xref: /freebsd/sys/dev/iwi/if_iwi.c (revision acd3428b7d3e94cef0e1881c868cb4b131d4ff41)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/bus.h>
47 #include <sys/endian.h>
48 #include <sys/proc.h>
49 #include <sys/mount.h>
50 #include <sys/namei.h>
51 #include <sys/linker.h>
52 #include <sys/firmware.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 #include <sys/rman.h>
59 
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcivar.h>
62 
63 #include <net/bpf.h>
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/ethernet.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/if_ether.h>
79 
80 #include <dev/iwi/if_iwireg.h>
81 #include <dev/iwi/if_iwivar.h>
82 
83 #define IWI_DEBUG
84 #ifdef IWI_DEBUG
85 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
86 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
87 int iwi_debug = 0;
88 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
89 #else
90 #define DPRINTF(x)
91 #define DPRINTFN(n, x)
92 #endif
93 
94 MODULE_DEPEND(iwi, pci,  1, 1, 1);
95 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
96 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
97 
98 enum {
99 	IWI_LED_TX,
100 	IWI_LED_RX,
101 	IWI_LED_POLL,
102 };
103 
104 struct iwi_ident {
105 	uint16_t	vendor;
106 	uint16_t	device;
107 	const char	*name;
108 };
109 
110 static const struct iwi_ident iwi_ident_table[] = {
111 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
112 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
113 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
114 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
115 
116 	{ 0, 0, NULL }
117 };
118 
119 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
120 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
121 		    int);
122 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
123 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
124 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
125 		    int, bus_addr_t, bus_addr_t);
126 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
127 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
128 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
129 		    int);
130 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
131 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
132 static struct	ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
133 static void	iwi_node_free(struct ieee80211_node *);
134 static int	iwi_media_change(struct ifnet *);
135 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
136 static int	iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
137 static void	iwi_wme_init(struct iwi_softc *);
138 static void	iwi_wme_setparams(void *, int);
139 static int	iwi_wme_update(struct ieee80211com *);
140 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
141 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
142 		    struct iwi_frame *);
143 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
144 static void	iwi_rx_intr(struct iwi_softc *);
145 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
146 static void	iwi_intr(void *);
147 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
148 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
149 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
150 		    struct ieee80211_node *, int);
151 static void	iwi_start(struct ifnet *);
152 static void	iwi_watchdog(struct ifnet *);
153 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
154 static void	iwi_stop_master(struct iwi_softc *);
155 static int	iwi_reset(struct iwi_softc *);
156 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
157 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
158 static int	iwi_config(struct iwi_softc *);
159 static int	iwi_get_firmware(struct iwi_softc *);
160 static void	iwi_put_firmware(struct iwi_softc *);
161 static void	iwi_scanabort(void *, int);
162 static void	iwi_scandone(void *, int);
163 static void	iwi_scanstart(void *, int);
164 static void	iwi_scanchan(void *, int);
165 static int	iwi_auth_and_assoc(struct iwi_softc *);
166 static int	iwi_disassociate(struct iwi_softc *, int quiet);
167 static void	iwi_down(void *, int);
168 static void	iwi_init(void *);
169 static void	iwi_init_locked(void *, int);
170 static void	iwi_stop(void *);
171 static void	iwi_restart(void *, int);
172 static int	iwi_getrfkill(struct iwi_softc *);
173 static void	iwi_radio_on(void *, int);
174 static void	iwi_radio_off(void *, int);
175 static void	iwi_sysctlattach(struct iwi_softc *);
176 static void	iwi_led_event(struct iwi_softc *, int);
177 static void	iwi_ledattach(struct iwi_softc *);
178 
179 static int iwi_probe(device_t);
180 static int iwi_attach(device_t);
181 static int iwi_detach(device_t);
182 static int iwi_shutdown(device_t);
183 static int iwi_suspend(device_t);
184 static int iwi_resume(device_t);
185 
186 static device_method_t iwi_methods[] = {
187 	/* Device interface */
188 	DEVMETHOD(device_probe,		iwi_probe),
189 	DEVMETHOD(device_attach,	iwi_attach),
190 	DEVMETHOD(device_detach,	iwi_detach),
191 	DEVMETHOD(device_shutdown,	iwi_shutdown),
192 	DEVMETHOD(device_suspend,	iwi_suspend),
193 	DEVMETHOD(device_resume,	iwi_resume),
194 
195 	{ 0, 0 }
196 };
197 
198 static driver_t iwi_driver = {
199 	"iwi",
200 	iwi_methods,
201 	sizeof (struct iwi_softc)
202 };
203 
204 static devclass_t iwi_devclass;
205 
206 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
207 
208 /*
209  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
210  */
211 static const struct ieee80211_rateset iwi_rateset_11a =
212 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
213 
214 static const struct ieee80211_rateset iwi_rateset_11b =
215 	{ 4, { 2, 4, 11, 22 } };
216 
217 static const struct ieee80211_rateset iwi_rateset_11g =
218 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
219 
220 static __inline uint8_t
221 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
222 {
223 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
224 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
225 }
226 
227 static __inline uint32_t
228 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
229 {
230 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
231 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
232 }
233 
234 static int
235 iwi_probe(device_t dev)
236 {
237 	const struct iwi_ident *ident;
238 
239 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
240 		if (pci_get_vendor(dev) == ident->vendor &&
241 		    pci_get_device(dev) == ident->device) {
242 			device_set_desc(dev, ident->name);
243 			return 0;
244 		}
245 	}
246 	return ENXIO;
247 }
248 
249 /* Base Address Register */
250 #define IWI_PCI_BAR0	0x10
251 
252 static int
253 iwi_attach(device_t dev)
254 {
255 	struct iwi_softc *sc = device_get_softc(dev);
256 	struct ifnet *ifp;
257 	struct ieee80211com *ic = &sc->sc_ic;
258 	uint16_t val;
259 	int error, i;
260 
261 	sc->sc_dev = dev;
262 
263 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
264 	    MTX_DEF);
265 
266 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
267 
268 #if __FreeBSD_version >= 700000
269 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
270 		taskqueue_thread_enqueue, &sc->sc_tq);
271 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
272 		device_get_nameunit(dev));
273 #else
274 	sc->sc_tq = taskqueue_create("iwi_taskq", M_NOWAIT,
275 		taskqueue_thread_enqueue, &sc->sc_tq, &sc->sc_tqproc);
276 	kthread_create(taskqueue_thread_loop, &sc->sc_tq, &sc->sc_tqproc,
277 		0, 0, "%s taskq", device_get_nameunit(dev));
278 #endif
279 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
280 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
281 	TASK_INIT(&sc->sc_scanstarttask, 0, iwi_scanstart, sc);
282 	TASK_INIT(&sc->sc_scanaborttask, 0, iwi_scanabort, sc);
283 	TASK_INIT(&sc->sc_scandonetask, 0, iwi_scandone, sc);
284 	TASK_INIT(&sc->sc_scantask, 0, iwi_scanchan, sc);
285 	TASK_INIT(&sc->sc_setwmetask, 0, iwi_wme_setparams, sc);
286 	TASK_INIT(&sc->sc_downtask, 0, iwi_down, sc);
287 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
288 
289 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
290 		device_printf(dev, "chip is in D%d power mode "
291 		    "-- setting to D0\n", pci_get_powerstate(dev));
292 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
293 	}
294 
295 	pci_write_config(dev, 0x41, 0, 1);
296 
297 	/* enable bus-mastering */
298 	pci_enable_busmaster(dev);
299 
300 	sc->mem_rid = IWI_PCI_BAR0;
301 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
302 	    RF_ACTIVE);
303 	if (sc->mem == NULL) {
304 		device_printf(dev, "could not allocate memory resource\n");
305 		goto fail;
306 	}
307 
308 	sc->sc_st = rman_get_bustag(sc->mem);
309 	sc->sc_sh = rman_get_bushandle(sc->mem);
310 
311 	sc->irq_rid = 0;
312 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
313 	    RF_ACTIVE | RF_SHAREABLE);
314 	if (sc->irq == NULL) {
315 		device_printf(dev, "could not allocate interrupt resource\n");
316 		goto fail;
317 	}
318 
319 	if (iwi_reset(sc) != 0) {
320 		device_printf(dev, "could not reset adapter\n");
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Allocate rings.
326 	 */
327 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
328 		device_printf(dev, "could not allocate Cmd ring\n");
329 		goto fail;
330 	}
331 
332 	error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT,
333 	    IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX);
334 	if (error != 0) {
335 		device_printf(dev, "could not allocate Tx ring 1\n");
336 		goto fail;
337 	}
338 
339 	error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT,
340 	    IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX);
341 	if (error != 0) {
342 		device_printf(dev, "could not allocate Tx ring 2\n");
343 		goto fail;
344 	}
345 
346 	error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT,
347 	    IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX);
348 	if (error != 0) {
349 		device_printf(dev, "could not allocate Tx ring 3\n");
350 		goto fail;
351 	}
352 
353 	error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT,
354 	    IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX);
355 	if (error != 0) {
356 		device_printf(dev, "could not allocate Tx ring 4\n");
357 		goto fail;
358 	}
359 
360 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
361 		device_printf(dev, "could not allocate Rx ring\n");
362 		goto fail;
363 	}
364 
365 	iwi_wme_init(sc);
366 
367 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
368 	if (ifp == NULL) {
369 		device_printf(dev, "can not if_alloc()\n");
370 		goto fail;
371 	}
372 	ifp->if_softc = sc;
373 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
374 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
375 	ifp->if_init = iwi_init;
376 	ifp->if_ioctl = iwi_ioctl;
377 	ifp->if_start = iwi_start;
378 	ifp->if_watchdog = iwi_watchdog;
379 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
380 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
381 	IFQ_SET_READY(&ifp->if_snd);
382 
383 	ic->ic_ifp = ifp;
384 	ic->ic_wme.wme_update = iwi_wme_update;
385 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
386 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
387 	ic->ic_state = IEEE80211_S_INIT;
388 
389 	/* set device capabilities */
390 	ic->ic_caps =
391 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
392 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
393 	    IEEE80211_C_PMGT |		/* power save supported */
394 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
395 	    IEEE80211_C_WPA |		/* 802.11i */
396 	    IEEE80211_C_WME;		/* 802.11e */
397 
398 	/* read MAC address from EEPROM */
399 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
400 	ic->ic_myaddr[0] = val & 0xff;
401 	ic->ic_myaddr[1] = val >> 8;
402 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
403 	ic->ic_myaddr[2] = val & 0xff;
404 	ic->ic_myaddr[3] = val >> 8;
405 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
406 	ic->ic_myaddr[4] = val & 0xff;
407 	ic->ic_myaddr[5] = val >> 8;
408 
409 	if (pci_get_device(dev) >= 0x4223) {
410 		/* set supported .11a rates (2915ABG only) */
411 		ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
412 
413 		/* set supported .11a channels */
414 		for (i = 36; i <= 64; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 		for (i = 149; i <= 165; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 	}
425 
426 	/* set supported .11b and .11g rates */
427 	ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
428 	ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
429 
430 	/* set supported .11b and .11g channels (1 through 14) */
431 	for (i = 1; i <= 14; i++) {
432 		ic->ic_channels[i].ic_freq =
433 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
434 		ic->ic_channels[i].ic_flags =
435 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
436 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
437 	}
438 
439 	ieee80211_ifattach(ic);
440 	ic->ic_bmissthreshold = 10;		/* override default */
441 	/* override default methods */
442 	ic->ic_node_alloc = iwi_node_alloc;
443 	sc->sc_node_free = ic->ic_node_free;
444 	ic->ic_node_free = iwi_node_free;
445 	/* override state transition machine */
446 	sc->sc_newstate = ic->ic_newstate;
447 	ic->ic_newstate = iwi_newstate;
448 	ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
449 
450 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
451 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
452 	    &sc->sc_drvbpf);
453 
454 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
455 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
456 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
457 
458 	sc->sc_txtap_len = sizeof sc->sc_txtap;
459 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
460 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
461 
462 	iwi_sysctlattach(sc);
463 	iwi_ledattach(sc);
464 
465 	/*
466 	 * Hook our interrupt after all initialization is complete.
467 	 */
468 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
469 	    iwi_intr, sc, &sc->sc_ih);
470 	if (error != 0) {
471 		device_printf(dev, "could not set up interrupt\n");
472 		goto fail;
473 	}
474 
475 	if (bootverbose)
476 		ieee80211_announce(ic);
477 
478 	return 0;
479 
480 fail:	iwi_detach(dev);
481 	return ENXIO;
482 }
483 
484 static int
485 iwi_detach(device_t dev)
486 {
487 	struct iwi_softc *sc = device_get_softc(dev);
488 	struct ieee80211com *ic = &sc->sc_ic;
489 	struct ifnet *ifp = ic->ic_ifp;
490 
491 	iwi_stop(sc);
492 	iwi_put_firmware(sc);
493 
494 	if (ifp != NULL) {
495 		bpfdetach(ifp);
496 		ieee80211_ifdetach(ic);
497 	}
498 
499 	iwi_free_cmd_ring(sc, &sc->cmdq);
500 	iwi_free_tx_ring(sc, &sc->txq[0]);
501 	iwi_free_tx_ring(sc, &sc->txq[1]);
502 	iwi_free_tx_ring(sc, &sc->txq[2]);
503 	iwi_free_tx_ring(sc, &sc->txq[3]);
504 	iwi_free_rx_ring(sc, &sc->rxq);
505 
506 	if (sc->irq != NULL) {
507 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
508 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
509 	}
510 
511 	if (sc->mem != NULL)
512 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
513 
514 	if (ifp != NULL)
515 		if_free(ifp);
516 
517 	taskqueue_free(sc->sc_tq);
518 
519 	if (sc->sc_unr != NULL)
520 		delete_unrhdr(sc->sc_unr);
521 
522 	mtx_destroy(&sc->sc_mtx);
523 
524 	return 0;
525 }
526 
527 static void
528 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
529 {
530 	if (error != 0)
531 		return;
532 
533 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
534 
535 	*(bus_addr_t *)arg = segs[0].ds_addr;
536 }
537 
538 static int
539 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
540 {
541 	int error;
542 
543 	ring->count = count;
544 	ring->queued = 0;
545 	ring->cur = ring->next = 0;
546 
547 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
548 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1,
549 	    count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
550 	if (error != 0) {
551 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
552 		goto fail;
553 	}
554 
555 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
556 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
557 	if (error != 0) {
558 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
559 		goto fail;
560 	}
561 
562 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
563 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
564 	if (error != 0) {
565 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
566 		goto fail;
567 	}
568 
569 	return 0;
570 
571 fail:	iwi_free_cmd_ring(sc, ring);
572 	return error;
573 }
574 
575 static void
576 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
577 {
578 	ring->queued = 0;
579 	ring->cur = ring->next = 0;
580 }
581 
582 static void
583 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
584 {
585 	if (ring->desc != NULL) {
586 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
587 		    BUS_DMASYNC_POSTWRITE);
588 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
589 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
590 	}
591 
592 	if (ring->desc_dmat != NULL)
593 		bus_dma_tag_destroy(ring->desc_dmat);
594 }
595 
596 static int
597 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
598     bus_addr_t csr_ridx, bus_addr_t csr_widx)
599 {
600 	int i, error;
601 
602 	ring->count = count;
603 	ring->queued = 0;
604 	ring->cur = ring->next = 0;
605 	ring->csr_ridx = csr_ridx;
606 	ring->csr_widx = csr_widx;
607 
608 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
609 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
610 	    count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
611 	if (error != 0) {
612 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
613 		goto fail;
614 	}
615 
616 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
617 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
618 	if (error != 0) {
619 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
620 		goto fail;
621 	}
622 
623 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
624 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
625 	if (error != 0) {
626 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
627 		goto fail;
628 	}
629 
630 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
631 	    M_NOWAIT | M_ZERO);
632 	if (ring->data == NULL) {
633 		device_printf(sc->sc_dev, "could not allocate soft data\n");
634 		error = ENOMEM;
635 		goto fail;
636 	}
637 
638 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
639 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
640 	    MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
641 	if (error != 0) {
642 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
643 		goto fail;
644 	}
645 
646 	for (i = 0; i < count; i++) {
647 		error = bus_dmamap_create(ring->data_dmat, 0,
648 		    &ring->data[i].map);
649 		if (error != 0) {
650 			device_printf(sc->sc_dev, "could not create DMA map\n");
651 			goto fail;
652 		}
653 	}
654 
655 	return 0;
656 
657 fail:	iwi_free_tx_ring(sc, ring);
658 	return error;
659 }
660 
661 static void
662 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
663 {
664 	struct iwi_tx_data *data;
665 	int i;
666 
667 	for (i = 0; i < ring->count; i++) {
668 		data = &ring->data[i];
669 
670 		if (data->m != NULL) {
671 			bus_dmamap_sync(ring->data_dmat, data->map,
672 			    BUS_DMASYNC_POSTWRITE);
673 			bus_dmamap_unload(ring->data_dmat, data->map);
674 			m_freem(data->m);
675 			data->m = NULL;
676 		}
677 
678 		if (data->ni != NULL) {
679 			ieee80211_free_node(data->ni);
680 			data->ni = NULL;
681 		}
682 	}
683 
684 	ring->queued = 0;
685 	ring->cur = ring->next = 0;
686 }
687 
688 static void
689 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
690 {
691 	struct iwi_tx_data *data;
692 	int i;
693 
694 	if (ring->desc != NULL) {
695 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
696 		    BUS_DMASYNC_POSTWRITE);
697 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
698 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
699 	}
700 
701 	if (ring->desc_dmat != NULL)
702 		bus_dma_tag_destroy(ring->desc_dmat);
703 
704 	if (ring->data != NULL) {
705 		for (i = 0; i < ring->count; i++) {
706 			data = &ring->data[i];
707 
708 			if (data->m != NULL) {
709 				bus_dmamap_sync(ring->data_dmat, data->map,
710 				    BUS_DMASYNC_POSTWRITE);
711 				bus_dmamap_unload(ring->data_dmat, data->map);
712 				m_freem(data->m);
713 			}
714 
715 			if (data->ni != NULL)
716 				ieee80211_free_node(data->ni);
717 
718 			if (data->map != NULL)
719 				bus_dmamap_destroy(ring->data_dmat, data->map);
720 		}
721 
722 		free(ring->data, M_DEVBUF);
723 	}
724 
725 	if (ring->data_dmat != NULL)
726 		bus_dma_tag_destroy(ring->data_dmat);
727 }
728 
729 static int
730 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
731 {
732 	struct iwi_rx_data *data;
733 	int i, error;
734 
735 	ring->count = count;
736 	ring->cur = 0;
737 
738 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
739 	    M_NOWAIT | M_ZERO);
740 	if (ring->data == NULL) {
741 		device_printf(sc->sc_dev, "could not allocate soft data\n");
742 		error = ENOMEM;
743 		goto fail;
744 	}
745 
746 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
747 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
748 	    NULL, &ring->data_dmat);
749 	if (error != 0) {
750 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
751 		goto fail;
752 	}
753 
754 	for (i = 0; i < count; i++) {
755 		data = &ring->data[i];
756 
757 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
758 		if (error != 0) {
759 			device_printf(sc->sc_dev, "could not create DMA map\n");
760 			goto fail;
761 		}
762 
763 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
764 		if (data->m == NULL) {
765 			device_printf(sc->sc_dev,
766 			    "could not allocate rx mbuf\n");
767 			error = ENOMEM;
768 			goto fail;
769 		}
770 
771 		error = bus_dmamap_load(ring->data_dmat, data->map,
772 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
773 		    &data->physaddr, 0);
774 		if (error != 0) {
775 			device_printf(sc->sc_dev,
776 			    "could not load rx buf DMA map");
777 			goto fail;
778 		}
779 
780 		data->reg = IWI_CSR_RX_BASE + i * 4;
781 	}
782 
783 	return 0;
784 
785 fail:	iwi_free_rx_ring(sc, ring);
786 	return error;
787 }
788 
789 static void
790 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
791 {
792 	ring->cur = 0;
793 }
794 
795 static void
796 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
797 {
798 	struct iwi_rx_data *data;
799 	int i;
800 
801 	if (ring->data != NULL) {
802 		for (i = 0; i < ring->count; i++) {
803 			data = &ring->data[i];
804 
805 			if (data->m != NULL) {
806 				bus_dmamap_sync(ring->data_dmat, data->map,
807 				    BUS_DMASYNC_POSTREAD);
808 				bus_dmamap_unload(ring->data_dmat, data->map);
809 				m_freem(data->m);
810 			}
811 
812 			if (data->map != NULL)
813 				bus_dmamap_destroy(ring->data_dmat, data->map);
814 		}
815 
816 		free(ring->data, M_DEVBUF);
817 	}
818 
819 	if (ring->data_dmat != NULL)
820 		bus_dma_tag_destroy(ring->data_dmat);
821 }
822 
823 static int
824 iwi_shutdown(device_t dev)
825 {
826 	struct iwi_softc *sc = device_get_softc(dev);
827 
828 	iwi_stop(sc);
829 	iwi_put_firmware(sc);		/* ??? XXX */
830 
831 	return 0;
832 }
833 
834 static int
835 iwi_suspend(device_t dev)
836 {
837 	struct iwi_softc *sc = device_get_softc(dev);
838 
839 	iwi_stop(sc);
840 
841 	return 0;
842 }
843 
844 static int
845 iwi_resume(device_t dev)
846 {
847 	struct iwi_softc *sc = device_get_softc(dev);
848 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
849 	IWI_LOCK_DECL;
850 
851 	IWI_LOCK(sc);
852 
853 	pci_write_config(dev, 0x41, 0, 1);
854 
855 	if (ifp->if_flags & IFF_UP) {
856 		ifp->if_init(ifp->if_softc);
857 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
858 			ifp->if_start(ifp);
859 	}
860 
861 	IWI_UNLOCK(sc);
862 
863 	return 0;
864 }
865 
866 static struct ieee80211_node *
867 iwi_node_alloc(struct ieee80211_node_table *nt)
868 {
869 	struct iwi_node *in;
870 
871 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
872 	if (in == NULL)
873 		return NULL;
874 
875 	in->in_station = -1;
876 
877 	return &in->in_node;
878 }
879 
880 static void
881 iwi_node_free(struct ieee80211_node *ni)
882 {
883 	struct ieee80211com *ic = ni->ni_ic;
884 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
885 	struct iwi_node *in = (struct iwi_node *)ni;
886 
887 	if (in->in_station != -1) {
888 		DPRINTF(("%s mac %6D station %u\n", __func__,
889 		    ni->ni_macaddr, ":", in->in_station));
890 		free_unr(sc->sc_unr, in->in_station);
891 	}
892 
893 	sc->sc_node_free(ni);
894 }
895 
896 static int
897 iwi_media_change(struct ifnet *ifp)
898 {
899 	struct iwi_softc *sc = ifp->if_softc;
900 	int error;
901 	IWI_LOCK_DECL;
902 
903 	IWI_LOCK(sc);
904 
905 	error = ieee80211_media_change(ifp);
906 	if (error == ENETRESET &&
907 	    (ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
908 		iwi_init_locked(sc, 0);
909 
910 	IWI_UNLOCK(sc);
911 
912 	return error;
913 }
914 
915 /*
916  * Convert h/w rate code to IEEE rate code.
917  */
918 static int
919 iwi_cvtrate(int iwirate)
920 {
921 	switch (iwirate) {
922 	case IWI_RATE_DS1:	return 2;
923 	case IWI_RATE_DS2:	return 4;
924 	case IWI_RATE_DS5:	return 11;
925 	case IWI_RATE_DS11:	return 22;
926 	case IWI_RATE_OFDM6:	return 12;
927 	case IWI_RATE_OFDM9:	return 18;
928 	case IWI_RATE_OFDM12:	return 24;
929 	case IWI_RATE_OFDM18:	return 36;
930 	case IWI_RATE_OFDM24:	return 48;
931 	case IWI_RATE_OFDM36:	return 72;
932 	case IWI_RATE_OFDM48:	return 96;
933 	case IWI_RATE_OFDM54:	return 108;
934 	}
935 	return 0;
936 }
937 
938 /*
939  * The firmware automatically adapts the transmit speed.  We report its current
940  * value here.
941  */
942 static void
943 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
944 {
945 	struct iwi_softc *sc = ifp->if_softc;
946 	struct ieee80211com *ic = &sc->sc_ic;
947 	int rate;
948 
949 	imr->ifm_status = IFM_AVALID;
950 	imr->ifm_active = IFM_IEEE80211;
951 	if (ic->ic_state == IEEE80211_S_RUN)
952 		imr->ifm_status |= IFM_ACTIVE;
953 
954 	/* read current transmission rate from adapter */
955 	rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
956 	imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
957 
958 	if (ic->ic_opmode == IEEE80211_M_IBSS)
959 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
960 	else if (ic->ic_opmode == IEEE80211_M_MONITOR)
961 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
962 }
963 
964 static int
965 iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
966 {
967 	struct ifnet *ifp = ic->ic_ifp;
968 	struct iwi_softc *sc = ifp->if_softc;
969 
970 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
971 		ieee80211_state_name[ic->ic_state],
972 		ieee80211_state_name[nstate], sc->flags));
973 
974 	/* XXX state change race with taskqueue */
975 	switch (nstate) {
976 	case IEEE80211_S_SCAN:
977 		if (ic->ic_state == IEEE80211_S_RUN) {
978 			/*
979 			 * Beacon miss, send disassoc and wait for a reply
980 			 * from the card; we'll start a scan then.  Note
981 			 * this only happens with auto roaming; otherwise
982 			 * just notify users and wait to be directed.
983 			 */
984 			/* notify directly as we bypass net80211 */
985 			ieee80211_sta_leave(ic, ic->ic_bss);
986 			if (ic->ic_roaming == IEEE80211_ROAMING_AUTO)
987 				taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
988 			break;
989 		}
990 		if ((sc->flags & IWI_FLAG_SCANNING) == 0) {
991 			sc->flags |= IWI_FLAG_SCANNING;
992 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scanstarttask);
993 		}
994 		break;
995 
996 	case IEEE80211_S_AUTH:
997 		iwi_auth_and_assoc(sc);
998 		break;
999 
1000 	case IEEE80211_S_RUN:
1001 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
1002 			/*
1003 			 * XXX when joining an ibss network we are called
1004 			 * with a SCAN -> RUN transition on scan complete.
1005 			 * Use that to call iwi_auth_and_assoc.  On completing
1006 			 * the join we are then called again with an
1007 			 * AUTH -> RUN transition and we want to do nothing.
1008 			 * This is all totally bogus and needs to be redone.
1009 			 */
1010 			if (ic->ic_state == IEEE80211_S_SCAN)
1011 				iwi_auth_and_assoc(sc);
1012 		} else if (ic->ic_opmode == IEEE80211_M_MONITOR)
1013 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
1014 
1015 		/* XXX way wrong */
1016 		return sc->sc_newstate(ic, nstate,
1017 		    IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
1018 
1019 	case IEEE80211_S_ASSOC:
1020 		break;
1021 
1022 	case IEEE80211_S_INIT:
1023 		/*
1024 		 * NB: don't try to do this if iwi_stop_master has
1025 		 *     shutdown the firmware and disabled interrupts.
1026 		 */
1027 		if (ic->ic_state == IEEE80211_S_RUN &&
1028 		    (sc->flags & IWI_FLAG_FW_INITED))
1029 			taskqueue_enqueue(sc->sc_tq, &sc->sc_downtask);
1030 		break;
1031 	}
1032 
1033 	ic->ic_state = nstate;
1034 	return 0;
1035 }
1036 
1037 /*
1038  * WME parameters coming from IEEE 802.11e specification.  These values are
1039  * already declared in ieee80211_proto.c, but they are static so they can't
1040  * be reused here.
1041  */
1042 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1043 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1044 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1045 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1046 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1047 };
1048 
1049 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1050 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1051 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1052 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1053 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1054 };
1055 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1056 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1057 
1058 static void
1059 iwi_wme_init(struct iwi_softc *sc)
1060 {
1061 	const struct wmeParams *wmep;
1062 	int ac;
1063 
1064 	memset(sc->wme, 0, sizeof sc->wme);
1065 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1066 		/* set WME values for CCK modulation */
1067 		wmep = &iwi_wme_cck_params[ac];
1068 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1069 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1070 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1071 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1072 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1073 
1074 		/* set WME values for OFDM modulation */
1075 		wmep = &iwi_wme_ofdm_params[ac];
1076 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1077 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1078 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1079 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1080 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1081 	}
1082 }
1083 
1084 static int
1085 iwi_wme_setparams_locked(struct iwi_softc *sc)
1086 {
1087 	struct ieee80211com *ic = &sc->sc_ic;
1088 	const struct wmeParams *wmep;
1089 	int ac;
1090 
1091 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1092 		/* set WME values for current operating mode */
1093 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1094 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1095 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1096 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1097 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1098 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1099 	}
1100 
1101 	DPRINTF(("Setting WME parameters\n"));
1102 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1103 }
1104 
1105 static void
1106 iwi_wme_setparams(void *arg, int npending)
1107 {
1108 	struct iwi_softc *sc = arg;
1109 	IWI_LOCK_DECL;
1110 
1111 	IWI_LOCK(sc);
1112 	(void) iwi_wme_setparams_locked(sc);
1113 	IWI_UNLOCK(sc);
1114 }
1115 #undef IWI_USEC
1116 #undef IWI_EXP2
1117 
1118 static int
1119 iwi_wme_update(struct ieee80211com *ic)
1120 {
1121 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1122 
1123 	/*
1124 	 * We may be called to update the WME parameters in
1125 	 * the adapter at various places.  If we're already
1126 	 * associated then initiate the request immediately
1127 	 * (via the taskqueue); otherwise we assume the params
1128 	 * will get sent down to the adapter as part of the
1129 	 * work iwi_auth_and_assoc does.
1130 	 */
1131 	if (ic->ic_state == IEEE80211_S_RUN)
1132 		taskqueue_enqueue(sc->sc_tq, &sc->sc_setwmetask);
1133 	return 0;
1134 }
1135 
1136 static int
1137 iwi_wme_setie(struct iwi_softc *sc)
1138 {
1139 	struct ieee80211_wme_info wme;
1140 
1141 	memset(&wme, 0, sizeof wme);
1142 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1143 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1144 	wme.wme_oui[0] = 0x00;
1145 	wme.wme_oui[1] = 0x50;
1146 	wme.wme_oui[2] = 0xf2;
1147 	wme.wme_type = WME_OUI_TYPE;
1148 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1149 	wme.wme_version = WME_VERSION;
1150 	wme.wme_info = 0;
1151 
1152 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1153 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1154 }
1155 
1156 /*
1157  * Read 16 bits at address 'addr' from the serial EEPROM.
1158  */
1159 static uint16_t
1160 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1161 {
1162 	uint32_t tmp;
1163 	uint16_t val;
1164 	int n;
1165 
1166 	/* clock C once before the first command */
1167 	IWI_EEPROM_CTL(sc, 0);
1168 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1169 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1170 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1171 
1172 	/* write start bit (1) */
1173 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1174 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1175 
1176 	/* write READ opcode (10) */
1177 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1178 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1179 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1180 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1181 
1182 	/* write address A7-A0 */
1183 	for (n = 7; n >= 0; n--) {
1184 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1185 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1186 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1187 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1188 	}
1189 
1190 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1191 
1192 	/* read data Q15-Q0 */
1193 	val = 0;
1194 	for (n = 15; n >= 0; n--) {
1195 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1196 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1197 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1198 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1199 	}
1200 
1201 	IWI_EEPROM_CTL(sc, 0);
1202 
1203 	/* clear Chip Select and clock C */
1204 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1205 	IWI_EEPROM_CTL(sc, 0);
1206 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1207 
1208 	return val;
1209 }
1210 
1211 static void
1212 iwi_setcurchan(struct iwi_softc *sc, int chan)
1213 {
1214 	struct ieee80211com *ic = &sc->sc_ic;
1215 
1216 	ic->ic_curchan = &ic->ic_channels[chan];
1217 	sc->curchan = chan;
1218 
1219 	sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
1220 		htole16(ic->ic_curchan->ic_freq);
1221 	sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
1222 		htole16(ic->ic_curchan->ic_flags);
1223 }
1224 
1225 static void
1226 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1227     struct iwi_frame *frame)
1228 {
1229 	struct ieee80211com *ic = &sc->sc_ic;
1230 	struct ifnet *ifp = ic->ic_ifp;
1231 	struct mbuf *mnew, *m;
1232 	struct ieee80211_node *ni;
1233 	int type, error, framelen;
1234 
1235 	framelen = le16toh(frame->len);
1236 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1237 		/*
1238 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1239 		 *     out of bounds; need to figure out how to limit
1240 		 *     frame size in the firmware
1241 		 */
1242 		/* XXX stat */
1243 		DPRINTFN(1,
1244 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1245 		    le16toh(frame->len), frame->chan, frame->rssi,
1246 		    frame->rssi_dbm));
1247 		return;
1248 	}
1249 
1250 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1251 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1252 
1253 	if (frame->chan != sc->curchan)
1254 		iwi_setcurchan(sc, frame->chan);
1255 
1256 	/*
1257 	 * Try to allocate a new mbuf for this ring element and load it before
1258 	 * processing the current mbuf. If the ring element cannot be loaded,
1259 	 * drop the received packet and reuse the old mbuf. In the unlikely
1260 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1261 	 */
1262 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1263 	if (mnew == NULL) {
1264 		ifp->if_ierrors++;
1265 		return;
1266 	}
1267 
1268 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1269 
1270 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1271 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1272 	    0);
1273 	if (error != 0) {
1274 		m_freem(mnew);
1275 
1276 		/* try to reload the old mbuf */
1277 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1278 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1279 		    &data->physaddr, 0);
1280 		if (error != 0) {
1281 			/* very unlikely that it will fail... */
1282 			panic("%s: could not load old rx mbuf",
1283 			    device_get_name(sc->sc_dev));
1284 		}
1285 		ifp->if_ierrors++;
1286 		return;
1287 	}
1288 
1289 	/*
1290 	 * New mbuf successfully loaded, update Rx ring and continue
1291 	 * processing.
1292 	 */
1293 	m = data->m;
1294 	data->m = mnew;
1295 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1296 
1297 	/* finalize mbuf */
1298 	m->m_pkthdr.rcvif = ifp;
1299 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1300 	    sizeof (struct iwi_frame) + framelen;
1301 
1302 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1303 
1304 	if (bpf_peers_present(sc->sc_drvbpf)) {
1305 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1306 
1307 		tap->wr_flags = 0;
1308 		tap->wr_rate = iwi_cvtrate(frame->rate);
1309 		tap->wr_antsignal = frame->signal;
1310 		tap->wr_antenna = frame->antenna;
1311 
1312 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1313 	}
1314 
1315 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1316 
1317 	/* send the frame to the 802.11 layer */
1318 	type = ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
1319 
1320 	/* node is no longer needed */
1321 	ieee80211_free_node(ni);
1322 
1323 	if (sc->sc_softled) {
1324 		/*
1325 		 * Blink for any data frame.  Otherwise do a
1326 		 * heartbeat-style blink when idle.  The latter
1327 		 * is mainly for station mode where we depend on
1328 		 * periodic beacon frames to trigger the poll event.
1329 		 */
1330 		if (type == IEEE80211_FC0_TYPE_DATA) {
1331 			sc->sc_rxrate = frame->rate;
1332 			iwi_led_event(sc, IWI_LED_RX);
1333 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1334 			iwi_led_event(sc, IWI_LED_POLL);
1335 	}
1336 }
1337 
1338 /* unaligned little endian access */
1339 #define LE_READ_2(p)					\
1340 	((u_int16_t)					\
1341 	 ((((const u_int8_t *)(p))[0]      ) |		\
1342 	  (((const u_int8_t *)(p))[1] <<  8)))
1343 #define LE_READ_4(p)					\
1344 	((u_int32_t)					\
1345 	 ((((const u_int8_t *)(p))[0]      ) |		\
1346 	  (((const u_int8_t *)(p))[1] <<  8) |		\
1347 	  (((const u_int8_t *)(p))[2] << 16) |		\
1348 	  (((const u_int8_t *)(p))[3] << 24)))
1349 
1350 #define	IEEE80211_VERIFY_LENGTH(_len, _minlen) do {			\
1351 	if ((_len) < (_minlen)) {					\
1352 		return;							\
1353 	}								\
1354 } while (0)
1355 
1356 static int __inline
1357 iswmeoui(const u_int8_t *frm)
1358 {
1359 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI);
1360 }
1361 
1362 /*
1363  * Check for an association response frame to see if QoS
1364  * has been negotiated.  We parse just enough to figure
1365  * out if we're supposed to use QoS.  The proper solution
1366  * is to pass the frame up so ieee80211_input can do the
1367  * work but that's made hard by how things currently are
1368  * done in the driver.
1369  */
1370 static void
1371 iwi_checkforqos(struct iwi_softc *sc, const struct ieee80211_frame *wh, int len)
1372 {
1373 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1374 	const uint8_t *frm, *efrm, *wme;
1375 	struct ieee80211_node *ni;
1376 
1377 	/* NB: +8 for capinfo, status, associd, and first ie */
1378 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1379 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1380 		return;
1381 	/*
1382 	 * asresp frame format
1383 	 *	[2] capability information
1384 	 *	[2] status
1385 	 *	[2] association ID
1386 	 *	[tlv] supported rates
1387 	 *	[tlv] extended supported rates
1388 	 *	[tlv] WME
1389 	 */
1390 	frm = (const uint8_t *)&wh[1];
1391 	efrm = ((const uint8_t *) wh) + len;
1392 	frm += 6;
1393 
1394 	wme = NULL;
1395 	while (frm < efrm) {
1396 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1]);
1397 		switch (*frm) {
1398 		case IEEE80211_ELEMID_VENDOR:
1399 			if (iswmeoui(frm))
1400 				wme = frm;
1401 			break;
1402 		}
1403 		frm += frm[1] + 2;
1404 	}
1405 
1406 	ni = sc->sc_ic.ic_bss;
1407 	if (wme != NULL)
1408 		ni->ni_flags |= IEEE80211_NODE_QOS;
1409 	else
1410 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1411 #undef SUBTYPE
1412 }
1413 
1414 static void
1415 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1416 {
1417 	struct ieee80211com *ic = &sc->sc_ic;
1418 	struct iwi_notif_scan_channel *chan;
1419 	struct iwi_notif_scan_complete *scan;
1420 	struct iwi_notif_authentication *auth;
1421 	struct iwi_notif_association *assoc;
1422 	struct iwi_notif_beacon_state *beacon;
1423 
1424 	switch (notif->type) {
1425 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1426 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1427 
1428 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1429 		    ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
1430 		break;
1431 
1432 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1433 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1434 
1435 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1436 		    scan->status));
1437 
1438 		sc->sc_scan_timer = 0;
1439 
1440 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1441 			/*
1442 			 * Monitor mode works by doing a passive scan to set
1443 			 * the channel and enable rx.  Because we don't want
1444 			 * to abort a scan lest the firmware crash we scan
1445 			 * for a short period of time and automatically restart
1446 			 * the scan when notified the sweep has completed.
1447 			 */
1448 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scantask);
1449 		} else {
1450 			sc->flags &= ~IWI_FLAG_SCANNING;
1451 			taskqueue_enqueue(sc->sc_tq, &sc->sc_scandonetask);
1452 		}
1453 		break;
1454 
1455 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1456 		auth = (struct iwi_notif_authentication *)(notif + 1);
1457 
1458 		switch (auth->state) {
1459 		case IWI_AUTH_SUCCESS:
1460 			DPRINTFN(2, ("Authentication succeeeded\n"));
1461 			ieee80211_node_authorize(ic->ic_bss);
1462 			ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
1463 			break;
1464 
1465 		case IWI_AUTH_FAIL:
1466 			DPRINTFN(2, ("Authentication failed\n"));
1467 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1468 			/* XXX */
1469 			break;
1470 
1471 		case IWI_AUTH_SENT_1:
1472 		case IWI_AUTH_RECV_2:
1473 		case IWI_AUTH_SEQ1_PASS:
1474 			break;
1475 
1476 		case IWI_AUTH_SEQ1_FAIL:
1477 			DPRINTFN(2, ("Initial authentication handshake failed; "
1478 				"you probably need shared key\n"));
1479 			/* XXX retry shared key when in auto */
1480 			break;
1481 
1482 		default:
1483 			device_printf(sc->sc_dev,
1484 			    "unknown authentication state %u\n", auth->state);
1485 		}
1486 		break;
1487 
1488 	case IWI_NOTIF_TYPE_ASSOCIATION:
1489 		assoc = (struct iwi_notif_association *)(notif + 1);
1490 
1491 		switch (assoc->state) {
1492 		case IWI_AUTH_SUCCESS:
1493 			/* re-association, do nothing */
1494 			break;
1495 
1496 		case IWI_ASSOC_SUCCESS:
1497 			DPRINTFN(2, ("Association succeeded\n"));
1498 			sc->flags |= IWI_FLAG_ASSOCIATED;
1499 			iwi_checkforqos(sc,
1500 			    (const struct ieee80211_frame *)(assoc+1),
1501 			    le16toh(notif->len) - sizeof(*assoc));
1502 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1503 			break;
1504 
1505 		case IWI_ASSOC_FAIL:
1506 			DPRINTFN(2, ("Association failed\n"));
1507 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1508 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1509 			break;
1510 
1511 		default:
1512 			device_printf(sc->sc_dev,
1513 			    "unknown association state %u\n", assoc->state);
1514 		}
1515 		break;
1516 
1517 	case IWI_NOTIF_TYPE_BEACON:
1518 		/* XXX check struct length */
1519 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1520 
1521 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1522 		    beacon->state, le32toh(beacon->number)));
1523 
1524 		if (beacon->state == IWI_BEACON_MISS) {
1525 #if 0
1526 			if (sc->flags & IWI_FLAG_SCANNING) {
1527 				/* XXX terminate scan, linux driver
1528 				  says fw can get stuck */
1529 				/* XXX should be handled in iwi_newstate */
1530 				taskqueue_enqueue(sc->sc_tq,
1531 					&sc->sc_scanaborttask);
1532 			}
1533 #endif
1534 			/*
1535 			 * The firmware notifies us of every beacon miss
1536 			 * so we need to track the count against the
1537 			 * configured threshold before notifying the
1538 			 * 802.11 layer.
1539 			 * XXX try to roam, drop assoc only on much higher count
1540 			 */
1541 			if (le32toh(beacon->number) >= ic->ic_bmissthreshold) {
1542 				DPRINTF(("Beacon miss: %u >= %u\n",
1543 				    le32toh(beacon->number),
1544 				    ic->ic_bmissthreshold));
1545 				ieee80211_beacon_miss(ic);
1546 			}
1547 		}
1548 		break;
1549 
1550 	case IWI_NOTIF_TYPE_CALIBRATION:
1551 	case IWI_NOTIF_TYPE_NOISE:
1552 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1553 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1554 		break;
1555 
1556 	default:
1557 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1558 		    notif->type, notif->flags, le16toh(notif->len)));
1559 	}
1560 }
1561 
1562 static void
1563 iwi_rx_intr(struct iwi_softc *sc)
1564 {
1565 	struct iwi_rx_data *data;
1566 	struct iwi_hdr *hdr;
1567 	uint32_t hw;
1568 
1569 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1570 
1571 	for (; sc->rxq.cur != hw;) {
1572 		data = &sc->rxq.data[sc->rxq.cur];
1573 
1574 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1575 		    BUS_DMASYNC_POSTREAD);
1576 
1577 		hdr = mtod(data->m, struct iwi_hdr *);
1578 
1579 		switch (hdr->type) {
1580 		case IWI_HDR_TYPE_FRAME:
1581 			iwi_frame_intr(sc, data, sc->rxq.cur,
1582 			    (struct iwi_frame *)(hdr + 1));
1583 			break;
1584 
1585 		case IWI_HDR_TYPE_NOTIF:
1586 			iwi_notification_intr(sc,
1587 			    (struct iwi_notif *)(hdr + 1));
1588 			break;
1589 
1590 		default:
1591 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1592 			    hdr->type);
1593 		}
1594 
1595 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1596 
1597 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1598 	}
1599 
1600 	/* tell the firmware what we have processed */
1601 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1602 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1603 }
1604 
1605 static void
1606 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1607 {
1608 	struct ieee80211com *ic = &sc->sc_ic;
1609 	struct ifnet *ifp = ic->ic_ifp;
1610 	struct iwi_tx_data *data;
1611 	uint32_t hw;
1612 
1613 	hw = CSR_READ_4(sc, txq->csr_ridx);
1614 
1615 	for (; txq->next != hw;) {
1616 		data = &txq->data[txq->next];
1617 
1618 		bus_dmamap_sync(txq->data_dmat, data->map,
1619 		    BUS_DMASYNC_POSTWRITE);
1620 		bus_dmamap_unload(txq->data_dmat, data->map);
1621 		m_freem(data->m);
1622 		data->m = NULL;
1623 		ieee80211_free_node(data->ni);
1624 		data->ni = NULL;
1625 
1626 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1627 
1628 		ifp->if_opackets++;
1629 
1630 		txq->queued--;
1631 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1632 	}
1633 
1634 	sc->sc_tx_timer = 0;
1635 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1636 
1637 	if (sc->sc_softled)
1638 		iwi_led_event(sc, IWI_LED_TX);
1639 
1640 	iwi_start(ifp);
1641 }
1642 
1643 static void
1644 iwi_intr(void *arg)
1645 {
1646 	struct iwi_softc *sc = arg;
1647 	uint32_t r;
1648 	IWI_LOCK_DECL;
1649 
1650 	IWI_LOCK(sc);
1651 
1652 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1653 		IWI_UNLOCK(sc);
1654 		return;
1655 	}
1656 
1657 	/* acknowledge interrupts */
1658 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1659 
1660 	if (r & IWI_INTR_FATAL_ERROR) {
1661 		device_printf(sc->sc_dev, "firmware error\n");
1662 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
1663 	}
1664 
1665 	if (r & IWI_INTR_FW_INITED) {
1666 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1667 			wakeup(sc);
1668 	}
1669 
1670 	if (r & IWI_INTR_RADIO_OFF)
1671 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radiofftask);
1672 
1673 	if (r & IWI_INTR_CMD_DONE) {
1674 		sc->flags &= ~IWI_FLAG_BUSY;
1675 		wakeup(sc);
1676 	}
1677 
1678 	if (r & IWI_INTR_TX1_DONE)
1679 		iwi_tx_intr(sc, &sc->txq[0]);
1680 
1681 	if (r & IWI_INTR_TX2_DONE)
1682 		iwi_tx_intr(sc, &sc->txq[1]);
1683 
1684 	if (r & IWI_INTR_TX3_DONE)
1685 		iwi_tx_intr(sc, &sc->txq[2]);
1686 
1687 	if (r & IWI_INTR_TX4_DONE)
1688 		iwi_tx_intr(sc, &sc->txq[3]);
1689 
1690 	if (r & IWI_INTR_RX_DONE)
1691 		iwi_rx_intr(sc);
1692 
1693 	if (r & IWI_INTR_PARITY_ERROR) {
1694 		/* XXX rate-limit */
1695 		device_printf(sc->sc_dev, "parity error\n");
1696 	}
1697 
1698 	IWI_UNLOCK(sc);
1699 }
1700 
1701 static int
1702 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1703 {
1704 	struct iwi_cmd_desc *desc;
1705 
1706 	if (sc->flags & IWI_FLAG_BUSY) {
1707 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1708 			__func__, type);
1709 		return EAGAIN;
1710 	}
1711 	sc->flags |= IWI_FLAG_BUSY;
1712 
1713 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1714 
1715 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1716 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1717 	desc->type = type;
1718 	desc->len = len;
1719 	memcpy(desc->data, data, len);
1720 
1721 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1722 	    BUS_DMASYNC_PREWRITE);
1723 
1724 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1725 	    type, len));
1726 
1727 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1728 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1729 
1730 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1731 }
1732 
1733 static void
1734 iwi_write_ibssnode(struct iwi_softc *sc,
1735 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1736 {
1737 	struct iwi_ibssnode node;
1738 
1739 	/* write node information into NIC memory */
1740 	memset(&node, 0, sizeof node);
1741 	IEEE80211_ADDR_COPY(node.bssid, addr);
1742 
1743 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1744 
1745 	CSR_WRITE_REGION_1(sc,
1746 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1747 	    (uint8_t *)&node, sizeof node);
1748 }
1749 
1750 static int
1751 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1752     int ac)
1753 {
1754 	struct iwi_softc *sc = ifp->if_softc;
1755 	struct ieee80211com *ic = &sc->sc_ic;
1756 	struct iwi_node *in = (struct iwi_node *)ni;
1757 	const struct ieee80211_frame *wh;
1758 	struct ieee80211_key *k;
1759 	const struct chanAccParams *cap;
1760 	struct iwi_tx_ring *txq = &sc->txq[ac];
1761 	struct iwi_tx_data *data;
1762 	struct iwi_tx_desc *desc;
1763 	struct mbuf *mnew;
1764 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1765 	int error, nsegs, hdrlen, i;
1766 	int ismcast, flags, xflags, staid;
1767 
1768 	wh = mtod(m0, const struct ieee80211_frame *);
1769 	/* NB: only data frames use this path */
1770 	hdrlen = ieee80211_hdrsize(wh);
1771 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1772 	flags = xflags = 0;
1773 
1774 	if (!ismcast)
1775 		flags |= IWI_DATA_FLAG_NEED_ACK;
1776 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1777 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1778 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1779 		xflags |= IWI_DATA_XFLAG_QOS;
1780 		cap = &ic->ic_wme.wme_chanParams;
1781 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1782 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1783 	}
1784 
1785 	/*
1786 	 * This is only used in IBSS mode where the firmware expect an index
1787 	 * in a h/w table instead of a destination address.
1788 	 */
1789 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1790 		if (!ismcast) {
1791 			if (in->in_station == -1) {
1792 				in->in_station = alloc_unr(sc->sc_unr);
1793 				if (in->in_station == -1) {
1794 					/* h/w table is full */
1795 					m_freem(m0);
1796 					ieee80211_free_node(ni);
1797 					ifp->if_oerrors++;
1798 					return 0;
1799 				}
1800 				iwi_write_ibssnode(sc,
1801 					ni->ni_macaddr, in->in_station);
1802 			}
1803 			staid = in->in_station;
1804 		} else {
1805 			/*
1806 			 * Multicast addresses have no associated node
1807 			 * so there will be no station entry.  We reserve
1808 			 * entry 0 for one mcast address and use that.
1809 			 * If there are many being used this will be
1810 			 * expensive and we'll need to do a better job
1811 			 * but for now this handles the broadcast case.
1812 			 */
1813 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1814 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1815 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1816 			}
1817 			staid = 0;
1818 		}
1819 	} else
1820 		staid = 0;
1821 
1822 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1823 		k = ieee80211_crypto_encap(ic, ni, m0);
1824 		if (k == NULL) {
1825 			m_freem(m0);
1826 			return ENOBUFS;
1827 		}
1828 
1829 		/* packet header may have moved, reset our local pointer */
1830 		wh = mtod(m0, struct ieee80211_frame *);
1831 	}
1832 
1833 	if (bpf_peers_present(sc->sc_drvbpf)) {
1834 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1835 
1836 		tap->wt_flags = 0;
1837 
1838 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1839 	}
1840 
1841 	data = &txq->data[txq->cur];
1842 	desc = &txq->desc[txq->cur];
1843 
1844 	/* save and trim IEEE802.11 header */
1845 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1846 	m_adj(m0, hdrlen);
1847 
1848 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1849 	    &nsegs, 0);
1850 	if (error != 0 && error != EFBIG) {
1851 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1852 		    error);
1853 		m_freem(m0);
1854 		return error;
1855 	}
1856 	if (error != 0) {
1857 		mnew = m_defrag(m0, M_DONTWAIT);
1858 		if (mnew == NULL) {
1859 			device_printf(sc->sc_dev,
1860 			    "could not defragment mbuf\n");
1861 			m_freem(m0);
1862 			return ENOBUFS;
1863 		}
1864 		m0 = mnew;
1865 
1866 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1867 		    m0, segs, &nsegs, 0);
1868 		if (error != 0) {
1869 			device_printf(sc->sc_dev,
1870 			    "could not map mbuf (error %d)\n", error);
1871 			m_freem(m0);
1872 			return error;
1873 		}
1874 	}
1875 
1876 	data->m = m0;
1877 	data->ni = ni;
1878 
1879 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1880 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1881 	desc->station = staid;
1882 	desc->cmd = IWI_DATA_CMD_TX;
1883 	desc->len = htole16(m0->m_pkthdr.len);
1884 	desc->flags = flags;
1885 	desc->xflags = xflags;
1886 
1887 #if 0
1888 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1889 		desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
1890 	else
1891 #endif
1892 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1893 
1894 	desc->nseg = htole32(nsegs);
1895 	for (i = 0; i < nsegs; i++) {
1896 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1897 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1898 	}
1899 
1900 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1901 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1902 
1903 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1904 	    ac, txq->cur, le16toh(desc->len), nsegs));
1905 
1906 	txq->queued++;
1907 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1908 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1909 
1910 	return 0;
1911 }
1912 
1913 static void
1914 iwi_start(struct ifnet *ifp)
1915 {
1916 	struct iwi_softc *sc = ifp->if_softc;
1917 	struct ieee80211com *ic = &sc->sc_ic;
1918 	struct mbuf *m0;
1919 	struct ether_header *eh;
1920 	struct ieee80211_node *ni;
1921 	int ac;
1922 	IWI_LOCK_DECL;
1923 
1924 	IWI_LOCK(sc);
1925 
1926 	if (ic->ic_state != IEEE80211_S_RUN) {
1927 		IWI_UNLOCK(sc);
1928 		return;
1929 	}
1930 
1931 	for (;;) {
1932 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1933 		if (m0 == NULL) {
1934 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1935 			if (m0 == NULL)
1936 				break;
1937 
1938 			if (m0->m_len < sizeof (struct ether_header) &&
1939 			    (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
1940 				ifp->if_oerrors++;
1941 				continue;
1942 			}
1943 			eh = mtod(m0, struct ether_header *);
1944 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1945 			if (ni == NULL) {
1946 				m_freem(m0);
1947 				ifp->if_oerrors++;
1948 				continue;
1949 			}
1950 
1951 			/* classify mbuf so we can find which tx ring to use */
1952 			if (ieee80211_classify(ic, m0, ni) != 0) {
1953 				m_freem(m0);
1954 				ieee80211_free_node(ni);
1955 				ifp->if_oerrors++;
1956 				continue;
1957 			}
1958 
1959 			/* XXX does not belong here */
1960 			/* no QoS encapsulation for EAPOL frames */
1961 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1962 			    M_WME_GETAC(m0) : WME_AC_BE;
1963 
1964 			if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1965 				/* there is no place left in this ring */
1966 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1967 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1968 				break;
1969 			}
1970 
1971 			BPF_MTAP(ifp, m0);
1972 
1973 			m0 = ieee80211_encap(ic, m0, ni);
1974 			if (m0 == NULL) {
1975 				ieee80211_free_node(ni);
1976 				ifp->if_oerrors++;
1977 				continue;
1978 			}
1979 		} else {
1980 			ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
1981 			m0->m_pkthdr.rcvif = NULL;
1982 			/* XXX no way to send mgt frames (yet), discard */
1983 			m_freem(m0);
1984 			ieee80211_free_node(ni);
1985 			continue;
1986 		}
1987 
1988 		if (bpf_peers_present(ic->ic_rawbpf))
1989 			bpf_mtap(ic->ic_rawbpf, m0);
1990 
1991 		if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
1992 			ieee80211_free_node(ni);
1993 			ifp->if_oerrors++;
1994 			break;
1995 		}
1996 
1997 		sc->sc_tx_timer = 5;
1998 		ifp->if_timer = 1;
1999 	}
2000 
2001 	IWI_UNLOCK(sc);
2002 }
2003 
2004 static void
2005 iwi_watchdog(struct ifnet *ifp)
2006 {
2007 	struct iwi_softc *sc = ifp->if_softc;
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 	IWI_LOCK_DECL;
2010 
2011 	IWI_LOCK(sc);
2012 
2013 	if (sc->sc_tx_timer > 0) {
2014 		if (--sc->sc_tx_timer == 0) {
2015 			if_printf(ifp, "device timeout\n");
2016 			ifp->if_oerrors++;
2017 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
2018 		}
2019 	}
2020 	if (sc->sc_rfkill_timer > 0) {
2021 		if (--sc->sc_rfkill_timer == 0) {
2022 			/*
2023 			 * Check for a change in rfkill state.  We get an
2024 			 * interrupt when a radio is disabled but not when
2025 			 * it is enabled so we must poll for the latter.
2026 			 */
2027 			if (!iwi_getrfkill(sc))
2028 				taskqueue_enqueue(sc->sc_tq, &sc->sc_radiontask);
2029 			else
2030 				sc->sc_rfkill_timer = 2;
2031 		}
2032 	}
2033 	if (sc->sc_scan_timer > 0) {
2034 		if (--sc->sc_scan_timer == 0) {
2035 			if (sc->flags & IWI_FLAG_SCANNING) {
2036 				if_printf(ifp, "scan stuck\n");
2037 				taskqueue_enqueue(sc->sc_tq, &sc->sc_restarttask);
2038 			}
2039 		}
2040 	}
2041 	if (sc->sc_tx_timer || sc->sc_rfkill_timer || sc->sc_scan_timer)
2042 		ifp->if_timer = 1;
2043 	else
2044 		ifp->if_timer = 0;
2045 
2046 	ieee80211_watchdog(ic);
2047 
2048 	IWI_UNLOCK(sc);
2049 }
2050 
2051 static int
2052 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2053 {
2054 	struct iwi_softc *sc = ifp->if_softc;
2055 	struct ieee80211com *ic = &sc->sc_ic;
2056 	int error = 0;
2057 	IWI_LOCK_DECL;
2058 
2059 	IWI_LOCK(sc);
2060 
2061 	switch (cmd) {
2062 	case SIOCSIFFLAGS:
2063 		if (ifp->if_flags & IFF_UP) {
2064 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2065 				iwi_init_locked(sc, 0);
2066 		} else {
2067 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2068 				iwi_stop(sc);
2069 			else {
2070 				/*
2071 				 * If device was stopped due to rfkill then
2072 				 * marked down we'll have the polling thread
2073 				 * running; stop it explicitly.
2074 				 */
2075 				sc->sc_rfkill_timer = 0;
2076 			}
2077 			iwi_put_firmware(sc);
2078 		}
2079 		break;
2080 
2081 	default:
2082 		error = ieee80211_ioctl(ic, cmd, data);
2083 	}
2084 
2085 	if (error == ENETRESET) {
2086 		if ((ifp->if_flags & IFF_UP) &&
2087 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2088 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2089 			iwi_init_locked(sc, 0);
2090 		error = 0;
2091 	}
2092 
2093 	IWI_UNLOCK(sc);
2094 
2095 	return error;
2096 }
2097 
2098 static void
2099 iwi_stop_master(struct iwi_softc *sc)
2100 {
2101 	uint32_t tmp;
2102 	int ntries;
2103 
2104 	/* disable interrupts */
2105 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2106 
2107 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2108 	for (ntries = 0; ntries < 5; ntries++) {
2109 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2110 			break;
2111 		DELAY(10);
2112 	}
2113 	if (ntries == 5)
2114 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2115 
2116 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2117 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2118 
2119 	sc->flags &= ~IWI_FLAG_FW_INITED;
2120 }
2121 
2122 static int
2123 iwi_reset(struct iwi_softc *sc)
2124 {
2125 	uint32_t tmp;
2126 	int i, ntries;
2127 
2128 	iwi_stop_master(sc);
2129 
2130 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2131 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2132 
2133 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2134 
2135 	/* wait for clock stabilization */
2136 	for (ntries = 0; ntries < 1000; ntries++) {
2137 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2138 			break;
2139 		DELAY(200);
2140 	}
2141 	if (ntries == 1000) {
2142 		device_printf(sc->sc_dev,
2143 		    "timeout waiting for clock stabilization\n");
2144 		return EIO;
2145 	}
2146 
2147 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2148 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2149 
2150 	DELAY(10);
2151 
2152 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2153 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2154 
2155 	/* clear NIC memory */
2156 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2157 	for (i = 0; i < 0xc000; i++)
2158 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2159 
2160 	return 0;
2161 }
2162 
2163 static const struct iwi_firmware_ohdr *
2164 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2165 {
2166 	struct firmware *fp = fw->fp;
2167 	const struct iwi_firmware_ohdr *hdr;
2168 
2169 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2170 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2171 		return NULL;
2172 	}
2173 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2174 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2175 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2176 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2177 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2178 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2179 		    IWI_FW_REQ_MINOR);
2180 		return NULL;
2181 	}
2182 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2183 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2184 	fw->name = fp->name;
2185 	return hdr;
2186 }
2187 
2188 static const struct iwi_firmware_ohdr *
2189 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2190 {
2191 	const struct iwi_firmware_ohdr *hdr;
2192 
2193 	hdr = iwi_setup_ofw(sc, fw);
2194 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2195 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2196 		    fw->name);
2197 		hdr = NULL;
2198 	}
2199 	return hdr;
2200 }
2201 
2202 static void
2203 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2204 	  struct iwi_fw *uc, const char *ucname)
2205 {
2206 	if (fw->fp == NULL)
2207 		fw->fp = firmware_get(fwname);
2208 	/* NB: pre-3.0 ucode is packaged separately */
2209 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2210 		uc->fp = firmware_get(ucname);
2211 }
2212 
2213 /*
2214  * Get the required firmware images if not already loaded.
2215  * Note that we hold firmware images so long as the device
2216  * is marked up in case we need to reload them on device init.
2217  * This is necessary because we re-init the device sometimes
2218  * from a context where we cannot read from the filesystem
2219  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2220  *
2221  * NB: the order of get'ing and put'ing images here is
2222  * intentional to support handling firmware images bundled
2223  * by operating mode and/or all together in one file with
2224  * the boot firmware as "master".
2225  */
2226 static int
2227 iwi_get_firmware(struct iwi_softc *sc)
2228 {
2229 	struct ieee80211com *ic = &sc->sc_ic;
2230 	const struct iwi_firmware_hdr *hdr;
2231 	struct firmware *fp;
2232 
2233 	/* invalidate cached firmware on mode change */
2234 	if (sc->fw_mode != ic->ic_opmode)
2235 		iwi_put_firmware(sc);
2236 
2237 	switch (ic->ic_opmode) {
2238 	case IEEE80211_M_STA:
2239 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2240 		break;
2241 
2242 	case IEEE80211_M_IBSS:
2243 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2244 		break;
2245 
2246 	case IEEE80211_M_MONITOR:
2247 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2248 			  &sc->fw_uc, "iwi_ucode_monitor");
2249 		break;
2250 
2251 	default:
2252 		break;
2253 	}
2254 	fp = sc->fw_fw.fp;
2255 	if (fp == NULL) {
2256 		device_printf(sc->sc_dev, "could not load firmware\n");
2257 		goto bad;
2258 	}
2259 	if (fp->version < 300) {
2260 		/*
2261 		 * Firmware prior to 3.0 was packaged as separate
2262 		 * boot, firmware, and ucode images.  Verify the
2263 		 * ucode image was read in, retrieve the boot image
2264 		 * if needed, and check version stamps for consistency.
2265 		 * The version stamps in the data are also checked
2266 		 * above; this is a bit paranoid but is a cheap
2267 		 * safeguard against mis-packaging.
2268 		 */
2269 		if (sc->fw_uc.fp == NULL) {
2270 			device_printf(sc->sc_dev, "could not load ucode\n");
2271 			goto bad;
2272 		}
2273 		if (sc->fw_boot.fp == NULL) {
2274 			sc->fw_boot.fp = firmware_get("iwi_boot");
2275 			if (sc->fw_boot.fp == NULL) {
2276 				device_printf(sc->sc_dev,
2277 					"could not load boot firmware\n");
2278 				goto bad;
2279 			}
2280 		}
2281 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2282 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2283 			device_printf(sc->sc_dev,
2284 			    "firmware version mismatch: "
2285 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2286 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2287 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2288 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2289 			);
2290 			goto bad;
2291 		}
2292 		/*
2293 		 * Check and setup each image.
2294 		 */
2295 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2296 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2297 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2298 			goto bad;
2299 	} else {
2300 		/*
2301 		 * Check and setup combined image.
2302 		 */
2303 		if (fp->datasize < sizeof(hdr)) {
2304 			device_printf(sc->sc_dev, "image '%s' too small\n",
2305 			    fp->name);
2306 			goto bad;
2307 		}
2308 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2309 		if (fp->datasize < sizeof(*hdr) + hdr->bsize + hdr->usize + hdr->fsize) {
2310 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2311 			    fp->name);
2312 			goto bad;
2313 		}
2314 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2315 		sc->fw_boot.size = hdr->bsize;
2316 		sc->fw_boot.name = fp->name;
2317 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2318 		sc->fw_uc.size = hdr->usize;
2319 		sc->fw_uc.name = fp->name;
2320 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2321 		sc->fw_fw.size = hdr->fsize;
2322 		sc->fw_fw.name = fp->name;
2323 	}
2324 
2325 	sc->fw_mode = ic->ic_opmode;
2326 	return 1;
2327 bad:
2328 	iwi_put_firmware(sc);
2329 	return 0;
2330 }
2331 
2332 static void
2333 iwi_put_fw(struct iwi_fw *fw)
2334 {
2335 	if (fw->fp != NULL) {
2336 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2337 		fw->fp = NULL;
2338 	}
2339 	fw->data = NULL;
2340 	fw->size = 0;
2341 	fw->name = NULL;
2342 }
2343 
2344 /*
2345  * Release any cached firmware images.
2346  */
2347 static void
2348 iwi_put_firmware(struct iwi_softc *sc)
2349 {
2350 	iwi_put_fw(&sc->fw_uc);
2351 	iwi_put_fw(&sc->fw_fw);
2352 	iwi_put_fw(&sc->fw_boot);
2353 }
2354 
2355 static int
2356 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2357 {
2358 	uint32_t tmp;
2359 	const uint16_t *w;
2360 	const char *uc = fw->data;
2361 	size_t size = fw->size;
2362 	int i, ntries, error;
2363 
2364 	error = 0;
2365 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2366 	    IWI_RST_STOP_MASTER);
2367 	for (ntries = 0; ntries < 5; ntries++) {
2368 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2369 			break;
2370 		DELAY(10);
2371 	}
2372 	if (ntries == 5) {
2373 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2374 		error = EIO;
2375 		goto fail;
2376 	}
2377 
2378 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2379 	DELAY(5000);
2380 
2381 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2382 	tmp &= ~IWI_RST_PRINCETON_RESET;
2383 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2384 
2385 	DELAY(5000);
2386 	MEM_WRITE_4(sc, 0x3000e0, 0);
2387 	DELAY(1000);
2388 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2389 	DELAY(1000);
2390 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2391 	DELAY(1000);
2392 	MEM_WRITE_1(sc, 0x200000, 0x00);
2393 	MEM_WRITE_1(sc, 0x200000, 0x40);
2394 	DELAY(1000);
2395 
2396 	/* write microcode into adapter memory */
2397 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2398 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2399 
2400 	MEM_WRITE_1(sc, 0x200000, 0x00);
2401 	MEM_WRITE_1(sc, 0x200000, 0x80);
2402 
2403 	/* wait until we get an answer */
2404 	for (ntries = 0; ntries < 100; ntries++) {
2405 		if (MEM_READ_1(sc, 0x200000) & 1)
2406 			break;
2407 		DELAY(100);
2408 	}
2409 	if (ntries == 100) {
2410 		device_printf(sc->sc_dev,
2411 		    "timeout waiting for ucode to initialize\n");
2412 		error = EIO;
2413 		goto fail;
2414 	}
2415 
2416 	/* read the answer or the firmware will not initialize properly */
2417 	for (i = 0; i < 7; i++)
2418 		MEM_READ_4(sc, 0x200004);
2419 
2420 	MEM_WRITE_1(sc, 0x200000, 0x00);
2421 
2422 fail:
2423 	return error;
2424 }
2425 
2426 /* macro to handle unaligned little endian data in firmware image */
2427 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2428 
2429 static int
2430 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2431 {
2432 	u_char *p, *end;
2433 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2434 	int ntries, error;
2435 
2436 	/* copy firmware image to DMA memory */
2437 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2438 
2439 	/* make sure the adapter will get up-to-date values */
2440 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2441 
2442 	/* tell the adapter where the command blocks are stored */
2443 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2444 
2445 	/*
2446 	 * Store command blocks into adapter's internal memory using register
2447 	 * indirections. The adapter will read the firmware image through DMA
2448 	 * using information stored in command blocks.
2449 	 */
2450 	src = sc->fw_physaddr;
2451 	p = sc->fw_virtaddr;
2452 	end = p + fw->size;
2453 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2454 
2455 	while (p < end) {
2456 		dst = GETLE32(p); p += 4; src += 4;
2457 		len = GETLE32(p); p += 4; src += 4;
2458 		p += len;
2459 
2460 		while (len > 0) {
2461 			mlen = min(len, IWI_CB_MAXDATALEN);
2462 
2463 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2464 			sum = ctl ^ src ^ dst;
2465 
2466 			/* write a command block */
2467 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2468 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2469 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2470 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2471 
2472 			src += mlen;
2473 			dst += mlen;
2474 			len -= mlen;
2475 		}
2476 	}
2477 
2478 	/* write a fictive final command block (sentinel) */
2479 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2480 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2481 
2482 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2483 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2484 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2485 
2486 	/* tell the adapter to start processing command blocks */
2487 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2488 
2489 	/* wait until the adapter reaches the sentinel */
2490 	for (ntries = 0; ntries < 400; ntries++) {
2491 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2492 			break;
2493 		DELAY(100);
2494 	}
2495 	if (ntries == 400) {
2496 		device_printf(sc->sc_dev,
2497 		    "timeout processing command blocks for %s firmware\n",
2498 		    fw->name);
2499 		error = EIO;
2500 		goto fail5;
2501 	}
2502 
2503 	/* we're done with command blocks processing */
2504 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2505 
2506 	/* allow interrupts so we know when the firmware is ready */
2507 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2508 
2509 	/* tell the adapter to initialize the firmware */
2510 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2511 
2512 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2513 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2514 
2515 	/* wait at most one second for firmware initialization to complete */
2516 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2517 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2518 		    "initialization to complete\n", fw->name);
2519 	}
2520 
2521 fail5:
2522 	return error;
2523 }
2524 
2525 static int
2526 iwi_setpowermode(struct iwi_softc *sc)
2527 {
2528 	struct ieee80211com *ic = &sc->sc_ic;
2529 	uint32_t data;
2530 
2531 	if (ic->ic_flags & IEEE80211_F_PMGTON) {
2532 		/* XXX set more fine-grained operation */
2533 		data = htole32(IWI_POWER_MODE_MAX);
2534 	} else
2535 		data = htole32(IWI_POWER_MODE_CAM);
2536 
2537 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2538 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2539 }
2540 
2541 static int
2542 iwi_setwepkeys(struct iwi_softc *sc)
2543 {
2544 	struct ieee80211com *ic = &sc->sc_ic;
2545 	struct iwi_wep_key wepkey;
2546 	struct ieee80211_key *wk;
2547 	int error, i;
2548 
2549 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2550 		wk = &ic->ic_crypto.cs_nw_keys[i];
2551 
2552 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2553 		wepkey.idx = i;
2554 		wepkey.len = wk->wk_keylen;
2555 		memset(wepkey.key, 0, sizeof wepkey.key);
2556 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2557 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2558 		    wepkey.len));
2559 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2560 		    sizeof wepkey);
2561 		if (error != 0)
2562 			return error;
2563 	}
2564 	return 0;
2565 }
2566 
2567 static int
2568 iwi_config(struct iwi_softc *sc)
2569 {
2570 	struct ieee80211com *ic = &sc->sc_ic;
2571 	struct ifnet *ifp = ic->ic_ifp;
2572 	struct iwi_configuration config;
2573 	struct iwi_rateset rs;
2574 	struct iwi_txpower power;
2575 	uint32_t data;
2576 	int error, i;
2577 
2578 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2579 	DPRINTF(("Setting MAC address to %6D\n", ic->ic_myaddr, ":"));
2580 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2581 	    IEEE80211_ADDR_LEN);
2582 	if (error != 0)
2583 		return error;
2584 
2585 	memset(&config, 0, sizeof config);
2586 	config.bluetooth_coexistence = sc->bluetooth;
2587 	config.silence_threshold = 0x1e;
2588 	config.antenna = sc->antenna;
2589 	config.multicast_enabled = 1;
2590 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2591 	config.disable_unicast_decryption = 1;
2592 	config.disable_multicast_decryption = 1;
2593 	DPRINTF(("Configuring adapter\n"));
2594 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2595 	if (error != 0)
2596 		return error;
2597 
2598 	error = iwi_setpowermode(sc);
2599 	if (error != 0)
2600 		return error;
2601 
2602 	data = htole32(ic->ic_rtsthreshold);
2603 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2604 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2605 	if (error != 0)
2606 		return error;
2607 
2608 	data = htole32(ic->ic_fragthreshold);
2609 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2610 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2611 	if (error != 0)
2612 		return error;
2613 
2614 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2615 		power.mode = IWI_MODE_11B;
2616 		power.nchan = 11;
2617 		for (i = 0; i < 11; i++) {
2618 			power.chan[i].chan = i + 1;
2619 			power.chan[i].power = IWI_TXPOWER_MAX;
2620 		}
2621 		DPRINTF(("Setting .11b channels tx power\n"));
2622 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2623 		if (error != 0)
2624 			return error;
2625 
2626 		power.mode = IWI_MODE_11G;
2627 		DPRINTF(("Setting .11g channels tx power\n"));
2628 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2629 		if (error != 0)
2630 			return error;
2631 	}
2632 
2633 	rs.mode = IWI_MODE_11G;
2634 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2635 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2636 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2637 	    rs.nrates);
2638 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2639 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2640 	if (error != 0)
2641 		return error;
2642 
2643 	rs.mode = IWI_MODE_11A;
2644 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2645 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2646 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2647 	    rs.nrates);
2648 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2649 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2650 	if (error != 0)
2651 		return error;
2652 
2653 	/* if we have a desired ESSID, set it now */
2654 	if (ic->ic_des_esslen != 0) {
2655 #ifdef IWI_DEBUG
2656 		if (iwi_debug > 0) {
2657 			printf("Setting desired ESSID to ");
2658 			ieee80211_print_essid(ic->ic_des_essid,
2659 			    ic->ic_des_esslen);
2660 			printf("\n");
2661 		}
2662 #endif
2663 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2664 		    ic->ic_des_esslen);
2665 		if (error != 0)
2666 			return error;
2667 	}
2668 
2669 	data = htole32(arc4random());
2670 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2671 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2672 	if (error != 0)
2673 		return error;
2674 
2675 	error = iwi_setwepkeys(sc);
2676 	if (error != 0)
2677 		return error;
2678 
2679 	/* enable adapter */
2680 	DPRINTF(("Enabling adapter\n"));
2681 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2682 }
2683 
2684 static __inline void
2685 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2686 {
2687 	uint8_t *st = &scan->scan_type[ix / 2];
2688 	if (ix % 2)
2689 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2690 	else
2691 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2692 }
2693 
2694 static int
2695 iwi_scan(struct iwi_softc *sc)
2696 {
2697 #define	IEEE80211_MODE_5GHZ	(1<<IEEE80211_MODE_11A)
2698 #define	IEEE80211_MODE_2GHZ	((1<<IEEE80211_MODE_11B)|1<<IEEE80211_MODE_11G)
2699 	struct ieee80211com *ic = &sc->sc_ic;
2700 	const struct ieee80211_channel *c;
2701 	struct iwi_scan_ext scan;
2702 	int i, ix, start, scan_type, error;
2703 
2704 	memset(&scan, 0, sizeof scan);
2705 
2706 	/* XXX different dwell times for different scan types */
2707 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(sc->dwelltime);
2708 	scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(sc->dwelltime);
2709 	scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(sc->dwelltime);
2710 
2711 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2712 
2713 	if (ic->ic_des_esslen != 0) {
2714 		scan_type = IWI_SCAN_TYPE_BDIRECTED;
2715 #ifdef IWI_DEBUG
2716 		if (iwi_debug > 0) {
2717 			printf("Setting desired ESSID to ");
2718 			ieee80211_print_essid(ic->ic_des_essid,
2719 			    ic->ic_des_esslen);
2720 			printf("\n");
2721 		}
2722 #endif
2723 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2724 		    ic->ic_des_esslen);
2725 		if (error != 0)
2726 			return error;
2727 	} else
2728 		scan_type = IWI_SCAN_TYPE_BROADCAST;
2729 
2730 	ix = 0;
2731 	if (ic->ic_modecaps & IEEE80211_MODE_5GHZ) {
2732 		start = ix;
2733 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2734 			c = &ic->ic_channels[i];
2735 			/*
2736 			 * NB: ieee80211_next_scan clears curchan from the
2737 			 * channel list so we must explicitly check; this
2738 			 * will be fixed when the new scanning support arrives.
2739 			 */
2740 			if (!IEEE80211_IS_CHAN_5GHZ(c) ||
2741 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2742 				continue;
2743 			ix++;
2744 			scan.channels[ix] = i;
2745 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2746 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2747 			else
2748 				set_scan_type(&scan, ix, scan_type);
2749 		}
2750 		if (start != ix) {
2751 			scan.channels[start] = IWI_CHAN_5GHZ | (ix - start);
2752 			ix++;
2753 		}
2754 	}
2755 	if (ic->ic_modecaps & IEEE80211_MODE_2GHZ) {
2756 		start = ix;
2757 		for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2758 			c = &ic->ic_channels[i];
2759 			/* NB: see above */
2760 			if (!IEEE80211_IS_CHAN_2GHZ(c) ||
2761 			    !(isset(ic->ic_chan_scan,i) || c == ic->ic_curchan))
2762 				continue;
2763 			ix++;
2764 			scan.channels[ix] = i;
2765 			if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
2766 				set_scan_type(&scan, ix, IWI_SCAN_TYPE_PASSIVE);
2767 			else
2768 				set_scan_type(&scan, ix, scan_type);
2769 		}
2770 		if (start != ix)
2771 			scan.channels[start] = IWI_CHAN_2GHZ | (ix - start);
2772 	}
2773 
2774 	DPRINTF(("Start scanning\n"));
2775 	/*
2776 	 * With 100ms/channel dwell time and a max of ~20 channels
2777 	 * 5 seconds may be too tight; leave a bit more slack.
2778 	 */
2779 	sc->sc_scan_timer = 7;			/* seconds to complete */
2780 	sc->sc_ifp->if_timer = 1;
2781 	sc->flags |= IWI_FLAG_SCANNING;
2782 	return iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2783 #undef IEEE80211_MODE_5GHZ
2784 #undef IEEE80211_MODE_2GHZ
2785 }
2786 
2787 static void
2788 iwi_scanabort(void *arg, int npending)
2789 {
2790 	struct iwi_softc *sc = arg;
2791 	IWI_LOCK_DECL;
2792 
2793 	IWI_LOCK(sc);
2794 	/* NB: make sure we're still scanning */
2795 	if (sc->flags & IWI_FLAG_SCANNING)
2796 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
2797 	IWI_UNLOCK(sc);
2798 }
2799 
2800 static void
2801 iwi_scanstart(void *arg, int npending)
2802 {
2803 	struct iwi_softc *sc = arg;
2804 	struct ieee80211com *ic = &sc->sc_ic;
2805 	IWI_LOCK_DECL;
2806 
2807 	IWI_LOCK(sc);
2808 	/*
2809 	 * Tell the card to kick off a scan.  We guard this
2810 	 * by checking IWI_FLAG_SCANNING as otherwise we'll
2811 	 * do this twice because ieee80211_begin_scan will
2812 	 * immediately call us back to scan the first channel
2813 	 * in the list.
2814 	 */
2815 	if (sc->flags & IWI_FLAG_SCANNING) {
2816 		ieee80211_begin_scan(ic, 1);
2817 		if (iwi_scan(sc) != 0) {
2818 			/* XXX should not happen */
2819 			sc->flags &= ~IWI_FLAG_SCANNING;
2820 			ieee80211_new_state(ic, IEEE80211_S_INIT, 0);
2821 		}
2822 	}
2823 	IWI_UNLOCK(sc);
2824 }
2825 
2826 static void
2827 iwi_scandone(void *arg, int npending)
2828 {
2829 	struct iwi_softc *sc = arg;
2830 	struct ieee80211com *ic = &sc->sc_ic;
2831 	IWI_LOCK_DECL;
2832 
2833 	IWI_LOCK(sc);
2834 	if (sc->flags & IWI_FLAG_ASSOCIATED)
2835 		iwi_disassociate(sc, 0);
2836 	ieee80211_end_scan(ic);
2837 	IWI_UNLOCK(sc);
2838 }
2839 
2840 /*
2841  * Set the current channel by doing a passive scan.  Note this
2842  * is explicitly for monitor mode operation; do not use it for
2843  * anything else (sigh).
2844  */
2845 static void
2846 iwi_scanchan(void *arg, int npending)
2847 {
2848 	struct iwi_softc *sc = arg;
2849 	struct ieee80211com *ic;
2850 	struct ieee80211_channel *chan;
2851 	struct iwi_scan_ext scan;
2852 	IWI_LOCK_DECL;
2853 
2854 	IWI_LOCK(sc);
2855 	ic = &sc->sc_ic;
2856 	KASSERT(ic->ic_opmode == IEEE80211_M_MONITOR,
2857 		("opmode %u", ic->ic_opmode));
2858 	chan = ic->ic_ibss_chan;
2859 
2860 	memset(&scan, 0, sizeof scan);
2861 	/*
2862 	 * Set the dwell time to a fairly small value.  The firmware
2863 	 * is prone to crash when aborting a scan so it's better to
2864 	 * let a scan complete before changing channels--such as when
2865 	 * channel hopping in monitor mode.
2866 	 */
2867 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
2868 	scan.full_scan_index = htole32(ic->ic_scan.nt_scangen);
2869 	if (IEEE80211_IS_CHAN_5GHZ(chan))
2870 		scan.channels[0] = 1 | IWI_CHAN_5GHZ;
2871 	else
2872 		scan.channels[0] = 1 | IWI_CHAN_2GHZ;
2873 	scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2874 	set_scan_type(&scan, 1, IWI_SCAN_TYPE_PASSIVE);
2875 
2876 	DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
2877 	sc->flags |= IWI_FLAG_SCANNING;
2878 	(void) iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan);
2879 	IWI_UNLOCK(sc);
2880 }
2881 
2882 static int
2883 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2884 {
2885 	struct iwi_sensitivity sens;
2886 
2887 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2888 
2889 	memset(&sens, 0, sizeof sens);
2890 	sens.rssi = htole16(rssi_dbm);
2891 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2892 }
2893 
2894 static int
2895 iwi_auth_and_assoc(struct iwi_softc *sc)
2896 {
2897 	struct ieee80211com *ic = &sc->sc_ic;
2898 	struct ifnet *ifp = ic->ic_ifp;
2899 	struct ieee80211_node *ni = ic->ic_bss;
2900 	struct iwi_configuration config;
2901 	struct iwi_associate *assoc = &sc->assoc;
2902 	struct iwi_rateset rs;
2903 	uint16_t capinfo;
2904 	int error;
2905 
2906 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2907 		memset(&config, 0, sizeof config);
2908 		config.bluetooth_coexistence = sc->bluetooth;
2909 		config.antenna = sc->antenna;
2910 		config.multicast_enabled = 1;
2911 		config.use_protection = 1;
2912 		config.answer_pbreq =
2913 		    (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2914 		config.disable_unicast_decryption = 1;
2915 		config.disable_multicast_decryption = 1;
2916 		DPRINTF(("Configuring adapter\n"));
2917 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2918 		if (error != 0)
2919 			return error;
2920 	}
2921 
2922 #ifdef IWI_DEBUG
2923 	if (iwi_debug > 0) {
2924 		printf("Setting ESSID to ");
2925 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2926 		printf("\n");
2927 	}
2928 #endif
2929 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2930 	if (error != 0)
2931 		return error;
2932 
2933 	/* the rate set has already been "negotiated" */
2934 	rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
2935 	    IWI_MODE_11G;
2936 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2937 	rs.nrates = ni->ni_rates.rs_nrates;
2938 	if (rs.nrates > IWI_RATESET_SIZE) {
2939 		DPRINTF(("Truncating negotiated rate set from %u\n",
2940 		    rs.nrates));
2941 		rs.nrates = IWI_RATESET_SIZE;
2942 	}
2943 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2944 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2945 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2946 	if (error != 0)
2947 		return error;
2948 
2949 	memset(assoc, 0, sizeof *assoc);
2950 
2951 	if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
2952 		/* NB: don't treat WME setup as failure */
2953 		if (iwi_wme_setparams_locked(sc) == 0 && iwi_wme_setie(sc) == 0)
2954 			assoc->policy |= htole16(IWI_POLICY_WME);
2955 		/* XXX complain on failure? */
2956 	}
2957 
2958 	if (ic->ic_opt_ie != NULL) {
2959 		DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
2960 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
2961 		    ic->ic_opt_ie_len);
2962 		if (error != 0)
2963 			return error;
2964 	}
2965 
2966 	error = iwi_set_sensitivity(sc, ni->ni_rssi);
2967 	if (error != 0)
2968 		return error;
2969 
2970 	if (IEEE80211_IS_CHAN_A(ni->ni_chan))
2971 		assoc->mode = IWI_MODE_11A;
2972 	else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
2973 		assoc->mode = IWI_MODE_11G;
2974 	else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
2975 		assoc->mode = IWI_MODE_11B;
2976 	/* XXX else error */
2977 	assoc->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2978 	/*
2979 	 * NB: do not arrange for shared key auth w/o privacy
2980 	 *     (i.e. a wep key); it causes a firmware error.
2981 	 */
2982 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) &&
2983 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2984 		assoc->auth = IWI_AUTH_SHARED;
2985 		/*
2986 		 * It's possible to have privacy marked but no default
2987 		 * key setup.  This typically is due to a user app bug
2988 		 * but if we blindly grab the key the firmware will
2989 		 * barf so avoid it for now.
2990 		 */
2991 		if (ic->ic_crypto.cs_def_txkey != IEEE80211_KEYIX_NONE)
2992 			assoc->auth |= ic->ic_crypto.cs_def_txkey << 4;
2993 
2994 		error = iwi_setwepkeys(sc);
2995 		if (error != 0)
2996 			return error;
2997 	}
2998 	if (ic->ic_flags & IEEE80211_F_WPA)
2999 		assoc->policy |= htole16(IWI_POLICY_WPA);
3000 	if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
3001 		assoc->type = IWI_HC_IBSS_START;
3002 	else
3003 		assoc->type = IWI_HC_ASSOC;
3004 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
3005 
3006 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3007 		capinfo = IEEE80211_CAPINFO_IBSS;
3008 	else
3009 		capinfo = IEEE80211_CAPINFO_ESS;
3010 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
3011 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
3012 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3013 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3014 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
3015 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
3016 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
3017 	assoc->capinfo = htole16(capinfo);
3018 
3019 	assoc->lintval = htole16(ic->ic_lintval);
3020 	assoc->intval = htole16(ni->ni_intval);
3021 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
3022 	if (ic->ic_opmode == IEEE80211_M_IBSS)
3023 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
3024 	else
3025 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
3026 
3027 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
3028 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
3029 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
3030 	    assoc->bssid, ":", assoc->dst, ":",
3031 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
3032 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
3033 	    le16toh(assoc->intval)));
3034 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3035 }
3036 
3037 static int
3038 iwi_disassociate(struct iwi_softc *sc, int quiet)
3039 {
3040 	struct iwi_associate *assoc = &sc->assoc;
3041 
3042 	if (quiet)
3043 		assoc->type = IWI_HC_DISASSOC_QUIET;
3044 	else
3045 		assoc->type = IWI_HC_DISASSOC;
3046 
3047 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3048 	    assoc->bssid, ":", assoc->chan));
3049 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3050 }
3051 
3052 static void
3053 iwi_down(void *arg, int npending)
3054 {
3055 	struct iwi_softc *sc = arg;
3056 	IWI_LOCK_DECL;
3057 
3058 	IWI_LOCK(sc);
3059 	iwi_disassociate(sc, 0);
3060 	IWI_UNLOCK(sc);
3061 }
3062 
3063 static void
3064 iwi_init(void *priv)
3065 {
3066 	struct iwi_softc *sc = priv;
3067 	IWI_LOCK_DECL;
3068 
3069 	IWI_LOCK(sc);
3070 	iwi_init_locked(sc, 0);
3071 	IWI_UNLOCK(sc);
3072 }
3073 
3074 static void
3075 iwi_init_locked(void *priv, int force)
3076 {
3077 	struct iwi_softc *sc = priv;
3078 	struct ieee80211com *ic = &sc->sc_ic;
3079 	struct ifnet *ifp = ic->ic_ifp;
3080 	struct iwi_rx_data *data;
3081 	int i;
3082 	IWI_LOCK_DECL;
3083 
3084 	if (sc->flags & IWI_FLAG_FW_LOADING)
3085 		return;		/* XXX: condvar? */
3086 
3087 	iwi_stop(sc);
3088 
3089 	if (iwi_reset(sc) != 0) {
3090 		device_printf(sc->sc_dev, "could not reset adapter\n");
3091 		goto fail;
3092 	}
3093 
3094 	sc->flags |= IWI_FLAG_FW_LOADING;
3095 
3096 	IWI_UNLOCK(sc);
3097 	if (!iwi_get_firmware(sc)) {
3098 		IWI_LOCK(sc);
3099 		goto fail;
3100 	}
3101 
3102 	/* allocate DMA memory for mapping firmware image */
3103 	if (sc->fw_boot.size > sc->fw_dma_size)
3104 		sc->fw_dma_size = sc->fw_boot.size;
3105 	if (sc->fw_fw.size > sc->fw_dma_size)
3106 		sc->fw_dma_size = sc->fw_fw.size;
3107 	if (sc->fw_uc.size > sc->fw_dma_size)
3108 		sc->fw_dma_size = sc->fw_uc.size;
3109 
3110 	if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
3111 	    BUS_SPACE_MAXADDR, NULL, NULL, sc->fw_dma_size, 1, sc->fw_dma_size,
3112 	    0, NULL, NULL, &sc->fw_dmat) != 0) {
3113 		device_printf(sc->sc_dev,
3114 		    "could not create firmware DMA tag\n");
3115 		IWI_LOCK(sc);
3116 		goto fail;
3117 	}
3118 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3119 	    &sc->fw_map) != 0) {
3120 		device_printf(sc->sc_dev,
3121 		    "could not allocate firmware DMA memory\n");
3122 		IWI_LOCK(sc);
3123 		goto fail2;
3124 	}
3125 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3126 	    sc->fw_dma_size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3127 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3128 		IWI_LOCK(sc);
3129 		goto fail3;
3130 	}
3131 	IWI_LOCK(sc);
3132 
3133 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3134 		device_printf(sc->sc_dev,
3135 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3136 		goto fail4;
3137 	}
3138 
3139 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3140 		device_printf(sc->sc_dev,
3141 		    "could not load microcode %s\n", sc->fw_uc.name);
3142 		goto fail4;
3143 	}
3144 
3145 	iwi_stop_master(sc);
3146 
3147 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3148 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3149 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3150 
3151 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3152 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3153 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3154 
3155 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3156 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3157 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3158 
3159 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3160 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3161 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3162 
3163 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3164 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3165 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3166 
3167 	for (i = 0; i < sc->rxq.count; i++) {
3168 		data = &sc->rxq.data[i];
3169 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3170 	}
3171 
3172 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3173 
3174 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3175 		device_printf(sc->sc_dev,
3176 		    "could not load main firmware %s\n", sc->fw_fw.name);
3177 		goto fail4;
3178 	}
3179 	sc->flags |= IWI_FLAG_FW_INITED;
3180 
3181 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
3182 	bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3183 	bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3184 	bus_dma_tag_destroy(sc->fw_dmat);
3185 
3186 	if (iwi_config(sc) != 0) {
3187 		device_printf(sc->sc_dev, "device configuration failed\n");
3188 		goto fail;
3189 	}
3190 
3191 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3192 		/*
3193 		 * NB: When restarting the adapter clock the state
3194 		 * machine regardless of the roaming mode; otherwise
3195 		 * we need to notify user apps so they can manually
3196 		 * get us going again.
3197 		 */
3198 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL || force)
3199 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3200 	} else
3201 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3202 
3203 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3204 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3205 
3206 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3207 	return;
3208 
3209 fail4:	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
3210 	bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3211 fail3:	bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3212 fail2:	bus_dma_tag_destroy(sc->fw_dmat);
3213 fail:	ifp->if_flags &= ~IFF_UP;
3214 	sc->flags &= ~IWI_FLAG_FW_LOADING;
3215 	iwi_stop(sc);
3216 	iwi_put_firmware(sc);
3217 }
3218 
3219 static void
3220 iwi_stop(void *priv)
3221 {
3222 	struct iwi_softc *sc = priv;
3223 	struct ieee80211com *ic = &sc->sc_ic;
3224 	struct ifnet *ifp = ic->ic_ifp;
3225 
3226 	if (sc->sc_softled) {
3227 		callout_stop(&sc->sc_ledtimer);
3228 		sc->sc_blinking = 0;
3229 	}
3230 
3231 	iwi_stop_master(sc);
3232 
3233 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3234 
3235 	/* reset rings */
3236 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3237 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3238 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3239 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3240 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3241 	iwi_reset_rx_ring(sc, &sc->rxq);
3242 
3243 	ifp->if_timer = 0;
3244 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3245 
3246 	sc->sc_tx_timer = 0;
3247 	sc->sc_rfkill_timer = 0;
3248 	sc->sc_scan_timer = 0;
3249 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_SCANNING | IWI_FLAG_ASSOCIATED);
3250 
3251 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3252 }
3253 
3254 static void
3255 iwi_restart(void *arg, int npending)
3256 {
3257 	struct iwi_softc *sc = arg;
3258 	IWI_LOCK_DECL;
3259 
3260 	IWI_LOCK(sc);
3261 	iwi_init_locked(sc, 1);		/* NB: force state machine */
3262 	IWI_UNLOCK(sc);
3263 }
3264 
3265 /*
3266  * Return whether or not the radio is enabled in hardware
3267  * (i.e. the rfkill switch is "off").
3268  */
3269 static int
3270 iwi_getrfkill(struct iwi_softc *sc)
3271 {
3272 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3273 }
3274 
3275 static void
3276 iwi_radio_on(void *arg, int pending)
3277 {
3278 	struct iwi_softc *sc = arg;
3279 
3280 	device_printf(sc->sc_dev, "radio turned on\n");
3281 	iwi_init(sc);
3282 }
3283 
3284 static void
3285 iwi_radio_off(void *arg, int pending)
3286 {
3287 	struct iwi_softc *sc = arg;
3288 
3289 	device_printf(sc->sc_dev, "radio turned off\n");
3290 	iwi_stop(sc);
3291 	sc->sc_rfkill_timer = 2;
3292 	sc->sc_ifp->if_timer = 1;
3293 }
3294 
3295 static int
3296 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3297 {
3298 	struct iwi_softc *sc = arg1;
3299 	uint32_t size, buf[128];
3300 
3301 	if (!(sc->flags & IWI_FLAG_FW_INITED)) {
3302 		memset(buf, 0, sizeof buf);
3303 		return SYSCTL_OUT(req, buf, sizeof buf);
3304 	}
3305 
3306 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3307 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3308 
3309 	return SYSCTL_OUT(req, buf, sizeof buf);
3310 }
3311 
3312 static int
3313 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3314 {
3315 	struct iwi_softc *sc = arg1;
3316 	int val = !iwi_getrfkill(sc);
3317 
3318 	return SYSCTL_OUT(req, &val, sizeof val);
3319 }
3320 
3321 /*
3322  * Add sysctl knobs.
3323  */
3324 static void
3325 iwi_sysctlattach(struct iwi_softc *sc)
3326 {
3327 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3328 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3329 
3330 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3331 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3332 	    "radio transmitter switch state (0=off, 1=on)");
3333 
3334 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3335 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3336 	    "statistics");
3337 
3338 	sc->dwelltime = 100;
3339 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "dwell",
3340 	    CTLFLAG_RW, &sc->dwelltime, 0,
3341 	    "channel dwell time (ms) for AP/station scanning");
3342 
3343 	sc->bluetooth = 0;
3344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3345 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3346 
3347 	sc->antenna = IWI_ANTENNA_AUTO;
3348 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3349 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3350 }
3351 
3352 /*
3353  * LED support.
3354  *
3355  * Different cards have different capabilities.  Some have three
3356  * led's while others have only one.  The linux ipw driver defines
3357  * led's for link state (associated or not), band (11a, 11g, 11b),
3358  * and for link activity.  We use one led and vary the blink rate
3359  * according to the tx/rx traffic a la the ath driver.
3360  */
3361 
3362 static __inline uint32_t
3363 iwi_toggle_event(uint32_t r)
3364 {
3365 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3366 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3367 }
3368 
3369 static uint32_t
3370 iwi_read_event(struct iwi_softc *sc)
3371 {
3372 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3373 }
3374 
3375 static void
3376 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3377 {
3378 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3379 }
3380 
3381 static void
3382 iwi_led_done(void *arg)
3383 {
3384 	struct iwi_softc *sc = arg;
3385 
3386 	sc->sc_blinking = 0;
3387 }
3388 
3389 /*
3390  * Turn the activity LED off: flip the pin and then set a timer so no
3391  * update will happen for the specified duration.
3392  */
3393 static void
3394 iwi_led_off(void *arg)
3395 {
3396 	struct iwi_softc *sc = arg;
3397 	uint32_t v;
3398 
3399 	v = iwi_read_event(sc);
3400 	v &= ~sc->sc_ledpin;
3401 	iwi_write_event(sc, iwi_toggle_event(v));
3402 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3403 }
3404 
3405 /*
3406  * Blink the LED according to the specified on/off times.
3407  */
3408 static void
3409 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3410 {
3411 	uint32_t v;
3412 
3413 	v = iwi_read_event(sc);
3414 	v |= sc->sc_ledpin;
3415 	iwi_write_event(sc, iwi_toggle_event(v));
3416 	sc->sc_blinking = 1;
3417 	sc->sc_ledoff = off;
3418 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3419 }
3420 
3421 static void
3422 iwi_led_event(struct iwi_softc *sc, int event)
3423 {
3424 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3425 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3426 	static const struct {
3427 		u_int		rate;		/* tx/rx iwi rate */
3428 		u_int16_t	timeOn;		/* LED on time (ms) */
3429 		u_int16_t	timeOff;	/* LED off time (ms) */
3430 	} blinkrates[] = {
3431 		{ IWI_RATE_OFDM54, 40,  10 },
3432 		{ IWI_RATE_OFDM48, 44,  11 },
3433 		{ IWI_RATE_OFDM36, 50,  13 },
3434 		{ IWI_RATE_OFDM24, 57,  14 },
3435 		{ IWI_RATE_OFDM18, 67,  16 },
3436 		{ IWI_RATE_OFDM12, 80,  20 },
3437 		{ IWI_RATE_DS11,  100,  25 },
3438 		{ IWI_RATE_OFDM9, 133,  34 },
3439 		{ IWI_RATE_OFDM6, 160,  40 },
3440 		{ IWI_RATE_DS5,   200,  50 },
3441 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3442 		{ IWI_RATE_DS2,   267,  66 },
3443 		{ IWI_RATE_DS1,   400, 100 },
3444 		{            0,   500, 130 },	/* unknown rate/polling */
3445 	};
3446 	uint32_t txrate;
3447 	int j = 0;			/* XXX silence compiler */
3448 
3449 	sc->sc_ledevent = ticks;	/* time of last event */
3450 	if (sc->sc_blinking)		/* don't interrupt active blink */
3451 		return;
3452 	switch (event) {
3453 	case IWI_LED_POLL:
3454 		j = N(blinkrates)-1;
3455 		break;
3456 	case IWI_LED_TX:
3457 		/* read current transmission rate from adapter */
3458 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3459 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3460 			for (j = 0; j < N(blinkrates)-1; j++)
3461 				if (blinkrates[j].rate == txrate)
3462 					break;
3463 			sc->sc_txrix = j;
3464 		} else
3465 			j = sc->sc_txrix;
3466 		break;
3467 	case IWI_LED_RX:
3468 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3469 			for (j = 0; j < N(blinkrates)-1; j++)
3470 				if (blinkrates[j].rate == sc->sc_rxrate)
3471 					break;
3472 			sc->sc_rxrix = j;
3473 		} else
3474 			j = sc->sc_rxrix;
3475 		break;
3476 	}
3477 	/* XXX beware of overflow */
3478 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3479 		(blinkrates[j].timeOff * hz) / 1000);
3480 #undef N
3481 }
3482 
3483 static int
3484 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3485 {
3486 	struct iwi_softc *sc = arg1;
3487 	int softled = sc->sc_softled;
3488 	int error;
3489 
3490 	error = sysctl_handle_int(oidp, &softled, 0, req);
3491 	if (error || !req->newptr)
3492 		return error;
3493 	softled = (softled != 0);
3494 	if (softled != sc->sc_softled) {
3495 		if (softled) {
3496 			uint32_t v = iwi_read_event(sc);
3497 			v &= ~sc->sc_ledpin;
3498 			iwi_write_event(sc, iwi_toggle_event(v));
3499 		}
3500 		sc->sc_softled = softled;
3501 	}
3502 	return 0;
3503 }
3504 
3505 static void
3506 iwi_ledattach(struct iwi_softc *sc)
3507 {
3508 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3509 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3510 
3511 	sc->sc_blinking = 0;
3512 	sc->sc_ledstate = 1;
3513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3514 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3515 
3516 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3517 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3518 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3519 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3520 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3521 		"pin setting to turn activity LED on");
3522 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3523 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3524 		"idle time for inactivity LED (ticks)");
3525 	/* XXX for debugging */
3526 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3527 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3528 		"NIC type from EEPROM");
3529 
3530 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3531 	sc->sc_softled = 1;
3532 
3533 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3534 	if (sc->sc_nictype == 1) {
3535 		/*
3536 		 * NB: led's are reversed.
3537 		 */
3538 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3539 	}
3540 }
3541