1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004, 2005 5 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 6 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 7 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 74 #include <net80211/ieee80211_var.h> 75 #include <net80211/ieee80211_radiotap.h> 76 #include <net80211/ieee80211_input.h> 77 #include <net80211/ieee80211_regdomain.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/if_ether.h> 84 85 #include <dev/iwi/if_iwireg.h> 86 #include <dev/iwi/if_iwivar.h> 87 #include <dev/iwi/if_iwi_ioctl.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static const uint8_t def_chan_5ghz_band1[] = 134 { 36, 40, 44, 48, 52, 56, 60, 64 }; 135 static const uint8_t def_chan_5ghz_band2[] = 136 { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; 137 static const uint8_t def_chan_5ghz_band3[] = 138 { 149, 153, 157, 161, 165 }; 139 140 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 141 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 142 const uint8_t [IEEE80211_ADDR_LEN], 143 const uint8_t [IEEE80211_ADDR_LEN]); 144 static void iwi_vap_delete(struct ieee80211vap *); 145 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 146 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 147 int); 148 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 149 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 150 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 151 int, bus_addr_t, bus_addr_t); 152 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 153 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 154 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 155 int); 156 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 157 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 158 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 159 const uint8_t [IEEE80211_ADDR_LEN]); 160 static void iwi_node_free(struct ieee80211_node *); 161 static void iwi_media_status(if_t, struct ifmediareq *); 162 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 163 static void iwi_wme_init(struct iwi_softc *); 164 static int iwi_wme_setparams(struct iwi_softc *); 165 static int iwi_wme_update(struct ieee80211com *); 166 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 167 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 168 struct iwi_frame *); 169 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 170 static void iwi_rx_intr(struct iwi_softc *); 171 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 172 static void iwi_intr(void *); 173 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 174 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int); 175 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 176 struct ieee80211_node *, int); 177 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 178 const struct ieee80211_bpf_params *); 179 static void iwi_start(struct iwi_softc *); 180 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 181 static void iwi_watchdog(void *); 182 static int iwi_ioctl(struct ieee80211com *, u_long, void *); 183 static void iwi_parent(struct ieee80211com *); 184 static void iwi_stop_master(struct iwi_softc *); 185 static int iwi_reset(struct iwi_softc *); 186 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 187 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 188 static void iwi_release_fw_dma(struct iwi_softc *sc); 189 static int iwi_config(struct iwi_softc *); 190 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 191 static void iwi_put_firmware(struct iwi_softc *); 192 static void iwi_monitor_scan(void *, int); 193 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 194 static void iwi_scan_start(struct ieee80211com *); 195 static void iwi_scan_end(struct ieee80211com *); 196 static void iwi_set_channel(struct ieee80211com *); 197 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 198 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 199 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 200 static void iwi_disassoc(void *, int); 201 static int iwi_disassociate(struct iwi_softc *, int quiet); 202 static void iwi_init_locked(struct iwi_softc *); 203 static void iwi_init(void *); 204 static int iwi_init_fw_dma(struct iwi_softc *, int); 205 static void iwi_stop_locked(void *); 206 static void iwi_stop(struct iwi_softc *); 207 static void iwi_restart(void *, int); 208 static int iwi_getrfkill(struct iwi_softc *); 209 static void iwi_radio_on(void *, int); 210 static void iwi_radio_off(void *, int); 211 static void iwi_sysctlattach(struct iwi_softc *); 212 static void iwi_led_event(struct iwi_softc *, int); 213 static void iwi_ledattach(struct iwi_softc *); 214 static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); 215 static void iwi_getradiocaps(struct ieee80211com *, int, int *, 216 struct ieee80211_channel []); 217 218 static int iwi_probe(device_t); 219 static int iwi_attach(device_t); 220 static int iwi_detach(device_t); 221 static int iwi_shutdown(device_t); 222 static int iwi_suspend(device_t); 223 static int iwi_resume(device_t); 224 225 static device_method_t iwi_methods[] = { 226 /* Device interface */ 227 DEVMETHOD(device_probe, iwi_probe), 228 DEVMETHOD(device_attach, iwi_attach), 229 DEVMETHOD(device_detach, iwi_detach), 230 DEVMETHOD(device_shutdown, iwi_shutdown), 231 DEVMETHOD(device_suspend, iwi_suspend), 232 DEVMETHOD(device_resume, iwi_resume), 233 234 DEVMETHOD_END 235 }; 236 237 static driver_t iwi_driver = { 238 "iwi", 239 iwi_methods, 240 sizeof (struct iwi_softc) 241 }; 242 243 DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL); 244 245 MODULE_VERSION(iwi, 1); 246 247 static __inline uint8_t 248 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 249 { 250 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 251 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 252 } 253 254 static __inline uint32_t 255 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 256 { 257 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 258 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 259 } 260 261 static int 262 iwi_probe(device_t dev) 263 { 264 const struct iwi_ident *ident; 265 266 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 267 if (pci_get_vendor(dev) == ident->vendor && 268 pci_get_device(dev) == ident->device) { 269 device_set_desc(dev, ident->name); 270 return (BUS_PROBE_DEFAULT); 271 } 272 } 273 return ENXIO; 274 } 275 276 static int 277 iwi_attach(device_t dev) 278 { 279 struct iwi_softc *sc = device_get_softc(dev); 280 struct ieee80211com *ic = &sc->sc_ic; 281 uint16_t val; 282 int i, error; 283 284 sc->sc_dev = dev; 285 sc->sc_ledevent = ticks; 286 287 IWI_LOCK_INIT(sc); 288 mbufq_init(&sc->sc_snd, ifqmaxlen); 289 290 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 291 292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 296 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 297 298 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 299 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 300 301 pci_write_config(dev, 0x41, 0, 1); 302 303 /* enable bus-mastering */ 304 pci_enable_busmaster(dev); 305 306 i = PCIR_BAR(0); 307 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 308 if (sc->mem == NULL) { 309 device_printf(dev, "could not allocate memory resource\n"); 310 goto fail; 311 } 312 313 sc->sc_st = rman_get_bustag(sc->mem); 314 sc->sc_sh = rman_get_bushandle(sc->mem); 315 316 i = 0; 317 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 318 RF_ACTIVE | RF_SHAREABLE); 319 if (sc->irq == NULL) { 320 device_printf(dev, "could not allocate interrupt resource\n"); 321 goto fail; 322 } 323 324 if (iwi_reset(sc) != 0) { 325 device_printf(dev, "could not reset adapter\n"); 326 goto fail; 327 } 328 329 /* 330 * Allocate rings. 331 */ 332 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 333 device_printf(dev, "could not allocate Cmd ring\n"); 334 goto fail; 335 } 336 337 for (i = 0; i < 4; i++) { 338 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 339 IWI_CSR_TX1_RIDX + i * 4, 340 IWI_CSR_TX1_WIDX + i * 4); 341 if (error != 0) { 342 device_printf(dev, "could not allocate Tx ring %d\n", 343 i+i); 344 goto fail; 345 } 346 } 347 348 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 349 device_printf(dev, "could not allocate Rx ring\n"); 350 goto fail; 351 } 352 353 iwi_wme_init(sc); 354 355 ic->ic_softc = sc; 356 ic->ic_name = device_get_nameunit(dev); 357 ic->ic_opmode = IEEE80211_M_STA; 358 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 359 360 /* set device capabilities */ 361 ic->ic_caps = 362 IEEE80211_C_STA /* station mode supported */ 363 | IEEE80211_C_IBSS /* IBSS mode supported */ 364 | IEEE80211_C_MONITOR /* monitor mode supported */ 365 | IEEE80211_C_PMGT /* power save supported */ 366 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 367 | IEEE80211_C_WPA /* 802.11i */ 368 | IEEE80211_C_WME /* 802.11e */ 369 #if 0 370 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 371 #endif 372 ; 373 374 ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD; 375 376 /* read MAC address from EEPROM */ 377 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 378 ic->ic_macaddr[0] = val & 0xff; 379 ic->ic_macaddr[1] = val >> 8; 380 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 381 ic->ic_macaddr[2] = val & 0xff; 382 ic->ic_macaddr[3] = val >> 8; 383 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 384 ic->ic_macaddr[4] = val & 0xff; 385 ic->ic_macaddr[5] = val >> 8; 386 387 iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 388 ic->ic_channels); 389 390 ieee80211_ifattach(ic); 391 /* override default methods */ 392 ic->ic_node_alloc = iwi_node_alloc; 393 sc->sc_node_free = ic->ic_node_free; 394 ic->ic_node_free = iwi_node_free; 395 ic->ic_raw_xmit = iwi_raw_xmit; 396 ic->ic_scan_start = iwi_scan_start; 397 ic->ic_scan_end = iwi_scan_end; 398 ic->ic_set_channel = iwi_set_channel; 399 ic->ic_scan_curchan = iwi_scan_curchan; 400 ic->ic_scan_mindwell = iwi_scan_mindwell; 401 ic->ic_wme.wme_update = iwi_wme_update; 402 403 ic->ic_vap_create = iwi_vap_create; 404 ic->ic_vap_delete = iwi_vap_delete; 405 ic->ic_ioctl = iwi_ioctl; 406 ic->ic_transmit = iwi_transmit; 407 ic->ic_parent = iwi_parent; 408 ic->ic_getradiocaps = iwi_getradiocaps; 409 410 ieee80211_radiotap_attach(ic, 411 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 412 IWI_TX_RADIOTAP_PRESENT, 413 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 414 IWI_RX_RADIOTAP_PRESENT); 415 416 iwi_sysctlattach(sc); 417 iwi_ledattach(sc); 418 419 /* 420 * Hook our interrupt after all initialization is complete. 421 */ 422 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 423 NULL, iwi_intr, sc, &sc->sc_ih); 424 if (error != 0) { 425 device_printf(dev, "could not set up interrupt\n"); 426 goto fail; 427 } 428 429 if (bootverbose) 430 ieee80211_announce(ic); 431 432 return 0; 433 fail: 434 /* XXX fix */ 435 iwi_detach(dev); 436 return ENXIO; 437 } 438 439 static int 440 iwi_detach(device_t dev) 441 { 442 struct iwi_softc *sc = device_get_softc(dev); 443 struct ieee80211com *ic = &sc->sc_ic; 444 445 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 446 447 /* NB: do early to drain any pending tasks */ 448 ieee80211_draintask(ic, &sc->sc_radiontask); 449 ieee80211_draintask(ic, &sc->sc_radiofftask); 450 ieee80211_draintask(ic, &sc->sc_restarttask); 451 ieee80211_draintask(ic, &sc->sc_disassoctask); 452 ieee80211_draintask(ic, &sc->sc_monitortask); 453 454 iwi_stop(sc); 455 456 ieee80211_ifdetach(ic); 457 458 iwi_put_firmware(sc); 459 iwi_release_fw_dma(sc); 460 461 iwi_free_cmd_ring(sc, &sc->cmdq); 462 iwi_free_tx_ring(sc, &sc->txq[0]); 463 iwi_free_tx_ring(sc, &sc->txq[1]); 464 iwi_free_tx_ring(sc, &sc->txq[2]); 465 iwi_free_tx_ring(sc, &sc->txq[3]); 466 iwi_free_rx_ring(sc, &sc->rxq); 467 468 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 469 470 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 471 sc->mem); 472 473 delete_unrhdr(sc->sc_unr); 474 mbufq_drain(&sc->sc_snd); 475 476 IWI_LOCK_DESTROY(sc); 477 478 return 0; 479 } 480 481 static struct ieee80211vap * 482 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 483 enum ieee80211_opmode opmode, int flags, 484 const uint8_t bssid[IEEE80211_ADDR_LEN], 485 const uint8_t mac[IEEE80211_ADDR_LEN]) 486 { 487 struct iwi_softc *sc = ic->ic_softc; 488 struct iwi_vap *ivp; 489 struct ieee80211vap *vap; 490 int i; 491 492 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 493 return NULL; 494 /* 495 * Get firmware image (and possibly dma memory) on mode change. 496 */ 497 if (iwi_get_firmware(sc, opmode)) 498 return NULL; 499 /* allocate DMA memory for mapping firmware image */ 500 i = sc->fw_fw.size; 501 if (sc->fw_boot.size > i) 502 i = sc->fw_boot.size; 503 /* XXX do we dma the ucode as well ? */ 504 if (sc->fw_uc.size > i) 505 i = sc->fw_uc.size; 506 if (iwi_init_fw_dma(sc, i)) 507 return NULL; 508 509 ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 510 vap = &ivp->iwi_vap; 511 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 512 /* override the default, the setting comes from the linux driver */ 513 vap->iv_bmissthreshold = 24; 514 /* override with driver methods */ 515 ivp->iwi_newstate = vap->iv_newstate; 516 vap->iv_newstate = iwi_newstate; 517 518 /* complete setup */ 519 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 520 mac); 521 ic->ic_opmode = opmode; 522 return vap; 523 } 524 525 static void 526 iwi_vap_delete(struct ieee80211vap *vap) 527 { 528 struct iwi_vap *ivp = IWI_VAP(vap); 529 530 ieee80211_vap_detach(vap); 531 free(ivp, M_80211_VAP); 532 } 533 534 static void 535 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 536 { 537 if (error != 0) 538 return; 539 540 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 541 542 *(bus_addr_t *)arg = segs[0].ds_addr; 543 } 544 545 static int 546 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 547 { 548 int error; 549 550 ring->count = count; 551 ring->queued = 0; 552 ring->cur = ring->next = 0; 553 554 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 555 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 556 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 557 NULL, NULL, &ring->desc_dmat); 558 if (error != 0) { 559 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 560 goto fail; 561 } 562 563 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 564 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 565 if (error != 0) { 566 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 567 goto fail; 568 } 569 570 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 571 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 572 if (error != 0) { 573 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 574 goto fail; 575 } 576 577 return 0; 578 579 fail: iwi_free_cmd_ring(sc, ring); 580 return error; 581 } 582 583 static void 584 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 585 { 586 ring->queued = 0; 587 ring->cur = ring->next = 0; 588 } 589 590 static void 591 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 592 { 593 if (ring->desc != NULL) { 594 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 595 BUS_DMASYNC_POSTWRITE); 596 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 597 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 598 } 599 600 if (ring->desc_dmat != NULL) 601 bus_dma_tag_destroy(ring->desc_dmat); 602 } 603 604 static int 605 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 606 bus_addr_t csr_ridx, bus_addr_t csr_widx) 607 { 608 int i, error; 609 610 ring->count = count; 611 ring->queued = 0; 612 ring->cur = ring->next = 0; 613 ring->csr_ridx = csr_ridx; 614 ring->csr_widx = csr_widx; 615 616 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 617 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 618 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 619 NULL, &ring->desc_dmat); 620 if (error != 0) { 621 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 622 goto fail; 623 } 624 625 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 626 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 627 if (error != 0) { 628 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 629 goto fail; 630 } 631 632 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 633 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 634 if (error != 0) { 635 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 636 goto fail; 637 } 638 639 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 640 M_NOWAIT | M_ZERO); 641 if (ring->data == NULL) { 642 device_printf(sc->sc_dev, "could not allocate soft data\n"); 643 error = ENOMEM; 644 goto fail; 645 } 646 647 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 648 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 649 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 650 if (error != 0) { 651 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 652 goto fail; 653 } 654 655 for (i = 0; i < count; i++) { 656 error = bus_dmamap_create(ring->data_dmat, 0, 657 &ring->data[i].map); 658 if (error != 0) { 659 device_printf(sc->sc_dev, "could not create DMA map\n"); 660 goto fail; 661 } 662 } 663 664 return 0; 665 666 fail: iwi_free_tx_ring(sc, ring); 667 return error; 668 } 669 670 static void 671 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 672 { 673 struct iwi_tx_data *data; 674 int i; 675 676 for (i = 0; i < ring->count; i++) { 677 data = &ring->data[i]; 678 679 if (data->m != NULL) { 680 bus_dmamap_sync(ring->data_dmat, data->map, 681 BUS_DMASYNC_POSTWRITE); 682 bus_dmamap_unload(ring->data_dmat, data->map); 683 m_freem(data->m); 684 data->m = NULL; 685 } 686 687 if (data->ni != NULL) { 688 ieee80211_free_node(data->ni); 689 data->ni = NULL; 690 } 691 } 692 693 ring->queued = 0; 694 ring->cur = ring->next = 0; 695 } 696 697 static void 698 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 699 { 700 struct iwi_tx_data *data; 701 int i; 702 703 if (ring->desc != NULL) { 704 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 705 BUS_DMASYNC_POSTWRITE); 706 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 707 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 708 } 709 710 if (ring->desc_dmat != NULL) 711 bus_dma_tag_destroy(ring->desc_dmat); 712 713 if (ring->data != NULL) { 714 for (i = 0; i < ring->count; i++) { 715 data = &ring->data[i]; 716 717 if (data->m != NULL) { 718 bus_dmamap_sync(ring->data_dmat, data->map, 719 BUS_DMASYNC_POSTWRITE); 720 bus_dmamap_unload(ring->data_dmat, data->map); 721 m_freem(data->m); 722 } 723 724 if (data->ni != NULL) 725 ieee80211_free_node(data->ni); 726 727 if (data->map != NULL) 728 bus_dmamap_destroy(ring->data_dmat, data->map); 729 } 730 731 free(ring->data, M_DEVBUF); 732 } 733 734 if (ring->data_dmat != NULL) 735 bus_dma_tag_destroy(ring->data_dmat); 736 } 737 738 static int 739 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 740 { 741 struct iwi_rx_data *data; 742 int i, error; 743 744 ring->count = count; 745 ring->cur = 0; 746 747 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 748 M_NOWAIT | M_ZERO); 749 if (ring->data == NULL) { 750 device_printf(sc->sc_dev, "could not allocate soft data\n"); 751 error = ENOMEM; 752 goto fail; 753 } 754 755 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 756 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 757 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 758 if (error != 0) { 759 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 760 goto fail; 761 } 762 763 for (i = 0; i < count; i++) { 764 data = &ring->data[i]; 765 766 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 767 if (error != 0) { 768 device_printf(sc->sc_dev, "could not create DMA map\n"); 769 goto fail; 770 } 771 772 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 773 if (data->m == NULL) { 774 device_printf(sc->sc_dev, 775 "could not allocate rx mbuf\n"); 776 error = ENOMEM; 777 goto fail; 778 } 779 780 error = bus_dmamap_load(ring->data_dmat, data->map, 781 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 782 &data->physaddr, 0); 783 if (error != 0) { 784 device_printf(sc->sc_dev, 785 "could not load rx buf DMA map"); 786 goto fail; 787 } 788 789 data->reg = IWI_CSR_RX_BASE + i * 4; 790 } 791 792 return 0; 793 794 fail: iwi_free_rx_ring(sc, ring); 795 return error; 796 } 797 798 static void 799 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 800 { 801 ring->cur = 0; 802 } 803 804 static void 805 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 806 { 807 struct iwi_rx_data *data; 808 int i; 809 810 if (ring->data != NULL) { 811 for (i = 0; i < ring->count; i++) { 812 data = &ring->data[i]; 813 814 if (data->m != NULL) { 815 bus_dmamap_sync(ring->data_dmat, data->map, 816 BUS_DMASYNC_POSTREAD); 817 bus_dmamap_unload(ring->data_dmat, data->map); 818 m_freem(data->m); 819 } 820 821 if (data->map != NULL) 822 bus_dmamap_destroy(ring->data_dmat, data->map); 823 } 824 825 free(ring->data, M_DEVBUF); 826 } 827 828 if (ring->data_dmat != NULL) 829 bus_dma_tag_destroy(ring->data_dmat); 830 } 831 832 static int 833 iwi_shutdown(device_t dev) 834 { 835 struct iwi_softc *sc = device_get_softc(dev); 836 837 iwi_stop(sc); 838 iwi_put_firmware(sc); /* ??? XXX */ 839 840 return 0; 841 } 842 843 static int 844 iwi_suspend(device_t dev) 845 { 846 struct iwi_softc *sc = device_get_softc(dev); 847 struct ieee80211com *ic = &sc->sc_ic; 848 849 ieee80211_suspend_all(ic); 850 return 0; 851 } 852 853 static int 854 iwi_resume(device_t dev) 855 { 856 struct iwi_softc *sc = device_get_softc(dev); 857 struct ieee80211com *ic = &sc->sc_ic; 858 859 pci_write_config(dev, 0x41, 0, 1); 860 861 ieee80211_resume_all(ic); 862 return 0; 863 } 864 865 static struct ieee80211_node * 866 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 867 { 868 struct iwi_node *in; 869 870 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 871 if (in == NULL) 872 return NULL; 873 /* XXX assign sta table entry for adhoc */ 874 in->in_station = -1; 875 876 return &in->in_node; 877 } 878 879 static void 880 iwi_node_free(struct ieee80211_node *ni) 881 { 882 struct ieee80211com *ic = ni->ni_ic; 883 struct iwi_softc *sc = ic->ic_softc; 884 struct iwi_node *in = (struct iwi_node *)ni; 885 886 if (in->in_station != -1) { 887 DPRINTF(("%s mac %6D station %u\n", __func__, 888 ni->ni_macaddr, ":", in->in_station)); 889 free_unr(sc->sc_unr, in->in_station); 890 } 891 892 sc->sc_node_free(ni); 893 } 894 895 /* 896 * Convert h/w rate code to IEEE rate code. 897 */ 898 static int 899 iwi_cvtrate(int iwirate) 900 { 901 switch (iwirate) { 902 case IWI_RATE_DS1: return 2; 903 case IWI_RATE_DS2: return 4; 904 case IWI_RATE_DS5: return 11; 905 case IWI_RATE_DS11: return 22; 906 case IWI_RATE_OFDM6: return 12; 907 case IWI_RATE_OFDM9: return 18; 908 case IWI_RATE_OFDM12: return 24; 909 case IWI_RATE_OFDM18: return 36; 910 case IWI_RATE_OFDM24: return 48; 911 case IWI_RATE_OFDM36: return 72; 912 case IWI_RATE_OFDM48: return 96; 913 case IWI_RATE_OFDM54: return 108; 914 } 915 return 0; 916 } 917 918 /* 919 * The firmware automatically adapts the transmit speed. We report its current 920 * value here. 921 */ 922 static void 923 iwi_media_status(if_t ifp, struct ifmediareq *imr) 924 { 925 struct ieee80211vap *vap = if_getsoftc(ifp); 926 struct ieee80211com *ic = vap->iv_ic; 927 struct iwi_softc *sc = ic->ic_softc; 928 struct ieee80211_node *ni; 929 930 /* read current transmission rate from adapter */ 931 ni = ieee80211_ref_node(vap->iv_bss); 932 ieee80211_node_set_txrate_dot11rate(ni, 933 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE))); 934 ieee80211_free_node(ni); 935 ieee80211_media_status(ifp, imr); 936 } 937 938 static int 939 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 940 { 941 struct iwi_vap *ivp = IWI_VAP(vap); 942 struct ieee80211com *ic = vap->iv_ic; 943 struct iwi_softc *sc = ic->ic_softc; 944 IWI_LOCK_DECL; 945 946 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 947 ieee80211_state_name[vap->iv_state], 948 ieee80211_state_name[nstate], sc->flags)); 949 950 IEEE80211_UNLOCK(ic); 951 IWI_LOCK(sc); 952 switch (nstate) { 953 case IEEE80211_S_INIT: 954 /* 955 * NB: don't try to do this if iwi_stop_master has 956 * shutdown the firmware and disabled interrupts. 957 */ 958 if (vap->iv_state == IEEE80211_S_RUN && 959 (sc->flags & IWI_FLAG_FW_INITED)) 960 iwi_disassociate(sc, 0); 961 break; 962 case IEEE80211_S_AUTH: 963 iwi_auth_and_assoc(sc, vap); 964 break; 965 case IEEE80211_S_RUN: 966 if (vap->iv_opmode == IEEE80211_M_IBSS && 967 vap->iv_state == IEEE80211_S_SCAN) { 968 /* 969 * XXX when joining an ibss network we are called 970 * with a SCAN -> RUN transition on scan complete. 971 * Use that to call iwi_auth_and_assoc. On completing 972 * the join we are then called again with an 973 * AUTH -> RUN transition and we want to do nothing. 974 * This is all totally bogus and needs to be redone. 975 */ 976 iwi_auth_and_assoc(sc, vap); 977 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 978 ieee80211_runtask(ic, &sc->sc_monitortask); 979 break; 980 case IEEE80211_S_ASSOC: 981 /* 982 * If we are transitioning from AUTH then just wait 983 * for the ASSOC status to come back from the firmware. 984 * Otherwise we need to issue the association request. 985 */ 986 if (vap->iv_state == IEEE80211_S_AUTH) 987 break; 988 iwi_auth_and_assoc(sc, vap); 989 break; 990 default: 991 break; 992 } 993 IWI_UNLOCK(sc); 994 IEEE80211_LOCK(ic); 995 return ivp->iwi_newstate(vap, nstate, arg); 996 } 997 998 /* 999 * WME parameters coming from IEEE 802.11e specification. These values are 1000 * already declared in ieee80211_proto.c, but they are static so they can't 1001 * be reused here. 1002 */ 1003 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1004 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1005 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1006 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1007 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1008 }; 1009 1010 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1011 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1012 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1013 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1014 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1015 }; 1016 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1017 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1018 1019 static void 1020 iwi_wme_init(struct iwi_softc *sc) 1021 { 1022 const struct wmeParams *wmep; 1023 int ac; 1024 1025 memset(sc->wme, 0, sizeof sc->wme); 1026 for (ac = 0; ac < WME_NUM_AC; ac++) { 1027 /* set WME values for CCK modulation */ 1028 wmep = &iwi_wme_cck_params[ac]; 1029 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1030 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1031 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1032 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1033 sc->wme[1].acm[ac] = wmep->wmep_acm; 1034 1035 /* set WME values for OFDM modulation */ 1036 wmep = &iwi_wme_ofdm_params[ac]; 1037 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1038 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1039 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1040 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1041 sc->wme[2].acm[ac] = wmep->wmep_acm; 1042 } 1043 } 1044 1045 static int 1046 iwi_wme_setparams(struct iwi_softc *sc) 1047 { 1048 struct ieee80211com *ic = &sc->sc_ic; 1049 struct chanAccParams chp; 1050 const struct wmeParams *wmep; 1051 int ac; 1052 1053 ieee80211_wme_ic_getparams(ic, &chp); 1054 1055 for (ac = 0; ac < WME_NUM_AC; ac++) { 1056 /* set WME values for current operating mode */ 1057 wmep = &chp.cap_wmeParams[ac]; 1058 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1059 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1060 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1061 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1062 sc->wme[0].acm[ac] = wmep->wmep_acm; 1063 } 1064 1065 DPRINTF(("Setting WME parameters\n")); 1066 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1067 } 1068 #undef IWI_USEC 1069 #undef IWI_EXP2 1070 1071 static int 1072 iwi_wme_update(struct ieee80211com *ic) 1073 { 1074 struct iwi_softc *sc = ic->ic_softc; 1075 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1076 IWI_LOCK_DECL; 1077 1078 /* 1079 * We may be called to update the WME parameters in 1080 * the adapter at various places. If we're already 1081 * associated then initiate the request immediately; 1082 * otherwise we assume the params will get sent down 1083 * to the adapter as part of the work iwi_auth_and_assoc 1084 * does. 1085 */ 1086 if (vap->iv_state == IEEE80211_S_RUN) { 1087 IWI_LOCK(sc); 1088 iwi_wme_setparams(sc); 1089 IWI_UNLOCK(sc); 1090 } 1091 return (0); 1092 } 1093 1094 static int 1095 iwi_wme_setie(struct iwi_softc *sc) 1096 { 1097 struct ieee80211_wme_info wme; 1098 1099 memset(&wme, 0, sizeof wme); 1100 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1101 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1102 wme.wme_oui[0] = 0x00; 1103 wme.wme_oui[1] = 0x50; 1104 wme.wme_oui[2] = 0xf2; 1105 wme.wme_type = WME_OUI_TYPE; 1106 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1107 wme.wme_version = WME_VERSION; 1108 wme.wme_info = 0; 1109 1110 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1111 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1112 } 1113 1114 /* 1115 * Read 16 bits at address 'addr' from the serial EEPROM. 1116 */ 1117 static uint16_t 1118 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1119 { 1120 uint32_t tmp; 1121 uint16_t val; 1122 int n; 1123 1124 /* clock C once before the first command */ 1125 IWI_EEPROM_CTL(sc, 0); 1126 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1127 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1128 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1129 1130 /* write start bit (1) */ 1131 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1132 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1133 1134 /* write READ opcode (10) */ 1135 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1136 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1137 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1138 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1139 1140 /* write address A7-A0 */ 1141 for (n = 7; n >= 0; n--) { 1142 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1143 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1144 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1145 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1146 } 1147 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1149 1150 /* read data Q15-Q0 */ 1151 val = 0; 1152 for (n = 15; n >= 0; n--) { 1153 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1155 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1156 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1157 } 1158 1159 IWI_EEPROM_CTL(sc, 0); 1160 1161 /* clear Chip Select and clock C */ 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1163 IWI_EEPROM_CTL(sc, 0); 1164 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1165 1166 return val; 1167 } 1168 1169 static void 1170 iwi_setcurchan(struct iwi_softc *sc, int chan) 1171 { 1172 struct ieee80211com *ic = &sc->sc_ic; 1173 1174 sc->curchan = chan; 1175 ieee80211_radiotap_chan_change(ic); 1176 } 1177 1178 static void 1179 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1180 struct iwi_frame *frame) 1181 { 1182 struct ieee80211com *ic = &sc->sc_ic; 1183 struct mbuf *mnew, *m; 1184 struct ieee80211_node *ni; 1185 int type, error, framelen; 1186 int8_t rssi, nf; 1187 IWI_LOCK_DECL; 1188 1189 framelen = le16toh(frame->len); 1190 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1191 /* 1192 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1193 * out of bounds; need to figure out how to limit 1194 * frame size in the firmware 1195 */ 1196 /* XXX stat */ 1197 DPRINTFN(1, 1198 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1199 le16toh(frame->len), frame->chan, frame->rssi, 1200 frame->rssi_dbm)); 1201 return; 1202 } 1203 1204 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1205 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1206 1207 if (frame->chan != sc->curchan) 1208 iwi_setcurchan(sc, frame->chan); 1209 1210 /* 1211 * Try to allocate a new mbuf for this ring element and load it before 1212 * processing the current mbuf. If the ring element cannot be loaded, 1213 * drop the received packet and reuse the old mbuf. In the unlikely 1214 * case that the old mbuf can't be reloaded either, explicitly panic. 1215 */ 1216 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1217 if (mnew == NULL) { 1218 counter_u64_add(ic->ic_ierrors, 1); 1219 return; 1220 } 1221 1222 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1223 1224 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1225 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1226 0); 1227 if (error != 0) { 1228 m_freem(mnew); 1229 1230 /* try to reload the old mbuf */ 1231 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1232 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1233 &data->physaddr, 0); 1234 if (error != 0) { 1235 /* very unlikely that it will fail... */ 1236 panic("%s: could not load old rx mbuf", 1237 device_get_name(sc->sc_dev)); 1238 } 1239 counter_u64_add(ic->ic_ierrors, 1); 1240 return; 1241 } 1242 1243 /* 1244 * New mbuf successfully loaded, update Rx ring and continue 1245 * processing. 1246 */ 1247 m = data->m; 1248 data->m = mnew; 1249 CSR_WRITE_4(sc, data->reg, data->physaddr); 1250 1251 /* finalize mbuf */ 1252 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1253 sizeof (struct iwi_frame) + framelen; 1254 1255 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1256 1257 rssi = frame->rssi_dbm; 1258 nf = -95; 1259 if (ieee80211_radiotap_active(ic)) { 1260 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1261 1262 tap->wr_flags = 0; 1263 tap->wr_antsignal = rssi; 1264 tap->wr_antnoise = nf; 1265 tap->wr_rate = iwi_cvtrate(frame->rate); 1266 tap->wr_antenna = frame->antenna; 1267 } 1268 IWI_UNLOCK(sc); 1269 1270 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1271 if (ni != NULL) { 1272 type = ieee80211_input(ni, m, rssi, nf); 1273 ieee80211_free_node(ni); 1274 } else 1275 type = ieee80211_input_all(ic, m, rssi, nf); 1276 1277 IWI_LOCK(sc); 1278 if (sc->sc_softled) { 1279 /* 1280 * Blink for any data frame. Otherwise do a 1281 * heartbeat-style blink when idle. The latter 1282 * is mainly for station mode where we depend on 1283 * periodic beacon frames to trigger the poll event. 1284 */ 1285 if (type == IEEE80211_FC0_TYPE_DATA) { 1286 sc->sc_rxrate = frame->rate; 1287 iwi_led_event(sc, IWI_LED_RX); 1288 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1289 iwi_led_event(sc, IWI_LED_POLL); 1290 } 1291 } 1292 1293 /* 1294 * Check for an association response frame to see if QoS 1295 * has been negotiated. We parse just enough to figure 1296 * out if we're supposed to use QoS. The proper solution 1297 * is to pass the frame up so ieee80211_input can do the 1298 * work but that's made hard by how things currently are 1299 * done in the driver. 1300 */ 1301 static void 1302 iwi_checkforqos(struct ieee80211vap *vap, 1303 const struct ieee80211_frame *wh, int len) 1304 { 1305 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1306 const uint8_t *frm, *efrm, *wme; 1307 struct ieee80211_node *ni; 1308 uint16_t capinfo, associd; 1309 1310 /* NB: +8 for capinfo, status, associd, and first ie */ 1311 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1312 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1313 return; 1314 /* 1315 * asresp frame format 1316 * [2] capability information 1317 * [2] status 1318 * [2] association ID 1319 * [tlv] supported rates 1320 * [tlv] extended supported rates 1321 * [tlv] WME 1322 */ 1323 frm = (const uint8_t *)&wh[1]; 1324 efrm = ((const uint8_t *) wh) + len; 1325 1326 capinfo = le16toh(*(const uint16_t *)frm); 1327 frm += 2; 1328 /* status */ 1329 frm += 2; 1330 associd = le16toh(*(const uint16_t *)frm); 1331 frm += 2; 1332 1333 wme = NULL; 1334 while (efrm - frm > 1) { 1335 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1336 switch (*frm) { 1337 case IEEE80211_ELEMID_VENDOR: 1338 if (iswmeoui(frm)) 1339 wme = frm; 1340 break; 1341 } 1342 frm += frm[1] + 2; 1343 } 1344 1345 ni = ieee80211_ref_node(vap->iv_bss); 1346 ni->ni_capinfo = capinfo; 1347 ni->ni_associd = associd & 0x3fff; 1348 if (wme != NULL) 1349 ni->ni_flags |= IEEE80211_NODE_QOS; 1350 else 1351 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1352 ieee80211_free_node(ni); 1353 #undef SUBTYPE 1354 } 1355 1356 static void 1357 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1358 { 1359 struct iwi_notif_link_quality *lq; 1360 int len; 1361 1362 len = le16toh(notif->len); 1363 1364 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1365 notif->type, 1366 len, 1367 sizeof(struct iwi_notif_link_quality) 1368 )); 1369 1370 /* enforce length */ 1371 if (len != sizeof(struct iwi_notif_link_quality)) { 1372 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1373 notif->type, 1374 len)); 1375 return; 1376 } 1377 1378 lq = (struct iwi_notif_link_quality *)(notif + 1); 1379 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1380 sc->sc_linkqual_valid = 1; 1381 } 1382 1383 /* 1384 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1385 */ 1386 1387 static void 1388 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1389 { 1390 struct ieee80211com *ic = &sc->sc_ic; 1391 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1392 struct iwi_notif_scan_channel *chan; 1393 struct iwi_notif_scan_complete *scan; 1394 struct iwi_notif_authentication *auth; 1395 struct iwi_notif_association *assoc; 1396 struct iwi_notif_beacon_state *beacon; 1397 1398 switch (notif->type) { 1399 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1400 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1401 1402 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1403 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1404 1405 /* Reset the timer, the scan is still going */ 1406 sc->sc_state_timer = 3; 1407 break; 1408 1409 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1410 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1411 1412 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1413 scan->status)); 1414 1415 IWI_STATE_END(sc, IWI_FW_SCANNING); 1416 1417 /* 1418 * Monitor mode works by doing a passive scan to set 1419 * the channel and enable rx. Because we don't want 1420 * to abort a scan lest the firmware crash we scan 1421 * for a short period of time and automatically restart 1422 * the scan when notified the sweep has completed. 1423 */ 1424 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1425 ieee80211_runtask(ic, &sc->sc_monitortask); 1426 break; 1427 } 1428 1429 if (scan->status == IWI_SCAN_COMPLETED) { 1430 /* NB: don't need to defer, net80211 does it for us */ 1431 ieee80211_scan_next(vap); 1432 } 1433 break; 1434 1435 case IWI_NOTIF_TYPE_AUTHENTICATION: 1436 auth = (struct iwi_notif_authentication *)(notif + 1); 1437 switch (auth->state) { 1438 case IWI_AUTH_SUCCESS: 1439 DPRINTFN(2, ("Authentication succeeeded\n")); 1440 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1441 break; 1442 case IWI_AUTH_FAIL: 1443 /* 1444 * These are delivered as an unsolicited deauth 1445 * (e.g. due to inactivity) or in response to an 1446 * associate request. 1447 */ 1448 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1449 if (vap->iv_state != IEEE80211_S_RUN) { 1450 DPRINTFN(2, ("Authentication failed\n")); 1451 vap->iv_stats.is_rx_auth_fail++; 1452 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1453 } else { 1454 DPRINTFN(2, ("Deauthenticated\n")); 1455 vap->iv_stats.is_rx_deauth++; 1456 } 1457 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1458 break; 1459 case IWI_AUTH_SENT_1: 1460 case IWI_AUTH_RECV_2: 1461 case IWI_AUTH_SEQ1_PASS: 1462 break; 1463 case IWI_AUTH_SEQ1_FAIL: 1464 DPRINTFN(2, ("Initial authentication handshake failed; " 1465 "you probably need shared key\n")); 1466 vap->iv_stats.is_rx_auth_fail++; 1467 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1468 /* XXX retry shared key when in auto */ 1469 break; 1470 default: 1471 device_printf(sc->sc_dev, 1472 "unknown authentication state %u\n", auth->state); 1473 break; 1474 } 1475 break; 1476 1477 case IWI_NOTIF_TYPE_ASSOCIATION: 1478 assoc = (struct iwi_notif_association *)(notif + 1); 1479 switch (assoc->state) { 1480 case IWI_AUTH_SUCCESS: 1481 /* re-association, do nothing */ 1482 break; 1483 case IWI_ASSOC_SUCCESS: 1484 DPRINTFN(2, ("Association succeeded\n")); 1485 sc->flags |= IWI_FLAG_ASSOCIATED; 1486 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1487 iwi_checkforqos(vap, 1488 (const struct ieee80211_frame *)(assoc+1), 1489 le16toh(notif->len) - sizeof(*assoc) - 1); 1490 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1491 break; 1492 case IWI_ASSOC_INIT: 1493 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1494 switch (sc->fw_state) { 1495 case IWI_FW_ASSOCIATING: 1496 DPRINTFN(2, ("Association failed\n")); 1497 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1498 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1499 break; 1500 1501 case IWI_FW_DISASSOCIATING: 1502 DPRINTFN(2, ("Dissassociated\n")); 1503 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1504 vap->iv_stats.is_rx_disassoc++; 1505 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1506 break; 1507 } 1508 break; 1509 default: 1510 device_printf(sc->sc_dev, 1511 "unknown association state %u\n", assoc->state); 1512 break; 1513 } 1514 break; 1515 1516 case IWI_NOTIF_TYPE_BEACON: 1517 /* XXX check struct length */ 1518 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1519 1520 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1521 beacon->state, le32toh(beacon->number))); 1522 1523 if (beacon->state == IWI_BEACON_MISS) { 1524 /* 1525 * The firmware notifies us of every beacon miss 1526 * so we need to track the count against the 1527 * configured threshold before notifying the 1528 * 802.11 layer. 1529 * XXX try to roam, drop assoc only on much higher count 1530 */ 1531 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1532 DPRINTF(("Beacon miss: %u >= %u\n", 1533 le32toh(beacon->number), 1534 vap->iv_bmissthreshold)); 1535 vap->iv_stats.is_beacon_miss++; 1536 /* 1537 * It's pointless to notify the 802.11 layer 1538 * as it'll try to send a probe request (which 1539 * we'll discard) and then timeout and drop us 1540 * into scan state. Instead tell the firmware 1541 * to disassociate and then on completion we'll 1542 * kick the state machine to scan. 1543 */ 1544 ieee80211_runtask(ic, &sc->sc_disassoctask); 1545 } 1546 } 1547 break; 1548 1549 case IWI_NOTIF_TYPE_CALIBRATION: 1550 case IWI_NOTIF_TYPE_NOISE: 1551 /* XXX handle? */ 1552 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1553 break; 1554 case IWI_NOTIF_TYPE_LINK_QUALITY: 1555 iwi_notif_link_quality(sc, notif); 1556 break; 1557 1558 default: 1559 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1560 notif->type, notif->flags, le16toh(notif->len))); 1561 break; 1562 } 1563 } 1564 1565 static void 1566 iwi_rx_intr(struct iwi_softc *sc) 1567 { 1568 struct iwi_rx_data *data; 1569 struct iwi_hdr *hdr; 1570 uint32_t hw; 1571 1572 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1573 1574 for (; sc->rxq.cur != hw;) { 1575 data = &sc->rxq.data[sc->rxq.cur]; 1576 1577 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1578 BUS_DMASYNC_POSTREAD); 1579 1580 hdr = mtod(data->m, struct iwi_hdr *); 1581 1582 switch (hdr->type) { 1583 case IWI_HDR_TYPE_FRAME: 1584 iwi_frame_intr(sc, data, sc->rxq.cur, 1585 (struct iwi_frame *)(hdr + 1)); 1586 break; 1587 1588 case IWI_HDR_TYPE_NOTIF: 1589 iwi_notification_intr(sc, 1590 (struct iwi_notif *)(hdr + 1)); 1591 break; 1592 1593 default: 1594 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1595 hdr->type); 1596 } 1597 1598 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1599 1600 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1601 } 1602 1603 /* tell the firmware what we have processed */ 1604 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1605 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1606 } 1607 1608 static void 1609 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1610 { 1611 struct iwi_tx_data *data; 1612 uint32_t hw; 1613 1614 hw = CSR_READ_4(sc, txq->csr_ridx); 1615 1616 while (txq->next != hw) { 1617 data = &txq->data[txq->next]; 1618 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1619 bus_dmamap_sync(txq->data_dmat, data->map, 1620 BUS_DMASYNC_POSTWRITE); 1621 bus_dmamap_unload(txq->data_dmat, data->map); 1622 ieee80211_tx_complete(data->ni, data->m, 0); 1623 data->ni = NULL; 1624 data->m = NULL; 1625 txq->queued--; 1626 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1627 } 1628 sc->sc_tx_timer = 0; 1629 if (sc->sc_softled) 1630 iwi_led_event(sc, IWI_LED_TX); 1631 iwi_start(sc); 1632 } 1633 1634 static void 1635 iwi_fatal_error_intr(struct iwi_softc *sc) 1636 { 1637 struct ieee80211com *ic = &sc->sc_ic; 1638 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1639 1640 device_printf(sc->sc_dev, "firmware error\n"); 1641 if (vap != NULL) 1642 ieee80211_cancel_scan(vap); 1643 ieee80211_runtask(ic, &sc->sc_restarttask); 1644 1645 sc->flags &= ~IWI_FLAG_BUSY; 1646 sc->sc_busy_timer = 0; 1647 wakeup(sc); 1648 } 1649 1650 static void 1651 iwi_radio_off_intr(struct iwi_softc *sc) 1652 { 1653 1654 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1655 } 1656 1657 static void 1658 iwi_intr(void *arg) 1659 { 1660 struct iwi_softc *sc = arg; 1661 uint32_t r; 1662 IWI_LOCK_DECL; 1663 1664 IWI_LOCK(sc); 1665 1666 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1667 IWI_UNLOCK(sc); 1668 return; 1669 } 1670 1671 /* acknowledge interrupts */ 1672 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1673 1674 if (r & IWI_INTR_FATAL_ERROR) { 1675 iwi_fatal_error_intr(sc); 1676 goto done; 1677 } 1678 1679 if (r & IWI_INTR_FW_INITED) { 1680 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1681 wakeup(sc); 1682 } 1683 1684 if (r & IWI_INTR_RADIO_OFF) 1685 iwi_radio_off_intr(sc); 1686 1687 if (r & IWI_INTR_CMD_DONE) { 1688 sc->flags &= ~IWI_FLAG_BUSY; 1689 sc->sc_busy_timer = 0; 1690 wakeup(sc); 1691 } 1692 1693 if (r & IWI_INTR_TX1_DONE) 1694 iwi_tx_intr(sc, &sc->txq[0]); 1695 1696 if (r & IWI_INTR_TX2_DONE) 1697 iwi_tx_intr(sc, &sc->txq[1]); 1698 1699 if (r & IWI_INTR_TX3_DONE) 1700 iwi_tx_intr(sc, &sc->txq[2]); 1701 1702 if (r & IWI_INTR_TX4_DONE) 1703 iwi_tx_intr(sc, &sc->txq[3]); 1704 1705 if (r & IWI_INTR_RX_DONE) 1706 iwi_rx_intr(sc); 1707 1708 if (r & IWI_INTR_PARITY_ERROR) { 1709 /* XXX rate-limit */ 1710 device_printf(sc->sc_dev, "parity error\n"); 1711 } 1712 done: 1713 IWI_UNLOCK(sc); 1714 } 1715 1716 static int 1717 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1718 { 1719 struct iwi_cmd_desc *desc; 1720 1721 IWI_LOCK_ASSERT(sc); 1722 1723 if (sc->flags & IWI_FLAG_BUSY) { 1724 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1725 __func__, type); 1726 return EAGAIN; 1727 } 1728 sc->flags |= IWI_FLAG_BUSY; 1729 sc->sc_busy_timer = 2; 1730 1731 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1732 1733 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1734 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1735 desc->type = type; 1736 desc->len = len; 1737 memcpy(desc->data, data, len); 1738 1739 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1740 BUS_DMASYNC_PREWRITE); 1741 1742 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1743 type, len)); 1744 1745 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1746 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1747 1748 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1749 } 1750 1751 static void 1752 iwi_write_ibssnode(struct iwi_softc *sc, 1753 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1754 { 1755 struct iwi_ibssnode node; 1756 1757 /* write node information into NIC memory */ 1758 memset(&node, 0, sizeof node); 1759 IEEE80211_ADDR_COPY(node.bssid, addr); 1760 1761 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1762 1763 CSR_WRITE_REGION_1(sc, 1764 IWI_CSR_NODE_BASE + entry * sizeof node, 1765 (uint8_t *)&node, sizeof node); 1766 } 1767 1768 static int 1769 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1770 int ac) 1771 { 1772 struct ieee80211vap *vap = ni->ni_vap; 1773 struct iwi_node *in = (struct iwi_node *)ni; 1774 const struct ieee80211_frame *wh; 1775 struct ieee80211_key *k; 1776 struct iwi_tx_ring *txq = &sc->txq[ac]; 1777 struct iwi_tx_data *data; 1778 struct iwi_tx_desc *desc; 1779 struct mbuf *mnew; 1780 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1781 int error, nsegs, hdrlen, i; 1782 int ismcast, flags, xflags, staid; 1783 1784 IWI_LOCK_ASSERT(sc); 1785 wh = mtod(m0, const struct ieee80211_frame *); 1786 /* NB: only data frames use this path */ 1787 hdrlen = ieee80211_hdrsize(wh); 1788 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1789 flags = xflags = 0; 1790 1791 if (!ismcast) 1792 flags |= IWI_DATA_FLAG_NEED_ACK; 1793 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1794 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1795 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1796 xflags |= IWI_DATA_XFLAG_QOS; 1797 if (ieee80211_wme_vap_ac_is_noack(vap, ac)) 1798 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1799 } 1800 1801 /* 1802 * This is only used in IBSS mode where the firmware expect an index 1803 * in a h/w table instead of a destination address. 1804 */ 1805 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1806 if (!ismcast) { 1807 if (in->in_station == -1) { 1808 in->in_station = alloc_unr(sc->sc_unr); 1809 if (in->in_station == -1) { 1810 /* h/w table is full */ 1811 if_inc_counter(ni->ni_vap->iv_ifp, 1812 IFCOUNTER_OERRORS, 1); 1813 m_freem(m0); 1814 ieee80211_free_node(ni); 1815 return 0; 1816 } 1817 iwi_write_ibssnode(sc, 1818 ni->ni_macaddr, in->in_station); 1819 } 1820 staid = in->in_station; 1821 } else { 1822 /* 1823 * Multicast addresses have no associated node 1824 * so there will be no station entry. We reserve 1825 * entry 0 for one mcast address and use that. 1826 * If there are many being used this will be 1827 * expensive and we'll need to do a better job 1828 * but for now this handles the broadcast case. 1829 */ 1830 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1831 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1832 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1833 } 1834 staid = 0; 1835 } 1836 } else 1837 staid = 0; 1838 1839 ieee80211_output_seqno_assign(ni, -1, m0); 1840 1841 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1842 k = ieee80211_crypto_encap(ni, m0); 1843 if (k == NULL) { 1844 m_freem(m0); 1845 return ENOBUFS; 1846 } 1847 1848 /* packet header may have moved, reset our local pointer */ 1849 wh = mtod(m0, struct ieee80211_frame *); 1850 } 1851 1852 if (ieee80211_radiotap_active_vap(vap)) { 1853 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1854 1855 tap->wt_flags = 0; 1856 1857 ieee80211_radiotap_tx(vap, m0); 1858 } 1859 1860 data = &txq->data[txq->cur]; 1861 desc = &txq->desc[txq->cur]; 1862 1863 /* save and trim IEEE802.11 header */ 1864 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1865 m_adj(m0, hdrlen); 1866 1867 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1868 &nsegs, 0); 1869 if (error != 0 && error != EFBIG) { 1870 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1871 error); 1872 m_freem(m0); 1873 return error; 1874 } 1875 if (error != 0) { 1876 mnew = m_defrag(m0, M_NOWAIT); 1877 if (mnew == NULL) { 1878 device_printf(sc->sc_dev, 1879 "could not defragment mbuf\n"); 1880 m_freem(m0); 1881 return ENOBUFS; 1882 } 1883 m0 = mnew; 1884 1885 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1886 m0, segs, &nsegs, 0); 1887 if (error != 0) { 1888 device_printf(sc->sc_dev, 1889 "could not map mbuf (error %d)\n", error); 1890 m_freem(m0); 1891 return error; 1892 } 1893 } 1894 1895 data->m = m0; 1896 data->ni = ni; 1897 1898 desc->hdr.type = IWI_HDR_TYPE_DATA; 1899 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1900 desc->station = staid; 1901 desc->cmd = IWI_DATA_CMD_TX; 1902 desc->len = htole16(m0->m_pkthdr.len); 1903 desc->flags = flags; 1904 desc->xflags = xflags; 1905 1906 #if 0 1907 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1908 desc->wep_txkey = vap->iv_def_txkey; 1909 else 1910 #endif 1911 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1912 1913 desc->nseg = htole32(nsegs); 1914 for (i = 0; i < nsegs; i++) { 1915 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1916 desc->seg_len[i] = htole16(segs[i].ds_len); 1917 } 1918 1919 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1920 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1921 1922 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1923 ac, txq->cur, le16toh(desc->len), nsegs)); 1924 1925 txq->queued++; 1926 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1927 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1928 1929 return 0; 1930 } 1931 1932 static int 1933 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1934 const struct ieee80211_bpf_params *params) 1935 { 1936 /* no support; just discard */ 1937 m_freem(m); 1938 ieee80211_free_node(ni); 1939 return 0; 1940 } 1941 1942 static int 1943 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 1944 { 1945 struct iwi_softc *sc = ic->ic_softc; 1946 int error; 1947 IWI_LOCK_DECL; 1948 1949 IWI_LOCK(sc); 1950 if (!sc->sc_running) { 1951 IWI_UNLOCK(sc); 1952 return (ENXIO); 1953 } 1954 error = mbufq_enqueue(&sc->sc_snd, m); 1955 if (error) { 1956 IWI_UNLOCK(sc); 1957 return (error); 1958 } 1959 iwi_start(sc); 1960 IWI_UNLOCK(sc); 1961 return (0); 1962 } 1963 1964 static void 1965 iwi_start(struct iwi_softc *sc) 1966 { 1967 struct mbuf *m; 1968 struct ieee80211_node *ni; 1969 int ac; 1970 1971 IWI_LOCK_ASSERT(sc); 1972 1973 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1974 ac = M_WME_GETAC(m); 1975 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1976 /* there is no place left in this ring; tail drop */ 1977 /* XXX tail drop */ 1978 mbufq_prepend(&sc->sc_snd, m); 1979 break; 1980 } 1981 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1982 if (iwi_tx_start(sc, m, ni, ac) != 0) { 1983 if_inc_counter(ni->ni_vap->iv_ifp, 1984 IFCOUNTER_OERRORS, 1); 1985 ieee80211_free_node(ni); 1986 break; 1987 } 1988 sc->sc_tx_timer = 5; 1989 } 1990 } 1991 1992 static void 1993 iwi_watchdog(void *arg) 1994 { 1995 struct iwi_softc *sc = arg; 1996 struct ieee80211com *ic = &sc->sc_ic; 1997 1998 IWI_LOCK_ASSERT(sc); 1999 2000 if (sc->sc_tx_timer > 0) { 2001 if (--sc->sc_tx_timer == 0) { 2002 device_printf(sc->sc_dev, "device timeout\n"); 2003 counter_u64_add(ic->ic_oerrors, 1); 2004 ieee80211_runtask(ic, &sc->sc_restarttask); 2005 } 2006 } 2007 if (sc->sc_state_timer > 0) { 2008 if (--sc->sc_state_timer == 0) { 2009 device_printf(sc->sc_dev, 2010 "firmware stuck in state %d, resetting\n", 2011 sc->fw_state); 2012 if (sc->fw_state == IWI_FW_SCANNING) 2013 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2014 ieee80211_runtask(ic, &sc->sc_restarttask); 2015 sc->sc_state_timer = 3; 2016 } 2017 } 2018 if (sc->sc_busy_timer > 0) { 2019 if (--sc->sc_busy_timer == 0) { 2020 device_printf(sc->sc_dev, 2021 "firmware command timeout, resetting\n"); 2022 ieee80211_runtask(ic, &sc->sc_restarttask); 2023 } 2024 } 2025 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2026 } 2027 2028 static void 2029 iwi_parent(struct ieee80211com *ic) 2030 { 2031 struct iwi_softc *sc = ic->ic_softc; 2032 int startall = 0; 2033 IWI_LOCK_DECL; 2034 2035 IWI_LOCK(sc); 2036 if (ic->ic_nrunning > 0) { 2037 if (!sc->sc_running) { 2038 iwi_init_locked(sc); 2039 startall = 1; 2040 } 2041 } else if (sc->sc_running) 2042 iwi_stop_locked(sc); 2043 IWI_UNLOCK(sc); 2044 if (startall) 2045 ieee80211_start_all(ic); 2046 } 2047 2048 static int 2049 iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 2050 { 2051 struct ifreq *ifr = data; 2052 struct iwi_softc *sc = ic->ic_softc; 2053 int error; 2054 IWI_LOCK_DECL; 2055 2056 IWI_LOCK(sc); 2057 switch (cmd) { 2058 case SIOCGIWISTATS: 2059 /* XXX validate permissions/memory/etc? */ 2060 error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), 2061 sizeof(struct iwi_notif_link_quality)); 2062 break; 2063 case SIOCZIWISTATS: 2064 memset(&sc->sc_linkqual, 0, 2065 sizeof(struct iwi_notif_link_quality)); 2066 error = 0; 2067 break; 2068 default: 2069 error = ENOTTY; 2070 break; 2071 } 2072 IWI_UNLOCK(sc); 2073 2074 return (error); 2075 } 2076 2077 static void 2078 iwi_stop_master(struct iwi_softc *sc) 2079 { 2080 uint32_t tmp; 2081 int ntries; 2082 2083 /* disable interrupts */ 2084 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2085 2086 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2087 for (ntries = 0; ntries < 5; ntries++) { 2088 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2089 break; 2090 DELAY(10); 2091 } 2092 if (ntries == 5) 2093 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2094 2095 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2096 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2097 2098 sc->flags &= ~IWI_FLAG_FW_INITED; 2099 } 2100 2101 static int 2102 iwi_reset(struct iwi_softc *sc) 2103 { 2104 uint32_t tmp; 2105 int i, ntries; 2106 2107 iwi_stop_master(sc); 2108 2109 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2110 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2111 2112 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2113 2114 /* wait for clock stabilization */ 2115 for (ntries = 0; ntries < 1000; ntries++) { 2116 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2117 break; 2118 DELAY(200); 2119 } 2120 if (ntries == 1000) { 2121 device_printf(sc->sc_dev, 2122 "timeout waiting for clock stabilization\n"); 2123 return EIO; 2124 } 2125 2126 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2127 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2128 2129 DELAY(10); 2130 2131 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2132 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2133 2134 /* clear NIC memory */ 2135 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2136 for (i = 0; i < 0xc000; i++) 2137 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2138 2139 return 0; 2140 } 2141 2142 static const struct iwi_firmware_ohdr * 2143 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2144 { 2145 const struct firmware *fp = fw->fp; 2146 const struct iwi_firmware_ohdr *hdr; 2147 2148 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2149 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2150 return NULL; 2151 } 2152 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2153 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2154 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2155 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2156 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2157 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2158 IWI_FW_REQ_MINOR); 2159 return NULL; 2160 } 2161 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2162 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2163 fw->name = fp->name; 2164 return hdr; 2165 } 2166 2167 static const struct iwi_firmware_ohdr * 2168 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2169 { 2170 const struct iwi_firmware_ohdr *hdr; 2171 2172 hdr = iwi_setup_ofw(sc, fw); 2173 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2174 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2175 fw->name); 2176 hdr = NULL; 2177 } 2178 return hdr; 2179 } 2180 2181 static void 2182 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2183 struct iwi_fw *uc, const char *ucname) 2184 { 2185 if (fw->fp == NULL) 2186 fw->fp = firmware_get(fwname); 2187 /* NB: pre-3.0 ucode is packaged separately */ 2188 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2189 uc->fp = firmware_get(ucname); 2190 } 2191 2192 /* 2193 * Get the required firmware images if not already loaded. 2194 * Note that we hold firmware images so long as the device 2195 * is marked up in case we need to reload them on device init. 2196 * This is necessary because we re-init the device sometimes 2197 * from a context where we cannot read from the filesystem 2198 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2199 * XXX return 0 on success, 1 on error. 2200 * 2201 * NB: the order of get'ing and put'ing images here is 2202 * intentional to support handling firmware images bundled 2203 * by operating mode and/or all together in one file with 2204 * the boot firmware as "master". 2205 */ 2206 static int 2207 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2208 { 2209 const struct iwi_firmware_hdr *hdr; 2210 const struct firmware *fp; 2211 2212 /* invalidate cached firmware on mode change */ 2213 if (sc->fw_mode != opmode) 2214 iwi_put_firmware(sc); 2215 2216 switch (opmode) { 2217 case IEEE80211_M_STA: 2218 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2219 break; 2220 case IEEE80211_M_IBSS: 2221 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2222 break; 2223 case IEEE80211_M_MONITOR: 2224 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2225 &sc->fw_uc, "iwi_ucode_monitor"); 2226 break; 2227 default: 2228 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2229 return EINVAL; 2230 } 2231 fp = sc->fw_fw.fp; 2232 if (fp == NULL) { 2233 device_printf(sc->sc_dev, "could not load firmware\n"); 2234 goto bad; 2235 } 2236 if (fp->version < 300) { 2237 /* 2238 * Firmware prior to 3.0 was packaged as separate 2239 * boot, firmware, and ucode images. Verify the 2240 * ucode image was read in, retrieve the boot image 2241 * if needed, and check version stamps for consistency. 2242 * The version stamps in the data are also checked 2243 * above; this is a bit paranoid but is a cheap 2244 * safeguard against mis-packaging. 2245 */ 2246 if (sc->fw_uc.fp == NULL) { 2247 device_printf(sc->sc_dev, "could not load ucode\n"); 2248 goto bad; 2249 } 2250 if (sc->fw_boot.fp == NULL) { 2251 sc->fw_boot.fp = firmware_get("iwi_boot"); 2252 if (sc->fw_boot.fp == NULL) { 2253 device_printf(sc->sc_dev, 2254 "could not load boot firmware\n"); 2255 goto bad; 2256 } 2257 } 2258 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2259 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2260 device_printf(sc->sc_dev, 2261 "firmware version mismatch: " 2262 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2263 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2264 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2265 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2266 ); 2267 goto bad; 2268 } 2269 /* 2270 * Check and setup each image. 2271 */ 2272 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2273 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2274 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2275 goto bad; 2276 } else { 2277 /* 2278 * Check and setup combined image. 2279 */ 2280 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2281 device_printf(sc->sc_dev, "image '%s' too small\n", 2282 fp->name); 2283 goto bad; 2284 } 2285 hdr = (const struct iwi_firmware_hdr *)fp->data; 2286 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2287 + le32toh(hdr->fsize)) { 2288 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2289 fp->name); 2290 goto bad; 2291 } 2292 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2293 sc->fw_boot.size = le32toh(hdr->bsize); 2294 sc->fw_boot.name = fp->name; 2295 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2296 sc->fw_uc.size = le32toh(hdr->usize); 2297 sc->fw_uc.name = fp->name; 2298 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2299 sc->fw_fw.size = le32toh(hdr->fsize); 2300 sc->fw_fw.name = fp->name; 2301 } 2302 #if 0 2303 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2304 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2305 #endif 2306 2307 sc->fw_mode = opmode; 2308 return 0; 2309 bad: 2310 iwi_put_firmware(sc); 2311 return 1; 2312 } 2313 2314 static void 2315 iwi_put_fw(struct iwi_fw *fw) 2316 { 2317 if (fw->fp != NULL) { 2318 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2319 fw->fp = NULL; 2320 } 2321 fw->data = NULL; 2322 fw->size = 0; 2323 fw->name = NULL; 2324 } 2325 2326 /* 2327 * Release any cached firmware images. 2328 */ 2329 static void 2330 iwi_put_firmware(struct iwi_softc *sc) 2331 { 2332 iwi_put_fw(&sc->fw_uc); 2333 iwi_put_fw(&sc->fw_fw); 2334 iwi_put_fw(&sc->fw_boot); 2335 } 2336 2337 static int 2338 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2339 { 2340 uint32_t tmp; 2341 const uint16_t *w; 2342 const char *uc = fw->data; 2343 size_t size = fw->size; 2344 int i, ntries, error; 2345 2346 IWI_LOCK_ASSERT(sc); 2347 error = 0; 2348 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2349 IWI_RST_STOP_MASTER); 2350 for (ntries = 0; ntries < 5; ntries++) { 2351 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2352 break; 2353 DELAY(10); 2354 } 2355 if (ntries == 5) { 2356 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2357 error = EIO; 2358 goto fail; 2359 } 2360 2361 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2362 DELAY(5000); 2363 2364 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2365 tmp &= ~IWI_RST_PRINCETON_RESET; 2366 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2367 2368 DELAY(5000); 2369 MEM_WRITE_4(sc, 0x3000e0, 0); 2370 DELAY(1000); 2371 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2372 DELAY(1000); 2373 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2374 DELAY(1000); 2375 MEM_WRITE_1(sc, 0x200000, 0x00); 2376 MEM_WRITE_1(sc, 0x200000, 0x40); 2377 DELAY(1000); 2378 2379 /* write microcode into adapter memory */ 2380 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2381 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2382 2383 MEM_WRITE_1(sc, 0x200000, 0x00); 2384 MEM_WRITE_1(sc, 0x200000, 0x80); 2385 2386 /* wait until we get an answer */ 2387 for (ntries = 0; ntries < 100; ntries++) { 2388 if (MEM_READ_1(sc, 0x200000) & 1) 2389 break; 2390 DELAY(100); 2391 } 2392 if (ntries == 100) { 2393 device_printf(sc->sc_dev, 2394 "timeout waiting for ucode to initialize\n"); 2395 error = EIO; 2396 goto fail; 2397 } 2398 2399 /* read the answer or the firmware will not initialize properly */ 2400 for (i = 0; i < 7; i++) 2401 MEM_READ_4(sc, 0x200004); 2402 2403 MEM_WRITE_1(sc, 0x200000, 0x00); 2404 2405 fail: 2406 return error; 2407 } 2408 2409 /* macro to handle unaligned little endian data in firmware image */ 2410 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2411 2412 static int 2413 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2414 { 2415 u_char *p, *end; 2416 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2417 int ntries, error; 2418 2419 IWI_LOCK_ASSERT(sc); 2420 2421 /* copy firmware image to DMA memory */ 2422 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2423 2424 /* make sure the adapter will get up-to-date values */ 2425 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2426 2427 /* tell the adapter where the command blocks are stored */ 2428 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2429 2430 /* 2431 * Store command blocks into adapter's internal memory using register 2432 * indirections. The adapter will read the firmware image through DMA 2433 * using information stored in command blocks. 2434 */ 2435 src = sc->fw_physaddr; 2436 p = sc->fw_virtaddr; 2437 end = p + fw->size; 2438 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2439 2440 while (p < end) { 2441 dst = GETLE32(p); p += 4; src += 4; 2442 len = GETLE32(p); p += 4; src += 4; 2443 p += len; 2444 2445 while (len > 0) { 2446 mlen = min(len, IWI_CB_MAXDATALEN); 2447 2448 ctl = IWI_CB_DEFAULT_CTL | mlen; 2449 sum = ctl ^ src ^ dst; 2450 2451 /* write a command block */ 2452 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2456 2457 src += mlen; 2458 dst += mlen; 2459 len -= mlen; 2460 } 2461 } 2462 2463 /* write a fictive final command block (sentinel) */ 2464 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2465 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2466 2467 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2468 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2469 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2470 2471 /* tell the adapter to start processing command blocks */ 2472 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2473 2474 /* wait until the adapter reaches the sentinel */ 2475 for (ntries = 0; ntries < 400; ntries++) { 2476 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2477 break; 2478 DELAY(100); 2479 } 2480 /* sync dma, just in case */ 2481 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2482 if (ntries == 400) { 2483 device_printf(sc->sc_dev, 2484 "timeout processing command blocks for %s firmware\n", 2485 fw->name); 2486 return EIO; 2487 } 2488 2489 /* we're done with command blocks processing */ 2490 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2491 2492 /* allow interrupts so we know when the firmware is ready */ 2493 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2494 2495 /* tell the adapter to initialize the firmware */ 2496 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2497 2498 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2499 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2500 2501 /* wait at most one second for firmware initialization to complete */ 2502 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2503 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2504 "initialization to complete\n", fw->name); 2505 } 2506 2507 return error; 2508 } 2509 2510 static int 2511 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2512 { 2513 uint32_t data; 2514 2515 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2516 /* XXX set more fine-grained operation */ 2517 data = htole32(IWI_POWER_MODE_MAX); 2518 } else 2519 data = htole32(IWI_POWER_MODE_CAM); 2520 2521 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2522 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2523 } 2524 2525 static int 2526 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2527 { 2528 struct iwi_wep_key wepkey; 2529 struct ieee80211_key *wk; 2530 int error, i; 2531 2532 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2533 wk = &vap->iv_nw_keys[i]; 2534 2535 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2536 wepkey.idx = i; 2537 wepkey.len = wk->wk_keylen; 2538 memset(wepkey.key, 0, sizeof wepkey.key); 2539 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2540 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2541 wepkey.len)); 2542 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2543 sizeof wepkey); 2544 if (error != 0) 2545 return error; 2546 } 2547 return 0; 2548 } 2549 2550 static int 2551 iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, 2552 int mode, int type) 2553 { 2554 struct iwi_rateset rs; 2555 2556 memset(&rs, 0, sizeof(rs)); 2557 rs.mode = mode; 2558 rs.type = type; 2559 rs.nrates = net_rs->rs_nrates; 2560 if (rs.nrates > nitems(rs.rates)) { 2561 DPRINTF(("Truncating negotiated rate set from %u\n", 2562 rs.nrates)); 2563 rs.nrates = nitems(rs.rates); 2564 } 2565 memcpy(rs.rates, net_rs->rs_rates, rs.nrates); 2566 DPRINTF(("Setting .11%c%s %s rates (%u)\n", 2567 mode == IWI_MODE_11A ? 'a' : 'b', 2568 mode == IWI_MODE_11G ? "g" : "", 2569 type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", 2570 rs.nrates)); 2571 2572 return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); 2573 } 2574 2575 static int 2576 iwi_config(struct iwi_softc *sc) 2577 { 2578 struct ieee80211com *ic = &sc->sc_ic; 2579 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2580 struct iwi_configuration config; 2581 struct iwi_txpower power; 2582 uint8_t *macaddr; 2583 uint32_t data; 2584 int error, i; 2585 2586 IWI_LOCK_ASSERT(sc); 2587 2588 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 2589 DPRINTF(("Setting MAC address to %6D\n", macaddr, ":")); 2590 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr, 2591 IEEE80211_ADDR_LEN); 2592 if (error != 0) 2593 return error; 2594 2595 memset(&config, 0, sizeof config); 2596 config.bluetooth_coexistence = sc->bluetooth; 2597 config.silence_threshold = 0x1e; 2598 config.antenna = sc->antenna; 2599 config.multicast_enabled = 1; 2600 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2601 config.disable_unicast_decryption = 1; 2602 config.disable_multicast_decryption = 1; 2603 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2604 config.allow_invalid_frames = 1; 2605 config.allow_beacon_and_probe_resp = 1; 2606 config.allow_mgt = 1; 2607 } 2608 DPRINTF(("Configuring adapter\n")); 2609 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2610 if (error != 0) 2611 return error; 2612 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2613 power.mode = IWI_MODE_11B; 2614 power.nchan = 11; 2615 for (i = 0; i < 11; i++) { 2616 power.chan[i].chan = i + 1; 2617 power.chan[i].power = IWI_TXPOWER_MAX; 2618 } 2619 DPRINTF(("Setting .11b channels tx power\n")); 2620 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2621 if (error != 0) 2622 return error; 2623 2624 power.mode = IWI_MODE_11G; 2625 DPRINTF(("Setting .11g channels tx power\n")); 2626 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2627 if (error != 0) 2628 return error; 2629 } 2630 2631 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], 2632 IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); 2633 if (error != 0) 2634 return error; 2635 2636 error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], 2637 IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); 2638 if (error != 0) 2639 return error; 2640 2641 data = htole32(arc4random()); 2642 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2643 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2644 if (error != 0) 2645 return error; 2646 2647 /* enable adapter */ 2648 DPRINTF(("Enabling adapter\n")); 2649 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2650 } 2651 2652 static __inline void 2653 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2654 { 2655 uint8_t *st = &scan->scan_type[ix / 2]; 2656 if (ix % 2) 2657 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2658 else 2659 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2660 } 2661 2662 static int 2663 scan_type(const struct ieee80211_scan_state *ss, 2664 const struct ieee80211_channel *chan) 2665 { 2666 /* We can only set one essid for a directed scan */ 2667 if (ss->ss_nssid != 0) 2668 return IWI_SCAN_TYPE_BDIRECTED; 2669 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2670 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2671 return IWI_SCAN_TYPE_BROADCAST; 2672 return IWI_SCAN_TYPE_PASSIVE; 2673 } 2674 2675 static __inline int 2676 scan_band(const struct ieee80211_channel *c) 2677 { 2678 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2679 } 2680 2681 static void 2682 iwi_monitor_scan(void *arg, int npending) 2683 { 2684 struct iwi_softc *sc = arg; 2685 IWI_LOCK_DECL; 2686 2687 IWI_LOCK(sc); 2688 (void) iwi_scanchan(sc, 2000, 0); 2689 IWI_UNLOCK(sc); 2690 } 2691 2692 /* 2693 * Start a scan on the current channel or all channels. 2694 */ 2695 static int 2696 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2697 { 2698 struct ieee80211com *ic = &sc->sc_ic; 2699 struct ieee80211_channel *chan; 2700 struct ieee80211_scan_state *ss; 2701 struct iwi_scan_ext scan; 2702 int error = 0; 2703 2704 IWI_LOCK_ASSERT(sc); 2705 if (sc->fw_state == IWI_FW_SCANNING) { 2706 /* 2707 * This should not happen as we only trigger scan_next after 2708 * completion 2709 */ 2710 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2711 return (EBUSY); 2712 } 2713 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2714 2715 ss = ic->ic_scan; 2716 2717 memset(&scan, 0, sizeof scan); 2718 scan.full_scan_index = htole32(++sc->sc_scangen); 2719 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2720 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2721 /* 2722 * Use very short dwell times for when we send probe request 2723 * frames. Without this bg scans hang. Ideally this should 2724 * be handled with early-termination as done by net80211 but 2725 * that's not feasible (aborting a scan is problematic). 2726 */ 2727 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2728 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2729 } else { 2730 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2731 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2732 } 2733 2734 /* We can only set one essid for a directed scan */ 2735 if (ss->ss_nssid != 0) { 2736 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2737 ss->ss_ssid[0].len); 2738 if (error) 2739 return (error); 2740 } 2741 2742 if (allchan) { 2743 int i, next, band, b, bstart; 2744 /* 2745 * Convert scan list to run-length encoded channel list 2746 * the firmware requires (preserving the order setup by 2747 * net80211). The first entry in each run specifies the 2748 * band and the count of items in the run. 2749 */ 2750 next = 0; /* next open slot */ 2751 bstart = 0; /* NB: not needed, silence compiler */ 2752 band = -1; /* NB: impossible value */ 2753 KASSERT(ss->ss_last > 0, ("no channels")); 2754 for (i = 0; i < ss->ss_last; i++) { 2755 chan = ss->ss_chans[i]; 2756 b = scan_band(chan); 2757 if (b != band) { 2758 if (band != -1) 2759 scan.channels[bstart] = 2760 (next - bstart) | band; 2761 /* NB: this allocates a slot for the run-len */ 2762 band = b, bstart = next++; 2763 } 2764 if (next >= IWI_SCAN_CHANNELS) { 2765 DPRINTF(("truncating scan list\n")); 2766 break; 2767 } 2768 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2769 set_scan_type(&scan, next, scan_type(ss, chan)); 2770 next++; 2771 } 2772 scan.channels[bstart] = (next - bstart) | band; 2773 } else { 2774 /* Scan the current channel only */ 2775 chan = ic->ic_curchan; 2776 scan.channels[0] = 1 | scan_band(chan); 2777 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2778 set_scan_type(&scan, 1, scan_type(ss, chan)); 2779 } 2780 #ifdef IWI_DEBUG 2781 if (iwi_debug > 0) { 2782 static const char *scantype[8] = 2783 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2784 int i; 2785 printf("Scan request: index %u dwell %d/%d/%d\n" 2786 , le32toh(scan.full_scan_index) 2787 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2788 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2789 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2790 ); 2791 i = 0; 2792 do { 2793 int run = scan.channels[i]; 2794 if (run == 0) 2795 break; 2796 printf("Scan %d %s channels:", run & 0x3f, 2797 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2798 for (run &= 0x3f, i++; run > 0; run--, i++) { 2799 uint8_t type = scan.scan_type[i/2]; 2800 printf(" %u/%s", scan.channels[i], 2801 scantype[(i & 1 ? type : type>>4) & 7]); 2802 } 2803 printf("\n"); 2804 } while (i < IWI_SCAN_CHANNELS); 2805 } 2806 #endif 2807 2808 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2809 } 2810 2811 static int 2812 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2813 { 2814 struct iwi_sensitivity sens; 2815 2816 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2817 2818 memset(&sens, 0, sizeof sens); 2819 sens.rssi = htole16(rssi_dbm); 2820 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2821 } 2822 2823 static int 2824 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2825 { 2826 struct ieee80211com *ic = vap->iv_ic; 2827 if_t ifp = vap->iv_ifp; 2828 struct ieee80211_node *ni; 2829 struct iwi_configuration config; 2830 struct iwi_associate *assoc = &sc->assoc; 2831 uint16_t capinfo; 2832 uint32_t data; 2833 int error, mode; 2834 2835 IWI_LOCK_ASSERT(sc); 2836 2837 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2838 DPRINTF(("Already associated\n")); 2839 return (-1); 2840 } 2841 2842 ni = ieee80211_ref_node(vap->iv_bss); 2843 2844 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2845 error = 0; 2846 mode = 0; 2847 2848 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2849 mode = IWI_MODE_11A; 2850 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2851 mode = IWI_MODE_11G; 2852 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2853 mode = IWI_MODE_11B; 2854 2855 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2856 memset(&config, 0, sizeof config); 2857 config.bluetooth_coexistence = sc->bluetooth; 2858 config.antenna = sc->antenna; 2859 config.multicast_enabled = 1; 2860 if (mode == IWI_MODE_11G) 2861 config.use_protection = 1; 2862 config.answer_pbreq = 2863 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2864 config.disable_unicast_decryption = 1; 2865 config.disable_multicast_decryption = 1; 2866 DPRINTF(("Configuring adapter\n")); 2867 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2868 if (error != 0) 2869 goto done; 2870 } 2871 2872 #ifdef IWI_DEBUG 2873 if (iwi_debug > 0) { 2874 printf("Setting ESSID to "); 2875 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2876 printf("\n"); 2877 } 2878 #endif 2879 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2880 if (error != 0) 2881 goto done; 2882 2883 error = iwi_setpowermode(sc, vap); 2884 if (error != 0) 2885 goto done; 2886 2887 data = htole32(vap->iv_rtsthreshold); 2888 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2889 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2890 if (error != 0) 2891 goto done; 2892 2893 data = htole32(vap->iv_fragthreshold); 2894 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2895 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2896 if (error != 0) 2897 goto done; 2898 2899 /* the rate set has already been "negotiated" */ 2900 error = iwi_set_rateset(sc, &ni->ni_rates, mode, 2901 IWI_RATESET_TYPE_NEGOTIATED); 2902 if (error != 0) 2903 goto done; 2904 2905 memset(assoc, 0, sizeof *assoc); 2906 2907 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2908 /* NB: don't treat WME setup as failure */ 2909 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2910 assoc->policy |= htole16(IWI_POLICY_WME); 2911 /* XXX complain on failure? */ 2912 } 2913 2914 if (vap->iv_appie_wpa != NULL) { 2915 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2916 2917 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2918 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2919 if (error != 0) 2920 goto done; 2921 } 2922 2923 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2924 if (error != 0) 2925 goto done; 2926 2927 assoc->mode = mode; 2928 assoc->chan = ic->ic_curchan->ic_ieee; 2929 /* 2930 * NB: do not arrange for shared key auth w/o privacy 2931 * (i.e. a wep key); it causes a firmware error. 2932 */ 2933 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2934 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2935 assoc->auth = IWI_AUTH_SHARED; 2936 /* 2937 * It's possible to have privacy marked but no default 2938 * key setup. This typically is due to a user app bug 2939 * but if we blindly grab the key the firmware will 2940 * barf so avoid it for now. 2941 */ 2942 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2943 assoc->auth |= vap->iv_def_txkey << 4; 2944 2945 error = iwi_setwepkeys(sc, vap); 2946 if (error != 0) 2947 goto done; 2948 } 2949 if (vap->iv_flags & IEEE80211_F_WPA) 2950 assoc->policy |= htole16(IWI_POLICY_WPA); 2951 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2952 assoc->type = IWI_HC_IBSS_START; 2953 else 2954 assoc->type = IWI_HC_ASSOC; 2955 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2956 2957 if (vap->iv_opmode == IEEE80211_M_IBSS) 2958 capinfo = IEEE80211_CAPINFO_IBSS; 2959 else 2960 capinfo = IEEE80211_CAPINFO_ESS; 2961 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2962 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2963 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2964 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2965 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2966 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2967 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2968 assoc->capinfo = htole16(capinfo); 2969 2970 assoc->lintval = htole16(ic->ic_lintval); 2971 assoc->intval = htole16(ni->ni_intval); 2972 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2973 if (vap->iv_opmode == IEEE80211_M_IBSS) 2974 IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp)); 2975 else 2976 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2977 2978 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2979 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2980 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2981 assoc->bssid, ":", assoc->dst, ":", 2982 assoc->chan, le16toh(assoc->policy), assoc->auth, 2983 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2984 le16toh(assoc->intval))); 2985 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2986 done: 2987 ieee80211_free_node(ni); 2988 if (error) 2989 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2990 2991 return (error); 2992 } 2993 2994 static void 2995 iwi_disassoc(void *arg, int pending) 2996 { 2997 struct iwi_softc *sc = arg; 2998 IWI_LOCK_DECL; 2999 3000 IWI_LOCK(sc); 3001 iwi_disassociate(sc, 0); 3002 IWI_UNLOCK(sc); 3003 } 3004 3005 static int 3006 iwi_disassociate(struct iwi_softc *sc, int quiet) 3007 { 3008 struct iwi_associate *assoc = &sc->assoc; 3009 3010 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3011 DPRINTF(("Not associated\n")); 3012 return (-1); 3013 } 3014 3015 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3016 3017 if (quiet) 3018 assoc->type = IWI_HC_DISASSOC_QUIET; 3019 else 3020 assoc->type = IWI_HC_DISASSOC; 3021 3022 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3023 assoc->bssid, ":", assoc->chan)); 3024 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3025 } 3026 3027 /* 3028 * release dma resources for the firmware 3029 */ 3030 static void 3031 iwi_release_fw_dma(struct iwi_softc *sc) 3032 { 3033 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3034 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3035 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3036 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3037 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3038 bus_dma_tag_destroy(sc->fw_dmat); 3039 3040 sc->fw_flags = 0; 3041 sc->fw_dma_size = 0; 3042 sc->fw_dmat = NULL; 3043 sc->fw_map = NULL; 3044 sc->fw_physaddr = 0; 3045 sc->fw_virtaddr = NULL; 3046 } 3047 3048 /* 3049 * allocate the dma descriptor for the firmware. 3050 * Return 0 on success, 1 on error. 3051 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3052 */ 3053 static int 3054 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3055 { 3056 if (sc->fw_dma_size >= size) 3057 return 0; 3058 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3059 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3060 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3061 device_printf(sc->sc_dev, 3062 "could not create firmware DMA tag\n"); 3063 goto error; 3064 } 3065 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3066 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3067 &sc->fw_map) != 0) { 3068 device_printf(sc->sc_dev, 3069 "could not allocate firmware DMA memory\n"); 3070 goto error; 3071 } 3072 sc->fw_flags |= IWI_FW_HAVE_MAP; 3073 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3074 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3075 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3076 goto error; 3077 } 3078 sc->fw_flags |= IWI_FW_HAVE_PHY; 3079 sc->fw_dma_size = size; 3080 return 0; 3081 3082 error: 3083 iwi_release_fw_dma(sc); 3084 return 1; 3085 } 3086 3087 static void 3088 iwi_init_locked(struct iwi_softc *sc) 3089 { 3090 struct iwi_rx_data *data; 3091 int i; 3092 3093 IWI_LOCK_ASSERT(sc); 3094 3095 if (sc->fw_state == IWI_FW_LOADING) { 3096 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3097 return; /* XXX: condvar? */ 3098 } 3099 3100 iwi_stop_locked(sc); 3101 3102 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3103 3104 if (iwi_reset(sc) != 0) { 3105 device_printf(sc->sc_dev, "could not reset adapter\n"); 3106 goto fail; 3107 } 3108 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3109 device_printf(sc->sc_dev, 3110 "could not load boot firmware %s\n", sc->fw_boot.name); 3111 goto fail; 3112 } 3113 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3114 device_printf(sc->sc_dev, 3115 "could not load microcode %s\n", sc->fw_uc.name); 3116 goto fail; 3117 } 3118 3119 iwi_stop_master(sc); 3120 3121 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3122 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3123 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3124 3125 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3126 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3127 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3128 3129 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3130 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3131 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3132 3133 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3134 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3135 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3136 3137 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3138 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3139 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3140 3141 for (i = 0; i < sc->rxq.count; i++) { 3142 data = &sc->rxq.data[i]; 3143 CSR_WRITE_4(sc, data->reg, data->physaddr); 3144 } 3145 3146 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3147 3148 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3149 device_printf(sc->sc_dev, 3150 "could not load main firmware %s\n", sc->fw_fw.name); 3151 goto fail; 3152 } 3153 sc->flags |= IWI_FLAG_FW_INITED; 3154 3155 IWI_STATE_END(sc, IWI_FW_LOADING); 3156 3157 if (iwi_config(sc) != 0) { 3158 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3159 goto fail2; 3160 } 3161 3162 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3163 sc->sc_running = 1; 3164 return; 3165 fail: 3166 IWI_STATE_END(sc, IWI_FW_LOADING); 3167 fail2: 3168 iwi_stop_locked(sc); 3169 } 3170 3171 static void 3172 iwi_init(void *priv) 3173 { 3174 struct iwi_softc *sc = priv; 3175 struct ieee80211com *ic = &sc->sc_ic; 3176 IWI_LOCK_DECL; 3177 3178 IWI_LOCK(sc); 3179 iwi_init_locked(sc); 3180 IWI_UNLOCK(sc); 3181 3182 if (sc->sc_running) 3183 ieee80211_start_all(ic); 3184 } 3185 3186 static void 3187 iwi_stop_locked(void *priv) 3188 { 3189 struct iwi_softc *sc = priv; 3190 3191 IWI_LOCK_ASSERT(sc); 3192 3193 sc->sc_running = 0; 3194 3195 if (sc->sc_softled) { 3196 callout_stop(&sc->sc_ledtimer); 3197 sc->sc_blinking = 0; 3198 } 3199 callout_stop(&sc->sc_wdtimer); 3200 callout_stop(&sc->sc_rftimer); 3201 3202 iwi_stop_master(sc); 3203 3204 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3205 3206 /* reset rings */ 3207 iwi_reset_cmd_ring(sc, &sc->cmdq); 3208 iwi_reset_tx_ring(sc, &sc->txq[0]); 3209 iwi_reset_tx_ring(sc, &sc->txq[1]); 3210 iwi_reset_tx_ring(sc, &sc->txq[2]); 3211 iwi_reset_tx_ring(sc, &sc->txq[3]); 3212 iwi_reset_rx_ring(sc, &sc->rxq); 3213 3214 sc->sc_tx_timer = 0; 3215 sc->sc_state_timer = 0; 3216 sc->sc_busy_timer = 0; 3217 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3218 sc->fw_state = IWI_FW_IDLE; 3219 wakeup(sc); 3220 } 3221 3222 static void 3223 iwi_stop(struct iwi_softc *sc) 3224 { 3225 IWI_LOCK_DECL; 3226 3227 IWI_LOCK(sc); 3228 iwi_stop_locked(sc); 3229 IWI_UNLOCK(sc); 3230 } 3231 3232 static void 3233 iwi_restart(void *arg, int npending) 3234 { 3235 struct iwi_softc *sc = arg; 3236 3237 iwi_init(sc); 3238 } 3239 3240 /* 3241 * Return whether or not the radio is enabled in hardware 3242 * (i.e. the rfkill switch is "off"). 3243 */ 3244 static int 3245 iwi_getrfkill(struct iwi_softc *sc) 3246 { 3247 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3248 } 3249 3250 static void 3251 iwi_radio_on(void *arg, int pending) 3252 { 3253 struct iwi_softc *sc = arg; 3254 struct ieee80211com *ic = &sc->sc_ic; 3255 3256 device_printf(sc->sc_dev, "radio turned on\n"); 3257 3258 iwi_init(sc); 3259 ieee80211_notify_radio(ic, 1); 3260 } 3261 3262 static void 3263 iwi_rfkill_poll(void *arg) 3264 { 3265 struct iwi_softc *sc = arg; 3266 3267 IWI_LOCK_ASSERT(sc); 3268 3269 /* 3270 * Check for a change in rfkill state. We get an 3271 * interrupt when a radio is disabled but not when 3272 * it is enabled so we must poll for the latter. 3273 */ 3274 if (!iwi_getrfkill(sc)) { 3275 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3276 return; 3277 } 3278 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3279 } 3280 3281 static void 3282 iwi_radio_off(void *arg, int pending) 3283 { 3284 struct iwi_softc *sc = arg; 3285 struct ieee80211com *ic = &sc->sc_ic; 3286 IWI_LOCK_DECL; 3287 3288 device_printf(sc->sc_dev, "radio turned off\n"); 3289 3290 ieee80211_notify_radio(ic, 0); 3291 3292 IWI_LOCK(sc); 3293 iwi_stop_locked(sc); 3294 iwi_rfkill_poll(sc); 3295 IWI_UNLOCK(sc); 3296 } 3297 3298 static int 3299 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3300 { 3301 struct iwi_softc *sc = arg1; 3302 uint32_t size, buf[128]; 3303 3304 memset(buf, 0, sizeof buf); 3305 3306 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3307 return SYSCTL_OUT(req, buf, sizeof buf); 3308 3309 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3310 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3311 3312 return SYSCTL_OUT(req, buf, size); 3313 } 3314 3315 static int 3316 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3317 { 3318 struct iwi_softc *sc = arg1; 3319 int val = !iwi_getrfkill(sc); 3320 3321 return SYSCTL_OUT(req, &val, sizeof val); 3322 } 3323 3324 /* 3325 * Add sysctl knobs. 3326 */ 3327 static void 3328 iwi_sysctlattach(struct iwi_softc *sc) 3329 { 3330 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3331 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3332 3333 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3334 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3335 iwi_sysctl_radio, "I", 3336 "radio transmitter switch state (0=off, 1=on)"); 3337 3338 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3339 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, 3340 iwi_sysctl_stats, "S", "statistics"); 3341 3342 sc->bluetooth = 0; 3343 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3344 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3345 3346 sc->antenna = IWI_ANTENNA_AUTO; 3347 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3348 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3349 } 3350 3351 /* 3352 * LED support. 3353 * 3354 * Different cards have different capabilities. Some have three 3355 * led's while others have only one. The linux ipw driver defines 3356 * led's for link state (associated or not), band (11a, 11g, 11b), 3357 * and for link activity. We use one led and vary the blink rate 3358 * according to the tx/rx traffic a la the ath driver. 3359 */ 3360 3361 static __inline uint32_t 3362 iwi_toggle_event(uint32_t r) 3363 { 3364 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3365 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3366 } 3367 3368 static uint32_t 3369 iwi_read_event(struct iwi_softc *sc) 3370 { 3371 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3372 } 3373 3374 static void 3375 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3376 { 3377 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3378 } 3379 3380 static void 3381 iwi_led_done(void *arg) 3382 { 3383 struct iwi_softc *sc = arg; 3384 3385 sc->sc_blinking = 0; 3386 } 3387 3388 /* 3389 * Turn the activity LED off: flip the pin and then set a timer so no 3390 * update will happen for the specified duration. 3391 */ 3392 static void 3393 iwi_led_off(void *arg) 3394 { 3395 struct iwi_softc *sc = arg; 3396 uint32_t v; 3397 3398 v = iwi_read_event(sc); 3399 v &= ~sc->sc_ledpin; 3400 iwi_write_event(sc, iwi_toggle_event(v)); 3401 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3402 } 3403 3404 /* 3405 * Blink the LED according to the specified on/off times. 3406 */ 3407 static void 3408 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3409 { 3410 uint32_t v; 3411 3412 v = iwi_read_event(sc); 3413 v |= sc->sc_ledpin; 3414 iwi_write_event(sc, iwi_toggle_event(v)); 3415 sc->sc_blinking = 1; 3416 sc->sc_ledoff = off; 3417 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3418 } 3419 3420 static void 3421 iwi_led_event(struct iwi_softc *sc, int event) 3422 { 3423 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3424 static const struct { 3425 u_int rate; /* tx/rx iwi rate */ 3426 u_int16_t timeOn; /* LED on time (ms) */ 3427 u_int16_t timeOff; /* LED off time (ms) */ 3428 } blinkrates[] = { 3429 { IWI_RATE_OFDM54, 40, 10 }, 3430 { IWI_RATE_OFDM48, 44, 11 }, 3431 { IWI_RATE_OFDM36, 50, 13 }, 3432 { IWI_RATE_OFDM24, 57, 14 }, 3433 { IWI_RATE_OFDM18, 67, 16 }, 3434 { IWI_RATE_OFDM12, 80, 20 }, 3435 { IWI_RATE_DS11, 100, 25 }, 3436 { IWI_RATE_OFDM9, 133, 34 }, 3437 { IWI_RATE_OFDM6, 160, 40 }, 3438 { IWI_RATE_DS5, 200, 50 }, 3439 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3440 { IWI_RATE_DS2, 267, 66 }, 3441 { IWI_RATE_DS1, 400, 100 }, 3442 { 0, 500, 130 }, /* unknown rate/polling */ 3443 }; 3444 uint32_t txrate; 3445 int j = 0; /* XXX silence compiler */ 3446 3447 sc->sc_ledevent = ticks; /* time of last event */ 3448 if (sc->sc_blinking) /* don't interrupt active blink */ 3449 return; 3450 switch (event) { 3451 case IWI_LED_POLL: 3452 j = nitems(blinkrates)-1; 3453 break; 3454 case IWI_LED_TX: 3455 /* read current transmission rate from adapter */ 3456 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3457 if (blinkrates[sc->sc_txrix].rate != txrate) { 3458 for (j = 0; j < nitems(blinkrates)-1; j++) 3459 if (blinkrates[j].rate == txrate) 3460 break; 3461 sc->sc_txrix = j; 3462 } else 3463 j = sc->sc_txrix; 3464 break; 3465 case IWI_LED_RX: 3466 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3467 for (j = 0; j < nitems(blinkrates)-1; j++) 3468 if (blinkrates[j].rate == sc->sc_rxrate) 3469 break; 3470 sc->sc_rxrix = j; 3471 } else 3472 j = sc->sc_rxrix; 3473 break; 3474 } 3475 /* XXX beware of overflow */ 3476 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3477 (blinkrates[j].timeOff * hz) / 1000); 3478 } 3479 3480 static int 3481 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3482 { 3483 struct iwi_softc *sc = arg1; 3484 int softled = sc->sc_softled; 3485 int error; 3486 3487 error = sysctl_handle_int(oidp, &softled, 0, req); 3488 if (error || !req->newptr) 3489 return error; 3490 softled = (softled != 0); 3491 if (softled != sc->sc_softled) { 3492 if (softled) { 3493 uint32_t v = iwi_read_event(sc); 3494 v &= ~sc->sc_ledpin; 3495 iwi_write_event(sc, iwi_toggle_event(v)); 3496 } 3497 sc->sc_softled = softled; 3498 } 3499 return 0; 3500 } 3501 3502 static void 3503 iwi_ledattach(struct iwi_softc *sc) 3504 { 3505 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3506 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3507 3508 sc->sc_blinking = 0; 3509 sc->sc_ledstate = 1; 3510 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3511 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3512 3513 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3514 "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3515 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3516 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3517 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3518 "pin setting to turn activity LED on"); 3519 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3520 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3521 "idle time for inactivity LED (ticks)"); 3522 /* XXX for debugging */ 3523 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3524 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3525 "NIC type from EEPROM"); 3526 3527 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3528 sc->sc_softled = 1; 3529 3530 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3531 if (sc->sc_nictype == 1) { 3532 /* 3533 * NB: led's are reversed. 3534 */ 3535 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3536 } 3537 } 3538 3539 static void 3540 iwi_scan_start(struct ieee80211com *ic) 3541 { 3542 /* ignore */ 3543 } 3544 3545 static void 3546 iwi_set_channel(struct ieee80211com *ic) 3547 { 3548 struct iwi_softc *sc = ic->ic_softc; 3549 3550 if (sc->fw_state == IWI_FW_IDLE) 3551 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3552 } 3553 3554 static void 3555 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3556 { 3557 struct ieee80211vap *vap = ss->ss_vap; 3558 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3559 IWI_LOCK_DECL; 3560 3561 IWI_LOCK(sc); 3562 if (iwi_scanchan(sc, maxdwell, 0)) 3563 ieee80211_cancel_scan(vap); 3564 IWI_UNLOCK(sc); 3565 } 3566 3567 static void 3568 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3569 { 3570 /* NB: don't try to abort scan; wait for firmware to finish */ 3571 } 3572 3573 static void 3574 iwi_scan_end(struct ieee80211com *ic) 3575 { 3576 struct iwi_softc *sc = ic->ic_softc; 3577 IWI_LOCK_DECL; 3578 3579 IWI_LOCK(sc); 3580 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3581 /* NB: make sure we're still scanning */ 3582 if (sc->fw_state == IWI_FW_SCANNING) 3583 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3584 IWI_UNLOCK(sc); 3585 } 3586 3587 static void 3588 iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) 3589 { 3590 struct iwi_softc *sc = ic->ic_softc; 3591 device_t dev = sc->sc_dev; 3592 3593 memset(bands, 0, bands_sz); 3594 setbit(bands, IEEE80211_MODE_11B); 3595 setbit(bands, IEEE80211_MODE_11G); 3596 if (pci_get_device(dev) >= 0x4223) 3597 setbit(bands, IEEE80211_MODE_11A); 3598 } 3599 3600 static void 3601 iwi_getradiocaps(struct ieee80211com *ic, 3602 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3603 { 3604 uint8_t bands[IEEE80211_MODE_BYTES]; 3605 3606 iwi_collect_bands(ic, bands, sizeof(bands)); 3607 *nchans = 0; 3608 if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) 3609 ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, 3610 bands, 0); 3611 if (isset(bands, IEEE80211_MODE_11A)) { 3612 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3613 def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), 3614 bands, 0); 3615 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3616 def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), 3617 bands, 0); 3618 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3619 def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), 3620 bands, 0); 3621 } 3622 } 3623