1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/kthread.h> 57 #include <sys/taskqueue.h> 58 59 #include <machine/bus.h> 60 #include <machine/resource.h> 61 #include <sys/rman.h> 62 63 #include <dev/pci/pcireg.h> 64 #include <dev/pci/pcivar.h> 65 66 #include <net/bpf.h> 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 88 #define IWI_DEBUG 89 #ifdef IWI_DEBUG 90 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 91 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 92 int iwi_debug = 0; 93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 94 95 static const char *iwi_fw_states[] = { 96 "IDLE", /* IWI_FW_IDLE */ 97 "LOADING", /* IWI_FW_LOADING */ 98 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 99 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 100 "SCANNING", /* IWI_FW_SCANNING */ 101 }; 102 #else 103 #define DPRINTF(x) 104 #define DPRINTFN(n, x) 105 #endif 106 107 MODULE_DEPEND(iwi, pci, 1, 1, 1); 108 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 109 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 110 111 enum { 112 IWI_LED_TX, 113 IWI_LED_RX, 114 IWI_LED_POLL, 115 }; 116 117 struct iwi_ident { 118 uint16_t vendor; 119 uint16_t device; 120 const char *name; 121 }; 122 123 static const struct iwi_ident iwi_ident_table[] = { 124 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 125 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 126 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 127 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 128 129 { 0, 0, NULL } 130 }; 131 132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 133 const char name[IFNAMSIZ], int unit, int opmode, int flags, 134 const uint8_t bssid[IEEE80211_ADDR_LEN], 135 const uint8_t mac[IEEE80211_ADDR_LEN]); 136 static void iwi_vap_delete(struct ieee80211vap *); 137 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 138 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 139 int); 140 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 143 int, bus_addr_t, bus_addr_t); 144 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 147 int); 148 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 151 const uint8_t [IEEE80211_ADDR_LEN]); 152 static void iwi_node_free(struct ieee80211_node *); 153 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 154 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 155 static void iwi_wme_init(struct iwi_softc *); 156 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 157 static int iwi_wme_update(struct ieee80211com *); 158 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 159 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 160 struct iwi_frame *); 161 static void iwi_authsuccess(void *, int); 162 static void iwi_assocsuccess(void *, int); 163 static void iwi_assocfailed(void *, int); 164 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 165 static void iwi_rx_intr(struct iwi_softc *); 166 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 167 static void iwi_intr(void *); 168 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 169 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 170 static int iwi_tx_start(struct ifnet *, struct mbuf *, 171 struct ieee80211_node *, int); 172 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 173 const struct ieee80211_bpf_params *); 174 static void iwi_start_locked(struct ifnet *); 175 static void iwi_start(struct ifnet *); 176 static void iwi_watchdog(void *); 177 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 178 static void iwi_stop_master(struct iwi_softc *); 179 static int iwi_reset(struct iwi_softc *); 180 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 181 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 182 static void iwi_release_fw_dma(struct iwi_softc *sc); 183 static int iwi_config(struct iwi_softc *); 184 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 185 static void iwi_put_firmware(struct iwi_softc *); 186 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 187 static void iwi_scan_start(struct ieee80211com *); 188 static void iwi_scan_end(struct ieee80211com *); 189 static void iwi_scanabort(void *, int); 190 static void iwi_set_channel(struct ieee80211com *); 191 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 192 #if 0 193 static void iwi_scan_allchan(struct ieee80211com *, unsigned long maxdwell); 194 #endif 195 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 196 static void iwi_ops(void *, int); 197 static int iwi_queue_cmd(struct iwi_softc *, int, unsigned long); 198 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 199 static int iwi_disassociate(struct iwi_softc *, int quiet); 200 static void iwi_init_locked(struct iwi_softc *); 201 static void iwi_init(void *); 202 static int iwi_init_fw_dma(struct iwi_softc *, int); 203 static void iwi_stop_locked(void *); 204 static void iwi_stop(struct iwi_softc *); 205 static void iwi_restart(void *, int); 206 static int iwi_getrfkill(struct iwi_softc *); 207 static void iwi_radio_on(void *, int); 208 static void iwi_radio_off(void *, int); 209 static void iwi_sysctlattach(struct iwi_softc *); 210 static void iwi_led_event(struct iwi_softc *, int); 211 static void iwi_ledattach(struct iwi_softc *); 212 213 static int iwi_probe(device_t); 214 static int iwi_attach(device_t); 215 static int iwi_detach(device_t); 216 static int iwi_shutdown(device_t); 217 static int iwi_suspend(device_t); 218 static int iwi_resume(device_t); 219 220 static device_method_t iwi_methods[] = { 221 /* Device interface */ 222 DEVMETHOD(device_probe, iwi_probe), 223 DEVMETHOD(device_attach, iwi_attach), 224 DEVMETHOD(device_detach, iwi_detach), 225 DEVMETHOD(device_shutdown, iwi_shutdown), 226 DEVMETHOD(device_suspend, iwi_suspend), 227 DEVMETHOD(device_resume, iwi_resume), 228 229 { 0, 0 } 230 }; 231 232 static driver_t iwi_driver = { 233 "iwi", 234 iwi_methods, 235 sizeof (struct iwi_softc) 236 }; 237 238 static devclass_t iwi_devclass; 239 240 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 241 242 static __inline uint8_t 243 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 244 { 245 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 246 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 247 } 248 249 static __inline uint32_t 250 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 251 { 252 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 253 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 254 } 255 256 static int 257 iwi_probe(device_t dev) 258 { 259 const struct iwi_ident *ident; 260 261 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 262 if (pci_get_vendor(dev) == ident->vendor && 263 pci_get_device(dev) == ident->device) { 264 device_set_desc(dev, ident->name); 265 return 0; 266 } 267 } 268 return ENXIO; 269 } 270 271 /* Base Address Register */ 272 #define IWI_PCI_BAR0 0x10 273 274 static int 275 iwi_attach(device_t dev) 276 { 277 struct iwi_softc *sc = device_get_softc(dev); 278 struct ifnet *ifp; 279 struct ieee80211com *ic; 280 uint16_t val; 281 int i, error; 282 uint8_t bands; 283 284 sc->sc_dev = dev; 285 286 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 287 if (ifp == NULL) { 288 device_printf(dev, "can not if_alloc()\n"); 289 return ENXIO; 290 } 291 ic = ifp->if_l2com; 292 293 IWI_LOCK_INIT(sc); 294 IWI_CMD_LOCK_INIT(sc); 295 296 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 297 298 sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT | M_ZERO, 299 taskqueue_thread_enqueue, &sc->sc_tq); 300 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 301 device_get_nameunit(dev)); 302 sc->sc_tq2 = taskqueue_create("iwi_taskq2", M_NOWAIT | M_ZERO, 303 taskqueue_thread_enqueue, &sc->sc_tq2); 304 taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2", 305 device_get_nameunit(dev)); 306 307 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 308 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 309 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 310 TASK_INIT(&sc->sc_opstask, 0, iwi_ops, sc); 311 TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc); 312 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 313 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 314 315 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 316 device_printf(dev, "chip is in D%d power mode " 317 "-- setting to D0\n", pci_get_powerstate(dev)); 318 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 319 } 320 321 pci_write_config(dev, 0x41, 0, 1); 322 323 /* enable bus-mastering */ 324 pci_enable_busmaster(dev); 325 326 sc->mem_rid = IWI_PCI_BAR0; 327 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 328 RF_ACTIVE); 329 if (sc->mem == NULL) { 330 device_printf(dev, "could not allocate memory resource\n"); 331 goto fail; 332 } 333 334 sc->sc_st = rman_get_bustag(sc->mem); 335 sc->sc_sh = rman_get_bushandle(sc->mem); 336 337 sc->irq_rid = 0; 338 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 339 RF_ACTIVE | RF_SHAREABLE); 340 if (sc->irq == NULL) { 341 device_printf(dev, "could not allocate interrupt resource\n"); 342 goto fail; 343 } 344 345 if (iwi_reset(sc) != 0) { 346 device_printf(dev, "could not reset adapter\n"); 347 goto fail; 348 } 349 350 /* 351 * Allocate rings. 352 */ 353 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 354 device_printf(dev, "could not allocate Cmd ring\n"); 355 goto fail; 356 } 357 358 for (i = 0; i < 4; i++) { 359 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 360 IWI_CSR_TX1_RIDX + i * 4, 361 IWI_CSR_TX1_WIDX + i * 4); 362 if (error != 0) { 363 device_printf(dev, "could not allocate Tx ring %d\n", 364 i+i); 365 goto fail; 366 } 367 } 368 369 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 370 device_printf(dev, "could not allocate Rx ring\n"); 371 goto fail; 372 } 373 374 iwi_wme_init(sc); 375 376 ifp->if_softc = sc; 377 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 378 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 379 ifp->if_init = iwi_init; 380 ifp->if_ioctl = iwi_ioctl; 381 ifp->if_start = iwi_start; 382 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 383 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 384 IFQ_SET_READY(&ifp->if_snd); 385 386 ic->ic_ifp = ifp; 387 ic->ic_opmode = IEEE80211_M_STA; 388 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 389 390 /* set device capabilities */ 391 ic->ic_caps = 392 IEEE80211_C_STA /* station mode supported */ 393 | IEEE80211_C_IBSS /* IBSS mode supported */ 394 | IEEE80211_C_MONITOR /* monitor mode supported */ 395 | IEEE80211_C_PMGT /* power save supported */ 396 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 397 | IEEE80211_C_WPA /* 802.11i */ 398 | IEEE80211_C_WME /* 802.11e */ 399 #if 0 400 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 401 #endif 402 ; 403 404 /* read MAC address from EEPROM */ 405 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 406 ic->ic_myaddr[0] = val & 0xff; 407 ic->ic_myaddr[1] = val >> 8; 408 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 409 ic->ic_myaddr[2] = val & 0xff; 410 ic->ic_myaddr[3] = val >> 8; 411 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 412 ic->ic_myaddr[4] = val & 0xff; 413 ic->ic_myaddr[5] = val >> 8; 414 415 bands = 0; 416 setbit(&bands, IEEE80211_MODE_11B); 417 setbit(&bands, IEEE80211_MODE_11G); 418 if (pci_get_device(dev) >= 0x4223) 419 setbit(&bands, IEEE80211_MODE_11A); 420 ieee80211_init_channels(ic, NULL, &bands); 421 422 ieee80211_ifattach(ic); 423 /* override default methods */ 424 ic->ic_node_alloc = iwi_node_alloc; 425 sc->sc_node_free = ic->ic_node_free; 426 ic->ic_node_free = iwi_node_free; 427 ic->ic_raw_xmit = iwi_raw_xmit; 428 ic->ic_scan_start = iwi_scan_start; 429 ic->ic_scan_end = iwi_scan_end; 430 ic->ic_set_channel = iwi_set_channel; 431 ic->ic_scan_curchan = iwi_scan_curchan; 432 ic->ic_scan_mindwell = iwi_scan_mindwell; 433 ic->ic_wme.wme_update = iwi_wme_update; 434 435 ic->ic_vap_create = iwi_vap_create; 436 ic->ic_vap_delete = iwi_vap_delete; 437 438 bpfattach(ifp, DLT_IEEE802_11_RADIO, 439 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 440 441 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 442 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 443 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); 444 445 sc->sc_txtap_len = sizeof sc->sc_txtap; 446 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 447 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); 448 449 iwi_sysctlattach(sc); 450 iwi_ledattach(sc); 451 452 /* 453 * Hook our interrupt after all initialization is complete. 454 */ 455 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 456 NULL, iwi_intr, sc, &sc->sc_ih); 457 if (error != 0) { 458 device_printf(dev, "could not set up interrupt\n"); 459 goto fail; 460 } 461 462 if (bootverbose) 463 ieee80211_announce(ic); 464 465 return 0; 466 fail: 467 /* XXX fix */ 468 iwi_detach(dev); 469 return ENXIO; 470 } 471 472 static int 473 iwi_detach(device_t dev) 474 { 475 struct iwi_softc *sc = device_get_softc(dev); 476 struct ifnet *ifp = sc->sc_ifp; 477 struct ieee80211com *ic = ifp->if_l2com; 478 479 iwi_stop(sc); 480 481 bpfdetach(ifp); 482 ieee80211_ifdetach(ic); 483 484 /* NB: do early to drain any pending tasks */ 485 taskqueue_free(sc->sc_tq); 486 taskqueue_free(sc->sc_tq2); 487 488 iwi_put_firmware(sc); 489 iwi_release_fw_dma(sc); 490 491 iwi_free_cmd_ring(sc, &sc->cmdq); 492 iwi_free_tx_ring(sc, &sc->txq[0]); 493 iwi_free_tx_ring(sc, &sc->txq[1]); 494 iwi_free_tx_ring(sc, &sc->txq[2]); 495 iwi_free_tx_ring(sc, &sc->txq[3]); 496 iwi_free_rx_ring(sc, &sc->rxq); 497 498 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 499 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 500 501 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 502 503 delete_unrhdr(sc->sc_unr); 504 505 IWI_LOCK_DESTROY(sc); 506 IWI_CMD_LOCK_DESTROY(sc); 507 508 if_free(ifp); 509 510 return 0; 511 } 512 513 static struct ieee80211vap * 514 iwi_vap_create(struct ieee80211com *ic, 515 const char name[IFNAMSIZ], int unit, int opmode, int flags, 516 const uint8_t bssid[IEEE80211_ADDR_LEN], 517 const uint8_t mac[IEEE80211_ADDR_LEN]) 518 { 519 struct ifnet *ifp = ic->ic_ifp; 520 struct iwi_softc *sc = ifp->if_softc; 521 struct iwi_vap *ivp; 522 struct ieee80211vap *vap; 523 int i; 524 525 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 526 return NULL; 527 /* 528 * Get firmware image (and possibly dma memory) on mode change. 529 */ 530 if (iwi_get_firmware(sc, opmode)) 531 return NULL; 532 /* allocate DMA memory for mapping firmware image */ 533 i = sc->fw_fw.size; 534 if (sc->fw_boot.size > i) 535 i = sc->fw_boot.size; 536 /* XXX do we dma the ucode as well ? */ 537 if (sc->fw_uc.size > i) 538 i = sc->fw_uc.size; 539 if (iwi_init_fw_dma(sc, i)) 540 return NULL; 541 542 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 543 M_80211_VAP, M_NOWAIT | M_ZERO); 544 if (ivp == NULL) 545 return NULL; 546 vap = &ivp->iwi_vap; 547 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 548 /* override the default, the setting comes from the linux driver */ 549 vap->iv_bmissthreshold = 24; 550 /* override with driver methods */ 551 ivp->iwi_newstate = vap->iv_newstate; 552 vap->iv_newstate = iwi_newstate; 553 554 TASK_INIT(&ivp->iwi_authsuccess_task, 0, iwi_authsuccess, vap); 555 TASK_INIT(&ivp->iwi_assocsuccess_task, 0, iwi_assocsuccess, vap); 556 TASK_INIT(&ivp->iwi_assocfailed_task, 0, iwi_assocfailed, vap); 557 558 /* complete setup */ 559 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 560 ic->ic_opmode = opmode; 561 return vap; 562 } 563 564 static void 565 iwi_vap_delete(struct ieee80211vap *vap) 566 { 567 struct iwi_vap *ivp = IWI_VAP(vap); 568 569 ieee80211_vap_detach(vap); 570 free(ivp, M_80211_VAP); 571 } 572 573 static void 574 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 575 { 576 if (error != 0) 577 return; 578 579 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 580 581 *(bus_addr_t *)arg = segs[0].ds_addr; 582 } 583 584 static int 585 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 586 { 587 int error; 588 589 ring->count = count; 590 ring->queued = 0; 591 ring->cur = ring->next = 0; 592 593 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 594 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 595 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 596 NULL, NULL, &ring->desc_dmat); 597 if (error != 0) { 598 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 599 goto fail; 600 } 601 602 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 603 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 604 if (error != 0) { 605 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 606 goto fail; 607 } 608 609 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 610 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 611 if (error != 0) { 612 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 613 goto fail; 614 } 615 616 return 0; 617 618 fail: iwi_free_cmd_ring(sc, ring); 619 return error; 620 } 621 622 static void 623 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 624 { 625 ring->queued = 0; 626 ring->cur = ring->next = 0; 627 } 628 629 static void 630 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 631 { 632 if (ring->desc != NULL) { 633 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 634 BUS_DMASYNC_POSTWRITE); 635 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 636 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 637 } 638 639 if (ring->desc_dmat != NULL) 640 bus_dma_tag_destroy(ring->desc_dmat); 641 } 642 643 static int 644 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 645 bus_addr_t csr_ridx, bus_addr_t csr_widx) 646 { 647 int i, error; 648 649 ring->count = count; 650 ring->queued = 0; 651 ring->cur = ring->next = 0; 652 ring->csr_ridx = csr_ridx; 653 ring->csr_widx = csr_widx; 654 655 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 656 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 657 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 658 NULL, &ring->desc_dmat); 659 if (error != 0) { 660 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 661 goto fail; 662 } 663 664 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 665 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 666 if (error != 0) { 667 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 668 goto fail; 669 } 670 671 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 672 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 673 if (error != 0) { 674 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 675 goto fail; 676 } 677 678 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 679 M_NOWAIT | M_ZERO); 680 if (ring->data == NULL) { 681 device_printf(sc->sc_dev, "could not allocate soft data\n"); 682 error = ENOMEM; 683 goto fail; 684 } 685 686 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 687 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 688 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 689 if (error != 0) { 690 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 691 goto fail; 692 } 693 694 for (i = 0; i < count; i++) { 695 error = bus_dmamap_create(ring->data_dmat, 0, 696 &ring->data[i].map); 697 if (error != 0) { 698 device_printf(sc->sc_dev, "could not create DMA map\n"); 699 goto fail; 700 } 701 } 702 703 return 0; 704 705 fail: iwi_free_tx_ring(sc, ring); 706 return error; 707 } 708 709 static void 710 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 711 { 712 struct iwi_tx_data *data; 713 int i; 714 715 for (i = 0; i < ring->count; i++) { 716 data = &ring->data[i]; 717 718 if (data->m != NULL) { 719 bus_dmamap_sync(ring->data_dmat, data->map, 720 BUS_DMASYNC_POSTWRITE); 721 bus_dmamap_unload(ring->data_dmat, data->map); 722 m_freem(data->m); 723 data->m = NULL; 724 } 725 726 if (data->ni != NULL) { 727 ieee80211_free_node(data->ni); 728 data->ni = NULL; 729 } 730 } 731 732 ring->queued = 0; 733 ring->cur = ring->next = 0; 734 } 735 736 static void 737 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 738 { 739 struct iwi_tx_data *data; 740 int i; 741 742 if (ring->desc != NULL) { 743 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 744 BUS_DMASYNC_POSTWRITE); 745 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 746 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 747 } 748 749 if (ring->desc_dmat != NULL) 750 bus_dma_tag_destroy(ring->desc_dmat); 751 752 if (ring->data != NULL) { 753 for (i = 0; i < ring->count; i++) { 754 data = &ring->data[i]; 755 756 if (data->m != NULL) { 757 bus_dmamap_sync(ring->data_dmat, data->map, 758 BUS_DMASYNC_POSTWRITE); 759 bus_dmamap_unload(ring->data_dmat, data->map); 760 m_freem(data->m); 761 } 762 763 if (data->ni != NULL) 764 ieee80211_free_node(data->ni); 765 766 if (data->map != NULL) 767 bus_dmamap_destroy(ring->data_dmat, data->map); 768 } 769 770 free(ring->data, M_DEVBUF); 771 } 772 773 if (ring->data_dmat != NULL) 774 bus_dma_tag_destroy(ring->data_dmat); 775 } 776 777 static int 778 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 779 { 780 struct iwi_rx_data *data; 781 int i, error; 782 783 ring->count = count; 784 ring->cur = 0; 785 786 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 787 M_NOWAIT | M_ZERO); 788 if (ring->data == NULL) { 789 device_printf(sc->sc_dev, "could not allocate soft data\n"); 790 error = ENOMEM; 791 goto fail; 792 } 793 794 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 795 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 796 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 797 if (error != 0) { 798 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 799 goto fail; 800 } 801 802 for (i = 0; i < count; i++) { 803 data = &ring->data[i]; 804 805 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 806 if (error != 0) { 807 device_printf(sc->sc_dev, "could not create DMA map\n"); 808 goto fail; 809 } 810 811 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 812 if (data->m == NULL) { 813 device_printf(sc->sc_dev, 814 "could not allocate rx mbuf\n"); 815 error = ENOMEM; 816 goto fail; 817 } 818 819 error = bus_dmamap_load(ring->data_dmat, data->map, 820 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 821 &data->physaddr, 0); 822 if (error != 0) { 823 device_printf(sc->sc_dev, 824 "could not load rx buf DMA map"); 825 goto fail; 826 } 827 828 data->reg = IWI_CSR_RX_BASE + i * 4; 829 } 830 831 return 0; 832 833 fail: iwi_free_rx_ring(sc, ring); 834 return error; 835 } 836 837 static void 838 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 839 { 840 ring->cur = 0; 841 } 842 843 static void 844 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 845 { 846 struct iwi_rx_data *data; 847 int i; 848 849 if (ring->data != NULL) { 850 for (i = 0; i < ring->count; i++) { 851 data = &ring->data[i]; 852 853 if (data->m != NULL) { 854 bus_dmamap_sync(ring->data_dmat, data->map, 855 BUS_DMASYNC_POSTREAD); 856 bus_dmamap_unload(ring->data_dmat, data->map); 857 m_freem(data->m); 858 } 859 860 if (data->map != NULL) 861 bus_dmamap_destroy(ring->data_dmat, data->map); 862 } 863 864 free(ring->data, M_DEVBUF); 865 } 866 867 if (ring->data_dmat != NULL) 868 bus_dma_tag_destroy(ring->data_dmat); 869 } 870 871 static int 872 iwi_shutdown(device_t dev) 873 { 874 struct iwi_softc *sc = device_get_softc(dev); 875 876 iwi_stop(sc); 877 iwi_put_firmware(sc); /* ??? XXX */ 878 879 return 0; 880 } 881 882 static int 883 iwi_suspend(device_t dev) 884 { 885 struct iwi_softc *sc = device_get_softc(dev); 886 887 iwi_stop(sc); 888 889 return 0; 890 } 891 892 static int 893 iwi_resume(device_t dev) 894 { 895 struct iwi_softc *sc = device_get_softc(dev); 896 struct ifnet *ifp = sc->sc_ifp; 897 898 pci_write_config(dev, 0x41, 0, 1); 899 900 if (ifp->if_flags & IFF_UP) 901 iwi_init(sc); 902 903 return 0; 904 } 905 906 static struct ieee80211_node * 907 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 908 { 909 struct iwi_node *in; 910 911 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 912 if (in == NULL) 913 return NULL; 914 /* XXX assign sta table entry for adhoc */ 915 in->in_station = -1; 916 917 return &in->in_node; 918 } 919 920 static void 921 iwi_node_free(struct ieee80211_node *ni) 922 { 923 struct ieee80211com *ic = ni->ni_ic; 924 struct iwi_softc *sc = ic->ic_ifp->if_softc; 925 struct iwi_node *in = (struct iwi_node *)ni; 926 927 if (in->in_station != -1) { 928 DPRINTF(("%s mac %6D station %u\n", __func__, 929 ni->ni_macaddr, ":", in->in_station)); 930 free_unr(sc->sc_unr, in->in_station); 931 } 932 933 sc->sc_node_free(ni); 934 } 935 936 /* 937 * Convert h/w rate code to IEEE rate code. 938 */ 939 static int 940 iwi_cvtrate(int iwirate) 941 { 942 switch (iwirate) { 943 case IWI_RATE_DS1: return 2; 944 case IWI_RATE_DS2: return 4; 945 case IWI_RATE_DS5: return 11; 946 case IWI_RATE_DS11: return 22; 947 case IWI_RATE_OFDM6: return 12; 948 case IWI_RATE_OFDM9: return 18; 949 case IWI_RATE_OFDM12: return 24; 950 case IWI_RATE_OFDM18: return 36; 951 case IWI_RATE_OFDM24: return 48; 952 case IWI_RATE_OFDM36: return 72; 953 case IWI_RATE_OFDM48: return 96; 954 case IWI_RATE_OFDM54: return 108; 955 } 956 return 0; 957 } 958 959 /* 960 * The firmware automatically adapts the transmit speed. We report its current 961 * value here. 962 */ 963 static void 964 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 965 { 966 struct ieee80211vap *vap = ifp->if_softc; 967 struct ieee80211com *ic = vap->iv_ic; 968 struct iwi_softc *sc = ic->ic_ifp->if_softc; 969 970 /* read current transmission rate from adapter */ 971 vap->iv_bss->ni_txrate = 972 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 973 ieee80211_media_status(ifp, imr); 974 } 975 976 static int 977 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 978 { 979 struct iwi_vap *ivp = IWI_VAP(vap); 980 struct ieee80211com *ic = vap->iv_ic; 981 struct ifnet *ifp = ic->ic_ifp; 982 struct iwi_softc *sc = ifp->if_softc; 983 IWI_LOCK_DECL; 984 985 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 986 ieee80211_state_name[vap->iv_state], 987 ieee80211_state_name[nstate], sc->flags)); 988 989 switch (nstate) { 990 case IEEE80211_S_INIT: 991 IWI_LOCK(sc); 992 /* 993 * NB: don't try to do this if iwi_stop_master has 994 * shutdown the firmware and disabled interrupts. 995 */ 996 if (vap->iv_state == IEEE80211_S_RUN && 997 (sc->flags & IWI_FLAG_FW_INITED)) 998 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 999 IWI_UNLOCK(sc); 1000 break; 1001 case IEEE80211_S_AUTH: 1002 iwi_queue_cmd(sc, IWI_AUTH, arg); 1003 return EINPROGRESS; 1004 case IEEE80211_S_RUN: 1005 if (vap->iv_opmode == IEEE80211_M_IBSS && 1006 vap->iv_state == IEEE80211_S_SCAN) { 1007 /* 1008 * XXX when joining an ibss network we are called 1009 * with a SCAN -> RUN transition on scan complete. 1010 * Use that to call iwi_auth_and_assoc. On completing 1011 * the join we are then called again with an 1012 * AUTH -> RUN transition and we want to do nothing. 1013 * This is all totally bogus and needs to be redone. 1014 */ 1015 iwi_queue_cmd(sc, IWI_ASSOC, 0); 1016 return EINPROGRESS; 1017 } 1018 break; 1019 case IEEE80211_S_ASSOC: 1020 /* 1021 * If we are transitioning from AUTH then just wait 1022 * for the ASSOC status to come back from the firmware. 1023 * Otherwise we need to issue the association request. 1024 */ 1025 if (vap->iv_state == IEEE80211_S_AUTH) 1026 break; 1027 iwi_queue_cmd(sc, IWI_ASSOC, arg); 1028 return EINPROGRESS; 1029 default: 1030 break; 1031 } 1032 return ivp->iwi_newstate(vap, nstate, arg); 1033 } 1034 1035 /* 1036 * WME parameters coming from IEEE 802.11e specification. These values are 1037 * already declared in ieee80211_proto.c, but they are static so they can't 1038 * be reused here. 1039 */ 1040 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1041 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1042 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1043 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1044 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1045 }; 1046 1047 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1048 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1049 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1050 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1051 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1052 }; 1053 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1054 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1055 1056 static void 1057 iwi_wme_init(struct iwi_softc *sc) 1058 { 1059 const struct wmeParams *wmep; 1060 int ac; 1061 1062 memset(sc->wme, 0, sizeof sc->wme); 1063 for (ac = 0; ac < WME_NUM_AC; ac++) { 1064 /* set WME values for CCK modulation */ 1065 wmep = &iwi_wme_cck_params[ac]; 1066 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1067 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1068 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1069 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1070 sc->wme[1].acm[ac] = wmep->wmep_acm; 1071 1072 /* set WME values for OFDM modulation */ 1073 wmep = &iwi_wme_ofdm_params[ac]; 1074 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1075 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1076 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1077 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1078 sc->wme[2].acm[ac] = wmep->wmep_acm; 1079 } 1080 } 1081 1082 static int 1083 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1084 { 1085 const struct wmeParams *wmep; 1086 int ac; 1087 1088 for (ac = 0; ac < WME_NUM_AC; ac++) { 1089 /* set WME values for current operating mode */ 1090 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1091 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1092 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1093 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1094 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1095 sc->wme[0].acm[ac] = wmep->wmep_acm; 1096 } 1097 1098 DPRINTF(("Setting WME parameters\n")); 1099 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1100 } 1101 #undef IWI_USEC 1102 #undef IWI_EXP2 1103 1104 static int 1105 iwi_wme_update(struct ieee80211com *ic) 1106 { 1107 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1108 1109 /* 1110 * We may be called to update the WME parameters in 1111 * the adapter at various places. If we're already 1112 * associated then initiate the request immediately 1113 * (via the taskqueue); otherwise we assume the params 1114 * will get sent down to the adapter as part of the 1115 * work iwi_auth_and_assoc does. 1116 */ 1117 return iwi_queue_cmd(sc, IWI_SET_WME, 0); 1118 } 1119 1120 static int 1121 iwi_wme_setie(struct iwi_softc *sc) 1122 { 1123 struct ieee80211_wme_info wme; 1124 1125 memset(&wme, 0, sizeof wme); 1126 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1127 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1128 wme.wme_oui[0] = 0x00; 1129 wme.wme_oui[1] = 0x50; 1130 wme.wme_oui[2] = 0xf2; 1131 wme.wme_type = WME_OUI_TYPE; 1132 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1133 wme.wme_version = WME_VERSION; 1134 wme.wme_info = 0; 1135 1136 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1137 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1138 } 1139 1140 /* 1141 * Read 16 bits at address 'addr' from the serial EEPROM. 1142 */ 1143 static uint16_t 1144 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1145 { 1146 uint32_t tmp; 1147 uint16_t val; 1148 int n; 1149 1150 /* clock C once before the first command */ 1151 IWI_EEPROM_CTL(sc, 0); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1155 1156 /* write start bit (1) */ 1157 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1159 1160 /* write READ opcode (10) */ 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1163 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1164 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1165 1166 /* write address A7-A0 */ 1167 for (n = 7; n >= 0; n--) { 1168 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1169 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1170 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1171 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1172 } 1173 1174 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1175 1176 /* read data Q15-Q0 */ 1177 val = 0; 1178 for (n = 15; n >= 0; n--) { 1179 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1180 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1181 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1182 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1183 } 1184 1185 IWI_EEPROM_CTL(sc, 0); 1186 1187 /* clear Chip Select and clock C */ 1188 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1189 IWI_EEPROM_CTL(sc, 0); 1190 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1191 1192 return val; 1193 } 1194 1195 static void 1196 iwi_setcurchan(struct iwi_softc *sc, int chan) 1197 { 1198 struct ifnet *ifp = sc->sc_ifp; 1199 struct ieee80211com *ic = ifp->if_l2com; 1200 1201 sc->curchan = chan; 1202 1203 sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = 1204 htole16(ic->ic_curchan->ic_freq); 1205 sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = 1206 htole16(ic->ic_curchan->ic_flags); 1207 } 1208 1209 static void 1210 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1211 struct iwi_frame *frame) 1212 { 1213 struct ifnet *ifp = sc->sc_ifp; 1214 struct ieee80211com *ic = ifp->if_l2com; 1215 struct mbuf *mnew, *m; 1216 struct ieee80211_node *ni; 1217 int type, error, framelen; 1218 IWI_LOCK_DECL; 1219 1220 framelen = le16toh(frame->len); 1221 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1222 /* 1223 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1224 * out of bounds; need to figure out how to limit 1225 * frame size in the firmware 1226 */ 1227 /* XXX stat */ 1228 DPRINTFN(1, 1229 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1230 le16toh(frame->len), frame->chan, frame->rssi, 1231 frame->rssi_dbm)); 1232 return; 1233 } 1234 1235 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1236 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1237 1238 if (frame->chan != sc->curchan) 1239 iwi_setcurchan(sc, frame->chan); 1240 1241 /* 1242 * Try to allocate a new mbuf for this ring element and load it before 1243 * processing the current mbuf. If the ring element cannot be loaded, 1244 * drop the received packet and reuse the old mbuf. In the unlikely 1245 * case that the old mbuf can't be reloaded either, explicitly panic. 1246 */ 1247 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1248 if (mnew == NULL) { 1249 ifp->if_ierrors++; 1250 return; 1251 } 1252 1253 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1254 1255 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1256 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1257 0); 1258 if (error != 0) { 1259 m_freem(mnew); 1260 1261 /* try to reload the old mbuf */ 1262 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1263 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1264 &data->physaddr, 0); 1265 if (error != 0) { 1266 /* very unlikely that it will fail... */ 1267 panic("%s: could not load old rx mbuf", 1268 device_get_name(sc->sc_dev)); 1269 } 1270 ifp->if_ierrors++; 1271 return; 1272 } 1273 1274 /* 1275 * New mbuf successfully loaded, update Rx ring and continue 1276 * processing. 1277 */ 1278 m = data->m; 1279 data->m = mnew; 1280 CSR_WRITE_4(sc, data->reg, data->physaddr); 1281 1282 /* finalize mbuf */ 1283 m->m_pkthdr.rcvif = ifp; 1284 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1285 sizeof (struct iwi_frame) + framelen; 1286 1287 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1288 1289 if (bpf_peers_present(ifp->if_bpf)) { 1290 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1291 1292 tap->wr_flags = 0; 1293 tap->wr_rate = iwi_cvtrate(frame->rate); 1294 tap->wr_antsignal = frame->signal; 1295 tap->wr_antenna = frame->antenna; 1296 1297 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1298 } 1299 IWI_UNLOCK(sc); 1300 1301 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1302 if (ni != NULL) { 1303 type = ieee80211_input(ni, m, frame->rssi_dbm, 0, 0); 1304 ieee80211_free_node(ni); 1305 } else 1306 type = ieee80211_input_all(ic, m, frame->rssi_dbm, 0, 0); 1307 1308 IWI_LOCK(sc); 1309 if (sc->sc_softled) { 1310 /* 1311 * Blink for any data frame. Otherwise do a 1312 * heartbeat-style blink when idle. The latter 1313 * is mainly for station mode where we depend on 1314 * periodic beacon frames to trigger the poll event. 1315 */ 1316 if (type == IEEE80211_FC0_TYPE_DATA) { 1317 sc->sc_rxrate = frame->rate; 1318 iwi_led_event(sc, IWI_LED_RX); 1319 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1320 iwi_led_event(sc, IWI_LED_POLL); 1321 } 1322 } 1323 1324 /* 1325 * Check for an association response frame to see if QoS 1326 * has been negotiated. We parse just enough to figure 1327 * out if we're supposed to use QoS. The proper solution 1328 * is to pass the frame up so ieee80211_input can do the 1329 * work but that's made hard by how things currently are 1330 * done in the driver. 1331 */ 1332 static void 1333 iwi_checkforqos(struct ieee80211vap *vap, 1334 const struct ieee80211_frame *wh, int len) 1335 { 1336 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1337 const uint8_t *frm, *efrm, *wme; 1338 struct ieee80211_node *ni; 1339 uint16_t capinfo, status, associd; 1340 1341 /* NB: +8 for capinfo, status, associd, and first ie */ 1342 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1343 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1344 return; 1345 /* 1346 * asresp frame format 1347 * [2] capability information 1348 * [2] status 1349 * [2] association ID 1350 * [tlv] supported rates 1351 * [tlv] extended supported rates 1352 * [tlv] WME 1353 */ 1354 frm = (const uint8_t *)&wh[1]; 1355 efrm = ((const uint8_t *) wh) + len; 1356 1357 capinfo = le16toh(*(const uint16_t *)frm); 1358 frm += 2; 1359 status = le16toh(*(const uint16_t *)frm); 1360 frm += 2; 1361 associd = le16toh(*(const uint16_t *)frm); 1362 frm += 2; 1363 1364 wme = NULL; 1365 while (frm < efrm) { 1366 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1367 switch (*frm) { 1368 case IEEE80211_ELEMID_VENDOR: 1369 if (iswmeoui(frm)) 1370 wme = frm; 1371 break; 1372 } 1373 frm += frm[1] + 2; 1374 } 1375 1376 ni = vap->iv_bss; 1377 ni->ni_capinfo = capinfo; 1378 ni->ni_associd = associd; 1379 if (wme != NULL) 1380 ni->ni_flags |= IEEE80211_NODE_QOS; 1381 else 1382 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1383 #undef SUBTYPE 1384 } 1385 1386 /* 1387 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1388 */ 1389 1390 static void 1391 iwi_authsuccess(void *arg, int npending) 1392 { 1393 struct ieee80211vap *vap = arg; 1394 1395 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1396 } 1397 1398 static void 1399 iwi_assocsuccess(void *arg, int npending) 1400 { 1401 struct ieee80211vap *vap = arg; 1402 1403 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1404 } 1405 1406 static void 1407 iwi_assocfailed(void *arg, int npending) 1408 { 1409 struct ieee80211vap *vap = arg; 1410 1411 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1412 } 1413 1414 static void 1415 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1416 { 1417 struct ifnet *ifp = sc->sc_ifp; 1418 struct ieee80211com *ic = ifp->if_l2com; 1419 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1420 struct iwi_notif_scan_channel *chan; 1421 struct iwi_notif_scan_complete *scan; 1422 struct iwi_notif_authentication *auth; 1423 struct iwi_notif_association *assoc; 1424 struct iwi_notif_beacon_state *beacon; 1425 1426 switch (notif->type) { 1427 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1428 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1429 1430 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1431 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1432 1433 /* Reset the timer, the scan is still going */ 1434 sc->sc_state_timer = 3; 1435 break; 1436 1437 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1438 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1439 1440 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1441 scan->status)); 1442 1443 IWI_STATE_END(sc, IWI_FW_SCANNING); 1444 1445 if (scan->status == IWI_SCAN_COMPLETED) { 1446 /* NB: don't need to defer, net80211 does it for us */ 1447 ieee80211_scan_next(vap); 1448 } 1449 break; 1450 1451 case IWI_NOTIF_TYPE_AUTHENTICATION: 1452 auth = (struct iwi_notif_authentication *)(notif + 1); 1453 switch (auth->state) { 1454 case IWI_AUTH_SUCCESS: 1455 DPRINTFN(2, ("Authentication succeeeded\n")); 1456 taskqueue_enqueue(taskqueue_swi, 1457 &IWI_VAP(vap)->iwi_authsuccess_task); 1458 break; 1459 case IWI_AUTH_FAIL: 1460 /* 1461 * These are delivered as an unsolicited deauth 1462 * (e.g. due to inactivity) or in response to an 1463 * associate request. 1464 */ 1465 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1466 if (vap->iv_state != IEEE80211_S_RUN) { 1467 DPRINTFN(2, ("Authentication failed\n")); 1468 vap->iv_stats.is_rx_auth_fail++; 1469 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1470 } else { 1471 DPRINTFN(2, ("Deauthenticated\n")); 1472 vap->iv_stats.is_rx_deauth++; 1473 } 1474 taskqueue_enqueue(taskqueue_swi, 1475 &IWI_VAP(vap)->iwi_assocfailed_task); 1476 break; 1477 case IWI_AUTH_SENT_1: 1478 case IWI_AUTH_RECV_2: 1479 case IWI_AUTH_SEQ1_PASS: 1480 break; 1481 case IWI_AUTH_SEQ1_FAIL: 1482 DPRINTFN(2, ("Initial authentication handshake failed; " 1483 "you probably need shared key\n")); 1484 vap->iv_stats.is_rx_auth_fail++; 1485 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1486 /* XXX retry shared key when in auto */ 1487 break; 1488 default: 1489 device_printf(sc->sc_dev, 1490 "unknown authentication state %u\n", auth->state); 1491 break; 1492 } 1493 break; 1494 1495 case IWI_NOTIF_TYPE_ASSOCIATION: 1496 assoc = (struct iwi_notif_association *)(notif + 1); 1497 switch (assoc->state) { 1498 case IWI_AUTH_SUCCESS: 1499 /* re-association, do nothing */ 1500 break; 1501 case IWI_ASSOC_SUCCESS: 1502 DPRINTFN(2, ("Association succeeded\n")); 1503 sc->flags |= IWI_FLAG_ASSOCIATED; 1504 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1505 iwi_checkforqos(vap, 1506 (const struct ieee80211_frame *)(assoc+1), 1507 le16toh(notif->len) - sizeof(*assoc)); 1508 taskqueue_enqueue(taskqueue_swi, 1509 &IWI_VAP(vap)->iwi_assocsuccess_task); 1510 break; 1511 case IWI_ASSOC_INIT: 1512 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1513 switch (sc->fw_state) { 1514 case IWI_FW_ASSOCIATING: 1515 DPRINTFN(2, ("Association failed\n")); 1516 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1517 taskqueue_enqueue(taskqueue_swi, 1518 &IWI_VAP(vap)->iwi_assocfailed_task); 1519 break; 1520 1521 case IWI_FW_DISASSOCIATING: 1522 DPRINTFN(2, ("Dissassociated\n")); 1523 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1524 vap->iv_stats.is_rx_disassoc++; 1525 taskqueue_enqueue(taskqueue_swi, 1526 &IWI_VAP(vap)->iwi_assocfailed_task); 1527 break; 1528 } 1529 break; 1530 default: 1531 device_printf(sc->sc_dev, 1532 "unknown association state %u\n", assoc->state); 1533 break; 1534 } 1535 break; 1536 1537 case IWI_NOTIF_TYPE_BEACON: 1538 /* XXX check struct length */ 1539 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1540 1541 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1542 beacon->state, le32toh(beacon->number))); 1543 1544 if (beacon->state == IWI_BEACON_MISS) { 1545 /* 1546 * The firmware notifies us of every beacon miss 1547 * so we need to track the count against the 1548 * configured threshold before notifying the 1549 * 802.11 layer. 1550 * XXX try to roam, drop assoc only on much higher count 1551 */ 1552 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1553 DPRINTF(("Beacon miss: %u >= %u\n", 1554 le32toh(beacon->number), 1555 vap->iv_bmissthreshold)); 1556 vap->iv_stats.is_beacon_miss++; 1557 /* 1558 * It's pointless to notify the 802.11 layer 1559 * as it'll try to send a probe request (which 1560 * we'll discard) and then timeout and drop us 1561 * into scan state. Instead tell the firmware 1562 * to disassociate and then on completion we'll 1563 * kick the state machine to scan. 1564 */ 1565 iwi_queue_cmd(sc, IWI_DISASSOC, 1); 1566 } 1567 } 1568 break; 1569 1570 case IWI_NOTIF_TYPE_CALIBRATION: 1571 case IWI_NOTIF_TYPE_NOISE: 1572 case IWI_NOTIF_TYPE_LINK_QUALITY: 1573 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1574 break; 1575 1576 default: 1577 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1578 notif->type, notif->flags, le16toh(notif->len))); 1579 break; 1580 } 1581 } 1582 1583 static void 1584 iwi_rx_intr(struct iwi_softc *sc) 1585 { 1586 struct iwi_rx_data *data; 1587 struct iwi_hdr *hdr; 1588 uint32_t hw; 1589 1590 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1591 1592 for (; sc->rxq.cur != hw;) { 1593 data = &sc->rxq.data[sc->rxq.cur]; 1594 1595 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1596 BUS_DMASYNC_POSTREAD); 1597 1598 hdr = mtod(data->m, struct iwi_hdr *); 1599 1600 switch (hdr->type) { 1601 case IWI_HDR_TYPE_FRAME: 1602 iwi_frame_intr(sc, data, sc->rxq.cur, 1603 (struct iwi_frame *)(hdr + 1)); 1604 break; 1605 1606 case IWI_HDR_TYPE_NOTIF: 1607 iwi_notification_intr(sc, 1608 (struct iwi_notif *)(hdr + 1)); 1609 break; 1610 1611 default: 1612 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1613 hdr->type); 1614 } 1615 1616 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1617 1618 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1619 } 1620 1621 /* tell the firmware what we have processed */ 1622 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1623 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1624 } 1625 1626 static void 1627 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1628 { 1629 struct ifnet *ifp = sc->sc_ifp; 1630 struct iwi_tx_data *data; 1631 uint32_t hw; 1632 1633 hw = CSR_READ_4(sc, txq->csr_ridx); 1634 1635 for (; txq->next != hw;) { 1636 data = &txq->data[txq->next]; 1637 1638 bus_dmamap_sync(txq->data_dmat, data->map, 1639 BUS_DMASYNC_POSTWRITE); 1640 bus_dmamap_unload(txq->data_dmat, data->map); 1641 if (data->m->m_flags & M_TXCB) 1642 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1643 m_freem(data->m); 1644 data->m = NULL; 1645 ieee80211_free_node(data->ni); 1646 data->ni = NULL; 1647 1648 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1649 1650 ifp->if_opackets++; 1651 1652 txq->queued--; 1653 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1654 } 1655 1656 sc->sc_tx_timer = 0; 1657 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1658 1659 if (sc->sc_softled) 1660 iwi_led_event(sc, IWI_LED_TX); 1661 1662 iwi_start_locked(ifp); 1663 } 1664 1665 static void 1666 iwi_intr(void *arg) 1667 { 1668 struct iwi_softc *sc = arg; 1669 uint32_t r; 1670 IWI_LOCK_DECL; 1671 1672 IWI_LOCK(sc); 1673 1674 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1675 IWI_UNLOCK(sc); 1676 return; 1677 } 1678 1679 /* acknowledge interrupts */ 1680 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1681 1682 if (r & IWI_INTR_FATAL_ERROR) { 1683 device_printf(sc->sc_dev, "firmware error\n"); 1684 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 1685 1686 sc->flags &= ~IWI_FLAG_BUSY; 1687 sc->sc_busy_timer = 0; 1688 wakeup(sc); 1689 } 1690 1691 if (r & IWI_INTR_FW_INITED) { 1692 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1693 wakeup(sc); 1694 } 1695 1696 if (r & IWI_INTR_RADIO_OFF) 1697 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask); 1698 1699 if (r & IWI_INTR_CMD_DONE) { 1700 sc->flags &= ~IWI_FLAG_BUSY; 1701 sc->sc_busy_timer = 0; 1702 wakeup(sc); 1703 } 1704 1705 if (r & IWI_INTR_TX1_DONE) 1706 iwi_tx_intr(sc, &sc->txq[0]); 1707 1708 if (r & IWI_INTR_TX2_DONE) 1709 iwi_tx_intr(sc, &sc->txq[1]); 1710 1711 if (r & IWI_INTR_TX3_DONE) 1712 iwi_tx_intr(sc, &sc->txq[2]); 1713 1714 if (r & IWI_INTR_TX4_DONE) 1715 iwi_tx_intr(sc, &sc->txq[3]); 1716 1717 if (r & IWI_INTR_RX_DONE) 1718 iwi_rx_intr(sc); 1719 1720 if (r & IWI_INTR_PARITY_ERROR) { 1721 /* XXX rate-limit */ 1722 device_printf(sc->sc_dev, "parity error\n"); 1723 } 1724 1725 IWI_UNLOCK(sc); 1726 } 1727 1728 static int 1729 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1730 { 1731 struct iwi_cmd_desc *desc; 1732 1733 IWI_LOCK_ASSERT(sc); 1734 1735 if (sc->flags & IWI_FLAG_BUSY) { 1736 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1737 __func__, type); 1738 return EAGAIN; 1739 } 1740 sc->flags |= IWI_FLAG_BUSY; 1741 sc->sc_busy_timer = 2; 1742 1743 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1744 1745 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1746 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1747 desc->type = type; 1748 desc->len = len; 1749 memcpy(desc->data, data, len); 1750 1751 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1752 BUS_DMASYNC_PREWRITE); 1753 1754 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1755 type, len)); 1756 1757 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1758 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1759 1760 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1761 } 1762 1763 static void 1764 iwi_write_ibssnode(struct iwi_softc *sc, 1765 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1766 { 1767 struct iwi_ibssnode node; 1768 1769 /* write node information into NIC memory */ 1770 memset(&node, 0, sizeof node); 1771 IEEE80211_ADDR_COPY(node.bssid, addr); 1772 1773 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1774 1775 CSR_WRITE_REGION_1(sc, 1776 IWI_CSR_NODE_BASE + entry * sizeof node, 1777 (uint8_t *)&node, sizeof node); 1778 } 1779 1780 static int 1781 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1782 int ac) 1783 { 1784 struct iwi_softc *sc = ifp->if_softc; 1785 struct ieee80211vap *vap = ni->ni_vap; 1786 struct ieee80211com *ic = ni->ni_ic; 1787 struct iwi_node *in = (struct iwi_node *)ni; 1788 const struct ieee80211_frame *wh; 1789 struct ieee80211_key *k; 1790 const struct chanAccParams *cap; 1791 struct iwi_tx_ring *txq = &sc->txq[ac]; 1792 struct iwi_tx_data *data; 1793 struct iwi_tx_desc *desc; 1794 struct mbuf *mnew; 1795 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1796 int error, nsegs, hdrlen, i; 1797 int ismcast, flags, xflags, staid; 1798 1799 IWI_LOCK_ASSERT(sc); 1800 wh = mtod(m0, const struct ieee80211_frame *); 1801 /* NB: only data frames use this path */ 1802 hdrlen = ieee80211_hdrsize(wh); 1803 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1804 flags = xflags = 0; 1805 1806 if (!ismcast) 1807 flags |= IWI_DATA_FLAG_NEED_ACK; 1808 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1809 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1810 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1811 xflags |= IWI_DATA_XFLAG_QOS; 1812 cap = &ic->ic_wme.wme_chanParams; 1813 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1814 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1815 } 1816 1817 /* 1818 * This is only used in IBSS mode where the firmware expect an index 1819 * in a h/w table instead of a destination address. 1820 */ 1821 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1822 if (!ismcast) { 1823 if (in->in_station == -1) { 1824 in->in_station = alloc_unr(sc->sc_unr); 1825 if (in->in_station == -1) { 1826 /* h/w table is full */ 1827 m_freem(m0); 1828 ieee80211_free_node(ni); 1829 ifp->if_oerrors++; 1830 return 0; 1831 } 1832 iwi_write_ibssnode(sc, 1833 ni->ni_macaddr, in->in_station); 1834 } 1835 staid = in->in_station; 1836 } else { 1837 /* 1838 * Multicast addresses have no associated node 1839 * so there will be no station entry. We reserve 1840 * entry 0 for one mcast address and use that. 1841 * If there are many being used this will be 1842 * expensive and we'll need to do a better job 1843 * but for now this handles the broadcast case. 1844 */ 1845 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1846 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1847 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1848 } 1849 staid = 0; 1850 } 1851 } else 1852 staid = 0; 1853 1854 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1855 k = ieee80211_crypto_encap(ni, m0); 1856 if (k == NULL) { 1857 m_freem(m0); 1858 return ENOBUFS; 1859 } 1860 1861 /* packet header may have moved, reset our local pointer */ 1862 wh = mtod(m0, struct ieee80211_frame *); 1863 } 1864 1865 if (bpf_peers_present(ifp->if_bpf)) { 1866 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1867 1868 tap->wt_flags = 0; 1869 1870 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1871 } 1872 1873 data = &txq->data[txq->cur]; 1874 desc = &txq->desc[txq->cur]; 1875 1876 /* save and trim IEEE802.11 header */ 1877 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1878 m_adj(m0, hdrlen); 1879 1880 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1881 &nsegs, 0); 1882 if (error != 0 && error != EFBIG) { 1883 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1884 error); 1885 m_freem(m0); 1886 return error; 1887 } 1888 if (error != 0) { 1889 mnew = m_defrag(m0, M_DONTWAIT); 1890 if (mnew == NULL) { 1891 device_printf(sc->sc_dev, 1892 "could not defragment mbuf\n"); 1893 m_freem(m0); 1894 return ENOBUFS; 1895 } 1896 m0 = mnew; 1897 1898 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1899 m0, segs, &nsegs, 0); 1900 if (error != 0) { 1901 device_printf(sc->sc_dev, 1902 "could not map mbuf (error %d)\n", error); 1903 m_freem(m0); 1904 return error; 1905 } 1906 } 1907 1908 data->m = m0; 1909 data->ni = ni; 1910 1911 desc->hdr.type = IWI_HDR_TYPE_DATA; 1912 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1913 desc->station = staid; 1914 desc->cmd = IWI_DATA_CMD_TX; 1915 desc->len = htole16(m0->m_pkthdr.len); 1916 desc->flags = flags; 1917 desc->xflags = xflags; 1918 1919 #if 0 1920 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1921 desc->wep_txkey = vap->iv_def_txkey; 1922 else 1923 #endif 1924 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1925 1926 desc->nseg = htole32(nsegs); 1927 for (i = 0; i < nsegs; i++) { 1928 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1929 desc->seg_len[i] = htole16(segs[i].ds_len); 1930 } 1931 1932 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1933 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1934 1935 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1936 ac, txq->cur, le16toh(desc->len), nsegs)); 1937 1938 txq->queued++; 1939 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1940 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1941 1942 return 0; 1943 } 1944 1945 static int 1946 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1947 const struct ieee80211_bpf_params *params) 1948 { 1949 /* no support; just discard */ 1950 m_freem(m); 1951 ieee80211_free_node(ni); 1952 return 0; 1953 } 1954 1955 static void 1956 iwi_start_locked(struct ifnet *ifp) 1957 { 1958 struct iwi_softc *sc = ifp->if_softc; 1959 struct mbuf *m; 1960 struct ieee80211_node *ni; 1961 int ac; 1962 1963 IWI_LOCK_ASSERT(sc); 1964 1965 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1966 return; 1967 1968 for (;;) { 1969 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1970 if (m == NULL) 1971 break; 1972 ac = M_WME_GETAC(m); 1973 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1974 /* there is no place left in this ring; tail drop */ 1975 /* XXX tail drop */ 1976 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1977 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1978 break; 1979 } 1980 1981 BPF_MTAP(ifp, m); 1982 1983 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1984 m = ieee80211_encap(ni, m); 1985 if (m == NULL) { 1986 ieee80211_free_node(ni); 1987 ifp->if_oerrors++; 1988 continue; 1989 } 1990 1991 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1992 ieee80211_free_node(ni); 1993 ifp->if_oerrors++; 1994 break; 1995 } 1996 1997 sc->sc_tx_timer = 5; 1998 } 1999 } 2000 2001 static void 2002 iwi_start(struct ifnet *ifp) 2003 { 2004 struct iwi_softc *sc = ifp->if_softc; 2005 IWI_LOCK_DECL; 2006 2007 IWI_LOCK(sc); 2008 iwi_start_locked(ifp); 2009 IWI_UNLOCK(sc); 2010 } 2011 2012 static void 2013 iwi_watchdog(void *arg) 2014 { 2015 struct iwi_softc *sc = arg; 2016 struct ifnet *ifp = sc->sc_ifp; 2017 2018 IWI_LOCK_ASSERT(sc); 2019 2020 if (sc->sc_tx_timer > 0) { 2021 if (--sc->sc_tx_timer == 0) { 2022 if_printf(ifp, "device timeout\n"); 2023 ifp->if_oerrors++; 2024 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2025 } 2026 } 2027 if (sc->sc_state_timer > 0) { 2028 if (--sc->sc_state_timer == 0) { 2029 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2030 sc->fw_state); 2031 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2032 if (sc->fw_state == IWI_FW_SCANNING) { 2033 struct ieee80211com *ic = ifp->if_l2com; 2034 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2035 } 2036 sc->sc_state_timer = 3; 2037 } 2038 } 2039 if (sc->sc_busy_timer > 0) { 2040 if (--sc->sc_busy_timer == 0) { 2041 if_printf(ifp, "firmware command timeout, resetting\n"); 2042 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2043 } 2044 } 2045 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2046 } 2047 2048 static int 2049 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2050 { 2051 struct iwi_softc *sc = ifp->if_softc; 2052 struct ieee80211com *ic = ifp->if_l2com; 2053 struct ifreq *ifr = (struct ifreq *) data; 2054 int error = 0, startall = 0; 2055 IWI_LOCK_DECL; 2056 2057 switch (cmd) { 2058 case SIOCSIFFLAGS: 2059 IWI_LOCK(sc); 2060 if (ifp->if_flags & IFF_UP) { 2061 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2062 iwi_init_locked(sc); 2063 startall = 1; 2064 } 2065 } else { 2066 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2067 iwi_stop_locked(sc); 2068 } 2069 IWI_UNLOCK(sc); 2070 if (startall) 2071 ieee80211_start_all(ic); 2072 break; 2073 case SIOCGIFMEDIA: 2074 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2075 break; 2076 case SIOCGIFADDR: 2077 error = ether_ioctl(ifp, cmd, data); 2078 break; 2079 default: 2080 error = EINVAL; 2081 break; 2082 } 2083 return error; 2084 } 2085 2086 static void 2087 iwi_stop_master(struct iwi_softc *sc) 2088 { 2089 uint32_t tmp; 2090 int ntries; 2091 2092 /* disable interrupts */ 2093 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2094 2095 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2096 for (ntries = 0; ntries < 5; ntries++) { 2097 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2098 break; 2099 DELAY(10); 2100 } 2101 if (ntries == 5) 2102 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2103 2104 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2105 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2106 2107 sc->flags &= ~IWI_FLAG_FW_INITED; 2108 } 2109 2110 static int 2111 iwi_reset(struct iwi_softc *sc) 2112 { 2113 uint32_t tmp; 2114 int i, ntries; 2115 2116 iwi_stop_master(sc); 2117 2118 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2119 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2120 2121 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2122 2123 /* wait for clock stabilization */ 2124 for (ntries = 0; ntries < 1000; ntries++) { 2125 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2126 break; 2127 DELAY(200); 2128 } 2129 if (ntries == 1000) { 2130 device_printf(sc->sc_dev, 2131 "timeout waiting for clock stabilization\n"); 2132 return EIO; 2133 } 2134 2135 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2136 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2137 2138 DELAY(10); 2139 2140 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2141 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2142 2143 /* clear NIC memory */ 2144 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2145 for (i = 0; i < 0xc000; i++) 2146 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2147 2148 return 0; 2149 } 2150 2151 static const struct iwi_firmware_ohdr * 2152 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2153 { 2154 const struct firmware *fp = fw->fp; 2155 const struct iwi_firmware_ohdr *hdr; 2156 2157 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2158 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2159 return NULL; 2160 } 2161 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2162 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2163 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2164 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2165 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2166 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2167 IWI_FW_REQ_MINOR); 2168 return NULL; 2169 } 2170 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2171 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2172 fw->name = fp->name; 2173 return hdr; 2174 } 2175 2176 static const struct iwi_firmware_ohdr * 2177 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2178 { 2179 const struct iwi_firmware_ohdr *hdr; 2180 2181 hdr = iwi_setup_ofw(sc, fw); 2182 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2183 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2184 fw->name); 2185 hdr = NULL; 2186 } 2187 return hdr; 2188 } 2189 2190 static void 2191 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2192 struct iwi_fw *uc, const char *ucname) 2193 { 2194 if (fw->fp == NULL) 2195 fw->fp = firmware_get(fwname); 2196 /* NB: pre-3.0 ucode is packaged separately */ 2197 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2198 uc->fp = firmware_get(ucname); 2199 } 2200 2201 /* 2202 * Get the required firmware images if not already loaded. 2203 * Note that we hold firmware images so long as the device 2204 * is marked up in case we need to reload them on device init. 2205 * This is necessary because we re-init the device sometimes 2206 * from a context where we cannot read from the filesystem 2207 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2208 * XXX return 0 on success, 1 on error. 2209 * 2210 * NB: the order of get'ing and put'ing images here is 2211 * intentional to support handling firmware images bundled 2212 * by operating mode and/or all together in one file with 2213 * the boot firmware as "master". 2214 */ 2215 static int 2216 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2217 { 2218 const struct iwi_firmware_hdr *hdr; 2219 const struct firmware *fp; 2220 2221 /* invalidate cached firmware on mode change */ 2222 if (sc->fw_mode != opmode) 2223 iwi_put_firmware(sc); 2224 2225 switch (opmode) { 2226 case IEEE80211_M_STA: 2227 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2228 break; 2229 case IEEE80211_M_IBSS: 2230 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2231 break; 2232 case IEEE80211_M_MONITOR: 2233 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2234 &sc->fw_uc, "iwi_ucode_monitor"); 2235 break; 2236 default: 2237 break; 2238 } 2239 fp = sc->fw_fw.fp; 2240 if (fp == NULL) { 2241 device_printf(sc->sc_dev, "could not load firmware\n"); 2242 goto bad; 2243 } 2244 if (fp->version < 300) { 2245 /* 2246 * Firmware prior to 3.0 was packaged as separate 2247 * boot, firmware, and ucode images. Verify the 2248 * ucode image was read in, retrieve the boot image 2249 * if needed, and check version stamps for consistency. 2250 * The version stamps in the data are also checked 2251 * above; this is a bit paranoid but is a cheap 2252 * safeguard against mis-packaging. 2253 */ 2254 if (sc->fw_uc.fp == NULL) { 2255 device_printf(sc->sc_dev, "could not load ucode\n"); 2256 goto bad; 2257 } 2258 if (sc->fw_boot.fp == NULL) { 2259 sc->fw_boot.fp = firmware_get("iwi_boot"); 2260 if (sc->fw_boot.fp == NULL) { 2261 device_printf(sc->sc_dev, 2262 "could not load boot firmware\n"); 2263 goto bad; 2264 } 2265 } 2266 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2267 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2268 device_printf(sc->sc_dev, 2269 "firmware version mismatch: " 2270 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2271 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2272 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2273 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2274 ); 2275 goto bad; 2276 } 2277 /* 2278 * Check and setup each image. 2279 */ 2280 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2281 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2282 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2283 goto bad; 2284 } else { 2285 /* 2286 * Check and setup combined image. 2287 */ 2288 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2289 device_printf(sc->sc_dev, "image '%s' too small\n", 2290 fp->name); 2291 goto bad; 2292 } 2293 hdr = (const struct iwi_firmware_hdr *)fp->data; 2294 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2295 + le32toh(hdr->fsize)) { 2296 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2297 fp->name); 2298 goto bad; 2299 } 2300 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2301 sc->fw_boot.size = le32toh(hdr->bsize); 2302 sc->fw_boot.name = fp->name; 2303 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2304 sc->fw_uc.size = le32toh(hdr->usize); 2305 sc->fw_uc.name = fp->name; 2306 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2307 sc->fw_fw.size = le32toh(hdr->fsize); 2308 sc->fw_fw.name = fp->name; 2309 } 2310 #if 0 2311 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2312 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2313 #endif 2314 2315 sc->fw_mode = opmode; 2316 return 0; 2317 bad: 2318 iwi_put_firmware(sc); 2319 return 1; 2320 } 2321 2322 static void 2323 iwi_put_fw(struct iwi_fw *fw) 2324 { 2325 if (fw->fp != NULL) { 2326 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2327 fw->fp = NULL; 2328 } 2329 fw->data = NULL; 2330 fw->size = 0; 2331 fw->name = NULL; 2332 } 2333 2334 /* 2335 * Release any cached firmware images. 2336 */ 2337 static void 2338 iwi_put_firmware(struct iwi_softc *sc) 2339 { 2340 iwi_put_fw(&sc->fw_uc); 2341 iwi_put_fw(&sc->fw_fw); 2342 iwi_put_fw(&sc->fw_boot); 2343 } 2344 2345 static int 2346 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2347 { 2348 uint32_t tmp; 2349 const uint16_t *w; 2350 const char *uc = fw->data; 2351 size_t size = fw->size; 2352 int i, ntries, error; 2353 2354 IWI_LOCK_ASSERT(sc); 2355 error = 0; 2356 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2357 IWI_RST_STOP_MASTER); 2358 for (ntries = 0; ntries < 5; ntries++) { 2359 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2360 break; 2361 DELAY(10); 2362 } 2363 if (ntries == 5) { 2364 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2365 error = EIO; 2366 goto fail; 2367 } 2368 2369 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2370 DELAY(5000); 2371 2372 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2373 tmp &= ~IWI_RST_PRINCETON_RESET; 2374 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2375 2376 DELAY(5000); 2377 MEM_WRITE_4(sc, 0x3000e0, 0); 2378 DELAY(1000); 2379 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2380 DELAY(1000); 2381 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2382 DELAY(1000); 2383 MEM_WRITE_1(sc, 0x200000, 0x00); 2384 MEM_WRITE_1(sc, 0x200000, 0x40); 2385 DELAY(1000); 2386 2387 /* write microcode into adapter memory */ 2388 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2389 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2390 2391 MEM_WRITE_1(sc, 0x200000, 0x00); 2392 MEM_WRITE_1(sc, 0x200000, 0x80); 2393 2394 /* wait until we get an answer */ 2395 for (ntries = 0; ntries < 100; ntries++) { 2396 if (MEM_READ_1(sc, 0x200000) & 1) 2397 break; 2398 DELAY(100); 2399 } 2400 if (ntries == 100) { 2401 device_printf(sc->sc_dev, 2402 "timeout waiting for ucode to initialize\n"); 2403 error = EIO; 2404 goto fail; 2405 } 2406 2407 /* read the answer or the firmware will not initialize properly */ 2408 for (i = 0; i < 7; i++) 2409 MEM_READ_4(sc, 0x200004); 2410 2411 MEM_WRITE_1(sc, 0x200000, 0x00); 2412 2413 fail: 2414 return error; 2415 } 2416 2417 /* macro to handle unaligned little endian data in firmware image */ 2418 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2419 2420 static int 2421 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2422 { 2423 u_char *p, *end; 2424 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2425 int ntries, error; 2426 2427 IWI_LOCK_ASSERT(sc); 2428 2429 /* copy firmware image to DMA memory */ 2430 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2431 2432 /* make sure the adapter will get up-to-date values */ 2433 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2434 2435 /* tell the adapter where the command blocks are stored */ 2436 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2437 2438 /* 2439 * Store command blocks into adapter's internal memory using register 2440 * indirections. The adapter will read the firmware image through DMA 2441 * using information stored in command blocks. 2442 */ 2443 src = sc->fw_physaddr; 2444 p = sc->fw_virtaddr; 2445 end = p + fw->size; 2446 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2447 2448 while (p < end) { 2449 dst = GETLE32(p); p += 4; src += 4; 2450 len = GETLE32(p); p += 4; src += 4; 2451 p += len; 2452 2453 while (len > 0) { 2454 mlen = min(len, IWI_CB_MAXDATALEN); 2455 2456 ctl = IWI_CB_DEFAULT_CTL | mlen; 2457 sum = ctl ^ src ^ dst; 2458 2459 /* write a command block */ 2460 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2461 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2462 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2463 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2464 2465 src += mlen; 2466 dst += mlen; 2467 len -= mlen; 2468 } 2469 } 2470 2471 /* write a fictive final command block (sentinel) */ 2472 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2473 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2474 2475 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2476 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2477 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2478 2479 /* tell the adapter to start processing command blocks */ 2480 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2481 2482 /* wait until the adapter reaches the sentinel */ 2483 for (ntries = 0; ntries < 400; ntries++) { 2484 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2485 break; 2486 DELAY(100); 2487 } 2488 /* sync dma, just in case */ 2489 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2490 if (ntries == 400) { 2491 device_printf(sc->sc_dev, 2492 "timeout processing command blocks for %s firmware\n", 2493 fw->name); 2494 return EIO; 2495 } 2496 2497 /* we're done with command blocks processing */ 2498 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2499 2500 /* allow interrupts so we know when the firmware is ready */ 2501 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2502 2503 /* tell the adapter to initialize the firmware */ 2504 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2505 2506 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2507 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2508 2509 /* wait at most one second for firmware initialization to complete */ 2510 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2511 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2512 "initialization to complete\n", fw->name); 2513 } 2514 2515 return error; 2516 } 2517 2518 static int 2519 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2520 { 2521 uint32_t data; 2522 2523 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2524 /* XXX set more fine-grained operation */ 2525 data = htole32(IWI_POWER_MODE_MAX); 2526 } else 2527 data = htole32(IWI_POWER_MODE_CAM); 2528 2529 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2530 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2531 } 2532 2533 static int 2534 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2535 { 2536 struct iwi_wep_key wepkey; 2537 struct ieee80211_key *wk; 2538 int error, i; 2539 2540 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2541 wk = &vap->iv_nw_keys[i]; 2542 2543 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2544 wepkey.idx = i; 2545 wepkey.len = wk->wk_keylen; 2546 memset(wepkey.key, 0, sizeof wepkey.key); 2547 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2548 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2549 wepkey.len)); 2550 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2551 sizeof wepkey); 2552 if (error != 0) 2553 return error; 2554 } 2555 return 0; 2556 } 2557 2558 static int 2559 iwi_config(struct iwi_softc *sc) 2560 { 2561 struct ifnet *ifp = sc->sc_ifp; 2562 struct ieee80211com *ic = ifp->if_l2com; 2563 struct iwi_configuration config; 2564 struct iwi_rateset rs; 2565 struct iwi_txpower power; 2566 uint32_t data; 2567 int error, i; 2568 2569 IWI_LOCK_ASSERT(sc); 2570 2571 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2572 DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":")); 2573 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, 2574 IEEE80211_ADDR_LEN); 2575 if (error != 0) 2576 return error; 2577 2578 memset(&config, 0, sizeof config); 2579 config.bluetooth_coexistence = sc->bluetooth; 2580 config.silence_threshold = 0x1e; 2581 config.antenna = sc->antenna; 2582 config.multicast_enabled = 1; 2583 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2584 config.disable_unicast_decryption = 1; 2585 config.disable_multicast_decryption = 1; 2586 DPRINTF(("Configuring adapter\n")); 2587 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2588 if (error != 0) 2589 return error; 2590 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2591 power.mode = IWI_MODE_11B; 2592 power.nchan = 11; 2593 for (i = 0; i < 11; i++) { 2594 power.chan[i].chan = i + 1; 2595 power.chan[i].power = IWI_TXPOWER_MAX; 2596 } 2597 DPRINTF(("Setting .11b channels tx power\n")); 2598 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2599 if (error != 0) 2600 return error; 2601 2602 power.mode = IWI_MODE_11G; 2603 DPRINTF(("Setting .11g channels tx power\n")); 2604 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2605 if (error != 0) 2606 return error; 2607 } 2608 2609 memset(&rs, 0, sizeof rs); 2610 rs.mode = IWI_MODE_11G; 2611 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2612 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2613 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2614 rs.nrates); 2615 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2616 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2617 if (error != 0) 2618 return error; 2619 2620 memset(&rs, 0, sizeof rs); 2621 rs.mode = IWI_MODE_11A; 2622 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2623 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2624 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2625 rs.nrates); 2626 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2627 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2628 if (error != 0) 2629 return error; 2630 2631 data = htole32(arc4random()); 2632 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2633 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2634 if (error != 0) 2635 return error; 2636 2637 /* enable adapter */ 2638 DPRINTF(("Enabling adapter\n")); 2639 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2640 } 2641 2642 static __inline void 2643 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2644 { 2645 uint8_t *st = &scan->scan_type[ix / 2]; 2646 if (ix % 2) 2647 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2648 else 2649 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2650 } 2651 2652 static int 2653 scan_type(const struct ieee80211_scan_state *ss, 2654 const struct ieee80211_channel *chan) 2655 { 2656 /* We can only set one essid for a directed scan */ 2657 if (ss->ss_nssid != 0) 2658 return IWI_SCAN_TYPE_BDIRECTED; 2659 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2660 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2661 return IWI_SCAN_TYPE_BROADCAST; 2662 return IWI_SCAN_TYPE_PASSIVE; 2663 } 2664 2665 static __inline int 2666 scan_band(const struct ieee80211_channel *c) 2667 { 2668 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2669 } 2670 2671 /* 2672 * Start a scan on the current channel or all channels. 2673 */ 2674 static int 2675 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int mode) 2676 { 2677 struct ieee80211com *ic; 2678 struct ieee80211_channel *chan; 2679 struct ieee80211_scan_state *ss; 2680 struct iwi_scan_ext scan; 2681 int error = 0; 2682 2683 IWI_LOCK_ASSERT(sc); 2684 if (sc->fw_state == IWI_FW_SCANNING) { 2685 /* 2686 * This should not happen as we only trigger scan_next after 2687 * completion 2688 */ 2689 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2690 return (EBUSY); 2691 } 2692 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2693 2694 ic = sc->sc_ifp->if_l2com; 2695 ss = ic->ic_scan; 2696 2697 memset(&scan, 0, sizeof scan); 2698 scan.full_scan_index = htole32(++sc->sc_scangen); 2699 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2700 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2701 /* 2702 * Use very short dwell times for when we send probe request 2703 * frames. Without this bg scans hang. Ideally this should 2704 * be handled with early-termination as done by net80211 but 2705 * that's not feasible (aborting a scan is problematic). 2706 */ 2707 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2708 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2709 } else { 2710 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2711 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2712 } 2713 2714 /* We can only set one essid for a directed scan */ 2715 if (ss->ss_nssid != 0) { 2716 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2717 ss->ss_ssid[0].len); 2718 if (error) 2719 return (error); 2720 } 2721 2722 if (mode == IWI_SCAN_ALLCHAN) { 2723 int i, next, band, b, bstart; 2724 /* 2725 * Convert scan list to run-length encoded channel list 2726 * the firmware requires (preserving the order setup by 2727 * net80211). The first entry in each run specifies the 2728 * band and the count of items in the run. 2729 */ 2730 next = 0; /* next open slot */ 2731 bstart = 0; /* NB: not needed, silence compiler */ 2732 band = -1; /* NB: impossible value */ 2733 KASSERT(ss->ss_last > 0, ("no channels")); 2734 for (i = 0; i < ss->ss_last; i++) { 2735 chan = ss->ss_chans[i]; 2736 b = scan_band(chan); 2737 if (b != band) { 2738 if (band != -1) 2739 scan.channels[bstart] = 2740 (next - bstart) | band; 2741 /* NB: this allocates a slot for the run-len */ 2742 band = b, bstart = next++; 2743 } 2744 if (next >= IWI_SCAN_CHANNELS) { 2745 DPRINTF(("truncating scan list\n")); 2746 break; 2747 } 2748 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2749 set_scan_type(&scan, next, scan_type(ss, chan)); 2750 next++; 2751 } 2752 scan.channels[bstart] = (next - bstart) | band; 2753 } else { 2754 /* Scan the current channel only */ 2755 chan = ic->ic_curchan; 2756 scan.channels[0] = 1 | scan_band(chan); 2757 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2758 set_scan_type(&scan, 1, scan_type(ss, chan)); 2759 } 2760 #ifdef IWI_DEBUG 2761 if (iwi_debug > 0) { 2762 static const char *scantype[8] = 2763 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2764 int i; 2765 printf("Scan request: index %u dwell %d/%d/%d\n" 2766 , le32toh(scan.full_scan_index) 2767 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2768 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2769 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2770 ); 2771 i = 0; 2772 do { 2773 int run = scan.channels[i]; 2774 if (run == 0) 2775 break; 2776 printf("Scan %d %s channels:", run & 0x3f, 2777 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2778 for (run &= 0x3f, i++; run > 0; run--, i++) { 2779 uint8_t type = scan.scan_type[i/2]; 2780 printf(" %u/%s", scan.channels[i], 2781 scantype[(i & 1 ? type : type>>4) & 7]); 2782 } 2783 printf("\n"); 2784 } while (i < IWI_SCAN_CHANNELS); 2785 } 2786 #endif 2787 2788 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2789 } 2790 2791 static void 2792 iwi_scanabort(void *arg, int npending) 2793 { 2794 struct iwi_softc *sc = arg; 2795 IWI_LOCK_DECL; 2796 2797 IWI_LOCK(sc); 2798 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 2799 /* NB: make sure we're still scanning */ 2800 if (sc->fw_state == IWI_FW_SCANNING) 2801 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 2802 IWI_UNLOCK(sc); 2803 } 2804 2805 static int 2806 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2807 { 2808 struct iwi_sensitivity sens; 2809 2810 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2811 2812 memset(&sens, 0, sizeof sens); 2813 sens.rssi = htole16(rssi_dbm); 2814 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2815 } 2816 2817 static int 2818 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2819 { 2820 struct ieee80211com *ic = vap->iv_ic; 2821 struct ifnet *ifp = vap->iv_ifp; 2822 struct ieee80211_node *ni = vap->iv_bss; 2823 struct iwi_configuration config; 2824 struct iwi_associate *assoc = &sc->assoc; 2825 struct iwi_rateset rs; 2826 uint16_t capinfo; 2827 uint32_t data; 2828 int error, mode; 2829 2830 IWI_LOCK_ASSERT(sc); 2831 2832 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2833 DPRINTF(("Already associated\n")); 2834 return (-1); 2835 } 2836 2837 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2838 error = 0; 2839 mode = 0; 2840 2841 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2842 mode = IWI_MODE_11A; 2843 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2844 mode = IWI_MODE_11G; 2845 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2846 mode = IWI_MODE_11B; 2847 2848 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2849 memset(&config, 0, sizeof config); 2850 config.bluetooth_coexistence = sc->bluetooth; 2851 config.antenna = sc->antenna; 2852 config.multicast_enabled = 1; 2853 if (mode == IWI_MODE_11G) 2854 config.use_protection = 1; 2855 config.answer_pbreq = 2856 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2857 config.disable_unicast_decryption = 1; 2858 config.disable_multicast_decryption = 1; 2859 DPRINTF(("Configuring adapter\n")); 2860 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2861 if (error != 0) 2862 goto done; 2863 } 2864 2865 #ifdef IWI_DEBUG 2866 if (iwi_debug > 0) { 2867 printf("Setting ESSID to "); 2868 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2869 printf("\n"); 2870 } 2871 #endif 2872 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2873 if (error != 0) 2874 goto done; 2875 2876 error = iwi_setpowermode(sc, vap); 2877 if (error != 0) 2878 goto done; 2879 2880 data = htole32(vap->iv_rtsthreshold); 2881 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2882 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2883 if (error != 0) 2884 goto done; 2885 2886 data = htole32(vap->iv_fragthreshold); 2887 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2888 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2889 if (error != 0) 2890 goto done; 2891 2892 /* the rate set has already been "negotiated" */ 2893 memset(&rs, 0, sizeof rs); 2894 rs.mode = mode; 2895 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2896 rs.nrates = ni->ni_rates.rs_nrates; 2897 if (rs.nrates > IWI_RATESET_SIZE) { 2898 DPRINTF(("Truncating negotiated rate set from %u\n", 2899 rs.nrates)); 2900 rs.nrates = IWI_RATESET_SIZE; 2901 } 2902 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2903 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2904 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2905 if (error != 0) 2906 goto done; 2907 2908 memset(assoc, 0, sizeof *assoc); 2909 2910 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2911 /* NB: don't treat WME setup as failure */ 2912 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2913 assoc->policy |= htole16(IWI_POLICY_WME); 2914 /* XXX complain on failure? */ 2915 } 2916 2917 if (vap->iv_appie_wpa != NULL) { 2918 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2919 2920 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2921 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2922 if (error != 0) 2923 goto done; 2924 } 2925 2926 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2927 if (error != 0) 2928 goto done; 2929 2930 assoc->mode = mode; 2931 assoc->chan = ic->ic_curchan->ic_ieee; 2932 /* 2933 * NB: do not arrange for shared key auth w/o privacy 2934 * (i.e. a wep key); it causes a firmware error. 2935 */ 2936 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2937 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2938 assoc->auth = IWI_AUTH_SHARED; 2939 /* 2940 * It's possible to have privacy marked but no default 2941 * key setup. This typically is due to a user app bug 2942 * but if we blindly grab the key the firmware will 2943 * barf so avoid it for now. 2944 */ 2945 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2946 assoc->auth |= vap->iv_def_txkey << 4; 2947 2948 error = iwi_setwepkeys(sc, vap); 2949 if (error != 0) 2950 goto done; 2951 } 2952 if (vap->iv_flags & IEEE80211_F_WPA) 2953 assoc->policy |= htole16(IWI_POLICY_WPA); 2954 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2955 assoc->type = IWI_HC_IBSS_START; 2956 else 2957 assoc->type = IWI_HC_ASSOC; 2958 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2959 2960 if (vap->iv_opmode == IEEE80211_M_IBSS) 2961 capinfo = IEEE80211_CAPINFO_IBSS; 2962 else 2963 capinfo = IEEE80211_CAPINFO_ESS; 2964 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2965 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2966 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2967 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2968 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2969 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2970 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2971 assoc->capinfo = htole16(capinfo); 2972 2973 assoc->lintval = htole16(ic->ic_lintval); 2974 assoc->intval = htole16(ni->ni_intval); 2975 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2976 if (vap->iv_opmode == IEEE80211_M_IBSS) 2977 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2978 else 2979 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2980 2981 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2982 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2983 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2984 assoc->bssid, ":", assoc->dst, ":", 2985 assoc->chan, le16toh(assoc->policy), assoc->auth, 2986 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2987 le16toh(assoc->intval))); 2988 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2989 done: 2990 if (error) 2991 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2992 2993 return (error); 2994 } 2995 2996 static int 2997 iwi_disassociate(struct iwi_softc *sc, int quiet) 2998 { 2999 struct iwi_associate *assoc = &sc->assoc; 3000 3001 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3002 DPRINTF(("Not associated\n")); 3003 return (-1); 3004 } 3005 3006 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3007 3008 if (quiet) 3009 assoc->type = IWI_HC_DISASSOC_QUIET; 3010 else 3011 assoc->type = IWI_HC_DISASSOC; 3012 3013 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3014 assoc->bssid, ":", assoc->chan)); 3015 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3016 } 3017 3018 /* 3019 * release dma resources for the firmware 3020 */ 3021 static void 3022 iwi_release_fw_dma(struct iwi_softc *sc) 3023 { 3024 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3025 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3026 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3027 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3028 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3029 bus_dma_tag_destroy(sc->fw_dmat); 3030 3031 sc->fw_flags = 0; 3032 sc->fw_dma_size = 0; 3033 sc->fw_dmat = NULL; 3034 sc->fw_map = NULL; 3035 sc->fw_physaddr = 0; 3036 sc->fw_virtaddr = NULL; 3037 } 3038 3039 /* 3040 * allocate the dma descriptor for the firmware. 3041 * Return 0 on success, 1 on error. 3042 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3043 */ 3044 static int 3045 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3046 { 3047 if (sc->fw_dma_size >= size) 3048 return 0; 3049 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3050 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3051 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3052 device_printf(sc->sc_dev, 3053 "could not create firmware DMA tag\n"); 3054 goto error; 3055 } 3056 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3057 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3058 &sc->fw_map) != 0) { 3059 device_printf(sc->sc_dev, 3060 "could not allocate firmware DMA memory\n"); 3061 goto error; 3062 } 3063 sc->fw_flags |= IWI_FW_HAVE_MAP; 3064 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3065 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3066 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3067 goto error; 3068 } 3069 sc->fw_flags |= IWI_FW_HAVE_PHY; 3070 sc->fw_dma_size = size; 3071 return 0; 3072 3073 error: 3074 iwi_release_fw_dma(sc); 3075 return 1; 3076 } 3077 3078 static void 3079 iwi_init_locked(struct iwi_softc *sc) 3080 { 3081 struct ifnet *ifp = sc->sc_ifp; 3082 struct iwi_rx_data *data; 3083 int i; 3084 3085 IWI_LOCK_ASSERT(sc); 3086 3087 if (sc->fw_state == IWI_FW_LOADING) { 3088 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3089 return; /* XXX: condvar? */ 3090 } 3091 3092 iwi_stop_locked(sc); 3093 3094 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3095 3096 taskqueue_unblock(sc->sc_tq); 3097 taskqueue_unblock(sc->sc_tq2); 3098 3099 if (iwi_reset(sc) != 0) { 3100 device_printf(sc->sc_dev, "could not reset adapter\n"); 3101 goto fail; 3102 } 3103 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3104 device_printf(sc->sc_dev, 3105 "could not load boot firmware %s\n", sc->fw_boot.name); 3106 goto fail; 3107 } 3108 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3109 device_printf(sc->sc_dev, 3110 "could not load microcode %s\n", sc->fw_uc.name); 3111 goto fail; 3112 } 3113 3114 iwi_stop_master(sc); 3115 3116 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3117 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3118 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3119 3120 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3121 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3122 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3123 3124 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3125 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3126 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3127 3128 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3129 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3130 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3131 3132 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3133 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3134 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3135 3136 for (i = 0; i < sc->rxq.count; i++) { 3137 data = &sc->rxq.data[i]; 3138 CSR_WRITE_4(sc, data->reg, data->physaddr); 3139 } 3140 3141 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3142 3143 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3144 device_printf(sc->sc_dev, 3145 "could not load main firmware %s\n", sc->fw_fw.name); 3146 goto fail; 3147 } 3148 sc->flags |= IWI_FLAG_FW_INITED; 3149 3150 IWI_STATE_END(sc, IWI_FW_LOADING); 3151 3152 if (iwi_config(sc) != 0) { 3153 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3154 goto fail2; 3155 } 3156 3157 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3158 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3159 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3160 return; 3161 fail: 3162 IWI_STATE_END(sc, IWI_FW_LOADING); 3163 fail2: 3164 iwi_stop_locked(sc); 3165 } 3166 3167 static void 3168 iwi_init(void *priv) 3169 { 3170 struct iwi_softc *sc = priv; 3171 struct ifnet *ifp = sc->sc_ifp; 3172 struct ieee80211com *ic = ifp->if_l2com; 3173 IWI_LOCK_DECL; 3174 3175 IWI_LOCK(sc); 3176 iwi_init_locked(sc); 3177 IWI_UNLOCK(sc); 3178 3179 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3180 ieee80211_start_all(ic); 3181 } 3182 3183 static void 3184 iwi_stop_locked(void *priv) 3185 { 3186 struct iwi_softc *sc = priv; 3187 struct ifnet *ifp = sc->sc_ifp; 3188 3189 IWI_LOCK_ASSERT(sc); 3190 3191 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3192 3193 taskqueue_block(sc->sc_tq); 3194 taskqueue_block(sc->sc_tq2); 3195 if (sc->sc_softled) { 3196 callout_stop(&sc->sc_ledtimer); 3197 sc->sc_blinking = 0; 3198 } 3199 callout_stop(&sc->sc_wdtimer); 3200 callout_stop(&sc->sc_rftimer); 3201 3202 iwi_stop_master(sc); 3203 3204 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3205 3206 /* reset rings */ 3207 iwi_reset_cmd_ring(sc, &sc->cmdq); 3208 iwi_reset_tx_ring(sc, &sc->txq[0]); 3209 iwi_reset_tx_ring(sc, &sc->txq[1]); 3210 iwi_reset_tx_ring(sc, &sc->txq[2]); 3211 iwi_reset_tx_ring(sc, &sc->txq[3]); 3212 iwi_reset_rx_ring(sc, &sc->rxq); 3213 3214 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3215 sc->sc_tx_timer = 0; 3216 sc->sc_state_timer = 0; 3217 sc->sc_busy_timer = 0; 3218 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3219 sc->fw_state = IWI_FW_IDLE; 3220 wakeup(sc); 3221 } 3222 3223 static void 3224 iwi_stop(struct iwi_softc *sc) 3225 { 3226 IWI_LOCK_DECL; 3227 3228 IWI_LOCK(sc); 3229 iwi_stop_locked(sc); 3230 IWI_UNLOCK(sc); 3231 } 3232 3233 static void 3234 iwi_restart(void *arg, int npending) 3235 { 3236 struct iwi_softc *sc = arg; 3237 3238 iwi_init(sc); 3239 } 3240 3241 /* 3242 * Return whether or not the radio is enabled in hardware 3243 * (i.e. the rfkill switch is "off"). 3244 */ 3245 static int 3246 iwi_getrfkill(struct iwi_softc *sc) 3247 { 3248 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3249 } 3250 3251 static void 3252 iwi_radio_on(void *arg, int pending) 3253 { 3254 struct iwi_softc *sc = arg; 3255 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3256 3257 device_printf(sc->sc_dev, "radio turned on\n"); 3258 3259 iwi_init(sc); 3260 ieee80211_notify_radio(ic, 1); 3261 } 3262 3263 static void 3264 iwi_rfkill_poll(void *arg) 3265 { 3266 struct iwi_softc *sc = arg; 3267 3268 IWI_LOCK_ASSERT(sc); 3269 3270 /* 3271 * Check for a change in rfkill state. We get an 3272 * interrupt when a radio is disabled but not when 3273 * it is enabled so we must poll for the latter. 3274 */ 3275 if (!iwi_getrfkill(sc)) { 3276 taskqueue_unblock(sc->sc_tq); 3277 taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask); 3278 return; 3279 } 3280 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3281 } 3282 3283 static void 3284 iwi_radio_off(void *arg, int pending) 3285 { 3286 struct iwi_softc *sc = arg; 3287 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3288 IWI_LOCK_DECL; 3289 3290 device_printf(sc->sc_dev, "radio turned off\n"); 3291 3292 ieee80211_notify_radio(ic, 0); 3293 3294 IWI_LOCK(sc); 3295 iwi_stop_locked(sc); 3296 iwi_rfkill_poll(sc); 3297 IWI_UNLOCK(sc); 3298 } 3299 3300 static int 3301 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3302 { 3303 struct iwi_softc *sc = arg1; 3304 uint32_t size, buf[128]; 3305 3306 memset(buf, 0, sizeof buf); 3307 3308 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3309 return SYSCTL_OUT(req, buf, sizeof buf); 3310 3311 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3312 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3313 3314 return SYSCTL_OUT(req, buf, size); 3315 } 3316 3317 static int 3318 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3319 { 3320 struct iwi_softc *sc = arg1; 3321 int val = !iwi_getrfkill(sc); 3322 3323 return SYSCTL_OUT(req, &val, sizeof val); 3324 } 3325 3326 /* 3327 * Add sysctl knobs. 3328 */ 3329 static void 3330 iwi_sysctlattach(struct iwi_softc *sc) 3331 { 3332 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3333 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3334 3335 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3336 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3337 "radio transmitter switch state (0=off, 1=on)"); 3338 3339 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3340 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3341 "statistics"); 3342 3343 sc->bluetooth = 0; 3344 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3345 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3346 3347 sc->antenna = IWI_ANTENNA_AUTO; 3348 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3349 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3350 } 3351 3352 /* 3353 * LED support. 3354 * 3355 * Different cards have different capabilities. Some have three 3356 * led's while others have only one. The linux ipw driver defines 3357 * led's for link state (associated or not), band (11a, 11g, 11b), 3358 * and for link activity. We use one led and vary the blink rate 3359 * according to the tx/rx traffic a la the ath driver. 3360 */ 3361 3362 static __inline uint32_t 3363 iwi_toggle_event(uint32_t r) 3364 { 3365 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3366 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3367 } 3368 3369 static uint32_t 3370 iwi_read_event(struct iwi_softc *sc) 3371 { 3372 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3373 } 3374 3375 static void 3376 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3377 { 3378 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3379 } 3380 3381 static void 3382 iwi_led_done(void *arg) 3383 { 3384 struct iwi_softc *sc = arg; 3385 3386 sc->sc_blinking = 0; 3387 } 3388 3389 /* 3390 * Turn the activity LED off: flip the pin and then set a timer so no 3391 * update will happen for the specified duration. 3392 */ 3393 static void 3394 iwi_led_off(void *arg) 3395 { 3396 struct iwi_softc *sc = arg; 3397 uint32_t v; 3398 3399 v = iwi_read_event(sc); 3400 v &= ~sc->sc_ledpin; 3401 iwi_write_event(sc, iwi_toggle_event(v)); 3402 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3403 } 3404 3405 /* 3406 * Blink the LED according to the specified on/off times. 3407 */ 3408 static void 3409 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3410 { 3411 uint32_t v; 3412 3413 v = iwi_read_event(sc); 3414 v |= sc->sc_ledpin; 3415 iwi_write_event(sc, iwi_toggle_event(v)); 3416 sc->sc_blinking = 1; 3417 sc->sc_ledoff = off; 3418 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3419 } 3420 3421 static void 3422 iwi_led_event(struct iwi_softc *sc, int event) 3423 { 3424 #define N(a) (sizeof(a)/sizeof(a[0])) 3425 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3426 static const struct { 3427 u_int rate; /* tx/rx iwi rate */ 3428 u_int16_t timeOn; /* LED on time (ms) */ 3429 u_int16_t timeOff; /* LED off time (ms) */ 3430 } blinkrates[] = { 3431 { IWI_RATE_OFDM54, 40, 10 }, 3432 { IWI_RATE_OFDM48, 44, 11 }, 3433 { IWI_RATE_OFDM36, 50, 13 }, 3434 { IWI_RATE_OFDM24, 57, 14 }, 3435 { IWI_RATE_OFDM18, 67, 16 }, 3436 { IWI_RATE_OFDM12, 80, 20 }, 3437 { IWI_RATE_DS11, 100, 25 }, 3438 { IWI_RATE_OFDM9, 133, 34 }, 3439 { IWI_RATE_OFDM6, 160, 40 }, 3440 { IWI_RATE_DS5, 200, 50 }, 3441 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3442 { IWI_RATE_DS2, 267, 66 }, 3443 { IWI_RATE_DS1, 400, 100 }, 3444 { 0, 500, 130 }, /* unknown rate/polling */ 3445 }; 3446 uint32_t txrate; 3447 int j = 0; /* XXX silence compiler */ 3448 3449 sc->sc_ledevent = ticks; /* time of last event */ 3450 if (sc->sc_blinking) /* don't interrupt active blink */ 3451 return; 3452 switch (event) { 3453 case IWI_LED_POLL: 3454 j = N(blinkrates)-1; 3455 break; 3456 case IWI_LED_TX: 3457 /* read current transmission rate from adapter */ 3458 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3459 if (blinkrates[sc->sc_txrix].rate != txrate) { 3460 for (j = 0; j < N(blinkrates)-1; j++) 3461 if (blinkrates[j].rate == txrate) 3462 break; 3463 sc->sc_txrix = j; 3464 } else 3465 j = sc->sc_txrix; 3466 break; 3467 case IWI_LED_RX: 3468 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3469 for (j = 0; j < N(blinkrates)-1; j++) 3470 if (blinkrates[j].rate == sc->sc_rxrate) 3471 break; 3472 sc->sc_rxrix = j; 3473 } else 3474 j = sc->sc_rxrix; 3475 break; 3476 } 3477 /* XXX beware of overflow */ 3478 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3479 (blinkrates[j].timeOff * hz) / 1000); 3480 #undef N 3481 } 3482 3483 static int 3484 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3485 { 3486 struct iwi_softc *sc = arg1; 3487 int softled = sc->sc_softled; 3488 int error; 3489 3490 error = sysctl_handle_int(oidp, &softled, 0, req); 3491 if (error || !req->newptr) 3492 return error; 3493 softled = (softled != 0); 3494 if (softled != sc->sc_softled) { 3495 if (softled) { 3496 uint32_t v = iwi_read_event(sc); 3497 v &= ~sc->sc_ledpin; 3498 iwi_write_event(sc, iwi_toggle_event(v)); 3499 } 3500 sc->sc_softled = softled; 3501 } 3502 return 0; 3503 } 3504 3505 static void 3506 iwi_ledattach(struct iwi_softc *sc) 3507 { 3508 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3509 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3510 3511 sc->sc_blinking = 0; 3512 sc->sc_ledstate = 1; 3513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3514 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3515 3516 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3517 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3518 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3519 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3520 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3521 "pin setting to turn activity LED on"); 3522 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3523 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3524 "idle time for inactivity LED (ticks)"); 3525 /* XXX for debugging */ 3526 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3527 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3528 "NIC type from EEPROM"); 3529 3530 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3531 sc->sc_softled = 1; 3532 3533 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3534 if (sc->sc_nictype == 1) { 3535 /* 3536 * NB: led's are reversed. 3537 */ 3538 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3539 } 3540 } 3541 3542 static void 3543 iwi_ops(void *arg0, int npending) 3544 { 3545 static const char *opnames[] = { 3546 [IWI_CMD_FREE] = "FREE", 3547 [IWI_SCAN_START] = "SCAN_START", 3548 [IWI_SET_CHANNEL] = "SET_CHANNEL", 3549 [IWI_AUTH] = "AUTH", 3550 [IWI_ASSOC] = "ASSOC", 3551 [IWI_DISASSOC] = "DISASSOC", 3552 [IWI_SCAN_CURCHAN] = "SCAN_CURCHAN", 3553 [IWI_SCAN_ALLCHAN] = "SCAN_ALLCHAN", 3554 [IWI_SET_WME] = "SET_WME", 3555 }; 3556 struct iwi_softc *sc = arg0; 3557 struct ifnet *ifp = sc->sc_ifp; 3558 struct ieee80211com *ic = ifp->if_l2com; 3559 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3560 IWI_LOCK_DECL; 3561 int cmd; 3562 unsigned long arg; 3563 3564 again: 3565 IWI_CMD_LOCK(sc); 3566 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3567 if (cmd == IWI_CMD_FREE) { 3568 /* No more commands to process */ 3569 IWI_CMD_UNLOCK(sc); 3570 return; 3571 } 3572 arg = sc->sc_arg[sc->sc_cmd_cur]; 3573 sc->sc_cmd[sc->sc_cmd_cur] = IWI_CMD_FREE; /* free the slot */ 3574 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWI_CMD_MAXOPS; 3575 IWI_CMD_UNLOCK(sc); 3576 3577 IWI_LOCK(sc); 3578 while (sc->fw_state != IWI_FW_IDLE || (sc->flags & IWI_FLAG_BUSY)) { 3579 msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz/10); 3580 } 3581 3582 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3583 IWI_UNLOCK(sc); 3584 return; 3585 } 3586 3587 DPRINTF(("%s: %s arg %lu\n", __func__, opnames[cmd], arg)); 3588 switch (cmd) { 3589 case IWI_AUTH: 3590 case IWI_ASSOC: 3591 if (cmd == IWI_AUTH) 3592 vap->iv_state = IEEE80211_S_AUTH; 3593 else 3594 vap->iv_state = IEEE80211_S_ASSOC; 3595 iwi_auth_and_assoc(sc, vap); 3596 /* NB: completion done in iwi_notification_intr */ 3597 break; 3598 case IWI_DISASSOC: 3599 iwi_disassociate(sc, 0); 3600 break; 3601 case IWI_SET_WME: 3602 if (vap->iv_state == IEEE80211_S_RUN) 3603 (void) iwi_wme_setparams(sc, ic); 3604 break; 3605 case IWI_SCAN_START: 3606 sc->flags |= IWI_FLAG_CHANNEL_SCAN; 3607 break; 3608 case IWI_SCAN_CURCHAN: 3609 case IWI_SCAN_ALLCHAN: 3610 if (!(sc->flags & IWI_FLAG_CHANNEL_SCAN)) { 3611 DPRINTF(("%s: ic_scan_curchan while not scanning\n", 3612 __func__)); 3613 goto done; 3614 } 3615 if (iwi_scanchan(sc, arg, cmd)) 3616 ieee80211_cancel_scan(vap); 3617 break; 3618 } 3619 done: 3620 IWI_UNLOCK(sc); 3621 3622 /* Take another pass */ 3623 goto again; 3624 } 3625 3626 static int 3627 iwi_queue_cmd(struct iwi_softc *sc, int cmd, unsigned long arg) 3628 { 3629 IWI_CMD_LOCK(sc); 3630 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3631 IWI_CMD_UNLOCK(sc); 3632 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3633 return (EBUSY); 3634 } 3635 3636 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3637 sc->sc_arg[sc->sc_cmd_next] = arg; 3638 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWI_CMD_MAXOPS; 3639 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3640 IWI_CMD_UNLOCK(sc); 3641 return (0); 3642 } 3643 3644 static void 3645 iwi_scan_start(struct ieee80211com *ic) 3646 { 3647 struct ifnet *ifp = ic->ic_ifp; 3648 struct iwi_softc *sc = ifp->if_softc; 3649 3650 iwi_queue_cmd(sc, IWI_SCAN_START, 0); 3651 } 3652 3653 static void 3654 iwi_set_channel(struct ieee80211com *ic) 3655 { 3656 struct ifnet *ifp = ic->ic_ifp; 3657 struct iwi_softc *sc = ifp->if_softc; 3658 if (sc->fw_state == IWI_FW_IDLE) 3659 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3660 } 3661 3662 static void 3663 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3664 { 3665 struct ieee80211vap *vap = ss->ss_vap; 3666 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3667 struct iwi_softc *sc = ifp->if_softc; 3668 3669 iwi_queue_cmd(sc, IWI_SCAN_CURCHAN, maxdwell); 3670 } 3671 3672 #if 0 3673 static void 3674 iwi_scan_allchan(struct ieee80211com *ic, unsigned long maxdwell) 3675 { 3676 struct ifnet *ifp = ic->ic_ifp; 3677 struct iwi_softc *sc = ifp->if_softc; 3678 3679 iwi_queue_cmd(sc, IWI_SCAN_ALLCHAN, maxdwell); 3680 } 3681 #endif 3682 3683 static void 3684 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3685 { 3686 /* NB: don't try to abort scan; wait for firmware to finish */ 3687 } 3688 3689 static void 3690 iwi_scan_end(struct ieee80211com *ic) 3691 { 3692 struct ifnet *ifp = ic->ic_ifp; 3693 struct iwi_softc *sc = ifp->if_softc; 3694 3695 taskqueue_enqueue(sc->sc_tq2, &sc->sc_scanaborttask); 3696 } 3697