1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 135 const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void iwi_vap_delete(struct ieee80211vap *); 138 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 139 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 140 int); 141 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 143 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 144 int, bus_addr_t, bus_addr_t); 145 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 147 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 148 int); 149 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 151 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void iwi_node_free(struct ieee80211_node *); 154 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 155 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 156 static void iwi_wme_init(struct iwi_softc *); 157 static int iwi_wme_setparams(struct iwi_softc *); 158 static void iwi_update_wme(void *, int); 159 static int iwi_wme_update(struct ieee80211com *); 160 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 161 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 162 struct iwi_frame *); 163 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 164 static void iwi_rx_intr(struct iwi_softc *); 165 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 166 static void iwi_intr(void *); 167 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 168 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 169 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 170 struct ieee80211_node *, int); 171 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 172 const struct ieee80211_bpf_params *); 173 static void iwi_start(struct iwi_softc *); 174 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 175 static void iwi_watchdog(void *); 176 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 177 static void iwi_parent(struct ieee80211com *); 178 static void iwi_stop_master(struct iwi_softc *); 179 static int iwi_reset(struct iwi_softc *); 180 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 181 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 182 static void iwi_release_fw_dma(struct iwi_softc *sc); 183 static int iwi_config(struct iwi_softc *); 184 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 185 static void iwi_put_firmware(struct iwi_softc *); 186 static void iwi_monitor_scan(void *, int); 187 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 188 static void iwi_scan_start(struct ieee80211com *); 189 static void iwi_scan_end(struct ieee80211com *); 190 static void iwi_set_channel(struct ieee80211com *); 191 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 192 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 193 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 194 static void iwi_disassoc(void *, int); 195 static int iwi_disassociate(struct iwi_softc *, int quiet); 196 static void iwi_init_locked(struct iwi_softc *); 197 static void iwi_init(void *); 198 static int iwi_init_fw_dma(struct iwi_softc *, int); 199 static void iwi_stop_locked(void *); 200 static void iwi_stop(struct iwi_softc *); 201 static void iwi_restart(void *, int); 202 static int iwi_getrfkill(struct iwi_softc *); 203 static void iwi_radio_on(void *, int); 204 static void iwi_radio_off(void *, int); 205 static void iwi_sysctlattach(struct iwi_softc *); 206 static void iwi_led_event(struct iwi_softc *, int); 207 static void iwi_ledattach(struct iwi_softc *); 208 209 static int iwi_probe(device_t); 210 static int iwi_attach(device_t); 211 static int iwi_detach(device_t); 212 static int iwi_shutdown(device_t); 213 static int iwi_suspend(device_t); 214 static int iwi_resume(device_t); 215 216 static device_method_t iwi_methods[] = { 217 /* Device interface */ 218 DEVMETHOD(device_probe, iwi_probe), 219 DEVMETHOD(device_attach, iwi_attach), 220 DEVMETHOD(device_detach, iwi_detach), 221 DEVMETHOD(device_shutdown, iwi_shutdown), 222 DEVMETHOD(device_suspend, iwi_suspend), 223 DEVMETHOD(device_resume, iwi_resume), 224 225 DEVMETHOD_END 226 }; 227 228 static driver_t iwi_driver = { 229 "iwi", 230 iwi_methods, 231 sizeof (struct iwi_softc) 232 }; 233 234 static devclass_t iwi_devclass; 235 236 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); 237 238 MODULE_VERSION(iwi, 1); 239 240 static __inline uint8_t 241 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 242 { 243 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 244 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 245 } 246 247 static __inline uint32_t 248 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 249 { 250 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 251 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 252 } 253 254 static int 255 iwi_probe(device_t dev) 256 { 257 const struct iwi_ident *ident; 258 259 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 260 if (pci_get_vendor(dev) == ident->vendor && 261 pci_get_device(dev) == ident->device) { 262 device_set_desc(dev, ident->name); 263 return (BUS_PROBE_DEFAULT); 264 } 265 } 266 return ENXIO; 267 } 268 269 static int 270 iwi_attach(device_t dev) 271 { 272 struct iwi_softc *sc = device_get_softc(dev); 273 struct ieee80211com *ic = &sc->sc_ic; 274 uint16_t val; 275 int i, error; 276 uint8_t bands; 277 278 sc->sc_dev = dev; 279 280 IWI_LOCK_INIT(sc); 281 mbufq_init(&sc->sc_snd, ifqmaxlen); 282 283 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 284 285 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 286 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 287 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 288 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 289 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 290 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 291 292 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 293 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 294 295 pci_write_config(dev, 0x41, 0, 1); 296 297 /* enable bus-mastering */ 298 pci_enable_busmaster(dev); 299 300 i = PCIR_BAR(0); 301 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 302 if (sc->mem == NULL) { 303 device_printf(dev, "could not allocate memory resource\n"); 304 goto fail; 305 } 306 307 sc->sc_st = rman_get_bustag(sc->mem); 308 sc->sc_sh = rman_get_bushandle(sc->mem); 309 310 i = 0; 311 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 312 RF_ACTIVE | RF_SHAREABLE); 313 if (sc->irq == NULL) { 314 device_printf(dev, "could not allocate interrupt resource\n"); 315 goto fail; 316 } 317 318 if (iwi_reset(sc) != 0) { 319 device_printf(dev, "could not reset adapter\n"); 320 goto fail; 321 } 322 323 /* 324 * Allocate rings. 325 */ 326 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 327 device_printf(dev, "could not allocate Cmd ring\n"); 328 goto fail; 329 } 330 331 for (i = 0; i < 4; i++) { 332 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 333 IWI_CSR_TX1_RIDX + i * 4, 334 IWI_CSR_TX1_WIDX + i * 4); 335 if (error != 0) { 336 device_printf(dev, "could not allocate Tx ring %d\n", 337 i+i); 338 goto fail; 339 } 340 } 341 342 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 343 device_printf(dev, "could not allocate Rx ring\n"); 344 goto fail; 345 } 346 347 iwi_wme_init(sc); 348 349 ic->ic_softc = sc; 350 ic->ic_name = device_get_nameunit(dev); 351 ic->ic_opmode = IEEE80211_M_STA; 352 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 353 354 /* set device capabilities */ 355 ic->ic_caps = 356 IEEE80211_C_STA /* station mode supported */ 357 | IEEE80211_C_IBSS /* IBSS mode supported */ 358 | IEEE80211_C_MONITOR /* monitor mode supported */ 359 | IEEE80211_C_PMGT /* power save supported */ 360 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 361 | IEEE80211_C_WPA /* 802.11i */ 362 | IEEE80211_C_WME /* 802.11e */ 363 #if 0 364 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 365 #endif 366 ; 367 368 /* read MAC address from EEPROM */ 369 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 370 ic->ic_macaddr[0] = val & 0xff; 371 ic->ic_macaddr[1] = val >> 8; 372 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 373 ic->ic_macaddr[2] = val & 0xff; 374 ic->ic_macaddr[3] = val >> 8; 375 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 376 ic->ic_macaddr[4] = val & 0xff; 377 ic->ic_macaddr[5] = val >> 8; 378 379 bands = 0; 380 setbit(&bands, IEEE80211_MODE_11B); 381 setbit(&bands, IEEE80211_MODE_11G); 382 if (pci_get_device(dev) >= 0x4223) 383 setbit(&bands, IEEE80211_MODE_11A); 384 ieee80211_init_channels(ic, NULL, &bands); 385 386 ieee80211_ifattach(ic); 387 /* override default methods */ 388 ic->ic_node_alloc = iwi_node_alloc; 389 sc->sc_node_free = ic->ic_node_free; 390 ic->ic_node_free = iwi_node_free; 391 ic->ic_raw_xmit = iwi_raw_xmit; 392 ic->ic_scan_start = iwi_scan_start; 393 ic->ic_scan_end = iwi_scan_end; 394 ic->ic_set_channel = iwi_set_channel; 395 ic->ic_scan_curchan = iwi_scan_curchan; 396 ic->ic_scan_mindwell = iwi_scan_mindwell; 397 ic->ic_wme.wme_update = iwi_wme_update; 398 399 ic->ic_vap_create = iwi_vap_create; 400 ic->ic_vap_delete = iwi_vap_delete; 401 ic->ic_ioctl = iwi_ioctl; 402 ic->ic_transmit = iwi_transmit; 403 ic->ic_parent = iwi_parent; 404 405 ieee80211_radiotap_attach(ic, 406 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 407 IWI_TX_RADIOTAP_PRESENT, 408 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 409 IWI_RX_RADIOTAP_PRESENT); 410 411 iwi_sysctlattach(sc); 412 iwi_ledattach(sc); 413 414 /* 415 * Hook our interrupt after all initialization is complete. 416 */ 417 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 418 NULL, iwi_intr, sc, &sc->sc_ih); 419 if (error != 0) { 420 device_printf(dev, "could not set up interrupt\n"); 421 goto fail; 422 } 423 424 if (bootverbose) 425 ieee80211_announce(ic); 426 427 return 0; 428 fail: 429 /* XXX fix */ 430 iwi_detach(dev); 431 return ENXIO; 432 } 433 434 static int 435 iwi_detach(device_t dev) 436 { 437 struct iwi_softc *sc = device_get_softc(dev); 438 struct ieee80211com *ic = &sc->sc_ic; 439 440 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 441 442 /* NB: do early to drain any pending tasks */ 443 ieee80211_draintask(ic, &sc->sc_radiontask); 444 ieee80211_draintask(ic, &sc->sc_radiofftask); 445 ieee80211_draintask(ic, &sc->sc_restarttask); 446 ieee80211_draintask(ic, &sc->sc_disassoctask); 447 ieee80211_draintask(ic, &sc->sc_monitortask); 448 449 iwi_stop(sc); 450 451 ieee80211_ifdetach(ic); 452 453 iwi_put_firmware(sc); 454 iwi_release_fw_dma(sc); 455 456 iwi_free_cmd_ring(sc, &sc->cmdq); 457 iwi_free_tx_ring(sc, &sc->txq[0]); 458 iwi_free_tx_ring(sc, &sc->txq[1]); 459 iwi_free_tx_ring(sc, &sc->txq[2]); 460 iwi_free_tx_ring(sc, &sc->txq[3]); 461 iwi_free_rx_ring(sc, &sc->rxq); 462 463 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 464 465 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 466 sc->mem); 467 468 delete_unrhdr(sc->sc_unr); 469 mbufq_drain(&sc->sc_snd); 470 471 IWI_LOCK_DESTROY(sc); 472 473 return 0; 474 } 475 476 static struct ieee80211vap * 477 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 478 enum ieee80211_opmode opmode, int flags, 479 const uint8_t bssid[IEEE80211_ADDR_LEN], 480 const uint8_t mac[IEEE80211_ADDR_LEN]) 481 { 482 struct iwi_softc *sc = ic->ic_softc; 483 struct iwi_vap *ivp; 484 struct ieee80211vap *vap; 485 int i; 486 487 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 488 return NULL; 489 /* 490 * Get firmware image (and possibly dma memory) on mode change. 491 */ 492 if (iwi_get_firmware(sc, opmode)) 493 return NULL; 494 /* allocate DMA memory for mapping firmware image */ 495 i = sc->fw_fw.size; 496 if (sc->fw_boot.size > i) 497 i = sc->fw_boot.size; 498 /* XXX do we dma the ucode as well ? */ 499 if (sc->fw_uc.size > i) 500 i = sc->fw_uc.size; 501 if (iwi_init_fw_dma(sc, i)) 502 return NULL; 503 504 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 505 vap = &ivp->iwi_vap; 506 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 507 /* override the default, the setting comes from the linux driver */ 508 vap->iv_bmissthreshold = 24; 509 /* override with driver methods */ 510 ivp->iwi_newstate = vap->iv_newstate; 511 vap->iv_newstate = iwi_newstate; 512 513 /* complete setup */ 514 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 515 mac); 516 ic->ic_opmode = opmode; 517 return vap; 518 } 519 520 static void 521 iwi_vap_delete(struct ieee80211vap *vap) 522 { 523 struct iwi_vap *ivp = IWI_VAP(vap); 524 525 ieee80211_vap_detach(vap); 526 free(ivp, M_80211_VAP); 527 } 528 529 static void 530 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 531 { 532 if (error != 0) 533 return; 534 535 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 536 537 *(bus_addr_t *)arg = segs[0].ds_addr; 538 } 539 540 static int 541 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 542 { 543 int error; 544 545 ring->count = count; 546 ring->queued = 0; 547 ring->cur = ring->next = 0; 548 549 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 550 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 551 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 552 NULL, NULL, &ring->desc_dmat); 553 if (error != 0) { 554 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 555 goto fail; 556 } 557 558 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 559 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 560 if (error != 0) { 561 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 562 goto fail; 563 } 564 565 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 566 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 567 if (error != 0) { 568 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 569 goto fail; 570 } 571 572 return 0; 573 574 fail: iwi_free_cmd_ring(sc, ring); 575 return error; 576 } 577 578 static void 579 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 580 { 581 ring->queued = 0; 582 ring->cur = ring->next = 0; 583 } 584 585 static void 586 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 587 { 588 if (ring->desc != NULL) { 589 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 590 BUS_DMASYNC_POSTWRITE); 591 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 592 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 593 } 594 595 if (ring->desc_dmat != NULL) 596 bus_dma_tag_destroy(ring->desc_dmat); 597 } 598 599 static int 600 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 601 bus_addr_t csr_ridx, bus_addr_t csr_widx) 602 { 603 int i, error; 604 605 ring->count = count; 606 ring->queued = 0; 607 ring->cur = ring->next = 0; 608 ring->csr_ridx = csr_ridx; 609 ring->csr_widx = csr_widx; 610 611 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 612 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 613 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 614 NULL, &ring->desc_dmat); 615 if (error != 0) { 616 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 617 goto fail; 618 } 619 620 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 621 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 622 if (error != 0) { 623 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 624 goto fail; 625 } 626 627 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 628 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 629 if (error != 0) { 630 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 631 goto fail; 632 } 633 634 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 635 M_NOWAIT | M_ZERO); 636 if (ring->data == NULL) { 637 device_printf(sc->sc_dev, "could not allocate soft data\n"); 638 error = ENOMEM; 639 goto fail; 640 } 641 642 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 643 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 644 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 645 if (error != 0) { 646 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 647 goto fail; 648 } 649 650 for (i = 0; i < count; i++) { 651 error = bus_dmamap_create(ring->data_dmat, 0, 652 &ring->data[i].map); 653 if (error != 0) { 654 device_printf(sc->sc_dev, "could not create DMA map\n"); 655 goto fail; 656 } 657 } 658 659 return 0; 660 661 fail: iwi_free_tx_ring(sc, ring); 662 return error; 663 } 664 665 static void 666 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 667 { 668 struct iwi_tx_data *data; 669 int i; 670 671 for (i = 0; i < ring->count; i++) { 672 data = &ring->data[i]; 673 674 if (data->m != NULL) { 675 bus_dmamap_sync(ring->data_dmat, data->map, 676 BUS_DMASYNC_POSTWRITE); 677 bus_dmamap_unload(ring->data_dmat, data->map); 678 m_freem(data->m); 679 data->m = NULL; 680 } 681 682 if (data->ni != NULL) { 683 ieee80211_free_node(data->ni); 684 data->ni = NULL; 685 } 686 } 687 688 ring->queued = 0; 689 ring->cur = ring->next = 0; 690 } 691 692 static void 693 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 694 { 695 struct iwi_tx_data *data; 696 int i; 697 698 if (ring->desc != NULL) { 699 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 700 BUS_DMASYNC_POSTWRITE); 701 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 702 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 703 } 704 705 if (ring->desc_dmat != NULL) 706 bus_dma_tag_destroy(ring->desc_dmat); 707 708 if (ring->data != NULL) { 709 for (i = 0; i < ring->count; i++) { 710 data = &ring->data[i]; 711 712 if (data->m != NULL) { 713 bus_dmamap_sync(ring->data_dmat, data->map, 714 BUS_DMASYNC_POSTWRITE); 715 bus_dmamap_unload(ring->data_dmat, data->map); 716 m_freem(data->m); 717 } 718 719 if (data->ni != NULL) 720 ieee80211_free_node(data->ni); 721 722 if (data->map != NULL) 723 bus_dmamap_destroy(ring->data_dmat, data->map); 724 } 725 726 free(ring->data, M_DEVBUF); 727 } 728 729 if (ring->data_dmat != NULL) 730 bus_dma_tag_destroy(ring->data_dmat); 731 } 732 733 static int 734 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 735 { 736 struct iwi_rx_data *data; 737 int i, error; 738 739 ring->count = count; 740 ring->cur = 0; 741 742 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 743 M_NOWAIT | M_ZERO); 744 if (ring->data == NULL) { 745 device_printf(sc->sc_dev, "could not allocate soft data\n"); 746 error = ENOMEM; 747 goto fail; 748 } 749 750 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 751 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 752 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 753 if (error != 0) { 754 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 755 goto fail; 756 } 757 758 for (i = 0; i < count; i++) { 759 data = &ring->data[i]; 760 761 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 762 if (error != 0) { 763 device_printf(sc->sc_dev, "could not create DMA map\n"); 764 goto fail; 765 } 766 767 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 768 if (data->m == NULL) { 769 device_printf(sc->sc_dev, 770 "could not allocate rx mbuf\n"); 771 error = ENOMEM; 772 goto fail; 773 } 774 775 error = bus_dmamap_load(ring->data_dmat, data->map, 776 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 777 &data->physaddr, 0); 778 if (error != 0) { 779 device_printf(sc->sc_dev, 780 "could not load rx buf DMA map"); 781 goto fail; 782 } 783 784 data->reg = IWI_CSR_RX_BASE + i * 4; 785 } 786 787 return 0; 788 789 fail: iwi_free_rx_ring(sc, ring); 790 return error; 791 } 792 793 static void 794 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 795 { 796 ring->cur = 0; 797 } 798 799 static void 800 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 801 { 802 struct iwi_rx_data *data; 803 int i; 804 805 if (ring->data != NULL) { 806 for (i = 0; i < ring->count; i++) { 807 data = &ring->data[i]; 808 809 if (data->m != NULL) { 810 bus_dmamap_sync(ring->data_dmat, data->map, 811 BUS_DMASYNC_POSTREAD); 812 bus_dmamap_unload(ring->data_dmat, data->map); 813 m_freem(data->m); 814 } 815 816 if (data->map != NULL) 817 bus_dmamap_destroy(ring->data_dmat, data->map); 818 } 819 820 free(ring->data, M_DEVBUF); 821 } 822 823 if (ring->data_dmat != NULL) 824 bus_dma_tag_destroy(ring->data_dmat); 825 } 826 827 static int 828 iwi_shutdown(device_t dev) 829 { 830 struct iwi_softc *sc = device_get_softc(dev); 831 832 iwi_stop(sc); 833 iwi_put_firmware(sc); /* ??? XXX */ 834 835 return 0; 836 } 837 838 static int 839 iwi_suspend(device_t dev) 840 { 841 struct iwi_softc *sc = device_get_softc(dev); 842 struct ieee80211com *ic = &sc->sc_ic; 843 844 ieee80211_suspend_all(ic); 845 return 0; 846 } 847 848 static int 849 iwi_resume(device_t dev) 850 { 851 struct iwi_softc *sc = device_get_softc(dev); 852 struct ieee80211com *ic = &sc->sc_ic; 853 854 pci_write_config(dev, 0x41, 0, 1); 855 856 ieee80211_resume_all(ic); 857 return 0; 858 } 859 860 static struct ieee80211_node * 861 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 862 { 863 struct iwi_node *in; 864 865 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 866 if (in == NULL) 867 return NULL; 868 /* XXX assign sta table entry for adhoc */ 869 in->in_station = -1; 870 871 return &in->in_node; 872 } 873 874 static void 875 iwi_node_free(struct ieee80211_node *ni) 876 { 877 struct ieee80211com *ic = ni->ni_ic; 878 struct iwi_softc *sc = ic->ic_softc; 879 struct iwi_node *in = (struct iwi_node *)ni; 880 881 if (in->in_station != -1) { 882 DPRINTF(("%s mac %6D station %u\n", __func__, 883 ni->ni_macaddr, ":", in->in_station)); 884 free_unr(sc->sc_unr, in->in_station); 885 } 886 887 sc->sc_node_free(ni); 888 } 889 890 /* 891 * Convert h/w rate code to IEEE rate code. 892 */ 893 static int 894 iwi_cvtrate(int iwirate) 895 { 896 switch (iwirate) { 897 case IWI_RATE_DS1: return 2; 898 case IWI_RATE_DS2: return 4; 899 case IWI_RATE_DS5: return 11; 900 case IWI_RATE_DS11: return 22; 901 case IWI_RATE_OFDM6: return 12; 902 case IWI_RATE_OFDM9: return 18; 903 case IWI_RATE_OFDM12: return 24; 904 case IWI_RATE_OFDM18: return 36; 905 case IWI_RATE_OFDM24: return 48; 906 case IWI_RATE_OFDM36: return 72; 907 case IWI_RATE_OFDM48: return 96; 908 case IWI_RATE_OFDM54: return 108; 909 } 910 return 0; 911 } 912 913 /* 914 * The firmware automatically adapts the transmit speed. We report its current 915 * value here. 916 */ 917 static void 918 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 919 { 920 struct ieee80211vap *vap = ifp->if_softc; 921 struct ieee80211com *ic = vap->iv_ic; 922 struct iwi_softc *sc = ic->ic_softc; 923 struct ieee80211_node *ni; 924 925 /* read current transmission rate from adapter */ 926 ni = ieee80211_ref_node(vap->iv_bss); 927 ni->ni_txrate = 928 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 929 ieee80211_free_node(ni); 930 ieee80211_media_status(ifp, imr); 931 } 932 933 static int 934 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 935 { 936 struct iwi_vap *ivp = IWI_VAP(vap); 937 struct ieee80211com *ic = vap->iv_ic; 938 struct iwi_softc *sc = ic->ic_softc; 939 IWI_LOCK_DECL; 940 941 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 942 ieee80211_state_name[vap->iv_state], 943 ieee80211_state_name[nstate], sc->flags)); 944 945 IEEE80211_UNLOCK(ic); 946 IWI_LOCK(sc); 947 switch (nstate) { 948 case IEEE80211_S_INIT: 949 /* 950 * NB: don't try to do this if iwi_stop_master has 951 * shutdown the firmware and disabled interrupts. 952 */ 953 if (vap->iv_state == IEEE80211_S_RUN && 954 (sc->flags & IWI_FLAG_FW_INITED)) 955 iwi_disassociate(sc, 0); 956 break; 957 case IEEE80211_S_AUTH: 958 iwi_auth_and_assoc(sc, vap); 959 break; 960 case IEEE80211_S_RUN: 961 if (vap->iv_opmode == IEEE80211_M_IBSS && 962 vap->iv_state == IEEE80211_S_SCAN) { 963 /* 964 * XXX when joining an ibss network we are called 965 * with a SCAN -> RUN transition on scan complete. 966 * Use that to call iwi_auth_and_assoc. On completing 967 * the join we are then called again with an 968 * AUTH -> RUN transition and we want to do nothing. 969 * This is all totally bogus and needs to be redone. 970 */ 971 iwi_auth_and_assoc(sc, vap); 972 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 973 ieee80211_runtask(ic, &sc->sc_monitortask); 974 break; 975 case IEEE80211_S_ASSOC: 976 /* 977 * If we are transitioning from AUTH then just wait 978 * for the ASSOC status to come back from the firmware. 979 * Otherwise we need to issue the association request. 980 */ 981 if (vap->iv_state == IEEE80211_S_AUTH) 982 break; 983 iwi_auth_and_assoc(sc, vap); 984 break; 985 default: 986 break; 987 } 988 IWI_UNLOCK(sc); 989 IEEE80211_LOCK(ic); 990 return ivp->iwi_newstate(vap, nstate, arg); 991 } 992 993 /* 994 * WME parameters coming from IEEE 802.11e specification. These values are 995 * already declared in ieee80211_proto.c, but they are static so they can't 996 * be reused here. 997 */ 998 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 999 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1000 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1001 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1002 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1003 }; 1004 1005 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1006 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1007 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1008 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1009 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1010 }; 1011 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1012 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1013 1014 static void 1015 iwi_wme_init(struct iwi_softc *sc) 1016 { 1017 const struct wmeParams *wmep; 1018 int ac; 1019 1020 memset(sc->wme, 0, sizeof sc->wme); 1021 for (ac = 0; ac < WME_NUM_AC; ac++) { 1022 /* set WME values for CCK modulation */ 1023 wmep = &iwi_wme_cck_params[ac]; 1024 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1025 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1026 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1027 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1028 sc->wme[1].acm[ac] = wmep->wmep_acm; 1029 1030 /* set WME values for OFDM modulation */ 1031 wmep = &iwi_wme_ofdm_params[ac]; 1032 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1033 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1034 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1035 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1036 sc->wme[2].acm[ac] = wmep->wmep_acm; 1037 } 1038 } 1039 1040 static int 1041 iwi_wme_setparams(struct iwi_softc *sc) 1042 { 1043 struct ieee80211com *ic = &sc->sc_ic; 1044 const struct wmeParams *wmep; 1045 int ac; 1046 1047 for (ac = 0; ac < WME_NUM_AC; ac++) { 1048 /* set WME values for current operating mode */ 1049 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1050 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1051 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1052 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1053 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1054 sc->wme[0].acm[ac] = wmep->wmep_acm; 1055 } 1056 1057 DPRINTF(("Setting WME parameters\n")); 1058 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1059 } 1060 #undef IWI_USEC 1061 #undef IWI_EXP2 1062 1063 static void 1064 iwi_update_wme(void *arg, int npending) 1065 { 1066 struct iwi_softc *sc = arg; 1067 IWI_LOCK_DECL; 1068 1069 IWI_LOCK(sc); 1070 (void) iwi_wme_setparams(sc); 1071 IWI_UNLOCK(sc); 1072 } 1073 1074 static int 1075 iwi_wme_update(struct ieee80211com *ic) 1076 { 1077 struct iwi_softc *sc = ic->ic_softc; 1078 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1079 1080 /* 1081 * We may be called to update the WME parameters in 1082 * the adapter at various places. If we're already 1083 * associated then initiate the request immediately; 1084 * otherwise we assume the params will get sent down 1085 * to the adapter as part of the work iwi_auth_and_assoc 1086 * does. 1087 */ 1088 if (vap->iv_state == IEEE80211_S_RUN) 1089 ieee80211_runtask(ic, &sc->sc_wmetask); 1090 return (0); 1091 } 1092 1093 static int 1094 iwi_wme_setie(struct iwi_softc *sc) 1095 { 1096 struct ieee80211_wme_info wme; 1097 1098 memset(&wme, 0, sizeof wme); 1099 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1100 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1101 wme.wme_oui[0] = 0x00; 1102 wme.wme_oui[1] = 0x50; 1103 wme.wme_oui[2] = 0xf2; 1104 wme.wme_type = WME_OUI_TYPE; 1105 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1106 wme.wme_version = WME_VERSION; 1107 wme.wme_info = 0; 1108 1109 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1110 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1111 } 1112 1113 /* 1114 * Read 16 bits at address 'addr' from the serial EEPROM. 1115 */ 1116 static uint16_t 1117 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1118 { 1119 uint32_t tmp; 1120 uint16_t val; 1121 int n; 1122 1123 /* clock C once before the first command */ 1124 IWI_EEPROM_CTL(sc, 0); 1125 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1127 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1128 1129 /* write start bit (1) */ 1130 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1131 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1132 1133 /* write READ opcode (10) */ 1134 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1137 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1138 1139 /* write address A7-A0 */ 1140 for (n = 7; n >= 0; n--) { 1141 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1142 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1143 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1144 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1145 } 1146 1147 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1148 1149 /* read data Q15-Q0 */ 1150 val = 0; 1151 for (n = 15; n >= 0; n--) { 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1154 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1155 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1156 } 1157 1158 IWI_EEPROM_CTL(sc, 0); 1159 1160 /* clear Chip Select and clock C */ 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1162 IWI_EEPROM_CTL(sc, 0); 1163 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1164 1165 return val; 1166 } 1167 1168 static void 1169 iwi_setcurchan(struct iwi_softc *sc, int chan) 1170 { 1171 struct ieee80211com *ic = &sc->sc_ic; 1172 1173 sc->curchan = chan; 1174 ieee80211_radiotap_chan_change(ic); 1175 } 1176 1177 static void 1178 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1179 struct iwi_frame *frame) 1180 { 1181 struct ieee80211com *ic = &sc->sc_ic; 1182 struct mbuf *mnew, *m; 1183 struct ieee80211_node *ni; 1184 int type, error, framelen; 1185 int8_t rssi, nf; 1186 IWI_LOCK_DECL; 1187 1188 framelen = le16toh(frame->len); 1189 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1190 /* 1191 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1192 * out of bounds; need to figure out how to limit 1193 * frame size in the firmware 1194 */ 1195 /* XXX stat */ 1196 DPRINTFN(1, 1197 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1198 le16toh(frame->len), frame->chan, frame->rssi, 1199 frame->rssi_dbm)); 1200 return; 1201 } 1202 1203 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1204 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1205 1206 if (frame->chan != sc->curchan) 1207 iwi_setcurchan(sc, frame->chan); 1208 1209 /* 1210 * Try to allocate a new mbuf for this ring element and load it before 1211 * processing the current mbuf. If the ring element cannot be loaded, 1212 * drop the received packet and reuse the old mbuf. In the unlikely 1213 * case that the old mbuf can't be reloaded either, explicitly panic. 1214 */ 1215 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1216 if (mnew == NULL) { 1217 counter_u64_add(ic->ic_ierrors, 1); 1218 return; 1219 } 1220 1221 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1222 1223 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1224 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1225 0); 1226 if (error != 0) { 1227 m_freem(mnew); 1228 1229 /* try to reload the old mbuf */ 1230 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1231 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1232 &data->physaddr, 0); 1233 if (error != 0) { 1234 /* very unlikely that it will fail... */ 1235 panic("%s: could not load old rx mbuf", 1236 device_get_name(sc->sc_dev)); 1237 } 1238 counter_u64_add(ic->ic_ierrors, 1); 1239 return; 1240 } 1241 1242 /* 1243 * New mbuf successfully loaded, update Rx ring and continue 1244 * processing. 1245 */ 1246 m = data->m; 1247 data->m = mnew; 1248 CSR_WRITE_4(sc, data->reg, data->physaddr); 1249 1250 /* finalize mbuf */ 1251 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1252 sizeof (struct iwi_frame) + framelen; 1253 1254 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1255 1256 rssi = frame->rssi_dbm; 1257 nf = -95; 1258 if (ieee80211_radiotap_active(ic)) { 1259 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1260 1261 tap->wr_flags = 0; 1262 tap->wr_antsignal = rssi; 1263 tap->wr_antnoise = nf; 1264 tap->wr_rate = iwi_cvtrate(frame->rate); 1265 tap->wr_antenna = frame->antenna; 1266 } 1267 IWI_UNLOCK(sc); 1268 1269 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1270 if (ni != NULL) { 1271 type = ieee80211_input(ni, m, rssi, nf); 1272 ieee80211_free_node(ni); 1273 } else 1274 type = ieee80211_input_all(ic, m, rssi, nf); 1275 1276 IWI_LOCK(sc); 1277 if (sc->sc_softled) { 1278 /* 1279 * Blink for any data frame. Otherwise do a 1280 * heartbeat-style blink when idle. The latter 1281 * is mainly for station mode where we depend on 1282 * periodic beacon frames to trigger the poll event. 1283 */ 1284 if (type == IEEE80211_FC0_TYPE_DATA) { 1285 sc->sc_rxrate = frame->rate; 1286 iwi_led_event(sc, IWI_LED_RX); 1287 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1288 iwi_led_event(sc, IWI_LED_POLL); 1289 } 1290 } 1291 1292 /* 1293 * Check for an association response frame to see if QoS 1294 * has been negotiated. We parse just enough to figure 1295 * out if we're supposed to use QoS. The proper solution 1296 * is to pass the frame up so ieee80211_input can do the 1297 * work but that's made hard by how things currently are 1298 * done in the driver. 1299 */ 1300 static void 1301 iwi_checkforqos(struct ieee80211vap *vap, 1302 const struct ieee80211_frame *wh, int len) 1303 { 1304 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1305 const uint8_t *frm, *efrm, *wme; 1306 struct ieee80211_node *ni; 1307 uint16_t capinfo, status, associd; 1308 1309 /* NB: +8 for capinfo, status, associd, and first ie */ 1310 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1311 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1312 return; 1313 /* 1314 * asresp frame format 1315 * [2] capability information 1316 * [2] status 1317 * [2] association ID 1318 * [tlv] supported rates 1319 * [tlv] extended supported rates 1320 * [tlv] WME 1321 */ 1322 frm = (const uint8_t *)&wh[1]; 1323 efrm = ((const uint8_t *) wh) + len; 1324 1325 capinfo = le16toh(*(const uint16_t *)frm); 1326 frm += 2; 1327 status = le16toh(*(const uint16_t *)frm); 1328 frm += 2; 1329 associd = le16toh(*(const uint16_t *)frm); 1330 frm += 2; 1331 1332 wme = NULL; 1333 while (efrm - frm > 1) { 1334 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1335 switch (*frm) { 1336 case IEEE80211_ELEMID_VENDOR: 1337 if (iswmeoui(frm)) 1338 wme = frm; 1339 break; 1340 } 1341 frm += frm[1] + 2; 1342 } 1343 1344 ni = ieee80211_ref_node(vap->iv_bss); 1345 ni->ni_capinfo = capinfo; 1346 ni->ni_associd = associd & 0x3fff; 1347 if (wme != NULL) 1348 ni->ni_flags |= IEEE80211_NODE_QOS; 1349 else 1350 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1351 ieee80211_free_node(ni); 1352 #undef SUBTYPE 1353 } 1354 1355 static void 1356 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1357 { 1358 struct iwi_notif_link_quality *lq; 1359 int len; 1360 1361 len = le16toh(notif->len); 1362 1363 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1364 notif->type, 1365 len, 1366 sizeof(struct iwi_notif_link_quality) 1367 )); 1368 1369 /* enforce length */ 1370 if (len != sizeof(struct iwi_notif_link_quality)) { 1371 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1372 notif->type, 1373 len)); 1374 return; 1375 } 1376 1377 lq = (struct iwi_notif_link_quality *)(notif + 1); 1378 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1379 sc->sc_linkqual_valid = 1; 1380 } 1381 1382 /* 1383 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1384 */ 1385 1386 static void 1387 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1388 { 1389 struct ieee80211com *ic = &sc->sc_ic; 1390 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1391 struct iwi_notif_scan_channel *chan; 1392 struct iwi_notif_scan_complete *scan; 1393 struct iwi_notif_authentication *auth; 1394 struct iwi_notif_association *assoc; 1395 struct iwi_notif_beacon_state *beacon; 1396 1397 switch (notif->type) { 1398 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1399 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1400 1401 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1402 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1403 1404 /* Reset the timer, the scan is still going */ 1405 sc->sc_state_timer = 3; 1406 break; 1407 1408 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1409 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1410 1411 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1412 scan->status)); 1413 1414 IWI_STATE_END(sc, IWI_FW_SCANNING); 1415 1416 /* 1417 * Monitor mode works by doing a passive scan to set 1418 * the channel and enable rx. Because we don't want 1419 * to abort a scan lest the firmware crash we scan 1420 * for a short period of time and automatically restart 1421 * the scan when notified the sweep has completed. 1422 */ 1423 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1424 ieee80211_runtask(ic, &sc->sc_monitortask); 1425 break; 1426 } 1427 1428 if (scan->status == IWI_SCAN_COMPLETED) { 1429 /* NB: don't need to defer, net80211 does it for us */ 1430 ieee80211_scan_next(vap); 1431 } 1432 break; 1433 1434 case IWI_NOTIF_TYPE_AUTHENTICATION: 1435 auth = (struct iwi_notif_authentication *)(notif + 1); 1436 switch (auth->state) { 1437 case IWI_AUTH_SUCCESS: 1438 DPRINTFN(2, ("Authentication succeeeded\n")); 1439 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1440 break; 1441 case IWI_AUTH_FAIL: 1442 /* 1443 * These are delivered as an unsolicited deauth 1444 * (e.g. due to inactivity) or in response to an 1445 * associate request. 1446 */ 1447 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1448 if (vap->iv_state != IEEE80211_S_RUN) { 1449 DPRINTFN(2, ("Authentication failed\n")); 1450 vap->iv_stats.is_rx_auth_fail++; 1451 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1452 } else { 1453 DPRINTFN(2, ("Deauthenticated\n")); 1454 vap->iv_stats.is_rx_deauth++; 1455 } 1456 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1457 break; 1458 case IWI_AUTH_SENT_1: 1459 case IWI_AUTH_RECV_2: 1460 case IWI_AUTH_SEQ1_PASS: 1461 break; 1462 case IWI_AUTH_SEQ1_FAIL: 1463 DPRINTFN(2, ("Initial authentication handshake failed; " 1464 "you probably need shared key\n")); 1465 vap->iv_stats.is_rx_auth_fail++; 1466 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1467 /* XXX retry shared key when in auto */ 1468 break; 1469 default: 1470 device_printf(sc->sc_dev, 1471 "unknown authentication state %u\n", auth->state); 1472 break; 1473 } 1474 break; 1475 1476 case IWI_NOTIF_TYPE_ASSOCIATION: 1477 assoc = (struct iwi_notif_association *)(notif + 1); 1478 switch (assoc->state) { 1479 case IWI_AUTH_SUCCESS: 1480 /* re-association, do nothing */ 1481 break; 1482 case IWI_ASSOC_SUCCESS: 1483 DPRINTFN(2, ("Association succeeded\n")); 1484 sc->flags |= IWI_FLAG_ASSOCIATED; 1485 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1486 iwi_checkforqos(vap, 1487 (const struct ieee80211_frame *)(assoc+1), 1488 le16toh(notif->len) - sizeof(*assoc) - 1); 1489 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1490 break; 1491 case IWI_ASSOC_INIT: 1492 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1493 switch (sc->fw_state) { 1494 case IWI_FW_ASSOCIATING: 1495 DPRINTFN(2, ("Association failed\n")); 1496 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1497 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1498 break; 1499 1500 case IWI_FW_DISASSOCIATING: 1501 DPRINTFN(2, ("Dissassociated\n")); 1502 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1503 vap->iv_stats.is_rx_disassoc++; 1504 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1505 break; 1506 } 1507 break; 1508 default: 1509 device_printf(sc->sc_dev, 1510 "unknown association state %u\n", assoc->state); 1511 break; 1512 } 1513 break; 1514 1515 case IWI_NOTIF_TYPE_BEACON: 1516 /* XXX check struct length */ 1517 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1518 1519 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1520 beacon->state, le32toh(beacon->number))); 1521 1522 if (beacon->state == IWI_BEACON_MISS) { 1523 /* 1524 * The firmware notifies us of every beacon miss 1525 * so we need to track the count against the 1526 * configured threshold before notifying the 1527 * 802.11 layer. 1528 * XXX try to roam, drop assoc only on much higher count 1529 */ 1530 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1531 DPRINTF(("Beacon miss: %u >= %u\n", 1532 le32toh(beacon->number), 1533 vap->iv_bmissthreshold)); 1534 vap->iv_stats.is_beacon_miss++; 1535 /* 1536 * It's pointless to notify the 802.11 layer 1537 * as it'll try to send a probe request (which 1538 * we'll discard) and then timeout and drop us 1539 * into scan state. Instead tell the firmware 1540 * to disassociate and then on completion we'll 1541 * kick the state machine to scan. 1542 */ 1543 ieee80211_runtask(ic, &sc->sc_disassoctask); 1544 } 1545 } 1546 break; 1547 1548 case IWI_NOTIF_TYPE_CALIBRATION: 1549 case IWI_NOTIF_TYPE_NOISE: 1550 /* XXX handle? */ 1551 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1552 break; 1553 case IWI_NOTIF_TYPE_LINK_QUALITY: 1554 iwi_notif_link_quality(sc, notif); 1555 break; 1556 1557 default: 1558 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1559 notif->type, notif->flags, le16toh(notif->len))); 1560 break; 1561 } 1562 } 1563 1564 static void 1565 iwi_rx_intr(struct iwi_softc *sc) 1566 { 1567 struct iwi_rx_data *data; 1568 struct iwi_hdr *hdr; 1569 uint32_t hw; 1570 1571 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1572 1573 for (; sc->rxq.cur != hw;) { 1574 data = &sc->rxq.data[sc->rxq.cur]; 1575 1576 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1577 BUS_DMASYNC_POSTREAD); 1578 1579 hdr = mtod(data->m, struct iwi_hdr *); 1580 1581 switch (hdr->type) { 1582 case IWI_HDR_TYPE_FRAME: 1583 iwi_frame_intr(sc, data, sc->rxq.cur, 1584 (struct iwi_frame *)(hdr + 1)); 1585 break; 1586 1587 case IWI_HDR_TYPE_NOTIF: 1588 iwi_notification_intr(sc, 1589 (struct iwi_notif *)(hdr + 1)); 1590 break; 1591 1592 default: 1593 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1594 hdr->type); 1595 } 1596 1597 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1598 1599 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1600 } 1601 1602 /* tell the firmware what we have processed */ 1603 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1604 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1605 } 1606 1607 static void 1608 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1609 { 1610 struct iwi_tx_data *data; 1611 uint32_t hw; 1612 1613 hw = CSR_READ_4(sc, txq->csr_ridx); 1614 1615 while (txq->next != hw) { 1616 data = &txq->data[txq->next]; 1617 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1618 bus_dmamap_sync(txq->data_dmat, data->map, 1619 BUS_DMASYNC_POSTWRITE); 1620 bus_dmamap_unload(txq->data_dmat, data->map); 1621 ieee80211_tx_complete(data->ni, data->m, 0); 1622 data->ni = NULL; 1623 data->m = NULL; 1624 txq->queued--; 1625 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1626 } 1627 sc->sc_tx_timer = 0; 1628 if (sc->sc_softled) 1629 iwi_led_event(sc, IWI_LED_TX); 1630 iwi_start(sc); 1631 } 1632 1633 static void 1634 iwi_fatal_error_intr(struct iwi_softc *sc) 1635 { 1636 struct ieee80211com *ic = &sc->sc_ic; 1637 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1638 1639 device_printf(sc->sc_dev, "firmware error\n"); 1640 if (vap != NULL) 1641 ieee80211_cancel_scan(vap); 1642 ieee80211_runtask(ic, &sc->sc_restarttask); 1643 1644 sc->flags &= ~IWI_FLAG_BUSY; 1645 sc->sc_busy_timer = 0; 1646 wakeup(sc); 1647 } 1648 1649 static void 1650 iwi_radio_off_intr(struct iwi_softc *sc) 1651 { 1652 1653 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1654 } 1655 1656 static void 1657 iwi_intr(void *arg) 1658 { 1659 struct iwi_softc *sc = arg; 1660 uint32_t r; 1661 IWI_LOCK_DECL; 1662 1663 IWI_LOCK(sc); 1664 1665 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1666 IWI_UNLOCK(sc); 1667 return; 1668 } 1669 1670 /* acknowledge interrupts */ 1671 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1672 1673 if (r & IWI_INTR_FATAL_ERROR) { 1674 iwi_fatal_error_intr(sc); 1675 goto done; 1676 } 1677 1678 if (r & IWI_INTR_FW_INITED) { 1679 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1680 wakeup(sc); 1681 } 1682 1683 if (r & IWI_INTR_RADIO_OFF) 1684 iwi_radio_off_intr(sc); 1685 1686 if (r & IWI_INTR_CMD_DONE) { 1687 sc->flags &= ~IWI_FLAG_BUSY; 1688 sc->sc_busy_timer = 0; 1689 wakeup(sc); 1690 } 1691 1692 if (r & IWI_INTR_TX1_DONE) 1693 iwi_tx_intr(sc, &sc->txq[0]); 1694 1695 if (r & IWI_INTR_TX2_DONE) 1696 iwi_tx_intr(sc, &sc->txq[1]); 1697 1698 if (r & IWI_INTR_TX3_DONE) 1699 iwi_tx_intr(sc, &sc->txq[2]); 1700 1701 if (r & IWI_INTR_TX4_DONE) 1702 iwi_tx_intr(sc, &sc->txq[3]); 1703 1704 if (r & IWI_INTR_RX_DONE) 1705 iwi_rx_intr(sc); 1706 1707 if (r & IWI_INTR_PARITY_ERROR) { 1708 /* XXX rate-limit */ 1709 device_printf(sc->sc_dev, "parity error\n"); 1710 } 1711 done: 1712 IWI_UNLOCK(sc); 1713 } 1714 1715 static int 1716 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1717 { 1718 struct iwi_cmd_desc *desc; 1719 1720 IWI_LOCK_ASSERT(sc); 1721 1722 if (sc->flags & IWI_FLAG_BUSY) { 1723 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1724 __func__, type); 1725 return EAGAIN; 1726 } 1727 sc->flags |= IWI_FLAG_BUSY; 1728 sc->sc_busy_timer = 2; 1729 1730 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1731 1732 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1733 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1734 desc->type = type; 1735 desc->len = len; 1736 memcpy(desc->data, data, len); 1737 1738 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1739 BUS_DMASYNC_PREWRITE); 1740 1741 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1742 type, len)); 1743 1744 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1745 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1746 1747 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1748 } 1749 1750 static void 1751 iwi_write_ibssnode(struct iwi_softc *sc, 1752 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1753 { 1754 struct iwi_ibssnode node; 1755 1756 /* write node information into NIC memory */ 1757 memset(&node, 0, sizeof node); 1758 IEEE80211_ADDR_COPY(node.bssid, addr); 1759 1760 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1761 1762 CSR_WRITE_REGION_1(sc, 1763 IWI_CSR_NODE_BASE + entry * sizeof node, 1764 (uint8_t *)&node, sizeof node); 1765 } 1766 1767 static int 1768 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1769 int ac) 1770 { 1771 struct ieee80211vap *vap = ni->ni_vap; 1772 struct ieee80211com *ic = ni->ni_ic; 1773 struct iwi_node *in = (struct iwi_node *)ni; 1774 const struct ieee80211_frame *wh; 1775 struct ieee80211_key *k; 1776 const struct chanAccParams *cap; 1777 struct iwi_tx_ring *txq = &sc->txq[ac]; 1778 struct iwi_tx_data *data; 1779 struct iwi_tx_desc *desc; 1780 struct mbuf *mnew; 1781 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1782 int error, nsegs, hdrlen, i; 1783 int ismcast, flags, xflags, staid; 1784 1785 IWI_LOCK_ASSERT(sc); 1786 wh = mtod(m0, const struct ieee80211_frame *); 1787 /* NB: only data frames use this path */ 1788 hdrlen = ieee80211_hdrsize(wh); 1789 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1790 flags = xflags = 0; 1791 1792 if (!ismcast) 1793 flags |= IWI_DATA_FLAG_NEED_ACK; 1794 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1795 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1796 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1797 xflags |= IWI_DATA_XFLAG_QOS; 1798 cap = &ic->ic_wme.wme_chanParams; 1799 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1800 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1801 } 1802 1803 /* 1804 * This is only used in IBSS mode where the firmware expect an index 1805 * in a h/w table instead of a destination address. 1806 */ 1807 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1808 if (!ismcast) { 1809 if (in->in_station == -1) { 1810 in->in_station = alloc_unr(sc->sc_unr); 1811 if (in->in_station == -1) { 1812 /* h/w table is full */ 1813 if_inc_counter(ni->ni_vap->iv_ifp, 1814 IFCOUNTER_OERRORS, 1); 1815 m_freem(m0); 1816 ieee80211_free_node(ni); 1817 return 0; 1818 } 1819 iwi_write_ibssnode(sc, 1820 ni->ni_macaddr, in->in_station); 1821 } 1822 staid = in->in_station; 1823 } else { 1824 /* 1825 * Multicast addresses have no associated node 1826 * so there will be no station entry. We reserve 1827 * entry 0 for one mcast address and use that. 1828 * If there are many being used this will be 1829 * expensive and we'll need to do a better job 1830 * but for now this handles the broadcast case. 1831 */ 1832 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1833 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1834 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1835 } 1836 staid = 0; 1837 } 1838 } else 1839 staid = 0; 1840 1841 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1842 k = ieee80211_crypto_encap(ni, m0); 1843 if (k == NULL) { 1844 m_freem(m0); 1845 return ENOBUFS; 1846 } 1847 1848 /* packet header may have moved, reset our local pointer */ 1849 wh = mtod(m0, struct ieee80211_frame *); 1850 } 1851 1852 if (ieee80211_radiotap_active_vap(vap)) { 1853 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1854 1855 tap->wt_flags = 0; 1856 1857 ieee80211_radiotap_tx(vap, m0); 1858 } 1859 1860 data = &txq->data[txq->cur]; 1861 desc = &txq->desc[txq->cur]; 1862 1863 /* save and trim IEEE802.11 header */ 1864 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1865 m_adj(m0, hdrlen); 1866 1867 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1868 &nsegs, 0); 1869 if (error != 0 && error != EFBIG) { 1870 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1871 error); 1872 m_freem(m0); 1873 return error; 1874 } 1875 if (error != 0) { 1876 mnew = m_defrag(m0, M_NOWAIT); 1877 if (mnew == NULL) { 1878 device_printf(sc->sc_dev, 1879 "could not defragment mbuf\n"); 1880 m_freem(m0); 1881 return ENOBUFS; 1882 } 1883 m0 = mnew; 1884 1885 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1886 m0, segs, &nsegs, 0); 1887 if (error != 0) { 1888 device_printf(sc->sc_dev, 1889 "could not map mbuf (error %d)\n", error); 1890 m_freem(m0); 1891 return error; 1892 } 1893 } 1894 1895 data->m = m0; 1896 data->ni = ni; 1897 1898 desc->hdr.type = IWI_HDR_TYPE_DATA; 1899 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1900 desc->station = staid; 1901 desc->cmd = IWI_DATA_CMD_TX; 1902 desc->len = htole16(m0->m_pkthdr.len); 1903 desc->flags = flags; 1904 desc->xflags = xflags; 1905 1906 #if 0 1907 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1908 desc->wep_txkey = vap->iv_def_txkey; 1909 else 1910 #endif 1911 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1912 1913 desc->nseg = htole32(nsegs); 1914 for (i = 0; i < nsegs; i++) { 1915 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1916 desc->seg_len[i] = htole16(segs[i].ds_len); 1917 } 1918 1919 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1920 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1921 1922 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1923 ac, txq->cur, le16toh(desc->len), nsegs)); 1924 1925 txq->queued++; 1926 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1927 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1928 1929 return 0; 1930 } 1931 1932 static int 1933 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1934 const struct ieee80211_bpf_params *params) 1935 { 1936 /* no support; just discard */ 1937 m_freem(m); 1938 ieee80211_free_node(ni); 1939 return 0; 1940 } 1941 1942 static int 1943 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1944 { 1945 struct iwi_softc *sc = ic->ic_softc; 1946 int error; 1947 IWI_LOCK_DECL; 1948 1949 IWI_LOCK(sc); 1950 if (!sc->sc_running) { 1951 IWI_UNLOCK(sc); 1952 return (ENXIO); 1953 } 1954 error = mbufq_enqueue(&sc->sc_snd, m); 1955 if (error) { 1956 IWI_UNLOCK(sc); 1957 return (error); 1958 } 1959 iwi_start(sc); 1960 IWI_UNLOCK(sc); 1961 return (0); 1962 } 1963 1964 static void 1965 iwi_start(struct iwi_softc *sc) 1966 { 1967 struct mbuf *m; 1968 struct ieee80211_node *ni; 1969 int ac; 1970 1971 IWI_LOCK_ASSERT(sc); 1972 1973 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1974 ac = M_WME_GETAC(m); 1975 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1976 /* there is no place left in this ring; tail drop */ 1977 /* XXX tail drop */ 1978 mbufq_prepend(&sc->sc_snd, m); 1979 break; 1980 } 1981 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1982 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1983 ieee80211_free_node(ni); 1984 if_inc_counter(ni->ni_vap->iv_ifp, 1985 IFCOUNTER_OERRORS, 1); 1986 break; 1987 } 1988 sc->sc_tx_timer = 5; 1989 } 1990 } 1991 1992 static void 1993 iwi_watchdog(void *arg) 1994 { 1995 struct iwi_softc *sc = arg; 1996 struct ieee80211com *ic = &sc->sc_ic; 1997 1998 IWI_LOCK_ASSERT(sc); 1999 2000 if (sc->sc_tx_timer > 0) { 2001 if (--sc->sc_tx_timer == 0) { 2002 device_printf(sc->sc_dev, "device timeout\n"); 2003 counter_u64_add(ic->ic_oerrors, 1); 2004 ieee80211_runtask(ic, &sc->sc_restarttask); 2005 } 2006 } 2007 if (sc->sc_state_timer > 0) { 2008 if (--sc->sc_state_timer == 0) { 2009 device_printf(sc->sc_dev, 2010 "firmware stuck in state %d, resetting\n", 2011 sc->fw_state); 2012 if (sc->fw_state == IWI_FW_SCANNING) 2013 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2014 ieee80211_runtask(ic, &sc->sc_restarttask); 2015 sc->sc_state_timer = 3; 2016 } 2017 } 2018 if (sc->sc_busy_timer > 0) { 2019 if (--sc->sc_busy_timer == 0) { 2020 device_printf(sc->sc_dev, 2021 "firmware command timeout, resetting\n"); 2022 ieee80211_runtask(ic, &sc->sc_restarttask); 2023 } 2024 } 2025 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2026 } 2027 2028 static void 2029 iwi_parent(struct ieee80211com *ic) 2030 { 2031 struct iwi_softc *sc = ic->ic_softc; 2032 int startall = 0; 2033 IWI_LOCK_DECL; 2034 2035 IWI_LOCK(sc); 2036 if (ic->ic_nrunning > 0) { 2037 if (!sc->sc_running) { 2038 iwi_init_locked(sc); 2039 startall = 1; 2040 } 2041 } else if (sc->sc_running) 2042 iwi_stop_locked(sc); 2043 IWI_UNLOCK(sc); 2044 if (startall) 2045 ieee80211_start_all(ic); 2046 } 2047 2048 static int 2049 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2050 { 2051 struct ifreq *ifr = data; 2052 struct iwi_softc *sc = ic->ic_softc; 2053 int error; 2054 IWI_LOCK_DECL; 2055 2056 IWI_LOCK(sc); 2057 switch (cmd) { 2058 case SIOCGIWISTATS: 2059 /* XXX validate permissions/memory/etc? */ 2060 error = copyout(&sc->sc_linkqual, ifr->ifr_data, 2061 sizeof(struct iwi_notif_link_quality)); 2062 break; 2063 case SIOCZIWISTATS: 2064 memset(&sc->sc_linkqual, 0, 2065 sizeof(struct iwi_notif_link_quality)); 2066 error = 0; 2067 break; 2068 default: 2069 error = ENOTTY; 2070 break; 2071 } 2072 IWI_UNLOCK(sc); 2073 2074 return (error); 2075 } 2076 2077 static void 2078 iwi_stop_master(struct iwi_softc *sc) 2079 { 2080 uint32_t tmp; 2081 int ntries; 2082 2083 /* disable interrupts */ 2084 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2085 2086 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2087 for (ntries = 0; ntries < 5; ntries++) { 2088 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2089 break; 2090 DELAY(10); 2091 } 2092 if (ntries == 5) 2093 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2094 2095 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2096 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2097 2098 sc->flags &= ~IWI_FLAG_FW_INITED; 2099 } 2100 2101 static int 2102 iwi_reset(struct iwi_softc *sc) 2103 { 2104 uint32_t tmp; 2105 int i, ntries; 2106 2107 iwi_stop_master(sc); 2108 2109 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2110 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2111 2112 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2113 2114 /* wait for clock stabilization */ 2115 for (ntries = 0; ntries < 1000; ntries++) { 2116 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2117 break; 2118 DELAY(200); 2119 } 2120 if (ntries == 1000) { 2121 device_printf(sc->sc_dev, 2122 "timeout waiting for clock stabilization\n"); 2123 return EIO; 2124 } 2125 2126 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2127 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2128 2129 DELAY(10); 2130 2131 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2132 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2133 2134 /* clear NIC memory */ 2135 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2136 for (i = 0; i < 0xc000; i++) 2137 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2138 2139 return 0; 2140 } 2141 2142 static const struct iwi_firmware_ohdr * 2143 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2144 { 2145 const struct firmware *fp = fw->fp; 2146 const struct iwi_firmware_ohdr *hdr; 2147 2148 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2149 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2150 return NULL; 2151 } 2152 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2153 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2154 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2155 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2156 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2157 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2158 IWI_FW_REQ_MINOR); 2159 return NULL; 2160 } 2161 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2162 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2163 fw->name = fp->name; 2164 return hdr; 2165 } 2166 2167 static const struct iwi_firmware_ohdr * 2168 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2169 { 2170 const struct iwi_firmware_ohdr *hdr; 2171 2172 hdr = iwi_setup_ofw(sc, fw); 2173 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2174 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2175 fw->name); 2176 hdr = NULL; 2177 } 2178 return hdr; 2179 } 2180 2181 static void 2182 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2183 struct iwi_fw *uc, const char *ucname) 2184 { 2185 if (fw->fp == NULL) 2186 fw->fp = firmware_get(fwname); 2187 /* NB: pre-3.0 ucode is packaged separately */ 2188 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2189 uc->fp = firmware_get(ucname); 2190 } 2191 2192 /* 2193 * Get the required firmware images if not already loaded. 2194 * Note that we hold firmware images so long as the device 2195 * is marked up in case we need to reload them on device init. 2196 * This is necessary because we re-init the device sometimes 2197 * from a context where we cannot read from the filesystem 2198 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2199 * XXX return 0 on success, 1 on error. 2200 * 2201 * NB: the order of get'ing and put'ing images here is 2202 * intentional to support handling firmware images bundled 2203 * by operating mode and/or all together in one file with 2204 * the boot firmware as "master". 2205 */ 2206 static int 2207 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2208 { 2209 const struct iwi_firmware_hdr *hdr; 2210 const struct firmware *fp; 2211 2212 /* invalidate cached firmware on mode change */ 2213 if (sc->fw_mode != opmode) 2214 iwi_put_firmware(sc); 2215 2216 switch (opmode) { 2217 case IEEE80211_M_STA: 2218 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2219 break; 2220 case IEEE80211_M_IBSS: 2221 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2222 break; 2223 case IEEE80211_M_MONITOR: 2224 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2225 &sc->fw_uc, "iwi_ucode_monitor"); 2226 break; 2227 default: 2228 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2229 return EINVAL; 2230 } 2231 fp = sc->fw_fw.fp; 2232 if (fp == NULL) { 2233 device_printf(sc->sc_dev, "could not load firmware\n"); 2234 goto bad; 2235 } 2236 if (fp->version < 300) { 2237 /* 2238 * Firmware prior to 3.0 was packaged as separate 2239 * boot, firmware, and ucode images. Verify the 2240 * ucode image was read in, retrieve the boot image 2241 * if needed, and check version stamps for consistency. 2242 * The version stamps in the data are also checked 2243 * above; this is a bit paranoid but is a cheap 2244 * safeguard against mis-packaging. 2245 */ 2246 if (sc->fw_uc.fp == NULL) { 2247 device_printf(sc->sc_dev, "could not load ucode\n"); 2248 goto bad; 2249 } 2250 if (sc->fw_boot.fp == NULL) { 2251 sc->fw_boot.fp = firmware_get("iwi_boot"); 2252 if (sc->fw_boot.fp == NULL) { 2253 device_printf(sc->sc_dev, 2254 "could not load boot firmware\n"); 2255 goto bad; 2256 } 2257 } 2258 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2259 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2260 device_printf(sc->sc_dev, 2261 "firmware version mismatch: " 2262 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2263 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2264 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2265 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2266 ); 2267 goto bad; 2268 } 2269 /* 2270 * Check and setup each image. 2271 */ 2272 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2273 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2274 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2275 goto bad; 2276 } else { 2277 /* 2278 * Check and setup combined image. 2279 */ 2280 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2281 device_printf(sc->sc_dev, "image '%s' too small\n", 2282 fp->name); 2283 goto bad; 2284 } 2285 hdr = (const struct iwi_firmware_hdr *)fp->data; 2286 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2287 + le32toh(hdr->fsize)) { 2288 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2289 fp->name); 2290 goto bad; 2291 } 2292 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2293 sc->fw_boot.size = le32toh(hdr->bsize); 2294 sc->fw_boot.name = fp->name; 2295 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2296 sc->fw_uc.size = le32toh(hdr->usize); 2297 sc->fw_uc.name = fp->name; 2298 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2299 sc->fw_fw.size = le32toh(hdr->fsize); 2300 sc->fw_fw.name = fp->name; 2301 } 2302 #if 0 2303 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2304 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2305 #endif 2306 2307 sc->fw_mode = opmode; 2308 return 0; 2309 bad: 2310 iwi_put_firmware(sc); 2311 return 1; 2312 } 2313 2314 static void 2315 iwi_put_fw(struct iwi_fw *fw) 2316 { 2317 if (fw->fp != NULL) { 2318 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2319 fw->fp = NULL; 2320 } 2321 fw->data = NULL; 2322 fw->size = 0; 2323 fw->name = NULL; 2324 } 2325 2326 /* 2327 * Release any cached firmware images. 2328 */ 2329 static void 2330 iwi_put_firmware(struct iwi_softc *sc) 2331 { 2332 iwi_put_fw(&sc->fw_uc); 2333 iwi_put_fw(&sc->fw_fw); 2334 iwi_put_fw(&sc->fw_boot); 2335 } 2336 2337 static int 2338 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2339 { 2340 uint32_t tmp; 2341 const uint16_t *w; 2342 const char *uc = fw->data; 2343 size_t size = fw->size; 2344 int i, ntries, error; 2345 2346 IWI_LOCK_ASSERT(sc); 2347 error = 0; 2348 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2349 IWI_RST_STOP_MASTER); 2350 for (ntries = 0; ntries < 5; ntries++) { 2351 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2352 break; 2353 DELAY(10); 2354 } 2355 if (ntries == 5) { 2356 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2357 error = EIO; 2358 goto fail; 2359 } 2360 2361 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2362 DELAY(5000); 2363 2364 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2365 tmp &= ~IWI_RST_PRINCETON_RESET; 2366 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2367 2368 DELAY(5000); 2369 MEM_WRITE_4(sc, 0x3000e0, 0); 2370 DELAY(1000); 2371 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2372 DELAY(1000); 2373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2374 DELAY(1000); 2375 MEM_WRITE_1(sc, 0x200000, 0x00); 2376 MEM_WRITE_1(sc, 0x200000, 0x40); 2377 DELAY(1000); 2378 2379 /* write microcode into adapter memory */ 2380 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2381 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2382 2383 MEM_WRITE_1(sc, 0x200000, 0x00); 2384 MEM_WRITE_1(sc, 0x200000, 0x80); 2385 2386 /* wait until we get an answer */ 2387 for (ntries = 0; ntries < 100; ntries++) { 2388 if (MEM_READ_1(sc, 0x200000) & 1) 2389 break; 2390 DELAY(100); 2391 } 2392 if (ntries == 100) { 2393 device_printf(sc->sc_dev, 2394 "timeout waiting for ucode to initialize\n"); 2395 error = EIO; 2396 goto fail; 2397 } 2398 2399 /* read the answer or the firmware will not initialize properly */ 2400 for (i = 0; i < 7; i++) 2401 MEM_READ_4(sc, 0x200004); 2402 2403 MEM_WRITE_1(sc, 0x200000, 0x00); 2404 2405 fail: 2406 return error; 2407 } 2408 2409 /* macro to handle unaligned little endian data in firmware image */ 2410 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2411 2412 static int 2413 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2414 { 2415 u_char *p, *end; 2416 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2417 int ntries, error; 2418 2419 IWI_LOCK_ASSERT(sc); 2420 2421 /* copy firmware image to DMA memory */ 2422 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2423 2424 /* make sure the adapter will get up-to-date values */ 2425 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2426 2427 /* tell the adapter where the command blocks are stored */ 2428 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2429 2430 /* 2431 * Store command blocks into adapter's internal memory using register 2432 * indirections. The adapter will read the firmware image through DMA 2433 * using information stored in command blocks. 2434 */ 2435 src = sc->fw_physaddr; 2436 p = sc->fw_virtaddr; 2437 end = p + fw->size; 2438 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2439 2440 while (p < end) { 2441 dst = GETLE32(p); p += 4; src += 4; 2442 len = GETLE32(p); p += 4; src += 4; 2443 p += len; 2444 2445 while (len > 0) { 2446 mlen = min(len, IWI_CB_MAXDATALEN); 2447 2448 ctl = IWI_CB_DEFAULT_CTL | mlen; 2449 sum = ctl ^ src ^ dst; 2450 2451 /* write a command block */ 2452 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2456 2457 src += mlen; 2458 dst += mlen; 2459 len -= mlen; 2460 } 2461 } 2462 2463 /* write a fictive final command block (sentinel) */ 2464 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2465 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2466 2467 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2468 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2469 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2470 2471 /* tell the adapter to start processing command blocks */ 2472 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2473 2474 /* wait until the adapter reaches the sentinel */ 2475 for (ntries = 0; ntries < 400; ntries++) { 2476 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2477 break; 2478 DELAY(100); 2479 } 2480 /* sync dma, just in case */ 2481 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2482 if (ntries == 400) { 2483 device_printf(sc->sc_dev, 2484 "timeout processing command blocks for %s firmware\n", 2485 fw->name); 2486 return EIO; 2487 } 2488 2489 /* we're done with command blocks processing */ 2490 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2491 2492 /* allow interrupts so we know when the firmware is ready */ 2493 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2494 2495 /* tell the adapter to initialize the firmware */ 2496 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2497 2498 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2499 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2500 2501 /* wait at most one second for firmware initialization to complete */ 2502 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2503 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2504 "initialization to complete\n", fw->name); 2505 } 2506 2507 return error; 2508 } 2509 2510 static int 2511 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2512 { 2513 uint32_t data; 2514 2515 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2516 /* XXX set more fine-grained operation */ 2517 data = htole32(IWI_POWER_MODE_MAX); 2518 } else 2519 data = htole32(IWI_POWER_MODE_CAM); 2520 2521 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2522 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2523 } 2524 2525 static int 2526 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2527 { 2528 struct iwi_wep_key wepkey; 2529 struct ieee80211_key *wk; 2530 int error, i; 2531 2532 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2533 wk = &vap->iv_nw_keys[i]; 2534 2535 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2536 wepkey.idx = i; 2537 wepkey.len = wk->wk_keylen; 2538 memset(wepkey.key, 0, sizeof wepkey.key); 2539 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2540 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2541 wepkey.len)); 2542 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2543 sizeof wepkey); 2544 if (error != 0) 2545 return error; 2546 } 2547 return 0; 2548 } 2549 2550 static int 2551 iwi_config(struct iwi_softc *sc) 2552 { 2553 struct ieee80211com *ic = &sc->sc_ic; 2554 struct iwi_configuration config; 2555 struct iwi_rateset rs; 2556 struct iwi_txpower power; 2557 uint32_t data; 2558 int error, i; 2559 2560 IWI_LOCK_ASSERT(sc); 2561 2562 DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":")); 2563 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr, 2564 IEEE80211_ADDR_LEN); 2565 if (error != 0) 2566 return error; 2567 2568 memset(&config, 0, sizeof config); 2569 config.bluetooth_coexistence = sc->bluetooth; 2570 config.silence_threshold = 0x1e; 2571 config.antenna = sc->antenna; 2572 config.multicast_enabled = 1; 2573 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2574 config.disable_unicast_decryption = 1; 2575 config.disable_multicast_decryption = 1; 2576 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2577 config.allow_invalid_frames = 1; 2578 config.allow_beacon_and_probe_resp = 1; 2579 config.allow_mgt = 1; 2580 } 2581 DPRINTF(("Configuring adapter\n")); 2582 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2583 if (error != 0) 2584 return error; 2585 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2586 power.mode = IWI_MODE_11B; 2587 power.nchan = 11; 2588 for (i = 0; i < 11; i++) { 2589 power.chan[i].chan = i + 1; 2590 power.chan[i].power = IWI_TXPOWER_MAX; 2591 } 2592 DPRINTF(("Setting .11b channels tx power\n")); 2593 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2594 if (error != 0) 2595 return error; 2596 2597 power.mode = IWI_MODE_11G; 2598 DPRINTF(("Setting .11g channels tx power\n")); 2599 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2600 if (error != 0) 2601 return error; 2602 } 2603 2604 memset(&rs, 0, sizeof rs); 2605 rs.mode = IWI_MODE_11G; 2606 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2607 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2608 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2609 rs.nrates); 2610 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2611 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2612 if (error != 0) 2613 return error; 2614 2615 memset(&rs, 0, sizeof rs); 2616 rs.mode = IWI_MODE_11A; 2617 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2618 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2619 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2620 rs.nrates); 2621 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2622 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2623 if (error != 0) 2624 return error; 2625 2626 data = htole32(arc4random()); 2627 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2628 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2629 if (error != 0) 2630 return error; 2631 2632 /* enable adapter */ 2633 DPRINTF(("Enabling adapter\n")); 2634 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2635 } 2636 2637 static __inline void 2638 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2639 { 2640 uint8_t *st = &scan->scan_type[ix / 2]; 2641 if (ix % 2) 2642 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2643 else 2644 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2645 } 2646 2647 static int 2648 scan_type(const struct ieee80211_scan_state *ss, 2649 const struct ieee80211_channel *chan) 2650 { 2651 /* We can only set one essid for a directed scan */ 2652 if (ss->ss_nssid != 0) 2653 return IWI_SCAN_TYPE_BDIRECTED; 2654 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2655 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2656 return IWI_SCAN_TYPE_BROADCAST; 2657 return IWI_SCAN_TYPE_PASSIVE; 2658 } 2659 2660 static __inline int 2661 scan_band(const struct ieee80211_channel *c) 2662 { 2663 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2664 } 2665 2666 static void 2667 iwi_monitor_scan(void *arg, int npending) 2668 { 2669 struct iwi_softc *sc = arg; 2670 IWI_LOCK_DECL; 2671 2672 IWI_LOCK(sc); 2673 (void) iwi_scanchan(sc, 2000, 0); 2674 IWI_UNLOCK(sc); 2675 } 2676 2677 /* 2678 * Start a scan on the current channel or all channels. 2679 */ 2680 static int 2681 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2682 { 2683 struct ieee80211com *ic = &sc->sc_ic; 2684 struct ieee80211_channel *chan; 2685 struct ieee80211_scan_state *ss; 2686 struct iwi_scan_ext scan; 2687 int error = 0; 2688 2689 IWI_LOCK_ASSERT(sc); 2690 if (sc->fw_state == IWI_FW_SCANNING) { 2691 /* 2692 * This should not happen as we only trigger scan_next after 2693 * completion 2694 */ 2695 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2696 return (EBUSY); 2697 } 2698 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2699 2700 ss = ic->ic_scan; 2701 2702 memset(&scan, 0, sizeof scan); 2703 scan.full_scan_index = htole32(++sc->sc_scangen); 2704 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2705 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2706 /* 2707 * Use very short dwell times for when we send probe request 2708 * frames. Without this bg scans hang. Ideally this should 2709 * be handled with early-termination as done by net80211 but 2710 * that's not feasible (aborting a scan is problematic). 2711 */ 2712 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2713 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2714 } else { 2715 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2716 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2717 } 2718 2719 /* We can only set one essid for a directed scan */ 2720 if (ss->ss_nssid != 0) { 2721 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2722 ss->ss_ssid[0].len); 2723 if (error) 2724 return (error); 2725 } 2726 2727 if (allchan) { 2728 int i, next, band, b, bstart; 2729 /* 2730 * Convert scan list to run-length encoded channel list 2731 * the firmware requires (preserving the order setup by 2732 * net80211). The first entry in each run specifies the 2733 * band and the count of items in the run. 2734 */ 2735 next = 0; /* next open slot */ 2736 bstart = 0; /* NB: not needed, silence compiler */ 2737 band = -1; /* NB: impossible value */ 2738 KASSERT(ss->ss_last > 0, ("no channels")); 2739 for (i = 0; i < ss->ss_last; i++) { 2740 chan = ss->ss_chans[i]; 2741 b = scan_band(chan); 2742 if (b != band) { 2743 if (band != -1) 2744 scan.channels[bstart] = 2745 (next - bstart) | band; 2746 /* NB: this allocates a slot for the run-len */ 2747 band = b, bstart = next++; 2748 } 2749 if (next >= IWI_SCAN_CHANNELS) { 2750 DPRINTF(("truncating scan list\n")); 2751 break; 2752 } 2753 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2754 set_scan_type(&scan, next, scan_type(ss, chan)); 2755 next++; 2756 } 2757 scan.channels[bstart] = (next - bstart) | band; 2758 } else { 2759 /* Scan the current channel only */ 2760 chan = ic->ic_curchan; 2761 scan.channels[0] = 1 | scan_band(chan); 2762 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2763 set_scan_type(&scan, 1, scan_type(ss, chan)); 2764 } 2765 #ifdef IWI_DEBUG 2766 if (iwi_debug > 0) { 2767 static const char *scantype[8] = 2768 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2769 int i; 2770 printf("Scan request: index %u dwell %d/%d/%d\n" 2771 , le32toh(scan.full_scan_index) 2772 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2773 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2774 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2775 ); 2776 i = 0; 2777 do { 2778 int run = scan.channels[i]; 2779 if (run == 0) 2780 break; 2781 printf("Scan %d %s channels:", run & 0x3f, 2782 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2783 for (run &= 0x3f, i++; run > 0; run--, i++) { 2784 uint8_t type = scan.scan_type[i/2]; 2785 printf(" %u/%s", scan.channels[i], 2786 scantype[(i & 1 ? type : type>>4) & 7]); 2787 } 2788 printf("\n"); 2789 } while (i < IWI_SCAN_CHANNELS); 2790 } 2791 #endif 2792 2793 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2794 } 2795 2796 static int 2797 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2798 { 2799 struct iwi_sensitivity sens; 2800 2801 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2802 2803 memset(&sens, 0, sizeof sens); 2804 sens.rssi = htole16(rssi_dbm); 2805 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2806 } 2807 2808 static int 2809 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2810 { 2811 struct ieee80211com *ic = vap->iv_ic; 2812 struct ifnet *ifp = vap->iv_ifp; 2813 struct ieee80211_node *ni; 2814 struct iwi_configuration config; 2815 struct iwi_associate *assoc = &sc->assoc; 2816 struct iwi_rateset rs; 2817 uint16_t capinfo; 2818 uint32_t data; 2819 int error, mode; 2820 2821 IWI_LOCK_ASSERT(sc); 2822 2823 ni = ieee80211_ref_node(vap->iv_bss); 2824 2825 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2826 DPRINTF(("Already associated\n")); 2827 return (-1); 2828 } 2829 2830 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2831 error = 0; 2832 mode = 0; 2833 2834 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2835 mode = IWI_MODE_11A; 2836 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2837 mode = IWI_MODE_11G; 2838 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2839 mode = IWI_MODE_11B; 2840 2841 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2842 memset(&config, 0, sizeof config); 2843 config.bluetooth_coexistence = sc->bluetooth; 2844 config.antenna = sc->antenna; 2845 config.multicast_enabled = 1; 2846 if (mode == IWI_MODE_11G) 2847 config.use_protection = 1; 2848 config.answer_pbreq = 2849 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2850 config.disable_unicast_decryption = 1; 2851 config.disable_multicast_decryption = 1; 2852 DPRINTF(("Configuring adapter\n")); 2853 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2854 if (error != 0) 2855 goto done; 2856 } 2857 2858 #ifdef IWI_DEBUG 2859 if (iwi_debug > 0) { 2860 printf("Setting ESSID to "); 2861 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2862 printf("\n"); 2863 } 2864 #endif 2865 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2866 if (error != 0) 2867 goto done; 2868 2869 error = iwi_setpowermode(sc, vap); 2870 if (error != 0) 2871 goto done; 2872 2873 data = htole32(vap->iv_rtsthreshold); 2874 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2875 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2876 if (error != 0) 2877 goto done; 2878 2879 data = htole32(vap->iv_fragthreshold); 2880 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2881 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2882 if (error != 0) 2883 goto done; 2884 2885 /* the rate set has already been "negotiated" */ 2886 memset(&rs, 0, sizeof rs); 2887 rs.mode = mode; 2888 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2889 rs.nrates = ni->ni_rates.rs_nrates; 2890 if (rs.nrates > IWI_RATESET_SIZE) { 2891 DPRINTF(("Truncating negotiated rate set from %u\n", 2892 rs.nrates)); 2893 rs.nrates = IWI_RATESET_SIZE; 2894 } 2895 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2896 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2897 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2898 if (error != 0) 2899 goto done; 2900 2901 memset(assoc, 0, sizeof *assoc); 2902 2903 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2904 /* NB: don't treat WME setup as failure */ 2905 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2906 assoc->policy |= htole16(IWI_POLICY_WME); 2907 /* XXX complain on failure? */ 2908 } 2909 2910 if (vap->iv_appie_wpa != NULL) { 2911 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2912 2913 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2914 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2915 if (error != 0) 2916 goto done; 2917 } 2918 2919 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2920 if (error != 0) 2921 goto done; 2922 2923 assoc->mode = mode; 2924 assoc->chan = ic->ic_curchan->ic_ieee; 2925 /* 2926 * NB: do not arrange for shared key auth w/o privacy 2927 * (i.e. a wep key); it causes a firmware error. 2928 */ 2929 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2930 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2931 assoc->auth = IWI_AUTH_SHARED; 2932 /* 2933 * It's possible to have privacy marked but no default 2934 * key setup. This typically is due to a user app bug 2935 * but if we blindly grab the key the firmware will 2936 * barf so avoid it for now. 2937 */ 2938 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2939 assoc->auth |= vap->iv_def_txkey << 4; 2940 2941 error = iwi_setwepkeys(sc, vap); 2942 if (error != 0) 2943 goto done; 2944 } 2945 if (vap->iv_flags & IEEE80211_F_WPA) 2946 assoc->policy |= htole16(IWI_POLICY_WPA); 2947 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2948 assoc->type = IWI_HC_IBSS_START; 2949 else 2950 assoc->type = IWI_HC_ASSOC; 2951 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2952 2953 if (vap->iv_opmode == IEEE80211_M_IBSS) 2954 capinfo = IEEE80211_CAPINFO_IBSS; 2955 else 2956 capinfo = IEEE80211_CAPINFO_ESS; 2957 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2958 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2959 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2960 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2961 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2962 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2963 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2964 assoc->capinfo = htole16(capinfo); 2965 2966 assoc->lintval = htole16(ic->ic_lintval); 2967 assoc->intval = htole16(ni->ni_intval); 2968 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2969 if (vap->iv_opmode == IEEE80211_M_IBSS) 2970 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2971 else 2972 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2973 2974 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2975 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2976 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2977 assoc->bssid, ":", assoc->dst, ":", 2978 assoc->chan, le16toh(assoc->policy), assoc->auth, 2979 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2980 le16toh(assoc->intval))); 2981 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2982 done: 2983 ieee80211_free_node(ni); 2984 if (error) 2985 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2986 2987 return (error); 2988 } 2989 2990 static void 2991 iwi_disassoc(void *arg, int pending) 2992 { 2993 struct iwi_softc *sc = arg; 2994 IWI_LOCK_DECL; 2995 2996 IWI_LOCK(sc); 2997 iwi_disassociate(sc, 0); 2998 IWI_UNLOCK(sc); 2999 } 3000 3001 static int 3002 iwi_disassociate(struct iwi_softc *sc, int quiet) 3003 { 3004 struct iwi_associate *assoc = &sc->assoc; 3005 3006 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3007 DPRINTF(("Not associated\n")); 3008 return (-1); 3009 } 3010 3011 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3012 3013 if (quiet) 3014 assoc->type = IWI_HC_DISASSOC_QUIET; 3015 else 3016 assoc->type = IWI_HC_DISASSOC; 3017 3018 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3019 assoc->bssid, ":", assoc->chan)); 3020 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3021 } 3022 3023 /* 3024 * release dma resources for the firmware 3025 */ 3026 static void 3027 iwi_release_fw_dma(struct iwi_softc *sc) 3028 { 3029 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3030 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3031 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3032 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3033 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3034 bus_dma_tag_destroy(sc->fw_dmat); 3035 3036 sc->fw_flags = 0; 3037 sc->fw_dma_size = 0; 3038 sc->fw_dmat = NULL; 3039 sc->fw_map = NULL; 3040 sc->fw_physaddr = 0; 3041 sc->fw_virtaddr = NULL; 3042 } 3043 3044 /* 3045 * allocate the dma descriptor for the firmware. 3046 * Return 0 on success, 1 on error. 3047 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3048 */ 3049 static int 3050 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3051 { 3052 if (sc->fw_dma_size >= size) 3053 return 0; 3054 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3055 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3056 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3057 device_printf(sc->sc_dev, 3058 "could not create firmware DMA tag\n"); 3059 goto error; 3060 } 3061 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3062 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3063 &sc->fw_map) != 0) { 3064 device_printf(sc->sc_dev, 3065 "could not allocate firmware DMA memory\n"); 3066 goto error; 3067 } 3068 sc->fw_flags |= IWI_FW_HAVE_MAP; 3069 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3070 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3071 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3072 goto error; 3073 } 3074 sc->fw_flags |= IWI_FW_HAVE_PHY; 3075 sc->fw_dma_size = size; 3076 return 0; 3077 3078 error: 3079 iwi_release_fw_dma(sc); 3080 return 1; 3081 } 3082 3083 static void 3084 iwi_init_locked(struct iwi_softc *sc) 3085 { 3086 struct iwi_rx_data *data; 3087 int i; 3088 3089 IWI_LOCK_ASSERT(sc); 3090 3091 if (sc->fw_state == IWI_FW_LOADING) { 3092 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3093 return; /* XXX: condvar? */ 3094 } 3095 3096 iwi_stop_locked(sc); 3097 3098 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3099 3100 if (iwi_reset(sc) != 0) { 3101 device_printf(sc->sc_dev, "could not reset adapter\n"); 3102 goto fail; 3103 } 3104 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3105 device_printf(sc->sc_dev, 3106 "could not load boot firmware %s\n", sc->fw_boot.name); 3107 goto fail; 3108 } 3109 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3110 device_printf(sc->sc_dev, 3111 "could not load microcode %s\n", sc->fw_uc.name); 3112 goto fail; 3113 } 3114 3115 iwi_stop_master(sc); 3116 3117 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3118 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3119 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3120 3121 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3122 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3123 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3124 3125 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3126 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3127 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3128 3129 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3130 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3131 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3132 3133 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3134 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3135 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3136 3137 for (i = 0; i < sc->rxq.count; i++) { 3138 data = &sc->rxq.data[i]; 3139 CSR_WRITE_4(sc, data->reg, data->physaddr); 3140 } 3141 3142 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3143 3144 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3145 device_printf(sc->sc_dev, 3146 "could not load main firmware %s\n", sc->fw_fw.name); 3147 goto fail; 3148 } 3149 sc->flags |= IWI_FLAG_FW_INITED; 3150 3151 IWI_STATE_END(sc, IWI_FW_LOADING); 3152 3153 if (iwi_config(sc) != 0) { 3154 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3155 goto fail2; 3156 } 3157 3158 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3159 sc->sc_running = 1; 3160 return; 3161 fail: 3162 IWI_STATE_END(sc, IWI_FW_LOADING); 3163 fail2: 3164 iwi_stop_locked(sc); 3165 } 3166 3167 static void 3168 iwi_init(void *priv) 3169 { 3170 struct iwi_softc *sc = priv; 3171 struct ieee80211com *ic = &sc->sc_ic; 3172 IWI_LOCK_DECL; 3173 3174 IWI_LOCK(sc); 3175 iwi_init_locked(sc); 3176 IWI_UNLOCK(sc); 3177 3178 if (sc->sc_running) 3179 ieee80211_start_all(ic); 3180 } 3181 3182 static void 3183 iwi_stop_locked(void *priv) 3184 { 3185 struct iwi_softc *sc = priv; 3186 3187 IWI_LOCK_ASSERT(sc); 3188 3189 sc->sc_running = 0; 3190 3191 if (sc->sc_softled) { 3192 callout_stop(&sc->sc_ledtimer); 3193 sc->sc_blinking = 0; 3194 } 3195 callout_stop(&sc->sc_wdtimer); 3196 callout_stop(&sc->sc_rftimer); 3197 3198 iwi_stop_master(sc); 3199 3200 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3201 3202 /* reset rings */ 3203 iwi_reset_cmd_ring(sc, &sc->cmdq); 3204 iwi_reset_tx_ring(sc, &sc->txq[0]); 3205 iwi_reset_tx_ring(sc, &sc->txq[1]); 3206 iwi_reset_tx_ring(sc, &sc->txq[2]); 3207 iwi_reset_tx_ring(sc, &sc->txq[3]); 3208 iwi_reset_rx_ring(sc, &sc->rxq); 3209 3210 sc->sc_tx_timer = 0; 3211 sc->sc_state_timer = 0; 3212 sc->sc_busy_timer = 0; 3213 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3214 sc->fw_state = IWI_FW_IDLE; 3215 wakeup(sc); 3216 } 3217 3218 static void 3219 iwi_stop(struct iwi_softc *sc) 3220 { 3221 IWI_LOCK_DECL; 3222 3223 IWI_LOCK(sc); 3224 iwi_stop_locked(sc); 3225 IWI_UNLOCK(sc); 3226 } 3227 3228 static void 3229 iwi_restart(void *arg, int npending) 3230 { 3231 struct iwi_softc *sc = arg; 3232 3233 iwi_init(sc); 3234 } 3235 3236 /* 3237 * Return whether or not the radio is enabled in hardware 3238 * (i.e. the rfkill switch is "off"). 3239 */ 3240 static int 3241 iwi_getrfkill(struct iwi_softc *sc) 3242 { 3243 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3244 } 3245 3246 static void 3247 iwi_radio_on(void *arg, int pending) 3248 { 3249 struct iwi_softc *sc = arg; 3250 struct ieee80211com *ic = &sc->sc_ic; 3251 3252 device_printf(sc->sc_dev, "radio turned on\n"); 3253 3254 iwi_init(sc); 3255 ieee80211_notify_radio(ic, 1); 3256 } 3257 3258 static void 3259 iwi_rfkill_poll(void *arg) 3260 { 3261 struct iwi_softc *sc = arg; 3262 3263 IWI_LOCK_ASSERT(sc); 3264 3265 /* 3266 * Check for a change in rfkill state. We get an 3267 * interrupt when a radio is disabled but not when 3268 * it is enabled so we must poll for the latter. 3269 */ 3270 if (!iwi_getrfkill(sc)) { 3271 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3272 return; 3273 } 3274 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3275 } 3276 3277 static void 3278 iwi_radio_off(void *arg, int pending) 3279 { 3280 struct iwi_softc *sc = arg; 3281 struct ieee80211com *ic = &sc->sc_ic; 3282 IWI_LOCK_DECL; 3283 3284 device_printf(sc->sc_dev, "radio turned off\n"); 3285 3286 ieee80211_notify_radio(ic, 0); 3287 3288 IWI_LOCK(sc); 3289 iwi_stop_locked(sc); 3290 iwi_rfkill_poll(sc); 3291 IWI_UNLOCK(sc); 3292 } 3293 3294 static int 3295 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3296 { 3297 struct iwi_softc *sc = arg1; 3298 uint32_t size, buf[128]; 3299 3300 memset(buf, 0, sizeof buf); 3301 3302 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3303 return SYSCTL_OUT(req, buf, sizeof buf); 3304 3305 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3306 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3307 3308 return SYSCTL_OUT(req, buf, size); 3309 } 3310 3311 static int 3312 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3313 { 3314 struct iwi_softc *sc = arg1; 3315 int val = !iwi_getrfkill(sc); 3316 3317 return SYSCTL_OUT(req, &val, sizeof val); 3318 } 3319 3320 /* 3321 * Add sysctl knobs. 3322 */ 3323 static void 3324 iwi_sysctlattach(struct iwi_softc *sc) 3325 { 3326 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3327 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3328 3329 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3330 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3331 "radio transmitter switch state (0=off, 1=on)"); 3332 3333 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3334 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3335 "statistics"); 3336 3337 sc->bluetooth = 0; 3338 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3339 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3340 3341 sc->antenna = IWI_ANTENNA_AUTO; 3342 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3343 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3344 } 3345 3346 /* 3347 * LED support. 3348 * 3349 * Different cards have different capabilities. Some have three 3350 * led's while others have only one. The linux ipw driver defines 3351 * led's for link state (associated or not), band (11a, 11g, 11b), 3352 * and for link activity. We use one led and vary the blink rate 3353 * according to the tx/rx traffic a la the ath driver. 3354 */ 3355 3356 static __inline uint32_t 3357 iwi_toggle_event(uint32_t r) 3358 { 3359 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3360 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3361 } 3362 3363 static uint32_t 3364 iwi_read_event(struct iwi_softc *sc) 3365 { 3366 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3367 } 3368 3369 static void 3370 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3371 { 3372 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3373 } 3374 3375 static void 3376 iwi_led_done(void *arg) 3377 { 3378 struct iwi_softc *sc = arg; 3379 3380 sc->sc_blinking = 0; 3381 } 3382 3383 /* 3384 * Turn the activity LED off: flip the pin and then set a timer so no 3385 * update will happen for the specified duration. 3386 */ 3387 static void 3388 iwi_led_off(void *arg) 3389 { 3390 struct iwi_softc *sc = arg; 3391 uint32_t v; 3392 3393 v = iwi_read_event(sc); 3394 v &= ~sc->sc_ledpin; 3395 iwi_write_event(sc, iwi_toggle_event(v)); 3396 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3397 } 3398 3399 /* 3400 * Blink the LED according to the specified on/off times. 3401 */ 3402 static void 3403 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3404 { 3405 uint32_t v; 3406 3407 v = iwi_read_event(sc); 3408 v |= sc->sc_ledpin; 3409 iwi_write_event(sc, iwi_toggle_event(v)); 3410 sc->sc_blinking = 1; 3411 sc->sc_ledoff = off; 3412 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3413 } 3414 3415 static void 3416 iwi_led_event(struct iwi_softc *sc, int event) 3417 { 3418 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3419 static const struct { 3420 u_int rate; /* tx/rx iwi rate */ 3421 u_int16_t timeOn; /* LED on time (ms) */ 3422 u_int16_t timeOff; /* LED off time (ms) */ 3423 } blinkrates[] = { 3424 { IWI_RATE_OFDM54, 40, 10 }, 3425 { IWI_RATE_OFDM48, 44, 11 }, 3426 { IWI_RATE_OFDM36, 50, 13 }, 3427 { IWI_RATE_OFDM24, 57, 14 }, 3428 { IWI_RATE_OFDM18, 67, 16 }, 3429 { IWI_RATE_OFDM12, 80, 20 }, 3430 { IWI_RATE_DS11, 100, 25 }, 3431 { IWI_RATE_OFDM9, 133, 34 }, 3432 { IWI_RATE_OFDM6, 160, 40 }, 3433 { IWI_RATE_DS5, 200, 50 }, 3434 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3435 { IWI_RATE_DS2, 267, 66 }, 3436 { IWI_RATE_DS1, 400, 100 }, 3437 { 0, 500, 130 }, /* unknown rate/polling */ 3438 }; 3439 uint32_t txrate; 3440 int j = 0; /* XXX silence compiler */ 3441 3442 sc->sc_ledevent = ticks; /* time of last event */ 3443 if (sc->sc_blinking) /* don't interrupt active blink */ 3444 return; 3445 switch (event) { 3446 case IWI_LED_POLL: 3447 j = nitems(blinkrates)-1; 3448 break; 3449 case IWI_LED_TX: 3450 /* read current transmission rate from adapter */ 3451 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3452 if (blinkrates[sc->sc_txrix].rate != txrate) { 3453 for (j = 0; j < nitems(blinkrates)-1; j++) 3454 if (blinkrates[j].rate == txrate) 3455 break; 3456 sc->sc_txrix = j; 3457 } else 3458 j = sc->sc_txrix; 3459 break; 3460 case IWI_LED_RX: 3461 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3462 for (j = 0; j < nitems(blinkrates)-1; j++) 3463 if (blinkrates[j].rate == sc->sc_rxrate) 3464 break; 3465 sc->sc_rxrix = j; 3466 } else 3467 j = sc->sc_rxrix; 3468 break; 3469 } 3470 /* XXX beware of overflow */ 3471 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3472 (blinkrates[j].timeOff * hz) / 1000); 3473 } 3474 3475 static int 3476 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3477 { 3478 struct iwi_softc *sc = arg1; 3479 int softled = sc->sc_softled; 3480 int error; 3481 3482 error = sysctl_handle_int(oidp, &softled, 0, req); 3483 if (error || !req->newptr) 3484 return error; 3485 softled = (softled != 0); 3486 if (softled != sc->sc_softled) { 3487 if (softled) { 3488 uint32_t v = iwi_read_event(sc); 3489 v &= ~sc->sc_ledpin; 3490 iwi_write_event(sc, iwi_toggle_event(v)); 3491 } 3492 sc->sc_softled = softled; 3493 } 3494 return 0; 3495 } 3496 3497 static void 3498 iwi_ledattach(struct iwi_softc *sc) 3499 { 3500 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3501 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3502 3503 sc->sc_blinking = 0; 3504 sc->sc_ledstate = 1; 3505 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3506 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3507 3508 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3509 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3510 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3511 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3512 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3513 "pin setting to turn activity LED on"); 3514 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3515 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3516 "idle time for inactivity LED (ticks)"); 3517 /* XXX for debugging */ 3518 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3519 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3520 "NIC type from EEPROM"); 3521 3522 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3523 sc->sc_softled = 1; 3524 3525 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3526 if (sc->sc_nictype == 1) { 3527 /* 3528 * NB: led's are reversed. 3529 */ 3530 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3531 } 3532 } 3533 3534 static void 3535 iwi_scan_start(struct ieee80211com *ic) 3536 { 3537 /* ignore */ 3538 } 3539 3540 static void 3541 iwi_set_channel(struct ieee80211com *ic) 3542 { 3543 struct iwi_softc *sc = ic->ic_softc; 3544 3545 if (sc->fw_state == IWI_FW_IDLE) 3546 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3547 } 3548 3549 static void 3550 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3551 { 3552 struct ieee80211vap *vap = ss->ss_vap; 3553 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3554 IWI_LOCK_DECL; 3555 3556 IWI_LOCK(sc); 3557 if (iwi_scanchan(sc, maxdwell, 0)) 3558 ieee80211_cancel_scan(vap); 3559 IWI_UNLOCK(sc); 3560 } 3561 3562 static void 3563 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3564 { 3565 /* NB: don't try to abort scan; wait for firmware to finish */ 3566 } 3567 3568 static void 3569 iwi_scan_end(struct ieee80211com *ic) 3570 { 3571 struct iwi_softc *sc = ic->ic_softc; 3572 IWI_LOCK_DECL; 3573 3574 IWI_LOCK(sc); 3575 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3576 /* NB: make sure we're still scanning */ 3577 if (sc->fw_state == IWI_FW_SCANNING) 3578 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3579 IWI_UNLOCK(sc); 3580 } 3581