xref: /freebsd/sys/dev/iwi/if_iwi.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*-
34  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
35  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
36  */
37 
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/socket.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/endian.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/namei.h>
54 #include <sys/linker.h>
55 #include <sys/firmware.h>
56 #include <sys/taskqueue.h>
57 
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <sys/rman.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <net/bpf.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 
74 #include <net80211/ieee80211_var.h>
75 #include <net80211/ieee80211_radiotap.h>
76 #include <net80211/ieee80211_input.h>
77 #include <net80211/ieee80211_regdomain.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip.h>
83 #include <netinet/if_ether.h>
84 
85 #include <dev/iwi/if_iwireg.h>
86 #include <dev/iwi/if_iwivar.h>
87 
88 #define IWI_DEBUG
89 #ifdef IWI_DEBUG
90 #define DPRINTF(x)	do { if (iwi_debug > 0) printf x; } while (0)
91 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) printf x; } while (0)
92 int iwi_debug = 0;
93 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
94 
95 static const char *iwi_fw_states[] = {
96 	"IDLE", 		/* IWI_FW_IDLE */
97 	"LOADING",		/* IWI_FW_LOADING */
98 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
99 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
100 	"SCANNING",		/* IWI_FW_SCANNING */
101 };
102 #else
103 #define DPRINTF(x)
104 #define DPRINTFN(n, x)
105 #endif
106 
107 MODULE_DEPEND(iwi, pci,  1, 1, 1);
108 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
109 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
110 
111 enum {
112 	IWI_LED_TX,
113 	IWI_LED_RX,
114 	IWI_LED_POLL,
115 };
116 
117 struct iwi_ident {
118 	uint16_t	vendor;
119 	uint16_t	device;
120 	const char	*name;
121 };
122 
123 static const struct iwi_ident iwi_ident_table[] = {
124 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
125 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
126 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
127 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
128 
129 	{ 0, 0, NULL }
130 };
131 
132 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
133 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
134 		    const uint8_t [IEEE80211_ADDR_LEN],
135 		    const uint8_t [IEEE80211_ADDR_LEN]);
136 static void	iwi_vap_delete(struct ieee80211vap *);
137 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
138 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
139 		    int);
140 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
143 		    int, bus_addr_t, bus_addr_t);
144 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
147 		    int);
148 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwi_node_free(struct ieee80211_node *);
153 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
154 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
155 static void	iwi_wme_init(struct iwi_softc *);
156 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
157 static void	iwi_update_wme(void *, int);
158 static int	iwi_wme_update(struct ieee80211com *);
159 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
160 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
161 		    struct iwi_frame *);
162 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
163 static void	iwi_rx_intr(struct iwi_softc *);
164 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
165 static void	iwi_intr(void *);
166 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
167 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
168 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
169 		    struct ieee80211_node *, int);
170 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
171 		    const struct ieee80211_bpf_params *);
172 static void	iwi_start_locked(struct ifnet *);
173 static void	iwi_start(struct ifnet *);
174 static void	iwi_watchdog(void *);
175 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t);
176 static void	iwi_stop_master(struct iwi_softc *);
177 static int	iwi_reset(struct iwi_softc *);
178 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
179 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
180 static void	iwi_release_fw_dma(struct iwi_softc *sc);
181 static int	iwi_config(struct iwi_softc *);
182 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
183 static void	iwi_put_firmware(struct iwi_softc *);
184 static void	iwi_monitor_scan(void *, int);
185 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
186 static void	iwi_scan_start(struct ieee80211com *);
187 static void	iwi_scan_end(struct ieee80211com *);
188 static void	iwi_set_channel(struct ieee80211com *);
189 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
190 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
191 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
192 static void	iwi_disassoc(void *, int);
193 static int	iwi_disassociate(struct iwi_softc *, int quiet);
194 static void	iwi_init_locked(struct iwi_softc *);
195 static void	iwi_init(void *);
196 static int	iwi_init_fw_dma(struct iwi_softc *, int);
197 static void	iwi_stop_locked(void *);
198 static void	iwi_stop(struct iwi_softc *);
199 static void	iwi_restart(void *, int);
200 static int	iwi_getrfkill(struct iwi_softc *);
201 static void	iwi_radio_on(void *, int);
202 static void	iwi_radio_off(void *, int);
203 static void	iwi_sysctlattach(struct iwi_softc *);
204 static void	iwi_led_event(struct iwi_softc *, int);
205 static void	iwi_ledattach(struct iwi_softc *);
206 
207 static int iwi_probe(device_t);
208 static int iwi_attach(device_t);
209 static int iwi_detach(device_t);
210 static int iwi_shutdown(device_t);
211 static int iwi_suspend(device_t);
212 static int iwi_resume(device_t);
213 
214 static device_method_t iwi_methods[] = {
215 	/* Device interface */
216 	DEVMETHOD(device_probe,		iwi_probe),
217 	DEVMETHOD(device_attach,	iwi_attach),
218 	DEVMETHOD(device_detach,	iwi_detach),
219 	DEVMETHOD(device_shutdown,	iwi_shutdown),
220 	DEVMETHOD(device_suspend,	iwi_suspend),
221 	DEVMETHOD(device_resume,	iwi_resume),
222 
223 	{ 0, 0 }
224 };
225 
226 static driver_t iwi_driver = {
227 	"iwi",
228 	iwi_methods,
229 	sizeof (struct iwi_softc)
230 };
231 
232 static devclass_t iwi_devclass;
233 
234 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
235 
236 MODULE_VERSION(iwi, 1);
237 
238 static __inline uint8_t
239 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
240 {
241 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
242 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
243 }
244 
245 static __inline uint32_t
246 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
247 {
248 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
249 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
250 }
251 
252 static int
253 iwi_probe(device_t dev)
254 {
255 	const struct iwi_ident *ident;
256 
257 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
258 		if (pci_get_vendor(dev) == ident->vendor &&
259 		    pci_get_device(dev) == ident->device) {
260 			device_set_desc(dev, ident->name);
261 			return 0;
262 		}
263 	}
264 	return ENXIO;
265 }
266 
267 /* Base Address Register */
268 #define IWI_PCI_BAR0	0x10
269 
270 static int
271 iwi_attach(device_t dev)
272 {
273 	struct iwi_softc *sc = device_get_softc(dev);
274 	struct ifnet *ifp;
275 	struct ieee80211com *ic;
276 	uint16_t val;
277 	int i, error;
278 	uint8_t bands;
279 	uint8_t macaddr[IEEE80211_ADDR_LEN];
280 
281 	sc->sc_dev = dev;
282 
283 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 	if (ifp == NULL) {
285 		device_printf(dev, "can not if_alloc()\n");
286 		return ENXIO;
287 	}
288 	ic = ifp->if_l2com;
289 
290 	IWI_LOCK_INIT(sc);
291 
292 	sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx);
293 
294 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc);
295 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc);
296 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc);
297 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc);
298 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc);
299 	TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc);
300 
301 	callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0);
302 	callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0);
303 
304 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
305 		device_printf(dev, "chip is in D%d power mode "
306 		    "-- setting to D0\n", pci_get_powerstate(dev));
307 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
308 	}
309 
310 	pci_write_config(dev, 0x41, 0, 1);
311 
312 	/* enable bus-mastering */
313 	pci_enable_busmaster(dev);
314 
315 	sc->mem_rid = IWI_PCI_BAR0;
316 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
317 	    RF_ACTIVE);
318 	if (sc->mem == NULL) {
319 		device_printf(dev, "could not allocate memory resource\n");
320 		goto fail;
321 	}
322 
323 	sc->sc_st = rman_get_bustag(sc->mem);
324 	sc->sc_sh = rman_get_bushandle(sc->mem);
325 
326 	sc->irq_rid = 0;
327 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
328 	    RF_ACTIVE | RF_SHAREABLE);
329 	if (sc->irq == NULL) {
330 		device_printf(dev, "could not allocate interrupt resource\n");
331 		goto fail;
332 	}
333 
334 	if (iwi_reset(sc) != 0) {
335 		device_printf(dev, "could not reset adapter\n");
336 		goto fail;
337 	}
338 
339 	/*
340 	 * Allocate rings.
341 	 */
342 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
343 		device_printf(dev, "could not allocate Cmd ring\n");
344 		goto fail;
345 	}
346 
347 	for (i = 0; i < 4; i++) {
348 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
349 		    IWI_CSR_TX1_RIDX + i * 4,
350 		    IWI_CSR_TX1_WIDX + i * 4);
351 		if (error != 0) {
352 			device_printf(dev, "could not allocate Tx ring %d\n",
353 				i+i);
354 			goto fail;
355 		}
356 	}
357 
358 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
359 		device_printf(dev, "could not allocate Rx ring\n");
360 		goto fail;
361 	}
362 
363 	iwi_wme_init(sc);
364 
365 	ifp->if_softc = sc;
366 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 	ifp->if_init = iwi_init;
369 	ifp->if_ioctl = iwi_ioctl;
370 	ifp->if_start = iwi_start;
371 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
372 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
373 	IFQ_SET_READY(&ifp->if_snd);
374 
375 	ic->ic_ifp = ifp;
376 	ic->ic_opmode = IEEE80211_M_STA;
377 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
378 
379 	/* set device capabilities */
380 	ic->ic_caps =
381 	      IEEE80211_C_STA		/* station mode supported */
382 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
383 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
384 	    | IEEE80211_C_PMGT		/* power save supported */
385 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
386 	    | IEEE80211_C_WPA		/* 802.11i */
387 	    | IEEE80211_C_WME		/* 802.11e */
388 #if 0
389 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
390 #endif
391 	    ;
392 
393 	/* read MAC address from EEPROM */
394 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
395 	macaddr[0] = val & 0xff;
396 	macaddr[1] = val >> 8;
397 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
398 	macaddr[2] = val & 0xff;
399 	macaddr[3] = val >> 8;
400 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
401 	macaddr[4] = val & 0xff;
402 	macaddr[5] = val >> 8;
403 
404 	bands = 0;
405 	setbit(&bands, IEEE80211_MODE_11B);
406 	setbit(&bands, IEEE80211_MODE_11G);
407 	if (pci_get_device(dev) >= 0x4223)
408 		setbit(&bands, IEEE80211_MODE_11A);
409 	ieee80211_init_channels(ic, NULL, &bands);
410 
411 	ieee80211_ifattach(ic, macaddr);
412 	/* override default methods */
413 	ic->ic_node_alloc = iwi_node_alloc;
414 	sc->sc_node_free = ic->ic_node_free;
415 	ic->ic_node_free = iwi_node_free;
416 	ic->ic_raw_xmit = iwi_raw_xmit;
417 	ic->ic_scan_start = iwi_scan_start;
418 	ic->ic_scan_end = iwi_scan_end;
419 	ic->ic_set_channel = iwi_set_channel;
420 	ic->ic_scan_curchan = iwi_scan_curchan;
421 	ic->ic_scan_mindwell = iwi_scan_mindwell;
422 	ic->ic_wme.wme_update = iwi_wme_update;
423 
424 	ic->ic_vap_create = iwi_vap_create;
425 	ic->ic_vap_delete = iwi_vap_delete;
426 
427 	ieee80211_radiotap_attach(ic,
428 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
429 		IWI_TX_RADIOTAP_PRESENT,
430 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
431 		IWI_RX_RADIOTAP_PRESENT);
432 
433 	iwi_sysctlattach(sc);
434 	iwi_ledattach(sc);
435 
436 	/*
437 	 * Hook our interrupt after all initialization is complete.
438 	 */
439 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
440 	    NULL, iwi_intr, sc, &sc->sc_ih);
441 	if (error != 0) {
442 		device_printf(dev, "could not set up interrupt\n");
443 		goto fail;
444 	}
445 
446 	if (bootverbose)
447 		ieee80211_announce(ic);
448 
449 	return 0;
450 fail:
451 	/* XXX fix */
452 	iwi_detach(dev);
453 	return ENXIO;
454 }
455 
456 static int
457 iwi_detach(device_t dev)
458 {
459 	struct iwi_softc *sc = device_get_softc(dev);
460 	struct ifnet *ifp = sc->sc_ifp;
461 	struct ieee80211com *ic = ifp->if_l2com;
462 
463 	/* NB: do early to drain any pending tasks */
464 	ieee80211_draintask(ic, &sc->sc_radiontask);
465 	ieee80211_draintask(ic, &sc->sc_radiofftask);
466 	ieee80211_draintask(ic, &sc->sc_restarttask);
467 	ieee80211_draintask(ic, &sc->sc_disassoctask);
468 	ieee80211_draintask(ic, &sc->sc_monitortask);
469 
470 	iwi_stop(sc);
471 
472 	ieee80211_ifdetach(ic);
473 
474 	iwi_put_firmware(sc);
475 	iwi_release_fw_dma(sc);
476 
477 	iwi_free_cmd_ring(sc, &sc->cmdq);
478 	iwi_free_tx_ring(sc, &sc->txq[0]);
479 	iwi_free_tx_ring(sc, &sc->txq[1]);
480 	iwi_free_tx_ring(sc, &sc->txq[2]);
481 	iwi_free_tx_ring(sc, &sc->txq[3]);
482 	iwi_free_rx_ring(sc, &sc->rxq);
483 
484 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
485 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
486 
487 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
488 
489 	delete_unrhdr(sc->sc_unr);
490 
491 	IWI_LOCK_DESTROY(sc);
492 
493 	if_free(ifp);
494 
495 	return 0;
496 }
497 
498 static struct ieee80211vap *
499 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
500     enum ieee80211_opmode opmode, int flags,
501     const uint8_t bssid[IEEE80211_ADDR_LEN],
502     const uint8_t mac[IEEE80211_ADDR_LEN])
503 {
504 	struct ifnet *ifp = ic->ic_ifp;
505 	struct iwi_softc *sc = ifp->if_softc;
506 	struct iwi_vap *ivp;
507 	struct ieee80211vap *vap;
508 	int i;
509 
510 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
511 		return NULL;
512 	/*
513 	 * Get firmware image (and possibly dma memory) on mode change.
514 	 */
515 	if (iwi_get_firmware(sc, opmode))
516 		return NULL;
517 	/* allocate DMA memory for mapping firmware image */
518 	i = sc->fw_fw.size;
519 	if (sc->fw_boot.size > i)
520 		i = sc->fw_boot.size;
521 	/* XXX do we dma the ucode as well ? */
522 	if (sc->fw_uc.size > i)
523 		i = sc->fw_uc.size;
524 	if (iwi_init_fw_dma(sc, i))
525 		return NULL;
526 
527 	ivp = (struct iwi_vap *) malloc(sizeof(struct iwi_vap),
528 	    M_80211_VAP, M_NOWAIT | M_ZERO);
529 	if (ivp == NULL)
530 		return NULL;
531 	vap = &ivp->iwi_vap;
532 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
533 	/* override the default, the setting comes from the linux driver */
534 	vap->iv_bmissthreshold = 24;
535 	/* override with driver methods */
536 	ivp->iwi_newstate = vap->iv_newstate;
537 	vap->iv_newstate = iwi_newstate;
538 
539 	/* complete setup */
540 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
541 	ic->ic_opmode = opmode;
542 	return vap;
543 }
544 
545 static void
546 iwi_vap_delete(struct ieee80211vap *vap)
547 {
548 	struct iwi_vap *ivp = IWI_VAP(vap);
549 
550 	ieee80211_vap_detach(vap);
551 	free(ivp, M_80211_VAP);
552 }
553 
554 static void
555 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
556 {
557 	if (error != 0)
558 		return;
559 
560 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
561 
562 	*(bus_addr_t *)arg = segs[0].ds_addr;
563 }
564 
565 static int
566 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
567 {
568 	int error;
569 
570 	ring->count = count;
571 	ring->queued = 0;
572 	ring->cur = ring->next = 0;
573 
574 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
575 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
576 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0,
577 	    NULL, NULL, &ring->desc_dmat);
578 	if (error != 0) {
579 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
580 		goto fail;
581 	}
582 
583 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
584 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
585 	if (error != 0) {
586 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
587 		goto fail;
588 	}
589 
590 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
591 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
592 	if (error != 0) {
593 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
594 		goto fail;
595 	}
596 
597 	return 0;
598 
599 fail:	iwi_free_cmd_ring(sc, ring);
600 	return error;
601 }
602 
603 static void
604 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
605 {
606 	ring->queued = 0;
607 	ring->cur = ring->next = 0;
608 }
609 
610 static void
611 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
612 {
613 	if (ring->desc != NULL) {
614 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
615 		    BUS_DMASYNC_POSTWRITE);
616 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
617 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
618 	}
619 
620 	if (ring->desc_dmat != NULL)
621 		bus_dma_tag_destroy(ring->desc_dmat);
622 }
623 
624 static int
625 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
626     bus_addr_t csr_ridx, bus_addr_t csr_widx)
627 {
628 	int i, error;
629 
630 	ring->count = count;
631 	ring->queued = 0;
632 	ring->cur = ring->next = 0;
633 	ring->csr_ridx = csr_ridx;
634 	ring->csr_widx = csr_widx;
635 
636 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
637 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
638 	    count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL,
639 	    NULL, &ring->desc_dmat);
640 	if (error != 0) {
641 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
642 		goto fail;
643 	}
644 
645 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
646 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
647 	if (error != 0) {
648 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
649 		goto fail;
650 	}
651 
652 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
653 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
654 	if (error != 0) {
655 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
656 		goto fail;
657 	}
658 
659 	ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
660 	    M_NOWAIT | M_ZERO);
661 	if (ring->data == NULL) {
662 		device_printf(sc->sc_dev, "could not allocate soft data\n");
663 		error = ENOMEM;
664 		goto fail;
665 	}
666 
667 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
668 	BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
669 	IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
670 	if (error != 0) {
671 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
672 		goto fail;
673 	}
674 
675 	for (i = 0; i < count; i++) {
676 		error = bus_dmamap_create(ring->data_dmat, 0,
677 		    &ring->data[i].map);
678 		if (error != 0) {
679 			device_printf(sc->sc_dev, "could not create DMA map\n");
680 			goto fail;
681 		}
682 	}
683 
684 	return 0;
685 
686 fail:	iwi_free_tx_ring(sc, ring);
687 	return error;
688 }
689 
690 static void
691 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
692 {
693 	struct iwi_tx_data *data;
694 	int i;
695 
696 	for (i = 0; i < ring->count; i++) {
697 		data = &ring->data[i];
698 
699 		if (data->m != NULL) {
700 			bus_dmamap_sync(ring->data_dmat, data->map,
701 			    BUS_DMASYNC_POSTWRITE);
702 			bus_dmamap_unload(ring->data_dmat, data->map);
703 			m_freem(data->m);
704 			data->m = NULL;
705 		}
706 
707 		if (data->ni != NULL) {
708 			ieee80211_free_node(data->ni);
709 			data->ni = NULL;
710 		}
711 	}
712 
713 	ring->queued = 0;
714 	ring->cur = ring->next = 0;
715 }
716 
717 static void
718 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
719 {
720 	struct iwi_tx_data *data;
721 	int i;
722 
723 	if (ring->desc != NULL) {
724 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
725 		    BUS_DMASYNC_POSTWRITE);
726 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
727 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
728 	}
729 
730 	if (ring->desc_dmat != NULL)
731 		bus_dma_tag_destroy(ring->desc_dmat);
732 
733 	if (ring->data != NULL) {
734 		for (i = 0; i < ring->count; i++) {
735 			data = &ring->data[i];
736 
737 			if (data->m != NULL) {
738 				bus_dmamap_sync(ring->data_dmat, data->map,
739 				    BUS_DMASYNC_POSTWRITE);
740 				bus_dmamap_unload(ring->data_dmat, data->map);
741 				m_freem(data->m);
742 			}
743 
744 			if (data->ni != NULL)
745 				ieee80211_free_node(data->ni);
746 
747 			if (data->map != NULL)
748 				bus_dmamap_destroy(ring->data_dmat, data->map);
749 		}
750 
751 		free(ring->data, M_DEVBUF);
752 	}
753 
754 	if (ring->data_dmat != NULL)
755 		bus_dma_tag_destroy(ring->data_dmat);
756 }
757 
758 static int
759 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
760 {
761 	struct iwi_rx_data *data;
762 	int i, error;
763 
764 	ring->count = count;
765 	ring->cur = 0;
766 
767 	ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
768 	    M_NOWAIT | M_ZERO);
769 	if (ring->data == NULL) {
770 		device_printf(sc->sc_dev, "could not allocate soft data\n");
771 		error = ENOMEM;
772 		goto fail;
773 	}
774 
775 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
776 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
777 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
778 	if (error != 0) {
779 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
780 		goto fail;
781 	}
782 
783 	for (i = 0; i < count; i++) {
784 		data = &ring->data[i];
785 
786 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
787 		if (error != 0) {
788 			device_printf(sc->sc_dev, "could not create DMA map\n");
789 			goto fail;
790 		}
791 
792 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
793 		if (data->m == NULL) {
794 			device_printf(sc->sc_dev,
795 			    "could not allocate rx mbuf\n");
796 			error = ENOMEM;
797 			goto fail;
798 		}
799 
800 		error = bus_dmamap_load(ring->data_dmat, data->map,
801 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
802 		    &data->physaddr, 0);
803 		if (error != 0) {
804 			device_printf(sc->sc_dev,
805 			    "could not load rx buf DMA map");
806 			goto fail;
807 		}
808 
809 		data->reg = IWI_CSR_RX_BASE + i * 4;
810 	}
811 
812 	return 0;
813 
814 fail:	iwi_free_rx_ring(sc, ring);
815 	return error;
816 }
817 
818 static void
819 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
820 {
821 	ring->cur = 0;
822 }
823 
824 static void
825 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
826 {
827 	struct iwi_rx_data *data;
828 	int i;
829 
830 	if (ring->data != NULL) {
831 		for (i = 0; i < ring->count; i++) {
832 			data = &ring->data[i];
833 
834 			if (data->m != NULL) {
835 				bus_dmamap_sync(ring->data_dmat, data->map,
836 				    BUS_DMASYNC_POSTREAD);
837 				bus_dmamap_unload(ring->data_dmat, data->map);
838 				m_freem(data->m);
839 			}
840 
841 			if (data->map != NULL)
842 				bus_dmamap_destroy(ring->data_dmat, data->map);
843 		}
844 
845 		free(ring->data, M_DEVBUF);
846 	}
847 
848 	if (ring->data_dmat != NULL)
849 		bus_dma_tag_destroy(ring->data_dmat);
850 }
851 
852 static int
853 iwi_shutdown(device_t dev)
854 {
855 	struct iwi_softc *sc = device_get_softc(dev);
856 
857 	iwi_stop(sc);
858 	iwi_put_firmware(sc);		/* ??? XXX */
859 
860 	return 0;
861 }
862 
863 static int
864 iwi_suspend(device_t dev)
865 {
866 	struct iwi_softc *sc = device_get_softc(dev);
867 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
868 
869 	ieee80211_suspend_all(ic);
870 	return 0;
871 }
872 
873 static int
874 iwi_resume(device_t dev)
875 {
876 	struct iwi_softc *sc = device_get_softc(dev);
877 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
878 
879 	pci_write_config(dev, 0x41, 0, 1);
880 
881 	ieee80211_resume_all(ic);
882 	return 0;
883 }
884 
885 static struct ieee80211_node *
886 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
887 {
888 	struct iwi_node *in;
889 
890 	in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
891 	if (in == NULL)
892 		return NULL;
893 	/* XXX assign sta table entry for adhoc */
894 	in->in_station = -1;
895 
896 	return &in->in_node;
897 }
898 
899 static void
900 iwi_node_free(struct ieee80211_node *ni)
901 {
902 	struct ieee80211com *ic = ni->ni_ic;
903 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
904 	struct iwi_node *in = (struct iwi_node *)ni;
905 
906 	if (in->in_station != -1) {
907 		DPRINTF(("%s mac %6D station %u\n", __func__,
908 		    ni->ni_macaddr, ":", in->in_station));
909 		free_unr(sc->sc_unr, in->in_station);
910 	}
911 
912 	sc->sc_node_free(ni);
913 }
914 
915 /*
916  * Convert h/w rate code to IEEE rate code.
917  */
918 static int
919 iwi_cvtrate(int iwirate)
920 {
921 	switch (iwirate) {
922 	case IWI_RATE_DS1:	return 2;
923 	case IWI_RATE_DS2:	return 4;
924 	case IWI_RATE_DS5:	return 11;
925 	case IWI_RATE_DS11:	return 22;
926 	case IWI_RATE_OFDM6:	return 12;
927 	case IWI_RATE_OFDM9:	return 18;
928 	case IWI_RATE_OFDM12:	return 24;
929 	case IWI_RATE_OFDM18:	return 36;
930 	case IWI_RATE_OFDM24:	return 48;
931 	case IWI_RATE_OFDM36:	return 72;
932 	case IWI_RATE_OFDM48:	return 96;
933 	case IWI_RATE_OFDM54:	return 108;
934 	}
935 	return 0;
936 }
937 
938 /*
939  * The firmware automatically adapts the transmit speed.  We report its current
940  * value here.
941  */
942 static void
943 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
944 {
945 	struct ieee80211vap *vap = ifp->if_softc;
946 	struct ieee80211com *ic = vap->iv_ic;
947 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
948 
949 	/* read current transmission rate from adapter */
950 	vap->iv_bss->ni_txrate =
951 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
952 	ieee80211_media_status(ifp, imr);
953 }
954 
955 static int
956 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
957 {
958 	struct iwi_vap *ivp = IWI_VAP(vap);
959 	struct ieee80211com *ic = vap->iv_ic;
960 	struct ifnet *ifp = ic->ic_ifp;
961 	struct iwi_softc *sc = ifp->if_softc;
962 	IWI_LOCK_DECL;
963 
964 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
965 		ieee80211_state_name[vap->iv_state],
966 		ieee80211_state_name[nstate], sc->flags));
967 
968 	IEEE80211_UNLOCK(ic);
969 	IWI_LOCK(sc);
970 	switch (nstate) {
971 	case IEEE80211_S_INIT:
972 		/*
973 		 * NB: don't try to do this if iwi_stop_master has
974 		 *     shutdown the firmware and disabled interrupts.
975 		 */
976 		if (vap->iv_state == IEEE80211_S_RUN &&
977 		    (sc->flags & IWI_FLAG_FW_INITED))
978 			iwi_disassociate(sc, 0);
979 		break;
980 	case IEEE80211_S_AUTH:
981 		iwi_auth_and_assoc(sc, vap);
982 		break;
983 	case IEEE80211_S_RUN:
984 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
985 		    vap->iv_state == IEEE80211_S_SCAN) {
986 			/*
987 			 * XXX when joining an ibss network we are called
988 			 * with a SCAN -> RUN transition on scan complete.
989 			 * Use that to call iwi_auth_and_assoc.  On completing
990 			 * the join we are then called again with an
991 			 * AUTH -> RUN transition and we want to do nothing.
992 			 * This is all totally bogus and needs to be redone.
993 			 */
994 			iwi_auth_and_assoc(sc, vap);
995 		} else if (vap->iv_opmode == IEEE80211_M_MONITOR)
996 			ieee80211_runtask(ic, &sc->sc_monitortask);
997 		break;
998 	case IEEE80211_S_ASSOC:
999 		/*
1000 		 * If we are transitioning from AUTH then just wait
1001 		 * for the ASSOC status to come back from the firmware.
1002 		 * Otherwise we need to issue the association request.
1003 		 */
1004 		if (vap->iv_state == IEEE80211_S_AUTH)
1005 			break;
1006 		iwi_auth_and_assoc(sc, vap);
1007 		break;
1008 	default:
1009 		break;
1010 	}
1011 	IWI_UNLOCK(sc);
1012 	IEEE80211_LOCK(ic);
1013 	return ivp->iwi_newstate(vap, nstate, arg);
1014 }
1015 
1016 /*
1017  * WME parameters coming from IEEE 802.11e specification.  These values are
1018  * already declared in ieee80211_proto.c, but they are static so they can't
1019  * be reused here.
1020  */
1021 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1022 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1023 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1024 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1025 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1026 };
1027 
1028 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1029 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1030 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1031 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1032 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1033 };
1034 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1035 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1036 
1037 static void
1038 iwi_wme_init(struct iwi_softc *sc)
1039 {
1040 	const struct wmeParams *wmep;
1041 	int ac;
1042 
1043 	memset(sc->wme, 0, sizeof sc->wme);
1044 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1045 		/* set WME values for CCK modulation */
1046 		wmep = &iwi_wme_cck_params[ac];
1047 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1048 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1049 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1050 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1051 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1052 
1053 		/* set WME values for OFDM modulation */
1054 		wmep = &iwi_wme_ofdm_params[ac];
1055 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1056 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1057 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1058 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1059 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1060 	}
1061 }
1062 
1063 static int
1064 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1065 {
1066 	const struct wmeParams *wmep;
1067 	int ac;
1068 
1069 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1070 		/* set WME values for current operating mode */
1071 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1072 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1073 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1074 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1075 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1076 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1077 	}
1078 
1079 	DPRINTF(("Setting WME parameters\n"));
1080 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1081 }
1082 #undef IWI_USEC
1083 #undef IWI_EXP2
1084 
1085 static void
1086 iwi_update_wme(void *arg, int npending)
1087 {
1088 	struct ieee80211com *ic = arg;
1089 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1090 	IWI_LOCK_DECL;
1091 
1092 	IWI_LOCK(sc);
1093 	(void) iwi_wme_setparams(sc, ic);
1094 	IWI_UNLOCK(sc);
1095 }
1096 
1097 static int
1098 iwi_wme_update(struct ieee80211com *ic)
1099 {
1100 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1101 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1102 
1103 	/*
1104 	 * We may be called to update the WME parameters in
1105 	 * the adapter at various places.  If we're already
1106 	 * associated then initiate the request immediately;
1107 	 * otherwise we assume the params will get sent down
1108 	 * to the adapter as part of the work iwi_auth_and_assoc
1109 	 * does.
1110 	 */
1111 	if (vap->iv_state == IEEE80211_S_RUN)
1112 		ieee80211_runtask(ic, &sc->sc_wmetask);
1113 	return (0);
1114 }
1115 
1116 static int
1117 iwi_wme_setie(struct iwi_softc *sc)
1118 {
1119 	struct ieee80211_wme_info wme;
1120 
1121 	memset(&wme, 0, sizeof wme);
1122 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1123 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1124 	wme.wme_oui[0] = 0x00;
1125 	wme.wme_oui[1] = 0x50;
1126 	wme.wme_oui[2] = 0xf2;
1127 	wme.wme_type = WME_OUI_TYPE;
1128 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1129 	wme.wme_version = WME_VERSION;
1130 	wme.wme_info = 0;
1131 
1132 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1133 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1134 }
1135 
1136 /*
1137  * Read 16 bits at address 'addr' from the serial EEPROM.
1138  */
1139 static uint16_t
1140 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1141 {
1142 	uint32_t tmp;
1143 	uint16_t val;
1144 	int n;
1145 
1146 	/* clock C once before the first command */
1147 	IWI_EEPROM_CTL(sc, 0);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1150 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1151 
1152 	/* write start bit (1) */
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1155 
1156 	/* write READ opcode (10) */
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1159 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1160 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1161 
1162 	/* write address A7-A0 */
1163 	for (n = 7; n >= 0; n--) {
1164 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1165 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1166 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1167 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1168 	}
1169 
1170 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1171 
1172 	/* read data Q15-Q0 */
1173 	val = 0;
1174 	for (n = 15; n >= 0; n--) {
1175 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1176 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1177 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1178 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1179 	}
1180 
1181 	IWI_EEPROM_CTL(sc, 0);
1182 
1183 	/* clear Chip Select and clock C */
1184 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1185 	IWI_EEPROM_CTL(sc, 0);
1186 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1187 
1188 	return val;
1189 }
1190 
1191 static void
1192 iwi_setcurchan(struct iwi_softc *sc, int chan)
1193 {
1194 	struct ifnet *ifp = sc->sc_ifp;
1195 	struct ieee80211com *ic = ifp->if_l2com;
1196 
1197 	sc->curchan = chan;
1198 	ieee80211_radiotap_chan_change(ic);
1199 }
1200 
1201 static void
1202 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1203     struct iwi_frame *frame)
1204 {
1205 	struct ifnet *ifp = sc->sc_ifp;
1206 	struct ieee80211com *ic = ifp->if_l2com;
1207 	struct mbuf *mnew, *m;
1208 	struct ieee80211_node *ni;
1209 	int type, error, framelen;
1210 	int8_t rssi, nf;
1211 	IWI_LOCK_DECL;
1212 
1213 	framelen = le16toh(frame->len);
1214 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1215 		/*
1216 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1217 		 *     out of bounds; need to figure out how to limit
1218 		 *     frame size in the firmware
1219 		 */
1220 		/* XXX stat */
1221 		DPRINTFN(1,
1222 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1223 		    le16toh(frame->len), frame->chan, frame->rssi,
1224 		    frame->rssi_dbm));
1225 		return;
1226 	}
1227 
1228 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1229 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1230 
1231 	if (frame->chan != sc->curchan)
1232 		iwi_setcurchan(sc, frame->chan);
1233 
1234 	/*
1235 	 * Try to allocate a new mbuf for this ring element and load it before
1236 	 * processing the current mbuf. If the ring element cannot be loaded,
1237 	 * drop the received packet and reuse the old mbuf. In the unlikely
1238 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1239 	 */
1240 	mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1241 	if (mnew == NULL) {
1242 		ifp->if_ierrors++;
1243 		return;
1244 	}
1245 
1246 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1247 
1248 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1249 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1250 	    0);
1251 	if (error != 0) {
1252 		m_freem(mnew);
1253 
1254 		/* try to reload the old mbuf */
1255 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1256 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1257 		    &data->physaddr, 0);
1258 		if (error != 0) {
1259 			/* very unlikely that it will fail... */
1260 			panic("%s: could not load old rx mbuf",
1261 			    device_get_name(sc->sc_dev));
1262 		}
1263 		ifp->if_ierrors++;
1264 		return;
1265 	}
1266 
1267 	/*
1268 	 * New mbuf successfully loaded, update Rx ring and continue
1269 	 * processing.
1270 	 */
1271 	m = data->m;
1272 	data->m = mnew;
1273 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1274 
1275 	/* finalize mbuf */
1276 	m->m_pkthdr.rcvif = ifp;
1277 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1278 	    sizeof (struct iwi_frame) + framelen;
1279 
1280 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1281 
1282 	rssi = frame->rssi_dbm;
1283 	nf = -95;
1284 	if (ieee80211_radiotap_active(ic)) {
1285 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1286 
1287 		tap->wr_flags = 0;
1288 		tap->wr_antsignal = rssi;
1289 		tap->wr_antnoise = nf;
1290 		tap->wr_rate = iwi_cvtrate(frame->rate);
1291 		tap->wr_antenna = frame->antenna;
1292 	}
1293 	IWI_UNLOCK(sc);
1294 
1295 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1296 	if (ni != NULL) {
1297 		type = ieee80211_input(ni, m, rssi, nf);
1298 		ieee80211_free_node(ni);
1299 	} else
1300 		type = ieee80211_input_all(ic, m, rssi, nf);
1301 
1302 	IWI_LOCK(sc);
1303 	if (sc->sc_softled) {
1304 		/*
1305 		 * Blink for any data frame.  Otherwise do a
1306 		 * heartbeat-style blink when idle.  The latter
1307 		 * is mainly for station mode where we depend on
1308 		 * periodic beacon frames to trigger the poll event.
1309 		 */
1310 		if (type == IEEE80211_FC0_TYPE_DATA) {
1311 			sc->sc_rxrate = frame->rate;
1312 			iwi_led_event(sc, IWI_LED_RX);
1313 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1314 			iwi_led_event(sc, IWI_LED_POLL);
1315 	}
1316 }
1317 
1318 /*
1319  * Check for an association response frame to see if QoS
1320  * has been negotiated.  We parse just enough to figure
1321  * out if we're supposed to use QoS.  The proper solution
1322  * is to pass the frame up so ieee80211_input can do the
1323  * work but that's made hard by how things currently are
1324  * done in the driver.
1325  */
1326 static void
1327 iwi_checkforqos(struct ieee80211vap *vap,
1328 	const struct ieee80211_frame *wh, int len)
1329 {
1330 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1331 	const uint8_t *frm, *efrm, *wme;
1332 	struct ieee80211_node *ni;
1333 	uint16_t capinfo, status, associd;
1334 
1335 	/* NB: +8 for capinfo, status, associd, and first ie */
1336 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1337 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1338 		return;
1339 	/*
1340 	 * asresp frame format
1341 	 *	[2] capability information
1342 	 *	[2] status
1343 	 *	[2] association ID
1344 	 *	[tlv] supported rates
1345 	 *	[tlv] extended supported rates
1346 	 *	[tlv] WME
1347 	 */
1348 	frm = (const uint8_t *)&wh[1];
1349 	efrm = ((const uint8_t *) wh) + len;
1350 
1351 	capinfo = le16toh(*(const uint16_t *)frm);
1352 	frm += 2;
1353 	status = le16toh(*(const uint16_t *)frm);
1354 	frm += 2;
1355 	associd = le16toh(*(const uint16_t *)frm);
1356 	frm += 2;
1357 
1358 	wme = NULL;
1359 	while (efrm - frm > 1) {
1360 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return);
1361 		switch (*frm) {
1362 		case IEEE80211_ELEMID_VENDOR:
1363 			if (iswmeoui(frm))
1364 				wme = frm;
1365 			break;
1366 		}
1367 		frm += frm[1] + 2;
1368 	}
1369 
1370 	ni = vap->iv_bss;
1371 	ni->ni_capinfo = capinfo;
1372 	ni->ni_associd = associd & 0x3fff;
1373 	if (wme != NULL)
1374 		ni->ni_flags |= IEEE80211_NODE_QOS;
1375 	else
1376 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1377 #undef SUBTYPE
1378 }
1379 
1380 /*
1381  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1382  */
1383 
1384 static void
1385 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1386 {
1387 	struct ifnet *ifp = sc->sc_ifp;
1388 	struct ieee80211com *ic = ifp->if_l2com;
1389 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1390 	struct iwi_notif_scan_channel *chan;
1391 	struct iwi_notif_scan_complete *scan;
1392 	struct iwi_notif_authentication *auth;
1393 	struct iwi_notif_association *assoc;
1394 	struct iwi_notif_beacon_state *beacon;
1395 
1396 	switch (notif->type) {
1397 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1398 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1399 
1400 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1401 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1402 
1403 		/* Reset the timer, the scan is still going */
1404 		sc->sc_state_timer = 3;
1405 		break;
1406 
1407 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1408 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1409 
1410 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1411 		    scan->status));
1412 
1413 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1414 
1415 		/*
1416 		 * Monitor mode works by doing a passive scan to set
1417 		 * the channel and enable rx.  Because we don't want
1418 		 * to abort a scan lest the firmware crash we scan
1419 		 * for a short period of time and automatically restart
1420 		 * the scan when notified the sweep has completed.
1421 		 */
1422 		if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1423 			ieee80211_runtask(ic, &sc->sc_monitortask);
1424 			break;
1425 		}
1426 
1427 		if (scan->status == IWI_SCAN_COMPLETED) {
1428 			/* NB: don't need to defer, net80211 does it for us */
1429 			ieee80211_scan_next(vap);
1430 		}
1431 		break;
1432 
1433 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1434 		auth = (struct iwi_notif_authentication *)(notif + 1);
1435 		switch (auth->state) {
1436 		case IWI_AUTH_SUCCESS:
1437 			DPRINTFN(2, ("Authentication succeeeded\n"));
1438 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1439 			break;
1440 		case IWI_AUTH_FAIL:
1441 			/*
1442 			 * These are delivered as an unsolicited deauth
1443 			 * (e.g. due to inactivity) or in response to an
1444 			 * associate request.
1445 			 */
1446 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1447 			if (vap->iv_state != IEEE80211_S_RUN) {
1448 				DPRINTFN(2, ("Authentication failed\n"));
1449 				vap->iv_stats.is_rx_auth_fail++;
1450 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1451 			} else {
1452 				DPRINTFN(2, ("Deauthenticated\n"));
1453 				vap->iv_stats.is_rx_deauth++;
1454 			}
1455 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1456 			break;
1457 		case IWI_AUTH_SENT_1:
1458 		case IWI_AUTH_RECV_2:
1459 		case IWI_AUTH_SEQ1_PASS:
1460 			break;
1461 		case IWI_AUTH_SEQ1_FAIL:
1462 			DPRINTFN(2, ("Initial authentication handshake failed; "
1463 				"you probably need shared key\n"));
1464 			vap->iv_stats.is_rx_auth_fail++;
1465 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1466 			/* XXX retry shared key when in auto */
1467 			break;
1468 		default:
1469 			device_printf(sc->sc_dev,
1470 			    "unknown authentication state %u\n", auth->state);
1471 			break;
1472 		}
1473 		break;
1474 
1475 	case IWI_NOTIF_TYPE_ASSOCIATION:
1476 		assoc = (struct iwi_notif_association *)(notif + 1);
1477 		switch (assoc->state) {
1478 		case IWI_AUTH_SUCCESS:
1479 			/* re-association, do nothing */
1480 			break;
1481 		case IWI_ASSOC_SUCCESS:
1482 			DPRINTFN(2, ("Association succeeded\n"));
1483 			sc->flags |= IWI_FLAG_ASSOCIATED;
1484 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1485 			iwi_checkforqos(vap,
1486 			    (const struct ieee80211_frame *)(assoc+1),
1487 			    le16toh(notif->len) - sizeof(*assoc) - 1);
1488 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1489 			break;
1490 		case IWI_ASSOC_INIT:
1491 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1492 			switch (sc->fw_state) {
1493 			case IWI_FW_ASSOCIATING:
1494 				DPRINTFN(2, ("Association failed\n"));
1495 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1496 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1497 				break;
1498 
1499 			case IWI_FW_DISASSOCIATING:
1500 				DPRINTFN(2, ("Dissassociated\n"));
1501 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1502 				vap->iv_stats.is_rx_disassoc++;
1503 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1504 				break;
1505 			}
1506 			break;
1507 		default:
1508 			device_printf(sc->sc_dev,
1509 			    "unknown association state %u\n", assoc->state);
1510 			break;
1511 		}
1512 		break;
1513 
1514 	case IWI_NOTIF_TYPE_BEACON:
1515 		/* XXX check struct length */
1516 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1517 
1518 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1519 		    beacon->state, le32toh(beacon->number)));
1520 
1521 		if (beacon->state == IWI_BEACON_MISS) {
1522 			/*
1523 			 * The firmware notifies us of every beacon miss
1524 			 * so we need to track the count against the
1525 			 * configured threshold before notifying the
1526 			 * 802.11 layer.
1527 			 * XXX try to roam, drop assoc only on much higher count
1528 			 */
1529 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1530 				DPRINTF(("Beacon miss: %u >= %u\n",
1531 				    le32toh(beacon->number),
1532 				    vap->iv_bmissthreshold));
1533 				vap->iv_stats.is_beacon_miss++;
1534 				/*
1535 				 * It's pointless to notify the 802.11 layer
1536 				 * as it'll try to send a probe request (which
1537 				 * we'll discard) and then timeout and drop us
1538 				 * into scan state.  Instead tell the firmware
1539 				 * to disassociate and then on completion we'll
1540 				 * kick the state machine to scan.
1541 				 */
1542 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1543 			}
1544 		}
1545 		break;
1546 
1547 	case IWI_NOTIF_TYPE_CALIBRATION:
1548 	case IWI_NOTIF_TYPE_NOISE:
1549 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1550 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1551 		break;
1552 
1553 	default:
1554 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1555 		    notif->type, notif->flags, le16toh(notif->len)));
1556 		break;
1557 	}
1558 }
1559 
1560 static void
1561 iwi_rx_intr(struct iwi_softc *sc)
1562 {
1563 	struct iwi_rx_data *data;
1564 	struct iwi_hdr *hdr;
1565 	uint32_t hw;
1566 
1567 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1568 
1569 	for (; sc->rxq.cur != hw;) {
1570 		data = &sc->rxq.data[sc->rxq.cur];
1571 
1572 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1573 		    BUS_DMASYNC_POSTREAD);
1574 
1575 		hdr = mtod(data->m, struct iwi_hdr *);
1576 
1577 		switch (hdr->type) {
1578 		case IWI_HDR_TYPE_FRAME:
1579 			iwi_frame_intr(sc, data, sc->rxq.cur,
1580 			    (struct iwi_frame *)(hdr + 1));
1581 			break;
1582 
1583 		case IWI_HDR_TYPE_NOTIF:
1584 			iwi_notification_intr(sc,
1585 			    (struct iwi_notif *)(hdr + 1));
1586 			break;
1587 
1588 		default:
1589 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1590 			    hdr->type);
1591 		}
1592 
1593 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1594 
1595 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1596 	}
1597 
1598 	/* tell the firmware what we have processed */
1599 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1600 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1601 }
1602 
1603 static void
1604 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1605 {
1606 	struct ifnet *ifp = sc->sc_ifp;
1607 	struct iwi_tx_data *data;
1608 	uint32_t hw;
1609 
1610 	hw = CSR_READ_4(sc, txq->csr_ridx);
1611 
1612 	for (; txq->next != hw;) {
1613 		data = &txq->data[txq->next];
1614 
1615 		bus_dmamap_sync(txq->data_dmat, data->map,
1616 		    BUS_DMASYNC_POSTWRITE);
1617 		bus_dmamap_unload(txq->data_dmat, data->map);
1618 		if (data->m->m_flags & M_TXCB)
1619 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1620 		m_freem(data->m);
1621 		data->m = NULL;
1622 		ieee80211_free_node(data->ni);
1623 		data->ni = NULL;
1624 
1625 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1626 
1627 		ifp->if_opackets++;
1628 
1629 		txq->queued--;
1630 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1631 	}
1632 
1633 	sc->sc_tx_timer = 0;
1634 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1635 
1636 	if (sc->sc_softled)
1637 		iwi_led_event(sc, IWI_LED_TX);
1638 
1639 	iwi_start_locked(ifp);
1640 }
1641 
1642 static void
1643 iwi_fatal_error_intr(struct iwi_softc *sc)
1644 {
1645 	struct ifnet *ifp = sc->sc_ifp;
1646 	struct ieee80211com *ic = ifp->if_l2com;
1647 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1648 
1649 	device_printf(sc->sc_dev, "firmware error\n");
1650 	if (vap != NULL)
1651 		ieee80211_cancel_scan(vap);
1652 	ieee80211_runtask(ic, &sc->sc_restarttask);
1653 
1654 	sc->flags &= ~IWI_FLAG_BUSY;
1655 	sc->sc_busy_timer = 0;
1656 	wakeup(sc);
1657 }
1658 
1659 static void
1660 iwi_radio_off_intr(struct iwi_softc *sc)
1661 {
1662 	struct ifnet *ifp = sc->sc_ifp;
1663 	struct ieee80211com *ic = ifp->if_l2com;
1664 
1665 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1666 }
1667 
1668 static void
1669 iwi_intr(void *arg)
1670 {
1671 	struct iwi_softc *sc = arg;
1672 	uint32_t r;
1673 	IWI_LOCK_DECL;
1674 
1675 	IWI_LOCK(sc);
1676 
1677 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1678 		IWI_UNLOCK(sc);
1679 		return;
1680 	}
1681 
1682 	/* acknowledge interrupts */
1683 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1684 
1685 	if (r & IWI_INTR_FATAL_ERROR) {
1686 		iwi_fatal_error_intr(sc);
1687 		goto done;
1688 	}
1689 
1690 	if (r & IWI_INTR_FW_INITED) {
1691 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1692 			wakeup(sc);
1693 	}
1694 
1695 	if (r & IWI_INTR_RADIO_OFF)
1696 		iwi_radio_off_intr(sc);
1697 
1698 	if (r & IWI_INTR_CMD_DONE) {
1699 		sc->flags &= ~IWI_FLAG_BUSY;
1700 		sc->sc_busy_timer = 0;
1701 		wakeup(sc);
1702 	}
1703 
1704 	if (r & IWI_INTR_TX1_DONE)
1705 		iwi_tx_intr(sc, &sc->txq[0]);
1706 
1707 	if (r & IWI_INTR_TX2_DONE)
1708 		iwi_tx_intr(sc, &sc->txq[1]);
1709 
1710 	if (r & IWI_INTR_TX3_DONE)
1711 		iwi_tx_intr(sc, &sc->txq[2]);
1712 
1713 	if (r & IWI_INTR_TX4_DONE)
1714 		iwi_tx_intr(sc, &sc->txq[3]);
1715 
1716 	if (r & IWI_INTR_RX_DONE)
1717 		iwi_rx_intr(sc);
1718 
1719 	if (r & IWI_INTR_PARITY_ERROR) {
1720 		/* XXX rate-limit */
1721 		device_printf(sc->sc_dev, "parity error\n");
1722 	}
1723 done:
1724 	IWI_UNLOCK(sc);
1725 }
1726 
1727 static int
1728 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1729 {
1730 	struct iwi_cmd_desc *desc;
1731 
1732 	IWI_LOCK_ASSERT(sc);
1733 
1734 	if (sc->flags & IWI_FLAG_BUSY) {
1735 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1736 			__func__, type);
1737 		return EAGAIN;
1738 	}
1739 	sc->flags |= IWI_FLAG_BUSY;
1740 	sc->sc_busy_timer = 2;
1741 
1742 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1743 
1744 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1745 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1746 	desc->type = type;
1747 	desc->len = len;
1748 	memcpy(desc->data, data, len);
1749 
1750 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1751 	    BUS_DMASYNC_PREWRITE);
1752 
1753 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1754 	    type, len));
1755 
1756 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1757 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1758 
1759 	return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz);
1760 }
1761 
1762 static void
1763 iwi_write_ibssnode(struct iwi_softc *sc,
1764 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1765 {
1766 	struct iwi_ibssnode node;
1767 
1768 	/* write node information into NIC memory */
1769 	memset(&node, 0, sizeof node);
1770 	IEEE80211_ADDR_COPY(node.bssid, addr);
1771 
1772 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1773 
1774 	CSR_WRITE_REGION_1(sc,
1775 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1776 	    (uint8_t *)&node, sizeof node);
1777 }
1778 
1779 static int
1780 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1781     int ac)
1782 {
1783 	struct iwi_softc *sc = ifp->if_softc;
1784 	struct ieee80211vap *vap = ni->ni_vap;
1785 	struct ieee80211com *ic = ni->ni_ic;
1786 	struct iwi_node *in = (struct iwi_node *)ni;
1787 	const struct ieee80211_frame *wh;
1788 	struct ieee80211_key *k;
1789 	const struct chanAccParams *cap;
1790 	struct iwi_tx_ring *txq = &sc->txq[ac];
1791 	struct iwi_tx_data *data;
1792 	struct iwi_tx_desc *desc;
1793 	struct mbuf *mnew;
1794 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1795 	int error, nsegs, hdrlen, i;
1796 	int ismcast, flags, xflags, staid;
1797 
1798 	IWI_LOCK_ASSERT(sc);
1799 	wh = mtod(m0, const struct ieee80211_frame *);
1800 	/* NB: only data frames use this path */
1801 	hdrlen = ieee80211_hdrsize(wh);
1802 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1803 	flags = xflags = 0;
1804 
1805 	if (!ismcast)
1806 		flags |= IWI_DATA_FLAG_NEED_ACK;
1807 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1808 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1809 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1810 		xflags |= IWI_DATA_XFLAG_QOS;
1811 		cap = &ic->ic_wme.wme_chanParams;
1812 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1813 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1814 	}
1815 
1816 	/*
1817 	 * This is only used in IBSS mode where the firmware expect an index
1818 	 * in a h/w table instead of a destination address.
1819 	 */
1820 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1821 		if (!ismcast) {
1822 			if (in->in_station == -1) {
1823 				in->in_station = alloc_unr(sc->sc_unr);
1824 				if (in->in_station == -1) {
1825 					/* h/w table is full */
1826 					m_freem(m0);
1827 					ieee80211_free_node(ni);
1828 					ifp->if_oerrors++;
1829 					return 0;
1830 				}
1831 				iwi_write_ibssnode(sc,
1832 					ni->ni_macaddr, in->in_station);
1833 			}
1834 			staid = in->in_station;
1835 		} else {
1836 			/*
1837 			 * Multicast addresses have no associated node
1838 			 * so there will be no station entry.  We reserve
1839 			 * entry 0 for one mcast address and use that.
1840 			 * If there are many being used this will be
1841 			 * expensive and we'll need to do a better job
1842 			 * but for now this handles the broadcast case.
1843 			 */
1844 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1845 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1846 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1847 			}
1848 			staid = 0;
1849 		}
1850 	} else
1851 		staid = 0;
1852 
1853 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1854 		k = ieee80211_crypto_encap(ni, m0);
1855 		if (k == NULL) {
1856 			m_freem(m0);
1857 			return ENOBUFS;
1858 		}
1859 
1860 		/* packet header may have moved, reset our local pointer */
1861 		wh = mtod(m0, struct ieee80211_frame *);
1862 	}
1863 
1864 	if (ieee80211_radiotap_active_vap(vap)) {
1865 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1866 
1867 		tap->wt_flags = 0;
1868 
1869 		ieee80211_radiotap_tx(vap, m0);
1870 	}
1871 
1872 	data = &txq->data[txq->cur];
1873 	desc = &txq->desc[txq->cur];
1874 
1875 	/* save and trim IEEE802.11 header */
1876 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1877 	m_adj(m0, hdrlen);
1878 
1879 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1880 	    &nsegs, 0);
1881 	if (error != 0 && error != EFBIG) {
1882 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1883 		    error);
1884 		m_freem(m0);
1885 		return error;
1886 	}
1887 	if (error != 0) {
1888 		mnew = m_defrag(m0, M_NOWAIT);
1889 		if (mnew == NULL) {
1890 			device_printf(sc->sc_dev,
1891 			    "could not defragment mbuf\n");
1892 			m_freem(m0);
1893 			return ENOBUFS;
1894 		}
1895 		m0 = mnew;
1896 
1897 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map,
1898 		    m0, segs, &nsegs, 0);
1899 		if (error != 0) {
1900 			device_printf(sc->sc_dev,
1901 			    "could not map mbuf (error %d)\n", error);
1902 			m_freem(m0);
1903 			return error;
1904 		}
1905 	}
1906 
1907 	data->m = m0;
1908 	data->ni = ni;
1909 
1910 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1911 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1912 	desc->station = staid;
1913 	desc->cmd = IWI_DATA_CMD_TX;
1914 	desc->len = htole16(m0->m_pkthdr.len);
1915 	desc->flags = flags;
1916 	desc->xflags = xflags;
1917 
1918 #if 0
1919 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1920 		desc->wep_txkey = vap->iv_def_txkey;
1921 	else
1922 #endif
1923 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1924 
1925 	desc->nseg = htole32(nsegs);
1926 	for (i = 0; i < nsegs; i++) {
1927 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1928 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1929 	}
1930 
1931 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1932 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1933 
1934 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1935 	    ac, txq->cur, le16toh(desc->len), nsegs));
1936 
1937 	txq->queued++;
1938 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1939 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1940 
1941 	return 0;
1942 }
1943 
1944 static int
1945 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1946 	const struct ieee80211_bpf_params *params)
1947 {
1948 	/* no support; just discard */
1949 	m_freem(m);
1950 	ieee80211_free_node(ni);
1951 	return 0;
1952 }
1953 
1954 static void
1955 iwi_start_locked(struct ifnet *ifp)
1956 {
1957 	struct iwi_softc *sc = ifp->if_softc;
1958 	struct mbuf *m;
1959 	struct ieee80211_node *ni;
1960 	int ac;
1961 
1962 	IWI_LOCK_ASSERT(sc);
1963 
1964 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1965 		return;
1966 
1967 	for (;;) {
1968 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1969 		if (m == NULL)
1970 			break;
1971 		ac = M_WME_GETAC(m);
1972 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1973 			/* there is no place left in this ring; tail drop */
1974 			/* XXX tail drop */
1975 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1976 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1977 			break;
1978 		}
1979 
1980 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1981 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1982 			ieee80211_free_node(ni);
1983 			ifp->if_oerrors++;
1984 			break;
1985 		}
1986 
1987 		sc->sc_tx_timer = 5;
1988 	}
1989 }
1990 
1991 static void
1992 iwi_start(struct ifnet *ifp)
1993 {
1994 	struct iwi_softc *sc = ifp->if_softc;
1995 	IWI_LOCK_DECL;
1996 
1997 	IWI_LOCK(sc);
1998 	iwi_start_locked(ifp);
1999 	IWI_UNLOCK(sc);
2000 }
2001 
2002 static void
2003 iwi_watchdog(void *arg)
2004 {
2005 	struct iwi_softc *sc = arg;
2006 	struct ifnet *ifp = sc->sc_ifp;
2007 	struct ieee80211com *ic = ifp->if_l2com;
2008 
2009 	IWI_LOCK_ASSERT(sc);
2010 
2011 	if (sc->sc_tx_timer > 0) {
2012 		if (--sc->sc_tx_timer == 0) {
2013 			if_printf(ifp, "device timeout\n");
2014 			ifp->if_oerrors++;
2015 			ieee80211_runtask(ic, &sc->sc_restarttask);
2016 		}
2017 	}
2018 	if (sc->sc_state_timer > 0) {
2019 		if (--sc->sc_state_timer == 0) {
2020 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
2021 			    sc->fw_state);
2022 			if (sc->fw_state == IWI_FW_SCANNING) {
2023 				struct ieee80211com *ic = ifp->if_l2com;
2024 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2025 			}
2026 			ieee80211_runtask(ic, &sc->sc_restarttask);
2027 			sc->sc_state_timer = 3;
2028 		}
2029 	}
2030 	if (sc->sc_busy_timer > 0) {
2031 		if (--sc->sc_busy_timer == 0) {
2032 			if_printf(ifp, "firmware command timeout, resetting\n");
2033 			ieee80211_runtask(ic, &sc->sc_restarttask);
2034 		}
2035 	}
2036 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
2037 }
2038 
2039 static int
2040 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2041 {
2042 	struct iwi_softc *sc = ifp->if_softc;
2043 	struct ieee80211com *ic = ifp->if_l2com;
2044 	struct ifreq *ifr = (struct ifreq *) data;
2045 	int error = 0, startall = 0;
2046 	IWI_LOCK_DECL;
2047 
2048 	switch (cmd) {
2049 	case SIOCSIFFLAGS:
2050 		IWI_LOCK(sc);
2051 		if (ifp->if_flags & IFF_UP) {
2052 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2053 				iwi_init_locked(sc);
2054 				startall = 1;
2055 			}
2056 		} else {
2057 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2058 				iwi_stop_locked(sc);
2059 		}
2060 		IWI_UNLOCK(sc);
2061 		if (startall)
2062 			ieee80211_start_all(ic);
2063 		break;
2064 	case SIOCGIFMEDIA:
2065 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2066 		break;
2067 	case SIOCGIFADDR:
2068 		error = ether_ioctl(ifp, cmd, data);
2069 		break;
2070 	default:
2071 		error = EINVAL;
2072 		break;
2073 	}
2074 	return error;
2075 }
2076 
2077 static void
2078 iwi_stop_master(struct iwi_softc *sc)
2079 {
2080 	uint32_t tmp;
2081 	int ntries;
2082 
2083 	/* disable interrupts */
2084 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2085 
2086 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2087 	for (ntries = 0; ntries < 5; ntries++) {
2088 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2089 			break;
2090 		DELAY(10);
2091 	}
2092 	if (ntries == 5)
2093 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2094 
2095 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2096 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2097 
2098 	sc->flags &= ~IWI_FLAG_FW_INITED;
2099 }
2100 
2101 static int
2102 iwi_reset(struct iwi_softc *sc)
2103 {
2104 	uint32_t tmp;
2105 	int i, ntries;
2106 
2107 	iwi_stop_master(sc);
2108 
2109 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2110 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2111 
2112 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2113 
2114 	/* wait for clock stabilization */
2115 	for (ntries = 0; ntries < 1000; ntries++) {
2116 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2117 			break;
2118 		DELAY(200);
2119 	}
2120 	if (ntries == 1000) {
2121 		device_printf(sc->sc_dev,
2122 		    "timeout waiting for clock stabilization\n");
2123 		return EIO;
2124 	}
2125 
2126 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2127 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2128 
2129 	DELAY(10);
2130 
2131 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2132 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2133 
2134 	/* clear NIC memory */
2135 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2136 	for (i = 0; i < 0xc000; i++)
2137 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2138 
2139 	return 0;
2140 }
2141 
2142 static const struct iwi_firmware_ohdr *
2143 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2144 {
2145 	const struct firmware *fp = fw->fp;
2146 	const struct iwi_firmware_ohdr *hdr;
2147 
2148 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2149 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2150 		return NULL;
2151 	}
2152 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2153 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2154 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2155 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2156 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2157 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2158 		    IWI_FW_REQ_MINOR);
2159 		return NULL;
2160 	}
2161 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2162 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2163 	fw->name = fp->name;
2164 	return hdr;
2165 }
2166 
2167 static const struct iwi_firmware_ohdr *
2168 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2169 {
2170 	const struct iwi_firmware_ohdr *hdr;
2171 
2172 	hdr = iwi_setup_ofw(sc, fw);
2173 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2174 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2175 		    fw->name);
2176 		hdr = NULL;
2177 	}
2178 	return hdr;
2179 }
2180 
2181 static void
2182 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2183 	  struct iwi_fw *uc, const char *ucname)
2184 {
2185 	if (fw->fp == NULL)
2186 		fw->fp = firmware_get(fwname);
2187 	/* NB: pre-3.0 ucode is packaged separately */
2188 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2189 		uc->fp = firmware_get(ucname);
2190 }
2191 
2192 /*
2193  * Get the required firmware images if not already loaded.
2194  * Note that we hold firmware images so long as the device
2195  * is marked up in case we need to reload them on device init.
2196  * This is necessary because we re-init the device sometimes
2197  * from a context where we cannot read from the filesystem
2198  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2199  * XXX return 0 on success, 1 on error.
2200  *
2201  * NB: the order of get'ing and put'ing images here is
2202  * intentional to support handling firmware images bundled
2203  * by operating mode and/or all together in one file with
2204  * the boot firmware as "master".
2205  */
2206 static int
2207 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2208 {
2209 	const struct iwi_firmware_hdr *hdr;
2210 	const struct firmware *fp;
2211 
2212 	/* invalidate cached firmware on mode change */
2213 	if (sc->fw_mode != opmode)
2214 		iwi_put_firmware(sc);
2215 
2216 	switch (opmode) {
2217 	case IEEE80211_M_STA:
2218 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2219 		break;
2220 	case IEEE80211_M_IBSS:
2221 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2222 		break;
2223 	case IEEE80211_M_MONITOR:
2224 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2225 			  &sc->fw_uc, "iwi_ucode_monitor");
2226 		break;
2227 	default:
2228 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2229 		return EINVAL;
2230 	}
2231 	fp = sc->fw_fw.fp;
2232 	if (fp == NULL) {
2233 		device_printf(sc->sc_dev, "could not load firmware\n");
2234 		goto bad;
2235 	}
2236 	if (fp->version < 300) {
2237 		/*
2238 		 * Firmware prior to 3.0 was packaged as separate
2239 		 * boot, firmware, and ucode images.  Verify the
2240 		 * ucode image was read in, retrieve the boot image
2241 		 * if needed, and check version stamps for consistency.
2242 		 * The version stamps in the data are also checked
2243 		 * above; this is a bit paranoid but is a cheap
2244 		 * safeguard against mis-packaging.
2245 		 */
2246 		if (sc->fw_uc.fp == NULL) {
2247 			device_printf(sc->sc_dev, "could not load ucode\n");
2248 			goto bad;
2249 		}
2250 		if (sc->fw_boot.fp == NULL) {
2251 			sc->fw_boot.fp = firmware_get("iwi_boot");
2252 			if (sc->fw_boot.fp == NULL) {
2253 				device_printf(sc->sc_dev,
2254 					"could not load boot firmware\n");
2255 				goto bad;
2256 			}
2257 		}
2258 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2259 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2260 			device_printf(sc->sc_dev,
2261 			    "firmware version mismatch: "
2262 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2263 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2264 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2265 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2266 			);
2267 			goto bad;
2268 		}
2269 		/*
2270 		 * Check and setup each image.
2271 		 */
2272 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2273 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2274 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2275 			goto bad;
2276 	} else {
2277 		/*
2278 		 * Check and setup combined image.
2279 		 */
2280 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2281 			device_printf(sc->sc_dev, "image '%s' too small\n",
2282 			    fp->name);
2283 			goto bad;
2284 		}
2285 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2286 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2287 				+ le32toh(hdr->fsize)) {
2288 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2289 			    fp->name);
2290 			goto bad;
2291 		}
2292 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2293 		sc->fw_boot.size = le32toh(hdr->bsize);
2294 		sc->fw_boot.name = fp->name;
2295 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2296 		sc->fw_uc.size = le32toh(hdr->usize);
2297 		sc->fw_uc.name = fp->name;
2298 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2299 		sc->fw_fw.size = le32toh(hdr->fsize);
2300 		sc->fw_fw.name = fp->name;
2301 	}
2302 #if 0
2303 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2304 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2305 #endif
2306 
2307 	sc->fw_mode = opmode;
2308 	return 0;
2309 bad:
2310 	iwi_put_firmware(sc);
2311 	return 1;
2312 }
2313 
2314 static void
2315 iwi_put_fw(struct iwi_fw *fw)
2316 {
2317 	if (fw->fp != NULL) {
2318 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2319 		fw->fp = NULL;
2320 	}
2321 	fw->data = NULL;
2322 	fw->size = 0;
2323 	fw->name = NULL;
2324 }
2325 
2326 /*
2327  * Release any cached firmware images.
2328  */
2329 static void
2330 iwi_put_firmware(struct iwi_softc *sc)
2331 {
2332 	iwi_put_fw(&sc->fw_uc);
2333 	iwi_put_fw(&sc->fw_fw);
2334 	iwi_put_fw(&sc->fw_boot);
2335 }
2336 
2337 static int
2338 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2339 {
2340 	uint32_t tmp;
2341 	const uint16_t *w;
2342 	const char *uc = fw->data;
2343 	size_t size = fw->size;
2344 	int i, ntries, error;
2345 
2346 	IWI_LOCK_ASSERT(sc);
2347 	error = 0;
2348 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2349 	    IWI_RST_STOP_MASTER);
2350 	for (ntries = 0; ntries < 5; ntries++) {
2351 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2352 			break;
2353 		DELAY(10);
2354 	}
2355 	if (ntries == 5) {
2356 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2357 		error = EIO;
2358 		goto fail;
2359 	}
2360 
2361 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2362 	DELAY(5000);
2363 
2364 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2365 	tmp &= ~IWI_RST_PRINCETON_RESET;
2366 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2367 
2368 	DELAY(5000);
2369 	MEM_WRITE_4(sc, 0x3000e0, 0);
2370 	DELAY(1000);
2371 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2372 	DELAY(1000);
2373 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2374 	DELAY(1000);
2375 	MEM_WRITE_1(sc, 0x200000, 0x00);
2376 	MEM_WRITE_1(sc, 0x200000, 0x40);
2377 	DELAY(1000);
2378 
2379 	/* write microcode into adapter memory */
2380 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2381 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2382 
2383 	MEM_WRITE_1(sc, 0x200000, 0x00);
2384 	MEM_WRITE_1(sc, 0x200000, 0x80);
2385 
2386 	/* wait until we get an answer */
2387 	for (ntries = 0; ntries < 100; ntries++) {
2388 		if (MEM_READ_1(sc, 0x200000) & 1)
2389 			break;
2390 		DELAY(100);
2391 	}
2392 	if (ntries == 100) {
2393 		device_printf(sc->sc_dev,
2394 		    "timeout waiting for ucode to initialize\n");
2395 		error = EIO;
2396 		goto fail;
2397 	}
2398 
2399 	/* read the answer or the firmware will not initialize properly */
2400 	for (i = 0; i < 7; i++)
2401 		MEM_READ_4(sc, 0x200004);
2402 
2403 	MEM_WRITE_1(sc, 0x200000, 0x00);
2404 
2405 fail:
2406 	return error;
2407 }
2408 
2409 /* macro to handle unaligned little endian data in firmware image */
2410 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2411 
2412 static int
2413 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2414 {
2415 	u_char *p, *end;
2416 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2417 	int ntries, error;
2418 
2419 	IWI_LOCK_ASSERT(sc);
2420 
2421 	/* copy firmware image to DMA memory */
2422 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2423 
2424 	/* make sure the adapter will get up-to-date values */
2425 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2426 
2427 	/* tell the adapter where the command blocks are stored */
2428 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2429 
2430 	/*
2431 	 * Store command blocks into adapter's internal memory using register
2432 	 * indirections. The adapter will read the firmware image through DMA
2433 	 * using information stored in command blocks.
2434 	 */
2435 	src = sc->fw_physaddr;
2436 	p = sc->fw_virtaddr;
2437 	end = p + fw->size;
2438 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2439 
2440 	while (p < end) {
2441 		dst = GETLE32(p); p += 4; src += 4;
2442 		len = GETLE32(p); p += 4; src += 4;
2443 		p += len;
2444 
2445 		while (len > 0) {
2446 			mlen = min(len, IWI_CB_MAXDATALEN);
2447 
2448 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2449 			sum = ctl ^ src ^ dst;
2450 
2451 			/* write a command block */
2452 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2453 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2454 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2455 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2456 
2457 			src += mlen;
2458 			dst += mlen;
2459 			len -= mlen;
2460 		}
2461 	}
2462 
2463 	/* write a fictive final command block (sentinel) */
2464 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2465 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2466 
2467 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2468 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2469 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2470 
2471 	/* tell the adapter to start processing command blocks */
2472 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2473 
2474 	/* wait until the adapter reaches the sentinel */
2475 	for (ntries = 0; ntries < 400; ntries++) {
2476 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2477 			break;
2478 		DELAY(100);
2479 	}
2480 	/* sync dma, just in case */
2481 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2482 	if (ntries == 400) {
2483 		device_printf(sc->sc_dev,
2484 		    "timeout processing command blocks for %s firmware\n",
2485 		    fw->name);
2486 		return EIO;
2487 	}
2488 
2489 	/* we're done with command blocks processing */
2490 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2491 
2492 	/* allow interrupts so we know when the firmware is ready */
2493 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2494 
2495 	/* tell the adapter to initialize the firmware */
2496 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2497 
2498 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2499 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2500 
2501 	/* wait at most one second for firmware initialization to complete */
2502 	if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) {
2503 		device_printf(sc->sc_dev, "timeout waiting for %s firmware "
2504 		    "initialization to complete\n", fw->name);
2505 	}
2506 
2507 	return error;
2508 }
2509 
2510 static int
2511 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2512 {
2513 	uint32_t data;
2514 
2515 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2516 		/* XXX set more fine-grained operation */
2517 		data = htole32(IWI_POWER_MODE_MAX);
2518 	} else
2519 		data = htole32(IWI_POWER_MODE_CAM);
2520 
2521 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2522 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2523 }
2524 
2525 static int
2526 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2527 {
2528 	struct iwi_wep_key wepkey;
2529 	struct ieee80211_key *wk;
2530 	int error, i;
2531 
2532 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2533 		wk = &vap->iv_nw_keys[i];
2534 
2535 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2536 		wepkey.idx = i;
2537 		wepkey.len = wk->wk_keylen;
2538 		memset(wepkey.key, 0, sizeof wepkey.key);
2539 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2540 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2541 		    wepkey.len));
2542 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2543 		    sizeof wepkey);
2544 		if (error != 0)
2545 			return error;
2546 	}
2547 	return 0;
2548 }
2549 
2550 static int
2551 iwi_config(struct iwi_softc *sc)
2552 {
2553 	struct ifnet *ifp = sc->sc_ifp;
2554 	struct ieee80211com *ic = ifp->if_l2com;
2555 	struct iwi_configuration config;
2556 	struct iwi_rateset rs;
2557 	struct iwi_txpower power;
2558 	uint32_t data;
2559 	int error, i;
2560 
2561 	IWI_LOCK_ASSERT(sc);
2562 
2563 	DPRINTF(("Setting MAC address to %6D\n", IF_LLADDR(ifp), ":"));
2564 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2565 	    IEEE80211_ADDR_LEN);
2566 	if (error != 0)
2567 		return error;
2568 
2569 	memset(&config, 0, sizeof config);
2570 	config.bluetooth_coexistence = sc->bluetooth;
2571 	config.silence_threshold = 0x1e;
2572 	config.antenna = sc->antenna;
2573 	config.multicast_enabled = 1;
2574 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2575 	config.disable_unicast_decryption = 1;
2576 	config.disable_multicast_decryption = 1;
2577 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2578 		config.allow_invalid_frames = 1;
2579 		config.allow_beacon_and_probe_resp = 1;
2580 		config.allow_mgt = 1;
2581 	}
2582 	DPRINTF(("Configuring adapter\n"));
2583 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2584 	if (error != 0)
2585 		return error;
2586 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2587 		power.mode = IWI_MODE_11B;
2588 		power.nchan = 11;
2589 		for (i = 0; i < 11; i++) {
2590 			power.chan[i].chan = i + 1;
2591 			power.chan[i].power = IWI_TXPOWER_MAX;
2592 		}
2593 		DPRINTF(("Setting .11b channels tx power\n"));
2594 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2595 		if (error != 0)
2596 			return error;
2597 
2598 		power.mode = IWI_MODE_11G;
2599 		DPRINTF(("Setting .11g channels tx power\n"));
2600 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2601 		if (error != 0)
2602 			return error;
2603 	}
2604 
2605 	memset(&rs, 0, sizeof rs);
2606 	rs.mode = IWI_MODE_11G;
2607 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2608 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2609 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2610 	    rs.nrates);
2611 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2612 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2613 	if (error != 0)
2614 		return error;
2615 
2616 	memset(&rs, 0, sizeof rs);
2617 	rs.mode = IWI_MODE_11A;
2618 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2619 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2620 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2621 	    rs.nrates);
2622 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2623 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2624 	if (error != 0)
2625 		return error;
2626 
2627 	data = htole32(arc4random());
2628 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2629 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2630 	if (error != 0)
2631 		return error;
2632 
2633 	/* enable adapter */
2634 	DPRINTF(("Enabling adapter\n"));
2635 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2636 }
2637 
2638 static __inline void
2639 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2640 {
2641 	uint8_t *st = &scan->scan_type[ix / 2];
2642 	if (ix % 2)
2643 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2644 	else
2645 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2646 }
2647 
2648 static int
2649 scan_type(const struct ieee80211_scan_state *ss,
2650 	const struct ieee80211_channel *chan)
2651 {
2652 	/* We can only set one essid for a directed scan */
2653 	if (ss->ss_nssid != 0)
2654 		return IWI_SCAN_TYPE_BDIRECTED;
2655 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2656 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2657 		return IWI_SCAN_TYPE_BROADCAST;
2658 	return IWI_SCAN_TYPE_PASSIVE;
2659 }
2660 
2661 static __inline int
2662 scan_band(const struct ieee80211_channel *c)
2663 {
2664 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2665 }
2666 
2667 static void
2668 iwi_monitor_scan(void *arg, int npending)
2669 {
2670 	struct iwi_softc *sc = arg;
2671 	IWI_LOCK_DECL;
2672 
2673 	IWI_LOCK(sc);
2674 	(void) iwi_scanchan(sc, 2000, 0);
2675 	IWI_UNLOCK(sc);
2676 }
2677 
2678 /*
2679  * Start a scan on the current channel or all channels.
2680  */
2681 static int
2682 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2683 {
2684 	struct ieee80211com *ic;
2685 	struct ieee80211_channel *chan;
2686 	struct ieee80211_scan_state *ss;
2687 	struct iwi_scan_ext scan;
2688 	int error = 0;
2689 
2690 	IWI_LOCK_ASSERT(sc);
2691 	if (sc->fw_state == IWI_FW_SCANNING) {
2692 		/*
2693 		 * This should not happen as we only trigger scan_next after
2694 		 * completion
2695 		 */
2696 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2697 		return (EBUSY);
2698 	}
2699 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2700 
2701 	ic = sc->sc_ifp->if_l2com;
2702 	ss = ic->ic_scan;
2703 
2704 	memset(&scan, 0, sizeof scan);
2705 	scan.full_scan_index = htole32(++sc->sc_scangen);
2706 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2707 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2708 		/*
2709 		 * Use very short dwell times for when we send probe request
2710 		 * frames.  Without this bg scans hang.  Ideally this should
2711 		 * be handled with early-termination as done by net80211 but
2712 		 * that's not feasible (aborting a scan is problematic).
2713 		 */
2714 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2715 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2716 	} else {
2717 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2718 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2719 	}
2720 
2721 	/* We can only set one essid for a directed scan */
2722 	if (ss->ss_nssid != 0) {
2723 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2724 		    ss->ss_ssid[0].len);
2725 		if (error)
2726 			return (error);
2727 	}
2728 
2729 	if (allchan) {
2730 		int i, next, band, b, bstart;
2731 		/*
2732 		 * Convert scan list to run-length encoded channel list
2733 		 * the firmware requires (preserving the order setup by
2734 		 * net80211).  The first entry in each run specifies the
2735 		 * band and the count of items in the run.
2736 		 */
2737 		next = 0;		/* next open slot */
2738 		bstart = 0;		/* NB: not needed, silence compiler */
2739 		band = -1;		/* NB: impossible value */
2740 		KASSERT(ss->ss_last > 0, ("no channels"));
2741 		for (i = 0; i < ss->ss_last; i++) {
2742 			chan = ss->ss_chans[i];
2743 			b = scan_band(chan);
2744 			if (b != band) {
2745 				if (band != -1)
2746 					scan.channels[bstart] =
2747 					    (next - bstart) | band;
2748 				/* NB: this allocates a slot for the run-len */
2749 				band = b, bstart = next++;
2750 			}
2751 			if (next >= IWI_SCAN_CHANNELS) {
2752 				DPRINTF(("truncating scan list\n"));
2753 				break;
2754 			}
2755 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2756 			set_scan_type(&scan, next, scan_type(ss, chan));
2757 			next++;
2758 		}
2759 		scan.channels[bstart] = (next - bstart) | band;
2760 	} else {
2761 		/* Scan the current channel only */
2762 		chan = ic->ic_curchan;
2763 		scan.channels[0] = 1 | scan_band(chan);
2764 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2765 		set_scan_type(&scan, 1, scan_type(ss, chan));
2766 	}
2767 #ifdef IWI_DEBUG
2768 	if (iwi_debug > 0) {
2769 		static const char *scantype[8] =
2770 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2771 		int i;
2772 		printf("Scan request: index %u dwell %d/%d/%d\n"
2773 		    , le32toh(scan.full_scan_index)
2774 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2775 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2776 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2777 		);
2778 		i = 0;
2779 		do {
2780 			int run = scan.channels[i];
2781 			if (run == 0)
2782 				break;
2783 			printf("Scan %d %s channels:", run & 0x3f,
2784 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2785 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2786 				uint8_t type = scan.scan_type[i/2];
2787 				printf(" %u/%s", scan.channels[i],
2788 				    scantype[(i & 1 ? type : type>>4) & 7]);
2789 			}
2790 			printf("\n");
2791 		} while (i < IWI_SCAN_CHANNELS);
2792 	}
2793 #endif
2794 
2795 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2796 }
2797 
2798 static int
2799 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2800 {
2801 	struct iwi_sensitivity sens;
2802 
2803 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2804 
2805 	memset(&sens, 0, sizeof sens);
2806 	sens.rssi = htole16(rssi_dbm);
2807 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2808 }
2809 
2810 static int
2811 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2812 {
2813 	struct ieee80211com *ic = vap->iv_ic;
2814 	struct ifnet *ifp = vap->iv_ifp;
2815 	struct ieee80211_node *ni = vap->iv_bss;
2816 	struct iwi_configuration config;
2817 	struct iwi_associate *assoc = &sc->assoc;
2818 	struct iwi_rateset rs;
2819 	uint16_t capinfo;
2820 	uint32_t data;
2821 	int error, mode;
2822 
2823 	IWI_LOCK_ASSERT(sc);
2824 
2825 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2826 		DPRINTF(("Already associated\n"));
2827 		return (-1);
2828 	}
2829 
2830 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2831 	error = 0;
2832 	mode = 0;
2833 
2834 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2835 		mode = IWI_MODE_11A;
2836 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2837 		mode = IWI_MODE_11G;
2838 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2839 		mode = IWI_MODE_11B;
2840 
2841 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2842 		memset(&config, 0, sizeof config);
2843 		config.bluetooth_coexistence = sc->bluetooth;
2844 		config.antenna = sc->antenna;
2845 		config.multicast_enabled = 1;
2846 		if (mode == IWI_MODE_11G)
2847 			config.use_protection = 1;
2848 		config.answer_pbreq =
2849 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2850 		config.disable_unicast_decryption = 1;
2851 		config.disable_multicast_decryption = 1;
2852 		DPRINTF(("Configuring adapter\n"));
2853 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2854 		if (error != 0)
2855 			goto done;
2856 	}
2857 
2858 #ifdef IWI_DEBUG
2859 	if (iwi_debug > 0) {
2860 		printf("Setting ESSID to ");
2861 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2862 		printf("\n");
2863 	}
2864 #endif
2865 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2866 	if (error != 0)
2867 		goto done;
2868 
2869 	error = iwi_setpowermode(sc, vap);
2870 	if (error != 0)
2871 		goto done;
2872 
2873 	data = htole32(vap->iv_rtsthreshold);
2874 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2875 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2876 	if (error != 0)
2877 		goto done;
2878 
2879 	data = htole32(vap->iv_fragthreshold);
2880 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2881 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2882 	if (error != 0)
2883 		goto done;
2884 
2885 	/* the rate set has already been "negotiated" */
2886 	memset(&rs, 0, sizeof rs);
2887 	rs.mode = mode;
2888 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2889 	rs.nrates = ni->ni_rates.rs_nrates;
2890 	if (rs.nrates > IWI_RATESET_SIZE) {
2891 		DPRINTF(("Truncating negotiated rate set from %u\n",
2892 		    rs.nrates));
2893 		rs.nrates = IWI_RATESET_SIZE;
2894 	}
2895 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2896 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2897 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2898 	if (error != 0)
2899 		goto done;
2900 
2901 	memset(assoc, 0, sizeof *assoc);
2902 
2903 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2904 		/* NB: don't treat WME setup as failure */
2905 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2906 			assoc->policy |= htole16(IWI_POLICY_WME);
2907 		/* XXX complain on failure? */
2908 	}
2909 
2910 	if (vap->iv_appie_wpa != NULL) {
2911 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2912 
2913 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2914 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2915 		if (error != 0)
2916 			goto done;
2917 	}
2918 
2919 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2920 	if (error != 0)
2921 		goto done;
2922 
2923 	assoc->mode = mode;
2924 	assoc->chan = ic->ic_curchan->ic_ieee;
2925 	/*
2926 	 * NB: do not arrange for shared key auth w/o privacy
2927 	 *     (i.e. a wep key); it causes a firmware error.
2928 	 */
2929 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2930 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2931 		assoc->auth = IWI_AUTH_SHARED;
2932 		/*
2933 		 * It's possible to have privacy marked but no default
2934 		 * key setup.  This typically is due to a user app bug
2935 		 * but if we blindly grab the key the firmware will
2936 		 * barf so avoid it for now.
2937 		 */
2938 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2939 			assoc->auth |= vap->iv_def_txkey << 4;
2940 
2941 		error = iwi_setwepkeys(sc, vap);
2942 		if (error != 0)
2943 			goto done;
2944 	}
2945 	if (vap->iv_flags & IEEE80211_F_WPA)
2946 		assoc->policy |= htole16(IWI_POLICY_WPA);
2947 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2948 		assoc->type = IWI_HC_IBSS_START;
2949 	else
2950 		assoc->type = IWI_HC_ASSOC;
2951 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2952 
2953 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2954 		capinfo = IEEE80211_CAPINFO_IBSS;
2955 	else
2956 		capinfo = IEEE80211_CAPINFO_ESS;
2957 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2958 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2959 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2960 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2961 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2962 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2963 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2964 	assoc->capinfo = htole16(capinfo);
2965 
2966 	assoc->lintval = htole16(ic->ic_lintval);
2967 	assoc->intval = htole16(ni->ni_intval);
2968 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2969 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2970 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2971 	else
2972 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2973 
2974 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2975 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2976 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2977 	    assoc->bssid, ":", assoc->dst, ":",
2978 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2979 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2980 	    le16toh(assoc->intval)));
2981 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2982 done:
2983 	if (error)
2984 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2985 
2986 	return (error);
2987 }
2988 
2989 static void
2990 iwi_disassoc(void *arg, int pending)
2991 {
2992 	struct iwi_softc *sc = arg;
2993 	IWI_LOCK_DECL;
2994 
2995 	IWI_LOCK(sc);
2996 	iwi_disassociate(sc, 0);
2997 	IWI_UNLOCK(sc);
2998 }
2999 
3000 static int
3001 iwi_disassociate(struct iwi_softc *sc, int quiet)
3002 {
3003 	struct iwi_associate *assoc = &sc->assoc;
3004 
3005 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
3006 		DPRINTF(("Not associated\n"));
3007 		return (-1);
3008 	}
3009 
3010 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
3011 
3012 	if (quiet)
3013 		assoc->type = IWI_HC_DISASSOC_QUIET;
3014 	else
3015 		assoc->type = IWI_HC_DISASSOC;
3016 
3017 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
3018 	    assoc->bssid, ":", assoc->chan));
3019 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
3020 }
3021 
3022 /*
3023  * release dma resources for the firmware
3024  */
3025 static void
3026 iwi_release_fw_dma(struct iwi_softc *sc)
3027 {
3028 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
3029 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
3030 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
3031 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
3032 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3033 		bus_dma_tag_destroy(sc->fw_dmat);
3034 
3035 	sc->fw_flags = 0;
3036 	sc->fw_dma_size = 0;
3037 	sc->fw_dmat = NULL;
3038 	sc->fw_map = NULL;
3039 	sc->fw_physaddr = 0;
3040 	sc->fw_virtaddr = NULL;
3041 }
3042 
3043 /*
3044  * allocate the dma descriptor for the firmware.
3045  * Return 0 on success, 1 on error.
3046  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3047  */
3048 static int
3049 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3050 {
3051 	if (sc->fw_dma_size >= size)
3052 		return 0;
3053 	if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
3054 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
3055 	    size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) {
3056 		device_printf(sc->sc_dev,
3057 		    "could not create firmware DMA tag\n");
3058 		goto error;
3059 	}
3060 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3061 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3062 	    &sc->fw_map) != 0) {
3063 		device_printf(sc->sc_dev,
3064 		    "could not allocate firmware DMA memory\n");
3065 		goto error;
3066 	}
3067 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3068 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3069 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3070 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3071 		goto error;
3072 	}
3073 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3074 	sc->fw_dma_size = size;
3075 	return 0;
3076 
3077 error:
3078 	iwi_release_fw_dma(sc);
3079 	return 1;
3080 }
3081 
3082 static void
3083 iwi_init_locked(struct iwi_softc *sc)
3084 {
3085 	struct ifnet *ifp = sc->sc_ifp;
3086 	struct iwi_rx_data *data;
3087 	int i;
3088 
3089 	IWI_LOCK_ASSERT(sc);
3090 
3091 	if (sc->fw_state == IWI_FW_LOADING) {
3092 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3093 		return;		/* XXX: condvar? */
3094 	}
3095 
3096 	iwi_stop_locked(sc);
3097 
3098 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3099 
3100 	if (iwi_reset(sc) != 0) {
3101 		device_printf(sc->sc_dev, "could not reset adapter\n");
3102 		goto fail;
3103 	}
3104 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3105 		device_printf(sc->sc_dev,
3106 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3107 		goto fail;
3108 	}
3109 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3110 		device_printf(sc->sc_dev,
3111 		    "could not load microcode %s\n", sc->fw_uc.name);
3112 		goto fail;
3113 	}
3114 
3115 	iwi_stop_master(sc);
3116 
3117 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3118 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3119 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3120 
3121 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3122 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3123 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3124 
3125 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3126 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3127 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3128 
3129 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3130 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3131 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3132 
3133 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3134 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3135 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3136 
3137 	for (i = 0; i < sc->rxq.count; i++) {
3138 		data = &sc->rxq.data[i];
3139 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3140 	}
3141 
3142 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3143 
3144 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3145 		device_printf(sc->sc_dev,
3146 		    "could not load main firmware %s\n", sc->fw_fw.name);
3147 		goto fail;
3148 	}
3149 	sc->flags |= IWI_FLAG_FW_INITED;
3150 
3151 	IWI_STATE_END(sc, IWI_FW_LOADING);
3152 
3153 	if (iwi_config(sc) != 0) {
3154 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3155 		goto fail2;
3156 	}
3157 
3158 	callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc);
3159 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3160 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3161 	return;
3162 fail:
3163 	IWI_STATE_END(sc, IWI_FW_LOADING);
3164 fail2:
3165 	iwi_stop_locked(sc);
3166 }
3167 
3168 static void
3169 iwi_init(void *priv)
3170 {
3171 	struct iwi_softc *sc = priv;
3172 	struct ifnet *ifp = sc->sc_ifp;
3173 	struct ieee80211com *ic = ifp->if_l2com;
3174 	IWI_LOCK_DECL;
3175 
3176 	IWI_LOCK(sc);
3177 	iwi_init_locked(sc);
3178 	IWI_UNLOCK(sc);
3179 
3180 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3181 		ieee80211_start_all(ic);
3182 }
3183 
3184 static void
3185 iwi_stop_locked(void *priv)
3186 {
3187 	struct iwi_softc *sc = priv;
3188 	struct ifnet *ifp = sc->sc_ifp;
3189 
3190 	IWI_LOCK_ASSERT(sc);
3191 
3192 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3193 
3194 	if (sc->sc_softled) {
3195 		callout_stop(&sc->sc_ledtimer);
3196 		sc->sc_blinking = 0;
3197 	}
3198 	callout_stop(&sc->sc_wdtimer);
3199 	callout_stop(&sc->sc_rftimer);
3200 
3201 	iwi_stop_master(sc);
3202 
3203 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3204 
3205 	/* reset rings */
3206 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3207 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3208 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3209 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3210 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3211 	iwi_reset_rx_ring(sc, &sc->rxq);
3212 
3213 	sc->sc_tx_timer = 0;
3214 	sc->sc_state_timer = 0;
3215 	sc->sc_busy_timer = 0;
3216 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3217 	sc->fw_state = IWI_FW_IDLE;
3218 	wakeup(sc);
3219 }
3220 
3221 static void
3222 iwi_stop(struct iwi_softc *sc)
3223 {
3224 	IWI_LOCK_DECL;
3225 
3226 	IWI_LOCK(sc);
3227 	iwi_stop_locked(sc);
3228 	IWI_UNLOCK(sc);
3229 }
3230 
3231 static void
3232 iwi_restart(void *arg, int npending)
3233 {
3234 	struct iwi_softc *sc = arg;
3235 
3236 	iwi_init(sc);
3237 }
3238 
3239 /*
3240  * Return whether or not the radio is enabled in hardware
3241  * (i.e. the rfkill switch is "off").
3242  */
3243 static int
3244 iwi_getrfkill(struct iwi_softc *sc)
3245 {
3246 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3247 }
3248 
3249 static void
3250 iwi_radio_on(void *arg, int pending)
3251 {
3252 	struct iwi_softc *sc = arg;
3253 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3254 
3255 	device_printf(sc->sc_dev, "radio turned on\n");
3256 
3257 	iwi_init(sc);
3258 	ieee80211_notify_radio(ic, 1);
3259 }
3260 
3261 static void
3262 iwi_rfkill_poll(void *arg)
3263 {
3264 	struct iwi_softc *sc = arg;
3265 
3266 	IWI_LOCK_ASSERT(sc);
3267 
3268 	/*
3269 	 * Check for a change in rfkill state.  We get an
3270 	 * interrupt when a radio is disabled but not when
3271 	 * it is enabled so we must poll for the latter.
3272 	 */
3273 	if (!iwi_getrfkill(sc)) {
3274 		struct ifnet *ifp = sc->sc_ifp;
3275 		struct ieee80211com *ic = ifp->if_l2com;
3276 
3277 		ieee80211_runtask(ic, &sc->sc_radiontask);
3278 		return;
3279 	}
3280 	callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc);
3281 }
3282 
3283 static void
3284 iwi_radio_off(void *arg, int pending)
3285 {
3286 	struct iwi_softc *sc = arg;
3287 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3288 	IWI_LOCK_DECL;
3289 
3290 	device_printf(sc->sc_dev, "radio turned off\n");
3291 
3292 	ieee80211_notify_radio(ic, 0);
3293 
3294 	IWI_LOCK(sc);
3295 	iwi_stop_locked(sc);
3296 	iwi_rfkill_poll(sc);
3297 	IWI_UNLOCK(sc);
3298 }
3299 
3300 static int
3301 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3302 {
3303 	struct iwi_softc *sc = arg1;
3304 	uint32_t size, buf[128];
3305 
3306 	memset(buf, 0, sizeof buf);
3307 
3308 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3309 		return SYSCTL_OUT(req, buf, sizeof buf);
3310 
3311 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3312 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3313 
3314 	return SYSCTL_OUT(req, buf, size);
3315 }
3316 
3317 static int
3318 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3319 {
3320 	struct iwi_softc *sc = arg1;
3321 	int val = !iwi_getrfkill(sc);
3322 
3323 	return SYSCTL_OUT(req, &val, sizeof val);
3324 }
3325 
3326 /*
3327  * Add sysctl knobs.
3328  */
3329 static void
3330 iwi_sysctlattach(struct iwi_softc *sc)
3331 {
3332 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3333 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3334 
3335 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3336 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3337 	    "radio transmitter switch state (0=off, 1=on)");
3338 
3339 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3340 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3341 	    "statistics");
3342 
3343 	sc->bluetooth = 0;
3344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3345 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3346 
3347 	sc->antenna = IWI_ANTENNA_AUTO;
3348 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3349 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3350 }
3351 
3352 /*
3353  * LED support.
3354  *
3355  * Different cards have different capabilities.  Some have three
3356  * led's while others have only one.  The linux ipw driver defines
3357  * led's for link state (associated or not), band (11a, 11g, 11b),
3358  * and for link activity.  We use one led and vary the blink rate
3359  * according to the tx/rx traffic a la the ath driver.
3360  */
3361 
3362 static __inline uint32_t
3363 iwi_toggle_event(uint32_t r)
3364 {
3365 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3366 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3367 }
3368 
3369 static uint32_t
3370 iwi_read_event(struct iwi_softc *sc)
3371 {
3372 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3373 }
3374 
3375 static void
3376 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3377 {
3378 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3379 }
3380 
3381 static void
3382 iwi_led_done(void *arg)
3383 {
3384 	struct iwi_softc *sc = arg;
3385 
3386 	sc->sc_blinking = 0;
3387 }
3388 
3389 /*
3390  * Turn the activity LED off: flip the pin and then set a timer so no
3391  * update will happen for the specified duration.
3392  */
3393 static void
3394 iwi_led_off(void *arg)
3395 {
3396 	struct iwi_softc *sc = arg;
3397 	uint32_t v;
3398 
3399 	v = iwi_read_event(sc);
3400 	v &= ~sc->sc_ledpin;
3401 	iwi_write_event(sc, iwi_toggle_event(v));
3402 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc);
3403 }
3404 
3405 /*
3406  * Blink the LED according to the specified on/off times.
3407  */
3408 static void
3409 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3410 {
3411 	uint32_t v;
3412 
3413 	v = iwi_read_event(sc);
3414 	v |= sc->sc_ledpin;
3415 	iwi_write_event(sc, iwi_toggle_event(v));
3416 	sc->sc_blinking = 1;
3417 	sc->sc_ledoff = off;
3418 	callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc);
3419 }
3420 
3421 static void
3422 iwi_led_event(struct iwi_softc *sc, int event)
3423 {
3424 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3425 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3426 	static const struct {
3427 		u_int		rate;		/* tx/rx iwi rate */
3428 		u_int16_t	timeOn;		/* LED on time (ms) */
3429 		u_int16_t	timeOff;	/* LED off time (ms) */
3430 	} blinkrates[] = {
3431 		{ IWI_RATE_OFDM54, 40,  10 },
3432 		{ IWI_RATE_OFDM48, 44,  11 },
3433 		{ IWI_RATE_OFDM36, 50,  13 },
3434 		{ IWI_RATE_OFDM24, 57,  14 },
3435 		{ IWI_RATE_OFDM18, 67,  16 },
3436 		{ IWI_RATE_OFDM12, 80,  20 },
3437 		{ IWI_RATE_DS11,  100,  25 },
3438 		{ IWI_RATE_OFDM9, 133,  34 },
3439 		{ IWI_RATE_OFDM6, 160,  40 },
3440 		{ IWI_RATE_DS5,   200,  50 },
3441 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3442 		{ IWI_RATE_DS2,   267,  66 },
3443 		{ IWI_RATE_DS1,   400, 100 },
3444 		{            0,   500, 130 },	/* unknown rate/polling */
3445 	};
3446 	uint32_t txrate;
3447 	int j = 0;			/* XXX silence compiler */
3448 
3449 	sc->sc_ledevent = ticks;	/* time of last event */
3450 	if (sc->sc_blinking)		/* don't interrupt active blink */
3451 		return;
3452 	switch (event) {
3453 	case IWI_LED_POLL:
3454 		j = N(blinkrates)-1;
3455 		break;
3456 	case IWI_LED_TX:
3457 		/* read current transmission rate from adapter */
3458 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3459 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3460 			for (j = 0; j < N(blinkrates)-1; j++)
3461 				if (blinkrates[j].rate == txrate)
3462 					break;
3463 			sc->sc_txrix = j;
3464 		} else
3465 			j = sc->sc_txrix;
3466 		break;
3467 	case IWI_LED_RX:
3468 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3469 			for (j = 0; j < N(blinkrates)-1; j++)
3470 				if (blinkrates[j].rate == sc->sc_rxrate)
3471 					break;
3472 			sc->sc_rxrix = j;
3473 		} else
3474 			j = sc->sc_rxrix;
3475 		break;
3476 	}
3477 	/* XXX beware of overflow */
3478 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3479 		(blinkrates[j].timeOff * hz) / 1000);
3480 #undef N
3481 }
3482 
3483 static int
3484 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3485 {
3486 	struct iwi_softc *sc = arg1;
3487 	int softled = sc->sc_softled;
3488 	int error;
3489 
3490 	error = sysctl_handle_int(oidp, &softled, 0, req);
3491 	if (error || !req->newptr)
3492 		return error;
3493 	softled = (softled != 0);
3494 	if (softled != sc->sc_softled) {
3495 		if (softled) {
3496 			uint32_t v = iwi_read_event(sc);
3497 			v &= ~sc->sc_ledpin;
3498 			iwi_write_event(sc, iwi_toggle_event(v));
3499 		}
3500 		sc->sc_softled = softled;
3501 	}
3502 	return 0;
3503 }
3504 
3505 static void
3506 iwi_ledattach(struct iwi_softc *sc)
3507 {
3508 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
3509 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
3510 
3511 	sc->sc_blinking = 0;
3512 	sc->sc_ledstate = 1;
3513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3514 	callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0);
3515 
3516 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3517 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3518 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3519 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3520 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3521 		"pin setting to turn activity LED on");
3522 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3523 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3524 		"idle time for inactivity LED (ticks)");
3525 	/* XXX for debugging */
3526 	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3527 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3528 		"NIC type from EEPROM");
3529 
3530 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3531 	sc->sc_softled = 1;
3532 
3533 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3534 	if (sc->sc_nictype == 1) {
3535 		/*
3536 		 * NB: led's are reversed.
3537 		 */
3538 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3539 	}
3540 }
3541 
3542 static void
3543 iwi_scan_start(struct ieee80211com *ic)
3544 {
3545 	/* ignore */
3546 }
3547 
3548 static void
3549 iwi_set_channel(struct ieee80211com *ic)
3550 {
3551 	struct ifnet *ifp = ic->ic_ifp;
3552 	struct iwi_softc *sc = ifp->if_softc;
3553 	if (sc->fw_state == IWI_FW_IDLE)
3554 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3555 }
3556 
3557 static void
3558 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3559 {
3560 	struct ieee80211vap *vap = ss->ss_vap;
3561 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3562 	struct iwi_softc *sc = ifp->if_softc;
3563 	IWI_LOCK_DECL;
3564 
3565 	IWI_LOCK(sc);
3566 	if (iwi_scanchan(sc, maxdwell, 0))
3567 		ieee80211_cancel_scan(vap);
3568 	IWI_UNLOCK(sc);
3569 }
3570 
3571 static void
3572 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3573 {
3574 	/* NB: don't try to abort scan; wait for firmware to finish */
3575 }
3576 
3577 static void
3578 iwi_scan_end(struct ieee80211com *ic)
3579 {
3580 	struct ifnet *ifp = ic->ic_ifp;
3581 	struct iwi_softc *sc = ifp->if_softc;
3582 	IWI_LOCK_DECL;
3583 
3584 	IWI_LOCK(sc);
3585 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3586 	/* NB: make sure we're still scanning */
3587 	if (sc->fw_state == IWI_FW_SCANNING)
3588 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3589 	IWI_UNLOCK(sc);
3590 }
3591