1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /*- 34 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 35 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 36 */ 37 38 #include <sys/param.h> 39 #include <sys/sysctl.h> 40 #include <sys/sockio.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/socket.h> 44 #include <sys/systm.h> 45 #include <sys/malloc.h> 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/module.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/namei.h> 54 #include <sys/linker.h> 55 #include <sys/firmware.h> 56 #include <sys/taskqueue.h> 57 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 #include <sys/rman.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <net/bpf.h> 66 #include <net/if.h> 67 #include <net/if_arp.h> 68 #include <net/ethernet.h> 69 #include <net/if_dl.h> 70 #include <net/if_media.h> 71 #include <net/if_types.h> 72 73 #include <net80211/ieee80211_var.h> 74 #include <net80211/ieee80211_radiotap.h> 75 #include <net80211/ieee80211_input.h> 76 #include <net80211/ieee80211_regdomain.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_systm.h> 80 #include <netinet/in_var.h> 81 #include <netinet/ip.h> 82 #include <netinet/if_ether.h> 83 84 #include <dev/iwi/if_iwireg.h> 85 #include <dev/iwi/if_iwivar.h> 86 87 #define IWI_DEBUG 88 #ifdef IWI_DEBUG 89 #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) 90 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) 91 int iwi_debug = 0; 92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 93 94 static const char *iwi_fw_states[] = { 95 "IDLE", /* IWI_FW_IDLE */ 96 "LOADING", /* IWI_FW_LOADING */ 97 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 98 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 99 "SCANNING", /* IWI_FW_SCANNING */ 100 }; 101 #else 102 #define DPRINTF(x) 103 #define DPRINTFN(n, x) 104 #endif 105 106 MODULE_DEPEND(iwi, pci, 1, 1, 1); 107 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 108 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 109 110 enum { 111 IWI_LED_TX, 112 IWI_LED_RX, 113 IWI_LED_POLL, 114 }; 115 116 struct iwi_ident { 117 uint16_t vendor; 118 uint16_t device; 119 const char *name; 120 }; 121 122 static const struct iwi_ident iwi_ident_table[] = { 123 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 124 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 125 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 126 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 127 128 { 0, 0, NULL } 129 }; 130 131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 132 const char name[IFNAMSIZ], int unit, int opmode, int flags, 133 const uint8_t bssid[IEEE80211_ADDR_LEN], 134 const uint8_t mac[IEEE80211_ADDR_LEN]); 135 static void iwi_vap_delete(struct ieee80211vap *); 136 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 137 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 138 int); 139 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 140 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 141 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 142 int, bus_addr_t, bus_addr_t); 143 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 144 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 145 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 146 int); 147 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 148 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 150 const uint8_t [IEEE80211_ADDR_LEN]); 151 static void iwi_node_free(struct ieee80211_node *); 152 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 153 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 154 static void iwi_wme_init(struct iwi_softc *); 155 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 156 static void iwi_update_wme(void *, int); 157 static int iwi_wme_update(struct ieee80211com *); 158 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 159 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 160 struct iwi_frame *); 161 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 162 static void iwi_rx_intr(struct iwi_softc *); 163 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 164 static void iwi_intr(void *); 165 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 166 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 167 static int iwi_tx_start(struct ifnet *, struct mbuf *, 168 struct ieee80211_node *, int); 169 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 170 const struct ieee80211_bpf_params *); 171 static void iwi_start_locked(struct ifnet *); 172 static void iwi_start(struct ifnet *); 173 static void iwi_watchdog(void *); 174 static int iwi_ioctl(struct ifnet *, u_long, caddr_t); 175 static void iwi_stop_master(struct iwi_softc *); 176 static int iwi_reset(struct iwi_softc *); 177 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 178 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 179 static void iwi_release_fw_dma(struct iwi_softc *sc); 180 static int iwi_config(struct iwi_softc *); 181 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 182 static void iwi_put_firmware(struct iwi_softc *); 183 static void iwi_monitor_scan(void *, int); 184 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 185 static void iwi_scan_start(struct ieee80211com *); 186 static void iwi_scan_end(struct ieee80211com *); 187 static void iwi_set_channel(struct ieee80211com *); 188 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 189 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 190 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 191 static void iwi_disassoc(void *, int); 192 static int iwi_disassociate(struct iwi_softc *, int quiet); 193 static void iwi_init_locked(struct iwi_softc *); 194 static void iwi_init(void *); 195 static int iwi_init_fw_dma(struct iwi_softc *, int); 196 static void iwi_stop_locked(void *); 197 static void iwi_stop(struct iwi_softc *); 198 static void iwi_restart(void *, int); 199 static int iwi_getrfkill(struct iwi_softc *); 200 static void iwi_radio_on(void *, int); 201 static void iwi_radio_off(void *, int); 202 static void iwi_sysctlattach(struct iwi_softc *); 203 static void iwi_led_event(struct iwi_softc *, int); 204 static void iwi_ledattach(struct iwi_softc *); 205 206 static int iwi_probe(device_t); 207 static int iwi_attach(device_t); 208 static int iwi_detach(device_t); 209 static int iwi_shutdown(device_t); 210 static int iwi_suspend(device_t); 211 static int iwi_resume(device_t); 212 213 static device_method_t iwi_methods[] = { 214 /* Device interface */ 215 DEVMETHOD(device_probe, iwi_probe), 216 DEVMETHOD(device_attach, iwi_attach), 217 DEVMETHOD(device_detach, iwi_detach), 218 DEVMETHOD(device_shutdown, iwi_shutdown), 219 DEVMETHOD(device_suspend, iwi_suspend), 220 DEVMETHOD(device_resume, iwi_resume), 221 222 { 0, 0 } 223 }; 224 225 static driver_t iwi_driver = { 226 "iwi", 227 iwi_methods, 228 sizeof (struct iwi_softc) 229 }; 230 231 static devclass_t iwi_devclass; 232 233 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 234 235 MODULE_VERSION(iwi, 1); 236 237 static __inline uint8_t 238 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 239 { 240 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 241 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 242 } 243 244 static __inline uint32_t 245 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 246 { 247 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 248 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 249 } 250 251 static int 252 iwi_probe(device_t dev) 253 { 254 const struct iwi_ident *ident; 255 256 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 257 if (pci_get_vendor(dev) == ident->vendor && 258 pci_get_device(dev) == ident->device) { 259 device_set_desc(dev, ident->name); 260 return 0; 261 } 262 } 263 return ENXIO; 264 } 265 266 /* Base Address Register */ 267 #define IWI_PCI_BAR0 0x10 268 269 static int 270 iwi_attach(device_t dev) 271 { 272 struct iwi_softc *sc = device_get_softc(dev); 273 struct ifnet *ifp; 274 struct ieee80211com *ic; 275 uint16_t val; 276 int i, error; 277 uint8_t bands; 278 uint8_t macaddr[IEEE80211_ADDR_LEN]; 279 280 sc->sc_dev = dev; 281 282 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 283 if (ifp == NULL) { 284 device_printf(dev, "can not if_alloc()\n"); 285 return ENXIO; 286 } 287 ic = ifp->if_l2com; 288 289 IWI_LOCK_INIT(sc); 290 291 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 292 293 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 294 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 295 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 296 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 297 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 298 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 299 300 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 301 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 302 303 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 304 device_printf(dev, "chip is in D%d power mode " 305 "-- setting to D0\n", pci_get_powerstate(dev)); 306 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 307 } 308 309 pci_write_config(dev, 0x41, 0, 1); 310 311 /* enable bus-mastering */ 312 pci_enable_busmaster(dev); 313 314 sc->mem_rid = IWI_PCI_BAR0; 315 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 316 RF_ACTIVE); 317 if (sc->mem == NULL) { 318 device_printf(dev, "could not allocate memory resource\n"); 319 goto fail; 320 } 321 322 sc->sc_st = rman_get_bustag(sc->mem); 323 sc->sc_sh = rman_get_bushandle(sc->mem); 324 325 sc->irq_rid = 0; 326 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 327 RF_ACTIVE | RF_SHAREABLE); 328 if (sc->irq == NULL) { 329 device_printf(dev, "could not allocate interrupt resource\n"); 330 goto fail; 331 } 332 333 if (iwi_reset(sc) != 0) { 334 device_printf(dev, "could not reset adapter\n"); 335 goto fail; 336 } 337 338 /* 339 * Allocate rings. 340 */ 341 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 342 device_printf(dev, "could not allocate Cmd ring\n"); 343 goto fail; 344 } 345 346 for (i = 0; i < 4; i++) { 347 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 348 IWI_CSR_TX1_RIDX + i * 4, 349 IWI_CSR_TX1_WIDX + i * 4); 350 if (error != 0) { 351 device_printf(dev, "could not allocate Tx ring %d\n", 352 i+i); 353 goto fail; 354 } 355 } 356 357 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 358 device_printf(dev, "could not allocate Rx ring\n"); 359 goto fail; 360 } 361 362 iwi_wme_init(sc); 363 364 ifp->if_softc = sc; 365 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 367 ifp->if_init = iwi_init; 368 ifp->if_ioctl = iwi_ioctl; 369 ifp->if_start = iwi_start; 370 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 371 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 372 IFQ_SET_READY(&ifp->if_snd); 373 374 ic->ic_ifp = ifp; 375 ic->ic_opmode = IEEE80211_M_STA; 376 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 377 378 /* set device capabilities */ 379 ic->ic_caps = 380 IEEE80211_C_STA /* station mode supported */ 381 | IEEE80211_C_IBSS /* IBSS mode supported */ 382 | IEEE80211_C_MONITOR /* monitor mode supported */ 383 | IEEE80211_C_PMGT /* power save supported */ 384 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 385 | IEEE80211_C_WPA /* 802.11i */ 386 | IEEE80211_C_WME /* 802.11e */ 387 #if 0 388 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 389 #endif 390 ; 391 392 /* read MAC address from EEPROM */ 393 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 394 macaddr[0] = val & 0xff; 395 macaddr[1] = val >> 8; 396 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 397 macaddr[2] = val & 0xff; 398 macaddr[3] = val >> 8; 399 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 400 macaddr[4] = val & 0xff; 401 macaddr[5] = val >> 8; 402 403 bands = 0; 404 setbit(&bands, IEEE80211_MODE_11B); 405 setbit(&bands, IEEE80211_MODE_11G); 406 if (pci_get_device(dev) >= 0x4223) 407 setbit(&bands, IEEE80211_MODE_11A); 408 ieee80211_init_channels(ic, NULL, &bands); 409 410 ieee80211_ifattach(ic, macaddr); 411 /* override default methods */ 412 ic->ic_node_alloc = iwi_node_alloc; 413 sc->sc_node_free = ic->ic_node_free; 414 ic->ic_node_free = iwi_node_free; 415 ic->ic_raw_xmit = iwi_raw_xmit; 416 ic->ic_scan_start = iwi_scan_start; 417 ic->ic_scan_end = iwi_scan_end; 418 ic->ic_set_channel = iwi_set_channel; 419 ic->ic_scan_curchan = iwi_scan_curchan; 420 ic->ic_scan_mindwell = iwi_scan_mindwell; 421 ic->ic_wme.wme_update = iwi_wme_update; 422 423 ic->ic_vap_create = iwi_vap_create; 424 ic->ic_vap_delete = iwi_vap_delete; 425 426 ieee80211_radiotap_attach(ic, 427 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 428 IWI_TX_RADIOTAP_PRESENT, 429 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 430 IWI_RX_RADIOTAP_PRESENT); 431 432 iwi_sysctlattach(sc); 433 iwi_ledattach(sc); 434 435 /* 436 * Hook our interrupt after all initialization is complete. 437 */ 438 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 439 NULL, iwi_intr, sc, &sc->sc_ih); 440 if (error != 0) { 441 device_printf(dev, "could not set up interrupt\n"); 442 goto fail; 443 } 444 445 if (bootverbose) 446 ieee80211_announce(ic); 447 448 return 0; 449 fail: 450 /* XXX fix */ 451 iwi_detach(dev); 452 return ENXIO; 453 } 454 455 static int 456 iwi_detach(device_t dev) 457 { 458 struct iwi_softc *sc = device_get_softc(dev); 459 struct ifnet *ifp = sc->sc_ifp; 460 struct ieee80211com *ic = ifp->if_l2com; 461 462 /* NB: do early to drain any pending tasks */ 463 ieee80211_draintask(ic, &sc->sc_radiontask); 464 ieee80211_draintask(ic, &sc->sc_radiofftask); 465 ieee80211_draintask(ic, &sc->sc_restarttask); 466 ieee80211_draintask(ic, &sc->sc_disassoctask); 467 ieee80211_draintask(ic, &sc->sc_monitortask); 468 469 iwi_stop(sc); 470 471 ieee80211_ifdetach(ic); 472 473 iwi_put_firmware(sc); 474 iwi_release_fw_dma(sc); 475 476 iwi_free_cmd_ring(sc, &sc->cmdq); 477 iwi_free_tx_ring(sc, &sc->txq[0]); 478 iwi_free_tx_ring(sc, &sc->txq[1]); 479 iwi_free_tx_ring(sc, &sc->txq[2]); 480 iwi_free_tx_ring(sc, &sc->txq[3]); 481 iwi_free_rx_ring(sc, &sc->rxq); 482 483 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 484 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 485 486 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 487 488 delete_unrhdr(sc->sc_unr); 489 490 IWI_LOCK_DESTROY(sc); 491 492 if_free(ifp); 493 494 return 0; 495 } 496 497 static struct ieee80211vap * 498 iwi_vap_create(struct ieee80211com *ic, 499 const char name[IFNAMSIZ], int unit, int opmode, int flags, 500 const uint8_t bssid[IEEE80211_ADDR_LEN], 501 const uint8_t mac[IEEE80211_ADDR_LEN]) 502 { 503 struct ifnet *ifp = ic->ic_ifp; 504 struct iwi_softc *sc = ifp->if_softc; 505 struct iwi_vap *ivp; 506 struct ieee80211vap *vap; 507 int i; 508 509 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 510 return NULL; 511 /* 512 * Get firmware image (and possibly dma memory) on mode change. 513 */ 514 if (iwi_get_firmware(sc, opmode)) 515 return NULL; 516 /* allocate DMA memory for mapping firmware image */ 517 i = sc->fw_fw.size; 518 if (sc->fw_boot.size > i) 519 i = sc->fw_boot.size; 520 /* XXX do we dma the ucode as well ? */ 521 if (sc->fw_uc.size > i) 522 i = sc->fw_uc.size; 523 if (iwi_init_fw_dma(sc, i)) 524 return NULL; 525 526 ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap), 527 M_80211_VAP, M_NOWAIT | M_ZERO); 528 if (ivp == NULL) 529 return NULL; 530 vap = &ivp->iwi_vap; 531 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 532 /* override the default, the setting comes from the linux driver */ 533 vap->iv_bmissthreshold = 24; 534 /* override with driver methods */ 535 ivp->iwi_newstate = vap->iv_newstate; 536 vap->iv_newstate = iwi_newstate; 537 538 /* complete setup */ 539 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 540 ic->ic_opmode = opmode; 541 return vap; 542 } 543 544 static void 545 iwi_vap_delete(struct ieee80211vap *vap) 546 { 547 struct iwi_vap *ivp = IWI_VAP(vap); 548 549 ieee80211_vap_detach(vap); 550 free(ivp, M_80211_VAP); 551 } 552 553 static void 554 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 555 { 556 if (error != 0) 557 return; 558 559 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 560 561 *(bus_addr_t *)arg = segs[0].ds_addr; 562 } 563 564 static int 565 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 566 { 567 int error; 568 569 ring->count = count; 570 ring->queued = 0; 571 ring->cur = ring->next = 0; 572 573 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 574 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 575 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 576 NULL, NULL, &ring->desc_dmat); 577 if (error != 0) { 578 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 579 goto fail; 580 } 581 582 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 583 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 584 if (error != 0) { 585 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 586 goto fail; 587 } 588 589 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 590 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 591 if (error != 0) { 592 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 593 goto fail; 594 } 595 596 return 0; 597 598 fail: iwi_free_cmd_ring(sc, ring); 599 return error; 600 } 601 602 static void 603 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 604 { 605 ring->queued = 0; 606 ring->cur = ring->next = 0; 607 } 608 609 static void 610 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 611 { 612 if (ring->desc != NULL) { 613 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 614 BUS_DMASYNC_POSTWRITE); 615 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 616 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 617 } 618 619 if (ring->desc_dmat != NULL) 620 bus_dma_tag_destroy(ring->desc_dmat); 621 } 622 623 static int 624 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 625 bus_addr_t csr_ridx, bus_addr_t csr_widx) 626 { 627 int i, error; 628 629 ring->count = count; 630 ring->queued = 0; 631 ring->cur = ring->next = 0; 632 ring->csr_ridx = csr_ridx; 633 ring->csr_widx = csr_widx; 634 635 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 636 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 637 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 638 NULL, &ring->desc_dmat); 639 if (error != 0) { 640 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 641 goto fail; 642 } 643 644 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 645 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 646 if (error != 0) { 647 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 648 goto fail; 649 } 650 651 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 652 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 653 if (error != 0) { 654 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 655 goto fail; 656 } 657 658 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 659 M_NOWAIT | M_ZERO); 660 if (ring->data == NULL) { 661 device_printf(sc->sc_dev, "could not allocate soft data\n"); 662 error = ENOMEM; 663 goto fail; 664 } 665 666 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 667 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 668 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 669 if (error != 0) { 670 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 671 goto fail; 672 } 673 674 for (i = 0; i < count; i++) { 675 error = bus_dmamap_create(ring->data_dmat, 0, 676 &ring->data[i].map); 677 if (error != 0) { 678 device_printf(sc->sc_dev, "could not create DMA map\n"); 679 goto fail; 680 } 681 } 682 683 return 0; 684 685 fail: iwi_free_tx_ring(sc, ring); 686 return error; 687 } 688 689 static void 690 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 691 { 692 struct iwi_tx_data *data; 693 int i; 694 695 for (i = 0; i < ring->count; i++) { 696 data = &ring->data[i]; 697 698 if (data->m != NULL) { 699 bus_dmamap_sync(ring->data_dmat, data->map, 700 BUS_DMASYNC_POSTWRITE); 701 bus_dmamap_unload(ring->data_dmat, data->map); 702 m_freem(data->m); 703 data->m = NULL; 704 } 705 706 if (data->ni != NULL) { 707 ieee80211_free_node(data->ni); 708 data->ni = NULL; 709 } 710 } 711 712 ring->queued = 0; 713 ring->cur = ring->next = 0; 714 } 715 716 static void 717 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 718 { 719 struct iwi_tx_data *data; 720 int i; 721 722 if (ring->desc != NULL) { 723 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 724 BUS_DMASYNC_POSTWRITE); 725 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 726 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 727 } 728 729 if (ring->desc_dmat != NULL) 730 bus_dma_tag_destroy(ring->desc_dmat); 731 732 if (ring->data != NULL) { 733 for (i = 0; i < ring->count; i++) { 734 data = &ring->data[i]; 735 736 if (data->m != NULL) { 737 bus_dmamap_sync(ring->data_dmat, data->map, 738 BUS_DMASYNC_POSTWRITE); 739 bus_dmamap_unload(ring->data_dmat, data->map); 740 m_freem(data->m); 741 } 742 743 if (data->ni != NULL) 744 ieee80211_free_node(data->ni); 745 746 if (data->map != NULL) 747 bus_dmamap_destroy(ring->data_dmat, data->map); 748 } 749 750 free(ring->data, M_DEVBUF); 751 } 752 753 if (ring->data_dmat != NULL) 754 bus_dma_tag_destroy(ring->data_dmat); 755 } 756 757 static int 758 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 759 { 760 struct iwi_rx_data *data; 761 int i, error; 762 763 ring->count = count; 764 ring->cur = 0; 765 766 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 767 M_NOWAIT | M_ZERO); 768 if (ring->data == NULL) { 769 device_printf(sc->sc_dev, "could not allocate soft data\n"); 770 error = ENOMEM; 771 goto fail; 772 } 773 774 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 775 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 776 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 777 if (error != 0) { 778 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 779 goto fail; 780 } 781 782 for (i = 0; i < count; i++) { 783 data = &ring->data[i]; 784 785 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 786 if (error != 0) { 787 device_printf(sc->sc_dev, "could not create DMA map\n"); 788 goto fail; 789 } 790 791 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 792 if (data->m == NULL) { 793 device_printf(sc->sc_dev, 794 "could not allocate rx mbuf\n"); 795 error = ENOMEM; 796 goto fail; 797 } 798 799 error = bus_dmamap_load(ring->data_dmat, data->map, 800 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 801 &data->physaddr, 0); 802 if (error != 0) { 803 device_printf(sc->sc_dev, 804 "could not load rx buf DMA map"); 805 goto fail; 806 } 807 808 data->reg = IWI_CSR_RX_BASE + i * 4; 809 } 810 811 return 0; 812 813 fail: iwi_free_rx_ring(sc, ring); 814 return error; 815 } 816 817 static void 818 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 819 { 820 ring->cur = 0; 821 } 822 823 static void 824 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 825 { 826 struct iwi_rx_data *data; 827 int i; 828 829 if (ring->data != NULL) { 830 for (i = 0; i < ring->count; i++) { 831 data = &ring->data[i]; 832 833 if (data->m != NULL) { 834 bus_dmamap_sync(ring->data_dmat, data->map, 835 BUS_DMASYNC_POSTREAD); 836 bus_dmamap_unload(ring->data_dmat, data->map); 837 m_freem(data->m); 838 } 839 840 if (data->map != NULL) 841 bus_dmamap_destroy(ring->data_dmat, data->map); 842 } 843 844 free(ring->data, M_DEVBUF); 845 } 846 847 if (ring->data_dmat != NULL) 848 bus_dma_tag_destroy(ring->data_dmat); 849 } 850 851 static int 852 iwi_shutdown(device_t dev) 853 { 854 struct iwi_softc *sc = device_get_softc(dev); 855 856 iwi_stop(sc); 857 iwi_put_firmware(sc); /* ??? XXX */ 858 859 return 0; 860 } 861 862 static int 863 iwi_suspend(device_t dev) 864 { 865 struct iwi_softc *sc = device_get_softc(dev); 866 867 iwi_stop(sc); 868 869 return 0; 870 } 871 872 static int 873 iwi_resume(device_t dev) 874 { 875 struct iwi_softc *sc = device_get_softc(dev); 876 struct ifnet *ifp = sc->sc_ifp; 877 878 pci_write_config(dev, 0x41, 0, 1); 879 880 if (ifp->if_flags & IFF_UP) 881 iwi_init(sc); 882 883 return 0; 884 } 885 886 static struct ieee80211_node * 887 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 888 { 889 struct iwi_node *in; 890 891 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 892 if (in == NULL) 893 return NULL; 894 /* XXX assign sta table entry for adhoc */ 895 in->in_station = -1; 896 897 return &in->in_node; 898 } 899 900 static void 901 iwi_node_free(struct ieee80211_node *ni) 902 { 903 struct ieee80211com *ic = ni->ni_ic; 904 struct iwi_softc *sc = ic->ic_ifp->if_softc; 905 struct iwi_node *in = (struct iwi_node *)ni; 906 907 if (in->in_station != -1) { 908 DPRINTF(("%s mac %6D station %u\n", __func__, 909 ni->ni_macaddr, ":", in->in_station)); 910 free_unr(sc->sc_unr, in->in_station); 911 } 912 913 sc->sc_node_free(ni); 914 } 915 916 /* 917 * Convert h/w rate code to IEEE rate code. 918 */ 919 static int 920 iwi_cvtrate(int iwirate) 921 { 922 switch (iwirate) { 923 case IWI_RATE_DS1: return 2; 924 case IWI_RATE_DS2: return 4; 925 case IWI_RATE_DS5: return 11; 926 case IWI_RATE_DS11: return 22; 927 case IWI_RATE_OFDM6: return 12; 928 case IWI_RATE_OFDM9: return 18; 929 case IWI_RATE_OFDM12: return 24; 930 case IWI_RATE_OFDM18: return 36; 931 case IWI_RATE_OFDM24: return 48; 932 case IWI_RATE_OFDM36: return 72; 933 case IWI_RATE_OFDM48: return 96; 934 case IWI_RATE_OFDM54: return 108; 935 } 936 return 0; 937 } 938 939 /* 940 * The firmware automatically adapts the transmit speed. We report its current 941 * value here. 942 */ 943 static void 944 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 945 { 946 struct ieee80211vap *vap = ifp->if_softc; 947 struct ieee80211com *ic = vap->iv_ic; 948 struct iwi_softc *sc = ic->ic_ifp->if_softc; 949 950 /* read current transmission rate from adapter */ 951 vap->iv_bss->ni_txrate = 952 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 953 ieee80211_media_status(ifp, imr); 954 } 955 956 static int 957 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 958 { 959 struct iwi_vap *ivp = IWI_VAP(vap); 960 struct ieee80211com *ic = vap->iv_ic; 961 struct ifnet *ifp = ic->ic_ifp; 962 struct iwi_softc *sc = ifp->if_softc; 963 IWI_LOCK_DECL; 964 965 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 966 ieee80211_state_name[vap->iv_state], 967 ieee80211_state_name[nstate], sc->flags)); 968 969 IEEE80211_UNLOCK(ic); 970 IWI_LOCK(sc); 971 switch (nstate) { 972 case IEEE80211_S_INIT: 973 /* 974 * NB: don't try to do this if iwi_stop_master has 975 * shutdown the firmware and disabled interrupts. 976 */ 977 if (vap->iv_state == IEEE80211_S_RUN && 978 (sc->flags & IWI_FLAG_FW_INITED)) 979 iwi_disassociate(sc, 0); 980 break; 981 case IEEE80211_S_AUTH: 982 iwi_auth_and_assoc(sc, vap); 983 break; 984 case IEEE80211_S_RUN: 985 if (vap->iv_opmode == IEEE80211_M_IBSS && 986 vap->iv_state == IEEE80211_S_SCAN) { 987 /* 988 * XXX when joining an ibss network we are called 989 * with a SCAN -> RUN transition on scan complete. 990 * Use that to call iwi_auth_and_assoc. On completing 991 * the join we are then called again with an 992 * AUTH -> RUN transition and we want to do nothing. 993 * This is all totally bogus and needs to be redone. 994 */ 995 iwi_auth_and_assoc(sc, vap); 996 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 997 ieee80211_runtask(ic, &sc->sc_monitortask); 998 break; 999 case IEEE80211_S_ASSOC: 1000 /* 1001 * If we are transitioning from AUTH then just wait 1002 * for the ASSOC status to come back from the firmware. 1003 * Otherwise we need to issue the association request. 1004 */ 1005 if (vap->iv_state == IEEE80211_S_AUTH) 1006 break; 1007 iwi_auth_and_assoc(sc, vap); 1008 break; 1009 default: 1010 break; 1011 } 1012 IWI_UNLOCK(sc); 1013 IEEE80211_LOCK(ic); 1014 return ivp->iwi_newstate(vap, nstate, arg); 1015 } 1016 1017 /* 1018 * WME parameters coming from IEEE 802.11e specification. These values are 1019 * already declared in ieee80211_proto.c, but they are static so they can't 1020 * be reused here. 1021 */ 1022 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1023 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1024 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1025 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1026 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1027 }; 1028 1029 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1030 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1031 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1032 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1033 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1034 }; 1035 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1036 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1037 1038 static void 1039 iwi_wme_init(struct iwi_softc *sc) 1040 { 1041 const struct wmeParams *wmep; 1042 int ac; 1043 1044 memset(sc->wme, 0, sizeof sc->wme); 1045 for (ac = 0; ac < WME_NUM_AC; ac++) { 1046 /* set WME values for CCK modulation */ 1047 wmep = &iwi_wme_cck_params[ac]; 1048 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1049 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1050 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1051 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1052 sc->wme[1].acm[ac] = wmep->wmep_acm; 1053 1054 /* set WME values for OFDM modulation */ 1055 wmep = &iwi_wme_ofdm_params[ac]; 1056 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1057 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1058 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1059 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1060 sc->wme[2].acm[ac] = wmep->wmep_acm; 1061 } 1062 } 1063 1064 static int 1065 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1066 { 1067 const struct wmeParams *wmep; 1068 int ac; 1069 1070 for (ac = 0; ac < WME_NUM_AC; ac++) { 1071 /* set WME values for current operating mode */ 1072 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1073 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1074 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1075 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1076 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1077 sc->wme[0].acm[ac] = wmep->wmep_acm; 1078 } 1079 1080 DPRINTF(("Setting WME parameters\n")); 1081 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1082 } 1083 #undef IWI_USEC 1084 #undef IWI_EXP2 1085 1086 static void 1087 iwi_update_wme(void *arg, int npending) 1088 { 1089 struct ieee80211com *ic = arg; 1090 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1091 IWI_LOCK_DECL; 1092 1093 IWI_LOCK(sc); 1094 (void) iwi_wme_setparams(sc, ic); 1095 IWI_UNLOCK(sc); 1096 } 1097 1098 static int 1099 iwi_wme_update(struct ieee80211com *ic) 1100 { 1101 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1102 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1103 1104 /* 1105 * We may be called to update the WME parameters in 1106 * the adapter at various places. If we're already 1107 * associated then initiate the request immediately; 1108 * otherwise we assume the params will get sent down 1109 * to the adapter as part of the work iwi_auth_and_assoc 1110 * does. 1111 */ 1112 if (vap->iv_state == IEEE80211_S_RUN) 1113 ieee80211_runtask(ic, &sc->sc_wmetask); 1114 return (0); 1115 } 1116 1117 static int 1118 iwi_wme_setie(struct iwi_softc *sc) 1119 { 1120 struct ieee80211_wme_info wme; 1121 1122 memset(&wme, 0, sizeof wme); 1123 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1124 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1125 wme.wme_oui[0] = 0x00; 1126 wme.wme_oui[1] = 0x50; 1127 wme.wme_oui[2] = 0xf2; 1128 wme.wme_type = WME_OUI_TYPE; 1129 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1130 wme.wme_version = WME_VERSION; 1131 wme.wme_info = 0; 1132 1133 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1134 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1135 } 1136 1137 /* 1138 * Read 16 bits at address 'addr' from the serial EEPROM. 1139 */ 1140 static uint16_t 1141 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1142 { 1143 uint32_t tmp; 1144 uint16_t val; 1145 int n; 1146 1147 /* clock C once before the first command */ 1148 IWI_EEPROM_CTL(sc, 0); 1149 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1150 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1152 1153 /* write start bit (1) */ 1154 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1156 1157 /* write READ opcode (10) */ 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1159 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1160 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1161 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1162 1163 /* write address A7-A0 */ 1164 for (n = 7; n >= 0; n--) { 1165 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1166 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1167 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1168 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1169 } 1170 1171 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1172 1173 /* read data Q15-Q0 */ 1174 val = 0; 1175 for (n = 15; n >= 0; n--) { 1176 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1177 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1178 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1179 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1180 } 1181 1182 IWI_EEPROM_CTL(sc, 0); 1183 1184 /* clear Chip Select and clock C */ 1185 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1186 IWI_EEPROM_CTL(sc, 0); 1187 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1188 1189 return val; 1190 } 1191 1192 static void 1193 iwi_setcurchan(struct iwi_softc *sc, int chan) 1194 { 1195 struct ifnet *ifp = sc->sc_ifp; 1196 struct ieee80211com *ic = ifp->if_l2com; 1197 1198 sc->curchan = chan; 1199 ieee80211_radiotap_chan_change(ic); 1200 } 1201 1202 static void 1203 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1204 struct iwi_frame *frame) 1205 { 1206 struct ifnet *ifp = sc->sc_ifp; 1207 struct ieee80211com *ic = ifp->if_l2com; 1208 struct mbuf *mnew, *m; 1209 struct ieee80211_node *ni; 1210 int type, error, framelen; 1211 int8_t rssi, nf; 1212 IWI_LOCK_DECL; 1213 1214 framelen = le16toh(frame->len); 1215 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1216 /* 1217 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1218 * out of bounds; need to figure out how to limit 1219 * frame size in the firmware 1220 */ 1221 /* XXX stat */ 1222 DPRINTFN(1, 1223 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1224 le16toh(frame->len), frame->chan, frame->rssi, 1225 frame->rssi_dbm)); 1226 return; 1227 } 1228 1229 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1230 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1231 1232 if (frame->chan != sc->curchan) 1233 iwi_setcurchan(sc, frame->chan); 1234 1235 /* 1236 * Try to allocate a new mbuf for this ring element and load it before 1237 * processing the current mbuf. If the ring element cannot be loaded, 1238 * drop the received packet and reuse the old mbuf. In the unlikely 1239 * case that the old mbuf can't be reloaded either, explicitly panic. 1240 */ 1241 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1242 if (mnew == NULL) { 1243 ifp->if_ierrors++; 1244 return; 1245 } 1246 1247 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1248 1249 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1250 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1251 0); 1252 if (error != 0) { 1253 m_freem(mnew); 1254 1255 /* try to reload the old mbuf */ 1256 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1257 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1258 &data->physaddr, 0); 1259 if (error != 0) { 1260 /* very unlikely that it will fail... */ 1261 panic("%s: could not load old rx mbuf", 1262 device_get_name(sc->sc_dev)); 1263 } 1264 ifp->if_ierrors++; 1265 return; 1266 } 1267 1268 /* 1269 * New mbuf successfully loaded, update Rx ring and continue 1270 * processing. 1271 */ 1272 m = data->m; 1273 data->m = mnew; 1274 CSR_WRITE_4(sc, data->reg, data->physaddr); 1275 1276 /* finalize mbuf */ 1277 m->m_pkthdr.rcvif = ifp; 1278 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1279 sizeof (struct iwi_frame) + framelen; 1280 1281 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1282 1283 rssi = frame->rssi_dbm; 1284 nf = -95; 1285 if (ieee80211_radiotap_active(ic)) { 1286 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1287 1288 tap->wr_flags = 0; 1289 tap->wr_antsignal = rssi; 1290 tap->wr_antnoise = nf; 1291 tap->wr_rate = iwi_cvtrate(frame->rate); 1292 tap->wr_antenna = frame->antenna; 1293 } 1294 IWI_UNLOCK(sc); 1295 1296 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1297 if (ni != NULL) { 1298 type = ieee80211_input(ni, m, rssi, nf); 1299 ieee80211_free_node(ni); 1300 } else 1301 type = ieee80211_input_all(ic, m, rssi, nf); 1302 1303 IWI_LOCK(sc); 1304 if (sc->sc_softled) { 1305 /* 1306 * Blink for any data frame. Otherwise do a 1307 * heartbeat-style blink when idle. The latter 1308 * is mainly for station mode where we depend on 1309 * periodic beacon frames to trigger the poll event. 1310 */ 1311 if (type == IEEE80211_FC0_TYPE_DATA) { 1312 sc->sc_rxrate = frame->rate; 1313 iwi_led_event(sc, IWI_LED_RX); 1314 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1315 iwi_led_event(sc, IWI_LED_POLL); 1316 } 1317 } 1318 1319 /* 1320 * Check for an association response frame to see if QoS 1321 * has been negotiated. We parse just enough to figure 1322 * out if we're supposed to use QoS. The proper solution 1323 * is to pass the frame up so ieee80211_input can do the 1324 * work but that's made hard by how things currently are 1325 * done in the driver. 1326 */ 1327 static void 1328 iwi_checkforqos(struct ieee80211vap *vap, 1329 const struct ieee80211_frame *wh, int len) 1330 { 1331 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1332 const uint8_t *frm, *efrm, *wme; 1333 struct ieee80211_node *ni; 1334 uint16_t capinfo, status, associd; 1335 1336 /* NB: +8 for capinfo, status, associd, and first ie */ 1337 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1338 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1339 return; 1340 /* 1341 * asresp frame format 1342 * [2] capability information 1343 * [2] status 1344 * [2] association ID 1345 * [tlv] supported rates 1346 * [tlv] extended supported rates 1347 * [tlv] WME 1348 */ 1349 frm = (const uint8_t *)&wh[1]; 1350 efrm = ((const uint8_t *) wh) + len; 1351 1352 capinfo = le16toh(*(const uint16_t *)frm); 1353 frm += 2; 1354 status = le16toh(*(const uint16_t *)frm); 1355 frm += 2; 1356 associd = le16toh(*(const uint16_t *)frm); 1357 frm += 2; 1358 1359 wme = NULL; 1360 while (frm < efrm) { 1361 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1362 switch (*frm) { 1363 case IEEE80211_ELEMID_VENDOR: 1364 if (iswmeoui(frm)) 1365 wme = frm; 1366 break; 1367 } 1368 frm += frm[1] + 2; 1369 } 1370 1371 ni = vap->iv_bss; 1372 ni->ni_capinfo = capinfo; 1373 ni->ni_associd = associd & 0x3fff; 1374 if (wme != NULL) 1375 ni->ni_flags |= IEEE80211_NODE_QOS; 1376 else 1377 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1378 #undef SUBTYPE 1379 } 1380 1381 /* 1382 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1383 */ 1384 1385 static void 1386 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1387 { 1388 struct ifnet *ifp = sc->sc_ifp; 1389 struct ieee80211com *ic = ifp->if_l2com; 1390 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1391 struct iwi_notif_scan_channel *chan; 1392 struct iwi_notif_scan_complete *scan; 1393 struct iwi_notif_authentication *auth; 1394 struct iwi_notif_association *assoc; 1395 struct iwi_notif_beacon_state *beacon; 1396 1397 switch (notif->type) { 1398 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1399 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1400 1401 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1402 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1403 1404 /* Reset the timer, the scan is still going */ 1405 sc->sc_state_timer = 3; 1406 break; 1407 1408 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1409 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1410 1411 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1412 scan->status)); 1413 1414 IWI_STATE_END(sc, IWI_FW_SCANNING); 1415 1416 /* 1417 * Monitor mode works by doing a passive scan to set 1418 * the channel and enable rx. Because we don't want 1419 * to abort a scan lest the firmware crash we scan 1420 * for a short period of time and automatically restart 1421 * the scan when notified the sweep has completed. 1422 */ 1423 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1424 ieee80211_runtask(ic, &sc->sc_monitortask); 1425 break; 1426 } 1427 1428 if (scan->status == IWI_SCAN_COMPLETED) { 1429 /* NB: don't need to defer, net80211 does it for us */ 1430 ieee80211_scan_next(vap); 1431 } 1432 break; 1433 1434 case IWI_NOTIF_TYPE_AUTHENTICATION: 1435 auth = (struct iwi_notif_authentication *)(notif + 1); 1436 switch (auth->state) { 1437 case IWI_AUTH_SUCCESS: 1438 DPRINTFN(2, ("Authentication succeeeded\n")); 1439 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1440 break; 1441 case IWI_AUTH_FAIL: 1442 /* 1443 * These are delivered as an unsolicited deauth 1444 * (e.g. due to inactivity) or in response to an 1445 * associate request. 1446 */ 1447 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1448 if (vap->iv_state != IEEE80211_S_RUN) { 1449 DPRINTFN(2, ("Authentication failed\n")); 1450 vap->iv_stats.is_rx_auth_fail++; 1451 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1452 } else { 1453 DPRINTFN(2, ("Deauthenticated\n")); 1454 vap->iv_stats.is_rx_deauth++; 1455 } 1456 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1457 break; 1458 case IWI_AUTH_SENT_1: 1459 case IWI_AUTH_RECV_2: 1460 case IWI_AUTH_SEQ1_PASS: 1461 break; 1462 case IWI_AUTH_SEQ1_FAIL: 1463 DPRINTFN(2, ("Initial authentication handshake failed; " 1464 "you probably need shared key\n")); 1465 vap->iv_stats.is_rx_auth_fail++; 1466 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1467 /* XXX retry shared key when in auto */ 1468 break; 1469 default: 1470 device_printf(sc->sc_dev, 1471 "unknown authentication state %u\n", auth->state); 1472 break; 1473 } 1474 break; 1475 1476 case IWI_NOTIF_TYPE_ASSOCIATION: 1477 assoc = (struct iwi_notif_association *)(notif + 1); 1478 switch (assoc->state) { 1479 case IWI_AUTH_SUCCESS: 1480 /* re-association, do nothing */ 1481 break; 1482 case IWI_ASSOC_SUCCESS: 1483 DPRINTFN(2, ("Association succeeded\n")); 1484 sc->flags |= IWI_FLAG_ASSOCIATED; 1485 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1486 iwi_checkforqos(vap, 1487 (const struct ieee80211_frame *)(assoc+1), 1488 le16toh(notif->len) - sizeof(*assoc) - 1); 1489 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1490 break; 1491 case IWI_ASSOC_INIT: 1492 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1493 switch (sc->fw_state) { 1494 case IWI_FW_ASSOCIATING: 1495 DPRINTFN(2, ("Association failed\n")); 1496 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1497 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1498 break; 1499 1500 case IWI_FW_DISASSOCIATING: 1501 DPRINTFN(2, ("Dissassociated\n")); 1502 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1503 vap->iv_stats.is_rx_disassoc++; 1504 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1505 break; 1506 } 1507 break; 1508 default: 1509 device_printf(sc->sc_dev, 1510 "unknown association state %u\n", assoc->state); 1511 break; 1512 } 1513 break; 1514 1515 case IWI_NOTIF_TYPE_BEACON: 1516 /* XXX check struct length */ 1517 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1518 1519 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1520 beacon->state, le32toh(beacon->number))); 1521 1522 if (beacon->state == IWI_BEACON_MISS) { 1523 /* 1524 * The firmware notifies us of every beacon miss 1525 * so we need to track the count against the 1526 * configured threshold before notifying the 1527 * 802.11 layer. 1528 * XXX try to roam, drop assoc only on much higher count 1529 */ 1530 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1531 DPRINTF(("Beacon miss: %u >= %u\n", 1532 le32toh(beacon->number), 1533 vap->iv_bmissthreshold)); 1534 vap->iv_stats.is_beacon_miss++; 1535 /* 1536 * It's pointless to notify the 802.11 layer 1537 * as it'll try to send a probe request (which 1538 * we'll discard) and then timeout and drop us 1539 * into scan state. Instead tell the firmware 1540 * to disassociate and then on completion we'll 1541 * kick the state machine to scan. 1542 */ 1543 ieee80211_runtask(ic, &sc->sc_disassoctask); 1544 } 1545 } 1546 break; 1547 1548 case IWI_NOTIF_TYPE_CALIBRATION: 1549 case IWI_NOTIF_TYPE_NOISE: 1550 case IWI_NOTIF_TYPE_LINK_QUALITY: 1551 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1552 break; 1553 1554 default: 1555 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1556 notif->type, notif->flags, le16toh(notif->len))); 1557 break; 1558 } 1559 } 1560 1561 static void 1562 iwi_rx_intr(struct iwi_softc *sc) 1563 { 1564 struct iwi_rx_data *data; 1565 struct iwi_hdr *hdr; 1566 uint32_t hw; 1567 1568 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1569 1570 for (; sc->rxq.cur != hw;) { 1571 data = &sc->rxq.data[sc->rxq.cur]; 1572 1573 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1574 BUS_DMASYNC_POSTREAD); 1575 1576 hdr = mtod(data->m, struct iwi_hdr *); 1577 1578 switch (hdr->type) { 1579 case IWI_HDR_TYPE_FRAME: 1580 iwi_frame_intr(sc, data, sc->rxq.cur, 1581 (struct iwi_frame *)(hdr + 1)); 1582 break; 1583 1584 case IWI_HDR_TYPE_NOTIF: 1585 iwi_notification_intr(sc, 1586 (struct iwi_notif *)(hdr + 1)); 1587 break; 1588 1589 default: 1590 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1591 hdr->type); 1592 } 1593 1594 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1595 1596 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1597 } 1598 1599 /* tell the firmware what we have processed */ 1600 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1601 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1602 } 1603 1604 static void 1605 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1606 { 1607 struct ifnet *ifp = sc->sc_ifp; 1608 struct iwi_tx_data *data; 1609 uint32_t hw; 1610 1611 hw = CSR_READ_4(sc, txq->csr_ridx); 1612 1613 for (; txq->next != hw;) { 1614 data = &txq->data[txq->next]; 1615 1616 bus_dmamap_sync(txq->data_dmat, data->map, 1617 BUS_DMASYNC_POSTWRITE); 1618 bus_dmamap_unload(txq->data_dmat, data->map); 1619 if (data->m->m_flags & M_TXCB) 1620 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1621 m_freem(data->m); 1622 data->m = NULL; 1623 ieee80211_free_node(data->ni); 1624 data->ni = NULL; 1625 1626 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1627 1628 ifp->if_opackets++; 1629 1630 txq->queued--; 1631 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1632 } 1633 1634 sc->sc_tx_timer = 0; 1635 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1636 1637 if (sc->sc_softled) 1638 iwi_led_event(sc, IWI_LED_TX); 1639 1640 iwi_start_locked(ifp); 1641 } 1642 1643 static void 1644 iwi_fatal_error_intr(struct iwi_softc *sc) 1645 { 1646 struct ifnet *ifp = sc->sc_ifp; 1647 struct ieee80211com *ic = ifp->if_l2com; 1648 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1649 1650 device_printf(sc->sc_dev, "firmware error\n"); 1651 if (vap != NULL) 1652 ieee80211_cancel_scan(vap); 1653 ieee80211_runtask(ic, &sc->sc_restarttask); 1654 1655 sc->flags &= ~IWI_FLAG_BUSY; 1656 sc->sc_busy_timer = 0; 1657 wakeup(sc); 1658 } 1659 1660 static void 1661 iwi_radio_off_intr(struct iwi_softc *sc) 1662 { 1663 struct ifnet *ifp = sc->sc_ifp; 1664 struct ieee80211com *ic = ifp->if_l2com; 1665 1666 ieee80211_runtask(ic, &sc->sc_radiofftask); 1667 } 1668 1669 static void 1670 iwi_intr(void *arg) 1671 { 1672 struct iwi_softc *sc = arg; 1673 uint32_t r; 1674 IWI_LOCK_DECL; 1675 1676 IWI_LOCK(sc); 1677 1678 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1679 IWI_UNLOCK(sc); 1680 return; 1681 } 1682 1683 /* acknowledge interrupts */ 1684 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1685 1686 if (r & IWI_INTR_FATAL_ERROR) { 1687 iwi_fatal_error_intr(sc); 1688 goto done; 1689 } 1690 1691 if (r & IWI_INTR_FW_INITED) { 1692 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1693 wakeup(sc); 1694 } 1695 1696 if (r & IWI_INTR_RADIO_OFF) 1697 iwi_radio_off_intr(sc); 1698 1699 if (r & IWI_INTR_CMD_DONE) { 1700 sc->flags &= ~IWI_FLAG_BUSY; 1701 sc->sc_busy_timer = 0; 1702 wakeup(sc); 1703 } 1704 1705 if (r & IWI_INTR_TX1_DONE) 1706 iwi_tx_intr(sc, &sc->txq[0]); 1707 1708 if (r & IWI_INTR_TX2_DONE) 1709 iwi_tx_intr(sc, &sc->txq[1]); 1710 1711 if (r & IWI_INTR_TX3_DONE) 1712 iwi_tx_intr(sc, &sc->txq[2]); 1713 1714 if (r & IWI_INTR_TX4_DONE) 1715 iwi_tx_intr(sc, &sc->txq[3]); 1716 1717 if (r & IWI_INTR_RX_DONE) 1718 iwi_rx_intr(sc); 1719 1720 if (r & IWI_INTR_PARITY_ERROR) { 1721 /* XXX rate-limit */ 1722 device_printf(sc->sc_dev, "parity error\n"); 1723 } 1724 done: 1725 IWI_UNLOCK(sc); 1726 } 1727 1728 static int 1729 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1730 { 1731 struct iwi_cmd_desc *desc; 1732 1733 IWI_LOCK_ASSERT(sc); 1734 1735 if (sc->flags & IWI_FLAG_BUSY) { 1736 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1737 __func__, type); 1738 return EAGAIN; 1739 } 1740 sc->flags |= IWI_FLAG_BUSY; 1741 sc->sc_busy_timer = 2; 1742 1743 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1744 1745 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1746 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1747 desc->type = type; 1748 desc->len = len; 1749 memcpy(desc->data, data, len); 1750 1751 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1752 BUS_DMASYNC_PREWRITE); 1753 1754 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1755 type, len)); 1756 1757 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1758 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1759 1760 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1761 } 1762 1763 static void 1764 iwi_write_ibssnode(struct iwi_softc *sc, 1765 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1766 { 1767 struct iwi_ibssnode node; 1768 1769 /* write node information into NIC memory */ 1770 memset(&node, 0, sizeof node); 1771 IEEE80211_ADDR_COPY(node.bssid, addr); 1772 1773 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1774 1775 CSR_WRITE_REGION_1(sc, 1776 IWI_CSR_NODE_BASE + entry * sizeof node, 1777 (uint8_t *)&node, sizeof node); 1778 } 1779 1780 static int 1781 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1782 int ac) 1783 { 1784 struct iwi_softc *sc = ifp->if_softc; 1785 struct ieee80211vap *vap = ni->ni_vap; 1786 struct ieee80211com *ic = ni->ni_ic; 1787 struct iwi_node *in = (struct iwi_node *)ni; 1788 const struct ieee80211_frame *wh; 1789 struct ieee80211_key *k; 1790 const struct chanAccParams *cap; 1791 struct iwi_tx_ring *txq = &sc->txq[ac]; 1792 struct iwi_tx_data *data; 1793 struct iwi_tx_desc *desc; 1794 struct mbuf *mnew; 1795 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1796 int error, nsegs, hdrlen, i; 1797 int ismcast, flags, xflags, staid; 1798 1799 IWI_LOCK_ASSERT(sc); 1800 wh = mtod(m0, const struct ieee80211_frame *); 1801 /* NB: only data frames use this path */ 1802 hdrlen = ieee80211_hdrsize(wh); 1803 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1804 flags = xflags = 0; 1805 1806 if (!ismcast) 1807 flags |= IWI_DATA_FLAG_NEED_ACK; 1808 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1809 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1810 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1811 xflags |= IWI_DATA_XFLAG_QOS; 1812 cap = &ic->ic_wme.wme_chanParams; 1813 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1814 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1815 } 1816 1817 /* 1818 * This is only used in IBSS mode where the firmware expect an index 1819 * in a h/w table instead of a destination address. 1820 */ 1821 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1822 if (!ismcast) { 1823 if (in->in_station == -1) { 1824 in->in_station = alloc_unr(sc->sc_unr); 1825 if (in->in_station == -1) { 1826 /* h/w table is full */ 1827 m_freem(m0); 1828 ieee80211_free_node(ni); 1829 ifp->if_oerrors++; 1830 return 0; 1831 } 1832 iwi_write_ibssnode(sc, 1833 ni->ni_macaddr, in->in_station); 1834 } 1835 staid = in->in_station; 1836 } else { 1837 /* 1838 * Multicast addresses have no associated node 1839 * so there will be no station entry. We reserve 1840 * entry 0 for one mcast address and use that. 1841 * If there are many being used this will be 1842 * expensive and we'll need to do a better job 1843 * but for now this handles the broadcast case. 1844 */ 1845 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1846 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1847 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1848 } 1849 staid = 0; 1850 } 1851 } else 1852 staid = 0; 1853 1854 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1855 k = ieee80211_crypto_encap(ni, m0); 1856 if (k == NULL) { 1857 m_freem(m0); 1858 return ENOBUFS; 1859 } 1860 1861 /* packet header may have moved, reset our local pointer */ 1862 wh = mtod(m0, struct ieee80211_frame *); 1863 } 1864 1865 if (ieee80211_radiotap_active_vap(vap)) { 1866 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1867 1868 tap->wt_flags = 0; 1869 1870 ieee80211_radiotap_tx(vap, m0); 1871 } 1872 1873 data = &txq->data[txq->cur]; 1874 desc = &txq->desc[txq->cur]; 1875 1876 /* save and trim IEEE802.11 header */ 1877 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1878 m_adj(m0, hdrlen); 1879 1880 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1881 &nsegs, 0); 1882 if (error != 0 && error != EFBIG) { 1883 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1884 error); 1885 m_freem(m0); 1886 return error; 1887 } 1888 if (error != 0) { 1889 mnew = m_defrag(m0, M_DONTWAIT); 1890 if (mnew == NULL) { 1891 device_printf(sc->sc_dev, 1892 "could not defragment mbuf\n"); 1893 m_freem(m0); 1894 return ENOBUFS; 1895 } 1896 m0 = mnew; 1897 1898 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1899 m0, segs, &nsegs, 0); 1900 if (error != 0) { 1901 device_printf(sc->sc_dev, 1902 "could not map mbuf (error %d)\n", error); 1903 m_freem(m0); 1904 return error; 1905 } 1906 } 1907 1908 data->m = m0; 1909 data->ni = ni; 1910 1911 desc->hdr.type = IWI_HDR_TYPE_DATA; 1912 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1913 desc->station = staid; 1914 desc->cmd = IWI_DATA_CMD_TX; 1915 desc->len = htole16(m0->m_pkthdr.len); 1916 desc->flags = flags; 1917 desc->xflags = xflags; 1918 1919 #if 0 1920 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1921 desc->wep_txkey = vap->iv_def_txkey; 1922 else 1923 #endif 1924 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1925 1926 desc->nseg = htole32(nsegs); 1927 for (i = 0; i < nsegs; i++) { 1928 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1929 desc->seg_len[i] = htole16(segs[i].ds_len); 1930 } 1931 1932 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1933 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1934 1935 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1936 ac, txq->cur, le16toh(desc->len), nsegs)); 1937 1938 txq->queued++; 1939 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1940 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1941 1942 return 0; 1943 } 1944 1945 static int 1946 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1947 const struct ieee80211_bpf_params *params) 1948 { 1949 /* no support; just discard */ 1950 m_freem(m); 1951 ieee80211_free_node(ni); 1952 return 0; 1953 } 1954 1955 static void 1956 iwi_start_locked(struct ifnet *ifp) 1957 { 1958 struct iwi_softc *sc = ifp->if_softc; 1959 struct mbuf *m; 1960 struct ieee80211_node *ni; 1961 int ac; 1962 1963 IWI_LOCK_ASSERT(sc); 1964 1965 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1966 return; 1967 1968 for (;;) { 1969 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 1970 if (m == NULL) 1971 break; 1972 ac = M_WME_GETAC(m); 1973 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1974 /* there is no place left in this ring; tail drop */ 1975 /* XXX tail drop */ 1976 IFQ_DRV_PREPEND(&ifp->if_snd, m); 1977 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1978 break; 1979 } 1980 1981 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1982 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1983 ieee80211_free_node(ni); 1984 ifp->if_oerrors++; 1985 break; 1986 } 1987 1988 sc->sc_tx_timer = 5; 1989 } 1990 } 1991 1992 static void 1993 iwi_start(struct ifnet *ifp) 1994 { 1995 struct iwi_softc *sc = ifp->if_softc; 1996 IWI_LOCK_DECL; 1997 1998 IWI_LOCK(sc); 1999 iwi_start_locked(ifp); 2000 IWI_UNLOCK(sc); 2001 } 2002 2003 static void 2004 iwi_watchdog(void *arg) 2005 { 2006 struct iwi_softc *sc = arg; 2007 struct ifnet *ifp = sc->sc_ifp; 2008 struct ieee80211com *ic = ifp->if_l2com; 2009 2010 IWI_LOCK_ASSERT(sc); 2011 2012 if (sc->sc_tx_timer > 0) { 2013 if (--sc->sc_tx_timer == 0) { 2014 if_printf(ifp, "device timeout\n"); 2015 ifp->if_oerrors++; 2016 ieee80211_runtask(ic, &sc->sc_restarttask); 2017 } 2018 } 2019 if (sc->sc_state_timer > 0) { 2020 if (--sc->sc_state_timer == 0) { 2021 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2022 sc->fw_state); 2023 if (sc->fw_state == IWI_FW_SCANNING) { 2024 struct ieee80211com *ic = ifp->if_l2com; 2025 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2026 } 2027 ieee80211_runtask(ic, &sc->sc_restarttask); 2028 sc->sc_state_timer = 3; 2029 } 2030 } 2031 if (sc->sc_busy_timer > 0) { 2032 if (--sc->sc_busy_timer == 0) { 2033 if_printf(ifp, "firmware command timeout, resetting\n"); 2034 ieee80211_runtask(ic, &sc->sc_restarttask); 2035 } 2036 } 2037 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2038 } 2039 2040 static int 2041 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2042 { 2043 struct iwi_softc *sc = ifp->if_softc; 2044 struct ieee80211com *ic = ifp->if_l2com; 2045 struct ifreq *ifr = (struct ifreq *) data; 2046 int error = 0, startall = 0; 2047 IWI_LOCK_DECL; 2048 2049 switch (cmd) { 2050 case SIOCSIFFLAGS: 2051 IWI_LOCK(sc); 2052 if (ifp->if_flags & IFF_UP) { 2053 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2054 iwi_init_locked(sc); 2055 startall = 1; 2056 } 2057 } else { 2058 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2059 iwi_stop_locked(sc); 2060 } 2061 IWI_UNLOCK(sc); 2062 if (startall) 2063 ieee80211_start_all(ic); 2064 break; 2065 case SIOCGIFMEDIA: 2066 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2067 break; 2068 case SIOCGIFADDR: 2069 error = ether_ioctl(ifp, cmd, data); 2070 break; 2071 default: 2072 error = EINVAL; 2073 break; 2074 } 2075 return error; 2076 } 2077 2078 static void 2079 iwi_stop_master(struct iwi_softc *sc) 2080 { 2081 uint32_t tmp; 2082 int ntries; 2083 2084 /* disable interrupts */ 2085 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2086 2087 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2088 for (ntries = 0; ntries < 5; ntries++) { 2089 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2090 break; 2091 DELAY(10); 2092 } 2093 if (ntries == 5) 2094 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2095 2096 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2097 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2098 2099 sc->flags &= ~IWI_FLAG_FW_INITED; 2100 } 2101 2102 static int 2103 iwi_reset(struct iwi_softc *sc) 2104 { 2105 uint32_t tmp; 2106 int i, ntries; 2107 2108 iwi_stop_master(sc); 2109 2110 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2111 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2112 2113 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2114 2115 /* wait for clock stabilization */ 2116 for (ntries = 0; ntries < 1000; ntries++) { 2117 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2118 break; 2119 DELAY(200); 2120 } 2121 if (ntries == 1000) { 2122 device_printf(sc->sc_dev, 2123 "timeout waiting for clock stabilization\n"); 2124 return EIO; 2125 } 2126 2127 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2128 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2129 2130 DELAY(10); 2131 2132 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2133 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2134 2135 /* clear NIC memory */ 2136 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2137 for (i = 0; i < 0xc000; i++) 2138 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2139 2140 return 0; 2141 } 2142 2143 static const struct iwi_firmware_ohdr * 2144 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2145 { 2146 const struct firmware *fp = fw->fp; 2147 const struct iwi_firmware_ohdr *hdr; 2148 2149 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2150 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2151 return NULL; 2152 } 2153 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2154 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2155 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2156 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2157 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2158 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2159 IWI_FW_REQ_MINOR); 2160 return NULL; 2161 } 2162 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2163 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2164 fw->name = fp->name; 2165 return hdr; 2166 } 2167 2168 static const struct iwi_firmware_ohdr * 2169 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2170 { 2171 const struct iwi_firmware_ohdr *hdr; 2172 2173 hdr = iwi_setup_ofw(sc, fw); 2174 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2175 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2176 fw->name); 2177 hdr = NULL; 2178 } 2179 return hdr; 2180 } 2181 2182 static void 2183 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2184 struct iwi_fw *uc, const char *ucname) 2185 { 2186 if (fw->fp == NULL) 2187 fw->fp = firmware_get(fwname); 2188 /* NB: pre-3.0 ucode is packaged separately */ 2189 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2190 uc->fp = firmware_get(ucname); 2191 } 2192 2193 /* 2194 * Get the required firmware images if not already loaded. 2195 * Note that we hold firmware images so long as the device 2196 * is marked up in case we need to reload them on device init. 2197 * This is necessary because we re-init the device sometimes 2198 * from a context where we cannot read from the filesystem 2199 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2200 * XXX return 0 on success, 1 on error. 2201 * 2202 * NB: the order of get'ing and put'ing images here is 2203 * intentional to support handling firmware images bundled 2204 * by operating mode and/or all together in one file with 2205 * the boot firmware as "master". 2206 */ 2207 static int 2208 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2209 { 2210 const struct iwi_firmware_hdr *hdr; 2211 const struct firmware *fp; 2212 2213 /* invalidate cached firmware on mode change */ 2214 if (sc->fw_mode != opmode) 2215 iwi_put_firmware(sc); 2216 2217 switch (opmode) { 2218 case IEEE80211_M_STA: 2219 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2220 break; 2221 case IEEE80211_M_IBSS: 2222 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2223 break; 2224 case IEEE80211_M_MONITOR: 2225 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2226 &sc->fw_uc, "iwi_ucode_monitor"); 2227 break; 2228 default: 2229 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2230 return EINVAL; 2231 } 2232 fp = sc->fw_fw.fp; 2233 if (fp == NULL) { 2234 device_printf(sc->sc_dev, "could not load firmware\n"); 2235 goto bad; 2236 } 2237 if (fp->version < 300) { 2238 /* 2239 * Firmware prior to 3.0 was packaged as separate 2240 * boot, firmware, and ucode images. Verify the 2241 * ucode image was read in, retrieve the boot image 2242 * if needed, and check version stamps for consistency. 2243 * The version stamps in the data are also checked 2244 * above; this is a bit paranoid but is a cheap 2245 * safeguard against mis-packaging. 2246 */ 2247 if (sc->fw_uc.fp == NULL) { 2248 device_printf(sc->sc_dev, "could not load ucode\n"); 2249 goto bad; 2250 } 2251 if (sc->fw_boot.fp == NULL) { 2252 sc->fw_boot.fp = firmware_get("iwi_boot"); 2253 if (sc->fw_boot.fp == NULL) { 2254 device_printf(sc->sc_dev, 2255 "could not load boot firmware\n"); 2256 goto bad; 2257 } 2258 } 2259 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2260 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2261 device_printf(sc->sc_dev, 2262 "firmware version mismatch: " 2263 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2264 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2265 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2266 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2267 ); 2268 goto bad; 2269 } 2270 /* 2271 * Check and setup each image. 2272 */ 2273 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2274 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2275 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2276 goto bad; 2277 } else { 2278 /* 2279 * Check and setup combined image. 2280 */ 2281 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2282 device_printf(sc->sc_dev, "image '%s' too small\n", 2283 fp->name); 2284 goto bad; 2285 } 2286 hdr = (const struct iwi_firmware_hdr *)fp->data; 2287 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2288 + le32toh(hdr->fsize)) { 2289 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2290 fp->name); 2291 goto bad; 2292 } 2293 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2294 sc->fw_boot.size = le32toh(hdr->bsize); 2295 sc->fw_boot.name = fp->name; 2296 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2297 sc->fw_uc.size = le32toh(hdr->usize); 2298 sc->fw_uc.name = fp->name; 2299 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2300 sc->fw_fw.size = le32toh(hdr->fsize); 2301 sc->fw_fw.name = fp->name; 2302 } 2303 #if 0 2304 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2305 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2306 #endif 2307 2308 sc->fw_mode = opmode; 2309 return 0; 2310 bad: 2311 iwi_put_firmware(sc); 2312 return 1; 2313 } 2314 2315 static void 2316 iwi_put_fw(struct iwi_fw *fw) 2317 { 2318 if (fw->fp != NULL) { 2319 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2320 fw->fp = NULL; 2321 } 2322 fw->data = NULL; 2323 fw->size = 0; 2324 fw->name = NULL; 2325 } 2326 2327 /* 2328 * Release any cached firmware images. 2329 */ 2330 static void 2331 iwi_put_firmware(struct iwi_softc *sc) 2332 { 2333 iwi_put_fw(&sc->fw_uc); 2334 iwi_put_fw(&sc->fw_fw); 2335 iwi_put_fw(&sc->fw_boot); 2336 } 2337 2338 static int 2339 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2340 { 2341 uint32_t tmp; 2342 const uint16_t *w; 2343 const char *uc = fw->data; 2344 size_t size = fw->size; 2345 int i, ntries, error; 2346 2347 IWI_LOCK_ASSERT(sc); 2348 error = 0; 2349 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2350 IWI_RST_STOP_MASTER); 2351 for (ntries = 0; ntries < 5; ntries++) { 2352 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2353 break; 2354 DELAY(10); 2355 } 2356 if (ntries == 5) { 2357 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2358 error = EIO; 2359 goto fail; 2360 } 2361 2362 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2363 DELAY(5000); 2364 2365 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2366 tmp &= ~IWI_RST_PRINCETON_RESET; 2367 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2368 2369 DELAY(5000); 2370 MEM_WRITE_4(sc, 0x3000e0, 0); 2371 DELAY(1000); 2372 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2373 DELAY(1000); 2374 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2375 DELAY(1000); 2376 MEM_WRITE_1(sc, 0x200000, 0x00); 2377 MEM_WRITE_1(sc, 0x200000, 0x40); 2378 DELAY(1000); 2379 2380 /* write microcode into adapter memory */ 2381 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2382 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2383 2384 MEM_WRITE_1(sc, 0x200000, 0x00); 2385 MEM_WRITE_1(sc, 0x200000, 0x80); 2386 2387 /* wait until we get an answer */ 2388 for (ntries = 0; ntries < 100; ntries++) { 2389 if (MEM_READ_1(sc, 0x200000) & 1) 2390 break; 2391 DELAY(100); 2392 } 2393 if (ntries == 100) { 2394 device_printf(sc->sc_dev, 2395 "timeout waiting for ucode to initialize\n"); 2396 error = EIO; 2397 goto fail; 2398 } 2399 2400 /* read the answer or the firmware will not initialize properly */ 2401 for (i = 0; i < 7; i++) 2402 MEM_READ_4(sc, 0x200004); 2403 2404 MEM_WRITE_1(sc, 0x200000, 0x00); 2405 2406 fail: 2407 return error; 2408 } 2409 2410 /* macro to handle unaligned little endian data in firmware image */ 2411 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2412 2413 static int 2414 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2415 { 2416 u_char *p, *end; 2417 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2418 int ntries, error; 2419 2420 IWI_LOCK_ASSERT(sc); 2421 2422 /* copy firmware image to DMA memory */ 2423 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2424 2425 /* make sure the adapter will get up-to-date values */ 2426 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2427 2428 /* tell the adapter where the command blocks are stored */ 2429 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2430 2431 /* 2432 * Store command blocks into adapter's internal memory using register 2433 * indirections. The adapter will read the firmware image through DMA 2434 * using information stored in command blocks. 2435 */ 2436 src = sc->fw_physaddr; 2437 p = sc->fw_virtaddr; 2438 end = p + fw->size; 2439 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2440 2441 while (p < end) { 2442 dst = GETLE32(p); p += 4; src += 4; 2443 len = GETLE32(p); p += 4; src += 4; 2444 p += len; 2445 2446 while (len > 0) { 2447 mlen = min(len, IWI_CB_MAXDATALEN); 2448 2449 ctl = IWI_CB_DEFAULT_CTL | mlen; 2450 sum = ctl ^ src ^ dst; 2451 2452 /* write a command block */ 2453 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2454 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2456 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2457 2458 src += mlen; 2459 dst += mlen; 2460 len -= mlen; 2461 } 2462 } 2463 2464 /* write a fictive final command block (sentinel) */ 2465 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2466 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2467 2468 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2469 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2470 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2471 2472 /* tell the adapter to start processing command blocks */ 2473 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2474 2475 /* wait until the adapter reaches the sentinel */ 2476 for (ntries = 0; ntries < 400; ntries++) { 2477 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2478 break; 2479 DELAY(100); 2480 } 2481 /* sync dma, just in case */ 2482 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2483 if (ntries == 400) { 2484 device_printf(sc->sc_dev, 2485 "timeout processing command blocks for %s firmware\n", 2486 fw->name); 2487 return EIO; 2488 } 2489 2490 /* we're done with command blocks processing */ 2491 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2492 2493 /* allow interrupts so we know when the firmware is ready */ 2494 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2495 2496 /* tell the adapter to initialize the firmware */ 2497 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2498 2499 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2500 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2501 2502 /* wait at most one second for firmware initialization to complete */ 2503 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2504 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2505 "initialization to complete\n", fw->name); 2506 } 2507 2508 return error; 2509 } 2510 2511 static int 2512 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2513 { 2514 uint32_t data; 2515 2516 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2517 /* XXX set more fine-grained operation */ 2518 data = htole32(IWI_POWER_MODE_MAX); 2519 } else 2520 data = htole32(IWI_POWER_MODE_CAM); 2521 2522 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2523 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2524 } 2525 2526 static int 2527 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2528 { 2529 struct iwi_wep_key wepkey; 2530 struct ieee80211_key *wk; 2531 int error, i; 2532 2533 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2534 wk = &vap->iv_nw_keys[i]; 2535 2536 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2537 wepkey.idx = i; 2538 wepkey.len = wk->wk_keylen; 2539 memset(wepkey.key, 0, sizeof wepkey.key); 2540 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2541 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2542 wepkey.len)); 2543 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2544 sizeof wepkey); 2545 if (error != 0) 2546 return error; 2547 } 2548 return 0; 2549 } 2550 2551 static int 2552 iwi_config(struct iwi_softc *sc) 2553 { 2554 struct ifnet *ifp = sc->sc_ifp; 2555 struct ieee80211com *ic = ifp->if_l2com; 2556 struct iwi_configuration config; 2557 struct iwi_rateset rs; 2558 struct iwi_txpower power; 2559 uint32_t data; 2560 int error, i; 2561 2562 IWI_LOCK_ASSERT(sc); 2563 2564 DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":")); 2565 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2566 IEEE80211_ADDR_LEN); 2567 if (error != 0) 2568 return error; 2569 2570 memset(&config, 0, sizeof config); 2571 config.bluetooth_coexistence = sc->bluetooth; 2572 config.silence_threshold = 0x1e; 2573 config.antenna = sc->antenna; 2574 config.multicast_enabled = 1; 2575 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2576 config.disable_unicast_decryption = 1; 2577 config.disable_multicast_decryption = 1; 2578 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2579 config.allow_invalid_frames = 1; 2580 config.allow_beacon_and_probe_resp = 1; 2581 config.allow_mgt = 1; 2582 } 2583 DPRINTF(("Configuring adapter\n")); 2584 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2585 if (error != 0) 2586 return error; 2587 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2588 power.mode = IWI_MODE_11B; 2589 power.nchan = 11; 2590 for (i = 0; i < 11; i++) { 2591 power.chan[i].chan = i + 1; 2592 power.chan[i].power = IWI_TXPOWER_MAX; 2593 } 2594 DPRINTF(("Setting .11b channels tx power\n")); 2595 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2596 if (error != 0) 2597 return error; 2598 2599 power.mode = IWI_MODE_11G; 2600 DPRINTF(("Setting .11g channels tx power\n")); 2601 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2602 if (error != 0) 2603 return error; 2604 } 2605 2606 memset(&rs, 0, sizeof rs); 2607 rs.mode = IWI_MODE_11G; 2608 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2609 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2610 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2611 rs.nrates); 2612 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2613 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2614 if (error != 0) 2615 return error; 2616 2617 memset(&rs, 0, sizeof rs); 2618 rs.mode = IWI_MODE_11A; 2619 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2620 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2621 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2622 rs.nrates); 2623 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2624 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2625 if (error != 0) 2626 return error; 2627 2628 data = htole32(arc4random()); 2629 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2630 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2631 if (error != 0) 2632 return error; 2633 2634 /* enable adapter */ 2635 DPRINTF(("Enabling adapter\n")); 2636 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2637 } 2638 2639 static __inline void 2640 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2641 { 2642 uint8_t *st = &scan->scan_type[ix / 2]; 2643 if (ix % 2) 2644 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2645 else 2646 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2647 } 2648 2649 static int 2650 scan_type(const struct ieee80211_scan_state *ss, 2651 const struct ieee80211_channel *chan) 2652 { 2653 /* We can only set one essid for a directed scan */ 2654 if (ss->ss_nssid != 0) 2655 return IWI_SCAN_TYPE_BDIRECTED; 2656 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2657 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2658 return IWI_SCAN_TYPE_BROADCAST; 2659 return IWI_SCAN_TYPE_PASSIVE; 2660 } 2661 2662 static __inline int 2663 scan_band(const struct ieee80211_channel *c) 2664 { 2665 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2666 } 2667 2668 static void 2669 iwi_monitor_scan(void *arg, int npending) 2670 { 2671 struct iwi_softc *sc = arg; 2672 IWI_LOCK_DECL; 2673 2674 IWI_LOCK(sc); 2675 (void) iwi_scanchan(sc, 2000, 0); 2676 IWI_UNLOCK(sc); 2677 } 2678 2679 /* 2680 * Start a scan on the current channel or all channels. 2681 */ 2682 static int 2683 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2684 { 2685 struct ieee80211com *ic; 2686 struct ieee80211_channel *chan; 2687 struct ieee80211_scan_state *ss; 2688 struct iwi_scan_ext scan; 2689 int error = 0; 2690 2691 IWI_LOCK_ASSERT(sc); 2692 if (sc->fw_state == IWI_FW_SCANNING) { 2693 /* 2694 * This should not happen as we only trigger scan_next after 2695 * completion 2696 */ 2697 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2698 return (EBUSY); 2699 } 2700 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2701 2702 ic = sc->sc_ifp->if_l2com; 2703 ss = ic->ic_scan; 2704 2705 memset(&scan, 0, sizeof scan); 2706 scan.full_scan_index = htole32(++sc->sc_scangen); 2707 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2708 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2709 /* 2710 * Use very short dwell times for when we send probe request 2711 * frames. Without this bg scans hang. Ideally this should 2712 * be handled with early-termination as done by net80211 but 2713 * that's not feasible (aborting a scan is problematic). 2714 */ 2715 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2716 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2717 } else { 2718 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2719 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2720 } 2721 2722 /* We can only set one essid for a directed scan */ 2723 if (ss->ss_nssid != 0) { 2724 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2725 ss->ss_ssid[0].len); 2726 if (error) 2727 return (error); 2728 } 2729 2730 if (allchan) { 2731 int i, next, band, b, bstart; 2732 /* 2733 * Convert scan list to run-length encoded channel list 2734 * the firmware requires (preserving the order setup by 2735 * net80211). The first entry in each run specifies the 2736 * band and the count of items in the run. 2737 */ 2738 next = 0; /* next open slot */ 2739 bstart = 0; /* NB: not needed, silence compiler */ 2740 band = -1; /* NB: impossible value */ 2741 KASSERT(ss->ss_last > 0, ("no channels")); 2742 for (i = 0; i < ss->ss_last; i++) { 2743 chan = ss->ss_chans[i]; 2744 b = scan_band(chan); 2745 if (b != band) { 2746 if (band != -1) 2747 scan.channels[bstart] = 2748 (next - bstart) | band; 2749 /* NB: this allocates a slot for the run-len */ 2750 band = b, bstart = next++; 2751 } 2752 if (next >= IWI_SCAN_CHANNELS) { 2753 DPRINTF(("truncating scan list\n")); 2754 break; 2755 } 2756 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2757 set_scan_type(&scan, next, scan_type(ss, chan)); 2758 next++; 2759 } 2760 scan.channels[bstart] = (next - bstart) | band; 2761 } else { 2762 /* Scan the current channel only */ 2763 chan = ic->ic_curchan; 2764 scan.channels[0] = 1 | scan_band(chan); 2765 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2766 set_scan_type(&scan, 1, scan_type(ss, chan)); 2767 } 2768 #ifdef IWI_DEBUG 2769 if (iwi_debug > 0) { 2770 static const char *scantype[8] = 2771 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2772 int i; 2773 printf("Scan request: index %u dwell %d/%d/%d\n" 2774 , le32toh(scan.full_scan_index) 2775 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2776 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2777 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2778 ); 2779 i = 0; 2780 do { 2781 int run = scan.channels[i]; 2782 if (run == 0) 2783 break; 2784 printf("Scan %d %s channels:", run & 0x3f, 2785 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2786 for (run &= 0x3f, i++; run > 0; run--, i++) { 2787 uint8_t type = scan.scan_type[i/2]; 2788 printf(" %u/%s", scan.channels[i], 2789 scantype[(i & 1 ? type : type>>4) & 7]); 2790 } 2791 printf("\n"); 2792 } while (i < IWI_SCAN_CHANNELS); 2793 } 2794 #endif 2795 2796 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2797 } 2798 2799 static int 2800 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2801 { 2802 struct iwi_sensitivity sens; 2803 2804 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2805 2806 memset(&sens, 0, sizeof sens); 2807 sens.rssi = htole16(rssi_dbm); 2808 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2809 } 2810 2811 static int 2812 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2813 { 2814 struct ieee80211com *ic = vap->iv_ic; 2815 struct ifnet *ifp = vap->iv_ifp; 2816 struct ieee80211_node *ni = vap->iv_bss; 2817 struct iwi_configuration config; 2818 struct iwi_associate *assoc = &sc->assoc; 2819 struct iwi_rateset rs; 2820 uint16_t capinfo; 2821 uint32_t data; 2822 int error, mode; 2823 2824 IWI_LOCK_ASSERT(sc); 2825 2826 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2827 DPRINTF(("Already associated\n")); 2828 return (-1); 2829 } 2830 2831 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2832 error = 0; 2833 mode = 0; 2834 2835 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2836 mode = IWI_MODE_11A; 2837 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2838 mode = IWI_MODE_11G; 2839 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2840 mode = IWI_MODE_11B; 2841 2842 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2843 memset(&config, 0, sizeof config); 2844 config.bluetooth_coexistence = sc->bluetooth; 2845 config.antenna = sc->antenna; 2846 config.multicast_enabled = 1; 2847 if (mode == IWI_MODE_11G) 2848 config.use_protection = 1; 2849 config.answer_pbreq = 2850 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2851 config.disable_unicast_decryption = 1; 2852 config.disable_multicast_decryption = 1; 2853 DPRINTF(("Configuring adapter\n")); 2854 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2855 if (error != 0) 2856 goto done; 2857 } 2858 2859 #ifdef IWI_DEBUG 2860 if (iwi_debug > 0) { 2861 printf("Setting ESSID to "); 2862 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2863 printf("\n"); 2864 } 2865 #endif 2866 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2867 if (error != 0) 2868 goto done; 2869 2870 error = iwi_setpowermode(sc, vap); 2871 if (error != 0) 2872 goto done; 2873 2874 data = htole32(vap->iv_rtsthreshold); 2875 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2876 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2877 if (error != 0) 2878 goto done; 2879 2880 data = htole32(vap->iv_fragthreshold); 2881 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2882 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2883 if (error != 0) 2884 goto done; 2885 2886 /* the rate set has already been "negotiated" */ 2887 memset(&rs, 0, sizeof rs); 2888 rs.mode = mode; 2889 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2890 rs.nrates = ni->ni_rates.rs_nrates; 2891 if (rs.nrates > IWI_RATESET_SIZE) { 2892 DPRINTF(("Truncating negotiated rate set from %u\n", 2893 rs.nrates)); 2894 rs.nrates = IWI_RATESET_SIZE; 2895 } 2896 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2897 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2898 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2899 if (error != 0) 2900 goto done; 2901 2902 memset(assoc, 0, sizeof *assoc); 2903 2904 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2905 /* NB: don't treat WME setup as failure */ 2906 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2907 assoc->policy |= htole16(IWI_POLICY_WME); 2908 /* XXX complain on failure? */ 2909 } 2910 2911 if (vap->iv_appie_wpa != NULL) { 2912 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2913 2914 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2915 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2916 if (error != 0) 2917 goto done; 2918 } 2919 2920 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2921 if (error != 0) 2922 goto done; 2923 2924 assoc->mode = mode; 2925 assoc->chan = ic->ic_curchan->ic_ieee; 2926 /* 2927 * NB: do not arrange for shared key auth w/o privacy 2928 * (i.e. a wep key); it causes a firmware error. 2929 */ 2930 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2931 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2932 assoc->auth = IWI_AUTH_SHARED; 2933 /* 2934 * It's possible to have privacy marked but no default 2935 * key setup. This typically is due to a user app bug 2936 * but if we blindly grab the key the firmware will 2937 * barf so avoid it for now. 2938 */ 2939 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2940 assoc->auth |= vap->iv_def_txkey << 4; 2941 2942 error = iwi_setwepkeys(sc, vap); 2943 if (error != 0) 2944 goto done; 2945 } 2946 if (vap->iv_flags & IEEE80211_F_WPA) 2947 assoc->policy |= htole16(IWI_POLICY_WPA); 2948 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2949 assoc->type = IWI_HC_IBSS_START; 2950 else 2951 assoc->type = IWI_HC_ASSOC; 2952 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2953 2954 if (vap->iv_opmode == IEEE80211_M_IBSS) 2955 capinfo = IEEE80211_CAPINFO_IBSS; 2956 else 2957 capinfo = IEEE80211_CAPINFO_ESS; 2958 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2959 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2960 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2961 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2962 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2963 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2964 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2965 assoc->capinfo = htole16(capinfo); 2966 2967 assoc->lintval = htole16(ic->ic_lintval); 2968 assoc->intval = htole16(ni->ni_intval); 2969 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2970 if (vap->iv_opmode == IEEE80211_M_IBSS) 2971 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2972 else 2973 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2974 2975 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2976 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2977 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2978 assoc->bssid, ":", assoc->dst, ":", 2979 assoc->chan, le16toh(assoc->policy), assoc->auth, 2980 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2981 le16toh(assoc->intval))); 2982 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2983 done: 2984 if (error) 2985 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2986 2987 return (error); 2988 } 2989 2990 static void 2991 iwi_disassoc(void *arg, int pending) 2992 { 2993 struct iwi_softc *sc = arg; 2994 IWI_LOCK_DECL; 2995 2996 IWI_LOCK(sc); 2997 iwi_disassociate(sc, 0); 2998 IWI_UNLOCK(sc); 2999 } 3000 3001 static int 3002 iwi_disassociate(struct iwi_softc *sc, int quiet) 3003 { 3004 struct iwi_associate *assoc = &sc->assoc; 3005 3006 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3007 DPRINTF(("Not associated\n")); 3008 return (-1); 3009 } 3010 3011 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3012 3013 if (quiet) 3014 assoc->type = IWI_HC_DISASSOC_QUIET; 3015 else 3016 assoc->type = IWI_HC_DISASSOC; 3017 3018 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3019 assoc->bssid, ":", assoc->chan)); 3020 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3021 } 3022 3023 /* 3024 * release dma resources for the firmware 3025 */ 3026 static void 3027 iwi_release_fw_dma(struct iwi_softc *sc) 3028 { 3029 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3030 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3031 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3032 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3033 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3034 bus_dma_tag_destroy(sc->fw_dmat); 3035 3036 sc->fw_flags = 0; 3037 sc->fw_dma_size = 0; 3038 sc->fw_dmat = NULL; 3039 sc->fw_map = NULL; 3040 sc->fw_physaddr = 0; 3041 sc->fw_virtaddr = NULL; 3042 } 3043 3044 /* 3045 * allocate the dma descriptor for the firmware. 3046 * Return 0 on success, 1 on error. 3047 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3048 */ 3049 static int 3050 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3051 { 3052 if (sc->fw_dma_size >= size) 3053 return 0; 3054 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3055 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3056 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3057 device_printf(sc->sc_dev, 3058 "could not create firmware DMA tag\n"); 3059 goto error; 3060 } 3061 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3062 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3063 &sc->fw_map) != 0) { 3064 device_printf(sc->sc_dev, 3065 "could not allocate firmware DMA memory\n"); 3066 goto error; 3067 } 3068 sc->fw_flags |= IWI_FW_HAVE_MAP; 3069 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3070 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3071 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3072 goto error; 3073 } 3074 sc->fw_flags |= IWI_FW_HAVE_PHY; 3075 sc->fw_dma_size = size; 3076 return 0; 3077 3078 error: 3079 iwi_release_fw_dma(sc); 3080 return 1; 3081 } 3082 3083 static void 3084 iwi_init_locked(struct iwi_softc *sc) 3085 { 3086 struct ifnet *ifp = sc->sc_ifp; 3087 struct iwi_rx_data *data; 3088 int i; 3089 3090 IWI_LOCK_ASSERT(sc); 3091 3092 if (sc->fw_state == IWI_FW_LOADING) { 3093 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3094 return; /* XXX: condvar? */ 3095 } 3096 3097 iwi_stop_locked(sc); 3098 3099 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3100 3101 if (iwi_reset(sc) != 0) { 3102 device_printf(sc->sc_dev, "could not reset adapter\n"); 3103 goto fail; 3104 } 3105 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3106 device_printf(sc->sc_dev, 3107 "could not load boot firmware %s\n", sc->fw_boot.name); 3108 goto fail; 3109 } 3110 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3111 device_printf(sc->sc_dev, 3112 "could not load microcode %s\n", sc->fw_uc.name); 3113 goto fail; 3114 } 3115 3116 iwi_stop_master(sc); 3117 3118 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3119 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3120 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3121 3122 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3123 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3124 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3125 3126 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3127 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3128 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3129 3130 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3131 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3132 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3133 3134 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3135 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3136 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3137 3138 for (i = 0; i < sc->rxq.count; i++) { 3139 data = &sc->rxq.data[i]; 3140 CSR_WRITE_4(sc, data->reg, data->physaddr); 3141 } 3142 3143 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3144 3145 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3146 device_printf(sc->sc_dev, 3147 "could not load main firmware %s\n", sc->fw_fw.name); 3148 goto fail; 3149 } 3150 sc->flags |= IWI_FLAG_FW_INITED; 3151 3152 IWI_STATE_END(sc, IWI_FW_LOADING); 3153 3154 if (iwi_config(sc) != 0) { 3155 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3156 goto fail2; 3157 } 3158 3159 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3160 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3161 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3162 return; 3163 fail: 3164 IWI_STATE_END(sc, IWI_FW_LOADING); 3165 fail2: 3166 iwi_stop_locked(sc); 3167 } 3168 3169 static void 3170 iwi_init(void *priv) 3171 { 3172 struct iwi_softc *sc = priv; 3173 struct ifnet *ifp = sc->sc_ifp; 3174 struct ieee80211com *ic = ifp->if_l2com; 3175 IWI_LOCK_DECL; 3176 3177 IWI_LOCK(sc); 3178 iwi_init_locked(sc); 3179 IWI_UNLOCK(sc); 3180 3181 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3182 ieee80211_start_all(ic); 3183 } 3184 3185 static void 3186 iwi_stop_locked(void *priv) 3187 { 3188 struct iwi_softc *sc = priv; 3189 struct ifnet *ifp = sc->sc_ifp; 3190 3191 IWI_LOCK_ASSERT(sc); 3192 3193 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3194 3195 if (sc->sc_softled) { 3196 callout_stop(&sc->sc_ledtimer); 3197 sc->sc_blinking = 0; 3198 } 3199 callout_stop(&sc->sc_wdtimer); 3200 callout_stop(&sc->sc_rftimer); 3201 3202 iwi_stop_master(sc); 3203 3204 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3205 3206 /* reset rings */ 3207 iwi_reset_cmd_ring(sc, &sc->cmdq); 3208 iwi_reset_tx_ring(sc, &sc->txq[0]); 3209 iwi_reset_tx_ring(sc, &sc->txq[1]); 3210 iwi_reset_tx_ring(sc, &sc->txq[2]); 3211 iwi_reset_tx_ring(sc, &sc->txq[3]); 3212 iwi_reset_rx_ring(sc, &sc->rxq); 3213 3214 sc->sc_tx_timer = 0; 3215 sc->sc_state_timer = 0; 3216 sc->sc_busy_timer = 0; 3217 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3218 sc->fw_state = IWI_FW_IDLE; 3219 wakeup(sc); 3220 } 3221 3222 static void 3223 iwi_stop(struct iwi_softc *sc) 3224 { 3225 IWI_LOCK_DECL; 3226 3227 IWI_LOCK(sc); 3228 iwi_stop_locked(sc); 3229 IWI_UNLOCK(sc); 3230 } 3231 3232 static void 3233 iwi_restart(void *arg, int npending) 3234 { 3235 struct iwi_softc *sc = arg; 3236 3237 iwi_init(sc); 3238 } 3239 3240 /* 3241 * Return whether or not the radio is enabled in hardware 3242 * (i.e. the rfkill switch is "off"). 3243 */ 3244 static int 3245 iwi_getrfkill(struct iwi_softc *sc) 3246 { 3247 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3248 } 3249 3250 static void 3251 iwi_radio_on(void *arg, int pending) 3252 { 3253 struct iwi_softc *sc = arg; 3254 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3255 3256 device_printf(sc->sc_dev, "radio turned on\n"); 3257 3258 iwi_init(sc); 3259 ieee80211_notify_radio(ic, 1); 3260 } 3261 3262 static void 3263 iwi_rfkill_poll(void *arg) 3264 { 3265 struct iwi_softc *sc = arg; 3266 3267 IWI_LOCK_ASSERT(sc); 3268 3269 /* 3270 * Check for a change in rfkill state. We get an 3271 * interrupt when a radio is disabled but not when 3272 * it is enabled so we must poll for the latter. 3273 */ 3274 if (!iwi_getrfkill(sc)) { 3275 struct ifnet *ifp = sc->sc_ifp; 3276 struct ieee80211com *ic = ifp->if_l2com; 3277 3278 ieee80211_runtask(ic, &sc->sc_radiontask); 3279 return; 3280 } 3281 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3282 } 3283 3284 static void 3285 iwi_radio_off(void *arg, int pending) 3286 { 3287 struct iwi_softc *sc = arg; 3288 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3289 IWI_LOCK_DECL; 3290 3291 device_printf(sc->sc_dev, "radio turned off\n"); 3292 3293 ieee80211_notify_radio(ic, 0); 3294 3295 IWI_LOCK(sc); 3296 iwi_stop_locked(sc); 3297 iwi_rfkill_poll(sc); 3298 IWI_UNLOCK(sc); 3299 } 3300 3301 static int 3302 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3303 { 3304 struct iwi_softc *sc = arg1; 3305 uint32_t size, buf[128]; 3306 3307 memset(buf, 0, sizeof buf); 3308 3309 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3310 return SYSCTL_OUT(req, buf, sizeof buf); 3311 3312 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3313 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3314 3315 return SYSCTL_OUT(req, buf, size); 3316 } 3317 3318 static int 3319 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3320 { 3321 struct iwi_softc *sc = arg1; 3322 int val = !iwi_getrfkill(sc); 3323 3324 return SYSCTL_OUT(req, &val, sizeof val); 3325 } 3326 3327 /* 3328 * Add sysctl knobs. 3329 */ 3330 static void 3331 iwi_sysctlattach(struct iwi_softc *sc) 3332 { 3333 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3334 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3335 3336 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3337 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3338 "radio transmitter switch state (0=off, 1=on)"); 3339 3340 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3341 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3342 "statistics"); 3343 3344 sc->bluetooth = 0; 3345 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3346 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3347 3348 sc->antenna = IWI_ANTENNA_AUTO; 3349 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3350 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3351 } 3352 3353 /* 3354 * LED support. 3355 * 3356 * Different cards have different capabilities. Some have three 3357 * led's while others have only one. The linux ipw driver defines 3358 * led's for link state (associated or not), band (11a, 11g, 11b), 3359 * and for link activity. We use one led and vary the blink rate 3360 * according to the tx/rx traffic a la the ath driver. 3361 */ 3362 3363 static __inline uint32_t 3364 iwi_toggle_event(uint32_t r) 3365 { 3366 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3367 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3368 } 3369 3370 static uint32_t 3371 iwi_read_event(struct iwi_softc *sc) 3372 { 3373 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3374 } 3375 3376 static void 3377 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3378 { 3379 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3380 } 3381 3382 static void 3383 iwi_led_done(void *arg) 3384 { 3385 struct iwi_softc *sc = arg; 3386 3387 sc->sc_blinking = 0; 3388 } 3389 3390 /* 3391 * Turn the activity LED off: flip the pin and then set a timer so no 3392 * update will happen for the specified duration. 3393 */ 3394 static void 3395 iwi_led_off(void *arg) 3396 { 3397 struct iwi_softc *sc = arg; 3398 uint32_t v; 3399 3400 v = iwi_read_event(sc); 3401 v &= ~sc->sc_ledpin; 3402 iwi_write_event(sc, iwi_toggle_event(v)); 3403 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3404 } 3405 3406 /* 3407 * Blink the LED according to the specified on/off times. 3408 */ 3409 static void 3410 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3411 { 3412 uint32_t v; 3413 3414 v = iwi_read_event(sc); 3415 v |= sc->sc_ledpin; 3416 iwi_write_event(sc, iwi_toggle_event(v)); 3417 sc->sc_blinking = 1; 3418 sc->sc_ledoff = off; 3419 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3420 } 3421 3422 static void 3423 iwi_led_event(struct iwi_softc *sc, int event) 3424 { 3425 #define N(a) (sizeof(a)/sizeof(a[0])) 3426 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3427 static const struct { 3428 u_int rate; /* tx/rx iwi rate */ 3429 u_int16_t timeOn; /* LED on time (ms) */ 3430 u_int16_t timeOff; /* LED off time (ms) */ 3431 } blinkrates[] = { 3432 { IWI_RATE_OFDM54, 40, 10 }, 3433 { IWI_RATE_OFDM48, 44, 11 }, 3434 { IWI_RATE_OFDM36, 50, 13 }, 3435 { IWI_RATE_OFDM24, 57, 14 }, 3436 { IWI_RATE_OFDM18, 67, 16 }, 3437 { IWI_RATE_OFDM12, 80, 20 }, 3438 { IWI_RATE_DS11, 100, 25 }, 3439 { IWI_RATE_OFDM9, 133, 34 }, 3440 { IWI_RATE_OFDM6, 160, 40 }, 3441 { IWI_RATE_DS5, 200, 50 }, 3442 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3443 { IWI_RATE_DS2, 267, 66 }, 3444 { IWI_RATE_DS1, 400, 100 }, 3445 { 0, 500, 130 }, /* unknown rate/polling */ 3446 }; 3447 uint32_t txrate; 3448 int j = 0; /* XXX silence compiler */ 3449 3450 sc->sc_ledevent = ticks; /* time of last event */ 3451 if (sc->sc_blinking) /* don't interrupt active blink */ 3452 return; 3453 switch (event) { 3454 case IWI_LED_POLL: 3455 j = N(blinkrates)-1; 3456 break; 3457 case IWI_LED_TX: 3458 /* read current transmission rate from adapter */ 3459 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3460 if (blinkrates[sc->sc_txrix].rate != txrate) { 3461 for (j = 0; j < N(blinkrates)-1; j++) 3462 if (blinkrates[j].rate == txrate) 3463 break; 3464 sc->sc_txrix = j; 3465 } else 3466 j = sc->sc_txrix; 3467 break; 3468 case IWI_LED_RX: 3469 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3470 for (j = 0; j < N(blinkrates)-1; j++) 3471 if (blinkrates[j].rate == sc->sc_rxrate) 3472 break; 3473 sc->sc_rxrix = j; 3474 } else 3475 j = sc->sc_rxrix; 3476 break; 3477 } 3478 /* XXX beware of overflow */ 3479 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3480 (blinkrates[j].timeOff * hz) / 1000); 3481 #undef N 3482 } 3483 3484 static int 3485 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3486 { 3487 struct iwi_softc *sc = arg1; 3488 int softled = sc->sc_softled; 3489 int error; 3490 3491 error = sysctl_handle_int(oidp, &softled, 0, req); 3492 if (error || !req->newptr) 3493 return error; 3494 softled = (softled != 0); 3495 if (softled != sc->sc_softled) { 3496 if (softled) { 3497 uint32_t v = iwi_read_event(sc); 3498 v &= ~sc->sc_ledpin; 3499 iwi_write_event(sc, iwi_toggle_event(v)); 3500 } 3501 sc->sc_softled = softled; 3502 } 3503 return 0; 3504 } 3505 3506 static void 3507 iwi_ledattach(struct iwi_softc *sc) 3508 { 3509 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3510 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3511 3512 sc->sc_blinking = 0; 3513 sc->sc_ledstate = 1; 3514 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3515 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3516 3517 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3518 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3519 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3520 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3521 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3522 "pin setting to turn activity LED on"); 3523 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3524 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3525 "idle time for inactivity LED (ticks)"); 3526 /* XXX for debugging */ 3527 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3528 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3529 "NIC type from EEPROM"); 3530 3531 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3532 sc->sc_softled = 1; 3533 3534 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3535 if (sc->sc_nictype == 1) { 3536 /* 3537 * NB: led's are reversed. 3538 */ 3539 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3540 } 3541 } 3542 3543 static void 3544 iwi_scan_start(struct ieee80211com *ic) 3545 { 3546 /* ignore */ 3547 } 3548 3549 static void 3550 iwi_set_channel(struct ieee80211com *ic) 3551 { 3552 struct ifnet *ifp = ic->ic_ifp; 3553 struct iwi_softc *sc = ifp->if_softc; 3554 if (sc->fw_state == IWI_FW_IDLE) 3555 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3556 } 3557 3558 static void 3559 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3560 { 3561 struct ieee80211vap *vap = ss->ss_vap; 3562 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3563 struct iwi_softc *sc = ifp->if_softc; 3564 IWI_LOCK_DECL; 3565 3566 IWI_LOCK(sc); 3567 if (iwi_scanchan(sc, maxdwell, 0)) 3568 ieee80211_cancel_scan(vap); 3569 IWI_UNLOCK(sc); 3570 } 3571 3572 static void 3573 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3574 { 3575 /* NB: don't try to abort scan; wait for firmware to finish */ 3576 } 3577 3578 static void 3579 iwi_scan_end(struct ieee80211com *ic) 3580 { 3581 struct ifnet *ifp = ic->ic_ifp; 3582 struct iwi_softc *sc = ifp->if_softc; 3583 IWI_LOCK_DECL; 3584 3585 IWI_LOCK(sc); 3586 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3587 /* NB: make sure we're still scanning */ 3588 if (sc->fw_state == IWI_FW_SCANNING) 3589 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3590 IWI_UNLOCK(sc); 3591 } 3592