xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 7a1c0d963366a31363d3705697a083dd8efee077)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_types.h>
72 
73 #include <net80211/ieee80211_var.h>
74 #include <net80211/ieee80211_radiotap.h>
75 #include <net80211/ieee80211_input.h>
76 #include <net80211/ieee80211_regdomain.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/if_ether.h>
83 
84 #include <dev/iwi/if_iwireg.h>
85 #include <dev/iwi/if_iwivar.h>
86 
87 #define IWI_DEBUG
88 #ifdef IWI_DEBUG
89 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
90 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
91 int iwi_debug = 0;
92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
93 
94 static const char *iwi_fw_states[] = {
95 	"IDLE", 		/* IWI_FW_IDLE */
96 	"LOADING",		/* IWI_FW_LOADING */
97 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
98 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
99 	"SCANNING",		/* IWI_FW_SCANNING */
100 };
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n, x)
104 #endif
105 
106 MODULE_DEPEND(iwi, pci,  1, 1, 1);
107 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
108 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
109 
110 enum {
111 	IWI_LED_TX,
112 	IWI_LED_RX,
113 	IWI_LED_POLL,
114 };
115 
116 struct iwi_ident {
117 	uint16_t	vendor;
118 	uint16_t	device;
119 	const char	*name;
120 };
121 
122 static const struct iwi_ident iwi_ident_table[] = {
123 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
124 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
125 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
126 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
127 
128 	{ 0, 0, NULL }
129 };
130 
131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
132 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
133 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
134 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void	iwi_vap_delete(struct ieee80211vap *);
136 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
138 		    int);
139 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
140 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
142 		    int, bus_addr_t, bus_addr_t);
143 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
144 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
146 		    int);
147 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
148 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
150 		    const uint8_t [IEEE80211_ADDR_LEN]);
151 static void	iwi_node_free(struct ieee80211_node *);
152 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
153 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
154 static void	iwi_wme_init(struct iwi_softc *);
155 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
156 static void	iwi_update_wme(void *, int);
157 static int	iwi_wme_update(struct ieee80211com *);
158 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
159 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
160 		    struct iwi_frame *);
161 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
162 static void	iwi_rx_intr(struct iwi_softc *);
163 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
164 static void	iwi_intr(void *);
165 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
166 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
167 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
168 		    struct ieee80211_node *, int);
169 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
170 		    const struct ieee80211_bpf_params *);
171 static void	iwi_start_locked(struct ifnet *);
172 static void	iwi_start(struct ifnet *);
173 static void	iwi_watchdog(void *);
174 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
175 static void	iwi_stop_master(struct iwi_softc *);
176 static int	iwi_reset(struct iwi_softc *);
177 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
178 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
179 static void	iwi_release_fw_dma(struct iwi_softc *sc);
180 static int	iwi_config(struct iwi_softc *);
181 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
182 static void	iwi_put_firmware(struct iwi_softc *);
183 static void	iwi_monitor_scan(void *, int);
184 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
185 static void	iwi_scan_start(struct ieee80211com *);
186 static void	iwi_scan_end(struct ieee80211com *);
187 static void	iwi_set_channel(struct ieee80211com *);
188 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
189 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
190 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
191 static void	iwi_disassoc(void *, int);
192 static int	iwi_disassociate(struct iwi_softc *, int quiet);
193 static void	iwi_init_locked(struct iwi_softc *);
194 static void	iwi_init(void *);
195 static int	iwi_init_fw_dma(struct iwi_softc *, int);
196 static void	iwi_stop_locked(void *);
197 static void	iwi_stop(struct iwi_softc *);
198 static void	iwi_restart(void *, int);
199 static int	iwi_getrfkill(struct iwi_softc *);
200 static void	iwi_radio_on(void *, int);
201 static void	iwi_radio_off(void *, int);
202 static void	iwi_sysctlattach(struct iwi_softc *);
203 static void	iwi_led_event(struct iwi_softc *, int);
204 static void	iwi_ledattach(struct iwi_softc *);
205 
206 static int iwi_probe(device_t);
207 static int iwi_attach(device_t);
208 static int iwi_detach(device_t);
209 static int iwi_shutdown(device_t);
210 static int iwi_suspend(device_t);
211 static int iwi_resume(device_t);
212 
213 static device_method_t iwi_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		iwi_probe),
216 	DEVMETHOD(device_attach,	iwi_attach),
217 	DEVMETHOD(device_detach,	iwi_detach),
218 	DEVMETHOD(device_shutdown,	iwi_shutdown),
219 	DEVMETHOD(device_suspend,	iwi_suspend),
220 	DEVMETHOD(device_resume,	iwi_resume),
221 
222 	{ 0, 0 }
223 };
224 
225 static driver_t iwi_driver = {
226 	"iwi",
227 	iwi_methods,
228 	sizeof (struct iwi_softc)
229 };
230 
231 static devclass_t iwi_devclass;
232 
233 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
234 
235 static __inline uint8_t
236 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
237 {
238 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
239 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
240 }
241 
242 static __inline uint32_t
243 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
244 {
245 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
246 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
247 }
248 
249 static int
250 iwi_probe(device_t dev)
251 {
252 	const struct iwi_ident *ident;
253 
254 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
255 		if (pci_get_vendor(dev) == ident->vendor &&
256 		    pci_get_device(dev) == ident->device) {
257 			device_set_desc(dev, ident->name);
258 			return 0;
259 		}
260 	}
261 	return ENXIO;
262 }
263 
264 /* Base Address Register */
265 #define IWI_PCI_BAR0	0x10
266 
267 static int
268 iwi_attach(device_t dev)
269 {
270 	struct iwi_softc *sc = device_get_softc(dev);
271 	struct ifnet *ifp;
272 	struct ieee80211com *ic;
273 	uint16_t val;
274 	int i, error;
275 	uint8_t bands;
276 	uint8_t macaddr[IEEE80211_ADDR_LEN];
277 
278 	sc->sc_dev = dev;
279 
280 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
281 	if (ifp == NULL) {
282 		device_printf(dev, "can not if_alloc()\n");
283 		return ENXIO;
284 	}
285 	ic = ifp->if_l2com;
286 
287 	IWI_LOCK_INIT(sc);
288 
289 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
290 
291 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
292 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
293 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
294 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
295 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc);
296 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
297 
298 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
299 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
300 
301 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
302 		device_printf(dev, "chip is in D%d power mode "
303 		    "-- setting to D0\n", pci_get_powerstate(dev));
304 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
305 	}
306 
307 	pci_write_config(dev, 0x41, 0, 1);
308 
309 	/* enable bus-mastering */
310 	pci_enable_busmaster(dev);
311 
312 	sc->mem_rid = IWI_PCI_BAR0;
313 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
314 	    RF_ACTIVE);
315 	if (sc->mem == NULL) {
316 		device_printf(dev, "could not allocate memory resource\n");
317 		goto fail;
318 	}
319 
320 	sc->sc_st = rman_get_bustag(sc->mem);
321 	sc->sc_sh = rman_get_bushandle(sc->mem);
322 
323 	sc->irq_rid = 0;
324 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
325 	    RF_ACTIVE | RF_SHAREABLE);
326 	if (sc->irq == NULL) {
327 		device_printf(dev, "could not allocate interrupt resource\n");
328 		goto fail;
329 	}
330 
331 	if (iwi_reset(sc) != 0) {
332 		device_printf(dev, "could not reset adapter\n");
333 		goto fail;
334 	}
335 
336 	/*
337 	 * Allocate rings.
338 	 */
339 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
340 		device_printf(dev, "could not allocate Cmd ring\n");
341 		goto fail;
342 	}
343 
344 	for (i = 0; i < 4; i++) {
345 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
346 		    IWI_CSR_TX1_RIDX + i * 4,
347 		    IWI_CSR_TX1_WIDX + i * 4);
348 		if (error != 0) {
349 			device_printf(dev, "could not allocate Tx ring %d\n",
350 				i+i);
351 			goto fail;
352 		}
353 	}
354 
355 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
356 		device_printf(dev, "could not allocate Rx ring\n");
357 		goto fail;
358 	}
359 
360 	iwi_wme_init(sc);
361 
362 	ifp->if_softc = sc;
363 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
365 	ifp->if_init = iwi_init;
366 	ifp->if_ioctl = iwi_ioctl;
367 	ifp->if_start = iwi_start;
368 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
369 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
370 	IFQ_SET_READY(&ifp->if_snd);
371 
372 	ic->ic_ifp = ifp;
373 	ic->ic_opmode = IEEE80211_M_STA;
374 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
375 
376 	/* set device capabilities */
377 	ic->ic_caps =
378 	      IEEE80211_C_STA		/* station mode supported */
379 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
380 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
381 	    | IEEE80211_C_PMGT		/* power save supported */
382 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
383 	    | IEEE80211_C_WPA		/* 802.11i */
384 	    | IEEE80211_C_WME		/* 802.11e */
385 #if 0
386 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
387 #endif
388 	    ;
389 
390 	/* read MAC address from EEPROM */
391 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
392 	macaddr[0] = val & 0xff;
393 	macaddr[1] = val >> 8;
394 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
395 	macaddr[2] = val & 0xff;
396 	macaddr[3] = val >> 8;
397 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
398 	macaddr[4] = val & 0xff;
399 	macaddr[5] = val >> 8;
400 
401 	bands = 0;
402 	setbit(&bands, IEEE80211_MODE_11B);
403 	setbit(&bands, IEEE80211_MODE_11G);
404 	if (pci_get_device(dev) >= 0x4223)
405 		setbit(&bands, IEEE80211_MODE_11A);
406 	ieee80211_init_channels(ic, NULL, &bands);
407 
408 	ieee80211_ifattach(ic, macaddr);
409 	/* override default methods */
410 	ic->ic_node_alloc = iwi_node_alloc;
411 	sc->sc_node_free = ic->ic_node_free;
412 	ic->ic_node_free = iwi_node_free;
413 	ic->ic_raw_xmit = iwi_raw_xmit;
414 	ic->ic_scan_start = iwi_scan_start;
415 	ic->ic_scan_end = iwi_scan_end;
416 	ic->ic_set_channel = iwi_set_channel;
417 	ic->ic_scan_curchan = iwi_scan_curchan;
418 	ic->ic_scan_mindwell = iwi_scan_mindwell;
419 	ic->ic_wme.wme_update = iwi_wme_update;
420 
421 	ic->ic_vap_create = iwi_vap_create;
422 	ic->ic_vap_delete = iwi_vap_delete;
423 
424 	ieee80211_radiotap_attach(ic,
425 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
426 		IWI_TX_RADIOTAP_PRESENT,
427 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
428 		IWI_RX_RADIOTAP_PRESENT);
429 
430 	iwi_sysctlattach(sc);
431 	iwi_ledattach(sc);
432 
433 	/*
434 	 * Hook our interrupt after all initialization is complete.
435 	 */
436 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
437 	    NULL, iwi_intr, sc, &sc->sc_ih);
438 	if (error != 0) {
439 		device_printf(dev, "could not set up interrupt\n");
440 		goto fail;
441 	}
442 
443 	if (bootverbose)
444 		ieee80211_announce(ic);
445 
446 	return 0;
447 fail:
448 	/* XXX fix */
449 	iwi_detach(dev);
450 	return ENXIO;
451 }
452 
453 static int
454 iwi_detach(device_t dev)
455 {
456 	struct iwi_softc *sc = device_get_softc(dev);
457 	struct ifnet *ifp = sc->sc_ifp;
458 	struct ieee80211com *ic = ifp->if_l2com;
459 
460 	/* NB: do early to drain any pending tasks */
461 	ieee80211_draintask(ic, &sc->sc_radiontask);
462 	ieee80211_draintask(ic, &sc->sc_radiofftask);
463 	ieee80211_draintask(ic, &sc->sc_restarttask);
464 	ieee80211_draintask(ic, &sc->sc_disassoctask);
465 	ieee80211_draintask(ic, &sc->sc_monitortask);
466 
467 	iwi_stop(sc);
468 
469 	ieee80211_ifdetach(ic);
470 
471 	iwi_put_firmware(sc);
472 	iwi_release_fw_dma(sc);
473 
474 	iwi_free_cmd_ring(sc, &sc->cmdq);
475 	iwi_free_tx_ring(sc, &sc->txq[0]);
476 	iwi_free_tx_ring(sc, &sc->txq[1]);
477 	iwi_free_tx_ring(sc, &sc->txq[2]);
478 	iwi_free_tx_ring(sc, &sc->txq[3]);
479 	iwi_free_rx_ring(sc, &sc->rxq);
480 
481 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
482 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
483 
484 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
485 
486 	delete_unrhdr(sc->sc_unr);
487 
488 	IWI_LOCK_DESTROY(sc);
489 
490 	if_free(ifp);
491 
492 	return 0;
493 }
494 
495 static struct ieee80211vap *
496 iwi_vap_create(struct ieee80211com *ic,
497 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
498 	const uint8_t bssid[IEEE80211_ADDR_LEN],
499 	const uint8_t mac[IEEE80211_ADDR_LEN])
500 {
501 	struct ifnet *ifp = ic->ic_ifp;
502 	struct iwi_softc *sc = ifp->if_softc;
503 	struct iwi_vap *ivp;
504 	struct ieee80211vap *vap;
505 	int i;
506 
507 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
508 		return NULL;
509 	/*
510 	 * Get firmware image (and possibly dma memory) on mode change.
511 	 */
512 	if (iwi_get_firmware(sc, opmode))
513 		return NULL;
514 	/* allocate DMA memory for mapping firmware image */
515 	i = sc->fw_fw.size;
516 	if (sc->fw_boot.size > i)
517 		i = sc->fw_boot.size;
518 	/* XXX do we dma the ucode as well ? */
519 	if (sc->fw_uc.size > i)
520 		i = sc->fw_uc.size;
521 	if (iwi_init_fw_dma(sc, i))
522 		return NULL;
523 
524 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
525 	    M_80211_VAP, M_NOWAIT | M_ZERO);
526 	if (ivp == NULL)
527 		return NULL;
528 	vap = &ivp->iwi_vap;
529 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
530 	/* override the default, the setting comes from the linux driver */
531 	vap->iv_bmissthreshold = 24;
532 	/* override with driver methods */
533 	ivp->iwi_newstate = vap->iv_newstate;
534 	vap->iv_newstate = iwi_newstate;
535 
536 	/* complete setup */
537 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
538 	ic->ic_opmode = opmode;
539 	return vap;
540 }
541 
542 static void
543 iwi_vap_delete(struct ieee80211vap *vap)
544 {
545 	struct iwi_vap *ivp = IWI_VAP(vap);
546 
547 	ieee80211_vap_detach(vap);
548 	free(ivp, M_80211_VAP);
549 }
550 
551 static void
552 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
553 {
554 	if (error != 0)
555 		return;
556 
557 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
558 
559 	*(bus_addr_t *)arg = segs[0].ds_addr;
560 }
561 
562 static int
563 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
564 {
565 	int error;
566 
567 	ring->count = count;
568 	ring->queued = 0;
569 	ring->cur = ring->next = 0;
570 
571 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
572 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
573 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
574 	    NULL, NULL, &ring->desc_dmat);
575 	if (error != 0) {
576 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
577 		goto fail;
578 	}
579 
580 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
581 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
582 	if (error != 0) {
583 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
584 		goto fail;
585 	}
586 
587 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
588 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
589 	if (error != 0) {
590 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
591 		goto fail;
592 	}
593 
594 	return 0;
595 
596 fail:	iwi_free_cmd_ring(sc, ring);
597 	return error;
598 }
599 
600 static void
601 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
602 {
603 	ring->queued = 0;
604 	ring->cur = ring->next = 0;
605 }
606 
607 static void
608 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
609 {
610 	if (ring->desc != NULL) {
611 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
612 		    BUS_DMASYNC_POSTWRITE);
613 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
614 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
615 	}
616 
617 	if (ring->desc_dmat != NULL)
618 		bus_dma_tag_destroy(ring->desc_dmat);
619 }
620 
621 static int
622 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
623     bus_addr_t csr_ridx, bus_addr_t csr_widx)
624 {
625 	int i, error;
626 
627 	ring->count = count;
628 	ring->queued = 0;
629 	ring->cur = ring->next = 0;
630 	ring->csr_ridx = csr_ridx;
631 	ring->csr_widx = csr_widx;
632 
633 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
634 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
635 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
636 	    NULL, &ring->desc_dmat);
637 	if (error != 0) {
638 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
639 		goto fail;
640 	}
641 
642 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
643 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
644 	if (error != 0) {
645 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
646 		goto fail;
647 	}
648 
649 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
650 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
651 	if (error != 0) {
652 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
653 		goto fail;
654 	}
655 
656 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
657 	    M_NOWAIT | M_ZERO);
658 	if (ring->data == NULL) {
659 		device_printf(sc->sc_dev, "could not allocate soft data\n");
660 		error = ENOMEM;
661 		goto fail;
662 	}
663 
664 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
665 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
666 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
667 	if (error != 0) {
668 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
669 		goto fail;
670 	}
671 
672 	for (i = 0; i < count; i++) {
673 		error = bus_dmamap_create(ring->data_dmat, 0,
674 		    &ring->data[i].map);
675 		if (error != 0) {
676 			device_printf(sc->sc_dev, "could not create DMA map\n");
677 			goto fail;
678 		}
679 	}
680 
681 	return 0;
682 
683 fail:	iwi_free_tx_ring(sc, ring);
684 	return error;
685 }
686 
687 static void
688 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
689 {
690 	struct iwi_tx_data *data;
691 	int i;
692 
693 	for (i = 0; i < ring->count; i++) {
694 		data = &ring->data[i];
695 
696 		if (data->m != NULL) {
697 			bus_dmamap_sync(ring->data_dmat, data->map,
698 			    BUS_DMASYNC_POSTWRITE);
699 			bus_dmamap_unload(ring->data_dmat, data->map);
700 			m_freem(data->m);
701 			data->m = NULL;
702 		}
703 
704 		if (data->ni != NULL) {
705 			ieee80211_free_node(data->ni);
706 			data->ni = NULL;
707 		}
708 	}
709 
710 	ring->queued = 0;
711 	ring->cur = ring->next = 0;
712 }
713 
714 static void
715 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
716 {
717 	struct iwi_tx_data *data;
718 	int i;
719 
720 	if (ring->desc != NULL) {
721 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
722 		    BUS_DMASYNC_POSTWRITE);
723 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
724 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
725 	}
726 
727 	if (ring->desc_dmat != NULL)
728 		bus_dma_tag_destroy(ring->desc_dmat);
729 
730 	if (ring->data != NULL) {
731 		for (i = 0; i < ring->count; i++) {
732 			data = &ring->data[i];
733 
734 			if (data->m != NULL) {
735 				bus_dmamap_sync(ring->data_dmat, data->map,
736 				    BUS_DMASYNC_POSTWRITE);
737 				bus_dmamap_unload(ring->data_dmat, data->map);
738 				m_freem(data->m);
739 			}
740 
741 			if (data->ni != NULL)
742 				ieee80211_free_node(data->ni);
743 
744 			if (data->map != NULL)
745 				bus_dmamap_destroy(ring->data_dmat, data->map);
746 		}
747 
748 		free(ring->data, M_DEVBUF);
749 	}
750 
751 	if (ring->data_dmat != NULL)
752 		bus_dma_tag_destroy(ring->data_dmat);
753 }
754 
755 static int
756 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
757 {
758 	struct iwi_rx_data *data;
759 	int i, error;
760 
761 	ring->count = count;
762 	ring->cur = 0;
763 
764 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
765 	    M_NOWAIT | M_ZERO);
766 	if (ring->data == NULL) {
767 		device_printf(sc->sc_dev, "could not allocate soft data\n");
768 		error = ENOMEM;
769 		goto fail;
770 	}
771 
772 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
773 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
774 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
775 	if (error != 0) {
776 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
777 		goto fail;
778 	}
779 
780 	for (i = 0; i < count; i++) {
781 		data = &ring->data[i];
782 
783 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
784 		if (error != 0) {
785 			device_printf(sc->sc_dev, "could not create DMA map\n");
786 			goto fail;
787 		}
788 
789 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
790 		if (data->m == NULL) {
791 			device_printf(sc->sc_dev,
792 			    "could not allocate rx mbuf\n");
793 			error = ENOMEM;
794 			goto fail;
795 		}
796 
797 		error = bus_dmamap_load(ring->data_dmat, data->map,
798 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
799 		    &data->physaddr, 0);
800 		if (error != 0) {
801 			device_printf(sc->sc_dev,
802 			    "could not load rx buf DMA map");
803 			goto fail;
804 		}
805 
806 		data->reg = IWI_CSR_RX_BASE + i * 4;
807 	}
808 
809 	return 0;
810 
811 fail:	iwi_free_rx_ring(sc, ring);
812 	return error;
813 }
814 
815 static void
816 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
817 {
818 	ring->cur = 0;
819 }
820 
821 static void
822 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
823 {
824 	struct iwi_rx_data *data;
825 	int i;
826 
827 	if (ring->data != NULL) {
828 		for (i = 0; i < ring->count; i++) {
829 			data = &ring->data[i];
830 
831 			if (data->m != NULL) {
832 				bus_dmamap_sync(ring->data_dmat, data->map,
833 				    BUS_DMASYNC_POSTREAD);
834 				bus_dmamap_unload(ring->data_dmat, data->map);
835 				m_freem(data->m);
836 			}
837 
838 			if (data->map != NULL)
839 				bus_dmamap_destroy(ring->data_dmat, data->map);
840 		}
841 
842 		free(ring->data, M_DEVBUF);
843 	}
844 
845 	if (ring->data_dmat != NULL)
846 		bus_dma_tag_destroy(ring->data_dmat);
847 }
848 
849 static int
850 iwi_shutdown(device_t dev)
851 {
852 	struct iwi_softc *sc = device_get_softc(dev);
853 
854 	iwi_stop(sc);
855 	iwi_put_firmware(sc);		/* ??? XXX */
856 
857 	return 0;
858 }
859 
860 static int
861 iwi_suspend(device_t dev)
862 {
863 	struct iwi_softc *sc = device_get_softc(dev);
864 
865 	iwi_stop(sc);
866 
867 	return 0;
868 }
869 
870 static int
871 iwi_resume(device_t dev)
872 {
873 	struct iwi_softc *sc = device_get_softc(dev);
874 	struct ifnet *ifp = sc->sc_ifp;
875 
876 	pci_write_config(dev, 0x41, 0, 1);
877 
878 	if (ifp->if_flags & IFF_UP)
879 		iwi_init(sc);
880 
881 	return 0;
882 }
883 
884 static struct ieee80211_node *
885 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
886 {
887 	struct iwi_node *in;
888 
889 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
890 	if (in == NULL)
891 		return NULL;
892 	/* XXX assign sta table entry for adhoc */
893 	in->in_station = -1;
894 
895 	return &in->in_node;
896 }
897 
898 static void
899 iwi_node_free(struct ieee80211_node *ni)
900 {
901 	struct ieee80211com *ic = ni->ni_ic;
902 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
903 	struct iwi_node *in = (struct iwi_node *)ni;
904 
905 	if (in->in_station != -1) {
906 		DPRINTF(("%s mac %6D station %u\n", __func__,
907 		    ni->ni_macaddr, ":", in->in_station));
908 		free_unr(sc->sc_unr, in->in_station);
909 	}
910 
911 	sc->sc_node_free(ni);
912 }
913 
914 /*
915  * Convert h/w rate code to IEEE rate code.
916  */
917 static int
918 iwi_cvtrate(int iwirate)
919 {
920 	switch (iwirate) {
921 	case IWI_RATE_DS1:	return 2;
922 	case IWI_RATE_DS2:	return 4;
923 	case IWI_RATE_DS5:	return 11;
924 	case IWI_RATE_DS11:	return 22;
925 	case IWI_RATE_OFDM6:	return 12;
926 	case IWI_RATE_OFDM9:	return 18;
927 	case IWI_RATE_OFDM12:	return 24;
928 	case IWI_RATE_OFDM18:	return 36;
929 	case IWI_RATE_OFDM24:	return 48;
930 	case IWI_RATE_OFDM36:	return 72;
931 	case IWI_RATE_OFDM48:	return 96;
932 	case IWI_RATE_OFDM54:	return 108;
933 	}
934 	return 0;
935 }
936 
937 /*
938  * The firmware automatically adapts the transmit speed.  We report its current
939  * value here.
940  */
941 static void
942 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
943 {
944 	struct ieee80211vap *vap = ifp->if_softc;
945 	struct ieee80211com *ic = vap->iv_ic;
946 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
947 
948 	/* read current transmission rate from adapter */
949 	vap->iv_bss->ni_txrate =
950 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
951 	ieee80211_media_status(ifp, imr);
952 }
953 
954 static int
955 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
956 {
957 	struct iwi_vap *ivp = IWI_VAP(vap);
958 	struct ieee80211com *ic = vap->iv_ic;
959 	struct ifnet *ifp = ic->ic_ifp;
960 	struct iwi_softc *sc = ifp->if_softc;
961 	IWI_LOCK_DECL;
962 
963 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
964 		ieee80211_state_name[vap->iv_state],
965 		ieee80211_state_name[nstate], sc->flags));
966 
967 	IEEE80211_UNLOCK(ic);
968 	IWI_LOCK(sc);
969 	switch (nstate) {
970 	case IEEE80211_S_INIT:
971 		/*
972 		 * NB: don't try to do this if iwi_stop_master has
973 		 *     shutdown the firmware and disabled interrupts.
974 		 */
975 		if (vap->iv_state == IEEE80211_S_RUN &&
976 		    (sc->flags & IWI_FLAG_FW_INITED))
977 			iwi_disassociate(sc, 0);
978 		break;
979 	case IEEE80211_S_AUTH:
980 		iwi_auth_and_assoc(sc, vap);
981 		break;
982 	case IEEE80211_S_RUN:
983 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
984 		    vap->iv_state == IEEE80211_S_SCAN) {
985 			/*
986 			 * XXX when joining an ibss network we are called
987 			 * with a SCAN -> RUN transition on scan complete.
988 			 * Use that to call iwi_auth_and_assoc.  On completing
989 			 * the join we are then called again with an
990 			 * AUTH -> RUN transition and we want to do nothing.
991 			 * This is all totally bogus and needs to be redone.
992 			 */
993 			iwi_auth_and_assoc(sc, vap);
994 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
995 			ieee80211_runtask(ic, &sc->sc_monitortask);
996 		break;
997 	case IEEE80211_S_ASSOC:
998 		/*
999 		 * If we are transitioning from AUTH then just wait
1000 		 * for the ASSOC status to come back from the firmware.
1001 		 * Otherwise we need to issue the association request.
1002 		 */
1003 		if (vap->iv_state == IEEE80211_S_AUTH)
1004 			break;
1005 		iwi_auth_and_assoc(sc, vap);
1006 		break;
1007 	default:
1008 		break;
1009 	}
1010 	IWI_UNLOCK(sc);
1011 	IEEE80211_LOCK(ic);
1012 	return ivp->iwi_newstate(vap, nstate, arg);
1013 }
1014 
1015 /*
1016  * WME parameters coming from IEEE 802.11e specification.  These values are
1017  * already declared in ieee80211_proto.c, but they are static so they can't
1018  * be reused here.
1019  */
1020 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1021 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1022 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1023 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1024 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1025 };
1026 
1027 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1028 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1029 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1030 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1031 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1032 };
1033 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1034 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1035 
1036 static void
1037 iwi_wme_init(struct iwi_softc *sc)
1038 {
1039 	const struct wmeParams *wmep;
1040 	int ac;
1041 
1042 	memset(sc->wme, 0, sizeof sc->wme);
1043 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1044 		/* set WME values for CCK modulation */
1045 		wmep = &iwi_wme_cck_params[ac];
1046 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1047 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1048 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1049 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1050 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1051 
1052 		/* set WME values for OFDM modulation */
1053 		wmep = &iwi_wme_ofdm_params[ac];
1054 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1055 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1056 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1057 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1058 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1059 	}
1060 }
1061 
1062 static int
1063 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1064 {
1065 	const struct wmeParams *wmep;
1066 	int ac;
1067 
1068 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1069 		/* set WME values for current operating mode */
1070 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1071 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1072 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1073 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1074 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1075 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1076 	}
1077 
1078 	DPRINTF(("Setting WME parameters\n"));
1079 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1080 }
1081 #undef IWI_USEC
1082 #undef IWI_EXP2
1083 
1084 static void
1085 iwi_update_wme(void *arg, int npending)
1086 {
1087 	struct ieee80211com *ic = arg;
1088 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1089 	IWI_LOCK_DECL;
1090 
1091 	IWI_LOCK(sc);
1092 	(void) iwi_wme_setparams(sc, ic);
1093 	IWI_UNLOCK(sc);
1094 }
1095 
1096 static int
1097 iwi_wme_update(struct ieee80211com *ic)
1098 {
1099 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1100 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1101 
1102 	/*
1103 	 * We may be called to update the WME parameters in
1104 	 * the adapter at various places.  If we're already
1105 	 * associated then initiate the request immediately;
1106 	 * otherwise we assume the params will get sent down
1107 	 * to the adapter as part of the work iwi_auth_and_assoc
1108 	 * does.
1109 	 */
1110 	if (vap->iv_state == IEEE80211_S_RUN)
1111 		ieee80211_runtask(ic, &sc->sc_wmetask);
1112 	return (0);
1113 }
1114 
1115 static int
1116 iwi_wme_setie(struct iwi_softc *sc)
1117 {
1118 	struct ieee80211_wme_info wme;
1119 
1120 	memset(&wme, 0, sizeof wme);
1121 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1122 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1123 	wme.wme_oui[0] = 0x00;
1124 	wme.wme_oui[1] = 0x50;
1125 	wme.wme_oui[2] = 0xf2;
1126 	wme.wme_type = WME_OUI_TYPE;
1127 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1128 	wme.wme_version = WME_VERSION;
1129 	wme.wme_info = 0;
1130 
1131 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1132 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1133 }
1134 
1135 /*
1136  * Read 16 bits at address 'addr' from the serial EEPROM.
1137  */
1138 static uint16_t
1139 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1140 {
1141 	uint32_t tmp;
1142 	uint16_t val;
1143 	int n;
1144 
1145 	/* clock C once before the first command */
1146 	IWI_EEPROM_CTL(sc, 0);
1147 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1150 
1151 	/* write start bit (1) */
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1154 
1155 	/* write READ opcode (10) */
1156 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1159 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1160 
1161 	/* write address A7-A0 */
1162 	for (n = 7; n >= 0; n--) {
1163 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1164 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1165 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1166 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1167 	}
1168 
1169 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1170 
1171 	/* read data Q15-Q0 */
1172 	val = 0;
1173 	for (n = 15; n >= 0; n--) {
1174 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1175 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1176 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1177 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1178 	}
1179 
1180 	IWI_EEPROM_CTL(sc, 0);
1181 
1182 	/* clear Chip Select and clock C */
1183 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1184 	IWI_EEPROM_CTL(sc, 0);
1185 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1186 
1187 	return val;
1188 }
1189 
1190 static void
1191 iwi_setcurchan(struct iwi_softc *sc, int chan)
1192 {
1193 	struct ifnet *ifp = sc->sc_ifp;
1194 	struct ieee80211com *ic = ifp->if_l2com;
1195 
1196 	sc->curchan = chan;
1197 	ieee80211_radiotap_chan_change(ic);
1198 }
1199 
1200 static void
1201 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1202     struct iwi_frame *frame)
1203 {
1204 	struct ifnet *ifp = sc->sc_ifp;
1205 	struct ieee80211com *ic = ifp->if_l2com;
1206 	struct mbuf *mnew, *m;
1207 	struct ieee80211_node *ni;
1208 	int type, error, framelen;
1209 	int8_t rssi, nf;
1210 	IWI_LOCK_DECL;
1211 
1212 	framelen = le16toh(frame->len);
1213 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1214 		/*
1215 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1216 		 *     out of bounds; need to figure out how to limit
1217 		 *     frame size in the firmware
1218 		 */
1219 		/* XXX stat */
1220 		DPRINTFN(1,
1221 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1222 		    le16toh(frame->len), frame->chan, frame->rssi,
1223 		    frame->rssi_dbm));
1224 		return;
1225 	}
1226 
1227 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1228 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1229 
1230 	if (frame->chan != sc->curchan)
1231 		iwi_setcurchan(sc, frame->chan);
1232 
1233 	/*
1234 	 * Try to allocate a new mbuf for this ring element and load it before
1235 	 * processing the current mbuf. If the ring element cannot be loaded,
1236 	 * drop the received packet and reuse the old mbuf. In the unlikely
1237 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1238 	 */
1239 	mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1240 	if (mnew == NULL) {
1241 		ifp->if_ierrors++;
1242 		return;
1243 	}
1244 
1245 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1246 
1247 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1248 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1249 	    0);
1250 	if (error != 0) {
1251 		m_freem(mnew);
1252 
1253 		/* try to reload the old mbuf */
1254 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1255 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1256 		    &data->physaddr, 0);
1257 		if (error != 0) {
1258 			/* very unlikely that it will fail... */
1259 			panic("%s: could not load old rx mbuf",
1260 			    device_get_name(sc->sc_dev));
1261 		}
1262 		ifp->if_ierrors++;
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * New mbuf successfully loaded, update Rx ring and continue
1268 	 * processing.
1269 	 */
1270 	m = data->m;
1271 	data->m = mnew;
1272 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1273 
1274 	/* finalize mbuf */
1275 	m->m_pkthdr.rcvif = ifp;
1276 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1277 	    sizeof (struct iwi_frame) + framelen;
1278 
1279 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1280 
1281 	rssi = frame->rssi_dbm;
1282 	nf = -95;
1283 	if (ieee80211_radiotap_active(ic)) {
1284 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1285 
1286 		tap->wr_flags = 0;
1287 		tap->wr_antsignal = rssi;
1288 		tap->wr_antnoise = nf;
1289 		tap->wr_rate = iwi_cvtrate(frame->rate);
1290 		tap->wr_antenna = frame->antenna;
1291 	}
1292 	IWI_UNLOCK(sc);
1293 
1294 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1295 	if (ni != NULL) {
1296 		type = ieee80211_input(ni, m, rssi, nf);
1297 		ieee80211_free_node(ni);
1298 	} else
1299 		type = ieee80211_input_all(ic, m, rssi, nf);
1300 
1301 	IWI_LOCK(sc);
1302 	if (sc->sc_softled) {
1303 		/*
1304 		 * Blink for any data frame.  Otherwise do a
1305 		 * heartbeat-style blink when idle.  The latter
1306 		 * is mainly for station mode where we depend on
1307 		 * periodic beacon frames to trigger the poll event.
1308 		 */
1309 		if (type == IEEE80211_FC0_TYPE_DATA) {
1310 			sc->sc_rxrate = frame->rate;
1311 			iwi_led_event(sc, IWI_LED_RX);
1312 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1313 			iwi_led_event(sc, IWI_LED_POLL);
1314 	}
1315 }
1316 
1317 /*
1318  * Check for an association response frame to see if QoS
1319  * has been negotiated.  We parse just enough to figure
1320  * out if we're supposed to use QoS.  The proper solution
1321  * is to pass the frame up so ieee80211_input can do the
1322  * work but that's made hard by how things currently are
1323  * done in the driver.
1324  */
1325 static void
1326 iwi_checkforqos(struct ieee80211vap *vap,
1327 	const struct ieee80211_frame *wh, int len)
1328 {
1329 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1330 	const uint8_t *frm, *efrm, *wme;
1331 	struct ieee80211_node *ni;
1332 	uint16_t capinfo, status, associd;
1333 
1334 	/* NB: +8 for capinfo, status, associd, and first ie */
1335 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1336 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1337 		return;
1338 	/*
1339 	 * asresp frame format
1340 	 *	[2] capability information
1341 	 *	[2] status
1342 	 *	[2] association ID
1343 	 *	[tlv] supported rates
1344 	 *	[tlv] extended supported rates
1345 	 *	[tlv] WME
1346 	 */
1347 	frm = (const uint8_t *)&wh[1];
1348 	efrm = ((const uint8_t *) wh) + len;
1349 
1350 	capinfo = le16toh(*(const uint16_t *)frm);
1351 	frm += 2;
1352 	status = le16toh(*(const uint16_t *)frm);
1353 	frm += 2;
1354 	associd = le16toh(*(const uint16_t *)frm);
1355 	frm += 2;
1356 
1357 	wme = NULL;
1358 	while (frm < efrm) {
1359 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1360 		switch (*frm) {
1361 		case IEEE80211_ELEMID_VENDOR:
1362 			if (iswmeoui(frm))
1363 				wme = frm;
1364 			break;
1365 		}
1366 		frm += frm[1] + 2;
1367 	}
1368 
1369 	ni = vap->iv_bss;
1370 	ni->ni_capinfo = capinfo;
1371 	ni->ni_associd = associd & 0x3fff;
1372 	if (wme != NULL)
1373 		ni->ni_flags |= IEEE80211_NODE_QOS;
1374 	else
1375 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1376 #undef SUBTYPE
1377 }
1378 
1379 /*
1380  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1381  */
1382 
1383 static void
1384 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1385 {
1386 	struct ifnet *ifp = sc->sc_ifp;
1387 	struct ieee80211com *ic = ifp->if_l2com;
1388 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1389 	struct iwi_notif_scan_channel *chan;
1390 	struct iwi_notif_scan_complete *scan;
1391 	struct iwi_notif_authentication *auth;
1392 	struct iwi_notif_association *assoc;
1393 	struct iwi_notif_beacon_state *beacon;
1394 
1395 	switch (notif->type) {
1396 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1397 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1398 
1399 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1400 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1401 
1402 		/* Reset the timer, the scan is still going */
1403 		sc->sc_state_timer = 3;
1404 		break;
1405 
1406 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1407 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1408 
1409 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1410 		    scan->status));
1411 
1412 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1413 
1414 		/*
1415 		 * Monitor mode works by doing a passive scan to set
1416 		 * the channel and enable rx.  Because we don't want
1417 		 * to abort a scan lest the firmware crash we scan
1418 		 * for a short period of time and automatically restart
1419 		 * the scan when notified the sweep has completed.
1420 		 */
1421 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1422 			ieee80211_runtask(ic, &sc->sc_monitortask);
1423 			break;
1424 		}
1425 
1426 		if (scan->status == IWI_SCAN_COMPLETED) {
1427 			/* NB: don't need to defer, net80211 does it for us */
1428 			ieee80211_scan_next(vap);
1429 		}
1430 		break;
1431 
1432 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1433 		auth = (struct iwi_notif_authentication *)(notif + 1);
1434 		switch (auth->state) {
1435 		case IWI_AUTH_SUCCESS:
1436 			DPRINTFN(2, ("Authentication succeeeded\n"));
1437 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1438 			break;
1439 		case IWI_AUTH_FAIL:
1440 			/*
1441 			 * These are delivered as an unsolicited deauth
1442 			 * (e.g. due to inactivity) or in response to an
1443 			 * associate request.
1444 			 */
1445 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1446 			if (vap->iv_state != IEEE80211_S_RUN) {
1447 				DPRINTFN(2, ("Authentication failed\n"));
1448 				vap->iv_stats.is_rx_auth_fail++;
1449 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1450 			} else {
1451 				DPRINTFN(2, ("Deauthenticated\n"));
1452 				vap->iv_stats.is_rx_deauth++;
1453 			}
1454 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1455 			break;
1456 		case IWI_AUTH_SENT_1:
1457 		case IWI_AUTH_RECV_2:
1458 		case IWI_AUTH_SEQ1_PASS:
1459 			break;
1460 		case IWI_AUTH_SEQ1_FAIL:
1461 			DPRINTFN(2, ("Initial authentication handshake failed; "
1462 				"you probably need shared key\n"));
1463 			vap->iv_stats.is_rx_auth_fail++;
1464 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1465 			/* XXX retry shared key when in auto */
1466 			break;
1467 		default:
1468 			device_printf(sc->sc_dev,
1469 			    "unknown authentication state %u\n", auth->state);
1470 			break;
1471 		}
1472 		break;
1473 
1474 	case IWI_NOTIF_TYPE_ASSOCIATION:
1475 		assoc = (struct iwi_notif_association *)(notif + 1);
1476 		switch (assoc->state) {
1477 		case IWI_AUTH_SUCCESS:
1478 			/* re-association, do nothing */
1479 			break;
1480 		case IWI_ASSOC_SUCCESS:
1481 			DPRINTFN(2, ("Association succeeded\n"));
1482 			sc->flags |= IWI_FLAG_ASSOCIATED;
1483 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1484 			iwi_checkforqos(vap,
1485 			    (const struct ieee80211_frame *)(assoc+1),
1486 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1487 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1488 			break;
1489 		case IWI_ASSOC_INIT:
1490 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1491 			switch (sc->fw_state) {
1492 			case IWI_FW_ASSOCIATING:
1493 				DPRINTFN(2, ("Association failed\n"));
1494 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1495 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1496 				break;
1497 
1498 			case IWI_FW_DISASSOCIATING:
1499 				DPRINTFN(2, ("Dissassociated\n"));
1500 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1501 				vap->iv_stats.is_rx_disassoc++;
1502 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1503 				break;
1504 			}
1505 			break;
1506 		default:
1507 			device_printf(sc->sc_dev,
1508 			    "unknown association state %u\n", assoc->state);
1509 			break;
1510 		}
1511 		break;
1512 
1513 	case IWI_NOTIF_TYPE_BEACON:
1514 		/* XXX check struct length */
1515 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1516 
1517 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1518 		    beacon->state, le32toh(beacon->number)));
1519 
1520 		if (beacon->state == IWI_BEACON_MISS) {
1521 			/*
1522 			 * The firmware notifies us of every beacon miss
1523 			 * so we need to track the count against the
1524 			 * configured threshold before notifying the
1525 			 * 802.11 layer.
1526 			 * XXX try to roam, drop assoc only on much higher count
1527 			 */
1528 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1529 				DPRINTF(("Beacon miss: %u >= %u\n",
1530 				    le32toh(beacon->number),
1531 				    vap->iv_bmissthreshold));
1532 				vap->iv_stats.is_beacon_miss++;
1533 				/*
1534 				 * It's pointless to notify the 802.11 layer
1535 				 * as it'll try to send a probe request (which
1536 				 * we'll discard) and then timeout and drop us
1537 				 * into scan state.  Instead tell the firmware
1538 				 * to disassociate and then on completion we'll
1539 				 * kick the state machine to scan.
1540 				 */
1541 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1542 			}
1543 		}
1544 		break;
1545 
1546 	case IWI_NOTIF_TYPE_CALIBRATION:
1547 	case IWI_NOTIF_TYPE_NOISE:
1548 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1549 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1550 		break;
1551 
1552 	default:
1553 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1554 		    notif->type, notif->flags, le16toh(notif->len)));
1555 		break;
1556 	}
1557 }
1558 
1559 static void
1560 iwi_rx_intr(struct iwi_softc *sc)
1561 {
1562 	struct iwi_rx_data *data;
1563 	struct iwi_hdr *hdr;
1564 	uint32_t hw;
1565 
1566 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1567 
1568 	for (; sc->rxq.cur != hw;) {
1569 		data = &sc->rxq.data[sc->rxq.cur];
1570 
1571 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1572 		    BUS_DMASYNC_POSTREAD);
1573 
1574 		hdr = mtod(data->m, struct iwi_hdr *);
1575 
1576 		switch (hdr->type) {
1577 		case IWI_HDR_TYPE_FRAME:
1578 			iwi_frame_intr(sc, data, sc->rxq.cur,
1579 			    (struct iwi_frame *)(hdr + 1));
1580 			break;
1581 
1582 		case IWI_HDR_TYPE_NOTIF:
1583 			iwi_notification_intr(sc,
1584 			    (struct iwi_notif *)(hdr + 1));
1585 			break;
1586 
1587 		default:
1588 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1589 			    hdr->type);
1590 		}
1591 
1592 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1593 
1594 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1595 	}
1596 
1597 	/* tell the firmware what we have processed */
1598 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1599 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1600 }
1601 
1602 static void
1603 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1604 {
1605 	struct ifnet *ifp = sc->sc_ifp;
1606 	struct iwi_tx_data *data;
1607 	uint32_t hw;
1608 
1609 	hw = CSR_READ_4(sc, txq->csr_ridx);
1610 
1611 	for (; txq->next != hw;) {
1612 		data = &txq->data[txq->next];
1613 
1614 		bus_dmamap_sync(txq->data_dmat, data->map,
1615 		    BUS_DMASYNC_POSTWRITE);
1616 		bus_dmamap_unload(txq->data_dmat, data->map);
1617 		if (data->m->m_flags & M_TXCB)
1618 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1619 		m_freem(data->m);
1620 		data->m = NULL;
1621 		ieee80211_free_node(data->ni);
1622 		data->ni = NULL;
1623 
1624 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1625 
1626 		ifp->if_opackets++;
1627 
1628 		txq->queued--;
1629 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1630 	}
1631 
1632 	sc->sc_tx_timer = 0;
1633 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1634 
1635 	if (sc->sc_softled)
1636 		iwi_led_event(sc, IWI_LED_TX);
1637 
1638 	iwi_start_locked(ifp);
1639 }
1640 
1641 static void
1642 iwi_fatal_error_intr(struct iwi_softc *sc)
1643 {
1644 	struct ifnet *ifp = sc->sc_ifp;
1645 	struct ieee80211com *ic = ifp->if_l2com;
1646 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1647 
1648 	device_printf(sc->sc_dev, "firmware error\n");
1649 	if (vap != NULL)
1650 		ieee80211_cancel_scan(vap);
1651 	ieee80211_runtask(ic, &sc->sc_restarttask);
1652 
1653 	sc->flags &= ~IWI_FLAG_BUSY;
1654 	sc->sc_busy_timer = 0;
1655 	wakeup(sc);
1656 }
1657 
1658 static void
1659 iwi_radio_off_intr(struct iwi_softc *sc)
1660 {
1661 	struct ifnet *ifp = sc->sc_ifp;
1662 	struct ieee80211com *ic = ifp->if_l2com;
1663 
1664 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1665 }
1666 
1667 static void
1668 iwi_intr(void *arg)
1669 {
1670 	struct iwi_softc *sc = arg;
1671 	uint32_t r;
1672 	IWI_LOCK_DECL;
1673 
1674 	IWI_LOCK(sc);
1675 
1676 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1677 		IWI_UNLOCK(sc);
1678 		return;
1679 	}
1680 
1681 	/* acknowledge interrupts */
1682 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1683 
1684 	if (r & IWI_INTR_FATAL_ERROR) {
1685 		iwi_fatal_error_intr(sc);
1686 		goto done;
1687 	}
1688 
1689 	if (r & IWI_INTR_FW_INITED) {
1690 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1691 			wakeup(sc);
1692 	}
1693 
1694 	if (r & IWI_INTR_RADIO_OFF)
1695 		iwi_radio_off_intr(sc);
1696 
1697 	if (r & IWI_INTR_CMD_DONE) {
1698 		sc->flags &= ~IWI_FLAG_BUSY;
1699 		sc->sc_busy_timer = 0;
1700 		wakeup(sc);
1701 	}
1702 
1703 	if (r & IWI_INTR_TX1_DONE)
1704 		iwi_tx_intr(sc, &sc->txq[0]);
1705 
1706 	if (r & IWI_INTR_TX2_DONE)
1707 		iwi_tx_intr(sc, &sc->txq[1]);
1708 
1709 	if (r & IWI_INTR_TX3_DONE)
1710 		iwi_tx_intr(sc, &sc->txq[2]);
1711 
1712 	if (r & IWI_INTR_TX4_DONE)
1713 		iwi_tx_intr(sc, &sc->txq[3]);
1714 
1715 	if (r & IWI_INTR_RX_DONE)
1716 		iwi_rx_intr(sc);
1717 
1718 	if (r & IWI_INTR_PARITY_ERROR) {
1719 		/* XXX rate-limit */
1720 		device_printf(sc->sc_dev, "parity error\n");
1721 	}
1722 done:
1723 	IWI_UNLOCK(sc);
1724 }
1725 
1726 static int
1727 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1728 {
1729 	struct iwi_cmd_desc *desc;
1730 
1731 	IWI_LOCK_ASSERT(sc);
1732 
1733 	if (sc->flags & IWI_FLAG_BUSY) {
1734 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1735 			__func__, type);
1736 		return EAGAIN;
1737 	}
1738 	sc->flags |= IWI_FLAG_BUSY;
1739 	sc->sc_busy_timer = 2;
1740 
1741 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1742 
1743 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1744 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1745 	desc->type = type;
1746 	desc->len = len;
1747 	memcpy(desc->data, data, len);
1748 
1749 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1750 	    BUS_DMASYNC_PREWRITE);
1751 
1752 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1753 	    type, len));
1754 
1755 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1756 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1757 
1758 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1759 }
1760 
1761 static void
1762 iwi_write_ibssnode(struct iwi_softc *sc,
1763 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1764 {
1765 	struct iwi_ibssnode node;
1766 
1767 	/* write node information into NIC memory */
1768 	memset(&node, 0, sizeof node);
1769 	IEEE80211_ADDR_COPY(node.bssid, addr);
1770 
1771 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1772 
1773 	CSR_WRITE_REGION_1(sc,
1774 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1775 	    (uint8_t *)&node, sizeof node);
1776 }
1777 
1778 static int
1779 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1780     int ac)
1781 {
1782 	struct iwi_softc *sc = ifp->if_softc;
1783 	struct ieee80211vap *vap = ni->ni_vap;
1784 	struct ieee80211com *ic = ni->ni_ic;
1785 	struct iwi_node *in = (struct iwi_node *)ni;
1786 	const struct ieee80211_frame *wh;
1787 	struct ieee80211_key *k;
1788 	const struct chanAccParams *cap;
1789 	struct iwi_tx_ring *txq = &sc->txq[ac];
1790 	struct iwi_tx_data *data;
1791 	struct iwi_tx_desc *desc;
1792 	struct mbuf *mnew;
1793 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1794 	int error, nsegs, hdrlen, i;
1795 	int ismcast, flags, xflags, staid;
1796 
1797 	IWI_LOCK_ASSERT(sc);
1798 	wh = mtod(m0, const struct ieee80211_frame *);
1799 	/* NB: only data frames use this path */
1800 	hdrlen = ieee80211_hdrsize(wh);
1801 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1802 	flags = xflags = 0;
1803 
1804 	if (!ismcast)
1805 		flags |= IWI_DATA_FLAG_NEED_ACK;
1806 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1807 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1808 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1809 		xflags |= IWI_DATA_XFLAG_QOS;
1810 		cap = &ic->ic_wme.wme_chanParams;
1811 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1812 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1813 	}
1814 
1815 	/*
1816 	 * This is only used in IBSS mode where the firmware expect an index
1817 	 * in a h/w table instead of a destination address.
1818 	 */
1819 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1820 		if (!ismcast) {
1821 			if (in->in_station == -1) {
1822 				in->in_station = alloc_unr(sc->sc_unr);
1823 				if (in->in_station == -1) {
1824 					/* h/w table is full */
1825 					m_freem(m0);
1826 					ieee80211_free_node(ni);
1827 					ifp->if_oerrors++;
1828 					return 0;
1829 				}
1830 				iwi_write_ibssnode(sc,
1831 					ni->ni_macaddr, in->in_station);
1832 			}
1833 			staid = in->in_station;
1834 		} else {
1835 			/*
1836 			 * Multicast addresses have no associated node
1837 			 * so there will be no station entry.  We reserve
1838 			 * entry 0 for one mcast address and use that.
1839 			 * If there are many being used this will be
1840 			 * expensive and we'll need to do a better job
1841 			 * but for now this handles the broadcast case.
1842 			 */
1843 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1844 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1845 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1846 			}
1847 			staid = 0;
1848 		}
1849 	} else
1850 		staid = 0;
1851 
1852 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1853 		k = ieee80211_crypto_encap(ni, m0);
1854 		if (k == NULL) {
1855 			m_freem(m0);
1856 			return ENOBUFS;
1857 		}
1858 
1859 		/* packet header may have moved, reset our local pointer */
1860 		wh = mtod(m0, struct ieee80211_frame *);
1861 	}
1862 
1863 	if (ieee80211_radiotap_active_vap(vap)) {
1864 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1865 
1866 		tap->wt_flags = 0;
1867 
1868 		ieee80211_radiotap_tx(vap, m0);
1869 	}
1870 
1871 	data = &txq->data[txq->cur];
1872 	desc = &txq->desc[txq->cur];
1873 
1874 	/* save and trim IEEE802.11 header */
1875 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1876 	m_adj(m0, hdrlen);
1877 
1878 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1879 	    &nsegs, 0);
1880 	if (error != 0 && error != EFBIG) {
1881 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1882 		    error);
1883 		m_freem(m0);
1884 		return error;
1885 	}
1886 	if (error != 0) {
1887 		mnew = m_defrag(m0, M_DONTWAIT);
1888 		if (mnew == NULL) {
1889 			device_printf(sc->sc_dev,
1890 			    "could not defragment mbuf\n");
1891 			m_freem(m0);
1892 			return ENOBUFS;
1893 		}
1894 		m0 = mnew;
1895 
1896 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1897 		    m0, segs, &nsegs, 0);
1898 		if (error != 0) {
1899 			device_printf(sc->sc_dev,
1900 			    "could not map mbuf (error %d)\n", error);
1901 			m_freem(m0);
1902 			return error;
1903 		}
1904 	}
1905 
1906 	data->m = m0;
1907 	data->ni = ni;
1908 
1909 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1910 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1911 	desc->station = staid;
1912 	desc->cmd = IWI_DATA_CMD_TX;
1913 	desc->len = htole16(m0->m_pkthdr.len);
1914 	desc->flags = flags;
1915 	desc->xflags = xflags;
1916 
1917 #if 0
1918 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1919 		desc->wep_txkey = vap->iv_def_txkey;
1920 	else
1921 #endif
1922 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1923 
1924 	desc->nseg = htole32(nsegs);
1925 	for (i = 0; i < nsegs; i++) {
1926 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1927 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1928 	}
1929 
1930 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1931 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1932 
1933 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1934 	    ac, txq->cur, le16toh(desc->len), nsegs));
1935 
1936 	txq->queued++;
1937 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1938 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1939 
1940 	return 0;
1941 }
1942 
1943 static int
1944 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1945 	const struct ieee80211_bpf_params *params)
1946 {
1947 	/* no support; just discard */
1948 	m_freem(m);
1949 	ieee80211_free_node(ni);
1950 	return 0;
1951 }
1952 
1953 static void
1954 iwi_start_locked(struct ifnet *ifp)
1955 {
1956 	struct iwi_softc *sc = ifp->if_softc;
1957 	struct mbuf *m;
1958 	struct ieee80211_node *ni;
1959 	int ac;
1960 
1961 	IWI_LOCK_ASSERT(sc);
1962 
1963 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1964 		return;
1965 
1966 	for (;;) {
1967 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1968 		if (m == NULL)
1969 			break;
1970 		ac = M_WME_GETAC(m);
1971 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1972 			/* there is no place left in this ring; tail drop */
1973 			/* XXX tail drop */
1974 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1975 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1976 			break;
1977 		}
1978 
1979 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1980 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1981 			ieee80211_free_node(ni);
1982 			ifp->if_oerrors++;
1983 			break;
1984 		}
1985 
1986 		sc->sc_tx_timer = 5;
1987 	}
1988 }
1989 
1990 static void
1991 iwi_start(struct ifnet *ifp)
1992 {
1993 	struct iwi_softc *sc = ifp->if_softc;
1994 	IWI_LOCK_DECL;
1995 
1996 	IWI_LOCK(sc);
1997 	iwi_start_locked(ifp);
1998 	IWI_UNLOCK(sc);
1999 }
2000 
2001 static void
2002 iwi_watchdog(void *arg)
2003 {
2004 	struct iwi_softc *sc = arg;
2005 	struct ifnet *ifp = sc->sc_ifp;
2006 	struct ieee80211com *ic = ifp->if_l2com;
2007 
2008 	IWI_LOCK_ASSERT(sc);
2009 
2010 	if (sc->sc_tx_timer > 0) {
2011 		if (--sc->sc_tx_timer == 0) {
2012 			if_printf(ifp, "device timeout\n");
2013 			ifp->if_oerrors++;
2014 			ieee80211_runtask(ic, &sc->sc_restarttask);
2015 		}
2016 	}
2017 	if (sc->sc_state_timer > 0) {
2018 		if (--sc->sc_state_timer == 0) {
2019 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2020 			    sc->fw_state);
2021 			if (sc->fw_state == IWI_FW_SCANNING) {
2022 				struct ieee80211com *ic = ifp->if_l2com;
2023 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2024 			}
2025 			ieee80211_runtask(ic, &sc->sc_restarttask);
2026 			sc->sc_state_timer = 3;
2027 		}
2028 	}
2029 	if (sc->sc_busy_timer > 0) {
2030 		if (--sc->sc_busy_timer == 0) {
2031 			if_printf(ifp, "firmware command timeout, resetting\n");
2032 			ieee80211_runtask(ic, &sc->sc_restarttask);
2033 		}
2034 	}
2035 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2036 }
2037 
2038 static int
2039 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2040 {
2041 	struct iwi_softc *sc = ifp->if_softc;
2042 	struct ieee80211com *ic = ifp->if_l2com;
2043 	struct ifreq *ifr = (struct ifreq *) data;
2044 	int error = 0, startall = 0;
2045 	IWI_LOCK_DECL;
2046 
2047 	switch (cmd) {
2048 	case SIOCSIFFLAGS:
2049 		IWI_LOCK(sc);
2050 		if (ifp->if_flags & IFF_UP) {
2051 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2052 				iwi_init_locked(sc);
2053 				startall = 1;
2054 			}
2055 		} else {
2056 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2057 				iwi_stop_locked(sc);
2058 		}
2059 		IWI_UNLOCK(sc);
2060 		if (startall)
2061 			ieee80211_start_all(ic);
2062 		break;
2063 	case SIOCGIFMEDIA:
2064 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2065 		break;
2066 	case SIOCGIFADDR:
2067 		error = ether_ioctl(ifp, cmd, data);
2068 		break;
2069 	default:
2070 		error = EINVAL;
2071 		break;
2072 	}
2073 	return error;
2074 }
2075 
2076 static void
2077 iwi_stop_master(struct iwi_softc *sc)
2078 {
2079 	uint32_t tmp;
2080 	int ntries;
2081 
2082 	/* disable interrupts */
2083 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2084 
2085 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2086 	for (ntries = 0; ntries < 5; ntries++) {
2087 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2088 			break;
2089 		DELAY(10);
2090 	}
2091 	if (ntries == 5)
2092 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2093 
2094 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2095 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2096 
2097 	sc->flags &= ~IWI_FLAG_FW_INITED;
2098 }
2099 
2100 static int
2101 iwi_reset(struct iwi_softc *sc)
2102 {
2103 	uint32_t tmp;
2104 	int i, ntries;
2105 
2106 	iwi_stop_master(sc);
2107 
2108 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2109 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2110 
2111 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2112 
2113 	/* wait for clock stabilization */
2114 	for (ntries = 0; ntries < 1000; ntries++) {
2115 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2116 			break;
2117 		DELAY(200);
2118 	}
2119 	if (ntries == 1000) {
2120 		device_printf(sc->sc_dev,
2121 		    "timeout waiting for clock stabilization\n");
2122 		return EIO;
2123 	}
2124 
2125 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2126 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2127 
2128 	DELAY(10);
2129 
2130 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2131 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2132 
2133 	/* clear NIC memory */
2134 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2135 	for (i = 0; i < 0xc000; i++)
2136 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2137 
2138 	return 0;
2139 }
2140 
2141 static const struct iwi_firmware_ohdr *
2142 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2143 {
2144 	const struct firmware *fp = fw->fp;
2145 	const struct iwi_firmware_ohdr *hdr;
2146 
2147 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2148 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2149 		return NULL;
2150 	}
2151 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2152 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2153 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2154 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2155 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2156 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2157 		    IWI_FW_REQ_MINOR);
2158 		return NULL;
2159 	}
2160 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2161 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2162 	fw->name = fp->name;
2163 	return hdr;
2164 }
2165 
2166 static const struct iwi_firmware_ohdr *
2167 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2168 {
2169 	const struct iwi_firmware_ohdr *hdr;
2170 
2171 	hdr = iwi_setup_ofw(sc, fw);
2172 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2173 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2174 		    fw->name);
2175 		hdr = NULL;
2176 	}
2177 	return hdr;
2178 }
2179 
2180 static void
2181 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2182 	  struct iwi_fw *uc, const char *ucname)
2183 {
2184 	if (fw->fp == NULL)
2185 		fw->fp = firmware_get(fwname);
2186 	/* NB: pre-3.0 ucode is packaged separately */
2187 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2188 		uc->fp = firmware_get(ucname);
2189 }
2190 
2191 /*
2192  * Get the required firmware images if not already loaded.
2193  * Note that we hold firmware images so long as the device
2194  * is marked up in case we need to reload them on device init.
2195  * This is necessary because we re-init the device sometimes
2196  * from a context where we cannot read from the filesystem
2197  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2198  * XXX return 0 on success, 1 on error.
2199  *
2200  * NB: the order of get'ing and put'ing images here is
2201  * intentional to support handling firmware images bundled
2202  * by operating mode and/or all together in one file with
2203  * the boot firmware as "master".
2204  */
2205 static int
2206 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2207 {
2208 	const struct iwi_firmware_hdr *hdr;
2209 	const struct firmware *fp;
2210 
2211 	/* invalidate cached firmware on mode change */
2212 	if (sc->fw_mode != opmode)
2213 		iwi_put_firmware(sc);
2214 
2215 	switch (opmode) {
2216 	case IEEE80211_M_STA:
2217 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2218 		break;
2219 	case IEEE80211_M_IBSS:
2220 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2221 		break;
2222 	case IEEE80211_M_MONITOR:
2223 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2224 			  &sc->fw_uc, "iwi_ucode_monitor");
2225 		break;
2226 	default:
2227 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2228 		return EINVAL;
2229 	}
2230 	fp = sc->fw_fw.fp;
2231 	if (fp == NULL) {
2232 		device_printf(sc->sc_dev, "could not load firmware\n");
2233 		goto bad;
2234 	}
2235 	if (fp->version < 300) {
2236 		/*
2237 		 * Firmware prior to 3.0 was packaged as separate
2238 		 * boot, firmware, and ucode images.  Verify the
2239 		 * ucode image was read in, retrieve the boot image
2240 		 * if needed, and check version stamps for consistency.
2241 		 * The version stamps in the data are also checked
2242 		 * above; this is a bit paranoid but is a cheap
2243 		 * safeguard against mis-packaging.
2244 		 */
2245 		if (sc->fw_uc.fp == NULL) {
2246 			device_printf(sc->sc_dev, "could not load ucode\n");
2247 			goto bad;
2248 		}
2249 		if (sc->fw_boot.fp == NULL) {
2250 			sc->fw_boot.fp = firmware_get("iwi_boot");
2251 			if (sc->fw_boot.fp == NULL) {
2252 				device_printf(sc->sc_dev,
2253 					"could not load boot firmware\n");
2254 				goto bad;
2255 			}
2256 		}
2257 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2258 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2259 			device_printf(sc->sc_dev,
2260 			    "firmware version mismatch: "
2261 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2262 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2263 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2264 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2265 			);
2266 			goto bad;
2267 		}
2268 		/*
2269 		 * Check and setup each image.
2270 		 */
2271 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2272 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2273 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2274 			goto bad;
2275 	} else {
2276 		/*
2277 		 * Check and setup combined image.
2278 		 */
2279 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2280 			device_printf(sc->sc_dev, "image '%s' too small\n",
2281 			    fp->name);
2282 			goto bad;
2283 		}
2284 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2285 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2286 				+ le32toh(hdr->fsize)) {
2287 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2288 			    fp->name);
2289 			goto bad;
2290 		}
2291 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2292 		sc->fw_boot.size = le32toh(hdr->bsize);
2293 		sc->fw_boot.name = fp->name;
2294 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2295 		sc->fw_uc.size = le32toh(hdr->usize);
2296 		sc->fw_uc.name = fp->name;
2297 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2298 		sc->fw_fw.size = le32toh(hdr->fsize);
2299 		sc->fw_fw.name = fp->name;
2300 	}
2301 #if 0
2302 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2303 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2304 #endif
2305 
2306 	sc->fw_mode = opmode;
2307 	return 0;
2308 bad:
2309 	iwi_put_firmware(sc);
2310 	return 1;
2311 }
2312 
2313 static void
2314 iwi_put_fw(struct iwi_fw *fw)
2315 {
2316 	if (fw->fp != NULL) {
2317 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2318 		fw->fp = NULL;
2319 	}
2320 	fw->data = NULL;
2321 	fw->size = 0;
2322 	fw->name = NULL;
2323 }
2324 
2325 /*
2326  * Release any cached firmware images.
2327  */
2328 static void
2329 iwi_put_firmware(struct iwi_softc *sc)
2330 {
2331 	iwi_put_fw(&sc->fw_uc);
2332 	iwi_put_fw(&sc->fw_fw);
2333 	iwi_put_fw(&sc->fw_boot);
2334 }
2335 
2336 static int
2337 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2338 {
2339 	uint32_t tmp;
2340 	const uint16_t *w;
2341 	const char *uc = fw->data;
2342 	size_t size = fw->size;
2343 	int i, ntries, error;
2344 
2345 	IWI_LOCK_ASSERT(sc);
2346 	error = 0;
2347 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2348 	    IWI_RST_STOP_MASTER);
2349 	for (ntries = 0; ntries < 5; ntries++) {
2350 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2351 			break;
2352 		DELAY(10);
2353 	}
2354 	if (ntries == 5) {
2355 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2356 		error = EIO;
2357 		goto fail;
2358 	}
2359 
2360 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2361 	DELAY(5000);
2362 
2363 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2364 	tmp &= ~IWI_RST_PRINCETON_RESET;
2365 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2366 
2367 	DELAY(5000);
2368 	MEM_WRITE_4(sc, 0x3000e0, 0);
2369 	DELAY(1000);
2370 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2371 	DELAY(1000);
2372 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2373 	DELAY(1000);
2374 	MEM_WRITE_1(sc, 0x200000, 0x00);
2375 	MEM_WRITE_1(sc, 0x200000, 0x40);
2376 	DELAY(1000);
2377 
2378 	/* write microcode into adapter memory */
2379 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2380 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2381 
2382 	MEM_WRITE_1(sc, 0x200000, 0x00);
2383 	MEM_WRITE_1(sc, 0x200000, 0x80);
2384 
2385 	/* wait until we get an answer */
2386 	for (ntries = 0; ntries < 100; ntries++) {
2387 		if (MEM_READ_1(sc, 0x200000) & 1)
2388 			break;
2389 		DELAY(100);
2390 	}
2391 	if (ntries == 100) {
2392 		device_printf(sc->sc_dev,
2393 		    "timeout waiting for ucode to initialize\n");
2394 		error = EIO;
2395 		goto fail;
2396 	}
2397 
2398 	/* read the answer or the firmware will not initialize properly */
2399 	for (i = 0; i < 7; i++)
2400 		MEM_READ_4(sc, 0x200004);
2401 
2402 	MEM_WRITE_1(sc, 0x200000, 0x00);
2403 
2404 fail:
2405 	return error;
2406 }
2407 
2408 /* macro to handle unaligned little endian data in firmware image */
2409 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2410 
2411 static int
2412 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2413 {
2414 	u_char *p, *end;
2415 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2416 	int ntries, error;
2417 
2418 	IWI_LOCK_ASSERT(sc);
2419 
2420 	/* copy firmware image to DMA memory */
2421 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2422 
2423 	/* make sure the adapter will get up-to-date values */
2424 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2425 
2426 	/* tell the adapter where the command blocks are stored */
2427 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2428 
2429 	/*
2430 	 * Store command blocks into adapter's internal memory using register
2431 	 * indirections. The adapter will read the firmware image through DMA
2432 	 * using information stored in command blocks.
2433 	 */
2434 	src = sc->fw_physaddr;
2435 	p = sc->fw_virtaddr;
2436 	end = p + fw->size;
2437 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2438 
2439 	while (p < end) {
2440 		dst = GETLE32(p); p += 4; src += 4;
2441 		len = GETLE32(p); p += 4; src += 4;
2442 		p += len;
2443 
2444 		while (len > 0) {
2445 			mlen = min(len, IWI_CB_MAXDATALEN);
2446 
2447 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2448 			sum = ctl ^ src ^ dst;
2449 
2450 			/* write a command block */
2451 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2452 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2453 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2455 
2456 			src += mlen;
2457 			dst += mlen;
2458 			len -= mlen;
2459 		}
2460 	}
2461 
2462 	/* write a fictive final command block (sentinel) */
2463 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2464 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2465 
2466 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2467 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2468 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2469 
2470 	/* tell the adapter to start processing command blocks */
2471 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2472 
2473 	/* wait until the adapter reaches the sentinel */
2474 	for (ntries = 0; ntries < 400; ntries++) {
2475 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2476 			break;
2477 		DELAY(100);
2478 	}
2479 	/* sync dma, just in case */
2480 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2481 	if (ntries == 400) {
2482 		device_printf(sc->sc_dev,
2483 		    "timeout processing command blocks for %s firmware\n",
2484 		    fw->name);
2485 		return EIO;
2486 	}
2487 
2488 	/* we're done with command blocks processing */
2489 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2490 
2491 	/* allow interrupts so we know when the firmware is ready */
2492 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2493 
2494 	/* tell the adapter to initialize the firmware */
2495 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2496 
2497 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2498 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2499 
2500 	/* wait at most one second for firmware initialization to complete */
2501 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2502 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2503 		    "initialization to complete\n", fw->name);
2504 	}
2505 
2506 	return error;
2507 }
2508 
2509 static int
2510 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2511 {
2512 	uint32_t data;
2513 
2514 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2515 		/* XXX set more fine-grained operation */
2516 		data = htole32(IWI_POWER_MODE_MAX);
2517 	} else
2518 		data = htole32(IWI_POWER_MODE_CAM);
2519 
2520 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2521 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2522 }
2523 
2524 static int
2525 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2526 {
2527 	struct iwi_wep_key wepkey;
2528 	struct ieee80211_key *wk;
2529 	int error, i;
2530 
2531 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2532 		wk = &vap->iv_nw_keys[i];
2533 
2534 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2535 		wepkey.idx = i;
2536 		wepkey.len = wk->wk_keylen;
2537 		memset(wepkey.key, 0, sizeof wepkey.key);
2538 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2539 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2540 		    wepkey.len));
2541 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2542 		    sizeof wepkey);
2543 		if (error != 0)
2544 			return error;
2545 	}
2546 	return 0;
2547 }
2548 
2549 static int
2550 iwi_config(struct iwi_softc *sc)
2551 {
2552 	struct ifnet *ifp = sc->sc_ifp;
2553 	struct ieee80211com *ic = ifp->if_l2com;
2554 	struct iwi_configuration config;
2555 	struct iwi_rateset rs;
2556 	struct iwi_txpower power;
2557 	uint32_t data;
2558 	int error, i;
2559 
2560 	IWI_LOCK_ASSERT(sc);
2561 
2562 	DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":"));
2563 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2564 	    IEEE80211_ADDR_LEN);
2565 	if (error != 0)
2566 		return error;
2567 
2568 	memset(&config, 0, sizeof config);
2569 	config.bluetooth_coexistence = sc->bluetooth;
2570 	config.silence_threshold = 0x1e;
2571 	config.antenna = sc->antenna;
2572 	config.multicast_enabled = 1;
2573 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2574 	config.disable_unicast_decryption = 1;
2575 	config.disable_multicast_decryption = 1;
2576 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2577 		config.allow_invalid_frames = 1;
2578 		config.allow_beacon_and_probe_resp = 1;
2579 		config.allow_mgt = 1;
2580 	}
2581 	DPRINTF(("Configuring adapter\n"));
2582 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2583 	if (error != 0)
2584 		return error;
2585 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2586 		power.mode = IWI_MODE_11B;
2587 		power.nchan = 11;
2588 		for (i = 0; i < 11; i++) {
2589 			power.chan[i].chan = i + 1;
2590 			power.chan[i].power = IWI_TXPOWER_MAX;
2591 		}
2592 		DPRINTF(("Setting .11b channels tx power\n"));
2593 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2594 		if (error != 0)
2595 			return error;
2596 
2597 		power.mode = IWI_MODE_11G;
2598 		DPRINTF(("Setting .11g channels tx power\n"));
2599 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2600 		if (error != 0)
2601 			return error;
2602 	}
2603 
2604 	memset(&rs, 0, sizeof rs);
2605 	rs.mode = IWI_MODE_11G;
2606 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2607 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2608 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2609 	    rs.nrates);
2610 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2611 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2612 	if (error != 0)
2613 		return error;
2614 
2615 	memset(&rs, 0, sizeof rs);
2616 	rs.mode = IWI_MODE_11A;
2617 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2618 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2619 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2620 	    rs.nrates);
2621 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2622 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2623 	if (error != 0)
2624 		return error;
2625 
2626 	data = htole32(arc4random());
2627 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2628 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2629 	if (error != 0)
2630 		return error;
2631 
2632 	/* enable adapter */
2633 	DPRINTF(("Enabling adapter\n"));
2634 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2635 }
2636 
2637 static __inline void
2638 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2639 {
2640 	uint8_t *st = &scan->scan_type[ix / 2];
2641 	if (ix % 2)
2642 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2643 	else
2644 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2645 }
2646 
2647 static int
2648 scan_type(const struct ieee80211_scan_state *ss,
2649 	const struct ieee80211_channel *chan)
2650 {
2651 	/* We can only set one essid for a directed scan */
2652 	if (ss->ss_nssid != 0)
2653 		return IWI_SCAN_TYPE_BDIRECTED;
2654 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2655 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2656 		return IWI_SCAN_TYPE_BROADCAST;
2657 	return IWI_SCAN_TYPE_PASSIVE;
2658 }
2659 
2660 static __inline int
2661 scan_band(const struct ieee80211_channel *c)
2662 {
2663 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2664 }
2665 
2666 static void
2667 iwi_monitor_scan(void *arg, int npending)
2668 {
2669 	struct iwi_softc *sc = arg;
2670 	IWI_LOCK_DECL;
2671 
2672 	IWI_LOCK(sc);
2673 	(void) iwi_scanchan(sc, 2000, 0);
2674 	IWI_UNLOCK(sc);
2675 }
2676 
2677 /*
2678  * Start a scan on the current channel or all channels.
2679  */
2680 static int
2681 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2682 {
2683 	struct ieee80211com *ic;
2684 	struct ieee80211_channel *chan;
2685 	struct ieee80211_scan_state *ss;
2686 	struct iwi_scan_ext scan;
2687 	int error = 0;
2688 
2689 	IWI_LOCK_ASSERT(sc);
2690 	if (sc->fw_state == IWI_FW_SCANNING) {
2691 		/*
2692 		 * This should not happen as we only trigger scan_next after
2693 		 * completion
2694 		 */
2695 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2696 		return (EBUSY);
2697 	}
2698 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2699 
2700 	ic = sc->sc_ifp->if_l2com;
2701 	ss = ic->ic_scan;
2702 
2703 	memset(&scan, 0, sizeof scan);
2704 	scan.full_scan_index = htole32(++sc->sc_scangen);
2705 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2706 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2707 		/*
2708 		 * Use very short dwell times for when we send probe request
2709 		 * frames.  Without this bg scans hang.  Ideally this should
2710 		 * be handled with early-termination as done by net80211 but
2711 		 * that's not feasible (aborting a scan is problematic).
2712 		 */
2713 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2714 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2715 	} else {
2716 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2717 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2718 	}
2719 
2720 	/* We can only set one essid for a directed scan */
2721 	if (ss->ss_nssid != 0) {
2722 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2723 		    ss->ss_ssid[0].len);
2724 		if (error)
2725 			return (error);
2726 	}
2727 
2728 	if (allchan) {
2729 		int i, next, band, b, bstart;
2730 		/*
2731 		 * Convert scan list to run-length encoded channel list
2732 		 * the firmware requires (preserving the order setup by
2733 		 * net80211).  The first entry in each run specifies the
2734 		 * band and the count of items in the run.
2735 		 */
2736 		next = 0;		/* next open slot */
2737 		bstart = 0;		/* NB: not needed, silence compiler */
2738 		band = -1;		/* NB: impossible value */
2739 		KASSERT(ss->ss_last > 0, ("no channels"));
2740 		for (i = 0; i < ss->ss_last; i++) {
2741 			chan = ss->ss_chans[i];
2742 			b = scan_band(chan);
2743 			if (b != band) {
2744 				if (band != -1)
2745 					scan.channels[bstart] =
2746 					    (next - bstart) | band;
2747 				/* NB: this allocates a slot for the run-len */
2748 				band = b, bstart = next++;
2749 			}
2750 			if (next >= IWI_SCAN_CHANNELS) {
2751 				DPRINTF(("truncating scan list\n"));
2752 				break;
2753 			}
2754 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2755 			set_scan_type(&scan, next, scan_type(ss, chan));
2756 			next++;
2757 		}
2758 		scan.channels[bstart] = (next - bstart) | band;
2759 	} else {
2760 		/* Scan the current channel only */
2761 		chan = ic->ic_curchan;
2762 		scan.channels[0] = 1 | scan_band(chan);
2763 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2764 		set_scan_type(&scan, 1, scan_type(ss, chan));
2765 	}
2766 #ifdef IWI_DEBUG
2767 	if (iwi_debug > 0) {
2768 		static const char *scantype[8] =
2769 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2770 		int i;
2771 		printf("Scan request: index %u dwell %d/%d/%d\n"
2772 		    , le32toh(scan.full_scan_index)
2773 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2774 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2775 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2776 		);
2777 		i = 0;
2778 		do {
2779 			int run = scan.channels[i];
2780 			if (run == 0)
2781 				break;
2782 			printf("Scan %d %s channels:", run & 0x3f,
2783 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2784 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2785 				uint8_t type = scan.scan_type[i/2];
2786 				printf(" %u/%s", scan.channels[i],
2787 				    scantype[(i & 1 ? type : type>>4) & 7]);
2788 			}
2789 			printf("\n");
2790 		} while (i < IWI_SCAN_CHANNELS);
2791 	}
2792 #endif
2793 
2794 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2795 }
2796 
2797 static int
2798 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2799 {
2800 	struct iwi_sensitivity sens;
2801 
2802 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2803 
2804 	memset(&sens, 0, sizeof sens);
2805 	sens.rssi = htole16(rssi_dbm);
2806 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2807 }
2808 
2809 static int
2810 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2811 {
2812 	struct ieee80211com *ic = vap->iv_ic;
2813 	struct ifnet *ifp = vap->iv_ifp;
2814 	struct ieee80211_node *ni = vap->iv_bss;
2815 	struct iwi_configuration config;
2816 	struct iwi_associate *assoc = &sc->assoc;
2817 	struct iwi_rateset rs;
2818 	uint16_t capinfo;
2819 	uint32_t data;
2820 	int error, mode;
2821 
2822 	IWI_LOCK_ASSERT(sc);
2823 
2824 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2825 		DPRINTF(("Already associated\n"));
2826 		return (-1);
2827 	}
2828 
2829 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2830 	error = 0;
2831 	mode = 0;
2832 
2833 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2834 		mode = IWI_MODE_11A;
2835 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2836 		mode = IWI_MODE_11G;
2837 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2838 		mode = IWI_MODE_11B;
2839 
2840 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2841 		memset(&config, 0, sizeof config);
2842 		config.bluetooth_coexistence = sc->bluetooth;
2843 		config.antenna = sc->antenna;
2844 		config.multicast_enabled = 1;
2845 		if (mode == IWI_MODE_11G)
2846 			config.use_protection = 1;
2847 		config.answer_pbreq =
2848 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2849 		config.disable_unicast_decryption = 1;
2850 		config.disable_multicast_decryption = 1;
2851 		DPRINTF(("Configuring adapter\n"));
2852 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2853 		if (error != 0)
2854 			goto done;
2855 	}
2856 
2857 #ifdef IWI_DEBUG
2858 	if (iwi_debug > 0) {
2859 		printf("Setting ESSID to ");
2860 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2861 		printf("\n");
2862 	}
2863 #endif
2864 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2865 	if (error != 0)
2866 		goto done;
2867 
2868 	error = iwi_setpowermode(sc, vap);
2869 	if (error != 0)
2870 		goto done;
2871 
2872 	data = htole32(vap->iv_rtsthreshold);
2873 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2874 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2875 	if (error != 0)
2876 		goto done;
2877 
2878 	data = htole32(vap->iv_fragthreshold);
2879 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2880 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2881 	if (error != 0)
2882 		goto done;
2883 
2884 	/* the rate set has already been "negotiated" */
2885 	memset(&rs, 0, sizeof rs);
2886 	rs.mode = mode;
2887 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2888 	rs.nrates = ni->ni_rates.rs_nrates;
2889 	if (rs.nrates > IWI_RATESET_SIZE) {
2890 		DPRINTF(("Truncating negotiated rate set from %u\n",
2891 		    rs.nrates));
2892 		rs.nrates = IWI_RATESET_SIZE;
2893 	}
2894 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2895 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2896 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2897 	if (error != 0)
2898 		goto done;
2899 
2900 	memset(assoc, 0, sizeof *assoc);
2901 
2902 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2903 		/* NB: don't treat WME setup as failure */
2904 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2905 			assoc->policy |= htole16(IWI_POLICY_WME);
2906 		/* XXX complain on failure? */
2907 	}
2908 
2909 	if (vap->iv_appie_wpa != NULL) {
2910 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2911 
2912 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2913 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2914 		if (error != 0)
2915 			goto done;
2916 	}
2917 
2918 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2919 	if (error != 0)
2920 		goto done;
2921 
2922 	assoc->mode = mode;
2923 	assoc->chan = ic->ic_curchan->ic_ieee;
2924 	/*
2925 	 * NB: do not arrange for shared key auth w/o privacy
2926 	 *     (i.e. a wep key); it causes a firmware error.
2927 	 */
2928 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2929 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2930 		assoc->auth = IWI_AUTH_SHARED;
2931 		/*
2932 		 * It's possible to have privacy marked but no default
2933 		 * key setup.  This typically is due to a user app bug
2934 		 * but if we blindly grab the key the firmware will
2935 		 * barf so avoid it for now.
2936 		 */
2937 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2938 			assoc->auth |= vap->iv_def_txkey << 4;
2939 
2940 		error = iwi_setwepkeys(sc, vap);
2941 		if (error != 0)
2942 			goto done;
2943 	}
2944 	if (vap->iv_flags & IEEE80211_F_WPA)
2945 		assoc->policy |= htole16(IWI_POLICY_WPA);
2946 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2947 		assoc->type = IWI_HC_IBSS_START;
2948 	else
2949 		assoc->type = IWI_HC_ASSOC;
2950 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2951 
2952 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2953 		capinfo = IEEE80211_CAPINFO_IBSS;
2954 	else
2955 		capinfo = IEEE80211_CAPINFO_ESS;
2956 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2957 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2958 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2959 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2960 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2961 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2962 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2963 	assoc->capinfo = htole16(capinfo);
2964 
2965 	assoc->lintval = htole16(ic->ic_lintval);
2966 	assoc->intval = htole16(ni->ni_intval);
2967 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2968 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2969 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2970 	else
2971 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2972 
2973 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2974 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2975 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2976 	    assoc->bssid, ":", assoc->dst, ":",
2977 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2978 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2979 	    le16toh(assoc->intval)));
2980 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2981 done:
2982 	if (error)
2983 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2984 
2985 	return (error);
2986 }
2987 
2988 static void
2989 iwi_disassoc(void *arg, int pending)
2990 {
2991 	struct iwi_softc *sc = arg;
2992 	IWI_LOCK_DECL;
2993 
2994 	IWI_LOCK(sc);
2995 	iwi_disassociate(sc, 0);
2996 	IWI_UNLOCK(sc);
2997 }
2998 
2999 static int
3000 iwi_disassociate(struct iwi_softc *sc, int quiet)
3001 {
3002 	struct iwi_associate *assoc = &sc->assoc;
3003 
3004 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3005 		DPRINTF(("Not associated\n"));
3006 		return (-1);
3007 	}
3008 
3009 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3010 
3011 	if (quiet)
3012 		assoc->type = IWI_HC_DISASSOC_QUIET;
3013 	else
3014 		assoc->type = IWI_HC_DISASSOC;
3015 
3016 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3017 	    assoc->bssid, ":", assoc->chan));
3018 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3019 }
3020 
3021 /*
3022  * release dma resources for the firmware
3023  */
3024 static void
3025 iwi_release_fw_dma(struct iwi_softc *sc)
3026 {
3027 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3028 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3029 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3030 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3031 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3032 		bus_dma_tag_destroy(sc->fw_dmat);
3033 
3034 	sc->fw_flags = 0;
3035 	sc->fw_dma_size = 0;
3036 	sc->fw_dmat = NULL;
3037 	sc->fw_map = NULL;
3038 	sc->fw_physaddr = 0;
3039 	sc->fw_virtaddr = NULL;
3040 }
3041 
3042 /*
3043  * allocate the dma descriptor for the firmware.
3044  * Return 0 on success, 1 on error.
3045  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3046  */
3047 static int
3048 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3049 {
3050 	if (sc->fw_dma_size >= size)
3051 		return 0;
3052 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3053 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3054 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3055 		device_printf(sc->sc_dev,
3056 		    "could not create firmware DMA tag\n");
3057 		goto error;
3058 	}
3059 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3060 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3061 	    &sc->fw_map) != 0) {
3062 		device_printf(sc->sc_dev,
3063 		    "could not allocate firmware DMA memory\n");
3064 		goto error;
3065 	}
3066 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3067 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3068 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3069 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3070 		goto error;
3071 	}
3072 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3073 	sc->fw_dma_size = size;
3074 	return 0;
3075 
3076 error:
3077 	iwi_release_fw_dma(sc);
3078 	return 1;
3079 }
3080 
3081 static void
3082 iwi_init_locked(struct iwi_softc *sc)
3083 {
3084 	struct ifnet *ifp = sc->sc_ifp;
3085 	struct iwi_rx_data *data;
3086 	int i;
3087 
3088 	IWI_LOCK_ASSERT(sc);
3089 
3090 	if (sc->fw_state == IWI_FW_LOADING) {
3091 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3092 		return;		/* XXX: condvar? */
3093 	}
3094 
3095 	iwi_stop_locked(sc);
3096 
3097 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3098 
3099 	if (iwi_reset(sc) != 0) {
3100 		device_printf(sc->sc_dev, "could not reset adapter\n");
3101 		goto fail;
3102 	}
3103 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3104 		device_printf(sc->sc_dev,
3105 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3106 		goto fail;
3107 	}
3108 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not load microcode %s\n", sc->fw_uc.name);
3111 		goto fail;
3112 	}
3113 
3114 	iwi_stop_master(sc);
3115 
3116 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3117 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3119 
3120 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3121 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3123 
3124 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3125 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3127 
3128 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3129 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3131 
3132 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3133 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3135 
3136 	for (i = 0; i < sc->rxq.count; i++) {
3137 		data = &sc->rxq.data[i];
3138 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3139 	}
3140 
3141 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3142 
3143 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3144 		device_printf(sc->sc_dev,
3145 		    "could not load main firmware %s\n", sc->fw_fw.name);
3146 		goto fail;
3147 	}
3148 	sc->flags |= IWI_FLAG_FW_INITED;
3149 
3150 	IWI_STATE_END(sc, IWI_FW_LOADING);
3151 
3152 	if (iwi_config(sc) != 0) {
3153 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3154 		goto fail2;
3155 	}
3156 
3157 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3158 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160 	return;
3161 fail:
3162 	IWI_STATE_END(sc, IWI_FW_LOADING);
3163 fail2:
3164 	iwi_stop_locked(sc);
3165 }
3166 
3167 static void
3168 iwi_init(void *priv)
3169 {
3170 	struct iwi_softc *sc = priv;
3171 	struct ifnet *ifp = sc->sc_ifp;
3172 	struct ieee80211com *ic = ifp->if_l2com;
3173 	IWI_LOCK_DECL;
3174 
3175 	IWI_LOCK(sc);
3176 	iwi_init_locked(sc);
3177 	IWI_UNLOCK(sc);
3178 
3179 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3180 		ieee80211_start_all(ic);
3181 }
3182 
3183 static void
3184 iwi_stop_locked(void *priv)
3185 {
3186 	struct iwi_softc *sc = priv;
3187 	struct ifnet *ifp = sc->sc_ifp;
3188 
3189 	IWI_LOCK_ASSERT(sc);
3190 
3191 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3192 
3193 	if (sc->sc_softled) {
3194 		callout_stop(&sc->sc_ledtimer);
3195 		sc->sc_blinking = 0;
3196 	}
3197 	callout_stop(&sc->sc_wdtimer);
3198 	callout_stop(&sc->sc_rftimer);
3199 
3200 	iwi_stop_master(sc);
3201 
3202 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3203 
3204 	/* reset rings */
3205 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3206 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3207 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3210 	iwi_reset_rx_ring(sc, &sc->rxq);
3211 
3212 	sc->sc_tx_timer = 0;
3213 	sc->sc_state_timer = 0;
3214 	sc->sc_busy_timer = 0;
3215 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3216 	sc->fw_state = IWI_FW_IDLE;
3217 	wakeup(sc);
3218 }
3219 
3220 static void
3221 iwi_stop(struct iwi_softc *sc)
3222 {
3223 	IWI_LOCK_DECL;
3224 
3225 	IWI_LOCK(sc);
3226 	iwi_stop_locked(sc);
3227 	IWI_UNLOCK(sc);
3228 }
3229 
3230 static void
3231 iwi_restart(void *arg, int npending)
3232 {
3233 	struct iwi_softc *sc = arg;
3234 
3235 	iwi_init(sc);
3236 }
3237 
3238 /*
3239  * Return whether or not the radio is enabled in hardware
3240  * (i.e. the rfkill switch is "off").
3241  */
3242 static int
3243 iwi_getrfkill(struct iwi_softc *sc)
3244 {
3245 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3246 }
3247 
3248 static void
3249 iwi_radio_on(void *arg, int pending)
3250 {
3251 	struct iwi_softc *sc = arg;
3252 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3253 
3254 	device_printf(sc->sc_dev, "radio turned on\n");
3255 
3256 	iwi_init(sc);
3257 	ieee80211_notify_radio(ic, 1);
3258 }
3259 
3260 static void
3261 iwi_rfkill_poll(void *arg)
3262 {
3263 	struct iwi_softc *sc = arg;
3264 
3265 	IWI_LOCK_ASSERT(sc);
3266 
3267 	/*
3268 	 * Check for a change in rfkill state.  We get an
3269 	 * interrupt when a radio is disabled but not when
3270 	 * it is enabled so we must poll for the latter.
3271 	 */
3272 	if (!iwi_getrfkill(sc)) {
3273 		struct ifnet *ifp = sc->sc_ifp;
3274 		struct ieee80211com *ic = ifp->if_l2com;
3275 
3276 		ieee80211_runtask(ic, &sc->sc_radiontask);
3277 		return;
3278 	}
3279 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3280 }
3281 
3282 static void
3283 iwi_radio_off(void *arg, int pending)
3284 {
3285 	struct iwi_softc *sc = arg;
3286 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3287 	IWI_LOCK_DECL;
3288 
3289 	device_printf(sc->sc_dev, "radio turned off\n");
3290 
3291 	ieee80211_notify_radio(ic, 0);
3292 
3293 	IWI_LOCK(sc);
3294 	iwi_stop_locked(sc);
3295 	iwi_rfkill_poll(sc);
3296 	IWI_UNLOCK(sc);
3297 }
3298 
3299 static int
3300 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3301 {
3302 	struct iwi_softc *sc = arg1;
3303 	uint32_t size, buf[128];
3304 
3305 	memset(buf, 0, sizeof buf);
3306 
3307 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3308 		return SYSCTL_OUT(req, buf, sizeof buf);
3309 
3310 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3311 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3312 
3313 	return SYSCTL_OUT(req, buf, size);
3314 }
3315 
3316 static int
3317 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3318 {
3319 	struct iwi_softc *sc = arg1;
3320 	int val = !iwi_getrfkill(sc);
3321 
3322 	return SYSCTL_OUT(req, &val, sizeof val);
3323 }
3324 
3325 /*
3326  * Add sysctl knobs.
3327  */
3328 static void
3329 iwi_sysctlattach(struct iwi_softc *sc)
3330 {
3331 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3332 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3333 
3334 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3335 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3336 	    "radio transmitter switch state (0=off, 1=on)");
3337 
3338 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3339 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3340 	    "statistics");
3341 
3342 	sc->bluetooth = 0;
3343 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3344 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3345 
3346 	sc->antenna = IWI_ANTENNA_AUTO;
3347 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3348 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3349 }
3350 
3351 /*
3352  * LED support.
3353  *
3354  * Different cards have different capabilities.  Some have three
3355  * led's while others have only one.  The linux ipw driver defines
3356  * led's for link state (associated or not), band (11a, 11g, 11b),
3357  * and for link activity.  We use one led and vary the blink rate
3358  * according to the tx/rx traffic a la the ath driver.
3359  */
3360 
3361 static __inline uint32_t
3362 iwi_toggle_event(uint32_t r)
3363 {
3364 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3365 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3366 }
3367 
3368 static uint32_t
3369 iwi_read_event(struct iwi_softc *sc)
3370 {
3371 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3372 }
3373 
3374 static void
3375 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3376 {
3377 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3378 }
3379 
3380 static void
3381 iwi_led_done(void *arg)
3382 {
3383 	struct iwi_softc *sc = arg;
3384 
3385 	sc->sc_blinking = 0;
3386 }
3387 
3388 /*
3389  * Turn the activity LED off: flip the pin and then set a timer so no
3390  * update will happen for the specified duration.
3391  */
3392 static void
3393 iwi_led_off(void *arg)
3394 {
3395 	struct iwi_softc *sc = arg;
3396 	uint32_t v;
3397 
3398 	v = iwi_read_event(sc);
3399 	v &= ~sc->sc_ledpin;
3400 	iwi_write_event(sc, iwi_toggle_event(v));
3401 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3402 }
3403 
3404 /*
3405  * Blink the LED according to the specified on/off times.
3406  */
3407 static void
3408 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3409 {
3410 	uint32_t v;
3411 
3412 	v = iwi_read_event(sc);
3413 	v |= sc->sc_ledpin;
3414 	iwi_write_event(sc, iwi_toggle_event(v));
3415 	sc->sc_blinking = 1;
3416 	sc->sc_ledoff = off;
3417 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3418 }
3419 
3420 static void
3421 iwi_led_event(struct iwi_softc *sc, int event)
3422 {
3423 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3424 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3425 	static const struct {
3426 		u_int		rate;		/* tx/rx iwi rate */
3427 		u_int16_t	timeOn;		/* LED on time (ms) */
3428 		u_int16_t	timeOff;	/* LED off time (ms) */
3429 	} blinkrates[] = {
3430 		{ IWI_RATE_OFDM54, 40,  10 },
3431 		{ IWI_RATE_OFDM48, 44,  11 },
3432 		{ IWI_RATE_OFDM36, 50,  13 },
3433 		{ IWI_RATE_OFDM24, 57,  14 },
3434 		{ IWI_RATE_OFDM18, 67,  16 },
3435 		{ IWI_RATE_OFDM12, 80,  20 },
3436 		{ IWI_RATE_DS11,  100,  25 },
3437 		{ IWI_RATE_OFDM9, 133,  34 },
3438 		{ IWI_RATE_OFDM6, 160,  40 },
3439 		{ IWI_RATE_DS5,   200,  50 },
3440 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3441 		{ IWI_RATE_DS2,   267,  66 },
3442 		{ IWI_RATE_DS1,   400, 100 },
3443 		{            0,   500, 130 },	/* unknown rate/polling */
3444 	};
3445 	uint32_t txrate;
3446 	int j = 0;			/* XXX silence compiler */
3447 
3448 	sc->sc_ledevent = ticks;	/* time of last event */
3449 	if (sc->sc_blinking)		/* don't interrupt active blink */
3450 		return;
3451 	switch (event) {
3452 	case IWI_LED_POLL:
3453 		j = N(blinkrates)-1;
3454 		break;
3455 	case IWI_LED_TX:
3456 		/* read current transmission rate from adapter */
3457 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3458 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3459 			for (j = 0; j < N(blinkrates)-1; j++)
3460 				if (blinkrates[j].rate == txrate)
3461 					break;
3462 			sc->sc_txrix = j;
3463 		} else
3464 			j = sc->sc_txrix;
3465 		break;
3466 	case IWI_LED_RX:
3467 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3468 			for (j = 0; j < N(blinkrates)-1; j++)
3469 				if (blinkrates[j].rate == sc->sc_rxrate)
3470 					break;
3471 			sc->sc_rxrix = j;
3472 		} else
3473 			j = sc->sc_rxrix;
3474 		break;
3475 	}
3476 	/* XXX beware of overflow */
3477 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3478 		(blinkrates[j].timeOff * hz) / 1000);
3479 #undef N
3480 }
3481 
3482 static int
3483 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3484 {
3485 	struct iwi_softc *sc = arg1;
3486 	int softled = sc->sc_softled;
3487 	int error;
3488 
3489 	error = sysctl_handle_int(oidp, &softled, 0, req);
3490 	if (error || !req->newptr)
3491 		return error;
3492 	softled = (softled != 0);
3493 	if (softled != sc->sc_softled) {
3494 		if (softled) {
3495 			uint32_t v = iwi_read_event(sc);
3496 			v &= ~sc->sc_ledpin;
3497 			iwi_write_event(sc, iwi_toggle_event(v));
3498 		}
3499 		sc->sc_softled = softled;
3500 	}
3501 	return 0;
3502 }
3503 
3504 static void
3505 iwi_ledattach(struct iwi_softc *sc)
3506 {
3507 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3508 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3509 
3510 	sc->sc_blinking = 0;
3511 	sc->sc_ledstate = 1;
3512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3513 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3514 
3515 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3516 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3517 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3518 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3519 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3520 		"pin setting to turn activity LED on");
3521 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3522 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3523 		"idle time for inactivity LED (ticks)");
3524 	/* XXX for debugging */
3525 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3526 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3527 		"NIC type from EEPROM");
3528 
3529 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3530 	sc->sc_softled = 1;
3531 
3532 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3533 	if (sc->sc_nictype == 1) {
3534 		/*
3535 		 * NB: led's are reversed.
3536 		 */
3537 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3538 	}
3539 }
3540 
3541 static void
3542 iwi_scan_start(struct ieee80211com *ic)
3543 {
3544 	/* ignore */
3545 }
3546 
3547 static void
3548 iwi_set_channel(struct ieee80211com *ic)
3549 {
3550 	struct ifnet *ifp = ic->ic_ifp;
3551 	struct iwi_softc *sc = ifp->if_softc;
3552 	if (sc->fw_state == IWI_FW_IDLE)
3553 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3554 }
3555 
3556 static void
3557 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3558 {
3559 	struct ieee80211vap *vap = ss->ss_vap;
3560 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3561 	struct iwi_softc *sc = ifp->if_softc;
3562 	IWI_LOCK_DECL;
3563 
3564 	IWI_LOCK(sc);
3565 	if (iwi_scanchan(sc, maxdwell, 0))
3566 		ieee80211_cancel_scan(vap);
3567 	IWI_UNLOCK(sc);
3568 }
3569 
3570 static void
3571 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3572 {
3573 	/* NB: don't try to abort scan; wait for firmware to finish */
3574 }
3575 
3576 static void
3577 iwi_scan_end(struct ieee80211com *ic)
3578 {
3579 	struct ifnet *ifp = ic->ic_ifp;
3580 	struct iwi_softc *sc = ifp->if_softc;
3581 	IWI_LOCK_DECL;
3582 
3583 	IWI_LOCK(sc);
3584 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3585 	/* NB: make sure we're still scanning */
3586 	if (sc->fw_state == IWI_FW_SCANNING)
3587 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3588 	IWI_UNLOCK(sc);
3589 }
3590