xref: /freebsd/sys/dev/iwi/if_iwi.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/kthread.h>
57 #include <sys/taskqueue.h>
58 
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/rman.h>
62 
63 #include <dev/pci/pcireg.h>
64 #include <dev/pci/pcivar.h>
65 
66 #include <net/bpf.h>
67 #include <net/if.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 
88 #define IWI_DEBUG
89 #ifdef IWI_DEBUG
90 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
91 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
92 int iwi_debug = 0;
93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
94 
95 static const char *iwi_fw_states[] = {
96 	"IDLE", 		/* IWI_FW_IDLE */
97 	"LOADING",		/* IWI_FW_LOADING */
98 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
99 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
100 	"SCANNING",		/* IWI_FW_SCANNING */
101 };
102 #else
103 #define DPRINTF(x)
104 #define DPRINTFN(n, x)
105 #endif
106 
107 MODULE_DEPEND(iwi, pci,  1, 1, 1);
108 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
109 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
110 
111 enum {
112 	IWI_LED_TX,
113 	IWI_LED_RX,
114 	IWI_LED_POLL,
115 };
116 
117 struct iwi_ident {
118 	uint16_t	vendor;
119 	uint16_t	device;
120 	const char	*name;
121 };
122 
123 static const struct iwi_ident iwi_ident_table[] = {
124 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
125 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
126 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
127 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
128 
129 	{ 0, 0, NULL }
130 };
131 
132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
133 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
134 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
135 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
136 static void	iwi_vap_delete(struct ieee80211vap *);
137 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
138 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
139 		    int);
140 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
143 		    int, bus_addr_t, bus_addr_t);
144 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
147 		    int);
148 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwi_node_free(struct ieee80211_node *);
153 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
154 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
155 static void	iwi_wme_init(struct iwi_softc *);
156 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
157 static int	iwi_wme_update(struct ieee80211com *);
158 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
159 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
160 		    struct iwi_frame *);
161 static void	iwi_authsuccess(void *, int);
162 static void	iwi_assocsuccess(void *, int);
163 static void	iwi_assocfailed(void *, int);
164 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
165 static void	iwi_rx_intr(struct iwi_softc *);
166 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
167 static void	iwi_intr(void *);
168 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
169 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
170 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
171 		    struct ieee80211_node *, int);
172 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
173 		    const struct ieee80211_bpf_params *);
174 static void	iwi_start_locked(struct ifnet *);
175 static void	iwi_start(struct ifnet *);
176 static void	iwi_watchdog(void *);
177 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
178 static void	iwi_stop_master(struct iwi_softc *);
179 static int	iwi_reset(struct iwi_softc *);
180 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
181 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
182 static void	iwi_release_fw_dma(struct iwi_softc *sc);
183 static int	iwi_config(struct iwi_softc *);
184 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
185 static void	iwi_put_firmware(struct iwi_softc *);
186 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
187 static void	iwi_scan_start(struct ieee80211com *);
188 static void	iwi_scan_end(struct ieee80211com *);
189 static void	iwi_scanabort(void *, int);
190 static void	iwi_set_channel(struct ieee80211com *);
191 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
192 #if 0
193 static void	iwi_scan_allchan(struct ieee80211com *, unsigned long maxdwell);
194 #endif
195 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
196 static void	iwi_ops(void *, int);
197 static int	iwi_queue_cmd(struct iwi_softc *, int, unsigned long);
198 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
199 static int	iwi_disassociate(struct iwi_softc *, int quiet);
200 static void	iwi_init_locked(struct iwi_softc *);
201 static void	iwi_init(void *);
202 static int	iwi_init_fw_dma(struct iwi_softc *, int);
203 static void	iwi_stop_locked(void *);
204 static void	iwi_stop(struct iwi_softc *);
205 static void	iwi_restart(void *, int);
206 static int	iwi_getrfkill(struct iwi_softc *);
207 static void	iwi_radio_on(void *, int);
208 static void	iwi_radio_off(void *, int);
209 static void	iwi_sysctlattach(struct iwi_softc *);
210 static void	iwi_led_event(struct iwi_softc *, int);
211 static void	iwi_ledattach(struct iwi_softc *);
212 
213 static int iwi_probe(device_t);
214 static int iwi_attach(device_t);
215 static int iwi_detach(device_t);
216 static int iwi_shutdown(device_t);
217 static int iwi_suspend(device_t);
218 static int iwi_resume(device_t);
219 
220 static device_method_t iwi_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		iwi_probe),
223 	DEVMETHOD(device_attach,	iwi_attach),
224 	DEVMETHOD(device_detach,	iwi_detach),
225 	DEVMETHOD(device_shutdown,	iwi_shutdown),
226 	DEVMETHOD(device_suspend,	iwi_suspend),
227 	DEVMETHOD(device_resume,	iwi_resume),
228 
229 	{ 0, 0 }
230 };
231 
232 static driver_t iwi_driver = {
233 	"iwi",
234 	iwi_methods,
235 	sizeof (struct iwi_softc)
236 };
237 
238 static devclass_t iwi_devclass;
239 
240 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
241 
242 static __inline uint8_t
243 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
244 {
245 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
246 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
247 }
248 
249 static __inline uint32_t
250 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
251 {
252 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
253 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
254 }
255 
256 static int
257 iwi_probe(device_t dev)
258 {
259 	const struct iwi_ident *ident;
260 
261 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
262 		if (pci_get_vendor(dev) == ident->vendor &&
263 		    pci_get_device(dev) == ident->device) {
264 			device_set_desc(dev, ident->name);
265 			return 0;
266 		}
267 	}
268 	return ENXIO;
269 }
270 
271 /* Base Address Register */
272 #define IWI_PCI_BAR0	0x10
273 
274 static int
275 iwi_attach(device_t dev)
276 {
277 	struct iwi_softc *sc = device_get_softc(dev);
278 	struct ifnet *ifp;
279 	struct ieee80211com *ic;
280 	uint16_t val;
281 	int i, error;
282 	uint8_t bands;
283 
284 	sc->sc_dev = dev;
285 
286 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
287 	if (ifp == NULL) {
288 		device_printf(dev, "can not if_alloc()\n");
289 		return ENXIO;
290 	}
291 	ic = ifp->if_l2com;
292 
293 	IWI_LOCK_INIT(sc);
294 	IWI_CMD_LOCK_INIT(sc);
295 
296 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
297 
298 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT | M_ZERO,
299 		taskqueue_thread_enqueue, &sc->sc_tq);
300 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
301 		device_get_nameunit(dev));
302 	sc->sc_tq2 = taskqueue_create("iwi_taskq2", M_NOWAIT | M_ZERO,
303 		taskqueue_thread_enqueue, &sc->sc_tq2);
304 	taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2",
305 		device_get_nameunit(dev));
306 
307 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
308 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
309 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
310 	TASK_INIT(&sc->sc_opstask, 0, iwi_ops, sc);
311 	TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc);
312 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
313 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
314 
315 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
316 		device_printf(dev, "chip is in D%d power mode "
317 		    "-- setting to D0\n", pci_get_powerstate(dev));
318 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
319 	}
320 
321 	pci_write_config(dev, 0x41, 0, 1);
322 
323 	/* enable bus-mastering */
324 	pci_enable_busmaster(dev);
325 
326 	sc->mem_rid = IWI_PCI_BAR0;
327 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
328 	    RF_ACTIVE);
329 	if (sc->mem == NULL) {
330 		device_printf(dev, "could not allocate memory resource\n");
331 		goto fail;
332 	}
333 
334 	sc->sc_st = rman_get_bustag(sc->mem);
335 	sc->sc_sh = rman_get_bushandle(sc->mem);
336 
337 	sc->irq_rid = 0;
338 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
339 	    RF_ACTIVE | RF_SHAREABLE);
340 	if (sc->irq == NULL) {
341 		device_printf(dev, "could not allocate interrupt resource\n");
342 		goto fail;
343 	}
344 
345 	if (iwi_reset(sc) != 0) {
346 		device_printf(dev, "could not reset adapter\n");
347 		goto fail;
348 	}
349 
350 	/*
351 	 * Allocate rings.
352 	 */
353 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
354 		device_printf(dev, "could not allocate Cmd ring\n");
355 		goto fail;
356 	}
357 
358 	for (i = 0; i < 4; i++) {
359 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
360 		    IWI_CSR_TX1_RIDX + i * 4,
361 		    IWI_CSR_TX1_WIDX + i * 4);
362 		if (error != 0) {
363 			device_printf(dev, "could not allocate Tx ring %d\n",
364 				i+i);
365 			goto fail;
366 		}
367 	}
368 
369 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
370 		device_printf(dev, "could not allocate Rx ring\n");
371 		goto fail;
372 	}
373 
374 	iwi_wme_init(sc);
375 
376 	ifp->if_softc = sc;
377 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
378 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
379 	ifp->if_init = iwi_init;
380 	ifp->if_ioctl = iwi_ioctl;
381 	ifp->if_start = iwi_start;
382 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
383 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
384 	IFQ_SET_READY(&ifp->if_snd);
385 
386 	ic->ic_ifp = ifp;
387 	ic->ic_opmode = IEEE80211_M_STA;
388 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
389 
390 	/* set device capabilities */
391 	ic->ic_caps =
392 	      IEEE80211_C_STA		/* station mode supported */
393 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
394 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
395 	    | IEEE80211_C_PMGT		/* power save supported */
396 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
397 	    | IEEE80211_C_WPA		/* 802.11i */
398 	    | IEEE80211_C_WME		/* 802.11e */
399 #if 0
400 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
401 #endif
402 	    ;
403 
404 	/* read MAC address from EEPROM */
405 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
406 	ic->ic_myaddr[0] = val & 0xff;
407 	ic->ic_myaddr[1] = val >> 8;
408 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
409 	ic->ic_myaddr[2] = val & 0xff;
410 	ic->ic_myaddr[3] = val >> 8;
411 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
412 	ic->ic_myaddr[4] = val & 0xff;
413 	ic->ic_myaddr[5] = val >> 8;
414 
415 	bands = 0;
416 	setbit(&bands, IEEE80211_MODE_11B);
417 	setbit(&bands, IEEE80211_MODE_11G);
418 	if (pci_get_device(dev) >= 0x4223)
419 		setbit(&bands, IEEE80211_MODE_11A);
420 	ieee80211_init_channels(ic, NULL, &bands);
421 
422 	ieee80211_ifattach(ic);
423 	/* override default methods */
424 	ic->ic_node_alloc = iwi_node_alloc;
425 	sc->sc_node_free = ic->ic_node_free;
426 	ic->ic_node_free = iwi_node_free;
427 	ic->ic_raw_xmit = iwi_raw_xmit;
428 	ic->ic_scan_start = iwi_scan_start;
429 	ic->ic_scan_end = iwi_scan_end;
430 	ic->ic_set_channel = iwi_set_channel;
431 	ic->ic_scan_curchan = iwi_scan_curchan;
432 	ic->ic_scan_mindwell = iwi_scan_mindwell;
433 	ic->ic_wme.wme_update = iwi_wme_update;
434 
435 	ic->ic_vap_create = iwi_vap_create;
436 	ic->ic_vap_delete = iwi_vap_delete;
437 
438 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
439 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
440 
441 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
442 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
443 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
444 
445 	sc->sc_txtap_len = sizeof sc->sc_txtap;
446 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
447 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
448 
449 	iwi_sysctlattach(sc);
450 	iwi_ledattach(sc);
451 
452 	/*
453 	 * Hook our interrupt after all initialization is complete.
454 	 */
455 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
456 	    NULL, iwi_intr, sc, &sc->sc_ih);
457 	if (error != 0) {
458 		device_printf(dev, "could not set up interrupt\n");
459 		goto fail;
460 	}
461 
462 	if (bootverbose)
463 		ieee80211_announce(ic);
464 
465 	return 0;
466 fail:
467 	/* XXX fix */
468 	iwi_detach(dev);
469 	return ENXIO;
470 }
471 
472 static int
473 iwi_detach(device_t dev)
474 {
475 	struct iwi_softc *sc = device_get_softc(dev);
476 	struct ifnet *ifp = sc->sc_ifp;
477 	struct ieee80211com *ic = ifp->if_l2com;
478 
479 	iwi_stop(sc);
480 
481 	bpfdetach(ifp);
482 	ieee80211_ifdetach(ic);
483 
484 	/* NB: do early to drain any pending tasks */
485 	taskqueue_free(sc->sc_tq);
486 	taskqueue_free(sc->sc_tq2);
487 
488 	iwi_put_firmware(sc);
489 	iwi_release_fw_dma(sc);
490 
491 	iwi_free_cmd_ring(sc, &sc->cmdq);
492 	iwi_free_tx_ring(sc, &sc->txq[0]);
493 	iwi_free_tx_ring(sc, &sc->txq[1]);
494 	iwi_free_tx_ring(sc, &sc->txq[2]);
495 	iwi_free_tx_ring(sc, &sc->txq[3]);
496 	iwi_free_rx_ring(sc, &sc->rxq);
497 
498 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
499 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
500 
501 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
502 
503 	delete_unrhdr(sc->sc_unr);
504 
505 	IWI_LOCK_DESTROY(sc);
506 	IWI_CMD_LOCK_DESTROY(sc);
507 
508 	if_free(ifp);
509 
510 	return 0;
511 }
512 
513 static struct ieee80211vap *
514 iwi_vap_create(struct ieee80211com *ic,
515 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
516 	const uint8_t bssid[IEEE80211_ADDR_LEN],
517 	const uint8_t mac[IEEE80211_ADDR_LEN])
518 {
519 	struct ifnet *ifp = ic->ic_ifp;
520 	struct iwi_softc *sc = ifp->if_softc;
521 	struct iwi_vap *ivp;
522 	struct ieee80211vap *vap;
523 	int i;
524 
525 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
526 		return NULL;
527 	/*
528 	 * Get firmware image (and possibly dma memory) on mode change.
529 	 */
530 	if (iwi_get_firmware(sc, opmode))
531 		return NULL;
532 	/* allocate DMA memory for mapping firmware image */
533 	i = sc->fw_fw.size;
534 	if (sc->fw_boot.size > i)
535 		i = sc->fw_boot.size;
536 	/* XXX do we dma the ucode as well ? */
537 	if (sc->fw_uc.size > i)
538 		i = sc->fw_uc.size;
539 	if (iwi_init_fw_dma(sc, i))
540 		return NULL;
541 
542 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
543 	    M_80211_VAP, M_NOWAIT | M_ZERO);
544 	if (ivp == NULL)
545 		return NULL;
546 	vap = &ivp->iwi_vap;
547 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
548 	/* override the default, the setting comes from the linux driver */
549 	vap->iv_bmissthreshold = 24;
550 	/* override with driver methods */
551 	ivp->iwi_newstate = vap->iv_newstate;
552 	vap->iv_newstate = iwi_newstate;
553 
554 	TASK_INIT(&ivp->iwi_authsuccess_task, 0, iwi_authsuccess, vap);
555 	TASK_INIT(&ivp->iwi_assocsuccess_task, 0, iwi_assocsuccess, vap);
556 	TASK_INIT(&ivp->iwi_assocfailed_task, 0, iwi_assocfailed, vap);
557 
558 	/* complete setup */
559 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
560 	ic->ic_opmode = opmode;
561 	return vap;
562 }
563 
564 static void
565 iwi_vap_delete(struct ieee80211vap *vap)
566 {
567 	struct iwi_vap *ivp = IWI_VAP(vap);
568 
569 	ieee80211_vap_detach(vap);
570 	free(ivp, M_80211_VAP);
571 }
572 
573 static void
574 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
575 {
576 	if (error != 0)
577 		return;
578 
579 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
580 
581 	*(bus_addr_t *)arg = segs[0].ds_addr;
582 }
583 
584 static int
585 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
586 {
587 	int error;
588 
589 	ring->count = count;
590 	ring->queued = 0;
591 	ring->cur = ring->next = 0;
592 
593 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
594 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
595 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
596 	    NULL, NULL, &ring->desc_dmat);
597 	if (error != 0) {
598 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
599 		goto fail;
600 	}
601 
602 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
603 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
604 	if (error != 0) {
605 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
606 		goto fail;
607 	}
608 
609 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
610 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
611 	if (error != 0) {
612 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
613 		goto fail;
614 	}
615 
616 	return 0;
617 
618 fail:	iwi_free_cmd_ring(sc, ring);
619 	return error;
620 }
621 
622 static void
623 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
624 {
625 	ring->queued = 0;
626 	ring->cur = ring->next = 0;
627 }
628 
629 static void
630 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
631 {
632 	if (ring->desc != NULL) {
633 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
634 		    BUS_DMASYNC_POSTWRITE);
635 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
636 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
637 	}
638 
639 	if (ring->desc_dmat != NULL)
640 		bus_dma_tag_destroy(ring->desc_dmat);
641 }
642 
643 static int
644 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
645     bus_addr_t csr_ridx, bus_addr_t csr_widx)
646 {
647 	int i, error;
648 
649 	ring->count = count;
650 	ring->queued = 0;
651 	ring->cur = ring->next = 0;
652 	ring->csr_ridx = csr_ridx;
653 	ring->csr_widx = csr_widx;
654 
655 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
656 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
657 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
658 	    NULL, &ring->desc_dmat);
659 	if (error != 0) {
660 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
661 		goto fail;
662 	}
663 
664 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
665 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
666 	if (error != 0) {
667 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
668 		goto fail;
669 	}
670 
671 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
672 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
673 	if (error != 0) {
674 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
675 		goto fail;
676 	}
677 
678 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
679 	    M_NOWAIT | M_ZERO);
680 	if (ring->data == NULL) {
681 		device_printf(sc->sc_dev, "could not allocate soft data\n");
682 		error = ENOMEM;
683 		goto fail;
684 	}
685 
686 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
687 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
688 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
689 	if (error != 0) {
690 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
691 		goto fail;
692 	}
693 
694 	for (i = 0; i < count; i++) {
695 		error = bus_dmamap_create(ring->data_dmat, 0,
696 		    &ring->data[i].map);
697 		if (error != 0) {
698 			device_printf(sc->sc_dev, "could not create DMA map\n");
699 			goto fail;
700 		}
701 	}
702 
703 	return 0;
704 
705 fail:	iwi_free_tx_ring(sc, ring);
706 	return error;
707 }
708 
709 static void
710 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
711 {
712 	struct iwi_tx_data *data;
713 	int i;
714 
715 	for (i = 0; i < ring->count; i++) {
716 		data = &ring->data[i];
717 
718 		if (data->m != NULL) {
719 			bus_dmamap_sync(ring->data_dmat, data->map,
720 			    BUS_DMASYNC_POSTWRITE);
721 			bus_dmamap_unload(ring->data_dmat, data->map);
722 			m_freem(data->m);
723 			data->m = NULL;
724 		}
725 
726 		if (data->ni != NULL) {
727 			ieee80211_free_node(data->ni);
728 			data->ni = NULL;
729 		}
730 	}
731 
732 	ring->queued = 0;
733 	ring->cur = ring->next = 0;
734 }
735 
736 static void
737 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
738 {
739 	struct iwi_tx_data *data;
740 	int i;
741 
742 	if (ring->desc != NULL) {
743 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
744 		    BUS_DMASYNC_POSTWRITE);
745 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
746 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
747 	}
748 
749 	if (ring->desc_dmat != NULL)
750 		bus_dma_tag_destroy(ring->desc_dmat);
751 
752 	if (ring->data != NULL) {
753 		for (i = 0; i < ring->count; i++) {
754 			data = &ring->data[i];
755 
756 			if (data->m != NULL) {
757 				bus_dmamap_sync(ring->data_dmat, data->map,
758 				    BUS_DMASYNC_POSTWRITE);
759 				bus_dmamap_unload(ring->data_dmat, data->map);
760 				m_freem(data->m);
761 			}
762 
763 			if (data->ni != NULL)
764 				ieee80211_free_node(data->ni);
765 
766 			if (data->map != NULL)
767 				bus_dmamap_destroy(ring->data_dmat, data->map);
768 		}
769 
770 		free(ring->data, M_DEVBUF);
771 	}
772 
773 	if (ring->data_dmat != NULL)
774 		bus_dma_tag_destroy(ring->data_dmat);
775 }
776 
777 static int
778 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
779 {
780 	struct iwi_rx_data *data;
781 	int i, error;
782 
783 	ring->count = count;
784 	ring->cur = 0;
785 
786 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
787 	    M_NOWAIT | M_ZERO);
788 	if (ring->data == NULL) {
789 		device_printf(sc->sc_dev, "could not allocate soft data\n");
790 		error = ENOMEM;
791 		goto fail;
792 	}
793 
794 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
795 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
796 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
797 	if (error != 0) {
798 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
799 		goto fail;
800 	}
801 
802 	for (i = 0; i < count; i++) {
803 		data = &ring->data[i];
804 
805 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
806 		if (error != 0) {
807 			device_printf(sc->sc_dev, "could not create DMA map\n");
808 			goto fail;
809 		}
810 
811 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
812 		if (data->m == NULL) {
813 			device_printf(sc->sc_dev,
814 			    "could not allocate rx mbuf\n");
815 			error = ENOMEM;
816 			goto fail;
817 		}
818 
819 		error = bus_dmamap_load(ring->data_dmat, data->map,
820 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
821 		    &data->physaddr, 0);
822 		if (error != 0) {
823 			device_printf(sc->sc_dev,
824 			    "could not load rx buf DMA map");
825 			goto fail;
826 		}
827 
828 		data->reg = IWI_CSR_RX_BASE + i * 4;
829 	}
830 
831 	return 0;
832 
833 fail:	iwi_free_rx_ring(sc, ring);
834 	return error;
835 }
836 
837 static void
838 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
839 {
840 	ring->cur = 0;
841 }
842 
843 static void
844 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
845 {
846 	struct iwi_rx_data *data;
847 	int i;
848 
849 	if (ring->data != NULL) {
850 		for (i = 0; i < ring->count; i++) {
851 			data = &ring->data[i];
852 
853 			if (data->m != NULL) {
854 				bus_dmamap_sync(ring->data_dmat, data->map,
855 				    BUS_DMASYNC_POSTREAD);
856 				bus_dmamap_unload(ring->data_dmat, data->map);
857 				m_freem(data->m);
858 			}
859 
860 			if (data->map != NULL)
861 				bus_dmamap_destroy(ring->data_dmat, data->map);
862 		}
863 
864 		free(ring->data, M_DEVBUF);
865 	}
866 
867 	if (ring->data_dmat != NULL)
868 		bus_dma_tag_destroy(ring->data_dmat);
869 }
870 
871 static int
872 iwi_shutdown(device_t dev)
873 {
874 	struct iwi_softc *sc = device_get_softc(dev);
875 
876 	iwi_stop(sc);
877 	iwi_put_firmware(sc);		/* ??? XXX */
878 
879 	return 0;
880 }
881 
882 static int
883 iwi_suspend(device_t dev)
884 {
885 	struct iwi_softc *sc = device_get_softc(dev);
886 
887 	iwi_stop(sc);
888 
889 	return 0;
890 }
891 
892 static int
893 iwi_resume(device_t dev)
894 {
895 	struct iwi_softc *sc = device_get_softc(dev);
896 	struct ifnet *ifp = sc->sc_ifp;
897 
898 	pci_write_config(dev, 0x41, 0, 1);
899 
900 	if (ifp->if_flags & IFF_UP)
901 		iwi_init(sc);
902 
903 	return 0;
904 }
905 
906 static struct ieee80211_node *
907 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
908 {
909 	struct iwi_node *in;
910 
911 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
912 	if (in == NULL)
913 		return NULL;
914 	/* XXX assign sta table entry for adhoc */
915 	in->in_station = -1;
916 
917 	return &in->in_node;
918 }
919 
920 static void
921 iwi_node_free(struct ieee80211_node *ni)
922 {
923 	struct ieee80211com *ic = ni->ni_ic;
924 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
925 	struct iwi_node *in = (struct iwi_node *)ni;
926 
927 	if (in->in_station != -1) {
928 		DPRINTF(("%s mac %6D station %u\n", __func__,
929 		    ni->ni_macaddr, ":", in->in_station));
930 		free_unr(sc->sc_unr, in->in_station);
931 	}
932 
933 	sc->sc_node_free(ni);
934 }
935 
936 /*
937  * Convert h/w rate code to IEEE rate code.
938  */
939 static int
940 iwi_cvtrate(int iwirate)
941 {
942 	switch (iwirate) {
943 	case IWI_RATE_DS1:	return 2;
944 	case IWI_RATE_DS2:	return 4;
945 	case IWI_RATE_DS5:	return 11;
946 	case IWI_RATE_DS11:	return 22;
947 	case IWI_RATE_OFDM6:	return 12;
948 	case IWI_RATE_OFDM9:	return 18;
949 	case IWI_RATE_OFDM12:	return 24;
950 	case IWI_RATE_OFDM18:	return 36;
951 	case IWI_RATE_OFDM24:	return 48;
952 	case IWI_RATE_OFDM36:	return 72;
953 	case IWI_RATE_OFDM48:	return 96;
954 	case IWI_RATE_OFDM54:	return 108;
955 	}
956 	return 0;
957 }
958 
959 /*
960  * The firmware automatically adapts the transmit speed.  We report its current
961  * value here.
962  */
963 static void
964 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
965 {
966 	struct ieee80211vap *vap = ifp->if_softc;
967 	struct ieee80211com *ic = vap->iv_ic;
968 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
969 
970 	/* read current transmission rate from adapter */
971 	vap->iv_bss->ni_txrate =
972 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
973 	ieee80211_media_status(ifp, imr);
974 }
975 
976 static int
977 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
978 {
979 	struct iwi_vap *ivp = IWI_VAP(vap);
980 	struct ieee80211com *ic = vap->iv_ic;
981 	struct ifnet *ifp = ic->ic_ifp;
982 	struct iwi_softc *sc = ifp->if_softc;
983 	IWI_LOCK_DECL;
984 
985 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
986 		ieee80211_state_name[vap->iv_state],
987 		ieee80211_state_name[nstate], sc->flags));
988 
989 	switch (nstate) {
990 	case IEEE80211_S_INIT:
991 		IWI_LOCK(sc);
992 		/*
993 		 * NB: don't try to do this if iwi_stop_master has
994 		 *     shutdown the firmware and disabled interrupts.
995 		 */
996 		if (vap->iv_state == IEEE80211_S_RUN &&
997 		    (sc->flags & IWI_FLAG_FW_INITED))
998 			iwi_queue_cmd(sc, IWI_DISASSOC, 1);
999 		IWI_UNLOCK(sc);
1000 		break;
1001 	case IEEE80211_S_AUTH:
1002 		iwi_queue_cmd(sc, IWI_AUTH, arg);
1003 		return EINPROGRESS;
1004 	case IEEE80211_S_RUN:
1005 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
1006 		    vap->iv_state == IEEE80211_S_SCAN) {
1007 			/*
1008 			 * XXX when joining an ibss network we are called
1009 			 * with a SCAN -> RUN transition on scan complete.
1010 			 * Use that to call iwi_auth_and_assoc.  On completing
1011 			 * the join we are then called again with an
1012 			 * AUTH -> RUN transition and we want to do nothing.
1013 			 * This is all totally bogus and needs to be redone.
1014 			 */
1015 			iwi_queue_cmd(sc, IWI_ASSOC, 0);
1016 			return EINPROGRESS;
1017 		}
1018 		break;
1019 	case IEEE80211_S_ASSOC:
1020 		/*
1021 		 * If we are transitioning from AUTH then just wait
1022 		 * for the ASSOC status to come back from the firmware.
1023 		 * Otherwise we need to issue the association request.
1024 		 */
1025 		if (vap->iv_state == IEEE80211_S_AUTH)
1026 			break;
1027 		iwi_queue_cmd(sc, IWI_ASSOC, arg);
1028 		return EINPROGRESS;
1029 	default:
1030 		break;
1031 	}
1032 	return ivp->iwi_newstate(vap, nstate, arg);
1033 }
1034 
1035 /*
1036  * WME parameters coming from IEEE 802.11e specification.  These values are
1037  * already declared in ieee80211_proto.c, but they are static so they can't
1038  * be reused here.
1039  */
1040 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1041 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1042 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1043 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1044 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1045 };
1046 
1047 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1048 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1049 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1050 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1051 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1052 };
1053 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1054 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1055 
1056 static void
1057 iwi_wme_init(struct iwi_softc *sc)
1058 {
1059 	const struct wmeParams *wmep;
1060 	int ac;
1061 
1062 	memset(sc->wme, 0, sizeof sc->wme);
1063 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1064 		/* set WME values for CCK modulation */
1065 		wmep = &iwi_wme_cck_params[ac];
1066 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1067 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1068 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1069 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1070 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1071 
1072 		/* set WME values for OFDM modulation */
1073 		wmep = &iwi_wme_ofdm_params[ac];
1074 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1075 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1076 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1077 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1078 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1079 	}
1080 }
1081 
1082 static int
1083 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1084 {
1085 	const struct wmeParams *wmep;
1086 	int ac;
1087 
1088 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1089 		/* set WME values for current operating mode */
1090 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1091 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1092 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1093 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1094 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1095 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1096 	}
1097 
1098 	DPRINTF(("Setting WME parameters\n"));
1099 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1100 }
1101 #undef IWI_USEC
1102 #undef IWI_EXP2
1103 
1104 static int
1105 iwi_wme_update(struct ieee80211com *ic)
1106 {
1107 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1108 
1109 	/*
1110 	 * We may be called to update the WME parameters in
1111 	 * the adapter at various places.  If we're already
1112 	 * associated then initiate the request immediately
1113 	 * (via the taskqueue); otherwise we assume the params
1114 	 * will get sent down to the adapter as part of the
1115 	 * work iwi_auth_and_assoc does.
1116 	 */
1117 	return iwi_queue_cmd(sc, IWI_SET_WME, 0);
1118 }
1119 
1120 static int
1121 iwi_wme_setie(struct iwi_softc *sc)
1122 {
1123 	struct ieee80211_wme_info wme;
1124 
1125 	memset(&wme, 0, sizeof wme);
1126 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1127 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1128 	wme.wme_oui[0] = 0x00;
1129 	wme.wme_oui[1] = 0x50;
1130 	wme.wme_oui[2] = 0xf2;
1131 	wme.wme_type = WME_OUI_TYPE;
1132 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1133 	wme.wme_version = WME_VERSION;
1134 	wme.wme_info = 0;
1135 
1136 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1137 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1138 }
1139 
1140 /*
1141  * Read 16 bits at address 'addr' from the serial EEPROM.
1142  */
1143 static uint16_t
1144 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1145 {
1146 	uint32_t tmp;
1147 	uint16_t val;
1148 	int n;
1149 
1150 	/* clock C once before the first command */
1151 	IWI_EEPROM_CTL(sc, 0);
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1155 
1156 	/* write start bit (1) */
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1159 
1160 	/* write READ opcode (10) */
1161 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1163 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1164 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1165 
1166 	/* write address A7-A0 */
1167 	for (n = 7; n >= 0; n--) {
1168 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1169 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1170 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1171 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1172 	}
1173 
1174 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1175 
1176 	/* read data Q15-Q0 */
1177 	val = 0;
1178 	for (n = 15; n >= 0; n--) {
1179 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1180 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1181 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1182 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1183 	}
1184 
1185 	IWI_EEPROM_CTL(sc, 0);
1186 
1187 	/* clear Chip Select and clock C */
1188 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1189 	IWI_EEPROM_CTL(sc, 0);
1190 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1191 
1192 	return val;
1193 }
1194 
1195 static void
1196 iwi_setcurchan(struct iwi_softc *sc, int chan)
1197 {
1198 	struct ifnet *ifp = sc->sc_ifp;
1199 	struct ieee80211com *ic = ifp->if_l2com;
1200 
1201 	sc->curchan = chan;
1202 
1203 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
1204 		htole16(ic->ic_curchan->ic_freq);
1205 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
1206 		htole16(ic->ic_curchan->ic_flags);
1207 }
1208 
1209 static void
1210 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1211     struct iwi_frame *frame)
1212 {
1213 	struct ifnet *ifp = sc->sc_ifp;
1214 	struct ieee80211com *ic = ifp->if_l2com;
1215 	struct mbuf *mnew, *m;
1216 	struct ieee80211_node *ni;
1217 	int type, error, framelen;
1218 	IWI_LOCK_DECL;
1219 
1220 	framelen = le16toh(frame->len);
1221 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1222 		/*
1223 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1224 		 *     out of bounds; need to figure out how to limit
1225 		 *     frame size in the firmware
1226 		 */
1227 		/* XXX stat */
1228 		DPRINTFN(1,
1229 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1230 		    le16toh(frame->len), frame->chan, frame->rssi,
1231 		    frame->rssi_dbm));
1232 		return;
1233 	}
1234 
1235 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1236 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1237 
1238 	if (frame->chan != sc->curchan)
1239 		iwi_setcurchan(sc, frame->chan);
1240 
1241 	/*
1242 	 * Try to allocate a new mbuf for this ring element and load it before
1243 	 * processing the current mbuf. If the ring element cannot be loaded,
1244 	 * drop the received packet and reuse the old mbuf. In the unlikely
1245 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1246 	 */
1247 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1248 	if (mnew == NULL) {
1249 		ifp->if_ierrors++;
1250 		return;
1251 	}
1252 
1253 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1254 
1255 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1256 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1257 	    0);
1258 	if (error != 0) {
1259 		m_freem(mnew);
1260 
1261 		/* try to reload the old mbuf */
1262 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1263 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1264 		    &data->physaddr, 0);
1265 		if (error != 0) {
1266 			/* very unlikely that it will fail... */
1267 			panic("%s: could not load old rx mbuf",
1268 			    device_get_name(sc->sc_dev));
1269 		}
1270 		ifp->if_ierrors++;
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * New mbuf successfully loaded, update Rx ring and continue
1276 	 * processing.
1277 	 */
1278 	m = data->m;
1279 	data->m = mnew;
1280 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1281 
1282 	/* finalize mbuf */
1283 	m->m_pkthdr.rcvif = ifp;
1284 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1285 	    sizeof (struct iwi_frame) + framelen;
1286 
1287 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1288 
1289 	if (bpf_peers_present(ifp->if_bpf)) {
1290 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1291 
1292 		tap->wr_flags = 0;
1293 		tap->wr_rate = iwi_cvtrate(frame->rate);
1294 		tap->wr_antsignal = frame->signal;
1295 		tap->wr_antenna = frame->antenna;
1296 
1297 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1298 	}
1299 	IWI_UNLOCK(sc);
1300 
1301 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1302 	if (ni != NULL) {
1303 		type = ieee80211_input(ni, m, frame->rssi_dbm, 0, 0);
1304 		ieee80211_free_node(ni);
1305 	} else
1306 		type = ieee80211_input_all(ic, m, frame->rssi_dbm, 0, 0);
1307 
1308 	IWI_LOCK(sc);
1309 	if (sc->sc_softled) {
1310 		/*
1311 		 * Blink for any data frame.  Otherwise do a
1312 		 * heartbeat-style blink when idle.  The latter
1313 		 * is mainly for station mode where we depend on
1314 		 * periodic beacon frames to trigger the poll event.
1315 		 */
1316 		if (type == IEEE80211_FC0_TYPE_DATA) {
1317 			sc->sc_rxrate = frame->rate;
1318 			iwi_led_event(sc, IWI_LED_RX);
1319 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1320 			iwi_led_event(sc, IWI_LED_POLL);
1321 	}
1322 }
1323 
1324 /*
1325  * Check for an association response frame to see if QoS
1326  * has been negotiated.  We parse just enough to figure
1327  * out if we're supposed to use QoS.  The proper solution
1328  * is to pass the frame up so ieee80211_input can do the
1329  * work but that's made hard by how things currently are
1330  * done in the driver.
1331  */
1332 static void
1333 iwi_checkforqos(struct ieee80211vap *vap,
1334 	const struct ieee80211_frame *wh, int len)
1335 {
1336 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1337 	const uint8_t *frm, *efrm, *wme;
1338 	struct ieee80211_node *ni;
1339 	uint16_t capinfo, status, associd;
1340 
1341 	/* NB: +8 for capinfo, status, associd, and first ie */
1342 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1343 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1344 		return;
1345 	/*
1346 	 * asresp frame format
1347 	 *	[2] capability information
1348 	 *	[2] status
1349 	 *	[2] association ID
1350 	 *	[tlv] supported rates
1351 	 *	[tlv] extended supported rates
1352 	 *	[tlv] WME
1353 	 */
1354 	frm = (const uint8_t *)&wh[1];
1355 	efrm = ((const uint8_t *) wh) + len;
1356 
1357 	capinfo = le16toh(*(const uint16_t *)frm);
1358 	frm += 2;
1359 	status = le16toh(*(const uint16_t *)frm);
1360 	frm += 2;
1361 	associd = le16toh(*(const uint16_t *)frm);
1362 	frm += 2;
1363 
1364 	wme = NULL;
1365 	while (frm < efrm) {
1366 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1367 		switch (*frm) {
1368 		case IEEE80211_ELEMID_VENDOR:
1369 			if (iswmeoui(frm))
1370 				wme = frm;
1371 			break;
1372 		}
1373 		frm += frm[1] + 2;
1374 	}
1375 
1376 	ni = vap->iv_bss;
1377 	ni->ni_capinfo = capinfo;
1378 	ni->ni_associd = associd;
1379 	if (wme != NULL)
1380 		ni->ni_flags |= IEEE80211_NODE_QOS;
1381 	else
1382 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1383 #undef SUBTYPE
1384 }
1385 
1386 /*
1387  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1388  */
1389 
1390 static void
1391 iwi_authsuccess(void *arg, int npending)
1392 {
1393 	struct ieee80211vap *vap = arg;
1394 
1395 	ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1396 }
1397 
1398 static void
1399 iwi_assocsuccess(void *arg, int npending)
1400 {
1401 	struct ieee80211vap *vap = arg;
1402 
1403 	ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1404 }
1405 
1406 static void
1407 iwi_assocfailed(void *arg, int npending)
1408 {
1409 	struct ieee80211vap *vap = arg;
1410 
1411 	ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1412 }
1413 
1414 static void
1415 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1416 {
1417 	struct ifnet *ifp = sc->sc_ifp;
1418 	struct ieee80211com *ic = ifp->if_l2com;
1419 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1420 	struct iwi_notif_scan_channel *chan;
1421 	struct iwi_notif_scan_complete *scan;
1422 	struct iwi_notif_authentication *auth;
1423 	struct iwi_notif_association *assoc;
1424 	struct iwi_notif_beacon_state *beacon;
1425 
1426 	switch (notif->type) {
1427 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1428 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1429 
1430 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1431 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1432 
1433 		/* Reset the timer, the scan is still going */
1434 		sc->sc_state_timer = 3;
1435 		break;
1436 
1437 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1438 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1439 
1440 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1441 		    scan->status));
1442 
1443 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1444 
1445 		if (scan->status == IWI_SCAN_COMPLETED) {
1446 			/* NB: don't need to defer, net80211 does it for us */
1447 			ieee80211_scan_next(vap);
1448 		}
1449 		break;
1450 
1451 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1452 		auth = (struct iwi_notif_authentication *)(notif + 1);
1453 		switch (auth->state) {
1454 		case IWI_AUTH_SUCCESS:
1455 			DPRINTFN(2, ("Authentication succeeeded\n"));
1456 			taskqueue_enqueue(taskqueue_swi,
1457 			    &IWI_VAP(vap)->iwi_authsuccess_task);
1458 			break;
1459 		case IWI_AUTH_FAIL:
1460 			/*
1461 			 * These are delivered as an unsolicited deauth
1462 			 * (e.g. due to inactivity) or in response to an
1463 			 * associate request.
1464 			 */
1465 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1466 			if (vap->iv_state != IEEE80211_S_RUN) {
1467 				DPRINTFN(2, ("Authentication failed\n"));
1468 				vap->iv_stats.is_rx_auth_fail++;
1469 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1470 			} else {
1471 				DPRINTFN(2, ("Deauthenticated\n"));
1472 				vap->iv_stats.is_rx_deauth++;
1473 			}
1474 			taskqueue_enqueue(taskqueue_swi,
1475 			    &IWI_VAP(vap)->iwi_assocfailed_task);
1476 			break;
1477 		case IWI_AUTH_SENT_1:
1478 		case IWI_AUTH_RECV_2:
1479 		case IWI_AUTH_SEQ1_PASS:
1480 			break;
1481 		case IWI_AUTH_SEQ1_FAIL:
1482 			DPRINTFN(2, ("Initial authentication handshake failed; "
1483 				"you probably need shared key\n"));
1484 			vap->iv_stats.is_rx_auth_fail++;
1485 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1486 			/* XXX retry shared key when in auto */
1487 			break;
1488 		default:
1489 			device_printf(sc->sc_dev,
1490 			    "unknown authentication state %u\n", auth->state);
1491 			break;
1492 		}
1493 		break;
1494 
1495 	case IWI_NOTIF_TYPE_ASSOCIATION:
1496 		assoc = (struct iwi_notif_association *)(notif + 1);
1497 		switch (assoc->state) {
1498 		case IWI_AUTH_SUCCESS:
1499 			/* re-association, do nothing */
1500 			break;
1501 		case IWI_ASSOC_SUCCESS:
1502 			DPRINTFN(2, ("Association succeeded\n"));
1503 			sc->flags |= IWI_FLAG_ASSOCIATED;
1504 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1505 			iwi_checkforqos(vap,
1506 			    (const struct ieee80211_frame *)(assoc+1),
1507 			    le16toh(notif->len) - sizeof(*assoc));
1508 			taskqueue_enqueue(taskqueue_swi,
1509 			    &IWI_VAP(vap)->iwi_assocsuccess_task);
1510 			break;
1511 		case IWI_ASSOC_INIT:
1512 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1513 			switch (sc->fw_state) {
1514 			case IWI_FW_ASSOCIATING:
1515 				DPRINTFN(2, ("Association failed\n"));
1516 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1517 				taskqueue_enqueue(taskqueue_swi,
1518 				    &IWI_VAP(vap)->iwi_assocfailed_task);
1519 				break;
1520 
1521 			case IWI_FW_DISASSOCIATING:
1522 				DPRINTFN(2, ("Dissassociated\n"));
1523 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1524 				vap->iv_stats.is_rx_disassoc++;
1525 				taskqueue_enqueue(taskqueue_swi,
1526 				    &IWI_VAP(vap)->iwi_assocfailed_task);
1527 				break;
1528 			}
1529 			break;
1530 		default:
1531 			device_printf(sc->sc_dev,
1532 			    "unknown association state %u\n", assoc->state);
1533 			break;
1534 		}
1535 		break;
1536 
1537 	case IWI_NOTIF_TYPE_BEACON:
1538 		/* XXX check struct length */
1539 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1540 
1541 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1542 		    beacon->state, le32toh(beacon->number)));
1543 
1544 		if (beacon->state == IWI_BEACON_MISS) {
1545 			/*
1546 			 * The firmware notifies us of every beacon miss
1547 			 * so we need to track the count against the
1548 			 * configured threshold before notifying the
1549 			 * 802.11 layer.
1550 			 * XXX try to roam, drop assoc only on much higher count
1551 			 */
1552 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1553 				DPRINTF(("Beacon miss: %u >= %u\n",
1554 				    le32toh(beacon->number),
1555 				    vap->iv_bmissthreshold));
1556 				vap->iv_stats.is_beacon_miss++;
1557 				/*
1558 				 * It's pointless to notify the 802.11 layer
1559 				 * as it'll try to send a probe request (which
1560 				 * we'll discard) and then timeout and drop us
1561 				 * into scan state.  Instead tell the firmware
1562 				 * to disassociate and then on completion we'll
1563 				 * kick the state machine to scan.
1564 				 */
1565 				iwi_queue_cmd(sc, IWI_DISASSOC, 1);
1566 			}
1567 		}
1568 		break;
1569 
1570 	case IWI_NOTIF_TYPE_CALIBRATION:
1571 	case IWI_NOTIF_TYPE_NOISE:
1572 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1573 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1574 		break;
1575 
1576 	default:
1577 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1578 		    notif->type, notif->flags, le16toh(notif->len)));
1579 		break;
1580 	}
1581 }
1582 
1583 static void
1584 iwi_rx_intr(struct iwi_softc *sc)
1585 {
1586 	struct iwi_rx_data *data;
1587 	struct iwi_hdr *hdr;
1588 	uint32_t hw;
1589 
1590 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1591 
1592 	for (; sc->rxq.cur != hw;) {
1593 		data = &sc->rxq.data[sc->rxq.cur];
1594 
1595 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1596 		    BUS_DMASYNC_POSTREAD);
1597 
1598 		hdr = mtod(data->m, struct iwi_hdr *);
1599 
1600 		switch (hdr->type) {
1601 		case IWI_HDR_TYPE_FRAME:
1602 			iwi_frame_intr(sc, data, sc->rxq.cur,
1603 			    (struct iwi_frame *)(hdr + 1));
1604 			break;
1605 
1606 		case IWI_HDR_TYPE_NOTIF:
1607 			iwi_notification_intr(sc,
1608 			    (struct iwi_notif *)(hdr + 1));
1609 			break;
1610 
1611 		default:
1612 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1613 			    hdr->type);
1614 		}
1615 
1616 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1617 
1618 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1619 	}
1620 
1621 	/* tell the firmware what we have processed */
1622 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1623 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1624 }
1625 
1626 static void
1627 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1628 {
1629 	struct ifnet *ifp = sc->sc_ifp;
1630 	struct iwi_tx_data *data;
1631 	uint32_t hw;
1632 
1633 	hw = CSR_READ_4(sc, txq->csr_ridx);
1634 
1635 	for (; txq->next != hw;) {
1636 		data = &txq->data[txq->next];
1637 
1638 		bus_dmamap_sync(txq->data_dmat, data->map,
1639 		    BUS_DMASYNC_POSTWRITE);
1640 		bus_dmamap_unload(txq->data_dmat, data->map);
1641 		if (data->m->m_flags & M_TXCB)
1642 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1643 		m_freem(data->m);
1644 		data->m = NULL;
1645 		ieee80211_free_node(data->ni);
1646 		data->ni = NULL;
1647 
1648 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1649 
1650 		ifp->if_opackets++;
1651 
1652 		txq->queued--;
1653 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1654 	}
1655 
1656 	sc->sc_tx_timer = 0;
1657 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1658 
1659 	if (sc->sc_softled)
1660 		iwi_led_event(sc, IWI_LED_TX);
1661 
1662 	iwi_start_locked(ifp);
1663 }
1664 
1665 static void
1666 iwi_intr(void *arg)
1667 {
1668 	struct iwi_softc *sc = arg;
1669 	uint32_t r;
1670 	IWI_LOCK_DECL;
1671 
1672 	IWI_LOCK(sc);
1673 
1674 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1675 		IWI_UNLOCK(sc);
1676 		return;
1677 	}
1678 
1679 	/* acknowledge interrupts */
1680 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1681 
1682 	if (r & IWI_INTR_FATAL_ERROR) {
1683 		device_printf(sc->sc_dev, "firmware error\n");
1684 		taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
1685 
1686 		sc->flags &= ~IWI_FLAG_BUSY;
1687 		sc->sc_busy_timer = 0;
1688 		wakeup(sc);
1689 	}
1690 
1691 	if (r & IWI_INTR_FW_INITED) {
1692 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1693 			wakeup(sc);
1694 	}
1695 
1696 	if (r & IWI_INTR_RADIO_OFF)
1697 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask);
1698 
1699 	if (r & IWI_INTR_CMD_DONE) {
1700 		sc->flags &= ~IWI_FLAG_BUSY;
1701 		sc->sc_busy_timer = 0;
1702 		wakeup(sc);
1703 	}
1704 
1705 	if (r & IWI_INTR_TX1_DONE)
1706 		iwi_tx_intr(sc, &sc->txq[0]);
1707 
1708 	if (r & IWI_INTR_TX2_DONE)
1709 		iwi_tx_intr(sc, &sc->txq[1]);
1710 
1711 	if (r & IWI_INTR_TX3_DONE)
1712 		iwi_tx_intr(sc, &sc->txq[2]);
1713 
1714 	if (r & IWI_INTR_TX4_DONE)
1715 		iwi_tx_intr(sc, &sc->txq[3]);
1716 
1717 	if (r & IWI_INTR_RX_DONE)
1718 		iwi_rx_intr(sc);
1719 
1720 	if (r & IWI_INTR_PARITY_ERROR) {
1721 		/* XXX rate-limit */
1722 		device_printf(sc->sc_dev, "parity error\n");
1723 	}
1724 
1725 	IWI_UNLOCK(sc);
1726 }
1727 
1728 static int
1729 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1730 {
1731 	struct iwi_cmd_desc *desc;
1732 
1733 	IWI_LOCK_ASSERT(sc);
1734 
1735 	if (sc->flags & IWI_FLAG_BUSY) {
1736 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1737 			__func__, type);
1738 		return EAGAIN;
1739 	}
1740 	sc->flags |= IWI_FLAG_BUSY;
1741 	sc->sc_busy_timer = 2;
1742 
1743 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1744 
1745 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1746 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1747 	desc->type = type;
1748 	desc->len = len;
1749 	memcpy(desc->data, data, len);
1750 
1751 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1752 	    BUS_DMASYNC_PREWRITE);
1753 
1754 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1755 	    type, len));
1756 
1757 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1758 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1759 
1760 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1761 }
1762 
1763 static void
1764 iwi_write_ibssnode(struct iwi_softc *sc,
1765 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1766 {
1767 	struct iwi_ibssnode node;
1768 
1769 	/* write node information into NIC memory */
1770 	memset(&node, 0, sizeof node);
1771 	IEEE80211_ADDR_COPY(node.bssid, addr);
1772 
1773 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1774 
1775 	CSR_WRITE_REGION_1(sc,
1776 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1777 	    (uint8_t *)&node, sizeof node);
1778 }
1779 
1780 static int
1781 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1782     int ac)
1783 {
1784 	struct iwi_softc *sc = ifp->if_softc;
1785 	struct ieee80211vap *vap = ni->ni_vap;
1786 	struct ieee80211com *ic = ni->ni_ic;
1787 	struct iwi_node *in = (struct iwi_node *)ni;
1788 	const struct ieee80211_frame *wh;
1789 	struct ieee80211_key *k;
1790 	const struct chanAccParams *cap;
1791 	struct iwi_tx_ring *txq = &sc->txq[ac];
1792 	struct iwi_tx_data *data;
1793 	struct iwi_tx_desc *desc;
1794 	struct mbuf *mnew;
1795 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1796 	int error, nsegs, hdrlen, i;
1797 	int ismcast, flags, xflags, staid;
1798 
1799 	IWI_LOCK_ASSERT(sc);
1800 	wh = mtod(m0, const struct ieee80211_frame *);
1801 	/* NB: only data frames use this path */
1802 	hdrlen = ieee80211_hdrsize(wh);
1803 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1804 	flags = xflags = 0;
1805 
1806 	if (!ismcast)
1807 		flags |= IWI_DATA_FLAG_NEED_ACK;
1808 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1809 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1810 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1811 		xflags |= IWI_DATA_XFLAG_QOS;
1812 		cap = &ic->ic_wme.wme_chanParams;
1813 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1814 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1815 	}
1816 
1817 	/*
1818 	 * This is only used in IBSS mode where the firmware expect an index
1819 	 * in a h/w table instead of a destination address.
1820 	 */
1821 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1822 		if (!ismcast) {
1823 			if (in->in_station == -1) {
1824 				in->in_station = alloc_unr(sc->sc_unr);
1825 				if (in->in_station == -1) {
1826 					/* h/w table is full */
1827 					m_freem(m0);
1828 					ieee80211_free_node(ni);
1829 					ifp->if_oerrors++;
1830 					return 0;
1831 				}
1832 				iwi_write_ibssnode(sc,
1833 					ni->ni_macaddr, in->in_station);
1834 			}
1835 			staid = in->in_station;
1836 		} else {
1837 			/*
1838 			 * Multicast addresses have no associated node
1839 			 * so there will be no station entry.  We reserve
1840 			 * entry 0 for one mcast address and use that.
1841 			 * If there are many being used this will be
1842 			 * expensive and we'll need to do a better job
1843 			 * but for now this handles the broadcast case.
1844 			 */
1845 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1846 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1847 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1848 			}
1849 			staid = 0;
1850 		}
1851 	} else
1852 		staid = 0;
1853 
1854 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1855 		k = ieee80211_crypto_encap(ni, m0);
1856 		if (k == NULL) {
1857 			m_freem(m0);
1858 			return ENOBUFS;
1859 		}
1860 
1861 		/* packet header may have moved, reset our local pointer */
1862 		wh = mtod(m0, struct ieee80211_frame *);
1863 	}
1864 
1865 	if (bpf_peers_present(ifp->if_bpf)) {
1866 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1867 
1868 		tap->wt_flags = 0;
1869 
1870 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1871 	}
1872 
1873 	data = &txq->data[txq->cur];
1874 	desc = &txq->desc[txq->cur];
1875 
1876 	/* save and trim IEEE802.11 header */
1877 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1878 	m_adj(m0, hdrlen);
1879 
1880 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1881 	    &nsegs, 0);
1882 	if (error != 0 && error != EFBIG) {
1883 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1884 		    error);
1885 		m_freem(m0);
1886 		return error;
1887 	}
1888 	if (error != 0) {
1889 		mnew = m_defrag(m0, M_DONTWAIT);
1890 		if (mnew == NULL) {
1891 			device_printf(sc->sc_dev,
1892 			    "could not defragment mbuf\n");
1893 			m_freem(m0);
1894 			return ENOBUFS;
1895 		}
1896 		m0 = mnew;
1897 
1898 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1899 		    m0, segs, &nsegs, 0);
1900 		if (error != 0) {
1901 			device_printf(sc->sc_dev,
1902 			    "could not map mbuf (error %d)\n", error);
1903 			m_freem(m0);
1904 			return error;
1905 		}
1906 	}
1907 
1908 	data->m = m0;
1909 	data->ni = ni;
1910 
1911 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1912 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1913 	desc->station = staid;
1914 	desc->cmd = IWI_DATA_CMD_TX;
1915 	desc->len = htole16(m0->m_pkthdr.len);
1916 	desc->flags = flags;
1917 	desc->xflags = xflags;
1918 
1919 #if 0
1920 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1921 		desc->wep_txkey = vap->iv_def_txkey;
1922 	else
1923 #endif
1924 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1925 
1926 	desc->nseg = htole32(nsegs);
1927 	for (i = 0; i < nsegs; i++) {
1928 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1929 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1930 	}
1931 
1932 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1933 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1934 
1935 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1936 	    ac, txq->cur, le16toh(desc->len), nsegs));
1937 
1938 	txq->queued++;
1939 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1940 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1941 
1942 	return 0;
1943 }
1944 
1945 static int
1946 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1947 	const struct ieee80211_bpf_params *params)
1948 {
1949 	/* no support; just discard */
1950 	m_freem(m);
1951 	ieee80211_free_node(ni);
1952 	return 0;
1953 }
1954 
1955 static void
1956 iwi_start_locked(struct ifnet *ifp)
1957 {
1958 	struct iwi_softc *sc = ifp->if_softc;
1959 	struct mbuf *m;
1960 	struct ieee80211_node *ni;
1961 	int ac;
1962 
1963 	IWI_LOCK_ASSERT(sc);
1964 
1965 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1966 		return;
1967 
1968 	for (;;) {
1969 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1970 		if (m == NULL)
1971 			break;
1972 		ac = M_WME_GETAC(m);
1973 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1974 			/* there is no place left in this ring; tail drop */
1975 			/* XXX tail drop */
1976 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1977 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1978 			break;
1979 		}
1980 
1981 		BPF_MTAP(ifp, m);
1982 
1983 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1984 		m = ieee80211_encap(ni, m);
1985 		if (m == NULL) {
1986 			ieee80211_free_node(ni);
1987 			ifp->if_oerrors++;
1988 			continue;
1989 		}
1990 
1991 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1992 			ieee80211_free_node(ni);
1993 			ifp->if_oerrors++;
1994 			break;
1995 		}
1996 
1997 		sc->sc_tx_timer = 5;
1998 	}
1999 }
2000 
2001 static void
2002 iwi_start(struct ifnet *ifp)
2003 {
2004 	struct iwi_softc *sc = ifp->if_softc;
2005 	IWI_LOCK_DECL;
2006 
2007 	IWI_LOCK(sc);
2008 	iwi_start_locked(ifp);
2009 	IWI_UNLOCK(sc);
2010 }
2011 
2012 static void
2013 iwi_watchdog(void *arg)
2014 {
2015 	struct iwi_softc *sc = arg;
2016 	struct ifnet *ifp = sc->sc_ifp;
2017 
2018 	IWI_LOCK_ASSERT(sc);
2019 
2020 	if (sc->sc_tx_timer > 0) {
2021 		if (--sc->sc_tx_timer == 0) {
2022 			if_printf(ifp, "device timeout\n");
2023 			ifp->if_oerrors++;
2024 			taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2025 		}
2026 	}
2027 	if (sc->sc_state_timer > 0) {
2028 		if (--sc->sc_state_timer == 0) {
2029 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2030 			    sc->fw_state);
2031 			taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2032 			if (sc->fw_state == IWI_FW_SCANNING) {
2033 				struct ieee80211com *ic = ifp->if_l2com;
2034 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2035 			}
2036 			sc->sc_state_timer = 3;
2037 		}
2038 	}
2039 	if (sc->sc_busy_timer > 0) {
2040 		if (--sc->sc_busy_timer == 0) {
2041 			if_printf(ifp, "firmware command timeout, resetting\n");
2042 			taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask);
2043 		}
2044 	}
2045 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2046 }
2047 
2048 static int
2049 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2050 {
2051 	struct iwi_softc *sc = ifp->if_softc;
2052 	struct ieee80211com *ic = ifp->if_l2com;
2053 	struct ifreq *ifr = (struct ifreq *) data;
2054 	int error = 0, startall = 0;
2055 	IWI_LOCK_DECL;
2056 
2057 	switch (cmd) {
2058 	case SIOCSIFFLAGS:
2059 		IWI_LOCK(sc);
2060 		if (ifp->if_flags & IFF_UP) {
2061 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2062 				iwi_init_locked(sc);
2063 				startall = 1;
2064 			}
2065 		} else {
2066 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2067 				iwi_stop_locked(sc);
2068 		}
2069 		IWI_UNLOCK(sc);
2070 		if (startall)
2071 			ieee80211_start_all(ic);
2072 		break;
2073 	case SIOCGIFMEDIA:
2074 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2075 		break;
2076 	case SIOCGIFADDR:
2077 		error = ether_ioctl(ifp, cmd, data);
2078 		break;
2079 	default:
2080 		error = EINVAL;
2081 		break;
2082 	}
2083 	return error;
2084 }
2085 
2086 static void
2087 iwi_stop_master(struct iwi_softc *sc)
2088 {
2089 	uint32_t tmp;
2090 	int ntries;
2091 
2092 	/* disable interrupts */
2093 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2094 
2095 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2096 	for (ntries = 0; ntries < 5; ntries++) {
2097 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2098 			break;
2099 		DELAY(10);
2100 	}
2101 	if (ntries == 5)
2102 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2103 
2104 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2105 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2106 
2107 	sc->flags &= ~IWI_FLAG_FW_INITED;
2108 }
2109 
2110 static int
2111 iwi_reset(struct iwi_softc *sc)
2112 {
2113 	uint32_t tmp;
2114 	int i, ntries;
2115 
2116 	iwi_stop_master(sc);
2117 
2118 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2119 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2120 
2121 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2122 
2123 	/* wait for clock stabilization */
2124 	for (ntries = 0; ntries < 1000; ntries++) {
2125 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2126 			break;
2127 		DELAY(200);
2128 	}
2129 	if (ntries == 1000) {
2130 		device_printf(sc->sc_dev,
2131 		    "timeout waiting for clock stabilization\n");
2132 		return EIO;
2133 	}
2134 
2135 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2136 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2137 
2138 	DELAY(10);
2139 
2140 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2141 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2142 
2143 	/* clear NIC memory */
2144 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2145 	for (i = 0; i < 0xc000; i++)
2146 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2147 
2148 	return 0;
2149 }
2150 
2151 static const struct iwi_firmware_ohdr *
2152 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2153 {
2154 	const struct firmware *fp = fw->fp;
2155 	const struct iwi_firmware_ohdr *hdr;
2156 
2157 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2158 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2159 		return NULL;
2160 	}
2161 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2162 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2163 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2164 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2165 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2166 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2167 		    IWI_FW_REQ_MINOR);
2168 		return NULL;
2169 	}
2170 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2171 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2172 	fw->name = fp->name;
2173 	return hdr;
2174 }
2175 
2176 static const struct iwi_firmware_ohdr *
2177 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2178 {
2179 	const struct iwi_firmware_ohdr *hdr;
2180 
2181 	hdr = iwi_setup_ofw(sc, fw);
2182 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2183 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2184 		    fw->name);
2185 		hdr = NULL;
2186 	}
2187 	return hdr;
2188 }
2189 
2190 static void
2191 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2192 	  struct iwi_fw *uc, const char *ucname)
2193 {
2194 	if (fw->fp == NULL)
2195 		fw->fp = firmware_get(fwname);
2196 	/* NB: pre-3.0 ucode is packaged separately */
2197 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2198 		uc->fp = firmware_get(ucname);
2199 }
2200 
2201 /*
2202  * Get the required firmware images if not already loaded.
2203  * Note that we hold firmware images so long as the device
2204  * is marked up in case we need to reload them on device init.
2205  * This is necessary because we re-init the device sometimes
2206  * from a context where we cannot read from the filesystem
2207  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2208  * XXX return 0 on success, 1 on error.
2209  *
2210  * NB: the order of get'ing and put'ing images here is
2211  * intentional to support handling firmware images bundled
2212  * by operating mode and/or all together in one file with
2213  * the boot firmware as "master".
2214  */
2215 static int
2216 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2217 {
2218 	const struct iwi_firmware_hdr *hdr;
2219 	const struct firmware *fp;
2220 
2221 	/* invalidate cached firmware on mode change */
2222 	if (sc->fw_mode != opmode)
2223 		iwi_put_firmware(sc);
2224 
2225 	switch (opmode) {
2226 	case IEEE80211_M_STA:
2227 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2228 		break;
2229 	case IEEE80211_M_IBSS:
2230 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2231 		break;
2232 	case IEEE80211_M_MONITOR:
2233 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2234 			  &sc->fw_uc, "iwi_ucode_monitor");
2235 		break;
2236 	default:
2237 		break;
2238 	}
2239 	fp = sc->fw_fw.fp;
2240 	if (fp == NULL) {
2241 		device_printf(sc->sc_dev, "could not load firmware\n");
2242 		goto bad;
2243 	}
2244 	if (fp->version < 300) {
2245 		/*
2246 		 * Firmware prior to 3.0 was packaged as separate
2247 		 * boot, firmware, and ucode images.  Verify the
2248 		 * ucode image was read in, retrieve the boot image
2249 		 * if needed, and check version stamps for consistency.
2250 		 * The version stamps in the data are also checked
2251 		 * above; this is a bit paranoid but is a cheap
2252 		 * safeguard against mis-packaging.
2253 		 */
2254 		if (sc->fw_uc.fp == NULL) {
2255 			device_printf(sc->sc_dev, "could not load ucode\n");
2256 			goto bad;
2257 		}
2258 		if (sc->fw_boot.fp == NULL) {
2259 			sc->fw_boot.fp = firmware_get("iwi_boot");
2260 			if (sc->fw_boot.fp == NULL) {
2261 				device_printf(sc->sc_dev,
2262 					"could not load boot firmware\n");
2263 				goto bad;
2264 			}
2265 		}
2266 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2267 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2268 			device_printf(sc->sc_dev,
2269 			    "firmware version mismatch: "
2270 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2271 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2272 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2273 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2274 			);
2275 			goto bad;
2276 		}
2277 		/*
2278 		 * Check and setup each image.
2279 		 */
2280 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2281 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2282 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2283 			goto bad;
2284 	} else {
2285 		/*
2286 		 * Check and setup combined image.
2287 		 */
2288 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2289 			device_printf(sc->sc_dev, "image '%s' too small\n",
2290 			    fp->name);
2291 			goto bad;
2292 		}
2293 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2294 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2295 				+ le32toh(hdr->fsize)) {
2296 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2297 			    fp->name);
2298 			goto bad;
2299 		}
2300 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2301 		sc->fw_boot.size = le32toh(hdr->bsize);
2302 		sc->fw_boot.name = fp->name;
2303 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2304 		sc->fw_uc.size = le32toh(hdr->usize);
2305 		sc->fw_uc.name = fp->name;
2306 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2307 		sc->fw_fw.size = le32toh(hdr->fsize);
2308 		sc->fw_fw.name = fp->name;
2309 	}
2310 #if 0
2311 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2312 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2313 #endif
2314 
2315 	sc->fw_mode = opmode;
2316 	return 0;
2317 bad:
2318 	iwi_put_firmware(sc);
2319 	return 1;
2320 }
2321 
2322 static void
2323 iwi_put_fw(struct iwi_fw *fw)
2324 {
2325 	if (fw->fp != NULL) {
2326 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2327 		fw->fp = NULL;
2328 	}
2329 	fw->data = NULL;
2330 	fw->size = 0;
2331 	fw->name = NULL;
2332 }
2333 
2334 /*
2335  * Release any cached firmware images.
2336  */
2337 static void
2338 iwi_put_firmware(struct iwi_softc *sc)
2339 {
2340 	iwi_put_fw(&sc->fw_uc);
2341 	iwi_put_fw(&sc->fw_fw);
2342 	iwi_put_fw(&sc->fw_boot);
2343 }
2344 
2345 static int
2346 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2347 {
2348 	uint32_t tmp;
2349 	const uint16_t *w;
2350 	const char *uc = fw->data;
2351 	size_t size = fw->size;
2352 	int i, ntries, error;
2353 
2354 	IWI_LOCK_ASSERT(sc);
2355 	error = 0;
2356 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2357 	    IWI_RST_STOP_MASTER);
2358 	for (ntries = 0; ntries < 5; ntries++) {
2359 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2360 			break;
2361 		DELAY(10);
2362 	}
2363 	if (ntries == 5) {
2364 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2365 		error = EIO;
2366 		goto fail;
2367 	}
2368 
2369 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2370 	DELAY(5000);
2371 
2372 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2373 	tmp &= ~IWI_RST_PRINCETON_RESET;
2374 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2375 
2376 	DELAY(5000);
2377 	MEM_WRITE_4(sc, 0x3000e0, 0);
2378 	DELAY(1000);
2379 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2380 	DELAY(1000);
2381 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2382 	DELAY(1000);
2383 	MEM_WRITE_1(sc, 0x200000, 0x00);
2384 	MEM_WRITE_1(sc, 0x200000, 0x40);
2385 	DELAY(1000);
2386 
2387 	/* write microcode into adapter memory */
2388 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2389 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2390 
2391 	MEM_WRITE_1(sc, 0x200000, 0x00);
2392 	MEM_WRITE_1(sc, 0x200000, 0x80);
2393 
2394 	/* wait until we get an answer */
2395 	for (ntries = 0; ntries < 100; ntries++) {
2396 		if (MEM_READ_1(sc, 0x200000) & 1)
2397 			break;
2398 		DELAY(100);
2399 	}
2400 	if (ntries == 100) {
2401 		device_printf(sc->sc_dev,
2402 		    "timeout waiting for ucode to initialize\n");
2403 		error = EIO;
2404 		goto fail;
2405 	}
2406 
2407 	/* read the answer or the firmware will not initialize properly */
2408 	for (i = 0; i < 7; i++)
2409 		MEM_READ_4(sc, 0x200004);
2410 
2411 	MEM_WRITE_1(sc, 0x200000, 0x00);
2412 
2413 fail:
2414 	return error;
2415 }
2416 
2417 /* macro to handle unaligned little endian data in firmware image */
2418 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2419 
2420 static int
2421 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2422 {
2423 	u_char *p, *end;
2424 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2425 	int ntries, error;
2426 
2427 	IWI_LOCK_ASSERT(sc);
2428 
2429 	/* copy firmware image to DMA memory */
2430 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2431 
2432 	/* make sure the adapter will get up-to-date values */
2433 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2434 
2435 	/* tell the adapter where the command blocks are stored */
2436 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2437 
2438 	/*
2439 	 * Store command blocks into adapter's internal memory using register
2440 	 * indirections. The adapter will read the firmware image through DMA
2441 	 * using information stored in command blocks.
2442 	 */
2443 	src = sc->fw_physaddr;
2444 	p = sc->fw_virtaddr;
2445 	end = p + fw->size;
2446 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2447 
2448 	while (p < end) {
2449 		dst = GETLE32(p); p += 4; src += 4;
2450 		len = GETLE32(p); p += 4; src += 4;
2451 		p += len;
2452 
2453 		while (len > 0) {
2454 			mlen = min(len, IWI_CB_MAXDATALEN);
2455 
2456 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2457 			sum = ctl ^ src ^ dst;
2458 
2459 			/* write a command block */
2460 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2461 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2462 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2463 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2464 
2465 			src += mlen;
2466 			dst += mlen;
2467 			len -= mlen;
2468 		}
2469 	}
2470 
2471 	/* write a fictive final command block (sentinel) */
2472 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2473 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2474 
2475 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2476 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2477 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2478 
2479 	/* tell the adapter to start processing command blocks */
2480 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2481 
2482 	/* wait until the adapter reaches the sentinel */
2483 	for (ntries = 0; ntries < 400; ntries++) {
2484 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2485 			break;
2486 		DELAY(100);
2487 	}
2488 	/* sync dma, just in case */
2489 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2490 	if (ntries == 400) {
2491 		device_printf(sc->sc_dev,
2492 		    "timeout processing command blocks for %s firmware\n",
2493 		    fw->name);
2494 		return EIO;
2495 	}
2496 
2497 	/* we're done with command blocks processing */
2498 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2499 
2500 	/* allow interrupts so we know when the firmware is ready */
2501 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2502 
2503 	/* tell the adapter to initialize the firmware */
2504 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2505 
2506 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2507 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2508 
2509 	/* wait at most one second for firmware initialization to complete */
2510 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2511 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2512 		    "initialization to complete\n", fw->name);
2513 	}
2514 
2515 	return error;
2516 }
2517 
2518 static int
2519 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2520 {
2521 	uint32_t data;
2522 
2523 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2524 		/* XXX set more fine-grained operation */
2525 		data = htole32(IWI_POWER_MODE_MAX);
2526 	} else
2527 		data = htole32(IWI_POWER_MODE_CAM);
2528 
2529 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2530 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2531 }
2532 
2533 static int
2534 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2535 {
2536 	struct iwi_wep_key wepkey;
2537 	struct ieee80211_key *wk;
2538 	int error, i;
2539 
2540 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2541 		wk = &vap->iv_nw_keys[i];
2542 
2543 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2544 		wepkey.idx = i;
2545 		wepkey.len = wk->wk_keylen;
2546 		memset(wepkey.key, 0, sizeof wepkey.key);
2547 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2548 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2549 		    wepkey.len));
2550 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2551 		    sizeof wepkey);
2552 		if (error != 0)
2553 			return error;
2554 	}
2555 	return 0;
2556 }
2557 
2558 static int
2559 iwi_config(struct iwi_softc *sc)
2560 {
2561 	struct ifnet *ifp = sc->sc_ifp;
2562 	struct ieee80211com *ic = ifp->if_l2com;
2563 	struct iwi_configuration config;
2564 	struct iwi_rateset rs;
2565 	struct iwi_txpower power;
2566 	uint32_t data;
2567 	int error, i;
2568 
2569 	IWI_LOCK_ASSERT(sc);
2570 
2571 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2572 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
2573 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2574 	    IEEE80211_ADDR_LEN);
2575 	if (error != 0)
2576 		return error;
2577 
2578 	memset(&config, 0, sizeof config);
2579 	config.bluetooth_coexistence = sc->bluetooth;
2580 	config.silence_threshold = 0x1e;
2581 	config.antenna = sc->antenna;
2582 	config.multicast_enabled = 1;
2583 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2584 	config.disable_unicast_decryption = 1;
2585 	config.disable_multicast_decryption = 1;
2586 	DPRINTF(("Configuring adapter\n"));
2587 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2588 	if (error != 0)
2589 		return error;
2590 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2591 		power.mode = IWI_MODE_11B;
2592 		power.nchan = 11;
2593 		for (i = 0; i < 11; i++) {
2594 			power.chan[i].chan = i + 1;
2595 			power.chan[i].power = IWI_TXPOWER_MAX;
2596 		}
2597 		DPRINTF(("Setting .11b channels tx power\n"));
2598 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2599 		if (error != 0)
2600 			return error;
2601 
2602 		power.mode = IWI_MODE_11G;
2603 		DPRINTF(("Setting .11g channels tx power\n"));
2604 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2605 		if (error != 0)
2606 			return error;
2607 	}
2608 
2609 	memset(&rs, 0, sizeof rs);
2610 	rs.mode = IWI_MODE_11G;
2611 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2612 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2613 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2614 	    rs.nrates);
2615 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2616 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2617 	if (error != 0)
2618 		return error;
2619 
2620 	memset(&rs, 0, sizeof rs);
2621 	rs.mode = IWI_MODE_11A;
2622 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2623 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2624 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2625 	    rs.nrates);
2626 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2627 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2628 	if (error != 0)
2629 		return error;
2630 
2631 	data = htole32(arc4random());
2632 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2633 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2634 	if (error != 0)
2635 		return error;
2636 
2637 	/* enable adapter */
2638 	DPRINTF(("Enabling adapter\n"));
2639 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2640 }
2641 
2642 static __inline void
2643 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2644 {
2645 	uint8_t *st = &scan->scan_type[ix / 2];
2646 	if (ix % 2)
2647 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2648 	else
2649 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2650 }
2651 
2652 static int
2653 scan_type(const struct ieee80211_scan_state *ss,
2654 	const struct ieee80211_channel *chan)
2655 {
2656 	/* We can only set one essid for a directed scan */
2657 	if (ss->ss_nssid != 0)
2658 		return IWI_SCAN_TYPE_BDIRECTED;
2659 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2660 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2661 		return IWI_SCAN_TYPE_BROADCAST;
2662 	return IWI_SCAN_TYPE_PASSIVE;
2663 }
2664 
2665 static __inline int
2666 scan_band(const struct ieee80211_channel *c)
2667 {
2668 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2669 }
2670 
2671 /*
2672  * Start a scan on the current channel or all channels.
2673  */
2674 static int
2675 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int mode)
2676 {
2677 	struct ieee80211com *ic;
2678 	struct ieee80211_channel *chan;
2679 	struct ieee80211_scan_state *ss;
2680 	struct iwi_scan_ext scan;
2681 	int error = 0;
2682 
2683 	IWI_LOCK_ASSERT(sc);
2684 	if (sc->fw_state == IWI_FW_SCANNING) {
2685 		/*
2686 		 * This should not happen as we only trigger scan_next after
2687 		 * completion
2688 		 */
2689 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2690 		return (EBUSY);
2691 	}
2692 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2693 
2694 	ic = sc->sc_ifp->if_l2com;
2695 	ss = ic->ic_scan;
2696 
2697 	memset(&scan, 0, sizeof scan);
2698 	scan.full_scan_index = htole32(++sc->sc_scangen);
2699 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2700 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2701 		/*
2702 		 * Use very short dwell times for when we send probe request
2703 		 * frames.  Without this bg scans hang.  Ideally this should
2704 		 * be handled with early-termination as done by net80211 but
2705 		 * that's not feasible (aborting a scan is problematic).
2706 		 */
2707 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2708 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2709 	} else {
2710 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2711 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2712 	}
2713 
2714 	/* We can only set one essid for a directed scan */
2715 	if (ss->ss_nssid != 0) {
2716 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2717 		    ss->ss_ssid[0].len);
2718 		if (error)
2719 			return (error);
2720 	}
2721 
2722 	if (mode == IWI_SCAN_ALLCHAN) {
2723 		int i, next, band, b, bstart;
2724 		/*
2725 		 * Convert scan list to run-length encoded channel list
2726 		 * the firmware requires (preserving the order setup by
2727 		 * net80211).  The first entry in each run specifies the
2728 		 * band and the count of items in the run.
2729 		 */
2730 		next = 0;		/* next open slot */
2731 		bstart = 0;		/* NB: not needed, silence compiler */
2732 		band = -1;		/* NB: impossible value */
2733 		KASSERT(ss->ss_last > 0, ("no channels"));
2734 		for (i = 0; i < ss->ss_last; i++) {
2735 			chan = ss->ss_chans[i];
2736 			b = scan_band(chan);
2737 			if (b != band) {
2738 				if (band != -1)
2739 					scan.channels[bstart] =
2740 					    (next - bstart) | band;
2741 				/* NB: this allocates a slot for the run-len */
2742 				band = b, bstart = next++;
2743 			}
2744 			if (next >= IWI_SCAN_CHANNELS) {
2745 				DPRINTF(("truncating scan list\n"));
2746 				break;
2747 			}
2748 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2749 			set_scan_type(&scan, next, scan_type(ss, chan));
2750 			next++;
2751 		}
2752 		scan.channels[bstart] = (next - bstart) | band;
2753 	} else {
2754 		/* Scan the current channel only */
2755 		chan = ic->ic_curchan;
2756 		scan.channels[0] = 1 | scan_band(chan);
2757 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2758 		set_scan_type(&scan, 1, scan_type(ss, chan));
2759 	}
2760 #ifdef IWI_DEBUG
2761 	if (iwi_debug > 0) {
2762 		static const char *scantype[8] =
2763 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2764 		int i;
2765 		printf("Scan request: index %u dwell %d/%d/%d\n"
2766 		    , le32toh(scan.full_scan_index)
2767 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2768 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2769 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2770 		);
2771 		i = 0;
2772 		do {
2773 			int run = scan.channels[i];
2774 			if (run == 0)
2775 				break;
2776 			printf("Scan %d %s channels:", run & 0x3f,
2777 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2778 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2779 				uint8_t type = scan.scan_type[i/2];
2780 				printf(" %u/%s", scan.channels[i],
2781 				    scantype[(i & 1 ? type : type>>4) & 7]);
2782 			}
2783 			printf("\n");
2784 		} while (i < IWI_SCAN_CHANNELS);
2785 	}
2786 #endif
2787 
2788 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2789 }
2790 
2791 static void
2792 iwi_scanabort(void *arg, int npending)
2793 {
2794 	struct iwi_softc *sc = arg;
2795 	IWI_LOCK_DECL;
2796 
2797 	IWI_LOCK(sc);
2798 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
2799 	/* NB: make sure we're still scanning */
2800 	if (sc->fw_state == IWI_FW_SCANNING)
2801 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
2802 	IWI_UNLOCK(sc);
2803 }
2804 
2805 static int
2806 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2807 {
2808 	struct iwi_sensitivity sens;
2809 
2810 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2811 
2812 	memset(&sens, 0, sizeof sens);
2813 	sens.rssi = htole16(rssi_dbm);
2814 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2815 }
2816 
2817 static int
2818 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2819 {
2820 	struct ieee80211com *ic = vap->iv_ic;
2821 	struct ifnet *ifp = vap->iv_ifp;
2822 	struct ieee80211_node *ni = vap->iv_bss;
2823 	struct iwi_configuration config;
2824 	struct iwi_associate *assoc = &sc->assoc;
2825 	struct iwi_rateset rs;
2826 	uint16_t capinfo;
2827 	uint32_t data;
2828 	int error, mode;
2829 
2830 	IWI_LOCK_ASSERT(sc);
2831 
2832 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2833 		DPRINTF(("Already associated\n"));
2834 		return (-1);
2835 	}
2836 
2837 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2838 	error = 0;
2839 	mode = 0;
2840 
2841 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2842 		mode = IWI_MODE_11A;
2843 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2844 		mode = IWI_MODE_11G;
2845 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2846 		mode = IWI_MODE_11B;
2847 
2848 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2849 		memset(&config, 0, sizeof config);
2850 		config.bluetooth_coexistence = sc->bluetooth;
2851 		config.antenna = sc->antenna;
2852 		config.multicast_enabled = 1;
2853 		if (mode == IWI_MODE_11G)
2854 			config.use_protection = 1;
2855 		config.answer_pbreq =
2856 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2857 		config.disable_unicast_decryption = 1;
2858 		config.disable_multicast_decryption = 1;
2859 		DPRINTF(("Configuring adapter\n"));
2860 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2861 		if (error != 0)
2862 			goto done;
2863 	}
2864 
2865 #ifdef IWI_DEBUG
2866 	if (iwi_debug > 0) {
2867 		printf("Setting ESSID to ");
2868 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2869 		printf("\n");
2870 	}
2871 #endif
2872 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2873 	if (error != 0)
2874 		goto done;
2875 
2876 	error = iwi_setpowermode(sc, vap);
2877 	if (error != 0)
2878 		goto done;
2879 
2880 	data = htole32(vap->iv_rtsthreshold);
2881 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2882 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2883 	if (error != 0)
2884 		goto done;
2885 
2886 	data = htole32(vap->iv_fragthreshold);
2887 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2888 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2889 	if (error != 0)
2890 		goto done;
2891 
2892 	/* the rate set has already been "negotiated" */
2893 	memset(&rs, 0, sizeof rs);
2894 	rs.mode = mode;
2895 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2896 	rs.nrates = ni->ni_rates.rs_nrates;
2897 	if (rs.nrates > IWI_RATESET_SIZE) {
2898 		DPRINTF(("Truncating negotiated rate set from %u\n",
2899 		    rs.nrates));
2900 		rs.nrates = IWI_RATESET_SIZE;
2901 	}
2902 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2903 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2904 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2905 	if (error != 0)
2906 		goto done;
2907 
2908 	memset(assoc, 0, sizeof *assoc);
2909 
2910 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2911 		/* NB: don't treat WME setup as failure */
2912 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2913 			assoc->policy |= htole16(IWI_POLICY_WME);
2914 		/* XXX complain on failure? */
2915 	}
2916 
2917 	if (vap->iv_appie_wpa != NULL) {
2918 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2919 
2920 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2921 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2922 		if (error != 0)
2923 			goto done;
2924 	}
2925 
2926 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2927 	if (error != 0)
2928 		goto done;
2929 
2930 	assoc->mode = mode;
2931 	assoc->chan = ic->ic_curchan->ic_ieee;
2932 	/*
2933 	 * NB: do not arrange for shared key auth w/o privacy
2934 	 *     (i.e. a wep key); it causes a firmware error.
2935 	 */
2936 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2937 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2938 		assoc->auth = IWI_AUTH_SHARED;
2939 		/*
2940 		 * It's possible to have privacy marked but no default
2941 		 * key setup.  This typically is due to a user app bug
2942 		 * but if we blindly grab the key the firmware will
2943 		 * barf so avoid it for now.
2944 		 */
2945 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2946 			assoc->auth |= vap->iv_def_txkey << 4;
2947 
2948 		error = iwi_setwepkeys(sc, vap);
2949 		if (error != 0)
2950 			goto done;
2951 	}
2952 	if (vap->iv_flags & IEEE80211_F_WPA)
2953 		assoc->policy |= htole16(IWI_POLICY_WPA);
2954 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2955 		assoc->type = IWI_HC_IBSS_START;
2956 	else
2957 		assoc->type = IWI_HC_ASSOC;
2958 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2959 
2960 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2961 		capinfo = IEEE80211_CAPINFO_IBSS;
2962 	else
2963 		capinfo = IEEE80211_CAPINFO_ESS;
2964 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2965 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2966 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2967 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2968 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2969 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2970 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2971 	assoc->capinfo = htole16(capinfo);
2972 
2973 	assoc->lintval = htole16(ic->ic_lintval);
2974 	assoc->intval = htole16(ni->ni_intval);
2975 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2976 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2977 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2978 	else
2979 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2980 
2981 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2982 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2983 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2984 	    assoc->bssid, ":", assoc->dst, ":",
2985 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2986 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2987 	    le16toh(assoc->intval)));
2988 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2989 done:
2990 	if (error)
2991 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2992 
2993 	return (error);
2994 }
2995 
2996 static int
2997 iwi_disassociate(struct iwi_softc *sc, int quiet)
2998 {
2999 	struct iwi_associate *assoc = &sc->assoc;
3000 
3001 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3002 		DPRINTF(("Not associated\n"));
3003 		return (-1);
3004 	}
3005 
3006 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3007 
3008 	if (quiet)
3009 		assoc->type = IWI_HC_DISASSOC_QUIET;
3010 	else
3011 		assoc->type = IWI_HC_DISASSOC;
3012 
3013 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3014 	    assoc->bssid, ":", assoc->chan));
3015 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3016 }
3017 
3018 /*
3019  * release dma resources for the firmware
3020  */
3021 static void
3022 iwi_release_fw_dma(struct iwi_softc *sc)
3023 {
3024 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3025 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3026 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3027 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3028 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3029 		bus_dma_tag_destroy(sc->fw_dmat);
3030 
3031 	sc->fw_flags = 0;
3032 	sc->fw_dma_size = 0;
3033 	sc->fw_dmat = NULL;
3034 	sc->fw_map = NULL;
3035 	sc->fw_physaddr = 0;
3036 	sc->fw_virtaddr = NULL;
3037 }
3038 
3039 /*
3040  * allocate the dma descriptor for the firmware.
3041  * Return 0 on success, 1 on error.
3042  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3043  */
3044 static int
3045 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3046 {
3047 	if (sc->fw_dma_size >= size)
3048 		return 0;
3049 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3050 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3051 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3052 		device_printf(sc->sc_dev,
3053 		    "could not create firmware DMA tag\n");
3054 		goto error;
3055 	}
3056 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3057 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3058 	    &sc->fw_map) != 0) {
3059 		device_printf(sc->sc_dev,
3060 		    "could not allocate firmware DMA memory\n");
3061 		goto error;
3062 	}
3063 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3064 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3065 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3066 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3067 		goto error;
3068 	}
3069 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3070 	sc->fw_dma_size = size;
3071 	return 0;
3072 
3073 error:
3074 	iwi_release_fw_dma(sc);
3075 	return 1;
3076 }
3077 
3078 static void
3079 iwi_init_locked(struct iwi_softc *sc)
3080 {
3081 	struct ifnet *ifp = sc->sc_ifp;
3082 	struct iwi_rx_data *data;
3083 	int i;
3084 
3085 	IWI_LOCK_ASSERT(sc);
3086 
3087 	if (sc->fw_state == IWI_FW_LOADING) {
3088 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3089 		return;		/* XXX: condvar? */
3090 	}
3091 
3092 	iwi_stop_locked(sc);
3093 
3094 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3095 
3096 	taskqueue_unblock(sc->sc_tq);
3097 	taskqueue_unblock(sc->sc_tq2);
3098 
3099 	if (iwi_reset(sc) != 0) {
3100 		device_printf(sc->sc_dev, "could not reset adapter\n");
3101 		goto fail;
3102 	}
3103 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3104 		device_printf(sc->sc_dev,
3105 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3106 		goto fail;
3107 	}
3108 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not load microcode %s\n", sc->fw_uc.name);
3111 		goto fail;
3112 	}
3113 
3114 	iwi_stop_master(sc);
3115 
3116 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3117 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3119 
3120 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3121 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3135 
3136 	for (i = 0; i < sc->rxq.count; i++) {
3137 		data = &sc->rxq.data[i];
3138 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3139 	}
3140 
3141 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3142 
3143 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3144 		device_printf(sc->sc_dev,
3145 		    "could not load main firmware %s\n", sc->fw_fw.name);
3146 		goto fail;
3147 	}
3148 	sc->flags |= IWI_FLAG_FW_INITED;
3149 
3150 	IWI_STATE_END(sc, IWI_FW_LOADING);
3151 
3152 	if (iwi_config(sc) != 0) {
3153 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3154 		goto fail2;
3155 	}
3156 
3157 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160 	return;
3161 fail:
3162 	IWI_STATE_END(sc, IWI_FW_LOADING);
3163 fail2:
3164 	iwi_stop_locked(sc);
3165 }
3166 
3167 static void
3168 iwi_init(void *priv)
3169 {
3170 	struct iwi_softc *sc = priv;
3171 	struct ifnet *ifp = sc->sc_ifp;
3172 	struct ieee80211com *ic = ifp->if_l2com;
3173 	IWI_LOCK_DECL;
3174 
3175 	IWI_LOCK(sc);
3176 	iwi_init_locked(sc);
3177 	IWI_UNLOCK(sc);
3178 
3179 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3180 		ieee80211_start_all(ic);
3181 }
3182 
3183 static void
3184 iwi_stop_locked(void *priv)
3185 {
3186 	struct iwi_softc *sc = priv;
3187 	struct ifnet *ifp = sc->sc_ifp;
3188 
3189 	IWI_LOCK_ASSERT(sc);
3190 
3191 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3192 
3193 	taskqueue_block(sc->sc_tq);
3194 	taskqueue_block(sc->sc_tq2);
3195 	if (sc->sc_softled) {
3196 		callout_stop(&sc->sc_ledtimer);
3197 		sc->sc_blinking = 0;
3198 	}
3199 	callout_stop(&sc->sc_wdtimer);
3200 	callout_stop(&sc->sc_rftimer);
3201 
3202 	iwi_stop_master(sc);
3203 
3204 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3205 
3206 	/* reset rings */
3207 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3208 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3210 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3211 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3212 	iwi_reset_rx_ring(sc, &sc->rxq);
3213 
3214 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3215 	sc->sc_tx_timer = 0;
3216 	sc->sc_state_timer = 0;
3217 	sc->sc_busy_timer = 0;
3218 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3219 	sc->fw_state = IWI_FW_IDLE;
3220 	wakeup(sc);
3221 }
3222 
3223 static void
3224 iwi_stop(struct iwi_softc *sc)
3225 {
3226 	IWI_LOCK_DECL;
3227 
3228 	IWI_LOCK(sc);
3229 	iwi_stop_locked(sc);
3230 	IWI_UNLOCK(sc);
3231 }
3232 
3233 static void
3234 iwi_restart(void *arg, int npending)
3235 {
3236 	struct iwi_softc *sc = arg;
3237 
3238 	iwi_init(sc);
3239 }
3240 
3241 /*
3242  * Return whether or not the radio is enabled in hardware
3243  * (i.e. the rfkill switch is "off").
3244  */
3245 static int
3246 iwi_getrfkill(struct iwi_softc *sc)
3247 {
3248 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3249 }
3250 
3251 static void
3252 iwi_radio_on(void *arg, int pending)
3253 {
3254 	struct iwi_softc *sc = arg;
3255 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3256 
3257 	device_printf(sc->sc_dev, "radio turned on\n");
3258 
3259 	iwi_init(sc);
3260 	ieee80211_notify_radio(ic, 1);
3261 }
3262 
3263 static void
3264 iwi_rfkill_poll(void *arg)
3265 {
3266 	struct iwi_softc *sc = arg;
3267 
3268 	IWI_LOCK_ASSERT(sc);
3269 
3270 	/*
3271 	 * Check for a change in rfkill state.  We get an
3272 	 * interrupt when a radio is disabled but not when
3273 	 * it is enabled so we must poll for the latter.
3274 	 */
3275 	if (!iwi_getrfkill(sc)) {
3276 		taskqueue_unblock(sc->sc_tq);
3277 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask);
3278 		return;
3279 	}
3280 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3281 }
3282 
3283 static void
3284 iwi_radio_off(void *arg, int pending)
3285 {
3286 	struct iwi_softc *sc = arg;
3287 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3288 	IWI_LOCK_DECL;
3289 
3290 	device_printf(sc->sc_dev, "radio turned off\n");
3291 
3292 	ieee80211_notify_radio(ic, 0);
3293 
3294 	IWI_LOCK(sc);
3295 	iwi_stop_locked(sc);
3296 	iwi_rfkill_poll(sc);
3297 	IWI_UNLOCK(sc);
3298 }
3299 
3300 static int
3301 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3302 {
3303 	struct iwi_softc *sc = arg1;
3304 	uint32_t size, buf[128];
3305 
3306 	memset(buf, 0, sizeof buf);
3307 
3308 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3309 		return SYSCTL_OUT(req, buf, sizeof buf);
3310 
3311 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3312 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3313 
3314 	return SYSCTL_OUT(req, buf, size);
3315 }
3316 
3317 static int
3318 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3319 {
3320 	struct iwi_softc *sc = arg1;
3321 	int val = !iwi_getrfkill(sc);
3322 
3323 	return SYSCTL_OUT(req, &val, sizeof val);
3324 }
3325 
3326 /*
3327  * Add sysctl knobs.
3328  */
3329 static void
3330 iwi_sysctlattach(struct iwi_softc *sc)
3331 {
3332 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3333 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3334 
3335 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3336 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3337 	    "radio transmitter switch state (0=off, 1=on)");
3338 
3339 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3340 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3341 	    "statistics");
3342 
3343 	sc->bluetooth = 0;
3344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3345 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3346 
3347 	sc->antenna = IWI_ANTENNA_AUTO;
3348 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3349 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3350 }
3351 
3352 /*
3353  * LED support.
3354  *
3355  * Different cards have different capabilities.  Some have three
3356  * led's while others have only one.  The linux ipw driver defines
3357  * led's for link state (associated or not), band (11a, 11g, 11b),
3358  * and for link activity.  We use one led and vary the blink rate
3359  * according to the tx/rx traffic a la the ath driver.
3360  */
3361 
3362 static __inline uint32_t
3363 iwi_toggle_event(uint32_t r)
3364 {
3365 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3366 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3367 }
3368 
3369 static uint32_t
3370 iwi_read_event(struct iwi_softc *sc)
3371 {
3372 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3373 }
3374 
3375 static void
3376 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3377 {
3378 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3379 }
3380 
3381 static void
3382 iwi_led_done(void *arg)
3383 {
3384 	struct iwi_softc *sc = arg;
3385 
3386 	sc->sc_blinking = 0;
3387 }
3388 
3389 /*
3390  * Turn the activity LED off: flip the pin and then set a timer so no
3391  * update will happen for the specified duration.
3392  */
3393 static void
3394 iwi_led_off(void *arg)
3395 {
3396 	struct iwi_softc *sc = arg;
3397 	uint32_t v;
3398 
3399 	v = iwi_read_event(sc);
3400 	v &= ~sc->sc_ledpin;
3401 	iwi_write_event(sc, iwi_toggle_event(v));
3402 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3403 }
3404 
3405 /*
3406  * Blink the LED according to the specified on/off times.
3407  */
3408 static void
3409 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3410 {
3411 	uint32_t v;
3412 
3413 	v = iwi_read_event(sc);
3414 	v |= sc->sc_ledpin;
3415 	iwi_write_event(sc, iwi_toggle_event(v));
3416 	sc->sc_blinking = 1;
3417 	sc->sc_ledoff = off;
3418 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3419 }
3420 
3421 static void
3422 iwi_led_event(struct iwi_softc *sc, int event)
3423 {
3424 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3425 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3426 	static const struct {
3427 		u_int		rate;		/* tx/rx iwi rate */
3428 		u_int16_t	timeOn;		/* LED on time (ms) */
3429 		u_int16_t	timeOff;	/* LED off time (ms) */
3430 	} blinkrates[] = {
3431 		{ IWI_RATE_OFDM54, 40,  10 },
3432 		{ IWI_RATE_OFDM48, 44,  11 },
3433 		{ IWI_RATE_OFDM36, 50,  13 },
3434 		{ IWI_RATE_OFDM24, 57,  14 },
3435 		{ IWI_RATE_OFDM18, 67,  16 },
3436 		{ IWI_RATE_OFDM12, 80,  20 },
3437 		{ IWI_RATE_DS11,  100,  25 },
3438 		{ IWI_RATE_OFDM9, 133,  34 },
3439 		{ IWI_RATE_OFDM6, 160,  40 },
3440 		{ IWI_RATE_DS5,   200,  50 },
3441 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3442 		{ IWI_RATE_DS2,   267,  66 },
3443 		{ IWI_RATE_DS1,   400, 100 },
3444 		{            0,   500, 130 },	/* unknown rate/polling */
3445 	};
3446 	uint32_t txrate;
3447 	int j = 0;			/* XXX silence compiler */
3448 
3449 	sc->sc_ledevent = ticks;	/* time of last event */
3450 	if (sc->sc_blinking)		/* don't interrupt active blink */
3451 		return;
3452 	switch (event) {
3453 	case IWI_LED_POLL:
3454 		j = N(blinkrates)-1;
3455 		break;
3456 	case IWI_LED_TX:
3457 		/* read current transmission rate from adapter */
3458 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3459 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3460 			for (j = 0; j < N(blinkrates)-1; j++)
3461 				if (blinkrates[j].rate == txrate)
3462 					break;
3463 			sc->sc_txrix = j;
3464 		} else
3465 			j = sc->sc_txrix;
3466 		break;
3467 	case IWI_LED_RX:
3468 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3469 			for (j = 0; j < N(blinkrates)-1; j++)
3470 				if (blinkrates[j].rate == sc->sc_rxrate)
3471 					break;
3472 			sc->sc_rxrix = j;
3473 		} else
3474 			j = sc->sc_rxrix;
3475 		break;
3476 	}
3477 	/* XXX beware of overflow */
3478 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3479 		(blinkrates[j].timeOff * hz) / 1000);
3480 #undef N
3481 }
3482 
3483 static int
3484 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3485 {
3486 	struct iwi_softc *sc = arg1;
3487 	int softled = sc->sc_softled;
3488 	int error;
3489 
3490 	error = sysctl_handle_int(oidp, &softled, 0, req);
3491 	if (error || !req->newptr)
3492 		return error;
3493 	softled = (softled != 0);
3494 	if (softled != sc->sc_softled) {
3495 		if (softled) {
3496 			uint32_t v = iwi_read_event(sc);
3497 			v &= ~sc->sc_ledpin;
3498 			iwi_write_event(sc, iwi_toggle_event(v));
3499 		}
3500 		sc->sc_softled = softled;
3501 	}
3502 	return 0;
3503 }
3504 
3505 static void
3506 iwi_ledattach(struct iwi_softc *sc)
3507 {
3508 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3509 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3510 
3511 	sc->sc_blinking = 0;
3512 	sc->sc_ledstate = 1;
3513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3514 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3515 
3516 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3517 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3518 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3519 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3520 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3521 		"pin setting to turn activity LED on");
3522 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3523 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3524 		"idle time for inactivity LED (ticks)");
3525 	/* XXX for debugging */
3526 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3527 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3528 		"NIC type from EEPROM");
3529 
3530 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3531 	sc->sc_softled = 1;
3532 
3533 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3534 	if (sc->sc_nictype == 1) {
3535 		/*
3536 		 * NB: led's are reversed.
3537 		 */
3538 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3539 	}
3540 }
3541 
3542 static void
3543 iwi_ops(void *arg0, int npending)
3544 {
3545 	static const char *opnames[] = {
3546 		[IWI_CMD_FREE]		= "FREE",
3547 		[IWI_SCAN_START]	= "SCAN_START",
3548 		[IWI_SET_CHANNEL]	= "SET_CHANNEL",
3549 		[IWI_AUTH]		= "AUTH",
3550 		[IWI_ASSOC]		= "ASSOC",
3551 		[IWI_DISASSOC]		= "DISASSOC",
3552 		[IWI_SCAN_CURCHAN]	= "SCAN_CURCHAN",
3553 		[IWI_SCAN_ALLCHAN]	= "SCAN_ALLCHAN",
3554 		[IWI_SET_WME]		= "SET_WME",
3555 	};
3556 	struct iwi_softc *sc = arg0;
3557 	struct ifnet *ifp = sc->sc_ifp;
3558 	struct ieee80211com *ic = ifp->if_l2com;
3559 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3560 	IWI_LOCK_DECL;
3561 	int cmd;
3562 	unsigned long arg;
3563 
3564 again:
3565 	IWI_CMD_LOCK(sc);
3566 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3567 	if (cmd == IWI_CMD_FREE) {
3568 		/* No more commands to process */
3569 		IWI_CMD_UNLOCK(sc);
3570 		return;
3571 	}
3572 	arg = sc->sc_arg[sc->sc_cmd_cur];
3573 	sc->sc_cmd[sc->sc_cmd_cur] = IWI_CMD_FREE;	/* free the slot */
3574 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWI_CMD_MAXOPS;
3575 	IWI_CMD_UNLOCK(sc);
3576 
3577 	IWI_LOCK(sc);
3578 	while  (sc->fw_state != IWI_FW_IDLE || (sc->flags & IWI_FLAG_BUSY)) {
3579 		msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz/10);
3580 	}
3581 
3582 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3583 		IWI_UNLOCK(sc);
3584 		return;
3585 	}
3586 
3587 	DPRINTF(("%s: %s arg %lu\n", __func__, opnames[cmd], arg));
3588 	switch (cmd) {
3589 	case IWI_AUTH:
3590 	case IWI_ASSOC:
3591 		if (cmd == IWI_AUTH)
3592 			vap->iv_state = IEEE80211_S_AUTH;
3593 		else
3594 			vap->iv_state = IEEE80211_S_ASSOC;
3595 		iwi_auth_and_assoc(sc, vap);
3596 		/* NB: completion done in iwi_notification_intr */
3597 		break;
3598 	case IWI_DISASSOC:
3599 		iwi_disassociate(sc, 0);
3600 		break;
3601 	case IWI_SET_WME:
3602 		if (vap->iv_state == IEEE80211_S_RUN)
3603 			(void) iwi_wme_setparams(sc, ic);
3604 		break;
3605 	case IWI_SCAN_START:
3606 		sc->flags |= IWI_FLAG_CHANNEL_SCAN;
3607 		break;
3608 	case IWI_SCAN_CURCHAN:
3609 	case IWI_SCAN_ALLCHAN:
3610 		if (!(sc->flags & IWI_FLAG_CHANNEL_SCAN)) {
3611 			DPRINTF(("%s: ic_scan_curchan while not scanning\n",
3612 			    __func__));
3613 			goto done;
3614 		}
3615 		if (iwi_scanchan(sc, arg, cmd))
3616 			ieee80211_cancel_scan(vap);
3617 		break;
3618 	}
3619 done:
3620 	IWI_UNLOCK(sc);
3621 
3622 	/* Take another pass */
3623 	goto again;
3624 }
3625 
3626 static int
3627 iwi_queue_cmd(struct iwi_softc *sc, int cmd, unsigned long arg)
3628 {
3629 	IWI_CMD_LOCK(sc);
3630 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3631 		IWI_CMD_UNLOCK(sc);
3632 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3633 		return (EBUSY);
3634 	}
3635 
3636 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3637 	sc->sc_arg[sc->sc_cmd_next] = arg;
3638 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWI_CMD_MAXOPS;
3639 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3640 	IWI_CMD_UNLOCK(sc);
3641 	return (0);
3642 }
3643 
3644 static void
3645 iwi_scan_start(struct ieee80211com *ic)
3646 {
3647 	struct ifnet *ifp = ic->ic_ifp;
3648 	struct iwi_softc *sc = ifp->if_softc;
3649 
3650 	iwi_queue_cmd(sc, IWI_SCAN_START, 0);
3651 }
3652 
3653 static void
3654 iwi_set_channel(struct ieee80211com *ic)
3655 {
3656 	struct ifnet *ifp = ic->ic_ifp;
3657 	struct iwi_softc *sc = ifp->if_softc;
3658 	if (sc->fw_state == IWI_FW_IDLE)
3659 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3660 }
3661 
3662 static void
3663 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3664 {
3665 	struct ieee80211vap *vap = ss->ss_vap;
3666 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3667 	struct iwi_softc *sc = ifp->if_softc;
3668 
3669 	iwi_queue_cmd(sc, IWI_SCAN_CURCHAN, maxdwell);
3670 }
3671 
3672 #if 0
3673 static void
3674 iwi_scan_allchan(struct ieee80211com *ic, unsigned long maxdwell)
3675 {
3676 	struct ifnet *ifp = ic->ic_ifp;
3677 	struct iwi_softc *sc = ifp->if_softc;
3678 
3679 	iwi_queue_cmd(sc, IWI_SCAN_ALLCHAN, maxdwell);
3680 }
3681 #endif
3682 
3683 static void
3684 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3685 {
3686 	/* NB: don't try to abort scan; wait for firmware to finish */
3687 }
3688 
3689 static void
3690 iwi_scan_end(struct ieee80211com *ic)
3691 {
3692 	struct ifnet *ifp = ic->ic_ifp;
3693 	struct iwi_softc *sc = ifp->if_softc;
3694 
3695 	taskqueue_enqueue(sc->sc_tq2, &sc->sc_scanaborttask);
3696 }
3697