xref: /freebsd/sys/dev/iwi/if_iwi.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004, 2005
5  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
6  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
7  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 /*-
36  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
37  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
38  */
39 
40 #include <sys/param.h>
41 #include <sys/sysctl.h>
42 #include <sys/sockio.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/module.h>
51 #include <sys/bus.h>
52 #include <sys/endian.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/linker.h>
57 #include <sys/firmware.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/rman.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <net/bpf.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 
76 #include <net80211/ieee80211_var.h>
77 #include <net80211/ieee80211_radiotap.h>
78 #include <net80211/ieee80211_input.h>
79 #include <net80211/ieee80211_regdomain.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/if_ether.h>
86 
87 #include <dev/iwi/if_iwireg.h>
88 #include <dev/iwi/if_iwivar.h>
89 #include <dev/iwi/if_iwi_ioctl.h>
90 
91 #define IWI_DEBUG
92 #ifdef IWI_DEBUG
93 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
94 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
95 int iwi_debug = 0;
96 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
97 
98 static const char *iwi_fw_states[] = {
99 	"IDLE", 		/* IWI_FW_IDLE */
100 	"LOADING",		/* IWI_FW_LOADING */
101 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
102 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
103 	"SCANNING",		/* IWI_FW_SCANNING */
104 };
105 #else
106 #define DPRINTF(x)
107 #define DPRINTFN(n, x)
108 #endif
109 
110 MODULE_DEPEND(iwi, pci,  1, 1, 1);
111 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
112 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
113 
114 enum {
115 	IWI_LED_TX,
116 	IWI_LED_RX,
117 	IWI_LED_POLL,
118 };
119 
120 struct iwi_ident {
121 	uint16_t	vendor;
122 	uint16_t	device;
123 	const char	*name;
124 };
125 
126 static const struct iwi_ident iwi_ident_table[] = {
127 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
128 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
129 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
130 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
131 
132 	{ 0, 0, NULL }
133 };
134 
135 static const uint8_t def_chan_5ghz_band1[] =
136 	{ 36, 40, 44, 48, 52, 56, 60, 64 };
137 static const uint8_t def_chan_5ghz_band2[] =
138 	{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 };
139 static const uint8_t def_chan_5ghz_band3[] =
140 	{ 149, 153, 157, 161, 165 };
141 
142 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
143 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
144 		    const uint8_t [IEEE80211_ADDR_LEN],
145 		    const uint8_t [IEEE80211_ADDR_LEN]);
146 static void	iwi_vap_delete(struct ieee80211vap *);
147 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
148 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
149 		    int);
150 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
151 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
152 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
153 		    int, bus_addr_t, bus_addr_t);
154 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
155 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
156 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
157 		    int);
158 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
159 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
160 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
161 		    const uint8_t [IEEE80211_ADDR_LEN]);
162 static void	iwi_node_free(struct ieee80211_node *);
163 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
164 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
165 static void	iwi_wme_init(struct iwi_softc *);
166 static int	iwi_wme_setparams(struct iwi_softc *);
167 static int	iwi_wme_update(struct ieee80211com *);
168 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
169 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
170 		    struct iwi_frame *);
171 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
172 static void	iwi_rx_intr(struct iwi_softc *);
173 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
174 static void	iwi_intr(void *);
175 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
176 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
177 static int	iwi_tx_start(struct iwi_softc *, struct mbuf *,
178 		    struct ieee80211_node *, int);
179 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
180 		    const struct ieee80211_bpf_params *);
181 static void	iwi_start(struct iwi_softc *);
182 static int	iwi_transmit(struct ieee80211com *, struct mbuf *);
183 static void	iwi_watchdog(void *);
184 static int	iwi_ioctl(struct ieee80211com *, u_long, void *);
185 static void	iwi_parent(struct ieee80211com *);
186 static void	iwi_stop_master(struct iwi_softc *);
187 static int	iwi_reset(struct iwi_softc *);
188 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
189 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
190 static void	iwi_release_fw_dma(struct iwi_softc *sc);
191 static int	iwi_config(struct iwi_softc *);
192 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
193 static void	iwi_put_firmware(struct iwi_softc *);
194 static void	iwi_monitor_scan(void *, int);
195 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
196 static void	iwi_scan_start(struct ieee80211com *);
197 static void	iwi_scan_end(struct ieee80211com *);
198 static void	iwi_set_channel(struct ieee80211com *);
199 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
200 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
201 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
202 static void	iwi_disassoc(void *, int);
203 static int	iwi_disassociate(struct iwi_softc *, int quiet);
204 static void	iwi_init_locked(struct iwi_softc *);
205 static void	iwi_init(void *);
206 static int	iwi_init_fw_dma(struct iwi_softc *, int);
207 static void	iwi_stop_locked(void *);
208 static void	iwi_stop(struct iwi_softc *);
209 static void	iwi_restart(void *, int);
210 static int	iwi_getrfkill(struct iwi_softc *);
211 static void	iwi_radio_on(void *, int);
212 static void	iwi_radio_off(void *, int);
213 static void	iwi_sysctlattach(struct iwi_softc *);
214 static void	iwi_led_event(struct iwi_softc *, int);
215 static void	iwi_ledattach(struct iwi_softc *);
216 static void	iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t);
217 static void	iwi_getradiocaps(struct ieee80211com *, int, int *,
218 		    struct ieee80211_channel []);
219 
220 static int iwi_probe(device_t);
221 static int iwi_attach(device_t);
222 static int iwi_detach(device_t);
223 static int iwi_shutdown(device_t);
224 static int iwi_suspend(device_t);
225 static int iwi_resume(device_t);
226 
227 static device_method_t iwi_methods[] = {
228 	/* Device interface */
229 	DEVMETHOD(device_probe,		iwi_probe),
230 	DEVMETHOD(device_attach,	iwi_attach),
231 	DEVMETHOD(device_detach,	iwi_detach),
232 	DEVMETHOD(device_shutdown,	iwi_shutdown),
233 	DEVMETHOD(device_suspend,	iwi_suspend),
234 	DEVMETHOD(device_resume,	iwi_resume),
235 
236 	DEVMETHOD_END
237 };
238 
239 static driver_t iwi_driver = {
240 	"iwi",
241 	iwi_methods,
242 	sizeof (struct iwi_softc)
243 };
244 
245 static devclass_t iwi_devclass;
246 
247 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
248 
249 MODULE_VERSION(iwi, 1);
250 
251 static __inline uint8_t
252 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
253 {
254 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
255 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
256 }
257 
258 static __inline uint32_t
259 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
260 {
261 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
262 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
263 }
264 
265 static int
266 iwi_probe(device_t dev)
267 {
268 	const struct iwi_ident *ident;
269 
270 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
271 		if (pci_get_vendor(dev) == ident->vendor &&
272 		    pci_get_device(dev) == ident->device) {
273 			device_set_desc(dev, ident->name);
274 			return (BUS_PROBE_DEFAULT);
275 		}
276 	}
277 	return ENXIO;
278 }
279 
280 static int
281 iwi_attach(device_t dev)
282 {
283 	struct iwi_softc *sc = device_get_softc(dev);
284 	struct ieee80211com *ic = &sc->sc_ic;
285 	uint16_t val;
286 	int i, error;
287 
288 	sc->sc_dev = dev;
289 	sc->sc_ledevent = ticks;
290 
291 	IWI_LOCK_INIT(sc);
292 	mbufq_init(&sc->sc_snd, ifqmaxlen);
293 
294 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
295 
296 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
297 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
298 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
299 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
300 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
301 
302 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
303 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
304 
305 	pci_write_config(dev, 0x41, 0, 1);
306 
307 	/* enable bus-mastering */
308 	pci_enable_busmaster(dev);
309 
310 	i = PCIR_BAR(0);
311 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE);
312 	if (sc->mem == NULL) {
313 		device_printf(dev, "could not allocate memory resource\n");
314 		goto fail;
315 	}
316 
317 	sc->sc_st = rman_get_bustag(sc->mem);
318 	sc->sc_sh = rman_get_bushandle(sc->mem);
319 
320 	i = 0;
321 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i,
322 	    RF_ACTIVE | RF_SHAREABLE);
323 	if (sc->irq == NULL) {
324 		device_printf(dev, "could not allocate interrupt resource\n");
325 		goto fail;
326 	}
327 
328 	if (iwi_reset(sc) != 0) {
329 		device_printf(dev, "could not reset adapter\n");
330 		goto fail;
331 	}
332 
333 	/*
334 	 * Allocate rings.
335 	 */
336 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
337 		device_printf(dev, "could not allocate Cmd ring\n");
338 		goto fail;
339 	}
340 
341 	for (i = 0; i < 4; i++) {
342 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
343 		    IWI_CSR_TX1_RIDX + i * 4,
344 		    IWI_CSR_TX1_WIDX + i * 4);
345 		if (error != 0) {
346 			device_printf(dev, "could not allocate Tx ring %d\n",
347 				i+i);
348 			goto fail;
349 		}
350 	}
351 
352 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
353 		device_printf(dev, "could not allocate Rx ring\n");
354 		goto fail;
355 	}
356 
357 	iwi_wme_init(sc);
358 
359 	ic->ic_softc = sc;
360 	ic->ic_name = device_get_nameunit(dev);
361 	ic->ic_opmode = IEEE80211_M_STA;
362 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
363 
364 	/* set device capabilities */
365 	ic->ic_caps =
366 	      IEEE80211_C_STA		/* station mode supported */
367 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
368 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
369 	    | IEEE80211_C_PMGT		/* power save supported */
370 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
371 	    | IEEE80211_C_WPA		/* 802.11i */
372 	    | IEEE80211_C_WME		/* 802.11e */
373 #if 0
374 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
375 #endif
376 	    ;
377 
378 	/* read MAC address from EEPROM */
379 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
380 	ic->ic_macaddr[0] = val & 0xff;
381 	ic->ic_macaddr[1] = val >> 8;
382 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
383 	ic->ic_macaddr[2] = val & 0xff;
384 	ic->ic_macaddr[3] = val >> 8;
385 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
386 	ic->ic_macaddr[4] = val & 0xff;
387 	ic->ic_macaddr[5] = val >> 8;
388 
389 	iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
390 	    ic->ic_channels);
391 
392 	ieee80211_ifattach(ic);
393 	/* override default methods */
394 	ic->ic_node_alloc = iwi_node_alloc;
395 	sc->sc_node_free = ic->ic_node_free;
396 	ic->ic_node_free = iwi_node_free;
397 	ic->ic_raw_xmit = iwi_raw_xmit;
398 	ic->ic_scan_start = iwi_scan_start;
399 	ic->ic_scan_end = iwi_scan_end;
400 	ic->ic_set_channel = iwi_set_channel;
401 	ic->ic_scan_curchan = iwi_scan_curchan;
402 	ic->ic_scan_mindwell = iwi_scan_mindwell;
403 	ic->ic_wme.wme_update = iwi_wme_update;
404 
405 	ic->ic_vap_create = iwi_vap_create;
406 	ic->ic_vap_delete = iwi_vap_delete;
407 	ic->ic_ioctl = iwi_ioctl;
408 	ic->ic_transmit = iwi_transmit;
409 	ic->ic_parent = iwi_parent;
410 	ic->ic_getradiocaps = iwi_getradiocaps;
411 
412 	ieee80211_radiotap_attach(ic,
413 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
414 		IWI_TX_RADIOTAP_PRESENT,
415 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
416 		IWI_RX_RADIOTAP_PRESENT);
417 
418 	iwi_sysctlattach(sc);
419 	iwi_ledattach(sc);
420 
421 	/*
422 	 * Hook our interrupt after all initialization is complete.
423 	 */
424 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
425 	    NULL, iwi_intr, sc, &sc->sc_ih);
426 	if (error != 0) {
427 		device_printf(dev, "could not set up interrupt\n");
428 		goto fail;
429 	}
430 
431 	if (bootverbose)
432 		ieee80211_announce(ic);
433 
434 	return 0;
435 fail:
436 	/* XXX fix */
437 	iwi_detach(dev);
438 	return ENXIO;
439 }
440 
441 static int
442 iwi_detach(device_t dev)
443 {
444 	struct iwi_softc *sc = device_get_softc(dev);
445 	struct ieee80211com *ic = &sc->sc_ic;
446 
447 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
448 
449 	/* NB: do early to drain any pending tasks */
450 	ieee80211_draintask(ic, &sc->sc_radiontask);
451 	ieee80211_draintask(ic, &sc->sc_radiofftask);
452 	ieee80211_draintask(ic, &sc->sc_restarttask);
453 	ieee80211_draintask(ic, &sc->sc_disassoctask);
454 	ieee80211_draintask(ic, &sc->sc_monitortask);
455 
456 	iwi_stop(sc);
457 
458 	ieee80211_ifdetach(ic);
459 
460 	iwi_put_firmware(sc);
461 	iwi_release_fw_dma(sc);
462 
463 	iwi_free_cmd_ring(sc, &sc->cmdq);
464 	iwi_free_tx_ring(sc, &sc->txq[0]);
465 	iwi_free_tx_ring(sc, &sc->txq[1]);
466 	iwi_free_tx_ring(sc, &sc->txq[2]);
467 	iwi_free_tx_ring(sc, &sc->txq[3]);
468 	iwi_free_rx_ring(sc, &sc->rxq);
469 
470 	bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq);
471 
472 	bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem),
473 	    sc->mem);
474 
475 	delete_unrhdr(sc->sc_unr);
476 	mbufq_drain(&sc->sc_snd);
477 
478 	IWI_LOCK_DESTROY(sc);
479 
480 	return 0;
481 }
482 
483 static struct ieee80211vap *
484 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
485     enum ieee80211_opmode opmode, int flags,
486     const uint8_t bssid[IEEE80211_ADDR_LEN],
487     const uint8_t mac[IEEE80211_ADDR_LEN])
488 {
489 	struct iwi_softc *sc = ic->ic_softc;
490 	struct iwi_vap *ivp;
491 	struct ieee80211vap *vap;
492 	int i;
493 
494 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
495 		return NULL;
496 	/*
497 	 * Get firmware image (and possibly dma memory) on mode change.
498 	 */
499 	if (iwi_get_firmware(sc, opmode))
500 		return NULL;
501 	/* allocate DMA memory for mapping firmware image */
502 	i = sc->fw_fw.size;
503 	if (sc->fw_boot.size > i)
504 		i = sc->fw_boot.size;
505 	/* XXX do we dma the ucode as well ? */
506 	if (sc->fw_uc.size > i)
507 		i = sc->fw_uc.size;
508 	if (iwi_init_fw_dma(sc, i))
509 		return NULL;
510 
511 	ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
512 	vap = &ivp->iwi_vap;
513 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
514 	/* override the default, the setting comes from the linux driver */
515 	vap->iv_bmissthreshold = 24;
516 	/* override with driver methods */
517 	ivp->iwi_newstate = vap->iv_newstate;
518 	vap->iv_newstate = iwi_newstate;
519 
520 	/* complete setup */
521 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status,
522 	    mac);
523 	ic->ic_opmode = opmode;
524 	return vap;
525 }
526 
527 static void
528 iwi_vap_delete(struct ieee80211vap *vap)
529 {
530 	struct iwi_vap *ivp = IWI_VAP(vap);
531 
532 	ieee80211_vap_detach(vap);
533 	free(ivp, M_80211_VAP);
534 }
535 
536 static void
537 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
538 {
539 	if (error != 0)
540 		return;
541 
542 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
543 
544 	*(bus_addr_t *)arg = segs[0].ds_addr;
545 }
546 
547 static int
548 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
549 {
550 	int error;
551 
552 	ring->count = count;
553 	ring->queued = 0;
554 	ring->cur = ring->next = 0;
555 
556 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
557 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
558 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
559 	    NULL, NULL, &ring->desc_dmat);
560 	if (error != 0) {
561 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
562 		goto fail;
563 	}
564 
565 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
566 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
567 	if (error != 0) {
568 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
569 		goto fail;
570 	}
571 
572 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
573 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
574 	if (error != 0) {
575 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
576 		goto fail;
577 	}
578 
579 	return 0;
580 
581 fail:	iwi_free_cmd_ring(sc, ring);
582 	return error;
583 }
584 
585 static void
586 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
587 {
588 	ring->queued = 0;
589 	ring->cur = ring->next = 0;
590 }
591 
592 static void
593 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
594 {
595 	if (ring->desc != NULL) {
596 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
597 		    BUS_DMASYNC_POSTWRITE);
598 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
599 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
600 	}
601 
602 	if (ring->desc_dmat != NULL)
603 		bus_dma_tag_destroy(ring->desc_dmat);
604 }
605 
606 static int
607 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
608     bus_addr_t csr_ridx, bus_addr_t csr_widx)
609 {
610 	int i, error;
611 
612 	ring->count = count;
613 	ring->queued = 0;
614 	ring->cur = ring->next = 0;
615 	ring->csr_ridx = csr_ridx;
616 	ring->csr_widx = csr_widx;
617 
618 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
619 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
620 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
621 	    NULL, &ring->desc_dmat);
622 	if (error != 0) {
623 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
624 		goto fail;
625 	}
626 
627 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
628 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
629 	if (error != 0) {
630 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
631 		goto fail;
632 	}
633 
634 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
635 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
636 	if (error != 0) {
637 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
638 		goto fail;
639 	}
640 
641 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
642 	    M_NOWAIT | M_ZERO);
643 	if (ring->data == NULL) {
644 		device_printf(sc->sc_dev, "could not allocate soft data\n");
645 		error = ENOMEM;
646 		goto fail;
647 	}
648 
649 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
650 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
651 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
652 	if (error != 0) {
653 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
654 		goto fail;
655 	}
656 
657 	for (i = 0; i < count; i++) {
658 		error = bus_dmamap_create(ring->data_dmat, 0,
659 		    &ring->data[i].map);
660 		if (error != 0) {
661 			device_printf(sc->sc_dev, "could not create DMA map\n");
662 			goto fail;
663 		}
664 	}
665 
666 	return 0;
667 
668 fail:	iwi_free_tx_ring(sc, ring);
669 	return error;
670 }
671 
672 static void
673 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
674 {
675 	struct iwi_tx_data *data;
676 	int i;
677 
678 	for (i = 0; i < ring->count; i++) {
679 		data = &ring->data[i];
680 
681 		if (data->m != NULL) {
682 			bus_dmamap_sync(ring->data_dmat, data->map,
683 			    BUS_DMASYNC_POSTWRITE);
684 			bus_dmamap_unload(ring->data_dmat, data->map);
685 			m_freem(data->m);
686 			data->m = NULL;
687 		}
688 
689 		if (data->ni != NULL) {
690 			ieee80211_free_node(data->ni);
691 			data->ni = NULL;
692 		}
693 	}
694 
695 	ring->queued = 0;
696 	ring->cur = ring->next = 0;
697 }
698 
699 static void
700 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
701 {
702 	struct iwi_tx_data *data;
703 	int i;
704 
705 	if (ring->desc != NULL) {
706 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
707 		    BUS_DMASYNC_POSTWRITE);
708 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
709 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
710 	}
711 
712 	if (ring->desc_dmat != NULL)
713 		bus_dma_tag_destroy(ring->desc_dmat);
714 
715 	if (ring->data != NULL) {
716 		for (i = 0; i < ring->count; i++) {
717 			data = &ring->data[i];
718 
719 			if (data->m != NULL) {
720 				bus_dmamap_sync(ring->data_dmat, data->map,
721 				    BUS_DMASYNC_POSTWRITE);
722 				bus_dmamap_unload(ring->data_dmat, data->map);
723 				m_freem(data->m);
724 			}
725 
726 			if (data->ni != NULL)
727 				ieee80211_free_node(data->ni);
728 
729 			if (data->map != NULL)
730 				bus_dmamap_destroy(ring->data_dmat, data->map);
731 		}
732 
733 		free(ring->data, M_DEVBUF);
734 	}
735 
736 	if (ring->data_dmat != NULL)
737 		bus_dma_tag_destroy(ring->data_dmat);
738 }
739 
740 static int
741 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
742 {
743 	struct iwi_rx_data *data;
744 	int i, error;
745 
746 	ring->count = count;
747 	ring->cur = 0;
748 
749 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
750 	    M_NOWAIT | M_ZERO);
751 	if (ring->data == NULL) {
752 		device_printf(sc->sc_dev, "could not allocate soft data\n");
753 		error = ENOMEM;
754 		goto fail;
755 	}
756 
757 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
758 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
759 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
760 	if (error != 0) {
761 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
762 		goto fail;
763 	}
764 
765 	for (i = 0; i < count; i++) {
766 		data = &ring->data[i];
767 
768 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
769 		if (error != 0) {
770 			device_printf(sc->sc_dev, "could not create DMA map\n");
771 			goto fail;
772 		}
773 
774 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
775 		if (data->m == NULL) {
776 			device_printf(sc->sc_dev,
777 			    "could not allocate rx mbuf\n");
778 			error = ENOMEM;
779 			goto fail;
780 		}
781 
782 		error = bus_dmamap_load(ring->data_dmat, data->map,
783 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
784 		    &data->physaddr, 0);
785 		if (error != 0) {
786 			device_printf(sc->sc_dev,
787 			    "could not load rx buf DMA map");
788 			goto fail;
789 		}
790 
791 		data->reg = IWI_CSR_RX_BASE + i * 4;
792 	}
793 
794 	return 0;
795 
796 fail:	iwi_free_rx_ring(sc, ring);
797 	return error;
798 }
799 
800 static void
801 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
802 {
803 	ring->cur = 0;
804 }
805 
806 static void
807 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
808 {
809 	struct iwi_rx_data *data;
810 	int i;
811 
812 	if (ring->data != NULL) {
813 		for (i = 0; i < ring->count; i++) {
814 			data = &ring->data[i];
815 
816 			if (data->m != NULL) {
817 				bus_dmamap_sync(ring->data_dmat, data->map,
818 				    BUS_DMASYNC_POSTREAD);
819 				bus_dmamap_unload(ring->data_dmat, data->map);
820 				m_freem(data->m);
821 			}
822 
823 			if (data->map != NULL)
824 				bus_dmamap_destroy(ring->data_dmat, data->map);
825 		}
826 
827 		free(ring->data, M_DEVBUF);
828 	}
829 
830 	if (ring->data_dmat != NULL)
831 		bus_dma_tag_destroy(ring->data_dmat);
832 }
833 
834 static int
835 iwi_shutdown(device_t dev)
836 {
837 	struct iwi_softc *sc = device_get_softc(dev);
838 
839 	iwi_stop(sc);
840 	iwi_put_firmware(sc);		/* ??? XXX */
841 
842 	return 0;
843 }
844 
845 static int
846 iwi_suspend(device_t dev)
847 {
848 	struct iwi_softc *sc = device_get_softc(dev);
849 	struct ieee80211com *ic = &sc->sc_ic;
850 
851 	ieee80211_suspend_all(ic);
852 	return 0;
853 }
854 
855 static int
856 iwi_resume(device_t dev)
857 {
858 	struct iwi_softc *sc = device_get_softc(dev);
859 	struct ieee80211com *ic = &sc->sc_ic;
860 
861 	pci_write_config(dev, 0x41, 0, 1);
862 
863 	ieee80211_resume_all(ic);
864 	return 0;
865 }
866 
867 static struct ieee80211_node *
868 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
869 {
870 	struct iwi_node *in;
871 
872 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
873 	if (in == NULL)
874 		return NULL;
875 	/* XXX assign sta table entry for adhoc */
876 	in->in_station = -1;
877 
878 	return &in->in_node;
879 }
880 
881 static void
882 iwi_node_free(struct ieee80211_node *ni)
883 {
884 	struct ieee80211com *ic = ni->ni_ic;
885 	struct iwi_softc *sc = ic->ic_softc;
886 	struct iwi_node *in = (struct iwi_node *)ni;
887 
888 	if (in->in_station != -1) {
889 		DPRINTF(("%s mac %6D station %u\n", __func__,
890 		    ni->ni_macaddr, ":", in->in_station));
891 		free_unr(sc->sc_unr, in->in_station);
892 	}
893 
894 	sc->sc_node_free(ni);
895 }
896 
897 /*
898  * Convert h/w rate code to IEEE rate code.
899  */
900 static int
901 iwi_cvtrate(int iwirate)
902 {
903 	switch (iwirate) {
904 	case IWI_RATE_DS1:	return 2;
905 	case IWI_RATE_DS2:	return 4;
906 	case IWI_RATE_DS5:	return 11;
907 	case IWI_RATE_DS11:	return 22;
908 	case IWI_RATE_OFDM6:	return 12;
909 	case IWI_RATE_OFDM9:	return 18;
910 	case IWI_RATE_OFDM12:	return 24;
911 	case IWI_RATE_OFDM18:	return 36;
912 	case IWI_RATE_OFDM24:	return 48;
913 	case IWI_RATE_OFDM36:	return 72;
914 	case IWI_RATE_OFDM48:	return 96;
915 	case IWI_RATE_OFDM54:	return 108;
916 	}
917 	return 0;
918 }
919 
920 /*
921  * The firmware automatically adapts the transmit speed.  We report its current
922  * value here.
923  */
924 static void
925 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
926 {
927 	struct ieee80211vap *vap = ifp->if_softc;
928 	struct ieee80211com *ic = vap->iv_ic;
929 	struct iwi_softc *sc = ic->ic_softc;
930 	struct ieee80211_node *ni;
931 
932 	/* read current transmission rate from adapter */
933 	ni = ieee80211_ref_node(vap->iv_bss);
934 	ni->ni_txrate =
935 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
936 	ieee80211_free_node(ni);
937 	ieee80211_media_status(ifp, imr);
938 }
939 
940 static int
941 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
942 {
943 	struct iwi_vap *ivp = IWI_VAP(vap);
944 	struct ieee80211com *ic = vap->iv_ic;
945 	struct iwi_softc *sc = ic->ic_softc;
946 	IWI_LOCK_DECL;
947 
948 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
949 		ieee80211_state_name[vap->iv_state],
950 		ieee80211_state_name[nstate], sc->flags));
951 
952 	IEEE80211_UNLOCK(ic);
953 	IWI_LOCK(sc);
954 	switch (nstate) {
955 	case IEEE80211_S_INIT:
956 		/*
957 		 * NB: don't try to do this if iwi_stop_master has
958 		 *     shutdown the firmware and disabled interrupts.
959 		 */
960 		if (vap->iv_state == IEEE80211_S_RUN &&
961 		    (sc->flags & IWI_FLAG_FW_INITED))
962 			iwi_disassociate(sc, 0);
963 		break;
964 	case IEEE80211_S_AUTH:
965 		iwi_auth_and_assoc(sc, vap);
966 		break;
967 	case IEEE80211_S_RUN:
968 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
969 		    vap->iv_state == IEEE80211_S_SCAN) {
970 			/*
971 			 * XXX when joining an ibss network we are called
972 			 * with a SCAN -> RUN transition on scan complete.
973 			 * Use that to call iwi_auth_and_assoc.  On completing
974 			 * the join we are then called again with an
975 			 * AUTH -> RUN transition and we want to do nothing.
976 			 * This is all totally bogus and needs to be redone.
977 			 */
978 			iwi_auth_and_assoc(sc, vap);
979 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
980 			ieee80211_runtask(ic, &sc->sc_monitortask);
981 		break;
982 	case IEEE80211_S_ASSOC:
983 		/*
984 		 * If we are transitioning from AUTH then just wait
985 		 * for the ASSOC status to come back from the firmware.
986 		 * Otherwise we need to issue the association request.
987 		 */
988 		if (vap->iv_state == IEEE80211_S_AUTH)
989 			break;
990 		iwi_auth_and_assoc(sc, vap);
991 		break;
992 	default:
993 		break;
994 	}
995 	IWI_UNLOCK(sc);
996 	IEEE80211_LOCK(ic);
997 	return ivp->iwi_newstate(vap, nstate, arg);
998 }
999 
1000 /*
1001  * WME parameters coming from IEEE 802.11e specification.  These values are
1002  * already declared in ieee80211_proto.c, but they are static so they can't
1003  * be reused here.
1004  */
1005 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1006 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1007 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1008 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1009 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1010 };
1011 
1012 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1013 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1014 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1015 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1016 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1017 };
1018 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1019 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1020 
1021 static void
1022 iwi_wme_init(struct iwi_softc *sc)
1023 {
1024 	const struct wmeParams *wmep;
1025 	int ac;
1026 
1027 	memset(sc->wme, 0, sizeof sc->wme);
1028 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1029 		/* set WME values for CCK modulation */
1030 		wmep = &iwi_wme_cck_params[ac];
1031 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1032 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1033 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1034 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1035 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1036 
1037 		/* set WME values for OFDM modulation */
1038 		wmep = &iwi_wme_ofdm_params[ac];
1039 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1040 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1041 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1042 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1043 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1044 	}
1045 }
1046 
1047 static int
1048 iwi_wme_setparams(struct iwi_softc *sc)
1049 {
1050 	struct ieee80211com *ic = &sc->sc_ic;
1051 	struct chanAccParams chp;
1052 	const struct wmeParams *wmep;
1053 	int ac;
1054 
1055 	ieee80211_wme_ic_getparams(ic, &chp);
1056 
1057 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1058 		/* set WME values for current operating mode */
1059 		wmep = &chp.cap_wmeParams[ac];
1060 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1061 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1062 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1063 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1064 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1065 	}
1066 
1067 	DPRINTF(("Setting WME parameters\n"));
1068 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1069 }
1070 #undef IWI_USEC
1071 #undef IWI_EXP2
1072 
1073 static int
1074 iwi_wme_update(struct ieee80211com *ic)
1075 {
1076 	struct iwi_softc *sc = ic->ic_softc;
1077 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1078 	IWI_LOCK_DECL;
1079 
1080 	/*
1081 	 * We may be called to update the WME parameters in
1082 	 * the adapter at various places.  If we're already
1083 	 * associated then initiate the request immediately;
1084 	 * otherwise we assume the params will get sent down
1085 	 * to the adapter as part of the work iwi_auth_and_assoc
1086 	 * does.
1087 	 */
1088 	if (vap->iv_state == IEEE80211_S_RUN) {
1089 		IWI_LOCK(sc);
1090 		iwi_wme_setparams(sc);
1091 		IWI_UNLOCK(sc);
1092 	}
1093 	return (0);
1094 }
1095 
1096 static int
1097 iwi_wme_setie(struct iwi_softc *sc)
1098 {
1099 	struct ieee80211_wme_info wme;
1100 
1101 	memset(&wme, 0, sizeof wme);
1102 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1103 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1104 	wme.wme_oui[0] = 0x00;
1105 	wme.wme_oui[1] = 0x50;
1106 	wme.wme_oui[2] = 0xf2;
1107 	wme.wme_type = WME_OUI_TYPE;
1108 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1109 	wme.wme_version = WME_VERSION;
1110 	wme.wme_info = 0;
1111 
1112 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1113 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1114 }
1115 
1116 /*
1117  * Read 16 bits at address 'addr' from the serial EEPROM.
1118  */
1119 static uint16_t
1120 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1121 {
1122 	uint32_t tmp;
1123 	uint16_t val;
1124 	int n;
1125 
1126 	/* clock C once before the first command */
1127 	IWI_EEPROM_CTL(sc, 0);
1128 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1129 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1130 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1131 
1132 	/* write start bit (1) */
1133 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1134 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1135 
1136 	/* write READ opcode (10) */
1137 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1138 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1139 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1140 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1141 
1142 	/* write address A7-A0 */
1143 	for (n = 7; n >= 0; n--) {
1144 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1145 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1146 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1147 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1148 	}
1149 
1150 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1151 
1152 	/* read data Q15-Q0 */
1153 	val = 0;
1154 	for (n = 15; n >= 0; n--) {
1155 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1156 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1157 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1158 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1159 	}
1160 
1161 	IWI_EEPROM_CTL(sc, 0);
1162 
1163 	/* clear Chip Select and clock C */
1164 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1165 	IWI_EEPROM_CTL(sc, 0);
1166 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1167 
1168 	return val;
1169 }
1170 
1171 static void
1172 iwi_setcurchan(struct iwi_softc *sc, int chan)
1173 {
1174 	struct ieee80211com *ic = &sc->sc_ic;
1175 
1176 	sc->curchan = chan;
1177 	ieee80211_radiotap_chan_change(ic);
1178 }
1179 
1180 static void
1181 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1182     struct iwi_frame *frame)
1183 {
1184 	struct epoch_tracker et;
1185 	struct ieee80211com *ic = &sc->sc_ic;
1186 	struct mbuf *mnew, *m;
1187 	struct ieee80211_node *ni;
1188 	int type, error, framelen;
1189 	int8_t rssi, nf;
1190 	IWI_LOCK_DECL;
1191 
1192 	framelen = le16toh(frame->len);
1193 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1194 		/*
1195 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1196 		 *     out of bounds; need to figure out how to limit
1197 		 *     frame size in the firmware
1198 		 */
1199 		/* XXX stat */
1200 		DPRINTFN(1,
1201 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1202 		    le16toh(frame->len), frame->chan, frame->rssi,
1203 		    frame->rssi_dbm));
1204 		return;
1205 	}
1206 
1207 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1208 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1209 
1210 	if (frame->chan != sc->curchan)
1211 		iwi_setcurchan(sc, frame->chan);
1212 
1213 	/*
1214 	 * Try to allocate a new mbuf for this ring element and load it before
1215 	 * processing the current mbuf. If the ring element cannot be loaded,
1216 	 * drop the received packet and reuse the old mbuf. In the unlikely
1217 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1218 	 */
1219 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1220 	if (mnew == NULL) {
1221 		counter_u64_add(ic->ic_ierrors, 1);
1222 		return;
1223 	}
1224 
1225 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1226 
1227 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1228 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1229 	    0);
1230 	if (error != 0) {
1231 		m_freem(mnew);
1232 
1233 		/* try to reload the old mbuf */
1234 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1235 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1236 		    &data->physaddr, 0);
1237 		if (error != 0) {
1238 			/* very unlikely that it will fail... */
1239 			panic("%s: could not load old rx mbuf",
1240 			    device_get_name(sc->sc_dev));
1241 		}
1242 		counter_u64_add(ic->ic_ierrors, 1);
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * New mbuf successfully loaded, update Rx ring and continue
1248 	 * processing.
1249 	 */
1250 	m = data->m;
1251 	data->m = mnew;
1252 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1253 
1254 	/* finalize mbuf */
1255 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1256 	    sizeof (struct iwi_frame) + framelen;
1257 
1258 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1259 
1260 	rssi = frame->rssi_dbm;
1261 	nf = -95;
1262 	if (ieee80211_radiotap_active(ic)) {
1263 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1264 
1265 		tap->wr_flags = 0;
1266 		tap->wr_antsignal = rssi;
1267 		tap->wr_antnoise = nf;
1268 		tap->wr_rate = iwi_cvtrate(frame->rate);
1269 		tap->wr_antenna = frame->antenna;
1270 	}
1271 	IWI_UNLOCK(sc);
1272 
1273 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1274 	NET_EPOCH_ENTER(et);
1275 	if (ni != NULL) {
1276 		type = ieee80211_input(ni, m, rssi, nf);
1277 		ieee80211_free_node(ni);
1278 	} else
1279 		type = ieee80211_input_all(ic, m, rssi, nf);
1280 	NET_EPOCH_EXIT(et);
1281 
1282 	IWI_LOCK(sc);
1283 	if (sc->sc_softled) {
1284 		/*
1285 		 * Blink for any data frame.  Otherwise do a
1286 		 * heartbeat-style blink when idle.  The latter
1287 		 * is mainly for station mode where we depend on
1288 		 * periodic beacon frames to trigger the poll event.
1289 		 */
1290 		if (type == IEEE80211_FC0_TYPE_DATA) {
1291 			sc->sc_rxrate = frame->rate;
1292 			iwi_led_event(sc, IWI_LED_RX);
1293 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1294 			iwi_led_event(sc, IWI_LED_POLL);
1295 	}
1296 }
1297 
1298 /*
1299  * Check for an association response frame to see if QoS
1300  * has been negotiated.  We parse just enough to figure
1301  * out if we're supposed to use QoS.  The proper solution
1302  * is to pass the frame up so ieee80211_input can do the
1303  * work but that's made hard by how things currently are
1304  * done in the driver.
1305  */
1306 static void
1307 iwi_checkforqos(struct ieee80211vap *vap,
1308 	const struct ieee80211_frame *wh, int len)
1309 {
1310 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1311 	const uint8_t *frm, *efrm, *wme;
1312 	struct ieee80211_node *ni;
1313 	uint16_t capinfo, status, associd;
1314 
1315 	/* NB: +8 for capinfo, status, associd, and first ie */
1316 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1317 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1318 		return;
1319 	/*
1320 	 * asresp frame format
1321 	 *	[2] capability information
1322 	 *	[2] status
1323 	 *	[2] association ID
1324 	 *	[tlv] supported rates
1325 	 *	[tlv] extended supported rates
1326 	 *	[tlv] WME
1327 	 */
1328 	frm = (const uint8_t *)&wh[1];
1329 	efrm = ((const uint8_t *) wh) + len;
1330 
1331 	capinfo = le16toh(*(const uint16_t *)frm);
1332 	frm += 2;
1333 	status = le16toh(*(const uint16_t *)frm);
1334 	frm += 2;
1335 	associd = le16toh(*(const uint16_t *)frm);
1336 	frm += 2;
1337 
1338 	wme = NULL;
1339 	while (efrm - frm > 1) {
1340 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1341 		switch (*frm) {
1342 		case IEEE80211_ELEMID_VENDOR:
1343 			if (iswmeoui(frm))
1344 				wme = frm;
1345 			break;
1346 		}
1347 		frm += frm[1] + 2;
1348 	}
1349 
1350 	ni = ieee80211_ref_node(vap->iv_bss);
1351 	ni->ni_capinfo = capinfo;
1352 	ni->ni_associd = associd & 0x3fff;
1353 	if (wme != NULL)
1354 		ni->ni_flags |= IEEE80211_NODE_QOS;
1355 	else
1356 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1357 	ieee80211_free_node(ni);
1358 #undef SUBTYPE
1359 }
1360 
1361 static void
1362 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif)
1363 {
1364 	struct iwi_notif_link_quality *lq;
1365 	int len;
1366 
1367 	len = le16toh(notif->len);
1368 
1369 	DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n",
1370 	    notif->type,
1371 	    len,
1372 	    sizeof(struct iwi_notif_link_quality)
1373 	    ));
1374 
1375 	/* enforce length */
1376 	if (len != sizeof(struct iwi_notif_link_quality)) {
1377 		DPRINTFN(5, ("Notification: (%u) too short (%d)\n",
1378 		    notif->type,
1379 		    len));
1380 		return;
1381 	}
1382 
1383 	lq = (struct iwi_notif_link_quality *)(notif + 1);
1384 	memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual));
1385 	sc->sc_linkqual_valid = 1;
1386 }
1387 
1388 /*
1389  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1390  */
1391 
1392 static void
1393 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1394 {
1395 	struct ieee80211com *ic = &sc->sc_ic;
1396 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1397 	struct iwi_notif_scan_channel *chan;
1398 	struct iwi_notif_scan_complete *scan;
1399 	struct iwi_notif_authentication *auth;
1400 	struct iwi_notif_association *assoc;
1401 	struct iwi_notif_beacon_state *beacon;
1402 
1403 	switch (notif->type) {
1404 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1405 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1406 
1407 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1408 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1409 
1410 		/* Reset the timer, the scan is still going */
1411 		sc->sc_state_timer = 3;
1412 		break;
1413 
1414 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1415 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1416 
1417 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1418 		    scan->status));
1419 
1420 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1421 
1422 		/*
1423 		 * Monitor mode works by doing a passive scan to set
1424 		 * the channel and enable rx.  Because we don't want
1425 		 * to abort a scan lest the firmware crash we scan
1426 		 * for a short period of time and automatically restart
1427 		 * the scan when notified the sweep has completed.
1428 		 */
1429 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1430 			ieee80211_runtask(ic, &sc->sc_monitortask);
1431 			break;
1432 		}
1433 
1434 		if (scan->status == IWI_SCAN_COMPLETED) {
1435 			/* NB: don't need to defer, net80211 does it for us */
1436 			ieee80211_scan_next(vap);
1437 		}
1438 		break;
1439 
1440 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1441 		auth = (struct iwi_notif_authentication *)(notif + 1);
1442 		switch (auth->state) {
1443 		case IWI_AUTH_SUCCESS:
1444 			DPRINTFN(2, ("Authentication succeeeded\n"));
1445 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1446 			break;
1447 		case IWI_AUTH_FAIL:
1448 			/*
1449 			 * These are delivered as an unsolicited deauth
1450 			 * (e.g. due to inactivity) or in response to an
1451 			 * associate request.
1452 			 */
1453 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1454 			if (vap->iv_state != IEEE80211_S_RUN) {
1455 				DPRINTFN(2, ("Authentication failed\n"));
1456 				vap->iv_stats.is_rx_auth_fail++;
1457 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1458 			} else {
1459 				DPRINTFN(2, ("Deauthenticated\n"));
1460 				vap->iv_stats.is_rx_deauth++;
1461 			}
1462 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1463 			break;
1464 		case IWI_AUTH_SENT_1:
1465 		case IWI_AUTH_RECV_2:
1466 		case IWI_AUTH_SEQ1_PASS:
1467 			break;
1468 		case IWI_AUTH_SEQ1_FAIL:
1469 			DPRINTFN(2, ("Initial authentication handshake failed; "
1470 				"you probably need shared key\n"));
1471 			vap->iv_stats.is_rx_auth_fail++;
1472 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1473 			/* XXX retry shared key when in auto */
1474 			break;
1475 		default:
1476 			device_printf(sc->sc_dev,
1477 			    "unknown authentication state %u\n", auth->state);
1478 			break;
1479 		}
1480 		break;
1481 
1482 	case IWI_NOTIF_TYPE_ASSOCIATION:
1483 		assoc = (struct iwi_notif_association *)(notif + 1);
1484 		switch (assoc->state) {
1485 		case IWI_AUTH_SUCCESS:
1486 			/* re-association, do nothing */
1487 			break;
1488 		case IWI_ASSOC_SUCCESS:
1489 			DPRINTFN(2, ("Association succeeded\n"));
1490 			sc->flags |= IWI_FLAG_ASSOCIATED;
1491 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1492 			iwi_checkforqos(vap,
1493 			    (const struct ieee80211_frame *)(assoc+1),
1494 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1495 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1496 			break;
1497 		case IWI_ASSOC_INIT:
1498 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1499 			switch (sc->fw_state) {
1500 			case IWI_FW_ASSOCIATING:
1501 				DPRINTFN(2, ("Association failed\n"));
1502 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1503 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1504 				break;
1505 
1506 			case IWI_FW_DISASSOCIATING:
1507 				DPRINTFN(2, ("Dissassociated\n"));
1508 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1509 				vap->iv_stats.is_rx_disassoc++;
1510 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1511 				break;
1512 			}
1513 			break;
1514 		default:
1515 			device_printf(sc->sc_dev,
1516 			    "unknown association state %u\n", assoc->state);
1517 			break;
1518 		}
1519 		break;
1520 
1521 	case IWI_NOTIF_TYPE_BEACON:
1522 		/* XXX check struct length */
1523 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1524 
1525 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1526 		    beacon->state, le32toh(beacon->number)));
1527 
1528 		if (beacon->state == IWI_BEACON_MISS) {
1529 			/*
1530 			 * The firmware notifies us of every beacon miss
1531 			 * so we need to track the count against the
1532 			 * configured threshold before notifying the
1533 			 * 802.11 layer.
1534 			 * XXX try to roam, drop assoc only on much higher count
1535 			 */
1536 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1537 				DPRINTF(("Beacon miss: %u >= %u\n",
1538 				    le32toh(beacon->number),
1539 				    vap->iv_bmissthreshold));
1540 				vap->iv_stats.is_beacon_miss++;
1541 				/*
1542 				 * It's pointless to notify the 802.11 layer
1543 				 * as it'll try to send a probe request (which
1544 				 * we'll discard) and then timeout and drop us
1545 				 * into scan state.  Instead tell the firmware
1546 				 * to disassociate and then on completion we'll
1547 				 * kick the state machine to scan.
1548 				 */
1549 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1550 			}
1551 		}
1552 		break;
1553 
1554 	case IWI_NOTIF_TYPE_CALIBRATION:
1555 	case IWI_NOTIF_TYPE_NOISE:
1556 		/* XXX handle? */
1557 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1558 		break;
1559 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1560 		iwi_notif_link_quality(sc, notif);
1561 		break;
1562 
1563 	default:
1564 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1565 		    notif->type, notif->flags, le16toh(notif->len)));
1566 		break;
1567 	}
1568 }
1569 
1570 static void
1571 iwi_rx_intr(struct iwi_softc *sc)
1572 {
1573 	struct iwi_rx_data *data;
1574 	struct iwi_hdr *hdr;
1575 	uint32_t hw;
1576 
1577 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1578 
1579 	for (; sc->rxq.cur != hw;) {
1580 		data = &sc->rxq.data[sc->rxq.cur];
1581 
1582 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1583 		    BUS_DMASYNC_POSTREAD);
1584 
1585 		hdr = mtod(data->m, struct iwi_hdr *);
1586 
1587 		switch (hdr->type) {
1588 		case IWI_HDR_TYPE_FRAME:
1589 			iwi_frame_intr(sc, data, sc->rxq.cur,
1590 			    (struct iwi_frame *)(hdr + 1));
1591 			break;
1592 
1593 		case IWI_HDR_TYPE_NOTIF:
1594 			iwi_notification_intr(sc,
1595 			    (struct iwi_notif *)(hdr + 1));
1596 			break;
1597 
1598 		default:
1599 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1600 			    hdr->type);
1601 		}
1602 
1603 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1604 
1605 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1606 	}
1607 
1608 	/* tell the firmware what we have processed */
1609 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1610 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1611 }
1612 
1613 static void
1614 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1615 {
1616 	struct iwi_tx_data *data;
1617 	uint32_t hw;
1618 
1619 	hw = CSR_READ_4(sc, txq->csr_ridx);
1620 
1621 	while (txq->next != hw) {
1622 		data = &txq->data[txq->next];
1623 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1624 		bus_dmamap_sync(txq->data_dmat, data->map,
1625 		    BUS_DMASYNC_POSTWRITE);
1626 		bus_dmamap_unload(txq->data_dmat, data->map);
1627 		ieee80211_tx_complete(data->ni, data->m, 0);
1628 		data->ni = NULL;
1629 		data->m = NULL;
1630 		txq->queued--;
1631 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1632 	}
1633 	sc->sc_tx_timer = 0;
1634 	if (sc->sc_softled)
1635 		iwi_led_event(sc, IWI_LED_TX);
1636 	iwi_start(sc);
1637 }
1638 
1639 static void
1640 iwi_fatal_error_intr(struct iwi_softc *sc)
1641 {
1642 	struct ieee80211com *ic = &sc->sc_ic;
1643 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1644 
1645 	device_printf(sc->sc_dev, "firmware error\n");
1646 	if (vap != NULL)
1647 		ieee80211_cancel_scan(vap);
1648 	ieee80211_runtask(ic, &sc->sc_restarttask);
1649 
1650 	sc->flags &= ~IWI_FLAG_BUSY;
1651 	sc->sc_busy_timer = 0;
1652 	wakeup(sc);
1653 }
1654 
1655 static void
1656 iwi_radio_off_intr(struct iwi_softc *sc)
1657 {
1658 
1659 	ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask);
1660 }
1661 
1662 static void
1663 iwi_intr(void *arg)
1664 {
1665 	struct iwi_softc *sc = arg;
1666 	uint32_t r;
1667 	IWI_LOCK_DECL;
1668 
1669 	IWI_LOCK(sc);
1670 
1671 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1672 		IWI_UNLOCK(sc);
1673 		return;
1674 	}
1675 
1676 	/* acknowledge interrupts */
1677 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1678 
1679 	if (r & IWI_INTR_FATAL_ERROR) {
1680 		iwi_fatal_error_intr(sc);
1681 		goto done;
1682 	}
1683 
1684 	if (r & IWI_INTR_FW_INITED) {
1685 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1686 			wakeup(sc);
1687 	}
1688 
1689 	if (r & IWI_INTR_RADIO_OFF)
1690 		iwi_radio_off_intr(sc);
1691 
1692 	if (r & IWI_INTR_CMD_DONE) {
1693 		sc->flags &= ~IWI_FLAG_BUSY;
1694 		sc->sc_busy_timer = 0;
1695 		wakeup(sc);
1696 	}
1697 
1698 	if (r & IWI_INTR_TX1_DONE)
1699 		iwi_tx_intr(sc, &sc->txq[0]);
1700 
1701 	if (r & IWI_INTR_TX2_DONE)
1702 		iwi_tx_intr(sc, &sc->txq[1]);
1703 
1704 	if (r & IWI_INTR_TX3_DONE)
1705 		iwi_tx_intr(sc, &sc->txq[2]);
1706 
1707 	if (r & IWI_INTR_TX4_DONE)
1708 		iwi_tx_intr(sc, &sc->txq[3]);
1709 
1710 	if (r & IWI_INTR_RX_DONE)
1711 		iwi_rx_intr(sc);
1712 
1713 	if (r & IWI_INTR_PARITY_ERROR) {
1714 		/* XXX rate-limit */
1715 		device_printf(sc->sc_dev, "parity error\n");
1716 	}
1717 done:
1718 	IWI_UNLOCK(sc);
1719 }
1720 
1721 static int
1722 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1723 {
1724 	struct iwi_cmd_desc *desc;
1725 
1726 	IWI_LOCK_ASSERT(sc);
1727 
1728 	if (sc->flags & IWI_FLAG_BUSY) {
1729 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1730 			__func__, type);
1731 		return EAGAIN;
1732 	}
1733 	sc->flags |= IWI_FLAG_BUSY;
1734 	sc->sc_busy_timer = 2;
1735 
1736 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1737 
1738 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1739 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1740 	desc->type = type;
1741 	desc->len = len;
1742 	memcpy(desc->data, data, len);
1743 
1744 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1745 	    BUS_DMASYNC_PREWRITE);
1746 
1747 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1748 	    type, len));
1749 
1750 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1751 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1752 
1753 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1754 }
1755 
1756 static void
1757 iwi_write_ibssnode(struct iwi_softc *sc,
1758 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1759 {
1760 	struct iwi_ibssnode node;
1761 
1762 	/* write node information into NIC memory */
1763 	memset(&node, 0, sizeof node);
1764 	IEEE80211_ADDR_COPY(node.bssid, addr);
1765 
1766 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1767 
1768 	CSR_WRITE_REGION_1(sc,
1769 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1770 	    (uint8_t *)&node, sizeof node);
1771 }
1772 
1773 static int
1774 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1775     int ac)
1776 {
1777 	struct ieee80211vap *vap = ni->ni_vap;
1778 	struct iwi_node *in = (struct iwi_node *)ni;
1779 	const struct ieee80211_frame *wh;
1780 	struct ieee80211_key *k;
1781 	struct iwi_tx_ring *txq = &sc->txq[ac];
1782 	struct iwi_tx_data *data;
1783 	struct iwi_tx_desc *desc;
1784 	struct mbuf *mnew;
1785 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1786 	int error, nsegs, hdrlen, i;
1787 	int ismcast, flags, xflags, staid;
1788 
1789 	IWI_LOCK_ASSERT(sc);
1790 	wh = mtod(m0, const struct ieee80211_frame *);
1791 	/* NB: only data frames use this path */
1792 	hdrlen = ieee80211_hdrsize(wh);
1793 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1794 	flags = xflags = 0;
1795 
1796 	if (!ismcast)
1797 		flags |= IWI_DATA_FLAG_NEED_ACK;
1798 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1799 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1800 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1801 		xflags |= IWI_DATA_XFLAG_QOS;
1802 		if (ieee80211_wme_vap_ac_is_noack(vap, ac))
1803 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1804 	}
1805 
1806 	/*
1807 	 * This is only used in IBSS mode where the firmware expect an index
1808 	 * in a h/w table instead of a destination address.
1809 	 */
1810 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1811 		if (!ismcast) {
1812 			if (in->in_station == -1) {
1813 				in->in_station = alloc_unr(sc->sc_unr);
1814 				if (in->in_station == -1) {
1815 					/* h/w table is full */
1816 					if_inc_counter(ni->ni_vap->iv_ifp,
1817 					    IFCOUNTER_OERRORS, 1);
1818 					m_freem(m0);
1819 					ieee80211_free_node(ni);
1820 					return 0;
1821 				}
1822 				iwi_write_ibssnode(sc,
1823 					ni->ni_macaddr, in->in_station);
1824 			}
1825 			staid = in->in_station;
1826 		} else {
1827 			/*
1828 			 * Multicast addresses have no associated node
1829 			 * so there will be no station entry.  We reserve
1830 			 * entry 0 for one mcast address and use that.
1831 			 * If there are many being used this will be
1832 			 * expensive and we'll need to do a better job
1833 			 * but for now this handles the broadcast case.
1834 			 */
1835 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1836 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1837 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1838 			}
1839 			staid = 0;
1840 		}
1841 	} else
1842 		staid = 0;
1843 
1844 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1845 		k = ieee80211_crypto_encap(ni, m0);
1846 		if (k == NULL) {
1847 			m_freem(m0);
1848 			return ENOBUFS;
1849 		}
1850 
1851 		/* packet header may have moved, reset our local pointer */
1852 		wh = mtod(m0, struct ieee80211_frame *);
1853 	}
1854 
1855 	if (ieee80211_radiotap_active_vap(vap)) {
1856 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1857 
1858 		tap->wt_flags = 0;
1859 
1860 		ieee80211_radiotap_tx(vap, m0);
1861 	}
1862 
1863 	data = &txq->data[txq->cur];
1864 	desc = &txq->desc[txq->cur];
1865 
1866 	/* save and trim IEEE802.11 header */
1867 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1868 	m_adj(m0, hdrlen);
1869 
1870 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1871 	    &nsegs, 0);
1872 	if (error != 0 && error != EFBIG) {
1873 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1874 		    error);
1875 		m_freem(m0);
1876 		return error;
1877 	}
1878 	if (error != 0) {
1879 		mnew = m_defrag(m0, M_NOWAIT);
1880 		if (mnew == NULL) {
1881 			device_printf(sc->sc_dev,
1882 			    "could not defragment mbuf\n");
1883 			m_freem(m0);
1884 			return ENOBUFS;
1885 		}
1886 		m0 = mnew;
1887 
1888 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1889 		    m0, segs, &nsegs, 0);
1890 		if (error != 0) {
1891 			device_printf(sc->sc_dev,
1892 			    "could not map mbuf (error %d)\n", error);
1893 			m_freem(m0);
1894 			return error;
1895 		}
1896 	}
1897 
1898 	data->m = m0;
1899 	data->ni = ni;
1900 
1901 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1902 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1903 	desc->station = staid;
1904 	desc->cmd = IWI_DATA_CMD_TX;
1905 	desc->len = htole16(m0->m_pkthdr.len);
1906 	desc->flags = flags;
1907 	desc->xflags = xflags;
1908 
1909 #if 0
1910 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1911 		desc->wep_txkey = vap->iv_def_txkey;
1912 	else
1913 #endif
1914 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1915 
1916 	desc->nseg = htole32(nsegs);
1917 	for (i = 0; i < nsegs; i++) {
1918 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1919 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1920 	}
1921 
1922 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1923 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1924 
1925 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1926 	    ac, txq->cur, le16toh(desc->len), nsegs));
1927 
1928 	txq->queued++;
1929 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1930 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1931 
1932 	return 0;
1933 }
1934 
1935 static int
1936 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1937 	const struct ieee80211_bpf_params *params)
1938 {
1939 	/* no support; just discard */
1940 	m_freem(m);
1941 	ieee80211_free_node(ni);
1942 	return 0;
1943 }
1944 
1945 static int
1946 iwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1947 {
1948 	struct iwi_softc *sc = ic->ic_softc;
1949 	int error;
1950 	IWI_LOCK_DECL;
1951 
1952 	IWI_LOCK(sc);
1953 	if (!sc->sc_running) {
1954 		IWI_UNLOCK(sc);
1955 		return (ENXIO);
1956 	}
1957 	error = mbufq_enqueue(&sc->sc_snd, m);
1958 	if (error) {
1959 		IWI_UNLOCK(sc);
1960 		return (error);
1961 	}
1962 	iwi_start(sc);
1963 	IWI_UNLOCK(sc);
1964 	return (0);
1965 }
1966 
1967 static void
1968 iwi_start(struct iwi_softc *sc)
1969 {
1970 	struct mbuf *m;
1971 	struct ieee80211_node *ni;
1972 	int ac;
1973 
1974 	IWI_LOCK_ASSERT(sc);
1975 
1976 	while ((m =  mbufq_dequeue(&sc->sc_snd)) != NULL) {
1977 		ac = M_WME_GETAC(m);
1978 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1979 			/* there is no place left in this ring; tail drop */
1980 			/* XXX tail drop */
1981 			mbufq_prepend(&sc->sc_snd, m);
1982 			break;
1983 		}
1984 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1985 		if (iwi_tx_start(sc, m, ni, ac) != 0) {
1986 			if_inc_counter(ni->ni_vap->iv_ifp,
1987 			    IFCOUNTER_OERRORS, 1);
1988 			ieee80211_free_node(ni);
1989 			break;
1990 		}
1991 		sc->sc_tx_timer = 5;
1992 	}
1993 }
1994 
1995 static void
1996 iwi_watchdog(void *arg)
1997 {
1998 	struct iwi_softc *sc = arg;
1999 	struct ieee80211com *ic = &sc->sc_ic;
2000 
2001 	IWI_LOCK_ASSERT(sc);
2002 
2003 	if (sc->sc_tx_timer > 0) {
2004 		if (--sc->sc_tx_timer == 0) {
2005 			device_printf(sc->sc_dev, "device timeout\n");
2006 			counter_u64_add(ic->ic_oerrors, 1);
2007 			ieee80211_runtask(ic, &sc->sc_restarttask);
2008 		}
2009 	}
2010 	if (sc->sc_state_timer > 0) {
2011 		if (--sc->sc_state_timer == 0) {
2012 			device_printf(sc->sc_dev,
2013 			    "firmware stuck in state %d, resetting\n",
2014 			    sc->fw_state);
2015 			if (sc->fw_state == IWI_FW_SCANNING)
2016 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2017 			ieee80211_runtask(ic, &sc->sc_restarttask);
2018 			sc->sc_state_timer = 3;
2019 		}
2020 	}
2021 	if (sc->sc_busy_timer > 0) {
2022 		if (--sc->sc_busy_timer == 0) {
2023 			device_printf(sc->sc_dev,
2024 			    "firmware command timeout, resetting\n");
2025 			ieee80211_runtask(ic, &sc->sc_restarttask);
2026 		}
2027 	}
2028 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2029 }
2030 
2031 static void
2032 iwi_parent(struct ieee80211com *ic)
2033 {
2034 	struct iwi_softc *sc = ic->ic_softc;
2035 	int startall = 0;
2036 	IWI_LOCK_DECL;
2037 
2038 	IWI_LOCK(sc);
2039 	if (ic->ic_nrunning > 0) {
2040 		if (!sc->sc_running) {
2041 			iwi_init_locked(sc);
2042 			startall = 1;
2043 		}
2044 	} else if (sc->sc_running)
2045 		iwi_stop_locked(sc);
2046 	IWI_UNLOCK(sc);
2047 	if (startall)
2048 		ieee80211_start_all(ic);
2049 }
2050 
2051 static int
2052 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
2053 {
2054 	struct ifreq *ifr = data;
2055 	struct iwi_softc *sc = ic->ic_softc;
2056 	int error;
2057 	IWI_LOCK_DECL;
2058 
2059 	IWI_LOCK(sc);
2060 	switch (cmd) {
2061 	case SIOCGIWISTATS:
2062 		/* XXX validate permissions/memory/etc? */
2063 		error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr),
2064 		    sizeof(struct iwi_notif_link_quality));
2065 		break;
2066 	case SIOCZIWISTATS:
2067 		memset(&sc->sc_linkqual, 0,
2068 		    sizeof(struct iwi_notif_link_quality));
2069 		error = 0;
2070 		break;
2071 	default:
2072 		error = ENOTTY;
2073 		break;
2074 	}
2075 	IWI_UNLOCK(sc);
2076 
2077 	return (error);
2078 }
2079 
2080 static void
2081 iwi_stop_master(struct iwi_softc *sc)
2082 {
2083 	uint32_t tmp;
2084 	int ntries;
2085 
2086 	/* disable interrupts */
2087 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2088 
2089 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2090 	for (ntries = 0; ntries < 5; ntries++) {
2091 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2092 			break;
2093 		DELAY(10);
2094 	}
2095 	if (ntries == 5)
2096 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2097 
2098 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2099 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2100 
2101 	sc->flags &= ~IWI_FLAG_FW_INITED;
2102 }
2103 
2104 static int
2105 iwi_reset(struct iwi_softc *sc)
2106 {
2107 	uint32_t tmp;
2108 	int i, ntries;
2109 
2110 	iwi_stop_master(sc);
2111 
2112 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2113 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2114 
2115 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2116 
2117 	/* wait for clock stabilization */
2118 	for (ntries = 0; ntries < 1000; ntries++) {
2119 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2120 			break;
2121 		DELAY(200);
2122 	}
2123 	if (ntries == 1000) {
2124 		device_printf(sc->sc_dev,
2125 		    "timeout waiting for clock stabilization\n");
2126 		return EIO;
2127 	}
2128 
2129 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2130 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2131 
2132 	DELAY(10);
2133 
2134 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2135 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2136 
2137 	/* clear NIC memory */
2138 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2139 	for (i = 0; i < 0xc000; i++)
2140 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2141 
2142 	return 0;
2143 }
2144 
2145 static const struct iwi_firmware_ohdr *
2146 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2147 {
2148 	const struct firmware *fp = fw->fp;
2149 	const struct iwi_firmware_ohdr *hdr;
2150 
2151 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2152 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2153 		return NULL;
2154 	}
2155 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2156 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2157 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2158 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2159 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2160 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2161 		    IWI_FW_REQ_MINOR);
2162 		return NULL;
2163 	}
2164 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2165 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2166 	fw->name = fp->name;
2167 	return hdr;
2168 }
2169 
2170 static const struct iwi_firmware_ohdr *
2171 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2172 {
2173 	const struct iwi_firmware_ohdr *hdr;
2174 
2175 	hdr = iwi_setup_ofw(sc, fw);
2176 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2177 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2178 		    fw->name);
2179 		hdr = NULL;
2180 	}
2181 	return hdr;
2182 }
2183 
2184 static void
2185 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2186 	  struct iwi_fw *uc, const char *ucname)
2187 {
2188 	if (fw->fp == NULL)
2189 		fw->fp = firmware_get(fwname);
2190 	/* NB: pre-3.0 ucode is packaged separately */
2191 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2192 		uc->fp = firmware_get(ucname);
2193 }
2194 
2195 /*
2196  * Get the required firmware images if not already loaded.
2197  * Note that we hold firmware images so long as the device
2198  * is marked up in case we need to reload them on device init.
2199  * This is necessary because we re-init the device sometimes
2200  * from a context where we cannot read from the filesystem
2201  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2202  * XXX return 0 on success, 1 on error.
2203  *
2204  * NB: the order of get'ing and put'ing images here is
2205  * intentional to support handling firmware images bundled
2206  * by operating mode and/or all together in one file with
2207  * the boot firmware as "master".
2208  */
2209 static int
2210 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2211 {
2212 	const struct iwi_firmware_hdr *hdr;
2213 	const struct firmware *fp;
2214 
2215 	/* invalidate cached firmware on mode change */
2216 	if (sc->fw_mode != opmode)
2217 		iwi_put_firmware(sc);
2218 
2219 	switch (opmode) {
2220 	case IEEE80211_M_STA:
2221 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2222 		break;
2223 	case IEEE80211_M_IBSS:
2224 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2225 		break;
2226 	case IEEE80211_M_MONITOR:
2227 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2228 			  &sc->fw_uc, "iwi_ucode_monitor");
2229 		break;
2230 	default:
2231 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2232 		return EINVAL;
2233 	}
2234 	fp = sc->fw_fw.fp;
2235 	if (fp == NULL) {
2236 		device_printf(sc->sc_dev, "could not load firmware\n");
2237 		goto bad;
2238 	}
2239 	if (fp->version < 300) {
2240 		/*
2241 		 * Firmware prior to 3.0 was packaged as separate
2242 		 * boot, firmware, and ucode images.  Verify the
2243 		 * ucode image was read in, retrieve the boot image
2244 		 * if needed, and check version stamps for consistency.
2245 		 * The version stamps in the data are also checked
2246 		 * above; this is a bit paranoid but is a cheap
2247 		 * safeguard against mis-packaging.
2248 		 */
2249 		if (sc->fw_uc.fp == NULL) {
2250 			device_printf(sc->sc_dev, "could not load ucode\n");
2251 			goto bad;
2252 		}
2253 		if (sc->fw_boot.fp == NULL) {
2254 			sc->fw_boot.fp = firmware_get("iwi_boot");
2255 			if (sc->fw_boot.fp == NULL) {
2256 				device_printf(sc->sc_dev,
2257 					"could not load boot firmware\n");
2258 				goto bad;
2259 			}
2260 		}
2261 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2262 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2263 			device_printf(sc->sc_dev,
2264 			    "firmware version mismatch: "
2265 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2266 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2267 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2268 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2269 			);
2270 			goto bad;
2271 		}
2272 		/*
2273 		 * Check and setup each image.
2274 		 */
2275 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2276 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2277 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2278 			goto bad;
2279 	} else {
2280 		/*
2281 		 * Check and setup combined image.
2282 		 */
2283 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2284 			device_printf(sc->sc_dev, "image '%s' too small\n",
2285 			    fp->name);
2286 			goto bad;
2287 		}
2288 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2289 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2290 				+ le32toh(hdr->fsize)) {
2291 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2292 			    fp->name);
2293 			goto bad;
2294 		}
2295 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2296 		sc->fw_boot.size = le32toh(hdr->bsize);
2297 		sc->fw_boot.name = fp->name;
2298 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2299 		sc->fw_uc.size = le32toh(hdr->usize);
2300 		sc->fw_uc.name = fp->name;
2301 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2302 		sc->fw_fw.size = le32toh(hdr->fsize);
2303 		sc->fw_fw.name = fp->name;
2304 	}
2305 #if 0
2306 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2307 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2308 #endif
2309 
2310 	sc->fw_mode = opmode;
2311 	return 0;
2312 bad:
2313 	iwi_put_firmware(sc);
2314 	return 1;
2315 }
2316 
2317 static void
2318 iwi_put_fw(struct iwi_fw *fw)
2319 {
2320 	if (fw->fp != NULL) {
2321 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2322 		fw->fp = NULL;
2323 	}
2324 	fw->data = NULL;
2325 	fw->size = 0;
2326 	fw->name = NULL;
2327 }
2328 
2329 /*
2330  * Release any cached firmware images.
2331  */
2332 static void
2333 iwi_put_firmware(struct iwi_softc *sc)
2334 {
2335 	iwi_put_fw(&sc->fw_uc);
2336 	iwi_put_fw(&sc->fw_fw);
2337 	iwi_put_fw(&sc->fw_boot);
2338 }
2339 
2340 static int
2341 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2342 {
2343 	uint32_t tmp;
2344 	const uint16_t *w;
2345 	const char *uc = fw->data;
2346 	size_t size = fw->size;
2347 	int i, ntries, error;
2348 
2349 	IWI_LOCK_ASSERT(sc);
2350 	error = 0;
2351 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2352 	    IWI_RST_STOP_MASTER);
2353 	for (ntries = 0; ntries < 5; ntries++) {
2354 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2355 			break;
2356 		DELAY(10);
2357 	}
2358 	if (ntries == 5) {
2359 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2360 		error = EIO;
2361 		goto fail;
2362 	}
2363 
2364 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2365 	DELAY(5000);
2366 
2367 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2368 	tmp &= ~IWI_RST_PRINCETON_RESET;
2369 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2370 
2371 	DELAY(5000);
2372 	MEM_WRITE_4(sc, 0x3000e0, 0);
2373 	DELAY(1000);
2374 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2375 	DELAY(1000);
2376 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2377 	DELAY(1000);
2378 	MEM_WRITE_1(sc, 0x200000, 0x00);
2379 	MEM_WRITE_1(sc, 0x200000, 0x40);
2380 	DELAY(1000);
2381 
2382 	/* write microcode into adapter memory */
2383 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2384 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2385 
2386 	MEM_WRITE_1(sc, 0x200000, 0x00);
2387 	MEM_WRITE_1(sc, 0x200000, 0x80);
2388 
2389 	/* wait until we get an answer */
2390 	for (ntries = 0; ntries < 100; ntries++) {
2391 		if (MEM_READ_1(sc, 0x200000) & 1)
2392 			break;
2393 		DELAY(100);
2394 	}
2395 	if (ntries == 100) {
2396 		device_printf(sc->sc_dev,
2397 		    "timeout waiting for ucode to initialize\n");
2398 		error = EIO;
2399 		goto fail;
2400 	}
2401 
2402 	/* read the answer or the firmware will not initialize properly */
2403 	for (i = 0; i < 7; i++)
2404 		MEM_READ_4(sc, 0x200004);
2405 
2406 	MEM_WRITE_1(sc, 0x200000, 0x00);
2407 
2408 fail:
2409 	return error;
2410 }
2411 
2412 /* macro to handle unaligned little endian data in firmware image */
2413 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2414 
2415 static int
2416 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2417 {
2418 	u_char *p, *end;
2419 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2420 	int ntries, error;
2421 
2422 	IWI_LOCK_ASSERT(sc);
2423 
2424 	/* copy firmware image to DMA memory */
2425 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2426 
2427 	/* make sure the adapter will get up-to-date values */
2428 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2429 
2430 	/* tell the adapter where the command blocks are stored */
2431 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2432 
2433 	/*
2434 	 * Store command blocks into adapter's internal memory using register
2435 	 * indirections. The adapter will read the firmware image through DMA
2436 	 * using information stored in command blocks.
2437 	 */
2438 	src = sc->fw_physaddr;
2439 	p = sc->fw_virtaddr;
2440 	end = p + fw->size;
2441 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2442 
2443 	while (p < end) {
2444 		dst = GETLE32(p); p += 4; src += 4;
2445 		len = GETLE32(p); p += 4; src += 4;
2446 		p += len;
2447 
2448 		while (len > 0) {
2449 			mlen = min(len, IWI_CB_MAXDATALEN);
2450 
2451 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2452 			sum = ctl ^ src ^ dst;
2453 
2454 			/* write a command block */
2455 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2456 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2457 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2458 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2459 
2460 			src += mlen;
2461 			dst += mlen;
2462 			len -= mlen;
2463 		}
2464 	}
2465 
2466 	/* write a fictive final command block (sentinel) */
2467 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2468 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2469 
2470 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2471 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2472 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2473 
2474 	/* tell the adapter to start processing command blocks */
2475 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2476 
2477 	/* wait until the adapter reaches the sentinel */
2478 	for (ntries = 0; ntries < 400; ntries++) {
2479 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2480 			break;
2481 		DELAY(100);
2482 	}
2483 	/* sync dma, just in case */
2484 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2485 	if (ntries == 400) {
2486 		device_printf(sc->sc_dev,
2487 		    "timeout processing command blocks for %s firmware\n",
2488 		    fw->name);
2489 		return EIO;
2490 	}
2491 
2492 	/* we're done with command blocks processing */
2493 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2494 
2495 	/* allow interrupts so we know when the firmware is ready */
2496 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2497 
2498 	/* tell the adapter to initialize the firmware */
2499 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2500 
2501 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2502 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2503 
2504 	/* wait at most one second for firmware initialization to complete */
2505 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2506 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2507 		    "initialization to complete\n", fw->name);
2508 	}
2509 
2510 	return error;
2511 }
2512 
2513 static int
2514 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2515 {
2516 	uint32_t data;
2517 
2518 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2519 		/* XXX set more fine-grained operation */
2520 		data = htole32(IWI_POWER_MODE_MAX);
2521 	} else
2522 		data = htole32(IWI_POWER_MODE_CAM);
2523 
2524 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2525 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2526 }
2527 
2528 static int
2529 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2530 {
2531 	struct iwi_wep_key wepkey;
2532 	struct ieee80211_key *wk;
2533 	int error, i;
2534 
2535 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2536 		wk = &vap->iv_nw_keys[i];
2537 
2538 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2539 		wepkey.idx = i;
2540 		wepkey.len = wk->wk_keylen;
2541 		memset(wepkey.key, 0, sizeof wepkey.key);
2542 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2543 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2544 		    wepkey.len));
2545 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2546 		    sizeof wepkey);
2547 		if (error != 0)
2548 			return error;
2549 	}
2550 	return 0;
2551 }
2552 
2553 static int
2554 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs,
2555     int mode, int type)
2556 {
2557 	struct iwi_rateset rs;
2558 
2559 	memset(&rs, 0, sizeof(rs));
2560 	rs.mode = mode;
2561 	rs.type = type;
2562 	rs.nrates = net_rs->rs_nrates;
2563 	if (rs.nrates > nitems(rs.rates)) {
2564 		DPRINTF(("Truncating negotiated rate set from %u\n",
2565 		    rs.nrates));
2566 		rs.nrates = nitems(rs.rates);
2567 	}
2568 	memcpy(rs.rates, net_rs->rs_rates, rs.nrates);
2569 	DPRINTF(("Setting .11%c%s %s rates (%u)\n",
2570 	    mode == IWI_MODE_11A ? 'a' : 'b',
2571 	    mode == IWI_MODE_11G ? "g" : "",
2572 	    type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated",
2573 	    rs.nrates));
2574 
2575 	return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs)));
2576 }
2577 
2578 static int
2579 iwi_config(struct iwi_softc *sc)
2580 {
2581 	struct ieee80211com *ic = &sc->sc_ic;
2582 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2583 	struct iwi_configuration config;
2584 	struct iwi_txpower power;
2585 	uint8_t *macaddr;
2586 	uint32_t data;
2587 	int error, i;
2588 
2589 	IWI_LOCK_ASSERT(sc);
2590 
2591 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
2592 	DPRINTF(("Setting MAC address to %6D\n", macaddr, ":"));
2593 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr,
2594 	    IEEE80211_ADDR_LEN);
2595 	if (error != 0)
2596 		return error;
2597 
2598 	memset(&config, 0, sizeof config);
2599 	config.bluetooth_coexistence = sc->bluetooth;
2600 	config.silence_threshold = 0x1e;
2601 	config.antenna = sc->antenna;
2602 	config.multicast_enabled = 1;
2603 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2604 	config.disable_unicast_decryption = 1;
2605 	config.disable_multicast_decryption = 1;
2606 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2607 		config.allow_invalid_frames = 1;
2608 		config.allow_beacon_and_probe_resp = 1;
2609 		config.allow_mgt = 1;
2610 	}
2611 	DPRINTF(("Configuring adapter\n"));
2612 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2613 	if (error != 0)
2614 		return error;
2615 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2616 		power.mode = IWI_MODE_11B;
2617 		power.nchan = 11;
2618 		for (i = 0; i < 11; i++) {
2619 			power.chan[i].chan = i + 1;
2620 			power.chan[i].power = IWI_TXPOWER_MAX;
2621 		}
2622 		DPRINTF(("Setting .11b channels tx power\n"));
2623 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2624 		if (error != 0)
2625 			return error;
2626 
2627 		power.mode = IWI_MODE_11G;
2628 		DPRINTF(("Setting .11g channels tx power\n"));
2629 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2630 		if (error != 0)
2631 			return error;
2632 	}
2633 
2634 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G],
2635 	    IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED);
2636 	if (error != 0)
2637 		return error;
2638 
2639 	error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A],
2640 	    IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED);
2641 	if (error != 0)
2642 		return error;
2643 
2644 	data = htole32(arc4random());
2645 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2646 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2647 	if (error != 0)
2648 		return error;
2649 
2650 	/* enable adapter */
2651 	DPRINTF(("Enabling adapter\n"));
2652 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2653 }
2654 
2655 static __inline void
2656 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2657 {
2658 	uint8_t *st = &scan->scan_type[ix / 2];
2659 	if (ix % 2)
2660 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2661 	else
2662 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2663 }
2664 
2665 static int
2666 scan_type(const struct ieee80211_scan_state *ss,
2667 	const struct ieee80211_channel *chan)
2668 {
2669 	/* We can only set one essid for a directed scan */
2670 	if (ss->ss_nssid != 0)
2671 		return IWI_SCAN_TYPE_BDIRECTED;
2672 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2673 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2674 		return IWI_SCAN_TYPE_BROADCAST;
2675 	return IWI_SCAN_TYPE_PASSIVE;
2676 }
2677 
2678 static __inline int
2679 scan_band(const struct ieee80211_channel *c)
2680 {
2681 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2682 }
2683 
2684 static void
2685 iwi_monitor_scan(void *arg, int npending)
2686 {
2687 	struct iwi_softc *sc = arg;
2688 	IWI_LOCK_DECL;
2689 
2690 	IWI_LOCK(sc);
2691 	(void) iwi_scanchan(sc, 2000, 0);
2692 	IWI_UNLOCK(sc);
2693 }
2694 
2695 /*
2696  * Start a scan on the current channel or all channels.
2697  */
2698 static int
2699 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2700 {
2701 	struct ieee80211com *ic = &sc->sc_ic;
2702 	struct ieee80211_channel *chan;
2703 	struct ieee80211_scan_state *ss;
2704 	struct iwi_scan_ext scan;
2705 	int error = 0;
2706 
2707 	IWI_LOCK_ASSERT(sc);
2708 	if (sc->fw_state == IWI_FW_SCANNING) {
2709 		/*
2710 		 * This should not happen as we only trigger scan_next after
2711 		 * completion
2712 		 */
2713 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2714 		return (EBUSY);
2715 	}
2716 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2717 
2718 	ss = ic->ic_scan;
2719 
2720 	memset(&scan, 0, sizeof scan);
2721 	scan.full_scan_index = htole32(++sc->sc_scangen);
2722 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2723 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2724 		/*
2725 		 * Use very short dwell times for when we send probe request
2726 		 * frames.  Without this bg scans hang.  Ideally this should
2727 		 * be handled with early-termination as done by net80211 but
2728 		 * that's not feasible (aborting a scan is problematic).
2729 		 */
2730 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2731 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2732 	} else {
2733 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2734 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2735 	}
2736 
2737 	/* We can only set one essid for a directed scan */
2738 	if (ss->ss_nssid != 0) {
2739 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2740 		    ss->ss_ssid[0].len);
2741 		if (error)
2742 			return (error);
2743 	}
2744 
2745 	if (allchan) {
2746 		int i, next, band, b, bstart;
2747 		/*
2748 		 * Convert scan list to run-length encoded channel list
2749 		 * the firmware requires (preserving the order setup by
2750 		 * net80211).  The first entry in each run specifies the
2751 		 * band and the count of items in the run.
2752 		 */
2753 		next = 0;		/* next open slot */
2754 		bstart = 0;		/* NB: not needed, silence compiler */
2755 		band = -1;		/* NB: impossible value */
2756 		KASSERT(ss->ss_last > 0, ("no channels"));
2757 		for (i = 0; i < ss->ss_last; i++) {
2758 			chan = ss->ss_chans[i];
2759 			b = scan_band(chan);
2760 			if (b != band) {
2761 				if (band != -1)
2762 					scan.channels[bstart] =
2763 					    (next - bstart) | band;
2764 				/* NB: this allocates a slot for the run-len */
2765 				band = b, bstart = next++;
2766 			}
2767 			if (next >= IWI_SCAN_CHANNELS) {
2768 				DPRINTF(("truncating scan list\n"));
2769 				break;
2770 			}
2771 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2772 			set_scan_type(&scan, next, scan_type(ss, chan));
2773 			next++;
2774 		}
2775 		scan.channels[bstart] = (next - bstart) | band;
2776 	} else {
2777 		/* Scan the current channel only */
2778 		chan = ic->ic_curchan;
2779 		scan.channels[0] = 1 | scan_band(chan);
2780 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2781 		set_scan_type(&scan, 1, scan_type(ss, chan));
2782 	}
2783 #ifdef IWI_DEBUG
2784 	if (iwi_debug > 0) {
2785 		static const char *scantype[8] =
2786 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2787 		int i;
2788 		printf("Scan request: index %u dwell %d/%d/%d\n"
2789 		    , le32toh(scan.full_scan_index)
2790 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2791 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2792 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2793 		);
2794 		i = 0;
2795 		do {
2796 			int run = scan.channels[i];
2797 			if (run == 0)
2798 				break;
2799 			printf("Scan %d %s channels:", run & 0x3f,
2800 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2801 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2802 				uint8_t type = scan.scan_type[i/2];
2803 				printf(" %u/%s", scan.channels[i],
2804 				    scantype[(i & 1 ? type : type>>4) & 7]);
2805 			}
2806 			printf("\n");
2807 		} while (i < IWI_SCAN_CHANNELS);
2808 	}
2809 #endif
2810 
2811 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2812 }
2813 
2814 static int
2815 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2816 {
2817 	struct iwi_sensitivity sens;
2818 
2819 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2820 
2821 	memset(&sens, 0, sizeof sens);
2822 	sens.rssi = htole16(rssi_dbm);
2823 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2824 }
2825 
2826 static int
2827 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2828 {
2829 	struct ieee80211com *ic = vap->iv_ic;
2830 	struct ifnet *ifp = vap->iv_ifp;
2831 	struct ieee80211_node *ni;
2832 	struct iwi_configuration config;
2833 	struct iwi_associate *assoc = &sc->assoc;
2834 	uint16_t capinfo;
2835 	uint32_t data;
2836 	int error, mode;
2837 
2838 	IWI_LOCK_ASSERT(sc);
2839 
2840 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2841 		DPRINTF(("Already associated\n"));
2842 		return (-1);
2843 	}
2844 
2845 	ni = ieee80211_ref_node(vap->iv_bss);
2846 
2847 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2848 	error = 0;
2849 	mode = 0;
2850 
2851 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2852 		mode = IWI_MODE_11A;
2853 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2854 		mode = IWI_MODE_11G;
2855 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2856 		mode = IWI_MODE_11B;
2857 
2858 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2859 		memset(&config, 0, sizeof config);
2860 		config.bluetooth_coexistence = sc->bluetooth;
2861 		config.antenna = sc->antenna;
2862 		config.multicast_enabled = 1;
2863 		if (mode == IWI_MODE_11G)
2864 			config.use_protection = 1;
2865 		config.answer_pbreq =
2866 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2867 		config.disable_unicast_decryption = 1;
2868 		config.disable_multicast_decryption = 1;
2869 		DPRINTF(("Configuring adapter\n"));
2870 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2871 		if (error != 0)
2872 			goto done;
2873 	}
2874 
2875 #ifdef IWI_DEBUG
2876 	if (iwi_debug > 0) {
2877 		printf("Setting ESSID to ");
2878 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2879 		printf("\n");
2880 	}
2881 #endif
2882 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2883 	if (error != 0)
2884 		goto done;
2885 
2886 	error = iwi_setpowermode(sc, vap);
2887 	if (error != 0)
2888 		goto done;
2889 
2890 	data = htole32(vap->iv_rtsthreshold);
2891 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2892 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2893 	if (error != 0)
2894 		goto done;
2895 
2896 	data = htole32(vap->iv_fragthreshold);
2897 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2898 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2899 	if (error != 0)
2900 		goto done;
2901 
2902 	/* the rate set has already been "negotiated" */
2903 	error = iwi_set_rateset(sc, &ni->ni_rates, mode,
2904 	    IWI_RATESET_TYPE_NEGOTIATED);
2905 	if (error != 0)
2906 		goto done;
2907 
2908 	memset(assoc, 0, sizeof *assoc);
2909 
2910 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2911 		/* NB: don't treat WME setup as failure */
2912 		if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0)
2913 			assoc->policy |= htole16(IWI_POLICY_WME);
2914 		/* XXX complain on failure? */
2915 	}
2916 
2917 	if (vap->iv_appie_wpa != NULL) {
2918 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2919 
2920 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2921 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2922 		if (error != 0)
2923 			goto done;
2924 	}
2925 
2926 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2927 	if (error != 0)
2928 		goto done;
2929 
2930 	assoc->mode = mode;
2931 	assoc->chan = ic->ic_curchan->ic_ieee;
2932 	/*
2933 	 * NB: do not arrange for shared key auth w/o privacy
2934 	 *     (i.e. a wep key); it causes a firmware error.
2935 	 */
2936 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2937 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2938 		assoc->auth = IWI_AUTH_SHARED;
2939 		/*
2940 		 * It's possible to have privacy marked but no default
2941 		 * key setup.  This typically is due to a user app bug
2942 		 * but if we blindly grab the key the firmware will
2943 		 * barf so avoid it for now.
2944 		 */
2945 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2946 			assoc->auth |= vap->iv_def_txkey << 4;
2947 
2948 		error = iwi_setwepkeys(sc, vap);
2949 		if (error != 0)
2950 			goto done;
2951 	}
2952 	if (vap->iv_flags & IEEE80211_F_WPA)
2953 		assoc->policy |= htole16(IWI_POLICY_WPA);
2954 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2955 		assoc->type = IWI_HC_IBSS_START;
2956 	else
2957 		assoc->type = IWI_HC_ASSOC;
2958 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2959 
2960 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2961 		capinfo = IEEE80211_CAPINFO_IBSS;
2962 	else
2963 		capinfo = IEEE80211_CAPINFO_ESS;
2964 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2965 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2966 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2967 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2968 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2969 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2970 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2971 	assoc->capinfo = htole16(capinfo);
2972 
2973 	assoc->lintval = htole16(ic->ic_lintval);
2974 	assoc->intval = htole16(ni->ni_intval);
2975 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2976 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2977 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2978 	else
2979 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2980 
2981 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2982 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2983 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2984 	    assoc->bssid, ":", assoc->dst, ":",
2985 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2986 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2987 	    le16toh(assoc->intval)));
2988 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2989 done:
2990 	ieee80211_free_node(ni);
2991 	if (error)
2992 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2993 
2994 	return (error);
2995 }
2996 
2997 static void
2998 iwi_disassoc(void *arg, int pending)
2999 {
3000 	struct iwi_softc *sc = arg;
3001 	IWI_LOCK_DECL;
3002 
3003 	IWI_LOCK(sc);
3004 	iwi_disassociate(sc, 0);
3005 	IWI_UNLOCK(sc);
3006 }
3007 
3008 static int
3009 iwi_disassociate(struct iwi_softc *sc, int quiet)
3010 {
3011 	struct iwi_associate *assoc = &sc->assoc;
3012 
3013 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3014 		DPRINTF(("Not associated\n"));
3015 		return (-1);
3016 	}
3017 
3018 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3019 
3020 	if (quiet)
3021 		assoc->type = IWI_HC_DISASSOC_QUIET;
3022 	else
3023 		assoc->type = IWI_HC_DISASSOC;
3024 
3025 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3026 	    assoc->bssid, ":", assoc->chan));
3027 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3028 }
3029 
3030 /*
3031  * release dma resources for the firmware
3032  */
3033 static void
3034 iwi_release_fw_dma(struct iwi_softc *sc)
3035 {
3036 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3037 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3038 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3039 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3040 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3041 		bus_dma_tag_destroy(sc->fw_dmat);
3042 
3043 	sc->fw_flags = 0;
3044 	sc->fw_dma_size = 0;
3045 	sc->fw_dmat = NULL;
3046 	sc->fw_map = NULL;
3047 	sc->fw_physaddr = 0;
3048 	sc->fw_virtaddr = NULL;
3049 }
3050 
3051 /*
3052  * allocate the dma descriptor for the firmware.
3053  * Return 0 on success, 1 on error.
3054  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3055  */
3056 static int
3057 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3058 {
3059 	if (sc->fw_dma_size >= size)
3060 		return 0;
3061 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3062 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3063 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3064 		device_printf(sc->sc_dev,
3065 		    "could not create firmware DMA tag\n");
3066 		goto error;
3067 	}
3068 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3069 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3070 	    &sc->fw_map) != 0) {
3071 		device_printf(sc->sc_dev,
3072 		    "could not allocate firmware DMA memory\n");
3073 		goto error;
3074 	}
3075 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3076 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3077 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3078 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3079 		goto error;
3080 	}
3081 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3082 	sc->fw_dma_size = size;
3083 	return 0;
3084 
3085 error:
3086 	iwi_release_fw_dma(sc);
3087 	return 1;
3088 }
3089 
3090 static void
3091 iwi_init_locked(struct iwi_softc *sc)
3092 {
3093 	struct iwi_rx_data *data;
3094 	int i;
3095 
3096 	IWI_LOCK_ASSERT(sc);
3097 
3098 	if (sc->fw_state == IWI_FW_LOADING) {
3099 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3100 		return;		/* XXX: condvar? */
3101 	}
3102 
3103 	iwi_stop_locked(sc);
3104 
3105 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3106 
3107 	if (iwi_reset(sc) != 0) {
3108 		device_printf(sc->sc_dev, "could not reset adapter\n");
3109 		goto fail;
3110 	}
3111 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3112 		device_printf(sc->sc_dev,
3113 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3114 		goto fail;
3115 	}
3116 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3117 		device_printf(sc->sc_dev,
3118 		    "could not load microcode %s\n", sc->fw_uc.name);
3119 		goto fail;
3120 	}
3121 
3122 	iwi_stop_master(sc);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3126 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3135 
3136 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3137 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3138 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3139 
3140 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3141 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3142 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3143 
3144 	for (i = 0; i < sc->rxq.count; i++) {
3145 		data = &sc->rxq.data[i];
3146 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3147 	}
3148 
3149 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3150 
3151 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3152 		device_printf(sc->sc_dev,
3153 		    "could not load main firmware %s\n", sc->fw_fw.name);
3154 		goto fail;
3155 	}
3156 	sc->flags |= IWI_FLAG_FW_INITED;
3157 
3158 	IWI_STATE_END(sc, IWI_FW_LOADING);
3159 
3160 	if (iwi_config(sc) != 0) {
3161 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3162 		goto fail2;
3163 	}
3164 
3165 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3166 	sc->sc_running = 1;
3167 	return;
3168 fail:
3169 	IWI_STATE_END(sc, IWI_FW_LOADING);
3170 fail2:
3171 	iwi_stop_locked(sc);
3172 }
3173 
3174 static void
3175 iwi_init(void *priv)
3176 {
3177 	struct iwi_softc *sc = priv;
3178 	struct ieee80211com *ic = &sc->sc_ic;
3179 	IWI_LOCK_DECL;
3180 
3181 	IWI_LOCK(sc);
3182 	iwi_init_locked(sc);
3183 	IWI_UNLOCK(sc);
3184 
3185 	if (sc->sc_running)
3186 		ieee80211_start_all(ic);
3187 }
3188 
3189 static void
3190 iwi_stop_locked(void *priv)
3191 {
3192 	struct iwi_softc *sc = priv;
3193 
3194 	IWI_LOCK_ASSERT(sc);
3195 
3196 	sc->sc_running = 0;
3197 
3198 	if (sc->sc_softled) {
3199 		callout_stop(&sc->sc_ledtimer);
3200 		sc->sc_blinking = 0;
3201 	}
3202 	callout_stop(&sc->sc_wdtimer);
3203 	callout_stop(&sc->sc_rftimer);
3204 
3205 	iwi_stop_master(sc);
3206 
3207 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3208 
3209 	/* reset rings */
3210 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3211 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3212 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3213 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3214 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3215 	iwi_reset_rx_ring(sc, &sc->rxq);
3216 
3217 	sc->sc_tx_timer = 0;
3218 	sc->sc_state_timer = 0;
3219 	sc->sc_busy_timer = 0;
3220 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3221 	sc->fw_state = IWI_FW_IDLE;
3222 	wakeup(sc);
3223 }
3224 
3225 static void
3226 iwi_stop(struct iwi_softc *sc)
3227 {
3228 	IWI_LOCK_DECL;
3229 
3230 	IWI_LOCK(sc);
3231 	iwi_stop_locked(sc);
3232 	IWI_UNLOCK(sc);
3233 }
3234 
3235 static void
3236 iwi_restart(void *arg, int npending)
3237 {
3238 	struct iwi_softc *sc = arg;
3239 
3240 	iwi_init(sc);
3241 }
3242 
3243 /*
3244  * Return whether or not the radio is enabled in hardware
3245  * (i.e. the rfkill switch is "off").
3246  */
3247 static int
3248 iwi_getrfkill(struct iwi_softc *sc)
3249 {
3250 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3251 }
3252 
3253 static void
3254 iwi_radio_on(void *arg, int pending)
3255 {
3256 	struct iwi_softc *sc = arg;
3257 	struct ieee80211com *ic = &sc->sc_ic;
3258 
3259 	device_printf(sc->sc_dev, "radio turned on\n");
3260 
3261 	iwi_init(sc);
3262 	ieee80211_notify_radio(ic, 1);
3263 }
3264 
3265 static void
3266 iwi_rfkill_poll(void *arg)
3267 {
3268 	struct iwi_softc *sc = arg;
3269 
3270 	IWI_LOCK_ASSERT(sc);
3271 
3272 	/*
3273 	 * Check for a change in rfkill state.  We get an
3274 	 * interrupt when a radio is disabled but not when
3275 	 * it is enabled so we must poll for the latter.
3276 	 */
3277 	if (!iwi_getrfkill(sc)) {
3278 		ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask);
3279 		return;
3280 	}
3281 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3282 }
3283 
3284 static void
3285 iwi_radio_off(void *arg, int pending)
3286 {
3287 	struct iwi_softc *sc = arg;
3288 	struct ieee80211com *ic = &sc->sc_ic;
3289 	IWI_LOCK_DECL;
3290 
3291 	device_printf(sc->sc_dev, "radio turned off\n");
3292 
3293 	ieee80211_notify_radio(ic, 0);
3294 
3295 	IWI_LOCK(sc);
3296 	iwi_stop_locked(sc);
3297 	iwi_rfkill_poll(sc);
3298 	IWI_UNLOCK(sc);
3299 }
3300 
3301 static int
3302 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3303 {
3304 	struct iwi_softc *sc = arg1;
3305 	uint32_t size, buf[128];
3306 
3307 	memset(buf, 0, sizeof buf);
3308 
3309 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3310 		return SYSCTL_OUT(req, buf, sizeof buf);
3311 
3312 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3313 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3314 
3315 	return SYSCTL_OUT(req, buf, size);
3316 }
3317 
3318 static int
3319 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3320 {
3321 	struct iwi_softc *sc = arg1;
3322 	int val = !iwi_getrfkill(sc);
3323 
3324 	return SYSCTL_OUT(req, &val, sizeof val);
3325 }
3326 
3327 /*
3328  * Add sysctl knobs.
3329  */
3330 static void
3331 iwi_sysctlattach(struct iwi_softc *sc)
3332 {
3333 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3334 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3335 
3336 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3337 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3338 	    iwi_sysctl_radio, "I",
3339 	    "radio transmitter switch state (0=off, 1=on)");
3340 
3341 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3342 	    CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
3343 	    iwi_sysctl_stats, "S", "statistics");
3344 
3345 	sc->bluetooth = 0;
3346 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3347 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3348 
3349 	sc->antenna = IWI_ANTENNA_AUTO;
3350 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3351 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3352 }
3353 
3354 /*
3355  * LED support.
3356  *
3357  * Different cards have different capabilities.  Some have three
3358  * led's while others have only one.  The linux ipw driver defines
3359  * led's for link state (associated or not), band (11a, 11g, 11b),
3360  * and for link activity.  We use one led and vary the blink rate
3361  * according to the tx/rx traffic a la the ath driver.
3362  */
3363 
3364 static __inline uint32_t
3365 iwi_toggle_event(uint32_t r)
3366 {
3367 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3368 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3369 }
3370 
3371 static uint32_t
3372 iwi_read_event(struct iwi_softc *sc)
3373 {
3374 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3375 }
3376 
3377 static void
3378 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3379 {
3380 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3381 }
3382 
3383 static void
3384 iwi_led_done(void *arg)
3385 {
3386 	struct iwi_softc *sc = arg;
3387 
3388 	sc->sc_blinking = 0;
3389 }
3390 
3391 /*
3392  * Turn the activity LED off: flip the pin and then set a timer so no
3393  * update will happen for the specified duration.
3394  */
3395 static void
3396 iwi_led_off(void *arg)
3397 {
3398 	struct iwi_softc *sc = arg;
3399 	uint32_t v;
3400 
3401 	v = iwi_read_event(sc);
3402 	v &= ~sc->sc_ledpin;
3403 	iwi_write_event(sc, iwi_toggle_event(v));
3404 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3405 }
3406 
3407 /*
3408  * Blink the LED according to the specified on/off times.
3409  */
3410 static void
3411 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3412 {
3413 	uint32_t v;
3414 
3415 	v = iwi_read_event(sc);
3416 	v |= sc->sc_ledpin;
3417 	iwi_write_event(sc, iwi_toggle_event(v));
3418 	sc->sc_blinking = 1;
3419 	sc->sc_ledoff = off;
3420 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3421 }
3422 
3423 static void
3424 iwi_led_event(struct iwi_softc *sc, int event)
3425 {
3426 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3427 	static const struct {
3428 		u_int		rate;		/* tx/rx iwi rate */
3429 		u_int16_t	timeOn;		/* LED on time (ms) */
3430 		u_int16_t	timeOff;	/* LED off time (ms) */
3431 	} blinkrates[] = {
3432 		{ IWI_RATE_OFDM54, 40,  10 },
3433 		{ IWI_RATE_OFDM48, 44,  11 },
3434 		{ IWI_RATE_OFDM36, 50,  13 },
3435 		{ IWI_RATE_OFDM24, 57,  14 },
3436 		{ IWI_RATE_OFDM18, 67,  16 },
3437 		{ IWI_RATE_OFDM12, 80,  20 },
3438 		{ IWI_RATE_DS11,  100,  25 },
3439 		{ IWI_RATE_OFDM9, 133,  34 },
3440 		{ IWI_RATE_OFDM6, 160,  40 },
3441 		{ IWI_RATE_DS5,   200,  50 },
3442 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3443 		{ IWI_RATE_DS2,   267,  66 },
3444 		{ IWI_RATE_DS1,   400, 100 },
3445 		{            0,   500, 130 },	/* unknown rate/polling */
3446 	};
3447 	uint32_t txrate;
3448 	int j = 0;			/* XXX silence compiler */
3449 
3450 	sc->sc_ledevent = ticks;	/* time of last event */
3451 	if (sc->sc_blinking)		/* don't interrupt active blink */
3452 		return;
3453 	switch (event) {
3454 	case IWI_LED_POLL:
3455 		j = nitems(blinkrates)-1;
3456 		break;
3457 	case IWI_LED_TX:
3458 		/* read current transmission rate from adapter */
3459 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3460 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3461 			for (j = 0; j < nitems(blinkrates)-1; j++)
3462 				if (blinkrates[j].rate == txrate)
3463 					break;
3464 			sc->sc_txrix = j;
3465 		} else
3466 			j = sc->sc_txrix;
3467 		break;
3468 	case IWI_LED_RX:
3469 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3470 			for (j = 0; j < nitems(blinkrates)-1; j++)
3471 				if (blinkrates[j].rate == sc->sc_rxrate)
3472 					break;
3473 			sc->sc_rxrix = j;
3474 		} else
3475 			j = sc->sc_rxrix;
3476 		break;
3477 	}
3478 	/* XXX beware of overflow */
3479 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3480 		(blinkrates[j].timeOff * hz) / 1000);
3481 }
3482 
3483 static int
3484 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3485 {
3486 	struct iwi_softc *sc = arg1;
3487 	int softled = sc->sc_softled;
3488 	int error;
3489 
3490 	error = sysctl_handle_int(oidp, &softled, 0, req);
3491 	if (error || !req->newptr)
3492 		return error;
3493 	softled = (softled != 0);
3494 	if (softled != sc->sc_softled) {
3495 		if (softled) {
3496 			uint32_t v = iwi_read_event(sc);
3497 			v &= ~sc->sc_ledpin;
3498 			iwi_write_event(sc, iwi_toggle_event(v));
3499 		}
3500 		sc->sc_softled = softled;
3501 	}
3502 	return 0;
3503 }
3504 
3505 static void
3506 iwi_ledattach(struct iwi_softc *sc)
3507 {
3508 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3509 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3510 
3511 	sc->sc_blinking = 0;
3512 	sc->sc_ledstate = 1;
3513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3514 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3515 
3516 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3517 	    "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
3518 	    iwi_sysctl_softled, "I", "enable/disable software LED support");
3519 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3520 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3521 		"pin setting to turn activity LED on");
3522 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3523 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3524 		"idle time for inactivity LED (ticks)");
3525 	/* XXX for debugging */
3526 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3527 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3528 		"NIC type from EEPROM");
3529 
3530 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3531 	sc->sc_softled = 1;
3532 
3533 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3534 	if (sc->sc_nictype == 1) {
3535 		/*
3536 		 * NB: led's are reversed.
3537 		 */
3538 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3539 	}
3540 }
3541 
3542 static void
3543 iwi_scan_start(struct ieee80211com *ic)
3544 {
3545 	/* ignore */
3546 }
3547 
3548 static void
3549 iwi_set_channel(struct ieee80211com *ic)
3550 {
3551 	struct iwi_softc *sc = ic->ic_softc;
3552 
3553 	if (sc->fw_state == IWI_FW_IDLE)
3554 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3555 }
3556 
3557 static void
3558 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3559 {
3560 	struct ieee80211vap *vap = ss->ss_vap;
3561 	struct iwi_softc *sc = vap->iv_ic->ic_softc;
3562 	IWI_LOCK_DECL;
3563 
3564 	IWI_LOCK(sc);
3565 	if (iwi_scanchan(sc, maxdwell, 0))
3566 		ieee80211_cancel_scan(vap);
3567 	IWI_UNLOCK(sc);
3568 }
3569 
3570 static void
3571 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3572 {
3573 	/* NB: don't try to abort scan; wait for firmware to finish */
3574 }
3575 
3576 static void
3577 iwi_scan_end(struct ieee80211com *ic)
3578 {
3579 	struct iwi_softc *sc = ic->ic_softc;
3580 	IWI_LOCK_DECL;
3581 
3582 	IWI_LOCK(sc);
3583 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3584 	/* NB: make sure we're still scanning */
3585 	if (sc->fw_state == IWI_FW_SCANNING)
3586 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3587 	IWI_UNLOCK(sc);
3588 }
3589 
3590 static void
3591 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz)
3592 {
3593 	struct iwi_softc *sc = ic->ic_softc;
3594 	device_t dev = sc->sc_dev;
3595 
3596 	memset(bands, 0, bands_sz);
3597 	setbit(bands, IEEE80211_MODE_11B);
3598 	setbit(bands, IEEE80211_MODE_11G);
3599 	if (pci_get_device(dev) >= 0x4223)
3600 		setbit(bands, IEEE80211_MODE_11A);
3601 }
3602 
3603 static void
3604 iwi_getradiocaps(struct ieee80211com *ic,
3605     int maxchans, int *nchans, struct ieee80211_channel chans[])
3606 {
3607 	uint8_t bands[IEEE80211_MODE_BYTES];
3608 
3609 	iwi_collect_bands(ic, bands, sizeof(bands));
3610 	*nchans = 0;
3611 	if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G))
3612 		ieee80211_add_channels_default_2ghz(chans, maxchans, nchans,
3613 		    bands, 0);
3614 	if (isset(bands, IEEE80211_MODE_11A)) {
3615 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3616 		    def_chan_5ghz_band1, nitems(def_chan_5ghz_band1),
3617 		    bands, 0);
3618 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3619 		    def_chan_5ghz_band2, nitems(def_chan_5ghz_band2),
3620 		    bands, 0);
3621 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3622 		    def_chan_5ghz_band3, nitems(def_chan_5ghz_band3),
3623 		    bands, 0);
3624 	}
3625 }
3626