0) { 3052 device_printf(sc->sc_dev, 3053 "could not allocate firmware DMA memory\n"); 3054 goto error; 3055 } 3056 sc->fw_flags |= IWI_FW_HAVE_MAP; 3057 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3058 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3059 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3060 goto error; 3061 } 3062 sc->fw_flags |= IWI_FW_HAVE_PHY; 3063 sc->fw_dma_size = size; 3064 return 0; 3065 3066 error: 3067 iwi_release_fw_dma(sc); 3068 return 1; 3069 } 3070 3071 static void 3072 iwi_init_locked(struct iwi_softc *sc) 3073 { 3074 struct ifnet *ifp = sc->sc_ifp; 3075 struct iwi_rx_data *data; 3076 int i; 3077 3078 IWI_LOCK_ASSERT(sc); 3079 3080 if (sc->fw_state == IWI_FW_LOADING) { 3081 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3082 return; /* XXX: condvar? */ 3083 } 3084 3085 iwi_stop_locked(sc); 3086 3087 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3088 3089 taskqueue_unblock(sc->sc_tq); 3090 taskqueue_unblock(sc->sc_tq2); 3091 3092 if (iwi_reset(sc) != 0) { 3093 device_printf(sc->sc_dev, "could not reset adapter\n"); 3094 goto fail; 3095 } 3096 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3097 device_printf(sc->sc_dev, 3098 "could not load boot firmware %s\n", sc->fw_boot.name); 3099 goto fail; 3100 } 3101 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3102 device_printf(sc->sc_dev, 3103 "could not load microcode %s\n", sc->fw_uc.name); 3104 goto fail; 3105 } 3106 3107 iwi_stop_master(sc); 3108 3109 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3110 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3111 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3112 3113 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3114 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3115 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3116 3117 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3118 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3119 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3120 3121 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3122 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3123 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3124 3125 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3126 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3127 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3128 3129 for (i = 0; i < sc->rxq.count; i++) { 3130 data = &sc->rxq.data[i]; 3131 CSR_WRITE_4(sc, data->reg, data->physaddr); 3132 } 3133 3134 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3135 3136 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3137 device_printf(sc->sc_dev, 3138 "could not load main firmware %s\n", sc->fw_fw.name); 3139 goto fail; 3140 } 3141 sc->flags |= IWI_FLAG_FW_INITED; 3142 3143 IWI_STATE_END(sc, IWI_FW_LOADING); 3144 3145 if (iwi_config(sc) != 0) { 3146 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3147 goto fail2; 3148 } 3149 3150 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3151 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3152 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3153 return; 3154 fail: 3155 IWI_STATE_END(sc, IWI_FW_LOADING); 3156 fail2: 3157 iwi_stop_locked(sc); 3158 } 3159 3160 static void 3161 iwi_init(void *priv) 3162 { 3163 struct iwi_softc *sc = priv; 3164 struct ifnet *ifp = sc->sc_ifp; 3165 struct ieee80211com *ic = ifp->if_l2com; 3166 IWI_LOCK_DECL; 3167 3168 IWI_LOCK(sc); 3169 iwi_init_locked(sc); 3170 IWI_UNLOCK(sc); 3171 3172 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3173 ieee80211_start_all(ic); 3174 } 3175 3176 static void 3177 iwi_stop_locked(void *priv) 3178 { 3179 struct iwi_softc *sc = priv; 3180 struct ifnet *ifp = sc->sc_ifp; 3181 3182 IWI_LOCK_ASSERT(sc); 3183 3184 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3185 3186 taskqueue_block(sc->sc_tq); 3187 taskqueue_block(sc->sc_tq2); 3188 if (sc->sc_softled) { 3189 callout_stop(&sc->sc_ledtimer); 3190 sc->sc_blinking = 0; 3191 } 3192 callout_stop(&sc->sc_wdtimer); 3193 callout_stop(&sc->sc_rftimer); 3194 3195 iwi_stop_master(sc); 3196 3197 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3198 3199 /* reset rings */ 3200 iwi_reset_cmd_ring(sc, &sc->cmdq); 3201 iwi_reset_tx_ring(sc, &sc->txq[0]); 3202 iwi_reset_tx_ring(sc, &sc->txq[1]); 3203 iwi_reset_tx_ring(sc, &sc->txq[2]); 3204 iwi_reset_tx_ring(sc, &sc->txq[3]); 3205 iwi_reset_rx_ring(sc, &sc->rxq); 3206 3207 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3208 sc->sc_tx_timer = 0; 3209 sc->sc_state_timer = 0; 3210 sc->sc_busy_timer = 0; 3211 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3212 sc->fw_state = IWI_FW_IDLE; 3213 wakeup(sc); 3214 } 3215 3216 static void 3217 iwi_stop(struct iwi_softc *sc) 3218 { 3219 IWI_LOCK_DECL; 3220 3221 IWI_LOCK(sc); 3222 iwi_stop_locked(sc); 3223 IWI_UNLOCK(sc); 3224 } 3225 3226 static void 3227 iwi_restart(void *arg, int npending) 3228 { 3229 struct iwi_softc *sc = arg; 3230 3231 iwi_init(sc); 3232 } 3233 3234 /* 3235 * Return whether or not the radio is enabled in hardware 3236 * (i.e. the rfkill switch is "off"). 3237 */ 3238 static int 3239 iwi_getrfkill(struct iwi_softc *sc) 3240 { 3241 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3242 } 3243 3244 static void 3245 iwi_radio_on(void *arg, int pending) 3246 { 3247 struct iwi_softc *sc = arg; 3248 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3249 3250 device_printf(sc->sc_dev, "radio turned on\n"); 3251 3252 iwi_init(sc); 3253 ieee80211_notify_radio(ic, 1); 3254 } 3255 3256 static void 3257 iwi_rfkill_poll(void *arg) 3258 { 3259 struct iwi_softc *sc = arg; 3260 3261 IWI_LOCK_ASSERT(sc); 3262 3263 /* 3264 * Check for a change in rfkill state. We get an 3265 * interrupt when a radio is disabled but not when 3266 * it is enabled so we must poll for the latter. 3267 */ 3268 if (!iwi_getrfkill(sc)) { 3269 taskqueue_unblock(sc->sc_tq); 3270 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); 3271 return; 3272 } 3273 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3274 } 3275 3276 static void 3277 iwi_radio_off(void *arg, int pending) 3278 { 3279 struct iwi_softc *sc = arg; 3280 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3281 IWI_LOCK_DECL; 3282 3283 device_printf(sc->sc_dev, "radio turned off\n"); 3284 3285 ieee80211_notify_radio(ic, 0); 3286 3287 IWI_LOCK(sc); 3288 iwi_stop_locked(sc); 3289 iwi_rfkill_poll(sc); 3290 IWI_UNLOCK(sc); 3291 } 3292 3293 static int 3294 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3295 { 3296 struct iwi_softc *sc = arg1; 3297 uint32_t size, buf[128]; 3298 3299 memset(buf, 0, sizeof buf); 3300 3301 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3302 return SYSCTL_OUT(req, buf, sizeof buf); 3303 3304 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3305 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3306 3307 return SYSCTL_OUT(req, buf, size); 3308 } 3309 3310 static int 3311 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3312 { 3313 struct iwi_softc *sc = arg1; 3314 int val = !iwi_getrfkill(sc); 3315 3316 return SYSCTL_OUT(req, &val, sizeof val); 3317 } 3318 3319 /* 3320 * Add sysctl knobs. 3321 */ 3322 static void 3323 iwi_sysctlattach(struct iwi_softc *sc) 3324 { 3325 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3326 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3327 3328 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3329 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3330 "radio transmitter switch state (0=off, 1=on)"); 3331 3332 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3333 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3334 "statistics"); 3335 3336 sc->bluetooth = 0; 3337 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3338 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3339 3340 sc->antenna = IWI_ANTENNA_AUTO; 3341 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3342 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3343 } 3344 3345 /* 3346 * LED support. 3347 * 3348 * Different cards have different capabilities. Some have three 3349 * led's while others have only one. The linux ipw driver defines 3350 * led's for link state (associated or not), band (11a, 11g, 11b), 3351 * and for link activity. We use one led and vary the blink rate 3352 * according to the tx/rx traffic a la the ath driver. 3353 */ 3354 3355 static __inline uint32_t 3356 iwi_toggle_event(uint32_t r) 3357 { 3358 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3359 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3360 } 3361 3362 static uint32_t 3363 iwi_read_event(struct iwi_softc *sc) 3364 { 3365 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3366 } 3367 3368 static void 3369 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3370 { 3371 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3372 } 3373 3374 static void 3375 iwi_led_done(void *arg) 3376 { 3377 struct iwi_softc *sc = arg; 3378 3379 sc->sc_blinking = 0; 3380 } 3381 3382 /* 3383 * Turn the activity LED off: flip the pin and then set a timer so no 3384 * update will happen for the specified duration. 3385 */ 3386 static void 3387 iwi_led_off(void *arg) 3388 { 3389 struct iwi_softc *sc = arg; 3390 uint32_t v; 3391 3392 v = iwi_read_event(sc); 3393 v &= ~sc->sc_ledpin; 3394 iwi_write_event(sc, iwi_toggle_event(v)); 3395 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3396 } 3397 3398 /* 3399 * Blink the LED according to the specified on/off times. 3400 */ 3401 static void 3402 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3403 { 3404 uint32_t v; 3405 3406 v = iwi_read_event(sc); 3407 v |= sc->sc_ledpin; 3408 iwi_write_event(sc, iwi_toggle_event(v)); 3409 sc->sc_blinking = 1; 3410 sc->sc_ledoff = off; 3411 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3412 } 3413 3414 static void 3415 iwi_led_event(struct iwi_softc *sc, int event) 3416 { 3417 #define N(a) (sizeof(a)/sizeof(a[0])) 3418 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3419 static const struct { 3420 u_int rate; /* tx/rx iwi rate */ 3421 u_int16_t timeOn; /* LED on time (ms) */ 3422 u_int16_t timeOff; /* LED off time (ms) */ 3423 } blinkrates[] = { 3424 { IWI_RATE_OFDM54, 40, 10 }, 3425 { IWI_RATE_OFDM48, 44, 11 }, 3426 { IWI_RATE_OFDM36, 50, 13 }, 3427 { IWI_RATE_OFDM24, 57, 14 }, 3428 { IWI_RATE_OFDM18, 67, 16 }, 3429 { IWI_RATE_OFDM12, 80, 20 }, 3430 { IWI_RATE_DS11, 100, 25 }, 3431 { IWI_RATE_OFDM9, 133, 34 }, 3432 { IWI_RATE_OFDM6, 160, 40 }, 3433 { IWI_RATE_DS5, 200, 50 }, 3434 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3435 { IWI_RATE_DS2, 267, 66 }, 3436 { IWI_RATE_DS1, 400, 100 }, 3437 { 0, 500, 130 }, /* unknown rate/polling */ 3438 }; 3439 uint32_t txrate; 3440 int j = 0; /* XXX silence compiler */ 3441 3442 sc->sc_ledevent = ticks; /* time of last event */ 3443 if (sc->sc_blinking) /* don't interrupt active blink */ 3444 return; 3445 switch (event) { 3446 case IWI_LED_POLL: 3447 j = N(blinkrates)-1; 3448 break; 3449 case IWI_LED_TX: 3450 /* read current transmission rate from adapter */ 3451 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3452 if (blinkrates[sc->sc_txrix].rate != txrate) { 3453 for (j = 0; j < N(blinkrates)-1; j++) 3454 if (blinkrates[j].rate == txrate) 3455 break; 3456 sc->sc_txrix = j; 3457 } else 3458 j = sc->sc_txrix; 3459 break; 3460 case IWI_LED_RX: 3461 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3462 for (j = 0; j < N(blinkrates)-1; j++) 3463 if (blinkrates[j].rate == sc->sc_rxrate) 3464 break; 3465 sc->sc_rxrix = j; 3466 } else 3467 j = sc->sc_rxrix; 3468 break; 3469 } 3470 /* XXX beware of overflow */ 3471 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3472 (blinkrates[j].timeOff * hz) / 1000); 3473 #undef N 3474 } 3475 3476 static int 3477 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3478 { 3479 struct iwi_softc *sc = arg1; 3480 int softled = sc->sc_softled; 3481 int error; 3482 3483 error = sysctl_handle_int(oidp, &softled, 0, req); 3484 if (error || !req->newptr) 3485 return error; 3486 softled = (softled != 0); 3487 if (softled != sc->sc_softled) { 3488 if (softled) { 3489 uint32_t v = iwi_read_event(sc); 3490 v &= ~sc->sc_ledpin; 3491 iwi_write_event(sc, iwi_toggle_event(v)); 3492 } 3493 sc->sc_softled = softled; 3494 } 3495 return 0; 3496 } 3497 3498 static void 3499 iwi_ledattach(struct iwi_softc *sc) 3500 { 3501 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3502 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3503 3504 sc->sc_blinking = 0; 3505 sc->sc_ledstate = 1; 3506 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3507 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3508 3509 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3510 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3511 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3512 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3513 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3514 "pin setting to turn activity LED on"); 3515 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3516 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3517 "idle time for inactivity LED (ticks)"); 3518 /* XXX for debugging */ 3519 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3520 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3521 "NIC type from EEPROM"); 3522 3523 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3524 sc->sc_softled = 1; 3525 3526 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3527 if (sc->sc_nictype == 1) { 3528 /* 3529 * NB: led's are reversed. 3530 */ 3531 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3532 } 3533 } 3534 3535 static void 3536 iwi_ops(void *arg0, int npending) 3537 { 3538 static const char *opnames[] = { 3539 [IWI_CMD_FREE] = "FREE", 3540 [IWI_SCAN_START] = "SCAN_START", 3541 [IWI_SET_CHANNEL] = "SET_CHANNEL", 3542 [IWI_AUTH] = "AUTH", 3543 [IWI_ASSOC] = "ASSOC", 3544 [IWI_DISASSOC] = "DISASSOC", 3545 [IWI_SCAN_CURCHAN] = "SCAN_CURCHAN", 3546 [IWI_SCAN_ALLCHAN] = "SCAN_ALLCHAN", 3547 [IWI_SET_WME] = "SET_WME", 3548 }; 3549 struct iwi_softc *sc = arg0; 3550 struct ifnet *ifp = sc->sc_ifp; 3551 struct ieee80211com *ic = ifp->if_l2com; 3552 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3553 IWI_LOCK_DECL; 3554 int cmd; 3555 unsigned long arg; 3556 3557 again: 3558 IWI_CMD_LOCK(sc); 3559 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3560 if (cmd == IWI_CMD_FREE) { 3561 /* No more commands to process */ 3562 IWI_CMD_UNLOCK(sc); 3563 return; 3564 } 3565 arg = sc->sc_arg[sc->sc_cmd_cur]; 3566 sc->sc_cmd[sc->sc_cmd_cur] = IWI_CMD_FREE; /* free the slot */ 3567 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWI_CMD_MAXOPS; 3568 IWI_CMD_UNLOCK(sc); 3569 3570 IWI_LOCK(sc); 3571 while (sc->fw_state != IWI_FW_IDLE || (sc->flags & IWI_FLAG_BUSY)) { 3572 msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz/10); 3573 } 3574 3575 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3576 IWI_UNLOCK(sc); 3577 return; 3578 } 3579 3580 DPRINTF(("%s: %s arg %lu\n", __func__, opnames[cmd], arg)); 3581 switch (cmd) { 3582 case IWI_AUTH: 3583 case IWI_ASSOC: 3584 if (cmd == IWI_AUTH) 3585 vap->iv_state = IEEE80211_S_AUTH; 3586 else 3587 vap->iv_state = IEEE80211_S_ASSOC; 3588 iwi_auth_and_assoc(sc, vap); 3589 /* NB: completion done in iwi_notification_intr */ 3590 break; 3591 case IWI_DISASSOC: 3592 iwi_disassociate(sc, 0); 3593 break; 3594 case IWI_SET_WME: 3595 if (vap->iv_state == IEEE80211_S_RUN) 3596 (void) iwi_wme_setparams(sc, ic); 3597 break; 3598 case IWI_SCAN_START: 3599 sc->flags |= IWI_FLAG_CHANNEL_SCAN; 3600 break; 3601 case IWI_SCAN_CURCHAN: 3602 case IWI_SCAN_ALLCHAN: 3603 if (!(sc->flags & IWI_FLAG_CHANNEL_SCAN)) { 3604 DPRINTF(("%s: ic_scan_curchan while not scanning\n", 3605 __func__)); 3606 goto done; 3607 } 3608 if (iwi_scanchan(sc, arg, cmd)) 3609 ieee80211_cancel_scan(vap); 3610 break; 3611 } 3612 done: 3613 IWI_UNLOCK(sc); 3614 3615 /* Take another pass */ 3616 goto again; 3617 } 3618 3619 static int 3620 iwi_queue_cmd(struct iwi_softc *sc, int cmd, unsigned long arg) 3621 { 3622 IWI_CMD_LOCK(sc); 3623 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3624 IWI_CMD_UNLOCK(sc); 3625 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3626 return (EBUSY); 3627 } 3628 3629 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3630 sc->sc_arg[sc->sc_cmd_next] = arg; 3631 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWI_CMD_MAXOPS; 3632 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3633 IWI_CMD_UNLOCK(sc); 3634 return (0); 3635 } 3636 3637 static void 3638 iwi_scan_start(struct ieee80211com *ic) 3639 { 3640 struct ifnet *ifp = ic->ic_ifp; 3641 struct iwi_softc *sc = ifp->if_softc; 3642 3643 iwi_queue_cmd(sc, IWI_SCAN_START, 0); 3644 } 3645 3646 static void 3647 iwi_set_channel(struct ieee80211com *ic) 3648 { 3649 struct ifnet *ifp = ic->ic_ifp; 3650 struct iwi_softc *sc = ifp->if_softc; 3651 if (sc->fw_state == IWI_FW_IDLE) 3652 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3653 } 3654 3655 static void 3656 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3657 { 3658 struct ieee80211vap *vap = ss->ss_vap; 3659 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3660 struct iwi_softc *sc = ifp->if_softc; 3661 3662 iwi_queue_cmd(sc, IWI_SCAN_CURCHAN, maxdwell); 3663 } 3664 3665 #if 0 3666 static void 3667 iwi_scan_allchan(struct ieee80211com *ic, unsigned long maxdwell) 3668 { 3669 struct ifnet *ifp = ic->ic_ifp; 3670 struct iwi_softc *sc = ifp->if_softc; 3671 3672 iwi_queue_cmd(sc, IWI_SCAN_ALLCHAN, maxdwell); 3673 } 3674 #endif 3675 3676 static void 3677 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3678 { 3679 /* NB: don't try to abort scan; wait for firmware to finish */ 3680 } 3681 3682 static void 3683 iwi_scan_end(struct ieee80211com *ic) 3684 { 3685 struct ifnet *ifp = ic->ic_ifp; 3686 struct iwi_softc *sc = ifp->if_softc; 3687 3688 taskqueue_enqueue(sc->sc_tq2, &sc->sc_scanaborttask); 3689 } 3690